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Introduction 

David Courtnay Marr was born on January 19, 1945 in Essex, England. He 
went to the English public school, Rugby, on scholarship and between 1963 
and 1966 studied mathematics at Trinity College, Cambridge University where 
he obtained his B.S. and M.S. degrees. Rather than pursue a Ph.D. in math
ematics he preferred to switch to neurophysiology under Giles Brindley. His 
education involved training in neuroanatomy, neurophysiology, biochemistry, 
and molecular biology. Marr's Ph.D. work resulted in a theory of the cerebel
lar cortex, the essence of which became "A Theory of the Cerebellar Cortex," 
reproduced in Chapter 1 of this volume with a commentary by Thomas Thach. 
He wrote a short paper subsequently with Stephen Blomfield, "How the Cere
bellum May Be Used," (Chapter 2 in this volume with commentary by Jack 
Cowan). After obtaining his Ph.D., David Marr accepted an appointment to 
the scientific staff of the MRC Laboratory of Molecular Biology in Cambridge 
in the division of Cell Biology under Sydney Brenner and Francis Crick. 

Two other major studies, "Simple Memory: A Theory of the Archicortex" 
(Chapter 3 in this volume, commented on by Bruce McNaughton and David 
Willshaw) and "A Theory for Cerebral Neocortex" (Chapter 4 in this volume 
and commented on by Jack Cowan) followed the cerebellum study. 

"Truth, I believed, was basically neuronal, and the central aim of re
search was a thorough analysis of the structure of the nervous system" (Marr, 
1982). This view, combined with his initial training in mathematics, shaped 
the methodology that Marr applied in these three studies: 

For a mathematician, understanding (or explanation) is all, yet in science, 
proof is, of course, what counts. In the case of Information-Processing de
vices, understanding is very important; one can know a fact about a device 
for years without really understanding it, and part of the theoretician's job is 
to place into a comprehensible framework the facts that one already knows. 
I still think that the cerebellum is a good example. For sure, the idea that the 
parallel fibre - Purkinje cell synapses - might be modifiable may not have 
been very difficult to arrive at, and other theories have since incorporated it; 
but that surely is only a part of the story. I found the real impact of that 
story to lie in the combinatorial trick. That is, this granule cell arrangement, 
with associated inhibitory intemeurones, had been right in front of people's 
eyes ever since Cajal (modulo inhibition and excitation) but its significance 
had not been appreciated. Of course my theory might yet be wrong, but 
if it is right, then I would regard a major part of its contribution as being 
explanatory. And also, that that is almost inevitable. 

from a letter to Francis Crick, 1977 



LUCIA VAINA 

Marr's early work was aimed at understanding cortical structures in func
tional terms, and the mathematical framework allowed him to make several 
predictions that, especially for the cerebellum theory, inspired many experi
mentalists over the years. For brain theorists, Marr's models of the cerebellum, 
archicortex, and neocortex remain models of simplicity, mathematical rigor and 
explanatory power. 

In 1973 David Marr came to the Artificial Intelligence Laboratory at MIT, 
first as a visiting scientist for a few months, but since "the facilities and the 
people were really impressive" he decided to stay on for "a year or two." At 
MIT he began working on vision. So, he writes to Giles Brindley in October 
1973: 

I turned to vision when I arrived here [MIT], hoping that insight into the 
functions you had to perform to recognize something, together with the de
tailed neurophysiological knowledge and an unexcitable disposition, would 
be capable of illuminating many questions that are surely not vulnerable to 
the microelectrode. 

In December of the same year, his decision to break with the previous 
research was stated clearly in a short letter to Brindley: 

I do not expect to write any more papers in theoretical neurophysiology -
at least not for a long time: but I do not regard the achievements of yours 
1969, or my papers as negligible. At the very least, they contain techniques 
that anyone concerned with biological computer architecture should be aware 
of, and I shall be very surprised if my 1969 or 1971 papers turn out to be 
very wrong. 

Influenced by Hom's algorithm for computing lightness and by Land's 
retinex theory, Marr began thinking about the functions of the retina. His 
work in vision took a fresh approach influenced both by the enthusiasm in 
the then new field of artificial intelligence and in neuroscience. Cambridge, 
Massachusetts was already an intellectual Mecca where things were happening, 
where communication was fast and the work was first rate: 

I have just spent a week with Jack Pettigrew, who is a very bright and exciting 
person! He is studying the development of the visual cortex, and has the most 
extraordinary results! The features coded for really do depend on what the 
kittens see. He was full of the results you mentioned, and especially those 
of Zeki. Apparently there is a stereo area, a movement area, as well as a 
colour one. I am writing a short summary of the computations performed by 
the visual cortex. 

Marr wrote to a Cambridge friend, May 1973 

The same year in September he wrote a long and thoughtful letter to 
Sydney Brenner, his intellectual mentor and friend: 

I have been thinking about the future. Presumably, as a result of the Lighthill 
report, AI must change its name. I suggest BI (Biological Intelligence!). 
I am more and more impressed by the need for a functional approach to 
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INTRODUCTION 

the eNS and view it as significant that the crucial steps for the retina were 
taken by Land, the only scientist in the field actually concerned with handling 
real pictures (in his case on colour film). The moral is that if you wish to 
do vision research, you must have the facilities for taking, recording and 
processing real live pictures, to see if what you think gets results actually 
does. I see a bright future for vision in the next few years, and am anxious to 
stay in the subject, doing my own AI research as well as acting as interface 
with neurophysiology. 

He began thinking of a computational approach to vision. The motivation 
and the essence of the new approach were clear to him already in 1973, as 
he replies to Dunin-Barlcovski's request for permission to translate his earlier 
papers into Russian: 

It would be fun to have some of it translated into Russian. My present 
opinion of my earlier work is, however, that even if it is correct, it does not 
take one much further in the study of how the brain works than, for example, 
the study of more obviously physical phenomena like synaptic transmission, 
or the conduction of nervous impulses. The reason why I believe this is that 
this part of my work has to do more with computer architecture than with 
biological computer programs! I have studied how some basic "machine
code" instructions can be implemented in nervous tissue; but these studies 
tell you rather little about how the rest of the brain uses these facilities -
e.g., what is the overall structure of a particular motor program for picking 
an object up, or for throwing a ball. It is the second kind of question that I 
am now interested in. 

Neural net theories, fashionable then in theoretical biology, had severe 
limitations that Marr clearly expressed in a review of approaches to biological 
information processing: 

The neural net theory states that the brain is made of neurons, connected either 
specifically (for small structures) or randomly (for larger ones). Hence, in 
order to understand the brain we need to understand the behavior of these 
assemblies of neurons. Here there are two problems. First, the brain is large 
but it is certainly not wired up randomly. The more we learn about it, the more 
specific the details of its construction appear to be. Hoping that random neural 
net studies will elucidate the operation of the brain is therefore like waiting for 
the monkey to type Hamlet. Second, given a specific function of inevitable 
importance like a hash-coded associative memory, it is not too difficult to 
design a neural network that implements it with tolerable efficiency. Again, 
the primary unresolved issue is what functions you want to implement and 
why. In the absence of this knowledge, a neural net theory, unless it is 
closely tied to the known anatomy and physiology of some part of the brain 
and makes some unexpected predictions, is of no value. 

Science, 1975, vol. 190 pp. 875-876 

The reactions to this harsh view were mixed as we read in this computer 
mail message from Kanerva: 
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I admire your courage in submitting to print your considered, and critical, 
views on theories of biological information processing (Science, 1975) and 
on AI. You probably mentioned on the phone of their getting you into some 
trouble, but I just wonder who really is in trouble. As I see it, you are 
not inclined to build your house on sand, and that you question whether 
researchers by and large consider what foundations they are building on or 
what the structure, if finished, is supposed to accomplish. My feelings are 
with you, but I find justifying anything - beyond justifying it to myself -
extremely difficult. And yet that is what one has to do. 

Pentti Kanerva, (15 March 1977) 

In the meantime Marr's work on the retina was progressing very nicely: 

For the retina, I am not wholly responsible. Nick Horn, co-director of the 
vision mini-robot project, came up with a beautiful algorithm for computing 
Land's Retinex function [see J. Opt. Soc. Am. 61 (1971) pp. 1-11]. It is not 
quite the actual one actually used, but was near enough to enable one to take 
the last steps. I am busy tying up all the detailed anatomy and physiology 
now, and am very hopeful that the whole thing will turn out to be very pretty. 
But the retinex is the real secret. We haven't decided yet how to publish it: 
perhaps two separate papers. If so, mine will show how almost everything 
that needs to be said is in the literature somewhere, but scattered over about 
200 papers. It is great fun, even if not as original as my earlier work. One 
of our wholly new findings is that the so called center-surround organization 
of the retinal ganglion cells is all a hoax! It is nothing but a by-product of 
showing silly little spot stimuli to a clever piece of machinery designed for 
looking at complete views. That will put the cat among the pigeons in a very 
satisfying manner! 

from a letter to Sydney Brenner, July 1973 

Two papers were published in 1974: Hom's paper entitled "On Lightness" 
and Marr's entitled "The Computation of Lightness by the Primate Retina." 
The latter is reproduced in Chapter 5 in this volume with a commentary by 
Norberto Grzywacz. 

The retina paper was followed by a computational theory of stereopsis 
outlined first in an internal AI lab memo, "A Note on the Computation of 
Binocular Disparity in a Symbolic Low-level Visual Processor." (Chapter 1 
in Part II of this volume). This paper marked the beginning of the famous 
collaboration with Tommy Poggio, who was then at the Max Planck Institute 
in Tubingen. They first published the "Cooperative Computation of Stereo 
Disparity." (Chapter 2 in Part II here), and subsequently, in "A Computational 
Theory of Human Stereo Vision", they proposed an algorithm thought to be 
used by the human visual system for solving the stereo problem (Chapter 
3 in Part II). These three papers are commented on by Ellen Hildreth and 
Eric Grimson, and the extraordinary excitement of the work is most vividly 
described by Poggio in the Epilogue (part IV) of this volume. 

Marr advocated and practiced a program for research into brain functions 
that required focusing on the study of the information processing problems 
inherent in the tasks themselves, rather than structural details of the mechanism 
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that performs them. He stressed, however, that the study of the information 
processing problems was not sufficient. In vision, for example, once we know 
how to compute a description of a scene from an image intensity array it will 
be possible to design neural implementations of the computation. Essentially, 
useful contributions had to be made at the computational level, and this requires 
working on real problems (as opposed to idealized blocksworld problems), and 
powerful and flexible computational facilities that were available at the MIT 
Artificial Intelligence Laboratory were making this work possible. He wrote 
to a friend in the Spring of 1975, "I left the cozy and comfortably decadent 
confines of the British Isles to confront the harsher realities of this abrasive 
and invigorating climate, and am now studying vision." In 1977 he joined the 
faculty of the MIT Psychology Department and in 1980 was promoted to a 
permanent position and full professor. 

At MIT, David Marr spent years of incredibly intense and fruitful col
laborations with Poggio, Ullman, Grimson, Hildreth, Nishihara, Richards and 
Stevens, among the closest. The results of these collaborations were presented 
in a series of papers and in his book Vision which presents "A computational 
investigation into the human representation and processing of visual informa
tion" (the subtitle of the book). The new and original approach of this book has 
made it into a classic textbook and reference for anybody working in vision, 
no matter what approach he takes. 

In the closing chapter of this volume (part III) Sejnowski presents an ele
gant consistency proof of Marr's approaches in the early and the later studies, 
and demonstrates that together, these constitute an important framework for 
those working in computational neuroscience. 

The book ends with an Epilogue, which through letters from friends, 
students, and colleagues, vividly portrays David Marr's complex personality 
and his zest for living. He lived with the same intensity and commitment to 
life with which he carried out his research. Life was to be enjoyed, discovered, 
and conquered in all its beauty and complexity. And those who were close to 
him will always remember that, until the last day, November 17, 1980, David 
remained faithful to his commitment to life and work. 

Lucia M. Vaina 
Cambridge, September 1990 
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J. PhYlliol. (1969).201. pp. 437-470 
With 1 plate and 2 tezl·jiguru 

A THEORY OF CEREBELLAR CORTEX 

By DAVID MARR* 

From Trinity College, Cambridge 

(Received 2 December 1968) 

SUMMARY 

437 

1. A detailed theory of cerebellar cortex is proposed whose consequence 
is that the cerebellum learns to perform motor skills. Two forms of input
output relation are described, both consistent with the cortical theory. One 
is suitable for learning movements (actions), and the other for learning to 
maintain posture and balance (maintenance reflexes). 

2. It is known that the cells of the inferior olive and the (~erchellar 
Purkinje cells have a special one-to-one relationship induced hy the 
climbing fibre input .. For learning actions, it is assumed that: 

(a) each olivary cell responds to a cerebral instruction for an elem('ntal 
movement. Any action has a defining representation in terms of elemental 
movements, and this representation has a neural expression as a sequem'(' 
of firing pattern.'i in the inferior olive; and 

(b) in the correct state ofthe nerVOlL~ system, a Purkinje eell can initiat£' 
the elemental movement to which its corresponding olivary cell responds. 

3. ·Whenever an olivary cell fires, it sends an impulse (via the climbing 
fibre input) to its corresponding Purkinje cell. This Purkinje eell is also 
exposed (via the mossy fibre input) to information about the ('ontext in 
which its olivary cell fired; and it is shown how, during rehearsal of an 
action, each Purkinje cell can learn to recognize such contexts. Later, when 
the action has been learnt, occurrence of the context alone is enough to 
fire the Purkinje cell, which then causes the next elemental movement. 
The action thus progresses as it did during rehearsal. 

4. It is shown that an interpretation of cerebellar cortex as a struetuffl 
which allows each Purkinje cell to learn a number of contexts is consistent 
both with the distributions of the various types of cell, and with theil' 
known excitatory or inhibitory natures. It is demon.'itrated that the mossy 
fibre-granule cell arrangement provides the required pattern discrimination 
capability. 

5. The following predictions are made. 
(a) The synapses from parallel fibres to Purkinje cells are facilitated hy 

the conjunction of presynaptic and climbing fihre (or post-synaptic) aetivity. 
• Xow at the InHtitute of P"ychiatry, London, S.E. .; 

Reprinted with permission of The Physiological Society, Oxford, England. 
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438 DAVID ~lfARR 

(IJ) Xo other eerehellar synapses are modifiable. 
(c) Uolgi cells are driven hy the greater of the inputs from their upper 

and lower dendritie fields. 
(j. For learning maintenance reflexes, 2(a) and 2(b) are replaced by 
2'. Each olivary cell is stimulated by one or more receptors, all of whose 

activities are usually reduced hy the results of stimulating the corre
sponding Purkinje cell. 

i. It is shown that if (2') is satisfied, the circuit receptor_ olivary 
cell _ Purkinje cell _ effector may be regarded as a stabilizing reflex 
circuit which is activated by learned mossy fibre inputs. This type of 
reflex has been called a learned conditional reflex, and it is shown how such 
reflexes can solve problems of maintaining posture and balance. 

8. 5 (a), and either (2) or (2') are essential to the theory: 5 (b) and 5 (c) 
are not absolutely essential, and parts of the theory could survive the 
disproof of either. 

§o. IXTRODLCTIO~ 
The cortex of the vertebrate cerebellum has a simple and extremely 

regular fine structure. This happy combination has made detailed experi
mental investigations possible, with the result that the arrangement and 
connexions of the cerebellar cells, together with the excitatory or inhi
bitory nature of the various synapses, are now clear (see Eccles, Ito & 
Szen tagothai, 196 i). 

The structure of cerebellar cortex, though well understood, has as yet 
received no plausible interpretation. In the present paper, a theory of the 
cortex is proposed which explains what is known about it, and makes 
certain definite and testable predictions. The implication of the cortical 
theory is that the purpose of the cerebellum is to learn motor skills, so 
that when they have been learned a simple or incomplete message from the 
cerebrum will suffice to provoke their execution. Brindley (1964) sug
gested this was the function of the cerebellum. 

The exposition is divided into various sections. In the first, an outline 
of the theory is presented: this is intended to provide a framework within 
which the reader may fit the details. The next five sections contain a cell 
by cell aecount of the cortex, and these are followed hy a closer look at the 
input-output relations consistent with the theory. 

§ l. OUTLIXES 

The axons of the Purkinje cells form the only output from the eortex of 
the cerebellum (see Fig. 1); and these cells are driven by two essentially 
different kinds of input, one direct, the other indirect. The first is the 
climhing fibre input, and the second the mossy fibres, whose influence on 
the Purkinje cells may be complicated. 

12 



A THEORY OF CEREBELLAR CORTEX 

The inferior olive is the only known SOllree of elil11bing fibres: 
every cell in the inferior olivary nuclei projects to the cerebellum, and every 
part of the cerebellum possesses climbing fibres (Bceles et al. HW7). EaeIL 
of the rather small olivary cells sends out an axon whieh terminates ill one 
climbing fibre on just one Purkinje eell: there are very few exceptions. 
The climbing fibre completely dominates the dendritie tree of the l'urkinje 
cell, and its action has been shown to be powerfully excitatory (Bceles 
et (d. 1967). Thus every olivary eell has a unique representational cell ill 
the eerebellum whieh can be aeted upon by all the infiU('nees mediated by 
the parallel fibres. In the present theory, it is suggested that each olivary 
eell corresponds to a 'piece of output' which it is necessary to ha H! under 
control during movements. This' pieee of out put' could take mallY forms: 
it might be a limb movement, or a fine digit moveml'nt, or an instruction 
to read vestibular output in a partieular way to set up an appropriat(~ 
control loop. Such' pieccs of output' will be called eiunenild mm·ement.s; 
and each olivary cell may for the moment he supposed to correspond to OIW 

elemental movement in the sense that it is dri,'en by an instruction for 
that movement to take plaee. 

It is imagined that the olivary dictionary of c1emental l11on'f1wnts is 
complete: that is, every possible action ean be represented as an ordered 
pattern of elemental movements each of which has a speeial oli,'aQ' cell. 
Every action therefore has a defining representation as a sequenee of firing 
patterns in the olive. 

The final assumption, which relates the olivo-cerehelrar system to the 
execution of motor actions, is that the nen'ous systcm has a way of con
verting the (inhibitory) output of a Purkinje cell into all instruetion which 
provokes the precise mo,'ement to which its uniquely rclated oli,-ary cell 
responds. 

It will be argued that the reason for the special and in a s('ni'e substitu
tive relationship between a cell of the inferior olive and a Purkinje ('ell of 
the eerebellum is that the Purkinje cell can learn all the' situations' ill 
which the olive cell movement is required, and later, when sw·h a situat ion 
occurs again, can implement that movement itself. If this wen' true of 
enough Purkinje cells (at least one for every elemental mO\"(,l11l'nt), the 
cerebellum could learn to carry out any previously rehearsed action whidl 
the cerebrum ehose to initiate, for as that action progressed, the eontext 
for the next part of it would form, would 1)(' recognized by the appropriate 
Purkinje cells, and these would turn on the next set of n11ls(·l<-s. allowing 
further development of the action. In this way, ('lwh mu"de would he 
turned on and off at the correct moment, and the aetion woulrllJe automati
eally performed. 

Information defining the context for each Purkinje cell is provided by 

13 



440 DAVID MARR 

the mossy fibre input: and to establish that the Purkinje cells can learn 
contexts in the appropriate way it is necessary to demonstrate that the 
mossy fibre-granule cell-Purkinje cell arrangement could operate as a 
pattern recognition device. The notion fundamental to this is that the 
mossy fibre-granule cell articulation is essentially a pattern separator. That 
is, it amplifies discrepancies between patterns that are rather similar, 
translating two overlapping collections of mossy fibres into bundles of 
parallel fibres that overlap proportionately much less, if at all. One 
Purkinje cell can be made to store different contexts quite reliably by 
facilitating the relevant parallel fibre-Purkinje cell synapses: and this will 
work as long as the Purkinje cell does not try to learn too much. Evi
dently, the cue for synaptic modification is that the relevant climbing fibre 
be also active, and it is this which leads to the modification hypothesis. 

These ideas lead to the notion that a mossy fibre input has been learnt 
hy a given Purkinje cell if, and only if, the input is transformed into 
impulses in a bundle of parallel fibres all of whose synapses with that 
Purkinje cell have heen facilitated. Two crucial points now arise. First, the 
number of parallel fibres into which a mossy fibre input is translated in
creases very sharply with the number of active mossy fibres unless the 
threshold of the granule cells also increases. The number of patterns each 
Purkinje cell can learn depends on the number of synapses which are 
facilitated in each: so economy arguments suggest that the granule cell 
threshold should be controlled in a suitable way. An inhibitory inter
neurone could achieve this, and the Golgi cells are interpreted as fulfilling 
this role. 

The second point is that although the effect of the Golgi cells is to decrease 
the variation in the amount of parallel fibre activity, such variation will 
still exist. Whether or not a Purkinje cell should respond to a given mossy 
fibre input cannot therefore be decided by a fixed threshold mechanism. 
Thc Purkinje cell threshold must vary directly with the number of active 
parallel fibres rUlming through its dendritic tree, and its actual value must 
be such that the cell emits a signal when and only when all the active 
parallel fibres have facilitated synapses with its dendrite. The natural way 
to implement this is to allow the parallel fibres to drive an interneurone 
whieh inhibits the Purkinje cell: and it will be shown that the various 
stellate inhibitory cells can be associated with this function, although their 
dendritic and axonal distributions are at first sight unsuitable. 

1.1. Data, 

The anatomical and physiological information used in this paper con
cerns the cerebellum of eat, and is mostly derived from Eccles et al. 
(196i). Faets which are well known will not usually be given a reference: 
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A THEORY OF CEREBELLAR CORTEX 441 

information which is less well known is given a page reference in Eccles 
et al. (1967) if it appears there; otherwise an external reference is given. 

A diagram of the general cerebellar cortical structure appears in Fig. 1. 
The cortex has two types of afferent fibre, the climhing fihres (el) and the 
mossy fibres OJ/o). Each climbing fihre makes extensive synaptic eontact 
with the dendritic tree of a single Purkinje cell (p), and its effect there is 
powerfully excitatory. The axons of the Purkinje cells leave the cortex 
(they form the only cortical output) and synapse with cells of thc cerc
bellar nuclei. 

Fig. I. Diagram of cpreoollar cortex (from Beclell et al. 1967, Fi~. I). Thn affprpnt", 
are th" climbing fibrp!! (Cl) and the mORRY fibrf>s (.1/Q). EaPh "'imhin~ fihrn RynaJ>HI'!\ 
with one Purkinje c,,11 (p), and !!pnds weak collateral!! to othpr enlls of th" "ortf·x. 
Th .. mr,RSY fibres synapSf' in the cprobollar glompruli (rll) with tho granul" "r·lIs, 
whoso aX(JflS (g) form the parallel fihre!!. The parallf'! fihrf"l arn eXf'itatory and mn 
Irmgitudinally down tho folium: th"y synapfl(, with th .. Purkinj .... ,,1111 and wilh tt,,· 
various inhihitory intprn"uron~, st"lIat" (St). h ... <,knt (BIl) anrl Gol~i "fills (0,,). Th" 
st"lIate and haRknt c"'l axonll synapRO with th" I'urkinj(' "r,IIf1, and th" Golgi (·(·11 
axrm.- !lynapso in th" glom('ruli with the granHI" ""IIf!. AR wr·1I as thr·ir .. """,.ding 
rl .. nrlrites, the Gol~i c"lIs pr)H.'IORR a RYRtE.m of dOHcr·nrling dr·nrlrilf·f!, with whir·h th" 
mr'RRY fibr"R ,wnaPfI(, in th .. ~Iom"rllli. Th" I'IIJ'kinj" 1:,,11 axonR form th .. only "Htp"t 
from th .. cort .. x, awl giv .. off many fiflf' ""lIat,·raIR to Ihn "ari',lI11 inhihitr,ry intf·r· 
nouronf·S. 
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The se~ond input, the mossy fihres, synapse in the ~erehellar glomeruli 
(~/l) with the granule cells. Each glomerulus contains one mossy fihre 
tcrminal (called a rosette), and dendrites (called claws) from many granul(! 
('clls. The glomerulus thus achieves a considerahle divergence, and each 
mossy fihre has many rosettes. 

The axons of the granule cells rise (g) and he come the parallel fihres, 
which synapse in particular with the Purkinje cells whose dendritic trees 
they eros;;. Where the granule cell axons (i.e. the parallel fihres) make 
synapscs, thcy are cxcitatory. 

Thc remaining cclls of the cortex arc inhihitory intcrneurones. The Golgi 
("(~lIs (r:o) are largc, and have two dendritic trees. The upper tree extcnds 
through thc molecular layer, and is driven hy the parallel fihres. The lower 
d(~n(lritr-s terminate in the glomcruli, and so are drivcn hy the mossy 
film·s. The Golgi axon descends and ramifics profusely: it terminates in 
the glomf'ruli, thcrehy inhihiting the granule cells. Every glomf'rulus 
rec('ivcs a Golgi axon, almost always from just one Golgi cell: and cach 
Colgi c(~11 sends an axon to all the glomeruli in its rcgion of thc cortcx. 

The other inhihitory ncuroncs are stellate cells, the hasket (Bft) and 
out(,r stellatc (Sf) cells. Thcse havc dcndritcs in the molecular layr-r, and 
are dri\"cn hy the parallel fibrcs. Both types of cell synapse cxdusivcly 
wit It Purkinje cclls, and are powerfully inhibitory. 

Finally, thc cortex (,ontains various axon collaterals. The c1imhing 
fibres gi\'e off weak excitatory collatcrals which make synapses with the 
inhihitory int(,rneuronr-s situatr-d near the parent c1imhing fihre. The 
Purkinjr, cdl axons gin, off eollaterals which make weak inhihitory 
s.\"naps('s with the eortical inhibitory interneurones, and perhaps also very 
w('ak inhihitory synapses with otlwr Purkinje cells. Thcse collateral;; have 
it ratlwr \\'idespread ramification. 

Br·hind this general f;trudure lie some relatively fixed numerical rela" 
t ions. Tlwse all appear in Ecdes {ot nl. (1 !}()7), hut are disperf;ed therein. 
It is tlwf(,fCJre conn'nient to f;Ct them down hcre. 

Each Purkinje ('cll haf; about 200,(JOO (spinc) synapses with the parallel 
film's (·flJssing its (jpndriti(, tree, and almost every sueh parallel fibrc makes 
a s.\"napti(· f'onta(·t. The If'ngth of ea(,h parallel fihre is 2-3 mm (q mm 
(·;[r·h way), and in 1 mm down a folium, a parallel fih)'e passcs ahout 1;'0 
I'urkill.j(! ("dis. Eu·\e" {of rtl. (I fW7) are ('ertain ca('h fibre makes at least 300 
(()f tlt,-, possible 4;jO) f;ynaptie (,(mtads with Purkinje eells, and think the 
t r11(: numlwr is nearer 4;jO. There is one Golgi eell per !) or 10 Purkinje ecllR, 
'Inri its axon synap;.es (in glomeruli) with all the granule eells in that 
/'f·gioll, i.(~. around 4;j{JO. There are many granule eells (2·4 x lOr. per mm3 

of granul(~ (·dl lay(·),), (~a(:h \\'itlt (usually) 3-;' dendrites «(,ailed daws): the 
a \'('ra~(: i" 4';j and t he range I-i. Each dendrite goes to one and only one 
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glomerulus, where it meets one mossy fibre rosette. It is, however, not 
alone: each glomerulus sees the termination of ahout 20 granule cell 
dendrites, possibly a Golgi cell descending dendrite, and certainly some 
Golgi axon terminals, all from the same Golgi cell. Within each folium, 
each mossy fibre forms 20-30 rosettes, giving a divergence of 1 mossy fibre 
to 400-600 granule cells within a folium. The mossy fihre often has 
branches running to other folia, and in Fig. 2 helow one can count 44 
rosettes on one fibre. 

Just below the Purkinje cells are the Golgi cell bodies, and just above 
them are the basket cell hodies. There are 10-12 ~;J more basket cells than 
Purkinje cells, and about the same number of outer stellate cells. Each 
basket cell axon runs for about 1 mm tramn-ersely, which is about the dis
tance of 10 Purkinje cells. The basket axon is liable to form baskets round 
cells up to three away from its principal axis, so its influence is confined to 
a sort of hox of Purkinje cells about 10 long and 7 across. The distribution 
of the outer stellate axons is similar except that it has a box about 9 x 7, 
since its axon only travels about 0·9 mm tranfoifolially. The outer foitellatefoi 
inhabit the outer half of the molecular layer, and the basket ccllfoi the 
inner third. There are intermediate formfoi in the missing sixth. Xone of 
these cells has a dendritic tree as magnificent as that of the Purkinje cell, 
and Eccles et al. (1967) do not venture any comparative figurefoi. Some outer 
stellates are small, with a local axonal distribution. A lot of the synapfoies 
of parallel fibres with this last group of cells are directly axo-dcndritic, 
but all other parallel fibre synapses are via spines, though these are of 
different shapes on the different sorts of cell. Calculations hased on slightly 
tenuous assumptions (in which Fig. 2 is an essential link) suggest that each 
Purkinje cell reeeh-es eonnexions from ahout 7000 mossy fihres: this will 
be explained in 3.1. 

§ 2. CLDIBIXG FIBRES 

The climbing fihre input has already been discussed at some length, and 
a formal statement of its part in the modification hypothesis will be made 
in 5.1. It is important to note that the fibre climbs like a creeper all over 
the dendritic tree of its chosen Purkinje cell, and forms synaptic contact 
almost everywhere. Each climhing fihre also sends terminals to other types 
of cell (hasket, stellate and Golgi) in the vicinity of its Purkinje cell. These 
terminals seem to he excitatory, hut only weakly so (Eccles et al. 1967, 
Tahle 1, p. 63). The climbing fihre eollatcrals and the Purkinje axon col
laterals will be discussed together in 5.5. 
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§3. )IOSSY FIBRES AXD ORA~t:LE CELLS 

3.11. The codon representation 

The !'ynaptic arrangement of the mossy fibres and the granule cells may 
be regarded as a device to represent activity in a collection of mossy fibres 
by ('l('ments each of which corresponds to a small subset of active mossy 
fibres. It is convenient to introduce the following terms: a codon is a subset 
of a collection of acth"e mossy fibres. The representation of a mossy fibre 
input by a sample of such subsets is called the codon representation of that 
input: and a codon cell is a cell which is fired by a codon. The granule cells 
will he identified as codon cells, so these two terms will to some extent be 
interchangeahle. The size of codon that can fire a given granule cell 
d('pcnds upon the threshold of that cell, and may vary: and the mossy 
fibres which synapse with the granule cell determine the codons which 
may fire that cell. 

There are exactly 

( L) L! 
R = iff(L-R)! 

eodons of size R associated with a collection of L active mossy fihres. If 
two mo;;!'.'" fibre inputs each invol\"e activity in L fibres of which J.1/ were 
common to the two. the two inputs are said to overlap by Jr elements; and 
they may be expected to have some codons in common. In fact the numher 

the.\· share is precisely (~). The ratio X of the number of shared codons 

to til£" number of codons each possesses is given hy 

X = ('lr)j(L) = Jr~~-=-~L·(W-:-R+ 1) (1) 
R R L(L-l) ... (L-R+l) 

whi('h tf·mls to (Jr / L)II as lr increases. The limiting valu('s of X for 
rel(·vant values of R appear in Tahle 1. It will be observed that the effect 
of the subset poding is to separate patterns, because similar inrmts have 
markedly less similar codons. 

TABU: I. Ow·rlap Tahlf', i.e. valuf'8 of (IVILIB 

I II" I., R _.) 3 4 5 

II·;; 11,25 1)·12 0·116 IH,3 
11·6 11·36 /)·22 IH3 IH'H 
fI,; II'4!1 1,·3.& /)·24 ,,·1 i 
f HI ".6-1 fHn /)·.&1 ",33 
11-!J (HII /),;3 /J·66 /)·59 

TIlf' mossy fibre-granule cell relay effectively takes a sample of the codon 
distribution of an input: the sample is small ('nough to be manageable, but 
lar~c enough for the input event to he recoverahle from it with high 
prohahility. 
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3.1. The mossy fibre-Purkinje cell com.:ergence 

A knowledge of the number of mossy fibres which may influence a given 
Purkinje cell is a prerequisite of a discussion of the codon sampling 
statistics: and this number may be estimated as follows. Let P be an 
arbitrary but henceforth fixed Purkinje cell: and assume that 200,000 
parallel fibres synapse with P. Each granule cell has (on average) 4·;j claws, 

Fig. 2. :\(OAHY fio",!! (8 and C) tf>nninating in two n(>ighhollTing f"Jia (fr',m Cajal. 
1911, Fig. 41). The riiHtrihution ',f th" t"nninal~ from "a"h m"AA~' mH'" Ii.·" in tho 
!18m., plan., M the axon of the hask.·t e.·11 (D). A i .. a C;olgi coli. 

so not more than 900,000 mossy fihre" can influence P through tlw parallel 
fibres. Since the mossy fibre-granule cell divergcnee is 400--000 within a 
folium, the minimum figure for the mossy fihre-P convergcnce is 1,,00. It 
is apparent from Fig. 2 that the mossy fihre terminals oeeur in dumps of 
4-10 rosettes, the average heing 7 or 8, all of whieh might he expef"ted to 
lead to granule cells most of which will contact any nearhy Purkinje cell. 
If a mossy fihre leads to P, it may therefore expeet to do so hy 14/)- HiIJ 

different paths (allowing for thc divergence factor of to due to each 
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glomerulus). An average of 150 implies that about 6000 different mossy 
fibres lead to P. The edge effects will increase this figure, so 7000 would 
probably be a reasonable guess. This estimate will be used in the subse
quent calculations. 

3.2. The a.'J.'Jumption oJ randomness 

In the investigation that follows, it is assumed that the ~rminals of the 
7000 mossy fibres are distributed randomly among the 200,000 granule 
cells leading to P. It is regrettable that no data exist to suggest a better 
model: and evidence will be produced (3.3.3 and 4.3) for the view that this 
assumption is actually false. Its value is that it enables computation whose 
results are at least illustrative: and one has the comfort of knowing that 
the capacity of a real cerebellum will anyway not be less than the result of 
calculations which assume a random distribution. 

3.3. The granule cell clau's 

3.3.1. Boundary condition.<J. It will be assumed first that the claw 
arrangement of the granule cell dendrites is, as suggested by Eccles et al. 
(1967), a device to secure a high mossy fibre-granule cell divergence with 
minimal physical structure. But why do the granule cells have 4 or 5 claws 
and not more? These cells are extremely small and densely packed: and 
the parallel fibre synapses on P are extremely numerous. It is therefore 
reasonable to assume that the figure of 200,000 (or thereabouts) is the 
maximum physically realizable number of cells of this sort which can all 
send axons to P. 

Secondly, it will be assumed that the synapses at the granule cells are 
not modifiable: that is, an excited mossy fibre will add a contribution to the 
exeitatory post-synaptic potential (EPSP) of any granule cell with which 
it synapses, and this contribution has to be considered in determining 
whether or not that cell fires. This is justified below (3.3.3). Thirdly, the 
number of mossy fibres leading to P is of the order of 7000 in number: and 
fourthly, it is assumed that the system is to be used under conditions in 
which the number of active input fibres varies from around 20 to around 
2000, if that is possible. There is clearly a need to allow considerable varia
tion; some action~ involve many more muscles and much more information 
from receptor organs than others. These figures are proposed as outer 
bounds, in the absence of any relevant evidence. Fortunately, it turns out 
not to matter crucially: the essential point is that the numbers are all 
nearer 0 than 7000 (on an arithmetical scale). 

3.3.2. Codon .'Jampling. The following rough model is used to calcula~ 
the number of granule cells per Purkinje cell that a given input can expect 
to 8timula~. Suppose the number of active mossy fibres among the 7000 
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connected to the Purkinje cell P is L: then the number of possible codons 

is (~), where R is the size of the codon. The number of codons which 

. . (7000) . could be generated by the 7000 possible mossy fibres IS R ; and If we 

assume that the granule cells have R claws and a threshold of R, then they 
represcnt a collection of 200,000 codons, supposcd chosen randomly from 

the possible r~n). Hence the number of granule e£'lIs per Purkinjc cell 

stimulated hy a given input of L active mossy fibres follows approximately 
hinomial statistics with expectation 

(L)/(7000) 200,000 R R' (2) 

The calculations that follow are coneerncd only with cxpectations: the 
numbers have in fact to be large enough for the distribution to be rather 
tightly clumped round the expectation. This is dis(:usscd in 5.2.3. 

Suppose now that the granule cell has 0 elaws and threshold R ~ C. 

That granule cell now has a catchment area of exactly (~) codons of 

size R: and expression (2) becomes 

(3) 

which is valid for expectations small compared with 200,000. (3) becomes 
(2) when 0 = R. The approximation (3) may be used, since it will be 
shown in 4.4 that situations will probably never occur in which the expec
tation is greater than 10,000. The values of (3) have been calculated for a 
sclection of values of L, C, and R, and some of the results appear in Tables 
2-4. Numbers greater than 20,000 have been replaced by an asterisk. 

3.3.3. Conclu.'1ionlJ. The conditions of 3.3.1 may be used to discover 
limits on the expected values of C and R. :First, it is apparent from Table 4 
that no codon size above 9 can ever be used when there are fewer than 13 
daws per granule cell because too few granule cells would be activated. It 
is also evident and unsurprising that the maximum codon size used depends 
eritically on the number of claws to each cell. Given this, the factor that 
will determine the number of claws to each cell will bc economy of structure; 
and the relevant question is what is the least number of claws such that: 

(i) The system is not swamped by large inputs: i.e. what is the least 
number of claws which still allows a small granule cell response to large 
inputs. Table 4 shows that a small response (less than 500) can be assured 
by 6 claws; so we expect to find at most 6. 

(ii) The system remains sensitive to small inputs, if necessary by using 
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(C' (L /(7000 TABU: 2. VaiuM of 2f10,OOOn) ,n) R): i.p. the nllmoor of the 200,000 granule oolla 

"ynBp"in~ with onp. Purkinjf> Cf,1I that a mossy fibro input involving L active film!!! (fJllt 
of 11J1JO) can f!xpect to stimulato. The granulfl cell .. have C claw8, and threshold R 

L = 20 

R C-·) 4 6 8 10 12 

113-1 22~6 3429 4571 5714 6857 
2 2 9 23 43 7/J 102 
3 II /J " 0 I 
4 0 0 IJ fI 0 
5 0 " 0 (} 

6 0 " (} " 7 (} (} (} 

~ 0 0 0 
9 0 0 

Ifl ., 0 
II 0 
12 0 

. (0) (/;)/(7000) T A DI.E 3. '"I"",,, or 211f1,flflO R R R: !ICe leg .. nd to Table 2 

L = HlO 

R C -.~ , - - 4 I) 8 10 12 

5,7'" 11,429 17,143 • • • 
2 40 242 6f16 1,132 1,1'119 2,667 
3 2 11 32 6~ 125 
4 0 0 1 2 4 
:; 0 0 0 0 
6 0 II 0 fI 
1 fI 0 II 
~ 0 /J II 
II 0 II 

Ifl " 1/ 
\I I, 
12 /J 

. . . (C') (/;)/(7001/) " lADLE 4. \ alup" f,f :WII,flflI'.If. R R: 'If'" I"gpud tf, lable 2 

J. = 2:JI,., 

If C -.~ 4 6 !$ III 12 

1 • • • • • • 
2 • • • • • • 
3 • • • • • 
4 2,327 • • • • 
5 4,5"12 • • • 
6 251 7,1111) • • 
7 657 9,~1)2 • 
>I 27 1,21:1 13,339 
II ~I'I 1,!J43 

H) 3 IIH 
11 11 
12 II 

an R less than C. The Table for information about this is Table 2, where 
for L = 20, we have to usc R = 1 for all tahulated values of C, and it is 
not until L = 100 (sec Tahle 3) that one can usc R = 2 with C = fi. It 
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would therefore appear that to store inputs concerning fewer than 100 
active mossy fibres, systems with C = 6 or less have to use codon size I. 
This means a loss of discrimination between overlapping inputs of fewer 
than 100 active fibres. Provided however there are not many sueh srnrJ.l1 
inputs, this will not be too serious. The number that must he kept J, dli
gible is the probability that a small, un learnt mossy fihre input wiII occur all 
of whose active fibres have previously heen involved in small learnt inputs. 

This difficulty can to some extent be avoided if the mossy fibres whic:h 
are active together in small input events have some tendency to grow near 
each other. The expected granule cell responses at codon sizes R > 1 wiII 
then be substantial at localized spots. This can be used, because it turns 
out that it is best to set the codon size on a local hasis, rather than setting 
it uniformly over all the granule eells synapsing with a given Purkinje 
cell. The result for the animal wiII be greater reliahility in its cerehellar 
responses, so mossy fibres whieh are correlated in this way could be drawn 
together by selection. 

These arguments suggest that the arrangement of 4-5 claws per granule 
cell is consistent with structural economy and the conditions of 3.3.1. One 
point remains to be discussed: it is the assumption of 3.3.1 that the mossy 
fibre-granule cell synapses are unmodifiable. The most straightforward 
argument is this: every granule cell has a synapse with at least 300 
Purkinje cells, each of which probably learns ahout 200 mossy fibre 
inputs (.'5.3). The chance that a given mossy fihre-granule cell synapse is 
used in none of these is extremely small (a generous estimate is 10-20); 

whether or not it was initially facilitated, it almost certainly wiII be at 
some time. There is therefore no advantage in its being modifiable originally. 

§4. THE GOLGI CELLS 

4.0. The need for variable codon 8ize 

It hecame apparent in 3.3 that if the number of active parallel fihres was 
to remain reasonably small over quite large variation in the numher of 
active mossy fibres, the thresholds of the granule cells had to vary appro
priately. It wiII be shown (5.3) that the number of patterns a Purkinje cell 
can learn decreases sharply as the number of active parallel fibres involved 
in each increases. It is therefore essential to the efficient functioning of the 
system that the codon size should depend on the amount of mossy fibre 
activity. 

4.1. Requirement8 of a codon 8ize regul(J'(or 

In the simple model eontaining one output eell P, 200,000 associated 
granule c:ells eaeh making (possibly ineffective) synapses with P, and 7000 
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mossy fibres making contact in a random way with the granule eells, the 
task of a codon size regulator is in principle simple. It must count the 
number of these iOOO mossy fibres whieh are active, and set the threshold 
of the granule cells so that the following conditions are satisfied. 

4.1.1. The number of active granule cells must be large enough to allow 
adequate representation of the mossy fibre input: that is, every active 
mossy fibre must with high probability be included in at least one codon. 

This condition may be relaxed a little, since one factor on which the dis
criminatory power of the cerebellum depends is the accuracy with which 
the decision threshold at the Purkinje cell is set (5.2.3). There is no 
adv.antage in guaranteeing representation of the whole mossy fibre input 
if events slightly different from a learned event will anyway be responded 
to because of errors introduced later. 

4.1.2. The number of active parallel fihres must exceed some lower 
bound X, where X will be taken as 500. This arises because the Purkinje 
cell threshold is not set directly from the parallel fibres with which it 
synapses, but from the results of sampling a number of different but closely 
related parallel fibres. The sampling is more reliable the more parallel fibres 
are active. This is explained in 5.2.3, where the figure of 500 is derived. 

4.1.3. The codon size set for a particular mossy fibre input must depend 
only on that input; so that the same input is always translated into the 
same parallel fibres. 

4.1.4. The codon size must be maximal, subject to conditions 4.1.1 to 
4.1.3. This ensures that the number of modifiable synapses used for each 
learned event is minimal, and hence that the capacity is maximal (5.4). 

It witI be assumed that a signal in a mossy fibre is represented by a burst 
of impulses lasting many tens of milliseconds; and that a signal from a 
Purkinje cell is represented by a prolonged increase in its firing rate. This 
is discussed later (5.0); for the moment, it is needed only to justify the 
fifth condition. 

4.1.5. The codon size rebrulating cell need not have set the granule cell 
threshold before the very first impulse in a signal arrives, but it must act 
very fast in response to such an impulse. It is essential that very little 
activity should he allowed into the parallel fibres while the granule cells 
are set at an inappropriately low threshold. 

A mechanism to vary the threshold subject to these conditions could 
work in one of two ways: the threshold of the granule cells could be in
trinsically high, and the mechanism provide excitation decreasing with 
increasing size of input; or the threshold could be low, and the mechanism 
provide inhibition increasing with increasing size of input. 
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4.2. Properties of the Golgi cells 
The Golgi cells are inhibitory, can be driven by mossy fibres (through 

their descending dendrites) and synapse exclusively with granule cells. 
Further, they arc particularly notable for the speed of their response 
(Eccles et al. 1967, p. 141). If the Golgi cells can be interpreted as a codon 
size setting device, it will therefore be as a mechanism of the second type 
described above. 

There are, however, certain difficulties inherent in such an interpretation: 
first, each Golgi cell is driven by only a small number of the mossy fibre 
afferents to a single Purkinje cell, and sends an axon terminal to a rela
tively small number of granule cells; and second, the Golgi cells possess a 
large ascending dendrite system (Fig. 1), which on the present naive model 
is unexpected. The idea which the model lacks and which accounts for these 
various anomalies is the notion that Purkinje cells may share granule cells. 
Such sharing could clearly lead to great economies where two Purkinje 
cells needed codons from similar underlying subset distributions; but it is 
not obvious that sharing can be made to work, since two Purkinje cells 
may simultaneously require two different codon sizes. 

4.3. The effects of 8haring granule cell.'l among Purkinje cell8 
If Purkinje cells are to be allowed to share granule cells, the assumption 

that the granule cell threshold should be constant over all cells synapsing 
with a given Purkinje cell must be abandoned. The most important single 
condition on the mossy fibre-granule cell tranfsformation is (4.1.3) that it 
should be one-valued: a given mossy fibre input to a Purkinje cell should 
be carried there by parallel fibre activity which is determined by that input 
alone, and is independent of the simultaneous inputs to nearby Purkinje 
cells. This condition determines (in principle) the number and distribution 
of granule cells whose thresholds can be controlled together: for' consider 
two adjacent Purkinje cells, PI and P a. The collection of granule cells 
which synapse with PI but not with P a must be free to act as an inde
pendent unit, since it must be able to assume a threshold value different 
from the P a cells. If each parallel fibre is 3 mm long, and synapses with 
each of the 450 Purkinje cells that grow in 3 mm along a folium, the num ber 
of granule cells that synapse with a given Purkinje cell but not with its 
neighbour is about 200,000/450 = 444. 

The conclusion that may be drawn from these arguments is that the 
codon size should be set independently over blocks of about 450 granule 
cells. If this were done by an inhibitory cell, it should possess an axon 
distribution like that of the existing Golgi cells but limited to 450 granule 
cells, and a dendrite system like the descending Golgi dendrites: further 
there should be one such cell per Purkinje cell. 
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The fact that there are fewer and higger Golgi cells than these argu
ments suggest must depend on certain information not incorporated in the 
model. This information concerns the distribution of the mossy fibre 
terminals whie-h, if it were random and 4.l.3 were satisfied, would neces
sitate an arrangement near the expected one. In fact, one can see from 
Fig. 2 that the mossy fihres have a strong tendency to course transfolially, 
and in any case, given one mossy fibre rosette, there is a high probability 
that there will be another from the same fibre nearby. The effect of this, 
e\"en apart from the considerations of 3.3.3, is to make nearby granule 
cells more related than they would be on the random hypothesis; and it is 
this which allows the larger axon and basal dendrite distribution which the 
Golgi cells are found to possess. 

4.4. Th~ (tscending Oolgi dendrites 

The parallel fibre activity evoked by a mossy fibre input should be 
unique but perhaps more important even than that, it should involve 
rather few fibres, since the storage capacity of a Purkinje cell depends 
crucially on the number of parallel fibres active in each learned event (.5.3). 
Some idea of the numbers of parallel fibres needed for various amounts of 
mossy fibre activity may be gained by using the simple random model. In 
Table 5, the expected number of active granule cells has been computed 

TABLE 5. P"f!.~ibl,· e"d'm AizA tran~iti'!fls (unrl"rlinArl); L is the number 
of aetin, m'JfIIIY fihres; R is the couon size 

L R= 1 2 3 4 5 

100 12,8.j7 :l2:l 4 0 0 
300 • 2,929 109 2 0 
.')(jO • 8,148 507 15 0 
JOO • --- -- - 1,395 1 15,979 61) 
!JOO • • 2,967 16:l :l 

1,100 • • 5,420 :l64 10 
1,300 • • 8,950 711 22 
1,500 • • 13,754 1,261 45 

for inputs with L active messy fibreH, theHe L <.;hoHen at random from a 
population of Hize iOOO. The calculation haH been performed on the 
assumption that 100,000 granules have 4 claws, and 100,000 have 5: for a 
threshold of R, the approximation used was 

expected numher = 100,000 ((;.) + (~)) (~) / C~O) (4) 

whieh iH derived the same wayaH expression (3), and iH valid only for 
answers small compared with 100,000. The codon size transition regiolL'! 
have heen underlined. It will be ohserved that on this rather crude model, 
each input arouses between ~('O and 0000 granule cells: (500 is the lower 
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bound justified in 5.2.:J). If as many as 9000 are lL'!ed, the capacity of each 
Purkinje cell will be drastically reduced. For large values of L, around 
1000 (if such are ever lL'!ed) the figure of 9000 ig not unreasonable. Indeed 
some number of that order will be necesgary to cover all the active in
coming fibres. But if not, and it is quegtionable whether such large inputs 
ever occur, then to use so many would be wasteful. Provided that the 
total number of active parallel fibres is greater than 500, it is possible to 
use condition 4.1.1 to submit this number to an upper bound which depends 
on the amount of mossy fibre activity. For example, the number of parallel 
fibres active should only exceed 5000 if the number of active mossy fibreg 
exceeds 500. 

The upper dendritic tree of a Golgi cell may be interpreted as a mechan
ism to superimpose this upper bound; and it may be expected to work as 
follows. A mossy fibre signal arrives which may be quite different ii·om 
what wag going on before. The descending Golgi dendrites gample it and 
quickly set new thresholds at the relevant granule cellg: thig setting 
amountg to a first guess based on local sampling. Rather a long time later, 
the signals appear in the parallel fibres, and the Golgi cell, by examining 
the activity in a large number of these, can tell whether or not its initial 
assessment was the most economical solution. If it was, itg behaviour 
should not alter: if not it should; but this will always entail shifting to a 
higher codon size. One cannot say that the local or global sample will 
always give the best solution; for example, it might happen that the mossy 
fibre input is sufficiently localized that it can support a high codon size for 
just one or two Golgi cells. 

In general, therefore, a Golgi cell should be driven by that dendritic 
system from which it receives most excitation. This suggests that the upper 
and lower dendritic fields should have rather a peculiar relationship. The 
synaptic influences among the upper dendrites should summate, and so 
should the effects among the lower ones: but the summed contributions 
should interact so that the output from the cell is driven by the maxi
mum of the two, not the sum. There is no firm evidence to support this 
prediction, but Eccles et al. (1967) mention that the two dendritic fields 
are probably too far apart to allow summation. 

A proper investigation of the action of the Golgi cells would be difficult 
for two reasons. First, one eannot use a random model for the way the 
granule cells are distributed over the possible subsets of the mossy fibres, 
for as well as the objections of 4.3, it is likely that mossy fibres whose 
activities are correlated will grow near one another. This is because input 
events would then tend to need fewer granule cells to cover them, and 
could therefore be more economically stored. Secondly, an analytic model 
of the relationships between neighbouring Golgi cells under various input 
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conditions needs unrealistic simplification before it can be handled. The 
correct approach is probably to use a simulation programme; and the kind 
of result to which it will lead is that an action A, learnt in isolation, may 
have to be relearnt to some extent if it is to be performed immediately 
after some closely related action B. This will arise because the hangover 
in the parallel fibres of action B could cause temporarily different codon 
sizes in certain Golgi cell blocks. The parallel fibres for A in this situation 
are slightly different from those for A performed in isolation. In other 
words, the price of economy is probably a not too serious loss of uniqueness 
for the mossy fibre-parallel fibre transformation. 

4.5. The Golgi cell afferent synapseIJ 

It will be clear that within the present theory, no advantage would be 
gained by having the mossy fibre-Golgi cell synapses modifiable: but it is 
not so clear whether this is also true of the parallel fibre-Golgi cell synapses. 
Although there is no very simple way in which it would be useful to have 
these synapses modifiable, it is conceivable that there might be fringe 
benefits. Suppose, for example, that activity in a particular set of mossy 
fibres always preceded a large volley: then such advance information 
could be used by the Golgi cell if the conditions under which modification 
took place were arranged suitably. 

On the other hand, modifying a synapse on a Golgi cell implies that the 
parallel fibre has a special relationship with the granule cells below that 
Golgi cell. Leaving aside the case that it came from one of them (not a 
special relationship of the relevant kind) there is no reason why, even if 
such a relationship were to hold over a number of inputs, it should hold 
over a majority, since one Golgi cell can expect to serve a huge number of 
different facilitated responses. And, in contrast to the Purkinje cells, there 
are no inhibitory cells of any power acting upon the Golgi cell, so there is 
no mechanism for deciding whether or not a majority of the currently 
active fibres have or have had such a special relationship. (The absolute 
size of a 'majority' is variable: so the Golgi cells would need a variable 
threshold to make such a decision, for the same reasons as do the Purkinje 
cells.) This argument suggests rather strongly that these synapses are not 
modifiable. 

The other afferent Golgi synapses come from the Purkinje cell collaterals 
and the climbing fibre collaterals: these will be discussed in 5.5. 
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§ 6. THE PURKINJE CELLS 

5.0. The Purkinje cell output 

The main branch of a. Purkinje cell axon goes to one of the cerebellar 
nuclei and forms the only output from the cortex: its effect in the nucleus 
is inhibitory. It is an assumption of the present theory that the central 
nervous system has a means of converting a signal in a Purkinje cell axon 
into an order to provoke the elemental movement to which its corre
sponding olivary cell responds. The inhibitory nature of the Purkinje cell 
output suggests that it may require a positive effort to read from the 
cerebellum, since excitation must be fed in somewhere to the effector 
circuit. This would be useful (though not essential) if it were required that 
cerebellar output should often be ignored: and indeed it is likely that such 
occasions will frequently occur during waking life and possibly also during 
sleep. The fact that the cortical output is inhibitory can therefore be inter
preted as a convenience for easy ignoring, though this is neither the only 
nor a necessary view. 

The second point arises from the fact that Purkinje cells have a high 
resting discharge of 20-50 impulses/sec. (Eccles et al. 1967, p. 306). It was 
assumed above (4.1.5) that a signal in a mossy fibre was represented by a. 
burst of impulses: and the codon size setting function of the Golgi cells 
depended upon this. It is a necessary consequence that efferent cortical 
signals should also be represented by a train of impulses rather than a 
single one, since the delays involved in turning on the inhibitory inter
neurones could make the initial response of a Purkinje cell to a mossy fibre 
input inappropriate. This may occur frequently, and would conveniently 
be hidden by a high resting discharge. Purkinje cells can sustain high rates 
of firing (greater than 400/sec, according to Eccles et al. 1967, p. 308): it is 
therefore reasonable to assume that a. signal in a Purkinje cell axon is 
represented by a large increase in the firing rate, and that the effector 
systems are only sensitive to such messages. This assumption would have 
to be made for almost any theory of the cortex, since the Purkinje cells 
form the only output. 

The input-output relations for the cortex as a whole receive attention 
in § 7, and the Purkinje axon collaterala in 6.6. 

5.1. The hypothesi8 oJ modifiable 8ynatp8U 

The fundamental hypothesis for the mechanism of the change of effec
tiveness of a parallel fibre-Purkinje cell synapse is that iJ a parallel fibre i8 
active at about the 8ame time a8 the climbing fibre to a Purkinje cell with which 
that parallel fibre maku 8ynaptic contact, then the eJlicacy oJ that IJY'fIIJp8e i8 
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increalJed tormrdlJ 80me fixed maximum ?:alue. ('At about the same time' is 
an intentionally inexact phrase: the period of sensitivity needs to be 
something like 5(~lOO msec.) 

If this hypothesis is true, it may hal"e implications about the physio
logical conditions for synaptic modification. The most striking fact about 
the climbing fibres is that they extend over the whole Purkinje dendritic 
tree. Two of the possible reasons for this seem plausible: first, that the 
climbing fibre releases some sort of 'change' factor which modifies the 
active synapses; or second, that the fundamental condition for modifica
tion is simultaneous pre- and post-synaptic depolarization. Hebb (1949) 
suggested that the nervous system might contain synapses with modifica
tion conditions of the second sort. 

The other and rather dangerous place one might look for implications 
of the modification hypothesis is in the comparison of electron-micro
graphs of cells supposed to have modifiable synapses with those supposed 
not to. This will not be attempted, but it may be relevant that the Purkinje 
cells seem to be the only ones in the cerebellum whose dendrites carry the 
characteristic tubular s,ystem which terminates' abruptly' at the base of 
the spines (Eccles et al. 196;, p. 9). 

5.2. Simplifying alJlJumptionlJ 

The calculation of the learning capacity of a single Purkinje cell requires 
that certain simplif~;ng assumptions be made. 

5.2.1. It will be assumed that a synapse is either totally modified or 
totally unmodified: and that stimulation of a totally unmodified synapse 
has no effect on the post-synaptic membrane. 

This is equivalent to allowing modification to increase synaptic effica('Y 
from some fixed minimum to some fixed maximum value in one step: since 
the two situations can be identified by subtracting any' ground' excita
tion of an unmodified synapse. Such a subtraction has a linear dependence 
on the number of parallel fibres active at any moment, and could easily be 
performed by an unmodifiable inhibitory interneurone such as the basket 
or outer stellate cells. This may indeed be one of the functions of these 
cells: it is a matter of nQ importance to the present theory, since such an 
effect would be constant throughout the life of the cerebellum. The phrase 
'in one step' is merely a conceptual convenience: the matter will be 
discussed in §i. 

5.2.2. Secondly, it will he assumed that each learned event occupies a 
set of parallel fihres which may be regarded as having been chosen at 
random from the 200,000 which synapse with the Purkinje cell. This 
assumption can be justified on the grounds first that any estimation of 
capacity arrived at by using it is likely to be too low; and, secondly, that 
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almost any other assumption would involve a computational effort out of 
all proportion either to the probable truth or to the value of any results 
thereby achieved. The assumption i!'!likely to be false for two reasons: first, 
the mo!'!sy fibre-granule cell relay is probably not randomly constructed; 
and, secondly, the learned event!'! are unlikely to have a random structure 
over the space of possible mossy fibre inputs. Some types of strueturc on 
the learned inputs will positively confuse the system into giving false 
responses. 

This topic will receive a full and more general analysis in a later paper: 
two remarks however are not out of place here. If there are many learned 
mossy fibre inputs which all overlap each other by a considerable amount, 
the cerebellum may not be able to discriminate inputs which have been 
learned from inputs which have not when an unlearned input has mueh 
overlapping with learned inputs. The fact that no granule cells have more 
than 7 claws introduces an absolute upper bound to the discriminatory 
power of the cerebellum: and, when this is inadequate, control must revert 
to the cerebrum. It should also be noted that any subset of a learned mossy 
fibre input will behave as a learned input if it causes the same codon size 
range to be selected as did the learned input. In the full model, the con
dition is more restrictive in that the codon size range must be the same for 
most of the 150 or so Golgi cells concerned. 

5.2.3. The maximum desirable number of facilitated synapses on any 
one Purkinje cell will be taken as 140,000, and the minimum number of 
parallel fibres active in any learned event as 500. 

These figures are related by the way the Purkinje cell threshold is set 
(see 6.1). It turns out that the most economical way of doing this is by 
sampling a population of parallel fibres closely related to and including 
the ones passing through the Purkinje cell dendritic tree. Let T(E) be thf" 
threshold set in response to the stimulation of M(E) parallel fibres hy the 
mossy fihre input E (regarded as an input to a particular Purkinje cell Pl. 
Let f he the fraction of the (200,000) parallel fihre synapses whieh have 
heen facilitated at P. If E has been learnt, all M(E) of the active parallel 
fihres will have facilitated synapses at P. Hence if E is to he recognized as 
learnt, T(E) ~ M(E) (i). 

If E is not a learned event, and F(E) is the number of the active parallel 
fibres which have facilitated synapses at P, then E will he ignored only if 
T(E) > F(E) (ii). 

If recognition is a reliable process, both (i) and (ii) must he true with 
high probahility. 

The randomness assumption 5.2.2 allows us to assume that F(E). taken 
over events E with constant .M~(E), has a hinomial distrihution with expec
tationfJl(E). It is unlikely that T (taken over the same event popUlation) 
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has worse than a binomial distribution, since the binomial assumption is 
equivalent to regarding the value of T as being set on the basis of a 
measurement of the number of active mossy fibres involved in E. If one 
assumes T has a binomial distribution, conditions (i) and (ii) are satisfied 
with probability rather greater than 0·99 if M ~ 500, / = 0·7. These 
values for / and the minimum value of M will be used despite the rather 
low confidence level because (a) the threshold setting mechanism is certain 
to be better than a binomial process, and (b) few input events will use the 
minimum number of parallel fibres allowed. 

5.3. The storage capacity 0/ a Purkinje cell 

The capacity of a Purkinje cell may be calculated very simply from the 
assumptions 5.2. Suppose the fraction of facilitated parallel fibre synapses 
is O' 7, and each learned event occupies n parallel fibres. Then x, the 
expected number of events which may be learned before the total propor
tion of synapses used exceeds 0'7, is the largest integer for which 

(1 - n/200,OOO)Z > 0·3. 

x has been computed for various values of n, and the results appear in 
Table 6. It will be seen that the advantage of having a small number of 
fibres active in each learned event is an enormous increase in capacity: the 
Golgi cell arrangement of local as well as global constraints on the codon 
size begins to make good sense. If the minimum number of parallel fihres 
active in learned event is 500, the average number of responses stored by 
each Purkinje cell is probably in excess of 200. 

TABLE 6. Z is the numoor of eventfl each occupying n parallel fihl'f!ll that can 00 
learned by one Purkinje 1lE"II, i.e. z is th" largest integer for which 

n 
x 

6fJ(J 
480 

1,000 
240 

( 1- 2(J(~000r > f)·3 

2,000 
119 

6,I)fJO 
47 

5.4. The Purkinje cell threshold 

10,0110 
23 

20,(4)0 
11 

The inhibition of the basket and outer Rtellate eells can be a powerful 
influence on the behaviour of a Purkinje cell. The present theory requires 
that the Purkinje cell should fire if and only if more than a proportion p of 
the active parallel fibres have facilitated synapses with it, where p is close 
to l. It is proposed that the purpose of these stellate ceUs is to provide the 
appropriate inhibition, and that their peculiar axonal distribution is a 
device to secure an economy of dendrite by a factor of up to 20 (see §6). 
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It is made possible by the distribution of the mossy fibre terminals beneath 
them. 

If M of the parallel fibres synapsing with a particular Purkinje cell are 
active, and M8 of these have been facilitated, then the cell must fire (or 
produce a burst of firing) if and only if M8 ~ Mp. The Purkinje cell thus 
has the superficially simple task of summing M 8 (represented by excitation) 
and Mp (represented by inhibition). If, however, one reflects upon the 
enormous expanse of the Purkinje cell dendritic tree, it becomes apparent 
that to arrange such a summation might not be an easy problem of 
dendritic engineering. The example in Plate 1 makes it difficult to imagine 
how the junction of a spiny branch let with the rest of the dendrite could 
carry accurate information about the number of active spines if this were 
large, for if the 100 nearest the junction were active, it is hard to see how 
(say) 10 at the end of the branch let could make much difference, at least 
on any simple view of dendritic function. Such a system can only provide 
accurate summation for numbers of active synapses rather small com
pared with the total population. 

This overload effect ean be overcome locally if the number of active 
fibres is kept small: but it is bound to recur on a larger scale unless the 
numbers are kept very small. A further trick seems necessary, and the 
right one is probably to do the subtraction piecemeal: add up the outer 
contributions to M8, subtract the outer Mp, and transmit the result to be 
added to the contribution to M8 of the next region. This is the only way of 
subtracting B from A with large A and B but small (A - B) without ever 
handling large numbers. 

The distribution of the axon terminals of the basket and outer stellate 
cells is peculiarly well suited to this interpretation. The outer stellate cells 
effectively sample the activity in the outer half of the molecular layer and 
send their (inhibitory) contribution to -Mp to a region quite high up the 
dendritic tree of the Purkinje cell. The basket cells sample about the inner 
third, sending their contribution to the soma; and the intermediate cells 
perform an intermediate task. The basket cell action represents the last 
stage in computing (M.<J-Mp), and one may assume that the numbers 
are then small enough for the coding from dendrite to soma to be 
adequate. 

Interpretation of the function of simple summation within any reaRonable 
theory of dendrites would be made easier by two hypotheses: first that the 
numher .J.lf of active parallel fihres was both small and reasonahly constant; 
and secondly, that the excitation due to a facilitated synapse differed very 
little hetwcen synapses. In view of the existing Golgi cell arrangement and 
t.he great inC'rcllsc in capadty which is a eonsequence of having M small, 
there are strong reasons why the firHt hypothesis should be true. And the 
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second may be a consequence of the fact that these synapses are all spine 
synapses, which possess a definite morphological uniformity. 

5.5. The Purkinje axon colla/erals arul the climbing .fibre colla/emls 

The axons of the Purkinje cells give off numerous fine collaterals whieh 
form two plexuses. The infraganglionic plexus lies below the Purkinje cell 
hodies, and its fibres run in a predominantly transverse direction. The 
supraganglionie plexus, which is fed both directly and by branches of fibres 
rising from the infraganglionic plexus, lies above the Purkinje cell bodies, 
and its fibres run in a predominantly longitudinal direction (Ecdes pt ",. 
196i, p. 1 iR). Xot agrcatdealisknownabout the distribution of the Purkinje 
cell collatcrals, hut it seems that at least in the vermis the spread of the 
eollaterals in the longitudinal direction is small, whereas in the transverse 
directi()n it may he quite large; and the longer collatcrals tend to join points 
of eortex to their corresponding contralateral points. (See Ecc:les rd oJ. 
HHii, pp. 1 iSff., for a discussion and references.) 

These eollaterals have weak inhihitory synapses with hasket and Golgi 
cells, and perhaps also very weak inhibitory synapses with other Purkinje 
cells (Eec:les rd oJ. l06i, pp. lR4ff.). Their effect through the basket eells is 
to release Purkinje cells from inhihition, hut their influence through the 
Golgi eells is more eomplieated. It is likely that this influence will ultimately 
be excitatory at a given Purkinje cell P only if most of the granule eells 
therehy released from Golgi inhihition have modified synapses at P: and 
this will he true only if P has already learned a numher of mossy fibre 
inputs all quite similar to the eurrent input. 

The only ohviously reasonahle interpretation of the effect of thcse 
eollaterals is that they tend to exeite the Purkinje eells in the cortex to 
whieh they distrihute; and in eertain eircumstances can loosen the dis
crimination exereised hy those cells. The fact that a Purkinje eell PI has 
just fired may he relevant in a borderline firing deeision for P if P and PI 
lie in dosely related pieees of cortex: and the Purkinje axon collaterals 
provide a suitahle means of distrihuting this information. They ean help 
P OVf~reome inhihition due, perhaps, to an unlearned mossy fihre input 
whieh it has previously reeeived, or they can make P more likely to 
aN:ept the eurrent input even though it may not be exadly one whieh 
has heen learned. 

This view is not entirely satisfying, but it does provide an interpretation 
of the climhing fihre collaterals. These make weak cxc:itatory synapses 
with the inhihitory interneurones of the eortex (Eceles pt oJ. 196i, Tahle 1, 
p. (3), and perhaps with Purkinje cells. Their distrihution is more loeal 
than that of the Purkinje axon collaterals (Ecdes et oJ. 106i, p. 215), but 
their effect locally probably roughly balances them. Hence it could he 
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argued that when a climbing fibre is active, that is when synaptic modi
fication is taking place, the effect of Purkinje axon collaterals is at least 
partly annulled, and so something nearer a true representation of the 
mossy fibre input is stored. 

§6. THE OCTER STELLATE AXD BASKET CELLS 

6.0 . ./u.st~fication of their joint treatment 

The outer stellate and basket cclls will be taken together under the 
general heading of stellate cells for the following reasons. 

6.0.1. They are both inhibitory. 
6.0.2. They both send axons to the Purkinje cells only. 
6.0.3. They are both driven mainly by parallel fihres, and have analo

gous dendritic fields, the outer stellates being further out in the molecular 
layer. 

6.0.4. They have very similar axon distrihutions; the outer cells synapse 
further up the Purkinje cell dendritic tree, and reach a little less far across 
the folium than the inner ones. 

6.0.5. There exist many intermediate forms. 
The discussion will also include in a general way the apparently rather 

weak' on-beam' outer stellate cells whose axo'1S terminate locally, though 
these will receive special mention. 

6.1. The function of the .stellate ceU.~ 

The stellate cells together have the task of controlling the threshold of 
the Purkinje cells: they are powerful, and have to be, since if the overload 
ideas 5.4 are correct they have to be able to contain almost the maximal 
exeitation that parallel fibre activity can evoke in the Purkinje cell 
dendritic tree. (This, it was argued, is achieved long before all the parallel 
fibres are active.) The quantitative relations between the number of 
parallel fibres active and the strength of the inhibition necessary have 
heen discussed in 5.2.3, and reasons for the distribution of the terminals on 
the Purkinje dendritic trees have been proposed in !j.4. It remains only to 
sort out two points: the size, shape and position of the dendritic tree, and 
the distribution of the Purkinje cells to which the stellate cells send axon 
terminals. 

If one naively set about constructing a threshold-setting cell to perform 
the function required by the present theory, one would propose one in
hibitory cell per one or two Purkinje cells. Its axon would synapse with 
just the one (or two adjacent) Purkinje cells, and its dendritic field would 
at least be very close to that of its corresponding Purkinje cell. If there 
were such cells, however, their dendrites would have to be not only very 
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close to those of the relevant Purkinje cell, but also very nearly as exten
sive: this would be necessary in order to obtain a reliable measurement of 
the usually sparse parallel fibre activity. 

The reason why the stellate cells are not arranged like this is that since 
such a dendritic tree would necessarily take up roughly as much room as 
does a Purkinje cell dendrite, the number of Purkinje cells that could be 
packed in any given length of folium would be about halved. The key to the 
success of the existing solution is that the rosettes of each mossy fibre are 
numerous and on the whole distributed transfolially in the granular layer. 
The actual mossy fibres that drive the cortex therefore change quite slowly 
across a folium, and they can be watched efficiently and economically by 
sampling the parallel fibre activity across it (Fig. 2). 

There is no quantitative evidence available from which one might 
investigate the tenability of this hypothesis: one can only estimate the 
economies to which the proposed sampling technique may lead. Each 
Purkinje cell receives inhibition from about 40 stellate cells: the inhibition 
to the Purkinje cell is therefore driven by a dendritic field about 40 times as 
large as that of a single stellate cell. If these 40 were distributed randomly 
just next to the Purkinje cell, a good sample (approximately 1 - l/e2 = 0·86) 
would be obtained if each tree had even 1/20 of the synapses that a 
Purkinje cell has. If the mossy fibre distribution alters slowly (which it has 
to do anyway for the system to work), the saving in dendrite could there
fore be a factor of up to 20; and, in practice, the sampling is certainly not 
random. 

6.2. The 8tellate cells with local axonal di8tribution 

It is convenient to complete the review of the cells of the cortex with 
some remarks about the time courses of the excitatory and inhibitory 
synaptic actions. It is evident that the time course of transmitter action 
at a Purkinje cell is the ultimate factor determining the temporal extent of 
the influence on that cell of information from that fibre. 

At a normal sort of synapse, such influence would not be expected to 
continue more than 20 msec after activity in the afferent axon had ceased: 
but so short a period would seem inappropriate for real-time analysis of 
events with characteristic times rarely less than 100 msec. The observed 
time course at a parallel fibre-Purkinje cell synapse is of the order of 100 
msec, and Eccles pt al. (1967) mention (p. 70) that this may be one function 
of spines. Xow the connectivity of cerebellar cortex is such that the onset 
of the various post-synaptic effects at a Purkinje cell due to a mossy fibre 
signal is likely to be both slow and patchy: the various components arrive 
along paths with different latencies, and there may be build-up effects in 
the synapses themselves. Similar factors will affect the way the post-
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synaptic effects decay at the end of a mossy fibre signal. All these effects 
can only be disruptive, at least as far as the present theory is concerned. 
The fact that the various effector circuits in the rest of the nervous system 
are geared only to recognizing bursts from Purkinje cells will minimize the 
effect of any stray impulses which might for a number of reasons leak out: 
but it is conceivable that the effects of an input during a 'turning on' or 
'turning off' period could cause a false response from a Purkinje cell, and 
that response could last up to 20 msec. 

In order that false outputs of this sort should not occur, it is necessary 
that the build up of inhibition at a Purkinje cell should occur faster than 
the build up of excitation, and that the IPSP should last longer than the 
EPSP. The latter is an observed phenomenon, with IPSP time courses up 
to 500 msec, EPSP ones up to about 100 msec; and it is possible tha,t one 
function of the' on-beam' stellate cells is to ensure the former. These cells 
have a local axonal distribution, so their axons are relatively very short; 
and many of their synapses with the parallel fibres are direct (i.e. not spine 
synapses). The first factor must, and the second may favour a fast pro
duction of IPSP at the Purkinje cell dendrite, and this IPSP could well 
arrive early enough to counteract the initial build up of EPSP from the 
Purkinje spines. The IPSP induced by these cells is weak, but by the time 
the Purkinje cell is turned on to any appreciable extent, the other stellate 
cells will also be active. It is therefore proposed that the weak on-beam 
stellate cells be interpreted as a device to prevent a false initial response by 
the Purkinje cell. 

§7. CEREBELLAR I~PCT-OCTPUT RELATIO~S 

There are two main types of cerebellar input-output relation which are 
compatible with the present cortical theory and they are described 
separately. 

7.1. Learned movpments 

The first possibility is the one suggested in § 1, and concerns the learning 
of that particular sort of motor skill which may be described as a move
ment. During learning, the cerebrum organizes the movement, and in so 
doing, causes the appropriate olivary cells to fire in a particular sequence. 
This causes the Purkinje cells to learn the contexts within which their 
corresponding elemental movements are required, so that next time such a 
context occurs the mossy fibre activity stimulates the Purkinje cell, 
which evokes the relevant elemental movement. 

This scheme imposes severe restraints upon the nature of the stimulus that 
may drive an olivary cell: indeed, almost the only permissihle case is that 
in which each olivary cell is driven by a collateral of a cerebral command 
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fihre for som(' ('l('mental movement. This statement may he ju"tified h~- the 
following argument. During execution of a learned movement, the mos"y 
fihre acth-ity is responsihle for the initiation of the various elemental 
mo\-em('nts: and it is therefore essential that, durin!,! I('arning. the Purkinje 
('ell i,. assoc-iated with the context oe('urring ju,.t bf/orp its elemental 
movement. The present theory suggests that the granule cell;; an(i Golgi 
('ell,. to!,!ether pro\'ide extremely effeeti\'e pattcrn di;wrimination: so the 
mo""~- fihre aeti\'ity must he virtually the same during eereh£'lIar execution 
of a mo\'ement a,. it was while that mon'ment wa;; hcing learnt. Hen('e. for 
the ccn'hellum to he ahle to learn a mm'ement in whieh tl1£' context,. 
ehalu!e rapidl~'. the oli\'a~- acti\'ity during learning has to he dri\'en hy 
impul,.e,. effe('tively ,.ynchronizcd with the eommand,.. This condu,.ion ean 
onl~' he aWJidcd in one of the two following way,.: either some delay is 
spC(·ially introdueNl into the mo;;sy fihre afferent,.. or the oli\'a~' cell,. are 
dri\'en by the elemental mo\'ement jui't preeeding the eurn'nt onc. The 
fir,.t as,.umption is unlikely on ground,. of effir-i£'n(·y. and the sC('onrl would 
require a prohahly unacceptahle number of olive eell,Purkinje cell pair;;. 
one for each sequenc'e of two elemental movement,.. 

The ahove argument, howe\'er. eaIUlot he applied to tho,.(' situatirlll,. 
where the context;; are changing very ,.Iowly: and in sm·h ea;.:p,", it i;; at \Past 
logically possihle for an oliva~' cell to he driven hy a ,.ignal whir-h was 
slightly later than the command signal during leaming. sinr-e the rel(-\'ant 
eontext will scarcely have altered. It is tlwrefore not impossihle for an 
oli\'a~' cell to he dri\'en hy a receptor which is scnsitiw· to tl)(' mo\'(,mpnt 
initiated hy its corresponding Purkinje cell: although. if tlw eontf'xts do 
c:han!!e ;.:Iowly. a eontext dri\'en system will not reprorluC"(' tl)(' timing;.: (Jf 
the stages in a movement at all accurately, and so cerehellar learning will 
anyway he rather bad. 

It ean therefore he eoncluded that an oli\'e eell-Purkinjp r-dl pair. whose 
olin· cell is dri\'(~n hy a reeeptor, is unlikely to he used for I('arning motor 
skills invoh-ing mueh mm'ement. It is however well known that til£' inferior 
olin' i;; divided into two portions. one driven hy descending fihres ('" alherg. 
HJ;'j4) and one hy aseending fihres (Brodal 19.'54). Further. it i;; known that 
at least some eells in the ; afoleending' or ; spinal' part of the olin~ are 
driven h~' re(,eptors (.-\rmfoltrong, Eeeles. Harvey & :\Iatthews. lfJIl8). and 
these author;; a\;;o demonstrate the eOllvergenee at some ("(·lIs of impulses 
fre}m ree'('ptor;; of quite· different types. 

If the pn';;cnt cortic'al tllf'o~' iii eorreet. and the r-f'n·I}('lIum doe,. learn 
mfJtor skills. th('r£' i;; onl~' one situation in which it is not ah,",urd to drin' 
the o1i\'a~' cells hy receptorfol rather than hy r-en·hral ('ommand fiJJI'(' 
collateral-<. and that i~ when the eerelwllum i;; n·quin·rI to ('arr.\' out an 
acti(JI1 in a different language from that in whi(~h tilt· ecrelwulIl originally 
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set it up. This condition is likely to be fulfilled in the cere he liar control of 
halanee or posture, where one may reasonably expect the cerehrum to deal 
in a lanJ;,'1lage oriented towards the prohlem of changing postures. while the 
cerebellum is concerned primarily with maintaining an achieved posture. 
It i;; to thi;; kind of control that the second form of input-output relation 
is particularly well suited, and it will be discussed in detail in •. 2. 

If it i;; assumed that such situations are best dealt with hy the methods 
deseribed in •. 2, the following conelusion may be drawn. Where the cere
bellum i;; required to learn a motor skill cOlL';i;;ting of a movement, the cells 
of the inferior olive should be driven hy the equivalent of a collateral of 
the cerehral command fibre for a particular elemental movement; and the 
P.urkinjc cell corresponding to that olivary cell should be able to pro\'oke 
that same elemental movement. The particular elemental movement 
assoeiated with an olivary cell-Purkinje cell pair need not be fixed, but it 
presumably is: and the elemental movements associated with this kind of 
input-output relation are prohably mostly small mo\-ements. 

To eomplete the study of this kind of input-output relation, four 
further points must be diseussed. The first coneerns a possible variant in 
the way information is read out of the cerebellum. It wa;; assumed in §5 
that the level of inhibition at a Purkinje cell was generally rather low, and 
that mossy fihre acti\'ity involved in a learned eontext was enough to 
produce a signal in the Purkinje cell axon. There i;; another po;;sihility, in 
whieh the le\'el of inhihition at a Purkinje cell is generally rather high, and 
the rest of the brain deeides whether the current eontext has heen I('arlwd 
by ohsen-ing the results of a e1imbing fibre impulse. If the mossy fibre 
input ha;; heen learned, the Purkinje cell gives a large response; if not, it 
gi\-e;; a ;omall one and the effector eireuits respond accordingly. Thi;; form 
of output may be de;;e'rilwd as inhifJition sampliny, and has effectively been 
suggested hy Ecele;; et al. (196., p. 1 'j'j), though not in the context of 
moJifiahle synapses. 

The second point concerns the command circuit used hy the cerebrum 
while setting up a mon·ment. It is possible that the olivary cells are literally 
dri\-en by collateral;; of the cerebral command fibres: but it is also possible 
that the command ('ire'uit actually is the cortico-olivo-Purkinje ceIl
effecifJr circuit path. This hypothesis involves no difficulties and is 
especially attractive if Purkinje cell output is obtained by inhihition 
sampling: for this could then easily be achieved by uniform weak descend
ing aeth-ity to the inferior oli\-e, arriving hy the same pathways as are used 
for the eerehral organization of movements. One extra hypothesis is also 
nf>cded if this system is postulat('d, namely, that the mechanism of 
s)'laptie modification at Purkinje cells is sensitive only to intense e1imbing 
fihre activity. 
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The third question arises from the possibility that synaptic modification 
may be subject to gradual decay. This might be necessary, in view of the 
limited learning capacity of a Purkinje cell: and one might imagine that 
repetition of a movement carried out even under cerebellar control should 
have some reinforcing effect. If a Purkinje cell command were somehow 
fed back to excite the relevant climbing fibre, a reinforcing effect would 
certainly be obtained, but lack of this feed-back would not rule out the 
possibility that a reinforcing effect exists, since this depends on the 
details of the synaptic modification mechanism. 

The final point to be raised in this discussion of the cerebellar control of 
movements is the question of the speed with which such movements are 
executed. There is no reason why a context dependent system should not 
be run at different speeds, and if the extra postulate were made of some 
general intensity control acting uniformly over the effector circuits, a 
movement learnt at one speed could be performed at another. (This idea 
would fit nicely with the suggestion made above that during cerebellar 
control of a movement, the olive receives uniform weak descending 
activity, for the strength of the Purkinje cell output would then depend 
upon the strength of this uniform activity.) It is, however, likely that if the 
time course of a movement were changed substantially, some relearning 
would be necessary. 

7.2. Learned conditional rejlexe.'1 

The explanation of the second type of input~utput relation compatihle 
with the cortical theory is much simplified by the introduction of a new 
idea, which extends the classical notion of reflex. 

Definition. A conditional reflex is a reflex which operates when. and only 
when, certain conditions outside the reflex arc are satisfied. These con
dition.,> are the context of the conditional reflex, and a learned conditional 
reflex is a conditional reflex whose context is learned. 

An ability to acquire learned conditional reflexes would make the task 
of maintaining balance and posture very much easier for the nervous 
system. For example, consider the problems which confront a child as he 
learns to stand. It would greatly aid him if he could form a reflex circuit 
which connected a vestibular signal indicating some imbalance directly to 
an order for the appropriate compensating movement: thil'!, however, 
could not be a true reflex since the child will not always wish to stand. The 
appropriate form of control is a conditional reflex whose context is thc 
state of standing, and which therefore only operates while the child is 
standing. In order to suspend the standing reflexel'!, the child has only to 
disrupt the 'standing' context, and this could be done, for example, hy 
his suddenly wishing to stand no longer. 
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A particular olivary cell-Purkinje cell pair may be interpreted as a 
storage unit for a conditional reflex if and only if the circuit environ
ment _ receptor _ olivary cell_ Purkinje cell_ effector _ environment 
is a stabilizing negative feed-back loop when activated by a learned mossy 
fibre input. The context represented by the learned mossy fibre input is the 
context of the conditional reflex. Explicitly, the conditions for storage 
of a conditional reflex are as follows: 

(i) Output is obtained from the Purkinje cell by the inhibition sampling 
method (described in 7.1): that is, the level of inhibition is generally high, 
so that climbing fibre signals are only transmitted when the mossy fibre 
input is one that has been learned. 

(ii) The olivary cell is driven by receptors whose stimulation is reduced 
(in any learned context) by the results of stimulating the corresponding 
Purkinje cell. 

The learning of a context will arise if the combination of olivary cell 
firing and that particular context is a frequent one, as it would be, for 
example, while the child (under cerebral control) was' learning' to stand. 
Once the context is learned, the reflex automatically becomes operative 
when it is required. 

There is no reason why a particular olivary cell should not be driven by 
more than one kind of receptor, though receptors must be connected to 
Purkinje cell units whose activity reduces the stimulations they receive: 
the inhibitory nature of the Purkinje cell output may help to arrange this. 
The receptors connected to a given olivary cell have to be rather carefully 
chosen, but their number is limited only by the learning capacity of the 
corresponding Purkinje cell. 

It is proposed that most cerebellar functions associated with main
taining balance and posture are carried out by forming the appropriate 
learned conditional reflexes in the sense of 7.2, while those motor skills 
which involve active movement rather than maintenance reflexes are 
generally learned in the manner described in 7.l. 

7.3. The cerebellar initiation of movefMnt8 

The two kinds of input-output relation give the cerebellum the power to 
learn any task whose execution is related in a rather rigid way to informa
tion sent through the mossy fibres, and at the same time to set up suitable 
reflexes to maintain balance and posture during execution of those tasks. 
The cerebrum is thus freed from at least the routine matters associated 
with motion and stance. There are, however, many instances in life when 
both the recognition that a job must be done, and its implementation, are 
simple operations. For example, information taken out of the visual 
system at a fairly low cortical level (say from areas 18 and 19) might be 
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u.'Wful as a source of cues during walking: and information about the mood 
one is in can sometimes influence in a simple (but learned) way the 
gestures one makes. 

It is but a short step from believing that the cerebellum stores movements 
and gestures to proposing that visual cues and information about mood and 
so forth can form enough of a context actually to initiate an action; and it 
would be strange if something of this sort did not happen, though it doubt
less occurs more frequently in the motor cortex. ,rhere it is possible to 
translate the combined activity of many cerebral fibres rather simply into 
physical directh'es, doing so in the cerebellum would free the cerebrum from 
an essentially tedious task. In these circumstances, the cerebellum becomes 
rather more than a slave which copies things originally organized by the 
cerebrum: it becomes an organ in which the cerebrum can set up a sophisti
cated and interpreti\-e buffer language between itself and muscle. This can 
be specially tailored to the precise needs of the animal, and during later 
life leaves the cerebrum free to handle movements and situations in a 
symbolic way without having continually to make the retranslation. The 
automatic cerebellar translation into movements or gestures will reflect in a 
concrete way what may in the cerebrum be diffuse and specifieally un
formulated, while the analysis leading to that diffuse and unformulated 
state can proceed in its appropriate language. 

§ 8. THE )IAI~ PREDICTIO~S OF THE THEORY 

8.1. .110,] ifiabl e 1) ymt pse.'J 

The main test of the theory is whether or not the synapses from parallel 
fibres to Purkinje cells are facilitated by the conjunction of presynaptic 
and climbing fibre (or post-synaptic) activity (5.1). Hthis is not true, the 
theory collapses. 

It is likely that no other cerebellar synapses are modifiable. The mossy 
fibre-granule cell s~-napi!es are discussed in 3.3.:J, and the Golgi cell afferent 
synapses in 4 .• 5. The function of the stellate cells is fixed throughout the 
life of the cerebellum, and so they probably do not possess modifiable 
s)-napses. Though it is difficult to see how these predictions could be wrong, 
they might be: such a disproof would be em barrassing but not catastrophic, 
since something of the bones of the theory would remain. 

8.2. Cells 

The roles of the various cells in the cortex are roughly determined once 
the main prediction about modifiable s)-napses is verified. There are, how
ever, three predictions which can be tested. The first com'ems the Golgi 
cells. They have been discussed at some length, and arguments were 
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produced for the view that there should be little if any summation hetwccn 
the upper and lower dendritic trees (4.4). The cell should be driven hy 
that tree which is currently the more powerfully stimulated. Hefutation 
of this would again be awkward but not fatal. 

Secondly, the interpretation of the stellate cells as a threshold setting 
mechanism for the Purkinje cells depends strongly upon thc presumed 
distribution of the mossy fibre rosettes below thc cortcx. The theory 
rcquires that each mossy fibre extends a fair distance perpendicular to the 
line of the folium (6.1), and this can be investigated. 

Thirdly, the number of granule cells active at anyone time (say in any 
50 msec period) is a small fraction (less than 1/20) of all granule cells. 

8.3. Input-outpul relati0n8 

The two forms of input-output relation are experimentally distin
guishable, and the same olivary cell-Purkinje cell pair may at different 
times be used both ways. :For the learned movement form, the olivary cell 
should respond to a command for the same elemental movement as is 
initiated by the corresponding Purkinje cell. For learned conditional 
reflexes, the activity provoked by the Purkinje ccll must tend to causc a 
reduction in the receptor activity which drives the olivary cell. 

It is proposed that these two input-output relations are used for fairly 
diffcrent tasks. This division of labour is not logically necessary, since in 
principle each form can execute either task: but it would be surprising if 
the observed division differed substantially from the on"e suggested, since 
that particular arrangement is the most economical. 

§9. THE CODON REPRESE~TATIO~ 

The notion central to the present theory is that the afferent input events 
eommunicated by the mossy fibres to cerebellar cortex are turned into a 
language of small subsets and then stored; and this has been called the 
codon representation of an input. This formulation is new, hut the prin
ciple is closely related to the feature analysis ideas current in the mac:hine 
intelligence literature (see e.g. Vhr & Vossler, 1961). 'Features' are merely 
rather specially chosen codons. This author in particular owes a debt to the 
paper by Brindley (1969) which contains what may be regarded as a 
degenerate case of codon representation, though from rather a speeial 
point of view. 

The idea of codons arose in an unlikely way as the result of a search for a 
representation which the cerebrum might use for storing information" Its 
relevance to the cerebellum was noticed only when it was realized that any 
neural net built to implement the representation must contain something 
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like granule cells. An analysis of the properties of the codon representation 
and of its possible place in the theory of cerebral cortex will form the 
subject of a later paper. 

I wish to thank Professor G. S. Brindley and Dr I. M. Glynn for their very helpful 
criticism; ProfOllllOr Sir John Eccles and Springer.Verlag for permi88ion to U80 Figs. 1 and 3, 
and C.S.I.C. lladrid for permission to uae Fig. 2. Most of this work was carried out during 
the author's tenure of an M.R.C. research studentship, and formed part of a fellowship 
dissertation offered to Trinity College, Cambridge in August 1968. The ideas of § 7.2 were 
formulated later to overcome criticism made by S. J. W. Blomfield and Professor G. S. 
Brindley. This work was supported by a grant from the Trinity College reeearch fund. 
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ADDEYDUli 

Escobar. Samp .. dro & Dow (1968) have shown that in man, and probably a),;o incat. there 
are fewer cells in the inforior olive than there are cerebellar Purkinje cells. There may there· 
fore exist other sources of Climbing fibres. Statements in the pres~nt work about the inferior 
olive should be understood to refer to all sources of climbing fibres, including those as yet 
undiscovered. If olivo·cerebellar fibres are found to branch, the theory will require slight 
modification. 

EXPLANATIOY OF PLATE 

Dendritic @pines on a cat Purkinje cell. (From Eccles el al. 1967, Fig. 27 A.) 
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Commentary on 

A Theory of the Cerebellar Cortex 

Marr may not have been the first to suggest that the cerebellum dealt with 
learning and memory (Luciani, 1915; Rawson, 1932; Brindley, 1964), but he 
clearly was the first to propose a theory. The theory began with the intuitive 
observations of Brindley on the nature of the acquisition of skilled sequential 
acts. The perfOlmance of such acts passed from the attentive slow, picking 
out of one movement after another to the unconscious rapid uninterrupted 
flow of them: with time, they became essentially automatic. The elements of 
the machinery consisted of the cell types, the connectivities and the synaptic 
actions of the cerebellar cortex, as newly illuminated by Eccles, LIinas and 
Sasaki and others (Eccles, et aI., 1967; LIinas, 1981). The process was one 
of context recognition and learning: the context recognition at the level of 
the mossy fiber-granule cell-golgi cell circuitry, and the learning at the level 
of the parallel fiber-Purkinje cell synapse, heterosynaptically reinforced by the 
inferior olive climbing fiber. Linked through learning to the context of the prior 
movement in the sequence, the Purkinje cell automatically recognized it and it 
fires to trigger the next movement in the sequence. The model was described 
in lucid, even vivacious language; critical predictions were itemized and rank 
ordered with one to four stars, as for generals and gourmet guidebooks. The 
model stimulated thought, experiment and controversy, all of which continue 
to ihis day. 

Other theoretical papers soon appeared. Albus (1970) offered a similar 
model, explicitly likened to a Perceptron. Two differences between the Albus 
and the Marr models were 1) that Albus had the learning and the climbing 
fiber discharge driven by error (rather than intent), and 2) that the learning 
consisted of decreasing (rather than increasing) the parallel fiber-Purkinje cell 
synaptic strength, thus decreasing (rather than increasing) the output of the 
Purkinje cell that was associated with erroneous performance. Gonshor and 
Melvill-lones (cf. 1976) showed in humans that the vestibulo ocular reflex 
(VOR) is indeed exquisitely adjustable. Ito (1972) adapted the Marr-Albus 
Theory in an attempt to account for the adjustment of the vestibulo-ocular 
reflex; Gilbert (1975) adapted the Theory to portray Purkinje cell learning in 
the spike frequency domain. 

Experimentalists tested the model by ablation (Does the learning go away?), 
single unit recording (Does neural discharge correlate with learning?), and elec
trical stimulation (Can stimulation reproduce learning?). Ito (1974) et al. in 
the rabbit and Robinson (1976) in the cat ablated the cerebellar cortex, altered 
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the gain of the YOR, and prevented further adjusunent. The experiment has 
been repeated in a variety of animals since. Other movement adaptations have 
also been altered by cerebellar cortex ablation, including the ocular saccades 
(Optican and Robinson, 1980), the conditioned eye blink (McConnick and 
Thompson, 1984; Yeo, et al., 1984) and the habituation of the acoustic startle 
response (Leaton and Supple, 1986). 

Single unit recording during motor adaptations added two critical obser
vations: first, the complex spike of the Purkinje cell (caused by climbing fiber 
discharge) was reported to occur preferentially in situations where adaptation 
is occurring (Gilbert and Thach, 1977; Thach, 1980; Watanabe, 1984) or is 
likely to occur (Gellman et al., 1985; Armstrong and colleagues; Andersson 
and Armstrong, 1987; Annstrong et al., 1988; Simpson and Alley, 1974). Sec
ond, repeated occurrence of the complex spike was reported to be associated 
with a reduction in the occurrence of the simple spike caused by the parallel 
fiber input (Gilbert and Thach, 1977; Watanabe, 1984) as predicted by the 
Albus model. 

Electrical stimulation conjointly of climbing fiber and mossy fibers in the 
decerebrate cat (Ito et al., 1982) gave a result similar to that observed in 
the living animal (Gilbert and Thach, 1977). Coupled stimulation of climb
ing fibers and mossy fibers led to reduced efficacy of those mossy fibers in 
activating (through granule cell parallel fiber synapses) Purkinje cells. The 
frequency of stimulation, the required number of pairings, and the time course 
of the learning were similar in the electrical stimulation and in the natural 
behavioral adaptation experiments. The observation has been continned and 
extended in a variety of reduced preparations, including direct stimulation of 
parallel fibers coupled with climbing fibers in cerebellar slices (Rawson and 
Tiloskulchai, 1982; Eckerot, 1985; Ekerot and Kano, 1985; Kano and Kato, 
1987). Attempts are being made to examine ionic/molecular membrane mech
anisms whereby the climbing fiber could produce the reduction in parallel 
fiber efficacy. The climbing fiber discharge appears to release adenosine and 
aspartate (Cuenod et al., 1988), which causes an inward calcium current in the 
Purkinje cell dendrite (Llinas and Nicholson, 1971; Llinas and Hess, 1976; 
Llinas and Sugimori, 1980 a,b). The parallel fiber releases glutamate, and 
glutamate sensitivity of the Purkinje cell is reduced by climbing fiber action 
(Ito et al., 1982). 

These results suggest that the Marr Theory, as amended by Albus, may 
be generally correct. Nevertheless, there are many investigators who disagree 
with this conclusion for a number of different reasons. One group objects to 
the adequacy of ablation in general and to some experiments in particular in 
establishing proof (Harvey and Welch, 1988). While it is now widely accepted 
that cerebellar cortical ablation abolishes some kinds of motor adaptation, 
some argue that the result is non-specific, and that the plastic synapses located 
elsewhere and possibly widely distributed (Llinas, 1981; Lisberger, 1988). 
As for the conditioned eye blink, it has been claimed that the ablation so 
impairs perfonnance as to lead falsely to the interpretation that learning is 
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impaired, and that controlled studies are needed to dissociate the learning 
from the performance of movements (Harvey and Welch, 1988). 

Another group objects that single unit recordings in the awake, VOR
adapted monkey have failed to show the gain change at the level of the Purlcinje 
cell that should, according to the theory, account for the adaptation (Miles et al., 
1980; Lisberger, 1988). Others raise the question of whether these recordings 
were done in the appropriate part of the cerebellum (Gerrits and Voogd, 1989). 
Lisberger has reported that patterns of neural discharge sufficient to explain the 
adaptation are seen only in the vestibular nuclei, and that the modified synapse 
cannot be in the cortex but rather must be the vestibular nerve synapse onto 
vestibular nuclear cells (Lisberger, 1988). Ebner and Bloedel (1981, 1983) 
have shown that climbing fiber activity may cause a short-term change in the 
gain of the Purkinje cell response to parallel fiber input. Nevertheless, they 
apparently prefer not to believe that this is a mechanism for "motor learning". 

Finally, some object that the stimulation experiments of conjunction of 
climbing fiber and mossy or parallel fiber activities have not (in their own 
hands) been repeatable, or are insufficient to account for learning (Llinas, 
1970, 1981; Llinas and Volkino, 1973; Llinas, et al., 1975). 

Only time and work can answer these objections. Certainly some elements 
of Marr's Theory may require further modification. Yet, a growing number 
of network theoreticians and experimental neuroscientists appear to like the 
ideas, and to anticipate their being proven to be essentially and substantially 
correct. But whether the Theory is right or wrong, it has been useful, and is 
a fitting monument to the genius of David Marr. 
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How the Cerebellum may be Used 

by 
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Recent anatomical information suggests new input-output relations 
for the cerebellum. These have interesting Implications about the 
role of motor cortex in the learning and controlling of voluntary 
movements. 

De Crespigny Park, 
London SES 

THE "ertebrate cerebellar cortex has a very uniform 
structure, and may, for the purpose of this article. be 
.... garded as being composed of many units like that 
appearing in Fig. 1. Its only output is the projection of 
large inhibitory cells. the Purkinje cells (Pu). to the 
intracerebellar nuclei. and to some of the vestibular 
nuclei"'. In man. a major projection from the intra· 
cerebellar nuclei is to the ventro·lateral nucleus of the 
thalamus (VL)"" VL cells project to the motor cortex. 

There are two kinds of input to the cerebellar cortex: 
the mossy fibres. which synapse with the numerous 
granule cells; and the climbing fibres. which project directly 
to the Purkinje cells and wrap themselves around their 
dendrites. Each Purkinje cell receives one climbing fibre'. 
and can be powerfully excited by it. The climbing fibres 
arise from a group of cells in the contre.IateraJ brain stem'; 
thE' curious shape of this group has led to its being named 
the olive. The inferior olive (10) receives oonnexions from 
a wide variety of sources. in particular from the cerebral 
cortex'. The mossy fibres have several different sites of 
origin"; particularly important are the pontine nuclei (PN) 
of the brain stem. The cerebellar granule cells. with which 
th" mossy fib .... s synapse. send axons (the parallel fibres) 
to the Purkinje cells. and to the inhibitory intemeurones 
of the cortex. 

In a recent article". it was shown that the known 
anatomy and physiology of the cerebellar cortex are 

consistent with its interpretation as a simple memorizing 
device. It was predicted that the synapses between 
pareJlel fibres and Purkinje cells are modifiable, being 
facilitated by the conjunction of pre· synaptic and climbing 
fibre activity. It was shown how this would allow any 
single Purkinje cell to leam to recognize, without appreci. 
able confusion. more than 200 diffe .... nt mossy fibre 
input patterns. Two methods were outlined by which 
such a memorizing device might learn to perform motor 
actions and maintain voluntary postures initially organized 
elsewhere. Since then. three relevant facts have come to 
our attention: (i), anatomical information concerning 
the origin of the cortico·olivary and cortico'pontine 
projections'; (ii). the discovery that the olivo·cerebellar 
(that is. climbing) fibres branch','; and (iii), the prediction 
that climbing fibres can organize more than simple 
memorizing phenomena'. These facts hsve implications 
about the way the cerebellum may be used by the rest of 
the nervous system that wiII be of interest to experi· 
menters, and we therefore give he .... an outlinE' of their 
principal consequences. 

New Information 
(i) The origin of the descending projection to the o!i"e 

has long been known to include cortical cells, of which 
the majority lie in the motor and pre·motor areas. But 
it has recently been shown that these fibres arise almost 

Reprinted by pennission from Nature Volume 227. pp 1224-1228. Copyright 1970 Macmillan 
Magazines Ltd. 
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entirely from small pyramidal cells'. In contrast. the 
pontine nuclei receive collaterals from both large and 
small pyramidal cells'. The distinction may be that 
superficial pyramidal cells project to the inferior olive, 
while deep pyramidal cells give off collat"rals to the pon· 
tine nuclpi on their way to the spinal cord···. Further, 
the projection from the ventro·lateral thalamic nucleus 
to the motor cortex is direct to the deep pyramidal cells, 
and perhaps by way of an excitatory interneurone to 
both the superficial and the dN'p pyramidals (see Fig. } •.•.• ). 

(ii) The inferior olive contains fewer cells than there are 
cerebellar Purkinje cells". This means that either there 
are other sources of climbing fibres or the olivo·cerebellar 
fibres branch. It seems that the latter explanation is 
correct···. The distribution of the branches of one climbing 
fibre also seems to be restricted to a parasagittal plane'. 

(iii) The hypothesis' that the parallel fibre-Purkinje 
cell synapses are facilitated by simultaneoWl pre.8Yfi8ptic 
and climbing fibre activity has implications doop<>r than 
merely allowing each Purkinje cell to memorize 200 or 
so different mossy fibre inputs. If a number of similar 
mossy fibre inputs have been learned and later an unlearned 
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input is presented which is n .... r '''lough to those which 
have been learned, then the Purkinje c .. ll may treat 
the new input .... if it had been learned. This is probably 
not the diaadv .. ntage it was once thought·. It means 
that a Purkinje cell will generalize its response to all 
e,'ents in those regions where leru-ned events are suffi. 
ciently clustered togeth .. r. The implications of this 
genpralization are set out elsewhere'. 

Consequences of this New Information 
lliput---{)t/.tpm relations. In Fig. 2, the new information 

(i) is combined with the previous knowledge of cerebellar 
.. natomy. All the synapsps in the diagram are excitatory, 
except those from the Purkinje cells to the cells of the 
cerebellar nuclei. One very striking feature of this circuit 
diagram is the loop formed from the deep pyramidals 
through the pontine nuclei, cerebellar nuclei and VL 
nucleus of thalamus back to the deep (and also superficial) 
pyramidals. This arrangement has been comm .. nt,·d ron 
before1•11• A necessary assumption of the present t Ilf'ory 
is that this loop, which will provide a positive f<>edf:Jack 
from the deep pyramidals to themselves, is so arranged 
.. s to give rise to temporally pxtended pyr .. midal cell 
outputs. One possibility would be that the f .. edback is 
chiefly to th" original area, so that a movement~nce 
initi .. t,ed-will tend to continue indefinitely (at least 
w"ll beyond the normal firing period of pyramid .. l cells 
in r"'ponse to an excitatory input): and this will only 
be tl'rminated either by applying direct inhibitioll to the 
d""p pyramid .. l cells or by breaking the f"cdback loop. 
In the original cerebellar theory·, two possible forms of 
input--<mtput ... ·lation were described, both of which 
required that each indi,-idll .. l Purkinje cell ~ollid initiate 
one of the elemental mO\'empn!s into which it "'as postn. 
lated all actions were brokpn do\\n. For eXf>cnting 
actions it w .... thought necessary only to copy t hp correct 
pattern of elemental moyements, It was sho,n, how the 
cerebellar cortex could .. rr .. nge this by having every 
elemental movement drivpn by th,' context in "'hich it is 
required, 

The anatomy of Fig. 2 is not wholly cmnpatihh· with 
this simple prograrrune for copying p .. ttprned spqnPllc(,s 
of elemental movements, In general, if a machine has t<) 
execute a sequence of movements, it c .. n operate either by 
turning on the correct elemental movpmpnts at any instant, 
or by turning off all the incorrpct ones. \Ve believe th .. t 
the design of the cerebellum suggests that the second 
schemp, thp converse ofthe original input--output r('lations, 
is in fact u"pd for learning motor actions. Thp second 
selwm .. is at first sight absurd, because th" number of 
elemental movements required at any instant is far 
smaller than the number ofpossiblp elemental movements. 
It only becomes more economical than the first scheme if 
the number required exceeda the number which need to 
be turned off. In practice, this mean._ that some agency 
must, at any instant, select from the vocabulary <)f 
elemental movements .. particul .. r set of "possiblps", 
which includes all those actually required. If this can 
be done so that the number of "actuals" is greater than 
the number of "possibles" minus "actuals", it becomps 
cheaper to operate by deleting unwanted elemental 
movements from the set of "possibles", 

Such an agency would have to satisfy the following 
properties: (a), it must consist of cells capable of driving 
elem .. ntal movements; (b), these cells must be capable of 
being context·driven; (e), the set of situations to which 
each cell responds must include thosp in which it is 
needed; and (d), cerebellar action upon it must be such 
that. Purkinje cell activity turns off instructions for one 
(or more) elemental movements. We propose that the 
set of deep pyramidal cells in the motor cortex is such an 
agency, and that the conditions (a) to (d) are satisfied by 
them. 

One can now assign a d .. finite role to the small super· 
ficial' pyramidal cells which project to the inferior olive. 
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These, we assume, project to regions of the inferior olive 
which drive climbing fibres in the same general region of 
the cerebellum as that which projects back to the deep 
pyramidal cell beneath them. If the ideas described 
earlier are correct, these cells must fire when the large 
pyramidal cells related to them are firing but should not. 
That is, the small superficial pyramidal cells should 
detect the need to correct the current motor activity by 
deleting the messages from their corresponding deep 
pyramidal cells. In this respect it is of interest that .the 
V L nucleus of the thalamus sends eXCItatory connexlOns 
to both deep and superficial pyramidals; this will inform 
the superficial pyramidals of the feedback excitatory 
input to the deep pyramidals; clearly there is no point 
in the superficial pyramidals making deletions when the 
deep pyramidals are, in fact, not going to be fired. Learn· 
ing may be necessary for organizing the details of the 
projection from the V L nucleus to the cortex . 

Fig.. 2. There are two relevant kinda of cell in the motor cortex; smail, 

:B::~i~lcEfi!~!1: ~s~~ :~ti~:a:uc1:rp~~~~~d~h~Dn'ce~~o f:e 
inferior olive (10). The axons from the inferior olive terminate as 
climbing fibres <cf) on the Purkinje cells (Pu) in the cerebellar cortex; 
thoee from the pontine nuclei become mossy flbree (7ft/). Purkinje 
cells are inhibitory, and send synapses to the various cerebellar nuclei 
(eN): these nuclei also receive excitatory ayoapees from mos.~y fibre 
and cllmbing fibre ooUaterals. The cerebellar Duclei &end excitatory 
synapses to the ventro-lateral nucleus of the thalamu.s (V L). V L 
projects back to thf.l motor cortex by way of a fast and a slow path: 
the fast patb loeB only to the large, deep pyramld.e; the Blow path goes 
to both deep and Buperftcial pyramJdal celli, perhaps by way of an 

interneurone. 

Superficial pyramidal cells therefore recognize the 
cl_s of events which are incompatible with the current 
firing of the corr'lepcmding deep pyramidals. The analysis 
behind the recqgnitiCl'<l of the need for such corrections 
may be compIleated,t-a,use it involves ideas about 
what the animal is trying to do. Its results can, however, 
be tied to 8peci/ic contexts, using the kind of learning of 
which the cerebellar cortex may be capable'. There is 
thus a clear advantage to be gained by storing the correc· 
tions in the cerebellum. 

It may fairly be objected that nothing has been said 
about the way in which the small pyramidal cells detect 
the need for the corrections which they can implement. 
This problem is in principle no greater, however, than the 
analogous assumption ooncerning the deep pyramidal 

NATURE VOL. 227 SEPTEMBER 19 1970 

cells: how do they recognize the nef'd for their elem"ntal 
movements T On a superficial level it is clear that all 
pyramidal cells could be capable of learning cflntf!xts' 
using the same mechanisms that ha"-(l: b('f ~n descrjb,·d fiJI' 

the cerebellar Purkinje cells'. The dp"p"r aspects of th"sf> 
problems have also begun to yield'. ami a full aCCflunt "f 
them will appear elsewhere. 

The following Rummary staH's the conditiul" under 
which the in,-('rted input--olltput f(·lati(lns ('ould work. 
and hence the cxperim£"ntal findings neeuf'u tl) PI'I)\-(' I IT 

disprove the hypothesis: 

(A) Elemental movements are co,h,d by d',ep pyramidal 
cells in the motor cortex. 

(B) The set of situations to which such cells respond 
includes those in which they are needed. 

(0) Their axon collaterals to the pont inc nuclt·i providt, 
a positive feedback loop (via the cerebellar nuclei) which 
is necessary, during normal operation of the system, for 
the proper initiation and continuation of the ir el<,nwntal 
movements. 

(D) Small, superficial pyramidal cf·lls recognize tl ... 
need for correction of current motor cortex output. The", 
corrections involve the prcw'ntion of firing of certain deep 
pyramidal cells. 

(E) These corrections, whose initial computation is 
not necessarily easy, can eventually be run by the cere
bPilar Purkinje cells-in the sam,' way as PlIl'kinje c('Ii ., 
",pre originally thought to drive the elemental movements 
themselves' . 

Branching climbing jibr",. Purkinje cells in dIfferent 
regions of the cerebellar cortex are exposed to information. 
through the mossy fibres, that originates in different parts 
of the body and brain. A full description of the state of 
the body and brain as transmittf'd through mossy fibres 
will be called a full context, and a similar d.·scription of 
part of the body or brain a partial contt·xt. Then pach 
Purkinje cell has access to a partial context; and the kind 
of contextual information which rnay reach each cell is 
probably fixed. 

Each Purkinje cell usually receives exactly (Jne climbing 
fibre . Hence if the axon from a single o!i\'ary cell gin',; 
rise to ten climbing fibres, the firing of that olivary cell 
effectj"ely signals modification condition:,; to t('Il, presum· 
ably different, partial contexts. During the rehearsal 
necessary for the cerebellum to learn a given action, some 
of these partial contexts will recur and SOlllf', because they 
carry information which is essentially irrt'lc\-ant. ,\;ll not. 
Tho~e Purkinje cells, the firing of whose climbing fibres IS 
associated with a relative ly unchanging part ial cont, xt 
will learn that context--and this will be useful. Those 
which rcc,'I\'e a different partial ~ontext each timn will not 
learn (provided synaptic modification docs not work 
first time); nor would it be of any use if they did. Indeed, 
it would be a disadvantage on two ground,. First, it 
would reduce the effective capacity of the Purkinje cell 
to learn useful contexts; second, it might eRll:-;e incorrect 
deletions during an action in which an irr<·Il'v,lnt partial 
context ari""s and the elemental mon'ment is rcquirod. 

Thore are many related qucstions concerning tho number 
of corrections a Purkinje cell discharge can implement, 
the kind of convergence there is in the ccrelx'llar nuclei, 
and so on, which cannot be properly studi"d until more 
information becomes available. The parasagittal distri· 
bution··lI of the climbing fibres may, howe\'er, shed some 
light on these problems. It is known that the cerebellar 
cortex tends to be organizod into longitudinal strips, 
whose Purkinje cells project t.o restricted regions in the 
intracerebellar nuclei·· lI ; so the climbing fibres from a 
single olivary cell will tend to cause modification of 
Purkinje cells whose influences converge on a restricted 
zone of the cerebellar nuclei. One can even devise a 
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plausible embryological model which ensures that the 
Purkinje cells related to one olivlU'y cell all converge on 
a single cerebellar nuclear cell--&> that there is a one to one 
col'nl8pondence between olivlU'y cells and cerebellar 
nuclear cells. But such a restriction is by no means neces· 
8IU'y for the theory. 

Detection oj clwUr8 by Purkinje cel18 and climbing jibru. 
It seems likely that two parts of the theory developed by 
one of us' for the cerebral pyramidal cells also apply to 
thc cerebellar Purkinje colis. The first concerns the nature 
of the signals which the Purkinje cells actually transmit. 
It is possible that these cells do give a response which is 
strictly all·or·none, depending on whether the current 
input has been learned. We feel, however, that it is more 
likely that they signal a measure of how similar their 
current output is to the structure of the events that they 
have learned. It seems that the most suitable measure 
of this similarity is the fraction of the currently active 
afferent synapses to a cell which have been modified', 
provided that fraction is greater than some fixed lower 
bound p (say). A model has been proposed by which this 
quantity could be measured by a single cell', and we feel 
that this is likely to be more suitable for the theory of 
Purkinje cell dendrites than the simple one developed 
.. arlierS• 

This raises important questions concerning the need for 
convergence of Purkinje cell discharge onto cerebellar 
nuclear cells. Is it possible for a single maximally firing 
Purkinje cell to turn off a cerebellar nuclear cell complete. 
Iy, or does it need convergence from several Purkinje cells , 
And if several converging Purkinje cells are firing sub· 
maxirnaJly-in response to inputs rather dissimilar to their 
learned partial contexts-then is their summed effect 
sufficient to turn off the cerebellar nuclear cell , 

The second application of the cerebral theory to the 
cerebellum concerns the discovery that a climbing fibre 
can organize a kind of cluster analysis'. Provided the 
infonnation arriving at Purkinje cells is clustered and that 
the climbing fibre is coactive with enough events in a 
cluster, then the cell will respond to many more events, 
whether or not they have ever been associated with the 
climbing fibre activity. We think that this effect, certainly 
"ital in the cerebral cortex', is probably important·in the 
cerebellum also. It is a mechanism which can provide a 
kind of generalization to events which should "obviously" 
initiate the same responses as their neighboura without 
thc necessity for a specific new learning trial. 

The next topic we wish to raise concerns the Purkinje 
axon collaterals'. It has been pointed outa that the effect 
produced by them through their connexions with basket 
and stellate cells is simple, whereas their effect through the 
Golgi cells is not. One possible explanation of their 
!'xistence is that, when active in the region of a particular 
Purkinje cell P, they cause P to relax the scale on which 
it measures the similarity of the current input to the events 
it has leamed. This is suggested by two facts: first, the 
inhibition reaching P will be decreased by collateral 
stimulation; and second, the Purkinje axon collateral 
inhibition of the Golgi cells will cause a slight decrease in 
the local granule cell threshold. This is the correct step for 
interpreting the current mossy fibre input within the 
structure formed by the other mossy fibre inputs which 
it has learned (by the interpretation theorem'). 

It is therefore possible not only that direct generaliza. 
tion, of the sort described above, can occur in the cerebellar 
cortex, but also that the extent to which this generaliza· 
tion is permitted (that is, lowering the value of p) 
can be varied by Purkinje axon collateral activity. If 
this is 80, it has implications about the distribution of 
these collaterals that one would expect to find: because 
the cues to lower p for a particular cell P must arise 
from information suggesting that it would be appropriate 
to do so. This means that the Purkinje axon collaterals 
ending in one region of cortex should fire only when it is 
likely that the corrections controlled from these are wanted; 
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and in general, the more likely they are to be wanted, 
the greater will be the permissible degree of generaliza
tion there (that is, the lower p can be), and 80 the more 
activity there should be in the Purkinje axon collaterals 
terminating there. This implies that the collaterals from 
each Purkinje cell P, tend to be distributed to regions of 
cortex containing Purkinje cells which are needed after 
or at the same time as Pl' The most obvious of such 
regions would be those containing the Purkinje cells 
which are fired by the other branches of the olivo-<lere. 
bellar axon which sends a branch to Pl' (It ill interesting 
to note that Purkinje axon collaterals are often closely 
related to climbing fibres.) Those regions of cortex recei,'
ing collaterals from many currently active Purkinj., cells 
would then be more likely to be needed next than those 
regions receiving from only a few. The known distribution 
of Purkinje axon collaterals tends to support this notion. 
The Purkinje axons first contribute collatersls to the 
transversely running infraganglionic plexus, whose fibres 
often bridge across several folia; branches are given off 
from this plexus to the longitudinally running supra. 
ganglionic plexus, whose distribution is much more 
limited. Hence Purkinje axon collateral effects will tend 
to be restricted to the parasagittal plane. We have 
already shown that there is reason to suppose that the 
Purkinje cells have closer relations to other Purkinje cells 
within such a plane than without. 

There is one other piece of evidence in favour of this 
rather complex view of the Purkinje axon collaterals. 
It is that it also accounts for the climbing fibre collateral 
effects',-. For, during learning, any instruction to generalize 
must be annulled, in order that a true record of the mossy 
fibre input may be stored. According to the theory', 
learning occura at P when the relevant climbing fibre is 
also active; and when it is, the effect of its collat .. rals 
could roughly balance the effect of the Purkinje axon 
collateral near P. According to the available evidence', 
both types of collateral are weak and their effects are 
opposite. 

Timing Relationships 
\Ve ha,'e argued that the small, superficial pyramidal 

cellM of the cerebral cortex detect incompatibilities in the 
current deep pyramidal cell activity, and that they 
modify the behaviour of the cerebro-cerebellar-<lerebral 
loop to cope with this. We now consider the timing 
relationships involved. 

The speed of the main "feedback" loop is astounding. 
It incorporates some of the fastest pathways in the nervous 
system, and its major links all include monosynaptic 
connexions'·ll. In the cat, discharges in the pontine 
nuclei follow stimulation of the cerebral white matter by 
as little as 2 ms'. The corresponding times for the other 
stages are: pontine nuclei to cerebellar nuclei, 1 ms"; 
cerebellar nuclei to VL nucleus of thalamus, 2 ms'; VL 
nucleus of thalamus to cerebral pyramidal cells, an 
estimated 1 ms. The whole loop may therefore be traversed 
in as little as 6 ms, and certainly within 10 ms. Such a fast 
mechanism is clearly required in voluntary movements, 
especially those of a more complex kind when muscular 
groups have to be set into action in rapid sequence and 
at closely defined times. 

Contextual information reaching the cerebellar cortex 
through the mossy fibres is also rapidly transmitted; 
indeed, it involves almost the same pathways. The time 
taken for stimulation of the subcortical white matter to 
evoke a mossy fibre response is 2·7 ms". Mossy fibre 
responses to stimulation of forelimb and hindlimb peri
pheral nerves have delays as short as IS ms and 7 ms 
respectively'. 

On the other hand, the cortiC<HllivlU'y-<llimbing fibre 
pathway is quite slow. The climbing fibre discharge 
evoked by stimulation of the cerebral subcortical white 
matter has a delay of 111 ms". At first sight, it would 
therefore seem impossible that the superficial pyramidale 
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could signal that the currently active deep pyramidals 
should be deleted: their commands would arrive too late 
to be effective. 

It is. however. necessary to consider the time scale of 
the context in which these instructions are being made. 
The overall context of the movement changes much more 
slowly than the individual components of that movement. 
That a givE'n group of deep pyramidal cells should not fire 
is not merelv a decision whose effects last for a few milli· 
seconds: the group will be required to be off for an 
cxtendoo period of time. The decision may have to be 
made and implemE'ntoo quickly. but it will remain in 
force for much 10ngE'r. This means that the modification 
conditions refer to extended contexts, of perhl'.ps as long 
as 100 ms. rather than to instantaneous contexts. 

It is therefore proposed that the inferior olive cplls 
should fire in prolonged bU1'8t8, of up to 100 ms. During 
this tim('. the currently active synap8('S to the related 
Purkinje cells should be strengthened in proportion to 
th('ir de~e of activity. This allows the Golgi cell threshold 
system to be re8('t by the climbing fibre collaterals. so as 
to give the "correct" parallel fibre pattern during modifica· 
tion. More important. this ensures that the Purkinje cplls 
can respond in good time to inhibit the cerebellar nuclei 
cells-because the mossy fibre context just before the 
climbing fibr(' activity (that is, when the input reaches 
the pontine nuclei) will differ only slightly from that 
during it. The ability of Purkinje cells to generalize wiIl 
also help in this effect. 

It may be found that the small. superficial pyramidal 
cells anticipate the large, deep pyramidal cells. alld signal 
in advance that certain cerebellar nuclei cells must be 
inhibited within th(' context of the present den'loping 
movement. 

Cerebellar Disorders 
The present theory'call provide a tentativp pxplallation 

for many of the disord('rs arising from damage to the 
cPf('bellum. Onp of the most striking effects of acute 
cerebellar lesiol1" is the delay in the initiation and termi· 
nation of mov('ments 13. The delay in initiation is probably 
caused by malfunction of the cerebellar nuclei. In the 
acute stage of such lesions. there is considerable oedema 
and consequently raised pressure in the cerebellum; this 
could account for such malfunction. The result is that. 
when the cerebral cortex tries to initiate the movement. 
there is little or no excitatory feedback to the motor cortex. 
The movement can only be got going by a considerably 
greater voluntary effort, and this involves both delay and 
slow pick·up. With recovery of functioning of the cere· 
bellar nuclei (that is. in those lesions which are more 
superficial). such delays will tend to disappear". 

Delay in termination" probably results from a corn· 
bination of two factors. First, there is an inability to 
initiate the muscular contractions which are required to 
stop the movement: this again involves the cerebellar 
nuclei. Second, there is delay in switching off the current 
movement: this results from the malfunction of the 
cerebellar cortex. This latter effect should become 
more apparent as recovery proceeds. for the cerebellar 
nuclei will be functioning normally while the damage to 
the cerebellar cortex persists. In other words. the context 
which signifies that the movement should stop is no longer 
able to implement this operation, because the relevant 
Purkinje cells are lacking. This argument receives support 
from the obsen'ations of Gordon Holmes" that the start 
of relaxation in a movement is usually more markedly 
affected than the start of contraction. 

The inability of patients with unilateral cerebellar 
lesions to maintain voluntary postures on the affected side, 
and the greater sense of effort involved in maldng any 
voluntary movements. are both common features in the 
early acute 1ItafIes. Both are consequences of inadequate 
excitatory feedback from the cerebellar nuclei. 

The phenomena of dysmetriall, in cases of acute 
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cerebellar lesions. and of hypermetria, which occurs in 
more persistent cases. are probably related to the"" 
disorders. Dysmetria will result from the malfunctioning 
of both cerebellar nuclei and cerebellar cortex. Movements. 
once initiated, are iIl.gauged and tend to undershoot or 
overshoot the mark. Undershoot will be caused by an 
inability to maintain a voluntary movement (a symptom 
of cerebellar nuclei malfunction); overshoot will be caus .. " 
by inability to stop voluntary movements (already 
considered). It is particularly interesting that hyp.· ... 
metria should ensue-this is exactly what th(' theory 
would predict. It results from the lack of inhibitory 
control from the cerebellar cortex; as a result the mon·· 
m('nts consistently overshoot and are excessi\'ely forceful. 

The decomposition of complex movements13 is a natural 
consequence of any cerebellar malfunction. The errors 
arising in the initiation, continuation and termination of 
successive and concurrently running elemental mO\'pmenls 
should lead to hopeless confusion. The only hope f(Or 
success would be to deal with one elemental mO\'ement at 
a tim(', so that errors may he consciously and deliberately 
dealt with a8 they arise. 

An interesting disability which arises in cerehellar 
patients is that on trying to flex just one finger (in ordf'r 
to bring it into apposition with the thumh), they freq.wntly 
flpx all four fingers at the same time". In this case. it may 
be that normally the cerebral command is to flex all four 
fingers but suppress flexion on the unwant('d thre!'. 
Certainly in early hand movements, flexion of all four 
fingers appears before flexion of indi\'idual fingers
though there is a cortical representation for each individual 
finger flexion. The suppression of the unwanted flexions is 
learned by the cerebellum during the early d('wlopm('nt f If 
the child. Damage to the cerebellar cortex will interf('re 
with the suppression. and a command to mO\'e on(' finger 
will initiate movement in all four. 

'Ve shall make just one reference to observations ma(iP 
on animals with lesions placed in the cerebellum. This 
concerns th(' effects of such lesions on the placing reltc'tion". 
Lesion.~ which involve the dentate nucleus are found to 
abolish the placing reaction. In contrast, lesions confined 
to the cerebellar cortex may actually enhance it. Ablation 
of parts of the cerebral cortex which include the motor 
area is known to abolish the placing reaction. This is 
compatible with a learned reflex which pass('s through 
the cerebral motor cortex and whose output dppends on 
positive feedback through the cerpbro--cer('b('lIar-cerebral 
loop. Clearly such a reflex is of use to the animal in stand· 
ing and walking. Inhibitory control of this r('flex is th('n 
exerted by the cerebellar cortex. 

The functions of the ascending spino-cer('hellar and 
spino-olivo-cerebellar tracts, and their utilization in the 
control of mo\'ements and postures, will be dealt with 
elsewhere. 

We thank the Medical Research Council and Trinity 
College. Cambridge, for supporting this work. 
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Jack D. Cowan 

Commentary on 

How The Cerebellum May Be Used 

Many of the ideas concerning the neocortex (see Cowan's commentary, 
Chapter 4) are incorporated into a revised theory of cerebellar action. Figure 
1 shows the overall architecture of cerebellar interactions: 

--+-i 
-+4 

motor cortex inferior olive cerebellum 

I I climb.f. 
superficial pyramids I I (slow) 

deep pyramids I mt. 
t I 

+ I I 

I I pontine nucl. 

spinal cord 

I ~ I 
v.I. nucl. thalamus cerebellar nucl. 

Fig. 1. Architecture of cerebro-cerebellar pathways. All interac
tions except the cerebellum-cerebellar nucleus are excitatory. All 
pathways except the info olive-cerebellum are fast, with conduction 
delays of no more than 2 msec. 

Marr and Blornfield make the point that the execution of elemental move
ments is learned by turning off all the correct ones. By analogy with Marr's 
neocortex theory the deep pyramids of the motor cortex are presumed to act as 
classifiers capable of detecting the "context" of a sequence of elemental move
ments, and the smaller superficial pyramids are presumed to measure the need 
to correct current motor activity and to delete the messages from the corres
ponding deep pyramids. Their axon collaterals to the pontine nucleus provide 
a fast positive feedback loop via the cerebellar nucleus, which is required for 
the initiation and continuation of elemental movements. The corrections they 
initiate are presumed to be learned eventually and run by cerebellar Purkinje 
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COMMENTARY 

cells. The point is made that Purkinje cells should function much like neo
cortical pyramidal cells and detect and generalize over clusters of elemental 
movements, using various collateral interactions not covered in Marr's original 
paper on the cerebellar cortex. 

Professor , 
Department of Mathematics 

University of Chicago 
Chicago, Illinois 
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24 D.MARR 

It is proposed that the most important characteristic of archicortex is its ability to perform a simple kind 
of memorizing task. It is shown that rather general numerical constraints roughly determine the dimen
sions of memorizing models for the mammalian brain, and from these is derived a general model for 
archicortex. 

The addition of further constraints leads to the notion of a simple representation, which is a way of 
translating a great deal of information into the firing of about 200 out of a population of l()li cells. It is 
shown that if about l()li simple representations are stored in such a population of cells, very little infor
mation about a single learnt event is necessary to provoke its recall. A detailed numerical examination 
is made of a particular example of this kind of memory, and various general conclusions are drawn 
from the analysis. 

The insight gained from these models is used to derive theories for various archicortical areas. A 
functional interpretation is given of the cells and synapses of the area entorhinalis, the presubiculum, the 
prosubiculum, the cornu ammonis and the fascia dentata. Many predictions are made, a substantial 
number of which must be true if the theory is correct. A general functional classification of typical 
archicortical cells is proposed. 

o. INTRODUCTION 

The cortex of the mammalian cerebrum admits a crude division into two classes: the archicortex, 
which is relatively simple and primitive; and the neocortex, which has developed more recently 
and is very elaborate, especially in man. In a recent paper (Marr 1970), a general theory for 
neocortex was set out. The present paper provides its counterpart for archicortex. 

The comparatively simple structure of archicortex is probably reflected in its performance of a 
comparatively simple function. The central point of the neocortical theory was that a particular 
method of organizing information is likely to be useful in many different circumstances: it was 
shown how neocortex might take advantage of this to change the language in which incoming 
information is expressed by reclassifying it, as well as carrying out routine storage of associations 
between existing classes. It will be argued in the present paper that archicortex cannot reclassify 
information in this way. It will be shown that its histology is consistent with the proposition that it 
performs only a simple memorizing function-storing information in the language in which it is 
presented-rather than with organizing information in any more complicated sense. Recent 
work on the storage of information in nerve nets (Brindley 1969; Marr 1969, 1970) has reduced the 
construction of such a theory to little more than a technical exercise: it is an unavoidable one 
none the less, and various interesting factors emerge from this study. 

The paper consists of three main divisions. In the first, §§ 1 and 2, the main ideas behind 
simple memory theory are explained. These ideas lead to a particular neural model which, it is 
proposed, captures the essence of much of the archipallial cortex. It is shown that under certain 
circumstances, the performance of such a model can be greatly improved by use of collateral 
synapses between its cells (the collateral effect, §2.4). 

The second part of the paper, § 3, takes an explicit model constructed along the lines suggested 
by the first part, and derives the equations which describe its expected performance. The model's 
storage capacity and recall abilities for a selection of values of the important parameters are 
displayed in a number oftables. The computations (§ 3.1) are followed in the rest of§ 3 by a rough 
justification of the values of the parameters chosen. 

The third part of the paper (§ 4) uses the model of§ 3.1 to arrive at a theory of the hippocampal 
cortex. This theory produces many testable predictions, which are summarized in § 5. The theory 
is restricted to operations within the cortex, and does not describe any input-output relations. 
The reason is that they are much more complex than, for example, those of the cerebellar cortex, 
and their inclusion in this paper would have made it prohibitively long. They will therefore be 
set out elsewhere, together with the necessary extra theory. 
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0.1. Notation 

Many of the terms and symbols of Marr (1970) are used in this paper, and it is convenient to 
repeat their definitions here. Afibre (e.g. a,(t)) is a function of discrete time t ( = 0, 1,2, ... ) and 
has the value 0 or 1. An event on the set A = {aI' ... , aN} of fibres assigns to each fibre a value 0 or 1. 
Letters like E, F are used for events, and the value that E assigns to the fibre ai is written E(ai)' 
The phrase 'a,inE' means 'aitakes the value 1 in the eventE '. A subevent on the setA = {at> ... , aN} 
of fibres is an event on a subset of A. Letters like X, Y denote subevents; and the set of fibres to 
which X assigns a value is called the support of X, and is written S(X). Gothic letters like ~,~, 
denote collections of events; and letters like iI, ID denote collections of subevents. 

The event E is said to be a completion of the subevent X, written EI- X, if E and X agree at all 
the fibres to which X assigns a value. 

Let ~ be the space of all events over {at> ... , aN}' An r-codon c on ~ is a function, taking the values 
o or 1, such that c(E) = 1 if and only if a particular subset of r fibres (ai" ... , air) all have the value 
1 in E; c may be regarded as a detector of the subset (ail' ... , ai.). An (R, O)-codon is a similar 
function c such that c(E) = 1 if and only if at least 0 of a particular collection (ail' ... ' ai,) of 
fibres have the value 1 in E. 

1. GENERAL CONSTRAINTS 

1.0. Introduction 

It has recently been argued that neocortex may be regarded as a structure which classifies the 
information presented to it (Marr 1970). The detectors of the classes it forms are the pyramidal 
cells oflayers V, III and possibly also oflayer II. An incoming signal will probably pass through 
many such classifications during the course of its analysis. The number through which it passes 
will depend upon the animal, and upon its interest in that kind of information at that moment: 
it is clear that information is often abandoned as uninteresting before it has been examined to the 
maximum depth of which the animal is capable. 

It is probably reasonable to suppose that at a given moment, there will exist in an animal's 
brain information whose expression is now as sophisticated as the animal either requires, or can 
provide. Further classification of the information may be carried out later but, at that moment, 
the animal needs simply to be able to store it in its present form. Such an expression of the input is 
called the animal's current internal description of the environment, and it is the storage of the current 
internal description which constitutes the animal's memory of the information. From these 
memories, he will form new classificatory units, organize temporally extended actions, and 
arrange to respond in the appropriate way to pieces of subsequent current internal descriptions. 

The problems that are studied in this paper are those which arise in the storage and the free 
association of such current internal descriptions. The central problem may, by the neocortical 
theory (Marr 1970), be translated into the following form. flJ is a large population of neocortical 
pyramidal cells, of which some are firing. It is required that this should be recorded in some way, 
so that firing in a few of the cells which are active together in some event E can later elicit the 
firing of all cells active in E. This scheme is probably only remotely analogous to hippocampal 
input-output relations in most mammalian brains, but it is a convenient model with which to 
introduce the cortical theory. 

Three considerations necessitate the construction of a special theory for this problem. First, 
although it has been shown that the neocortex can store associations between classificatory units 

3-2 

61 



26 D.MARR 

(Marr 1970, §4)-for example through the pyramidal cells' basilar dendrites-this kind of 
storage requires a rather special kind of pre-existing structure: the relevant fibres have already to 
be distributed to roughly the correct places. Direct storage of associations in this way makes 
heavy demands on the abundance ofinterconnexions. 

The second consideration concerns the way this kind of associational storage works. It essen
tially involves recording at each active pyramidal cell Qi in fjJ a list of many of the cells Qj co
active with Qi' This can become very expensive, and there are ways of improving upon it. 
Furthermore, it is only worth recording information in a permanent memory when it is known 
fairly certainly how that information should be expressed. It may, for example, turn out that part 
of a current internal description should be recoded to form a new classificatory unit. If this were 
done, a direct associational storage of that current internal description would soon be obsolete: 
it is better to store it temporarily in a special associative memory, until it becomes quite clear 
how it should be permanently set down. 

Thirdly, there are many instances in which the control of behaviour would be made rather 
easy if an associative memory were available as a temporary storage place for instructions. This 
facility would, for example, allow an instruction of the form' see post-box-post letter' to be set up 
before one started out on a walk. 

1.1. Simple memory 

Let ~ be the set of all events and all subevents on the fibres h, e2, ••• , em}, and let ~ be the set of 
all events on the fibres {h,f2' ... ,fn} (see §0.1 for definitions of these terms). As time t progresses 
(t = 0,1,2, ... ), denote the event at time t in ~ by Et , and that at time t in ~ by Ft. A simple 
memory is a device which connects Et and F;;, for each t, in the following sense. Let Xbe a subevent 
or an event in ~. Let Xl' ... , XJ be all the completions of X in ~; that is x.: I- X for 1 ~ i ~ J, and 
there are no others. (If X is an event, its completion is unique and is itself.) Suppose that exactly 
one of the events Xl' X2, ... , XJ has occurred. That is, the equation X; = Et has exactly one 
solution, for all values of j, and of t up to the present time. Then ~ and ~ are joined by a simple 
memory if presentation of X subsequently causes the event F;; in ~. 

Two special cases deserve separate names. In the case where {e1, ... , em} = {f1' . .. ,jn}, the 
memory described above is called a free simple memory: if the memory is not free, it is called 
a directed simple memory. The reason for these names is that in a free simple memory, there are no 
constraints upon the way the associations may flow. Any collection of fibres from the set {f1' ... , fn} 
may be used to recall the activity of the rest of these fibres at a particular time. In directed simple 
memory, this is not so. For example, f1 may not be included in {e1, ... , em}, in which case 
information about .ft can never be used to recover information about the rest of the 

i'i(2 ~ i ~ n). 
In the models that are studied in this paper, rather little is said about whether 

The question is unimportant until the problem of input -output relations is studied. It is enough to 
note here that the same basic memory mechanism can be used for both free and directed simple 
memOrIes. 
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1.2. Numerical constraints 

There are various arguments which roughly determine the shape of simple memory theory; 
they are best presented in the form of order-of-magnitude calculations. This section contains 
four such arguments: the first is concerned with the proportion of learned to possible input 
events; the second with the likely size of input vocabulary-i.e. the number of input fibres; the 
third with the number of events which have to be held in the memory; and the fourth with the 
proportion of cells of the population concerned with the storage that is used for each event. 

1. 2.1. The constraint of a limited history 

The number of fibres that may be involved in a current internal description must be expected 
to be quite huge; but even ifit were only 1000, and a mere 10 were involved at each unit of time 
(say 1 ms), there are enough possible events for the system to run for more than 1012 years without 
repetition. The world is, of course, not random; but the figures 10 and 1000 are certainly under
estimates. From this observation follow two conclusions. First, information about the current 
internal description concerns whether a particular event has occurred, rather than how often it has 
done so, since the answer to the latter question is almost certainly never or once. Secondly, very 
few of the possible events will ever actually occur. Recovery of an event will therefore be theo
retically possi ble from an extremely small amount of information, and the design of neural models 
must be such as to allow this. 

1.2.2. Cortical indicator cells 

It is supposed that neocortical pyramidal cells of layers III and V are output cells for classi
ficatory units, and that some, though not necessarily all, of such cells can take part in a current 
internal description. The human cerebrum contains about 7 x 109 cells (Shariff 1953) of which at 
least say 108 could be classed as cortical pyramids. This is a huge number, and any attempt to 
allow all the cells in a population of this size to have access to a simple memory would lead to an 
unacceptably large neural structure for that memory. If, however, the memory is used for a 
relatively small number of events (of the order of 105), information then being removed to the 
neocortex, an important simplification can be made. 

Suppose that scattered more or less uniformly over the cerebral neocortex were cells which 
responded simply to activity in their neighbourhood of the cortex. If such a cell were driven by a 
very small region of the cortex-an area of perhaps 0.03mm2-it would serve as a marker of 
activity in the cortical pyramids within that region. Each cortical pyramid represents a separate 
classificatory unit, and it can probably be assumed that within such a region not all the 
pyramids will be active simultaneously. The non-specific cell which marks activity in that region 
is called an indicator cell: the best design for such a cell would probably assign to it a thin, un
branched ascending dendritic stem which passes through all layers of the neocortex, and which 
is sensitive to excitatory influences throughout its length. 

The great advantage of indicator cells is that they can be used as entry fibres to a simple 
memory, provided that the return fibres synapse with the true cortical pyramids and not with the 
indicators. In this way, whenever a pyramidal cell is used, its nearby indicator(s) cause an entry 
to be made to the memory, while the return synapses to the pyramid itself are modified. The 
memory can later use these synapses to drive the original pyramidal cell. The only disadvantage 
arises when two nearby pyramidal cells are used in two different but very similar situations, but 
this problem is not a severe one. 
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A density of 30 indicator cells/mm2 allows a quite sensitive specification of location; and 
although this figure is only a guess, we shall see in §3.1 that it can be changed by a factor of 10 
without much disruption of the models analysed there. In general, the density of such cells should 
reflect the frequency with which the various regions of neocortex use the simple memory 
facility, the density being high in regions expressing information which often needs temporary 
storage, and low elsewhere. If indicator cells are used, one would expect their dendritic design to 
vary as well, being very compact in areas where their cell density is high, and perhaps arborizing 
where they are rare. 

The total area of one hemisphere of the human cerebral cortex is estimated to lie between 800 
and 1300cm2• If it is supposed that about 400cm2 need to have access to the simple memory 
(this figure may be too large), the memory will possess about 106 afferent fibres. This is the 
approximate number of fibres needing free simple memory, and does not include the various 
kinds of directed simple memory which may, for example, be involved in the planning of tem
porally extended actions. 

1. 2. 3. Capacity requirements 

The design of a memory requires some idea of the number of events to be stored, and of the 
amount of information from which recovery of a whole event should be possible. These two 
factors are linked, since if a memory has to be capable of recovering events from a very small 
amount of information, its capacity is much smaller than if most of the original event can be 
used to initiate recall. It is necessary to make a rough estimate of both requirements. 

Simple memory has many uses, and the brain probably employs different structures for each 
use, though the structures are likely to conform to the same basic plan. For directed simple 
memory, it is very difficult to provide even a rough guess at the storage requirements. For free 
simple memory (an explicit model for which is developed in § 3.1), some idea of the necessary 
capacity can be obtained. The figure will not be very high, since it is part of the general theory 
that information is moved out of the simple memory when it is known how best to do this. The 
two possibilities for the re-storing of the information currently in simple memory are (i) that it is 
moved to neocortex in the form of new classificatory units (see Marr 1970, §§4, 5); (ii) that it 
is moved to neocortex in the form of associations between existing classificatory units (through, 
for example, the basilar dendrites of neocortical pyramidal cells). 

It has been suggested that at least a part of the transfer between simple memory and the 
neocortex takes place during sleep (Marr 1970, § 5). This implies that simple memory must 
have adequate capacity for holding the events of at least one day. There are 86400 sin 24 h, and 
although many events will not be moved out for some time, one probably does not store a new 
event every second. The figure of 105 is therefore taken as the kind of capacity required of the 
free part of the simple memory. 

The amount of information which can recall an event is even harder to estimate, but it should 
probably be very small, less than a tenth of the information contained in the original event. The 
model of § 3.1 operates at a level considerably below this figure. 

1.2.4. The activity oj a collection oj cells 

Let OJ be a population of M cells, b l , b2, •• "' b~ll" Suppose that at time t, exactly L of these cells 
are firing: then the activity of OJ at time t is defined to be LIM, and is written a = a(t). 

If OJ is being used to store n input events, and if its activity during each is a, then each cell of 
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fJJ may expect to be used in an input events. If the storage is taking place in the cells of fJJ, each 
cell will have to learn part of about an input events. The number of subevents a single cell can 
learn is determined by the number of modifiable afferent synapses it has, and by the number 
that are used in each subevent. For example, the number of fairly dissimilar events that a 
cerebellar Purkinje cell can learn is probably about 200 (Marr 1969). Purkinje cells have more 
afferent synapses than any cortical cells, and so it follows that most cortical cells will not be able 
to learn substantially more than 200 subevents. The number of input events that the population 
fJJ described above may learn is therefore bounded by about 200a-1• This is an important and 
rather general constraint. 

FIGURE 1. A primitive associative memory. The current internal description is an event on the cells a1> ... , aN: 
this is given a codon representation in the cells b" ... , bM (which have Brindley afferent synapses), and the 
return to the ai-cells is through Hebb modifiable synapses. The various inhibitory interneurons necessary 
for the correct operation of the system have been omitted. This class of model provides an efficient associative 
memory for events on the ai as long as their number and size are suitably restricted. 

1.3. Theform of the analysis 

The model of figure 1 shows almost the simplest design for a free simple memory for events on 
the set of fibres A = {a1, ••• , aN}. This model may be derived most quickly as follows. Let X be a 
subeventon A. Then the problem of recovering the completion E of X (assuming that exactly one 
such E has occurred) may be regarded as the problem of diagnosing those at with E(ai) = 1 from 
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the information contained in the subevent X on the basis of the information stored in the memory. 
It is now possible to apply the interpretation theorem (Marr 1970, §§2, 4) to the problem, and 
figure 1 contains one arrangement for applying the corresponding neural analysis. 

The inputs a l , ••• , aN are the cells which constitute the vocabulary of the current internal 
description, and the cells bl , ••. , bM are suitable evidence cells. The technique of codon formation 
is used to construct suitable evidence cells (see Marr 1970, §4), and for this reason, the bi afferents 
end in Brindley synapses. (Hebb synapses will be taken to mean synapses that are initially 
ineffective, but are facilitated by simultaneous pre- and post-synaptic activity. Brindley synapses 
are Hebb synapses that also contain an unmodifiable excitatory component (Marr 1970, §4.3.1; 
Brindley 1969).) The brcell population contains appropriate threshold-setting inhibitory 
interneurons, whose function is to keep the number of b-cells that are active roughly constant 
during both storage and recall. These interneurons do not appear in the figure. 

The return projection to the a-cells ends in Hebb synapses. There are inhibitory interneurons 
in the a-cell population which, during recall, allow firing in only those a-cells the highest pro
portion of whose active afferent synapses from the b-cells have been modified. This corresponds to 
implementing the interpretation theorem at the a-cells, in response to the subevent X. The cell 
ai measures P(ai!X) when X is applied to the set {ai, ... ,aN } (Marr 1970, §2.5), and the b-cell 
thresholds are lowered in such a way as to keep the number of b-cells that are firing roughly 
constant (Marr 1970, §4.4). 

In principle, free simple memory is obtained by allowing the projections from the a-cells to 
the b-cells and back to be distributed freely over both populations (as in figure 1). A directed 
simple memory is obtained, for example, by arranging that only certain a-cells project to the 
b-cells, and that only certain a-cells receive projections from the b-cells. 

1.4. The consequences of tke numerical constraints 

In this section are outlined the principal effects of the constraints described in § 1.2when they are 
applied to the kind of model to which the methods of§ 1.3 give rise. The development is informal, 
and is designed to give the reader an overall view of the theory developed in §§ 2 to 4. I ts main 
purpose is to show roughly why it is that the basic model of figure 1 is inadequate for simple 
memory, and how this leads to the idea that a special working representation of each input has in 
fact to be created in the memory. This central representation is a kind of template for each event; 
it probably involves rather few cells-perhaps only 100 to 1000 even in man-and provides 
an economical central storage pattern from which the event in the output space if at that 
particular instant can be recovered. This representation, called the simple representation of the 
current internal description, is a central feature of the present paper. 

1.4.1. Synaptic modification 

Where codon formation occurs, the relevant synaptic modification has been regarded as an 
all-or-none process (Marr 1970, §4). In contrast, the afferent synapses to output (cortical pyra
midal) cells need to have variable strength in order to measure P(D!Ci), although it may be that 
this is in practice approximated by an all-or-none process (Marr 1970, §§4, 7). The numerical 
constraints of§ 1.2 imply that in the theory ofarchicortex, synaptic modification should probably 
be regarded as an all-or-none process, although it is allowed that different classes of synapses 
may have different maximum strengths. 
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One reason for this is as follows. For evidence cells (i.e. in codon formation) the arguments 
are the same as for neocortex: these synapses are involved in representing a diagnostic space, not 
in measuring probabilities therein. For diagnostic processes in a simple memory, the argument 
rests on the peculiar way in which the memory is used-as a temporary store to which new in
formation is continually being added. At a neocortical output cell, the notion of a conditional 
probability has a practical meaning, since the output cell and its supporting evidence cells are 
structures which form a permanent part of the brain's interpretive apparatus. This is not true of 
simple memory. Much of the information held therein is needed only temporarily, and that which 
is not will be removed to the neocortical store when it becomes clear how it should be represented 
there. The notion of conditional probability in such circumstances has at best only a changing 
meaning. 

1.4.2. Inadequacy oj the simple model 

It is easy to show by using order-of-magnitude calculations that the simple model of figure 1 
cannot be applied to the case where there are as many as 106 input cells a i • Since neocortical 
pyramidal cells probably possess fewer than 100000 afferent synapses, most of which will be 
occupied with standard diagnostic evidence and with permanent neocortical associative 
information, it can probably be assumed that only about 1 04 synapses are available for the simple 
memory function. In the simple model outlined in figure 1, this means that the number of 
b-cells, M, may be taken as 104, each one synapsing with every one ofthe 106 a-cells. The b-cells 
must possess modifiable synapses since, otherwise, recall from subevents of learnt events would 
be impossibly bad. If the capacity of the memory is taken to be about 105 events, and each b-cell 
can learn 102 (§ 1. 2), the activity ex ofthe b-cell population must be as low as 1O-3-that is, 10 cells 
active at any instant. This number is too small to allow a reliable representation of the whole 
input event by the b-cells, and the model is therefore inadequate. 

1. 4. 3. The simple representation oj the current internal description 

Arguments like that outlined in § 1.4.2 show two things: first, that there must be more than one 
layer of cells (like the b-cells) between the input and the return of a simple memory, if it is bound 
by numerical constraints like those described in § 1.2. Secondly, the small number of synapses 
available at neocortical pyramids for the simple memory means in effect that there will be 
rather little spare capacity in the projection back from the simple memory. That is, most of the 
storage capacity at these synapses will be exhausted by the straightforward task of relating the 
pyramids to the activity in the projection from the memory during full events: there will be little 
left over to help in the task of completing a subevent of a learnt event. This means that during 
recall of a learnt event from a subevent, the recall must have been virtually achieved by the 
memory before the signals reach the projection back to the neocortex. Hence most of the diagnostic 
analysis involved in discovering the completion of a subevent takes place in the memory itself, 
not at the a-cells. In the simple case of figure 1 (which can be used to store rather few events), 
this would mean that a sub event X of E could recall E only if it caused activity in the same 
b-cells as did E. 

This is a rather stringent condition on the structure of the memory. It means that there exists 
a stage-a layer of cells-in (and by) which the completion process is achieved. Each input event 
E has a representation as a firing pattern in this population of cells, and the problem of completing 
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a subevent X of E is equivalent to the problem of recovering its corresponding firing pattern. 
This pattern is called the simple representation of the input E. 

1.4.4. Advantages oj the simple representation 

The notion of the simple representation of an event E of the current internal description makes 
many of the problems of free and directed simple memory easy to express. A simple representation 
needs to be formed only of those parts of E that contain the subevents through which E will later 
be addressed: and the simple representation needs to be associated back (through the return from 
the memory) only to those parts of E that will need to be recalled. 

It will turn out that simple representations consist of collections of cells in a population whose 
activity a(§ 1.2.4) is very low. The activity is in fact so low (a ~ 0.001) that the cells of a simple 
representation can be directly associated to each other by collaterals terminating in Hebb syn
apses. The simple representation of E, written [E], can thus be regarded as a firing pattern which 
can complete itself through its collateral synapses (called the collateral effect, § 2.4). Again, simple 
representations are somewhat limited in the maximum size they can attain, and this leads to the 
notion that more than one simple representation may be formed, each dealing with a different 
subevent of E. Within each simple representation, there is a full collateral effect, but between 
any two, it is less full (see §4.5.1). 

2. THE BASIC MODEL FOR ARCHICORTEX 

2.0. Introduction 

The arguments of § 1 show that simple memory may be divided into two operations: the 
creation of suitable diagnostic spaces for the input events as they occur; and the performance, 
during recall, of diagnostic operations within those spaces. The representation of these two basic 
functions requires a model consisting of two parts, closely analogous to codon formation and 
output cell selection in the neocortical theory. Many of the factors which determine the shape of 
each component have already arisen in the theory of the neocortex: they can therefore be 
derived rather quickly, and with this the first two parts of this section are concerned. 

Within the outlines established by these two basic models, the actual shape of a simple memory 
is determined largely by numerical constraints. The rest of this section therefore shows how the 
capacities and characteristics of various models may be calculated, and derives the conditions 
imposed by the fact that the cells involved have to be physiologically plausible. 

2.1. Codon formation 

The first task to be discussed is the construction of evidence functions by input events. The 
obvious way to do this is to use the technique of codon formation, described in some detail by 
Marr (1970, § 4.3). (Compare also the s-cells of Brindley 1969.) The basic models for this appear in 
figure 2, and the arguments for each will be set out here only in so far as they differ from those 
put forward in the neocortical theory. 

2.1.1. Preference for the model 2 using Brindley synapses 

The main differences between the arguments appropriate here and those for the neocortex arise 
because the function of simple memory is to record all its incoming information: the difficulties 
which arose in the neocortex, concerning the formation of evidence only over the appropriate 
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diagnostic space, do not arise here. Modell of figure 2 is excluded for the same reasons as in the 
neocortical theory: each cell can represent only one event, since after one modification, all the 
synapses not used in that event become ineffective. Model 3 is excluded for two reasons: (a) a 
climbing fibre system cannot both be simple and choose those cells most appropriate for each 
event (i.e. those at which the greatest number of active afferents have synapses); (b) a climbing 
fibre system in any case requires more cells than model (2). 

model I model 2 model 3 

FIGURE 2. Three models for codon formation: model 1 uses synapses which are initially excitatory, but become 
ineffective as a result of post- without pre-synaptic activity; model 2 uses Brindley synapses; model 3 uses a 
climbing fibre and Hebb synapses. 

2.l.2. Threshold setting in model 2 

Brindley synapses contain an unmodifiable excitatory component, and are facilitated by a 
combination of pre- and post-synaptic depolarization. The post-synaptic threshold for the 
existence of modification conditions there will have to vary for two reasons: first the number of 
active afferents will not be constant; and secondly the overall proportion of synapses that have 
been modified will change, thus changing the amount of post-synaptic depolarization that an 
unlearned input of fixed size may be expected to cause. These problems do not arise in the special 
case considered by Brindley (1969), where the number of active afferents is always two, and the 
ratio of modifiable to unmodifiable components in the synapses is I: 2. 

Synaptic modification probably depends on the local conditions prevailing in a piece of 
dendrite, and hence inhibition intended to prevent these conditions from arising must be applied 
directly to the dendrite. The use of Brindley synapses in codon formation therefore requires 
that inhibition of the appropriate strength should be applied to the dendrites containing those 
synapses. 

There are broadly speaking two methods of providing such inhibition: either it is done by 
inhibitory cells which are otherwise identical to the codon cells; they learn inputs at the same rate, 
and are therefore excited at a rate which increases with the number of learnt events: or a 
negative feedback system is used, built to keep the number of codon cells that are active roughly 
constant. The first scheme is probably unsatisfactory, and the second is embodied in the model 
of figure 3. This model contains two kinds of inhibitory influence on the codon cell dendrites 
(often through different dendrites of the same inhibitory cell- e.g. the G-cells). One influence, 
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the inhibition driven directly by the afferent fibres, sets the cell thresholds on the assumption 
that no synapses have been modified. The other, a negative feed-back driven by codon cell 
axon collaterals via the G-cells, provides the component required to counteract the extra excita
tion which arises because a fraction of the population of synapses will have been modified by 
previous events. The system is imagined to be constructed so as to maintain a constant activity 
a: in the set fYJ of codon cells. The effect of all inhibition described here is subtractive, and dendritic 
branches which are not close are imagined to be independent. 

FIGURE 3. The full model for codon formation using Brindley synapses. Modification conditions are decided 
locally in the codon cell dendrites, and hence inhibition which controls these conditions is itself applied to the 
dendrites. The S-cells, driven by codon cell afferents, subtract roughly the expected excitation due to the 
unmodifiable component of the Brindley synapses. The G-cells, driven in part by codon cell axon collaterals, 
use negative feedback to compensate for changes in the size of the input event, and in the number of synapses 
which will already have been modified. 

G. S. Brindley (personal communication) has pointed out that the need for G-cells in codon 
formation evaporates if information decays in the memory at about the same rate as it is 
acquired. 

2.1.3. Recalling an event 

The recall of an event is initiated by addressing the memory with a subevent. In order to avoid 
the problem of how the memory knows whether to store a given input, or to use it to recall the 
event most like it, it will be assumed that events which are to be stored are much larger than the 
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subevents which initiate recall. The reason for making this assumption is that the effect of a small 
subevent on the dendrites of the codon cells may then be regarded as being too mild to provoke 
synaptic modification there, since synaptic modification presumably requires a rather severe 
dendritic depolarization. The more general problem of controlling when a memory does and 
does not store its inputs will be dealt with in the paper on input-output relations. 

One other point is needed to complete the discussion of codon cells. If the subevent that is 
being used for recall is wholly contained in the event to be recalled, then the best strategy is to 
lower the codon cell threshold until about the usual number of cells becomes active. This step is 
part of the usual procedure for implementing the interpretation theorem (Marr 1970, §§2.5 and 
4.4). If, however, the subevent is only partially contained in the eventto be recalled, then it will be 
shown in § 3.1 that better results are obtained if codon cells are treated like output cells (see § 2.2). 
This is essentially because output cells (with afferent basket synapses) are regarded as being 
capable of performing a division (Marr 1970, §4.1.6); and, in the second situation, it turns out that 
the fraction of active afferent synapses which have been modified is a more suitable measure than 
the absolute number of such synapses. 

2.2. Diagnosis in simple memory 

It has been argued informally (§ 1.4.3) that the recall process in a simple memory has to be 
virtually complete by the time information is returned to the neocortical pyramidal cells. This 
means that the memory must contain internal diagnostic structure capable of recovering the 
pattern of firing appropriate to the learnt event of which the current input subevent formed a 
part. In this section, the cells at which the recovery is performed are described. 

2.2.1. The simple representation 

In the neocortical theory, it was imagined that information was represented by a family of 
classes, each of which was formed because of a clustering of input subevents. The function of 
simple memory is to record information as it occurs, without trying to produce the best 
possible classification of the input on the spot. It is proposed that information in a simple 
memory is also represented by a family of classes, but that in this case, the classes are chosen 
randomly. An incoming event is assigned to a family of cells, analogous to neocortical output cells, 
chosen because they happen to have more relevant synapses than any others. These cells may be 
regarded as 'random' variables taking the value 0 or 1: the probability that they have the value 
1 is assessed at each moment by consulting the relevant evidence, in the usual way. 

When viewed as random classes in this way, it is seen that the diagnosis and interpretation 
theorems may be applied to the assessment of the incoming evidence: indeed, these results, 
strictly speaking, are more accurately applied to the problem of the diagnosis of random classes 
than of the more organized objects for which they were developed (Marr 1970, §2). Since it is 
assumed that modifiable synapses for simple memory have all-or-none modification character
istics, it follows that they should transmit a measure of the fraction f of their active afferent 
synapses which have been modified, provided thatf exceeds some (variable) lower bound p (say). 

It is thus proposed that the simple memory sets up, by a more or less random process, a set of 
classes which is unique (with very high probability) to each input. Each class is represented by 
a separate cell, although a given cell may represent more than one class. The set of cells which 
represent a given input in this way is called the simple representation of that input. The recall of an 
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event from a subevent is performed by recovering those classes by which the subevent is best 
interpreted, in the sense of the interpretation theorem (Marr 1970, § 2.5). In order to do this, the 
cells involved in a simple representation need to be able to measure the fractionJ defined above. 

2.2.2 Output cells Jor a simple representation 

The theory of output cells for the random classes described in § 2.2.1 falls into two parts: the 
first describes the formation of the classes, and the second deals with the subsequent interpretation 
of inputs. The idea that these cells do two things-i.e. store and interpret-and that they do both 
things all the time, leads naturally to the question of how they know what to do to a given input. 
For now it is enough to assume that if an input is a subevent of a previously learnt event, it will 
automatically cause recall of that event. If not, it is simply stored. 

FIGURE 4. The output cell n has three kinds of afferent synapse: Brindley synapses (arrows) from codon cells, and 
two kinds of inhibitory synapses. Those from S- and G-cells are spread over the dendritic tree (cf. figure 3), 
and their effect is subtractive: those from the D-cells, concentrated at the soma, perform a division. 

The problem of the formation of classes for the simple representation of an input has much in 
common with the problems surrounding codon formation. The central requirement is to choose, 
from the given population of cells, those which are best suited to representing the current input. 
This is exactly the problem that was discussed in § 2.1.1, and the possible mechanisIllS are again 
those of figure 2. For the same reasons as were given there, Brindley synapses provide the most 
suitable method of selecting such cells, and may therefore be expected at the cells involved 
in a simple representation. 
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It is interesting to note that output cells for the random classes involved in a simple representa
tion require Brindley synapses, whereas output cells for classificatory units proper are best 
served by having climbing fibres. The freedom allowed by Brindley synapses-independence of 
different dendrites, and the ability to choose the most appropriate cells-which is such an advan
tage in simple memory, is only a disadvantage in the neocortical representation of classificatory 
units. The reason is that in the neocortex, it is crucial that all the relevant evidence for deduction 
of a property be held at the synapses of a single cell. Modification conditions have to occur every
where on its dendrites simultaneously, and for all (or enough) of the relevant subevents. Without 
a climbing fibre, this cannot easily be arranged: a cell which is optimal for one subevent is not 
especially likely to be optimal for its neighbours as well. 

The second part of output cell theory for a simple representation concerns the diagnosis of 
incoming events. Most of the problems that arise have been considered in output cell theory for 
the neocortex (Marr 1970, §4.1). These arguments show that two kinds of inhibition are needed: 
one to perform a subtraction (the S-cells of figure 4), and one to perform a division (the 
D-cells or basket cells of figure 4). Such cells would cause the output cells' firing rates to be 
proportional to f - p. In the present case, however, some further information is available: the 
output cells for a particular event were originally selected (through Brindley synapses) because 
they had the greatest number of active afferent synapses. Such cells will therefore tend to have 
more modified active afferent synapses during recall than other cells, and preliminary selection 
can usefully be made by subjecting the population of output cells to a suitable absolute threshold 
T (say). In figure 4, it is imagined that inhibition to produce this is provided by the G-cells 
(driven in part by output cell axon collaterals). G-cells thus have two functions: to arrange 
suitable modification conditions during the storage of an event, and to provide a (variable) 
absolute threshold T during recall. It will be shown in §3.3 that the introduction of two kinds of 
threshold into output cell theory-i.e. specifying both T and a lower bound on f-greatly 
improves the performance of a memory. 

In figure 5, the apparatus of figure 3 is added to that of figure 4 to produce the basic unit of 
simple memory. This type of model is examined in detail in § 3. 

2.2.3. Structural differences between archicortex and neocortex 

There are various differences in the fine structure of the models devised for archi - and neocortex, 
of which perhaps the most striking concerns the absence of climbing fibres in archicortex. It is 
also possible to deduce differences that are predicted by the theory and which concern the 
large-scale arrangements of the two structures. If all of a large population of output cells tend to 
receive afferents from the same collection of evidence cells, the disposition of cells and fibres will 
contrast strongly with their arrangement in neocortex, where one expects that evidence cells 
are relatively private constructions. There is no reason in archicortex to have evidence and 
output cells particularly near one another: one can therefore expect to find cells involved in 
different stages placed rather far apart, and joined by powerful projections. (The so-called 
perforant path in the hippocampal formation may be an example of such a projection.) 

For this reason, the numerical analysis which follows (§ 3.1) deals with layers of cells flli' which 
project to one another with various contact probabilities. Some layers will contain evidence cells, 
and some, output cells. The difference is however unimportant except in calculations about the 
recalling abilities of the system. 

73 



38 D.MARR 

2.3. The basic equation, and various constraints 

The calculation of the capacity and recalling ability of the simple memory described in § 2.2 
rests on various assumptions and approximations. These are set out together in this section, and 
the relations derived here are used in § 3. 

FIGURE 5. A modd for simple ~emory, obtained by combining figures 3 and 4. The output cell axons return to the 
cells of the current internal description, after giving off collaterals which terminate in Hebb synapses at other 
output cells. This kind of model is analysed in § 3.1. 

2.3.0. Notation 

fIJi (i = 0,1,2, ... ) is a population of N. cells with activity ai. The set of cells of fIJi which fire in 
response to an input is called the fIJi-representation of the input. The terms event, subevent, and codon 

will have their usual meanings. In addition, the following notation will be standard: 

E denotes an expectation; 
N. the number of cells in fIJi; 

4 the number of active cells of fIJi (4 = ai N.); 
Rt the threshold of the cells in fIJi during the storage of information; 
S, the number of afferent synapses possessed by each cell offlJi (assumed constant over fIJi); 

Zi the contact probability for the projection of the afferent fibres to fIJi (usually from fIJi-I). 
(Thus Zi = the probability that an arbitrary cell of fIJi receives a synapse from an 
arbitrary cell of flJi~I); 

JIi the probability that an arbitrary afferent modifiable synapse in fIJi has been modified. 
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2.3.1. The response in fIJi to an input event 

If it is assumed that the afferents to fIJi distribute there randomly with contact probability Zi' 
the variables defined in §2.3.0 are related by the following equation: 

E(Li) = N;, :~~ (L~_l) ZHI-Zi)Li-,-r (Marr I970, §3). (2.1) 

Li is the sum of expectations (corresponding to the individual terms of the expression), of which 
one (obtained by putting r = Ri ) will usually be far larger than the rest. This is because Ri will 
usually be chosen to keep ai rather small, which implies that only the terms in the tail of the 
binomial distribution are in practice used. 

2.3.2. Modifiable synapses in fJ>i 

I t is helpful to have a rough guide as to when it is useful to have synaptic modification at the cells 
of fJ>i' Fortunately, it is easy to obtain a simple approximate criterion for this. ai = Lil N;, is the 
activity in fJ>i: let a i - l = Li-ll N;,-l be the activity of the input fibres. This is done because the 
input to fIJi will be from the population of cells fJ>i-I' It is roughly true that the proportion of 
synapses active at each active cell of fIJi is ai-I: it is certainly at least this; the amount by which it 
exceeds it decreases as the value of Siai_l increases. Therefore, the probability that after n events, 
an arbitrary synapse of fJ>i has been facilitated is (I - ai_l)n<Xi , which is approximately 
1 - exp ( - nai_l ai ) if ai- l is small. It is only worth having modifiable synapses in fIJi if, when the 
inputs have all been learned, not all the synapses there have almost certainly been facilitated
that is, if nai_l ai is of the order of I. Hence a rough, necessary condition that it be useful to have 
modifiable synapses in fIJi is 

(2.2) 

2.3.3. The conditionfor full representation 

The second constraint also embodies a necessary condition-that the activity in fIJi provides 
an adequate representation ofthe input event. In the present context, a rather weak criterion of 
adequacy is sufficient, namely that a change in the firing of the input fibres should produce a 
change in the cells which are firing in fJ>i' 

The probability that an arbitrary but fixed active input fibre to fIJi does not terminate at any 
active cell of fIJi is approximately (I - Siai-ll Li_I)Li. This is approximately 

Most of the active cells of fIJi would cease to fire if one of their active afferents were removed 
(by the remarks of§2.3.1 about the tail ofa binomial distribution), and hence the condition for 
full representation of the input in fIJi is that the probability exp ( - Siai N;,I N;,-l) should be kept 
very small-say less than e-20• The condition then becomes 

(2.3) 

If fJ>i is being used to capacity, i.e. nai_l ai ~ I, we find that 

(2.4) 

5 
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2.3.4. Four practical constraints 

It must always be remembered that the cells and synapses of 9 i are physiological objects, 
which cannot be asked to perform unrealistic feats. One tendency of the theory is to use the 
populations fIJi of cells with very low activities, ai' The thresholds of the cells in fIJi have, however, 
to be set by negative feedback devices, like the G-cells of figure 3, and these are to a certain 
extent limited as to what they can do. 

The basic difficulty lies in specifying the proportion of active afferent synapses to which a cell 
may reasonably expect to be sensitive. Negative feedback devices like the G-cell will operate by 
measuring afferent synaptic activity, and inhibiting the cells with which they synapse in such a 
way as to keep a at the appropriate value. In what follows, a will be assumed to exceed 0.001 

since this figure seems about as small a fraction of active synapses as would allow the activity to 
be reliably detected. The true bound may be lower, but it cannot be a great deal lower, and 
certainly not by an order of magnitude. 

The same problem applies to the cells of fIJi as applies to the G-cells which set their thresholds. 
In the case where the fIJ.-cells have Brindley modifiable afferent synapses, the conditions on 
9 r cells are probably more stringent than on their associated threshold controllers, since it 
seems plausible that a considerable degree of post-synaptic depolarization is necessary in a 
region of dendrite before the conditions for modification are created there. It is difficult to give a 
numerical translation of the condition on the proportion of active synapses necessary for im
plementing modification conditions: in what follows, the relevant lower bound will be taken to 
be 0.005. In practice, it will be possible to alleviate this difficulty by arranging for related synapses 
to be placed near one another on a dendrite. 

Finally, the second tendency of the theory is to require that the number of synapses on a cell be 
as large as is plausible. Cragg (1967) has shown that the average number of synapses per cell in 
monkey motor cortex is 60000, and in monkey striate cortex it is 5600. Large archicortical cells 
are comparable with large motor pyramidal cells, so it is wise to restrict the possible value of 
Si to not much more than 60000. An absolute bound of Si :;:;; 105 will always be assumed. 

There is no direct information about the numbers of synapses on archicortical cells, or the 
contact probabilities of the various projections, or the activities (ai ) of the various groups of cells. 
It will not be possible to apply detailed quantitative tests to the present theory's predictions until 
numerical information of this kind becomes available. 

2.4. The collateral effect 

Let fIJ be the population of cells in which the simple representation of an input is formed. If 
each cell has about 60000 afferent synapses, then each one can probably learn about 100 input 
events (cf. the cerebellar Purkinje cells, Marr 1969). Hence, if the population as a whole is to 
learn about 105 events, the activity a of fIJ must be about 10-3• 

Equation (2.2) of 2.3.2 shows that for learning to be profitable in 9 i driven by cells of fIJi-I> itis 
necessary that nai _1 ai ~ 1. Let flJi - 1 = fIJi = fIJ: then the condition becomes na2 ~ 1, and is 
satisfied by the values of n (~ 105) and a (~ 10-3) appropriate to the cells of a simple representa
tion. In other words, it is possible to make good use oflearning in synapses from the cells of 9 to 
the cells of 9-that is, in synapses at cells of fIJ driven by collaterals of other cells of fIJ. The 
practical importance of this is that an input to 9 need not be sufficient on its own to re-stimulate 
all the cells of the particular simple representation which that input is designed to stimulate: 
collateral activity in fIJ will help the recall process. Provided that the afferent information causes 
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more than a critical fraction of the active cells in fYJ to be cells ofthe required representation, the 
collateral system will take over, suppress the cells which should not be active, and stimulate those 
which should. The completion of a partially specified simple representation by &'-cell collaterals 
is called the collateral effect. It will be shown that the collateral effect is probably capable of 
completing a simple representation when the fraction of currently active cells which are in that 
representation is as low as one third. 

The details of the structure required for the collateral effect are as follows: 

(i) collaterals distributing in &' with the appropriate contact probability (see § 3); 
(ii) Hebb (or Brindley) modifiable synapses where the collaterals meet other cells of fYJ; 
(iii) the usual inhibitory threshold controlling cells. 

3. CAPACITY CALCULATIONS 

3.0. Introduction 

For practical application of the theory, it is essential to have a firm grasp of the kind of per
formance that may be expected from the basic simple memory of § 2. This section gives the reader 
direct experience of the available storage and recall capacity, for reasonable values of the 
important parameters. 

Storage of an event will be said to have been achieved when its simple representation has been 
formed; and recall of that event, when its simple representation has been recovered. 

3.1. Establishing and recovering a simple representation 

There are various arguments which roughly decide the number of cells and synapses in the 
different portions of the memory that is analysed here. The conclusions are stated first, in the 
form of specifications of properties of a network which will form simple representations. These 
conclusions are followed by the arguments which lead to them, and these, by remarks about the 
memory's storage and recall performance. 

3.1.1. The basic memory 

There are three populations of cells, fYJ l' &'2 and &' a. The cells of &'1 send axons to &'2' and those 
of fYJ 2 send axons to &' a. fYJ a possesses a collateral system, and it is in &' a that simple representations 
are formed. Table 1 shows the basic parameters for each of the fYJi , using the notation defined in 
§ 2.3.0. It is imagined that the 106 cells of fYJ1 are split into 25 so-called blocks of cells, each of which 
projects exclusively to a corresponding block in &'2 (see figure 6). The parameters for each block 
are given in table 2. The projection from fYJ 2 to fYJa has no block structure, and table 3 describes 
the parameters for this projection. &'a also possesses a collateral system, which may be regarded 
as a projection from fYJa to fYJa,. The parameters for the collaterals appear in table 3 in the 
column for i = 3'. These values have all been obtained using the equations of § 2. 3. 

The probability that an arbitrary synapse has been modified can easily be calculated if it is 
assumed that synapses are effectively chosen randomly each time an event is stored. The assump
tions behind this have been set out already (Marr 1969, § 5) in the calculation of the capacity of a 
cerebellar Purkinje cell. Suppose n events have been stored; then the probability IIi that an 
arbitrary modifiable synapse in fYJ1 will have been facilitated is 

IIi = 1 - (l - Xi! Si) na i , 

5-2 
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where Gti' Si are as in § 2.3.0, and Xi is the expected number of synapses used at an active cell for 
one event. Xi is near to Ri , the threshold of such a cell: in fact 

Xi = ~ ~(R) .R, 
B;;.Rt 

where ~(R) is the probability that an active cell of fiJi has exactly R active afferent synapses. 
~(R) is calculated from the terms of the equation in §2.3. Table 4 shows values of IIi for 
n = 5 x 10', and n = 105 stored events. 

TABLE 1. GROSS PARAMETERS FOR A SIMPLE MEMORY fIJI ~fiJlI~fiJ3 

Cells of 1J1'. and 1J1'8 possess Brindley modifiable afferent synapses 

1 2 3 

1.25 X 108 

2500 
500000 

3025 
0.006 

100000 

0.002 
217 

0.002 

TABLE 2. fIJI AND fiJ2 OF TABLE 1 ARE SPUT INTO 25 BLOCKS, EACH 

'HAVING THE FOLLOWING SPECIFICATIONS: 

1 2 

N; 50000 20000 
4- 100 121 
R; 31 
S; 10000 
a; 0.002 0.006 
Z; 0.2 

TABLE 3. THE PROJECTION fiJ2 ~ fiJa HAS NO BLOCK STRUCTURE, 

AND HAS THE FOLLOWING PARAMETERS: 

2 3 3' 

N; 500000 100000 100000 
L; 3025 217 200 
R; 351 
~ W~ IO~ 
a; 0.006 0.002 0.002 
Z; 0.1 0.1 

The column i = 3' gives the parameters for the collateral system in 1J1'3' 

The expected number of active afferent collateral synapses at a cell oflJ1'3 is 21.7, but has been taken to be 20 for 
simplicity. 

TABLE 4. MODIFICATION PROBABILmES IIi FOR MODIFIABLE SYNAPSES IN EACH 

fiJi(i = 2,3,3') AFTER n EVENTS HAVE BEEN STORED 

i = 3' gives values for the collaterals in 1J1'. 

n II. II. II., 

5 x 10' 0.621 0.538 0.181 
I()" 0.857 0.787 0.330 

3.1. 2. The collateral effect in fiJ 3 

The collateral system in fiJ3 can aid the recovery of a simple representation in the following 
way. Suppose that an input X is presented at fiJI' and that X is a subevent of a previously learnt 
event Eo. Let fiJ30 denote the simple representation of Eo in fiJ3 and let fiJ31 denote the rest of fiJ3• 
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Suppose that X causes firing of Co cells in &'30' and C1 cells in &'31' Since Eo has already been learnt, 
all collateral synapses between cells of its simple representation will have been facilitated. Hence 
collateral synapses between cells of &'30 will all have been facilitated, whereas those between other 
cells will have no more than the usual probability of having been facilitated. 

In order to analyse the effects of the fllJ 3 collaterals, it is assumed that once firing in the collec
tion &'3 has been established by the afferents from fllJ2 , these afferents become silent, and the cells 
in &'3 are driven solely by the collaterals. The effects of the collaterals alone can be discovered by 
regarding &'3 as projecting to an identical set of cells, called &' a', in the same way as the collaterals 
distribute among the cells of fllJ 3' The behaviour of fllJ 3" which represents the new state of fllJ 3 after 
one' application' of the transformation on the &'3 firing pattern induced by the collaterals, can 
then be calculated using the equations of § 2.3. 

In the present theory, the important question is whether or not the collateral effect can lead to 
the recovery ofthe simple representation of Eo. Whether this happens depends on the parameters 
associated with the collateral distribution, and on the relative sizes of Co and C1• For fixed para
meters there is a threshold for the ratio Co: C1 above which the collaterals will tend to increase this 
ratio, and below which they will tend to decrease it. The threshold is of a statistical nature, 
because above it, the collaterals are more likely to increase the ratio, and below it, they are more 
likely to decrease it. One has to move a little way away from this threshold before the outcome 
either way is virtually certain. 

The statistical threshold (for Co + C1 = La) is defined as the value of the ratio Co: C1 such that the 
expected effect of the collaterals is to maintain it. It may be calculated as follows. 

Let b be an arbitrary cell of &'3" the copy of &'3 to which the collaterals are imagined to 
project. The number of active afferent synapses at b comes from a binomial distribution b (La; 2 a,) 

with expectation La2a' from population La. L3 is the number of active cells in P3 and 2 a, is the 
collateral contact probability. Hence the probability that b has exactly x active afferent synapses 

IS P3,(x)=(:a)2~,(l-2a,)L3-X. (3.1) 

If b is not infllJao, the simple representation of EO) the number of these active synapses that will 
have been facilitated is drawn from the binomial distribution b (x: IIa,) with expectation xIIa' from 
population of size x (from the definition (§2.3.0) of II). Hence if Qa'l(r) denotes the probability 
that exactly r of the x active afferent synapses to b have been modified, 

Q3'l(r) = (:) II;,(l-IIa,)x-r. (3.2) 

If b is in &'ao, all afferent synapses from other cells in fllJao will have been modified. Hence the 
number of active afferent modified synapses at a cell in &'ao is composed of two contributions: 
one, with distribution b( Co; 2 3,) from cells of &'30 with probability 2 3" all of which have been 
modified: and one with distribution b( CI; 2 3,) from &'al which have only chances given by (3.2) 

of having been modified. For the purposes of calculation, this situation has been approximated by 
assuming that, for a cell in the simple representation of Eo with x active afferent synapses, the 
number of those synapses which have been facilitated has distribution 

b(x; (Co + C1 Jla,) I( CO + CI ))· 

Hence if Qa'o(r) denotes the probability that exactly r of the x active afferent synapses to b have 
been modified, 

(3.3) 
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Hence, if the cells in flJa, all have a threshold R, the expected number of active cells that are 
not in the simple representation of Eo is 

and the expected number of active cells in fIJ ao is 

L, 

C~ = La ~ ~ Pa,(x) Qa'o(r). 
r~RX=T 

(3.4) 

(3.5) 

Thus, when all cells of flJa, have threshold R, the effect of the collaterals is to transform Co and C1 

into new numbers with expectations C~ and Ci. Hence the statistical threshold, as defined above, 
for recovery of the simple representation of Eo is that ratio Co: C1 for which 

(3.6) 

In practice, however, the cells will not have a uniform threshold, since the theory allows that 
division can take place as well as subtraction. The effect of division may be incorporated by 
assuming that a cell only fires if at least a fraction] of its active afferent synapses have been 
facilitated: ] is called the division threshold of the cell. The combined effects of a subtractive 
threshold T and a division threshold] are to give a cell b of fIJ a, with x active afferent synapses, 
a threshold R = R( b) where 

R(b) = max{T,]x}. 

This transforms C~ of ( 4) and (5) into Ci where 

(3.7) 

(3.8) 

The statistical threshold becomes that ratio Co: C1 for which 

Co: C1 = ct:Ci, subject to CO+C1 =Co* + C1* ~ La, (3.9) 

the threshold parameters T,]being chosen to minimize Co*jC:. The expectations ct, Ci have 
been computed for the relevant parameters, and selected values appear in the tables 5 to 7. 
Cases Co + C1 = La and Co + C1 = lLa have both been calculated, since it is often better to use the 
smaller values during recall. The case n = 105 and Co + C1 = La resembles table 6 in the same 
way as table 7 resembles table 5. Various other tables have been computed, and the statistical 
thresholds obtained for selected values of La and Za' are given in table 8. 

Three points are worth noting about these results. First, Za' = 0.2 gives a statistical threshold 
about twice as good as that for Za' = 0.1. Secondly, recovery ofthe whole of the simple representa
tion depends upon suitable juggling of T and], and is complete after about 3 cycles.] must start 
low, and increase as the representation is recovered: T must decrease in such a way that the 
activity in flJa is kept roughly constant. And thirdly, the overall performance of the collateral 
effect is impressive (see table 8): recovery of the whole of the simple representation of Eo is almost 
certain for values of about 0.1 La greater than the statistical threshold value (assuming that 
Co + C1 is constant). 

The collateral effect is valuable in any population of cells where na2 ;S 1. This condition may 
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often be satisfied in and between regions of neocortex, and the effect may be an important means 
of providing indirect' associational' aid for the interpretation of sensory inputs (see Marr 1970, 
§ 2.4). 

TABLE 5. THE COLLATERAL EFFECT IN flJa 

N3 = 100000; La = 200; 2,., = 0.1. 50000 simple representations have been stored. 

Co CI T f ct C: 
100 0 3 1.0 200 6 

6 1.0 188 

80 20 6 0.8 151 
6 0.9 119 

60 40 8 0.6 70 
7 0.7 86 

50 50 7 0.6 70 
6 0.7 73 

40 60 7 0.6 41 
6 0.7 41 

Statistical threshold ~ 50: 50. 

TABLE 6. THE COLLATERAL EFFECT IN flJa 

o 
15 

3 

19 
26 

82 
101 

82 
101 

N" = 100000; La = 200; 2 3 , = 0.1.100000 simple representations have been stored. 

Co CI T f C* 0 C* I 

100 0 6 1.0 188 14 
9 1.0 136 1 

90 10 10 0.9 89 8 
7 1.0 86 6 

80 20 8 0.9 110 77 
9 0.9 86 27 

60 40 10 0.7 38 80 
9 0.8 48 72 

Statistical threshold ~ 85: 15. 

TABLE 7. THE COLLATERAL EFFECT IN flJa 

N3 = 100000; La = 200; 2,., = 0.1. 50000 simple representations have been stored. 

Co C T f ct C: 
200 0 4 1.0 200 0 

9 1.0 200 0 

160 40 4 0.8 167 1 
8 0.8 167 0 

120 80 10 0.6 160 9 
11 0.6 148 4 

80 120 11 0.4 88 102 
10 0.5 98 61 

40 160 8 0.5 24 186 
9 0.5 20 115 

Statistical threshold ~ 60: 140. 

3.1. 3. Recall performance flJ 2 -+ flJ a 

The analysis of recall performance flJ 2 -+ flJ a and flJ 1 -+ fjJ 2 follows the same general line as the 
arguments of§ 3.1.2, except that the equations apply only to individual blocks. Let E~ denote the 
restriction of the input event Eo to one block fJ of fjJ l' and suppose, as in § 3.1. 2, that Eo has already 
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been learnt. A new input event is presented to:the block fl, Ao cells of which were active in E~ 
and Al of which were not. These in turn evoke (in the corresponding block of &'2) Bo cells which 
were also active in response to E~, and Bl cells which were not. The firing in &'2 causes the firing in 
&' a described by the numbers Co, C1 of § 3.1. 2. The situation when more than one block of &'1 is 
active can be solved by a simple extension of the methods used for exactly one block. Figure 6 

illustrates the recall problem. 

TABLE 8. ESTIMATED STATISTICAL THRESHOLDS (s.t.) FOR VARIOUS 

VALUES OF THE MAIN PARAMETERS 

Ns = 100000; C = CO+Cl ; S.t. accurate ±0.05L,.. 

L,. Za· C 1O-'n S.t. 

100 0.1 100 5 30 : 70 

I 
0.1 10 40:60 
0.2 5 15 : 85 
0.2 10 20:80 

200 0.1 5 50:50 
0.1 10 85: 15 
0.2 5 30:70 
0.2 10 50:50 
0.1 200 5 60: 140 
0.2 I 5 40: 160 

1!1, l!1u 

1!1., 

1!1,. 
P 

A. B. 

collateraJs 

FIGURE 6. The recall problem. !Pl, !p. and !Ps are the populations of cells defined in table 1. Shading represents 
the parts of these populations involved in the storage of an event Eo. A new subevent X is presented to one block 
of !P" Ao of whose cells were involved in Eo, and Al of which were not. This produces activity in one block 
of !p., and in !Ps. Bo of the active cells in!P. were active in Eo, and Bl were not: Co of the active cells in !P 
were also active in Eo, and C1 were not. The numbers A" B" C" (i = 1, 2) are computed in the text. 

The equations describing the relation between the Bi and the Cj (i,j = 1,2) are best derived 
through a series of steps. The notation of § 2. 3 is assumed to hold for all processes concerned with 
the storage of the event Eo; for example, La is the size of the simple representation of Eo in flJa• The 
relations between Li, ~,Ri' etc., are described by the equations of § 2.3. 

82 



SIMPLE MEMORY: A THEORY FOR ARCHICORTEX 47 

S 1. Additional notation 

The following symbols help to describe states occurring during recall. For i = 1,2,3: 

flJiO = the set of cells of fIJi which were in the fIJi-representation of Eo, 
flJi1 = the set of cells of fIJi which were not in the fIJi-representation of Eo. 

Thus there are 

and 

Let 

and let 

Co cells active in fIJ 30, 

C1 cells active in flJ31, 

Bo cells active in fIJ 20' 

B1 cells active in flJ21. 

Ao be the number of active cells in fIJ 10' 

Al be the number of active cells in flJn . 

S 2. Calculation of contact probabilities 

The contact probability flJ2 -+[1jJa is Z3' but the contact probability flJ20 -+flJ30 is not Za, since 
the cells of flJ30 were selected (through Brindley synapses) because they had the most active 
afferent synapses from the [1jJ 2-representation of Eo. Let R3 be the threshold of the cells in fIJ 3 

during the setting up of the simple representation of Eo: then the contact probability from the 
active cells of fIJ 2 to those of fIJ 3 at that time is 

and the contact probability between active flJ2 cells and inactive flJa cells is depressed slightly: it 
is in fact 51 where 51 = (NaZa-La50)f(N3-L3)' The contact probability between all other 
collections in flJ2 and flJs is Z3' In the following calculations, it will be assumed that distributions 
between flJ2 and flJa are random, with the contact probabilities 50' 61' Z3 between the special 
groups described above. 

S 3. Calculating the number of active synapses at a cell c of [1jJ 3 

(i) If c is in flJ30 the number s of synapses active at c is formed from two components: So from 
the active cells in flJ20 and Sl from the active cells in flJ21. So comes from a binomial distribution 
b(Bo; 50), and Sl from a binomial distribution b(B1; Za) (in the usual notation). Hence Pao(s), the 
probability that exactly s synapses are active at c, is 

(ii) If c is not in flJao the two components So and S1 have distributions b(Bo; 51) and b(B1; Z3) 
respectively. Hence PS1 (s), the probability that exactly s synapses are active at c, is 

S 4. Calculating the number of active facilitated synapses at a cell c of fIJ 3 

(i) Let c be in flJ30 and have s active afferent synapses, made up from the two components So 
and S1 of S 3(i). All the So synapses will have been facilitated, and the number of the S1 synapses 

6 Vol. 262. B. 
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which will have been facilitated has distribution b(SI; IIa) where IIa is the probability that an 
arbitrary fYJa afferent synapse has been facilitated. 80 the probability that c has exactly r active 
afferent facilitated synapses is Qao(r) where 

Qao(r) = i; {(Bo) 6&"( 1 - 60)Bo-80 1: (Bl) Z;1(1 - Za)Bl-81 ( ~l ) m-Bo(1- IIa)BO+BC r } • 
B,=O So .,;;or-B, Sl r So 

(ii) If c is in fYJ31 the probability Q31(r) that c has exactly r active afferent modified synapses is 

Q31(r) = 1: (S) m(I-IIa)B-r{P31(s)}, 
.;;or r 

since all active afferent synapses have chance IIa of having been facilitated. 

8 5. Calculating the cells' thresholds 

All the cells in fYJa are assumed to be subject to two kinds of threshold: an absolute threshold of 
Ta (say), and a division threshold (defined in §3.1.2) offa. Thus if a cell has s active afferent 
synapses, its threshold is set at 

Rs = maximum {Ta, sfs}. 

8 6. Calculating expected numbers of active cells 

There are La cells in fYJso and (Ns - Ls) cells in fYJS1. It is assumed that the cells of fYJs are subject 
to thresholds (Ta,fs) of8 5. Then the expected numbers of cells active in fYJ30 and fYJS1 are respec
tively: 

C1 = (Na - La) 1: 1: Q31 (r), where Ra is as defined in 8 5 above. 
8;;?!:.Tlr~R. 

Close approximations to these distributions have been computed for various values of the 
important parameters, and some results appear in table 9. They are summarized in §3.1.5. 

3.1.4. Recall performance fYJ1 -+fYJ2 

The problem of describing the effect of presenting a learnt subevent to fYJ 2 can be solved by 
calculating the values of Bo, Bl in terms of Ao and Al (defined in 8 1 of § 3.1.3). These relations 
are very similar to those holding between the Bo and the Ci (i,j = 0, I). The following steps S 
are analogous to those of §3.1.3, and can be derived by the same arguments. Write '1/0 for the 
contact probability between the active cells of fIJ 1 and fYJ 2 during the original setting up, and write 
'1/1 for the contact probability between active fYJ1 cells and inactive fYJ2 cells. '1/0 corresponds to 
60 and '1/1 to 61. 

82 (i) '1/0 = Ltl Li1 1: N2 (~r) ZW -Z2)L..-rr, 
r~RI 

(ii) '1/1 = (N2Z2-L2'1/0)/(N2-L2). 

83 (i) P20(S) = 1: (Ao) '1/&,,(1-'1/0)..40-80 (AI) ZNI-Z2)..41-81, 

•• +8, =8 So Sl 
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S 4 (i) Q20(r) = ~ {(Ao) 1Jgo(I -1Jo)Bo-so 
s,~o So 

x ~ (AI) ZNI-Z2)B,-S, ( ~I )1l~-SO(1-1l2)SO+S'-T}, 
81;::'r-80 S1 r So 

(ii) Q2I(r) = ~ (s) llW -1l2)s-r{P2I(S)}. 
8~r r 

S 5 R2 = maximum {~, sf2}' 

S6 (i) Bo = L2 ~ ~ Q20(r), where R2 = max{~, (so+sl)f2}, 
so+sl~TI r~R,. 

(ii) BI = (Na-La) ~ ~ Q2I(r), where R2is as defined in S5 of this section. 
s"):.Tt T~RI 

Close approximations to these distributions have been computed for various values of the 
important parameters, and selected results are shown in table 10. 

TABLE 9. ADDRESSING fl>a WITH AN INPUT, FROM ONE BLOCK OF fl>2' WHICH 

CONTAINS A SUBEVENT OF A LEARNT EVENT Eo 

The simple representation of Eo occupied 217 cells of &'3; n such representations have been stored. Notation is 
from the text (see figure 6). 

Bo B, Ta fa Co C, 
n == 50000 

120 0 11 1.0 184 27 
12 1.0 166 13 
13 1.0 144 6 
14 1.0 120 3 

100 20 13 0.92 101 126 
14 0.92 78 53 
15 0.92 57 21 
11 1.0 56 27 

80 40 15 0.75 35 141 
15 0.83 33 79 
13 0.92 51 127 
14 0.92 36 54 

60 0 8 1.0 89 110 
9 1.0 58 36 

45 15 10 0.75 16 113 
8 1.0 26 110 

n == 100000 

120 0 17 1.0 53 107 
18 1.0 36 50 

100 20 19 0.92 15 144 
17 1.0 23 109 

60 0 11 1.0 19 204 

3.1.5. General summary of recall performance 

Table 8 shows the statistical thresholds for recovery of a simple representation in fl> a and tables 
9 and 10 can be used to discover the minimal conditions on an input for it eventually to cause the 
recovery of such a representation. The memory consists of 1.25 million input fibres, divided into 
25 blocks of 50000 fibres. A single input event causes activity in 2500 fibres-lOO in each block-
and the simple representation of each event is formed. Suppose each fl> a-cell has 20000 afferent 
collateral synapses. After 50000 events have been learned, recovery of an event Eo will have very 
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high probability of success from stimulation of30 fibres, all of which were active in Eo, provided 
that those fibres belong to one block; or from stimulation of 100 fibres in one block, provided that 
about 70 of those fibres were active in Eo. After 100000 events have been learned, the 
corresponding figures are 60, and 90 out of 100, still from a single block. 

TABLE 10. ADDRESSING ONE BLOCK OF sPz WITH AN INPUT, FROM ONE BLOCK OF 
sPI , WHICH CONTAINS A SUBEVENT OF A LEARNT EVENT Eo 

The &'I,-representation of the part of Eo in this block occupied 121 cells of &'I,; n such events have been stored. 
Notation is from the teXt (see figure 6). 

Ao Al T, Ji Bo BI 

n = 50000 

20 0 7 1.0 57 50 
0 8 1.0 35 12 

30 0 9 1.0 80 26 
0 10 1.0 61 8 

40 0 11 1.0 94 12 
0 12 1.0 80 4 

80 20 23 0.9 94 5 
24 0.9 89 2 

60 40 23 0.8 63 27 
24 0.8 53 14 

n = 100000 
30 0 11 1.0 43 84 

0 12 1.0 27 27 
40 0 13 1.0 64 101 

0 14 1.0 48 39 
50 0 16 1.0 67 45 

0 17 1.0 52 18 
80 20 28 0.9 73 79 

29 0.9 62 39 

3.2.0. Generalities 
3.2. Justifying the model tif § 3.1 

There are three general constraints which are important in determining the general structure 
of the memory of § 3.1. They are 

(i) that the memory should consist of a number of layers of cells, each receiving connexions 
from one layer and projecting to one other; 

(ii) that the memory needs a capacity, n, of the order of! 05 events, with good recall capabilities 
and about 106 input fibres; 

(iii) that recall should be complete before the projection out of the memory. 
The constraint (i) arises because the theory is devised for certain regions of the brain which, 

according to the available evidence, are connected in this way (see §4). A theoretician has two 
general options when designing a memory: he can either specify an exact task, and prove that a 
particular model is the most economical for that task (cf. Brindley 1969); or he can describe an 
exact structure, and compute its performance (see, for example, Marr 1969). The present theory 
has the disadvantage of no exact information; its task is the relating of previously unrelated pieces 
of knowledge by deduction from plausible general assumptions, the whole being tested by the 
predictions to which it leads. Condition (i) represents the injection of existing anatomical 
information into the theory. 

Constraint (ii) is important in so far as the design of the memory would have to be changed if 
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it were shown that the figure of 105 was too low. Ifit were too high, the memory would need only 
to be shrunk; but a collateral effect is not possible where nIX2 is much larger than 1. 

It is a matter of common experience that few people can memorize more than 100 randomly 
chosen items in an hour, though the items may not correspond to the technical term 'event' 
since many are temporally extended. Even supposing each such item to correspond to 10 events, 
only 1000 events would need to be stored every hour. This would give 16000 in a 16h day, 
which would allow a reasonable number offull days to be accommodated. This seems sufficient 
for a memory which, it is proposed, is only for temporary storage (information being transferred 
to the neocortex at least in part during sleep). There is therefore not much danger that 105 is an 
underestimate for n. 

The third constraint-that recall should be completed before the return projection-may be 
justified in two ways. If it is assumed that the return from the memory should occupy as few 
neocortical synapses as possible, then the return projection must be used only for addressing the 
neocortical pyramids. There will then be no spare capacity for noise elimination there, and so 
recall has to be complete before this stage. The second point is that the number of events that 
may be learned by a single cell is about 100 (§ 1.2.4). Hence if any neocortical pyramid is likely 
to be active in such a number oflearnt events, all its afferent synapses from the memory will be 
occupied by the addressing problem. In this case also, there will be no spare redundancy for 
noise elimination. 

These two arguments suggest, but do not compel, the view that the final efferent projection 
from the memory should perform little more than an addressing task. Constraint (iii) is therefore 
assumed; but it should be remembered that any spare capacity on the return projection would 
allow the memory to be correspondingly over-run in its earlier stages. 

3.2.1. Theform ojthe simple representation 

It was shown in §1.4.2 that a model consisting of only one layer of cells (input flJ1 -+flJ2 -+ 

return) cannot be constructed to satisfY the general constraints set out in § 1. In § 3.1, it was shown 
that a memory with two intermediate layers (fIJI -+ fIJ 2 -+ fIJ s -+ return) can. This section discusses 
how the specifications for fIJ s could differ from those of § 3.1. 

A collateral effect can only be operated usefully among the cells of fIJ a if n~ ~ 1, i.e. lXa ~ 0.003. 
In order that lXa be this low, the number of cells in flJa must exceed 30000, since otherwise the 
number of active cells in fIJ a becomes unrealistically low. Na could be say 50000, but the chosen 
figure was 100000, since this allows a slightly lower lXa while remaining plausible. 

Provided therefore that the need for a collateral effect in flJa is accepted, Na and lXa must be 
roughly as in § 3.1. If there were no collateral effect in fIJ a, the constraint that recall has to be 
complete by then implies that at least one of the projections into fIJ 2 and into fIJ a must have low 
values of II; i.e. the probability, that an arbitrary modifiable afferent synapse to flJ2 or flJa has 
been modified, must be low. Hence, either nIX11X2 ~ 1 or nIX2IXa ~ 1. If recall is to be allowed from 
one block of flJ2, IIs must be low, and so nIX2IXa ~ 1. Other things being equal, if IIs has to be so 
low that recall is achieved almost totally in fIJ a from one block in fIJ 2' lXa has to be less than it is in 
the model of §3.1 and thus a collateral effect is possible in flJa• 

The arguments are therefore strongly in favour of the form of simple representation shown in 
§3.1. The memory, ifit is anything like that described there, must be rather similar to it. There 
may of course be other, very different solutions: but the available histological evidence suggests 
that, for example, the hippocampus is built to a plan along the lines of§3.1 (see §4). 
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3.2.2. The specification offIJ2 

The block structure in fIJI and flJ2 is simply a crude attempt to approximate to an ordering of 
some kind on the input fibres. The figures chosen have no particular justification: nor does it 
matter greatly if they are changed. 

Once the values of N3, a3 have been chosen by the need to create in flJ3 a favourable environ
ment for the collateral effect, the shape of fIJ 2 is roughly determined by the number S3 of synapses 
allowed for the projection fIJ 2 to fIJ 3' The best use of fIJ 3 requires that Il3lies between about 0.2 and 
0.8; if a3 and N3 are fixed, this roughly determines the number of active afferent fibres that each 
active cell of fIJ 3 should possess. This determines the relation between L2 and Z3' choice of one of 
these remaining. The final condition, which roughly decides L2 (and hence Z3) is the condition that 
each active afferent to fIJ 3 is received at an active cell of fIJ 3' This fixes an upper bound to L2 near 
which (by economy arguments) L2 should actually be found. The value of L2 in the model of § 3.1 
is 3000, but values up to about 6000 are acceptable, provided slight changes elsewhere are made. 

3.2.3. Input to flJ2 

Once L2 has been roughly decided, the other parameters of flJ2 are determined by n (the 
capacity), and by the input from fll'l' For modifiable synapses to be useful in flJ2, a2 must be less 
than 0.01, and recall performance is much impaired if flJ2 does not contain modifiable synapses. 
This constraint on a2, together with the rough estimate for L2, decides N2. The only remaining 
numbers are L1, S2' Z2; and the only freedom here is in the choice of S2' since the conditions 
(i) na l a2~ 1 and (ii) that LI is fully represented infIJ2, decide L1given S2' The model of§3.1 chooses 
S2 = 10000, giving LI = 100 per block. S2 = 20000 would allow LI = 200 per block, but if L1is in 
fact substantially larger than 100, it will be necessary to interpose another layer between the fIJI 
and the fIJ 2 of § 3.1. (The anatomy of the hippocampal formation suggests that, in the most direct 
application of this theory, an extra layer of this kind is actually present.) 

The general conclusion from the arguments outlined here is that, provided LI and NI are roughly 
as in § 3.1, the rest of the memory will have roughly the prescribed dimensions. The specifications 
of§ 3.1 can be changed, and the general equations of§ 2 provide rough guides to the consequences 
of such changes. If LI is actually much larger than the value suggested, an extra layer is necessary 
to transform it into a signal which is acceptable to fll'2' Detailed calculations must await the 
discovery of some quantitative anatomical information. 

3.3. Remarks concerning threshold setting 

3.3.1. Subtraction and division 

The computations of § 3.1 assumed that inhibition is capable of division and of subtraction. It 
was proposed by Marr (1970, §4) that inhibition applied to pyramidal cell dendrites will be 
subtractive in effect, but that inhibition concentrated at a soma is capable of performing a 
division. Neither function has been demonstrated to occur. 

The model (§ 3.1) does not depend upon the ability to set both a subtraction and a division 
threshold, but its performance is impaired if only one of these is allowed. If only subtraction is 
allowed, equations S 5 of §§ 3.1.3 and 3.1.4 become 

Ri = 1'; (i = 3, 2 respectively). 

If only division is allowed, they become 

Ri = sf; (i = 3,2 respectively). 
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The equations for the projection flJ1 --*flJ2 have been recomputed for the cases where only a 
subtraction or only a division function is allowed, and the results appear in table 11. It will be 
seen that the results, especially for division alone, are much inferior to those when both are 
allowed. 

TABLE 11. COMPARISON OF PERFORMANCE USING PURE SUBTRACTION AND PURE 
DIVISION THRESHOLDS WITH PERFORMANCE USING A COMBINATION OF THE TWO 

Figures are for one block of i!I'} -+ i!I'. as in tables I and 2. T denotes the subtraction threshold; f, the division 
threshold. 50000 events have been stored. * denotes no solutions involving between 10 and 1000 active cells. 
Ai' Bi as in text, and figure 6. 

subtraction division combination 
input ~ ~ 
AoIA} T BoIB} f BoIB} (T, f) BoIB} 

10/0 * * (4, 1.0) 49 /354 
(5, 1.0) 23/95 
(6, 1.0) 8/48 

30/0 9 80 / 169 * (9, 1.0) 80/26 
10 61/48 (10, 1.0) 61 /8 
II 43/12 (ll, 1.0) 43/2 

50/0 13 104 /132 1.0 121/393 (13, 1.0) 104/5 
14 94147 (14, 1.0) 94/2 
15 81/15 (15, 1.0) 81/1 
16 67/5 (16, 1.0) 67/0 

3.3.2. Changingf during recall 

It can be seen from tables 5 to 7 that during the recovery of a simple representation by the 
collateral effect, best results are obtained iff is raised for each new cycle. In the simple model 
which was used to make the computations, recovery, ifit happens at all, will take place within 
about three cycles-that is, three successive applications of the collateral effect. In a physiological 
memory of this type, the cycles as such will not exist in this discrete sense: recovery will be a smooth 
process. But it will happen quickly, if at all, and will proceed best iff is increased gradually 
throughout it. The fact that recovery will occur so quickly means that the' program' for increasing 
f can without undue loss be the same for all inputs. (This would, for example, not have been so if 
borderline cases had tended to spend a large number of cycles near the borderline, sincefwould 
then sometimes have had to be held for some time at (say) 0.3.) 

In physiological terms, this means that the proportion of basket cell inhibition to inhibition 
applied to the &'a-cell dendrites should initially take some small value-say corresponding to a 
valuef;:::j 0.3-and should be raised during recall untilfis near 1.0. This increase can take place 
at the same rate and from the same initial value for all recall problems. The likely time-course 
of the change is of the order of 0.25 s, allowing 50 to 100 rns for each cycle, and the whole operation 
must be carried out subject to the (negative feedback) condition that a roughly constant number 
of fIJ a-cells is kept active. There are various methods by which this could be done, though I can 
find no single one which seems to be particularly preferable to the others. One method, for example, 
is to employ an external agency which gradually increases basket cell activity in flJa. The sub
tractive inhibitory level is then set at an appropriate level by the usual negative feedback through 
&'a-cell collaterals and an inhibitory interneuron (the G-cells). 

3.4. The returnfrom the memory 

The analysis of the projection back to the neocortical pyramidal cells is straightforward. If, 
say, each pyramid devotes 10000 synapses to the memory, an expected 22 will be active in each 
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learnt event. These synapses need to be Hebb modifiable synapses, facilitated by simultaneous 
pre- and post-synaptic activity. Inhibition needs to be applied to these dendrites so that the cells 
fire only when all their active afferent return synapses have been modified. In view of the small 
number active, they probably need to be close together, and perhaps a little larger than other 
synapses. 

3.5. Scanning during recall 

Simple memory was originally suggested by the need for a direct form of storage which would 
enable common subevents to be discovered. Addressing the memory with a subevent will cause 
events to be recalled that contained most of the addressing subevent. Whole events presented to 
the memory are unlikely to cause recall of other whole events, since any two events will 
probably differ substantially. 

It therefore appears that to use the memory for storage, whole events should be presented to 
it. Using it for recall requires that subevents should address it, which in turn implies some cate
gorization of the current internal description even at this early stage. The notion that, in order 
for recall to take place, only a small part of the current internal description should have access 
to the memory, is close to an idea of attention. 

The two problems raised by this are, first, how are common subevents picked out; and secondly, 
how are they copied out of the memory during the codon formation for new classificatory units? 
The first problem is the partition problem (Marr 1970, § 1.3.3). Simple memory shows how this 
problem can be approached, since the ability of a subevent to pick out a related event despite a 
fair amount of noise shows that test subevents do not have to be all that accurately chosen. 
Rather general, and perhaps innate, techniques for scanning the current internal description 
will lead to the discovery of many subevent clusters. The scanning process itself may well be 
subject to neocortical control. The teaching of scanning techniques-how to 'look' at things
may be a very important factor in the development ofa child, since it will have a great influence 
on the classificatory units that the child will form. 

The second problem is more technical and easier to give some kind of answer to. Presumably, 
when a subevent causes recall of a previous event, it is 'marked' in some way- that is associated 
(in the technical sense) with a 'marker' input from some special centre. This centre also has a 
measure of the' importance' to the organism of this kind of information. When a subevent cluster 
of sufficient size and importance has been formed, this centre will (perhaps during sleep) call 
the information out from the memory during a period when codon formation is possible. This can 
be done simply by addressing the memory with the marker event. The markers have to be fairly 
simple stereotyped inputs, which can be reproduced when required, and which call up (by 
association) the subevents that they mark. The obvious candidates for' marker' inputs, in view of 
the' importance' parameter necessary for this function, are the rather primitive firing configura
tions which may perhaps be associated with the subjective experience of a fairly strong emotion. 

The problems outlined in this section will form the subject of a later paper. 

4. A THEORY OF HIPPOCAMPAL CORTEX 

4.0. Introduction 

In this section is presented the analysis of hippocampal cortex that follows from its inter
pretation as a region in which the simple representations of many events are formed. The 
discussion is restricted to the consideration oflocal properties of the cortex of various parts of the 
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hippocampal formation, and includes a brief classification of cortical cell types, based on the 
results of this paper and ofMarr (1970). An interpretation of the macroscopic intrinsic and extrinsic 
connexions of the hippocampal formation will appear in the paper on hippocampal input-output 
relations. 

4.1. The morphology of the hippocampal formation 
4.1.0. Gross morphology 

Most of the following description of the structure of the hippocampal formation is derived from 
information about the mouse (Cajal 1911; Lorente de No 1934) and the rat (Blackstad 1956; White 
1959). There is, however, a remarkable uniformity in the structure of the hippocampus in mammals 
(Lorente de No 1934), so that the divisions made in the mouse are easily recognizable in man. 
The only important histological difference is in the size of the elements involved: man's hippo
campus is larger in every way than that of the mouse. The homology of the afferent and efferent 
paths in the two species is less good, since the many slight differences in the sizes of the relevant 
tracts combine to give overall pictures which are considerably different. Those aspects of the 
present theory which relate only to histology may however be applied to the hippocampal cortex 
of most mammals. 

Blackstad (1956) and White (1959) have recently used morphological information to classify 
the various regions of the hippocampal region in the rat. Their findings agree closely, and the 
present paper will usually follow the terminology of Blackstad. According to that author, the 
hippocampus admits of the following subdivisions: 

(I) area entorhinalis (a.e.) 

(2) parasubiculum 

(3) presubiculum (pres.) 

( 4) area retrosplenialis e 

(5) subiculum (sub.) 

(6) cornu ammonis (CA) (the hippocampus proper), 
was divided into CAl 

CA2 
CA3 
CA4 by Lorente de No (1934) 

(7) fascia dentata (FD) 

The division is illustrated in figure 7: Blackstad (1956) gives the explicit criteria for distinguish
ing the borders between the different regions (I) to (7). Regions (6) and (7) are those most 
characteristic of the hippocampal formation. The subdivision of (6) CA into CA I to CA 4 is 
based on variations in the structure of the hippocampal pyramids. CA 4 is in many ways distinct 
from the rest of the CA, and it will be discussed separately in §4.4, together with the FD (7). 

4.1.1. The histology of the cornu ammonis (CA) 

CA is composed principally of a layer of large pyramidal cells, whose axons constitute the 
efferent tracts from the hippocampus. Many of these cells are extremely large, and their dendritic 
trees usually span the whole thickness of the CA. They are arranged in a particularly neat row, 
and it is the bodies of these cells which give the hippocampus its characteristic appearance. 
Figure 8 illustrates their arrangement in the cortex. 

7 
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FIGURE 7. Diagram of the hippocampal region in the rat, based on horizontal silver-impregnated sections. The 
posterior end of the hemisphere is at the top of the figure, the medial side at the right. Arrows show the 
limits between the areas, which are abbreviated as follows: parasubiculum (par.), presubiculum (pres.), 
subiculum (sub.), hippocampus (hip.), fascia (area) dentata (a.d.). Other structures shown are ps.d. 
dorsal psalterium, alv. alveus, fis.h. fissura hippocampi, v.l. lateral ventricle, fim. fimbria, pl.ch. choroid 
plexus, str.t. stria terminalis, g.l.lateral geniculate body, g.m. medial geniculate body, coli. ant. and post. the 
anterior and posterior colliculus, and a.retr.e. area retrosplenialis e. (Fig. 2 of Blackstad 1956.) 

la 

FIGURE 8. Longitudinal section of the adult mouse brain, Cox method. Fi is the fimbria: 
the divisions are those of Lorente de No (his Fig. 5, 1934). 
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Hippocampal cortex is commonly regarded as having the four layers shown in figure 9. The 
bodies of the hippocampal pyramidal cells lie in the Stratum Pyramidale (S. Pyr.), and their 
basal dendrites span the Stratum Oriens (S.Oriens). Their apical dendrites rise through the 
Stratum Radiatum (S. Rad.), where they may split into two or more shafts, and arborize freely 
in the Stratum Moleculare (S. Molec.). The region between the S. Rad. and S. Molec. is often 
called the Stratum Lacunosum (S. Lac.). Lorente de No (1934) combined information from his 
own studies with that obtained by Cajal (1911) and earlier authors to give the following descrip
tion of the cell types in these layers. 

FIGURE 9. Types of pyramids in fields CA 1, CA 2, CA 3, CA 4. 1 to 3 are pyramids of CA 1; 4 to 7 of CA 2; 
9 a pyramidal basket cell of CA 3. Only axons of cells 12, 19,21,22 have been included in the drawing. 
Twelve-day-old mouse, Golgi method. (Lorente de No 1934, Fig. 9.) 

Stratum Pyramidale 

(a) Pyramidal cells. These vary slightly in appearance from region to region, but figure 9 
illustrates their basic uniformity. All pyramidal cells of this class send an axon out of the hippo
campus. Those in CA 4 have a modified form, which is explained later. 

(b) Pyramidal basket cells. Their bodies and dendrites are similar to those ofthe pyramidal cells, 
but their axons are completely different: they travel horizontally and form baskets round the 
somas of the pyramidal cells (cell 9, figure 9). There are no basket cells in CA 4, and those in 
CA 3 do not receive synapses from the so-called mossy fibres (i.e. axons of the granule cells of 
the FD). 

(c) Cells with ascending axon. Their bodies and descending dendrites are similar to those of the 
7-2 
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pyramidal cells, but the ascending dendrites leave the soma directly, and are not branches off a 
single shaft. The axon arborizes chiefly in S. Rad. (cellI of figure 10). 

Stratum Oriens 

(d) Horizontal cells with ascending axons have dendrites which remain in S.Oriens: the axons 
ascend to S. Molec. and arborize there (cell a, figure 12) . 

(e) Polygonal cells with ascending axons are similar to (d) except in two respects: their axons 
sometimes emit collaterals in S. Rad., and they send a dendrite to Ss. Rad. and Molec. (cell 5 of 
figure 11). 

FIGURE 10 

FIGURE II 

FIGURE 10. Types of cell with short axon in CA I. Twelve-day-old mouse, Golgi method. (Lorente de No 1934, Fig. 7.) 

FIGURE 11. Types of cell with short axon in CA I. Twelve-day-old mouse, Golgi method. (Lorente de No 1934, Fig. 8.) 

(1), (g) Basket cells are of two types, one with horizontal dendrites remaining in S. Oriens, and 
one with a dendrite ascending to S. Molec. (cells 4 of figure 10,2 of figure 11, and b of figure 12). 

(h) Horizontal cells with axon in S. Rad., whose dendrites remain in S.Oriens (celli of figure II). 
(i) Horizontal cells with horizontal axon are globular with dendrites remaining in S.Oriens, 

and axons ramifYing in S. Oriens and occasionally also in S. Pyr. (cells 2 and 5 of figure 10, cell 4 
of figure 11). 

Strata Radiatum and Lacunosum 

Cajal (19I1) described the S. Lac. separately in the rabbit, where the Schaffer collaterals are 
especially distinctly grouped; but in the mouse, cat, dog, monkey and in man, the S. Rad. and 
S. Lac. are not obviously distinct (Lorente de No 1934). They contain the following types of cell: 

(j) Cells with axon ramified in S. Rad., of which there are four types, being all combinations of 
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two kinds of dendritic and two axonal distributions. Some dendrites reach S. Mol., others remain 
in S. Rad. and S. Lac.; some axons ramify only in S. Rad. and S. Lac., others give branches to 
S. Pyr. (e.g. cells 3,6,7 offigure 10). 

(k) Cells with ascending axon ramified in S. Mol., after branching in S. Rad. and S. Lac. The 
dendrites ramify in Ss. Lac., Rad., Pyr. and even Oriens (cells e to m of figure 12). 

(I) Horizontal cells of S. Lac. have axonal and dendritic distributions both in S. Lac., the region 
of the Schaffer collaterals (see below) (cell 3 of figure 10). 

FIGURE 12. Various short-axon cells of the CA. Six-day-old rabbit, double-silver 
chromate method. (Cajal 19II, Fig. 476.) 

Stratum Moleculare 

The S. Molec. contains several cells with short axon, typical of a cortical molecular layer. 
(m) Cells with short axon, and 
(n) Horizontal cells, 

both of which seem to be rather difficult to stain. 

4.1.2. The histology of the fascia dentata (FD) 

Cajal (19I1) gave a full description of FD, which he divided into three layers, the molecular, 
granular, and polymorph layers. The most notable elements of the cortex are the granule cells, 
whose bodies, like those of the hippocampal pyramids, are neatly packed and arranged in a 
granular layer (see figure 13). These cells have supporting cells analogous to those found in CA: 
they are described on the next page. 
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Molecular layer 

(a) Displaced granule cells look, and will be treated, like granular cells displaced a little into the 
molecular layer (cell a, figure 13). 

(b) Short-axon cells, of which there are two main types. The more superficial (figure 14, f and g) 
have delicate dendrites, mostly horizontal or descending. Their axons are extremely thin and 
terminate locally, in the outer part of the molecular layer, with a considerable ramification. 

FIGURE 13. The FD in the region of the hilus of the CA. One-month-old guinea-pig, 
Golgi method. (Cajal19II, Fig. 478.) 

The deeper cells are larger, and occupy the lower portion ofthe layer (figure 14e). They possess 
dendrites which spread and divide in all directions-even crossing the granule layer to reach the 
polymorph layer. Their axons are larger than those of the more superficial cells; they arborize 
freely in different directions, while remaining in their original layer. 

Granular layer 

Cajal (191 I) regarded the granule cells of the FD as a variant of the cortical pyramidal cells. 
Figure 13 contains many examples: it will be seen that they lack basilar dendrites, and send 
about four or five dendrites up through the molecular layer. Their axons are thin, and become the 
so-called mossy fibres ofCA 4 (see below). As they cross the polymorph layer, they give offfour or 
five collaterals, which terminate there. These axons hardly ever give out collaterals after they 
have crossed the polymorph layer. 
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Polymorph layer 

(c) Pyramidal cells with ascending axon (figure 15). These cells possess basilar dendrites, which 
give them a pyramidal shape. Their apical dendrites rise in the manner shown, and their 
axons eventually ramifY horizontally into the granular layer. The cells have obvious similarities 
with the pyramidal basket cells of the hippocampus proper. Occasionally, but rarely, pyramidal 
cells are seen that send their axon to the alveus. 

FIGURE 14. The FD. One-month old rabbit, Cox method. (Cajal 19II, Fig. 477.) 

FIGURE 15. The FD. One-month-old rabbit, Cox method. (Cajal 19II, Fig. 480.) 
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(d) Cells with ascending axon, which crosses the granular layer and ramifies horizontally. They 
have various kinds of dendritic distribution (figure 16, e and f; i and 0 are basket cells). 

(e) Cells with descending axon have long horizontal dendrites which never cross the granular 
layer. Their axons become fibres in the alveus (figure 16g,j). 

(f) Short-axon cells with local axonal and dendritic distributions: they are found throughout 
the lower part of this layer (figure 15h). 

(g) Various star and fusiform cells found low in this layer send their axons eventually to 
the alveus. 

FIGURE 16. The FD. Eight-day-old rabbit, Golgi method. (Cajal 19II, Fig. 481.) 

4.1. 3. The principal association systems of the hippocampus 

The present investigation will not concern itself with the relationship between the hippocampi 
of the two sides of one animal, and consequently little information about the various highly 
organised commissural connexions will be required (see §4.5.2). There are four principal systems 
for association in the hippocampus, and they are dealt with separately. 

(i) The mossy fibres. The FD granule cell axons become the mossy fibres of the hippocampus. 
These axons run from FD along CA 4 and CA 3 near the pyramidal cell bodies. They synapse 
with the dendritic shafts in these regions, producing the distinctive thorns which show up so well 
in Golgi preparations (figure 9) (Cajal 1911). Few if any penetrate beyond the boundary between 
CA 3 and CA 2. There are two crucial points to note about these fibres: first, they form the only 
efferent pathway for the dentate granule cells; and secondly, they specifically avoid the pyramidal 
basket cells of the hippocampus. These cells thus lack the characteristic thorns (Lorente de No 
1934). In CA 4, mossy fibres form the main source of afferent synapses with the pyramidal cells 
there, and CA 4 contains no basket cells. 

(ii) The Schaffer collaterals are thick collaterals of the pyramidal cells in CA 3 and CA 4. They 
travel away from the dentate fascia, and rise through S. Rad. as they go. They synapse in S. Lac. 
with the pyramidal cells of CA 2 and CA 1 (Schaffer 1892). 

(iii) The axon collaterals of CA 1 and CA 2. The Schaffer collaterals are a transverse association 
system, joining CA 3 and 4 to CA 1 and 2. CA 1 and 2 also possess a predominantly longitudinal 
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association system consisting of collaterals synapsing with pyramidal cells in S. Lac.-Molec. These 
join CA 1 and 2 with other parts of CA 1 and 2. The associations stay more local in CA 1 than in 
CA 2, but are clear in both cases (Raisman, Cowan & Powell 1965, in the rat). 

(iv) Local associational paths. I tis evident from the descriptions of Cajal (1911) and of Lorente de 
No (1934) that most hippocampal pyramidal cells have axons which give off collaterals. These 
probably end locally if they do not contribute to (ii) or (iii), but they have not yet been studied 
closely. It is necessary therefore to bear in mind that, at least on a local level, the hippocampus is 
provided with an extremely rich system ofinterconnexions. It seeIns to be a general rule in the 
hippocampus and dentate fascia that different afferent systems terminate both in specific regions 
and in specific layers of the cortex, not by a random ramification (Blackstad 1956; Raisman et al. 
1965). 

The hippocampal pyramidal cells are extremely large, and so are likely to have at least as 
many afferent synapses as large pyramidal cells in the motor cortex of the same animal. 

4.2. The hippocampal pyramidal cells 
4.2.0. The basic model 

The pyramidal cells of sections CA 1, CA 2 and CA 3 of the mammalian hippocampus will be 
regarded as being populations of cells in which simple representations of various input events are 
formed. It is proposed that these cells are closely analogous to the cells of fjJ 3 in the model 
proposed in § 2 and analysed in § 3. 

The theory of §§ 2 and 3 requires that, if a cell participates in the simple representations set up 
in a simple memory of about the specified dimensions, it should have the following properties: 

PI Its input fibres should be suitable. 
P 2 The activity acA of the ammonic pyramids should be small: 0.01 ~ ctCA ~ 0.001 with 

acA probably nearer 0.001. 
P 3 Each cell possesses very many (~ 50000) afferent Brindley synapses from the previous 

layer of cells, and many (~ 10000) Hebb (or Brindley) synapses from other cells of the CA. 
P 4 Synapses from fibres likely to be co-active should be placed near one another. 
P 5 There should exist an extensive collateral system in CA, giving rise to the collateral 

synapses of P 3, which allow the completion of the simple representations of partially 
specified input events. 

P 6 There should exist appropriate supporting cells to supply the required inhibition. 
P 7 There should exist a means of clearing information from these cells when it is re-stored

either as associations or as associations or as new classificatory units-in the neocortex. 

Points P 2 to P 7 are discussed separately in the following paragraphs: PI is dealt with in a 
later paper. 

4.2.1. acA 

If the hippocampus is involved in storing information in the proposed way, the number of 
events it can store depends upon the size of each input event, and upon the number of cells used 
for each. The smaller is ctCA, the greater is the capacity, and the more powerful is the collateral 
effect. acA is bounded below by about 0.001, a figure which arises out of the necessity to be able 
to detect those cells which are active (§ 2. 3.4). It should not be very difficult to determine ctCA by 
experiment. 

8 Vol. 262. B. 
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4.2.2. Modifiable synapses 

The competing virtues of the three possible kinds of modifiable synapse of figure 2 have already 
been discussed. Modell was rejected on the ground that each cell would need to be used for more 
than one input; and the climbing fibre model 3 on the grounds that it needs additional cells, and 
will not select such suitable cells as model 2 will. It was therefore concluded that model 2, using 
Brindley synapses, was the preferred choice for all cells in a simple memory. The central feature 
of Brindley synapses is that they are initially excitatory, and can therefore be used themselves to 
decide at which cells there should be facilitation (Brindley 1969). This powerful trick solves the 
problem of selecting the most suitable cells for storing a given input (cf. codon formation, Marr 

1970). 
There are two practical difficulties associated with the use of Brindley synapses to select CA 

pyramidal cells for a simple representation. The first arises out of the usual problems associated 
with a large dendritic tree. It has been pointed out (Marr 1970, §5.1.4) that in the absence of 
climbing fibres, it is unreasonable to suppose that synaptic modification is consequent upon 
simultaneous pre- and post-synaptic activity when these activities are far apart from each other: 
for example, the spike frequency in an axonal initial segment probably has rather little direct 
effect upon a synapse 1 mm away at the tip of an apical dendrite of the same cell. Conditions for 
synaptic modification are therefore likely to hold only locally in a dendrite. This will, however, 
not be a great disadvantage if input fibres are arranged in such a manner that those that are 
often coactive tend to lie near one another. It is interesting in this connexion to note that there 
exists a very marked lamination in the hippocampal afferent system (Blackstad 1956). 

The second difficulty is related to the first, and concerns the setting of the thresholds of the CA 
pyramids. The first time any input is presented to the memory, the appropriate threshold can be 
computed easily: it is simply a multiple of the power ofthe unmodifiable component ofa Brindley 
synapse. But after a number of events have been learnt, a non-zero fraction of the CA pyramidal 
cell afferent synapses will have been facilitated. The thresholds must rise to counteract this effect, 
and so the amount of inhibition applied to the CA pyramids has to be increased with the number 
of events that are stored there. Furthermore, if (as seems likely) synaptic modification occurs as a 
result of a decision process in a local region of dendrite, this inhibition must be applied to such 
local regions: it is, for example, no use increasing the inhibition at the soma in order to prevent 
the modification of a synapse at the extremity of an apical dendrite. 

The use of Brindley synapses, in output cell selection as well as in codon formation, therefore 
requires that the amount of inhibition applied to the post-synaptic dendrite, for a given size of 
input event, should increase with the number of events that the memory has learned. The most 
satisfactory way of achieving this seems to be to drive the inhibition by collaterals of, in this case, 
the CA pyramidal cell axons (§2 and Marr 1970, §4.3.l). The cells which achieve this inhibition 
will be identified in §4.3. 

The conclusion which may be drawn from these arguments, together with those of §4.3, is 
that the inhibition level at the CA pyramids can be made to vary in a way which makes it possible 
for their afferent excitatory synapses to be Brindley synapses. These synapses are in principle the 
best choice for the function which the present theory assigns to the CA pyramids, and hence the 
following prediction is made. Excitatory fibres from the area entorhinalis should terminate on the pyramidal 
cells of CA 1 to CA 3 by Brindley synapses. 
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4.2.3. Collateral synapses from other CA pyramids 

The collateral effect (§2.4) is an important means by which the simple representation of an 
incompletely specified input may be completed. The manifestation of this effect in the CA re
quires that collateral synapses between CA pyramids are modifiable. The synapses included in 
this discussion are those belonging to reciprocated collateral systems. They do not include either 
the mossy fibres, or the Schaffer collaterals, both of which are projecting collaterals to which there 
do not exist reciprocal counterparts: these collateral systems are dealt with in §4.5. 

Collateral synapses should ideally be Hebb synapses: that is, they should initially be ineffective, 
but should be facilitated by the conjunction of pre- and post-synaptic activity (see § 1.3 for the 
distinction between Hebb and Brindley synapses). Modification conditions are therefore the 
same as for the standard CA afferents, except that collateral synapses should probably lack the 
power to set up modification conditions by themselves. 

It is interesting that most collateral synapses to the CA pyramids are found in the S. Rad. 
(Lorente de No 1934): it seems likely that the importance of the collateral effect is one of the 
main reasons for the huge development of this part of the dendrite in the CA pyramids. Spencer 
& Kandel (1961) have shown that the apical dendritic shafts of the CA pyramids can sustain an 
action potential. It is therefore reasonable to assume that the modification of synapses in S. Rad. 
could depend on the coincidence of pre-synaptic activity and a burst of post-synaptic action 
potentials. This would be appropriate on the assumption that decisions about synaptic modifica
tion are taken locally in the apical dendritic tree for two reasons. First, spikes will travel at a high 
rate down through S. Rad. only when that cell is being used to record an input event (though the 
same activity may lead to the recall of another event): hence post-synaptic depolarization will 
exist only at the correct times. Secondly, during the recall of an event through the collateral effect, 
only dendrites in S. Rad. will be exposed to collateral excitation: thus the areas in S. Molec. 
where the majority of afferents terminate will not be exposed to post-synaptic depolarization, and 
so inappropriate synaptic modification will not occur there. Both these arguments show that the 
situation in which the placing of the afferent and collateral synapses was reversed-i.e. where 
most afferents made synapses in S. Rad.-would be unworkable. 

There may be two true reciprocating collateral systems in CA 1 to 3; one distributing its 
collaterals longitudinally among cells of CA 1 to 2, the relevant fibres rising from S. Oriens and 
terminating in S. Rad. (Lorente de No 1934); and one being composed of local axon collaterals, 
many of which distribute in S. Oriens (Lorente de No 1934). Many of the collaterals in the second 
group will be involved in driving inhibitory threshold controlling cells (~4.3). Finally, it must be 
noted that the associational paths between the hippocampal cortex of each side of the brain 
must be composed largely of fibres of collateral status. There is evidence that many of these fibres 
synapse in the contralateral S. Rad. (Lorente de No 1934; Blackstad 1956). (See §§4 5.1 
and 4.5.2.) 

4.2.4. Numerical predictions 

There are so many unknowns in the equations computed in § 3 that only the most tentative 
estimates can be made for the expected values of the various parameters. It is probably useful to 
have some idea of the values compatible with the present form of simple memory theory, if only 
because if any are shown to be greatly different, it will immediately become clear that others 
which are related to them must also be different. The following rough values are therefore 

8-2 
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given, with the accompanying reservation that they should be regarded only as guides to the 
orders of magnitude of the various parameters. 

(i) IXCA is near 0.001. 
(ii) SCA ~ 50000. 
(iii) The number of collateral synapses at a CA pyramidal cell ~ 10000. 
(iv) ZCA' the contact probability of the afferent fibres, is of the order of 0.1. 

4.2.5. Clearing the simple memory 

The final point with which this section deals concerns the role of the CA pyramidal cells in the 
transfer of information from simple memory to the neocortex. 

The alternative ways oflosing information from the simple memory are probably either by a 
gradual decay applied to all information held therein, or by the selective destruction of a simple 
representation as the information it represents is transferred to the neocortex. Neither method 
seems particularly satisfactory: the first would mean that the combination of informations 
acquired at greatly different times more or less requires that the earlier part has been put into 
neocortex (a store which, if not actually permanent, is imagined to decay with a rather long 
half-life). The successful combination probably requires that the earlier has since been rehearsed. 
The second method is more difficult to make convincing, since the nature of simple memory is 
such that synapses can be involved in the storage of more than one event: hence the cancelling of 
one trace has the unwanted side effect of weakening the records of a number of other largely 
unrelated events. 

There seem to be no immediate reasons why either mechanism should be preferred to the other, 
but the first requires what are probably simpler assumptions about the modification conditions at 
the hippocampal pyramidal cell synapses. 

4.3. Short-axon cells in the cornu ammonis 
4.3.0. Introduction 

According to the present theory, the CA contains no codon cells. It follows that none of the 
short-axon cells found there are excitatory, and that they carry out all the functions required of 
inhibitory threshold controlling cells. Hippocampal cortex is in this respect unusual: the cerebellar 
cortex certainly contains short axon excitatory cells (the granule cells, Eccles, Llinas & Sasaki 
1966), and the cerebral neocortex probably does (Martinotti cells, Marr 1970). 

4.3.1. The functions oj inhibition 

The present theory requires that the thresholds of the CA pyramids be controlled in a very 
careful manner. Suppose that synaptic modification is an all-or-none process, and that p, q 
represent respectively the strengths of the unmodified and modified states of a Brindley synapse, 
where 0 < p < q :::; 1. Then [p, q] is the analogue of the plausibility range for output cells (Marr 
1970, §4.1.3). 

The three principal tasks of the pyramidal cell threshold-setting mechanisms are as follows: 

T 1. The storage oj events: when an event E is presented, synaptic modification must take place 
at those cells which have the greatest number of active afferents. 

T 2. The recognition oj subevents: when a subevent X is presented, those cells must fire which have 
the greatest fractionJ of active afferent modified synapses, provided that the number of such 
synapses exceeds some number, T. 
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T 3. The completion of events: given the firing of a number of hippocampal pyramidal celis, 
those cells must fire at which the greatest fraction of active afferent collateral synapses have 
been modified, provided that the number of such synapses exceeds some number T'. 

These criteria have to be fulfilled without any other instructions, if possible: that is, the mech
anism for performing T 1 should naturally perform T 2 when the current input subevent has 
occurred in a previous event. Collateral synapses tend to lie in S. Rad., where they have their 
own special inhibitory cells, so T 3 can to some extent be taken separately. The three tasks are 
discussed below. 

4.3.2. The storage of events 

The crucial factor in the storage of events is that the correct conditions for synaptic modi
fication prevail in the pyramidal cell dendrites. Excitation there is due to two components: one, 
of fixed size, due to the unmodifiable excitatory component of the Brindley synapses; and one, 
whose size increases with the number of events stored in the memory, due to the fraction of active 
synapses that have already been facilitated. 

The first component is a standard multiple of the number of active afferent fibres, and can 
reasonably be expected to be counteracted by local inhibitory cells in the hippocampal cortex. 
The function of these cells is to provide inhibition in the pyramidal cell dendrites such that when 
no events have been learned, only those dendrites which receive more than a certain number of 
active synapses are depolarized enough to modifY their active afferent synapses. (The necessary 
number of such synapses is the threshold which appears in table 3.) This inhibition can be pro
vided by cells whose axonal and dendritic distributions are subject to the kinds of sampling 
techniques outlined by Marr (1969). The obvious candidates for such cells in the hippocampal 
cortex are the components of cells (c) and (e) due to their ascending dendrites; cells (i) (for this 
functioninS.Oriens); (j); (I); (m); and (n) (see§4.1.1). 

The second component must increase with the number of events stored in the memory, and 
again must act on the dendrites of the pyramidal cells, where it must affect the formation of post
synaptic conditions for synaptic modification. It was argued in § 2 that the simplest way of 
achieving this is by having inhibitory cells driven by axon collaterals of the hippocampal pyra
mids (analogous to the upper dendritic tree of the cerebellar Golgi cells). The following cells of 
§ 4.1.1 are interpreted as performing this function: the components of cells (c) and (e) due to their 
descending dendrites; (d) ; (h) ; and (k). This is an important function for which, fortunately, many 
of the described cells have appropriate axonal distributions. It remains for electron microscope 
studies to show whether the dendrites of any of these cells receive synapses from the pyramidal cell 
axon collaterals. 

4.3.3. The recognition of sub events 

It was shown in §§ 2, 3 that the most sensitive indicator of whether a given cell has previously 
recorded a subevent similar to the current one is thefraction of the active synapses which have been 
modified. This is computed by a division which Marr (1970, §4.1.6) has argued may be associated 
with inhibition applied to the soma of a pyramidal cell. The requirement set out in the discussion 
there of output cell theory was that the amount of inhibition applied to the soma should vary with 
an estimate of the total number of active fibres: and this is obtained by dendritic sampling by 
many inhibitory cells, whose synapses converge at the soma. Such cells are for this reason usually 
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called basket cells, and are present m the hippocampus with suitable axonal distributions 
(cells (b), (f) and (g) of§4.1.1). Andersen, Eccles & L0yning (1963) have shown that they are 
inhibitory, but the question of whether they effectively perform a division has not yet been 
investigated. 

The second component of§4.3.2 is also needed for the recognition oflearnt subevents. 

___ - -""} (I) and (3) 

FIGURE 17. Three functions of inhibition: (1) Remove pK where [P, q] is the plausibility range. S-cells (i.e. cells 
c, e, i,j, m, n, of § 4.1.1: I for the Schaffer collaterals). (2) Divide by K to obtain the fraction f of the active 
synapses that have been modified. Basket cells (b,f, g of §4.l.I). (3) Raise p to some value p' such that: 
(a) the correct number of cells have outputs in the range [p', q]: p' depends on E; (b) the correct modification 
conditions are implemented (cells c, d, e, h, k driven by pyramid collaterals (§4.l.I)). 

4.3.4. The completion of a simple representation 

According to § 2.4, the principal mechanism available for the completion of a subevent X is 
the collateral effect, which can recover the simple representation of the event EI- X even though 
X is small (§3.1). For this, collaterals of the pyramidal cells should synapse with other pyramidal 
cells (in S. Rad.) through Hebb (or Brindley) synapses. Recovery of a simple representation by the 
collateral effect has been discussed at length in § 3.1, where it was seen that best results are achieved 
if the division threshold (basket inhibition) can be gradually increased during recall. The sub
tractive inhibition must be decreased in a corresponding way, so as to keep the number of active 
cells roughly constant. 

Subtractive inhibition requires inhibitory synapses applied to S. Rad., and for this the cells 
(c) of §4.1.1 would be suitable. Cells (h) have the appropriate dendritic and axonal distributions 
for the division function. Many of the cell types referred to in §4. 3. 2, however , have axons ramified 
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in S. Rad. and S. Lac. as well as in S. Molec. This suggests that synapses in S. Rad. and S. Lac. 
may also be Brindley synapses, and hence that selection of CA cells depends on their suitability 
judged from the point of view of the collateral effect as well as of the exogenous afferents. 

Although there are various ways by which the proportion of somatic to dendritic inhibition 
might be changed during recall, the available information does not help one to decide ifthis is in 
fact done. One possibility is that the transmitter at basket synapses tends to be degraded rather 
slowly, causing the effect of these synapses to increase gradually during stimulation. The negative 
feedback circuit through the other cells would ensure that dendritic inhibition is decreased in an 
appropriate way. 

The three functions performed by the inhibitory cells of the CA are summarized in figure 17; 
the cells thought to be responsible for each are listed in the legend. 

4.4. The fascia dentata 
4.4. o. Introduction 

The granule cells of the FD will be regarded essentially as extensions to the dendritic trees of 
the CA pyramidal cells. It is proposed that simple representations are set up in FD in the same way 
as in CA 1 to CA 3, but that instead of the FD granules sending their own axons elsewhere, they 
synapse with what may be regarded as 'collector' cells in CA4 and CA3. The collector cells 
send axons elsewhere, and a collateral effect probably operates amongst them. 

There are various ideas behind this interpretation ofthe FD granule cells. The first is that the 
proposed scheme will result in a saving in the total number of cells transmitting simple 
representations elsewhere, and hence in savings elsewhere in the numbers of cells and synapses 
needed to deal with them. It has been seen that the storage capacity for simple representations in a 
population of cells depends on the activity a of that population; and that a is likely to be bounded 
below by about 0.001. Hence above a certain point, it is unprofitable to increase the size of the 
population carrying simple representations, the certain point being in the region of 105 cells. If 
the amount of afferent information to be dealt with requires more cells than this, something like 
the proposed theory for the FD becomes the natural scheme to adopt. 

The second idea concerns aFD, the activity of the FD cells. Once it has become unnecessary for a 
collateral effect to operate among the cells of a simple representation, the lower bound on a FD 

ceases to be dictated by the constraint that only about 10000 synapses will be available for the 
collateral effect. The value of aFD can be pushed down to the bound dictated by the weaker 
constraints that aFD can be detected by other cells all of whose synapses may be devoted to the 
task-by the local inhibitory cells, and the proposed collector cells. This notion implies that the 
collector cells should possess potentially powerful afferent synapses from FD granules, an impli
cation which receives support from the huge size ofthe mossy fibre synapses in CA. Thirdly, the 
activity in the population of collector cells must be comparable to that in the rest of CA, so that a 
collateral effect is possible there. 

Finally, it is worth noting that the present theory supports the opinion ofCajal (19II), based on 
histological evidence, that the dentate granules are a variant of the hippocampal pyramids in 
CA 3. Lorente de No (1934) remarks (p. 147) that, in the monkey and in man, the similarity 
between CA and FD is outstanding. 
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4.4.1. The FD granule cells 

In the present theory of the FD, essentially the same remarks apply to the granule cells as were 
made about the CA pyramids, except that there may be no collateral effect amongst them. (It may 
be replaced by a collateral effect among the cells of CA 4 and CA 3 to which the granules project.) 
The granule cells (figure 13) are therefore regarded as being like CA pyramids without an 
S. Rad., S. Lac. or S. Oriens. Their principal afferents from elsewhere should terminate in 
Brindley synapses: all synapses from local short axon cells should be inhibitory, and should 
terminate in unmodifiable synapses. The inhibitory synapses on the granule cell dendrites 
should have a subtractive effect, and those on the soma should perform a division (§ 4.3 and Marr 
1970, §4). The activity etFD should be very small, probably less than etCA. Synapses likely to be 
coactive should be juxtaposed, and the afferent contact probability is probably in the region 
of 0.1, and may be greater than that found in the CA. 

The present theory gives no grounds for supposing that any granule cells should not possess 
afferent basket synapses (or an equivalent grouping of inhibitory synapses just above the soma). 
The special cells noticed by Cajal (cell a, figure 16) are therefore not explained by this theory, 
unless they are found to be inhibitory and to have a local axonal distribution, or to be extremely 
rare. 

4.4.2. Short-axon cells in the FD 

The requirements for inhibition in the FD are the same as in the CA 1 to CA 3, and the argu
ments put forward in §4.3 need not be repeated. It remains only to summarize the different 
functional elements required in the dentate cortex, and to identify them with the cells described 
by Cajal (1911). The next three headed paragraphs correspond to the sections 4.3.2 to 4.3.4 on 
short axon cells in the CA. 

The storage of events. It was seen in §4.3.2 that two components of inhibition are required to 
ensure that the correct numbers of synapses are modified by an incoming event. The first varies 
only with the number of active afferent fibres, and is performed by short axon cells with local 
dendritic fields. Such cells estimate the amount oflocal afferent fibre activity, and send inhibition 
to the granule cell dendrites (cells b of §4.1.2, including only those parts of the activities of 
cells e of figure 14 that are due to dendrites in the molecular layer). The second component of 
inhibition must increase with the number of events stored in the memory. It should be supplied 
by cells whose axons ramifY in the molecular layer, but whose dendrites are exposed mainly to 
activity in granule cell axon collaterals. The polymorph layer, below the granule cell bodies, 
receives most of their collaterals: the natural candidates for these inhibitory cells are b and some 
of d of§4.1.2. 

The recognition of subevents requires basket cells and the cells of the last paragraph. Basket cells 
are present in the FD (cells c and others of d of§4.1.2). 

The completion of subevents relies on the collateral effect. Although it is thought that this princi
pally occurs in CA 4 and CA 3, it is worth noting that some FD granule cells do send axon col
laterals to the molecular layer of the FD, where the appropriate inhibitory mechanisIllS are 
already available. 

Remarks. The only cells left unaccounted for are certain inhabitants of the polymorph layer 
(cells, e,], g of § 4.1.2). It seems likely that these cells, found principally in the lower parts of the 
polymorph layer, should properly be regarded as components of CA 4: the long axon cells as 
, collectors' (see later) and those with short axon as the usual inhibitory threshold controlling cells. 
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There is some evidence (Raisman et al. 1965) that septal afferents to the FD terminate in the 
polymorph layer, though this is not firmly established. If it is true, and if the polymorph cells 
are largely inhibitory, the finding suggests that the septal nuclei play rather a special role in 
controlling the FD. 

4.4.3. CA 3, CA 4 and the mossy fibres 

Lorente de No (1934) described the large cells ofCA4 as modified pyramidal cells. They differ 
in two major respects from the pyramids of CA 3: first, no basket plexus envelops their somas; 
and secondly, they receive mossy fibre synapses over much of their dendrites, not (as in CA 3) 
over small sections of dendrites near the soma. 

Since no basket plexus envelops the somas of the CA 4 modified pyramids, it follows that the 
mossy fibres fail to drive basket cell inhibition at these cells. This interesting characteristic is 
preserved by the mossy fibres in CA 3, where they conspicuously avoid synapsing with the 
pyramidal basket cells. No other hippocampal afferents share this feature. 

In that part of CA 4 which is closest to FD, almost the whole of the modified pyramids' 
dendrites seem to be covered with long spines: the number appears to decrease slightly towards 
CA 3. At the border between CA 3 and CA 4, two things happen: the pyramids suddenly 
start sending a dendritic stem to the molecular layer of the CA, so the number of their 
afferent fibres that are not mossy increases sharply; and the basket plexus appears (Lorente 

de No 1934). 
It was proposed in § 4.4.0 that the cells of CA 4 are essentially collector cells for the FD granules, 

in which an output representation of FD activity is set up and transmitted elsewhere. Thus 
if mossy fibre synapses are modifiable, they are Brindley synapses, and the setting up process 
proceeds in the usual way. For this, inhibition is required in CA 4, so that only the correct, 
small proportion of CA 4 cells is used each time. Short-axon cells of the required kind have 
been described by Lorente de No (1934, p. 132). The situation is in outline the same as for the 
ordinary pyramids ofCA 1 to CA 3, and the remarks of§4.3.1 about the setting-up process apply 
here. 

One of the two anomalies concerning the mossy fibres-that they produce very large synapses 
(Hamlyn 1962) and are not associated with basket inhibition-can be explained by assuming 
that GtFD is extremely low. For this means that P(CA 4 & FD), the probability that a (randomly 
chosen) CA 4 pyramid and an FD granule fire simultaneously, is extremely small-less than 
P(CA 3 & CA 3) for example-and hence that the mossy fibre synapses should be larger than 
the CA 3 to CA 3 collateral synapses. The fact that the mossy fibres do not drive basket 
inhibition may mean that these synapses are not modifiable. 

4.5. Collaterals and their synapses in the hippocampus 

4.5.1. Collaterals in the CA 

All hippocampal pyramidal cells send collaterals to S. Oriens (Lorente de No 1934), of which 
those from CA 2 seem to be the longest. Most give off ascending collaterals which ramify locally 
in S. Rad., and many also produce a major long-distance collateral to S. Lac. This last category 
includes the Schaffer collaterals from CA 3 and 4 to CA 1 and 2, and the longitudinal collaterals 
which arise from cells in CA 1 and 2, and from those cells of CA 3 which have no Schaffer 
collaterals (Lorente de No 1934). 

The collateral effect proper (§ 2.4) is thought to be associated principally with the local axon 
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collaterals which ramifY in S. Oriens and S. Rad. If S. Oriens and S. Molec. are largely indepen
dent (a conjecture suggested by their great distance apart), the collateral effects to which each 
gives rise could be largely independent. Collaterals in S.Oriens are also expected to drive 
recurrent inhibition (§§4.3.2 and 4.3.3). 

The long-distance collaterals probably serve another function, analogous to that proposed for 
the mossy fibres. The axons of the cells ofCA 3 and 4 project in the rat to the septal region only; 
those of CA 1 and 2 project to the anterior thalamus, the mammillary bodies, and to the septum 
(Raisman, Cowan & Powell 1966). Thus the cells of CA 3 and 4, and hence also of FD, have 
access to the mammillary bodies and the anterior thalamic nuclei only through the Schaffer 
collaterals. It is not known to what extent the CA 1 and 2 longitudinal collateral system is a 
reciprocal one, so it is not possible to say what kind of collateral effect these fibres produce. The 
efferent projections from CA 1 and 2 are to a certain extent topographically organized (Raisman 
et al. 1966), so the only way one part of (say) CA 2 can influence cells to which another part 
projects is probably through the longitudinal association path. Such associational effects may 
require that the relevant collateral synapses are Hebb (or Brindley) synapses, and that the 
cortex is supplied with suitable inhibitory interneurons (e.g. cells I of § 4.l.1 for the Schaffer 
colla terals ) . 

The afferent fibre systems to the hippocampus are also to some extent topographically 
organized (Raisman et at. 1965). It is therefore possible that a subevent may be fed into 
CA 3 and 4 alone: this subevent may previously have been associated with a simultaneous sub
event in CA 1 and 2, but this may now be absent. The input to CA 3 and 4 can, through the 
Schaffer collaterals, evoke the original activity in CA 1 and 2 by stimulating cells there and relying 
on a local collateral effect (in the usual way). Provided (a) that the activities a in CA 1 to 4 are 
low enough for this simple kind of association to work (in conjunction with a local collateral 
effect), and (b) that the Schaffer collateral synapses are strong enough to allow rather few active 
facilitated synapses to stimulate a cell in CA 1 and 2, these collaterals could initiate this kind of 
associative recall. The higher the probability that a given Schaffer collateral synapse has been 
modified, the higher the number of facilitated collateral synapses that needs to be active at a 
CA pyramid in order for that cell to fire. 

Hamlyn (1962) and Andersen (1966) describe the Schaffer collateral synapses as having a size 
between that of the usual spine synapses, and that of the mossy fibre synapses. This suggests that 
the probability that a Schaffer collateral synapse has been modified lies between the values for 
the other two kinds of synapse: i.e. if the probabilities that an ordinary collateral, a Schaffer 
collateral, and a mossy fibre synapse have been modified are Pc, Ps, Pm respectively, one would 

expect that Pc > P. > Pm· 

4.5.2. Commissural connexions 

Blackstad (1956) found that most hippocampal commissural fibres are very fine, and terminate 
in the Ss. Oriens and Rad., with a certain number from the contralateral area entorhinalis to 
S. Lac.-Molec. He was unable to determine the origins of many of these fibres, but from his 
evidence, and that of Raisman et al. (1965), it would seem that the projections are probably 
homotopic in CA 2 to 4, and are certainly homotopic and very symmetrical in CA 1. 

The details of these projections are unimportant at the present crude level of theory: it is 
important only to note that, since the connexions are probably reciprocal, they probably allow a 
standard collateral effect (§ 2.4) between the hippocampi of the two sides. It is in accordance with 
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the theory that those fibres which terminate above S. Pyr. do so in S. Rad. rather than in 
S. Molec.; and with the notion that S. Molec. and S. Oriens are independent that they should 
distribute both above and below S. Py;r. 

4.5.3. The FD 

Cajal (19II) and Lorente de No (1934) both describe the collaterals of the dentate granule 
cells. They synapse with the dentate polymorph cells (as required by § 4.4. 2), and to some extent 
they ramify in the molecular layer. This would enable something of the usual collateral effect to 
take place among the dentate granules. 

Blackstad (1956) describes massive degeneration in the inner one-quarter to one-third of the 
molecular layer after contralateral lesions, but is uncertain of the origin of the fibres responsible. 
Raisman et al. (1965) have some evidence which implicates the contralateral septum, but suspect 
there may be a projection from the contralateral CA 1. 

4.6. A brief Junctional classification of cell types 
4.6.0. Introduction 

The distinction between archi- and neocortex is thought to reflect a difference in their func
tions. Archicortex is essentially memorizing cortex, in the sense that a given area of archicortex is 
likely to contain one or more layers of a simple memory. It typically contains cells resembling the 
hippocampal pyramids or the dentate granules, without climbing fibres. Neocortex, on the other 
hand, though undoubtedly used a great deal for simple associational storage, can probably be 
regarded as classifying cortex. Its operation depends on climbing fibres, and its success depends 
upon the truth of the fundamental hypothesis (Marr 1970, § 1.6.4). 

In the following sections 4.6.1 and 4.6.2 are listed the principal types of cell which the theories 
predict in memorizing (M) and in classifYing (C) cortex. In general, archicortex is memorizing 
cortex, and neocortex can do both. Special additional considerations probably apply to those 
neocortical regions with special structure (e.g. primary sensory areas). This classification much 
abbreviates the analysis (§ 4.7) of the rest of the hippocampal formation. 

4.6.1. Memorizing cortex 

M 1. Large pyramidal cells without climbing fibres, with baskets. These cells usually form 
simple representations (i.e. can support a collateral effect): they have Brindley afferent synapses, 
and probably some dendritic independence. It is useful to refer to them as memorizing cells. 

M 2. Star cells, and small pyramidal cells without climbing fibres, with baskets, are like MI. 
They may be used with baskets in a simple memory, where subevents not wholly included in a 
learnt event are used to address that event, and are also included in the term' memorizing cell'. 

M3. Star cells or small pyramids, without baskets, without climbing fihres, with small den
drites and ascending axons, are codon cells, used only· at the first stage of a simple memory. 
Perhaps with modifiable synapses (Brindley), their principal function is to reduce a. 

M 4. Short-axon cells, without afferent baskets, without climbing fibres, with small dendrites, 
driven mainly by M 1 or M 2 cell collaterals, and with ascending axons. These cells are inhibitory. 
They control M 1, M 2 or M 3 cell dendritic thresholds for synaptic modification, and the level 
of subtractive inhibition during recall. 

M 5. Short-axon cells like M 4 only with local axons and dendrites. They synapse with M 1, 
M 2 or M 3 cells, and are inhibitory. 

9-2 
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M 6. Basket cells, driven by the same afferents as drive M 1, 2 or 3 cells, and sending inhibitory 
synapses to the somas of these cells. Basket cells may also receive synapses from M 1 to 3 cell axon 
collaterals, since this would be one way of raising f during recall. 

M7. Fusiform cells lying deep in the cortex, with a liberal dendritic expansion and local 
axonal arborization, typically to M 3 or M 1 and 2 cell dendrites. They are inhibitory threshold 
controlling cells, like M4, which operate by negative feedback to the cells whose thresholds they 
control, and by direct sampling of afferents (cf. cerebellar Golgi cells). 

4.6.2. Classifying cortex (Marr 1970) 

C 1. Pyramidal cells with afferent climbing fibres and basket synapses, are cells representing 
classificatory units. 

C 2. Star cells, or granule cells, without baskets, without climbing fibres, with small dendrites 
and often an ascending axon, are codon cells. They are driven mainly by afferents to that region of 
cortex, and some may have modifiable afferent synapses. 

C 3. Cells whose axons become climbing fibres. 
C 4. Short-axon cells other than C 2, with local axonal and dendritic ramification: they are 

inhibitory. 
C 5. Basket cells, similar to M 6. 
C 6. Fusiform cells with single ascending and descending dendritic shaft, usually lying deep 

in the cortex, and possessing an axon that goes to white matter without emitting any collaterals. 
These cells are probably cortical indicator cells of some kind, and some may project to archi
cortex. 

4.7. The histology of various hippocampal areas 

The letters (e.g. M 3) accompanying the following descriptions of the histology of allocortical 
regions refer to the cell classifications of §4.6. No detailed justifications of these diagnoses are 
given, since the arguments used for such justifications have all appeared in § 4. 

4.7.1. The area entorhinalis (a.e.) 

The a.e. was studied by Cajal (19II) and by Lorente de No (1933), who reviewed and revised 
Cajal's work. The following summarizes the account given by Lorente de No (1933), which 
combines his and Cajal's work. Roman numerals indicate cortical layers, taken after Lorente 
de No. 

I. Plexiform layer, with the usual short-axon cells (M 5). The axons here are mainly ascending 
axons from deeper layers (e.g. from layer V), and association fibres from other fields arriving 
through the plexiform layer. 

II. Layer of star cells (M 2): their axons are thick and go to the white matter after giving off 
many collaterals. There are also various short-axon cells, some of which may synapse with the 
star cell somas (M5, M4, possibly M6). 

III. Layer of superficial pyramids (M 2). These cells have many dendrites in I, no branching 
in II, and a dense basilar dendritic field. The cingulum afferents to a.e. seem to end among these 
basilar dendrites (White 1959). The axon sends collaterals mainly to I and III (some to II and V) 
and goes to the white matter. Various short axon and miscellaneous other types of cell (M4 to 7) 
are also found (III includes Cajal's (19II ) layer 4°). 

IV. Layer of deep pyramids, with thin unbranched dendritic shaft and immense basilar 
dendritic plexus (M2). In this layer it is indigenous dendrites, rather than foreign axons, whicl. 
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arborize and ramify. Their axons project to the white matter giving off many collaterals to 
I, II, III and V. The ascending collaterals rise vertically. Horizontal cells are also found here, 
probably including basket cells, and various cells with ascending axon (M4 to 7). No collaterals 
of any extrinsic afferents terminate in this layer. 

V. Small pyramidal cells with recurrent axons (M 3). Their axons send collaterals to I, II, III 
and V but not to IV. In IV, however, the dendrites ramify profusely, and the ascending axons 
synapse with them (probably) forming their main source of afferents. Globular cells with long 
dendrites inhabit layers V and VI, their axons arborising densely in layer V or VI (M 7). 
Spindle cells with short axons and local dendrites (M 4,5) are also found. According to Cragg 
(1965), it is the fibres from ventral temporal neocortex which terminate here, in the cat. 

VI. Layer of polymorph cells: there are many types, none particularly surprising; globular, 
polygonal, and those left over from V. They have various combinations of axonal and dendritic 
distributions (M 3 to 7). 

4.7.2. The presubiculum 

Cajal (1911) is the only author who has written about the presubicular histology, though 
Lorente de No (1934) was clearly familar with this area from his own observations (p. 137). 
It appears that on histological grounds, the hippocampal formation should be divided into three 
large regions, the Regio Entorhinalis, Regio Presubicularis and Regio Ammonica (Lorente de No 
1934, p. 137). The Regio Entorhinalis and the Regio Presubicularis, in spite of many changes
particularly the introduction of star cells to layer II of a.e.-have the same fundamental plan. 
The Regio Ammonica starts with the introduction of the Ammonic pyramids in layer II of the 
prosubiculum, and continues into CA and FD. Thus the subiculum may be regarded as 
transitional cortex (Lorente de No's Subiculum b). (Cajal took what Lorente de No calls 
presubicular cortex (Sub. a) for his description of the human subiculum.) 

The division of the hippocampal formation into three large areas, as suggested by Lorente de No 
on histological grounds, will be adopted here. The argument will essentially be that the Regio 
Entorhinalis and the Regio Presubicularis prepare information from many different sources for 
its simple representation in the CA and FD. It seems probable that each collection of cells in the 
Regio Entorhinalis and the Regio Presubicularis should be treated as preparing information 
from a separate source: the different shapes of the cells reflect the particular statistical quirks 
of the different kinds of information. The layer flJ2 of§3.1 is a rough model for all of them. 

The lack of detailed information about the Regio Presubicularis prevents its detailed discussion. 
The presubiculum ofCajal (1911) is presented as a typical example of pre subicular cortex. 

I. Plexiform layer, extremely wide, and containing many afferents to CA and FD. Its outer 
zone is composed almost entirely of such fibres, but the inner part contains the terminal bushes of 
ascending dendrites from layers described below, and so is a true plexiform layer. This region 
presumably contains the usual short-axon cells (M 5), but they seem to be difficult to stain with 
the Golgi method (Lorente de No 1934). 

II. Layer of small pyramids and fusiform cells (M2, 3, M7?). The axons of many of these 
cells descend to the white matter, some ending locally. The dendrites of all seem to be confined 
to layers I and II. 

III. Deep plexiform layer. (Lorente de No might have combined II and III as he did in a.e.) 
This layer is thick, with relatively few cells; small and medium pyramids (M 2, 3?) and various 
other cells (M4, 5, 7, 6?). It contains an extremely dense plexus, and apparently, the layers I 
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to III receive here the terminal ramification of the massive pathway to the presubiculum carried 
by the cingulum. 

IV. Large and medium pyramidal cells (M I, U): the smaller pyramids are probably on 
average lower in the cortex, and their basilar dendrites generate a dense horizontal plexus. The 
large ones seem to have a more irregular dendritic arrangement (though information is very 
sparse, and these statements are inferences from Lorente de No's (1934) incidental remarks). 
All pyramidal cell axons go to the white matter. The large pyramids of this layer become layer 
III of the prosubiculum, and seem to be associated with the existence of Martinotti type cells 
(M3) beneath them. 

V. Fusiform and triangular cells, similar to those found in other cortical areas (M4, 5, 7), 
and cells with ascending axon (M3). No details are available. 

4.7.3. The subiculum (Prosubiculum+Sub. b of Lorente de No) 

It is convenient in this section to use the terminology of Lorente de No (1934, p. 134). 

The subiculum lies next to CA 1, into which it gently merges. Only a very small region (Lorente 
de No's Sub. b) can be said to have a distinctive structure in that the presubicular pyramids have 
disappeared, but the prosubicular pyramids have not yet appeared. The huge terminal rami
fication of the cingulum is strictly confined to the presubiculum, and does not spill over into the 
prosubiculum (White 1959; Raisman et al. 1965; Cragg 1965). 

I. An extremely wide plexiform layer, containing the perforant tract from a.e. to CA and FD. 
The lower zone is a true plexiform layer, and contains horizontally running collaterals of some of 
the fibres running overhead. There are the usual short-axon cells (M 5). 

II. Modified ammonic pyramids (M I). The apical dendrites lack S. Lac. and S. Rad., which 
ceases abruptly at the edge ofCA 1. The basal dendrites are horizontal, and none descend to III. 
There are also many short axon and basket cells (M4, 5, 6). 

III. Prosubicular pyramids: the upper cells have no side branches in III to their dendritic 
shafts, but the lower ones do. None have any in II; all have them in I. Thus the cells of II avoid 
the plexus in III, and the cells of III avoid the plexus in II. These cells are probably M I. Again, 
there are various short axon and basket cells (M4 to 6). 

Many pyramidal cells in the prosubiculum send axon collaterals to CA 1 and CA 2. Most 
axons enter the alveus of the CA, and thence enter the fimbria. 

IV has two strata: (a) of globular cells, of which there are various kinds. Those whose axons 
pass to the white matter are probably M I, and those with ascending axon are probably M 3; 
and (b) of Martinotti (M 3) type cells with local dendrite and ascending axon. These seem to 
be associated with the prosubicular pyramids, and to die out with them, which suggests that 
their axons do not rise above III. It may be these axons which cells of II are anxious to avoid. 

Layer IV, especially IV b, becomes very thin towards the CA. III becomes very wide, and the 
cells seem to turn into Ammonic pyramids as IV b disappears (Lorente de No 1934, p. 129, 

figure 11). The prosubiculum thus merges into and becomes the CA, which has already been 
described. 
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5. NEUROPHYSIOLOGICAL PREDICTIONS OF THE THEORY 

5.0. Introduction 

In this section are summarized the most important predictions which follow from the notion 
that simple memory provides a model for the archipallium in general, and for the hippocampus in 
particular. They are presented l~ two parts; the first summarizes the general model for archi
cortex, and the second deals with the detailed predictions for the hippocampus. 

The statements are made with varying degrees offirmness, which are indicated by the number of 
stars accompanying each (after Marr 1970, §7). Three stars indicates a prediction whose dis
proof would show simple memory theory to be an inappropriate model for archicortex; a no-star 
prediction is a strong hint and nothing more: one and two star statements lie between these 
extremes. 

5.1. The general modelfor archicortex 

Whereas neocortex is capable both of classifying and of memorizing inputs, archicortex is 
capable only of memorizing them * * *. The variety of the functions performed by archicortex is 
achieved in part by the application of its basic memorizing ability to widely different kinds of 
information. Two examples of the uses to which archicortex may be put are free simple memory 
(in which the memory projects to its own input cells), and directed simple memory (in which it 
does not). 

The central feature of archicortex is a collection of so-called memorizing cells, identified as that 
class of cell which is most numerous and whose axons project elsewhere. Such cells will have at 
least two kinds of afferent synapses * * *: excitatory afferent synapses with Brindley modification 
conditions * * *; and unmodifiable inhibitory afferent synapses * * *. The dendrites of memorizing 
cells are often independent * *, modification conditions being decided locally * *. 

The inhibition applied to memorizing cells performs at least two principal functions: one is to 
control the synaptic modification conditions in the memorizing cell dendrites during the learning 
of events * *; and the other is to control the cells' thresholds during the recall of previously 
learned events * * *. Cells for the first function apply inhibition to the dendrites ofthe memorizing 
cells * *, and are driven either by memorizing cell axon collaterals, or by afferent collaterals, or 
both (by analogy with the cerebellar Golgi cells). They act so as to maintain the number of 
memorizing cells involved in learning each new event at a roughly constant level **. 

Cells for the second function are of two types * *; basket cells, performing a division * *, and 
stellate cells, synapsing with the dendrites, performing a subtraction * *. The stellate cells act to 
remove from the output signal some of the excitation due to the unmodifiable component of the 
Brindley synapses*. The basket cells and stellate cells are driven by the main afferent system to 
the memorizing cells (through unmodifiable excitatory synapses) * *, and perhaps also by 
memorizing cell collaterals*. It is appropriate in certain circumstances to raise the division 
threshold of the memorizing cell during recall of a learnt event * *. There are various circuits 
capable of achieving this. 

Archicortex may contain codon cells, perhaps with modifiable afferent synapses. If so, and if 
the synapses are modifiable, then they are Brindley synapses * *, and are accompanied by the 
same kinds of inhibitory housekeeping cells as are memorizing cells * *. They are often small and 
numerous**, and are necessary when the activity (a) of the input fibres is too high for the learning 
capacity required of the memorizing cells***. 

It is the lack of climbing fibres which deprives archicortex of the clustering ability underlying 

113 



78 D.MARR 

the classification process in neocortex * *. Archicortex is therefore bad at the kind of classification 
of which neocortex is probably capable***. 

This outline of the processes carried out in archicortex gives rise to a rough classification of 
archicortical cell types. These have been labelled M 1 to M 7, and are not set out here since they 
have been summarized in the appropriate way in § 4.6.1. For the purposes of this section, they may 
be regarded as owning two stars, except where overridden by the statements made above. 

5.2. The hippocampal cortex 

Star ratings in this section test the proposition that the various divisions of the hippocampal 
formation form components of a simple memory. 

The pyramidal cells of CA 1 to 3 and the granule cells of the FD are memorizing cells, in the 
sense of §4.6.1 * * *. Their main afferents therefore terminate by means of Brindley modifiable 
synapses * * * . All other cells there are probably inhibitory * *, and certainly many are * * *. These 
cells are concerned with the formation of simple representations, in the sense of§ 3* *. That is, the 
activities of these populations are low * * (near 0.001) and there is an extensive collateral 
system * * which uses Hebb (or Brindley) modifiable synapses * *. The collaterals aid the 
completion of simple representations during recall * *. The performance of regions of the CA 
(e.g. say CA 2) is qualitatively similar to that of the layer flJs in the explicit model of § 3.1 * *. 

The star cells of the entorhinal area 'are also memorizing cells * * *, and are qualitatively 
analogous to the layer flJ2 of the model of § 3.1 * *. Various predictions follow from these remarks, 
in particular that they possess Brindley modifiable afferent synapses * * *. Many other cells 
in various archicortical areas have been discussed, and the predictions concerning them follow 
the general lines of § 5.1. In the following lists, the various cells are classified according to the 
terminology of § 4.6.1; the firmness of the classification is indicated; and the references specify 
the relevant pieces of text. 

5.2.1. Cornu ammonis: CA 1 to 3 

cell type described (§) stratum class reference(§) stars 

pyramid 4.1.1 (a) pyr. Mlor2 4.2 *** 
pyr. basket 4.1.1 (b) pyr. M6 4.3.3 *** 
asc. axon 4.1.1 (e) pyr. M4,5 4.3.2 ** 
horizontal 4.1.1 (d) oriens M4 4.3.2 ** 
polygonal 4.1.1 (e) oriens M4,5 4.3.2 ** 
basket 4.1.1 (f) oriens M6 4.3.3 *** 
basket 4.1.1 (g) oriens M6 4.3.3 *** 
horizontal 4.1.1 (h) oriens M4 4.3.4 ** 
horizontal 4.1.1 (i) oriens M5 4.3.2 ** 
various 4.1.1 (j) rad. & lac. M5 4.3.2 *** 
asc. axon 4.1.1 (k) rad. & lac. M4 4.3.2 *** 
horizontal 4.1.1 (I) rad. & lac. M5 4.3.4 *** 
short axon 4.1.1 (m) molec. M5 4.3.2 *** 
horizontal 4.1.1 (n) molec. M5 4.3.2 *** 

One kind of cell can fall into two classes if it possesses two kinds of dendritic or axonal distribu
tion. 

There may be an afferent system capable of changing the ratio of somatic to dendritic inhibition 
at the CA pyramids. This would increase the amount of basket inhibition during recovery of a 
simple representation. No-star estimates of the values of the relevant parameters for CA appear in 
§4.2.4. 
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5.2.2. The fascia dentata 

cell described (§) layer class reference (§) stars 

granule 4.1.2 granular Mlor2 4.4.1 *** 
displaced gran. 4.1.2 (a) molec. Mlor2 4.4.1 ** 
short axon 4.1.2 (b) molec. M4,5 4.4.1 *** 
pyr. basket 4.1.2 (c) polymorph M6 4.4.1 *** 
asc. axon 4.1.2 (d) polymorph M4 4.4.1 ** 
desc. axon 4.1.2 (e) polymorph 

}probablY CA 4. short axon 4.1.2 (I) polymorph 
star, etc. 4.1.2 (g) polymorph 

a"n is probably rather low (near 0.001)*. 

5.2.3. CA 3, CA 4 and the mossy fibres 

The pyramids of CA4 are 'collector' cells for the output of FD granule cell activity*, 
(§§4.4.0, 4.4.3). They may have Brindley modifiable afferent synapses from FD granule cell 
axons *, beipg the short-axon cells of CA 4 the necessary class M 4 and M 5 cells *. The mossy 
fibre synapses in CA 3 may be Hebb or Brindley synapses*. The large size of the mossy fibre 
synapses suggests that aFD is very low*-certainly lower than a for the other hippocampal 
afferents** (§4.4.3). 

5.2.4. Hippocampal collateral systems 

All short hippocampal pyramidal cell collaterals to other hippocampal pyramids end in Hebb 
or Brindley modifiable synapses * *. Those collaterals which are reciprocated can take part in the 
collateral effect * *. Those which do not are concerned with associating simple representations 
formed in different regions of the hippocampus (§4.5.1), these being completed by local recipro
cating collaterals *. Examples of the second sort are the mossy fibres * *, and the Schaffer 
collaterals * *. Examples of the first kind are local collaterals * *, and perhaps commissural 
connexions (§4.5.2). There should be ~ 10000 collateral synapses at each CA pyramidal cell * *. 
Local collaterals joining hippocampal pyramids tend to make synapses in S. Rad. * (§4.5). There 
may be a collateral effect in FD (§4.5.3). 

5.2.5. Area entorhinalis 

cell described (§) layer class references (§) stars 

short axon 4.7.1 I I M5 4.7.1 *** 
star 4.7.1 II II M2 4.7.1 *** 
various 4.7.1 II II M4,5,6? 4.7.1 ** 
pyramid 4.7.1 III III M2 4.7.1 *** 
various 4.7.1 III III M4-7 4.7.1 ** 
pyramid 4.7.1 IV IV M2 4.7.1 *** 
various 4.7.1 IV IV M4-7 4.7.1 ** 
pyramid 4.7.1 V V M3 4.7.1 *** 
globular 4.7.1 V V M7 4.7.1 ** 
spindle 4.7.1 V V M4,5 4.7.1 ** 
polymorph 4.7.1 VI VI M3--7 4.7.1 * 

115 



80 

5.2.6. Presubiculum 

ceIl 

short axon 
pyramids 
fusiform 
various 
pyramids 
fusiform } 
triangular 
asc. axon 

described (§) 

few seen 
4.7.2 II 
4.7.2 II 
4.7.2 III 
4.7.2 IV 

4.7.2 V 

4.7.2 V 

D.MARR 

layer 

I 
II 
II 

III 
IV 

V 

V 

class 
M5 
M2or3 
M7 
M2-7 
MI?,M2 

M4,5,7 

M3 

This region has been studied even less than the others. 

5.2.7. Prosubiculum (of Lorente de No) 

cell described (§) layer class 
short axon 4.7.3 I I M5 
pyramid 4.7.3 II II Mlor2 
short axon 4.7.3 II II M4,5 
basket 4.7.3 II II M6 
pyramid 4.7.3 III III Mlor2 
pyramid 4.7.3 IV IVa Mlor2 
Martinotti 4.7.3 IV IVb M3 
short axon 4.7.3 III, IV M~ 

references (§) stars 
4.7.2 ••• 
4.7.2 ••• 
4.7.2 none 
4.7.2 (little information) 
4.7.2 •• 
4.7.2 • 
4.7.2 •• 

reference (§) stars 

4.7.3 ••• 
4.7.3 ••• 
4.7.3 •• 
4.7.3 "' .. 
4.7.3 ••• 
4.7.3 ••• 
4.7.3 ••• 
4.7.3 •• 

The prosubicular pyramids are probably M 1 * * since they send collaterals to CA and axons to the 
fimbria. 

I wish to thank Professor G. S. Brindley, F.R.S. for his helpful criticisms, and Mr S.]. W. 
Blomfield for many discussions. The following kindly gave me permission to reproduce figures 
from other papers: Dr T. W. Blackstad and the Wistar Press for figure 2; Professor R. Lorente 
de No and Akademie-Verlag GmbH for figures 8 to II; and C.S.I.C. Madrid for figures 12 to 
16. The work was supported by Trinity College, Cambridge. 

Note added in proof, 15 April 1971 

Lemo (1971) has published evidence for the facilitation of the perforant path-Dentate 
granule cell synapses in the rabbit. His findings are necessary but not sufficient to prove this 
theory's prediction (§5.2.2) that these synapses are facilitated by simultaneous pre- and post
synaptic depolarization. 
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David WiUshaw. 

Commentary on 

Simple Memory: A Theory of the Archicortex 

This is the third, and last, of David Marr's series of three theoretical papers 
on the neurobiology of learning and memory (Marr 1969, 1970, 1971). In this 
paper, he proposes a theory for the functioning of the mammalian bippocampus 
- one of the most important but least understood parts of the brain. 

The hippocampus is one of the phylogenetically older parts of the brain 
(bence:archicortex). It is found in mammals, and a related structure exists in 
birds. The mammalian hippocampus has a simple and regular structure, and 
specific circuits have been identified within it. It has afferent and efferent 
pathways to many parts of the neocortex, and these interconnections are fairly 
well characterized. 

It has proved difficult to assign positively any definite function, or func
tions, to the hippocampus. Nonetheless, various proposals have been made. 
At the time Marr wrote this paper, the startling results from such patients as 
HM, who became amnesic after undergoing bilateral hippocampectomy for the 
relief of epilepsy, suggested a role for the hippocampus in memory (Scoville 
and Milner, 1957). More recently, the idea has been developed that a "cog
nitive map" is built in the hippocampus (O'Keefe and Nadel, 1978). This is 
based on the finding that there are "place units" in the rat hippocampus -
neurons that fire when the animal is at a specific place in the environment. 

Marr had previously proposed (1970) that the neocortex is the site of long
term associative storage of information, the information being stored in a form 
that retains the essential details and removes the superfluous. In the hippo
campus paper, he argues that it would be inefficient to store the raw associations 
directly, before the salient features had been extracted; furthermore, neocortical 
interconnectivity is not sufficiently complete to allow any arbitrary association 
to be stored. Marr proposes that there is a special temporary memory store -
the hippocampal formation. 

The central question is concerned with the architecture required for this 
temporary memory, and whether it matches the known structure of the hippo
campus. As in his other papers on leaming and memory, Marr's method 
of working is to constrain the problem by a number of assumptions as to 
the likely values of some of the parameters of the system. These values 
either were derived intuitively (e.g., the number of items to be stored) or 
had some biological basis (e.g., the number of synapses on a nerve cell). 
To these assump- tions are added a number of computational constraints that 
must hold if the memory is to perform satisfactorily. He concludes that there 
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must be an intetmediate layer of cells between the input and output layers 
of the memory. In the present day parlance of Connectionism, this would 
have a natural interpretation as a layer of hidden units. Having derived a 
complete specification of this three-layer system, he goes on to relate this 
three-layer model to the known facts of the hippocampus and its connections 
to the neocortex. 

In this paper, Marr's use of a set of constraints to derive the minimal 
structure for the given problem reaches a most sophisticated level. However, 
his attempt is not wholly satisfactory, since there is an inconsistency in the 
argument, which leaves his case for a three-layer model not proven. He there
fore relies more heavily on his view of hippocampal circuitry than is stated 
explicitly. In effect, he views the problem from two different perspectives: 
(a) that the structure of the memory proposed is necessary on computational 
grounds and (b) that it has to have this structure because this is the way that 
the hippocampus was built. This double perspective can be seen in light of 
his subsequent development of the importance of the computational, the algo
rithmic and the implementational levels of explanation (Marr, 1982). 

Although he does characterize in some detail the individual properties of 
the cells that are meant to fotm the layers of his model, only a loose corres pon
dence is made between the subdivisions of the hippocampus (together with the 
associated neocortical circuitry) and the layers of his model. The most exten
sive discussion is concerned with the nature of the cells of the output layer of 
the memory, which are identified with the pyramidal cells of the hippocampus. 
He does not distinguish between the various elements of the Dentate Gyrus
CA3-CAI trisynaptic circuit, the existence of which was known at the time 
(Andersen et aI., 1971). This may have been a foresighted omission, given 
that the notion of the trisynaptic circuit itself is now in the process of change 
with the discovery of other extrinsic pathways of the hippocampus (Squire et 
aI., 1989). His major contribution is in his discussion, at a cellular and sub
cellular level, of the properties that the individual elements of his model must 
have. In particular, he proposes various types of dual strategies for setting the 
thresholds of the cells (which have never been properly investigated since), 
which are required for efficient storage and retrieval in the biologically realistic 
cases of incompletely connected networks. The requirement that synapses be 
modified by simultaneous presynaptic and post-synaptic activity, after the style 
of Hebb (1949), predates the discovery of hippocampallong-tetm potentiation 
(Bliss and L«1mo, 1973), although he does add a note in proof about L«1mo's 
earlier paper (1971) that showed synaptic facilitation in the perforant path -
dentate gyrus. 

In summary, David Marr presents a somewhat abstract interpretation of the 
hippocampus as a temporary memory store. The strength of his analysis lies 
not in the translation of his fotmal model into neurobiological tetms, but rather 
in his discussion of what types of local circuitry are required to perfotm the 
various computations that are needed for the memory to function efficiently. 

It is unfortunate that this paper is not more widely read or understood. It 
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required considerable effort to come to terms with the inaccessible style that 
is characteristic of his earlier writings; but I found that the effort was well 
worthwhile. Even 20 years after publication, Marr's theory remains the most 
complete computational model of the hippocampus. 

This short commentary is based on a recent review of the computational 
basis of Marr's theory of archicortex (Willshaw and Buckingham, 1990). We 
also describe the results of analysis and of computer simulations that were 
designed to compare the performance of two-layer and three-layer models. 
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Bruce McNaughton 

Commentary on 

Simple Memory: A Theory of the Archicortex 

I regard it as a significant honor to be able to comment here, from a neuro
biologist's perspective, on the impact of David Marr's theoretical neural net
work models on our understanding of the biology of associative memory, in 
particular in the mammalian hippocampal formation and neocortex. While 
there is some truth to Willshaw and Buckingham's (1990) suggestion that 
some of us have cited Marr's papers rather more widely than we have un
derstood them, his three papers (Marr 1969, 1970, 1971) on the cerebellum, 
neocortex and archicortex (hippocampus) have been guiding lights both to my
self and to a number of other experimental neuroscientists. (It is unfortunately 
also the case that Marr's ideas are sometimes more widely exploited than they 
are cited.) Marr's approach, in its mathematical rigor, was always difficult, 
and often obscure to the non-mathematician. This, unfortunately, led to his 
theories being less widely appreciated (or understood) among neurobiologists 
than they might otherwise have been; however, the value of Marr's models for 
neurobiological studies lies not so much in their mathematical sophistication 
or overall correctness in detail (they are almost certainly wrong), but for the 
far-reaching explanatory power of their relatively simple individual compo
nents. It is the broad conceptual framework provided by these models, rather 
than their correctness in detail, that will insure Marr his important place in the 
historical development of our understanding of how biological neural networks 
actually operate. Looking back to the sparsity of the experimental database 
from which Marr developed his ideas, it is astounding the extent both to which 
these insights have been substantiated, and to which they have brought order 
to a number of otherwise disconnected data on the anatomy, biophysics and 
information transmission of the mammalian hippocampal formation and its re
lations with the neocortex. Contrary to Willshaw and Buckingham's (1990) 
statements, many of Marr's predictions have, in fact, been followed up. In 
the following I shall attempt to illustrate this with a few of the more salient 
examples. 
Synaptic Modification 

Marr was the first theoretician to attempt to make use, in the context 
of a detailed, neurobiologically constrained model, of Hebb's postulate that 
synapses should be enhanced under conditions of conjoint pre- and post
synaptic depolarization. At the time that he wrote, the first experiments by 
Lpmo, and subsequently by Bliss, Gardner-Medwin and Lpmo, were begin
ning to reveal that hippocampal synapses exhibited a plasticity of sufficient 
duration to be considered as a candidate for associative memory; however, 
it was not until much later that the first evidence was obtained that Hebb's 
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principle might be implemented in this process (McNaughton, Douglas and 
Goddard, 1978), and later still before this was fully confinned and understood 
mechanistically (Collingridge et al., 1983; Gustafsson et al.,1987; Harris et 
al., 1984; Kelso et al., 1986; Wigstrom et al 1986). A substantial body of 
literature has accumulated that is at least consistent with the idea that this 
process does, indeed, reflect the experimental activation of mechanisms that 
nonnally subserve at least the initial registration of associative memories (see 
McNaughton and Morris, 1987, for overview). Most of the available data in
dicate that the characteristics of the main modification process are consistent 
with what Marr called "Brindley" synapses (which have a non-modifiable exci
tatory component) rather than binary "Hebb" synapses, although this question 
is by no means closed. 
Pattern Completion 

In the archicortex paper, Marr suggests that the completion of stored events 
from fragmentary or noisy input infonnation should be the primary function 
of the "simple memory" system he envisioned for the hippocampus. This 
fundamental idea has proven to be of immense value in the design of neuro
physiological and behavioral experiments, and two lines of investigation now 
suggest the fundamental correctness of this assertion. In the rodent hippocam
pus, the "events acted upon relate primarily (or at least most obviously) to 
the animal's representation of space. Individual pyramidal cells are selectively 
active in limited regions and orientations within the animal's known environ
ment. Although these "place fields" are detennined by the animal's orientation 
with regard to the distal visual landmarks, removal of any subset of these land
marks has little or no effect on the spatial infonnation transmitted by these 
cells (O'Keefe, 1976; O'Keefe and Conway, 1978). More direct evidence for 
pattern completion in hippocampal circuits was recently obtained in studies 
(Mizumori et al., 1989b) in which the discharge rates and spatial selectivities 
of CA3 pyramidal cells were severely curtailed by temporary inactivation of 
a modulatory input from the medial septum, which is necessary to maintain 
the excitability of CA3 cells. Pyramidal cells in CAl, whose major source of 
modifiable excitatory input is CA3, were almost completely unaffected. Some
how, the highly reduced subsets of spatial representations conveyed from CA3 
were sufficient to enable complete spatial representations in CA 1. 
Inhibitory Control of Global Threshold During Storage and Recall 

Perhaps the most insightful and powerful of Marr's ideas was his sugges
tion that inhibitory interneurons should control both the threshold for synaptic 
modification during storage, and, by means of a division operation, the output 
threshold for principal cells during associative recall (pattern completion). The 
former notion has been verified in a number of studies that have shown that 
the modification of hippocampal synapses is largely regulated by GABAergic 
inhibition (Wigstrom and Gustafsson, 1983; Sharfman & Sarvey, 1983; Larson 
et al., 1986). The latter idea, although more difficult to verify, has some exper
imental support. Inhibition mediated by the chloride dependent GABAA chan
nel is fundamentally a division operation (for elaboration, see McNaughton 
and Barnes, 1990, and McNaughton and Nadel, 1989). Because the chloride 
equilibrium potential is almost the same as the resting potential, the effect 
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of inhibition (relative to rest) is primarily to increase membrane conductance. 
Because the soma voltage change is roughly the outward excitatory synap
tic current (im) divided by membrane conductance (gm), and because resting 
conductance is small, a division operation is implemented (DVm = im/gm). 
Secondly, in the studies cited above by Mizumori et al. (1989b) in which CAl 
output was preserved in the face of reduced and degraded CA3 input, the 
activities of basket inhibitory intemeurons were reduced in proportion to the 
reduced CA3 input. This appears consistent with Marr's idea that inhibitory 
cells should sample the activity in the input fiber population and feed for
ward a proportional division signal. Also consistent is the fact that, in all 
hippocampal subfields, most inhibitory cells receive direct excitation from the 
same modifiable excitatory inputs that project to the principal cells. As sug
gested by the idea of setting the output threshold globally, these cells need not 
be numerous, and indeed, in the hippocampus, they constitute only a small 
population relative to the principal cells. It is also known that the behavioral 
conditions under which the density of afferent activity from entorhinal cortex 
to hippocampus is greatest are also the conditions under which hippocampal 
inhibitory cells are most active. In further support of this idea, the probability 
of inhibitory cell output is graded with stimulus intensity (i.e., number of active 
afferents), whereas the principal cells do not normally fire until the intensity 
is high enough to activate many more afferents than would be coactive in a 
typical physiological event (Mizumori et ai., 1989a). 

Another interesting consequence of the threshold setting hypothesis is that, 
unlike principal cells, which care about exactly which afferents are active in an 
event, the inhibitory cells should care primarily only about how many are active 
(McNaughton and Nadel, 1990). This clearly characterizes the differences in 
spatial firing characteristics between hippocampal pyramidal and basket cells. 

Finally, although Marr did not consider in detail the dynamics of his pro
posed 'input normalization', there is one logical consequence of this scheme 
which provides considerable insight into the dynamics of the feed-forward in
hibitory networks of the hippocampus. In order for the division operation to 
be effective, the division signal arriving at the principal cell soma must arrive 
with or before the excitatory synaptic signal from the current event; however, 
the inhibitory signal must cross two synapses, whereas the excitatory signal 
need cross only one. To compensate for this, the inhibitory system appears to 
have evolved an extremely rapid response mechanism. When hippocampal af
ferent fibers are electrically activated, inhibitory cells fire well before principal 
cells (Ashwood et al., 1984; Buzsaki, 1984; Douglas, McNaughton and God
dard, 1983; Mizumori et al., 1989a) so that the inhibitory conductance in the 
principal cells is already activated before most principle cells reach threshold. 
The Necessity for Keeping a Low 

Marr proposed that the simple memory system must satisfy the dual con
straints of maximizing the event storage capacity, while at the same time 
preserving enough information from each event to ensure reliability. These 
constraints essentially dictated the size of the required networks, and the pro
portion a of cells that could be used in the representation of any given event. 
Marr proposed that the value of a should lie between 0.01 and 0.001, and be 
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roughly constant across events. To translate this into actual neuronal firing 
rates, take as the 'time-step' the apparent time constant of most hippocampal 
and cortical neurons, which is on the order of 0.01 sec. The corresponding 
average firing rates then become between 1.0 and 0.1 Hz, values that are quite 
low by the standards of most cortical neurons. It tums out that these are 
about the typical mean discharge frequencies for hippocampal principal cells 
recorded in alert rats during the performance of spatial learning tasks depen
dent on the integrity of the hippocampus (O'Keefe, 1976; McNaUghton et al., 
1983). This 'sparse' encoding of events is also manifested in the exquisite spa
tial selectivity exhibited by hippocampal pyramidal cells. In extended spaces, 
a typical cell fires intensely only in a highly restricted region of the animal's 
known accessible environment, a region typically covering on the order of 
0.01 to 0.001 of the total area (these values vary somewhat depending on the 
size of the environment and other factors). It is also of interest that this sparse 
coding scheme appears to be a unique characteristic of the hippocampus. In 
both the entorhinal cortical input and the subicular output structures, spatial 
coding is considerably more highly distributed, and a (mean firing rate) is 
correspondingly substantially higher (Barnes et al., 1990). 

Marr proposed a rule of thumb for the relationship between a and the 
number of events n to be stored: 

This ensures that when n inputs have been learned, not all of the synapses 
have been modified. Using Marr's proposed parameters, this translates to be
tween about 60% and about 10% modified synapses at full capacity, depending 
partly on how much information is to be made available for retrieval. Above 
these values, information storage would be unreliable, a given subevent re
calling either too many active output cells, or the wrong ones (this is quite 
analogous to the psychological concept of interference). The prediction of 
these considerations is that simple memory will fail if the above constraint 
on the number of modified synapses is exceed. This is exactly the behavioral 
consequence of artificially increasing the proportion of modified synapses in 
the hippocampus by high-frequency stimulation of the main input pathways 
bilaterally. Such stimulation induces a long-term enhancement (LTFJLTP) of 
a significant proportion of perforant path synapses. This enhancement persists 
for several weeks, during which time there is both a disruption of recently 
stored spatial memories and an inability to store new ones (McNaUghton et 
al., 1986; Castro et al., 1990). It is also entirely consistent with Marr's notion 
of the hippocampus as a temporary memory system that electrically induced 
synaptic enhancement decays over time, at least at these synapses. 

The Collateral Effect 
Marr suggested that pattern completion occurred in the pyramidal layers 

via a "collateral effect". The fundamental idea was that modifiable excitatory 
collateral synapses would assist recall over several cycles of recurrent excita
tion. Mter input of an appropriate subevent, additional cells belonging to the 
original stored paltern would be activated on succeeding cycles. The "collat
eral effect" mechanism has now come to be known as "recurrent autoassocia-
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tion" (Kohonen, 1972, 1978) and, in one fonn or another, figures importantly 
in a number of connectionist style models. Although the implementation of 
a collateral effect in the hippocampus has yet to be verified experimentally, 
CA3 has an abundant system of modifiable recurrent collaterals which could 
perfonn this function. Also, Marr made two predictions about the dynamics 
of the collateral effect which seem to be approximately supported by mod
em data. First, he supposed that about three cycles of the collateral effect 
should be sufficient to complete the representation. When the hippocampus is 
actively processing inputs, there is an oscillating cycle of excitation and inhi
bition known as the theta rhythm, whose mean period is about 140 msec, and 
to which all hippocampal cell output is phase locked. If one assumes that the 
completion effect must be going on during the quarter cycle when excitation is 
increasing, this allows about 35 msec. In the CA3 recurrent system, the com
bination of conduction delay and synaptic delay amounts to about 6 to 8 msec. 
This would thus be sufficient for about four to six cycles; only slightly more 
than Marr predicted. The second prediction was that there should be some 
external mechanism which gradually increases inhibition during the collateral 
effect, to make sure only the correct cells were included in the output. The 
medial septal nucleus, which paces the theta rhythm, has a strong modulatory 
effect on inhibitory interneurons. As predicted, the activity of the inhibitory 
cells does increase during the rising excitatory phase of the theta rhythm. 
Orthogonalization of Similar Input Vectors 

One of the most powerful of Marr's concepts was the idea that memory 
capacity could be maximized if representations that were rather similar at the 
input could be recoded by a separate group of cells in such a way as to 
minimize the overlap in the output. In his cerebellum paper, Marr assigned 
this function to the cerebellar granule cells, which he called "codon" cells. 
In the cerebellar paper, the basic idea was to project the input vector onto a 
higher dimensional space (there are about 40 billion granule cells in the human 
cerebellum) and then use this orthogonalized representation as input to the 
memory cells. In the models for neocortex and archicortex, it was considered 
to be more economical if codons were not hard-wired, but could be created 
on demand through the use of modifiable synapses. In this way only those 
codons (subevents) which actually occurred in the experience of the animal 
would be required. It turns out that the initial projection from the entorhinal 
cortex into fascia dentata does involve a projection into a higher dimensional 
space. There are about 105 entorhinal projection cells, and about 106 granule 
cells in the fascia dentata. This projection tenninates in modifiable synapses 
(probably of the Brindley variety). Moreover, single neuron recording studies 
of physiologically identified granule cells indicate that a in the granule cell 
population is among the lowest of any hippocampal subfield (Mizumori et al., 
1989a). Thus, although the question requires more systematic investigation, 
Leonard (1990) has obtained preliminary evidence for pattern separation in the 
hippocampal output cells in CA 1. 

Readout from Simple Memory During Sleep 
One of the boldest of Marr's predictions was that readout from simple 

memory should occur during sleep. This idea was first developed in the neo-
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cortex paper. Marr argued that "infonnation from which a new classificatory 
unit is to be fonned will often come from a simple associative store," (i.e. 
hippocampus) "not from the environment ... the most natural way of select
ing a location for a new classificatory Wlit was to allow one to fonn wherever 
enough of the relevant fibers converge. This requires that potential codon 
cells over the whole cerebral cortex should simultaneously allow their affer
ent synapses to become modifiable. Hence, at such times, ordinary sensory 
infonnation must be rigorously excluded. The only time when this exclusion 
condition is satisfied is during certain phases of sleep." 

It is unclear whether Marr was aware that at the time this was written, there 
was a growing psychological literature on the possible role of sleep, particularly 
REM sleep (Leconte and Bloch, 1971), in memory consolidation (for reviews 
see Fishbein and Gutwein, 1977; Home and McGrath, 1984; Smith, 1985). 
Certainly the basic idea seems to have fallen out from the premises of the 
model. Recently, some very exciting neurophysiological studies have produced 
strong support for the plausibility of Marr's idea that infonnation is transferred 
from temporary (hippocampal) to penn anent (cortical) memory during sleep. 
Pavlides and Winson (1989) studied the effects of selective spatial experience 
on the subsequent activity of hippocampal "place" cells during sleep. They 
recorded from pairs of place cells with nonoveriapping place fields. During 
the waking episode, they exposed the animal to the field of one member of the 
pair but not to the field of the other. They then removed the animal to a neutral 
location and allowed it to fall asleep. During the sleep episode, there was a 
large increase in the output activity of the cells that had been exposed to their 
place fields, in particular, the occurrence of high-frequency bursts increased, 
and the interspike intervals during bursts decreased. This are exactly the sort 
of activity that would be most likely to lead to synaptic modification in target 
cells. The effect was present in all phases of sleep, but was greatest in REM 
sleep. This phenomenon thus seems to fit precisely the requirements suggested 
by Marr's sleep hypothesis. 
Closing the Loop 

In the foregoing, I have tried to illustrate the astounding prescience of 
Marr's neurobiological models, and the deep influence his basic ideas either 
have had or should have on the interpretation of experiments directed towards 
understanding the different roles of the hippocampus and neocortex in asso
ciative memory. Fortunately for the field of computational vision, but unfor
tunately for the neurobiology of memory, Marr turned his attention away from 
these problems before completing his theory with a model for the input-output 
relations between hippocampus and neocortex. He clearly must have thought 
deeply about this issue, because a forthcoming paper on it was promised but 
apparently never completed. Many neurophysiologists and neuroanatomists 
agree that this issue represents the single most important area of almost com
plete ignorance in the field at present, and Marr's keen insight could very prof
itably have been applied to this problem. It is amusing to speculate whether, 
given the rathcr dramatic increase in our knowledge about the organization of 
cortical and archicortical memory systems over the past decade, Marr might 
have turned his attention back once again to these fundamental issues. 
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REFERENCES 

It is proposed that the learning of many tasks by the cerebrum is based on using a very few 
fundamental techniques for organizing information. It is argued that this is made possible 
by the prevalence in the world of a particular kind of redundancy, which is characterized 
by a 'Fundamental Hypothesis'. 

This hypothesis is used to found a theory of the basic operations which, it is proposed, are 
carried out by the cerebral neocortex. They involve the use of past experience to form so
called 'clasSificatory units' with which to interpret subsequent experience. Such classifi
catory units are imagined to be created whenever either something occurs frequently in the 
brain's experience, or enough redundancy appears in the form of clusters of slightly differing 
inputs_ 

A (non-Bayesian) information theoretic account is given of the diagnosis of an input as an 
instance of an existing classificatory unit, and of the interpretation as such of an incompletely 
specified input. Neural models are devised to implement the two operations of diagnosis and 
interpretation, and it is found that the performance of the second is an automatic consequence 
of the model's ability to perform the first. 

The discovery and formation of new classificatory units is discussed within the context of 
thea.. neural models. It is shown how a climbing fibre input (of the kind described by Cajal) 
to the correct cell can cause that cell to perform a mountain-climbing operation in an under
lying probability space, that will lead it to respond to a class of events for which it is appro
priate to code. This is called the 'spatial recognizer effect'. 

The structure of the cerebral neocortex is reviewed in the light of the model which the 
theory establishes. It is found that many elements in the cortex have a natural identification 
with elements in the model. This enables many predictions, with specified degrees of firmness, 
to be made concerning the connexions and synapses of the following cortical cells and fibres: 
Martinotti cells; cerebral granule cells; pyramidal cells of layers III, V and II; short axon 
cells of all layers, especially I, IV and VI; cerebral climbing fibres and those cells of the 
cortex which give rise to them; cerebral basket cells; fusiform cells of layers VI and VII. 

It is shown that if rather little information about the classificatory units to be formed has 
been coded genetically, it may be necessary to use a technique called codon formation to 
-organize structure in a suitable way to represent a new unit. It is shown that under certain 
conditions, it is necessary to carry out a part of this organization during sloop. A prediction 
is made about the effect of sleep on learning of a certain kind. 
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§ O. INTRODUCTION 

0.1. Theform of a neurophysiological theory 

The mammalian cerebral neocortex can learn to perform a wide variety of tasks, yet 
its structure is strikingly uniform (Cajal 191 I). It is natural to wonder whether this 
uniformity reflects the use of rather few underlying methods of organizing infor
mation. The present paper rests on the belief that this is so, and describes a kind of 
analysis which is capable of serving many aspects of the brain's function. The theory 
is necessarily general, but it in principle allows the exact form of the analysis for any 
particular cerebral task to be computed. 

There is an analogy between the shape of the general theory set out here, and that 
of a recent theory of cerebellar cortex (Marr 1969). The essence of the latter theory 
was a principle, that motor sequences are driven by learned contexts, which was 
clearly applicable to the kind of function with which the cerebellum was thought to 
be associated. The key ideas concerned the way information was stored, and the 
way stored information could be used; but the theory did not explicitly demonstrate 
how any particular motor action was learned. For this, it would be necessary to have 
a much fuller understanding of the nature of the elemental movements for which the 
Purkinje cells actually code, and of the information present in the relevant mossy 
fibres. The theory was however useful, because it postulated the existence of a 
'fundamental operation' of the cerebellar cortex, and offered a candidate for it. 
The present theory is once removed from the description of any task the cerebrum 
might perform, in the same way as was the cerebellar theory from the description 
of any particular motor action. 

Something of this kind is probably an inevitable feature of the theory of any 
interesting learning machine, but in the particular case of the cerebral cortex, it is 
likely there exists a second, more concrete analogy between its working, and that 
of the cerebellar cortex. The evidence for this is the analogy between the structures 
of the two types of cortex. The cerebral cortex is of course irregular and very 
complicated, but there do exist similarities between it and the cerebellar cortex: 
the fundamental cerebellar components-the granule cells, Purkinje cells, parallel 
fibres, climbing fibres, basket cells and so on-have recognizable counterparts in 
the cerebral cortex. In view of the great power the codon representation possesses 
for the economical storage of information (Marr 1969), it cannot be that this analogy 
is accidental. There must be a deeper correspondence. 

0.2. The nature of the present general theory 

It was the suspicion that there may exist deep reasons for these similarities that 
formed the starting point of the present enquiry. The motivation for the develop
ment of the theory was provided by two intuitions. The first was that in the general
ization of the basic cerebellar circuit, the analogue of the Purkinje cell (called an 
output cell) need not have a fixed' meaning'. In the cerebellum, each Purkinje cell 
probably has predetermined 'meanings', in that the responses its outputs can 
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evoke are likely to be determined by embryological and early post-natal 
development. In a more general application of this kind of model, it is clear that 
what the output cell 'means' might be free to be determined by some aspect of the 
structure of the information for which the system is being used. 

The second intuition was that the codon representation, in the kind of model 
applicable to the cerebellar cortex, may in fact be capable of doing more than the 
simple memorizing task to which it can obviously be applied (Blomfield & Marr 
1970). This feeling was tied to the idea that the recognition of a learned input ought 
properly to be viewed as a process of diagnosing whether the current input belonged 
to the class of learned inputs. This immediately suggests that the behaviour of an 
output cell should not be an all-or-none affair, but should convey a measure 
of how certain is the outcome of the diagnostic process. This has the attraction that 
it could ultimately correspond to how 'like' a tree is the object at which one is 
currently looking. 

These two ideas were bound by the constraint that more or less whatever theory 
was set up, it had to be grounded in information theory; or if not firm reasons why 
this is undesirable must be given. It was evident from the start that no very orthodox 
information theoretic approach would be of any use; but the general ideas behind 
the formulation of an information measure are so powerful that it would have been 
surprising had they turned out to be totally irrelevant. 

The result of these ideas was a general theory which divides neatly into two parts. 
The first, with which this paper is concerned, describes the formation and operation 
of a language of so-called classificatory units by means of which the sensory input 
can eventually be usefully interpreted (§ I). The formation of a classificatory unit is 
imagined to occur roughly whenever enough related inputs happen to make it 
worth forming a special description for them. The main results are the information 
theoretic theorems of § 2 on the diagnosis and interpretation of an input within a 
class, and the theory of § 5 for class formation. The power of these results is that 
they lead to specific neural models, and to operations in those models, through which 
a preliminary interpretation of the histology of cerebral cortex can usefully be 
made. 

The first part of the theory may therefore be described as a model for concept 
formation and recognition, where concepts are' classificatory units'. It argues that 
there exists a basic information-handling scheme which is applied by the cerebral 
cortex to a wide range of different kinds of information-that there exists a 'way' 
in which the cerebral cortex' works'. This scheme has a wide application, subject to 
reservations about the need in certain circumstances for special coding devices to 
cope with particular forms of redundancy. But in principle, it can be applied to 
anything from the recognition of a tree to the recognition of the necessity to take a 
particular course of action. 

The theorems of §2 provide a complete analysis of the problem of interpreting an 
input within a particular class, but the ideas of § 5 provide only a partial analysis of 
the formation of the classes themselves. This problem cannot be dealt with using only 
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the hardware developed in this paper; and its solution requires the results of the 
second part of the general theory. 

The second part of the theory embodies a second pair of ideas. One of these also 
arises from the cerebellar theory, where it was seen that a codon representation is 
extremely successful at straight memorizing tasks (Brindley 1969; Marr 1969). The 
other is the everyday concept of an associative memory. The cerebellar theory is a 
kind of associative memory theory, and it is not difficult to extend the idea of the 
codon representation to the case of a general associative memory. This is developed 
in the theory of Simple Memory (Marr 1971). Once this has been done, it is possible 
to see how current descriptions of the environment can be stored, and recalled by 
addressing them with small parts of such inputs. This is the facility needed to 
complete the theory of the formation of classificatory units. It is, however, only a 
small part of the use to which such a device can be put: almost the entire theory of 
the analysis of temporally extended events, and of the execution ab initio of a 
sequence of movements, rests upon such a mechanism. Though simple, it is im
portant (and long) enough to warrant a separate development, and is therefore 
expounded elsewhere, together with the theory of archicortex to which it gives rise. 

0.3. Outlines of the present theory 

This paper starts with a discussion of the kind of analysis of sensory information 
which the brain must perform. The discussion has two main strands: the structure of 
the relationships which appear in the afferent information; and the usefulness to the 
organism of discovering them. These two ideas are combined by the 'Fundamental 
Hypothesis' of § 1.6 which asserts the existence and prevalance in the world of a 
particular kind of relationship. This forms an explicit basis for the subsequent 
theoretical development of classificatory units as a way of exploiting these relation
ships. The fundamental hypothesis is a statement about the world, and asserts 
roughly speaking, that the world tends to be redundant in a particular way. The 
subsequent theory is based, roughly, on the assumption that the brain runs on this 
redundancy. 

The second section contains the fundamental theorems about the diagnosis and 
interpretation of events within a class. It assumes that the classes have been set up, 
and studies the way in which they allow subsequent incoming information to be 
interpreted. These theorems receive their neural implementation in the model of 
figure 8. 

The rest of the paper is closely tied to the examination of specific neural models. 
After the technical statistics of §3, the main section §4 on the fundamental neural 
models appears. This discusses the structures necessary for the implementation of 
the basic theorems, and derives explicitly those models which for various reasons 
seem preferable to any others. The first main result of the paper consists in the 
demonstration that the two theorems of § 2 correspond to closely related operations 
in the basic neural model. 

The second main result concerns the operations involved in the discovery of new 
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classificatory units. It shows how a climbing fibre enables a corticaJ pyramidal cell 
to discover a cluster in the space of events which that cell receives. This result, 
together with the previous ones which show how classificatory units work when 
represented, completes the main argument of the paper. 

Finally, in §6, the available knowledge of the structure of the cerebral cortex is 
briefly reviewed, and parts of it interpreted within the models of § 4. This section is 
incomplete, both because of a lack of information, and because Simple Memory 
theory allows the interpretation of other components; but it was thought better at 
this stage to include a brief review than to say nothing. Far too little is known about 
the structure of the cerebral cortex. 

0.4. J?efinitions and notation 

0.4.1. Time, t, is discrete, and runs through the non-negative integers (t = 0, 1, 
2, ... ). t scarcely appears itself in the paper, but most of the objects with which the 
theory deals are essentially functi'Ons of t. 

0.4.2. An input fibre, or fibre, ai(t), is a function of time t which has the value 0 or I, 
for each i, 1 ~ i ~ N. ai(t) = 1 will have the informal meaning that the fibre ai 
carries a signal, or 'fires' at time t. A signal is usually thought to correspond to a 
burst of impulses in a real axon. The set of all input fibres is denoted by A, and the 
set of all subsets of A by 52l. 

0.4.3. An input event, or event, on A assigns to each fibre in A the value 0 or 1. 
Events are usually denoted by letters like E, P, and the value which the event E 
assigns to the fibre ai is written E(ai)' and equals 0 or 1 (1 ~ i ~ N). It is convenient 
to allow the following slight abuse of notation: E can also stand for the set of ai which 
have E(ai ) = 1. The phrase 'ai in E' therefore means that E(ai ) = 1, i.e. that the 
fibre ai fires during the event E. 

0.4.4. A 8ubevent on A, usually denoted by letters like X, Y, assigns the value 0 or 1 
to a subset of the fibres a1, ... , aN. For example, if 

X(ai) = 1 (1 ~ i ~ r), 

X(ai) = 0 (r < i ~ 8), 

X (ai) is undefined for i > 8, then X is a subevent on A. As in the case of full events, 
X can also mean the set of fibres ai for which X (ai) = 1: in the example therefore, 
X can stand for the set {~, ... , a,.}. 

0.4.5. H X is a subevent, the set of fibres to which X assigns a value is called the 
8upport of X, and is written S(X). Thus in the above example, S(X) = {~, ... , as}. 

0.4.6. A set of events is called an event 8Pace, and is denoted by letters like ~, ~. 
A set of subevents is called a 8ubevent 8pace, and is denoted by letters like I, ID. 

0.4.7. Greek letters are usually reserved for probability distributions. The letter 
A, for example, often denotes the probability distribution induced over 52l (the set of 
all possible events on ~, ... , aN) by the input events. Thus A(E) is the number of 
occurrences of the event E divided by the total elapsed time. H, instead of con
sidering the whole of A = {~, ... , aN}' attention is restricted toA' = {~, ... , a,.}, then 
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the space 2{' of events on A' corresponds to a set of subevents on the original fibre 
set A. Every event in 2{ defines a unique event in 2{/, obtained by ignoring the fibres 
ar +v ... , aN' Thus the full distribution A over 2{ induces a distribution A' over 2{' 

obtained by looking only at the fibres av ... , ar' A is called the projection onto 2{' of A. 
If x is a subevent space, then the phrase 'A' is the distribution induced over x by 
the input' refers to the A' induced from the full input probability distribution 
A by projecting it onto X. If~ is any subset of2{, then the restriction AI~ of A to ~ is 
defined as follows: 

(AI~) (E) = A(E) when E is in ~, 

(AI~) (E) = 0 elsewhere. 

0.4.8. Finally, it is often convenient to use various pieces of shorthand. The 
following is a list of the abbreviations used. 

{ } is a method of defining a set. For example, {aill ~ i ~ N} means 'the set 
of fibres ai which satisfy the condition that 1 ~ i ~ N'. 
s.t. means 'such that', 
E means 'is a member of the set': e.g. aiEE, 
¢: means 'not E', 

P(XI Y) is the conventional conditional probability of X given Y, 
=:> means' implies', 
<= means' is implied by', 
-¢> means' implies and is implied by', 
iff means 'if and only if' , 
~ means 'there exists', 
I means 'the number of elements in': e.g. lEI means 'the number of fibres 

that are active in the event E', 

The following set-theoretic symbols are also used: 

E u F = the union of E and F, 
EnF 
E\F 
ELF 
EsF 
EcF 

= the intersection of E and F, 
= the set of elements which are in E but not in F, 
= the set of elements which are in exactly one of E and F, 
means E is contained in or equal to F, 
means E is contained in F and does not equal F. 

The reader who is not familiar with this notation should not be put off by it. All 
the important arguments of the paper have been written out in full. An adequate 
understanding of its content may be achieved without reading the paragraphs in 
small type, which is where these symbols usually appear. 

0.5. Information measures 

The only universal measures of suitability, fit, and so forth, are information 
measures. Three are of principal importance in this paper, and are defined below. 
Others are derived as they are needed. All the spaces with which the paper is 
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concerned are finite, and therefore only discrete probability distributions need be 
considered. Definitions are given here only for the finite case, although every 
expression has its more general form. 

0.5.1. Entropy (Shannon 1949). 
The entropy of the discrete probability distribution PI' ... , Ps will be denoted by the 

letter h. Thus 
8 

h{Pl' ... , Ps) = ~ - Pi log2Pi· 
i=l 

All logarithms are to base 2. 
0.5.2. Information gain (Shannon 1949, and see Renyi 1961). 
Let p, v be two discrete probability distributions over the same set of events: 

P = (PI' ... , Ps), ~Pi = 1, 
i 

Then the information gain due to P given v is 

I(plv) = ~Pilog2Pi/qi· 
i 

0.5.3. Information radius (Sibson 1969). 
Let PI' ... , Pn be discrete probability distributions over the same 8 events. 

Pi = (Pil' ···,PiB), ~Pii = 1. Let P = (PI' ···,Ps)' and write P ~ Pi if Pk = 0 implies 
; 

that Pik = o. Let wI> ••• , Wn be positive numbers. Then the information radius of the 
Pi with weights Wi' is n 

~ wJ(Pilp) 
K ( Pl ... Pn)·nfi \ __ ·=-=-1 __ _ = 1 mum - . 

W1 ···Wn 1'~1'''···.Pn ~ Wi 

This infimum is achieved uniquely when 
n 

~ WiPi 
i=1 

P= n 

~ Wi 
i=l 

i=l 

K, the information radius, is an information measure of dissimilarity. 

K(~l ~2) 
will be abbreviated to KCPtP2). The nature of K is explained more fully where it is 
used. 

§ 1. FOUNDATIONS 

1.0. Introduction 

This section is concerned with the problem of what the brain does. The background 
and arguments it contains are directed towards the justification of the Fundamental 
Hypothesis (1.6). It is shown that despite the complications which arise in the early 
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processing of sensory information, this hypothesis is often valid for information 
with which the brain has to deal. The discussion proceeds by first exploring notions 
connected with the idea of eliminating information theoretic redundancy-an idea 
which has had a somewhat chequered career in neuropnysiology (see Barlow 1961 
for discussion and references). Secondly, ideas connected with biological utility are 
developed; and finally these are combined with the ideas of the first part to produce 
the philosophy from which the theory is derived. 

1.1. Information theoretic redundancy 

1.1.1. Redundancy and early processing of visual information 

The notion that the processing of sensory information is an operation designed 
to reduce the reduiIdancy in its expression is attractive, and one that is helpful for 
understanding certain aspects of early coding. For example, the coding in the optic 
nerve of relative rather than absolute brightness prevents the repeated transmission 
of the average brightness ofthe visual field. The use of on-centre off-surround coding 
there is peculiarly suitable for another reason, namely that the visual world has a 
tendency to be locally homogeneous. Given that a particular point in the visual field 
has a certain luminance and colour, the chance that neighbouring points also do is 
high. This kind of redundancy would not be present if, for example, the world was 
like scattered, multi-coloured pepper. 

The visual world has this tendency towards continuity because matter is cohesive: 
the existence of edges and boundaries is a consequence of this. It may be possible to 
view the next stages of visual processing-by the 'simple' and 'complex' Rubel 
& Wiesel (1962) cells of area 17-as a further recoding designed round the redun
dancy associated with the existence of edges, bars, and corners. The test of this is 
whether using these cells, it is easier to represent scenes from the real visual world 
than an arbitrary, peppery optic nerve input; and it probably is. 

There are many other ways in which redundancies arise in visual information. 
The next most obvious are those introduced by the operations of translation, 
magnification, and by rotation. For these operations at least, the question of what 
to do with the redundancy to which they give rise poses no great difficulties of 
principle. The brain is, for example, much less interested in where an image is on the 
retina than on the relative positions of its various parts. In this case, the clear object 
of a portion of the processing must be to recode the input, perhaps gradually, in such 
a way that relative positions are preserved. This should probably be done so that if 
two objects are seen momentarily, each in a different position, orientation, and having 
a different size, then the accuracy with which they may be compared should depend 
upon the magnitude of these differences. 

Various similar points can be made about early processing in the other sensory 
modalities; but enough has probably been said to make the two main points. They 
are first, that notions of pure redundancy reduction probably are involved in the 
early analysis of sensory information. Secondly, redundancy can occur in many 
forms. The variety is especially obvious nearer the periphery. Each form requires a 
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special mechanism to cope with it, and so, especially lower down in the brain, it is 
natural to expect a diversity of specialized coding tricks. Some of these have been 
found, and some have not. 

1.1.2. Redundancy and later visual processing 

A great deal of the redundancy in visual information arises out of the permanence 
of the world. This, which includes the tendency of matter to cohere, makes it natural 
to code for changes, and to look for common subevents, like lines, corners, and so 
forth, which concern only a small fraction of the total population of input fibres. 
Common subevtmts are often called features, and the ideas associated with the 
analysis of features are probably the most promising available concerning later 
processing. Their potential advantage is most clearly seen in the analysis of objects: 
the great hope they hold is in the possibility that objects may be recognized by 
checking for the presence of particular features. These features are imagined to be 
drawn from a central pool which is shared by all other objects, and which is not too 
large. 

This kind of scheme for later visual processing introduces five main categories of 
problem: 

(i) The discovery of the relevant feature vocabulary. 
(ii) Coding features in a suitably invariant way. 
(iii) Coding the relative positions of the features. 
(iv) Partitioning the features so that information from one object is separated 

from information about other objects. 
(v) The decision process itself. . 
'Object', in the case of visual information, has a fairly well-defined meaning, 

because of the coherence of matter; but these generalideas have a wider application. 
For example, an 'impression' of an auditory input may be obtained from its power 
spectrum: in such cases, the' objects' are less tangible. But for now, it is enough to 
consider just the special, visual case. 

Problems (i) and (v) are very general, and are dealt with later (§lA, §2, §5). 
Problem (ii) is special, and only two points about it will be made here. First, lines and 
edges are preserved by magnification, so parts of problem (ii) are automatically 
solved. Secondly, it is only necessary to localize the components of any particular 
image to an extent that will prevent their confusion with other images. The exact 
positions of the edges and corners of an object need not be retained, because the 
general restraint of cor.tinuity of form will mean that exact relative positions can 
always be recovered from a knowledge of approximate relative positions, the 
number of terminations, and approximate lengths of segments. Hence the problems 
associated with translation of an image across the retina can begin to be solved quite 
early by recoding into elements which signal the existence of their corresponding 
features within a region of a particular size. The exact size will depend upon how 
unusual is the feature. 

This in itself is of no use unless some way can be found of representing these 

138 



A theory for cerebral neocortex 171 

approximate relative positions: this is problem (iii). Fortunately, it is very easy to see 
how distance relations may be held by a codon representation (Marr 1969). The key 
is an idea of 'nearness '. Suppose {fl' ... ,in} is a collection of features, endowed with 
approximate distance relations d(ji,fj) between each pair. Suppose subsets of the 
set {fv ... , in} are formed in such a way that those features which are near one 
another are more likely to be included in the same subset than those which are not. 
Then the subsets would contain information about the relative positions of the 
ii (see Petrie 1899 for an intriguing natural occurrence of this effect). Techniques 
like multidimensional scaling can be used to recover metric information explicitly in 
this kind of situation (Kruskal 1964; Kendall 1969), but for the present purpose, it is 
enough to note that two different spatial configurations would produce two different 
subset collections. 

There is thus no difficulty of principle in the idea of analysis of shape by roughly 
localized features: but it is clear that all these techniques rely a great deal on 
the ability to pick out the components of a single shape in the first place. That is, a 
successful solution to problem (iv) is a prerequisite for this kind of solution to 
problems (ii) and (iii). This involves searching for hard criteria which will enable 
the nervous system to split up its visual input into components from different 
objects. 

The most obvious suitable criteria arise from the tendency of matter to cohere: 
they are continuity of form, of colour, of visual texture, and of movement. For 
example, most parts of a fleeing mouse are distinguished from the background by 
their movement. A solution in this case would be to have a mechanism which causes 
signals about movement in adjacent regions ofthe visual field to enhance one another, 
and to suppress information from nearby stationary objects. It is not difficult to 
devise mechanisms for this, and analogous ones for the other criteria. 

These ideas about joining visual data up using certain fixed criteria, are collec
tively called techniques for visual bonding. It would be surprising if the visual 
system did not contain mechanisms for implementing at least some kinds of visual 
bonding, since the methods are powerful, and can be innate. 

It can be seen from this discussion that although ideas about redundancy elimina
tion probably do not determine the shape of later visual processing, they are 
capable of contributing to its study. Those problems of principle ((i) and (v)) which 
arise quite quickly can and will be dealt with: the crucial point is that technical 
problems ((ii)-(iv)) will usually involve the elimination of redundancy associated 
with special kinds of transformation-perhaps specific to one sensory mode. These 
problems can either be solved by brute memory (e.g. perhaps rotation for visual 
information) or by suitable tricks, like visual bonding. The point is that these 
problems usually can be overcome somehow; and this is the optimism one needs to 
propel one to study in a serious way the later difficulties, which are genuinely matters 
of principle. 

II·2 
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1.1.3. Redundancy and information storage 

There is a quite different possible application of information theoretic ideas, and 
it is associated with the notion of coding information to be stored. It is a matter of 
everyday experience that some things are more easily remembered than others. 
Patterns are easier to recall than randomly distributed lines or dots. It cannot be 
argued that the random picture contains more information in any absolute sense, 
since the calculation of its information content depends entirely upon the norm 
with which it is compared. If the norm is itself, the random picture contains no 
information. There can be no doubt that a normal person would have to store more 
information to remember the random picture than the patterned one; but this, in the 
first instance anyway, is a remark about the person, not about the pictures. 

This illustrates the fundamental point of this section-that the amount of 
information a memory has to store to record a given signal depends upon the 
structure of the signal, and the structure of the memory. Let I be an event space, 
and let 0' be the probability distribution corresponding to the afferent signal: thus 
O'(E) , for E in I, in the probability that E will occur next. (The present crude point 
can be made ",ithout bringing in temporal correlations.) Let p be the probability 
distribution which describes what the memory expects. Then the amount of in
formation the memory requires to store 0' is 

h(O':p) = f2t -log2p(E)dO'(E). 

This expression exists if and only if 

p(E) = 0 =;,. O'(E) = o. 
h(O':p) and h(O'), the entropy of 0', are related by the following result. Assuming 
the memory can store 0', then: 

Lemma. 1(0'Ip) exists, and h(O':p) = h(O') +1(0'Ip). 

Proof. If the memory can store 0', p(E) = O=;,. O'(E) = 0, and hence 1(0'Ip) exists. 

Now h(O':p) = f -log2p(E)dO'(E) 

f{ (E)· } 
= log2 ;(E) -log2 O'(E) dO'(E) 

= 1(0'Ip)+h(0'). 

The term h(O') is inevitable, but the term 1(0'Ip) reflects the fundamental choice a 
memory has when instructed to store a signal 0'. It can either store it straight, at 
cost h(O':p), or it can change its internal structure to a new distribution, p' say, and 
store the signal relative to that. The amount of information required to change the 
structure from p to p' is at least K(Pp/), where K is the information radius (§ 0.5.3); 
but, though an expensive outlay, it can lead to great savings in the long run if p' is a 
good fit to the incoming information. 

These arguments are too general to warrant further precise development, but 
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they do illustrate the two possibilities for a memory which has to store inforn;tation: 
either it can store it raw, or it can develop a new language which better fits the 
information, and store it in terms of that. To this point, the next section § 1.2 will 
return. 

Finally, this result shows how important it is to examine the structure of a memory 
before trying to compute the amount of information needed to store any given 
signal; it would therefore be disappointing to leave it without some remarks on the 
type of internal distributions It we may expect to find in the actual brain. The 
obvious kind of answer is the distributions induced by a codon representation-as in 
the cerebellum. The reliability of a memory is measured by the number of wrong 
answers it gives when asked whether the current event has been learned. This in 
turn depends upon the number of possible input events: in cases where this is huge, 
the memory need only arrange that the proportion of wrong to right answers 
remains low. In smaller event spaces, a memory may have to represent the learned 
distribution a good deal more accurately. The first case may well correspond to the 
situation in the cerebellum and allows codons of a relatively small size: the second 
may require them to be much larger. The result relevant to this appears in § 3, but 
the situation even in the cerebellum may in fact be rather more complicated 
(Blomfield & Marr 1970). 

1.2. Concept formation and redundancy 

1.2.1. The relevance of concepts 

It was shown in § 1.1.3 that one policy available toa memory faced with having to 
store a signal is to construct for it a special language. In the present context, this is 
bound to suggest the notion of concept formation. 

It is difficult to doubt that one ofthe most important ways in which the nervous 
system eventually deals with sensory information is to form concepts with which to 
decompose and classify it. For example, the concepts chair, sun, lover, music all have 
their use in the description of the world; and so, at a lower level, do the notions of 
line, edge, tone and so forth. 

Concepts, in general, are things which ease the nervous system's task; and al
though they do this in various ways, many of these ways produce their advantage by 
characterizing (and hence circumventing) a particular source of redundancy. One 
especially important example of how a concept does this is by expressing a part or the 
whole of that which many 'things' or 'objects' have in common. This 'common' 
element may take many forms: the objects' representations by sensory receptors 
may be related; some aspect of their functions may be the same; they may have 
common associations; or they may simply have occurred frequently in the experience 
of the observing organism. 

This notion has the corollary that concept formation should be a natural conse
quence of the discovery of a large enough source of redundancy in the input generat
ing a brain's experience. For example, if it is noticed that a certain collection of 
features commonly occurs, this collection should be recoded as a new and separate 
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entity: for this new entity, special recognition apparatus should be set up, and this 
then joins the vocabulary of concepts through which the brain interprets and 
records its experience. 

Finally, concepts have been discussed as a means of formulating relationships 
between collections of other 'things', 'objects', or 'features'. This appears to rest 
upon the imprecise notions of 'thing', 'object' or 'feature': but there is in fact no 
undefinable notion present, for these can simply be regarded as concepts (or roughly, 
occurrences of concepts) that have previously been formed. This inductive step 
allows the argument to be taken back to the primitive input elements on which 
the whole structure is built; and in neurophysiology, there is no fundamental 
problem to finding a meaning for these: they are either the signals in axons that con
stitute the great afferent sensory tracts, or the features automatically coded for in 
the nervous system. 

1.2.2. Obstacles 

Something of a case can therefore be made for a connexion between concept 
formation and the coding out of redundancy, but it would be wrong to suggest this is 
all that is involved. Concept formation is a selective process, not always a simple 
recoding: quite as important as coding out redundancy is the operation of throwing 
away information which is irrelevant. For the moment however (until § 1.4) it is 
convenient to ignore the possibility that a recoding process might positively be 
designed to lose information, and to concentrate on the difficulties involved in 
recoding a redundant signal into a more suitable form. 

The general prospects for this operation are not good: this is for the same reason 
that the proofs of Shannon's (1949) main coding theorems are non-constructive. 
There exists no general finite apparatus which will 'remove redundancy' from a 
signal in a channel. Different kinds of signal are redundant in esoteric ways, and 
any particular signal demands an analysis which is specially tailored to its indi
vidual quirks. Hence the only hope for a general theory is that a particular sort of 
redundancy be especially common: a system to deal with that would then have a 
general application. Fortunately, it is likely there does exist such a form; and with 
its detailed discussion the next section is concerned. 

1.3. Problems in spatial redundancy 
1.3.0. Introduction 

The term spatial redundancy means that redundancy which is preserved by any 
reordering of the input events (of which only a finite number have occurred); 
it thus fails to take account of causal or correlative relations which hold between 
events at different times. It is the only kind of redundancy with whose detection 
this paper deals. The complications introduced by considering temporal correla
tions as well are severe, and anyway cannot be discussed without some way of 
storing temporally extended events. This requires Simple Memory theory, and must 
therefore be postponed. 
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The particular kind of spatial redundancy with which this section is concerned is 
the sort which arises from the fact that some objects look alike. This will be inter
preted as meaning that some objects share more 'features' than others, where 
'features' are previously constructed classes, as outlined in § 1.1.2. It is conjectured 
that this kind of information forms the basis for the classification of objects by the 
brain: but before examining in detail the mechanism by which it is done, some 
arguments must be presented for the general notion that something of this sort is 
possible. 

1.3.1. Numerical taxonomy 

Evidence to support this hypothesis may be derived from recent studies in auto
matic classification techniques. The most important work in this field concerns the 
use of cluster methods to compute classes from information about the pairwise 
dissimilarities of the objects concerned (Jardine & Sibson 1968). There are two 
steps to the process. The first computes the pairwise dissimilarities of the objects 
from data about the features each object possesses. For this, the information radius 
(Sibson 1969; Jardine & Sibson 1970) is used, and in the case where the features are 
of an all-or-none type (i.e. an object either does or does not possess any given 
feature), this takes a simple form. Suppose object 0 1 possesses features 11> ... , In' 
and object O2 possesses features Ir+1' ... ,Im' 1 < r < n < m. Then K(OI O 2 ), the 
information radius associated with 0 1 and O2, (regarded as point distributions), is 
simply r+(m-n), the number of features which exactly one object of the pair 
possesses. 

The second step of the classification process uses a cluster method to compute 
classes from the information radius measurements. Various arguments can be put 
forward to show that some cluster methods are greatly to be preferred to others 
(Sibson 1970 ). Unlike the measurement of dissimilarity, these have not been given an 
information theoretic background; but to do so would require a firm idea of the 
purpose of the classification. The kind of assumption one would need would be to 
require that the classification provide the best way of storing the information relative 
to some measure--for example, a product distribution generated by assigning 
particular probabilities to the individual features. There is considerable choice, 
however, and it is unlikely that any particular measure could be shown to be natural 
in any sense. 

It is not argued that any cluster process actually occurs in the brain: the impor
tance of this work to the present enquiry is more indirect, and consists of two basic 
points. The first arises out of the type of redundancy these methods detect. It is that 
the objects concerned do not have randomly distributed collections of features: 
what happens is that classes of objects exist which produce collections of features 
that overlap much more than they should on the hypothesis of randomness. This 
fact, together with some kind of convexity condition which asserts that an object 
must be included if enough like it are, is fundamental to the classifying process. 

The second point is that cluster analysis works. A large amount of information has 
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been analysed by such programs, especially information about the attributes of 
various plants. It has been found that these methods do give the classifications which 
people naturally make. This is important, for it shows that people probably use 
some process associated with the detection of this kind of redundancy for the classi
fication of a wide range of objects. The motivation for studying methods for detecting 
this kind of redundancy now becomes strong. 

1.3.2. Mountain climbing in a probabilistic landscape 

In the brain, one may expect feature detectors to exist, if the recognition of 
objects is based on this sort of analysis. If spatial redundancy (§ 1.3.0) is present 
in the input, there will exist collections of features which tend to occur together. 
This phenomenon can be given the following more picturesque description. Let the 
input fibres aI' ... , aN represent feature detectors, and let III be the set of events on 
{aI' ... , aN} (§0.4). Endow III with the distance function d, where d(E, F) = the 
number of fibres at which the eventsE andF disagree. (Ill, d) is a metric space, and in 
fact d(E,F) = K(E,F), where K is the information radius. 

Imagine the space (Ill, d) laid out, with the probability p(E) of each event E E III 
represented by an extension in a new dimension. p(E) is called the 'height' of E. 
It will be clear that if E occurs more frequently than F, p(E) > p(F) and E is higher 
than F. In this way, the environment may be regarded as landscaping the space Ill, 
in which the mountains correspond to areas of events which are frequent, and the 
valley to events which are rare. 

The important point about the choice of d for the metric on III is that nearby 
inputs (under d) possess nearly the same features. Hence if a number of inputs 
commonly occur with very similar collections of features, they will turn out as a 
mountain in (Ill, d) under p. The detection of such collections is thus equivalent to 
the discovery in the space ( Ill, d) of the mountains induced by p. The problem of 
discovering such mountains is solved in §5. Two other problems concern the choice 
of the feature detectors {av ... , aN} with which to form the space Ill; and the question 
of what exactly one does with a mountain when it has been discovered. These are 
dealt with next. The point that this section illustrates is that the mountain idea over 
the space (Ill, d) characterizes the kind of redundancy in which we are interested. 

1.3.3. The partition problem 

The prospects for discovering mountains in the space Ill, given that they are there, 
are good; but whether they are there or not depends largely on the choice of the 
feature detectors {aI' ... , aN}. There can be no guarantee that an arbitrarily chosen 
collection of features will generate a probabilistic landscape of any interest. 

The discovery of an appropriate III needs methods whereby features which are 
likely to be related are brought together. This is called the partition problem, and 
is in general extremely difficult to solve. The problem for which visual bonding was 
introduced in § 1.1.2 was an example of how special tricks can in certain circum
stances be used to solve it. 
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If no bonding tricks are known, however, the discovery of suitable spaces must 
rest upon measuring correlations of various kinds over likely looking populations of 
events. This is an operation whose rate of success depends upon the size of the 
available memory. It needs the theory of Simple Memory, and will be discussed more 
fully there. Suffice it here to say that the problem is not totally intractable despite 
the huge sizes of all the relevant event spaces. The reason is that only a very small 
proportion of the possible events can ever actually occur, simply because of the 
length of time for which a brain lives. This means, first, that the memory can be 
quite coarse; and secondly, that if anything much happens twice, it is almost certain 
to be significant. 

1.4.0. Introduction 
1.4. The recoding dilemma 

The attraction of mountains is that when applied to the correct -space, they 
provide a neat characterization of the type of redundancy which, there is reason to 
believe, is important for the classification of objects, and probably much else 
besides. The question that has now to be discussed is what to do with a mountain 
when it has been discovered. The obvious thing to do is to lump the events of a 
mountain together and call it a class. The problems arise because there is virtually no 
hope of ever saying why this is the right thing to do, using purely information 
theoretic ideas; and until this is specified, it will be impossible to say exactly how 
the lumping should be done. 

The basic difficulty is that the lumping process involves losing information
about the difference between the events lumped together. The simplest reason why 
this process might be justifiable, or even desirable, is reliability. It would be im
plausible to suppose that the interpretation of an input might fail because of the 
failure of a single fibre. Hence a recognition apparatus for the particular event X must 
admit the possibility that an input Y with d(X, Y) = lor 2 (say) should be treated 
like X. But it is only by introducing such an assumption that this kind of step could 
be made, at least within the framework of the arguments set up so far. 

1.4.1. Information theoretic assumptions of a suitable nature 

The problem about trying to develop information theoretic hypotheses to act as 
justification for ignoring the difference between two events is that from an absolute 
point of view, one might just as well confuse two events with d(X, Y) large as with 
d(X, Y) small: there is no deep reason for preferring pairs of the second sort. It is 
natural to hope that in some sense, less information is lost by confusing nearby 
events, but in order for this to be true, something has to be assumed about the way 
two events can be compared. This effectively means comparing them to one-or a 
family of-reference distributions, whose choice must be arbitrary, and equivalent 
to some statement that nearby events are related. The theory thus becomes self
defeating, and the realization that this must be so allows exactly one observation to 
be made-namely that information theoretic arguments alone can never suffice to 
form a basis for a neurophysiological theory. 
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1.4.2. Landslide 

The mountain structure of 1.3.2 depends on two things: the environmental 
probability distribution p, and the metric d. But it has been shown in 1.4.1 that the 
particular choice of d for the metric cannot be justified in any absolute way. The 
view that these mountains are important can therefore receive no support from any 
theory, based solely on ideas about storage, which does not assume that the first 
information to be thrown out is that which distinguishes the different parts of one 
mountain. In order to see how this might in fact be so, it is therefore necessary to 
return to the real world, to discover how some information may be important, 
while some may be expendable. 

1.5. Biological utility 
1.5.0. The general argument 

The question with which this section is concerned is why should it ever be an 
advantage to classify together the events of a mountain. To answer this requires a 
clear idea of what the brain classifies for: only when this is known can it be deduced 
what kind of information is irrelevant, and hence which events may be classified 
together. The answer which will be proposed is that the classifications the brain 
eventually derives are ones which allow the deduction of the presence or absence of a 
property or properties, not necessarily directly observable, from such information as 
is at the time available. The word 'property' means here a slightly generalized idea 
of a feature: that is, it includes specifications of things an object can do, or can have 
done to it, as well as, for example, the sound it makes or the colour it has. 

1.5.1. Examples 

It is helpful at this point to give some concrete instances ofthe general statement 
made above. In its purest form, it implies a simple learning device, to which in
stances of the property concerned are transmitted through one channel, while 
informationfrom which this property is to be diagnosed is conveyed through another. 
This corresponds exactly to the situation proposed for the cerebellar cortex in a 
recent theory of that structure (Marr 1969): the first channel is the climbing fibre 
input, and the second, the mossy fibres. There clearly exist stern limitations to this 
idea in any more general application, since in the cerebellar model, a property can 
only be diagnosed in conditions which are virtually a replica of a previous state in 
which the property was known to hold. It is, nevertheless, a primitive example of 
the central idea. 

The property concerned need not be the immediate implementation of a particular 
elemental movement: it might be whether or not a particular branch can support the 
weight of a particular monkey. The animal concerned clearly needs to be able to 
make this discrimination, and to be able to do so by methods other than direct 
experiment. The information available is the appearance of the branch, from which it 
is possible to produce a reliable estimate of its strength. It is supposed that the 
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animal used data obtained by direct experiment (in play during his youth), to set up 
the appropriate classification apparatus. 

These two cases illustrate the idea of a classificatory scheme designed for the 
diagnosis of properties not directly or immediately observable. It is helpful to make 
the following 

Definition. An intrinsic property is one the presence or absence of which is 
known, and which is being used to decide whether another property is present. 
The word 'intrinsic' is used for this because if a property-detecting fibre ai is in the 
support of a space over which there is a mountain, then that property is in a real 
sense an intrinsic part of the structure of the mountain. The second part of the 
definition follows naturally: an extrinsic property is one whose presence or absence is 
currently being diagnosed. These two words have only a local meaning: they are 
simply a useful way of describing which side of a decision process a particular 
property lies. 

Classification for biological utility may therefore be regarded as the diagnosis of 
important but not immediately observable properties from information which is 
easy to obtain; and although this to some extent begs the question of what is an 
important property, it, nevertheless, represents some advance. Its strength is that 
it shows what information may be lost----namely the difference between events which 
lead to a correct diagnosis of a given property. The weakness of this approach is that 
it contains no scope for generalization from situations in which a property is known 
to hold, to new situations; and therefore seems to reduce operations in the brain to a 
simple form of memory. 

1.5.2. The dichotomy 

It may fairly be said that the remarks of this and the last sections force a dicho
tomy. On the one hand, there are the attractive and elegant ideas associated with 
coding for features, and their connexion with mountains and pure classification 
theory. These have been shown to be an insufficient basis for a theory, but they 
have a strong intuitive appeal. On the other hand, there are the nakedly practical 
ideas associated with strict biological utility. These have the advantage of giving a 
criterion for what information can be ignored, but in this crude shape, they suggest a 
memorizing system which performs more or less by brute force. There is no hope 
for either of these approaches unless they can be reconciled; and ,for this task, the 
next section is reserved. 

1.6. Thefundamental hypothesis 

1.6.0. The nature of a reconciliation 

Before trying to discover how these two views may be united, one must have a 
clear idea of the nature of any statement which could bring them together. The first 
view was of a kind of classification scheme which might be used by the brain. It 
consisted of selecting regions of commonly occurring subevents in event spaces over 
a collection of feature-detecting fibres, such that the subevents selected differed 

147 



180 D.Marr 

rather little from one another. The second view suggested that the main function of 
the analysis of sensory information was to deduce properties of importance to the 
needs ofthe animal from such information as is available. These can only be recon
ciled if classification by mountain selection doe8 prove a good guide to the presence 
of important properties: to decide whether this is so, properties of the real world 
must be considered. 

1.6.1. Validity for propertie8 which are U8ually intrinsic 

Let m: be the event space on the feature-detecting fibres {aI' .. . , aN}' and let A be the 
probability distribution induced over m: by the environment. d is the natural metric 
defined in § 1.3.2. In a general input subevent, the value of each fibre will be 0, or 1, 
or will be undefined. The last case can arise, for example, in the case of visual 
information, when part of an object is hidden behind something else. In this way, a 
property which is usually observable may sometimes not be. It will now be shown 
that classes obtained by lumping together events of a mountain over (m:, d) can 
usually act as diagnostic classes for such properties. 

FIGURE 1. An illustration of the form of redundancy being discussed: the probability dis
tribution p induced by the environment over N 8 (X) has non·zero values only in Nr(X). 

Let XE m: be an event of m:, and letN,.(X) = {YI Y Em: and d(X, Y) ::::; r}. A' moun
tain' in m: might correspond to some distribution like p, where 

p,(Y) = K, 

p,(Y) = 0, 

Y EN,.(X), 

Y E~(X)\N,.(X), 

where 8 > r, r is small, and K is some positive constant. As soon as enough values of 
the ai are known to determine an event as lying within ~(X), it follows that the 
event lies within N,.(X) (see figure 1). Write Pi = probability that (ai = 1 given 
E E Nr (X)). Then if an event is diagnosed as falling within ~ (X) without knowing 
the value of ai' it can be asserted that ai = 1 with probability about Pi' This is 
useful if Pi is near 0 or 1. 

This kind of effect is a natural consequence of any mountain-like structure of 
A over m:, and allows that, in certain circumstances, these classes can be used to 
diagnose properties which are usually intrinsic. The values of ai are not necessarily 
as expected-the piece of the object that is hidden may in fact be broken off; but the 
spikier the mountain (i.e. the smaller the local variance of A), the nearer the Pi will be 
to 0 or 1, and the more certain the outcome. 
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1.6.2. Extrinsic properties 

The argument for this kind of classification is that whenever there is a tendency 
for intrinsic properties to occur together in this way, it is extremely likely that there 
will also exist other properties, perhaps not directly observable ones, which also 
generalize over such groups of events. Hence, although the reason may not at the 
time be apparent, it will be good strategy for the animal to tend to make these 
classifications. Thus later, when a property is discovered to hold for one event in a 
given class of events, the animal will be inclined to associate it with members of the 
whole class. The generalization mayor may not be found to be valid, but as long as it 
is successful sufficiently often, the animal will survive. 

One other way oflooking at this kind of generalization is to alter slightly the way 
one expresses the relevant kind of redundancy. It is equivalent to the assertion that 
once a context is sufficiently determined, one property may be a reliable indicator of 
another. The example cited earlier was of a monkey judging the strength of a 
branch. In practice, the thickness of a branch of a tree is a fairly reliable indicator 
of its strength, so that unless the branch is rotten, it will support the monkey if it is 
thick enough. Rottenness, too, can be visually diagnosed, so that a completely 
reliable assessment can be made on the basis of visual information alone. The context 
within which thickness and strength are related is roughly that the object in question 
is a branch of a tree, and is not rotten. 

This kind of relationship is common in everyday experience; so common indeed 
that further examples are unnecessary. But although the general notion ofthis kind 
of redundancy has a clear importance, it is not obvious how the details might work 
inanyparticularcase,northattheymayworkthesamewayinanytwo.Thisproblem 
must be tackled before any methods can be given for prescribing limits to the classes. 

1.6.3. Refining a classificatory unit 

The rough heuristic for picking out likely looking classes has been discussed at 
length. It was hinted that there may exist no a priori 'correct' way of assigning 
limits: where, for example, is the boundary between red and orange? The view that 
the present author takes is that although there are likely to exist fairly good general 
heuristics for class delimitation-like some kind of convexity property analogous to 
that which the cluster analysts use-there are probably no universal rules. It will 
be extremely difficult to give even these heuristics a satisfactory physical derivation: 
the kind of argument required is very indirect. But to say there exist no precise, 
generally applicable rules is merely to say that different properties have different 
relations to their indicators, and so is not very surprising. If, for example, an impor
tant extrinsic property is attached to a group of subevents, then its cessation marks 
the boundary of the class. If the property ceases to hold in a gradual way, the class 
will have problematical boundaries. This does not necessarily mean the class is not 
a useful one: the dubious cases may be rare, or may fall less dubiously into other 
classes. In any case, those falling well inside will be usefully dealt with. 
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It is therefore proposed that the exact specification of the boundaries to the 
classes should proceed by experiment. A new class is tentatively formed, upon the 
discovery of a promising mountain. If it turns out to have no attached extrinsic 
properties, it probably remains a slightly vague curiosity. If an extrinsic property 
more or less fits the provisional class, its boundary can be modified in a suitable way: 
this operation requires simple memory. If an extrinsic property is attached to it in 
no very sensible way-that is, instances of the property are scattered randomly or 
inconsistently over the class-then the class is no use as a reliable indicator, even 
with the available .scope for shifting the boundaries. This does not necessarily 
render the class useless, for the property might be one which puts the animal in 
danger, and the class may contain all inputs associated with this kind of danger. For 
example, only a few kinds of snake are dangerous, but the class of snakes includes the 
class of dangerous snakes. It may be impossible to produce a reliable classification of 
snakes into dangerous and not dangerous without classifying some of them by 
species. This requires the consideration of more information than is necessary 
for diagnosis as a snake, and may be impossible without a potentially lethal 
investigation. 

The investigation of the viability of a prospective class should probably be a very 
flexible process, drawing on the play of an animal when it is young, and upon the 
experience oflife later on. Those classes which turn out, with slight alteration, to be 
useful will survive, while those which do not will not. Provided the initial class 
selection technique is neither wrong too often, nor fails too frequently to provide a 
guess where it should, the animal will be well served; and an instinct to explore his 
surroundings should enable him to remove any important errors. 

1.6.4. The Fundamental Hypothesis 

The conditions for the success of the general scheme of classification by mountain 
selection with later adjustments can now be explicitly characterized. It will work 
whenever an extrinsic property is stable over small changes in its diagnostic intrinsic 
properties. A given extrinsic property may possess more than one cluster of intrinsic 
properties which diagnose it, but as long as this condition is satisfied within each, 
the scheme will work. If a small change in intrinsic properties destroys an extrinsic 
property, either the boundary of the class passes near that point, or this extrinsic 
property cannot be diagnosed this way. In the former case, slight boundary changes 
can probably accommodate the situation: in the latter, there are two possible 
remedies. Either instances of the extrinsic property can be learned by rote-this 
can only be successful if the relationship of the extrinsic to the intrinsic properties 
is fixed-it is in any case arduous; or the intrinsic context has to be recoded. To the 
general recoding problem, there exists no general solution (by the remarks of § l. 2.2). 

The present theory is thus based on the existence of a particular kind of redun
dancy, not because it is redundancy as such, but because it is a special, useful sort. 
This is expressed by the following Fundamental Hypothesis: 

Where instances of a particular collection of intrinsic properties (i.e. properties 
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already diagnosed from sensory information) tend to be grouped such that if some are 
present, most are, then other useful properties are likely to exist which generalize over 
such instances. Further, properties often are grouped in this way. 

§2. THE FUNDAMENTAL THEOREMS 

2.0. Introduction 

The discussion has hitherto been concerned with the type of analysis which may 
be expected in the brains of sophisticated living animals. It was suggested that an 
important aspect of the computations they perform is the induction of extrinsic 
from intrinsic properties. This conclusion introduces three problems: first, collec
tions offrequent, closely similar subevents have to be picked out. The Fundamental 
Hypothesis asserts that it is sensible to deal with such objects. This problem, the 
discovery problem, is dealt with in §5. Secondly, once a sub event mountain has been 
discovered, its set of sub events must be made into a new classificatory unit: this is 
the representation problem, and is dealt with in § 4. Finally, on the basis of previous 
information about the way various extrinsic properties generalize over these 
collections of subevents, it must be decided whether any new subevent falls into a 
particular class. This is the diagnosis problem, and is dealt with now. 

2.1. Diagnosis: generalities 

A common method for selecting the hypothesis from a set (Qv ... , Qn) which best 
fits the occurrence of an event E, is to choose that Qi which maximizes P(EIQi). 
Such a solution is called the maximu~ likelihood solution, and is the idea upon 
which the theory of Bayesian inference rests (see e.g. Kingman & Taylor 1966, 
p. 274, for a statement of Bayes's theorem). This method is certainly the best for the 
model in which it is usually developed, where the Q i may be regarded as random 
variables, and the conditional probabilities P(EIQi)' for 1 ~ i ~ n, 'are known. The 
maximum likelihood solution will, for example, show how, and at what odds, one 
would have to place a bet on the nature of E in order to expect an overall profit. It is 
of course important to know all the conditional probabilities; and if the Q i are not 
independent, various complications can arise. 

The situation with which the present theory must deal is different in several 
ways, of which two are of decisive importance. First, the prime task of the diagnostic 
process is to deal with events Ej which have never been seen before, and hence for 
which conditional probabilities P(EjIQi) cannot be known. It will further often be 
the case that E j occurs only once in a brain's lifetime, yet that brain may correctly 
be quite certain about the nature of E j • 

Secondly, the prior knowledge available for inferring that Ej is (say) an Q i comes 
from the Fundamental Hypothesis. That is, the knowledge lies in the expectation 
that if Ej is 'like' a number of other Ek , all of which are an Qi' then Ej is probably 
also an Qi. This does not mean that P(EjIQi) is likely to be about the same as 
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P(Ekl.Qi ): frequency and similarity are quite distinct ideas. Hence if the :Funda
mental Hypothesis is to be used to aid in the diagnosis of classes-the assumption on 
which the present theory largely rests-then that diagnosis is bound to depend upon 
measurements of similarity rather than upon measurements of frequencies. 

The analysis of frequencies of the events Ej is therefore relatively unimportant in 
the solution of the diagnosis problem; but it is of course extremely important for the 
discovery problem. The prediction that a particular classificatory unit will be useful 
rests upon the discovery that subevents often occur which are similar to some 
fixed subevent: the role of frequency here is transparently important. But when the 
new classificatory unit has been formed, diagnosis itself rests upon similarity alone. 

An example will help to clarify these ideas. The concept of a poodle is clearly a 
useful one, since animals possessing most of the relevant features are fairly common. 
Further, a prize poodle is in some sense a poodle par excellence, and is as 'like' a 
poodle as one can get; but it is also extremely rare. The essential point seems to be 
that in a prize poodle are collected together more, and perhaps all, of the features 
upon which diagnosis as a poodle depends (or ought, in the eyes of poodle breeders, 
to depend). 

These arguments imply that for the diagnosis of classificatory units by the brain, 
Bayesian methods are probably not used. Conditional probabilities of the form 
P(EI.Q) are thus largely irrelevant. The important question, when trying to decide 
whether E is an.Q, is how many of the events like E are definitely known to be an .0. 
The computation of this raises entirely different issues. 

2.2. The notion of evidence 

The diagnosis of an input requires that an informed guess be made about it on the 
basis of the results for other inputs. If, for example, the present input E (say) has 
already occurred in the history of the brain, and has been found to deserve classifica
tion in a particular class, then its subsequent recognition as a member of that class is 
strictly a problem of memory, not of diagnosis. On the other hand, E may never have 
occurred before, though it might be that all E's neighbours have occurred, and have 
been classified in a particular way. The Fundamental Hypothesis asserts that this is 
good ground for classifying E in the same way. 

The existence of an event similar to E, and known to be classified as, say, an.Q, 
therefore constitutes evidence that E should also be classified as an .0. It will be clear 
that the more such events there are, the stronger the case for classifying E as an .0. 

It is appropriate to make two general remarks about evidence. The first concerns 
the absolute weight of evidence provided by .Q-classified events at different dis
tances from E. Any theory must allow that for some categories of information, 
nearby events consitute strong evidence, whereas for others, they do not. Diagnoses 
within different categories will not necessarily employ the same weighting functions 
in the analyses of their evidence. 

The second point about evidence concerns its adequacy. It may, for example, 
never be possible to diagnose correctly the class or property on the basis of evidence 
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from events on the fibres {aI' ... , aN}: they simply may not contain enough informa
tion. On the other hand they may contain irrelevant information, whose effect is to 
make the classifying task appear to be more difficult than it really is. This observa
tion emphasizes the importance of picking the support of the mountain correctly. 

The requirements of the diagnostic system can now be stated. It must: 
(i) Operate only over a suitably chosen space of sub events (suggested by the 

Simple Memory). This space is called the diagnostic space for the property in 
question, Q. 

(ii) Record, as far as condition (iii) requires, which events of the diagnostic 
space have hitherto been found to be Q's or not to be Q's. 

(iii) Be able, given a new event E, to examine events near E, discover 
whether they are Q's or not, apply the weighting function appropriate to the 
category of Q, and compute a measure of the certainty with which E itself may 
be diagnosed as an Q. 

The three crucial points now become: 

P 1. How is the evidence stored? 
P 2. How is the stored evidence consulted? 
P 3. What is the weighting function (of (iii))? 

The solutions to these which are proposed in this paper are not unique, but it is 
conjectured that they are the solutions which the nervous system actually uses. 
The key idea is that of an evidence junction, which will in practice turn out to be a 
subset detector analogous to a cerebellar granule cell. The three points are resolved 
in the following way: 

PI. Evidence is stored in the form of conditional probabilities at modifiable 
synapses between 'evidence function' cells and a so-called 'output cell' for Q, 

(eventually identified with a cortical pyramidal cell). 
P2. Evidence is consulted by applying an input event E, which causes evidence 

cells relevant to E to fire. The output cell then has active afferent synapses only from 
the relevant evidence cells. The exact way in which it deals with the evidence is 
analysed in §2.3. 

P 3. The weighting function comes about because nearby events will use over
lapping evidence cells, just as very similar mossy fibre inputs are translated into 
firing in overlapping collections of cerebellar granule cells. The exact size of subset 
detector cells used for collecting evidence depends upon the category of Q: recogni
tion of speech may, for example, require a generally higher subset size than the 4 or 5 
used in the cerebellar cortex. 

Let I be the diagnostic space for Q, and let c be a function on I which takes the 
value 0 or 1. c may, for example, be a detector of the subset A' of input fibres, in 
which case, for E in I, c(E) = 1 if and only ifthe event E assigns the value 1 to all the 
fibres in the collection A'; but c can in general be any binary function on I. Let 
P(Q/c) denote the conditional probability (measured in the brain's experience so 
far) that the input is an Q given that c = 1. 

12 Vol. 176. B. 
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Definition. The pair (c, P(Qlc) is called the evidence for Q provided by the 
evidence function c. 

The most important evidence functions are essentially subset detectors, (justi
fied in §4.2.1), and it is convenient to give these functions a special name. 

Definitions. (i) For all E in I, let c(E) = 1, if and only if E(ai ) = 1, 1 ~ i ~ r < N. 
In this case, c is called an r-codon, or r-codon function, and is essentially a 
detector of the subset {a}> ... , ar} ofthe input fibres. 

(ii) For all E in I, let c(E) = 1 if and only if at least (J of 

E(ai ) = 1, 1 ~ i ~ R < N. 

In this case, c detects activity in at least (J of the R fibres {aI' ... , aR }, and is 
called an (R, (J)-codon. 

The larger subset size, the fewer events E exist which have c(E) = 1, and so the 
more specifically c is tied to certain events in the space I. Let III denote the number 
of events in I, and let K be the number of events E in I with c(E) = 1: then the 
fraction KIIII is called the quality of the evidence produced by c in I. The qualities of 
various kinds of codon function are derived in § 3.2. 

2.3. The diagnosis theorem 

The form of evidence has now been defined, and the rules for its collection have 
been set out. The information gained from the classification of one event, E, has 
been transferred to its neighbours in so far as they share subsets with E, and the 
subsets can be chosen to be of a size suitable for information of the category con
tainingQ. Thus problems P 1 and P3 of §2.2 have been solved in outline: the details 
are cleared up in §§ 3 and 4. It remains only to discover the exact nature of the 
diagnostic operation: that is, to see exactly what function of the evidence consulted 
about E should serve as a measure of the likelihood that E is an D. 

The problem may be stated precisely as follows. Let (f = {(ci , P(QICi)}~l be the 
collection of evidence available for the diagnosis of Q over the space of events I. 
Let E be an event in I, and suppose 

ci(E) = 1 (l~i~k), 

ci(E) = 0 (k < i ~ M). 

That is, the evidence relevant to the diagnosis of E comes only from the functions 
c1 , ••• , Ck' and is in the form of numbers P(Qlc1 ), ... , P(Qlck ). The question is, what 
function ofthese numbers should be used to measure how certain it is that E is anQ 1 
The answer most consistent with the heuristic approach implied by the Fundamental 
Hypothesis is that function which gives the best results; this may be different for 
different categories. But a general theory must be clear about basic general 
functions if it can, and an abstract approach to this problem produces a definite 
and simple answer. 

Suppose that, in order to obtain some idea of what this function is in the most 
general case, one assumes nothing except that E has occurred, and that the relevant 
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evidence is available. Then E effectively causes k different estimates of the proba
bility of Q to be made, since k of the Ci have the value one, and P(Qlci = 1) is the 
information that is available. That is, E may be regarded as causing k different 
measurements of the probability that Q has occurred. The system wishes to know 
what is the probability that Q has actually occurred; and the best estimate ofthis is 
to take the arithmetic mean of the measurements. This suggests that the funotion 
which should be computed is the arithmetic mean of the probabilities constituting 
the available, relevant evidence; in other words, that the decision function, written 
P(QIE) has the form 

The conclusion one may draw from these arguments is that if one takes the most 
general view, assuming nothing about the diagnosis situation other than the 
evidence which E brings into play, then the arithmetic mean is the function which 
measures how likely it is that E is an Q. The diagnosis theorem itself simply gives 
a formal proof of this. The meaning of the result is discussed in 2.4. 

Lemma (Sibson 1969). Let T; be a random variable which takes the value 0 with 
probabilityqi' and 1 withprobabilitYPi = (I-qi),for 1 ~ i ~ l.LetTbeanother 
such variable, with corresponding probabilities q and p. Let p, q be chosen 

I I 

to minimize ~ I(T;IT), and let Po = (I/l) ~ Pi' Then P = Po' and is unique. 
i= 1 i= 1 

Proof. Let Po + 1, + 0, and let To be its corresponding binary valued random 
variable. 

~I(T;IT) - ~I(T;ITo) 
i i 

= ~Pi log2Pi/p + ~qi log2 qi/q - ~Pi log2Pi/Po - ~qi log2 qi/qo 
iii i 

Hence ~I(T;IT) = ~I(T;ITo)+lI(ToIT) 
i i 

and I is always ~ O. Thus ~I(T;IT) ~ ~I(T;ITo), 
i i 

equality occurring only when I(ToIT) = 0, i.e. when T = To. Hence the minimum 
value of ~I (T; I T) is achieved uniquely when P = Po' 

i 

Diagnosis theorem. Let Q be a binary-valued random variable, and let PI> ... , Pk be 
independent estimates of the probability P that Q = 1. Then the maximum likeli
hood estimate for p is Po = (I/k) ~Pi' 

i 

Proof. The estimate Pi of P may be regarded as being made through noise whose 
effect is to change the original binary signal Q, which has distribution (p, I-p), into 
the observed binary random variable Ti (say), with distribution (Pi' I-pi)' The 
information gain due to the noise is I(T;IQ). Hence that value of P which attributes 

12-2 
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least overall disruption to noise, and is therefore the maximum likelihood solution, 
is the one which minimizes ~I(1iIQ). By the lemma, P is unique and equals Po, the 

i 

arithmetic mean of the Pi' 
This result applies when the Pi are independent, or are so to speak symmetrically 

correlated. For example, if T1, ••• , Tk - 1 are independent, but Tk = Tk- 1, the result is 
clearly inappropriately weighted towards Tk - 1 . On the other hand, if k is even, and 
Tl = T2 , T3 = T4 , ••• , Tk- 1 = Tk, this is not harmful. The general condition is compli
cated; but if c1 ' c2, ... , CM form a complete set of r-codons over the fibres {aI> ... , aN}' 
or a large random sample of such r-codons, then they are symmetrically correlated 
in the above sense. 

P = Po gives the best single description of PI> ... , P k in the sense that it minimizes 
~I(1iIT). The diagnosis theorem deals with a situation in fact rather far removed 
i 

from the real one, and the next section is concerned with reservations about its 
application. It is not clear that any single general result can be established in a 
rigorous way for this diagnostic situation. 

2.4. Notes on the diagnosis theorem 

The key idea behind the present theory is that the brain decomposes its afferent 
information into what are essentially its natural cluster classes. The classes thus 
formed may be left alone, but are likely to be too coarse. They will often have to be 
decomposed still further, until the clusters fall inside the classes which in real life 
have to be discriminated; and they will often later have to be recombined, using, for 
example, an 'or' gate, into more useful ones, like specific numeral or letter detectors. 
These various operations are of obvious importance, but the basic emphasis of this 
approach is that the natural generalization classes in the naIve animal are the 
primary clusters. Diagnosis of a new input is achieved by measuring its similarity to 
other events in a cluster, and the similarity measure P of § 2.,3 is proposed as suitable 
for this purpose. Its advantages are that it can be derived rigorously in an analogous 
situation in which the Ci are proper random variables; and that the result does not 
absolutely require that the Ci be independent. Moreover, the conditions under which 
dependence between the ci is permissible (the 'symmetric' correlation of §2.3) 
include those (when the Ci are a large sample of r-subset detectors) which resemble 
their proposed conditions of use (§ 4). 

Nevertheless, the inference that if P(QIE) is sufficiently high, then E is probably 
an Q, rests upon the Fundamental Hypothesis. This observation raises a number of 
points, about the structure of the evidence functions, and about ways in which 
exceptions to the general rule can be dealt with. The various points are discussed in 
the following paragraphs. 

2.4.1. Codonsfor evidence 

The validity of the statement that a high P(QIE) implies that E is an Q rests upon 
the structure of the evidence functions used to obtain P. The neural models of §4 
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employ codons (i.e. subset detectors), but their physiological simplicity is not their 
only justification. In § 4.2 it is shown, as far as the imprecision in its statement allows, 
that the Fundamental Hypothesis requires the use of rather small subset detectors 
for collecting evidence. It is not clear that advantage can at present be gained by 
sharpening the arguments set out there. 

2.4.2. Use of evidence of approximately uniform quality 

The reason for using functions ci over I at all, rather than simply collecting evidence 
with fibres ai' is that the untransformed aj would often not produce evidence of 
suitable quality. It may be possible simply to use fibres, especially for storing 
associational evidence (see § 2.4.5); but it is probably also often necessary to create 
very specific codon functions giving high quality evidence for very selective classi
ficatory units. This process must involve learning whenever the classes concerned 
are too specialized for much information about them to be carried genetically. 

The quality of a piece of evidence is a measure of how specific it is to certain events 
in the diagnostic space I. In general, a given diagnostic task will require discrimina
tions tobe made above a minimum value p (say) of 'P, and the quality of the evidence 
used will have to be sufficient to achieve such values of 'P. The higher the quality of 
the evidence, the more there has to be to provide an adequate representation of I; 
and hence economy dictates that evidence for a particular discrimination should 
have as poor a quality as possible, subject to the condition on 'P. Evidence of less 
than this minimal quality will serve only to degrade the overall quality, and so must 
be excluded. Hence, evidence should tend to have uniform quality. Mixing evidence 
·of greatly different qualities is in general wasteful. 

This condition is satisfied by the models of § 4, where evidence is provided by 
(R, O)-codons, and most of the evidence for a single classificatory unit has the same 
values of Rand O. 

2.4.3. Olassifying to achieve a particular discrimination 

The quality of evidence function for a particular classificatory unit depends upon 
the minimum value p of 'P which is acceptable for a positive diagnosis, and this in 
turn will depend on how fine are the local discriminations which have to be made. 
The size ofthe clusters diagnosing the numeral '2' (say) in the relevant feature space 
.depends upon the necessity for discriminating' 2' from instances of other numerals 
and letters. The usual condition is probably that the part of the diagnostic space 
(over the relevant features) occupied by instances of a '2' must be covered by 
clusters contained wholly in that part. This condition fixes the minimum permissible 
value of p for diagnosis of a '2', which in turn fixes the subset sizes over any given 
.diagnostic space. There may however be important qualifications necessary about 
this approach: the observations of §§ 2.4.4 and 2.4.5 can seriously affect the value 
.of p. 
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2.4.4. Evidence against D 

P will be most successful as a measure for diagnosis when the properties being 
diagnosed are stable over small changes in the input event. As E moves away from 
the centre of an D-cluster in the diagnostic space I, the values of P(Dlc) where 
c(E) = 1 gradually decrease, and P decreases correspondingly. Provided these 
things happen reasonably slowly, all the remarks about symmetrical correlations 
of the evidence functions will hold in an adequate fashion. 

The possibility must, however, be raised that within a general area of I which tends 
to give a diagnosis of D, there exist special regions in which for some reason, Q does 
not hold. Provided the region in which D does not hold is itself a cluster within the 
larger .a-cluster, this state of affairs is not inconsistent with the Fundamental 
Hypothesis. This contingency can be dealt with in the same way as the diagnosis 
of D, by collecting evidence for' not D' -evidence against D-within either I, or a 
space related to I. The form of the analysis is exactly the same as for D, except that 
the classificatory unit for' not D' must be capable of overriding that for D. It is of 
course important for the successful diagnosis of D that diagnostic spaces for D and 
for' not D' should both be appropriate, and both have evidence functions of suitable 
quality: but the mechanism which discovers the diagnostic space I for D can clearly 
be used to discover the appropriate space for 'not D '. 

It is interesting that this situation corresponds exactly to one proposed for the 
primary motor cortex. It has been suggested by Blomfield & Marr (1970) that the 
superficial cortical pyramidal cells there detect inappropriate firing of deep pyra
midal cells. They presumably detect clusters in information describing the difference 
between an actual and an intended movement. These clusters in effect correspond to 
the need for deletion of activity in certain deep pyramids (an instance of the 
Fundamental Hypothesis), and the superficial pyramids cause the deletions to be 
learned in the cerebellar cortex. This distinction between the classes represented 
by deep and superficial cortical pyramidal cells may well not be restricted to area 4. 

2.4.5. Competing diagnoses and contextual clues 

It is often the case that a single retinal image could originate from two possible 
objects, yet contextual clues leave no doubt about which is the true source, and that 
source is the only one which is experienced. Such circumstances demonstrate the great 
importance of indirect information to the correct diagnosis of a sensory input. The 
present theory contains three ways by which such information may affect a diagnosis. 

First, contextual information-for example, concerning the place one is in-may 
be included in the specification of the diagnostic space for D. There presumably 
exist classificatory units in one's brain for the places in which one commonly finds 
oneself, and other units which describe less common locations more pedantically: 
and these probably either fire all the time one is in the appropriate location, or 
(roughly) fire whenever other parts of the brain' ask' where one is. Such information 
may be treated like more conventional sensory input. 
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Secondly, diagnostic criteria within categories can be relaxed by changing p. It is 
analogous to the ideas proposed in explanation of the collaterals of the cerebellar 
Purkinje cells (Marr 1969; Blomfield & Marr 1970). A priori information is some
times available which makes units in one category more likely to be present 
following the diagnosis of units in another. In such cases, a general relaxation 
of the minimum acceptable value p of 'P over the relevant category will be appro
priate. 

Thirdly, and perhaps most important, is the matter of' associational' contextual 
information. No additional theory is required, since such information can be treated 
as evidence in the usual way. It is probably for this kind of information that 
evidence functions are least often needed: direct assooiation of classificatory unit 
detectors (cortical pyramidal cells) will often be adequate. The matter is touched 
on in §4.1.8, and dealt with at more length in Marr (1971, §2.4). 

2.4.6. General remarks about 'P 

The direct technical importance of the Fundamental Hypothesis to the applica
tion of the results of the diagnosis theorem raises the wider issue of the extent to 
which one can feel justified in applying information-theoretic arguments to the kind 
of situation with which the diagnosis theorem deals. The Fundamental Hypothesis 
simply summarizes the view that clusters are useful. This is a heuristic approach, 
and it is not obvious that the diagnosis problem deserves any better than a heuristic 
approach itself. It probably matters rather little exactly what measure of similarity 
or fit is used: the redundancies on which the success of the system depends are so 
gross that there is probably more than one working alternative to 'P. 

If this is so, the diagnosis theorem loses much ofits importance as a derivation of 
the' correct' measure, since there may be no genuine sense in which any measure is 
correct, as long as it has a certain general form. The measure 'P does however seem 
intuitively plausible, and the reader may be happy to accept it without much justi
fication. Theorem 2.3 is the best argument this author has discovered in its support; 
but it is not binding. 

The measure 'P can be given a direct meaning in terms of the events of I. Let 
Ii be the set of events E of I with ci(E) = 1. Then P(DI ci ) is the probability that if an 
an event of Ii occurred, it was an D. Suppose that I is the set of all events of size L on 
the fibres {aI' ... , aN}, and that the evidence functions CI , ... , cM are the set of all 
r-codons. Let F be the new input event of I, which must be diagnosed; and let E 
be an arbitrary event of I. Write d(E, F) = x, d being the usual distance function 
of § 1.2. 

The number of r-subsets which E and F share is (L~x), taking (;) to be zero 

when y < z. Hence the weighting function which describes the 'influence' of E on 
the diagnosis of F is 
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Thus the arithmetic mean obtained by the theorem of §2.3 is 

~ i\(E) (L-X)j(L) 
EinOC r r 

P(.oIF) = EanQ (L-) (L)' 
E~OC i\(E) r x / r 

where i\ is the probability distribution induced over I hitherto by the environment. 

2.5. The interpretation theorem 

The diagnosis theorem 2.3 was concerned with the diagnosis of the property.o 
over the diagnostic space I on fibres {at, ... , aN}. The events E in this situation 
specify the values of all the fibres {at> ... , aN}; but it will frequently occur in practice 
that some values of the aj will be undefined, and a decision has to be made on the 
basis ~f incomplete information. The problem is that this will mean that many of the 
evidence functions Ci are also undefined, thus leaving little if any evidence actually 
accessible to the input in question. For example, suppose a recognition system has 
been set up for a particular face: then a pencil sketch of that face can be recognized 
as such, even though much information-the colour of the eyes, skin, hair and so 
forth-is missing. Such a sketch can itself be analysed and set up as a new classifi
catory unit if that seems useful, and the mechanics of this process are the same as 
for the original. But this is a notion quite separate from the idea that the sketch is in 
some way related to the original face, and it is this idea with ~hich the present 
section is concerned. The crux of the relationship is that the original face is the one 
which in some way best relates the sparse information contained in the features 
presented by the sketch. The result which follows characterizes this relationship 
precisely. 

I, as usual, is the event space on {at, ... , aN}. Let X be a subevent of I which 
specifies the values of (say) at> ... , ar for some r < N. Then the event E in I is a 
completion of X, written E f- X, if 

(i) E specifies the values of all ai' 1 ~ i ~ N, 
(ii) E(ai ) = X(ai ) where X(ai ) is defined. 

Let ° = {Cill ~ i ~ M} be the set of functions on I which provide evidence for the 
diagnosis of .0. Since X is not a full event of I, ci(X) is undefined (1 ~ i ~ ..elf). 
Now there clearly exists a sense in which cJX') might be defined: for example, 

either 

or 

Ci (E) = 1 for all E in I such that E f- X, 

ci(E) = 0 for all E in I such that Ef-X; 

but such a circumstance is eYceptional, and cannot be relied upon to provide ade
quate diagnostic criteria. 

Let {Et, ... , E K} be the set of all completions of X in I. Then clearly if P(.o I Ei ) has 
the same value, q, for alII ~ i ~ K, there are strong grounds for asserting that on the 
basis of the evidence from 0, the estimate for P(.oIX) is also q. This result is a 
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special case of the following theorem. If P(QIX) denotes the maximum likelihood 
value of the probability of Q given X, taken from the evidence, P(QIE) denotes the 
estimate arrived at in the diagnosis theorem, and P(EiIX) is a conventional con
ditional probability, then we have the 

Interpretation theorem. Let X be a subevent of x with completions E1, ... , EK . 

Then K 

P(QIX) = ~ P(QIEi)P(EiIX), 
i= 1 

and is unique. 

Proof. The argument is similar to that of the diagnosis theorem. Let ~ (X) be a 
binary-valued random variable such that ~(X) = 1 with probability P(QIEi) = Pi 
(say), for each i, 1 ~ i ~ K. Let P(QIX) correspond to a binary-valued random 
variable T where T(X) = 1 with probability p. Then each completion Ei of X 
corresponds to an estimate Pi of p, and P(EiIX) specifies the weight to be 
attached to this estimate. Hence by the same argument as that of the theorem 2.3, 
the maximum likelihood solution for T is that which minimizes 

K 

~ P(EiIX)J(T,;IT). 
i=l 

By an extension of the argument of the lemma 2.3., the value of p which achieves 
this is unique, and is K 

p = ~ P(EiIX) Pi. 
i= 1 

K 
Hence P(QIX) = ~ P(QIEi)P(E.IX), 

i=l 
and is unique. 

Remarks. In general, no information about P(EiIX) will be available, so that 
P(QIX) will usually be the arithmetic mean of P(QIEi) over those Ei I- X. 

This theorem shows that incomplete information should be treated in a way which 
looks like an extension of the methods used for complete information, and the 
reservations of §2.4 apply equally here. The result does, however, have the satis
fying consequence that the models of §4 designed to implement the diagnosis 
theorem automatically estimate the quantity derived in the interpretation theorem 
when presented with an incompletely specified input event. 

§ 3. THE CODON REPRESENTATION 

This section contains the technical preliminaries to the business of designing the 
concrete neural models which form the subject of the next. The results are mainly of 
an abstract or statistical nature, and despite the length of the formulae, are essen
tially simple. 

3.1. Simple synaptic distributions 

Let ~1' ~2 be two populations of cells, numbering Nl and N2 elements respectively. 
Suppose axons from the cells of ~l are distributed randomly among the cells of ~2 in 

161 



194 D.Marr 

such a way that a given cell C1 E ~l sends a synapse to a given cell c2 E ~2 with 
probability Z12' Z12 is called the contact probability for ~l ~ ~2' 

If L of the cells in ~l are firing, the probability that a given cell c2 E ~2 receives 
synapses from exactly r active cells in ~l is 

(~) z12(1- Z12)L-r. (3.1.1) 

Hence the probability that c2 receives at least R active synapses is X where 

X (R, L, Z12) = ~ (L) z12( 1 - Z12)L-r 
r;;:R r 

(3.1.2) 

X(R, L, Z12) is called the formation probability for ~l ~ ~2' 
Suppose the cells of ~2 receive synapses from no cells other than those of ~l and 

that they have threshold R. The probability that exactly 8 cells in ~2 are caused to 
fire is 

(3.1.3) 

Hence the probability that at least S fire is 

~ 2 XS(l-X)N2-S. N, (N.) 
s=s 8 

(3.1.4) 

It is of some interest to know how well represented the L active cells of ~l are by 
the cells of ~2 which they cause to fire. For most purposes, and all with which this 
paper is concerned, it is sufficient that any change in the cells which are firing in ~l 
should cause a change in the cells of ~2' This is in general a complicated question, 
but a simple and useful guide is the following. Suppose the L cells of ~1 cause 
exactly R synapses to be active on each of S cells of ~2' Then the probability that at 
least one of the L active cells in ~l sends a synapse to none of the active cells in ~2 is 
(l-RjL)s.1f RjL is small, this is approximately 

(3.1.5) 

3.2. Quality of evidence from codon functions 

Codon functions, introduced in § 2.2, are associated with particular subsets of the 
input fibres in the sense that knowledge of the values of the fibres in a particular 
subset is enough to determine the value of the codon function. The larger the subset, 
the smaller the number of events at which the function takes the value 1, so the 
more specific that function is to any single event. Hence the general rule that r-codon 
functions provide better evidence the larger the value of r. This point is illustrated by 
the discrimination theorem which follows, and by various estimators of the quality 
of evidence to be expected from a codon function of a given size. 
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It is convenient to use the event space I on fibres {at, ... , aN} such that in each 
event of I, exactly L of the fibres ai have value 1. The set of such events is called the 
code of size L on {at, ... , aN}' This involves no absolute restriction, but enables one to 
deal only with codon functions which assign the value I to all the fibres in their parti
cular subsets, rather than allowing any arbitrary (but fixed) selection of O's and I's. 

Let I be the code of size L on {at, ... , aN}' and let 3 be a set of events of I-for 
example, 3 may be the set of events with the property Q. Let ~r be the collection of 
all subsets of {at> ... ,aN } of size r. 

Definition. ~r discriminates 3 from the rest of I if given X E I, X ¢3, there exists 
a subset 0 E ~r such that 0 ~ X but 0 $ Y, for any Y E 3. 

Theorem. Let 3 eI; then there exists a unique integer R = R(3) such that ~r 
discriminates 3 from I, all r ~ R. 

Proof. If ~r discriminates 3 from I, any ~" s. t. ~r ~ ~r also discriminates 3 from 
I. If3 can be discriminated by ~r' then 3 can be discriminated by ~r+t' some set 
~r+t of (r+ I)-subsets, since there will exist a set ~r+1 of (r+ I)-subsets the set of 
whose r-subsets contains ~r' Finally, 3 is always discriminated by ~L = {EIE E I}. 
Hence there exists a unique lower bound R s.t. 3 is discriminated from I by all ~r for 
r ~R. 

This shows that for a given discrimination task, 3 from I, for which codon funct
ions are to be used, the codons must be bigger than some lower bound R which 
depends on 3. 

Definition. R is called the critical codon size for 3, and is written Rent. 
An a priori estimate of the likely value of the evidence obtained from a codon can be 

made by examining the number of events of various kinds over which the codon takes the 

value 1. Let Xbethe code ofsizeL on {ai' ... , aN}: X contains (~) events. Let A denote the 

uniform probability distribution over X: i.e. A(E) = I / (~), all E EX; and for tr s; X 

write A(m = ~ A(E). Then Am) simply measures the number of events in tr. 
Ee'iJ 

The following results are useful. 
3.2.1. Each input fibre is involved in LIN of the events in X (under the distribution A). 
3.2.2. Let tr = {EI (L -IE n FI) < p} where F is some fixed event of X, and p is a positive 

integer. That is, tr is the p.neighbourhood of F. Then the number of events in tr is related to 

(N)-1 e, ( L ) (N -L) 
Am) = L x~o L-:r: x . 

3.2.3. Now suppose c is an R·codon corresponding to an R-subset of the event F of 
§3.2.2. The number of events E such that EE tr (of 3.2.2) and c(E) = I is related to 

Am n~) = (~rl x~o (L:~~X) (N ;L), 
where ~ = {EI c(E) = I}. 

3.2.4. A(~) = (~) -1 (~~:) , c an R-codon. 

3.2.5. Suppose tr, the p-neighbourhood of F, is a diagnostic class of X for which the 
R-codon c (corresponding to a subset of F) is used to calculate evidence. Let Q be the 
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property of being in ~: then the value of P(Qlc) that would be generated by the uniform 
distribution A over X is given by 

Amn<t) = (N-R)-l £ ( L-R ) (N-L) = 
A(<t) L-R x=o L-R-x x PR say, 

where c is an R-codon_ Provided p is such that 

(N-L) P is large compared to (N-L) 
p-l 

(that ispis smaller than say !(N -L),PR OS;; PR+lifp OS;; (N -L)(L-R)j(N -R): sothatfor 
the simple case where the diagnostic class is a p-neighbourhood of some event F, increasing 
the codon size will, under any likely conditions, increase the expected quality of the 
evidence. 

3.2.6. In the more complicated case where c is an (R, OJ-codon intersecting F in exactly 
S elements, we have 

Min¥!,L) (R) (N -Ii)--------
x=8 x L-x 

§4. THE GENERAL NEURAL REPRESENTATION 

4.0. Introduction 

This section is concerned with the design of neural models for implementing the 
theorems of § 2. It is assumed that the exact nature of the classificatory units 
required has already been decided: only the representation problem is dealt with 
here. The discovery and refinement of new classificatory units is postponed until 
§5, where it is discussed within the context of the models developed now. 

The central difficulty with producing neural models for a specific function is that 
there are many ways of doing the same thing: although the crucial averaging 
operation probably has to be performed at exactly one cell, there are many ways in 
which the supporting structure may vary. Both the form of the evidence, and the 
exact conditions under which it is used, are undefined; so the rigorous derivation of 
the basic neural models cannot proceed very far. This does not, however, commit the 
discussion to unredeemed vagueness. The injection at strategic points of a little 
common sense allows enough precision in the models to make their comparison in 
§6 with the known histology of non-specific cerebral neocortex a useful venture. 

4.l. Implementing the diagnosis theorem 

4.1.1. Diagnosis by a single cell 

Theorem 2.3 suggests that the best estimate of the likelihood that a given event 
fa.lls within a particular class is achieved by taking the average of the conditional 
probabilities offered by the relevant evidence. Suppose first that this operation is 
carried out by a single cell called the output cell: the arguments for this appear in 
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§4.1.7. Let n be the cell in question, and Q its associated property. n receives 
afferent synapses from each of the evidence function cells c i (cells which emit a 
signal-usually a burst of impulses-if and only if the input event E satisfies 
ci(E) = 1). It is assumed that the strength of the synapse from the cell ci for Ci to 
n depends linearly on P(Qlci ). If, for Q, the number of evidence functions Ci with 
Ci (E) = 1 is independent of E, n has simply to add the values of P(Qlci ) for which 
ci (E) = 1 since 

M M 

P(QIE) = ~ k-lCi(E)P(Qlci)cc ~ ci(E)P(Qlci ) 
i~l i~l 

if k is independent of E. That is, n has simply to add the weights of all the synapses 
from currently active evidence cells, and signal the result. It is easy to ~magine that 
the firing rate of the cell n should vary monotonically with the value of this sum. 

The theory therefore requires that the strength of the synapse from Ci to n should 
depend linearly upon nl nil where nl = the number of times ci = 1 and a positive 
diagnosis was achieved, and n 2 = the number of times ci = 1. This condition can clearly 
be generated by some process in which a combination of pre- and post-synaptic 
firing causes the synapse to facilitate, while pre- without post-synaptic activity 
causes its power to decrease. 

4.1.2. Synaptic weights: the range of relevance 

Economical use of the full range of synaptic strength demands that the maximum 
strength of each synapse should be achieved at roughly the maximum value of 
P(Q I ci ) taken over those Ci concerned with Q. This value is not necessarily I-indeed 
will rarely be 1: suppose it is q. Then the range of strengths available to each evidence 
synapse must represent the whole of [0, q): it cannot be limited to [p, q) for some 
p > 0, since the accurate calculation of P(QIE) may often depend in part upon 
evidence suggesting it is very unlikely that E is an Q. 

Furthermore, all the evidence synapses at n which are likely to be used with one 
another must have their strengths normalized to the same range [0, q) in order that 
an unbiased sum may be taken. Any two synapses should be interchangeable, yet 
give the same output cell firing frequency. The range [0, q] is called the range of 
relevance for evidence associated with Q. 

4.1.3. The plausibility range 

Let [0, q) be the range of relevance for evidence associated with Q. The maximum 
value which P(QIE) can achieve is at most q, and hence the maximum firing rate of 
n should be reached at or near this value. Unlike the synaptic strengths, however, 
there is no need to be able to cover the whole range [0, q), since the lower values may 
make the presence of Q extremely unlikely. Let p be that value of P(QIE) at and 
below which it is impossible that E ever is an Q; then [p, q) is called the plausibility 
range associated with Q, and ° ~ p < q ~ 1. It is evident that some accuracy will 
be gained by representing only the plausibility range through the n-cell firing 
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frequency. Both p and q will depend upon the nature of the information with 
which D is dealing; there will exist no universally valid values. 

The simplest view of the output cell coding of P(DIE) thus requires that n should 
not fire at all unless P(DIE) exceeds some minimum value p, and that its maximum 
firing rate should be achieved at or near some maximum value q. The only restriction 
so far placed on the nature of the coding within the plausibility range is that it be 
monotonic increasing with P(DIE). If the outputs of two cells have to be compared 
-to decide for example into which of two classes the current input falls-then unless 
unreasonable complications are introduced, they have to code P(DIE) the same way. 
That is, they must have the same plausibility range [p, q], and they have to code 
P(QIE) identically (within the limits of permissible error) inside the plausibility 
range. Since it is often necessary to decide between classes of the same kind, it may 
be concluded that all output cells for diagnosing competing classes should be cells 
of the same construction: they should share a common plausibility range, and a 
common coding within it. 

4.1.4. Variable k 

The final complication to be added to the simple scheme of § 4.1.1 which simply 
summed the weights of the active afferent synapses is that the number of such 
synapses may vary. k = ~ Ci (E), and in general depends upon E. n must there

i 

fore be associated with some mechanism which can compensate for this, and its 
effect must be to divide the total ~Ci (E)P(Dlci ) by k(E) = ~Ci (E) for the current 

i i 

event E. The output cell firing frequency must therefore be monotonically related to 

k-1(E) I;Ci(E)P(Dlci) 
i 

within the plausibility range for D. 

4.1.5. Oomputing P(DIE)-p 

The four possibilities for the sequence of operations carried out in the computation 
of P(DIE) -p are represented by the bracketing in the following formulae. 

k-1(I;(Ci (E) (P(Dlci) - p))), 
i 

I;k-1 (Ci (E) (P(Qlci ) -p)), 
i 

(~k-lCi (E)P(Qlci )) - p. 
i 

(1) 

(2) 

(3) 

(4) 

In (1) and (2), the summation is performed before the division, whereas in (3) and 
(4) it is performed after. In (1) and (3), the subtraction is performed before the other 
operations, which are done on the residues: in (2) and (4) the subtraction is done last. 
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The smaller the numbers can be kept, the more accurate will be the final result; so 
other things being equal, computations which keep numbers small are to be pre
ferred to ones which do not. Other things are equal in the choice between (1) and (2), 
and in the choice between (3) and (4). It is therefore natural to prefer (1) to (2), and 
(3) to (4). 

In all these computations, a subtraction, summation and division have to be 
performed, so it is important to consider whether they can plausibly be executed by a 
real cortical neuron. Many types of cortical pyramidal cell will be identified in § 6 
as output cells, especially those types found in layers III and V of Cajal. 

The synapses for P(Qlci ) are assumed to be excitatory, and only those with 
ci (E) = 1 carry a signal. Hence there is no difficulty about arranging that only those 
P(Qlci ) with ci (E) = 1 are considered. The summation of the active synapses is, as 
remarked in 4.1.1, an operation which it is quite plausible to assume possible in the 
dendrites of n. 

The subtraction must be performed by inhibition. The actual amount of inhibi
tion, in both (1) and (3), depends upon k(E) = ~cdE), which will vary with E, so 

i 

the amount must depend upon the number of active evidence cells ci . This means 
that one or more inhibitory interneurons must have dendrites which sample the 
fibres from the crcells, and whose axons terminate on the dendrite of n itself, near 
enough to the active crcell synapses to interact with them in an additive way. The 
dendritic field of n may be very large, in which case many inhibitory interneurons, 
each with a rather lecal dendritic field, will be needed to ensure each dendrite 
contributes its proper share to the sum. 

Both (1) and (3) require that the subtraction be performed before the summation, 
and the idea of subtraction performed uniformly over the n dendritic tree makes 
both schemes possible from this point of view. The great problems arise over the 
division, which has to be done if k(E) varies significantly. (1) and (3) differ in the 
order in which the summation and the division are taken, so the discussion of divi
sion falls into two parts. First, can it be done at all; and secondly, if it can, does it 
appear that either of (1) and (3) is more likely 1 

Suppose for the moment that division can be performed. Observe that it has 
certainly to occur after an estimate of the total value of k(E) has ~een made. This is 
because a division by (nl + n z) becomes complicated if one insists on dividing by n1 
first, and then performing some operation on nz, since the nature of the operation 
to be performed using nz depends on the value of n1• If division is to take place, 
therefore,anexplicitestimateofk(E)hasto be made: by the neural machinery. The 
actual division process has then to involve this estimate. 

A distinction can be made between the mechanics of this process for (1) and for (3). 
If the division is done before the summation, it has to be done over the whole n 
dendrite, and must therefore involve some kind of uniform field where intensity 
depends on k (E). If, on the other hand, the summation is done first, the division 
might be a quite localized process. 
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4.1.6. A model/or division 

This is not the place for a detailed discussion of dendrite theory, but it is worth 
pointing out, by way of general support for the theory's plausibility, that there exists 
an extremely simple model for the process of division. Suppose G is a spike generator, 
and 1 is a spike inhibitor, as in figure 2. The spike generator produces impulses with 
some frequency v, and models the result of the summation process. The spike in
hibitor 1 has two inputs, one from G and one of strength which varies with k (E), the 

G I 

FIGURE 2. A model for division. The spike generator G emits spikes at a rate v and the inhibitor 
1 allows a fractionj to be transmitted, where j oc k-1(E). Spikes are therefore emitted at a 
ratejvoc Vk-l(E). 

number of currently active evidence cells. I is such that each incoming spike is 
transmitted with probability /, where / varies inversely with k (E). That is, each 
incoming spike has a chance / = Kk-1(E) of crossing I, where K is some suitable 
normalizing constant. 1 may thus be regarded as a conducting medium with only 
a fraction/ of its maximum ability to sustain a spike. The output spike frequency is 
then monotonically related to vk-1(E). 

There are of course other models which have the same effect, but one fact seems to 
commend this above the rest: it is that spikes have been observed in the large 
dendritic stems of the cerebellar Purkinje cells (Eccles, Ito & Szentagothai 1967, 
p. 79) and of the hippocampal pyramidal cells (Spencer & Kandel 1961). It is 
therefore not unreasonable to suppose that the main apical dendrites of cortical 
pyramidal cells are also able to support spikes; and if so, that this is how the sum of 
the residues is communicated to the soma. It is, however, well known that many 
cortical pyramidal cells, especially those oflayers III and V, have somas surrounded 
by basket cell synapses (Cajal 191 I). These cells are well placed to make an estimate 
of k(E), the amount of parallel fibre activity, and are almost certainly inhibitory. 
Their action might therefore have the effect that a proportion of the spikes from the 
dendrite fails to be transmitted to the axon, this proportion depending in a suitable 
way on the value of k(E). The estimate of k(E) itself could be the combined work of 
many basket cells, their contributions being summed at the soma itself. 

If this model is correct, it provides an explanation of how the division process is 
performed, in the case in which it follows the summation of the residues. It thus 
favours the order of computation described by formula (1) of §4.1.5. 
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4.1.7. Arguments/or diagnosis by a single cell 

It is necessary now to justify the choice of using one rather than a collection of 
cells at which to compute a single decision. The arguments are these: first, the 
weights of the synapses from the evidence cells must vary with P(Qlci ) which 
depends, for each cell ci ' on the number of positive diagnoses coincident with the 
firing of ci . Hence in order that every evidence synapse has the correct weight, all the 
output cells representing Q at whose synapses the evidence is collected must fire 
every time a positive diagnosis is achieved. Hence either the output cells must be 
completely interconnected, or they must drive some super-output cell, which fires 
them all if it is itself fired. 

Secondly, if evidence for Q is collected and judged by many cells, the weight each 
ell has in the final decision ought to depend upon the amount of evidence it has 

considered. This could be arranged by some suitable trick, but the combination of 
this and the first point, though not compelling, favours the view that each decision 
process be carried out by one cell. If therefore, as also seems likely, there do exist 
several representations of any given concept, they are probably independent. 

4.1. 8. Dual purpose output cells 

This concludes the discussion of the implementation of the theorem 2.3, but 
before leaving the topic to discuss the form of evidence functions, something must be 
said about driving the cell n by information of two distinct types. If a single diag
nosis could be achieved by two quite unrelated sets of evidence, with different 
plausibility ranges, it would be necessary to locate the relevant synapses on different, 
independent regions of dendrite. For example, use of n with direct sensory in
formation may involve synapses on the apical dendritic tree of a cortical pyramidal 
cell, whereas associational information may be held in the basilar dendrites. These 
systems could possess different values for both limits, p and q, of the plausibility 
range. They would require entirely different systems of inhibitory subtraction cells, 
and although the basket cells for the division function could in each case send 
synapses to the soma, their dendrites would have to sample the correct, disjoint 
populations of evidence fibres. The cell n would then effectively become two cells 
in one, and it would succeed in this role as long as the other cells of its class also had 
the same specifications, and the same dual plausibility ranges. 

If n can be driven by sensory or by associational information, it is possible that 
conditional probabilities for sensory evidence should not count those instances of Q 

which arise by association. This is because in the second role, n may be being used 
symbolically, not directly. P(Qlci ) for sensory information should probably not be 
influenced by instances of this role. 

Finally, the advantages of such dual role cells may be important. If all the 
various conditions are satisfied, they can probably combine in a satisfactory way 
information of two kinds in a single diagnostic process. This would to some extent 
be against the rules, but as long as the contravention is uniform over cells of the 

13 Vol. 176. B. 
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relevant category, it would probably work. The effect would be to make it easier to 
see what you expect to see. 

The results of this section are summarized in figure 3. 

FIGURE 3. The output cell n has three kinds of afferent synapse: Hebb synapses (open trio 
angles) from evidence cells, and two kinds of inhibitory synapse. Those from the S·cells 
are spread over the dendritic tree, and perform a subtra.ction: those from the D·cells, 
concentrated at the soma, perform a division. 

4.2. Codon functions for evidence 

4.2.0. Standard evidence functions 

Two constraints have been placed on the evidence functions ci for a particular 
output cell n: that the evidence they provide should be of sufficient quality, and that 
the amount of correlation between the Ci for Q should be either negligible or regular 
in a way which does not cause improper bias. The choice of evidence function ought 
to depend upon the particular circumstances for which it is required: if especially 
efficient functions exist and can be constructed for a particular purpose, their use 
will permit an economy in the amount of structure required for that process. But it 
will frequently occur either that rather little is known about exactly what informa
tion will come to be held in a particular piece of cortex, or that there is nothing 
particular about that information which makes it a suitable candidate for special 
methods. For such cases, it is natural to seek a class of functions from which a 
'standard' form of evidence may be constructed. 

There are various conditions such a class should satisfy. Most important, they 
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should have a simple neural representation. Secondly, and also essential, there 
should be different categories of function corresponding to different expected 
qualities of the evidence to which they give rise. This is an economy condition, 
since it is wasteful to use better (and hence in general, more) evidence than necessary. 
Thirdly, according to the Fundamental Hypothesis § 1.6, the expected quality of the 
evidence produced by the function c will depend upon the distribution of the events 
E with c(E) = lover the event space x. If the property D which the cell n is sig
nalling is stable over relatively small changes in the input event E, the best evidence 
functions c will be those whose events F with c(F) = 1 are grouped together, as seen 
through the natural metric d of § l.3.2. 

4.2.l. Arguments/or codon/unctions 

These three conditions do have implications about the kind of evidence one may 
expect: they strongly suggest one particular family of functions, the generalized 
(R, O)-codons. First, observe that figure 4 shows the simplest kind of afferent 

R 

FIGURE 4. An (R, O).codon cell. There are R excitatory afferent synapses (open circles), 
and enough inhibition (filled circ.les) to give the cell a threshold of O. 

system possible for a cell. There are R afferent fibres, ail' ... , aiR' each with an excita
tory synapse of some fixed weight---l, say. The cell has threshold 0, which may be 
determined by some suitably arranged inhibition. Then the cell will emit a signal 
whenever at least 0 of the R fibres ail' •.. , aiR are active: hence the set of firing 
conditions for the cell constitutes an (R, O)-codon on any event space over fibres 
which include ail' •.. , aiR. An (R, O)-codon is thus a specification of the firing condi
tions for a cell whose afferent relations with its input fibres are simple, and anatom
ically and physiologically plausible. 

Secondly, it has been observed in § 3.2 that suitable values of (R, 0) can be chosen 
to construct an (R, O)-codon which will match any previously specified quality of 
evidence. Hence the second condition is fulfilled by the family of (R,O)-codons. 
The various technical problems which arise when one tries to design a net which will 
produce (R, O)-codons for a particular input can be solved, and will be discussed in 
the next section. 

The above two arguments show that codon functions are sufficient to satisfy the 
two corresponding conditions: the next one shows that they are in some degree 
necessary for the third. 
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Let I be the event space on {aI' ... , aN} and let d be the natural metric of § 1.3.2. 
Let {Ci}::l be the evidence functions for a particular property Q, and let Q hold for a 
particular event EEl, where 

E(ai ) = 1 (1 ~ i ~ L), 

E(ai ) = 0 (L < i ~ M). 

Without loss of generality, suppose 

ci(E) = 1 (1 ~ i ~ k), 

ci (E) = 0 (k < i ~ M), 

and choose FE I such that d (E, F) = 1. Then according to the Fundamental Hypo
thesis §1.6.4, the chance that F also has Q is better than for an event arbitrarily 
selected from I. Hence most of the ci with ci (E) = 1 should have Ci (F) = 1 as well. 

This argument applies to all F with d(E, F) = 1: so let NI (E) = {Fld(E, F) ~ I}. 
For each ci, 1 ~ i ~ k, define a subset 0i of {al' ... , aN} in the following way. Write 
Fj = the event obtained from E by altering the value of the fibre aj' i.e. 

Pj (a i ) = E(ai), all i 9= j, 

Fj(aj) = l-¢>E(aj) = o. 
The subset 0i is obtained thus: 

0i = {ajlci (Fj) 9= ci (En· 

Then for 1 ~ i ~ k, 

That is, for 1 ~ i ~ k, ci may be regarded within NI (E) as a detector of the subset 0i of 
the fibres {aI' ... , aN}. Thus locally, (i.e. within N1(E)), Ci behaves like the codon 
function with associated subset 0i. 

But it has been observed that for an arbitrary change from E to Pj, some 1 ~ j ~ k, 
the values of the majority of the functions ci should remain unchanged. Hence, for 
most ofthe i, 1 ~ i ~ k, it must be true that ci takes the value lover most of NI (E), 
(assuming the ci are not organized in any special way). This implies that the size of 
the subset 0i which Ci detects in NI (E) is small, for most i, 1 ~ i ~ k. 

This argument shows that if an evidence function is constructed for classifications 
in which the Fundamental Hypothesis is true, then such a function behaves locally 
like a codon function with a rather small associated subset. 

This is the most that can be deduced about evidence functions from the necessarily 
imprecise considerations out of which the present theory is constructed. The case 
for (R, O)-codons being the general form of evidence function is not logically estab
lished, but it would at present be impossible to make a rigorous argument for any 
family of functions. The three arguments presented above do constitute good 
evidence in favour of codons---evidence which it would require a strong and unex
pected finding to disrupt. 

Finally, in the particular case of the cerebellar cortex, where according to Marr 
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(1969) something analogous to the present theory actually occurs, the evidence cells 
are the granule cells, which are codon cells with R ~ 7. It will be pointed out in §6 
that the cerebral neocortex contains cells which may be regarded as (R,O)-codons 
with larger R. It is thought that the combined weight of these arguments constitutes 
sufficient grounds for studying in detail the setting up and performance of (R, 0)
codon cells, where the values of Rand 0 have various relations to the parameters of 
the code used on the set of input fibres {aI' ... , aN}. 

4.3. Oodon neurotechnology 

4.3.0. The possible need for codon formation 

At first sight, the use of codons virtually solves the problem of the neural repre
sentation of evidence functions. Provided the contact probability z from the 
afferent fibres {av ... , as} to the population 1.13 of codon cells has the appropriate 
value, it remains only to set the thresholds of the codon cells in a suitable way 
(see §3.1). 

The only possible problem with this scheme is that the evidence thus obtained 
may not have the required quality. The better the evidence required, the more 
specific the codon functions must be, and so the less frequently they take the value 1. 
If a roughly fixed number has to fire in order to provide an adequate repre
sentation of each input event, the size of the underlying population of codon cells 
has to be larger the better the evidence required. Unless special measures are taken, 
this might make it necessary in a particular case to provide a huge population of 
evidence cells, only a few of which are ever used. This difficulty can be avoided by 
using a special technique. It works by modifying just a few of the afferent synapses 
at a cell, so that a codon function of exactly the required sort is represented there. 
The process of determining to which codon a particular cell should respond is called 
codon formation at that cell. 

The essence of codon formation is very simple. Let ~ be a population of cells, each 
of which has R' afferent synapses. R' is such that a typical input event can expect to 
excite 0 synapses at each cell of~, where 0 is the 0 of the (R, O)-codons eventually 
required. The information which the codons have to represent arrives during a 
special setting-up period (§5.1.2), and only the synapses used during that time have 
any effective power later. This produces a population of codon cells such that only a 
few of the total number of afferent synapses have any power, but those few are the 
correct ones. The details are described fully in the following pages. 

4.3.1. Techniques for codon formation 

The three basic mechanisms for codon formation appear in figure 5. In (1) the 
afferent synapses are excitatory, and become ineffective if and only if there is post
without pre-synaptic activity. In (2), the synapses are composed of two parts: one 
excitatory and unmodifiable, and one initially ineffective, but which is facilitated by 
simultaneous pre- and post-synatic activity. The modifiable component is thus a 
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Hebb-modifiable synapse (Hebb 1949). The combination in one synapse of an 
unmodifiable excitatory component with a Hebb-modifiable component has an 
importance which was first noticed. by Brindley (it appears at the s-cells in Brindley 
1969). It is therefore proposed that such synapses be named Brindley synapses, to 
distinguish them from Hebb synapses which will taken be to possess the same modi
fication conditions, but no unmodifiable excitatory component. 

(1) (2) (3) 

FIGURE 5. Three models for codon formation. (1) Uses synapses which are initially excitatory, 
but are modified to be ineffective by post- without pre-synaptic activity (open squares), 
(2) uses Brindley synapses (arrows), (3) uses Hebb synapses (open triangles) and a 
climbing fibre (open circles). All three have inhibitory synapses (filled circles) which set 
the cells' thresholds at an appropriate level. 

In models (1) and (2), the cells also receive some inhibitory synapses which set 
their thresholds at the appropriate value. The equations governing the number of 
codons formed in any particular situation are those of § 3.1: X is called the for
mation probability in those equations for this reason. 

Case (3) is slightly different: this cell possesses an afferent fibre analogous to the 
cerebellar climbing fibre, and its ordinary afferent synapses are Hebb synapses, 
which are initially ineffective, and are modified by the conjunction of pre-synaptic 
and climbing fibre (or post-synaptic) activity. The climbing fibre is active only 
during the setting up period. The consequences of this model are slightly different 
from those of (1) and (2), for after setting up, all those synapses which were active 
during the setting up period will have been modified, not just those at a cell where a 
codon was successfully formed. 

The conditions in which the codon cells may later be used are different for each of 
these models. In (1), there is no difficulty, since the irrelevant synapses have no 
power. In (3), the fact that all synapses active during the setting up period will have 
been modified may mean that an undesirably large number have been made excita
tory. Methods (1) and (2) are in this sense more selective, and will tend to produce 
better evidence. In (2), during later use, the cell threshold has to be set so that 
activity in at least () modified afferent synapses is required to discharge the cell. 
In all cases, the codon cell thresholds can be set at the appropriate level by using 
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sampling techniques-both of the afferent fibres and of the codon cell axons-in the 
same way as the cerebellar Golgi cells are thought to control the granule cell 
thresholds (Marr 1969). 

4.3.2. Model (2) preferred to model (1) 

Models (1) and (2) will produce evidence ofthe same quality in a given situation, 
but model (1) has an important disadvantage. If synaptic modification is an 
irreversible process, the process of codon formation in ~his model is a once and for all 
affair. The fact that all the synapses not involved in the first codon represented are 
thereby rendered ineffective means that the cell can never be used for more than 
one codon. This model essentially represented one codon by eliminating all other 
possibilities, and as such is unattractive. This is not true of model (2), where a 
synapse which is unused the first time could be used later on, if that became desirable. 
The model (2) needs slightly more complicated backing up by the inhibitory 
cells, since the level of inhibition necessary during codon formation both differs 
from that needed for recognition of co dons already formed, and depends upon the 
number of codons already formed at that particular cell. This difficulty can be 
overcome if the inhibition level is set primarily by a count of the active codon cells, 
so it does not significantly affect the desirability of this model. 

Model (3), like (2), does not suffer from the once-for-all disadvantage; but as 
pointed out in §4.3.1, is not strictly comparable with (1) since it forms evidence in a 
slightly different way. 

4.3.3. A problem with (1) and (2) 

In model (1), if synaptic modification is irreversible, each cell can represent only 
one codon. Hence the afferent synapses should not be modifiable all the time; the 
precious potential of a cell must be reserved for information for which it is worth 
being used. A similar point holds for model (2), since if the afferent synapses were 
permanently modifiable, any incoming information could cause the creation of 
codons. The point here is not that the first event rules out the rest, but that all are 
treated as indiscriminately valid. Since any input can create a codon if the anatomy 
allows it, the cell is no different in function from one where afferent synapses are 
unmodifiable excitatory. Therefore, for models (1) and (2), the modifiable synapses 
involved must be modifiable only whilst that information for which codons are required 
is present in the afferent fibres. 

This difficulty arises in model (3) in a less acute form: the problem here is that 
something has anyway to specify when codon formation should take place. No 
difficulties arise with the hardware, since modification is geared to the climbing 
fibre activity; but climbing fibres cannot in general select the best cells. 

4.3.4. The solution using inhibition 

The only solution to this problem in models (1) and (2) which uses conventional 
ideas is to suppress the cells with inhibition until they are wanted. The alternative, 
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to excite them when they are wanted, is equivalent, but reduces (2) to an uninterest
ing variant of (3). This scheme would work until the first codon was formed, but 
would then fail in model (2): this is because inhibition cannot subsequently be 
maintained at these cells without their losing the ability to recognize the codons 
that have been formed at them. This defeats the object of the scheme. 

4.3.5. Another solution 

The alternative to this kind of solution is that the synapses genuinely should 
become modifible only at those times when codon formation is required. This is not 
as implausible an assumption as it might appear, since considerable organization 
has to take place before the formation of codons becomes necessary anyway. Codon 
formation takes place either when a new classificatory unit is formed, or when new 
evidence functions are added to an existing one. The decision about how to commit 
a piece of information to the neocortical store-whether as a new classificatory 
unit or as an association between existing ones-has to be taken on the basis of its 
relationship to other incoming events. It cannot in general be taken immediately: 
for example, it takes time for the mountainous structure of a probability distribution 
to become apparent. 

This has the consequence that it is best to send all incoming information to a 
temporary associative store, where it is held and not altered. This is one point of 
Simple Memory theory (§5 and Marr 1971). When it becomes clear how a piece of 
information should be stored, it can be taken out and dealt with in the appro
priate way. If, for example, it should be set up as a new classificatory unit, a location 
must be sought (the one with the most favourable pre-existing structure) and the 
information directed there for representatio.n. The complete operation is so special 
and complex that the assumption, that a suitable delicate change in the chemical 
environment of the relevant codon cells accompanies the transmission there of the 
setting-up information, ceases to carry a special implausibility. The matter is dis
cussed further in § 5.1. 2. 

4.4. Implementing the interpretation theorem 

4.4.0. Preliminary assumptions 

The analysis of §4.2 suggested that codon functions are likely to be widely used 
as evidence functions. If they are, two conditions will hold, one about the input 
events, and one about the codons themselves. First, the input events for a particular 
output cell n are likely to occupy a code of some fixed size L, say, on the input 
fibres {at> ... , aN}. The reason for this is that if the input events have an arbitrary 
form, then codon functions of an arbitrary form have to be allowed. An arbitrary 
codon function is one which assigns the values 0 or I toa subset of {aI' ... , a.v}: the codon 
functions we have met so far have assigned only the value 1. There is no objection 
in principle to the general codon function, but it is more difficult to build its neural 
representations, and much more difficult to model codon formation. It will therefore 
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be assumed, for the purposes of this section that the input events are events of 
size L over {aI' ... , aN}. 

Secondly, all the codons associated with a given output cell Q are likely to be of 
about the same size. This is because only a small proportion of the codon cell 
population will be used for any single input event: these are chosen by selecting an 
appropriate codon cell threshold, and so come from the tail of a binomial distribution. 
The numbers of cells discovered in such a situation decre<Lses sharply as the cells' 
thresholds rise, so that at any given threshold, the cells may to a first approximation 
be regarded as all having the same number of active afferents. Since the input events 
also will have the same size, all the codons connected with a given output cell Q may 
be regarded as having the same specifications. It will further be assumed that the 
actual codon cells which exist have been chosen randomly from the population of all 
such codon cells with those specifications. 

These conditions are sensible also from another point of view, since the expected 
quality of evidence obtained from a codon depends upon its specifications. It was 
remarked in § 2 that the expected quality should be uniform for a given decision cell 
Q, so this condition is likely to be fulfilled. Further, the randomness assumption 
means that problems about correlated evidence are avoided. 

4.4.1. Statement of the main result 

Suppose a set of (R, O)-codons are chosen as evidence functions for diagnosis of 
the property Q, and that these codons constitute a random sample from the set of all 
such codons. Suppose the input events have size L over {aI' ... , aN}: then an incom
plete event specifies the values of less than L input fibres. It is shown that the 
interpretation of such an incomplete input may be carried out by taking a weighted 
sum of certain P(Qlci ) in a way analogous to the procedure for diagnosis of complete 
events. An estimate of this sum, for an incomplete input X, can be obtained in a real 
neural net by lowering the threshold of the codon cells until X causes activity in a 
significant number, and applying these signals to the output cell Q in the usual way. 
Hence in a neural model where the codon cell thresholds are controlled by cells 
designed to maintain the number of active codon cells at a constant value, the 
interpretation of an incomplete event is a natural consequence of applying the 
event to the net. 

There are two sources of error in this estimate: first, those codon cells with more 
active afferents than the current codon cell threshold will probably acquire an 
incorrect weighting of their corresponding value of P(Qlci ) at Q; and secondly, the 
estimate is based on a sampling process. The first kind of error is alleviated by two 
facts: that most active codon cells have the same number of active afferents, only a 
very few having more (because the active cells come from the tail of a binomial 
distribution); and that those codon cells with more active afferents will be driven 
harder than the rest. This effect operates in the right direction to reduce the error. 
The inaccuracies from the second source are probably unimportant. 
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4.4.2. Proof 

The interpretation theorem, § 2.5, is concerned with the treatment of inputs in which the 
values of some of the fibres are undefined. In the present case, this corresponds to states 
where fewer than L of the input fibres {aI' ... , aN} ha.ve the value 1. Let Xbe a subevent of 
the input event space X, and suppose that X specifies X(a;) = 1, 1 :s;; i :s;; l < L. Let 
E I , E z, ... , EJ be the possible completions of X in X,80 that each E; (1 :s;; j :s;; J) specifies 
that exactly L of the ai have the value 1. 

By the Interpretation Theorem, 
J 

P(QIX) = ~ P(E;IX) P(QIE;). 
j~l 

If nothing is known about P(E;IX), it must be assumed that P(E;IX) = I/J alII :s;; j :s;; J. 
Let Ii = {cil 1 :s;; i :s;; K} be the set of all evidence functions for Q over X. Then 

K 
P(QIE;) = k-I(E;) ~ c;(E;)P(Qlci)' 

i~l 
K 

where k(E;) is the number of ciwith c;(E;) = 1, i.e. k(E;) = ~ c;(E;). Hence 
'i~l 

J K 
P(QIX) = ~ J-I ~ ci(E;)k-I(E;)P(Qlci)' 

j~l i~l 

Define the family of real-valued functions Wi' 1 :s;; i:S;; K on the set {Ev .'" EJ} by 

llJ i (E;) = 0 if c;(E;) = 0, 

= k-I(E;) if ci(E;) = 1. 

J K 
Then P(QIX) = ~ J-I ~ wi(E;)P(.f.Ilci) 

j~l i~l 

K J 
= J-I ~ P(Qlc;) ~ wi(E;), 

i~l j~l 

The operation of calculating P(QIX) is thus equivalent to computing the weighted sum 

K J 
~ P(Qlc;) ~ w;(E;); 
i~l j~l 

J J 
the coefficient of P(Qlci ) is ~ w;(E;), and we now study the value this takes. ~ w;(E;) 

j~l j~l 

measures the weight with which P(QICi) contributes to the set of all possible completions 
of X in X. In a given completion, E;, P(QICi) has a certain weight: it is zero if c;(E;) = 0 and 
if not, this weight is I/k(E;) where k(E;) is the size of the crrepresentation of E;. Now the 
number k(E;) is a random variable obtained by adding the terms in the tail of a binomial 
distribution (see equation 3.1.1). Suppose k has distribution v: then k-I has distribution 

V-I say, with expectation k- I (* ]C-I in general), and variance (J' (say), (Assume k = 0 with 
zero probability). The values of k-1(E;) for differentj are strictly speaking not independent, 
but if they were, the random variable (l/n(c;)) ~ c;(E;)k-1(E;) would have the same mean 

i 

k-l, and variance (J'f,.}{n(c;)}, where n(ci) = the number of E; with ci(E;) = 1. 
The value of (J'f,.}{n(c;)} does, however, give some guide to tpe variance of this random 

variable. It may be assumed that (J' is small, since part of the function of the Golgi-type 
inhibitory cells which control the thresholds of the cells is to ensure a constant.sized 
representation for each input event E. The actual random variable described above will 
have a variance somewhere between (J' and (J'/.J{n(ci)), but since (J' is small, and the true 
value will be nearer (J'/.J{n(ci)), it may safely be assumed that its variance is small enough 
to be ignored. 
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Hence P(QIX) = K* 1: n(ci)P(Qlci), where n(ci) = the number of E; with Ci(E;) = 1, 
i 

and E; completes X; K* is some suital;>le normalizing constant. 
Now n(ci) depends upon R, {} and r, where Ci is an (R, O).codon, and r is the number of 

afferent fibres active in X which are contained in S(Ci), the support of Ci' In fact, 

n(Ci) = (N - W) 1: ( R-r ) ( N -R- W +r ), 
L- W x;;'O {}-r+x L- W -{}+r-x 

the sum being taken until one factor reaches 0, and where 

N = no. of input fibres, 

L = no. of fibres active in each full sized input event, 

W = no. of fibres active in X, 

R{}} ci is an (R,O)·codon, 

r = no. of fibres active in the support of Ci' 

For R = 0, n(ci) is primarily a function of r; call it n(r). 
Then 

n(r+ I) N -(W +R-r-I) N - W --- = - >-----. 
n(r) L-(W+R-r-I) L-W 

For typical values, e.g. 

N = 100, L = 40, W = 20, 
n(r+ I) 
--- >4, 

n(r) 

which illustrates the fact that those Ci with greater r have much more influence over 
P(QIX) than those with smaller r. 

The problem of estimating P(QIX) from a family of (R, O).codons Ci is thus equivalent to 
taking the weighted average of P(QICi)' where the weighting depends upon the number, r, 
of active input elements in the support of Ci' It will now be shown that this can be achieved 
by reducing the threshold of the cells for the (R, (})-codon to some suitable lower value {}', 
which depends upon W, the size of X. 

Two problems have to be solved when P(QIX) is computed: first, enough Ci have to be 
used for the estimated answer to be reliable; and secondly, those Ci which are used have to be 
weighted in the correct way. It is assumed that the Ci are all (R, (})-codons whose neural 
representation is effectively as shown in figure 4: it is immaterial whether this is achieved 
by models (I), (2) or (3) of figure 5. For an input X of size W, the probability of the cell's 

being active is Ii' -1 (R) 
1T({}') = 1- 1: zr(I_z)R-r, 

r=O r 

where the cell has threshold {}', and z = WIN (by analogy with 3.1.2). This is just the usual 
tail of a binomial distribution. Now as {}' decreases, the number of (R, (})-codons which 
become active increases rapidly: 

1T(O') . {}' + I N - W 
1T(O' + I) =;= R-{}"-W: 

while 1T(O') is small, both {}' + I > R -{}' and N > 2W will usually hold. Hence as the value 
of {}' is lowered, the number of crcells which X fires increases very fast: so that the dif
ference in 0' between having no cells active to having the usual number for a full event 
will only be of the order of 3 units of synaptic strength, and the great majority of the 
active Ci will have exactly 0' active afferent synapses. 

The problem of the differential weighting of the P(Qlc;) can thus be alleviated as long 
as 0' does not lie far below the minimum number required to achieve the response of at 
least one crcell. Provided the number of ci-cells made active in this way is of the order of the 
number ordinarily excited by a. full input event, enough evidence will be involved for the 
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estimate of P(QIX) to be reliable. Strictly, all the C; which could possibly take the value I 
on some completion of X should be consulted: but this number could be very large, and 
the problems of achieving the correct weighting become important. It is therefore much 
simpler to take an estimate using about the usual number of C;. 

Finally, it should be noted that if this is done, the c;-thresholds can be controlled by the 
same inhibitory cells as control their thresholds for normal input events, since it has already 
been shown that a circuit whose function is to keep the number of c;·cells active constant is 
adequate for this task. If this technique is used, those few c;·cells with more than (J' active 
afferents will have a higher firing rate than those with exactly (J'. Hence they will anyway 
be given greater weighting at the crcell. It would be optimistic to suppose this weighting 
would be exactly the correct amount, since the factor involved depends on the parameters 
N, L, W, R, (J, r; but the effect will certainly reduce the errors involved. 

FIGURE 6. The basic neural model for diagnosis and interpretation. The evidence cells 
c l , ... , c7 are codon cells with Brindley afferent synapses. The G·cell controls the codon 
cell threshold: it uses negative feedback through its ascending dendrite to keep the 
number of codon cells active roughly constant. Its descending dendrite samples the input 
fibres directly, thus providing a fast pathway through which an initial estimate is made. 
The other cells and synapses are as in figures 3 and 5 (2). 

4.5. The full neural rrwdel for diagnosis and interpretation 

The arguments of §§ 4.1 to 4.4 lead to the design of figure 6 for the basic diagnostic 
model for a classificatory unit. The afferent synapses to the crcells are excitatory, 
and may have been achieved by some suitable codon formation process: model (2) 
of figure 4 has been chosen for figure 6. The inhibitory cells G control the thresholds 
of the crcells, and their function is to keep the number of active ci-cells roughly 
constant. If they do this, the model automatically interprets input events which are 
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incomplete as well as those which are full-sized. The G-cells are analogous to the 
Golgi cells of the cerebellum, and it is therefore natural to assume that, as in the case 
of those cells, the G-cells can be driven both by the input fibres aj , and by the c;-cell 
axons. The final control should be exercised by the number of ci-cell axons active, 
but a direct input from the aj axons would provide a fast route for dealing with a 
sudden increase in the size of the input event. 

The ci axons and the output cell n have been dealt with at length in §4.1. The 
cells S are the subtracting inhibitory cells, and the cells D provide the final division. 
The cell n is shown with two types of evidence cell afferent: one, through the 
c;-cells to the apical dendrites, and one (whose origin is not shown) to a basal 
dendrite. 

In practice, the distribution of the aj terminals, and the G, D and S-cell axons 
and dendrites will all be related. The kind of factor which arises has already been 
met in the cerebellar cortex for the Golgi and stellate cell axons and dendrites. 
Roughly, the more regular and widespread the input fibre terminals, the smaller the 
dendrites ofthe interneurons may be, and the further their axons may extend. Little 
more of value can be added to this in general, except that the exact most economical 
distributions for a particular case depend on many factors, and their calculation is 
not an easy problem. 

§ 5. THE DISCOVERY AND REFINEMENT OF CLASSES 

5.0. Introduction 

There are three principal categories of problem associated with the discovery and 
refinement of classificatory units. They are the selection of the information over 
which a new unit is to be defined; the Selection of a suitable location for its represen
tation, together with the formation there of the appropriate evidence and output 
cells (formation in the information sense, not their physical creation); and the later 
refinement of the classificatory unit in the light of its performanCe. 

The selection of information over which a new classificatory unit is to be defined 
depends, according to the Fundamental Hypothesis, upon the discovery of a collec
tion of frequent, similar subevents in the existing coding of the environment. The 
difficulty of this task depends mainly on two factors: the a priori expectation that the 
fibres eventually decided upon would be chosen; and the time for which records 
have to be kept in order to pick out the subevents. The three basic techniques 
available are simple storage in a temporary associative memory, which allows 
collection of information over long periods; the associative access, which allows 
recall from small subevents, and hence eventually the selection of the appropriate 
fibres for a new unit; and the mountain climbing idea, which discovers the class 
once the population of fibres has been roughly determined. Only the third technique 
can be dealt with here. 

The selection of a location for a new classificatory unit is simply a question of 
choosing a place where the relevant fibres distribute with an adequate contact 
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probability. The formation of evidence cells there is a problem which has already 
been discussed in §4: the formation of output cells is dealt with here. 

Finally, the refinement problem arises because part ofthe hazard surrounding the 
formation of a new classificatory unit is that it is known in advance neither why it is 
going to be useful, nor of exactly what events it should be composed. When first 
created, therefore, the new classificatory unit is a highly speculative object, whose 
boundaries and properties have yet to be determined. The subsequent discovery of 
the appropriate boundaries (if such exist) is the refinement of the classificatory unit. 

5.1. Setting up the neural representation: sleep 

5.1.0. Introduction 

It is convenient to begin with the second problem, of selecting a location and 
forming there a suitable neural structure. The reason is that the other two problems 
are best dealt with in the context of explicit neural models, and these are not 
complete enough until the apparatus necessary for the setting up problem has been 
incorporated. For the purposes of this section,it will therefore be assumed that the 
subevents which are to make up the new classificatory unit have been decided upon 
in advance, and are held in a store. The problem then reduces to that of discovering 
a suitable location, and creating there the appropriate evidence and output cells. 

5.1.1. Selecting a location 

The natural method of discovering a suitable location is to form a representation in 
all those places which are suitable. For this, the whole cortex is, so to speak, placed 
in a suitl1bly receptive state, and in those regions where enough information is 
received, a representation is automatically set up. Later refinement will select for 
the most successful, and not all of the representations initially set up will survive. 

This method has two important advantages: first, it removes the difficulties which 
arise in computing where the appropriate fibres gather together with a large enough 
contact probability. The discovery of these special locations is better left to the 
method suggested, whereby it is a natural consequence of their existence. 

Secondly, the method allows the multiple formation of representations, which 
means that a single input can generate many different classes. There are often 
excellent grounds for categorizing information, and dealing with each category 
separately. For example, information about shape can profitably be classified 
separately from information about colour, and this could be implicit in the way the 
connexions are originally arranged. An area of cortex which received only informa
tion of a particular category would classify within that category. If many such 
areas existed, one piece of information could simultaneously cause classes in several 
categories to form. This is probably an important aspect of the solution to the 
partition problem § 1.3.3, but one which relies on the rough genetic specification of 
the categories. 
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5.1.2. Oodon/ormation and sleep 

The problems of what evidence functions to form, and how to form them, have 
been discussed in § 4. It may turn out never to be necessary to use codon formation, 
since this technique is essential only where a standard codon transformation, with 
unmodifiable excitatory synapses (Marr 1969), does not produce evidence of 
sufficient quality. The finer the classifications required, however, the better the 
quality of the evidence must be; and the more sophisticated they are, the less 
certain it becomes that genetic information can provide pre-formed codons of the 
right type: so if codon formation is used at all, it will be used more in higher than in 
lower animals. 

In §4.3.5, it was decided that the most likely technique for codon formation used 
Brindley synapses which become modifiable only at those times when codon forma
tion takes place. Arguments were set out there for the view that this assumption 
does not have a complexity which is disproportionate to those concerning the other 
operations which must take place at these times. 

It was pointed out in §4.3.3 that when the afferent synapses to codon cells are 
modifiable, only that information for which new evidence functions are required 
should be allowed to reach these cells. In § 4.3.5, it was shown that information 
from which a new classificatory unit is to be formed will often come from a simple 
associative store, not directly from the environment. In §5.1.1 it was argued that 
the most natural way of selecting a location for a new classificatory unit was to 
allow one to form wherever enough of the relevant fibres converge. This requires 
that potential codon cells over the whole cerebral cortex should simultaneously 
allow their afferent synapses to become modifiable. Hence, at such times, ordinary 
sensory information must be rigorously excluded. The only time when this exclusion 
condition is satisfied is during certain phases of sleep. 

The tentative conclusion of the theory is therefore that some cerebral codon 
cells have Brindley afferent modifiable synapses, which only become modifiable 
during sleep. The firm conclusion of the theory is that if the locations for new 
classificatory units are selected by the method of § 5.1.1; if there exist plastic codon 
cells in the cerebral cortex; and if they use Brindley afferent modifiable synapses; 
then these synapses are modifiable only during the correct phases of sleep. A 
consequence of this phenomenon for the learning characteristics of the animal as a 
whole is set out in §7.6. 

5.1.3. Output cell selection: generalities 

No methods have so far been proposed for the selection of output cells for classi
ficatory units. The question was raised in §4.1 of whether more than one physical 
cell could profitably be used as the output for a single classificatory unit: it was 
concluded impracticable unless such cells formed independent representations. 

The problem of output cell selection is therefore that of finding a single, hitherto 
unused cell whose dendrites are favourably placed to receive synapses from most of 
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the evidence cells created for the classificatory unit concerned. These codon cells 
will be clustered round the projection region of the relevant fibres, so the selection 
process has to work to choose a cell in the middle of that region. The methods 
available for cell selection are essentially the same as those described in §4.3 for 
codon formation (figure 5), but the arguments for and against each method are 
different in the present context. The methods are discussed separately. 

5.1.4. Output cell selection: particularities 

The final state of the output cell afferent synapses has been defined by the pre
ceding theory: they must have strength which varies with P(Qlci ), each ci . There is 
therefore not the distinction between different models for output cell selection that 
there was between models (1) and (2) of figure 4 for codon formation. Ifsome model 
of this kind is used, the synapses must initially all have some standard excitatory 
power, which gradually adjusts to become P(Qlci ). The exact details of the way this 
happens will be the subject of §5.2, but the outline can be given here. First, the cell 
will fire only when a significant number of afferent synapses are active: so it will 
only be selected for a set of events most of which it can receive. If there exists a 
single collection of common, overlapping subevents in its input, this collection will 
tend to drive the cell most often, and those synapses not involved in this collection 
will decay relative to those which are. Hence the cell will perform a kind of mountain 
climbing of its own accord. 

There are two possible arguments against this scheme: first, such a system can only 
work successfully ifthere is just one significant mountain in the pro ba bility space over 
the events it can receive. This makes it rather bad at selecting a particular mountain 
from several, and responding only to events in that; so the cell will not be very adept 
at forming a specialized classificatory unit unless it is fed data in a very careful 
manner. Secondly, some disquiet naturally arises over the conditions required for 
synaptic modification-that modification is sensitive to simultaneous pre- and post
synaptic activity. The Q-cell dendrite will need to collect from a wide range of cccell 
axons, and will therefore be much larger than the cccell dendrites. In such circum
stances, it is far from clear that these conditions are realizable. The most reasonable 
kinds of hypothesis for synaptic modification by a combination of activities in 
pre- and post-synaptic cells concern activities in adjacent structures, not elements 
up to 1 mm apart. There are therefore some grounds for being dissatisfied with 
model (1) of figure 7, even supposing the mountain-climbing details turn out in a 
favourable way. 

The second model (figure 7 (2)) is based on some kind of climbing fibre analogue. 
It is of course not a direct copy of the cerebellar situation, since there can exist no 
cerebral analogue of the inferior olivary nucleus. It works thus: suppose there 
exists a single collection of common, overlapping input events in the input space of 
n, and let a l be one of the input fibres involved. Then most of the ci used for such 
events will occur frequently with aI' since a l is itself frequently involved in such 
events. Now suppose aI' as well as reaching n through orthodox evidence cells, also 
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drives a climbing fibre to n: then this will cause the modification of most of the 
cccell synapses used in the collection of frequent events. The cell n will then be 
found to have roughly the correct values of P(Qlci ) for most of the Ci' and the final 
adjustments can be made by the same methods as were used in model (1). 

c 

FIGURE 7. Two models for output cell selection. (1) Uses Brindley synapses, 
(2) uses Hebb synapses and a climbing fibre (OF). 

In other words, the effect of tying modification conditions initially to a climbing 
fibre driven by something known to be correlated with the events of a mountain is to 
point the output cell n at that mountain. The use of a climbing fibre therefore, as 
well as eliminating difficulties about the implementation of synaptic modification, 
also removes the condition needed in model (1) that there should exist just one 
mountain in the event space to which n is exposed. With the climbing fibre acting 
as a pointer, there can be as many as you like: the only condition is that the more 
there are, the more specific the pointer has to be. 

5.1.5. Driving the climbing fibre 

The exact details of both these techniques will be analysed in § 5.2, but before 
leaving this section, it is worth discussing the kind of way in which the climbing 
fibres may be driven. One possibility is the method already mentioned, where the 
climbing fibre is driven by one of the input fibres of the event space of n. This 
will do for many purposes, but it may not always provide a specific enough 
pointer. 

The alternative method is to drive the n-cell by a climbing fibre whose action is 
more localized in the event space I for n than the simple fibre a1. In this scheme, 
the climbing fibre is driven by a cell near. the n-cell, and one which consequently 
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fires only when there is considerable evidence-cell activity near n. This cell then 
acts as a more specific pointer than a simple fibre would, and is called an output 
8elector cell (see figure 8). 

It is an elementary refinement of this idea to have more than one climbing fibre 
attached to a given cell n, which then requires activity in several to be effective in 
causing synaptic modification. The crucial thing about the climbing fibre input is 
that it should provide a good enough rough guide to the events at which n should 

FIGURE 8. The fundamental neural model, obtained by combining the models of figures 6 and 
7(2). Two climbing fibres are shown; one from an input fibre, and one from a nearby 
output selector cell T. 

look for n eventually to be able to discriminate a single mountain from the rest of its 
event space. It is important also to note that this kind of system can be used directly 
to discover new classificatory units. As long as no codon formation is required, 
climbing fibres can cause the discovery of mountains-i.e. new classificatory units
directly on the incoming information. Provided that the connectivity is suitable 
(i.e. that information gets brought together in roughly the correct way), new 
classificatory units will form without the need for any intermediate storage. 
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5.2. The spatial recognizer effect 
5.2.0. Introduction 

The process central to the formation of new classificatory units is the discovery 
that events often occur that are similar to a given event over a suitable collection of 
fibres. This was split in § 1.4 into the partition problem, which concerns the choice 
of roughly the correct collection of fibres; and the problem of selecting the appro
priate collection of events over those fibres. The second part of this problem has 
been discussed in connexion with ideas about mountain climbing, and an informal 
description of the solution has been given in § 5.1. The essence of this solution is that 
an output cell performs the mountain climbing process naturally, and if started by a 
suitably driven climbing fibre in roughly the correct region of the event space to 
which it is sensitive, it will ultimately respond to the events in the nearby mountain. 
In this section, a closer examination of this process is made. 

5.2.1. Natation: the standard (k, M)-plateau 

The notation for this section will be slightly different from usual, since the output 
cell n is sensitive to events E over .t only in terms of the evidence functions 
ci (1 :::;; i :::;; K). It is therefore convenient to construct the space ID of all events of size 
k over the set {cv ... , CK}' Each input event E over .t is translated into an event 
y = Y (E) over ID, and for the sake of simplicity, it will be assumed that each input 
event E causes exactly k of the ci (1 :::;; i :::;; K) to take the value 1. As far as n is 
concerned, the events with which it has to deal occupy a code of size k over 
{cl , ... , CK}' 

The Ci are imagined to be active in translating input events for many output cells 
other than n, and this allows the further simplifying assumption that all the Ci are 1 
about equally often: that is P(ci ) = P(cj ), all 1 :::;; i :::;; K. Only those events which 
occupy k fibres concern n, and the relative frequencies of these are described by the 
probability distribution i\* (say) over ID. i\* is the probability distribution the 
environment induces over ID, and is derived from the input distribution i\ over .t. 
Both i\ and i\ * have mountainous structure, but if ID is obtained from .t by a codon 
transformation, the mountains in ID are more separated than their parents in .t. 

The term 'mountain' has hitherto had no precise definition·. It is not known 
exactly what kinds of distribution are to be expected, so some kind of general 
function has to be set up out of which all sensible mountains may be built. This is 
what motivates the following 

Definition. Let p, be the probability distribution over ID defined thus: let M < K, 
and for each Y E ID 

(M)-l 
p,(Y) = k if 

p,( Y) = 0 otherwise. 

Then p, is a standard (k, M)-plateau over Cl , ••• , CM -

I4-2 
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That is, P ascribes a constant value to the probability of every event which 
gives ci = 0 for all fibres outside some chosen collection {c1, •.• , CM}' The collection 
{c1, ••• , CM} is called the support of the plateau, and is written S(P). A simple moun
tain P* is one that can be built up out of plateaux Pi with nested supports: i.e. 

where 

s.t. P* = W1PI +W2P2+ ... +wPPP' 
p 

~ Wi = 1 and S(PI)::> S(Ps) ::> S(pp )' 
i=l 

In the absence of any better guesses about what kind of distributions should be 
studied, this section will deal with simple mountains. The fact that they can 80 

simply be constructed from standard plateaux means that it is in fact enough to 
study the properties of standard plateaux. Further, we shall consider plateaux 
over the event space generated by the codon functions for a given classificatory 
unit, rather than plateaux over the event space generated by the input fibres. 
This is because the crucial operations occur at the output cell, which receives only 
evidence fibres. 

5.2.2. Climbing fibres and modification conditions 

Without loss of generality, it may be assumed that the output cell A receives 
only one climbing fibre, which will be represented by the function ifJ(t) of time. 
ifJ cannot in general be regarded as a function from W to {O, I} since ifJ may take the 
value 1 at a time when there is no event in W. Some kind of relation between ifJ 
and the events ofW has to be assumed; it is that the conditional probability P(ifJlci ) 

is well-defined and independent of time. 
The climbing fibre input to A is closely related to the conditions for synaptic 

modification at A, but there are two possible views about the exact nature of this 
relation. One is that the climbing fibre is all-important in determining the strength 
of the synapse from ci to A, and on this view, the strength varies with P(ifJlci ). The 
cell A really diagnoses ifJ if this is so, but it will be shown in §5.2.3 that if the struc
ture of i\ * over W is appropriate, this will be adequate. 

The other possible view is that ifJ acts as a pointer for A. On this model, the effect 
of ifJ is to set the values of the synaptic strengths at P(ifJlci ) initially. The true con
ditions for synaptic modification are simultaneous pre- and post-synaptic activity. It 
is a little difficult to see how the climbing fibre should be dealt with after it has set 
up the initial synaptic strengths, so in the theory of §5.2.4, it is regarded simply as 
doing this, and is then ignored. This is an approximation, but seems the best one 
available. The true situation probably lies somewhere between those described 
in §§5.2.3 and 5.2.4. 

5.2.3. Mountain selection with P(Dlci ) = P(ifJlci ) 

Let [p, q] denote the plausibility range of A. The state of A's afferent synapses can 
be represented by the vector w = (wI, ... , wK ) where Wi = P(ifJlci ), and it is assumed 
for this model that w is fixed-that the climbing fibre is the supreme determinant of 
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the synaptic strengths. Let X EX. Then X has a representation as a vector 
y = (yt, ... , yK) E ID with exactly k of the yi = I, and all the rest zero. Let. denote 
the scalar product of vectors in the usual way: that is w. Y = ~wiyi. Then the 

i 

cell n responds to X iff ~ci(X)P(¢lci) ~ kp, i.e. iffw. Y ~ kp. Hence Nn , the set of 
events to which n responds, is given by 

Nn = {Xlw. Y ~ kp}. (I) 

The following example shows how this may work adequately in practice. Let fI 
denote the standard (k, M)-plateau on {c1, ... , CM}' M < K, and let v denote the 
standard (k, N)-plateau on {cs+v ... , cs+x} where 1 < 8 < M < 8 + N ~ K. Suppose 
¢ = /;1' If the input distribution A * = fI we have 

P(¢lc;) = I (i = I) 

= (k-l)j(M-I) (I < i ~ M) 

= 0 (M < i ~ K). 

If A* = v, we have P(¢lci ) = 0, all i> 1. 

If A*=t(fI+V):P(¢lc;) = I (i=l) 

= (k-l)j(M -I) = a(say) (I < i ~ 8) 

= ~tii~L (:1 + ~) -1 = (J(say) (8 < i ~ M) 

= 0 (M < i ~ K). 

Hence ifthe lower limit of the plausibility range [p, q] of n is p = k-l(8a + (k - 8)(J), 
the cell n will respond to E if and only if fI(E) =1= o. Thus the output cell n has selected 
the mountain fI from the distribution A * = t(fI + v) even though the climbing fibre 
¢ did not. This is the crucial property which the system possesses. 

In general, if ¢ = c1' ¢ will select the events of any plateau containing c1 in its 
support, and can therefore be made (by suitable choice of p) to reject all events of 
other plateaux which do not fall into such a plateau. 

The relation (I) can be used to construct the explicit condition that a climbing fibre 1> 
can induce Q to respond to a particular set of events. If w is the climbing fibre vector 
w = (P(1>lc1 ), ... , P(1)ICK)) andN n = {Xlw. Y ;;. kp}, thenQ can select the events N out of 
ll:, A} iff A(N n /':; N) = 0; i.e. the probability under the input distribution A that an event 
occurs which is in exactly one of N n, N is zero. 

5.2.4. The spatial recognizer effect 

In the more general case, ¢ acts as a starting condition rather than permanently 
defining the strength of the synapse from Ci to n (I ~ i ~ K). The subsequent 
strengths of these synapses depend on and only on P(Dlci ). 

Write P(¢ I ci ) = wb, 1 ~ i ~ K and let e = kpP(ci ). Since P(ci ) = P(cj ), all 
I ~ i,j ~ K (§5.2.1), the initial firing condition for n is simply ~W&Ci(X) ~ e. 

i 

As before write Wo = (w~, ... , wf") as a vector: Wo defines the state of the afferent 
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synapses to n. If Y is the usual vector (consisting of O's and 1 's) which represents the 
event X over {cv ... , CK}' the firing condition for n is 

(2) 

The difference here is that W is now a variable. The point is that the vector W 
depends on the input distribution A, and on those events to which (by (2)) n responds. 
Define N/J(wo) S; I by N/J(wo) = {Xlwo. Y ~ O}. Define the new vector 

WI = (wI. ... , wf) by wi = ~ Ci(X)A(X) (l ~ i ~ K). (3) 
XeN/J(w.) 

That is, the co-ordinates wi of WI are simply the projections onto the Ci of the 
restriction AIN/J(wo) of A to N/J(wo). Then (1)1 represents the state of the synapses 
from the ci to n if n responds only to the events in N/J( wo). 

. ·· __ Wj_ :, - Wi+l_ OO O 

FIGURE 9. The state vector Wi' which describes the strengths of the afferent synapses to the 
output cell n, determines the set N /J (w;) of events to which n will respond. This in turn 
determines a new state vector wi+1. Equilibrium occurs when Wi = WHl" 

The situation is thus that in the state WO' the cell nresponds only to eventsinN/J(wo) : 
exposure to such events may be expected to change the state vector Wo into WI' from 
where the process is repeated. This generates a series of successive transformations of 
the state vector W for n, and this is called the spatial recognizer effect (see figure 9). 

Theorem. The state vector achieves equilibrium iff there exists a J such that W; = W;+l" 

Proof. In equilibrium, the set of events N/J(w;) to which the cell n responds specifies a 
statevectorwHlsuch thatA(NI/(w;) 6 NI/(w;+1)) = 0 : hence each cooordinateof(w;- wHd 
is the projection onto a Cj of AINI/(w;) 6 NI/(Wi+1) , and so is zero. Thus w;- WHI = 0, and 
w; = Wi+1. 

In the simple example A * = !(,u + v) of § 5.2.3, equilibrium is achieved in exactly 
one step. As already observed, Wo is defined by 

1TW~ = 1 (i = l) } 

= a (l < i ~ 8) where 1T-1 = P(ci ), and 
= p (8 < i ~ M) is constant. 

= 0 (M < i ~ K) 

For p = k=I(8a + (k - S) P), the cell n responds only to those events X with ,u = 0 
which also have v = 0 so that WI has the following specification. 

1Twi = 1 (l ~ i ~ 8) 1 
= ~(~+~)-1 (8 < i ~ M) 

MMN 
= 0 (M < i ~ K) 
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and WI = W 2· This result extends to any simplemountainfo*, fo* = W 1fol + ... +wpfop' 

where if> = Ci E8(fo*) = 8(fol) is an element in its support. 

5.2.5. A general characterization of the recognizer effect 

It is natural to seek some elegant way of describing the spatial recognizer effect. 
In the following informal argument, a characterization is given in terms of a search 
for steepest ascents in ID under A *. This effectively puts a stop to any attempt to 
produce a necessary and sufficient condition that the starting state Wo should lead 
to a particular final state w*, since the general question depends upon the detailed 
structure of A. The answer that it does if and only if a line of steepest ascent leads 

t.J ..:....--" 

FIGURE 1 O. The state vector w determines the set No (w) of events to which n responds. The 
environmental probability distribution over No(w) is stippled where it has non-zero 
values. w changes so as to tend to make the centre of gravity of this distribution coincide 
with the centre of No(w). This is the principle behindn's ability to perform a mountain
climbing opera.tion. 

there is probably its own neatest characterization. It is convenient to make the 
restriction that p, the lower limit to the plausibility range for n, is variable, and 
varies to keep the average amount of activity of n constant; i.e. 'p is such that 

f dA is constant, for all response neighbourhoods No( Wi) (defined by equation (2) 
N8(W,) 

of §5.2.4). Write No(w) = {XI Y.w ~ O} (see figure 10). W moves to WI given by the 
projections onto the ci of the restriction A!NO(W) of A to No(w). (Compare (3) of 
§5.2.4.) Now WI effectively measures the centre of gravity so to speak of the events 
inNo(w) sinceifw) = (wt, ... , wf), wi varies with the expected probability thatci = I 

in No(w) under A. Since, in each event X ofNo(w) exactly k of the ci have the value I, 
this means that the response area of n moves towards that region of No(w) which 
contains the closest, most common events. n is attracted by both commoness, and 
by having many events close to one another all having non-zero probability. The 
way these two kinds of merit compete is approximately that the movement which 
maximizes the expectation of w. Y over No (w) is the one which is actually made: but 
the full result along these lines is complicated. In fact, the move is the one which 
has the best chance of maximizing this expectation. 

191 



224 D. Marr 

Thus w moves to climb gradients in the scalar function E(w. Y) taken over the 
response area defined by w. A proof of this result will appear elsewhere. 

5.3. The refinement of a classificatory unit 

The refinement of a classificatory unit is the discovery of such appropriate boun
daries as it might have. There are two kinds of information on which this process 
can be based: they are the frequencies of the subevents on which the unit is defined, 
and the correlation of instances of the unit with properties not included in its 
definition (Le. support). The modification of a classificatory unit on the basis of its 
subevent distribution is called its intrinsic refinement, and has essentially been dealt 
with in §5.2: alteration made as a result of comparison with external properties is 
called extrinsic refinement, and will be discussed briefly here. 

General extrinsic refinement requires a simple memory; but it basically consists 
ofthe same kind of mountain climbing techniques as intrinsic refinement. The only 
piece of the problem that can be discussed at the moment is the hardware needed for 
it. It is appropriate to deal with this now, since the necessary machinery must 
appear in the fundamental neural model. 

There exist three main strategies for the extrinsic refinement problem: they are 
characterized by the change during refinement of the number of subevents to 
which the output cell n will give a positive diagnosis. This number can increase, 
decrease, or remain about the same. The basic point is that the strategy which 
requires the number to decrease is the one which is easiest to implement, since it is 
easier to remove events from the response area of n than to add them. This is because 
the only way of adding an event to n's response area is by stimulating the climbing 
fibre. This needs some way of gaining access to the correct climbing fibre cell. The 
models of § 5.1 for output cell selection make this difficult, since one of the key 
points in their design was the absence of a special climbing fibre for each output cell, 
and alternative schemes are unacceptably complicated. 

The other possibility for adding events to Q is to use an associational path to n 
itself (for example, the basilar dendrite afferents of figure 5): but it was thought 
(§4.1.8) that the associational activity of the n-cell should not have this kind of 
ability to influence the strengths of the synapses arising from more direct inputs. 
Finally, there can be no guarantee that the existing evidence functions for Q can cope 
with a new event. 

Given these difficulties, it is natural to examine the possibility of refining a 
classificatory unit by eliminating inappropriate events from its response field. The 
main advantage such a method produces is that a general inhibitory influence acting 
over all output cells (in a particular region) can be used to alter values of P(Qlci ) for 
one particular n in a way in which a general excitatory influence cannot. For suppose 
the event E is to be cut out: this must be achieved by allowing E to enter the ci-cells 
for n while preventing the formation of modification conditions at n itself. If the 
chance that E should be interpreted in a cell near n is s:n:tall, this effect can be 
achieved by applying a general inhibitory signal to all the output cells in the region 
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containing n. Hence the only additional hardware this method requires is a fairly 
non-specific inhibitory input to all output cells. This does not appear in figure 8, since 
its derivation from the theory is less firm than that of the other elements which 
appear there. 

§ 6. NOTES ON THE CEREBRAL NEOCORTEX 

6.0. Introduction 

The present theory receives its most concrete form in the neural model of figure 8. 
In this section, the fine structure of the cerebral cortex is reviewed in the light of 
that model. Anyone familiar with the present state of knowledge of the cerebral 
cortex will anticipate the sketchy nature of the discussion, but enough is probably 
known to enable one to grasp some at least of the basic patterns in the cortical 
design. 

lt need scarcely be said that cerebral cortex is much more complicated than that 
found in the cerebellum. Nothing of note has been added to the researches of Cajal 
(1911) until comparatively recently (Sholl 1956; Szentagothai 1962, 1965, 1967; 
Colonnier 1968; Valverde 1968), because Cajal's work was probably a contribution 
to knowledge to which significant additions could be made only by using new tech
niques. Degeneration methods have since been developed, and the electron micro
scope has been invented; so there is now no reason in principle why our knowledge 
of the cerebral cortex should not grow to be as detailed as that we now possess of 
the cerebellar cortex. ltis, as Szentagothai (1967) has remarked, a Herculean under
taking; but it is within the range of existing techniques. 

6.1. Oodon cells in the cerebral cortex 

6.1.1. The ascending-axon cells of M artinotti 

The main source of information for this section is the description by Cajal 
(191 I) of the general structure of the human cerebral cortex. The codon cells of the 
cerebellum are, according to Marr (1969), the granule cells, whose axons form the 
parallel fibres. The basic neural unit of figure 8 has analogies with the basic cerebellar 
unit (one Purkinje cell, 200000 granule cells, and the relevant stellate and Golgi 
cells, in the cat), so it is natural to look for a similar kind of arrangement in the 
cerebral cortex. 

The first point to note is that cerebral cortex, like cerebellar cortex, has a mole
cular layer. According to Cajal (p. 521) this has few cells, and consists mostly of 
fibres. The dendrites there are the terminal bouquets of the apical dendrites 
originating from pyramidal cells at various depths. Most pyramidal cells, and some 
other kinds, send dendrites to layer I, so there is a clear hint in this combination that 
some such cells may act as output cells. The great need is for the axons of the mole
cular layer to arise mainly from cells which may be interpreted as codon cells. 
Cajal himself was unable tQ discover the origins ofthe axons of the molecular layer, 
and probably believed they came mainly from the stellate cells there. The problem 
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was unresolved until Szentagothai (1962) invented a technique for making small 
local cortical ablations without damaging the blood supply, and was at last able to 
determine the true origin of these mysterious fibres. It is the ascending-axon cells of 
Martinotti, which are situated mainly in layer VI in man. 

This fundamental discovery showed that the analogy with cerebellar cortex is not 
empty, for the similarity of the ascending-axon cells of Martinotti to cerebellar 
granule cells is an obvious one. There are, however, notable differences; for example, 
the Martinotti cells are much larger than the cerebellar granules; and in sensory 
cortex, primary afferents do not terminate in layer VI. 

The interpretation of Martinotti cells as cerebral codon cells raises five principal 
points, which will be taken separately. The first is the cells of origin of their excitatory 
afferent synapses. There is unfortunately rather little information available about 
this, but it appears from Cajal's description that the following sources could con
tribute fibres: 

(i) The collaterals of the pyramidal cells oflayers V, VI and VII. 
(ii) Descending axons from the pyramids of IV. 
(iii) Collaterals of fibres entering from the white matter. 
(iv) Local stellate cells. 
It would best fit the present theory if intercortical association fibres formed their 

main terminal synapses with these cells, and the collaterals of the pyramidal cells in 
layers V to VII were relatively unimportant. There is some evidence that associa
tion fibres tend to form a dense plexus in the lower layers ofthe cortex (Nauta 1954; 
and Cajal 1911, pp. 584-5). 

The second point is that the Martinotti cells would have to have inhibitory 
afferent synapses driven by the equivalent of the G-cells which appear in figure 8. 
The effect ofthese synapses should be subtractive rather than divisive, so that to be 
consistent with the ideas about inhibition expressed in §4.1 on output cell theory, 
the synapses from the G-cells should be distributed more or less all over the den
drites of the Martinotti cells. (There is some evidence that this is so for certain cells 
oflayer IV in the visual cortex of cat (Colonnier 1968), but it rests upon an as yet 
unproved morphological diagnosis of excitatory and inhibitory synapses.) This is in 
direct contrast to what the theory predicts for output cells, a distinct fraction of 
whose afferent inhibitory synapses should be concentrated at the soma. 

The third point concerns the possible independence of the dendrites of Martinotti 
cells. These cells commonly have a quite large dendritic expansion, and it may be 
unreasonable to expect much interaction between synapses on widely separated 
branches. The effect, if their afferent synapses are unmodifiable, is to enable the cell 
as a whole to operate as the logical union of m(R, O)-codons (where m is the number 
of independent dendrites) instead of as a single (mR, O)-codon: the advantage of this 
is a better quality of evidence function. 

The fourth point concerns the possibility that the excitatory afferent synapses to 
Martinotti cells may be modifiable: this has been discussed in § 5.1.2. If these 
synapses are Brindley synapses, then the dendrites may be independent from the 
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point of view of synaptic modification, as well as in the way described in point 
three. If there is some kind of climbing fibre arrangement, the fibres must be driven 
from some external source, and must be allowed to operate only when codon for
mation is required. The second possibility could allow the modification condition to 
operate simultaneously over the whole cell. It has been seen, however, that climbing 
fibres are unlikely to be used. If location selection proceeds as described in §5.1.1, 
the Martinotti afferent synapses are modifible only during the correct phase of 
sleep. 

Fifth and last, it is a simple consequence of the present theory that Martinotti cells 
should be excitatory, and should send axons to synapse with five types of cell: the 
output cells, whose ordinary excitatory afferent synapses are modifiable; the two 
types (S and D) of inhibitory cell; the Martinotti threshold controlling cells, the 
G-cells; and perhaps output cell selector cells, whose axons terminate as climbing 
fibres on output cells. A Martinotti axon may itself under certain circumstances 
terminate as a climbing fibre as well as making crossing-over synapses with output 
cells; but this possibility may be excluded for developmental reasons. 

6.1.2. The cerebral granule cells 

In layer IV of granular cerebral cortex, there are found a large number of small 
stellate cells, 9 to i3p.m in diameter, whose fine axons end locally. This layer is 
especially well developed in primary sensory cortex, where it sees the termination 
of the majority of the afferent sensory fibres. It has long been believed that such 
fibres synapsed mainly with the granule cells (Cajal 191 I). Szentagothai (1967) has, 
however, pointed out that many sensory afferents in fact terminate as climbing 
fibres on the dendritic shafts passing through IV, and believes this may be an 
important method of termination. 

Valverde (1968) has made a quantitative study of the amount of terminal de
generation in the different cortical layers of area 17 of mouse after enucleation of the 
contralateral eye, and has demonstrated that about 64 % occurs in layer IV, the 
other principal contributions being from the adjacent layers III and V. In view of 
the abundance of granule cells in layer IV, it is difficult to imagine that the afferent 
fibres never synapse with them, and so likely that the traditional view is correct. 
There can be no doubt thai afferents also terminate as climbing fibres, and the 
possibility that both these things happen fits very neatly with the predictions of the 
present theory. 

These views support the interpretation of the granule cells as codon cells, in which 
case the remarks of § 6.1.1 about Martinotti cells may be applied to them. An 
interesting characteristic of granule cells is that they are often very close to raw 
sensory information, in a way in which the Martinotti cells are not. They will 
therefore not support classificatory units which rest on much preceding cortical 
analysis-that is, classificatory units for which, if it occurs at all, codon formation is 
most likely to be used. The theory therefore contains the slight hint that the 
Martinotti cells may be the plastic codon cells, and the granule cells the pre-formed 
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codon cells. The consequence of this would be that the Martinotti cells have modi
fiable afferent excitatory synapses, while the granule cells have unmodifiable 
afferent synapses. 

6.2. The cerebral output cells 

The present theory requires that candidates for output cells should possess the 
following properties: 

(i) A dendritic tree extending to layer I and arborizing there to receive synapses 
from Martinotti cells. 

(ii) An axon to the white matter, perhaps giving off collaterals. 
(iii) Inhibitory afferent synapses of two general kinds: one, fairly scattered over 

the main dendrites, and performing the subtractive function; the other clustered 
over the soma, performing the division. 

(iv) Climbing fibres over their main dendritic trees. 
(v) A mixture of modifiable and unmodifiable afferent synapses. Those synapses 

from codon cells-Martinotti and granule cells-should initially be ineffective (or 
have some fixed constant strength), but should be facilitated by the conjunction of 
pre-synaptic and post-synaptic (or possibly just climbing fibre) activity, so that the 
final strength of the synapse from c to n varies with P(.Qlc). These synapses should 
certainly be modifiable during the course of ordinary waking life, and should probably 
be permanently modifiable. 

The cortical pyramidal cells of layers III and V are the most obvious candidates 
for this role. According to Cajal (1911), they satisfy (i), and (iv), and (ii) (Szentagothai 
1962). The evidence for (iii) is indirect, but these cells receive axosomatic synapses of 
the basket type, and these have been shown to be inhibitory wherever their action 
has been discovered, (in the hippocampus (Anderson, Eccles & Leyning 1963), and 
the cerebellum (Anderson, Eccles & Voorhoeve 1963)). Various kinds of short axon 
cell exist in the cortex; there are probably enough to perform the subtraction 
function (§6.4). 

The axon collaterals of these pyramidal cells could perform two functions. Either 
they can themselves act as input fibres to nearby Martinotti cells; this would enable 
two successive classifications to be performed in the same region of cortex. Or they 
could act as association fibres, synapsing with the basilar dendrites of neighbouring 
output cells. This would be useful if nearby cells dealt with similar information, but 
not necessarily useful otherwise (Marr 1971). 

6.3. Cerebral climbing filJres 

One of the crucial points about the output cells is that they should possess 
climbing fibres. The various possible sources of these were discussed in §5, where it 
was stated that there might be two origins-afferent fibres themselves, and cells 
with a local dendritic field. 

The first observation of cerebral climbing fibre cells was made by Cajal (1911), 
who describes certain cells with double protoplasmic bouquet, as follows. 'The axon 
filaments [of these cells] are so long that they can extend over the whole thickness of 
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the cortex, including the molecular layer .... If one examines closely one of the small, 
parallel bundles produced by the axons of these cells, one notices between its 
tendrils an empty, vertical space which seems to correspond in extent to the den
dritic stem of a large or medium pyramidal cell. Since the axon of one of these double
dendrite neurons can supply several of these small bundles, it follows that it can 
come into contact with several pyramidal cells,' (pp. 540-541). 

Cajal saw these fibres only in man, but Valverde (1968) has beautiful photomicro
graphs of some coursing up the apical dendrite of a cortical pyramidal cell of the 
mouse, so they clearly exist in other animals. Szentagothai (1967) has found that 
various types of cell can give rise to such fibres, and remarks that specific sensory 
afferents often terminate in this way. 

The cortical cells which give rise to climbing fibres have been called output cell 
selectors. The theory requires that they possess a rather nonspecific set of afferents, 
so that those cells in the centre of an active region of the cortex receive most stimu-
1ation. Such cells may also possess afferent inhibitory synapses to prevent their 
responding to small amounts of activity. 

The present theory does not favour the view that cells other than output cells 
should possess climbing fibres, but it does not absolutely prohibit it. 

6.4. Inhibitory cells 

The basic theoreti,cal requirements for inhibition in the cerebral cortex would be 
satisfied by having three types of inhibitory cell. Two should act upon the output 
cells, one synapsing on the dendrites, and one on the soma; and one, the analogue of 
the cerebellar Golgi cells, on the codon cells. 

6.4.1. The subtractor cells 

The first place in which to look for inhibitory cells for the subtraction function is 
the molecular layer I, where the Martinotti axons meet the pyramidal cell dendrites. 
This layer does contain some cells: it is wrong to believe that it consists of nothing 
but axons and dendrites. Cajal remarks upon the abundance of short axon cells 
there, stating that in number and diversity they achieve their maximum in man. He 
distinguishes (pp. 524-525) four main types; ordinary, voluminous, reduced, and 
neurogliaform. The last are like the dwarf stellate cells which appear frequently in 
other cortical layers. 

The short axon cells can be interpreted as performing the role of subtraction on 
the output cell dendrite. They and their homologues are common throughout the 
cortex. The small size and great complexity of many of their axons and dendrites 
enable them to assess accurately the amount of fibre activity in their neighbourhood, 
so it does not require undue optimism to imagine that they can provide about the 
correct amount of inhibition. For this purpose, the more there are of such cells, the 
smaller and more complex their axonal and dendritic arborization, the more 
accurate will be their estimates of the amount. of inhibition required. The neuro
gliaform cells therefore seem most suited to this task. 
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6.4.2. The division cells 

The requirements of cells providing inhibition at a pyramidal cell soma for the 
function of division are different. Their action is concentrated in one place, and does 
not need to be accurately balanced over the dendritic field in the way that the 
subtraction inhibition must. The division inhibition can therefore be provided by a 
sampling process with convergence at the soma. The details of this sampling must 
depend on the distribution to the Martinotti and granule cells of the afferent 
fibres, and are based on the same principles as govern the distribution of the cere
bellar basket cell axons. 

There is no doubt that the pyramidal cells of layers III and V possess basket 
synapses (Cajal 1911), but Cajal does not describe them for those oflayer II, which 
otherwise look like output cells. Colonnier (1968) has however studied the pyramids 
of II in area 17 in some detail, and has shown that, while synapses on the somas 
of these cells are not densely packed, they do exist, and are exclusively of the sym
metrical type with flattened vesicles. It would be interesting to have some com
parative quantitative data about somatic synapses on pyramidal cells of different 
layers in the cortex. 

6.4.3. The codon cell threshold controls 

The control of the Martinotti and granule cell thresholds requires an inhibitory 
cell which, like the cerebellar Golgi cell, is designed to produce a roughly constant 
amount of codon cell activity. There are various short axon cells in layers IV and VI 
which might perform this role, but no evidence available about the cells to which 
they send synapses. The obvious candidates in IV are the dwarf cells (Cajal 1911, 
p. 565) and perhaps the horizontal cells; and in VI, the dwarf cells and stellate cells 
with locally ramifying axon. For the control of Martinotti cell thresholds, it seems 
probable that the device of an ascending dendrite should be used to assess the 
amount of activity in the molecular layer. This could be done, for example, by an 
inhibitory pyramidal or fusiform cell with basilar and ascending dendrites, and 
locally arborizing axon. Such a cell would possess no climbing fibre, nor any modi
fiable afferent synapses. There exist various fusiform cells in layers VI and VII which 
might do this, but there is too little data available to know for certain. 

6.5. Generalities 

The theory expects output cells to fire at different frequencies, and it expects 
output cells at one level to form the input fibres for the next. It is therefore implicit 
in the theory that input fibres ai (t) should take values in the range [0,1], and should 
not be restricted simply to the values 0 and 1. The theory has been developed here 
only for the simple case of binary-valued fibres. Its extension to the more general 
case is a technical matter, and will be carried out elsewhere. 

Finally, it is unprofitable to attempt a comprehensive survey of cortical cells at 
this stage: neither the theory nor the available facts permit more than the barest 
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sketch. It is most unsatisfying to have to give such an incomplete series of notes, and 
I write these reluctantly. It does, however, seem essential to say something here. 
It both illustrates how the theory may eventually be of use, and indicates the 
kind of information which it is now essential to acquire. More notes on the cerebral 
cortex will accompany the Simple Memory paper, but until then, it seems better to 
err on the side of reticence than of temerity. 

§ 7. NEUROPHYSIOLOGICAL PREDICTIONS OF THE THEORY 

7.0. Introduction 

In this section are summarized the results which are to be expected to hold if the 
theory is correct, together with an assessment of the firmness with which the 
individual predictions are made. The firmness is indicated by superscripted stars 
accompanying the prediction, the number of stars increasing with the certainty of 
the statement they decorate. Three stars*** indicates a prediction which, if shown 
to be false, would disprove the theory: two stars** indicates that a prediction is 
strongly suggested, but that remnants of the theory would survive its disproof: one 
star* indicates that a prediction is clear, but that its disproof would not be a serious 
embarrassment, since other factors may be involved; and no stars indicates a 
prediction which is strictly outside the range of the theory, but about which the 
theory provides a strong hint. 

7.1. M artinotti cells 

Each Martinotti cell should have many inputs***, mainly from intercortical 
association fibres**, which should terminate by means of excitatory synapses***. 
Each should also have inhibitory inputs***, subtractive in effect** and therefore 
widely distributed over the dendrites**. These should be driven by local cells*** 
with locally arborizing axon***, designed to keep the amount of Martinotti cell 
activity evoked by different inputs roughly constant**. 

Excitatory Martinotti cell afferent synapses are probably modifiable * , and if 
they are modifiable, they are probably Brindley synapses * , becoming modifiable 
only during the correct phases ofsleep*. If location selection proceeds as in §5.1.1, 
and if these synapses are modifiable, then they are modifiable only during the 
correct phases of sleep***. Martinotti cell dendrites are probably independent. 

The output from these cells is excitatory***, and goes to output (pyramidal) 
cells*** through modifiable synapses***, three** kinds of inhibitory cells*** 
through unmodifiable synapses***, and to output selector cells** through un
modifiable synapses. 

7.2. Cerebral granule cells 

These cells fall broadly into the same class as Martinotti cells, and the predictions 
concerning them are the same, with the following exceptions. Their input is mainly 
more direct than that of the Martinotti cells, and should (because of their smaller 
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size) come from thalamo-cortical rather than cortico-cortical projections. They 
probably do not have modifiable afferent synapses. In the sensory projection areas, 
where afferents are known to terminate in layer IV, these afferents should form the 
main source of excitatory synapses on the granule cells*. 

7.3. Pyramidal cells 

The pyramidal cells of layers III and V, and probably also those of layer II, are 
interpreted as output cells, in the sense of the theory. On the assumption that this is 
correct, they receive two kinds of excitatory synapses**, and two kinds of inhibitory 
synapses**. The majority of afferent synapses comes from Martinotti and granule 
cells**, almost all such cells making not more than one synapse with any given 
pyramidal cell**. These synapses are either Hebb or Brindley type modifiable 
synapses***. The strength of the synapse form the codon cell c to the output cell n 
stabilizes at the value P(DJc)**. (This receives only two stars, since there may be a 
workable all-or-none approximation to this value.) These synapses should be 
modifiable during the course of ordinary waking life***, and probably during sleep 
as well*. All other afferent synapses described here are unmodifiable***. 

If the dendrite is large, there exists a second excitatory input in the form of a 
climbing fibre**. If there is no climbing fibre present, the other excitatory afferent 
synapses must be Brindley synapses***. The climbing fibre input, if it exists, can 
produce the conditions for synaptic modification in the whole dendrite simul
taneously***, but it is subsequently not the only input able to do this*. 

There are two kinds of inhibitory input to the cell **: one scattered, which has the 
effect of performing a subtraction **, and one clustered at the soma, performing the 
division**. At least one of these functions is performed***, but the all-or-none 
approximation would require only one. Both essentially estimate the number of 
affereAt synapses from codon cells active at the cell***. 

The output from these cells is excitatory if it forms the input to a subsequent 
piece of cortex * * . Their axon collaterals synapse with neighbouring output and 
Martinotti cells. 

7.4. Climhing fibres 

These are present only on output cells*. The climbing fibre at a given pyramidal 
cell provides an accurate enough pointer for that cell for the spatial recognizer 
effect to take over and make the cell a receptor for a classificatory unit***. 
Climbing fibres are excitatory***, if used for this purpose. 

7.5. Other short axon cells 

Many of the short axon cells which are not codon or climbing fibre cells are inhibi
tory***. The theory distinguishes three principal kinds**. Subtractor cells sample 
the activity of codon cell axons near local regions of dendrite**, and send inhibitory 
synapses to those regions**. These have a subtractive effect**. Division cells, the 
basket cells, are inhibitory**; and so are cerebellar Golgi cell analogues, which keep 
the amount of codon cell activity about constant**. 
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The granule cell threshold controls receive excitatory*** synapses from either 
the granule cell excitatory afferents, or the granule cell axons***, and perhaps from 
both*. They send inhibitory synapses to the granules themselves***, and these 
synapses are scattered over the granule cell soma and dendrites * * . The Martinotti cell 
threshold controls receive excitatory*** synapses either from the Martinotti 
afferents, or from the Martinotti axons***. In view of the length of the Martinotti 
axons, they probably receive from both**, and therefore have an ascending den
dritic shaft**. Layers VI and VII contain fusiform cells which could be Martinotti 
cell threshold controllers. 

The axonal and dendritic distributions of the inhibitory cells of the cortex depend 
on the distributions of the afferents, and of the codon cell axons, in a complicated 
way. 

7.6. Learning and sleep* 

This section as a whole receives one star, but if location selection proceeds as in 
§ 5.1.1, and if there exist plastic codon cells, then it receives three stars. The truth 
of these conditional propositions cannot be deduced from the available data. Star 
ratings within the section are based on the assumption that both propositions are true. 

Sleep is a prerequisite for the formation of some new classificatory units***. The 
construction of new codon functions for high level units***, and perhaps the selec
tion of new output cells, takes place then, though the latter can** occur, and 
probably usually does*, during waking. 

Let31 and 32 be two collections of pieces of information such that many of the 
spatial relations present in 32 appear frequently in 31' and have not previously 
appeared in the experience of an animal. The animal is exposed to31' and then t032' 
If the exposures are separated by a period incl.uding sleep, the amount of information 
the animal has to store in order to learn 32 is less than the amount he would have to 
store if the exposures had been separated by a period of waking***. This is because 
the internal language is made more suitable during the sleep, by the construction of 
new classificatory units to represent the spatial redundancies in31' The'recall of31 
itself is not improved by sleep * * . 

Conversely, if this effect is found to occur, some codon cells have modifiable 
synapses**. 

I wish to thank especially Professor G. S. Brindley, F.R.S., to whom lowe more 
than can be briefly described; Mr S. J. W. Blomfield, who made a number of points 
in discussion, and who proposed an idea in §1.5; Professor A.F. Huxley, F.R.S., for 
some helpful comments; and Mr H. P. F. Swinnerton-Dyer, F.R.S., for various 
pieces of wisdom. The embryos of many of the ideas developed here appeared in a 
Fellowship Dissertation offered to Trinity College, Cambridge, in August 1968: 
that work was supported by an MRC research studentship. The work since then 
has been supported by a grant from the Trinity College Research Fund. 
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Commentary on 

A Theory for Cerebral Neocortex 

David Marr's paper "A Theory for Cerebral Neocortex" published in 1970, is 
the third in a trilogy of papers, the first being "A Theory of Cerebellar Cortex"; 
the second, "Simple Memory: A Theory for Archicortex" was published in 
1971. The three papers are closely related, and it is difficult to comment on 
the 'neocortex' paper without some discussion of the others, particularly of 
the 'cerebellum' paper. 

The first paper proposes that the cerebellar cortex is a network that learns 
associations. It was once (mistakenly) characterized to me by Minsky and 
Papert as a perceptron-like theory, but in fact it is very similar to the associative 
nets first studied by W.K. Taylor (1956), which can be trained to associate and 
recognize classes of patterns (see Fig. 1). 

e)Cirinsic 
S-units 

intrinsic 
S-units motor units 

Fig. 1. Taylor net. This net uses analog neurons with modifiable 
weights and can be trained to associate differing sets of stimulus 
patterns via synaptic facilitation. 

The basic neural machinery is that of synaptic facilitation, either hetero
synaptic, in which coincident activation of weak extrinsic synapses and a strong 
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suprathreshold intrinsic synapse leads to strengthened extrinsic synapses, or 
else homo synaptic, in which correlated pre- and postsynaptic activity strength
ens the synapse (see Fig. 2). 

extrinsic extrinsic 

Intrinsic 

a. heteros'yTlaptic b. hom oS'yTlaptic 

Fig. 2. Facilitation of extrinsic synapses (a) by coincident activation 
of an Intrinsic synapse, and (b) by correlated activation of extrinsic 
synapses and the post-synaptic cell. 

This machinery was used by many investigators throughout the 1960s, but 
it was Marr who first recognized the need to encode input patterns carefully 
for optimal storage, and to control carefully the retrieval of stored patterns. 
Marr's work is closely related to a little known paper by P. H. Greene (1965) 
entitled "Superimposed Random Coding of StimUlus-Response Connections," 
itself based on earlier work by C. N. Mooers (1949,1954) involving punched 
cards. Greene introduced the network shown in Figure 3 for the storage and 
retrieval of information. The basic idea is that forming random subsets of 
incoming patterns (in modem terms a form of "hash" encoding) provides an 
economical and efficient representation of the information contained in the 
patterns, and also minimizes any overlap between differing patterns. The 
similarity between this network and Marr's model of the cerebellar cortex is 
striking. It requires only inhibitory neurons to control thresholds, and intrinsic 
climbing fibers to train synapses (both suggested but not implemented by 
Greene), to complete the picture. Greene recognized the associative memory 
aspects of the network but did not pursue this, although he suggested that 
recurrent connections from the motor units back to the sensory units might 
allow the network to generate sequences of stored responses. It was Marr 
who introduced climbing fibers and inhibitory interneurons to control both 
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the storage and the retrieval of infonnation in such an architecture, and who 
followed up a suggestion of J. Szentagothai's (c. 1964), that the cerebellar 
cortex learns. 

sen90ry units motor units 

Fig. 3. Greene's network, a neural realization of Mooers' "Zato
coding" scheme for storing and retrieving multiple descriptors on 
punched cards. 

Marr's theory of the hippocampus differs from that of the cerebellar cor
tex in several respects. First, the granule cell synapses are themselves modifi
able via homosynaptic rather than heterosynaptic facilitation, because internal 
representations of novel incoming sets of patterns have to be fonned. Marr 
showed that this could only be perfonned reliably with two layers of granule 
cells. Second, the output pyramidal cells are excitatory and make recurrent 
connections with the first layer of granule cells, as well as with neocortical 
cells; they are also interconnected via modifiable excitatory synapses. This 
pennits the recall of patterns from only a subset of cues. The entire network 
functions as an associative memory. Interestingly, the addition of excitatory 
interconnections, together with inhibitory intemeurons for threshold control, 
gives the hippocampus model dynamical properties that even now have not 
been investigated. 

The overall structure of the hippocampal model is shown in Figure 4. In 
modem tenns it comprises a recurrent network with two layers of trainable 
"hidden" neurons to provide efficient and reliable encoding and classification 
of sets of input patterns connected to an associative memory store. The cere
bellum model can be seen as a specialization of this comprising only a single 
layer of granule cells with fixed synapses, and an associative memory store 
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with no recurrent connections, and with another set of conditioning inputs, that 
is, the climbing fibers. 

recurrent 
ass ociative 

t 
netW'ori<: I-+-

I gran ul e cells I 
~ 
I gran ul e cells I , 
I I 

• • ••• ()()O ( 

sensory(and other) inputs outputs 

Fig. 4. Marr's model of the hippocampus and associated networks. 

The neocortex model is a composite comprising elements of both the cere
bellar cortex and hippocampus models. It tackles a much more complicated 
problem, that of the ab initio formation and organization of networks capable 
of classifying and representing "the world." The cerebellar and hippocampus 
models both assume this development to have already taken place: in the 
neocortex model Marr tries to solve this problem. In current terms it repre
sents an early attempt at a theory of unsupervised learning, essentially using 
some methods of cluster analysis borrowed from numerical taxonomy. The 
basic idea stems from a broader view of the circuitry shown in Figure 2(A) 
in which "extrinsic" synapses are facilitated by the coincident activation of a 
strong "intrinsic" synapse. In Marr's more general view, intrinsic properties 
are those already learned and utilized by the organism, whereas extrinsic prop
erties are novel. The intrinsic inputs may therefore be thought of as indicating 
or diagnosing the membership of an extrinsic activation pattern in some class 
of patterns already learned by the organism, and the synaptic weights them
selves may be thought of as indicating the conditional probabilities P(OICi) 
of the extrinsic event Cl, C2 ,Cn being in the class O. Interestingly, conditional 
probabilities (and mutual information measures) were hypothesized by A. M. 
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Uttley some 10 to 20 years earlier (c. 1954-1966), to be computed at synapses. 
However, Marr's use of conditional probability differs fundamentally from Ut
dey's in that it does not refer to the frequency of occurrences of events, but 
rather to their overlap or similarity with intrinsic events. Figure 5 shows the 
resulting circuit. It embodies what Marr called the diagnosis theorem, namely 
that for a given evidence cell activated by the event E = {Cl' C2,' .. ,cn }, the 
best (maximum likelihood) estimate of the probability that E is in the class 
0, is given by the arithmetic mean of its synaptic weights. Marr also proved 
a related theorem, the interpretation theorem, in case the extrinsic events are 
onl y partial subsets of {Cl' C2 , ... , cn }. Let X be such a subevent, and let Ei 
be all the possible events that can contain X, the completions of X. Then the 
best estimate of P(OIX) is given by the arithmetic mean of the conditional 
probabilities P(OIEi ), again stored as synaptic weights in a set of evidence 
cells. This is implemented by the following circuit shown in Figure 6. The 
similarity between this circuit and the cerebellar cortex circuit described earlier 
is apparent. 

e)trinsic 

Intrinsic --4~:lI 

Fig. 5. Granule cell as an "evidence" cell. Its firing rate is propor
tional to P(OIE) where E is the extrinsic event {Cl' C2, ... ,ck}, 
and 0 is a given set of events, i.e., a "class." Note that P(OIE) 
is the arithmetic mean of the individual synaptic weights Pi 
P(OICi). 

But can the ideas of class fonnation and so forth worlc in general? Marr's 
answer is no, but they will worlc if the world is spatially coherent, for then 
classification in tenns of similarity is possible, and generalization. What 
is required is a mechanism by which novel classes can be discovered and 
developed. This is the basic problem of unsupervised learning. It can be 
solved by self-organization with homo- and heterosynaptic facilitation acting 
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p(aIX) 

Fig. 6. A neural implementation of the interpretation theorem. A 
subset X of the event {ct, C2, • •• ,Ck} activations evidence cells 
whose thresholds are controlled by an inhibitory interneuron (shown 
in black), to maintain a roughly constant input to the output cell. 
Other inhibitory cells controlling the output cell threshold, and pro
viding normalization via ECi are not shown. 

to strengthen synapses when spatially correlated and coherent inputs are pre
sented. It follows that the machinery outlined above, and described in detail in 
Marr's papers, will work to discover and develop classifications if the world 
is reasonably coherent. Marr provided some interesting general insights into 
these notions, in drawing a parallel with the cluster methods used in numer
ical taxonomy, in which the differences between objects are first computed, 
and then clusters or classes are formed that minimize some average measure of 
these differences. As Marr showed, the networlc that implements the diagnostic 
and interpretation theorems can be seen as performing similar computations. 
Thus, the circuit of Figure 6, when completed with intrinsic inputs to direct or 
bias the formation of evidence cells and of output cells signaling class mem
bership, and the various intemeurons not described here, constitute the first 
neural implementation of something like a cluster method for the discovery 
and representation of classes. The more recent worlc of Kohonen (1982) and 
Grossberg and Carpenter (1986) should be read in the light of Marr's neocortex 
paper. 
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Abstract-It is proposed that one function of the retina is to compute lightness using a two-dimensional 
parallel algorithm. There are three stages: (1) a centre-surround difference operation; (2) a threshold 
applied to the difference signal;(3) the inverse of (I). whose output is lightness. The operation of the midget 
bipolar--·midget ganglion channel is analysed in detaiL and a functional interpretation of various retinal 
structures is given. Requirements of the theory are stated concerning the arrangement and connexions 
of cells. and the signs of the synapses. in the inner plexiform layer. 

SUMMARY 

(1) It is proposed that one function of the primate 
retina is to compute lightness by a method derived 
from the two-dimensional parallel algorithm of Horn 
(1974). 

(2) The computation consists of three stages: (a) a 
centre-surround difference operation. compu ted in ap
proximately logarithmic units. the result being carried 
by the bipolar cells; (b) an approximately constant 
threshold applied to this signal; and (c) the inverse 
transform of (1), performed in the amacrine layer. 
whose output is lightness. Lightness probably appears 
at X-cells, which should therefore provide the informa
tion for subsequent colour naming. 

(3) The operation of the midget bipolar midget 
ganglion cell channel is analysed in detail. It is shown 
that the small, stratified amacrine cells are well placed 
to carry the necessary additive lateral connexions 
between nearby midget bipolar terminals; and the dif
fuse amacrine cells, for supplying the necessary sub
tractive coupling between the two lateral systems in 
the inner and the ou ter thirds of the inner plexiform 
layer. 

(4) In particular it is necessary that: (a) A large pro
portion of the midget bipolar dyad synapses should be 
with stratified amacrine cells. All synapses in such a 
dyad complex, including the amacrine/bipolar synapses, 
must have a computationally positive sign. (b) Diffuse 
amacrine cells must receive excitation from one layer 
(from midget bipolar. and possibly from stratified 
amacrine cells), and must send inhibitory synapses to 
the other layer. to midget ganglion and to stratified 
amacrine cells, but probably not strongly. and prefera
bly not at all. to the midget bipolar axon terminals. 
The synapses from midget bipolar to diffuse amacrine 

* On leave from the M.R.C. Laboratory of Molecular 
Biology. Cambridge. England. 

cells need not be accompanied by a reciprocal amac
rine/bipolar synapse, whereas those to a slra tified 
amacrine cell should be. 

(5) Midget ganglion cells, and perhaps all X-cells, 
should beha ve like detectors of lightness. Their centre
surround receptive field organization arises from suit
able setting of the d.c. level of the retinal output. 

(6) When the illumination falls below a certain mini
mum level. the lightness computation must be aban
doned. 

I:\fTRODl'CfIOl'i 

The assignment of subjective "lightness" and "co
lour" to visible surfaces is, except in especially restrict
ing circumstances, almost independent of the prevail
ing illumination; and it has long been thought that our 
apparent sensitivity to reflectance rather than to 
luminance depends mainly upon the use of compara
tive, not absolute. measurements of luminance made 
by the visual system [Helmholtz. 1867 (1962)]. An anec
dotal expression of this opinion may be found in the 
lecture by Rushton (1972. pp. 27P-31P). Methods that 
are capable of computing reflectance from measure
ments ofluminance are therefore of considerable inter
est, and the problem may conveniently be divided into 
two parts: those situations in which luminance varies 
gradually across a portion of the visual field; and those 
in which it changes suddenly. Only the first of these 
will be discussed in thi.s article. 

Gradual changes in luminance are often due to 
changes in illumination rather than to changes in re
flectance. The function of luminance that is obtained 
by removing from it those components that vary 
slowly. is therefore a first approximation to reflec
tance; and it is called "lightness". Because it is close to 
reflectance. lightness is useful for estimating colour, 

Reprinted with pennission from Vision, volume 14, pp 1377-1388, copyright 1974, Pergamon 
Press pIc. 
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and Land and McCann (1971) ha ve made this the basis 
of their work (see also Land, 1964). 

Luminance is proportional to the product of reflec
tance and illumination, and so their logarithms are 
linearly related. This enabled Land and McCann 
(1971) to construct a program that computes lightness 
using essentially linear methods. Their program takes 
a random path across a luminance array, differentiates 
log luminance along the path, sets all small values to 
zero (which removes the effects of slow changes), and 
reintegrates to obtain the lightness distribution along 
that path. When enough random paths have been 
chosen to cover the array completely, the computation 
is complete. This method is fundamentally unsatisfac
tory, because situations can be constructed in which 
the value of the integral obtained between two points 
depends upon the path used. It is also unsatisfactory 
as a starting point from which to consider how the ner
vous system could perform the computation, because 
in primates, no directional derivatives appear to be 
computed at least until area 17. 

The ugliness of the path-integral method lies in the 
use of a one-dimensional technique to solve a two
dimensional problem, and it provoked Horn (1974) to 
search for a suitable two-dimensional technique. To do 
this, one needs to find a two-dimensional isotropic dif
ferential operator, which would be the analogue of dif
ferentiating along a path; and an inverse operator, 
which would be the analogue of the path integral. The 
lowest-order such differential operator is the Lapla
cian, V2 : Horn expressed V1 as a convolution, and 
found its inverse. 

In order to perform an actual computation using 
this technique, one needs to construct a discrete ver
sion of it. The discrete approximation to the Laplacian 
is well-known to be a centre-surround operator with a 
decreasing inhibitory weighting function over the sur
round (see e.g. Ratliff, 1965, p. 97). The observation 
that is new in this context, and upon which this investi
gation rests, is that the discrete approximation to the 
inverse transform is also very simple. Because of this 

fact, the two-dimensional method of computing light
ness is extremely straightforward and elegant, and it 
may be expressed in the following way. Let x be the log 
of intensity at a point X on a photosensitive surface, 
and let YI, Y2,"" Y6 be the logs of the intensities at 
neighbouring points Yt> Yz, ... , Y6 (see Fig. 1). The first 
stage in the computation is to derive a local difference 
function using a centre-surround operator. For 
example, one might compute the local difference x' at 
X by using the formula 

x' = x - 1/6 L Yi' (I) 

(This difference is computed at all points, so that iI ' 
Y2, etc. are also obtained.) The second stage of the 
method is to apply a threshold to the difference x': this 
is the step responsible for removing the gradual 
changes, and the symbol x" is used to indicate a thres
holded difference signal. The third stage is the inverse 
of (1), and may be written: 

x* = x" + 1/6LYi (2) 

where x* is the inverse obtained from x, and yi from 
Yi, as illustrated in Fig. 1. Equation (2) states that the 
answer x at X is obtained by adding the difference at 
X, x", to the average of the answers yi at the neigh
bouring points. If the boundary conditions are suit
able, the set (2) of simultaneous equa tions is the inverse 
of the set (1), to within a constant. It has been known 
for some time that a neural network with reciprocal 
connexions is in principle capable of solving sets of 
simultaneous equations of this form; [see Ratliff 
(1965), pp. 130-142, and especially his careful com
ments (p. 141) on what to expect of a mathematical 
model of a neural network]. 

Is this method relevant to retinal function? 

The main reason for being interested in Horn's 
method is that the assumption that it is implemented 
in the retina makes sense of many of the known facts 

Reconst Itut Ion 

Fig. I. The discrete form of Horn's two-dimensional method for computing lightness consists of three 
stages. The first is a centre-surround difference operation [equation (1 jJ, whose output is x ' . Next. a thres
hold is applied to x', resulting in x". Finally. the image is reconstituted in the manner described by equa
tion (2), which is implemented here by a set of additive connexions between the solutions x* . .1'1 at neigh
bouring points. These additive connexions mirror the subtractive connexions tha t produced the difference 

signal x' . 
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about the retina, and leads to certain definite and test
able predictions. There are however a number of 
general points that need to be raised before a detailed 
analysis is seen to be worthwhile. The first question is 
whether computing lightness is the right problem; it 
may be, for example, that the estimation of reflectance 
is in fact carried out by a method which renders irrele
vant the distinction between large and small luminance 
gradients. The only evidence that the distinction is im
portant is the known insensitivity of the eye to small, 
uniform gradients of luminance, which gives rise to 
several well-known illusions (see Brindley, 1970, p. 
153); and the experiments of Land and McCann (1971). 

The second question is, given that computing light
ness is probably important. is there any sense in which 
Horn's method is the best one available? The reasons 
for choosing a two-dimensional method have already 
been mentioned: the Laplacian is simply the lowest 
order two-dimensional operator that could be used. 
U sing it causes constant and linear terms to be 
removed from the signal: higher order operators, like 
V4 or V6 , would cause higher order terms to be 
removed, and are therefore to be avoided. A second 
piece of evidence that the Laplacian is relevant is the 
centre-surround receptive field organisation of the 
retinal bipolar cells (see Werblin and Dowling, 1969; 
Dowling and Boycott. 1966; Boycott and Dowling, 
1969). (The one-dimensional path-integral method 
cannot be used if the difference signal has a centre-sur
round form: to see this. consider a path that joins two 
points of equal luminance by travelling along a discon
tinuous boundary.) 

The third question is why does the inverse transform 
need to be computed at all? Could the brain perhaps 
deal just in the difference signals? The inverse trans
form has the characteristic that the solution at one 
point affects the solution at all other points to some 
degree. so that to obtain an explicit solution at one 
point (as would be necessary to specify the colour at 
that point), something equivalent to the inverse needs 
to be computed. The fact that we are able to assign 
"absolute" colours to visible surfaces is therefore evi
dence that if we use this method at all. then we solve 
at least an approximation to the inverse at some stage. 
The hypothesis that both forward and inverse trans
forms are carried out at a relatively low level is attrac
tive because it simplifies the problem that subsequent 
mechanisms have to solve without forcing the penalty 
that local signals have to be combined in a special way 
later on. 

Finally. there is the question of how flexible is the 
discrete approximation represented by equations (1) 
and (1). In Fig. 1. the difference function was obtained 
from the point X and its six neighbours. each with 
weight I 6. There is no need to be so restrictive. how
ever: the difference signal can be made up of any 
number of the local neighbours of X. with arbitrary 
weights. as long as the distribution and weights are 
exactly reflected in the inverse transform. Hence 
altho~gh it is desirable to avoid collecting higher order 

operators, the actual computation can tolerate con
siderable variation in the way it is structured locally. 

The rest of this article is concerned with the conse
quences of assuming that the retina computes light
ness, using a parallel method like that of Fig. I. The 
general discrete form of the algorithm is as follows: 
letters like x, y denote log of intensity at points X, Y; 
N(X) refers to the set of points 1'; in the neighbourhood 
of X; and w is some weighting function on N(X). The 
difference operation has the form: 

x' = x - L w(y) . .\'. (3) 
YinN(X) 

Letters with a prime, like x', y' refer to differences at X. 
y, obtained in this way. The second step is to apply a 
threshold to the difference signal. by 

x" = x' if Ix'i > some threshold t (say) 

= ° otherwise. (4) 

Letters followed by two primes, like x", y", will refer 
to thresholded difference signals. Finally. the mverse 
transform 

x* = x" + L w(Y) x y* 
Yin}',,'(X) 

(5) 

is applied. Letters like x*, y* refer to the output from 
the whole process: every point X gives rise to an x*. 
By inspection, for t = ° (3) and (5) are inverses for 
point sources (with zero boundary conditions). Hence 
by linearity, they are inverse transformations. 

THE ANATOMY OF THE RETINA 

Most qualitative. and some quantitative aspects of the 
structure of the p'fima te retina are well understood. thanks 
to the early work of Cajal (\911). and the recent thorough 
studies by Missotten (1965), Dowling and Boycott (1966), 
Boycott and Dowling (with Kolb) (1969), and Kolb (1970). 
The cell types and connexions of the outer plexiform layer 
are summarized in Figs. 2(a), (b) and (c) and the accompany
ing legend. The details of the inner plexiform layer are less 
widely known. and a very brief summary of the cells and 
synapses described by Boycott and Dowling (1969) is there
fore included here. (The word "diffuse". in this context, 
refers to processes that are distributed perpendicular to the 
sclera, and the word "stratified" is used to mean layered par
allel to the sclera.) 

Amacrille cells [see Fig. 2(a)] 

(AI) Narrow field diffuse amacrine cells. having a dia
meter of 10-50 nm. average about 25 nm. found all over the 
retina. 

IA2) Wide-field dill'use amacrine cells. having processes 
that spread out gradually as the\ descend to the level near 
the ganglion cell hodies. and spread out there to attain a 
diameter of up to 600 nm. These cells are particularly likely 
to synapse with rod bipolar terminals. and are unlikely to 
contact the ganglion cell bodies. 

IA.'I Stratified diffuse amacrine cells. having a diameter of 
20-50 nm. are restricted to the top. middk. or to the lower 
third of the inner plexiform layer. but are dillusely distri
buted within one of them. A given stratified diffuse amacrine 
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" 

2 (d ) 

Fig. 2. (a) The general structure of the primate retina, redrawn from Boycott and Dowling (1969, Fig. 
98) and Kolb (1970, Fig. 56). The cones contact the horizontal cell dendrites (HD), and three kinds of 
bipolar cell: midget (MB), flat midget (FMB), and flat bipolar cells (FB). The arrangement of these pro
cesses in the cone pedicles is shown in (c) (from Kolb, 1970, Fig. 60). The rods synapse with the horizontal 
cell axons (HA), and with rod bipolar cells (RB) in the manner shown in (b) (from Kolb, 1970, Fig. 59). 
The bipolar cell axons synapse with the amacrine cells (A I-AS), and with the ganglion cells (G I-G4): 
the different kinds of cells are described in the text. (d) (from Dowling and Boycott, 1966, Fig. 14) illustrates 
a dyad complex. This is composed of synapses from a bipolar cell (B) to an amacrine (A) and to a ganglion 
cell (G), together with a synapse back from the amacrine process to the bipolar axon. In addition, amac-

rine-amacrine and amacrine-ganglion synapses are seen. 

cell probably makes frequent. but not exclusive contact. 
with a particular ganglion cell that has its dendrites simi
larly distributed. 

lA-I) L:nistratified amacrine cells, whose diameter lies 
between 100 and 1000 nm, extend their processes in the 
plane immediately corneal to the inner plexiform layer. 

(AS) Bistratified amacrine cells, with a diameter of about 
100 nm, send horizontally distributed processes to the 
planes corneal and scleral to the inner plexiform layer. 

Ganl/lion cells [see Fiq. 2(a)] 

(G I) The midget ganglion cells are of two kinds, one with 
terminals in the outer third of the inner plexiform layer, and 
the other with terminals in the inner third. The middle third 
seems to be free of midget ganglion cell terminals. This fits 
with the known distribution of the midget bipolar terminals 
(see above), There is probably a one-to-one correspondence 
between midget bipolar and midget ganglion cells. 

IG2) Diffuse ganglion cells, dendritic diameters ranging 
from 3().-75 nm, the smaller diameters occurring nearer the 
fovea. 

IGJ) Stratified diffuse ganglion cells. like the stratified dif
fuse amacrine cells, arc diffuse within the outer. middle, or 
inner third of the plexiform layer. There may be more in the 
outer third than in either of the others. Diameters range 
from 40 nm near the fovea. to gO nm in the periphery. 

(G4) Unistratified ganglion cells. occurring at all levels. 
ha ve a diameter of abou t 200 nm. 

Synapses of the inner plexiform laFr 

The most common synaptic complex found in this region 
of the retina is the so-called dyad synapse [see Fig. 2(d)]. At 
a dyad synapse, a bipolar cell contacts both a ganglion and 
an amacrine cell, and close by there is (probably) a further 
synapse from the amacrine cell back onto the bipolar ter
minal (Dowling and Boycott. 1966). In addition to the dyad 
synaptic complex, amacrine to amacrine, and amacrine to 
ganglion dendrite synapses are seen. 

The proportions in which the various types of synapse 
occur in the human retina are roughly as follows: 

the complex of dyad + amacrine to bipolar: 3, 
amacrine to amacrine: I. 
amacrine to ganglion: I. 
bipolar to amacrine soma: I! 12 

(from Dowling and Boycott. 1966, Table I). 

THE D1FFERE:-iCE OPERATION 

The receptor response is certainly [Kaneko and 
Hashimoto ( 1967), Tomita (1968), Naka (1969). Toyoda 
('1 (//. (1969), Werblin and Dowling (1969)]. and the 
horizontal cell response is probably (Werblin and 
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Dowling 1969), what Rushton calls an H-curve, VI 
Vmax = 1/U + K) (see e.g. Naka and Rushton, 1966, 
1967), K being about 800 quanta/rod/sec for humans. 
Thus both are roughly linear over a large range. This 
is supported by the psychophysical findings of Alpern 
and Rushton (1967), Alpern, Rushton and Torii 
(l970a-d) (see also Alpern, 1965). Up to the stage just 
preceding the bipolar signal, therefore. retinal signals 
are probably linear functions of intensity: but beyond 
this, they may be logarithmic [see Werblin and Dow
ling's (1969) bipolar cell records]. Much has been 
written about how the recorded bipolar signal may be 
achieved by the observed unusual synaptic structure 
[Dowling and Boycott (1966), Boycott and Dowling 
(1969). Dowling and Werblin (1969)]: the bipolar sig
nal in the mudpuppy depends over a large range upon 
the ratio of the energies incident on the centre and on 
the surround of its receptive field. In these experiments, 
the surround stimulus was annular: and it is of some 
interest to know how the bipolar cell responses beha ves 
for surround stimuli that are not annular. and whether 
it depends upon the size of the bipolar cell's receptive 
field. The present theory would prefer the bipolar re
sponse to be like equation (1). but does not absolutely 
require that the component terms be exactly logarith
mic, provided that the inverse (3) is tailored closely to 
the forward transform. 

Werblin and Dowling also found that the effect of 
stimulating the surround of a bipolar cell receptive 
field is to remove part or all of the hyperpolarisation 
due to stimulating its centre; but that surround stimuli 
could not on their own cause positive depolarisation 
of the bipolar cell. This finding. together with the fact 
that some bipolar cells have on-centre receptive fields, 
and some have off-centre ones. shows that the differ
ence signal is split at this stage into its positive and 
negative parts, which are transmitted down two differ
ent channels. Kolb (1970) found that each cone con
tacts two midget bipolar cells (MB and FMB of Fig. 
2): presumably these are the two channels. The separ
ation of the positive and negative parts of the signal 
gives rise to some complexity in the later parts of this 
analysis; but it simplifies greatly the question of how 
a threshold might be applied to the difference signal. 
If the whole difference signal was carried by a single 
cell, zero would have to be coded as half the maximum 
response. Applying a threshold that depends upon the 
absolute value of the transmitted signal is not easily 
done under such circumstances. If the signal is split 
into positive and negative channels. however. it is mer
ely a matter of applying a threshold to the signals in 
each one. 

Because we shall need to refer to the positive and 
negative parts of the signal. the following notation will 
be used: 

POS(x) = x if x > 0 
o otherwise. 

NEG(x) = -x if x < 0 
o otherwise. 

and similarly for POS(x'). POS(x"). POS(x*) etc. 

Thresholding the difference signal 

The heart of the computation is the application of 
a threshold to the difference signal, for it is this that 
removes the effects of slow changes in luminance from 
the image. There is some freedom in how the threshold 
is applied: for example, x" may be defined as in equa
tion (4), for threshold t > 0; or x" may be defined by 
the two expressions 

POS(x") = POS(x' - t) 

NEG(x") = NEG(x' + t) 

(6) 

(7) 

which may be slightly easier to implement. The more 
important question is however what size should the 
threshold t be? 

In order to answer this question. let us consider the 
effects of doubling the illumination of a scene. The 
energy received from each point doubles, hence gra
dients double. and hence the necessary threshold must 
also double. This is however only a guide. because 
bright sunlight produces views that are much more 
contra sty than the (roughly) uniform illumination pro
vided by a thick layer of cloud. It will be important 
(when adequate transducers become available) to 
explore how the threshold should vary with lighting 
conditions: if it is set too high, valuable shading infor
mation may be lost. Until then, the linear approxima
'tion is the best available, and it is consistent with psy
chophysical evidence on contrast detection (see below). 
If the hipolar (difference) signal were logarithmic, a 
fixed amount t subtracted from all signals in a bipolar 
axon would have the effect of equations (6) and (7). 

RECONSTITt:TING THE IMAGE 

The main contribution of this article is to show that 
retinal structure is well-suited to inverting the differ
ence signal. To reconstitute the image from the bipolar 
signals. it is necessary to solve a set of equations like 
those of (5) above. For the sake of precision. this article 
is limited to the analysis of the message from a single 
cone. via the midget bipolar. and the midget ganglion 
cells. The principles are however independent of the 
particular choice of image resolution. 

A straightforward implementation of the equations 
(5) exists (see Fig. 1. and Horn 1974). In the retina. 
however. the difference signal is split into positive and 
negative channels; and the existence of on- and off
centre ganglion cells (Kuffler 1953) suggests that this is 
also true of the output signal. Because of this. and 
because the resting discharge frequency of amacrine 
cells appears to be zero (Werblin and Dowling. 196Q ). 

it is taken as a basic constraint on the form of the 
reconstitution algorithm that the whole computation 
should be carried out using variables whose signs do 
not change. This constraint will allow each variable 
used during the computation to be coded by a nervous 
clement in such a way that zero corresponds to the 
lowest extreme of its dynamic range. It is fortunately 
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possible to be quite specific about the implementations 
that are consistent with the constraint: the argument 
will be divided into two parts. Firstly the basic con
straint is used to select one of the various ways of split
ting (5) into two halves; secondly an explicit imple
mentation is exhibited, together with an indication of 
which of its features are robust enough to support pre
dictions by which the theory may be tested. 

Performing the reconstitution in two halves 

Perhaps the most obvious way in which one might 
split equation (5) into two halves is the following [w(y) 
is taken to be I/n for simplicity]: 

(11) provided that the two solutions are coupled in a sub
tractive way. In general, the two halvesf(X) and g(X) 
will both be large and positive. since there is nothing 
negative in either of (10) or (II) to pull them down. The 
solution is however not disturbed by subtracting a 
suitable function h(X), provided that it is done to both 
f(X) and g(X) simultaneously. To satisfy the basic con
straint, h(X) must never exceed the smaller off(X) and 
g(X): subject to this. a subtractive coupling between 
f(X) and g(X) is permissible. 

Hence we obtain the result that (10) and (11), 
together with the operations: 

f(X) goes to [((X) - h(X)] (13) 

g(X) goes to [g(X) - h(X)] (14) 

xf = POS(x") + 1/2n L y* 
N(X) 

(8) still represents a solution to (5), as long as the condi
tion 

x! = NEG(x") - 1/2n L y* (9) 
N(X) 

together with the condition that x* = (x! - x!), The 
basic constraint allows us to rule this out, because 
there is no reason why x! and x! should always be 
positive. For example, consider a situation where the 
local average lightness is high, an~ x" is small but 
negative. From equation (8), x! is large and positive, 
and x! is large and negative. Furthermore, if x" is 
negative, this information is carried by NEG(x"); the 
effect of x" in this case is to make x! a little less nega
tive. Therefore x! does not satisfy the basic constraint; 
and this failure is important. in the sense that a coding 
of x! that ignored its negative values would cause the 
reconstitution to fail in certain commonly occurring 
situa tions. 

In order for a system to be consistent with the basic 
constraint. it will need to take something like the fol
lowing form: 

f(X) = POS(x") + l/n L f(Y) (10) 
N(X) 

g(X) = NEG(x") + 1/11 L g(Y) (II) 
N(X) 

where f and 9 are non-negative functions, that hope
fully have some relation to the operator*. At first sight. 
this pair of equations does not appear to compute any
thing useful: but observe the following. Subtracting 
(10) and (11). we obtain: 

[fIX) - g(X)] = [POS(x") - NEG(x")] 

+ 1/11 L [f(Y)-g(Y)]. (12) 
SIX) 

Now [POS(x") - NEG(x")] = x", so that (12) is the 
same as (5) where the * operator has been replaced by 
the operator if-g). Thus the expression [((X) - g(X)] 
is in fact a solution of the equation (5). What this 
means is that a solution may be obtained from (10) and 

f(X) and g(X) are kept positive (15) 

also holds. It is perhaps worth pointing out that the 
determination of h is quite separate from the problem 
of fixing the d.c. level for the output: nor can vari
ations in h account for the disappearance of stabilized 
retinal images, since this would correspond to tamper
ing with the difference [((X) - g(X)]: as long as this 
difference is preserved, the output of the process is a 
faithful processed copy of the image. 

Implementation details 

The method outlined by equations (lOHI5) leads to 
an explanation of many features of the inner plexiform 
layer. There are two basic problems that need to be 
discussed: firstly, how does one implement the set of 
linear equations represented by equation (10) or (II); 
and secondly, how exactly can the subtractive coupling 
between the two halves (10) and (II) be done? 

The first question is the more straightforward. The 
realisation of equation (10) requires a device with reci
procal connexions to devices that compute the solu
tion at neighbouring points (see Fig. I). Since the 
retinal ganglion cells are not pre-synaptic to any other 
retinal cells, the expression of, for example,f(X) cannot 
exist only at a ganglion cell, because if it were. it would 
not be available for the computation at neighbouring 
ganglion cells. Hence iff(X) is computed in the retina, 
it will be found either in the bipolar cell axon ter
minals. or in the amacrine cells. or both. 

The two kinds of midget bipolar cell (FMB and MB) 
terminate in the top and the bottom thirds respectively 
of the inner plexiform layer (Boycott and Dowling 
1969. Kolb 1970). The additive coupling between solu
tions off(X) at neighbour.ing points must therefore be 
provided by stratified amacrine cells that are driven by, 
and drive. the bipolar terminals. From Fig. 2, we see 
that the stratified amacrine cells coupled in this way 
with the midget bipolar cells must be those of category 
(A3). The only candidate for the place at which((X) is 
computed. which is consistent with retinal structure. is 
therefore the bipolar cell axon terminals. 
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The hypothesis, that additive coupling between 
neighbouring points is provided by the stratified amac
rine-bipolar cell interaction, is consistent with the 
observed synaptic arrangements, because the complex 
of a dyad synapse plus a return synapse from the amac
rine cell to the bipolar cell [Fig. 2(d)] is exactly what 
it requires. It furthermore follows from this interpre
tation. that the signs of all the synapses in the dyad 
complex should be positive, from the point of view of 
the computation. In practice, this means that the bi
polar to stratified amacrine, and the bipolar to midget 
ganglion cell synapses should be excitatory; and that 
the stratified amacrine to bipolar synapse should have 
the same effect on the midget bipolar terminal as 
stimulation of the centre of that cell's receptive field. It 
is also necessary that a large proportion of the dyad 
synapses with a midget bipolar cell involve stratified 
amacrine cells, and one would expect all dyad synapses 
that do involve a stratified amacrine cell to be accom
panied by a synapse from the amacrine cell back to the 
midget bipolar. 

The final point that concerns the additive interac
tions is the size of the stratified amacrine cell processes. 
In order for the inverse computation to proceed accu
rately. these cells should reflect the dimensions of the 
horizontal cells that. we suppose. are responsible for 
the difference operation. The diameter of the (A3) 
amacrine cells is 20-50 nm. which is consistent with the 
figure of about 35 nm for the radius of the horizontal 
cell interaction (Boycott and Dowling, 1969; Kolb. 
1970). 

An explicit model for the suhtractit'e couplillg 

The second issue concerns the subtractive coupling 
between the plus and the minus halves of the solution. 
It is clear that this coupling must be provided by dif
fuse amacrine cells. probably of category (A I), since the 

only other candidates (A5) are both large and uncom
mon; and it is probable that the coupling is achieved 
through amacrine-amacrine and amacrine-ganglion 
cell synapses. This coupling can be achieved in a 
number of ways, but it is helpful to exhibit one of them, 
because variants on the method are then rather easy to 
understand. 

Equations (10) and (11) may be modified to be the 
following: 

f(X) = POS(x") + POS{I/n L [frY) - g(YlJ} 
N(X) 

(10') 

g(X) = NEG(x") + POs{ l/Il N~) [g( Y) - f( Y)]}. 

(II') 

Then [fIX) - g(X) is still a solution. Now write 

MG+(X) = POS[f(X) - g(X)] 

MG_(X) = POS[g(X) -fIX)]. (12') 

Then one of MG + (X). MG _(X) will be positive. 
and will represent the solution. 

The idea behind this formulation is that the subtrac
tive interaction is done in two ways. and it is illustrated 
in Fig. 3. Firstly, there are inhibitory connexions acting 
upon the stratified amacrine cells in the top and the 
bottom thirds of the inner plexiform layer. In Fig. 3, 
this is provided by the diffuse amacrinc cells (A I) that 
receive excitation from a midget bipolar terminal (or 
possibly from A3 cells) in one layer. and send inhibitory 
synapses to the stratified amacrine cells in the other. 
Secondly, there is direct inhibition driven by the bi
polar terminal in one layer, acting on the midget gang
lion cell in the other. 

Fig. 3. One way of coupling the two halves of the solution in the inner plexiform layer. as described by 
equations (10'). (II') and (12'). Open circles represent connexions that are computationally positive: filled 
circles. those that arc negative. Cell names are as in Fig. 2. The association of FMB with POS(x") rather 
th.in with NEG Ix") is arhitrar). The quantiti.:s carried hy each conncxion are shown in the diagram. Th.: 
principal channel. from X. and one neighbour. from YI • are shown: similar connexions are required 

hctw.:en X and the other neigh hours. 
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The important qualitative features of this arrange
ment are: 

(a) The form of the coupling between the two sys
tems of stratified amacrine cells (i.e. the number of 
terms collected under the POS function1 is very flex
ible; it must however correspond c1~ly in both layers. 

(b) The sizes of f(X) and of g(X) (the quantities in 
the bipolar terminal) are kept positive. This is vital for 
allowing a POS(x") signal to influence the solution 
even if the solution at X is strongly negative [i.e. 
MG_(.x) is strongly positive. This requirement is so 
important that it forbids the existence of any signifi
cant negative connexion from a diffuse amacrine cell 
directly onto the bipolar terminal : it is true of all 
models, because conditions must never totally prevent 
the signal POS(x") from being able to influence the 
compu ta tion]. 

(c) The diffuse amacrine cells should receive excita
tory synapses from the midget bipolar cells, and poss
ibly from the stratified amacrine cells, in one layer: 
they should send inhibitory synapses to the stratified 
amacrine and to the midget ganglion cells in the other. 
(This is a requirement of all models that implement the 
coupling between the layers. because it has to be pro-

- channel 

vided by diffuse amacrine cells, and the theory requires 
that the coupling be subtractive.) It is interesting that 
according to this method, the synapse from a midget 
bipolar to a diffuse amacrine cell need not be accom
panied by a reciprocal synapse, whereas that to a 
stratified amacrine cell should be. 

Uniqueness 

The arguments that were set out above impose some 
constraints upon the way in which the reconstitution 
stage (5) may be implemented, but they fall short of 
establishing that a particular method must be the one 
that is used. There are however two arguments, one 
compelling, and one strong, that greatly constrain the 
methods that are consistent with retinal structure: they 
depend upon details that would be difficult to express 
without having exhibited one method completely. 
Firstly, should the vertical interaction, between the 
two halves of the solution, occur before the lateral in
teractions? In other words, are both halves of the dif
ference signal, POS(x") and NEG(x"), available to both 
halves of the inverse transform; or is the bipolar signal 
necessarily contaminated by lateral interactions before 
it can escape to the other layer? The latter is correct, 

+ channel 

)( ~ ~. {1 ~ i Roo"", 

f(x)-g(x ) 

hex) 

FA3 JTfl ®~ MB 

~~~~ 

~~~ti 
~~~ih 

GI 

Fig. 4. The computation of lightness using the method described by equations (IOHIS). The figure illus
trates the analysis of two stimuli, a light and a dark spot: and both POS and NEG channels are displayed 
for each one. The intensity information x at X is transformed into a threshold difference signal x" . For 
reconstitution, fIX), y(X), and h(X) are all shown. together with the final output. This particular imple
mentation represents an extremely decoupled technique for computing the reconstitution : f(X) and y(X) 
represent the values that the midget bipolar terminals would theoretically float up to if. in the model of 
Fig. 3. the diffuse amacrine connexions were severed. Notice that the response to a central light spot 

appears at what was initiall y the negative channel. 
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because the lateral interactions must be carried by the 
stratified amacrine cells. which send synapses back to 
the midget bipolar axon terminals. This means that a 
formulation is appropriate in which interaction terms 
between the two layers already contain components 
due to the lateral interactions. 

The second question concerns the degree to which 
the lateral interactions are "complete" before the verti
cal interactions begin. In the formulation of equations 
(10)-(15). the lateral interactions are represented as 
being complete before the vertical interaction. the sub
traction from both layers of h(X). is carried out. This 
extreme position is undesirable. becausef(X) and y(X) 
will be large compared with [((X) - y(XjJ. In the 
explicit neural model of Fig. 3. the vertical and the 
lateral interactions proceed simultaneously. The 
strong argument for this is that the numbers will all be 
kept small. thus aiding accuracy: but a variety of possi
bilities lie between these two extremes. 

The summarizing diagram shown in Fig. 4 puts the 
whole model together. and illustrates the computation 
of lightness in which the inverse is performed in the 
manner described by equations (10)-( 15). The analysis 
of two stimuli is shown: one. a light spot on a dark 
background. and the other. a dark spot on a light 
background. The criteria that were established at 
various places during the account. as being necessary 
consequences of the assumption that the retina com
putes lightness in this way. have been drawn together 
in the summary. 

The above account has dealt with the processing of 
a single channel of the kind originating from a red or 
green cone in the fovea; but similar arguments may 
apply to other channels. I turn now to properties of the 
retinal input-output relations that are illuminated by 
these ideas. 

PROPERTIES OF RETINAL GA~GLION 
CELL RESPONSES 

Th" W"ht'l'-F"c/JIlt'l' law 

The Weber· Fechner law (Weber. 1834) relates the in
crement threshold for a flash linearly to the intensity 
of the background. and it is true when the flash is long 
or large. and the background is not too dim (Barlow. 
1957. 1958). The present theory may provide an 
explanation of this curious law: it was seen above that 
the size of the threshold applied in the lightness com
putation varies roughly linearly with the ambient 
luminance. and the increment threshold experiment 
could measure such a threshold. Hence a linear rule is 
a consequence of the lightness computation. The con
stants that arise from the lightness computation may 
however not be the same as those that occur in the 
Weber-Fechner law. because the many phasic retinal 
ganglion cells probably signal quantities other than 
lightness. 

In conditions of low illumination. the difference sig
nals will become unreliable. because they are obtained 

by integrating over a rela ti vel y short time (less than 
100 msec). When this happens. the lightness compu
tation must be abandoned. Barlow (1956. 1957) has 
proposed a satisfying explanation of the increment 
threshold relation at low intensities: the change in 
ganglion cell receptive field organisation towards the 
end of dark adaptation (Barlow. Fitzhugh and Kutfler. 
1957) is also to be expected as a result of this change: 
and the required change in the receptor-horizontal cell 
interactions may be related to the puzzling behaviour 
of the electro-retinogram at low intensities (Cone and 
Ebrey. 1965: Brindley. 1970. pp. 50-56). Illusions like 
the Craik-Cornsweet illusion. that depend on the 
lightness computation for their effect. should fail to 
deceive at these low intensities. 

Ganglion cell receptit'ejield organi::ation 

According to the present theory. retinal ganglion 
cells should beha ve like idealized receptors-receptors 
of lightness rather than of intensity. Of the three main 
categories of retinal ganglion cell. the X. the Y(Enroth
Cugell and Robson. 1966: Fukada. 1971: Fukada and 
Saito. 1971 : Cleland. Dubin and Levick. 1971. all in the 
cat: Gouras. 1968 in the monkey). and the W cells 
(Rodieck. 1967: Fukada. 1971: Stone and Hoffmann. 
1972). the X cells seem best suited to carry the lightness 
signal. The reasons for thinking this are as follows: (1) 
The lightness computation is quite complex. and to 
give the result time to settle. probably uses com
ponents with quite long time constants. X -cells have 
bad temporal resolution. whereas Yand Wcells do not. 
(2) X -cells are the only cells whose response is tonic. 
(3) W-cells probably project to the superior colliculus. 
(4) X -cells have the highest resolution. and are more 
common toward the fovea (Gouras. 1968). (5) Mcll
wain's (1964. 1066) periphery effect is weak or absent 
for X -cells. as it should be if the compu ta tion is being 
done correctl y. 

If this view is correct. the detailed analysis of visual 
information. and especially of colour (see Zeki. 1973). 
should rely mostly upon the X input (see Stone and 
Dreher. 1973). though for reasons perhaps related to 
after-images. the results of such analysis may be gated 
by Yinformation. 

The conventional interpretation of the centre-sur
round organization of the ganglion cell receptive field 
is that it helps to preserve contrast information over 
variations in average luminance. According to the 
present theory. it is a by-product of splitting the retinal 
output into two channels. the most sensible setting of 
the zero level being something like the average value 
of lightness over a region of the retina. This opinion is 
supported by the results of Maffei and Fiorentini 
(1972): they showed that the centre-surround organiza
tion of geniculate cells makes little use of the centre
surround organization of the ganglion cells. because a 
geniculate cell surround is driven by ganglion cells 
whose centres project to its surround. Their assertion 
that the retinal organization is positively "lost" (p. 65) 
as a result of the geniculate computation is however 
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unfounded: at most, the retinal organization may be 
inessential. 

Separation of the three colour channels 

There is some evidence that the rod and the three 
cone channels are processed independently [Alpern. 
1965; Gouras and Link, 1966; Gouras. 1966. 1967; 
Alpern. Rushton and Torri. 1970(a and d); Wes
theimer. 1970; Westheimer and Wiley. 1970; and 
McKee and Westheimer, 1970]. Recent papers (Lennie 
and MacLeod, 1973; Barlow and Sakitt. 1973; see also 
Brindley, 1970, pp. 75-86) cast doubt on a number of 
these findings, however; and although there is very 
little information available about chromatic interac
tion in the primate retina (Hubel and Wiesel, 1960; 
Gouras, 1968~ some interaction is visible in primate 
retinal ganglion cells, and much takes place in the 
lateral geniculate nucleus (De Valois, 1965; Hubel and 
Wiesel. 1966). 

To what extent is chromatic interaction in the retina 
consistent with the present theory'? There are three 
ways in which it could be introduced. Firstly. the d.c. 
level for the output may conveniently be determined 
by summing locally over all colour channels. Retinal 
ganglion cells with a centre-surround receptive field 
organization that show complementary spectral sensit
ivities in the centre and surround. would be consistent 
with this: the function of such cells is otherwise rather 
difficult to understand. "Opponent colour" 
mechanisms that do no more than form linear com
binations of receptor signals are as far from estimating 
reflectance (and hence colour) as the raw receptor sig
nals. 

Secondly, the lightness computation can equally 
well be performed on linear combinations of the recep
tor signals. It may be convenient. for example, to use 
a red + green channel, with two others, rather than the 
original inputs: such a mechanism would be useful for 
separating chromatic from spatial information. 
Thirdly. chromatic interactions needed after the light
ness computation could perhaps be pulled back into 
the retina: a modular design, though probably necess
ary at some stages of evolution, does not have to be 
preserved thereafter. 
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Resume---On propose qu'une des fonctions de la retine est de ca1culer la luminosite au moyen d'un algor
ithme parallele it deux dimensions. II y a trois stages: (I) une operation de difference centre-bord: (2) un 
seuil applique au signal de difference; (3) l'inverse de (I), dont Ie signal de sortie est la luminosite. On 
analyse on detaill'operation du canal bipolaire naine- ganglionnaire naine. et on donne une interpretation 
fonctionnelle des diverses structures retiniennes. On precise les conditions de la theorie au sujet de l'arran
gement et des connexions entre cellules, et des signes des synapses. dans la couche pl\'xiforme interne. 

Zusammenfassung-.. Es wird angenommen, dass eine der Funktionen der Retina die Berechnung eines 
Helligkeitssignales unter Verwendung eines zweidimensionalen Parallel-Algorithmus ist. Dabei gibt es 
drei Stufen: (I) Eine Zentrums-Peripheric Differenz-Operation: (2) eine Schwelle. der das Differenz-Signal 
unterworfen wird: (3) die inverse Operation von (I). deren Ergebnis das Helligkeitssignal ist. Die Wir
kllngsweise des Zwergbipolar- Zwergganglion-Kanals wird im einzefnen untersllcht. Die Voraussetzungen 
der Theorie werden formuliert, soweit sie die Anordnung und die Verbindungen von Zellen und die Vor
zeichen synaptischer Verbindungen in der inneren plexiformen Schicht der Netzhaut betreffen. 

PelIOMe-npeLlnOJlaraeTClI, 'ITO oLlHa 113 <\lYHKUIIH CeT'IaTKII-KOJlIl'leCTBeHHall OLleHKa CBeTJlOTbl, 
LlJlll '1ero IIcnoJlb3yeTclI LlByxpalMepHblH aJlrOpIlTM. I1MelOTcll Tpll CTaLlIlIl: (I) ueHTpaJlbHO-nepll<\le
plI'leCKall onepaUlIlI LlH<\l<\lepeHUlIaUHII; (2) npllMeHeHlIe nopora no OTHOUleHHIO K LlIl<\l<\lepeHUlIpo
BO'IHOMY CHrHaJlY; (3) IIHBepClIlI (I) BblXOLlOM KOTOPOH lIBJllIeTClI CBeTJlOTa. OnepaUlIlI: KapJlHKOBble 
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6HnOJlJlpbl-KaHllJI KapJlHKOBblX raHrJlHO'3HbIX KJleTOK, AeTaJlbHO npOaHaJlH3HpOBaHa H naeTCJI 

cIIYHKUHOHllJIbHaJi HHTepnpeTaUHJI pa3J1H'IHbIX CTPYKTYP CeT'laTKH. YCTaHOBJleHbl TeOpeTB'IeCKHe 

Tpe6oBaHHJI, KacalOwHecJl paCnOJlO)[(eHHJI H CBJl3di KJleTOK, 3HaKOB CHHanCOB, BO BHYTpeHHeM 

nneKCHcllopMHOM CJloe. 
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Norberto M. Grzywacz 

Commentary on 

The Computation of Lightness by the Primate Retina 

Neural processes in the brain are marvelously complex devices. They include 
a wide variety of cell morphologies, intricate rules of synaptic connectivity, 
and numerous types of neurotransmitters and ionic channels. Thus, it is not 
surprising that one finds a very large repertoire of physiological behaviors. 

The best way to make sense of this neural complexity is to focus the analy
sis of the neural processes within the scope of behavioral function. In the case 
of the visual system, one would like to know how its neurons recognize the 
properties of objects in the visual world. Perhaps one of the most important of 
such properties is the reflectance of objects. The visual system can somehow 
perceive objects' reflectances through its ability to compute lightness. This 
computation requires interneuron interactions, because photoreceptors measure 
illuminations and not lightness. 

In his paper,"The Computation of Lightness in the Primate Retina," David 
Marr (1974) tried to make sense of several complex features of the retina by 
proposing that it computes lightness. The retinal circuit he advanced is a rough 
implementation of the algorithm of Horn (1974) (an elaboration of earlier work 
by Land and McCann, 1971). This implementation starts with a horizontal
cell mediated lateral inhibition. The resulting difference signal is then passed 
through a threshold mechanism and transmitted to midget bipolar cells. In 
turn, these cells make reciprocal excitatory synapses with stratified diffuse 
amacrine cells (Boycott and Dowling, 1969). This stratification, which takes 
place in the inner nuclear layer, maintains the segregation of ON and OFF 
signals coming from two populations of bipolar cells. Finally, the ON and 
OFF sublamina inhibit each other via the narrow field diffuse amacrine cell 
(Boycott and Dowling, 1969). The output of the system flows from the bipolar 
cells to the midget ganglion cells and then to the brain. 

As I comment below, the weight of the evidence is against Marr's proposi
tion from the perspectives of retinal output and retinal circuitry. Nevertheless, 
I will argue that Marr's approach was worthwhile; it generated exciting predic
tions and raised clear suggestions for retinal function. Marr himself expressed 
a similar view in a later work (Marr, 1982): "I do not now believe that this 
is at all a correct analysis of the retina, but it showed the possible style of a 
correct analysis. Present is a clear understanding of what is to be computed, 
how it is to be done ... " 

To start the discussion of why the proposition apparently failed, it is neces
sary to clarify some nomenclature. Marr called the neurons proposed to relay 
lightness information "midget-ganglion cells," which is primate terminology 
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(polyak, 1941), or "X-ganglion cells," which is cat terminology (Enroth-Cugell 
and Robson, 1966). But there is an intense debate on the correspondence 
between the ganglion cells of primates and cats (Shapley and Perry, 1986; 
Rodieck, 1988). Thus, one wonders which of the two main types of primate 
ganglion cells, that is, midget or parasol (Polyak, 1941; Watanabe and Rodieck, 
1989) Marr referred to. He explicitly wrote that the cells carrying lightness 
information should be the X-cells, because among all ganglion cells: (a) they 
have the longest integration time constants, (b) their responses are tonic, (c) 
they have the highest spatial resolution, and (d) they are the most common 
ganglion cells near the fovea. Thus, from primate data (Dreher et al., 1976; 
Schiller and Malpeli, 1978) one should consider the cells referred to by Marr 
to be the midget ganglion cells. (A needed qualification is that their responses 
are only tonic for stimuli with narrow wavelength bandwidth [DeMonasterio, 
1978].) 

After this nomenclature clarification, the question that immediately comes 
to mind is this: Do midget ganglion cells carty lightness information? (And in 
particular, does the analysis of color information rely mostly on these cells?) 
In this case, if the image contrasts remain constant, the responses of midget 
ganglion cells should be relatively invariant to modulations of background 
stimulation (as implied by the Weber-Fechner law [Marr, 1974]). 

The evidence suggests that midget ganglion cells do not carty lightness 
information. For instance, these cells are sensitive to the wavelengths of the 
background stimulus (DeMonasterio, 1978). Furthermore, analysis of the data 
of Purpura et al. (1988) shows that for mesopic and low-photopic background 
illuminations, the responses of midget ganglion cells do not obey the Weber
Fechner law. As pointed out by Marr, this law is a necessary condition in any 
system carrying lightness information. 

However, several lines of evidence point out that Marr might have guessed 
correctly that the midget ganglion cells are important for color analysis. For 
example, the surround of their receptive field, but not of other ganglion cells, 
often has a different action spectrum than that of the receptive field center 
(DeValois, 1960; DeMonasterio and Gouras, 1975). (In primates, double
opponent cells appear for the first time in the cortex [Michael, 1978a,b; Gouras 
and Kruger, 1979].) Another example is the low contrast gain of midget 
ganglion cells when compared to other ganglion cells (Purpura et al., 1988; 
Kaplan and Shapley, 1986) and the low contrast gain of human color perception 
(Mullen, 1985). (A possible complication is that color perception, but not 
the responses of midget ganglion cells, has low spatial resolution [Mullen, 
1985]. However, color perception might not be highly resolving, because the 
contrast gain of midget ganglion cells is so low that many of them may have 
to cooperate to contribute to perception [Shapley and Perry, 1986].) 

But the evidence is against Marr not only because of the lack of lightness 
signals, but also because of the disagreement between the proposed circuitry 
and experimental findings. In a way, such mistakes are expected, since Marr 
had to make several assumptions about neural processes that were unknown 

224 



COMMENTARY 

at the time. 
No fault is found in the assumption that horizontal cells make lateral 

inhibitory connections to cone pedicles (Kolb, 1970). Also, there is no problem 
in assuming that bipolar cells make excitatory synapses onto amacrine cells. 
But perhaps, the first difficulties encountered by Marr's proposition have to 
do with photoreceptor-bipolar transmission. Because his functions f( x) and 
g( x) represent voltages in bipolar cells' telodendrons (see his Fig. 3), and 
because bipolar cells are essentially isopotential, the threshold must occur in 
the photoreceptor synapse. However, Fain et al. (Fain, 1977; Fain et al., 1977) 
showed that photoreceptors' voltage signal at visual threshold is small (50-100 
mV in human rods and 5-10 mV in turtle cones), implying that their synapses 
may not have functional thresholds. Another problem with Marr's postulates 
for the photoreceptor-bipolar transmission is his insistence that f( x ),g( x) > 0, 
forcing the ON and OFF bipolar cells to have responses with similar polarity. 
This is a problem, because on light activation ON bipolar cells depolarize while 
OFF bipolar cells hyperpolarize (Werblin and Dowling, 1969; Matsumoto and 
Naka, 1972; Dacheux and Miller, 1981). (A solution for this problem may be 
to say that OFF bipolar cells depolarize at light offset. Also, I found a way to 
solve this problem by slightly modifying Marr's diagrams, but this is outside 
the scope of this commentary. It is significant that Marr guessed correctly that 
the segregation between the ON and OFF pathways would be maintained in 
the inner plexiform layer. Direct evidence for this only appeared four years 
later [Nelson et al., 1978].) 

The innovative part of Marr's proposals refer to the inner pkxiform layer 
circuitry, but again, the experimental evidence is against him. However, a 
cautionary note must be presented here: any criticism of a model of the inner 
plexiform layer must be tempered with our limited knowledge about this layer. 
For example, in rabbit, whose retina has been widely studied, only about 
30% of all amacrine cells have been characterized with respect to dendritic 
morphology, neurotransmitter content, and topographic distribution (Vaney, 
1990). Thus, if a modeler postulates the existence of a certain cell type, it 
is possible that this cell exists. Accordingly, I restrain my analysis of Marr's 
proposition to the cells he mentioned, while keeping in mind that in the future 
appropriate substitutes might appear. 

Marr postulated an inhibitory interconnection between the ON and OFF 
sublaminas mediated by the narrow field diffuse amacrine cell. This cell, later 
renamed All type amacrine cell (Famiglietti and Kolb, 1975), appears to be 
glycinergic (Marc and Liu, 1985) and thus is presumably inhibitory. However, 
its inputs and outputs are wrong for Marr's purposes (Famiglietti and Kolb, 
1975; Nelson et al., 1976; Nelson, 1982; Kolb and Famiglietti, 1974; Pourcho, 
1982; Sterling, 1983): (a) it is mainly driven by rod inputs, (b) it only makes 
conventional synapses in the OFF sublamina, and (c) it has gap junctions with 
cone bipolar telodendrons in the ON sublamina. Marr also postulated that the 
midget bipolar cells make excitatory reciprocal synapses with stratified diffuse 
amacrine cells. Not a lot has been said about these amacrine cells since 
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their identification (Boycott and Dowling, 1969), thus little can be said about 
Marr's postulate. However, of the more extensively studied amacrine cells 
none appear to fulfill completely Marr's criteria. For example, cells A3 and 
A4 of Kolb et al. (1981) would be good candidates because they are broadly 
stratified in the OFF and ON sublaminas, respectively. Unfortunately, they 
seem to be glycinergic (pourcho and Goebel, 1985) and, therefore, probably 
inhibitory. A better example would be the Ca and Cb cholinergic amacrine 
cells (Masland et al.,1984; Schmidt et al., 1985; Rodieck, 1989), which stratify 
in the OFF and ON sublaminas respectively, and can be excitatory (they are 
excitatory to ganglion cells [Ariel and Daw, 1982; Ariel and Adolph, 1985]). 
The trouble is that they connect to ganglion cells (Famiglietti, 1983; Brandon, 
1987) or to each other (Millar and Morgan, 1987; Mariani and Hersh, 1988), 
but not to bipolar cells. 

Marr's paper did not have an impact in retinal research. A search I con
ducted with the Science Citation Index did not reveal even a single reference to 
Marr's paper from experimental retinal investigators. This is too bad, because 
the paper is rich in specific and testable predictions. Also, as it turned out, 
later experiments corroborated some of the predictions fonnulated by Marr. 
For example, his prediction of the ON and OFF segregation through stratifi
cation in the inner nuclear layer was later refonnulated by retinal anatomists 
(Famiglietti and Kolb, 1976) and successfully tested (Nelson et al., 1978). 
(Interestingly, some psychophysicists appreciated this prediction [MacLeod, 
1978; Stelmach et al., 1987] seeing virtue in Marr's computational arguments 
for the early segregation of the ON and OFF pathways. 

Despite the negative evidence against his model and its lack of impact in 
retinal research, I would like to argue that Marr's approach is a worthwhile one. 
This approach is to fonnulate putative neural circuits implementing functions 
that have been previously understood from a computational perspective. (In 
the present case, the computational studies were those of Land and McCann 
[1971] and Hom [1974].) The implementation should not be arbitrary, but 
rather should make maximal use of the available data. 

I submit that the incorrect predictions made by the model are not fun
damental to Marr's approach in this paper. Rather, they may occur in any 
theoretical work and are a healthy part of science. As Francis Crick puts it 
(Crick, 1988): 

The principal error I see in most current theoretical work is that of 
imagining that a theory is really a good model for ... nature rather than being 
merely a demonstration (of possibility) a 'don't worry' theory ... H elegance 
and simplicity are ... dangerous guides, what constraints can be used as guide 
through the jungle of possible theories? ... The only useful constraints are 
contained in the experimental evidence ... Theorists ... should realize that 
it is extremely unlikely that they will produce a useful theory just by having a 
bright idea distantly related to what they imagine to be the facts ... The very 
process of abandoning theories gives them a degree of critical detachment 
which is almost essential. 
Later in his career, Marr shifted to a different approach (Marr, 1982). He 
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emphasized the computational level of understanding at which the infonnation
processing tasks carried out during perception are analyzed independently of 
the particular mechanisms that implement them in the brain. Even though this 
is an important realization, I believe that it might be misleading. Of the several 
computational approaches available to solve a task, the one that the brain uses 
may not be same one that is optimal under some mathematical criterion, but 
rather one that makes good use of the available neural circuitry (Grzywacz 
and Poggio, 1990). I believe that Marr's early foray into computational visual 
neuroscience is the way to go, and if coupled with experiments, it will lead to 
fruitful brain research. 
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Abstract 

The goals of the computation that extracts disparity from pairs of pictures 
of a scene are defined, and the constraints imposed upon that computation 
by the three-dimensional structure of the world are determined. Expressing 
the computation as a gray-level correlation is shown to be inadequate. A 
precise expression of the goals of the computation is possible in a low-level 
symbolic visual pro- cessor: the constraints translate in this environment to 
prerequisites on the binding of disparity values to low-level symbols. The 
outline of a method based on this is given. 

Introduction 

Commercial pressures have led to considerable interest in the automatic ex
traction of disparity information from pairs of pictures of a scene. Since 1968, 
there has been available a machine, the Wild-Raytheon B8 stereomat auto
mated plotter, which can draw a contour map from two aerial photographs. 
The machine correlates intensity measurements obtained over local scans made 
on the two images: the scan paths are the machine's c~nt approximation to 
the contour lines (i.e., lines of constant disparity), and the failures of corre
spondence between the scans on the two images are used to improve the appro
ximation. Adequate accuracy, if achieved at all, is reached within about six 
iterations. 

Machines that seek to assign disparity values to an image by performing 
correlations between intensity arrays are subject to troublesome problems due 
to local minima: Mori, Kidode & Asada (1973) describe the problems, and 
have recently implemented some ways of avoiding them. Their principal cures 
are (i) to correlate the two images using local averages taken over regions that 
are initially relatively large, and which are subsequently reduced in size as the 
solution is approached; and (ii) to avoid local minima traps by introducing 
a small amount of Gaussian noise into the images. These techniques reduce 
considerably the incidence of false assignments, but they fail to remove them 
altogether. 

There has been less progress in the study of parallel algorithms for mak
ing use of disparity information, despite considerable recent interest in the 
processing of disparity information by the visual system (Barlow, Blakemore 
& Pettigrew [1967], Julesz [1971]; Julesz [1971, p. 204] and Sperling (1970)) 
have both suggested possible schemes. Julesz's model is informal in nature, be
ing more phenomenological than computational: it is very interesting because 
despite its great simplicity, it displays an astonishing number of properties that 
are exhibited by the human disparity processing system. Sperling's model is 
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more fonnal, but it is difficult to tell how well it would work. This is a problem 
with all complex parallel methods; they are very expensive to simulate, and it 
is extremely difficult to derive analytically, from a system with complex non
linear components, quantities that could be measured experimentally. About 
the best one can hope to do at present is to state criteria that distinguish one 
family of methods from another, and ask whether those criteria are satisfied 
by the particular method that we use. 

This note enquires about the exact nature of the disparity computation. It 
is in some sense a correlation, and because that is common knowledge and 
fairly precise, a deeper characterization has not been sought. But in order 
to fonnulate a method of carrying it out, one needs to be very precise about 
the goals of the computation, and about the constraints imposed upon it by 
the structure of the three-dimensional world. Unless one uses a method that 
is based on all and only the correct assumptions, there will be situations in 
which it will fail unnecessarily. 

Measuring disparity 
If a scene is photographed from two slightly different positions, the relative 
positions of the objects in the scene will differ slightly on the two images. The 
discrepancies of interest arise from the different distances of the objects from 
the viewing position, and measurements of the discrepancies contain useful 
infonnation about the relative distances of the objects. The tenn binocular 
disparity refers to the difference in the angle from each eye to a point in 
the scene, measured relative to some suitably chosen angle of convergence. 
The central difficulty in defining what is meant by the process of extracting 
binocular disparity from an image is that disparity has to refer to a physical 
entity-a point on a visible surface-yet it appears that we compute it at a 
level far below that at which the world is described in tenns of surfaces and 
objects (Julesz, 1971). It was probably this fact that made so surprising Julesz's 
conclusion that disparity assignment is a low-level computation. 

In order to compute disparity correctly, the following steps must be carried 
out: first, a particular location on a surface in the scene must be located 
in one image; second, the identical location must be identified in the other 
image; third, the relative positions of the two images of that location must 
be measured. The most interesting and most troublesome part of the process 
concerns the selection of a location on the viewed surface, and the identification 
of its two images. The difficulty is that the choice of a point on the surface 
must be made from the images: if it could be chosen in some absolute way 
-by lighting it up at that point for example-the problem would be simple. 

We are now in a position to understand why the disparity computation is 
not the same thing as a gray-level correlation. The reason is that gray-level 
measurements correspond to properties of the image, rather than to properties 
of the objects being viewed. An (x, y) coordinate pair on an image is an 
artefact of the transducer, since it does not define a point on a physical surface 
in a way that allows it to be identified on the other image. The most glaring 
example of the failure is the case where an image point corresponds to two 
surface points, the nearer of which is transparent or translucent: a goldfish 
in a pond is one such case, where the water surface and the goldfish are 
simultaneously visible. Other examples are provided by figures 5.7.1 and 

232 



COMPUTATION OF BINOCULAR DISPARITY 

6.3.2 of Julesz (1971). But the argument applies equally well to the case of a 
single visible surface, and its consequence is that gray-level matching methods 
are incorrect. On simple images, the method will succeed, because it is close 
enough to the right idea: but as Mori et al. (1973) have found, it will not 
succeed on complex images because it is based on incorrect premises. Their 
technique of introducing local smearing may be viewed as a way of beginning 
to identify a point in the image with a point on the physical surface (by adding 
additional constraints on what is matched): insofar as it does so, the method 
will become more reliable, but it is probably better to attack the underlying 
issue directly. 

The use of low-level symbols 
In order to formulate the disparity computation in a usable way, we therefore 
need to be able to identify surface points from the two images, and match 
them up. It is clearly fruitless to try to label points of a smooth featureless 
surface, but if that surface contains a scratch, boundary, or other identifying 
physical mark that produces a local and fairly sharp change in reflectance, that 
change in reflectance may be used to define the surface point. Provided that the 
change in reflectance has been identified and described separately in the two 
images, the resulting descriptions will correspond to an underlying physical 
reality. The computation of such a low-level description from one image has 
been dealt with at length elsewhere (Marr 1974a & 1974b), and is called the 
low-level symbolic representation of an image. Hence we see that provided 
stereo matching takes place between two low-level symbolic descriptions, it is 
a well-founded operation. 

Finally, we need to ask whether any reasonably complex measurement 
could be used-or is there something special about a low-level symbolic de
scription? Simple cell-like measurements are for example nearly suitable, be
cause they are sometimes quite near to low-level assertions; but when assigning 
disparity values to simple cells, one meets all the usual problems associated 
with measurements-a whole set of simple cells, at neighboring positions and 
orientations, corresponds to the underlying scratch or whatever in the image, 
and it is that complex that needs to be matched against the corresponding com
plex derived from the other image. If the important matching step is carried out 
on each individual simple cell measurement, the computation becomes very 
uneconomical. Hence one may expect that when disparity is actually assigned, 
the process operates on a very low-level symbolic description. This method 
will fail only when the low-level descriptions obtained from the two images 
are very different; but this is comparatively rare, and one seems to notice it 
when it happens. In any case, this circumstance cannot be dealt with at the 
same very low level. 

The problem has now been reduced to the comparison of two low-level 
symbolic descriptions, and the assignment of disparity values to pairs of sym
bols, drawn appropriately from each image. We turn now to examine briefly 
the rules and constraints to which this process is subject. 

The ''use once" condition 
We have seen that an element of a low-level symbolic description of an image 
corresponds to a physically identifiable entity in a way that an image coordinate 
does not, and in which measurements made on an image only approximate. 
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Figure 1 
Fig. 1. L denotes the collection of left-image symbols, and R the collection 
of right-image symbols. These are connected through the set D of disparity 
value symbols. The sets DL and Dr referred to in the text are show in the 
figure. 

This allows one to state the first condition that controls the matching of two 
low-level symbolic descriptions. It is that each low-level symbol should be 
assigned exactly one disparity value, which in tum implies that it should be 
associated with at most one symbol computed from the other image. This is 
called the "use-once" condition, and it is nonlinear. 

The use-once condition may be implemented in the following way. Let 
L be the set of all left-image low-level symbols, and let R be the set of all 
right-image low-level symbols. To each element x in L, there correspond 
several elements in R, one for each of the possible disparity values; and for 
each element y in R, there is a corresponding set of elements in L. This 
situation is illustrated in Figure 1. The matching of one element from L 
with one from R corresponds to the assignment of a single disparity value to 
both elements, so let us introduce a third set D that consists of collections of 
elements representing all of the possible disparity values that may be bound 
to each low-level symbol. In principle, one needs one such collection for 
each low-level symbol, although members of L and R share elements in D 
in the appropriate way (see below). The use-once condition translates into 
the constraint that each element of L and of R may be bound to at most one 
element of D. 

In practice, the set D will be very large unless steps are taken to economize 
on the number of units that are necessary to represent the disparity values; so let 
us consider how disparity-representing units may be shared between several 
elements of L (say). D has to be large enough so that (a) each low-level 
symbol can find an unused collection in D that can be used for representing 
its disparity; and (b) the correspondence between L and R through D is well 
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defined. To accomplish this, the collection of left- (or right-) image symbols 
that share a given disparity-representing unit should have the property that it 
is very rare for two to be provoked simultaneously by the image. 

When one considers how to construct a parallel network that implements 
the use-once condition, it is apparent that at least three variables must be ac
commodated: ascension and declination in the visual field, and disparity. A 
satisfactory arrangement is shown in Figure 2; in this, the units representing 
disparity values are arranged in stripes of constant disparity. The collections in 
D that represent disparity values for left-image symbols (L) lie along the diag
onallines marked Dl and those for right-image symbols lie along the opposing 
set of lines Dr. Thus D is divided up in two ways into disparity- representing 
units, which are simultaneously shared in an appropriate fashion by L and 
R. The connections that implement the use-once condition are clearly marked: 
they run along DI and Dr, joining places that contain representations of all pos
sible disparity values that could be bound to a given left- or right-generated 
symbol. (In a neural implementation of this scheme, such connections would 
be inhibitory.) 

d, 

Figure 2 

There are interesting differences between the implications for neurophys
iology of these ideas, and of the model of lulesz. First, the important part 
of the computation involves constraints on the disparity values that may be 
bound to low-level symbols. The magnets in lulesz's model seem, however, 
to correspond to rather unspecific local disparity values, and we saw earlier 
that the disparity computation cannot be accurately expressed in these terms. 
The second point rests on the way in which disparity-representing sets in D are 
assigned to L and to R. The most economical way of forming the collections 
of low-level symbols, that are to use the same disparity-representing units, is 
probably to group together all symbols that describe a small region and a small 
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orientation range. Only very rarely will two such symbols be used simultane
ously. If some scheme of this sort were being used, it would account for the 
existence of cells that behave sensitively to disparity, but are relatively tolerant 
to position and orientation (Hubel and Wiesel, 1970). Furthermore, it would 
be within these units that the main disparity computation is being. carried out, 
and between which the governing connections should be made. One would 
not expect to find other cells, expressing a free-floating disparity value in a 
"region" of the image, because the essence of the computation requires that it 
be carried out on bindings to low-level symbols. The model of Julesz would, 
I think, lead one to expect such cells. 

Disparity is continuous almost everywhere 
The use-once condition must be satisfied by the final assignment of disparity 
values to the low-level symbolic descriptions, but it is not much help in finding 
it. When applied to a random-dot stereogram, it will ensure that the description 
of each dot, or group of dots, in one image is mated with not more than 
one similar description computed from the other image; and a solution that 
satisfies this and leaves very few dots out will probably be correct (see the 
next condition). But there is another useful property of the real world that can 
be introduced with advantage to speed the analysis. It is that except at object 
boundaries, disparity is a function that varies smoothly over the image. Fine 
texture, which is the best source of disparity information about a surface, will 
be represented at the lowest level by assertions about very small features; and 
except at object boundaries, the disparity values that become bound to neigh
boring symbols will be about the same. This fact allows the existence of an 
interaction that "proposes" the disparity used at one point as a strong candidate 
for the value at neighboring points: it corresponds in lulesz's (1971) model to 
the lateral coupling provided by the small springs that join adjacent magnets. 
The implementation of this constraint in Sperling's (1970) model is obscure. 

The implementation of a suggestion is one of those questions that it is 
not profitable to pursue in detail, because of the difficulty in testing, either 
physiologically or computationally, the conclusions to which one may be led. 
I shall therefore make only three points about it. The first is that, in principle, 
one would like a suggestion to influence the route to a solution, without dis
turbing the values in the solution once they are found. This implies a time
dependence in the interaction. Second, in order that the solution may be stable, 
one would probably also need to add a small DC component. The third point, 
and one that may actually be useful, concerns the geometry of the suggested 
interactions, and this is shown in Figure 2. There are connections between all 
disparity units that represent similar disparity values, and that refer to symbols 
in nearby portions of the visual field. In a neural implementation, they would 
be excitatory. 

Goodness-or-fit 
The final important aspect of disparity measurement is the question of how 
satisfactory a solution is. lulesz emphasized the need for such a measure, and 
in his model, it corresponds to the total potential energy in the two superim
posed assemblies of magnets. Sperling (1970) also used a potential energy 
measure in his fonnulation. lulesz showed that in an ambiguous stereogram, 
we perceive the beller correlated solution even if both have quite high corre-
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lations. This is good evidence that the matching process is parallel rather than 
serial, and that the goodness-of-fit measure is computed on a local basis. 

In an implementation of the kind that we are discussing, the goodness-of
fit of a solution may be measured by the proportion of left- and right-image 
symbols that become bound to disparity values. In a perfect solution, the 
proportion will be 1.0; and an inappropriate disparity binding will have the 
effect of depressing the proportion of correct bindings in its neighborhood. The 
local goodness-of-fit function would affect the confidence with which disparity 
assignments are made locally, i.e., the strength with which they are asserted
which in tum would affect the potency with which they are suggested to 
nearby regions. The goodness-of-fit function would therefore be implemented 
by a unit that depressed the local disparity-representing units by an amount 
that depended upon the proportion of image symbols in the vicinity that have 
been assigned disparity values. I do not see how to test for the presence of 
such units, except by trial and error. 

Summary of the disparity interactions 
The interactions described above are now drawn together, and the conditions 
that are necessary to an implementation of this kind are made explicit. 

(1) The disparity assignment is made as a result of a matching operation 
performed on two low-level symbolic descriptions, computed independently 
from the left and right images. 

(2) The matching is implemented by applying conditions to the process of 
binding symbolic disparity descriptors to the low-level symbols. These con
straints are the use-once condition, the suggestion interaction, and maximizing 
the goodness of fit. 

(3) The use-once condition requires interactions whose geometry appears 
in Figure 2. These interactions inhibit the confidence of those assignments 
that they connect. 

(4) The suggestion interactions have the geometry shown also in Figure 2. 
They connect disparity descriptors that represent similar disparity values, and 
that are capable of being bound to low-level symbols referring to neighboring 
positions in the visual field. Such interactions would probably have a time
dependent component as well as a DC component. 

(5) Maximizing the goodness of fit of a solution would have to be im
plemented by a local goodness-of-fit function, that measures the proportion of 
low-level symbols that have successfully been bound to a disparity value, and 
that affects the confidence level of the bindings in that local region. 

Discussion 
I shall not attempt in this note to derive any properties of the above system. 
I have been unable to make much progress with an analytical approach to the 
problem, and the amount of time required for a computational study is very 
large. The approach set out here does, however, illustrate (a) how the disparity 
computation may be well founded; (b) the importance of low-level symbols 
in the formulation; and (c) how the important constraints may, at least in a 
general way, be represented by connections with a straightforward geometry. 
This kind of geometrical arrangement is one that it is becoming possible to 
detect. 

The second large issue concerns the way in which disparity information 
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may be used. It is one thing to assign disparity values to low-level symbols, 
and quite another to divide up an image into regions on the basis of disparity 
information alone, and compute a description of the spatial extent of each 
region. For example, in any stereogram, the orientation information associated 
with the small squares or groups of squares that are actually matched bears no 
relation to the orientation of the edge at which disparity changes. One way 
of computing the higher, induced edges would, of course, be to treat disparity 
like intensity, and subject its values to a process like that used to obtain a 
low-level symbolic description from an intensity array (Marr, 1974b). This 
method seems somewhat clumsy, however, because disparity is not the only 
kind of information (excluding intensity) from which directions and boundaries 
may be computed locally. Texture changes are another example, and so are 
more abstract outlines, like the envelope of a sparse tree in winter, or the 
boundary defined by a row of small, separated bushes across a garden. One 
would like to know whether all of these problems may be dealt with by a 
single method that can describe configurations of "places" in an image-these 
places being identified by a rather simple kind of local measurement made 
on the relevant type of information. There seems to be clear evidence (and a 
definite computational need) for such a mechanism one of its main functions 
being to set up an orientation in the image at a point, to describe configurations 
of places relative to that orientation, and to influence the direction relative to 
which local shapes in an image are described. It is, however, far from clear 
whether one such mechanism would suffice to service all of the demands of 
this kind, or whether the slightly differing computational requirements force 
the existence of a number of separate, but similar, mechanisms. The question 
will be raised elsewhere (Marr, 1975). 
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Cooperative Computation 
of Stereo Disparity 

A cooperative algorithm is derived for extracting 

disparity information from stereo image pairs. 

Perhaps one ofthe most striking differ
ences between a brain and today's com
puters is the amount of "wiring." In a 
digital computer the ratio of connections 
to components is about 3. whereas for 
the mammalian cortex it lies between 10 
and 10.000 (I). 

Although this fact points to a clear 
structural difference between the two, 
this distinction is not fundamental to the 
nature of the infonnation processing that 
each accomplishes, merely to the particu
lars of how each does it. In Chomsky's 
tenns (2), this difference affects theories 
of perfonnance but not theories of com
petence, because the nature of a compu
tation that is carried out by a machine or 
a nervous system depends only on a 
problem to be solved, not on the avail-

D. Marrand T. Poggio 

able hardware (3). Nevertheless, one can 
expect a nervous system and a digital 
computer to use different types of al
gorithm, even when perfonning the same 
underlying computation. Algorithms 
with a parallel structure, requiring many 
simultaneous local operations on large 
data arrays, are expensive for today's 
computers but probably well-suited to 
the highly interactive organization of ner
vous systems. 

The class of parallel algorithms in
cludes an interesting and not precisely 
definable subclass which we may call 
cooperative algorithms (3). Such al
gorithms operate on many "input" ele
ments and reach a global organization by 
way of local, interactive constraints. The 
tenn "cooperative" refers to the way in 
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which local operations appear to cooper
ate in fonning global order in a well
regulated manner. Cooperative phenom
ena are well known in physics (4, 5), and 
it has been proposed that they may play 
an important role in biological systems 
as well (6-10). One of the earliest sugges
tions along these lines was made by Ju
lesz (II), who maintains that stereo
scopic fusion is a cooperative process. 
His model, which consists of an array of 
dipole magnets with springs coupling the 
tips of adjacent dipoles, represents a sug
gestive metaphor for this idea. Besides 
its biological relevance. the extraction of 
stereoscopic infonnation is an important 
and yet unsolved problem in visual infor
mation processing (12). For this rea
son-and also as a case in point-we 
describe a cooperative algorithm for this 
computation. 

In this article, we (i) analyze the com
putational structure of the stereo-dis
parity problem, stating the goal of the 
computation and characterizing the asso
ciated local constraints; (ii) describe a 
cooperative algorithm that implements 
this computation; and (iii) exhibit its per
fonnance on random-dot stereograms. 
Although the problem addressed here is 
not directly related to the question of 
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ry, Massachusetts Institute of Technology, Cam
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how the brain extracts disparity informa
tion, we shall briefly mention some ques
tions and implications for psychophysics 
and neurophysiology. 

Computational Structure of the 

Stereo-DIsparIty Problem 

Because of the way our eyes are posi
tioned and controlled, our brains usually 
receive similar images of a scene taken 
from two nearby points at the same hori
zontallevel. If two objects are separated 
in depth from the viewer, the relative 
positions of their images will differ in the 
two eyes. Our brains are capable of mea
suring this disparity and of using it to 
estimate depth. 

Three steps (S) are involved in measur
ing stereo disparity: (SI) a particular lo
cation on a surface in the scene must be 
selected from one image; (S2) that same 
location must be identified in the other 
image; and (S3) the disparity in the two 
corresponding image points must be 
measured. 

If one could identify a location beyond 
doubt in the two images, for example by 
illuminating it with a spot of light, steps 
SI and S2 could be avoided and the 
problem would be easy. In practice one 
cannot do this (Fig. I), and the diffi
cult part of the computation is solving 
the correspondence problem. Julesz 
found that we are able to interpret ran
dom-dot stereograms, which are stereo 
pairs that consist of random dots when 
viewed monocularly but fuse when 
viewed stereoscopically to yield patterns 
separated in depth. This might be 
thought surprising, because when one 
tries to set up a correspondence between 
two arrays of random dots, false targets 
arise in profusion (Fig. I). Even so, we 
are able to determine the correct corre
spondence. We need no other cues. 

In order to formulate the correspon
dence computation precisely, we have to 
examine its basis in the physical world. 
Two constraints (C) of importance may 
be identified (13): (CI) a given point on a 
physical surface has a unique position in 
space at anyone time; and (C2) matter is 
cohesive, it is separated into objects, and 
the surfaces of objects are generally 
smooth compared with their distance 
from the viewer. 

These constraints apply to locations 
on a physical surface. Therefore, when 
we translate them into conditions on a 
computation we must ensure that the 
items to which they apply there are in 
one-to-one correspondence with well-de
fined locations on a physical surface. To 
do this, one must use surface markings, 

normal surface discontinuities, shadows, 
and so forth, which in tum means using 
predicates that correspond to changes in 
intensity. One solution is to obtain a 
primitive description [like the primal 
sketch (14») of the intensity changes pres
ent in each image, and then to match 
these descriptions. Line and edge seg
ments, blobs, termination points, and to
kens, obtained from these by grouping, 
usually correspond to items that have a 
physical existence on a surface. 

The stereo problem may thus be re
duced to that of matching two primitive 
descriptions, one from each eye. One 
can think of the elements of these de
scriptions as carrying only position infor
mation, like the white squares in a ran
dom-dot stereogram, although in prac
tice there will exist rules about which 
matches between descriptive elements 
are possible and which are not. The two 
physical constraints C I and C2 can now 
be translated into two rules (R) for how 
the left and right descriptions are com
bined: 

RI) Uniqueness. Each item from each 
image may be assigned at most one dis
parity value. This condition relies on the 
assumption that an item corresponds to 
something that has a unique physical 
position. 

R2) Continuity. Disparity varies 
smoothly almost everywhere. This condi
tion is a consequence of the cohesive
ness of matter, and it states that only a 
small fraction of the area of an image is 
composed of boundaries that are discon
tinuous in depth. 

In real life, RI cannot be applied sim
ply to gray-level points in an image. The 
simplest counterexample is that of a gold
fish swimming in a bowl: many points in 
the image receive contributions from the 
bowl and from the goldfish. Here, and in 
general, a gray-level point is in only im
plicit correspondence with a physical 10-
cation, and it is therefore impossible to 
ensure that gray-level points in the two 
images correspond to exactly the same; 
physical position. Sharp changes in in
tensity are usually due either to the gold
fish, to the bowl, or to a reflection, and 
therefore define a single physical posi
tion precisely. 

A Cooperative Algorithm 

By constructing an explicit representa
tion of the two rules, we can derive a 
cooperative algorithm for the computa
tion. Figure 2a exhibits the geometry of 
the rules in the simple case of a one
dimensional image. Lx and Rx represent 
the positions of descriptive elements on 
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the left and right Images . The thick verti
cal and horizontal lines represent lines of 
sight from the left and right eyes, and 
their intersection points correspond to 
possible disparity, values. The dotted 
diagonal lines connect points of constant 
disparity. 

The uniqueness rule R I states that 
only one disparity value may be assigned 
to each descriptive element. If we now 
think ofthe lines in Fig. 2a as a network, 
with a node at each intersection, this 
means that only one node may be 
switched on along each horizontal or 
vertical line. 

The continuity rule R2 states that dis
parity values vary smoothly almost ev
erywhere. That is, solutions tend to 
spread along the dotted diagonals. 

If we now place a "cell" at each node 
(Fig. 2b) and connect it so that it inhibits 
cells along the thick lines in the figure 
and excites cells along the dotted lines, 
then, provided the parameters are appro
priate. the stable states of such a net
work will be precisely those in which the 
two rules are obeyed. It remains only to 
show that such a network will converge 
to a stable state. We were able to carry 
out a combinatorial analysis [as in (9, 
15») which established its convergence 
for random-dot stereograms (16). 

This idea may be extended to two
dimensional images simply by making 
the local excitatory neighborhood two 
dimensional. The structure of each node 
in the network for two-dimensional im
ages is shown in Fig. 2c. 

A simple form of the resulting al
gorithm (3) is given by the following set 
of difference equations: 

C'n + II = <T{:=:(c,n,) + C(o'} (II 

that is. 

C(~~I) = u! I c );'d' -
rlld'E.'·j(.Tydl 

• I Cr';~. + C)~ I (2) 
.r'1Id'e()(.rydl 

where C i:::' represents the state of the 
node or cell at position (x.y) with dis
parity d at iteration n, :=: is the linear 
operator that embeds the local con
straints (S and 0 are the circular and 
thick line neighborhoods of the cell xyd 
in Fig. 2c), • is the "inhibition" con
stant. and <T is a sigm<;>id function with 
range [0, I). The state C';;J' of the 
corresponding node at time (n + 1) is 
thus determined by a nonlinear operator 
on the output of a linear transformation 
of the states of neighboring cells at time 
n. 

The desired final state of the computa
tion is clearly a fixed point of this a1-



gorithm; moreover, any state that is in
consistent with the two rules is not a 
stable fixed point. Our combinatorial 
analysis of this algorithm shows that , 
when <r is a simple threshold function, 
the process converges for a rather wide 
range of parameter values (16). The spe
cific form of the operator is apparently 
not very critical. 

Noniterative local operations cannot 
solve the stereo problem in a satisfactory 
way (II) . Recurrence and nonlinearity 
are necessary to create a truly coopera
tive algorithm that cannot be decom
posed into the superposition of local op
erations (17). General results concerning 
such algorithms seem to be rather diffi
cult to obtain , although we believe that 
one can usually establish convergence in 
probability for specific form s of them. 

Examples of Applying the Algorithm 

Random-dot stereograms offer an ideal 
input for testing the performance of the 
algorithm , since they enable one to by
pass the costly and delicate process of 
transforming the intensity array received 
by each eye into a primitive description 
(14). When we view a random-dot stereo
gram. we probably compute a descrip
tion couched in terms of edges rather 
than squares. whereas the inputs to our 
algorithm are the positions of the white 

squares. Figures 3 to 6 show some exam
ples in which the iterative algorithm suc
cessfully solves the correspondence 
problem , thus allowing disparity values 
to be assigned to items in each image. 
Presently. its technical applications are 
limited only by the preprocessing prob
lem. 

This algorithm can be realized by vari
ous mechanisms , but parallel , recurrent. 
nonlinear interactions. both excitatory 
and inhibitory. seem the most natural. 
The difference equations set out above 
would then represent an approximation 
to the differential equations that describe 
the dynamics of the network. 

Implications for Biology 

We have hitherto refrained from dis
cussing the biological problem of how 
stereopsis is achieved in the mammalian 
brain. Our analyses of the computation. 
and of the cooperative algorithm that 
implements it . raise several precise ques
tions for psychophysics and physiology. 
An important preliminary point concerns 
the relative importance of neural fusion 
and of eye movements for stereopsis. 
The underlying question is whether there 
are many disparity "layers" (as our al
gorithm requires) . or whether there are 
just three "pools" (l8}---crossed. un
crossed. and zero disparity. Most physi-

c: 

'" VI 

Rx a 
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ologists and psychologists seem to ac
cept the existence of numerous , sharply 
tuned binocular "disparity detectors," 
whose peak sensitivities cover a wide 
range of disparity values (19, 20). We do 
not believe that the available evidence is 
decisive (21), but an answer is critical to 
the biological relevance of our analysis. 
If, for example, there were only three 
pools or layers with a narrow range of 
disparity sensitivities , the problem of 
false targets is virtually removed, but at 
the expense of having to pass the con
vergence plane of the eyes across a sur
face in order to achieve fusion. Psycho
physical experiments may provide some 
insight into this problem. but we believe 
that only physiology is capable of provid
ing a clear-cut answer. 

If this preliminary question is settled 
in favor of a "multilayer" cooperative 
algorithm, there are several obvious im
plications of the network (Fig. 2) at the 
physiological level: (i) the existence of 
many sharply tuned di sparity units that 
are rather insensitive to the nature of the 
descriptive element to which they may 
refer; (ii) organization of these units into 
disparity layers (or stripes or columns); 
(iii) the presence of reciprocal excitation 
within each layer; and (iv) the presence 
of reciprocal inhibition between layers 
along the two lines of sight. Ideally, the 
inhibition should exhibit the character
istic "orthogonal" geometry of the thick 

c 
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c 

Lx 
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Fig. I (left). Ambiguity in the correspondence between the two retinal 
projections. In this figure. each of the four points in one eye's view 
could match any of the four projections in the other eye's view. Ofthe 
16 possible matchings only four are correct (closed circles). while the 
remaining 12 are "false targets" (open circles), It is assumed here that 
the targets (closed squares) correspond to "matchable" descriptive 
elements obtained from the left and right images. Without further 
constraints based on global considerations. such ambiguities cannot 
be resolved. Redrawn from Julesz (/ I , figure 4.5-1). Fig. 2 (right). 
The explicit structure of the two rules R I and R2 for the case of a one
dimensional image is represented in (a), which also shows the struc
ture of a network for implementing the algorithm described by Eq. 2. 
Solid lines represent "inhibitory" interactions. and dotted lines repre
sent "excitatory" ones. The local structure al each node of the 
network in (a) is given in (b). This algorithm may be extended to two
dimensional images. in which case each node in the corresponding 
network has the local structure shown in (e). Such a network was used 
to solve the stereograms exhibited in Figs. 3 to 6. 
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lines in Fig. 2, but slight deviations may 
be permissible (16). 

At the psychophysical level, several 
experiments (under stabilized image con
ditions) could provide critical evidence 
for or against the network: (i) results 

3 

about the size of Panum' s area and the 
number of disparity "layers"; (ii) results 
about "pulling" effects in stereopsis 
(20); and (iii) results about the relation
ship between disparity and the minimum 
fusable pattern size (Fig. 6). 

Our algorithm performs a computation 
that finds a correspondence function be
tween two descriptions, subject to the 
two constraints of uniqueness and conti-

4 .' . 

I 

I' 

.. ~ . .. 
• 
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nuity. More generally, if one has a situa
tion where allowable solutions are those 
that satisfy certain local constraints, a 
cooperative algorithm can often be con
structed so as to find the nearest allow
able state to an initial one. Provided that 
the constraints are local, use of a cooper
ative algorithm allows the representation 
of global order, to which the algorithm 
converges, to remain implicit in the net
work's structure. 

The interesting difference between this 
stereo algorithm and standard correla
tion techniques is that one is not required 
to specify minimum or maximum correla
tion areas to which the analysis is subse
quently restricted. Previous attempts at 
implementing automatic stereocompari
son through local correlation measure
ment have failed in part because no 
single neighborhood size is always cor
rect (12). The absence of a "character
istic scale" is one of the most interesting 
properties of this algorithm, and it is a 
central feature of several cooperative 
phenomena (22). We conjecture that the 
matching operation implemented by the 
algorithm represents in some sense a 
generalized form of correlation, subject 
to the a priori requirements imposed by 
the constraints. The idea can easily 
be generalized to different constraints 
and to other forms of equations I or 2, 

and it is technically quite appealing. 
Cooperative algorithms may have 

many useful applications [for example, 
to make best matches for associative 
retrieval problems (15)], but their rele
vance to early processing of information 
by the brain remains an open question 
(23). Although a range of early visual 
processing problems might yield to a co
operative approach ["filling-in" phenom
ena, subjective contours (24), grouping, 
figural reinforcement, texture "fields;' 
and the correspondence problem for mo
tion] , the first important and difficult task 
in problems of biological information 
processing is to formulate the underlying 
computation precisely (3). After that, 
one can study good algorithms for it. In 
any case, we believe that an experimen
tal answer to the question of whether 
depth perceptiOn is actually a coopera
tive process is a critical prerequisite to 
further attempts at analyzing other per
ceptual processes in terms of similar al
gorithms. 

Summary 

The extraction of stereo-disparity in
formation from two images depends up
on establishing a correspondence be
tween them. In this article we analyze 

Figs. 3 to 6. The results of applying the algorithm defined by Eq. 2 to two random-dot 
stereograms. Fig. 3. The initial state of the network e"} is defined by the input such that a 
node takes the value I if it occurs at the intersection of a I in the left and right eyes (Fig. 2), and 
it has the value 0 otherwise. The network iterates on this initial state, and the parameters used 
here, as suggested by the combinatorial analysis, were 8 ~ 3.0, • ~ 2.0, and M ~ 5, where 8 is 
the threshold and M is the diameter of the "excitatory" neighborhood illustrated in Fig. 2c. The 
stereograms themselves are labeled Left and Right, the initial state of the network as 0, and the 
state after n iterations is marked as such. To understand how the figures represent states of the 
network, imagine looking at it from above. The different disparity layers in the network lie in 
parallel planes spread out horizontally, so that the viewer is looking down through them. In 
each plane, some nodes are on and some are off. Each of the seven layers in the network has 
been assigned a different gray level, so that a node that is switched on in the top layer 
(corresponding to a disparity of + 3 pixels) contributes a dark point to the image. and one that is 
switched on in the lowest layer (disparity of - 3) contributes a lighter point. Initially (iteration 0) 
the network is disorganized, but in the final state stable order has been achieved (iteration 14), 
and the inverted wedding-cake structure has been found. The density of this stereogram is SO 
percent. Fig. 4. The algorithm of Eq. 2, with parameter values given in the legend to Fig. 3, 
is capable of solving random-dot stereograms with densities from SO percent to less than 10 
percent. For this and smaller densities, the algorithm converges increasingly slowly. If a simple 
homeostatic mechanism is allowed to control the threshold 8 as a function of the average 
activity (number of "on" cells) at each iteration [compare (15)], the algorithm can solve 
stereograms whose density is very low. In this example, the density is 5 percent and the central 
square has a disparity of +2 relative to the background. The algorithm "fills in" those areas 
where no dots are present. but it takes several more iterations to arrive near the solution than in 
cases where the density is SO percent. When we look at a sparse stereogram, we perceive the 
shapes in it as cleaner than those found by the algorithm. This seems to be due to subjective 
contours that arise between dots that lie on shape boundaries. Fig. 5. The disparity 
boundaries found by the algorithm do not depend on their shapes. Examples are given of a 
circle, an octagon (notice how well the difference between them is preserved), and a triangle. 
The fourth example shows a square in which the correlation is 100 percent at the boundary but 
diminishes to 0 percent in the center. When one views this stereogram, the center appears to 
shimmer in a peculiar way. In the network, the center is unstable. Fig. 6. The width of the 
minimal resolvable area increases with disparity. In all four stereograms the pattern is the same 
and consists of five circles with diameters of 3, 5, 7, 9, and 13 dots. The disparity values 
exhibited here are + I, +2, + 3, and +6, and for ea<:h pattern we show the state of the network 
after ten iterations. As far as the network is concerned, the last pair (disparity of +6) is 
uncorrelated, since only disparities from - 3 to + 3 are present in our implementation. After ten 
iterations, information about the lack of correlation is preserved in the two largest areas. 
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the nature of the correspondence compu
tation and derive a cooperative algorithm 
that implements it. We show that this 
algorithm successfully extracts informa
tion from random-dot stereograms, and 
its implications for the psychophysics 
and neurophysiology of the visual sys
tem are briefly discussed. 
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Analysis of a Cooperative Stereo Algorithm 

D. Marr*, G. Palm** and T. Poggio** 

Abstract. Marr and Poggio (1976) recently described a 
cooperative algorithm that solves the correspondence 
problem for stereopsis. This article uses a probabilistic 
technique to analyze the convergence of that algor
ithm, and derives the conditions governing the stability 
of the solution state. The actual results of applying the 
algorithm to random-dot stereograms are compared 
with the probabilistic analysis. A satisfactory ma
thematical analysis of the asymptotic behaviour of the 
algorithm is possible for a suitable choice of the 
parameter values and loading rules, and again the 
actual performance of the algorithm under these con
ditions is compared with the theoretical predictions. 
Finally, some problems raised by the analysis of this 
type of "cooperative" algorithm are briefly discussed. 

1. Introduction 

The extraction of stereo-disparity information from 
two images depends upon establishing a correspon
dence between them. In a recent article, Marr and 
Poggio (1976) analyzed the nature of the correspon
dence computation and derived a cooperative algor
ithm that implements it. Although several examples 
were given of the performance of the algorithm on 
random-dot stereograms (Marr and Poggio 1976, Figs. 
3-6), space did not permit a thorough analysis of the 
fixed points of the algorithm, or of its convergence. In 
this article, we shall examine these issues in detail. 

1.1. Computational Structure of the Correspondence 
Problem 
Marr and Poggio (1976) argued that the stereo pro
blem may be reduced to that of matching two primitive 

Massachusetts Institute of Technology, Department of Psycho· 
logy, Cambridge, MA, USA 
** Max-Planck-Institut fUr Biologische Kyb.ernetik, Tiibingen, 
FRO 

descriptions, one from each eye. They showed that the 
central problem is to find a correspondence between 
the left and right descriptions, that satisfies the two 
rules (p. 284 and Marr, 1974): 

(R1) Uniqueness. Each item from each image may be 
assigned at most one disparity. 
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Fig. 1a-<:. a shows the explicit structure of the two rules RJ and R2 
for the case of a one-dimensional image, and it also represents the 
structure of a network for implementing the algorithm described by 
(1). Solid lines represent "inhibitory" interactions, and dotted lines 
represent "excitatory" ones. b Gives the local structure at each node 
of the network a. This algorithm may b.e extended to two
dimensional images, in which case each node in the corresponding 
network has the local structure shown in c. (Marr and Poggio, 1976, 
Fig. 2) 

Reprinted with pennission of Springer Verlag Heidelberg from Biological Cybernetics, Volume 28, pp 
223-239 (1978). 
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Fig. 2. The excitatory neighborhood (Fig. Ic) used in our implemen
tation has a diameter of 5, and contains 13 cells. The central cell, 
marked by a square, receives at most 12 excitatory inputs from its 
neighbours 
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Fig. Ja.-e. The total excitatory contribution for various con
figurations of "on" cells. The excitatory neighborhood (Fig. 2) is 
shown with open circles, except for the central cell which is indicated 
by a square because it makes no contribution to the total excitation. 
With a threshold of 4.0: a shows that a flat border will grow in the 
absence of inhibition, b exhibits the smallest stable configuration, c 
the sharpest stable convexity, and d and e show concavities that fill 
in 

(R2) Continuity. Disparity varies smoothly almost 
everywhere. 

By constructing an explicit geometrical representation 
of these two rules (Fig. lc), they were able to derive a 
cooperative algorithm that implements them. If one 
thinks of Figure la as a network, with a cell at each 
node, the uniqueness rule Rl means that only one cell 
is "on" along each vertical or horizontal line (the line of 
sight from the left and right eyes); and the continuity 
rule R2 implies that solutions (its asymptotic states) 
tend to spread along the dotted diagonals (lines of 
constant disparity). 

In order to implement these rules, each cell sends 
"inhibitory" connections to all other cells along the 
same vertical and horizontal lines, and excitatory 
connections along its diagonal. This gives the local 
network geometry shown in Figure lb. For a two
dimensional image, the only change needed is to make 
the excitatory neighborhood two-dimensional, which 
gives the local geometry shown in Figure lc. 

Let C~,';d denote the state at time t of the cell 
corresponding to coordinate (x, y) on the left retina, 
matching position (x+d,y) on the right retina. Let 
S(xyd) denote its excitatory neighborhood (the disc in 
Fig. lc), and O(xyd) its inhibitory neighborhood (the 
horizontal and vertical lines in Figure lc). The algor-
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ithm implemented by the network may be written 
(Marr and Poggio 1976, Equation (2)) 

x,y;d - (J i... x' ,,';d' - e i... x' ,y';d' + C·+ 1 - { '" C· '" C· 
} 

;x' .y' ,d'eS(x,y,d) x' .y' ,d'eO(x.y,d) 

C!,.;d (1) 

where (J is a threshold function that takes values 0 or 1, 
and I> is an "inhibition" constant. 

This article is concerned with the properties of the 
algorithms defined by (1) or, equivalently, with the 
behavior of the corresponding network (Fig. 1). The 
two inputs to the algorithm or network, from which 
the initial state of the network is determined, are 
usually two matrices whose entries consist of O's and 
1's. The second matrix is constructed from the first by 
x-translations of regions of it. As we shall discuss later 
the algorithm defined by (1) has some analogies with 
games like "life". 

The plan of the paper is as follows: Section 2 
describes the loading rules, which determine the initial 
state from the input stereo grams, and also defines the 
algorithm precisely. The relations between the fixed 
points of the algorithm and the states that satisfy the 
two conditions Rl and R2 are then discussed (Section 
3). A probabilistic approach to the convergence of the 
algorithm is outlined in Section 4. Actual computer 
simulations of the algorithm are compared with the 
probabilistic analysis, and the range of parameter 
values that yield a "nice" convergence is discussed. 
Some special situations are also analyzed (Section 5). A 
suitable (and restrictive) choice of the parameter values 
in (1) allows a satisfactory mathematical analysis of the 
algorithm: Section 6 is devoted to such an approach. 
Finally, we briefly discuss the mathematical problems 
raised by the analysis of this type of "cooperative" 
algorithm. 

2. The Algorithm 

2.1. Loading Conditions 

Let the positions on the left and right retinas be 
denoted by Lx,. and Rx,. respectively. These arrays 
take the values 0, indicating the absence of a feature, or 
1, indicating the presence. The initial condition of the 
network, for stereogram L, R is given by 

(2) 

within the appropriate range d of di~parity. 

2.2. The Algorithm 

The relation between states at times t and t + 1, is given 
by the recurrence relation (1), where (J is a sigmoid 



function in general, and here is taken to be the 
threshold function 

u(u) = 1 

=0 

if u~e, 

otherwise. (3) 

e is a constant, known as the "inhibition constant". The 
number of disparity layers d we shall denote by D, and 
we shall let M be the diameter of the excitatory 
neighborhood S(x, y, d). In the example shown in 
Figure 2, M = 5, and the total number of cells in an 
excitatory neighborhood is 13. The number less the cell 
itself is 12, which we shall denote by E. The number of 
cells in an inhibitory neighborhood of a given cell is 
2D - 2, excluding the cell itself. 

2.3. Parameter Values and Some Facts 

The parameter values chosen for our original algor
ithm 1 (M'arr and Poggio, 1976) were E=12, D=7, 
e = 2, e =4, with the excitatory neighborhood shown in 
Figure 2. Among other constraints, these parameter 
values were chosen to satisfy the following conditions: 

2.3.1. in the absence of inhibition and ofa contribution 
from the term Co, straight line borders should fill in as 
shown in Figure 3a. This is true when e ~ 4. 

2.3.2. Straight line borders between two "filled-in" 
planes at different disparities should not grow. This 
requires that 4 - 2e < e. 
2.3.3. With the particular values chosen: - A pattern 
of 5 connected points is the smallest configuration that 
can survive (see Fig. 3b). It will not grow unless one 
other point is added (e.g. at P in Fig. 3b). 
- The sharpest convexity capable of surviving against 
one inhibition, with the help of a contribution from CO 
is a right-angle. Figure 3c shows that the condition is 
6-e~e. 

- A convex or flat border cannot grow against one 
inhibition; it can grow only into scattered active cells. 
- The least concave patterns capable of growing 
under two inhibitions are shown in Figures 3d and e. 
They fill in by one or two cells and then are no longer 
concave enough to grow under two inhibitions. 

3. Invariant States and the Matching Rules 

The matching rules for stereopsis that were given in the 
introduction take the following form for the algorithm 
discussed here: 

(1) Uniqueness. Each item from each image may be 
assigned at most one disparity value. 

In Marr and Poggio (1976), the value of e was given as 3.0, 
whereas here it is 4.0. The reason for the discrepancy is that the 
algorithm used to produce the stereograms for that article essentially 
used the condition > e, whereas here, we use the condition ~ e 
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Fig. 4. The solid lines indicate solution planes (cr. Fig. la). Lines of 
sight PQR' PQL intersect solution planes at only one point P, except 
possibly near the (rare) disparity boundaries like A. Thus con
figurations that obey rule Rl are invariant 

(2) Continuity. Disparity does not change almost 
everywhere. 

Comment. R2 has now taken a slightly different form. 
This is because disparity takes only discrete value in 
this algorithm. Images containing smoothly varying 
disparities may be handled by a modified version of the 
algorithm, which will be discussed in Section 5. 

We now show that the states in which these two 
rules are obeyed are for all practical purposes in
variant, i. e. they are fixed points of (1), and once 
achieved, do not change in subsequent iterations. 

3.1. Configurations that Satisfy 
the Matching Rules are Invariant 

The continuity and uniqueness conditions mean that, 
for each value of y, a cross-section of the network has 
the appearance shown in Figure 4 (the continuity 
condition also requires that the active segment has 
some extension in the y direction). That is, the "on" 
cells in the network form extended segments like that 
shown as AB (continuity), and most lines of sight (e.g. 
PQv PQR) intersect only one of these extended seg
ments (uniqueness). Some lines of sight (e.g. to D) may 
intersect two planes: this occurs only at the (rare) 
boundaries at which disparity changes. The physical 
situation is that one surface is obscuring the other. 

We show now that these configurations are in
variant if the parameter values are appropriate. 

(i) Interior points like P are certainly invariant if 

L C~, ,y';d ~ e (4) 
x' ,y' ,d'eS(x,y,d) 

if P is interior in both x and y. 
(ii) Equation (4) implies that boundary points like 

A (Fig. 4) on a straight boundary (in the x- y plane) 
will not grow into the interior of an existing segment at 
another disparity provided that 

(5) 

Concave pieces of boundaries can in principle grow, 
but not much for two reasons. Firstly, boundaries 
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L. 

Fig. 5. The two possible stable edges for Rat boundaries. Depending 
on the initial conditions, edges can occur that are defined by the line 
where cells begin receiving one (A) or two (B) inhibitions from the 
other surface 

cannot be everywhere concave, and secondly, with our 
particular excitatory neighborhood and parameter va
lues (see Figs. 3d and e) the amount a concave border 
can fill in is limited to at most two elements. Figure 5 
shows the two possible stable edges for flat boundaries. 
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3.2. Not All Invariant Configurations Satisfy 
the Matching Rules 

Strictly speaking, the converse result to that of the last 
section is not true. A counter-example to the unique
ness condition that is stable with our parameters 
appears in Figure 6. Interior points of a plane, wholly 
surrounded by other points in the same sheet, can 
survive inhibition from two other cells and so can 
boundary points where the boundary is straight. In 
Figure 6b, points of these two types are the only ones 
that occur. A counter-example to the continuity con
dition appears in Figure 7, and it is left as an exercise 
to show that this pattern is invariant. In practice, 
neither of these configurations can actually develop 
from a random-dot stereogram. 

When the input consists of two stereo grams por
traying a single surface, the probabilistic analysis of the 
next section shows that with high probability, the 
solutions will in fact obey the uniqueness condition. 

Fig. 6&--<:. A stable geometrical configuration that violates the 
uniqueness condition &. The central square consists of two planes, 
one at disparity 2 and one at disparity O. This configuration is a 
stable state of the algorithm, in the sense that if it is loaded directly 
into the network, an invariant configuration is quickly reached in 
which both planes are represented; b demonstrates this. The stereo
gram is marked Left and Right, and 5 iterations of the algorithm are 
shown. If the network is loaded in the usual way, however, the 
algorithm develops a solution that is a mosaic of patches from the 
two levels c 



If the input stereograms portray a transparent 
surface in front of another surface, the algorithm with 
our parameter values· will usually fail to represent the 
input accurately, tending instead to develop a solution 
that obeys the two conditions and consists of a mosaic 
of patches from the two levels (Fig. 6c). With the 
parameters we chose, there seems to be no convenient 
and precise definition of the stability of configurations 
that forces the uniqueness and continuity of solutions. 
For instance, even if one requires in addition to 
invariance some kind of spatial stability2, the counter
example of Figure 6 cannot be avoided, although a 
reasonable "spatial stability" condition would exclude 
the counter-example of Figure 7. 

If one could exclude significant overlaps between 
surfaces lying at different disparities, it appears that 
one can derive the continuity conditions for invariant 
configurations. The argument is based here on the 
notion of a hole3 , and shows by straightforward geo
metry that holes are not invariant. 

In one dimension (in which the network consists 
only of the part shown in Fig. 1a) the problem of this 
section becomes easier. Apparently, the only way of 
reducing the 2-dimensional problem to a satisfactory 
state is by changing the parameter values (see Section 
6). 

4. Probabilistic Analysis of the Algorithm 

We have been unable to obtain general results about 
the convergence of this type of algorithm. Standard 
approaches - e.g. Liapunov-type methods and the 
usual fixed point theorems - apparently fail in this 
situation for reasons that we shall mention in the 
discussion. 

The probabilistic analysis given here, although not 
completely satisfactory, nevertheless provides useful 
information about the algorithm's convergence for 
random-dot stereo grams. Strictly speaking its appli
cation is restricted to inputs with a random structure. 

The idea behind our analysis is that the cells in the 
network can be divided into populations on which the 
excitatory and inhibitory inferences are statistically 
homogeneous (cf. Marr, 1971). Our analysis is very 
specific to the algorithm of (1) because the way in 
which the cells are divided into populations depends 
critically on the geometry of the algorithm and on our 
a priori knowledge of its invariant state. 

A configuration is "spatially stable" if it is in some sense 
invariant under small perturbations (for instance each active point 
can be required to belong to a 3 x 3 neighborhood of points with the 
same disparity) 

There is a hole in the network for a given y if there exist two 
intersecting lines of sight neither of which contains an "on" cell 

249 

227 

a 

R 

Fig. 7a and b. A stable geometrical configuration that violates the 
continuity condition. At each of two disparity values, the "on" cells 
form a checkerboard pattern, but they are arranged in such a way 
that neither level can fill in, because of inhibition from the other 

4.1. Assumptions and Notation 

The algorithm has the structure shown in Figure 1 and 
the network is loaded from the input as specified by (2). 
We shall assume that the inputs have the following 
properties. 

4.1.1. The l's in each image occur randomly with 
probability v, and the autocorrelation of each input 
sequence (for any given y) is a Kronecker D. 

4.1.2. The input admits a unique solution surface that 
is large enough to neglect boundary effects. 

Condition 4.1.2 means that the left input is equal to 
the right one, modulo x-translation. Condition 4.1.1 
implies that in the initial state of the network C, the 
density of l's on the solution layer equals v, and 
elsewhere it is v2 . We subdivide the cells into five 
populations, by classifying them in two ways: 

(i) according to whether or not they are a "on" in 
the initial state Co, and 

(ii) according to the number of active inputs from 
the images. 

We draw both the populations 0 and 1 from cells 
that lie on the solution layer; population 0 is defined to 
receive no active inputs from the image, and popu
lation 1 receives two. Notice that there are no cells in 
the solution layer that receive exactly one active input. 

The other three populations that we define refer to 
cells that lie off the solution layer; population 11 
receives two active inputs from the image, population 
10 receives one, population 00 receives none. The five 
populations {O, 1, 11, 10, OO} are exclusive and 
exhaustive. 

We denote by port), Pi (t), etc. the probability that a 
cell in the respective population is "on" at time t. The 
goal of our analysis is to express the values of the Px(t) 
in terms of Px(t-1) for the various populations 11:. This 
allows us to examine the convergence numerically, and 
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Table la--4. The behavior of the algorithm compared with the we say that a solution is achieved at time T when 
probabilistic theory of the algorithm, for the stereograms having 
four different densities that are exhibited in Figure 8 Po(t) = Pi (t) = 1, and 
a. v=O.5, E= 12, D=7, £=2,0=4.0 (SQ50%) Poo(t) = P10(t) = Pll(t)=O, for every t ~ T. 

Iteration p, Pw Po PI POD POI PII The critical assumption here is that the quantity Px(t) 

Algorithm 0.46 0.07 0.93 om 0.29 0 0 completely describes the structure of active cells in the 
Theory 0.47 0.087 0.92 om 0.35 0 0 respective population n. This assumption is true for the 

2 Algorithm 0.70 0.04 0.43 0.97 0 0 0.16 initial iteration and only approximate thereafter. We 
Theory 0.62 0.02 0.26 0.97 0.04 0 0.08 shall discuss this point at the end of the section. 

3 Algorithm 0.90 0.01 0.99 0.81 0.04 0.001 0.001 
Theory 0.97 0 0.99 0.96 0 0 0 4.2. Formulae 

4 Algorithm 0.98 0.002 0.96 1.0 0 0 0.01 The state of a cell (x, y, d) at time (t + 1) depends upon 
Theory 1.0 0 1.0 1.0 0 0 0 

the number of active cells in its excitatory S(x, y, d) and 
Algorithm 0.99 0 1.0 0.99 0 0 0 inhibitory O(x, y, d) neighborhoods at time t. 
Theory 1.0 0 1.0 1.0 0 0 0 

If we denote the populations to which the cell 
b. v=0.25, E= 12, D=7, £=2, 0=4.0 (SQ25%) belongs by n, (n running through the five populations 

0, 1, 00, 11, 01), let us define: 
Iteration p, Pw Po PI POD POI PII en(r) to be the probability that exactly r cells are 

Algorithm 0.24 0.001 0.31 0.02 0.002 0 0 "on" in the excitatory neighborhood S(x, y, d) at time t 
Theory 0.27 0.003 0.35 0.04 0.005 0 0 and 

2 Algorithm 0.39 0 0.26 0.81 0 0 0 in(r) to be the probability that exactly r cells are 
Theory 0.475 0 0.41 0.68 0 0 0 "on" in the inhibitory neighborhood O(x, y, d) at time t. 
Algorithm 0.58 0 0.52 0.78 0 0 0 It is convenient to introduce some further quantities: 
Theory 0.92 0 0.90 0.97 0 0 0 q,(t) is the probability that a given cell on the 

4 Algorithm 0.74 0 0.70 0.87 0 0 0 "solution" plane is active at time t. 
Theory 1.0 0 1.0 1.0 0 0 0 qw(t) is the probability that a given cell elsewhere in 

the network is active. 
c. v=O.I, E= 12, D=7, £=2, 0=3.0 (SQ 10%) q-(t) is the probability that a given cell is active in 

Iteration p, Pw Po PI POD POI PII 
the inhibitory neighborhood of a cell in the population 
O. 

Algorithm 0.10 0 0.11 0.05 0 0 0 q+(t) is the probability that a given cell is active in 
Theory 0.11 0 0.11 0.106 0 0 0 the inhibitory neighborhood of a cell in the popula-

2 Algorithm 0.20 0 0.15 0.72 0 0 0 tion 1. 
Theory 0.17 0 0.14 0.39 0 0 0 Then 
Algorithm 0.36 0 0.32 0.68 0 0 0 
Theory 0.35 0 0.32 0.61 0 0 0 q,(t) = Po(t)-(l- v) + Pi (t)· v 

4 Algorithm 0.53 0 0.51 0.77 0 0 0 qw(t) = Poo(t)-(l- V)2 + POl (t)· 2v(1- v) 
Theory 0.86 0 0.85 0.96 0 0 0 

+ Pll(t)'V2 
Algorithm 0.71 0 0.69 0.83 0 0 0 

(6) 

Theory 1.0 0 1.0 1.0 0 0 0 q _(t) = Poo(t)·(l- v) + POl (t)· v 

d. v=0.05, E= 12, D=7, £=2,0=2.0 (SQ05%) q +(t) = Pll (t). V + Plo(t)·(l- v). 

Iteration p, Pw Po PI POD POI PII 
Writing B(n,f; m)=mCn·fn(l- f)m-n. where mCn is the 
binomial coeficient, we have immediately 

Algorithm 0.13 0 0.12 0.22 0 0 0 , 
Theory 0.13 0 0.12 0.26 0 0 0 el(r)=eo(r)=B(r,ql(t); E) 

2 Algorithm 0.38 0 0.35 0.88 0 0 0 il(r)=B(r,q+(t); 20-2) 
Theory 0.48 0 0.46 0.81 0 0 0 (7) 

Algorithm 0.67 0 0.65 0.88 0 0 0 
io(r)=B(r,q_(t); 20-2) 

Theory 1.0 0 1.0 1.0 0 0 0 ell (r) = eoo(r) = elO(r) = B(r, qw(t); E). 
4 Algorithm 0.90 0 0.89 0.96 0 0 0 

The remaining in are more difficult to obtain, since the Theory 1.0 0 1.0 1.0 0 0 0 

Algorithm 0.98 0 0.98 0.98 0 0 0 
inhibitory contributions to cells lying ofT the solution 

Theory 1.0 0 1.0 1.0 0 0 0 plane come from cells lying on the solution plane and 
from cells lying ofT the solution plane, and these two 
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populations obey different statistics. In fact 

ill (r) = [PI (t)]2. B(r- 2, q +(t); 2D - 4) 

+ 2PI (t)·(l- PI(t))· B(r-l, q +(t); 2D -4) 

+ [1- PI (1)]2. B(r, q +(t); 2D - 4) 

ioo(r) = [Po(tj]2· B(r- 2,q_(t); 2D-4) 

+2Po(t)·(1- po(t))·B(r-l,q_(t); 2D-4) 

+ [1-:- Po(tj]2· E(r, q_(t); 2D- 4). 

(8) 

The final case i lo is especially awkward, because along 
one of the inhibitory lines the probability of a cell 
being "on" is q + and along the other diagonal it is q _. 

i l orr) = L {PI (t)B(k - 1, q + (t); D - 2) 

+(1- PI(t))B(k,q+(t); D-2)} 

. {po(t)·B(r- k+ 1,q_(t); D- 2) 

+(1- po(t))B(r-k,q_(t); D- 2)}. (9) 

We now need to relate the P.(t+ 1) and the P.(t) in 
terms of the e. and i •. For each cell population we 
know the distributions of incoming excitation and 
inhibition, and we know that a cell will be on whenever 
the excitations exceed the inhibitions by at least e. 
Hence: 

p~+ 1= L e~(n)'l:(m) 

where 

n=9toE 
M=0 to2D- 2 
n-em~97t 

e.=e-l for 1!= 1, 1!= 11 

e. = e otherwise. 

(10) 

If the input term C!.y;d of (1) is neglected, e. = e for all 
1!. 

The Equations (10) are too complex to be solved 
analytically. Numerical solutions were however ob
tained for various values of the parameters and some 
of the results are given in Table 1 and Figure 8. 

4.3. Range of Parameter Values and Comparison with 
Actual Runs 

Figure 8 exhibits the performance of the algorithm for 
stereo grams having densities of from 0.5 to 0.05. 
Table 1 gives the statistics that were measured from 
these runs, and also the parameters predicted by the 
probabilistic theory. The values obtained from the 
theory match those from the algorithm quite well for 
the first iteration, but except for the case v = 0.05, they 
diverge quite rapidly thereafter, and even this case 
diverges by the third iteration. 

We have already noted the main reason for the 
discrepancy. The assumption that the statistical struc
ture of various populations is purely random (inside 
each population and between populations) holds ex
actly for the first iteration but only approximately 
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thereafter, because the operator of Figure lc has a lo
cal structure which can preserve local clusters of active 
cells. There are two ways in which this affects our 
probabilistic description for the second and sub
sequent iterations. The first is that clusters are more 
stable than the assumption of randomness would 
predict. Thus clusters forming on the solution layer 
will in certain circumstances change the rate of con
vergence predicted by the randomness assumption. 

The difficulties arise where clusters form off the 
solution layer. These will again tend to be more stable 
than our analysis assumes, but their effect acts against 
convergence. However, we shall argue that the proba
bility of large "wrong" clusters is small for most 
patterns. In fact, the typical value of the probability 
that a wrong cell is "on" after the first iteration lies 
around 0.1. The probability (after the first iteration) of 
a self-supporting 3 x 3 cluster at a given position in a 
wrong layer (asuming that the cluster was absent in the 
initial state and accepting the oversimplified assump
tion of randomness after the first iteration) is about 
IQ-9, and hence less than.1O- 4 that one exists off the 
solution plane somewhere in the network. 

A cluster of this size may survive permanently, 
because every element in it has at least 6 cells in its 
excitatory neighborhood, and this is enough to resist 1 
inhibition. The probability of this or something larger 
arising by chance is so small that if it occurs it is likely 
to be a consequence of the particular image. In fact, 
some small "wrong" patches do sometimes occur 
(inspect Marr and Poggio, 1976, Fig.5d) but such 
instances can usually be traced to an accidental cor
relation in the image. In this sense, extended patches 
are "correct" solution regions. 

The second effect that leads to discrepancies be
tween the theory and the behavior of the algorithm is 
also a side-effect of clustering, since as well as being 
stable, the clusters tend to concentrate "on" cells more 
than the randomness assumption would predict. For 
example, at iteration 2 of the case v=0.25 (Fig.8b), 
although the overall density of ones on the solution 
plane is about 0.39, it is far from true that each cell can 
expect to find 0.39 E "on" cells in its excitatory neigh
borhood. Cells in the filled in regions have almost all 
their neighbors on, whereas those in the interstices 
have none. Convergence is achieved by a growth 
outwards that fills in the blank regions, but although it 
is steady, it is necessarily slower than the theory 
predicts. 

5. Obsenations 

5.1. 

There is a wide latitude in the range of parameters for 
which the network converges. Table 2 shows firstly the. 
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Fig. 8a---<1. The stereograms (Left, Right) and iterations tabulated in 
Table 1. Stereogram densities are 50 % a, 25 % b, 10 % c and 5 % d. 
Parameters are as shown in Table 1 
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Fig. 9a and b. The minimum resolvable area of a small pattern 
against a background increases with disparity. To prevent the 
background from filling in completely, the length of the patch in the 
x-direction must be at least Idl + 2a. b Shows the circles of diameters 
3, 5 and 7 used in Figure 6 of Marr and Poggio, 1976 

wide range in stereogram density v that is tolerated by 
our parameters (with fixed 0), and secondly, for a fixed 
value of v (v =0.5) gives some idea of the range of the 
other parameter values for which the network will 
converge. Note that in the implementation described 
by Marr and Poggio (1976), the threshold was not 
fixed, but was determined by the density of "on" cells 
in the network. This allowed solution to the matching 
problem over a very wide range of dot densities. 

5.2. 

Let us define the probability that a cell on the solution 
layer is "on" at time t to be 

Pr(t) = V· PI(t) + (1- v)Po(t) 

and the probability that a cell off the solution layer is 
on at time t as 

Pw(t) = v2. Pll (t) + 2v(1- V)PIO(t) +(1- v2 )poo· 

In a successful run, Pr converges to 1 and Pw to O. With 
our particular parameters, convergence is monotonic if 
it occurs. This is not true, however, for the individual 
quantities PI' Po, PII' PIO' Poo, neither is it true of Pr 
and Pw for all values of the parameters (see Table 2). 

5.3. 

We have already seen that the sharpest local corner 
capable of resisting 1 inhibitory input is about 90° or 
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Table 28--<:. The algorithm of (I) converges for a wide range of 
control parameters. Tables 2a, b show convergence for v = 0.5 and 
v = 0.1 with the same parameters. Table 2c shows convergence for 
an entirely different set of parameters .. v=0.5, E= 12, D=7, <=2,0=3.0 

Iteration p, Pw Po p, Poo P,o p" 

1 0.50 0.15 0.98 0.026 0.61 0 0 
2 0.57 0.13 0.15 0.997 0 0 0.54 
3 0.69 0.039 0.995 0.39 0.16 0 0 
4 0.97 0.007 0.935 1.0 0 0 0.029 
5 1.0 0 1.0 1.0 0 0 0 

b. v=O.1, E= 12, D=7, e=2, 0=3.0 

Iteration p, Pw Po p, Poo PlO p" 

1 0.11 0 0.11 0.106 0 0 0 
2 0.17 0 0.14 0.39 0 0 0 
3 0.35 0 0.32 0.62 0 0 0 
4 0.86 0 0.85 0.96 0 0 0 

1.0 0 1.0 1.0 0 0 0 

c. v=0.5, E=2, D=7, e=0.5, 0= 1.0 

Iteration p, Pw Po p, Poo P,o p" 

1 0.40 0.11 0.75 0.058 0.43 0 0.010 
2 0.55 0.23 0.11 0.99 0.004 0 0.90 
3 0.45 0.083 0.78 0.11 0.32 0 0.006 
4 0.59 0.20 0.20 0.99 0.003 0 0.80 

0.51 0.063 0.82 0.20 0.24 0 0.009 
0.65 0.17 0.32 0.99 0.003 0 0.66 
0.62 0.042 0.87 0.36 0.15 0.001 0.014 
0.76 0.11 0.54 0.97 0.002 0 0.43 

9 0.82 0.021 0.94 0.71 0.053 0.002 0.026 
10 0.94 0.027 0.88 0.995 0 0 0.11 
11 0.995 0.009 0.996 0.995 0.001 0 0.031 
12 1.0 0.004 1.0 1.0 0 0 0.014 
13 1.0 0.002 1.0 1.0 0 01 0.007 
14 1.0 0 1.0 1.0 0 0 0.003 

more, hence thin, sharp regions will tend to be rounded 
off locally (see Marr and Poggio, 1976, Fig,5c). The 
exact shape ofthe input pattern is preserved only up to 
this limit. 

5.4. Minimum Size vs. Disparity 

A natural consequence of the structure of the algor
ithm is that the minimum resolvable area of a small 
pattern against a background increases with disparity 
(see Marr and Poggio, 1976, Fig. 6). We give an 
estimate of the dependence of minimum patch size on 
disparity difference. Consider a section for some fixed y 
of the network (Fig. 9). Assume that the patch and 
background regions are filled in. The condition for 
growth at a point (x, y, d) under 1 inhibition is that the 
number of "on" cells in an excitatory neighborhood 
should be not less than 0 + E - Co = 5 or 6, depending 
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Fig. 10.--<:. Thin vertical and horizontal stripes of various dispa-
rities. The left and right stereograms are shown with the stable 
network solution to them. The stereograms are 100 by 100, and 
consist of stripes with the following coordinates (x or y), thicknesses 
s and disparities d: 

a b 
x d y d Y d 

15 2 -I 15 2 -I 15 2 +1 
30 3 -1 30 3 -I 30 3 +1 
45 3 -2 45 2 -2 45 2 +2 
60 4 -2 60 3 -2 60 3 +2 
75 4 -3 75 2 -3 75 2 +3 
90 -3 90 3 -3 90 3 +3 

on the initial conditions. From Figure 3 we see that flat 
or convex regions will not grow whereas concave 
regions will. Hence our small patch will not tend to 
grow, whereas the background will spread until stop
ped by two inhibitions. We see from Figure9a that to 
prevent the background from filling in completely 
(which would subsequently destroy the patch because 
convex borders cannot survive two inhibitions), the 
length of the patch in the x direction must be at least 
Idl + 2. This condition must hold for at least three 
adjacent lines aligned in the y direction. Figure 6 of 
Marr and Poggio (1976) illustrates the approximate 
validity of this relation. Figure 9b shows the sizes of 
circles of diameter 3, 5, and 7 used in the input for that 
figure. These precise patterns do not necessarily em
erge in the appropriate layer of the network because of 
the random nature of the borders. The circle of 
diameter 3 contains no 3 x 3 subset and therefore does 
not survive at any disparities. The circle of diameter 5 
contains one 3 x 3 square and survives as expected at 
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disparity 1 ; it also survives, apparently accidentally, at 
disparity 2, but not at disparity 3. The circle of 
diameter 7 contains one 5 x 5 square and thus survives 
at disparity 3. 

A trivial consequence of this analysis is that horiz
ontal stripes (parallel to the x axis) are in general more 
stable than vertical ones (parallel to the y axis). The 
minimum thickness for horizontal stripes is about 3 
and is independent of disparity whereas the minimum 
thickness for vertical stripes is about Idl + 2 (see Fig. 10). 

5.5. Unco"elated Areas 

If there exists a sufficiently large area in the input 
where there is no correlation between the two images, 
the network will detect it (see Figs. 5 and 6 of Science). 
After the first iteration (with our parameter values and 
v = 0.5) only a few cells remain "on" in the uncorrelated 
region, but provided the region is sufficiently large they 
will receive no inhibition from the surrounding more 
organized layers. Hence those cells that are on may act 
as germs for small regions that have become stable by 
the time the surround encroaches upon them, e.g. 
Figure 5d of Marr and Poggio (1976). Relatively small 
( ~ d) uncorrelated areas probably have to develop 
stable platelets to survive (see Fig. 6d of Marr and 
Poggio, 1976), and large uncorrelated areas decompose 
into a random mosaic of stable platelets (see Fig. 11). 

Uncorrelated areas can be recognized as such 
during the read-out from the network, when the l's 
that appear in the solution found by the network are 
used to establish an explicit correspondence between 
the two images. 

5.6. Extension to Images in which Disparity Varies 
Continuously 

The algorithm of (1) with the loading rules of (2) can 
deal only with images having discrete disparity values. 
This disparity in natural images commonly varies 
continuously. There are two approaches to this pro
blem. One is to incorporate the representation of 
continuous values directly into the algorithm, and the 
other is to use the same algorithm, but with special rules 
for loading it and for interpreting its final state. 

The first approach would clearly lead to a consider
ably different algorithm, perhaps more along the lines 
of the networks studied by Wilson and Cowan (1973), 
(see also Wilson, 1977). Such an algorithm could not be 
treated within the framework of this article. 

The second approach does not require any changes 
in the analysis of the algorithm itself. One could, for 
example, define the loading conditions as follows: 



Let ,1 be the disparity attached to a possible 
correspondence between items in the left and right 
images. For integral d, 

5.6.1. If d-1/~,1<d+1/, load the cell corresponding· 
to disparity level d in the network. 

For surfaces whose disparity does not oscillate too 
much or too densely, the value 1/ =0.5 will lead to 
satisfactory results. The final state of the network 
establishes a correspondence between items in the left 
and right images, but their associated disparity is read 
not from the network (i.e. d) but directly from the input 
(i.e. ,1). Confusions may of course arise in the cor
respondence established by the network if the value of 
d spans the disparity range too coarsely. 

In order to deal with surfaces that are less well
behaved, one can incorporate some hysteresis into the 
loading rules. The loading process then consists of the 
following steps: 

5.6.2. Load cells according to 5.6.1 with 1/ = 0.3 (say). 

5.6.3. Moving across the image (x, y) in a spatially 
ordered way, if a possible match (x,y,,1) was not loaded 
by 5.6.2, adopt the following procedure: 

Let d-=Integral part of ,1, d+=l+d-. Examine 
(x,y) neighborhoods of(x,y,d-) and of(x,y,d+) in the 
network as it is loaded so far. Assign the current match 
to that d whose neighborhood contains more loaded 
cells, if one of them does. Else load this point according 
to 5.6.1 with 1/=0.5. 

This process will load most images in satisfactory 
way, and the read-out procedure is similar to that of 
the previous case. 

6. A Mathematically Tractable Version of the 
Algorithm 

A suitable choice of the parameter values and of the 
loading rules of the algorithm allows a complete 
mathematical analysis of its asymptotic behavior. In 
this section we introduce this "strict" version of the 
algorithm and we characterize rigorously its proper
ties. The actual performance of this version of the 
algorithm for various random dot stereograms will be 
then compared with the original algorithm. 

6.1. Loading Conditions 

The initial state CO of the network is loaded from the 
stereograms L, R in a way similar to the previous case 
but according to (11) (instead of (2)). 

C!.Y;d =Lx.y· R x+ d.y 

where 1·1=0·0=1, 1·0=0·1=0. 

(11) 

This loading rule can be easily extended to cases in 
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Fig. 11. The central band is uncorrelated. It decomposes into a 
random mosaic of patches, each of which is eventually stable 

which more than two features are present. It is enough 
to define 

kfj=~ij' (12) 

where!; and fj, (i * j) are two different features. The 
case when only two features are present clearly poses 
the hardest matching problem. We shall later compare 
this loading rule with the original (2) and discuss their 
relative merits for real images. 

6.2. T he Algorithm 

The relation between states at times t and t + 1 is given 
by (compare (1)) 

C~~/d=O"{inf[ L C'x,.Y';d"Hj 
x' .y' ,d' eS(x,y,d) 

-E L· C~"Y';d'} 
x' .y' ,d'eO(x,y,d) 

(13) 

where H is a number that represents the "saturation" 
value for the excitation. 

6.3. Choice of Parameter Values 

In this case the loading rules lead, for random dot 
stereograms with two features, to a density of 1 for the 
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Table 3a IUId b. The behavior of the mathematically tractable version of the algorithm, together with the probabilistic theory of the first 
iteration, for the two stereograms exhibited in Figures 14a and b 

a. v=O.5, E= 13, D= 7 

0 H Iteration p, Pw Po PI POD PIO P" 

0.2 10.75 13.0 0.9998 0.0017 0.9998 0.9998 0.0023 0.0011 0.0023 Theory 
0.99 0.0003 0.99 0.98 0.0008 0 0.0004 Algorithm 

4.0 3.75 7.0 2 0.99 0 0.99 0.99 0 0 0 
3 1.0 0 

b. v=0.25, E= 13, D=7 

0 H Iteration p, Pw 

0.2 10.75 13.0 0.976 0.0078 
0.96 0.0002 

4.0 3.5 7.0 2 0.98 0 
3 1.0 0 

"on" cells on the "correct" diagonal segments and, 
correspondingly, to a density of v2 + (1- V)2 for the 
"on" cells on the "wrong" diagonal segments (v is the 
density of l's in the input images). When v=0.5, the 
density of the wrong cells is also 0.5; for smaller or 
larger v the density is higher. The idea behind this 
approach is to choose parameter values for the first 
iteration that "kill" most of the "wrong" cells (and of 
course some of the "right" ones); from the second 
iteration on, the parameter values are such to ensure 
"filling-in" of the right diagonal segments, allowing, at 
the same time, a satisfactory mathematical analysis of 
the evolution of the network's state. This approach, 
which is carried out in the next two sections, leads to 
the following parameter values: 

6.3.1. Sand 0 are as in Figure 2, D = 7 and M = 5 as 
before. Selfexcitation is now included but the C· term 
is omitted. We therefore write E = 13 instead of 12. 

6.3.2. Iteration 1: 

H = 13 (so that the inf operation can be neglected) 
0=0.2. 
(1= 10.75. 

6.3.3. Second and Subsequent Iterations: 

H=7 
0=4.0 
(1= 3.5. 

6.4. Probabilistic Analysis of the First Iteration 
We shall assume that the inputs have the properties 
4.1.1 and 4.1.2. As in Section 4.1, we distinguish several 
populations of cells which are homogeneous with 
respect to the interaction structure: the populations 
are again denoted by 0, 1, 11, 10, 00 according to their 
respective inputs from the two images (see Section 2), 
and Po, Pi' etc. denote the probability that a cell in the 

1.0 1.0 0 0 0 

Po PI POD PIO P" 

0.968 1.0 0.0039 0.0015 0.082 Theory 
0.95 1.0 0.002 0.0003 0.002 Algorithm 

0.98 0.97 0 0 0 
1.0 
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1.0 0 0 0 

respective population is "on" after the first iteration. In 
this case the formulae for the solution layer are: 

13 -9 , 
PI = L 12Ci' vi(1-v)12-i 

i=O 

, 
Po= L 12Ci·(1-v)i· v I2-i. 

i=Q 

For the "wrong" layers (writing Il = v2 + (1- V)2), the 
formulae are 

12 

Pll = L 12Ckllk(1-1l)12-k 
k~O 

li.1..=!L - 2 , 
L 

i=Q 

12 k+!-8 -2 

POO= L 12Ckllk(1-1l)12-k L loCk(l-v)i vIO-i 
k~O 

'SC/(l-v)S-i 

infW~9 - 2) -i:S} 

i=8 

L scP-vYVS - i . 
j=O 

Theref{)re the probability that a cell in the solution 
layer is "on" after the first step is 

P'=Pl, v+Po·(l-v) 

and the probability that a cell off the solution layer is 
"on" after the first step is 

Pw=V2Pll +2v(1-v)PlO+(1-v)2 poo ' 

These equations can be used to find suitable parameter 
values. The parameters given in the previous section 
yield the values for P, and Pw shown in Table 3. 



6.5. Equivalent Rules 

The parameter values from the second iteration on 
imply the following main "rules" for the algorithm: 

6.5.1. One "on" cell in the inhibitory neighborhood 
always suffices to kill an "on" cell. 

6.5.2. Without inhibition, at least three excitatory "on" 
cells are needed for "survival" of an "on" cell and four 
for its "birth". 

6.6. Analysis of the Second Iteration 

Table 3 gives the densities P. and Pw after the first 
iteration. Only for the first iteration can a probabilistic 
analysis 'provide a reliable estimate of the density of 
"on" cells on the solution surface. As in our earlier 
analysis (Table 1), it becomes unreliable for the second 
iteration, because clusters of "on" cells can be expected 
to form off the solution layer (see Fig. 14 below). Rule 
6.5.1 implies, however, that "wrong" clusters will dis
appear after the second iteration, unless they consist of 
at least four elements. Moreover, these elements must 
in practise be very close together for each to support 
the other three. In addition, according to rule 6.5.2, 
none of them can lie in the inhibitory neighborhood of 
other "on" cells (for instance on the solution layer 
where the density of on cells is relatively high, see 
Table 3). We argue that the probability of such si
tuations is very small (actually much smaller than in 
the case considered in Section 4.4). If this occurs it can 
be attributed to an accidental correlation in the ima
ges. In this sense extended clusters are in fact "right" 
solution regions. 

6.7. Asymptotic Analysis 

The probabilistic analysis of the first iteration (Table 3) 
shows that one can assume that, from the second 
iteration onwards, there are no wrong "on" cells. It 
remains now to show that the density of "on" cells on 
the solution layer is high enough to allow asymptotic 
filling-in of the "right" surfaces. We prove the 
following: 

6.7.1. Filling-in Proposition. Assume that (at some 
iteration n) there are no "on" cells off a given layer 
(diagonal), and that the density of "on" cells on this 
layer exceeds 0.4375 = 7/16. Then, in the asymptotic 
configuration, there are no "off' cells on this layer. 

Proof Divide the solution plane into squares of 4 by 4 
cells (we neglect boundaries). At least one of these 
squares must contain 8 "on" cells, for, otherwise, every 
square would contain at most 7 "on" cells yielding a 
density of at most 7/16, in contradiction with the 
hypothesis. This square will fill up with "on" cells. 
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Fig. 12. With the modified parameters, cells cannot survive against 
one inhibition. Hence stable states satisfy the uniqueness condition. 
because no overlap is possible (compare Fig. 5) 

LL 
a b 

Fig. 138 8IId b. An oscillating solution with the modified parameters. 
The state a occurs at iterations i. i + 2. i +4 •...• whereas state b occurs 
at iterations i+l. i+3. i+5 •... 

(This can be seen by examining the various possible 
ways in which the 8 cells can be distributed, and we 
leave it as an exercise for the reader). Starting from this 
square, the whole plane will asymptotically be filled by 
"on" cells (since, by hypothesis, no inhibitory cells need 
be considered). 

6.8. Invariant States and Matching Rules 

The matching rules were defined in Section 3. States 
that satisfy the matching rules with the present param
eter values are shown in Figure 12. In view of the rules 
6.5.1 and 6.5.2, the following clearly hold: 

i) Configurations that satisfy the matching rules 
(Fig. 12) are invariant. 

ii) Conversely, invariant configurations clearly 
have to obey the uniqueness condition (because of 
6.5.1). The probabilistic analysis of the second step, 
together with the "filling-in" proposition 6.7.1, ensures 
in practise that there will be no holes2 in the asym
ptotic invariant configurations. 

6.9. Asymptotic Liapunov Description 

Besides the invariant asymptotic configuration, limit 
cycles of the type described in Figure 13 may also 
occur. Thus the previous description of asymptotic 
invariant states is not complete. We provide here an 
asymptotic analysis in terms of a Liapunov-like func
tion which also encompasses such non-invariant states. 

For a given state Ci, we define F(Ci) to be the 
number of "on" cells having no "on" cells in their 
inhibitory neighborhood. We call an "on" cell that has 
less than three "on" cells in its excitatory neigh-
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borhood a "solitary cell". Observe that solitary cells 
can never be "born" and that, after a finite number of 
iterations, all solitary cells will have disappeared. 

6.9.1. Growth Proposition. After a finite number of 
ierations, the function i-+F(Ci) is non-decreasing. 
Proof After a finite number of iterations i, all solitary 
cells have died out. Let us consider the transition from 
Ci to Ci + 1. If a new cell is born, rule 6.5.1 implies that it 
cannot lie in the inhibitory neighborhood of an already 
present "on" cell. Thus F will not decrease (from C i to 
Ci+ 1). If a cell dies out, it cannot be a solitary cell: 
Therefore it must have had an "on" cell in its in
hibitory neighborhood at iteration i. Thus F will not 
decrease. 
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Fig. 1411-<. The behavior of the a1gorilhm with modified parame
ters. The densities are 50 % • and 25 % b. The parameters are as stated 
in Section 6.3, and in Table 3. c Compares the two sets of parameters 
on a stereogram of a star that contains arms of various angles. The 
original parameters tend to give a more accurate final configuration 

The growth of F adequately describes the filling-in 
process, respecting at the same time the "uniqueness" 
matching rule. 

The growth proposition implies that: 

6.9.2. For any initial configuration Co, the limit 
LimF(Ci)=F(C) exists (since F is bounded above by 
the number of cells in one layer) . 

6.9.3. After a finite number of iterations, F( Ci ) remains 
constant. 

Thus the asymptotic behavior of the system is 
characterized by the following: Apart from invariant 
solutions, only those cycles can (asymptotically) occur 
for which F remains constant. This is a strong re
striction on the possible asymptotic oscillatory states, 
for it means that they have to be of the type shown in 
Figure 13. The growth proposition by itself does not 
exclude for instance the "zero" invariant state. The 
probabilistic analysis of the second step of the algor
ithm together with the "filling-in" proposition ensures, 
however, that invariant states as well as limit cycles 
will in practice have no "holes". 

6.10. Observations 

6.10.1. Figure 14 shows the performance of the algor
ithm in this form for a few different patterns and 
pattern densities. A comparison with Figure 8 reveals 
that the type of "strategy" for achieving a successful 



matching is different: Firstly, wrong cells are drasti
cally .eliminated at the expense of losing many right 
cells, and then filling-in of the surviving surfaces takes 
place. This contrasts with the more complicated 
"strategy" revealed jn Figures 3--{) of Marr and Poggio, 
1976. It is remarkable how, while the basic structure of 
the algorithm remains the same, a change of parameter 
values and loading conditions can bring about so deep a 
change in the algorithms behavior. 

6.10.2. Because of the rules of the present algorithm, 
especially rule 6.5.1, the sharpest corner capable of 
surviving (of course under no inhibitions) is limited 
only by the need for an "on" cell to have at least three 
excitatory neighboring cells. This allows a 45 degree 
corner. 

6.10.3. Minimum Size vs. Disparity. Again because of 
rule 6.5.1, the minimum resolvable area of a small 
pattern against a background does not depend on 
disparity. It is given by the minimum self-supporting 
configuration (four adjacent cells, from rule 6.5.2). 

This contrasts sharply with the property discussed 
in Section 5.4, where the minimum size has a character
istic dependence on disparity. 

6.10.4. Loading Conditions. While the present loading 
rule is characterized by 

(14) 

where J; is a feature and t5;j is the Kronecker 15, 

the previous loading rule (Section 2) can also be char
acterized by (12) with the convention that t5ij is also 
zero when either i or j are zero. In other words the 
"null" feature has a special status (foJj= Jjfo =0, all)}. 

In case of two-valued (0,1) random dot stereo
grams, the choice of either one of the two loading rules 
is somewhat arbitrary. For densities around 0.5, the 
straight Equation (14) seems to make more sense, since 
the black and white dots play equivalent roles. This is 
not clear, however, at very low densities (nor at very 
high ones). 

In the case of natural images, more than two 
feature types have to be used (for instance, lines and 
edges at various orientations). In this case, however, 
not every point is labelled with a corresponding fea
ture; the absence of any feature at a given point is a 
common event. The null feature seems to have a 
basically different role from the other features. These 
arguments clearly support the loading conditions used 
in the first part of the paper (see Marr and Poggio, 
1976). It is clear, on the other hand, that both loading 
conditions may work. For both, an increasing number 
of "feature types" implies of course an increasingly 
better algorithm convergence. The choice between 
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them depends in the end on the typical feature den
sities that one wants to deal with. For natural images, 
quantitative estimates have only recently become pos
sible (Marr, 1976, 1977). 

7. Discussion 

7.1. Alternative Algorithms 

The algorithm (1) can be modified in various ways. 
One can adopt alternative loading rules for the net
work as in Section 6, and one can vary the parameters 
over a substantial range. Such apparently minor 
changes can cause considerable changes in the 
network's behavior, but often without changing the 
end result (see for instance Section 6), because they still 
implement the same computational constraints. 

If the geometry of the local interactions (i.e. the 
shape of the excitatory and inhibitory neighborhoods) 
is changed, the network will in general implement a 
different computation, because the local constraints 
w.ill have changed. If only the parameter values are 
changed, our analysis (Section 3) may still apply. If the 
geometry is changed, our analysis will in general 
become irrelevant. 

Interestingly, for a specific stereogram density, a 
non-iterative version of our algorithm can recover 
disparity satisfactorily (see Fig. 14a iteration 1). John 
Fairfield (personal communication) suggested an al
gorithm in which 1) excitation is summed indepen
dently within each disparity layer, and 2) for each 
position, one selects only the most excited of the cells 
in the different disparity layers. This algorithm per
forms well for the case 11 = 0.5. 

7.2. Comments on Analyzing Such Operations 

We find the style of analysis that we were forced to 
adopt to be unsatisfactory for a number of reasons. 
Firstly, although our arguments appear to provide a 
qualitatively accurate description of the algorithms's 
behavior, the arguments are not completely rigorous. 
The main reasons for this lie in the difficulty of 
assessing· the validity of the randomness assumptions 
that are necessary for the probabilistic analysis; and, 
to a lesser extent, in the need to examine a number of 
special cases in order to establish the stability of 
various solutions. 

Secondly, our analysis is very specific to the parti
cular algorithm and the particular parameters. This 
style of proof cannot lead to any general results about 
the convergence of such operators. 

In order to overcome the first of these problems 
one can follow the approach of Section 6. The price 
one pays is that the analysis is valid for a narrower 
parameter range, which happens not to include the 
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Fig. 15. Conway's game "life", which is played on an infinite plane 
square lattice, may be represented in a manner very similar to that of 
our stereo operator. The excitatory neighborhood, together with 
appropriate weights, is shown in 15a, and the threshold function 
appears in 15b. This combination reproduces the rules of life exactly, 
and these are; 1. A cell will die at generation n + I if < 2 or > 3 of its 
8 neighbors are alive at generation n (death by starvation or 
overfeeding). 2. A cell with exactly 2 living neighbors at generation n 
will be alive at generation n + I if and only if it is alive at generation 
n. 3. A cell with exactly 3 living neighbors at generation n will be 
alive at generation n + I 

original parameter values (see Marr and Poggio, 1976). 
The difficulty with the assumption of randomness 
arises because of the constant spatial structure of the 
operator E (Eq. (1) and Fig. 2c of Marr and Poggio, 
1976). It should perhaps be noted that this objection 
does not apply to the similar analysis given by Marr 
(1971) of a cooperative associative memory algorithm, 
because there the local operator had a variable and 
essentially random structure. 

The second of these difficulties seems to be inherent 
in the nature of this type of cooperative algorithm. No 
general approach is at present available. Standard 
approaches4 that we have tried have failed up to now. 
The flavor of the difficulties is the following. A con
figuration that is stable may be perturbed by changing 
a large number of cells without affecting its asymptotic 
state, provided that the perturbed cells are well scat
tered and interior. On the other hand, one fixed point 

The continuous version ofthe algorithm (I) cannot be described 
in terms of a potential dynamics. In fact the dynamical system 

C=a{Bc}-C=J(c) (a a "smooth" threshold) 

does not admit a scalar potential function V(C) such that 

U(C)] •. ". =aV(C)/aC •. "d· 

A necessary condition for this to be true is that 

aca J""d'(C) = ac a , , J.,.(C) , all x,y,d,x',y',d', 
".1;4 ".1;d 

This is not true in general, because ofthe nonlinearity a (consider the 
case in which xyd and x'y'd' are on the same disparity layer and are 
reciprocally excitatory) 
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of the algorithm can be shifted into another by per
turbing only a few cells, provided that they have a 
suitable configuration. Thus, the usual distance be
tween two configurations, namely the number of cells 
having different states, does not reflect the behavior of 
the algorithm. Therefore, the problem seems to be how 
to incorporate the geometry of the interactions into the 
metric distance between configurations. 

It seems unlikely that one can construct a useful 
general theory of algorithms of the form 

C·+ 1 =a{L(C")}, (15) 

where L is a linear operator on the vector C, and a is a 
nonlinear (coordinate-wise) function. J. H. Conway's 
game "Life" can, for example, be written this way (see 
Fig. 15) and with an appropriate input pattern is 
Turing universal (unpublished result discovered inde
pendently by J. H. Conway and R. W. Gosper). 

This suggests that theories of this type of algorithm 
must take due account of the structure of the input 
data and will probably be restricted to very specific 
forms of (15). 

A ~athematical understanding of the behavior of 
(15) would represent a breakthrough of rather general 
importance. Cooperative phenomena similar to those 
which can be described by (15) are important in 
physics (Haken, 1977, Kawasaki, 1972; K. G. Wilson, 
1975), in development (Mostow, 1975), and in biology 
(Eigen, 1971; Marr, 1971; Richter, 1976). 

Furthermore, such a theory might also allow one to 
synthesize in a standard way cooperative algorithms of 
the form of (15) from an analysis ofthe constraints on a 
computation. 
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A computational theory of human stereo visiont 

By D. MARRt AND T. POGGIO§ 

t M.l.T. Psychology Department, 79 Amherst Street, 
Cambridge Ma 02139, U.S.A. 

§ Max-Planck-Institut fur Biologische Kybernetik, 
7400 Tubingen, Spemannstrasse 38, Germany 

(Communicated by S. Brenner, F.R.S. - Received 26 January 1978) 

An algorithm is proposed for solving the stereoscopic matching problem. 
The algorithm consists of five steps: (1) Each image is filtered at different 
orientations with bar masks of four sizes that increase with eccentricity; 
the equivalent filters are one or two octaves wide. (2) Zero-crossings in 
the filtered images, which roughly correspond to edges, are localized. 
Positions of the ends of lines and edges are also found. (3) For each mask 
orientation and size, matching takes place between pairs of zero-crossings 
or terminations of the same sign in the two images, for a range of dis
parities up to about the width of the mask's central region. (4) Wide 
masks can control vergence movements, thus causing small masks to 
come into correspondence. (5) When a correspondence is achieved, it is 
stored in a dynamic buffer, called the 21-D sketch. 

It is shown that this proposal provides a theoretical framework for 
most existing psychophysical and neurophysiological data about 
stereopsis. Several critical experimental predictions are also made, for 
instance about the size of Panum's area under various conditions. The 
results of such experiments would tell us whether, for example, co
operativity is necessary for the matching process. 

COMPUTATIONAL STRUCTURE OF THE STEREO-DISPARITY PROBLEM 

Because of the way our eyes are positioned and controlled, our brains usually 
receive similar images of a scene taken from two nearby points at the same hori
zontal level. If two objects are separated in depth from the viewer, the relative 
positions of their images will differ in the two eyes. Our brains are capable of 
measuring this disparity and of using it to estimate depth. 

Three steps (S) are involved in measuring stereo disparity: (Sl) a particular 
location on a surface in the scene must be selected from one image; (S2) that same 
location must be identified in the other image; and (S3) the disparity in the two 
corresponding image points must be measured. 

If one could identify a location beyond doubt in the two images, for example 
by illuminating it with a spot of light, steps Sl and S2 could be avoided and the 

t A preliminary and lengthier version of this theory is available from the M.I.T. A.I. 
Laboratory as Memo 451 (1977). 

Reprinted with pennission of The Royal Society from Proceedings of The Royal 
Society, Series B, 1979, volume 204, pp 301-328. 
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problem would be easy. In practice one cannot do this (figure 1), and the difficult 
part of the computation is solving the correspondence problem. Julesz (1960) found 
that we are able to interpret random dot stereograms, which are stereo pairs that 
consist of random dots when viewed monocularly but fuse when viewed stereo
scopically to yield patterns separated in depth. This might be thought surprising, 
because when one tries to set up a correspondence between two arrays of random 
dots, false targets arise in profusion (figure 1). Even so and in the absence of any 
monocular or high level cues, we are able to determine the correct correspondence. 

FIGURE 1. Ambiguity in the correspondence between the two retinal projections. In this figure, 
each of the four points in one eye's view could match any of the four projections in the 
other eye's view. Of the 16 possible matchings only four are correct (filled circles), while 
the remaining 12 are' falsa targets' (open circles). It is assumed here that the targets 
(filled squares) correspond to ' matchable' descriptive elements obtained from the left 
and right images. Without further constraints based on global considerations, such 
ambiguities cannot be resolved. Redrawn from Julesz (1971, fig. 4.5-1). 

In order to formulate the correspondence computation precisely, we have to 
examine its basis in the physical world. Two constraints (C) of importance may be 
identified (Marr 1974): (C1) a given point on a physical surface has a unique 
position in space at anyone time; and (C2) matter is cohesive, it is separated 
into objects, and the surfaces of objects are generally smooth compared with their 
distance from the viewer. 

These constraints apply to locations on a physical surface. Therefore, when we 
translate them into conditions on a computation we must ensure that the it",ms 
to which they apply in the image are in one-to-one correspondence with well
defined locations on a physical surface. To do this, one must use image predicates 
that correspond to surface markings, discontinuities in the visible surfaces, 
shadows, and so forth, which in turn means using predicates that correspond to 
changes in intensity. One solution is to obtain a primitive description of the in
tensity changes present in each image, like the primal sketch (Marr 1976), and 
then to match these descriptions. Line and edge segments, blobs, termination 
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points, and tokens, obtained from these by grouping, usually correspond to items 
that have a physical existence on a surface. 

The stereo problem may thus be reduced to that of matching two primitive 
symbolic descriptions, one from each eye. One can think of the elements of these 
descriptions as carrying only position information, like the black dots in a random 
dot stereogram, although for a full image there will exist rules that specify which 
matches between descriptive elements are possible and which are not. The two 
physical constraints C1 and C2 can now be translated into two rules (R) for how 
the left and right descriptions are combined: 

(R1) Uniqueness. Each item from each image may be assigned at most one 
disparity value. This condition relies on the assumption that an item cprresponds 
to something that has unique physical position. 

(R2) Continuity. Disparity varies smoothly almost everywhere. This condition is 
a consequence of the cohesiveness of matter, and it states that only a small 
fraction of the area of an image is composed of boundaries that are discontinuous 
in depth. 

In practice, R1 cannot be applied simply to grey level points in an image, 
because a grey level point is in only implicit correspondence with a physical 
location. It is in fact impossible to ensure that a grey level point in one image 
corresponds to exactly the same physical position as a grey level point in the 
other. A sharp change in intensity, however, usually corresponds to a surface 
marking, and therefore defines a single physical position precisely. The positions 
of such changes may be detected by finding peaks in the first derivative of inten
sity, or zero-crossings in the second derivative. 

In a recent article, Marr & Poggio (1976) derived a cooperative algorithm 
which implements these rules (see figure 2), showing that it successfully solves the 
false targets problem and extracts disparity information from random dot stereo
grams (see also Marr, Palm & Poggio 1978). 

THE BIOLOGICAL EVIDENCE 

Apart from AUTOMAP (Julesz 1963) and Sperling (1970), all of the current stereo 
algorithms proposed as models for human stereopsis are based on Julesz's (1971) 
proposal that stereo matching is a cooperative process (Julesz 1971, p. 203 if.; 
J ulesz & Chang 1976 ; Nelson 1975; Dev 1975; Hirai & Fukushima 1976; Sugie 
& Suwa 1977; Marr & Poggio 1976). None of them has been shown to work on 
natural images. 

An essential feature of these algorithms is that they are designed to select 
correct matches in a situation where false targets occur in profusion. They require 
many 'disparity detecting' neurons, whose peak sensitivities cover a range of 
disparity values that is much wider than the tuning curves of the individual 
neurons. That is, apart possibly from early versions of Julesz's dipole model, they 
do not critically rely on eye movements, since in principle, they have the ability 
to interpret a random dot stereogram without them. 
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FIGURE 2. The explicit structure of the two rules Rl and R2 for the case of a one dimensional 
image is represented in (a). Lx and Rx represent the positions of descriptive elements in the 
left and right images. The continuous vertical and horizontal lines represent lines of sight 
from the left and the right eyes. Their intersection points correspond to possible disparity 
values. Rl states that only one match is allowed along any given horizontal or vertical 
line; R2 states that solution planes tend to spread along the dotted diagonal lines, which 
are lines of constant disparity. 

In a. network implementation of these rules, one can place a • cell' at each node; then 
solid lines represent' inhibitory' interactions, and dotted lines represent" excitatory' ones. 
The local structure at each node of the network in (a) is given in (b). This algorithm may 
be extended to two dimensional images, in which case each node in the corresponding 
network has the local structure shown in (e). The ovals in this figure represent circular 
two dimensional disks rising out of the plane of the page. Formally, the algorithm rep
resented by this network may be written as the iterative algorithm 

C!':II~d = o-{ ~ C:".II';d,-e ~ C!',II';d,+C:.II;d}' 
:If, y', d' eS(x, 1/,d) :If, 1/',d' e O(x, 1/. dl 

where C~II;d denotes the state of the cell (0 for inactive, 1 for active) corresponding to 
position (x, y), disparity d and time t in the network of (a); S(x, y, d) is a local excitatory 
neighbourhood confined to the same disparity layer, and (x, y, d) the inhibitory neighbour
hood, consists of cells lying on the two lines of sight (e). e is an inhibition constant, and 0-

is a threshold function. The initial state Co contains all possible ma.tches, including false 
targets, within the prescribed disparity range. The rules Rl and R2 are implemented 
through the geometry of the inhibitory and excitatory neighbourhoods 0 and S (e). (From 
Marr & Poggio 1976, fig. 2; copyright by the American Association for the Advancement 
of Science.) 
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Eye movements seem, however, to be important for human stereo vision 
(Richards 1977; Frisby & Clatworthy 1975; Saye & Frisby 1975). Other findings 
these algorithms fail to explain include (a) the ability of some subjects to tolerate 
a 15% expansion of one image (Julesz 1971, fig. 2.8-8), (b) the findings about 
independent spatial-frequency-tuned channels in binocular fusion, of which our 
tolerance to severe defocusing of one image is a striking demonstration (Julesz 
1971, fig. 3.10-3), (c) the physiological, clinical, and psychophysical evidence about 
Richards' two pools hypothesis (Richards 1970, 1971; Richards & Regan 1973); 
and (d) the size of Panum's fusional area (6'-18', Fender & Julesz 1967; Julesz 
& Chang 1976) which seems surprisingly small to have to resort to cooperative 
mechanisms for the elimination of false targets. 

Taken together, these findings indicate that a rather different approach is 
necessary. In this article, we formulate an algorithm designed specifically as a 
theory of the matching process in human stereopsis, and present a theoretical 
framework for the overall computational problem of stereopsis. We show that our 
theory accounts for most of the available evidence and formulate the predictions 
to which it leads. 

For a more comprehensive review of the relevant psychophysics and neuro
physiology see Marr & Poggio (1977a). 

AN OUTLINE OF THE THEORY 

The basic computational problem in binocular fusion is the elimination of false 
targets, and for any given monocular features the difficulty of this problem is in 
direct proportion to the range and resolution of the disparities that are considered. 
The problem can therefore be simplified by reducing either the range, or the 
resolution, or both, of the disparity measurements that are taken from two 
images. An extreme example of the first strategy would lead to a diagram like 
figure 2 in which only three adjacent disparity planes were present (e.g. + 1, 
0, -1) each specifying their degree of disparity rather precisely. The second 
strategy, on the other hand, would amount to maintaining the range of disparities 
shown in figure 2, but reducing the resolution with which they are represented. 
In the extreme case, only three disparity values would be represented, crossed, 
roughly zero, and uncrossed. 

These schemes, based on just three pools of disparity values, substantially 
eliminate the false targets problem at the cost on the one hanc1 of a very small 
disparity range, and on the other, of poor disparity resolution. Thus the price 
of computational simplicity is a trade-off between range and resolution. 

One would, however, expect the human visual system to possess both range 
and resolution in its disparity processing. In this connection, the existence of 
independent spatial frequency tuned channels in binocular fusion (Kaufman 
1964; Julesz 1971, §§ 3.9 and 3.10; Julesz & Miller 1975; Mayhew & Frisby 1976) 
is of especial interest, because it suggests that several copies of the image, obtained 
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by successively finer filtering, are used during fusion, providing increasing and, 
in the limit, very fine disparity resolution at the cost of decreasing disparity range. 

A notable feature of a system organized along these lines is its reliance on 
eye m<JVements for building up a comprehensive and accurate disparity map from 
two viewpoints. The reason for this is that the most precise disparity values are 
obtainable from the high resolution channels, and eye movements are therefore 
essential so that each part of a scene can ultimately be brought into the small 
disparity range within which high resolution channels operate. The importance of 
vergence eye movements is also attractive in view of the extremely high degree 
of precision with which they may be controlled (Riggs & Niehl 1960; Rashbass 
& Westheimer 1961 a). 

These observations suggest a scheme for solving the fusion problem in the 
following way (Marr & Poggio 1977a, b): (1) Each image is analysed through 
channels of various coarsenesses, and matching takes place between corresponding 
channels from the two eyes for disparity values of the order of the channel 
resolution. (2) Coarse channels control vergence movements, thus causing finer 
channels to come into correspondence. 

This scheme contains no hysteresis, and therefore does not account for the 
hysteresis observed by Fender & Julesz (1967). Recent work in the theory of 
intermediate visual information processing argues on computational grounds that 
a key goal of early visual processing is the construction of something like an 
'orientation and depth map' of the visible surfaces round a viewer (Marr & 
Nishihara 1978, fig. 2; Marr 1977, § 3). In this map, information is combined from 
a number of different and probably independent processes that interpret disparity, 
motion, shading, texture, and contour information. These ideas are illustrated 
by the representation shown in figure 3, which Marr & Nishihara called the 
2!-D sketch. 

Suppose now that the hysteresis Fender & Julesz observed is not due to a co
operative process during matching, but is in fact the result of using a memory 
buffer, like the 2!-D sketch, in which to store the depth map of the image as it is 
discovered. Then, the matching process itself need not be cooperative (even if it 
still could be), and in fact it would not even be necessary for the whole image 
ever to be matched simultaneously, provided that a depth map of the viewed 
surface were built and maintained in this intermediate memory. 

Our scheme can now be completed by adding to it the following two steps: (3) 
when a correspondence is achieved, it is held and written down in the 21-D sketch; 
(4) there is a backwards relation between the memory and the masks, acting 
through the control of eye movements, that allows one to fuse any piece of a 
surface easily once its depth map has been established in the memory. 
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THE NATURE OF THE CHANNELS 

The articles by Julesz & Miller (1975) and Mayhew & Frisby (1976) establish 
that spatial-frequency-tuned channels are used in stereopsis and are independent. 
Julesz & Miller's findings imply that two octaves is an upper bound for the 
bandwidth of these channels, and suggest that they are the same channels as 
those previously found in monocular studies (Campbell & Robson 1968; Blake
more & Campbell 1969)' Although strictly speaking it has not been demonstrated 
that these two kinds of channel are the same, we shall make the assumption that 
they are. This will allow us to use the numerical information available from 
monocular studies to derive quantitative estimates of some of the parameters 
involved in our theory. 
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FIGURE 3. Illustration of the 2t-D sketch. In (a) the perspective views of small squares placed 
at various orientations to the viewer are shown. The dots with arrows show a way of 
representing the orientations of such surfaces symbolically. In (b), this representation is 
used to show the surface orientations of two cylindrical surfaces in front of a background 
orthogonal to the viewer. The full2t-D sketch would include rough distances to the surfaces 
as well as their orientations, contours where surface orientation changes sharply, and 
contours where depth is discontinuous (subjective contours). A considerable amount of 
computation is required to maintain these quantities in states that are consistent with 
one another and with the structure of the outside world (see Marr 1977, § 3). (From 
Marr & Nishihara 1978, fig. 2.) 

The idea that there may be a range of different sized or spatial-frequency-tuned 
mechanisms was originally introduced on the basis of psychophysical evidence by 
Campbell & Robson (1968). This led to a virtual explosion of papers dealing with 
spatial frequency analysis in the visual system. Recently, Wilson & Giese (1977) 
and Cowan (1977) integrated these and other anatomical and physiological data 
into a coherent logical framework. The key to their framework is (a) the parti
tioning of the range of sizes associated with the channels into two components, 
one due to spatial inhomogeneity of the retina, and one due to local scatter of 
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receptive field sizes; and (b) the correlation of these two components with 
anatomical and physiological data about the scatter of receptive field sizes and 
their dependence on eccentricity. 

On the basis of detection studies, they formulated an initial model embodying 
the following conclusions: (1) at each position in the visual field, there exist 
'bar-like' masks (see figure 4a), whose tuning curves have the form of figure 4b, 
and which have a half power bandwidth of between one and two octaves. 
(2) The half power bandwidth of the local sensitivity function at each eccentricity 
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FIGURE 4. (a) Line spread functions measured psychophysically at threshold at two different 
eccentricities. The points are fitted using the difference of two Gaussian functions with 
space constants in the ratio 1.5: 1.0. The inhibitory surround exactly balances the 
excitatory centre so that the area under the curve is zero. (b) Predictions of local spatial 
frequency sensitivity from frequency gradient data and from line spread function data. 
The local frequency sensitivity functions are plotted as solid lines. The dashed lines are 
the local frequency response predicted by Fourier transforming the line spread functions 
in (a), which were measured at the appropriate eccentricities. (Redrawn from Wilson & 
Giese 1977, fig. 9 and 10.) 

is about three octaves. Hence the range of receptive field sizes present at each 
eccentricity is about 4 : 1. In other words, at least three and probably four receptive 
field sizes are required at each point of the visual field. (3) Average receptive field 
size increases linearly with eccentricity. In humans at 0° the mean width w of the 
central excitatory region of the mask is about 6' (range 3'-12'); and at 4° eccentri
city, W= 12' (range 6'-24') (Wilson & Giese 1977, fig. 9; Hines 1976, figs 2 and 3). 
If one assumes that this receptive field is described by the difference of two 
Gaussian functions with space constants in the ratio 1: 1.5, the corresponding 
peak frequency sensitivity of the channel is given by 1//= A = 2.2w. These 
figures agree quite well with physiological studies in the Macaque. Hubel & 
Wiesel (1974, fig. 6a) reported that the mean width of the receptive field (8) 
increases linearly with eccentricity e (approximately, 8 = 0.05e + 0.25°, so that at 
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e = 4°, 8 = 27' which gives a value for w = i8 of about 9' as opposed to the 
figure of 12' assumed here for humans). The data of Schiller, Finlay & Volman 
(1977, p. 1347, figs. 12 and 14) are in rough agreement with Hubel & Wiesel's. 
(4) Essentially all of the psychophysical data on the detection of spatial patterns 
at contrast threshold can be explained by (1), (2) and (3) together with the 
hypothesis that the detection process is based on a form of spatial probability 
summation in the channels. 

With the characteristic perverseness of the natural world, this happy and 
concise state of affairs does not provide a precise account of suprathreshold 
conditions. The known discrepancies can however be explained by introducing 
two extra hypotheses: (5) contrast sensitivities of the various channels are 
adjusted appropriately to the stimulus contrast (Georgeson & Sullivan 1975). The 
point of this is merely to ensure that bars of the same contrast but different 
widths actually appear to have the same contrast; (6) receptive field properties 
change slightly with contrast, the inhibition being somewhat decreased when 
contrast is low (Cowan 1977, p. 511). 

In a more recent article, Wilson & Bergen (1979) have found that the situation 
at threshold may also be more complicated. They proposed a model consisting of 
four size-tuned mechanisms centred at each point, the smaller two showing 
relatively sustained temporal responses, and the larger two being relatively 
transient. As far as is known, this model accurately accounts for all published 
threshold sensitivity studies. 

The two sustained channels, which Wilson & Bergen call Nand S, have w 
values 3.1' and 6.2'; the transient channels, called T and U, have w equal to 
11.7' and 21'. The sizes of these cl~annels increase with eccentricity in the same 
way as described above. 

The S channel is the most sensitive under both transient and sustained stimu
lation, and the U channel is the least, having only 1\ to! the sensitivity of the S 
channel. The extent to which the U channel, for example, plays a role in stereopsis 
is of course unknown. 

In what follows, we shall assume that the figures given by Wilson & Giese for the 
numbers and dimensions of receptive field centres and their scatter hold roughly 
for suprathreshold conditions. If future experiments confirm that Wilson & Ber
gen's more recent numbers are relevant for stereopsis, some modification of our 
quantitative estimates may be necessary. 

Wilson & Giese's figures allow us to estimate the minimum sampling density 
required by each channel, i.e. the minimum spatial density of the corresponding 
receptive fields. From fig. 10 of Wilson & Giese (1977), a channel with peak sen
sitivity at wavelength A is band-limited on the high frequency side by wave
lengths of about fA, and A = 2.2w. This figure is for a threshold criterion of 
15-30 %, but is rather insensitive to the exact value chosen. Hence by the sampling 
theorem (Papoulis 1968, p. 119), the minimum distance between samples (i.e. 
receptive fields), in a direction perpendicular to their preferred orientation, is at 
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TABLE 1. SPATIAL FILTERING: SUMMARY OF PSYCHOPHYSICAL EVIDENCE 

(a) At each point in the visual field the image is filtered through receptive fields having these 
characteristics (the half-power bandwidth B is about 1 octave): 

one dimensional profile 

two dimensional receptive field 
vertical orientation 

Fourier transforms 

(b) For each position and orientation there are four receptive field sizes, the smallest being 
t of the largest. The profile R(x) and Fourier transform R(w) of each receptive field are given by: 

R(x) = (2n)-i {0-;1 exp [ _x2 /20-:]- 0-1- 1 exp [ - x2/20-m, 

R(w) = exp[-tw1a-:]-exp[-!w20-n, 

where 0-., 0-1 are the excitatory and inhibitory space constants, and are in the ratio 1: 1-5. 
The half-power bandwidth spanned by the four receptive field cells at each point is two octaves. 

(e) w increases with eccentricity: w = 3' -12' (possibly 20') at 0°, and w = 6' - 34' at 4°. 
Note. receptive field sizes and corresponding spectral sensitivity curves in the suprathreshold 
condition may be different from the values given here, which were measured at threshold. 

(d) Formally the output of step 1 is given by the convolution F ... o(x,y) = I.Bw• o, where 
I (x, y) denotes the light intensity in suits ble units at the image point (x, y), and B w. o(x, y) 
describes the receptive field of a bar-shaped mask at orientation 0, with central region of 
width w. () covers the range 0-180° with 12 values about 15° apart and w takes four values in 
the range defined by (e) above. 

(e) In practice, cells with on-centre receptive fields will signal positive values of the filtered 
signal, and cells with off-centre receptive fields will signal negative values_ 

272 



Human stereopsis 311 

most lA. Assuming the overall width of the receptive field is about fA, the 
minimum number of samples per receptive field width is about 4.5. 

An estimate of the minimum longitudinal sampling distance may be obtained 
as follows. Assume that the receptive field's longitudinal weighting function (see 
table 1) is Gaussian with space-constant fT, thus extending over an effective distance 
of say 4fT-6fT. (A value of fT = W will give an approximately square receptive field.) 
Its Fourier transform is also Gaussian with space constant in the frequency 
domain (w) of l/fT, and for practical purposes can be assumed to be band-limited 
with fmax = 3/(21tfT) to 2/(21tfT). By the sampling theorem, the corresponding 
minimum sampling intervals are fT to 1.5fT, that is about four samples per longi
tudinal receptive field distance. Hence the minimum number of measurements 
(Le. cells or receptive fields) per receptive field area is about 18. It follows that the 
number of multiplications required to process the image through a given channel 
is roughly independent of the receptive field size associated with that channel. 
Not too much weight should be attached to the estimate of 18, although we feel 
that the sampling density cannot be significantly lower. In the biological situation, 
total sampling density will decrease as eccentricity increases. 

This model of the preliminary processing of the image is summarized in table 1. 
There are in fact more efficient ways of implementing it (see Marr & Hildreth 

1979)' 

THE DOMAIN OF THE MATCHING FUNCTION 

In view of this information, the first step in our theory can be thought of as 
filtering the left and right spatial images through bar masks of four sizes and 
about twelve orientations at each point in the images. We assume that this oper
ation is roughly linear, for a given intensity and contrast. When matching the left 
and right images, one cannot simply use the raw values measured by this first 
stage, because they do not correspond directly to physical features on visible 
surfaces on which matching may be based. One first has to obtain from these 
measurements some symbol that corresponds with high probability to a physical 
item with a well defined spatial position. This observation, which has been 
verified through computer experiments in the case of stereo vision (Grimson & 
Marr 1979) formed the starting point for a recent approach to the early processing 
of visual information (Marr 1974, 1976). 

Perhaps the simplest way of obtaining suitable symbols from an image is to 
find signed peaks in the first (directional) derivative of the intensity array, or 
alternatively, zero-crossings in the second derivative. The bar masks of table 1 
measure an approximation to the second directional derivative at roughly the 
resolution of the mask size, provided that the image does not vary locally along 
the orientation of the mask (Marr & Hildreth 1979). If this is so, clear signed 
zero-crossings in the convolution values obtained along a line lying perpendicular 
to the receptiye field's longitudinal axis (cf. Marr 1976, fig. 2) would specify 
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accurately the position of an edge in the image. t Edges whose orientations lie near 
the vertical will of course playa dominant role in stereopsis. 

In practice, however, it is not enough to use just oriented edges to obtain 
horizontal disparity information. Julesz (1971, p. 80) showed that minute breaks 
in horizontal lines can lead to fusion of two stereograms even when the breaks 
lie close to the limit of visual acuity, and such breaks cannot be obtained by 
simple operations on the measurements from even the smallest vertical masks. 
These breaks probably have to be localized by a specialized process for finding 
terminations by examining the values and positions of rows of zero-crossings (cf. 
Marr 1976, p. 496). 

Thus zero.:crossings and (less importantly) terminations have both to be made 
explicit (cf. Marr 1976, p. 485). The matching process will then operate on de
scriptions, of the left and right images, that are built of these two kinds of symbolic 
primitives, and which specify their precise positions, the mask size and orientation 
from which they were obtained, and their signs. 

MATCHING 

At the heart of the matching problem lies the problem of false targets. If each 
channel were very narrowly tuned to a wavelength A, the minimum distance 
between zero-crossings of the same sign in each image would be about A. In this 
case, matching would be unambiguous in a disparity range up to A. The same 
argument holds qualitatively for the actual channels, but because they are not so 
narrowly tuned, the disparity range for unambiguous matching will be smaller 
and must be estimated. We have done this only for zero-crossings, since termi
nations are sparser and pose less of a false-target problem. 

Let us consider a two dimensional image filtered through a vertically oriented 
mask. Matching will take place between zero-crossings of the same sign along 
corresponding horizontal lines in the two images. If two such zero-crossings lie 
very close together in one image, the danger of false targets will arise. Hence a 
critical parameter in our analysis will be the distance between adjacent zero
crossings of the same sign along each of these lines. 

This problem is now one dimensional, and we approach it by estimating the 
probability distribution of the interval between adjacent zero-crossings of the 
same sign. This depends on (a) the image characteristics, and (b) the filter (or mask) 
characteristics. For (a) we take the worst case, that in which the power spec
trum of the input to the filter is white (within the filter's spectral range). We 
also assume, for computational convenience, that the filtered output is a 

t It is perhaps worth noting that this rather direct way of locating sharp intensity changes 
in the image is not the only nor necessarily the best method from the point of view of an 
actual implementation. It is shown elsewhere (Marr & Hildreth 1979) that under certain 
conditions, the zeroes in an image filtered through a Laplacian operator (like an X-type 
retinal ganglion cell) provide an equivalent way of locating edges, whose orientation must 
then be determined. 
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FIGURE 5. Interval distributions for zero·crossings. A ' white' Gaussian random process is 
passed through a filter with the frequency characteristic (transfer flUlction) shown in (i). 
The approximate interval distribution for the first (Po) and second (PI) zero.crossings of 
the resulting zero·mean Gaussian process is shown in (ii). Given a positive zero-crossing at 
the origin, the probability of having another within a distance 6 is approximated by the 
integral of PI and shown in (iii). In (a), these quantities are given for an ideal band pass 
filter one octave wide and with centre frequency w = 21T/A; (b) represents the case of the 
receptive field described by Cowan (1977) and Wilson & Giese (1977). The corresponding 
spatial distribution of excitation and inhibition, i.e. the inverse Fourier transform of (bi) 
appears, in the same lUlits, in table 1. The ratio of space constants for excitation and 
inhibition is 1: 1.5. The width w of the central excitatory portion of the receptive field 
is 2.8 in the units in which 6 is plotted. 

For case (a) a probability level of J PI = 0.001 occurs at 6 = 2.3, and a probability level 
of 0.5 occurs at 6 = 6.1. The corresponding figures for case (b) are 6 = 1.5 and 6 = 5.4. 
If the space constant ratio is 1: 1.75 (Wilson 1978b) the values of J PI change by not 
more tha.n 5 %. 

Gaussian (zero-mean) process. This hypothesis is quite realistic (E. Hildreth, 
personal communication). 

For (b), we examine two cases. Since the actual filters have a half-power band
width of around one octave, the first case we consider is that of an ideal linear 
bandpass filter of width one octave, as illustrated in figure 5a(i). The second case 
(figure 5b(i)) is the receptive field suggested by the threshold experiments of 
Wilson & Giese (1977), consisting of excitatory and inhibitory Gaussian distri
butions, with space constants in the ratio 1 : 1.5 (see figure 4). 
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Our problem is now transformed into one that many authors have considered, 
dating from the pioneering work of Rice (1945), and the appendix sets out the 
formulae in detail. The results we need are all contained in figure 5. Po is the 
probability distribution of the interval between adjacent zero-crossings (which 
perforce have opposite signs), and ~ the distribution of the interval to the second 
zero-crossing. Since alternate zero-crossings have the same sign, ~ is the quantity 
of interest, and its integral f ~ is also given in figure 5. 

f ~ can be understood in the following way. Suppose a positive zero-crossing 
occurs at the point O. Then f ~ represents the probability that at least one 
other positive zero-crossing will occur within a distance 6 of O. (In figure 5b(iii), 
the width w of the central part of the receptive field associated with the filter 
is equal to 2.8 on the 6 scale.) 

From the graphs in figure 5, we see for example that the 0.05 probability level 
for f Pl occurs at 6 = 4.1 (approximately A/1.52) for the ideal band pass filter 
one octave wide, centred on wavelength A (figure 5a(i)), and at 6 = 3.1 for the 
receptive field of fig. 5b (i). In the second case, 6 is approximately lA, wh~re A is 
the principal wavelength associated with the channel, and A = 2.2w, where w is 
the measured width of the central excitatory area of the receptive field. Thus in 
this case, the 95 % confidence limit occurs at approximately w (6 = 3.1, w = 2.8). 

At the 0.001 probability level, the ideal bandpass filter is 50% better (the 
corresponding 6 is 50 % larger) than the receptive field filter with the same centre 
frequency; at the 0.05 probability level it is 30 % better; and at the 0.5 prob
ability level, it is 13 % better. The legend to figure 5 provides more details about 
these results. 

We have made a similar comparison between the sustained and transient channels 
of Wilson (1978a) and of Wilson & Bergen (1979). If the sustained channels 
correspond to the case of figure 5b, the transient channels have a larger ratio 
of the space constants for inhibition and excitation, a somewhat larger excitatory 
space constant, and an excitatory area larger than the inhibitory. Even under 
these conditions, the values change only slightly. 

The matching process 

We now apply the results of these calculations to the matching process. Our 
analysis applies directly to channels with vertical orientation, and is roughly 
valid for channels with orientation near the vertical. 

Within a channel of given size, there are in practice two possible ways of 
dealing with false targets. If one wishes essentially to avoid them altogether, the 
disparity range over which a match is sought must be restricted to ±!w (see 
figure 6a). For suppose zero-crossing L in the left image matches zero-crossing R 
in the right image. The above calculations assure us that the probability of 
another zero-crossing of the same sign within w of R in the right image is less than 
0.05. Hence if the disparity between the images is less than lw, a search for 
matches in the range ± lw will yield only the correct match R (with probability 
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0.95). Such a low error rate can be accommodated without resorting to sophisti
cated algorithms. For example, two reasonable ways of increasing the matching 
reliability are (a) to demand rough agreement between the slopes of the matched 
zero-crossings, and (b) to fail to accept an isolated match all of whose neighbours 
give different disparity values. Of course if the disparity between the images 
exceeds iv', this procedure will fail, a circumstance that we discuss later. 

(a) d< !w 

r 
(b) d<w 

left 

right + Ir I 
I 
I 
I 
I 
I 

-~w d ~w -w 

F+ 
I 
I 
I 
I 
I 
I 

R 

d+w -w +w 

FIGURE 6. The matching process driven from the left image. A zero-crossing L in the left 
image matches one R displaced by disparity d in the right image. The probability of a false 
target within W ofR is small, so provided that d < !w (case a), almost no false targets will 
arise in the disparity range ± !w. This gives the first possible algorithm. Alternatively 
(case b), all matches within the range ± w may be considered. Here, false targets (F) 
can arise in about 50 % of the cases, but the correct solution is also present. If the correct 
match is convergent, the false target will with high probability be divergent. Therefore in 
the second algorithm, unique matches from either image are accepted as correct, and the 
remainder as ambiguous and subject to the' pulling effect', illustrated in case (c). Here, 
Ll could match Rl or R 2, but L2 can match only R 2 • Because of this, and because the two 
matches have the same disparity, LI is assigned to R 1 • 

There is, however, an alternative strategy, that allows one to deal with the 
matching problem over a larger disparity range. Let us consider the possible 
situations if the disparity between the images is d, where Idl < w (figure 6b). 
Observe firstly that if d > 0, the correct match is almost certainly (p < 0.05) the 
only convergent candidate in the range (0, w). Secondly, the probability of a 
(divergent) false target is at most 0.5. Therefore, 50 % of all possible matches will 
be unambiguous and correct, and the remainder will be ambiguous, mostly 
consisting of two alternatives, one convergent and one divergent, one of which is 
always the correct one. In the ambiguous cases, selection of the correct alternative 
can be based simply on the sign of neighbouring unambiguous matches. This 
algorithm will fail for image disparities that significantly exceed ± w, since the 
percentage of unambiguous matches will be too low (roughly 0.2 for ± 1.5w). 
Notice that if there is a match near zero disparity, it is likely (p > 0.9) to be the 
only candidate. 

Sparse images like an isolated line or bar, that yield few or no false targets, 
pose a different problem. They often give rise to unique matches, and may there-
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fore be relied upon over quite a large disparity range. Hence if the above strategy 
fails to disclose candidate matches in its disparity range, the search for possible 
matches may proceed outwards, ceasing as soon as one is found. 

In summary then there are two immediate candidates for matching algorithms. 
The simpler is restricted to a disparity range of ± lw and in its most straight
forward form will fail to assign 5 % of the matches. The second involves some 
straightforward comparisons between neighbouring matches, but even before these 
comparisons, the 50 % unambiguous matches could be used to drive eye move
ments, and provide a rough sensation of depth. 

/" 
/ 

...... 
", 

response 

L 

--....... ,. "-
/ , 

disparity 

R 

FIGURE 7. An implementation of the second matching algorithm. For each mask size of central 
width w, there are two pools of disparity detectors, signalling crossed or uncroBSed 
disparities and spanning a range of ± w. There may be additional detectors finely tuned to 
near-zero disparities. Additional diplopic disparities probably exist beyond this range. 
They are vetoed by detectors of smaller absolute disparity. 

The implementation of the first of these algorithms is straightforward. The 
second one can be implemented most economically using two 'pools', one sen
sitive in a graded way to convergent and the other to divergent disparities (see 
figure 7). (In this sense, the first algorithm requires only one 'pool', that is, a 
single unit sensitive in a graded way to the disparity range ± lw.) Candidate 
matches near zero disparity are likely to be correct, and this fact can be used to 
improve performanc('. One way is to add, to the two basic pools, high resolution 
units tuned to near-zero disparities. 

In the second algorithm, matches that are unambiguous or already assigned 
can 'pull' neighbouring ambiguous matches to whichever alternative has the same 
sign. This is a form of cooperativity, and may be related to the 'pulling effect' 
described in psychophysical experiments by Julesz & Chang (1976). Notice 
however that this algorithm requires the existence of pulling only across pools and 
not within pools (in the terminology of Julesz & Chang 1976, p. 119). 

Disparities larger than w can be examined in very sparse images. If, for example, 
both primary pools (covering a disparity range of ± w) are silent, detectors 
operating outside this range, possibly with a broad tuning curve, may be con
sulted. In a biologically plausible implementation, these detectors should be 
inhibited by activity in the primary pools (see figure 7). It is tempting to suggest 

278 



Human stereopsis 317 

that detectors for these outlying disparities (i.e. exceeding about ± w) may give 
rise to depth sensations and eye movement control in diplopic conditions. 

If the image is not sparse, and the disparity exceeds the operating range, both 
algorithms will fail. Can the failure be recognized simply at this low level? 

For the first algorithm, no correct match will be possible in the range ± lw. 
The probability of a random match in this range is about 0.4, i.e. significantly 
less than 1.0. When the disparity between the two images lies in the range ± lw, 
there will always be at least one match. It is therefore relatively easy to dis
criminate between these two situations. 

For the second algorithm, an analogous argument applies; in this case the 
probability of no candidate match is about 0.3 for image disparities lying outside 
the range ± w, and zero for disparities lying within it. Again, it is relatively easy 
to discriminate between the situations. 

Finally, W. E. L. Grimson (personal communication) has pointed out that 
matching can be carried out from either image or from both. Observe for example 
in figure 6c, that if matching is initiated from the left image, the match for Ll is 
ambiguous, but for L2 it is unambiguous. Similarly from the right image. 

It seems most sensible to initiate matching simultaneously from both images. 
Then, before any 'pulling', there are three possible outcomes. (1) The matching 
of an element starting from both images is unambiguous, in which case the two 
must agree. (2) Matching from one image is ambiguous, but from the other it is 
not. In this case, the unambiguous match should be chosen. (3) Matching from 
both images is ambiguous, in which case they must be resolved by pulling from 
unambiguous neighbours. 

Implications for psychophysical measurements of Panum's fusional area 

Using the second of the above algorithms, matches may be assigned correctly 
for a disparity range ± w. The precision of the disparity values thus obtained 
should be quite high, and a roughly constant proportion of w (which one can 
estimate from stereoacuity results at about low). For foveal channels, this means 
± 3' disparity with resolution 10" for the smallest, and ± 12' (perhaps up to 
± 20' if Wilson & Bergen (1979) holds for stereopsis) with resolution 40" for the 
largest ones. At 4° eccentricity, the range is ± 5.3' to about ± 34'. We assume 
that this range corresponds to stereoscopic fusion, and that outside it one enters 
diplopic conditions, in which disparity can be estimated only for relatively 
sparse images. 

Under these assumptions, our predicted values apparently correspond quite 
well to available measures of the fusional limits without eye movements (see 
Mitchell 1966; Fender & Julesz 1967; Julesz & Chang 1976; and predictions 
3-6 below). 
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DYNAMIC MEMORY STORAGE: THE 21-D SKETCH 

According to our theory, once matches have been obtained using masks of a 
given size, they are represented in a temporary buffer. These matches also control 
vergence movements of the two eyes, thus allowing information from large 
masks to bring small masks into their range of correspondence. 

The reasons for postulating the existence of a memory are of two kinds, those 
arising from general considerations about early visual processing, and those 
concerning the specific problem of stereopsis. A memory like the 2!-D sketch 
(see figure 3) is computationally desirable on general grounds, because it provides 
a representation in which information obtained from several early visual processes 
can be combined (Marr 1977; § 3.6 and table 1). The more particular reason associ
ated specifically with stereopsis is the computational simplicity of the matching 
process, which requires a buffer in which to preserve its results as (1) disjunctive 
eye movements change the plane of fixation, and (2) objects move in the visual 
field. In this way, the 21-D sketch becomes the place where 'global' stereopsis is 
actually achieved, combining the matches provided independently by the different 
channels and making the resulting disparity map available to other visual 
processes. 

The nature of the memory 

The 21-D sketch is a dynamic memory with considerable intrinsic computing 
power. It belongs to early visual processing, and cannot be influenced directly 
from higher levels, for example via verbal instructions, a priori knowledge or 
even previous visual experience. 

One would however expect a number of constraints derived from the physical 
world to be embedded in its internal structure. For example, the rule. R2 stated 
early in this article, that disparity changes smoothly almost everywhere, might 
be implemented in the 2!-D sketch by connections similar to those that implement 
it in Marr & Poggio's (1976) cooperative algorithm (figure 2c). This active rule in 
the memory may be responsible for the sensation of a continuous surface to which 
even a sparse stereogram can give rise (Julesz 1971; fig. 4.4-5). 

Another constraint is, for example, the continuity of discontinuities in the 
visible surfaces, which we believe underlies the phenomenon of subjective contours 
(Marr 1977, § 3.6). It is possible that even more complicated consistency relations, 
concerning the possible arrangements of surfaces in three dimensional space, are 
realized by computations in the memory (e.g. constraints in the spirit of those 
made explicit by Waltz 1975). Such constraints may eventually form the basis 
for an understanding of phenomena like the Necker-cube reversal. 

From this point of view, it is natural that many illusions concerning the inter
pretation of three dimensional structure (the Necker cube, subjective contours, 
the Muller-Lyer figure, the Poggendorff figure, etc., Julesz 1971, Blomfield 1973) 
should take place after stereoscopic fusion. 

280 



Human stereopsis 319 

According to this theory, the memory roughly preserves depth (or disparity) 
information during the scanning of a scene with disjunctive eye movements, and 
during movement of viewed objects. Information management will have limi
tations both in depth and in time, and the main questions here are over what range 
of disparities can the 21-D sketch maintain a record of a match in the presence 
of incoming information, and how long can it do this in its absence? The temporal 
question is less interesting because the purpose of the buffer is to organize in
coming perceptual information, not to preserve it when there is none. 

The spatial aspects of the 21-D sketch raise a number of interesting questions. 
First, are the maximal disparities that are preserved by the memory in stabilized 
image conditions the same as the maximum range of disparities that are simul
taneously visible in a random dot stereogram under normal viewing conditions? 
Secondly, does the distribution of the disparities that are present in a scene affect 
the range that the memory can store? For example, is the range greater for a 
stereogram of a spiral, in which disparity changes smoothly, than in a simple 
square-and-surround stereogram of similar overall disparity? 

For the first question, the available evidence seems to indicate that the range 
is the same in the two cases. According to Fender & Julesz (1967), the range is 
about 2° for a random dot stereogram. When the complex stereograms given by 
Julesz (1971, e.g. 4.5--3) are viewed from about 20 cm, they give rise to disparities 
of about the same order. If this were true, it would imply that the maximal range 
of simultaneously perceivable disparities is a property of the 21-D sketch alone, 
and is independent of eye movements. 

With regard to the second question, it seems at present unlikely that the 
maximum range of simultaneously perceivable disparities is much affected by 
their distribution. It can be shown that· the figure of about 2°, which holds for 
stabilized image conditions and for freely viewed stereograms with continuously 
varying disparities, also applies to stereograms with a single disparity. 

Perception times do however depend on the distribution of disparities in a 
scene (Frisby & Clatworthy 1975; Saye & Frisby 1975). A stereogram of a spiral 
staircase ascending towards the viewer did not produce the long perception times 
associated with a two planar stereogram of similar disparity range. This is to be 
expected, within the framework of our theory, because of the way in which we 
propose vergence movements are controlled. We now turn to this topic. 

VERGENCE MOVEMENTS 

Disjunctive eye movements, which change the plane of fixation of the two eyes, 
are independent of conjunctive eye movements (Rashbass & Westheimer 1961 b), 
are smooth rather than saccadic, have a reaction time of about 160 ms, and 
follow a rather simple control strategy. The (asymptotic) velocity of eye vergence 
depends linearly on the amplitude of the disparity, the constant of proportionality 
being about 8° /s per degree of disparity (Rashbass & Westheimer 1961 a). Vergence 
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movements are accurate to within about 2' (Riggs & Niehl 1960), and voluntary 
binocular saccades preserve vergence nearly exactly (Williams & Fender 1977). 
Furthermore, Westheimer & Mitchell (1969) found that tachistoscopic presen
tation of disparate images led to the initiation of an appropriate vergence movement, 
but not to its completion. These data strongly suggest that the control of vergence 
movements is continuous rather than ballistic. 

Our hypothesis is, that vergence movements are accurately controlled by 
matches obtained through the various channels, acting either directly or in
directly through the 2!-D sketch. This hypothesis is consistent with the observed 
strategy and precision of vergence control, and also accounts for the findings of 
Saye & Frisby (1975). Scenes like the spiral staircase, in which disparity changes 
smoothly, allow vergence movements to scan a large disparity range under the 
continuous control of the outputs of even the smallest masks. On the other hand, 
two-planar stereograms with the same disparity range require a large vergence 
shift, but provide no accurate information for its continuous control. The long 
perception times for such stereograms may therefore be explained in terms of a 
random-walk-like search strategy by the vergence control system. In other words, 
guidance of vergence movements is a simple continuous closed loop process (cf. 
Richards 1975) which is usually inaccessible from higher levels. 

There may exist some simple learning ability in the vergence control system. 
There is some evidence that an observer can learn to make an efficient series of 
vergence movements (Frisby & Clatworthy 1975). This learning effect seems 
however to be confined to the type of information used by the closed loop vergence 
control system. A priori, verbal or high level cues about the stereogram are 
ineffective. 

EXPERIMENTS 

In this section, we summarize the experiments that are important for the 
theory. We separate psychophysical experiments from neurophysiological ones, 
and divide the experiments themselves into two categories according to whether 
their results are critical and are already available (A), or are critical and not 
available and therefore amount to predictions (P). In the case of experimental 
predictions, we make explicit their importance to the theory by a system of stars; 
three stars indicates a prediction which, if falsified, would disprove the theory. 
One star indicates a prediction whose disproof remnants of the theory could 
survive. 

Computation 

The algorithm we have described has been implemented, and is apparently 
reliable at solving the matching problem for stereo pairs of natural images 
(Grimson & Marr 1979). It depends on the uniqueness and continuity conditions 
formulated at the beginning of this article, and it is perhaps of some interest to 
see exactly how. 

The continuity assumption is used in two ways. First, vergence movements 
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driven by the larger masks are assumed to bring the smaller masks into register 
over a neighbourhood of the match obtained through the larger masks. Secondly, 
local matching ambiguities are resolved by consulting the sign of nearby un
ambiguous matches. 

The uniqueness assumption is used in quite a strong way. If a match found from 
one image is unique, it is assigned without further checking. This is permissible 
only because the uniqueness assumption is based on true properties of the 
physical world. If the algorithm is presented with a stereo pair in which the 
uniqueness assumption is violated, as it is in Panum's limiting case, the algorithm 
will assign a match that is unique from one image but not from the other (0. J. 
Braddick, in preparation). 

Psychophysics 

1 (A, P**). Independent spatial-frequency-tuned channels are known to exist 
in binocular fusion and rivalry. The theory identifies these with the channels 
described from monocular experiments (Julesz & Miller 1975; Mayhew & Frisby 
1976; Frisby & Mayhew 1979; Wilson & Giese 1977; Cowan 1977; Wilson 1978a, 
b; Wilson, Phillips, Rentschler & Hilz 1979; Wilson & Bergen 1979; and Felton, 
Richards & Smith 1972). 

2 (P***). Terminations, and signed, roughly oriented zero-crossings in the 
filtered image are used as the input to the matching process. 

3 (P**). In the absence of eye movements, discrimination between two dis
parities in a random dot stereogram is only possible within the range ± w, where 
W is the width associated with the largest active channel. Stereo acuity should 
scale with the width w of the smallest active matched channels (i.e. about 10" 
for the smallest and 40" for the largest foveal channels). 

4 (P***). In the absence of eye movements, the magnitude of perceived depth 
in non-diplopic conditions is limited by the lowest spatial-frequency channel 
stimulated. 

5 (P***). In the absence of eye movements, the minimum fusable disparity 
range (Panum's fusional area) is ± 3.1' in the fovea, and ± 5.3' at 4° eccentricity. 
This requires that only the smallest channels be active. 

6 (P***). In the absence of eye movements, the maximum fusable disparity 
range is ± 12' (possibly up to ± 20') in the fovea, and about ± 34' at 4° eccen
tricity. This requires that the largest channels be active, for example by using bars 
or other large bandwidth stimuli. 

Comments. (1) Mitchell (1966) used small flashed line targets and found, 
in keeping with earlier studies, that the maximum amount of convergent 
or divergent disparity without diplopia is 10-14' in the fovea, and about 
30' at 5° eccentricity. The extent of the so-called Panum fusional area is 
therefore twice this. 

Under stabilized image conditions, Fender & Julesz (1967) found that 
fusion occurred between line targets (13' by 1° high) at a maximum 
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disparity of 40'. This value probably represents the whole extent of 
Panum's fusional area. Using the same technique on a random dot stereo
gram, Fender & Julesz arrived at a figure of 14' (6' displacement and 8' 
disparity within the stereogram). Since the dot size was only 2', one may 
expect more energy in the high frequency channels than in the low, 
which would tend to reduce the fusional area. Julesz & Chang (1976), 
using a 6' dot size over a visual angle of 5°, routinely achieved fusion up 
to ± 18' disparity. Taking all factors into account, these figures seem 
to be consistent with our expectations. 

(2) Prediction 6 should hold for dynamic stereograms with the following 
caveats. First, motion cues must be eliminated. Secondly nonlinear 
temporal summation between frames at the receptor level may intro
duce unwanted low spatial-frequency components in the two images. 

7 (P**). In the absence of eye movements, the perception of rivalrous random 
dot stereograms is subject to certain limitations. For example, for images of 
sufficiently high quality, fig. 2b of Mayhew & Frisby (1976) should give rise to 
depth sensations, but fig. 2c should not. In the presence of eye movements, fig. 2c 
gives a sensation of depth. This could be explained if vergence eye movements 
can be driven by the relative imbalance between the numbers of unambiguous 
matches in the crossed and uncrossed pools over a small neighbourhood of the 
fixation point. 

8 (A). As measured by disparity specific adaptation effects, the optimum 
stimulus for a small disparity is a high spatial frequency grating, whereas for 
large disparities, the most effective stimulus is a low spatial frequency grating. 
Furthermore, the adaptation effect specific to disparity is greatest for gratings 
whose periods are twice the disparity (Felton, Richards & Smith 1972). (In our 
terms, in fact, A is approximately 2.2w where A is the centre frequency of the 
channel.) 

9 (A). Evidence for the two pools hypothesis (Richards 1970, 1971; Richards 
& Regan 1973) is consistent with the minimal requirement for the second of the 
matching algorithms we described (figures 6 and 7). 

10 (P***). In the absence of eye movements, the perception of tilt in stereo
scopically viewed grating pairs of different spatial frequencies is limited by 4, 
5, and 6 above. 

11 (A). Individuals impaired in one of the two disparity pools show corres
ponding reductions in depth sensations accompanied by a loss of vergence move
ments in the corresponding direction (Jones 1972). 

12 (P*). Outside Panum's area, the dependence of depth sensation on disparity 
should be roughly proportional to the initial vergence velocity under the same 
conditions. 

13 (P***). For a novel two planar stereogram, vergence movements should 
exhibit a random-search-like structure. The three star status holds when the 
disparity range exceeds the size of the largest masks activated by the pattern. 
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14 (P***). The range of vergence movements made during the successful and 
precise interpretation of complex, high frequency, multi layer, random dot 
stereograms should span the range of disparities. 

15 (P*). Perception times for a random dot stereogram portraying two small 
planar targets separated laterally and in depth, against an uncorrelated back
ground, should be longer than the two planar case (13). Once found, their 
representation in the memory should be labile if an important aspect of the 
representation there consists of local disparity differences. 

Neurophysiology 

16 (partly A). At each point in the visual field, the scatter of bar mask receptive 
field sizes is about 4: 1 (Rubel & Wiesel 1974, figs. 1 and 4; Wilson & Gieze 1977, 
p. 27). More data gre however nceded on this point. This range is spanned by four 
populations of receptive field size. 

17 (P**). There exist binocularly driven cells sensitive to disparity. A given 
cell signals a match between either a zero-crossing pair or a termination pair, 
both items in its pair having the same sign, size and rough orientation. 

18 (P**). Each of the populations defined by (17) is divided into at least two 
main disparity pools, tuned to crossed and uncrossed disparities respectively, with 
sensitivity curves extending outwards to a disparity of about the width of its 
corresponding receptive field centre (see figure 7). Being sensitive to pure disparity, 
these cells are sensitive to changes in disparity induced by vergence movements. 
In addition, there may be units quite sharply tuned to near-zero disparities. 

19 (P*). In addition to the basic disparity pools of (18), there may exist cells 
tuned to more outlying (diplopic) disparities (compare figure 7). These cells 
should be inhibited by any activity in the basic pools (cf. Foley, Applebaum & 
Richards 1975). 

20 (P**). There exists a neural representation of the 2i-D sketch. This includes 
cells that are highly specific for some monotonic function of depth and disparity, 
and which span a depth range corresponding to about 2° of disparity. Within a 
certain range, these cells may not be sensitive to disjunctive eye movements. This 
corresponds to the notion that the plane of fixation can be moved around within 
the 2° disparity range currently being represented in the 2i-D sketch. 

21 (P*). The diplopic disparity cells of (20) are especially concerned with the 
control of disjunctive eye movements. 

Comments. Because of the computational nature of this approach,we have 
been able to be quite precise about the nature of the processes that are 
involved in this theory. Since a process may in general be implemented 
in several different ways, our physiological predictions are more specu
lative than our psychophysical ones. They should perhaps be regarded 
as guidelines for investigation rather than as necessary consequences of 
the theory. 

Unfortunately, the technical problems associated with the neuro-
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physiology of stereopsis are considerable, and rather little quantitative 
data is currently available. Since Barlow, Blakemore & Pettigrew's (1967) 
original paper, relatively few examples of disparity tuning curve have 
been published (see for example, Pettigrew, Nikara & Bishop 1968; 
Bishop, Henry & Smith 1971; Nelson, Kato & Bishop 1977). Recently 
however, Poggio & Fischer (1978, in the monkey), and von der Heydt, 
Adorj ani , Hanny & Baumgartner (1978, in the cat) have published 
properly controlled disparity tuning curves. On the whole, these studies 
(see also Clarke, Donaldson & Whitteridge 1976) favour the pools idea 
(see prediction 18). 

DISCUSSION 

Perhaps one of the most striking features of our theory is the way it returns 
to Fender & Julesz's (1967) original suggestion, of a cortical memory that accounts 
for the hysteresis and which is distinct from the matching process. Consequently 
fusion does not need to be cooperative, and our theory and its implementation 
(Grimson & Marr 1979) demonstrate that the computational problem of stereo
scopic matching can be solved without cooperativity. These arguments do not 
however forbid its presence. Critical for this question are the predictions about 
the exact extent of Panum's fusional area for each channel. If the empirical 
data indicate a fusable disparity range significantly larger than ± w, false targets 
will pose a problem not easily overcome using straightforward matching tech
niques like algorithm (2) of figure 6. In these circumstances, the matching problem 
could be solved by an algorithm like Marr & Poggio's (1976) operating within 
each channel, to eliminate possible false targets arising as a result of an extended 
disparity sensitivity range. 

As it stands, there are a number of points on which the theory is indefinite, 
especially concerning the 2!-D sketch. For example: 

(1) What is its exact structure, and how are the various constraints implemented 
there? 

(2) What is the relationship between the spatial structure of the information 
written in the memory and the scanning strategy of disjunctive and conjunctive 
eye movements? 

(3) Is information moved around in the 2!-D sketch during disjunctive or 
conjunctive eye movements, and if so, how? For example, does the current 
fixation point always correspond to the same point in the 2!-D sketch? 

Finally, we feel that an important feature of this theory is that it grew from an 
analysis of the computational problems that underlie stereopsis, and is devoted to 
a characterization of the processes capable of solving it without specific reference 
to the machinery in which they run. The elucidation of the precise neural mech
anisms that implement these processes, obfuscated as they must inevitably be by 
the vagaries of natural evolution, poses a fascinating challenge to classical 
techniques in the brain sciences. 
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Frisby, Eric Grimson, David Hubel, Bela Julesz, John Mayhew and Hugh Wilson, 
and to Werner Reichardt and the Max Planck Society for their kind hospitality 
in Tiibingen. Karen Prendergast prepared the illustrations. The Royal Society 
kindly gave permission for reproduction of figure 3, and Science and the American 
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ApPENDIX. STATISTICAL ANALYSIS OF ZERO-CROSSINGS 

We assume that f(x) = f [(x, y) h(y) dy, where J(x, y) is the image intensity and 
h(y) represents the longitudinal weighting function of the mask, is a white Gaussian 
process. Our problem is that of finding the distribution of the intervals between 
alternate zero-crossings by the stationary normal process obtained by filtering f(x) 
through a linear (bandpass) filter. 

Assume that there is a zero-crossing at the origin, and let Po(s), PI(s) be the 
probability densities of the distances to the first and second zero-crossings. Po and 
PI are approximated by the following formulae (Rice 1945, § 3.4; Longuet-Higgins 
1962, eqns 1.2.1 and 1.2.3; Leadbetter 1969): 
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1 [ lfr(O) ]1 M23(s) 2 2 
Po(S) = 21t _ lfr"(O) H(s) (lfr (0) - lfr (s»[1 + H(s) arccot ( - H(s))] , 

P1(s) = 211t [ -~?10)] I ~~~) (lfr2(0) - lfr2(S» [1- H(s) arccot (H(s»], 

where lfr(s) is the autocorrelation of the underlying stochastic process, a prime 
denotes differentiation with respect to S, and also 

H (s) = M23(S)[ M22(S) - M 23(s)]-I, 

M22(S) = - lfr"(O) (lfr2(0) - lfr2(S» - lfr(O) lfr'2(S), 

M23(s) = lfr"(s) (lfr2(0) - lfr2(S» + lfr(s) lfr'2(S)· 

These approximations cease to be accurate for large values of S (Le. of order ", 
where 21t / A is the centre frequency of the channel; see Longuet-Higgins (1962) for 
a discussion of various approximations), where they overestimate Po and PI" The 
autocorrelation lfr(s) can be easily computed analytically for the two filters of 
figure 5. 
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Commentary on 

Binocular Depth Perception 

David Marr's work on binocular stereopsis, which evolved through a fruitful 
collaboration with Tomaso Poggio, represents a landmark in the emerging field 
of Computational Vision. The culmination of this work, the model of human 
stereopsis that appeared in the Proceedings of the Royal Society, is special 
in many regards. The first is its attempt to incorporate and account for the 
large, diverse body of psychophysical and physiological observations available 
at the time, and the extensive predictions for future experimental work that 
derived from this model. The second is the strong theoretical foundation used 
to justify particular aspects of the model. The third is the innovation captured 
in the algorithm for stereo correspondence, which subsequently formed the 
basis of a successful computer stereo system that has been replicated many 
times over, both in research and in commercial systems. In this commentary, 
we first provide some historical perspective on the evolution of Marr's ideas on 
stereo vision, and then address the impact of this work on the study of stereo 
processing in biological and computer vision systems over the past decade. 

Marr's first venture into the problem of stereo correspondence is captured 
in the MIT Artificial Intelligence Laboratory Memo, "A Note on the Compu
tation of Binocular Disparity in a Symbolic, Low-Level Visual Processor." In 
a style that became a trademark of Marr's work, he emphasizes the impor
tance of being very precise about the goals of the computation and about the 
constraints imposed on it by the structure of the three-dimensional world. Fol
lowing this prescription, he first lays out the basic steps for calculating stereo 
disparity: (a) items corresponding to locations on a physical surface must be 
identified in one image, (b) the corresponding features must be identified in 
the second image, and (c) the relative positions of the corresponding features 
in the two images must be measured. He then makes a strong case that the 
features matched between the two images should not be the raw intensity mea
surements used in previous stereo models, but low-level symbolic tokens such 
as intensity edges, bars, terminations, and so on. Finally, he formally iden
tifies three constraints on the matching process itself: uniqueness (the "use 
once" condition), continuity (the "suggestion interaction"), and maximization 
of some measure of goodness of fit. In this early paper, Marr presents only 
a few vague ideas about how one might embody such constraints in an algo
rithm, but it is valuable to see the top-down nature of Marr's thinking, which 
often evolved from a formal statement of a problem, through the identification 
of constraints, and finally to the formulation of an algorithm that embodies 
these constraints. 
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The final stage of fonnulating an algorithm for stereo correspondence 
emerged in the fonn of a cooperative network described in the paper by Marr 
and Poggio, "Cooperative Computation of Stereo Disparity." This first model 
was driven in part by the observation that the highly interactive OIganization of 
neural hardware suggests algorithms with a parallel structure, requiring many 
local operations on large data arrays, and in part by evidence from Julesz and 
his colleagues that human stereo fusion exhibited cooperative behavior. The 
network embodies a literal implementation of the constraints of uniqueness 
and continuity in an iterative process that operates on a "primal sketch" repre
sentation of the right and left images. With a view that Marr and Poggio must 
later retract, they boldly state, "non-iterative local operations cannot solve the 
stereo problem in a satisfactory way." Marr and Poggio admit that the analysis 
of the behavior of such cooperative algorithms is very difficult, although they 
later provide some analysis of its convergence properties for a limited class of 
random-dot stereograms (Marr et al., 1978). 

The cooperative algorithm was interesting for its simplicity and for the 
clarity with which it embodied Marr's original statement of the goals of the 
stereo process and necessary physical constraints. A primary implication of 
the model for biological stereo processing, namely the existence of numerous 
sharply tuned binocular disparity detectors sensitive to a wide range of dis
parity values, was of course not born out through later physiological studies. 
In addition, the cooperative algorithm did not embody other key observations 
about human stereo vision, such as the need for vergence eye movements to 
fuse complex stereo grams and the role of multiple spatial frequency tuned 
channels. The Marr-Poggio cooperative algorithm was in some ways a culmi
nation of several influential models of the past, by Dev, Sperling, Julesz and 
others. The next stage in Marr's work on stereopsis, however, represented a 
radical change of view. 

It was always a driving force in Marr's work to understand the particular 
nature of the visual processing underlying biological systems, and his ideas 
could change dramatically in the face of "challenging" experimental evidence. 
This drive led Marr and Poggio to develop their second algorithm described 
in the proceedings of the Royal Society paper, "A Computational Theory of 
Human Stereo Vision." The essence of this new model is the following. First, 
intensity edges are extracted from the result of filtering the left and right images 
with a range of second derivative filters of varying size. The matching of fea
tures at coarser scales provides rough disparity infonnation over a broad range, 
while the matching of features at finer scales provides more accurate disparity 
measurements over a narrower range. When the disparities within a particular 
region of the image are outside the range of fusion for the finer channels, the 
coarser channels can initiate appropriate vergence eye movements to bring the 
left and right images within a range of fusion for the finer channels. If the 
disparities are outside the range of fusion for the coarsest channel, random eye 
movements are perfonned until portions of the image fall within the necessary 
range. Within all of the channels, disparity infonnation is initially represented 
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only qualitatively, indicating whether potential matches can be found within 
two broad pools of crossed and uncrossed disparities and a single narrower 
pool around zero disparity. Mechanisms are also postulated for disambiguating 
multiple local disparities by examining the disparities assigned to neighboring 
features, both within the same channel and at coarser scales. Finally, a statis
tical analysis is presented that determines an appropriate choice for the range 
of disparities that can be detected as a function of filter size, and provides a 
criterion for determining whether corresponding regions of the two images are 
really within the needed range of disparity. 

As we mentioned earlier, one of the special qualities of this second model 
is the diverse set of observations from psychophysical and physiological studies 
that it attempts to bring together. Among these are the general observations 
by Julesz and others concerning the role of multiple, independent spatial
frequency-tuned channels in stereo fusion, the critical role of vergence eye 
movements, the emerging psychophysical and physiological evidence for the 
existence of a small class of broadly tuned disparity sensitive mechanisms, and 
measurements of the limited size of Pan urn's fusional area. Early experimental 
observations that suggested a cooperative process in stereo fusion were instead 
accounted for by the existence of a permanent representation of depth (or 
surface orientation) called the 2 I/2D Sketch, into which the results of the 
stereo computation were placed. 

With regard to further study of stereo processing in biological systems, 
another trademark of Marr's work is the formulation of specific predictions 
from his models for future experimentation in psychophysics and physiology. 
This contribution both reflects the power of the style of computational models 
that he pursued, as well as his special talent for relating theory and experiment. 
Marr and Poggio's Royal Society article ends with an extensive list of such 
predictions, many of which have been addressed in later experimental work 
(for review, see Poggio and Poggio, 1984; Mayhew and Frisby, 1981). 

One focus ofMarr and Poggio's predictions regarded the coupling between 
the range of disparity that can be fused and the spatial frequency range (or 
the size) of the underlying filters that are active. Subsequent experiments 
provide mixed support for these implications of the theory. There is some 
evidence that the overall extent of the range of fusable disparities scales with 
the spatial frequency content of the stimulus, but less support for an increase in 
the minimal disparity difference that can be detected as coarser channels alone 
become active (for example, Mayhew and Frisby, 1979; Schumer and Julesz, 
1982; see also Poggio and Poggio, 1984). It appears that even coarser channels 
can represent disparity information with relatively high precision. With regard 
to disparity range, it is not necessary to assume the strict cutoff in range as 
a function of filter size that was embodied in the original theory. This range 
can be expanded within individual channels, at the expense of relying more 
critically on the disambiguation mechanisms. In support of this relationship is 
a physiological study in the cat by Ferster (1981) that indicates that there is a 
strong coupling between receptive field size and range of disparity tuning. 
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With regard to vergence eye movements, it is clear that the model must 
be expanded to incorporate a broader set of mechanisms that can initiate ap
propriate vergence (for review, see Poggio and Poggio, 1984). For example, 
large, correct vergence eye movements can be initiated when only high spatial 
frequency channels are presumed to be active (Mowforth et al., 1981), and the 
detection of the disparity of features such as texture boundaries can initiate 
these eye movements (Kidd et al., 1979). 

Many recent models focus on particular aspects of human stereo process
ing not considered explicitly in Marr and Poggio's work, such as our ability to 
cope with transparency, the existence of a limit on the gradient of stereo dis
parity and the ordering constraint. These models may better reflect the way in 
which these particular factors enter into the stereo correspondence process. In 
our view, however, subsequent models do not surpass the second Marr-Poggio 
model in the broad range of stereo phenomena that they attempt to incorporate. 
It is clear that in detail, there is much evidence to question particular aspects 
of the theory (e.g., Mayhew and Frisby, 1981), but it is less clear to what 
extent these observations could be accounted for through modification of the 
original model versus fundamental changes. 

Besides its impact on models of human stereopsis, Marr and Poggio's 
stereo theory also had a major impact on computer vision. In part this follows 
from Marr's paradigmatic view that designing and testing a specific algorithm 
for a computational theory is essential in the development of that theory. This 
step forces one to be explicit about all the details of the theory, and often 
provides feedback about inappropriate assumptions or overlooked cases in the 
theoretical development. Today, this view of the relevance of empirical testing 
is commonly accepted, but at the time of the development of Marr's theories, 
it was a minority view. 

Marr and Poggio's second stereo model embodied a number of seminal 
ideas that have been influential in computer vision. Among these ideas are the 
use of multi-scale edge detectors, including filters with large support for image 
smoothing, and the use of a coarse-to-fine processing strategy to control the 
complexity of matching (an idea developed concurrently by Moravec). Today, 
many automated stereo systems use multi-resolution feature based algorithms. 
The second Marr-Poggio stereo model was fonnalized and expanded further 
by Grimson (1981, 1985). In its final fonn, it reflected a strong influence from 
other computational studies of stereo vision, such as those of Mayhew and 
Frisby (1981), which, among other things, suggested the use of a non-oriented 
filtering process before the extraction of matching features and the use of 
the so-called "figural continuity" constraint. The final algorithm that emerged 
remains one of the most successful computer stereo algorithms currently in 
use. It has been extensively tested on a broad range of synthetic and natural 
stereo imagery, has been replicated by many researchers and fonned the basis 
for successful commercial stereo systems that perfonn tasks such as automated 
stereo cartography. 

To summarize, Marr's work on stereo vision is among his most lasting 
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and influential pieces of work, having a strong impact both on the course of 
computational work in stereo and on experimental work in psychophysics and 
physiology. It highlights his formal approach to the study of visual processing 
detailed in his book, Vision, and gives us a particularly clear look into the 
evolution of his thinking. 
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David Marr: A Pioneer in Computational Neuroscience 

David Marr advocated and exemplified an approach to brain modeling that is 
based on computational sophistication together with a thorough knowledge of 
the biological facts. The pioneering papers in this collection demonstrate that 
a combination of computational analysis and biological constraints can lead to 
interesting neural algorithms. The recent developments in computational mod
els of neural information processing systems is an extension of this seminal 
research: Marr has influenced the latest generation of network models through 
both his models and his emphasis on the computational level of analysis (Marr, 
1975, 1982). Progress has been made by adopting an integrated approach in 
which constraints from all three of Marr's levels of analysis-tbe computa
tional, algorithmic and the implementational-are applied at many different 
levels of investigation (Sejnowski and Churchland, 1989). 

These early papers are not easy to read. Marr gives the reader too many 
concrete details and too little overall guidance. He demands of the reader a 
deep understanding of probability theory and an encyclopedic knowledge of 
neuroanatomy. Even those who are steeped in the current generation of neural 
network modeling will find terms in the early papers difficult to translate into 
recent usage. Still, they are reminiscent of the style found in Maxwell's papers, 
which were written before the invention of vector notation. Just as Maxwell 
introduced specialized terminology and drew analogies with mechanical con
cepts such as gears and idler wheels, there are unusual terms in Marr's papers, 
such as "codons," borrowed from molecular genetics, and a novel set of con
cepts that must be mastered before the papers can be appreciated. Although 
some of the central ideas in these early papers are well known, there are im
portant insights into neural computation that will handsomely repay the reader 
the effort taken to master the terminology. 

The first four papers in this collection are from Marr's Cambridge period 
in the 1960s, among the earliest in his career, and articulate a remarkably 
ambitious theory of memory. These models were firmly based on what was 
then known about the structure of the brain. Even those who know that 
Marr had a model for motor learning in the cerebellum (Marr, 1969) may 
not be aware that his models of neocortex (Marr, 1970) and the hippocampus 
(Marr, 1971) were even more detailed than his cerebellar model. In a personal 
conversation with me in 1975, Marr singled out the neocortex paper as the one 
among these early papers that he was most proud of. The last set of papers 
on vision in this collection, are transitional and reflect a new, computationally
motivated approach to vision that guided his later research at MIT. At the 
same time they reflect an evident fascination with the structure of the brain, a 
fascination that Marr retained throughout his career. 
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The learning algorithm in the cerebellar model requires an external "teacher" 
to instruct the synapses and would today be called a supervised learning pro
cedure. This type of error-correction learning has been extended to multiple 
layers of processing units (Rumelhart et al., 1986). The archicortex model uses 
a form of unsupervised learning that is based on competition among the out
put units. Similar unsupervised learning algorithms for neural network models 
have recently been studied for clustering data (Grossberg, 1976; Kohonen, 
1984; Rumelhart and Zipser, 1985). They are "simple" memory systems that 
do not address the central issue of how the information is represented on the 
inputs and outputs. 

In contrast to the simple memory models, the neocortical model is about 
category formation and discovery of high-order patterns in data based on un
supervised learning. Several recent models have been proposed to attack the 
problem of extracting information from sensory data (Hinton and Becker, 1990; 
Linsker, 1990). Marr's approach was different and depended on recruiting 
new neurons to represent high-order statistical structure or "concepts." Un
fortunately, the computational resources available to Marr in the late 1960s 
were minimal, and one of the frustrations when reading these papers is the 
lack of numerical simulations. Promising algorithms do not always perform 
as expected when confronted with data from the real world; too many simplifi
cations must be made so that the analysis is tractable. Until simulations of the 
neocortex model are performed we will not be able to assess its effectiveness. 

The retina paper is an attempt to match a computational problem-finding 
the lightness of a surface-to anatomical substrates in the retina (Marr, 1974). 
This paper is transitional: Marr's subsequent papers in vision would empha
size more and more the computational aspects while relying less and less on 
anatomy. The predictions in this paper were not borne out by subsequent and 
more recent physiological recordings from single neurons make it likely that 
the locus of lightness and color constancy is in visual cortex (Zeki, 1983). 
Interestingly, recent algorithms based on neural network models are similar to 
those proposed by Marr (Hurlbert and Poggio, 1988; Land, 1986). Old ideas 
often come back in contexts that their originators might not even recognize. 

Perhaps the best known papers in this collection are the models of binoc
ular depth perception (Marr and Poggio. 1976. 1979). These models were 
appealing because they were based on plausible biological mechanisms. were 
constrained by psychophysical data and were tested by simulations on real
world data. In the first model, Marr and Poggio performed simulations to 
demonstrate the effectiveness of their algorithm on random-dot stereograms, 
first introduced by Bela lulesz (Julesz. 1971). The elegant simplicity of the 
network model was anticipated in earlier research (Dev, 1975; Nelson. 1975), 
but the interpretation of the constraints and the convincing demonstration made 
this a landmark paper. This approach to constraint satisfaction was an inspira
tion for connectionist-style models of visual computation (Ballard et al. 1983). 

One of the remarkable properties of the Marr-Poggio stereo network was 
that it always converged. The stereo network is a highly nonlinear system of 
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equations and attempts to analyze the nonlinear equations came to the conclu
sion that they were as difficult to analyze as Conway's game of "life" (Marr 
et al. 1978). In 1982, John Hopfield pointed out that symmetric networks like 
the Marr-Poggio model were a special case because they possess an energy 
or Lyapunov function that guarantees convergence to a local energy minimum 
(Hopfield, 1982). The stereo network was designed in such a way that the local 
energy minima are solutions to the problem. It is also possible to design net
work models to handle transparent surfaces in random-dot stereograms (Qian 
and Sejnowski, 1988). Subsequent developments showed how even more diffi
cult constraint satisfaction problems can be solved by globally minimizing the 
energy (Hopfield and Tank, 1986; Kienker et al., 1986; Poggio et al., 1988). 
Marr later felt that the time delays inherent in the relaxation of a network to a 
solution were unsatisfactory given the speed with which our visual system can 
interpret most images (Marr, 1982: see p. 107). The shortcomings of the first 
stereo model were addressed in the second model (Grimson, 1981; Marr and 
Poggio, 1979), which was much faster and took into account multi-resolution 
filters that could be applied to real images. However, there are other aspects 
of stereo vision that cannot be handled by this algorithm. The human visual 
system is even more clever than these early stereo algorithms (Poggio and 
Poggio, 1984). 

David Marr continued to make major contributions to the study of vision. 
Those who have been influenced primarily by Marr's book on the computa
tional approach to vision (Marr, 1982) may be surprised by the extraordinary 
attention given in this collection of papers to neuroanatomy. In rereading them, 
it is possible to put into perspective Marr's later work on the computational 
approach to vision. Although Marr made fewer appeals to detailed biological 
mechanisms in his later vision papers, there were still many examples of inspi
ration and confirmation of computational approaches from neuropsychological 
and psychophysical data and constraints from physiological measurements. 
The scientific style of the papers in this collection make it clear that these 
intrusions from the biological realm were not incidental. 

One of the inevitable problems of building models and theories in neu
roscience is that new facts about the brain are continually being discovered 
and old ideas are sometimes modified or discarded. The striking advances in 
neuroscience since these early papers are most evident in our present view 
of neurons. In 1970, dendrites were thought to be passive cables and ideas 
on synaptic mechanisms were based primarily on the neuromuscular junction. 
Today, dendrites are known to have voltage-dependent conductances that make 
them dynamical entities (Llinas, 1988); a gallery of channels and neurotrans
mitter receptors with a wide range of time scales allow neurons to burst and 
oscillate, and synapses to potentiate and habituate (Kandel et al., 1987). Marr's 
models need to be updated to take these new properties into account. How
ever, the insight that a powerful computational system could be built from a 
sophisticated model of memory remains an exciting idea, and the goal of in
corporating anatomical constraints into network models of vision is now being 
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actively pursued (Sejnowski et al., 1988). 
Finally, how is one to reconcile the research direction implicit in these 

papers and the explicit statements found in Marr (1982) regarding the inde
pendence of the computational level from the implementation level? This 
principle, taken out of the context provided by Marr's research style, gives 
the misleading impression that constraints from the algorithmic and imple
mentation levels found in biological systems are unnecessary. A rematXable 
feature of Marr's book is the degree to which biological considerations enter 
on almost every page in inspiring computational analysis, in choosing between 
algorithms and in providing the ultimate measure of success. Computational 
explanations for our visual and mental abilities eventually may be found, and 
seeking such explanations is essential-this was Marr's message. However, 
he was far from abandoning biological and psychological data in reaching this 
goal. 

The performance of our perceptual and cognitive systems and the way 
that brains are organized provide essential constraints on possible computa
tional explanations (Churchland and Sejnowski, 1988; Sejnowski et al., 1989). 
Neural circuits and how they function clearly inspired Marr and they continue 
to be rich sources of inspiration for many of us. 
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Epilogue: 
Remembering David Marr 



DavidMarr 
1980 - Cambridge, Massachusetts 



Peter Rado 

I was a student at Trinity with David and saw a lot of him until I left Cambridge 
in 1967. David was a great source of strength to me-I have been ill myself 
(with kidney problems) since 1958, and when I first was given a place on 
a kidney machine, David offered me one of his kidneys if it would be any 
use-it is very ironic to think that I have survived him; neither he nor I would 
ever have expected that (until recently). 

David's thoughtful approach to things was one of the things that I valued 
a lot. He would never give a snap decision, but always thought carefully 
about everything. He was always very generous with his time and efforts: 
he took me camping when I was told that I should go away for my last ever 
holiday before being tied down to a kidney machine for the rest of my life. 
He immediately suggested we go camping, borrowed a tent and whisked me 
off, for a very memorable "last fling" in Scotland. 

Another holiday together was in Germany-he borrowed a Land Rover 
and a group of us went to a Youth Music Festival at Bayreuth. I vividly 
remember David prowling around with his clarinet, looking for a soprano 
("any soprano!") to sing Schubert's "Shepherd on the Rocks" with him. He 
was a superb musician, who seemed to be able to play the clarinet quite 
effortlessly-and without practice. 

November, 1980 

Friendfrom college years. 
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Tony Pay 

David was a person who brought excellence in one fonn or another to every
thing he did. 

His excellence as a clarinet player was, to begin with, an excellence of 
attitude and response. He was always committed to what he did. He valued the 
immediate impulse as highly as considered action when he played, or when 
he discussed others' playing. Music sprang from the heart, and though he 
possessed a fonnidable intellect, he never tried to reduce this side of his life to 
anything theoretically manageable or systematizable. Indeed, his relationship 
with his instrument was a very physical one, and he obviously loved the act 
of perfonning. As sometimes happens, this physicality in one sense stood in 
the way of his further technical and expressive development, and it was a little 
time before he overcame the problem. 

He once auditioned for a place in the University Orchestra, and was passed 
over (wrongly, we later thought!) in favor of another more obviously tech
nically able instrumentalist. He told me afterward that he'd promised his 
supervisor that if he didn't play in the orchestra he would devote the time to 
a project involving a learning network. I never found out what happened to 
that particular project. 

When we met again, much later, he had obviously developed further as 
a player and musician. He would sometimes say to his musician friends that 
when he was burnt out as a scientist he would take up the clarinet seriously. 
Few of us doubted that he would do rather well if such a moment came. The 
idea of perfonnances being 'wrong' in some sense seemed not to be very 
important to him, and he was often excited by the possibilities revealed by 
other people's ideas. On the other hand, I remember him saying to me, "How 
could you do that to my slow movement?!" after a perfonnance of the Brahms 
Clarinet Trio in which we had thrown away some of the more melting moments 
for the sake of showing the long phrases. But the remark was characteristically 
softened in his subsequent giggle. I also recall his glee at being included in the 
Orchestra to play Berlioz's 'Beatrice and Benedict'- ''They think I'm good 
enough!" 
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Most of all, though, I remember his friendship, and his winning blend of 
seriousness and joy, and his laugh when there were no words to express what 
he felt. Though he said many memorable things, when there was nothing to 
say, David dido't say it. 

Friend from college years. 

Principal Clarinetist 
Royal Symphony Orchestra 
London, England 

March,1990 
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G. S. Brindley 

David gained first-class Honours in Part m of the Mathematical Tripos in 
June, 1966. In the same month he came to me saying that he wanted to do 
theoretical research on the brain. I advised him that he must spend one year 
of full-time study on what was known empirically about the brain. In the 
academic year of 1966-1967 he attended courses on anatomy, physiology and 
biochemistry, all new subjects to him. 

In the summer of 1967 he began theoretical research. I was nominally 
his supervisor, but I gave him no ideas beyond a few that I had published 
(lBRO Bulletin 3 ,80 (1964) and Proc. Roy. Soc. B. 168,361 (1967) or was 
preparing for publication (proc. Roy. Soc. B. 174, 173, [1969]). David read 
and wrote, and then brought me drafts of long chapters, in which, after hard 
worlc, I managed to find a few minor errors. We met to discuss these minor 
errors, and I gave David one or two pep talks whose purpose was to persuade 
him that unless his worlc led to experimentally testable predictions whose prior 
probability was neither almost zero nor almost unity, no experimenter would 
read his worlc. 

With these exceptions, our only contact was musical. I was a mediocre 
bassoonist, David a much better clarinetist. Inevitably we read through the 
three Beethoven duos and the Poulenc sonata for clarinet and bassoon. We 
even rehearsed one of the Beethoven duos and played it in a college concert. 
Once or twice we joined three other wind players, and read through some 
quintets. 

In August 1968, after just 13 months of research, David submitted a 
dissertation for a Title A Fellowship of Trinity College, and was elected. This 
was a high honor; only those familiar with Trinity will know just how high. 

I spent the fall quarter of 1968 in Berkeley, California, and migrated 
pennanently to London, after 16 years of Cambridge, in December, 1968. 
David mQved, for that fall quarter, into the house that I had just bought for 
myself in London, and before my return from Berlceley he had rewritten as 
a paper for the Journal of Physiology the chapter on the cerebellum from his 
fellowship dissertation. It appeared in 1969 (Vol. 202, p. 437), and was the 
first substantial theoretical paper that the journal had ever published. David 
remained in London for 18 months after my return from Berlceley, at first full
time and then part -time, commuting from Cambridge. During these months, 
he wrote his paper on the classifying and memorizing functions of the cerebral 
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cortex, Proc. Roy. Soc. B 176, 161-234, the outline of which was already in 
his fellowship dissertation. 

One reminiscence from this London period: Local amateur players per
fonned Mozart's concerto for flute and harp. My six-year-old daughter, who 
had a remarkable musical memory and an excellent whistling technique, had 
heard recordings and some rehearsals and wanted to hear the perfonnance. 
My wife and I were unavailable, and David offered to take her. She sat on 
his lap and, he reported, whistled the flute part, faultlessly and very quietly, 
throughout almost the whole perfonnance. He didn't stop her, judging that it 
spoiled neither his enjoyment nor that of people in neighboring seats. 

David's doctoral thesis advisor. 

Professor 
FeLLow of the Rpyal Society 
Honorary Director 
Medical Research Council 
Neurological Prostheses Unit 
Institute of Psychiatry 
De Crespigny Park 
London, England 

March,1990 
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Benjamin Kaminer 

I never anticipated that the "workshop" I organized in May, 1972 would have 
been a turning point in the life of David Marr. And many might wonder 
why I, not being a neurobiologist, organized this workshop centered around 
David's ideas at the time, on the organization of the cerebral cortex. True, 
when I became Chairman of the Department of Physiology in 1970, I decided 
to develop a section of neurophysiology, but why gather a group of eminent 
molecular biologists, theoretical physicists, computer scientists and mathemati
cians together with classical neurobiologists? The time, I thought, appeared 
ripe for such interdisciplinary interaction and interchange in the search for an 
understanding of the human brain. As was well known, a number of molec
ular biologists, having cracked the genetic code, had challenged themselves 
with the task of unraveling the mysteries of the brain and mathematicians and 
computer scientists were designing networks and models creating "artificial 
intelligence." Such intellectual reasoning on the timeliness for a meeting of 
the minds, however, would not have been enough impetus for me to arrange 
it. Superimposed personal factors played a decisive role. 

Sydney Brenner, Seymour Papert, and I were friends in South Africa. In 
the 1950s Sydney and I were in the Department of Physiology in the Uni
versity of Witwatersrand, Johannesburg and Seymour, from the Department 
of Mathematics, became associated with our department, learning and experi
menting on the nervous system as he developed his interests in psychology. 
In the latter part of that decade the three of us left South Africa. Sydney 
joined Francis Crick at the MRC, Cambridge, England. Seymour went to 
the Department of Mathematics, Cambridge, England for further study, then 
to France, and later joined Piaget in Switzerland. I went to work in Albert 
Szent-Gyorgyi's laboratory at the Marine Biological Laboratory, Woods Hole, 
in Massachusetts. Sydney and I remained in touch and we saw each other 
frequently in Woods Hole, but I had lost contact with Seymour Papert. When 
I took my current position in 1970, I heard that Seymour was at MIT, visited 
him at the Artificial Intelligence Laboratory and there met Marvin Minsky and 
learned of the inroads they were making in their field. I, of course, was aware 
of the progress Sydney was making on the nervous system of the nematode 
C. elegans and soon my idea emerged of getting these two "foreign" groups 
together with the "native" neurobiologists on common territory. When I dis
cussed the proposition with Sydney he told me that David Marr had joined 
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their group and suggested that a good take-off point for discussion would be 
David Marr's recent papers on the cerebral cortex. 

After a few more visits to MIT, I soon realized that many students in 
artificial intelligence, smart mathematicians, had never seen a synapse or a 
human brain and students in biology or neurobiology had little idea of the 
language of artificial intelligence. Since I decided to invite selected students 
from Harvard, MIT and our school to sit in at the workshop, I arranged for 
a series of lectures and demonstrations for these students to prepare them in 
advance. Marvin Minsky lectured on concepts in artificial intelligence to the 
biology students and the students from the Artificial Intelligence Lab learned 
about the ultrastructure and organization of the brain from Alan Peters and 
Walle Nauta and about basic neurophysiology from Ken Muller. The work
shop was held at Boston University School of Medicine for three days on May 
24-26, 1972. The main participants were David Marr, Sydney Brenner, Francis 
Crick and Stephen Blomfield (MRC, Cambridge); Freeman 1. Dyson (Institute 
of Advanced Studies, Princeton); Seymour Papert, Marvin Minsky (Artificial 
Intelligence Lab, MIT); Stephen Kuffier, David Hubel, Torsten Wiesel, John 
Dowl- ing and Ken Muller (Harvard); Horace B. Barlow (University of Cali
fornia, Berkeley); Anthony Gorman and Alan Peters (Boston University); and 
I acted as chairman of the meeting. Together with 20 students, a total of 50 
attended. 

My first meeting with David Marr several days before the workshop, 
I shall never forget. His gentle manner, lovely smile, and joyful laughter 
remain as vivid perceptions in my brain. He agreed with my plan not to have 
a formal program except for introductory talks, first by David and then by 
Seymour Papert. I opened the first session with the briefest survey of past 
developments in neurobiology beginning with Cajal, and emphasized the main 
purpose of the workshop, to exchange ideas freely without any publication of 
the proceedings. David in his opening remarks applied the "inverse square 
law" to theoretical research, suggesting that its value varies inversely with the 
square of the generality (!) stressing the need to establish structure-functional 
relationships either from the bottom up, from structure to function, or top down, 
from function to structure. He developed his ideas by posing the questions: 
What does the brain do? \Vhat are the logical equivalents? What are the actual 
mechanisms? 

Seymour Papert conceptualized on "artificial brains," "perceptrons" and 
analyzed a "simple system" involved in catching a piece of chalk. And for the 
rest of the three days we had lively and provocative discussion interspersed 
with mini-talks. During tea breaks and lunchtime, I would approach various 
individuals encouraging them to give short presentations. The main partici
pants continued with informal discussion at a dinner in my house and after the 
workshop social interaction and intense intellectual discussion continued dur
ing the weekend, which was spent by some of the participants in Woods Hole. 
Albert Szent-Gyorgi invited us to his beach cottage, where he also exchanged 
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ideas, and we also went across to Martha's Vineyard by boat Relaxation and 
fun did not hinder the intellectual vibrations in our brains. 

During these five days David Marr spent much time with Minsky and 
Papert, and as I said, this event was a turning point that led to David subse
quently joining the Artificial Intelligence Laboratory. That in itself was a very 
positive outcome of the workshop. Since the proceedings were not published, 
any other outcome is intangible. But let me include here two of the letters I 
received: 

Dear Bennie: 

MRC Laboratory of Molecular Biology 
9 June, 1972 

Thank you so much for such a marvelous few days in Boston. And your 
hospitality was quite wonderful. I was almost embarrassed by the trouble to 
which you went. The meeting itself was very useful for me. I learned a good 
deal from contact with the AI Laboratory and hopefully some good will come 
of it. I hope the neurophysiologists also gained, though I doubt if any will 
admit that they did. Many, many, thanks once again. It was really wonderful. 

Dear Bennie: 

With very best wishes to you both, 
David Marr 

MRC Laboratory of Molecular Biology 
31 May, 1972 

Many thanks for such a relaxed and informal meeting and for the very smooth 
organization behind it. I'm sorry I didn't come to Woods Hole but I felt really 
wretched and by the time I got to London my sore throat turned to a streaming 
cold. It seemed to me that the meeting really brought the various groups 
into intellectual speaking distance of each other-I hope the continuations at 
Woods Hole cemented the process. Of course I was really a spectator, but I 
think that for Sydney and David it was especially stimulating. Perhaps history 
will consider it seminal. If so, the credit will be yours. It was certainly much 
less of a strain than any meeting I've attended for years and that allows people 
to develop ideas at the back of their heads. 

Best wishes, 
Yours sincerely, 
Francis 
EH.C. Crick 
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When David moved to MIT we kept in touch. He gave a wonderful 
seminar in our department and he visited me in Woods Hole in the summers. I 
became very fond of David and admired his intellectual prowess (coupled with 
modesty). He was well recognized and respected for his important scientific 
contributions, which continued during his brave struggle with a fatal condition. 
The ending of his life prematurely was a sad loss to all who knew, admired 
and loved him, and also to the science of neurobiology. 

March,1990 

Ben provided one side of the bridge for David's crossing the Atlantic. Sydney 
Brenner provided the other side. 

Professor and Chairman 
Department of Physiology 
Boston University School of Medicine 
Boston, Massachusetts 
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Francis H. Crick 

I first heard of David WIder WIuSUal circumstances. One day in the early 
1960s I was standing about in the basement of the University Arms Hotel with 
a group of scientists, waiting to be photographed for a London newspaper. I 
had recently been dipping into several papers on theoretical neuroscience and 
I remarked to Alan Hodgkin that much of it seemed rather pretentious stuff 
to me. "I agree with you," he said, "but what about David Marr?" "Who," I 
said, "is David Marr?" 

Sydney Brenner and I got in touch with David and one afternoon he came 
to talk to us in our joint office at the Molecular Biology Lab on Hills Road. 
David had been working on his theory of the cerebellum. At that time I didn't 
know the difference between a parallel fiber and a climbing fiber, so he had 
to explain it all from the beginning. This took several hours. When he left, 
Sydney and I were exhausted but WIdeniably impressed. A little later, when 
David was wondering where to go, we provided a home for him in a small 
office down the corridor. 

I didn't see much of him during this period, though I remember struggling 
to follow several difficult seminars based on his cortical papers. Then came 
the meeting at the other Cambridge that brought together several neurophysi
ologists (Horace Barlow, David Hubel, etc.), members of the MIT AI group, 
together with David, Sydney and myself. The boat trip after the meeting was 
David's Road to Damascus. (I wasn't there, as I had a wretched cold.) He 
became converted to AI and before long moved to MIT. 

I moved to the Salk Institute, in La Jolla in 1976 and decided to switch 
to the neurosciences. David by then had become close friends with Tomaso 
Poggio, and I was lucky enough to persuade them to visit me for a month. 
(Happy days! Who could spare a whole month now for such a visit?) It was 
April, 1979. The weather was perfect for the entire time. David and Tommy 
worked together during the morning. We all had lWIch together and the three 
of us talked each day WItil tea-time. 

It was very educational for me. They kept telephoning somebody called 
Westheimer, whom I'd never heard of. Apparently he did something called 
psychophysics, but what was that? I didn't entirely agree with David's rather 
functionalist approach. You can find echoes of our conversations in the last 
chapter of his book Vision. Most of the time David is arguing against me, 
though I also detect traces of Marvin Minsky in his imaginary antagonist. It 
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was a happy period in David's life. He thought he was cured of his leukemia. 
Only a few weeks after he left it recurred again. 

David's work clearly falls into two phases. Marr I was concerned with 
neural circuitry and what it might compute. Marr II (the AI phase) was more 
functional. The emphasis was on the theory of the process and possible algo
rithms, with much less attention to realistic implementation. I believe that if 
he had lived he would have moved to a synthesis of these two approaches. 

His early death was a great loss. He was trained as a mathematician and 
had outstanding intellectual powers. Most of his papers are not easy reading, 
as he was striving for precision and vigor, but behind it there was always a 
well thought out set of ideas. His book, much of which he wrote during his 
last illness, is written clearly and in a compelling style. It remains to be seen 
how much of his detailed work will survive, but his influence is everywhere. 
If he had lived, I have no doubt he would have come to dominate the field. 
His early death was a great loss, both for the subject and particularly for his 
close friends. 

March,1990 

Collaborator and friend, from Cambridge (UK) to Cambridge (USA) 

Kieckhefer Professor 
The Salk Institute 
San Diego, California 

315 



Whitman Richards 

I can't remember exactly when I first met David Marr. Perhaps the first 
time was when he and Tommy Poggio attended an NRP meeting on Neuronal 
Mechanisms in Visual Perception in December, 1973, where they spoke about 
"Levels of Understanding." I know for certain that this first brush made little 
impact. My own work on stereopsis was going very well then, with the 
discovery that stereo resembled color vision in having three distinct "channels" 
or "pools," anyone of which could be absent in an observer, just as in color 
blindness. About that same time, or perhaps a year or so later, a squash friend 
from Cambridge asked what I thought of Marr's work. Somewhat embarrassed, 
I was motivated to review the cerebellar and archicortex papers, but again 
gained little profit because they were remote from my psychophysical studies. 
It would be some ten years later that I would return again to David's paper on 
the archicortex, and, with Aaron Bobick, see its relevance to perception. In 
the meantime, others, of course, had already come to appreciate Marr's early 
understanding of the cerebellum. 

In 1975 David had targeted stereopsis as an information processing mod
ule for study. He needed someone to critique his ideas from a psychophysical 
viewpoint. I recall vividly our first real encounter, where he challenged me 
to explain my "three pool" model of stereopsis with sufficient precision that it 
could be run on a computer. This challenge struck home, for it then became 
quite clear to me that simple circuit or block diagrams were woefully inad
equate. Left unspecified were a host of "details" such as the features to be 
matched, the hemisphere of eye that serves as the base representation, epipo
lar problems, false target elimination, etc. From that moment on, David had 
hooked me on the value of a computational approach to perception. 

During those early years, my role in Marr's group was largely as a psy
chophysical bangboard. The most profitable exchanges were at the Newbury 
steak house just across the river in Boston, where we would walk for lunch. 
(Later, the original Legal's restaurant at Inman square became a favorite.) We 
usually loosened up with a gin and tonic, followed by a $2.00 steak and fries 
special, with coffee as an antidote for the appetizer. On a hot day we'd pick 
up a cone at Steve's across the street before heading back over the Charles 
River basin to MIT. Most of our discussions revolved around stereopsis-the 
hottest problem, the size and number of channels, early primal sketch issues, 
and later, object recognition and why "segmentation" was misguided. At these 
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lunches, we rarely spoke about anything but vision. The one marked exception 
was flying, which had become his principal hobby. 

The uniqueness of these times is very difficult to express in writing. There 
were a dozen or so in Marr's group. The energy level, excitement, and dedica
tion was exceptional. When David was not in Thbingen with Tommy Poggio, 
we would meet weekly to discuss each individual's progress or special topics 
such as the Retinex, short and long range motion, grouping, axis finding, and 
the building of a vision machine. Once a month or so a visitor came through 
and offered their latest ideas. Typical of MIT, the visitor was battered with 
questions from the small audience, each anxious to find the soft spot. Yet, 
after all of us had had our chances, David would sum up the work in a few 
sentences and then proceed to point out any serious weakness that all of us 
had missed. He had a remarkably clear view and an exceptional ability to cut 
to the quick in a Mozart-like manner. 

In late 1976, we approached NSF with a proposal called "Vision Algo
rithms and Psychophysics" which was to be the principal vehicle for funding 
(with AFOSR) of the more biological aspects of the group's work. (The 
machine-oriented aspect was provided by the AI Lab through the efforts of 
Patrick Winston and Mike Brady.) This was a significant award not only be
cause of its interdisciplinary nature, but because it proposed a specific strategy 
for attacking the visual system that included both computational and experi
mental components. While writing the introduction, we realized that the "three 
levels" of understanding could also be recast as a scientific protocol for attack
ing a vision problem: Step 1: Propose a computational theory; Step 2: Write 
an algorithm embodying the theory; Step 3: Check out its (biological) merit 
with psychophysics (or neurophysiology). This simple paradigm was used first 
on the stereoscopic problem, leading to a rejection of the cooperative model 
by psychophysics in favor of the later noncooperative models culminating with 
the Grimson-Marr-Poggio version. The impact of psychophysics on this de
velopment was critical, and a major benefit of the interdisciplinary approach. 
(As an aside, a visit by the two Johns-John Frisby and John Mayhew-who 
presented extensive psychophysical findings in support of matching features 
other than zero crossings, also had caused considerable impact, especially on 
the development of later models.) Unfortunately, over the course of the years, 
as the problems became harder, the enforcement of the 1-2-3 method became 
lax, and often we did not get closure when studying a problem. However, I 
believe the best theses of the group were those that completed at least one 
iteration of these three steps. 

Ouring the next seven years, the activity level of Marr's vision group was 
prodigious. In this period not only was stereo seen from a different, more 
computational viewpoint, but also motion, color, edge detection, some aspects 
of object recognition, and the age-old grouping problem. Our confidence was 
enonnous (and unfortunately, overbearing to many!). In October, 1977, we 
decided to invade the annual Optical Society meeting in Toronto to "show the 
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others just how vision should be studied." I arranged a symposium on "Vision 
by Man and Machine" that ended with Marr as the key speaker. (At this 
time. David was still relatively unknown.) Unfortunately. the presenta- tions 
were late starting and ran too long. leaving David only half his allotted time. 
So with the approval of Lorrin Riggs. the presider. we arranged for David 
to complete his talk in the technical discussion session that evening. This 
was a disaster! Already most were irritated by our arrogance. and the last 
straw was for the technical discussion period now to be replaced by still more 
lectures from MIT. Leo Hurwich spoke strongly against this policy change, and 
left in protest. Nevertheless, a majority stayed, realizing that no one leaves 
a technical discussion session unscathed. Quite true! Richard Blackwell, 
always ready with penetrating questions, led the attack, targeting Michael 
Riley's work on texture boundaries. (Michael was the youngest member of 
the group, just in the process of completing his bachelor's thesis on texture.) 
Finally, the discussion moved away from the MIT papers, and eventually 
the discussion/critique session ended. Afterward, I recall that we all, still 
undaunted, headed off to a restaurant opposite the Needle, where we had a 
grand evening, still convinced of the merit of our new computational wave. 
Now, the Optical Society hosts one of the most positive and supportive groups 
espousing computational approaches to biological vision. 

The reaction of the Optical Society to our approach was not unusual. How
ever, by 1980 there was a significant shift in the balance of work on vision 
in favor of computational approaches. David's activities were stirring interest, 
and groups at other universities and laboratories were developing interdisci
plinary groups similar to ours, with competing ideas. Unfortunately, on occa
sion this led to some strain, but overall the competition was a very positive 
factor, for it challenged us to remain productive and thorough. Within MIT 
the recognition of David's work of course came earlier, and in 1977 there was 
sufficient interest that a faculty appointment was proposed in the Department 
of Brain and Cognitive Sciences (then inappropriately named "Psychology"). 
This was to be a joint appointment with the AI Lab, where he was currently a 
Research Scientist. As with all new faculty positions. the candidate must give 
a "job talk" to the faculty. David elected to speak on one aspect of his Primal 
Sketch paper, namely to show what would be required for a so-called feature 
detector like a bar mask ("simple cell") to assert the presence of a line. The 
talk was another disaster. First, most of the audience did not see why, in the 
first place. a simple bar mask couldn't report the presence of a single line (a 
collection of such masks is required). And second, the mathematical details 
and computational recipes were boring to most experimental psychologists, 
and especially so to the philosophers! However, in spite of the negative recep
tion to his talk, there were enough respected supporters for David to get the 
appointment. The result was formal recognition of the potential of building 
a bridge between AI and Psychology-a bridge that David worked hard to 
maintain while at MIT. 
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The future looked bright and conquerable in 1977 until December. Then 
we learned that David would probably have only another three years. It may 
be hard to understand that these years, although painful, were also rewarding, 
exciting, and at times a lot of fun. Most of the dark days were spared us, 
for David now spent much time in England for treatment and recovery with 
his parents. Ideas still flowed at a fast pace; we had tremendous momentum. 
In one three-year span alone there were 120 publications. During this period 
David brought much of this together in his book Vision, ably assisted in the 
transcription by our secretary Carol Bonomo, who was the world's fastest talker 
and a perpetual optimist. We were all excited by the prospect of David's 
book, recognizing it would be a milestone and hence eager to learn of its 
progress. We looked forward to David's return and to the days he would lead 
our research meetings, which continued even in his absence. Any little victory 
was celebrated, reserving lobsters and champagne for special occasions. Now, 
with Lucia, the simple things of life were enjoyed, which previously had often 
been passed by. 

Yet the vision never wavered. David's principal aim was to unravel the 
mysteries of the human mind, choosing as his route the understanding of the 
information processing carried out by the human nervous system. To this end, 
David accomplished more in a few years than most of us can in a lifetime, and 
set in motion a wave for the future. He believed that these first steps toward 
understanding how our brains work would eventually "change man's image 
of himself, and that most current philosophies of life and thought would have 
to undergo a profound transformation to deal with this new knowledge." His 
work represents the beginnings of this great new adventure. 

March,I990 

Colleague, friend and "guardian angel" who protected David from bureau
cratic nuisances. 

Professor 
Department of Brain and Cognitive Sciences 
Massachusetts Institute of Technology 
Cambridge, Massachusetts 
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Tommy Poggio 

I met David for the first time in the fall of 1973 when I came to Boston 
to chat with Marvin (Minsky) at the Artificial Intelligence Lab. Boston was 
wet, foreign and dark. David came out of his office in the "playroom." We 
exchanged a few words. His name was known to me, of course, because of 
his cerebellum paper, which was highly praised by many VIPs in the biolo
gical sciences. 

Three weeks later I was again in Boston for an NRP meeting. David was 
also at this meeting. We had both been invited at the last moment and were 
not scheduled to speak. David sat quietly the whole time, listening to what 
people were saying about psychophysics and physiology. John Dowling joked 
with him about David's red Mustang. Back at the AI lab for the first time, 
a scientific conversation took place about the ideas on the retina he was then 
developing. I was the messenger of an invitation for him to give a series of 
lectures at the Spring course on Biophysics in Erice, Sicily. I was happy that 
he accepted immediately, and so our next meeting was already arranged. 

Erice is a beautiful old village on top of a mountain overlooking the 
Mediterranean sea. For two weeks the participants-among them Mike Fuortes, 
David Hubel, Bela Julesz, John Szentagothai, Sir John Eccles, Michael Arbib-
gathered together mornings and afternoons. At lunch and dinner we divided 
into small groups to explore the five restaurants of Erice, all above scientific 
average. There were also several expeditions to the various beaches down the 
hill. I was impressed and obviously pleased by the interest and the respect 
David had for my lectures and my comments. David's approach was by far the 
most unconventional and for me the most interesting. We discussed at length, 
dining, lying on the beach. 

One year later, I came to MIT to the AI lab to work with David, to clear 
my head and decide what to do next. For the first week or so I was left 
relatively alone, free to play with Macsyma and Lisp. I spoke about the visual 
system of the fiy at David's vision seminar. It went well. After the lecture 
we had a beer together in Harvard Square. David was very happy about my 
lecture. His enthusiasm, his praise, were contagious. I felt great and alive! 

Our lunches together-at the Tech cafeteria-were still trying to define 
the nature of our approaches to the problem of the brain. Our views were 
already very near and converged rapidly. 

In the meantime, I was understanding more and more David's work on 
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vision. In retrospect it took a lot of time. Really new ways of thinking cannot 
be understood at once. A thousand different facets must be communicated 
with the magic of a language and the fascination of a style. David's papers 
on early vision all have these rare properties. 

A good way to understand something new is to try to criticize it. playing 
the role of the advocat du diable. In doing this with David. I found myself 
at some point defending recurrent networks. David formulated the challenge 
of solving stereopsis in his way. He told me in terms of his analysis of 
the computational problem of stereopsis which "cells" had to be excited and 
which ones had to be uninhibited. On the back of a paper napkin at the 
Tech cafeteria I wrote down the obvious equations for the recurrent network. 
I claimed that it would be very easy to prove its convergence. Liapunov
like functions constructed from conditional expectations was what I had in 
mind. On the same evening. back at the lab. after a dinner at the Greek 
restaurant in Central Square. David programmed the recurrent algorithm which 
seemed to work well in I-D. The day after. the 2-D version of the algorithm 
gave encouraging signs of liking Julesz' stereo grams. One week later. when I 
had finally understood David's computational analysis. I also realized that an 
analysis of the convergence of the algorithm was going to be very difficult. 
All general stand- ard methods failed. When I told David that I had to tum to 
the last resort-a probabilistic approach-he teased me. The teasing became 
even more intense when I had to write a program to compute the result of the 
probabilistic analysis. 

In the meantime. creative life was exciting. despite the headaches from the 
convergence problem. We started working closely together. It was a fantastic 
experience. David was very sharp; he had clear ideas about almost everything 
and they were usually right. At that time I was also slowly discovering various 
facets of him. He was passionate about music-Italian opera-for instance. 
I heard him improvising a few times on the piano. He played with ease 
and emotion. I was impressed. I had to wait another year. however. before 
experiencing him playing his instrument. the clarinet. 

During those three months in Boston I often went sailing on the Charles. 
But the really new experience was flying. David used to fly and my presence 
triggered anew this passion. I took a few flying lessons. Several times we flew 
together with a rented Cessna. On those occasions I used to stay overnight at 
David's house. Early in the morning we heard the weather forecasts and then 
drove to Hanscom where we would get a plane from Patriot Aviation for the 
day and share expenses. One of the most beautiful flights brought us to the 
Lakes Region. The sky was clear and deep blue as the water beneath us. We 
landed on a grass strip on a little island. It was very quiet. We walked to the 
water a few hundred yards away. There we sat for a few hours. We reviewed 
what we had done on stereopsis and decided to write a short paper for Science 
about it. David already had the opening sentence and the overall formulation 
was clear. We just had to sit down the next day and write. There was only 
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one white sail on the lake. Blue air. Green, and blue, and silence. David was 
happy and relaxed. So many more ideas and flights and forests and lakes were 
waiting for us! 

On our way back to Hanscom the weather changed quickly. The rain 
started. On the final approach, David was very tense, his mind totally con
centrated on the plane, the control tower and the instruments. Several people 
were afraid of this concentration, which they misled as a sign of unfriendliness. 
I knew well the alertness of David's mind when he was discussing science, 
lecturing, playing music or flying I could physically feel the presence of his 
thoughts, his total concentration. There was often an incredible "intensity" in 
his thinking. His reactions and his answers were then incredibly quick and at 
the same time crystal clear, sure and sharp. Our landing on the wet field at 
Hanscom was perfect. Five minutes later the airport closed down. 

On another flight expedition to Nantucket and Martha's Vmeyard, we got 
sunburned on the beach. Two days later, red like two lobsters, we gave a 
lecture on stereo at Harvard Medical School. We were making grand plans of 
flying across America for one month or so. Life was going to be a lot of fun! 

A few weeks before my return to Gennany, we were right in the middle 
of bicentennial time. The tall ships were coming into Newport on their way to 
New York. On the weekend (July 2nd) the weather was beautiful and David 
decided to fly down to Newport. We came above the bay with our Cessna 170 
to find out that the blue sky was filled with flying objects. Balloons, choppers, 
a Goodyear "blimp" and many other planes. Tower instructions were to circle 
at x feet above the tall ships. The surface of the sea was covered by little 
white traces, glittering under the sun. There were hundreds of boats of all 
sizes that came to meet the tall ships. The scenery was superb. It was simply 
great, circling above the ships, together with so many other planes and boats. 
Down in Newport airport hundreds of planes were scattered allover the field, 
many of them old timers, happy and colorful. In the afternoon the weather 
deteriorated quite suddenly. There was a stonn and ghastly winds. Back to 
the airport, we thought for a while to leave the plane and go back to Boston in 
some other way. David phoned several times to inquire about the weather at 
Hanscom. It was clear and so he decided to start. Airborne again, drops of rain 
slashed across the windscreen until we came from the low clouds out in the 
sun. It was the eternally beautiful weather to which poets have accustomed 
us. But the feeling in a small plane without instruments is quite different. 
David, however, was relaxed. There was nothing to do but fly straight and 
wait for the clouds to dissolve. Near Boston, the ground started to appear at 
short intervals through foggy holes in the white carpet above which we were 
flying. When we landed at Hanscom the sun was setting down against a clear 
sky. 

It is not by chance that my deep friendship with David was associated with 
flying together. Flying and friendship, joy and beauty, freedom and living are 
things that are made of the same substance. I did not fly anymore with a light 
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plane after David got ill. I don't know whether I am going to do it ever again. 
David came to Tubingen in the beginning of 1977. He stayed in the guest 

room of the Institute and walked over to our home every morning for breakfast. 
We worked on the probabilistic analysis of stereopsis, every day discovering 
some more difficulties. David wanted us to think about a theory of human 
stereopsis. Eye movements were important. At that time I had just heard from 
Jack Cowan of his and Hugh Wilson's work on spatial frequency channels. 
David brought Mayhew and Frisby's Nature paper on rivalrous stereograms. 
These two ingredients, together with the refusal of our first algorithm and 
the need of eye movements, formed our starting point. We read everything 
on stereo from Barlow's seminal paper to all of Julesz'. At some point we 
were suffocating in my office under piles of bound volumes of the Journal of 
Physiology and Vision Research. We even did some informal experiments. 
At the end of the three weeks we had written three-fourths of the analysis of 
the cooperative algorithm paper (I had to write the final quarter with Gunther 
Palm) and had some rough ideas about a new model of stereopsis. 

David brought his clarinet. I introduced him to Eric Buchner, a good cello 
player. With another friend, a very good pianist, they played together several 
times. All of us were deeply impressed by David's music. During David's 
visit in Tubingen, the members of the Scientific Curatorium of the Institute 
came one day to meet with the members of our Institute. In the evening after 
dinner, David and other friends played one of Beethoven's Quartets. I never 
was so deeply struck by music as I was that evening by David's clarinet. It 
was so beautiful and perfect, so full of emotion as to be almost unbearable. 
The audience-it was quite clear afterwards-had a similar experience. 

He was quite alone in his work at that time. He did not have anybody 
back at the lab with whom to work in the same way we did. I suggested to 
him to try to work with Shimon and share with him responsibilities of the 
group and of the students. At that time I knew Shimon only superficially but 
my feelings and what David thought about him and his work left no doubts. 
David promised he would do it. It was an easy promise to fulfill. He also 
promised several times that he would finally get out of his "craziness" and his 
"women problem." But he never managed until he met Lucia, one year later. 

Those three weeks in Tubingen were a lot of fun; life was full, warm and 
happy. 

In June, 1977, David again came to Tubingen. He stayed a full month 
in "his" room in the Institute. We worked hard, developing our stereo ideas 
and writing them down at the same time. The days were productive. The 
theory took form. Through all my work with David it was often impossible to 
say who had a specific idea; almost everything came out from discussions and 
thinking together and reciprocal criticisms. David had the power of vetoing: 
if I was unable to convince him, that was it. He also had the ability of keeping 
us right on course. 

I remember the origin of part of the zero-crossing idea. Coming out of 
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the cafeteria I expressed my uneasiness about taking zero-crossing and peaks 
of the filtered images, since filtering the images was roughly equivalent to 
making their second derivative zero-crossing correspond to extrema of the 
first derivative. This made sense. But peaks were something strange, at least 
at this level. For simplicity, and because of the relations between derivatives, 
difference of gaussians and bandpass channels, I wanted to flush peaks and 
retain zero-crossing only. David thought a while and then decided that-for 
reasons I did not think of -the idea was not too bad. It is still unclear whether 
he was right 

We finished our manuscript right on schedule with some time left to take 
Polaroid pictures of the two authors sitting with the title in one hand and 
stereoglasses in the other. (In the original draft of the manuscript there were 
a few lines warning the secretary that at that particular point we had just had 
too much Courvoisier and therefore the following sentences were going to be 
particularly immortal.) 

The whole month was continuous, concentrated, happy playing. As so 
often with David, science was fun and freedom! I often ask myself why 
David's presence had this fascination, this incredible power. I still find it very 
difficult to give a full answer. But I know that part of it was the clarity and 
especially the force of his mind, of his thoughts. To think with David was for 
me an inebriating experience, a special feeling of playing and creating. Skiing 
beautifully downhill on a sunny day in the Alps gives me some hint of this 
intellectual fun. 

Werner (Reichardt) organized a Neurobiology meeting for the 500 years 
of Tubingen University. I had helped in setting the frameworle of the lec
tures. Many friends came: David, Vincent Torre, David Hubel, Dennis Baylor, 
Emilio Bizzi, Gunther Stent, Jack and Max Cowan, Bela Julesz and others. 

David's lecture was beautiful, crystal clear, ajewel of intellectual brilliance 
and improvisation. We had the feeling that the world was there for us to play. 

In the middle of October I flew to Toronto for the annual meeting of 
the Optical Society of America. I was invited by Whitman Richards who 
organized a special session. The whole MIT VISion group came. It was fun, 
although short and chaotic. A couple of days later I flew to Boston to worle 
with David for three weeks. It was a fight with USP and probability (again!). 
At the end of my stay, we drove together in a rented car through a colorful 
New Jersey down to Bell Labs. I gave a lecture for Bela Julesz and his small 
group on a topic that was completely uninteresting to them, synapses. When 
we mentioned our probabilistic analysis of zero-crossings, Bela named some 
mathe- maticians at Bell Labs who had worleed on somewhat similar topics. 
Among them there was a name that we did not know, Ben Logan. We asked 
for the paper and Bela sent his secretary to get reprints. Glancing through 
it I saw that his theorem was very suggestive of our notion of independent 
bandpass channels. In the hotel and later, in the car, I tried to convince David, 
who remained quite skeptical. The zero-crossing idea and its connection with 
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Logan's theorem is of the kind I immediately like. Unfortunately, such ideas 
are often too nice to be correct and David was certainly right in his skepticism. 

David's closest collaborator and great friend. 

Uncas and Helen Whitaker Professor 
Brain and Cognitive Sciences 
Artificial Intelligence Laboratory 
Co-Director, Center for 
Biological Information Processing 
Massachusetts Institute of Technology 
Cambridge, Massachusetts 
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Shimon Ullman 

When I came to MIT as a graduate student in the summer of 1973, David Marr 
was already there, having arrived from England a couple of months before to 
work at the AI lab. This was extremely fortunate for me. I came to the 
AI lab with the intention of studying brain functions, and in particular visual 
perception, using mathematical models and computer simulations. From the 
limited literature I had seen about MIT's AI lab I had the impression that this 
was the main focus of the scientific activity there. As it tumed out, however, 
the emphasis at the time was primarily on machine intelligence, and nobody at 
the lab was actively involved in the study of biological brain functions. When 
I started to talk with David soon after my arrival at the lab, it immediately 
became clear to me that he was the person I wanted to do my Ph.D. work with. 
We had similar interests, and a similar background that started in an interest 
in pure mathematics, then shifting to biology, with an interest in the brain and 
its functions, and then to artificial intelligence in an attempt to model some 
aspects of the human visual system. David could not be my formal thesis 
advisor at the time, since he was not yet a faculty member. Soon, however, he 
became my unofficial advisor, with Marvin Minsky's tacit blessing. Although 
he was my advisor, he was only slightly older than me, and after a short while 
we also became personal friends. 

Working with David was always challenging, exciting and rewarding. It 
was hard work, but it was a lot of fun. We had the feeling that our small group, 
centered around David (that included Whitman Richards, Tommy Poggio and 
a number of David's students), was creating something new and exciting. 
Around the time I had finished my Ph.D. work, David and I worked together 
extensively for a period of a few months on some problems in motion percep
tion, and later wrote a paper on this work. It was for me the first, and in fact 
still the only time, that I wrote a paper with someone in this mode, actually 
sitting together for long hours at a time, composing sentence after sentence, 
and discussing each paragraph as we wrote it. The experience was very intense 
and enjoyable. I think we both enjoyed it, and we were both exhausted by the 
time the paper was finished. 

David was extremely quick, and expected others to be equally quick and 
alert. We once went down to Washington, D.C., to meet one of the sponsors 
of our work at the lab. We discussed with him some of our vision work, and 
then he asked if we had any views regarding new directions his agency should 
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perhaps be looking into. David snapped, "grow wires," without offering any 
additional explanation. I knew what he meant: he became interested at the 
time in possible hardware implementation of vision devices, and thought that 
the restrictions imposed by standard semiconductor technology on the number 
of interconnections among functional elements (much smaller than the number 
of connections among neurons in the brain) was a severe limitation on the way 
to producing compact and practical vision devices. I could see the puzzlement 
in the other person's expression, but David saw no need to elaborate the issue 
further. 

David's illness came as a shock. He called me from the MIT infinnary on 
the day he was diagnosed with the disease, and asked me to close my office 
door. He then said briefly and without any introduction that he had acute 
leukemia. The period that followed was very painful. 1\vice during his illness 
we thought that there was some hope. The first was during his first remission. 
Everyone hoped that perhaps, by some miracle, the disease would not come 
back. We took a vacation together in Vennont, and he resumed his work with 
his usual intensity. After a period, he felt weaker and went to the hospital for 
some tests. He came to my office to call the hospital about the tests' results, 
and found out that it was indeed a relapse. We sat in my office for a long 
time, devastated by the news. 

The second hope came when a physician in Cambridge, England, had 
some initial success with a vaccine against leukemia. David was hospitalized 
in Cambridge. He was very weak, and worked on this book. When I came 
to visit, I met the physician, who was very supportive and promised to help 
as much as he could. When David came back to the U.S., Tommy Poggio 
managed to bring some of the Cambridge vaccine with him, but it was too late 
to actually use it (and it did not prove effective in later clinical trials anyway). 

The final period, when David already suspected that the battle was lost, 
was in fact a quietly happy one. He was happily married to Lucia, and was 
working intensively on his book and a number of other projects. In his prema
ture death, the scientific world lost an intellectual giant, who, in a short time, 
made a huge impact on his field. We also lost a wann, brilliant, exciting, 
unusual friend. 

March, 1990 

Colleague, studentt, close friend 

Professor 
Artificial Intelligence Laboratory 
and Department of Brain and Cognitive Sciences 
Massachusetts Institute of Technology 
Cambridge, Massachusetts 
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Ellen Hildreth 

When I first came to work with David, I was overwhelmed by him; by both 
his brilliance as a scientist, and his personal magnetism. It was perhaps a year 
before I could really feel comfortable with David. We have an expression for 
being overwhelmed by something, which is being "blown away." I sometimes 
had visions of myself going to talk with David, and being whooshed out of 
his office, chair and all, by a big gust of wind, and hanging on for dear life to 
the edge of his door, in order to hear every word he had to say. You always 
remembered the things David would tell you; it was often the case that you 
wouldn't understand him at first, but something about the way he said things 
would make the words stay in your mind, and hours, days, even weeks later, 
bright lights would snap on in your head, as you figured out what he meant 
by his cryptic message. 

David was always very generous with his ideas; he'd solve half the prob
lem for you, and then later insist that you did it all yourself. Ideas would 
come to him any time; sometimes the phone would ring at 9:00 on a Sunday 
morning (only my mother, or David would call at 9:00 Sunday moming)
David would greet us with a glorious "Hello!" and "I was just wondering if by 
chance you might have planned to come into work today; I have a new idea 
you might like to try out." Whether I had planned to come in or not, without 
a moment's thought, I'd answer "Of course, David! I was just on my way out 
the door!" 

It was the enthusiasm that David instilled in us that made us want to do 
these things; everything we did was so important to him, so vital. This always 
made us feel somewhat under pressure; it wasn't a pressure that David placed 
on us directly-his enthusiasm just made us want to be always working madly 
at our research. And he was always so busy himself, you felt bad if you 
weren't working at least as hard. 

David always thought big, and tried to teach his students to do this as 
well; it wasn't enough to study an aspect of stereo, a subproblem of motion, 
or a particular type of texture problem. You gritted your teeth, and went in to 
tackle the whole problem of stereo, motion or texture head on. He'd always 
prefer to present a "whole theory" of something (which might be a bit lacking 
in detail), than to present an explanation for any part of a problem. 

He'd have little "favors" for you to do make a glossy of something, a 
demo, run an experiment and was so overly courteous and charming in the 
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way he asked. With a twinkle in his eye, he'd ask us to do it whenever you had 
the time-there was no rush, take a week, a month, whatever. The moment 
he was out the door, you'd drop everything, work on his project non-stop, and 
have the results on his desk the next day. (Do you suppose he knew you'd do 
this?) 

Getting back a paper with David's comments was really something that 
took getting used to-we were never quite sure how to interpret the "GUF
FAWs" and "tee hees" and "oh really?'s", but the bright, red, bold "rubbish" 
and "No!'s" were a little more obvious-David could really be devastating at 
times. We were all very much "in tune" with David's moods. If he was in a 
jovial mood, so were we, but if he was unhappy about something (particularly 
if it was something we did), our emotions could be destroyed for days. 

David meant so much to us, and his teachings were so important, but I 
must admit that I was quite taken aback one day when a visiting scientist asked 
me if David was like a "guru" around the lab, because that he was not. He was 
human, like the rest of us, and could be wrong sometimes too (he just made 
mistakes with so much more style than the rest of us). What he believed in, 
he believed very strongly, but if you presented a convincing argument for the 
other side, he'd change his mind. He trained his students to stand on their own 
two feet, and be their own people-sometimes playing the devil's advocate, 
just to get us to argue with him. 

David held a strong presence in the lab; you always knew when he was in; 
the word would get around. Someone would spot him up at the XGP (printer), 
or wandering down to the Xerox machine, or logged in, or would notice that 
his office door was shut (a sure sign that he was both in, and not wanting to be 
disturbed), and would spread the word around that David was in. He'd make 
a point of popping in from day to day to see what you were up to, so you 
had to be sure you looked busy. We'd feel horrible if he caught us chatting 
in the playroom or bullshitting about politics in the office. He wasn't a slave 
driver by any means (although we used to kid him about the 30-foot bullwhip 
he kept hidden in the office); on the contrary, he was one of the most gentle 
and gracious people I have ever met (second only to his mother). He was just 
a very stimulating person; the energy level in the lab would suddenly double 
when David walked in (it would quadruple if Tommy [Poggio] was around 
too we used to refer to the two of them as the "Dynamic Duo"). 

I had worked with the Logo group for three years before I came to work 
with David. I came to him knowing almost nothing about human vision, and 
very little in my background to offer, except some applied math. But that didn't 
matter. He felt it was important for a person to have some background in an 
analytic discipline, but beyond that, all that was necessary was an eagerness 
to learn; everything else would come. It took a tremendous amount of time 
and patience for David to work with someone with so little background in his 
field of research, and I just can't say in words how much I admire David for 
having that time and patience; it's helped me to establish my life's work, and 
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to develop me in many personal ways, as well. 
The quiet courage with which he faced the last three years was very hard 

on us. David would try so hard to not let his illness interfere with his work 
and interacting with his students. He always kept things to himself; the time 
that we had with him was so valuable that every moment was spent talking 
about vision, and how we were doing in our work. His students were always 
so important to him. When he had so many more important things in his life 
to be concerned about, he'd be worrying about the Vision group. He always 
worried about me much more than I worried about myself. But in the times 
that I've had with David, he's given me far more than I need to keep going 
for a lifetime. 

Student, collaborator, friend. 

Associate Professor 
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Co-Director, Center for 
Biological Information Processing 
Massachusetts Institute of Technology 
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