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Introduction

David Courtnay Marr was born on January 19, 1945 in Essex, England. He
went to the English public school, Rugby, on scholarship and between 1963
and 1966 studied mathematics at Trinity College, Cambridge University where
he obtained his B.S. and M.S. degrees. Rather than pursue a Ph.D. in math-
ematics he preferred to switch to neurophysiology under Giles Brindley. His
education involved training in neuroanatomy, neurophysiology, biochemistry,
and molecular biology. Marr’s Ph.D. work resulted in a theory of the cerebel-
lar cortex, the essence of which became “A Theory of the Cerebellar Cortex,”
reproduced in Chapter 1 of this volume with a commentary by Thomas Thach.
He wrote a short paper subsequently with Stephen Blomfield, “How the Cere-
bellum May Be Used,” (Chapter 2 in this volume with commentary by Jack
Cowan). After obtaining his Ph.D., David Marr accepted an appointment to
the scientific staff of the MRC Laboratory of Molecular Biology in Cambridge
in the division of Cell Biology under Sydney Brenner and Francis Crick.

Two other major studies, “Simple Memory: A Theory of the Archicortex”
(Chapter 3 in this volume, commented on by Bruce McNaughton and David
Willshaw) and “A Theory for Cerebral Neocortex” (Chapter 4 in this volume
and commented on by Jack Cowan) followed the cerebellum study.

“Truth, I believed, was basically neuronal, and the central aim of re-
search was a thorough analysis of the structure of the nervous system’ (Marr,
1982). This view, combined with his initial training in mathematics, shaped
the methodology that Marr applied in these three studies:

For a mathematician, understanding (or explanation) is all, yet in science,
proof is, of course, what counts. In the case of Information-Processing de-
vices, understanding is very important; one can know a fact about a device
for years without really understanding it, and part of the theoretician’s job is
to place into a comprehensible framework the facts that one already knows.
I still think that the cerebellum is a good example. For sure, the idea that the
parallel fibre — Purkinje cell synapses — might be modifiable may not have
been very difficult to arrive at, and other theories have since incorporated it;
but that surely is only a part of the story. I found the real impact of that
story to lie in the combinatorial trick. That is, this granule cell arrangement,
with associated inhibitory interneurones, had been right in front of people’s
eyes ever since Cajal (modulo inhibition and excitation) but its significance
had not been appreciated. Of course my theory might yet be wrong, but
if it is right, then I would regard a major part of its contribution as being
explanatory. And also, that that is almost inevitable.
from a letter to Francis Crick, 1977
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Marr’s early work was aimed at understanding cortical structures in func-
tional terms, and the mathematical framework allowed him to make several
predictions that, especially for the cerebellum theory, inspired many experi-
mentalists over the years. For brain theorists, Marr’s models of the cerebellum,
archicortex, and neocortex remain models of simplicity, mathematical rigor and
explanatory power.

In 1973 David Marr came to the Artificial Intelligence Laboratory at MIT,
first as a visiting scientist for a few months, but since “the facilities and the
people were really impressive” he decided to stay on for “a year or two.” At
MIT he began working on vision. So, he writes to Giles Brindley in October
1973:

I turned to vision when I arrived here [MIT], hoping that insight into the
functions you had to perform to recognize something, together with the de-
tailed neurophysiological knowledge and an unexcitable disposition, would
be capable of illuminating many questions that are surely not vulnerable to
the microelectrode.

In December of the same year, his decision to break with the previous
research was stated clearly in a short letter to Brindley:

I do not expect to write any more papers in theoretical neurophysiology —
at least not for a long time: but I do not regard the achievements of yours
1969, or my papers as negligible. At the very least, they contain techniques
that anyone concerned with biological computer architecture should be aware
of, and I shall be very surprised if my 1969 or 1971 papers turn out to be
very wrong.

Influenced by Hom’s algorithm for computing lightness and by Land’s
retinex theory, Marr began thinking about the functions of the retina. His
work in vision took a fresh approach influenced both by the enthusiasm in
the then new field of artificial intelligence and in neuroscience. Cambridge,
Massachusetts was already an intellectual Mecca where things were happening,
where communication was fast and the work was first rate:

T have just spent a week with Jack Pettigrew, who is a very bright and exciting
person! He is studying the development of the visual cortex, and has the most
extraordinary results! The features coded for really do depend on what the
kittens see. He was full of the results you mentioned, and especially those
of Zeki. Apparently there is a stereo area, a movement area, as well as a
colour one. I am writing a short summary of the computations performed by
the visual cortex.
Marr wrote to a Cambridge friend, May 1973

The same year in September he wrote a long and thoughtful letter to
Sydney Brenner, his intellectual mentor and friend:

I have been thinking about the future. Presumably, as a result of the Lighthill
report, Al must change its name. I suggest BI (Biological Intelligence!).
I am more and more impressed by the need for a functional approach to
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the CNS and view it as significant that the crucial steps for the retina were
taken by Land, the only scientist in the field actually concerned with handling
real pictures (in his case on colour film). The moral is that if you wish to
do vision research, you must have the facilities for taking, recording and
processing real live pictures, to see if what you think gets results actually
does. I see a bright future for vision in the next few years, and am anxious to
stay in the subject, doing my own Al research as well as acting as interface
with neurophysiology.

He began thinking of a computational approach to vision. The motivation
and the essence of the new approach were clear to him already in 1973, as
he replies to Dunin-Barkovski’s request for permission to translate his earlier
papers into Russian:

It would be fun to have some of it translated into Russian. My present
opinion of my earlier work is, however, that even if it is correct, it does not
take one much further in the study of how the brain works than, for example,
the study of more obviously physical phenomena like synaptic transmission,
or the conduction of nervous impulses. The reason why I believe this is that
this part of my work has to do more with computer architecture than with
biological computer programs! 1 have studied how some basic “machine-
code” instructions can be implemented in nervous tissue; but these studies
tell you rather little about how the rest of the brain uses these facilities —
e.g., what is the overall structure of a particular motor program for picking
an object up, or for throwing a ball. It is the second kind of question that I
am now interested in.

Neural net theories, fashionable then in theoretical biology, had severe
limitations that Marr clearly expressed in a review of approaches to biological
information processing:

The neural net theory states that the brain is made of neurons, connected either
specifically (for small structures) or randomly (for larger ones). Hence, in
order to understand the brain we need to understand the behavior of these
assemblies of neurons. Here there are two problems. First, the brain is large
but it is certainly not wired up randomly. The more we learn about it, the more
specific the details of its construction appear to be. Hoping that random neural
net studies will elucidate the operation of the brain is therefore like waiting for
the monkey to type Hamlet. Second, given a specific function of inevitable
importance like a hash-coded associative memory, it is not too difficult to
design a neural network that implements it with tolerable efficiency. Again,
the primary unresolved issue is what functions you want to implement and
why. In the absence of this knowledge, a neural net theory, unless it is
closely tied to the known anatomy and physiology of some part of the brain
and makes some unexpected predictions, is of no value.

Science, 1975, vol. 190 pp. 875-876

The reactions to this harsh view were mixed as we read in this computer
mail message from Kanerva:
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I admire your courage in submitting to print your considered, and critical,
views on theories of biological information processing (Science, 1975) and
on AL You probably mentioned on the phone of their getting you into some
trouble, but I just wonder who really is in trouble. As I see it, you are
not inclined to build your house on sand, and that you question whether
researchers by and large consider what foundations they are building on or
what the structure, if finished, is supposed to accomplish. My feelings are
with you, but I find justifying anything — beyond justifying it to myself —
extremely difficult. And yet that is what one has to do.
Pentti Kanerva, (15 March 1977)

In the meantime Marr’s work on the retina was progressing very nicely:

For the retina, I am not wholly responsible. Nick Horn, co-director of the
vision mini-robot project, came up with a beautiful algorithm for computing
Land’s Retinex function [see J. Opt. Soc. Am. 61 (1971) pp. 1-11]. It is not
quite the actual one actually used, but was near enough to enable one to take
the last steps. I am busy tying up all the detailed anatomy and physiology
now, and am very hopeful that the whole thing will turn out to be very pretty.
But the retinex is the real secret. We haven’t decided yet how to publish it:
perhaps two separate papers. If so, mine will show how almost everything
that needs to be said is in the literature somewhere, but scattered over about
200 papers. It is great fun, even if not as original as my earlier work. One
of our wholly new findings is that the so called center-surround organization
of the retinal ganglion cells is all a hoax! It is nothing but a by-product of
showing silly little spot stimuli to a clever piece of machinery designed for
looking at complete views. That will put the cat among the pigeons in a very
satisfying manner!
from a letter to Sydney Brenner, July 1973

Two papers were published in 1974: Hom’s paper entitled “On Lightness”
and Marr’s entitled “The Computation of Lightness by the Primate Retina.”
The latter is reproduced in Chapter S in this volume with a commentary by
Norberto Grzywacz.

The retina paper was followed by a computational theory of stereopsis
outlined first in an intemal AI lab memo, “A Note on the Computation of
Binocular Disparity in a Symbolic Low-level Visual Processor.” (Chapter 1
in Part II of this volume). This paper marked the beginning of the famous
collaboration with Tommy Poggio, who was then at the Max Planck Institute
in Tubingen. They first published the “Cooperative Computation of Stereo
Disparity.” (Chapter 2 in Part II here), and subsequently, in “A Computational
Theory of Human Stereo Vision”, they proposed an algorithm thought to be
used by the human visual system for solving the stereo problem (Chapter
3 in Part II). These three papers are commented on by Ellen Hildreth and
Eric Grimson, and the extraordinary excitement of the work is most vividly
described by Poggio in the Epilogue (Part IV) of this volume.

Marr advocated and practiced a program for research into brain functions
that required focusing on the study of the information processing problems
inherent in the tasks themselves, rather than structural details of the mechanism
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that performs them. He stressed, however, that the study of the information
processing problems was not sufficient. In vision, for example, once we know
how to compute a description of a scene from an image intensity array it will
be possible to design neural implementations of the computation. Essentially,
useful contributions had to be made at the computational level, and this requires
working on real problems (as opposed to idealized blocksworld problems), and
powerful and flexible computational facilities that were available at the MIT
Artificial Intelligence Laboratory were making this work possible. He wrote
to a friend in the Spring of 1975, “I left the cozy and comfortably decadent
confines of the British Isles to confront the harsher realities of this abrasive
and invigorating climate, and am now studying vision.” In 1977 he joined the
faculty of the MIT Psychology Department and in 1980 was promoted to a
permanent position and full professor.

At MIT, David Marr spent years of incredibly intense and fruitful col-
laborations with Poggio, Ullman, Grimson, Hildreth, Nishihara, Richards and
Stevens, among the closest. The results of these collaborations were presented
in a series of papers and in his book Vision which presents “A computational
investigation into the human representation and processing of visual informa-
tion” (the subtitle of the book). The new and original approach of this book has
made it into a classic textbook and reference for anybody working in vision,
no matter what approach he takes.

In the closing chapter of this volume (Part III) Sejnowski presents an ele-
gant consistency proof of Marr’s approaches in the early and the later studies,
and demonstrates that together, these constitute an important framework for
those working in computational neuroscience.

The book ends with an Epilogue, which through letters from friends,
students, and colleagues, vividly portrays David Marr’s complex personality
and his zest for living. He lived with the same intensity and commitment to
life with which he carried out his research. Life was to be enjoyed, discovered,
and conquered in all its beauty and complexity. And those who were close to
him will always remember that, until the last day, November 17, 1980, David
remained faithful to his commitment to life and work.

Lucia M. Vaina
Cambridge, September 1990
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A THEORY OF CEREBELLAR CORTEX

By DAVID MARR*
From Trinity College, Cambridge

(Received 2 December 1968)

SUMMARY

1. A detailed theory of cerebellar cortex is proposed whose consequence
is that the cerebellum learns to perform motor skills. Two forms of input-
output relation are described, both consistent with the cortical theory. One
is suitable for learning movements (actions), and the other for learning to
maintain posture and balance (maintenance reflexes).

2. It is known that the cells of the inferior olive and the cerebellar
Purkinje cells have a special one-to-one relationship induced by the
climbing fibre input. For learning actions, it is assumed that:

(a) each olivary cell responds to a cerebral instruction for an elemental
movement. Any action has a defining representation in terms of elemental
movements, and this representation has a neural expression as a sequence
of firing patterns in the inferior olive; and

(b) in the correct state of the nervous system, a Purkinje cell can initiate
the elemental movement to which its corresponding olivary cell responds.

3. Whenever an olivary cell fires, it sends an impulse (via the climbing
fibre input) to its corresponding Purkinje cell. This Purkinje cell is also
exposed (via the mossy fibre input) to information about the context in
which its olivary cell fired; and it is shown how, during rehcarsal of an
action, each Purkinje cell can learn to recognize such contexts. Later, when
the action has been learnt, occurrence of the context alone is enough to
fire the Purkinje cell, which then causes the next elemental movement.
The action thus progresses as it did during rehearsal.

4. It is shown that an interpretation of cerebellar cortex as a structure
which allows each Purkinje cell to learn a number of contexts is consistent
both with the distributions of the various types of cell, and with their
known excitatory or inhibitory natures. It is demonstrated that the mossy
fibre-granule cell arrangement provides the required pattern discrimination
capability.

5. The following predictions are made.

() The synapses from parallel fibres to Purkinje cells are facilitated by
the conjunction of presynaptic and climbing fibre (or post-synaptic)activity.

* Now at the Institute of Psychiatry, London, S.E. 5

Reprinted with permission of The Physiological Society, Oxford, England.
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438 DAVID MARR

(b) No other cerchellar synapses are modifiable.

(c) Golgi cells are driven by the greater of the inputs from their upper
and lower dendritic fields.

6. For learning maintenance reflexes, 2(a) and 2 (b) are replaced by

2. Each olivary cell is stimulated by one or more receptors, all of whose
activities are usually reduced by the results of stimulating the corre-
sponding Purkinje cell.

7. It is shown that if (2") is satisfied, the circuit receptor — olivary
cell - Purkinje cell > effector may be regarded as a stabilizing reflex
circuit which is activated by learned mossy fibre inputs. This type of
reflex has been called a learned conditional reflex, and it is shown how such
reflexes can solve problems of maintaining posture and balance.

8. 5(a), and either (2) or (2') are essential to the theory: 5(b) and 5(c)
are not absolutely essential, and parts of the theory could survive the
disproof of either.

§0. INTRODUCTION

The cortex of the vertebrate cerebellum has a simple and extremely
regular fine structure. This happy combination has made detailed experi-
mental investigations possible, with the result that the arrangement and
connexions of the cerebellar cells, together with the excitatory or inhi-
bitory nature of the various synapses, are now clear (see Eccles, Ito &
Szentagothai, 1967).

The structure of cerebellar cortex, though well understood, has as yet
received no plausible interpretation. In the present paper, a theory of the
cortex is proposed which explains what is known about it, and makes
certain definite and testable predictions. The implication of the cortical
theory is that the purpose of the cerebellum is to learn motor skills, so
that when they have been learned a simple or incomplete message from the
cerebrum will suffice to provoke their execution. Brindley (1964) sug-
gested this was the function of the cerebellum.

The exposition is divided into various sections. In the first, an outline
of the theory is presented: this is intended to provide a framework within
which the reader may fit the details. The next five sections contain a cell
by cell account of the cortex, and these are followed by a closer look at the
input—output relations consistent with the theory.

§1. OUTLINES
The axons of the Purkinje cells form the only output from the cortex of
the cerchellum (see Fig. 1); and these cells are driven by two essentially
different kinds of input, one direct, the other indirect. The first is the
climbing fibre input, and the second the mossy fibres, whose influence on
the Purkinje cells may be complicated.

12



A THEORY OF CEREBELLAR CORTEX 439

The inferior olive is the only known source of climbing fibres:
every cell in the inferior olivary nuclei projects to the cerebellum, and every
part of the cerebellum possesses climbing fibres (Eccles et al. 1967). Each
of the rather small olivary cells sends out an axon which terminates in one
climbing fibre on just one Purkinje cell: there are very few exceptions.
The climbing fibre completely dominates the dendritic tree of the Purkinje
cell, and its action has been shown to be powerfully excitatory (Eccles
et al. 1967). Thus every olivary cell has a unique representational cell in
the cerebellum which can be acted upon by all the influences mediated by
the parallel fibres. In the present theory, it is suggested that each olivary
cell corresponds to a ‘piece of output’ which it is necessary to have under
control during movements. This ‘piece of output’ could take many forms:
it might be a limb movement, or a fine digit movement, or an instruction
to read vestibular output in a particular way to set up an appropriate
control loop. Such ‘pieces of output’ will be called elemental movements;
and each olivary cell may for the moment be supposed to correspond to one
elemental movement in the sense that it is driven by an instruction for
that movement to take place.

It is imagined that the olivary dictionary of elemental movements is
complete: that is, every possible action can be represented as an ordered
pattern of elemental movements each of which has a special olivary cell.
Every action therefore has a defining representation as a sequence of firing
patterns in the olive.

The final assumption, which relates the olivo-cerebellar system to the
execution of motor actions, is that the nervous system has a way of con-
verting the (inhibitory) output of a Purkinje cell into an instruction which
provokes the precise movement to which its uniquely related olivary cell
responds.

It will be argued that the reason for the special and in a sense substitu-
tive relationship between a cell of the inferior olive and a Purkinje cell of
the cerebellum is that the Purkinje cell can learn all the "situations’ in
which the olive cell movement is required, and later, when such a situation
occurs again, can implement that movement itself. If this were truc of
enough Purkinje cells (at least one for every elemental movement), the
cerebellum could learn to carry out any previously rchearsed action which
the cerebrum chose to initiate, for as that action progressed, the context
for the next part of it would form, would be recognized by the appropriate
Purkinje cells, and these would turn on the next set of muscles. allowing
further development of the action. In this way, each muscle would be
turned on and off at the correct moment, and the action would be automati-
cally performed.

Information defining the context for each Purkinje cell is provided by

13
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the mossy fibre input: and to establish that the Purkinje cells can learn
contexts in the appropriate way it is necessary to demonstrate that the
mossy fibre-granule cell-Purkinje cell arrangement could operate as a
pattern recognition device. The notion fundamental to this is that the
mossy fibre-granule cell articulation is essentially a pattern separator. That
is, it amplifies discrepancies between patterns that are rather similar,
translating two overlapping collections of mossy fibres into bundles of
parallel fibres that overlap proportionately much less, if at all. One
Purkinje cell can be made to store different contexts quite reliably by
facilitating the relevant parallel fibre—Purkinje cell synapses: and this will
work as long as the Purkinje cell does not try to learn too much. Evi-
dently, the cue for synaptic modification is that the relevant climbing fibre
be also active, and it is this which leads to the modification hypothesis.

These ideas lead to the notion that a mossy fibre input has been learnt
by a given Purkinje cell if, and only if, the input is transformed into
impulses in a bundle of parallel fibres all of whose synapses with that
Purkinje cell have been facilitated. Two crucial points now arise. First, the
number of parallel fibres into which a mossy fibre input is translated in-
creases very sharply with the number of active mossy fibres unless the
threshold of the granule cells also increases. The number of patterns each
Purkinje cell can learn depends on the number of synapses which are
facilitated in each: so economy arguments suggest that the granule cell
threshold should be controlled in a suitable way. An inhibitory inter-
neurone could achieve this, and the Golgi cells are interpreted as fulfilling
this role.

The second point is that although the effect of the Golgi cells is to decrease
the variation in the amount of parallel fibre activity, such variation will
still exist. Whether or not a Purkinje cell should respond to a given mossy
fibre input cannot therefore be decided by a fixed threshold mechanism.
The Purkinje cell threshold must vary directly with the number of active
parallel fibres running through its dendritic tree, and its actual value must
be such that the cell emits a signal when and only when all the active
parallel fibres have facilitated synapses with its dendrite. The natural way
to implement this is to allow the parallel fibres to drive an interneurone
which inhibits the Purkinje cell: and it will be shown that the various
stellate inhibitory cells can be associated with this function, although their
dendritic and axonal distributions are at first sight unsuitable.

1.1. Data

The anatomical and physiological information used in this paper con-
cerns the cerebellum of cat, and is mostly derived from Eccles et al.
(1967). Facts which are well known will not usually be given a reference:

14



A THEORY OF CEREBELLAR CORTEX 441

information which is less well known is given a page reference in Eccles
et al. (1967) if it appears there; otherwise an external reference is given.

A diagram of the general cerebellar cortical structure appears in Fig. 1.
The cortex has two types of afferent fibre, the climbing fibres (C1) and the
mossy fibres (Mo). Each climbing fibre makes extensive synaptic contact
with the dendritic tree of a single Purkinje cell (p), and its effect there is
powerfully excitatory. The axons of the Purkinje cells leave the cortex
(they form the only cortical output) and synapse with cells of the cere-
bellar nuclei.

Fig. 1. Diagram of cerebellar cortex (from Eccles et al. 1967, Fig. 1). The afferents
are the climbing fibres (C'l) and the mossy fibres (JMo). Each climbing fibre synaps«s
with one Purkinje cell (p), and sends weak collaterals to other cells of the cortex.
The mossy fibres synapse in the cerebollar glomeruli (9l) with the granule eclly,
whose axons (g) form the parallel fibres. The parallel fibres are excitatory and run
longitudinally down the folium: they synapse with the Purkinje eells and with the
various inhibitory interneurones, stellate (St), baskot (Ba) and Golgi eells (/o). The
stollate and hasket cell axons synapse with the Purkinje eolls, and the Golgi coll
axons synapse in the glomeruli with the granule eclls. As well ag their aseending
dondrites, the Golgi cells possess a system of degseending dendrites, with which the
mossy fibres synapse in the glomeruli. The Purkinje cell axons form the only output
from the cortex, and give off many fine collateraly to the various inhibitory inter-
neurones.

15
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The second input, the mossy fibres, synapse in the cerebellar glomeruli
(9]) with the granule cells. Each glomerulus contains one mossy fibre
terminal (called a rosette), and dendrites (called claws) from many granule
cells. The glomerulus thus achieves a considerable divergence, and each
mossy fibre has many rosettes.

The axons of the granule cells rise (9) and become the parallel fibres,
which synapse in particular with the Purkinje cells whose dendritic trees
they cross. Where the granule cell axons (i.e. the parallel fibres) make
syvnapses, they are excitatory.

The remaining cells of the cortex are inhibitory interneurones. The Golgi
cells (f7o) are large, and have two dendritic trees. The upper tree extends
through the molecular layer, and is driven by the parallel fibres. The lower
dendrites terminate in the glomeruli, and so are driven by the mossy
fibres. The Golgi axon descends and ramifies profusely: it terminates in
the glomeruli, thereby inhibiting the granule cells. Every glomerulus
receives a Golgi axon, almost always from just one Golgi cell: and each
Ciolgi cell sends an axon to all the glomeruli in its region of the cortex.

The other inhibitory neurones are stellate cells, the basket (Ba) and
outer stellate (St) cells. These have dendrites in the molecular layer, and
are driven by the parallel fibres. Both types of cell synapse exclusively
with Purkinje cells, and are powerfully inhibitory.

Finally, the cortex contains various axon collaterals. The climbing
fihres give off weak excitatory collaterals which make synapses with the
inhibitory interneurones situated near the parent climbing fibre. The
Purkinje cell axons give off collaterals which make weak inhibitory
svnapses with the cortical inhibitory interneurones, and perhaps also very
weak inhibitory synapses with other Purkinje cells. These collaterals have
a rather widespread ramification.

Behind this general structure lie some relatively fixed numerical rela-
tions. These all appear in Eccles et al. (1967), but are dispersed therein.
It is therefore convenient to set them down here.

Fach Purkinje cell has about 200,000 (spine) synapses with the parallel
fibres erossing its dendritic tree, and almost every such parallel fibre makes
a syvnaptic contact. The length of each parallel fibre is 2-3 mm (1} mm
each way), and in 1 mm down a folium, a parallel fibre passes about 150
Purkinje cells. Eccles ef al. (1967) are certain each fibre makes at least 300
(of the possible 450) synaptic contacts with Purkinje cells, and think the
true number is nearer 450. There is one Golgi cell per 9 or 10 Purkinje cells,
and its axon synapses (in glomeruli) with all the granule cells in that
region, i.e. around 4300. There are many granule cells (2:4 % 10° per mm?
of granule cell layer), each with (usually) 3-5 dendrites (called claws): the
average is 4-5 and the range 1-7. Each dendrite goes to one and only one
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glomerulus, where it meets one mossy fibre rosette. It is, however, not
alone: each glomerulus sees the termination of about 20 granule cell
dendrites, possibly a Golgi cell descending dendrite, and certainly some
Golgi axon terminals, all from the same Golgi cell. Within each folium,
each mossy fibre forms 20-30 rosettes, giving a divergence of 1 mossy fibre
to 400-600 granule cells within a folium. The mossy fibre often has
branches running to other folia, and in Fig. 2 below one can count 44
rosettes on one fibre.

Just below the Purkinje cells are the Golgi cell bodies, and just above
them are the hasket cell bodies. There are 10-12 °/ more basket cells than
Purkinje cells, and about the same number of outer stellate cells. Each
basket cell axon runs for about 1 mm transversely, which is about the dis-
tance of 10 Purkinje cells. The basket axon is liable to form baskets round
cells up to three away from its principal axis, so its influence is confined to
a sort of box of Purkinje cells about 10 long and 7 across. The distribution
of the outer stellate axons is similar except that it has a hox ahout 9 x 7,
since its axon only travels about 0-9 mm transfolially. The outer stellates
inhabit the outer half of the molecular layer, and the basket cells the
inner third. There are intermediate forms in the missing sixth. None of
these cells has a dendritic tree as magnificent as that of the Purkinje cell,
and Eccles et al. (1967) do not venture any comparative figures. Some outer
stellates are small, with a local axonal distribution. A lot of the synapses
of parallel fibres with this last group of cells are directly axo-dendritic,
but all other parallel fibre synapses are via spines, though these are of
different shapes on the different sorts of cell. Calculations based on slightly
tenuous assumptions (in which Fig. 2 is an essential link) suggest that each
Purkinje cell receives connexions from about 7000 mossy fibres: this will
be explained in 3.1.

§2. CLIMBING FIBRES

The climbing fibre input has already been discussed at some length, and
a formal statement of its part in the modification hypothesis will be made
in 3.1. It is important to note that the fibre climbs like a creeper all over
the dendritic tree of its chosen Purkinje cell, and forms synaptic contact
almost everywhere. Each climbing fibre also sends terminals to other types
of cell (basket, stellate and Golgi) in the vicinity of its Purkinje cell. These
terminals seem to be excitatory, but only weakly so (Eccles et al. 1967,
Table 1, p. 63). The climbing fibre collaterals and the Purkinje axon col-
laterals will be discussed together in 5.5.
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§3. MOSSY FIBRES AND GRANULE CELLS
3.0. The codon representation

The svnaptic arrangement of the mossy fibres and the granule cells may
be regarded as a device to represent activity in a collection of mossy fibres
by elements each of which corresponds to a small subset of active mossy
fibres. It is convenient to introduce the following terms: a codon is a subset
of a collection of active mossy fibres. The representation of a mossy fibre
input by a sample of such subsets is called the codon representation of that
input : and a codon cell is a cell which is fired by a codon. The granule cells
will be identified as codon cells, so these two terms will to some extent be
interchangeable. The size of codon that can fire a given granule cell
depends upon the threshold of that cell, and may vary: and the mossy
fibres which synapse with the granule cell determine the codons which
may fire that cell.

There are exactly

L\ L'
(R) ~ RYL-R)!
codons of size R associated with a collection of L active mossy fibres. If
two mossy fibre inputs each involve activity in L fibres of which M were
common to the two. the two inputs are said to overlap by W elements; and
they may be expected to have some codons in common. In fact the number

theyv share is precisely ( " ) The ratio X of the number of shared codons

R
to the number of codons each possesses is given by
. (W (L W =) (W-R+1)
X = (R)/(R) = TLIL=T).(L-R+1) ()

which tends to (W'L)* as W increases. The limiting values of X for
relevant values of R appear in Table 1. It will be observed that the effect
of the subset coding is to separate patterns, because similar inputs have
markedly less similar codons.

TaBLE 1. Overlap Table, i.e. values of (W/L)#®

(W L) R =2 3 4 5
05 0-25 0-12 0-06 0-03
06 0-36 022 013 0-0%
o7 0-49 0-34 024 017
0x 064 0-51 0-41 0-33
049 0-81 0353 0-66 0-59

The mossy fibre-granule cell relay effectively takes a sample of the codon
distribution of an input : the sample is small enough to be manageable, but
large enough for the input event to be recoverable from it with high
probability.
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3.1. The mossy fibre-Purkinje cell convergence

A knowledge of the number of mossy fibres which may influence a given
Purkinje cell is a prerequisite of a discussion of the codon sampling
statistics: and this number may be estimated as follows. Let P he an
arbitrary but henceforth fixed Purkinje cell: and assume that 200,000
parallel fibres synapse with P. Each granule cell has (on average) 4-5 claws,

Fig. 2. Mossy fibres (B and C) terminating in two neighbouring folia (from Cajal,
1911, Fig. 41). The distribution of the terminals from cach mossy fibre lies in the
same plane as the axon of the basket cell (D). A is a Golgi cell.

80 not more than 900,000 mossy fibres can influence P through the parallel
fibres. Since the mossy fibre-granule cell divergence is 400-600 within a
folium, the minimum figure for the mossy fibre-P convergence is 1500, It
is apparent from Fig. 2 that the mossy fibre terminals occur in clumps of
4-10 rosettes, the average being 7 or 8, all of which might be expected to
lead to granule cells most of which will contact any nearby Purkinje cell.
If a mossy fibre leads to P, it may therefore expect to do so by 140-160
different paths (allowing for the divergence factor of 20 due to cach
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glomerulus). An average of 150 implies that ahout 6000 different mossy
fibres lead to P. The edge effects will increase this figure, so 7000 would

probably be a reasonable guess. This estimate will be used in the subse-
quent calculations.

3.2. The assumption of randomness

In the investigation that follows, it is assumed that the terminals of the
7000 mossy fibres are distributed randomly among the 200,000 granule
cells leading to P. It is regrettable that no data exist to suggest a better
model: and evidence will be produced (3.3.3 and 4.3) for the view that this
assumption is actually false. Its value is that it enables computation whose
results are at least illustrative: and one has the comfort of knowing that
the capacity of a real cerebellum will anyway not be less than the result of
calculations which assume a random distribution.

3.3. The granule cell claws

3.3.1. Boundary conditions. It will be assumed first that the claw
arrangement of the granule cell dendrites is, as suggested by Eccles et al.
(1967), a device to secure a high mossy fibre-granule cell divergence with
minimal physical structure. But why do the granule cells have 4 or 5 claws
and not more? These cells are extremely small and densely packed: and
the parallel fibre synapses on P are extremely numerous. It is therefore
reasonable to assume that the figure of 200,000 (or thereabouts) is the
maximum physically realizable number of cells of this sort which can all
send axons to P. )

Secondly, it will be assumed that the synapses at the granule cells are
not modifiable: that is, an excited mossy fibre will add a contribution to the
excitatory post-synaptic potential (EPSP) of any granule cell with which
it synapses, and this contribution has to be considered in determining
whether or not that cell fires. This is justified below (3.3.3). Thirdly, the
number of mossy fibres leading to P is of the order of 7000 in number: and
fourthly, it is assumed that the system is to be used under conditions in
which the number of active input fibres varies from around 20 to around
2000, if that is possible. There is clearly a need to allow considerable varia-
tion; some actions involve many more muscles and much more information
from receptor organs than others. These figures are proposed as outer
hounds, in the ahsence of any relevant evidence. Fortunately, it turns out
not to matter crucially: the essential point is that the numbers are all
nearer ) than 7000 (on an arithmetical scale).

3.3.2. C'odon sampling. The following rough model is used to calculate
the number of granule cells per Purkinje cell that a given input can expect
to stimulate. Suppose the number of active mossy fibres among the 7000
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connected to the Purkinje cell P is L: then the number of possible codons

is (é), where R is the size of the codon. The number of codons which

. (7000 .
could be generated by the 7000 possible mossy fibres is ( R ); and if we
assume that the granule cells have R claws and a threshold of R, then they
represent a collection of 200,000 codons, supposed chosen randomly from

7000
ssibl
the possible ( R
stimulated by a given input of L active mossy fibres follows approximately
binomial statistics with expectation

L 7000
20000 () [(74°). o

The calculations that follow are concerned only with expectations: the
numbers have in fact to be large enough for the distribution to bhe rather
tightly clumped round the expectation. This is discussed in 5.2.3.

Suppose now that the granule cell has € claws and threshold R < C.

A

C
R) codons of

). Hence the number of granule cells per Purkinje cell

That granule cell now has a catchment area of exactly (

size R: and expression (2) becomes

200,000 (2) (2) / ( 7‘1)30) (3)

which is valid for expectations small compared with 200,000. (3) becomes
(2) when C = R. The approximation (3) may be used, since it will be
shown in 4.4 that situations will probably never occur in which the expec-
tation is greater than 10,000. The values of (3) have been calculated for a
selection of values of L, C, and R, and some of the results appear in Tables
2-4. Numbers greater than 20,000 have been replaced by an asterisk.

3.3.3. Conclusions. The conditions of 3.3.1 may be used to discover
limits on the expected values of C and R. First, it is apparent from Table 4
that no codon size above 9 can cver be used when there are fewer than 13
claws per granule cell because too few granule cells would be activated. It
is also evident and unsurprising that the maximum codon size used depends
critically on the number of claws to each cell. Given this, the factor that
will determine the number of claws to each cell will be economy of structure ;
and the relevant question is what is the least number of claws such that:

(i) The system is not swamped by large inputs: i.e. what is the least
number of claws which still allows a small granule cell response to large
inputs. Table 4 shows that a small response (less than 500) can be assured
by 6 claws; so we expect to find at most 6.

(ii) The system remains sensitive to small inputs, if necessary by using
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TasLE 2. Values of 200,000 (2,) (z)/(ﬂ;m): i.e. the number of the 200,000 granule ceolls

svnapsing with one Purkinje‘ cell that a mossy fibre input involving L active fibres (out
of 7000) can expect to stimulate. The granule cells have C claws, and threshold R

L =20
R C=2 4 6 8 10 12
1 1134 2286 3429 4571 5714 6857
2 2 9 23 43 70 102
3 — 0 0 0 0 1
4 — 0 0 ] (1] 0
5 — — 0 0 0 0
6 — — 0 0 0 0
7 — — — 0 0 0
8 — — — 0 0 0
9 — — — —_ 0 0
10 — — — — 0 0
11 — — — — —_ 0
12 — — — — — 0
. C\ (L) ()
TasLE 3. Values of 200,000 (R) (2)/(7(;;0) see legend to Table 2
L =100
r C =2 4 6 8 10 12
1 5,714 11,429 17,143 hd * *
2 40 242 606 1,132 1,519 2,667
3 — 2 11 32 (1) 125
4 — 0 0 1 2 4
5 — —_ 0 0 0 0
6 — — 0 0 0 0
7 — — — 0 0 0
8 — — 0 ] 0
9 — — — — 0 0
10 — — — —_ 0 0
11 — — — — — 0
12 — — — — — (]
(L 000
TABLE 4. Values of 200,000 ( 1{) ( ;) / (7 ;; '): soer legend to Table 2
L = 2300
R C =2 4 6 8 10 12
l * * * * * *
2 * - - - - *
3 J— * * * * *
4 — 2,327 . * . .
5 — — 4,542 * » .
6 — - 251 7,016 * *
7 — - — 657 9,862 *
By — - — 27 1,213 13,339
9 — — — — L1 1,943
10 — — —_ — 3 191
1 — — — — — 11
12 — — — — — 0

an R less than . The Table for information about this is Table 2, where
for L = 20, we have to use R = 1 for all tabulated values of €, and it is
not until L =100 (see Table 3) that one can use R = 2 with C = 6. It
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would therefore appear that to store inputs concerning fewer than 100
active mossy fibres, systems with C = 6 or less have to use codon size 1.
This means a loss of discrimination between overlapping inputs of fewer
than 100 active fibres. Provided however there are not many such smsll
inputs, this will not be too serious. The number that must be kept 5. gli-
gible is the probability that a small, unlearnt mossy fibre input will occur all
of whose active fibres have previously been involved in small learnt inputs.

This difficulty can to some extent be avoided if the mossy fibres which
are active together in small input events have some tendency to grow near
each other. The expected granule cell responses at codon sizes B > 1 will
then be substantial at localized spots. This can be used, because it turns
out that it is best to set the codon size on a local basis, rather than setting
it uniformly over all the granule cells synapsing with a given Purkinje
cell. The result for the animal will be greater reliability in its cerebellar
responses, so mossy fibres which are correlated in this way could be drawn
together by selection.

These arguments suggest that the arrangement of 4-5 claws per granule
cell is consistent with structural economy and the conditions of 3.3.1. One
point remains to be discussed : it is the assumption of 3.3.1 that the mossy
fibre—granule cell synapses are unmodifiable. The most straightforward
argument is this: every granule cell has a synapse with at least 300
Purkinje cells, each of which probably learns about 200 mossy fibre
inputs (5.3). The chance that a given mossy fibre—granule cell synapse is
used in none of these is extremely small (a generous estimate is 10-20);
whether or not it was initially facilitated, it almost certainly will be at
some time. There is therefore no advantage in its being modifiable originally-.

§4. THE GOLGI CELLS

4.0. The need for variable codon size

It became apparent in 3.3 that if the number of active parallel fibres was
to remain reasonably small over quite large variation in the number of
active mossy fibres, the thresholds of the granule cells had to vary appro-
priately. It will be shown (5.3) that the number of patterns a Purkinje cell
can learn decreases sharply as the number of active parallel fibres involved
in each increases. It is therefore essential to the efficient functioning of the
system that the codon size should depend on the amount of mossy fibre
activity.

4.1. Requirements of a codon size regulator

In the simple model containing one output cell P, 200,000 associated
granule cells each making (possibly ineffective) synapses with P, and 7000
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mossy fibres making contact in a random way with the granule cells, the
task of a codon size regulator is in principle simple. It must count the
number of these 7000 mossy fibres which are active, and set the threshold
of the granule cells so that the following conditions are satisfied.

'4.1.1. The number of active granule cells must be large enough to allow
adequate representation of the mossy fibre input: that is, every active
mossy fibre must with high probability be included in at least one codon.

This condition may be relaxed a little, since one factor on which the dis-
criminatory power of the cerebellum depends is the accuracy with which
the decision threshold at the Purkinje cell is set (5.2.3). There is no
advantage in guaranteeing representation of the whole mossy fibre input
if events slightly different from a learned event will anyway be responded
to because of errors introduced later.

4.1.2. The number of active parallel fibres must exceed some lower
bound .V, where .V will be taken as 500. This arises because the Purkinje
cell threshold is not set directly from the parallel fibres with which it
synapses, but from the results of sampling a number of different but closely
related parallel fibres. The sampling is more reliable the more parallel fibres
are active. This is explained in 5.2.3, where the figure of 500 is derived.

4.1.3. The codon size set for a particular mossy fibre input must depend
only on that input; so that the same input is always translated into the
same parallel fibres.

4.1.4. The codon size must be maximal, subject to conditions 4.1.1 to
4.1.3. This ensures that the number of modifiable synapses used for each
learned event is minimal, and hence that the capacity is maximal (35.4).

It will be assumed that a signal in a mossy fibre is represented by a burst
of impulses lasting many tens of milliseconds; and that a signal from a
Purkinje cell is represented by a prolonged increase in its firing rate. This
is discussed later (3.0); for the moment, it is needed only to justify the
fifth condition.

4.1.5. The codon size regulating cell need not have set the granule cell
threshold before the very first impulse in a signal arrives, but it must act
very fast in response to such an impulse. It is essential that very little
activity should bhe allowed into the parallel fibres while the granule cells
are set at an inappropriately low threshold.

A mechanism to vary the threshold subject to these conditions could
work in one of two ways: the threshold of the granule cells could be in-
trinsically high, and the mechanism provide excitation decreasing with
increasing size of input; or the threshold could be low, and the mechanism
provide inhibition increasing with increasing size of input.
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4.2. Properties of the Golgi cells

The Golgi cells are inhibitory, can be driven by mossy fibres (through
their descending dendrites) and synapse exclusively with granule cells.
Further, they are particularly notable for the speed of their response
(Eccles et al. 1967, p. 141). If the Golgi cells can be interpreted as a codon
size setting device, it will therefore be as a mechanism of the second type
described above.

There are, however, certain difficulties inherent in such an interpretation:
first, each Golgi cell is driven by only a small number of the mossy fibre
afferents to a single Purkinje cell, and sends an axon terminal to a rela-

large ascending dendrite system (Fig. 1), which on the present naive model
is unexpected. The idea which the model lacks and which accounts for these
various anomalies is the notion that Purkinje cells may share granule cells.
Such sharing could clearly lead to great economies where two Purkinje
cells needed codons from similar underlying subset distributions; but it is
not obvious that sharing can be made to work, since two Purkinje cells
may simultaneously require two different codon sizes.

4.3. The effects of sharing granule cells among Purkinje cells

If Purkinje cells are to be allowed to share granule cells, the assumption
that the granule cell threshold should be constant over all cells synapsing
with a given Purkinje cell must be abandoned. The most important single
condition on the mossy fibre-granule cell transformation is (4.1.3) that it
should be one-valued: a given mossy fibre input to a Purkinje cell should
be carried there by parallel fibre activity which is determined by that input
alone, and is independent of the simultaneous inputs to nearby Purkinje
cells. This condition determines (in principle) the number and distribution
of granule cells whose thresholds can be controlled together: for consider
two adjacent Purkinje cells, P, and P,. The collection of granule cells
which synapse with P, but not with P, must be free to act as an inde-
pendent unit, since it must be able to assume a threshold value different
from the P, cells. If each parallel fibre is 3 mm long, and synapses with
each of the 450 Purkinje cells that grow in 3 mm along a folium, the number
of granule cells that synapse with a given Purkinje cell but not with its
neighbour is about 200,000/450 = 444.

The conclusion that may be drawn from these arguments is that the
codon size should be set independently over blocks of about 450 granule
cells. If this were done by an inhibitory cell, it should possess an axon
distribution like that of the existing Golgi cells but limited to 450 granule
cells, and a dendrite system like the descending Golgi dendrites: further
there should be one such cell per Purkinje cell.
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The fact that therc are fewer and bigger Golgi cells than these argu-
ments suggest must depend on certain information not incorporated in the
model. This information concerns the distribution of the mossy fibre
terminals which, if it were random and 4.1.3 were satisfied, would neces-
sitate an arrangement near the expected one. In fact, one can see from
Fig. 2 that the mossy fibres have a strong tendency to course transfolially,
and in any case, given one mossy fibre rosette, there is a high probability
that there will be another from the same fibre nearby. The effect of this,
even apart from the considerations of 3.3.3, is to make nearby granule
cells more related than they would be on the random hypothesis; and it is
this which allows the larger axon and basal dendrite distribution which the
Golgi cells are found to possess.

4.4. The ascending Golgi dendrites

The parallel fibre activity evoked by a mossy fibre input should be
unique but perhaps more important even than that, it should involve
rather few fibres, since the storage capacity of a Purkinje cell depends
crucially on the number of parallel fibres active in each learned event (5.3).
Some idea of the numbers of parallel fibres needed for various amounts of
mossy fibre activity may be gained by using the simple random model. In
Table 5, the expected number of active granule cells has been computed

TaBLE 5. Possible codon size transitions (underlined); L is the number
of active mossy fibres; R is the codon size

L R=1 2 3 4 5
100 12,857 323 4 0 0
300 * 2,929 109 2 0
500 . 8148 507 15 0
700 * 15,979 1,395 60 1
900 * . 2,967 163 3
1,100 . . 5,420 364 10
1,300 . . 8,950 711 22
1,500 . . 13,754 1,261 45

for inputs with L active mcssy fibres, these L chosen at random from a
population of size 7000. The calculation has been performed on the
assumption that 100,000 granules have 4 claws, and 100,000 have 5: for a
threshold of R, the approximation used was

5 4 L\ 1{7000
expected number = 100,000 ((R) + (R)) (R)/( R ) @

which is derived the same way as expression (3), and is valid only for
answers small compared with 100,000. The codon size transition regions
have been underlined. It will be observed that on this rather crude model,
each input arouses between 500 and 9000 granule cells: (500 is the lower
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bound justified in 5.2.3). If as many as 9000 are used, the capacity of each
Purkinje cell will be drastically reduced. For large values of L, around
1000 (if such are ever used) the figure of 9000 is not unreasonable. Indeed
some number of that order will be necessary to cover all the active in-
coming fibres. But if not, and it is questionable whether such large inputs
ever occur, then to use so many would be wasteful. Provided that the
total number of active parallel fibres is greater than 500, it is possible to
use condition 4.1.1 to submit this number to an upper bound which depends
on the amount of mossy fibre activity. For example, the number of parallel
fibres active should only exceed 5000 if the number of active mossy fibres
exceeds 500.

The upper dendritic tree of a Golgi cell may be interpreted as a mechan-
ism to superimpose this upper bound; and it may be expected to work as
follows. A mossy fibre signal arrives which may be quite different from
what was going on before. The descending Golgi dendrites sample it and
quickly set new thresholds at the relevant granule cells: this setting
amounts to a first guess based on local sampling. Rather a long time later,
the signals appear in the parallel fibres, and the Golgi cell, by examining
the activity in a large number of these, can tell whether or not its initial
assessment was the most economical solution. If it was, its behaviour
should not alter: if not it should; but this will always entail shifting to a
higher codon size. One cannot say that the local or global sample will
always give the best solution ; for example, it might happen that the mossy
fibre input is sufficiently localized that it can support a high codon size for
just one or two Golgi cells.

In general, therefore, a Golgi cell should be driven by that dendritic
system from which it receives most excitation. This suggests that the upper
and lower dendritic fields should have rather a peculiar relationship. The
synaptic influences among the upper dendrites should summate, and so
should the effects among the lower ones: but the summed contributions
should interact so that the output from the cell is driven by the maxi-
mum of the two, not the sum. There is no firm evidence to support this
prediction, but Eccles et al. (1967) mention that the two dendritic fields
are probably too far apart to allow summation.

A proper investigation of the action of the Golgi cells would be difficult
for two reasons. First, one cannot use a random model for the way the
granule cells are distributed over the possible subsets of the mossy fibres,
for as well as the objections of 4.3, it is likely that mossy fibres whose
activities are correlated will grow near one another. This is because input
events would then tend to need fewer granule cells to cover them, and
could therefore be more economically stored. Secondly, an analytic model
of the relationships between neighbouring Golgi cells under various input

15 Phy. 202
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conditions needs unrealistic simplification before it can be handled. The
correct approach is probably to use a simulation programme; and the kind
of result to which it will lead is that an action 4, learnt in isolation, may
have to be relearnt to some extent if it is to be performed immediately
after some closely related action B. This will arise because the hangover
in the parallel fibres of action B could cause temporarily different codon
sizes in certain Golgi cell blocks. The parallel fibres for 4 in this situation
are slightly different from those for A performed in isolation. In other
words, the price of economy is probably a not too serious loss of uniqueness
for the mossy fibre—parallel fibre transformation.

4.5. The Golgi cell afferent synapses

It will be clear that within the present theory, no advantage would be
gained by having the mossy fibre-Golgi cell synapses modifiable: but it is
not so clear whether this is also true of the parallel fibre-Golgi cell synapses.
Although there is no very simple way in which it would be useful to have
these synapses modifiable, it is conceivable that there might be fringe
benefits. Suppose, for example, that activity in a particular set of mossy
fibres always preceded a large volley: then such advance information
could be used by the Golgi cell if the conditions under which modification
took place were arranged suitably. ,

On the other hand, modifying a synapse on a Golgi cell implies that the
parallel fibre has a special relationship with the granule cells below that
Golgi cell. Leaving aside the case that it came from one of them (not a
special relationship of the relevant kind) there is no reason why, even if
such a relationship were to hold over a number of inputs, it should hold
over a majority, since one Golgi cell can expect to serve a huge number of
different facilitated responses. And, in contrast to the Purkinje cells, there
are no inhibitory cells of any power acting upon the Golgi cell, so there is
no mechanism for deciding whether or not a majority of the currently
active fibres have or have had such a special relationship. (The absolute
size of a ‘majority’ is variable: so the Golgi cells would need a variable
threshold to make such a decision, for the same reasons as do the Purkinje
cells.) This argument suggests rather strongly that these synapses are not
modifiable.

The other afferent Golgi synapses come from the Purkinje cell collaterals
and the climbing fibre collaterals: these will be discussed in 5.5.
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§5. THE PURKINJE CELLS

5.0. The Purkinje cell output

The main branch of a Purkinje cell axon goes to one of the cerebellar
nuclei and forms the only output from the cortex: its effect in the nucleus
is inhibitory. It is an assumption of the present theory that the central
nervous system has a means of converting a signal in a Purkinje cell axon
into an order to provoke the elemental movement to which its corre-
sponding olivary cell responds. The inhibitory nature of the Purkinje cell
output suggests that it may require a positive effort to read from the
cerebellum, since excitation must be fed in somewhere to the effector
circuit. This would be useful (though not essential) if it were required that
cerebellar output should often be ignored : and indeed it is likely that such
occasions will frequently occur during waking life and possibly also during
sleep. The fact that the cortical output is inhibitory can therefore be inter-
preted as a convenience for easy ignoring, though this is neither the only
nor a necessary view.

The second point arises from the fact that Purkinje cells have a high
resting discharge of 20-50 impulses/sec. (Eccles et al. 1967, p. 306). It was
assumed above (4.1.5) that a signal in a mossy fibre was represented by a
burst of impulses: and the codon size setting function of the Golgi cells
depended upon this. It is a necessary consequence that efferent cortical
signals should also be represented by a train of impulses rather than a
single one, since the delays involved in turning on the inhibitory inter-
neurones could make the initial response of a Purkinje cell to a mossy fibre
input inappropriate. This may occur frequently, and would conveniently
be hidden by a high resting discharge. Purkinje cells can sustain high rates
of firing (greater than 400/sec, according to Eccles et al. 1967, p. 308): it is
therefore reasonable to assume that a signal in a Purkinje cell axon is
represented by a large increase in the firing rate, and that the effector
systems are only sensitive to such messages. This assumption would have
to be made for almost any theory of the cortex, since the Purkinje cells
form the only output.

The input—output relations for the cortex as a whole receive attention
in §7, and the Purkinje axon collaterals in 5.5.

5.1. The hypothesis of modifiable synapses

The fundamental hypothesis for the mechanism of the change of effec-
tiveness of a parallel fibre-Purkinje cell synapse is that if a parallel fibre is
active at about the same time as the climbing fibre to a Purkinje cell with which
that parallel fibre makes synaptic contact, then the efficacy of that synapse is

15-2
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increased towards some fixed maximum value. (‘At about the same time’ is
an intentionally inexact phrase: the period of sensitivity nceds to be
something like 50-100 msec.)

If this hypothesis is true, it may have implications about the physio-
logical conditions for synaptic modification. The most striking fact about
the climbing fibres is that they extend over the whole Purkinje dendritic
tree. Two of the possible reasons for this seem plausible: first, that the
climbing fibre releases some sort of ‘change’ factor which modifies the
active synapses; or second, that the fundamental condition for modifica-
tion is simultaneous pre- and post-synaptic depolarization. Hebb (1949)
suggested that the nervous system might contain synapses with modifica-
tion conditions of the second sort.

The other and rather dangerous place one might look for implications
of the modification hypothesis is in the comparison of electron-micro-
graphs of cells supposed to have modifiable synapses with those supposed
not to. This will not be attempted, but it may be relevant that the Purkinje
cells seem to be the only ones in the cerebellum whose dendrites carry the
characteristic tubular system which terminates ‘abruptly’ at the base of
the spines (Eccles et al. 1967, p. 9).

5.2. Simplifying assumptions

The calculation of the learning capacity of a single Purkinje cell requires
that certain simplifying assumptions be made.

5.2.1. It will be assumed that a synapse is either totally modified or
totally unmodified: and that stimulation of a totally unmodified synapse
has no effect on the post-synaptic membrane.

This is equivalent to allowing modification to increase synaptic efficacy
from some fixed minimum to some fixed maximum value in one step: since
the two situations can be identified by subtracting any ‘ground’ excita-
tion of an unmodified synapse. Such a subtraction has a linear dependence
on the number of parallel fibres active at any moment, and could easily be
performed by an unmodifiable inhibitory interneurone such as the basket
or outer stellate cells. This may indeed be one of the functions of these
cells: it is a matter of ne importance to the present theory, since such an
effect would be constant throughout the life of the cerebellum. The phrase
‘in one step’ is merely a conceptual convenience: the matter will be
discussed in §7.

5.2.2. Secondly, it will be assumed that each learned event occupies a
set of parallel fibres which may be regarded as having been chosen at
random from the 200,000 which synapse with the Purkinje cell. This
assumption can be justified on the grounds first that any estimation of
capacity arrived at by using it is likely to be too low; and, secondly, that
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almost any other assumption would involve a computational effort out of
all proportion either to the probable truth or to the value of any results
thereby achieved. The assumption is likely to be false for two reasons: first,
the mossy fibre—granule cell relay is probably not randomly constructed;
and, secondly, the learned events are unlikely to have a random structure
over the space of possible mossy fibre inputs. Some types of structure on
the learned inputs will positively confuse the system into giving false
responses.

This topic will receive a full and more general analysis in a later paper:
two remarks however are not out of place here. If there are many learned
mossy fibre inputs which all overlap each other by a considerable amount,
the cerebellum may not be able to discriminate inputs which have been
learned from inputs which have not when an unlearned input has much
overlapping with learned inputs. The fact that no granule cells have more
than 7 claws introduces an absolute upper bound to the discriminatory
power of the cerebellum: and, when this is inadequate, control must revert
to the cerebrum. It should also be noted that any subset of a learned mossy
fibre input will behave as a learned input if it causes the same codon size
range to be selected as did the learned input. In the full model, the con-
dition is more restrictive in that the codon size range must be the same for
most of the 150 or so Golgi cells concerned.

5.2.3. The maximum desirable number of facilitated synapses on any
one Purkinje cell will be taken as 140,000, and the minimum number of
parallel fibres active in any learned event as 500.

These figures are related by the way the Purkinje cell threshold is set
(see 6.1). It turns out that the most economical way of doing this is by
sampling a population of parallel fibres closely related to and including
the ones passing through the Purkinje cell dendritic tree. Let T(E) be the
threshold set in response to the stimulation of M(E) parallel fibres by the
mossy fibre input E (regarded as an input to a particular Purkinje cell P).
Let f be the fraction of the (200,000) parallel fibre synapses which have
been facilitated at P. If £ has been learnt, all M(E) of the active parallel
fibres will have facilitated synapses at P. Hence if E is to be recognized as
learnt, T(E) < M(E) (i).

If E is not a learned event, and F(E) is the number of the active parallel
fibres which have facilitated synapses at P, then E will be ignored only if
T(E) > F(E) (ii).

If recognition is a reliable process, both (i) and (ii) must be true with
high probability.

The randomness assumption 5.2.2 allows us to assume that F(E). taken
over events E with constant M(E), has a binomial distribution with expec-
tation fM(E). It is unlikely that T (taken over the same event population)
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has worse than a binomial distribution, since the binomial assumption is
equivalent to regarding the value of 7 as being set on the basis of a
measurement of the number of active mossy fibres involved in E. If one
assumes T has a binomial distribution, conditions (i) and (ii) are satisfied
with probability rather greater than 0-99 if M > 500, f = 0-7. These
values for f and the minimum value of M will be used despite the rather
low confidence level because (a) the threshold setting mechanism is certain
to be better than a binomial process, and (b) few input events will use the
minimum number of parallel fibres allowed.

5.3. The storage capacity of a Purkinje cell

The capacity of a Purkinje cell may be calculated very simply from the
assumptions 5.2. Suppose the fraction of facilitated parallel fibre synapses
is 0-7, and each learned event occupies n parallel fibres. Then z, the
expected number of events which may be learned before the total propor-
tion of synapses used exceeds 0-7, is the largest integer for which

(1 =7/200,000)F > 0-3.

z has been computed for various values of n, and the results appear in
Table 6. It will be seen that the advantage of having a small number of
fibres active in each learned event is an enormous increase in capacity: the
Golgi cell arrangement of local as well as global constraints on the codon
size begins to make good sense. If the minimum number of parallel fibres
active in learned event is 500, the average number of responses stored by
each Purkinje cell is probably in excess of 200.

TABLE 8. x is the number of events each occupying n parallel fibres that can be
learned by one Purkinje cell, i.e. z is the largest integer for which

n x
(' 200,000) > 03

n 500 1,000 2,000 5,000 10,000 20,000
T 480 240 119 47 23 11

5.4. The Purkinje cell threshold

The inhibition of the basket and outer stellate cells can be a powerful
influence on the behaviour of a Purkinje cell. The present theory requires
that the Purkinje cell should fire if and only if more than a proportion p of
the active parallel fibres have facilitated synapses with it, where p is close
to 1. It is proposed that the purpose of these stellate cells is to provide the
appropriate inhibition, and that their peculiar axonal distribution is a
device to secure an economy of dendrite by a factor of up to 20 (see §6).
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It is made possible by the distribution of the mossy fibre terminals beneath
them.

If M of the parallel fibres synapsing with a particular Purkinje cell are
active, and Ms of these have been facilitated, then the cell must fire (or
produce a burst of firing) if and only if Ms > Mp. The Purkinje cell thus
has the superficially simple task of summing Ms (represented by excitation)
and Mp (represented by inhibition). If, however, one reflects upon the
enormous expanse of the Purkinje cell dendritic tree, it becomes apparent
that to arrange such a summation might not be an easy problem of
dendritic engineering. The example in Plate 1 makes it difficult to imagine
how the junction of a spiny branchlet with the rest of the dendrite could
carry accurate information about the number of active spines if this were
large, for if the 100 nearest the junction were active, it is hard to see how
(say) 10 at the end of the branchlet could make much difference, at least
on any simple view of dendritic function. Such a system can only provide
accurate summation for numbers of active synapses rather small com-
pared with the total population.

This overload effect can be overcome locally if the number of active
fibres is kept small: but it is bound to recur on a larger scale unless the
numbers are kept very small. A further trick seems necessary, and the
right one is probably to do the subtraction piecemeal: add up the outer
contributions to Ms, subtract the outer Mp, and transmit the result to be
added to the contribution to Ms of the next region. This is the only way of
subtracting B from A with large A and B but small (4 — B) without ever
handling large numbers.

The distribution of the axon terminals of the basket and outer stellate
cells is peculiarly well suited to this interpretation. The outer stellate cells
effectively sample the activity in the outer half of the molecular layer and
send their (inhibitory) contribution to — Mp to a region quite high up the
dendritic tree of the Purkinje cell. The basket cells sample about the inner
third, sending their contribution to the soma; and the intermediate cells
perform an intermediate task. The basket cell action represents the last
stage in computing (Ms— Mp), and one may assume that the numbers
are then small enough for the coding from dendrite to soma to be
adequate.

Interpretation of the function of simple summation within any reasonable
theory of dendrites would be made easicr by two hypotheses: first that the
number M of active parallel fibres was both small and reasonably constant ;
and secondly, that the excitation due to a facilitated synapse differed very
little between synapses. In view of the existing Golgi cell arrangement and
the great increase in capacity which is a consequence of having M small,
there are strong reasons why the first hypothesis should be true. And the
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second may be a consequence of the fact that these synapses are all spine
synapses, which possess a definite morphological uniformity.

5.5. The Purkinje axon collaterals and the climbing fibre collaterals

The axons of the Purkinje cells give off numerous fine collaterals which
form two plexuses. The infraganglionic plexus lies below the Purkinje cell
hodies, and its fibres run in a predominantly transverse direction. The
supraganglionic plexus, which is fed both directly and by branches of fibres
rising from the infraganglionic plexus, lies above the Purkinje cell bodies,
and its fibres run in a predominantly longitudinal direction (Eccles et «al.
1967, p. 178). Not a great dealisknown about the distribution of the Purkinje
cell collaterals, but it seems that at least in the vermis the spread of the
collaterals in the longitudinal direction is small, whereas in the transverse
direction it may be quite large ; and the longer collaterals tend to join points
of cortex to their corresponding contralateral points. (See Eccles et al.
1967, pp. 178ff., for a discussion and references.)

These collaterals have weak inhibitory synapses with basket and Golgi
cells, and perhaps also very weak inhibitory synapses with other Purkinje
cells (Eccles et al. 1967, pp. 184ff.). Their effect through the bhasket cells is
to release Purkinje cells from inhibition, but their influence through the
Golgi cells is more complicated. It is likely that this influence will ultimately
be excitatory at a given Purkinje cell P only if most of the granule cells
thereby released from Golgi inhibition have modified synapses at P: and
this will be true only if P has already learned a number of mossy fibre
inputs all quite similar to the current input.

The only obviously reasonable interpretation of the effect of these
collaterals is that they tend to excite the Purkinje cells in the cortex to
which they distribute; and in certain circumstances can loosen the dis-
crimination exercised by those cells. The fact that a Purkinje cell P, has
just fired may be relevant in a borderline firing decision for P if P and P,
lie in closely related picces of cortex: and the Purkinje axon collaterals
provide a suitable means of distributing this information. They can help
P overcome inhibition due, perhaps, to an unlearned mossy fibre input
which it has previously received, or they can make P more likely to
accept the current input even though it may not be exactly one which
has been learned.

This view is not entirely satisfying, but it does provide an interpretation
of the climbing fibre collaterals. These make weak excitatory synapses
with the inhibitory interneurones of the cortex (Eccles ¢t al. 1967, Table 1,
p. 63), and perhaps with Purkinje cells. Their distribution is more local
than that of the Purkinje axon collaterals (Eccles et al. 1967, p. 215), but
their effect locally probably roughly balances them. Hence it could be
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argued that when a climbing fibre is active, that is when synaptic modi-
fication is taking place, the effect of Purkinje axon collaterals is at least
partly annulled, and so something nearer a true representation of the
mossy fibre input is stored.

§6. THE OUTER STELLATE AND BASKET CELLS
6.0. Justification of their joint treatment

The outer stellate and basket cells will be taken together under the
general heading of stellate cells for the following reasons.

6.0.1. They are both inhibitory.

6.0.2. They both send axons to the Purkinje cells only.

6.0.3. They are both driven mainly by parallel fibres, and have analo-
gous dendritic fields, the outer stellates being further out in the molecular
layer.

6.0.4. They have very similar axon distributions; the outer cells synapse
further up the Purkinje cell dendritic tree, and reach a little less far across
the folium than the inner ones.

6.0.5. There exist many intermediate forms.

The discussion will also include in a general way the apparently rather
weak ‘on-beam’ outer stellate cells whose axons terminate locally, though
these will receive special mention.

6.1. The function of the stellate cells

The stellate cells together have the task of controlling the threshold of
the Purkinje cells: they are powerful, and have to be, since if the overload
ideas 5.4 are correct they have to be able to contain almost the maximal
excitation that parallel fibre activity can evoke in the Purkinje cell
dendritic tree. (This, it was argued, is achieved long before all the parallel
fibres are active.) The quantitative relations between the number of
parallel fibres active and the strength of the inhibition necessary have
been discussed in 5.2.3, and reasons for the distribution of the terminals on
the Purkinje dendritic trees have been proposed in 5.4. It remains only to
sort out two points: the size, shape and position of the dendritic tree, and
the distribution of the Purkinje cells to which the stellate cells send axon
terminals.

If one naively set about constructing a threshold-setting cell to perform
the function required by the present theory, one would propose one in-
hibitory cell per one or two Purkinje cells. Its axon would synapse with
just the one (or two adjacent) Purkinje cells, and its dendritic field would
at least be very close to that of its corresponding Purkinje cell. If there
were such cells, however, their dendrites would have to be not only very
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close to those of the relevant Purkinje cell, but also very nearly as exten-
sive: this would be necessary in order to obtain a reliable measurement of
the usually sparse parallel fibre activity.

The reason why the stellate cells are not arranged like this is that since
such a dendritic tree would necessarily take up roughly as much room as
does a Purkinje cell dendrite, the number of Purkinje cells that could be
packed in any given length of folium would be about halved. The key to the
success of the existing solution is that the rosettes of each mossy fibre are
numerous and on the whole distributed transfolially in the granular layer.
The actual mossy fibres that drive the cortex therefore change quite slowly
across a folium, and they can be watched efficiently and economically by
sampling the parallel fibre activity across it (Fig. 2).

There is no quantitative evidence available from which one might
investigate the tenability of this hypothesis: one can only estimate the
economies to which the proposed sampling technique may lead. Each
Purkinje cell receives inhibition from about 40 stellate cells: the inhibition
to the Purkinje cell is therefore driven by a dendritic field about 40 times as
large as that of a single stellate cell. If these 40 were distributed randomly
just next to the Purkinje cell, a good sample (approximately 1 — 1/e? = 0-86)
would be obtained if each tree had even 1/20 of the synapses that a
Purkinje cell has. If the mossy fibre distribution alters slowly (which it has
to do anyway for the system to work), the saving in dendrite could there-
fore be a factor of up to 20; and, in practice, the sampling is certainly not
random.

6.2. The stellate cells with local axonal distribution

It is convenient to complete the review of the cells of the cortex with
some remarks about the time courses of the excitatory and inhibitory
synaptic actions. It is evident that the time course of transmitter action
at a Purkinje cell is the ultimate factor determining the temporal extent of
the influence on that cell of information from that fibre.

At a normal sort of synapse, such influence would not be expected to
continue more than 20 msec after activity in the afferent axon had ceased :
but so short a period would seem inappropriate for real-time analysis of
events with characteristic times rarely less than 100 msec. The observed
time course at a parallel fibre—Purkinje cell synapse is of the order of 100
msec, and Eccles et al. (1967) mention (p. 70) that this may be one function
of spines. Now the connectivity of cerebellar cortex is such that the onset
of the various post-synaptic effects at a Purkinje cell due to a mossy fibre
signal is likely to be both slow and patchy: the various components arrive
along paths with different latencies, and there may be build-up effects in
the synapses themselves. Similar factors will affect the way the post-
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synaptic effects decay at the end of a mossy fibre signal. All these effects
can only be disruptive, at least as far as the present theory is concerned.
The fact that the various effector circuits in the rest of the nervous system
are geared only to recognizing bursts from Purkinje cells will minimize the
effect of any stray impulses which might for a number of reasons leak out:
but it is conceivable that the effects of an input during a ‘turning on’ or
‘turning off’ period could cause a false response from a Purkinje cell, and
that response could last up to 20 msec.

In order that false outputs of this sort should not occur, it is necessary
that the build up of inhibition at a Purkinje cell should occur faster than
the build up of excitation, and that the IPSP should last longer than the
EPSP. The latter is an observed phenomenon, with IPSP time courses up
to 500 msec, EPSP ones up to about 100 msec; and it is possible that one
function of the ‘on-beam’ stellate cells is to ensure the former. These cells
have a local axonal distribution, so their axons are relatively very short;
and many of their synapses with the parallel fibres are direct (i.e. not spine
synapses). The first factor must, and the second may favour a fast pro-
duction of IPSP at the Purkinje cell dendrite, and this IPSP could well
arrive early enough to counteract the initial build up of EPSP from the
Purkinje spines. The IPSP induced by these cells is weak, but by the time
the Purkinje cell is turned on to any appreciable extent, the other stellate
cells will also be active. It is therefore proposed that the weak on-beam
stellate cells be interpreted as a device to prevent a false initial response by
the Purkinje cell.

§7. CEREBELLAR INPUT-OUTPUT RELATIONS

There are two main types of cerebellar input—output relation which are
compatible with the present cortical theory and they are described
separately.

7.1. Learned movements

The first possibility is the one suggested in §1, and concerns the learning
of that particular sort of motor skill which may be described as a move-
ment. During learning, the cerebrum organizes the movement, and in so
doing, causes the appropriate olivary cells to fire in a particular sequence.
This causes the Purkinje cells to learn the contexts within which their
corresponding elemental movements are required, so that next time such a
context occurs the mossy fibre activity stimulates the Purkinje cell,
which evokes the relevant elemental movement.

This scheme imposes severe restraints upon the nature of the stimulus that
may drive an olivary cell: indeed, almost the only permissible case is that
in which each olivary cell is driven by a collateral of a cerebral command
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fibre for some elemental movement. This statement may be justified by the
following argument. During execution of a learned movement, the mossy
fibre activity is responsible for the initiation of the various elemental
movements: and it is therefore essential that, during learning. the Purkinje
cell is associated with the context occurring just before its elemental
movement. The present theory suggests that the granule cells and Golgi
cells together provide extremely effective pattern discrimination: so the
mossy fibre activity must be virtually the same during cerebellar execution
of a movement as it was while that movement was being learnt. Hence. for
the cerebellum to be able to learn a movement in which the contexts
change rapidly. the olivary activity during learning has to be driven by
impulses effectively synchronized with the commands. This concluszion can
only be avoided in one of the two following ways: either some delay is
specially introduced into the mossy fibre afferents. or the olivary cells are
driven by the elemental movement just preceding the current one. The
first assumption is unlikely on grounds of efficiency. and the second would
require a probably unacceptable number of olive cell-Purkinje cell pairs.
one for each sequence of two elemental movements.

The ahove argument., however. cannot be applied to those situations
where the contexts are changing very slowly: and in such cases it is at least
logically possible for an olivary cell to be driven by a signal which was
slightly later than the command signal during learning. since the relevant
context will scarcely have altered. It is therefore not imposszible for an
olivary cell to be driven by a receptor which is sensitive to the movement
initiated by its corresponding Purkinje cell: although. if the contexts do
change slowly. a context driven svstem will not reproduce the timings of
the stages in a movement at all accurately, and so cerebellar learning will
anyway be rather bad.

It can therefore be concluded that an olive cell-Purkinje cell pair. whose
olive cell is driven by a receptor. is unlikely to be used for learning motor
skills involving much movement. It is however well known that the inferior
olive is divided into two portions, one driven by descending fibres (Walberg.
1954) and one by ascending fibres (Brodal 1954). Further. it is known that
at least some cells in the ‘ascending’ or ‘spinal’ part of the olive are
driven by receptors (Armstrong. Eccles, Harvey & Matthews. 1968). and
these authors also demonstrate the convergence at some cells of impulses
from receptors of quite different types.

If the present cortical theory is correct. and the cerebellum does learn
motor skills. there is only one situation in which it is not absurd to drive
the olivary cells by receptors rather than by cerebral command fibre
collaterals. and that is when the cerebellum is required to carrv out an
action in a different language from that in which the cerebrum originally
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set it up. This condition is likely to be fulfilled in the cerebellar control of
balance or posture, where one may reasonably expect the cerchrum to deal
in a language oriented towards the problem of changing postures. while the
cerebellum is concerned primarily with maintaining an achieved posture.
It is to this kind of control that the second form of input—output relation
is particularly well suited, and it will be discussed in detail in 7.2.

If it is assumed that such situations are best dealt with by the methods
described in 7.2, the following conclusion may be drawn. Where the cere-
bellum is required to learn a motor skill consisting of a movement, the cells
of the inferior olive should be driven by the equivalent of a collateral of
the cerebral command fibre for a particular elemental movement ; and the
Purkinje cell corresponding to that olivary cell should be able to provoke
that same elemental movement. The particular elemental movement
associated with an olivary cell-Purkinje cell pair need not be fixed. but it
presumably is: and the elemental movements associated with this kind of
input—output relation are probably mostly small movements.

To complete the study of this kind of input-output relation, four
further points must be discussed. The first concerns a possible variant in
the way information is read out of the cerebellum. It was assumed in §5
that the level of inhibition at a Purkinje cell was generally rather low, and
that mossy fibre activity involved in a learned context was enough to
produce a signal in the Purkinje cell axon. There is another possibility. in
which the level of inhibition at a Purkinje cell is generally rather high, and
the rest of the brain decides whether the current context has been learned
by observing the results of a climbing fibre impulse. If the mossy fibre
input has been learned. the Purkinje cell gives a large response; if not, it
gives a small one and the effector circuits respond accordingly. This form
of output may be described as inhibition sampling, and has effectively been
suggested by Eccles et al. (1967, p. 177), though not in the context of
modifiable svnapses.

The second point concerns the command circuit used by the cerchrum
while setting up a movement. It is possible that the olivary cells are literally
driven by collaterals of the cerebral command fibres: but it is also possible
that the command circuit actually is the cortico-olivo—Purkinje cell-
effector circuit path. This hypothesis involves no difficulties and is
especially attractive if Purkinje cell output is obtained by inhibition
sampling: for this could then easily be achieved by uniform weak descend-
ing activity to the inferior olive, arriving by the same pathways as are used
for the cerebral organization of movements. One extra hypothesis is also
needed if this system is postulated, namely. that the mechanism of
synaptic modification at Purkinje cells is sensitive only to intense climbing
fibre activity.
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The third question arises from the possibility that synaptic modification
may be subject to gradual decay. This might be necessary, in view of the
limited learning capacity of a Purkinje cell: and one might imagine that
repetition of a movement carried out even under cerebellar control should
have some reinforcing effect. If a Purkinje cell command were somehow
fed back to excite the relevant climbing fibre, a reinforcing effect would
certainly be obtained, but lack of this feed-back would not rule out the
possibilitv that a reinforcing effect exists, since this depends on the
details of the synaptic modification mechanism.

The final point to be raised in this discussion of the cerebellar control of
movements is the question of the speed with which such movements are
executed. There is no reason why a context dependent system should not
be run at different speeds, and if the extra postulate were made of some
general intensity control acting uniformly over the effector circuits, a
movement learnt at one speed could be performed at another. (This idea
would fit nicely with the suggestion made above that during cerebellar
control of a movement, the olive receives uniform weak descending
activity, for the strength of the Purkinje cell output would then depend
upon the strength of this uniform activity.) It is, however, likely that if the
time course of a movement were changed substantially, some relearning
would be necessary.

7.2. Learned conditional reflexes

The explanation of the second type of input—output relation compatible
with the cortical theory is much simplified by the introduction of a new
idea, which extends the classical notion of reflex.

Definition. A conditional reflex is a reflex which operates when, and only
when, certain conditions outside the reflex arc are satisfied. These con-
ditions are the context of the conditional reflex, and a learned conditional
reflex is a conditional reflex whose context is learned.

An ability to acquire learned conditional reflexes would make the task
of maintaining balance and posture very much easier for the nervous
system. For example, consider the problems which confront a child as he
learns to stand. It would greatly aid him if he could form a reflex circuit
which connected a vestibular signal indicating some imbalance directly to
an order for the appropriate compensating movement: this, however,
could not be a true reflex since the child will not always wish to stand. The
appropriate form of control is a conditional reflex whose context is the
state of standing, and which therefore only operates while the child is
standing. In order to suspend the standing reflexes, the child has only to
disrupt the ‘standing’ context, and this could be done, for example, by
hig suddenly wishing to stand no longer.
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A particular olivary cell-Purkinje cell pair may be interpreted as a
storage unit for a conditional reflex if and only if the circuit environ-
ment — receptor — olivary cell > Purkinje cell - effector — environment
is a stabilizing negative feed-back loop when activated by a learned mossy
fibre input. The context represented by the learned mossy fibre input is the
context of the conditional reflex. Explicitly, the conditions for storage
of a conditional reflex are as follows:

(i) Output is obtained from the Purkinje cell by the inhibition sampling
method (described in 7.1): that is, the level of inhibition is generally high,
so that climbing fibre signals are only transmitted when the mossy fibre
input is one that has been learned.

(ii) The olivary cell is driven by receptors whose stimulation is reduced
(in any learned context) by the results of stimulating the corresponding
Purkinje cell.

The learning of a context will arise if the combination of olivary cell
firing and that particular context is a frequent one, as it would be, for
example, while the child (under cerebral control) was ‘learning’ to stand.
Once the context is learned, the reflex automatically becomes operative
when it is required.

There is no reason why a particular olivary cell should not be driven by
more than one kind of receptor, though receptors must be connected to
Purkinje cell units whose activity reduces the stimulations they receive:
the inhibitory nature of the Purkinje cell output may help to arrange this.
The receptors connected to a given olivary cell have to be rather carefully
chosen, but their number is limited only by the learning capacity of the
corresponding Purkinje cell.

It is proposed that most cerebellar functions associated with main-
taining balance and posture are carried out by forming the appropriate
learned conditional reflexes in the sense of 7.2, while those motor skills
which involve active movement rather than maintenance reflexes are
generally learned in the manner described in 7.1.

7.3. The cerebellar initiation of movements

The two kinds of input—output relation give the cerebellum the power to
learn any task whose execution is related in a rather rigid way to informa-
tion sent through the mossy fibres, and at the same time to set up suitable
reflexes to maintain balance and posture during execution of those tasks.
The cerebrum is thus freed from at least the routine matters associated
with motion and stance. There are, however, many instances in life when
both the recognition that a job must be done, and its implementation, are
simple operations. For example, information taken out of the visual
system at a fairly low cortical level (say from areas 18 and 19) might be
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useful as a source of cues during walking: and information about the mood
one is in can sometimes influence in a simple (but learncd) way the
gestures one makes.

It is but a short step from believing that the cerebellum stores movements
and gestures to proposing that visual cues and information about mood and
so forth can form enough of a context actually to initiate an action; and it
would be strange if something of this sort did not happen, though it doubt-
less occurs more frequently in the motor cortex. Where it is possible to
translate the combined activity of many cerebral fibres rather simply into
physical directives, doing so in the cerebellum would free the cerebrum from
an essentially tedious task. In these circumstances, the cerebellum becomes
rather more than a slave which copies things originally organized by the
cerebrum: it becomes an organ in which the cerebrum can set up a sophisti-
cated and interpretive buffer language between itself and muscle. This can
be specially tailored to the precise needs of the animal, and during later
life leaves the cerebrum free to handle movements and situations in a
symbolic way without having continually to make the retranslation. The
automatic cerebellar translation into movements or gestures will reflect in a
concrete way what may in the cerebrum be diffuse and specifically un-
formulated, while the analysis leading to that diffuse and unformulated
state can proceed in its appropriate language.

§8. THE MAIN PREDICTIONS OF THE THEORY
8.1. Modifinhle synapses

The main test of the theory is whether or not the synapses from parallel
fibres to Purkinje cells are facilitated by the conjunction of presynaptic
and climbing fibre (or post-synaptic) activity (5.1). If this is not true, the
theory collapses.

It is likely that no other cerebellar synapses are modifiable. The mossy
fibre-granule cell synapses are discussed in 3.3.3, and the Golgi cell afferent
synapses in 4.5. The function of the stellate cells is fixed throughout the
life of the cerebellum, and so they probably do not possess modifiable
synapses. Though it is difficult to see how these predictions could be wrong,
they might be: such a disproof would be embarrassing but not catastrophic,
since something of the bones of the theory would remain.

8.2. Cells

The roles of the various cells in the cortex are roughly determined once
the main prediction about modifiable synapses is verified. There are, how-
ever, three predictions which can be tested. The first concerns the Golgi
cells. They have been discussed at some length, and arguments were
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produced for the view that there should be little if any summation between
the upper and lower dendritic trees (4.4). The cell should be driven by
that tree which is currently the more powerfully stimulated. Refutation
of this would again be awkward but not fatal.

Secondly, the interpretation of the stellate cells as a threshold setting
mechanism for the Purkinje cells depends strongly upon the presumed
distribution of the mossy fibre rosettes below the cortex. The theory
requires that each mossy fibre extends a fair distance perpendicular to the
line of the folium (6.1), and this can be investigated.

Thirdly, the number of granule cells active at any one time (say in any
50 msec period) is a small fraction (less than 1/20) of all granule cells.

8.3. Input—output relations

The two forms of input—output relation are experimentally distin-
guishable, and the same olivary cell-Purkinje cell pair may at different
times be used both ways. For the learned movement form, the olivary cell
should respond to a command for the same elemental movement as is
initiated by the corresponding Purkinje cell. For learned conditional
reflexes, the activity provoked by the Purkinje cell must tend to cause a
reduction in the receptor activity which drives the olivary cell.

It is proposed that these two input—output relations are used for fairly
different tasks. This division of labour is not logically necessary, since in
principle each form can execute either task: but it would be surprising if
the observed division differed substantially from the one suggested, since
that particular arrangement is the most economical.

§9. THE CODON REPRESENTATION

The notion central to the present theory is that the afferent input events
communicated by the mossy fibres to cerebellar cortex are turned into a
language of small subsets and then stored; and this has been called the
codon representation of an input. This formulation is new, but the prin-
ciple is closely related to the feature analysis ideas current in the machine
intelligence literature (see e.g. Uhr & Vossler, 1961). ‘Features’ are merely
rather specially chosen codons. This author in particular owes a debt to the
paper by Brindley (1969) which contains what may be regarded as a
degenerate case of codon representation, though from rather a special
point of view.

The idea of codons arose in an unlikely way as the result of a search for a
representation which the cerebrum might use for storing information. Its
relevance to the cerebellum was noticed only when it was realized that any
neural net built to implement the representation must contain something
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like granule cells. An analysis of the properties of the codon representation
and of its possible place in the theory of cerebral cortex will form the
subject of a later paper.

I wish to thank Professor G. S. Brindley and Dr I. M. Glynn for their very helpful
criticism; Professor Sir John Eccles and Springer-Verlag for permission to use Figs. 1 and 3,
and C.S.I.C. Madrid for permission to use Fig. 2. Most of this work was carried out during
the author’s tenure of an M.R.C. research studentship, and formed part of a fellowship
dissertation offered to Trinity College, Cambridge in August 1968. The ideas of §7.2 were
formulated later to overcome criticism made by S.J. W. Blomfield and Professor G. S.
Brindley. This work was supported by a grant from the Trinity College research fund.
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ADDENDUM

Escobar, Sampedro & Dow (1968) have shown that in man, and probably also incat, there
are fewer cells in the inferior olive than there are cerebellar Purkinje cells. There may there-
fore exigt other sources of climbing fibres. Statements in the present work about the inferior
olive should be understood to refer to all sources of climbing fibres, including those as yet
undiscovered. If olivo-cerebellar fibres are found to branch, the theory will require slight
modification.

EXPLANATION OF PLATE
Dendritic epines on a cat Purkinje cell. (From Eccles et al. 1967, Fig. 274.)
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Commentary on

A Theory of the Cerebellar Cortex

Marr may not have been the first to suggest that the cerebellum dealt with
learning and memory (Luciani, 1915; Rawson, 1932; Brindley, 1964), but he
clearly was the first to propose a theory. The theory began with the intuitive
observations of Brindley on the nature of the acquisition of skilled sequential
acts. The performance of such acts passed from the attentive slow, picking
out of one movement after another to the unconscious rapid uninterrupted
flow of them: with time, they became essentially automatic. The elements of
the machinery consisted of the cell types, the connectivities and the synaptic
actions of the cerebellar cortex, as newly illuminated by Eccles, Llinas and
Sasaki and others (Eccles, et al., 1967; Llinas, 1981). The process was one
of context recognition and leaming: the context recognition at the level of
the mossy fiber-granule cell-golgi cell circuitry, and the leaming at the level
of the parallel fiber-Purkinje cell synapse, heterosynaptically reinforced by the
inferior olive climbing fiber. Linked through leaming to the context of the prior
movement in the sequence, the Purkinje cell automatically recognized it and it
fires to trigger the next movement in the sequence. The model was described
in lucid, even vivacious language; critical predictions were itemized and rank
ordered with one to four stars, as for generals and gourmet guidebooks. The
model stimulated thought, experiment and controversy, all of which continue
to this day.

Other theoretical papers soon appeared. Albus (1970) offered a similar
model, explicitly likened to a Perceptron. Two differences between the Albus
and the Marr models were 1) that Albus had the leaming and the climbing
fiber discharge driven by error (rather than intent), and 2) that the leamning
consisted of decreasing (rather than increasing) the parallel fiber-Purkinje cell
synaptic strength, thus decreasing (rather than increasing) the output of the
Purkinje cell that was associated with erroneous performance. Gonshor and
Melvill-Jones (cf. 1976) showed in humans that the vestibulo ocular reflex
(VOR) is indeed exquisitely adjustable. Ito (1972) adapted the Marr-Albus
Theory in an attempt to account for the adjustment of the vestibulo-ocular
reflex; Gilbert (1975) adapted the Theory to portray Purkinje cell learning in
the spikc frequency domain.

Experimentalists tested the model by ablation (Does the leamning go away?),
single unit recording (Does neural discharge correlate with learning?), and elec-
trical stimulation (Can stimulation reproduce learning?). Ito (1974) et al. in
the rabbit and Robinson (1976) in the cat ablated the cerebellar cortex, altered
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the gain of the VOR, and prevented further adjustment. The experiment has
been repeated in a variety of animals since. Other movement adaptations have
also been altered by cerebellar cortex ablation, including the ocular saccades
(Optican and Robinson, 1980), the conditioned eye blink (McCormick and
Thompson, 1984; Yeo, et al., 1984) and the habituation of the acoustic startle
response (Leaton and Supple, 1986).

Single unit recording during motor adaptations added two critical obser-
vations: first, the complex spike of the Purkinje cell (caused by climbing fiber
discharge) was reported to occur preferentially in situations where adaptation
is occurring (Gilbert and Thach, 1977; Thach, 1980; Watanabe, 1984) or is
likely to occur (Gellman et al., 1985; Armstrong and colleagues; Andersson
and Armstrong, 1987; Armstrong et al., 1988; Simpson and Alley, 1974). Sec-
ond, repeated occurrence of the complex spike was reported to be associated
with a reduction in the occurrence of the simple spike caused by the parallel
fiber input (Gilbert and Thach, 1977; Watanabe, 1984) as predicted by the
Albus model.

Electrical stimulation conjointly of climbing fiber and mossy fibers in the
decerebrate cat (Ito et al., 1982) gave a result similar to that observed in
the living animal (Gilbert and Thach, 1977). Coupled stimulation of climb-
ing fibers and mossy fibers led to reduced efficacy of those mossy fibers in
activating (through granule cell parallel fiber synapses) Purkinje cells. The
frequency of stimulation, the required number of pairings, and the time course
of the learning were similar in the electrical stimulation and in the natural
behavioral adaptation experiments. The observation has been confirmed and
extended in a variety of reduced preparations, including direct stimulation of
parallel fibers coupled with climbing fibers in cerebellar slices (Rawson and
Tiloskulchai, 1982; Eckerot, 1985; Ekerot and Kano, 1985; Kano and Kato,
1987). Attempts are being made to examine ionic/molecular membrane mech-
anisms whereby the climbing fiber could produce the reduction in parallel
fiber efficacy. The climbing fiber discharge appears to release adenosine and
aspartate (Cuenod et al., 1988), which causes an inward calcium current in the
Purkinje cell dendrite (Llinas and Nicholson, 1971; Llinas and Hess, 1976;
Llinas and Sugimori, 1980 a,b). The parallel fiber releases glutamate, and
glutamate sensitivity of the Purkinje cell is reduced by climbing fiber action
(Tto et al., 1982).

These results suggest that the Marr Theory, as amended by Albus, may
be generally correct. Nevertheless, there are many investigators who disagree
with this conclusion for a number of different reasons. One group objects to
the adequacy of ablation in general and to some experiments in particular in
establishing proof (Harvey and Welch, 1988). While it is now widely accepted
that cerebellar cortical ablation abolishes some kinds of motor adaptation,
some arguc that the result is non-specific, and that the plastic synapses located
elsewhere and possibly widely distributed (Llinas, 1981; Lisberger, 1988).
As for the conditioned eye blink, it has been claimed that the ablation so
impairs performance as to lead falsely to the interpretation that leaming is

47



W. THOMAS THACH

impaired, and that controlled studies are needed to dissociate the leaming
from the performance of movements (Harvey and Welch, 1988).

Another group objects that single unit recordings in the awake, VOR-
adapted monkey have failed to show the gain change at the level of the Purkinje
cell that should, according to the theory, account for the adaptation (Miles et al.,
1980; Lisberger, 1988). Others raise the question of whether these recordings
were done in the appropriate part of the cerebellum (Gerrits and Voogd, 1989).
Lisberger has reported that patterns of neural discharge sufficient to explain the
adaptation are seen only in the vestibular nuclei, and that the modified synapse
cannot be in the cortex but rather must be the vestibular nerve synapse onto
vestibular nuclear cells (Lisberger, 1988). Ebner and Bloedel (1981, 1983)
have shown that climbing fiber activity may cause a short-term change in the
gain of the Purkinje cell response to parallel fiber input. Nevertheless, they
apparently prefer not to believe that this is a mechanism for “motor leaming”.

Finally, some object that the stimulation experiments of conjunction of
climbing fiber and mossy or parallel fiber activities have not (in their own
hands) been repeatable, or are insufficient to account for leaming (Llinas,
1970, 1981; Llinas and Volkino, 1973; Llinas, et al., 1975).

Only time and work can answer these objections. Certainly some elements
of Marr’s Theory may require further modification. Yet, a growing number
of network theoreticians and experimental neuroscientists appear to like the
ideas, and to anticipate their being proven to be essentially and substantially
correct. But whether the Theory is right or wrong, it has been useful, and is
a fitting monument to the genius of David Marr.
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THE vertebrate cerebellar cortex has a very uniform
structure, and may, for the purpose of this article, be
regarded as being composed of many units like that
appearing in Fig. 1. Its only output is the projection of
large inhibitory cells, the Purkinje cells (Pu), to the
intracerebellar nuclei, and to some of the vestibular
nuclei?2, In man, a major projection from the intra-
cerebellar nuclei is to the ventro-lateral nucleus of the
thalamus (VL)% VL cells project to the motor cortex.

There are two kinds of input to the cerebellar cortex:
the mossy fibres, which synapse with the numerous
granule cells ; and the climbing fibres, which project directly
to the Purkinje cells and wrap themselves around their
dendrites. Each Purkinje cell receives one climbing fibre?,
and can be powerfully excited by it. The climbing fibres
arise from a group of cells in the contralateral brain stem!;
the curious shape of this group has led to its being named
the olive. The inferior olive (I0) receives connexions from
a wide variety of sources, in particular from the cerebral
cortex?. The mossy fibres have several different sites of
origin?; particularly important are the pontine nuclei (PN)
of the brain stem. The cerebellar granule cells, with which
the mossy fibres synapse, send axons (the parallel fibres)
to the Purkinje cells, and to the inhibitory interneurones
of the cortex.

In a recent article?, it was shown that the known
anatomy and physiology of the cerebellar cortex are

Recent anatomical information suggests new input—output relations
for the cerebellum. These have interesting implications about the
role of motor cortex in the learning and controlling of voluntary
movements,

consistent with its interpretation as a simple memorizing
device. It was predicted that the synapses between
parallel fibres and Purkinje cells are modifiable, being
facilitated by the conjunction of pre-synaptic and climbing
fibre activity. It was shown how this would allow any
single Purkinje cell to learn to recognize, without appreci-
able confusion, more than 200 different mossy fibre
input patterns. Two methods were outlined by which
such a memorizing device might learn to performn motor
actions and maintain voluntary postures initially organized
elsewhere. Since then, three relevant facts have come to
our attention: (i), anatomical information concerning
the origin of the cortico-olivary and cortico-pontine
projections*; (ii), the discovery that the olivo-cerebellar
(that is, climbing) fibres branch®:*; and (iii), the prediction
that climbing fibres can organize more than simple
memorizing phenomena’. These facts have implications
about the way the cerebellum may be used by the rest of
the nervous system that will be of interest to experi-
menters, and we therefore give here an outline of their
principal consequences.

New Information

(i) The origin of the descending projection to the olive
has long been known to include cortical cells, of which
the majority lie in the motor and pre-motor areas. But
it has recently been shown that these fibres arise almost

Reprinted by permission from Nature Volume 227, pp 1224-1228. Copyright 1970 Macmillan

Magazines Ltd.
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Fig. 1. The diagram selects the principal elements of the cerebellar
cortex. There is one output system, the Purkinje cell axons, and two
input systems, bing and the moesy fibres. The climbing fibres
nnglnaw in the inl‘erior olivary nncleus, and each Purkinje cell usually
receives exactly one. The moasy fibres, which come from many parts of
the body and bnln are imagined to convey inform&tion about the state
of the animal—information referred to as the‘‘context’” at that ume
The mossy fibre input is translated by the granule cells into a hngus?e
mdﬁl fibres. is

re synapees with a ki cell tha

t The inhibitory oell pre-
almost all its actl\e afferent
synapees numbers of the various kinds of
fibre projecting to one Purkinje cell in cat are as shown: this enables a
single cell to at least 200 different mossy fibre inputs, without

confusion between learned and unlearned events.

entirely from small pyramidal cells’. In contrast, the
pontine nuclei receive collaterals from both large and
small pyramidal cellst. The distinction may be that
superficial pyramidal cells project to the inferior olive,
while deep pyramidal cells give off collaterals to the pon-
tine nuclei on their way to the spinal cord*®. Further,
the projection from the ventro-lateral thalamic nucleus
to the motor cortex is direct to the deep pyramidal cells,
and perhaps by way of an excitatory interneurone to
both the superficial and the deep pyramidals (see Fig. 12:2:9).

(ii) The inferior olive contains fewer cells than there are
cerebellar Purkinje cells!®. This means that either there
are other sources of climbing fibres or the olivo-cerebellar
fibres branch. It seems that the latter explanation is
correct®-*. The distribution of the branches of one climbing
fibre also seems to be restricted to a parasagittal plane®.

(iii) The hypothesis* that the parallel fibre—Purkinje
cell synapses are facilitated by simultaneous pre-synaptic
and climbing fibre activity has implications deeper than
merely allowing each Purkinje cell to memorize 200 or
so different mossy fibre inpute. If a number of similar
mossy fibre inputs have been learned and later an unlearned
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input is presented which is near enough to those which
have been learned, then the Purkinje cell may treat
the new input as if it had been learned. This is probably
not the disadvantage it was once thought’. It means
that a Purkinje cell will generalize its response to all
events in those regions where learned events are suffi-
ciently clustered together. The implications of this
generalization are set out elsewhere’.

Consequences of this New Information

Input—output relations. In Fig. 2, the new information
(i) is combined with the previous knowledge of cerebellar
anatomy. All the synapses in the diagram are excitatory,
except those from the Purkinje cells to the cells of the
cerebellar nuclei. One very striking feature of this circuit

is the loop formed from the deep pyramidals
through the pontine nuclei, cerebellar nuclei and VL
nucleus of thalamus back to the deep (and also superficial)
pyramidals. This arrangement has been commentcd on
hefore!11, A necessary assumption of the present theory
is that this loop, which will provide a positive feedback
from the deep pyramidals to themselves, is so arranged
as to give rise to temporally extended pyrainidal cell
outputs. One possibility would be that the feedback is
chiefly to the original area, so that a movement—once
initiated—will tend to continue indefinitely (at least
well beyond the normal firing period of pyramidal cells
in response to an excitatory input): and this will only
be terminated either by applying direct inhibition to the
deep pyramidal cells or by breaking the feedback loop.
In the original cerebellar theory3, two possible forms of
input—output relation were described, both of which
required that each individual Purkinje cell could initiate
one of the elemental movements into which it was postu-
lated all actions were broken down. For executing
actions it was thought necessary only to copy the correct
pattern of elemental movements. It was shown how the
cerebellar cortex could arrange this by having every
elemental movement driven by the context in which it i1s
required.

The anatomy of Fig. 2 is not wholly compatible with
this simple programme for copying patterned sequences
of elemental movements. In general, if a machine has to
execute a sequence of movements, it can operate either by
turning on the correct elemental movements at any instant,
or by turning off all the incorrect ones. We believe that
the design of the cerebellum suggests that the second
scheme, the converse of the original input—output relations,
is in fact used for learning imotor actions. The second
scheme is at first sight absurd, because the number of
elemental movements required at any instant is far
smaller than the number of possible elemental movements.
It only becomes more economical than the first scheme if
the number required exceeds the number which need to
be turned off. In practice, this means that some agency
must, at any instant, select from the vocabulary of
elemental movements a particular set of “possibles’”,
which includes all those actually required. If this can
be done so that the number of “actuals” is greater than
the number of “possibles’’ minus ‘‘actuals’, it becomes
cheaper to operate by deleting unwanted elemental
movements from the set of ‘‘possibles’.

Such an agency would have to satisfy the following
properties: (a), it must consist of cells capable of driving
elemental movements; (b), these cells must be capable of
being context-driven; (c), the set of situations to which
each cell responds must include those in which it is
needed; and (d), cerebellar action upon it must be such
that Purkinje cell activity turns off instructions for one
(or more) elemental movements. We propose that the
set of deep pyramidal cells in the motor cortex is such an
agency, and that the conditions (a) to (d) are satisfied by
them.

One can now assign a definite role to the small super-
ficial* pyramidal cells which project to the inferior olive.
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These, we assume, project to regions of the inferior olive
which drive climbing fibres in the same general region of
the cerebellum as that which projects back to the deep
pyramidal cell beneath them. If the ideas described
earlier are correct, these cells must fire when the large
pyramidal cells related to them are firing but should not.
That is, the small superficial pyramidal cells should
detect the need to correct the current motor activity by
deleting the messages from their corresponding deep
pyramidal cells. In this respect it is of interest that the
VL nucleus of the thalamus sends excitatory connexions
to both deep and superficial pyramidals; this will inform
the superficial pyramidals of the feedback excitatory
input to the deep pyramidals; clearly there is no point
in the superficial pyramidals making deletions when the
deep pyramidals are, in fact, not going to be fired. Learn-
ing may be necessary for organizing the details of the
projection from the VL nucleus to the cortex.

Fig. 2. There are two relevant kinds of cell in the motor cortex: small,
superficial pyramids (SP) and large, dee] yramids (DP). The DI
send collaterals to the pontine nuclei (PN), and the SP cells to the
erior olive (10). The axons from the inferior olive terminate as
climbing fibres (¢f) on the Purkinje cells (Pu) in the cerebellar cortex;
those from the pontine nuclei me mossy fibres (mf). Purkinje
cells are inhibitory, and send synapses to the various cerebellar nuclei
(CN): these nuclei also receive excitatory synapses from mossy fibre
and climbing fibre collaterals. The cerebellar nuclei send excitatory
synapses to the ventro-lateral nucleus of the thalamus (VL). VL
projects back to the motor cortex by way of a fast and a slow path:
the fast path goes only to the large, deep pyramids; the slow path goes
to both deep and superficial pyramidal , perhaps by way of an
interneurone.

B8
B

Superficial pyramidal cells therefore recognize the
classes of events which are incompatible with the current
firing of the corregponding deep pyramidals. The analysis
behind the recqgnitiom of the need for such corrections
may be complieated, because it involves ideas about
what the animal is trying to do. Its results can, however,
be tied to specific contexts, using the kind of learning of
which the cerebcllar cortex may be capable?. There is
thus a clear advantage to be gained by storing the correc-
tions in the cerebellum.

It may fairly be objected that nothing has been said
about the way in which the small pyramidal cells detect
the need for the corrections which they can implement.
This problem is in principle no greater, however, than the
analogous assumption oconcerning the deep pyramidal
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cells: how do they recognize the need for their clemental
movements ? On a superficial level 1t is clear that all
pyramidal cells could be capable of learning contexts?
using the same mechanisms that have been described for
the cerebellar Purkinje cells®. The decper aspects of theso
problems have also begun to yield?, and a full account of
them will appear elsewhere.

The following summary states the conditions under
which the inverted input-output relations could work,
and hence the experimental findings needed to prove or
disprove the hypothesis:

(4) Elemental movements are coded by deep pyramidal
cells in the motor cortex.

(B) The set of situations to which such cells respond
includes those in which they are needed.

(C) Their axon collaterals to the pontine nuclei provide
a positive feedback loop (via the cerebellar nuclei) which
is necessary, during normal operation of the system, for
the proper initiation and continuation of their elemental
moverments.

(D) Small, superficial pyramidal cells recognize the
need for correction of current motor cortex output. These
corrections involve the prevention of firing of certain deep
pyramidal cells.

(E) These corrections, whose initial computation is
not necessarily easy, can eventually be run by the cere-
bellar Purkinje cells—in the same way as Purkinje cells
were originally thought to drive the elemental movements
themselves?.

Branching climbing fibres. Purkinje cells in diffcrent
regions of the cerebellar cortex are exposed to information,
through the mossy fibres, that originates in different parts
of the body and brain. A full description of the state of
the body and brain as transmitted through mossy fibres
will be called a full context, and a similar description of
part of the body or brain a partial context. Then each
Purkinje cell has access to a partial context; and the kind
of contextual information which may reach each cell is
probably fixed.

Each Purkinje cell usually receives exactly one climbing
fibre. Hence if the axon from a single olivary cell gives
rise to ten climbing fibres, the firing of that olivary cell
effectively signals modification conditions to ten, presum-
ably different, partial contexts. During the rehecarsal
necessary for the cerebellum to learn a given action, some
of these partial contexts will recur and somne, because they
carry information which is cssentially irrelevant, will not.
Those Purkinje cells, the firing of whose climbing fibres is
associated with a relatively unchanging partial contcxt
will learn that context—and this will be useful. Those
which reccive a different partial context cach time will not
learn (provided synaptic modification does not work
first time); nor would it be of any use if they did. Indeed,
it would be a disadvantage on two grounds. First, it
would reduce the effective capacity of the Purkinje cell
to learn useful contexts; second, it might causc incorrect
deletions during an action in which an irrelevant partial
context arises and the elemental movement is required.

There are many related questions concerning the number
of corrections a Purkinje cell discharge can implement,
the kind of convergence there is in the cerebellar nuclei,
and so on, which cannot be properly studied until more
information becomes available. The parasagittal distri-
bution®1? of the climbing fibres may, however, shed some
light on these problems. It is known that the cerebellar
cortex tends to be organized into longitudinal strips,
whose Purkinje cells project to restricted regions in the
intracerebellar nuclei*1?; so the climbing fibres from a
single olivary cell will tend to cause modification of
Purkinje cells whose influences converge on a restricted
zone of the cerebellar nuclei. One can even devise a
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plausible embryological model which ensures that the
Purkinje cells related to one olivary cell all converge on
a single cerebellar nuclear cell—so that there is a one to one
correspondence between olivary cells and cerebellar
nuclear cells. But such a restriction is by no means neces-
sary for the theory.

Detection of clusters by Purkinje cells and climbing fibres.
It seems likely that two parts of the theory developed by
one of us? for the cerebral pyramidal cells also apply to
the cerebellar Purkinje cells. The first concerns the nature
of the signals which the Purkinje cells actually transmit.
It is possible that these cells do give a response which is
strictly all-or-none, depending on whether the current
input has been learned. We feel, however, that it is more
likely that they signal a measure of how similar their
current output is to the structure of the events that they
have learned. It seems that the most suitable measure
of this similarity is the fraction of the currently active
afferent synapses to a cell which have been modified’,
provided that fraction is greater than some fixed lower
bound p (say). A model has been proposed by which this
quantity could be measured by a single cell’, and we feel
that this is likely to be more suitable for the theory of
Purkinje cell dendrites than the simple one developed
carlier3.

This raises important questions concerning the need for
convergence of Purkinje cell discharge onto cerebellar
nuclear cells. Is it possible for a single maximally firing
Purkinje cell to turn off a cerebellar nuclear cell complete-
ly, or does it need convergence from several Purkinje cells ?
And if several converging Purkinje cells are firing sub-
maximally—in response to inputs rather dissimilar to their
learned partial contexts—then is their summed effect
sufficient to turn off the cerebellar nuclear cell ?

The second application of the cerebral theory to the
cercbellum concerns the discovery that a climbing fibre
can organize a kind of cluster analysis’. Provided the
information arriving at Purkinje cells is clustered and that
the climbing fibre is coactive with enough events in a
cluster, then the cell will respond to many more events,
whether or not they have ever been associated with the
climbing fibre activity. We think that this effect, certainly
vital in the cerebral cortex’, is probably important-in the
cerebellum also. It is & mechanism which can provide a
kind of generalization to events which should ‘“‘obviously”
initiate the same responses as their neighbours without
the necessity for a specific new learning trial.

The next topic we wish to raise concerns the Purkinje
axon collaterals!. It has been pointed out?® that the effect
produced by them through their connexions with basket
and stellate cells is simple, whereas their effect through the
Golgi cells is not. One possible explanation of their
existence is that, when active in the region of a particular
Purkinje cell P, they cause P to relax the scale on which
it measures the similarity of the current input to the events
it has learned. This is suggested by two facts: first, the
inhibition reaching P will be decreased by collateral
stimulation; and second, the Purkinje axon collateral
inhibition of the Golgi cells will cause a slight decrease in
the local granule cell threshold. This is the correct step for
interpreting the current mossy fibre input within the
structure formed by the other mossy fibre inputs which
it has learned (by the interpretation theorem?).

It is therefore possible not only that direct generaliza-
tion, of the sort described above, can occur in the cerebellar
cortex, but also that the extent to which this generaliza-
tion is permitted (that is, lowering the value of p)
can be varied by Purkinje axon collateral activity. If
this is so, it has implications about the distribution of
these collaterals that one would expect to find: because
the cues to lower p for a particular cell P must arise
from information suggesting that it would be appropriate
to do so. This means that the Purkinje axon collaterals
ending in one region of cortex should fire only when it is
likely that the corrections controlled from these are wanted ;
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and in general, the more likely they are to be wanted,
the greater will be the permissible degree of generaliza-
tion there (that is, the lower p can be), and 8o the more
activity there should be in the Purkinje axon collaterals
terminating there. This implies that the collaterals from
each Purkinje cell P, tend to be distributed to regions of
cortex containing Purkinje cells which are needed after
or at the same time as P,. The most obvious of such
regions would be those containing the Purkinje cells
which are fired by the other branches of the olivo—cere-
bellar axon which sends a branch to P,. (It is interesting
to note that Purkinje axon collaterals are often closely
related to climbing fibres.) Those regions of cortex receiv-
ing collaterals from many currently active Purkinje cells
would then be more likely to be needed next than those
regions receiving from only a few. The known distribution
of Purkinje axon collaterals tends to support this notion.
The Purkinje axons first contribute collaterals to the
transversely running infraganglionic plexus, whose fibres
often bridge across several folia; branches are given off
from this plexus to the longitudinally running supra-
ganglionic plexus, whose distribution is much more
limited. Hence Purkinje axon collateral effects will tend
to be restricted to the parasagittal plane. We have
already shown that there is reason to suppose that the
Purkinje cells have closer relations to other Purkinje cells
within such a plane than without.

There is one other piece of evidence in favour of this
rather complex view of the Purkinje axon collaterals.
It is that it also accounts for the climbing fibre collateral
effects!:3. For,duringlearning, any instruction to generalize
must be annulled, in order that a true record of the mossy
fibre input may be stored. According to the theory?,
learning occurs at P when the relevant climbing fibre is
also active; and when it is, the effect of its collaterals
could roughly balance the effect of the Purkinje axon
collateral near P. According to the available evidence?,
both types of collateral are weak and their effects are
opposite.

Timing Relationships

We have argued that the small, superficial pyramidal
cells of the cerebral cortex detect incompatibilities in the
current deep pyramidal cell activity, and that they
modify the behaviour of the cerebro-cerebellar—cerebral
loop to cope with this. We now consider the timing
relationships involved.

The speed of the main ‘‘feedback’ loop is astounding.
It incorporates some of the fastest pathways in the nervous
system, and its major links all include monosynaptic
connexions!!, In the cat, discharges in the pontine
nuclei follow stimulation of the cerebral white matter by
as little as 2 ms*. The corresponding times for the other
stages are: pontine nuclei to cerebellar nuclei, 1 ms!!;
cerebellar nuclei to VL nucleus of thalamus, 2 ms!; VL
nucleus of thalamus to cerebral pyramidal cells, an
estimated 1 ms. The whole loop may therefore be traversed
in as little as 6 ms, and certainly within 10 ms. Such a fast
mechanism is clearly required in voluntary movements,
especially those of a more complex kind when muscular
groups have to be set into action in rapid sequence and
at closely defined times.

Contextual information reaching the cerebellar cortex
through the mossy fibres is also rapidly transmitted;
indeed, it involves almost the same pathways. The time
taken for stimulation of the subcortical white matter to
evoke a mossy fibre response is 2:7 ms‘. Mossy fibre
responses to stimulation of forelimb and hindlimb peri-
pheral nerves have delays as short as 5 ms and 7 ms
respectively*.

On the other hand, the cortico—olivary—climbing fibre
pathway is quite slow. The climbing fibre discharge
evoked by stimulation of the cerebral subcortical white
matter has a delay of 15 ms®. At first sight, it would
therefore seem impossible that the superficial pyramidals
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could signal that the currently active deep pyramidals
should be deleted: their commands would arrive too late
to be effective.

It is, however, necessary to consider the time scale of
the context in which these instructions are being made.
The overall context of the movement changes much more
slowly than the individual components of that movement.
That a given group of deep pyramidal cells should not fire
i8 not merely a decision whose effects last for a few milli-
seconds: the group will be required to be off for an
extended period of time. The decision may have to be
made and implemented quickly, but it will remain in
force for much longer. This means that the modification
conditions refer to extended contexts, of perheps as long
as 100 ms, rather than to instantaneous contexts.

It is therefore proposed that the inferior olive cells
should fire in prolonged bursts, of up to 100 ms. During
this time, the currently active synapses to the related
Purkinje cells should be strengthened in proportion to
their degree of activity. This allows the Golgi cell threshold
system to be reset by the climbing fibre collaterals, so as
to give the ‘“‘correct” parallel fibre pattern during modifica-
tion. More important, this ensures that the Purkinje cells
can respond in good time to inhibit the cerebellar nuclei
cells—because the mossy fibre context just before the
climbing fibre activity (that is, when the input reaches
the pontine nuclei) will differ only slightly from that
during it. The ability of Purkinje cells to generalize will
also help in this effect.

It may be found that the small, superficial pyramidal
cells anticipate the large, deep pyramidal cells, and signal
in advance that certain cerebellar nuclei cells must be
inhibited within the context of the present devcloping
movement.

Cerebellar Disorders

The present theory ‘can provide a tentative explanation
for many of the disorders arising from damage to the
cerebellum. One of the most striking effects of acute
cerebellar lesions is the delay in the initiation and termi-
nation of movements!?. The delay in initiation is probably
caused by malfunction of the cerebellar nuclei. In the
acute stage of such lesions, there is considerable oedema
and consequently raised pressure in the cerebellum; this
could account for such malfunction. The result is that.
when the cerebral cortex tries to initiate the movement.
there is little or no excitatory feedback to the motor cortex.
The movement can only be got going by a considerably
greater voluntary effort, and this involves both delay and
slow pick-up. With recovery of functioning of the cere-
bellar nuclei (that is, in those lesions which are more
superficial), such delays will tend to disappear3.

Delay in termination’® probably results from a com-
bination of two factors. First, there is an inability to
initiate the muscular contractions which are required to
stop the movement: this again involves the cerebeller
nuclei. Second, there is delay in switching off the current
movement: this results from the malfunction of the
cerebellar cortex. This latter effect should become
more apparent as recovery proceeds, for the cerebellar
nuclei will be functioning normally while the damage to
the cerebellar cortex persists. In other words, the context
which signifies that the movement should stop is no longer
able to implement this operation, because the relevant
Purkinje cells are lacking. This argument receives support
from the observations of Gordon Holmes!? that the start
of relaxation in a movement is usually more markedly
affected than the start of contraction.

The inability of patients with unilateral cerebellar
lesions to maintain voluntary postures on the affected side,
and the greater sense of effort involved in making any
voluntary movements, are both common features in the
early acute stages. Both are consequences of inadequate
excitatory feedback from the cerebellar nuclei.

The phenomena of dysmetria!?, in cases of acute
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cerebellar lesions, and of hypermetria, which occurs in
more persistent cases, are probably related to these
disorders. Dysmetria will result from the malfunctioning
of both cerebellar nuclei and cerebellar cortex. Movements,
once initiated, are ill-gauged and tend to undershoot or
overshoot the mark. Undershoot will be caused by an
inability to maintain a voluntary movement (a symptom
of cerebellar nuclei malfunction); overshoot will be caused
by inability to stop voluntary movements (already
considered). It is particularly interesting that hypcy-
metria should ensue—this is exactly what the theory
would predict. It results from the lack of inhibitory
control from the cerebellar cortex; as a result the move-
ments consistently overshoot and are excessively forceful.

The decomposition of complex movements!? is a natural
consequence of any cerebellar malfunction. The errors
arising in the initiation, continuation and termination of
successive and concurrently running elemental movements
should lead to hopeless confusion. The only hope for
success would be to deal with one elemental movement at
a time, so that errors may be consciously and deliberately
dealt with as they arise.

An interesting disability which arises in cerebellar
patients is that on trying to flex just one finger (in order
to bring it into apposition with the thumb), they frequently
flex all four fingers at the same time!3. In this case. it may
be that normally the cerebral command is to flex all four
fingers but suppress flexion on the unwanted three.
Certainly in early hand movements, flexion of all four
fingers appears before flexion of individual fingers—
though there is a cortical representation for each individual
finger flexion. The suppression of the unwanted flexions is
learned by the cerebellum during the early development of
the child. Damage to the cerebellar cortex will interfere
with the suppression, and a command to move one finger
will initiate movement in all four.

We shall make just one reference to observations made
on animals with lesions placed in the cerebellum. This
concerns the effects of such lesions on the placing reaction!s.
Lesions which involve the dentate nucleus are found to
abolish the placing reaction. In contrast, lesions confined
to the cerebellar cortex may actually enhance it. Ablation
of parts of the cerebral cortex which include the motor
area is known to abolish the placing reaction. This is
compatible with a learned reflex which passes through
the cerebral motor cortex and whose output depends on
positive feedback through the cerebro--cerebellar-cerebral
loop. Clearly such a reflex is of use to the animal in stand-
ing and walking. Inhibitory control of this reflex is then
exerted by the cerebellar cortex.

The functions of the ascending spino-cerebellar and
spino—olivo—cerebellar tracts, and their utilization in the
control of movements and postures, will be dealt with
elsewhere.
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College, Cambridge, for supporting this work.
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Jack D. Cowan

Commentary on

How The Cerebellum May Be Used

Many of the ideas conceming the neocortex (see Cowan’s commentary,
Chapter 4) are incorporated into a revised theory of cerebellar action. Figure
1 shows the overall architecture of cerebellar interactions:

motor cortex inferior olive cerebellum
climb.f.
—’-I superficial pyramids i——-»— >
¥ (slow)
—’—-‘ deep pyramids
i | mf.

¥

>
14

L 4
v

A 4

L3 -
I I pontine nucl. 4
spinal cord 1
v.l. nucl. thaelamus cerebellsr nucl.

Fig. 1. Architecture of cerebro-cerebellar pathways. All interac-
tions except the cerebellum-cerebellar nucleus are excitatory. All
pathways except the inf. olive-cerebellum are fast, with conduction
delays of no more than 2 msec.

Marr and Blomfield make the point that the execution of elemental move-
ments is learned by tuming off all the correct ones. By analogy with Marr’s
neocortex theory the deep pyramids of the motor cortex are presumed to act as
classifiers capable of detecting the “context” of a sequence of elemental move-
ments, and the smaller superficial pyramids are presumed to measure the need
to correct current motor activity and to delete the messages from the corres-
ponding deep pyramids. Their axon collaterals to the pontine nucleus provide
a fast positive feedback loop via the cerebellar nucleus, which is required for
the initiation and continuation of elemental movements. The corrections they
initiate are presumed to be learned eventually and run by cerebellar Purkinje
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COMMENTARY

cells. The point is made that Purkinje cells should function much like neo-
cortical pyramidal cells and detect and generalize over clusters of elemental
movements, using various collateral interactions not covered in Marr’s original
paper on the cerebellar cortex.

Professor
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It is proposed that the most important characteristic of archicortex is its ability to perform a simple kind
of memorizing task. It is shown that rather general numerical constraints roughly determine the dimen-
sions of memorizing models for the mammalian brain, and from these is derived a general model for
archicortex.

The addition of further constraints leads to the notion of a simple representation, which is a way of
translating a great deal of information into the firing of about 200 out of a population of 105 cells. It is
shown that if about 10° simple representations are stored in such a population of cells, very little infor-
mation about a single learnt event is necessary to provoke its recall. A detailed numerical examination
is made of a particular example of this kind of memory, and various general conclusions are drawn
from the analysis.

The insight gained from these models is used to derive theories for various archicortical areas. A
functional interpretation is given of the cells and synapses of the area entorhinalis, the presubiculum, the
prosubiculum, the cornu ammonis and the fascia dentata. Many predictions are made, a substantial
number of which must be true if the theory is correct. A general functional classification of typical
archicortical cells is proposed.

0. INTRODUCGCTION

The cortex of the mammalian cerebrum admits a crude division into twoclasses: the archicortex,
which is relatively simple and primitive; and the neocortex, which has developed more recently
and is very elaborate, especially in man. In a recent paper (Marr 1970), a general theory for
neocortex was set out. The present paper provides its counterpart for archicortex.

The comparatively simple structure of archicortex is probably reflected in its performance of a
comparatively simple function. The central point of the neocortical theory was that a particular
method of organizing information is likely to be useful in many different circumstances: it was
shown how neocortex might take advantage of this to change the language in which incoming
information is expressed by reclassifying it, as well as carrying out routine storage of associations
between existing classes. It will be argued in the present paper that archicortex cannot reclassify
information in this way. It will be shown that its histology is consistent with the proposition that it
performs only a simple memorizing function—storing information in the language in which it is
presented—rather than with organizing information in any more complicated sense. Recent
work on the storage of information in nerve nets (Brindley 1969; Marr 1969, 1970) has reduced the
construction of such a theory to little more than a technical exercise: it is an unavoidable one
none the less, and various interesting factors emerge from this study.

The paper consists of three main divisions. In the first, §§1 and 2, the main ideas behind
simple memory theory are explained. These ideas lead to a particular neural model which, it is
proposed, captures the essence of much of the archipallial cortex. It is shown that under certain
circumstances, the performance of such a model can be greatly improved by use of collateral
synapses between its cells (the collateral effect, §2.4).

The second part of the paper, §3, takes an explicit model constructed along the lines suggested
by the first part, and derives the equations which describe its expected performance. The model’s
storage capacity and recall abilities for a selection of values of the important parameters are
displayed in a number of tables. The computations (§3.1) are followed in the rest of § 3 by a rough
justification of the values of the parameters chosen.

The third part of the paper (§4) uses the model of § 3.1 to arrive at a theory of the hippocampal
cortex. This theory produces many testable predictions, which are summarized in § 5. The theory
is restricted to operations within the cortex, and does not describe any input—output relations.
The reason is that they are much more complex than, for example, those of the cerebellar cortex,
and their inclusion in this paper would have made it prohibitively long. They will therefore be
set out elsewhere, together with the necessary extra theory.
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0.1. Notation

Many of the terms and symbols of Marr (1970) are used in this paper, and it is convenient to
repeat their definitions here. A fibre (e.g. a;(t)) is a function of discrete time ¢ (= 0,1, 2, ...) and
has the value 0 or 1. An event on the set A = {ay, ..., ay} of fibres assigns to each fibre a value 0 or 1.
Letters like E, F are used for events, and the value that E assigns to the fibre q; is written E(a;).
The phrase ‘q;in £’ means a; takes the value 1in the event E’. A subeventon the set A ={a,, ..., ay}
of fibres is an event on a subset of 4. Letters like X, ¥ denote subevents; and the set of fibres to
which X assigns a value is called the support of X, and is written $(X). Gothic letters like €, ¥,
denote collections of events; and letters like %, J) denote collections of subevents.

The event E is said to be a completion of the subevent X, written E}- X, if £ and X agree at all
the fibres to which X assigns a value.

Let € be the space of all events over {ay, ..., ay}. An r-codon ¢ on § is a function, taking the values
0 or 1, such that ¢(E) = 1if and only if a particular subset of 7 fibres (a;,, ..., a;) all have the value
1 in E; ¢ may be regarded as a detector of the subset (a;, ..., a;). An (R, 0)-codon is a similar
function ¢ such that ¢(E) = 1 if and only if at least 6 of a particular collection (a;, ..., a;) of
fibres have the value 1 in E.

1. GENERAL CONSTRAINTS
1.0. Introduction

It has recently been argued that neocortex may be regarded as a structure which classifies the
information presented to it (Marr 1970). The detectors of the classes it forms are the pyramidal
cells of layers V, ITT and possibly also of layer II. An incoming signal will probably pass through
many such classifications during the course of its analysis. The number through which it passes
will depend upon the animal, and upon its interest in that kind of information at that moment:
itis clear that information is often abandoned as uninteresting before it has been examined to the
maximum depth of which the animal is capable.

It is probably reasonable to suppose that at a given moment, there will exist in an animal’s
brain information whose expression is now as sophisticated as the animal either requires, or can
provide. Further classification of the information may be carried out later but, at that moment,
the animal needs simply to be able to store it in its present form. Such an expression of the input is
called the animal’s current internal description of the environment, and it is the storage of the current
internal description which constitutes the animal’s memory of the information. From these
memories, he will form new classificatory units, organize temporally extended actions, and
arrange to respond in the appropriate way to pieces of subsequent current internal descriptions.

The problems that are studied in this paper are those which arise in the storage and the free
association of such current internal descriptions. The central problem may, by the neocortical
theory (Marr 1970), be translated into the following form. £ is a large population of neocortical
pyramidal cells, of which some are firing. It is required that this should be recorded in some way,
so that firing in a few of the cells which are active together in some event E can later elicit the
firing of all cells active in E. This scheme is probably only remotely analogous to hippocampal
input-output relations in most mammalian brains, but it is a convenient model with which to
introduce the cortical theory.

Three considerations necessitate the construction of a special theory for this problem. First,
although it has been shown that the neocortex can store associations between classificatory units
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(Marr 1970, §4)—for example through the pyramidal cells’ basilar dendrites—this kind of
storage requires a rather special kind of pre-existing structure: the relevant fibres have already to
be distributed to roughly the correct places. Direct storage of associations in this way makes
heavy demands on the abundance of interconnexions.

The second consideration concerns the way this kind of associational storage works. It essen-
tially involves recording at each active pyramidal cell £; in £ a list of many of the cells £; co-
active with £;. This can become very expensive, and there are ways of improving upon it.
Furthermore, it is only worth recording information in a permanent memory when it is known
fairly certainly how that information should be expressed. It may, for example, turn out that part
of a current internal description should be recoded to form a new classificatory unit. If this were
done, a direct associational storage of that current internal description would soon be obsolete:
it is better to store it temporarily in a special associative memory, until it becomes quite clear
how it should be permanently set down.

Thirdly, there are many instances in which the control of behaviour would be made rather
easy if an associative memory were available as a temporary storage place for instructions. This
facility would, for example, allow an instruction of the form ‘see post-box—post letter’ to be set up
before one started out on a walk.

1.1. Simple memory

Let € be the set of all events and all subevents on the fibres {¢,, ¢,, ..., ¢,,}, and let  be the set of
all events on the fibres {f;, f5, ..., f} (see §0.1 for definitions of these terms). As time ¢ progresses
(t=0,1,2,...), denote the event at time ¢ in € by E,, and that at time ¢ in § by F,. A simple
memory is a device which connects E, and F,, for each ¢, in the following sense. Let X be a subevent
or an eventin €. Let X, ..., X; be all the completions of X in €; thatis X;l Xfor 1 <7 < J, and
there are no others. (If X is an event, its completion is unique and is itself.) Suppose that exactly
one of the events X;, X,, ..., X; has occurred. That is, the equation X; = E; has exactly one
solution, for all values of j, and of £ up to the present time. Then € and § are joined by a simple
memory if presentation of X subsequently causes the event F, in §.

Two special cases deserve separate names. In the case where {¢,...,¢,} ={fi,...,fn}, the
memory described above is called a free simple memory: if the memory is not free, it is called
a directed simple memory. The reason for these names is that in a free simple memory, there are no
constraints upon the way the associations may flow. Any collection of fibres from theset{f,, ..., f,}
may be used to recall the activity of the rest of these fibres at a particular time. In directed simple
memory, this is not so. For example, f; may not be included in {e,,...,¢,}, in which case
information about f; can never be used to recover information about the rest of the
fi2<i<n).

In the models that are studied in this paper, rather little is said about whether

{er, coosem} ={f1s s Su}e

The question is unimportant until the problem of input—output relations is studied. Itis enough to
note here that the same basic memory mechanism can be used for both free and directed simple
memories.

62



SIMPLE MEMORY: A THEORY FOR ARCHICORTEX 27

1.2. Numerical constraints

There are various arguments which roughly determine the shape of simple memory theory;
they are best presented in the form of order-of-magnitude calculations. This section contains
four such arguments: the first is concerned with the proportion of learned to possible input
events; the second with the likely size of input vocabulary—i.e. the number of input fibres; the
third with the number of events which have to be held in the memory; and the fourth with the
proportion of cells of the population concerned with the storage that is used for each event.

1.2.1. The constraint of a limited history

The number of fibres that may be involved in a current internal description must be expected
to be quite huge; but even if it were only 1000, and a mere 10 were involved at each unit of time
(say 1 ms), there are enough possible events for the system to run for more than 1012 years without
repetition. The world is, of course, not random; but the figures 10 and 1000 are certainly under-
estimates. From this observation follow two conclusions. First, information about the current
internal description concerns whether a particular event has occurred, rather than how often it has
done so, since the answer to the latter question is almost certainly never or once. Secondly, very
few of the possible events will ever actually occur. Recovery of an event will therefore be theo-
retically possible from an extremely small amount of information, and the design of neural models
must be such as to allow this.

1.2.2. Cortical indicator cells

Itis supposed that neocortical pyramidal cells of layers IIT and V are output cells for classi-
ficatory units, and that some, though not necessarily all, of such cells can take part in a current
internal description. The human cerebrum contains about 7 x 10° cells (Shariff 1953) of which at
least say 108 could be classed as cortical pyramids. This is a huge number, and any attempt to
allow all the cells in a population of this size to have access to a simple memory would lead to an
unacceptably large neural structure for that memory. If, however, the memory is used for a
relatively small number of events (of the order of 105), information then being removed to the
neocortex, an important simplification can be made.

Suppose that scattered more or less uniformly over the cerebral neocortex were cells which
responded simply to activity in their neighbourhood of the cortex. If such a cell were driven by a
very small region of the cortex—an area of perhaps 0.03 mm2—it would serve as a marker of
activity in the cortical pyramids within that region. Each cortical pyramid represents a separate
classificatory unit, and it can probably be assumed that within such a region not all the
pyramids will be active simultaneously. The non-specific cell which marks activity in that region
is called an indicator cell: the best design for such a cell would probably assign to it a thin, un-
branched ascending dendritic stem which passes through all layers of the neocortex, and which
is sensitive to excitatory influences throughout its length.

The great advantage of indicator cells is that they can be used as entry fibres to a simple
memory, provided that the return fibres synapse with the true cortical pyramids and not with the
indicators. In this way, whenever a pyramidal cell is used, its nearby indicator(s) cause an entry
to be made to the memory, while the return synapses to the pyramid itself are modified. The
memory can later use these synapses to drive the original pyramidal cell. The only disadvantage
arises when two nearby pyramidal cells are used in two different but very similar situations, but
this problem is not a severe one.
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A density of 30 indicator cells/mm? allows a quite sensitive specification of location; and
although this figure is only a guess, we shall see in §3.1 that it can be changed by a factor of 10
without much disruption of the models analysed there. In general, the density of such cells should
reflect the frequency with which the various regions of neocortex use the simple memory
facility, the density being high in regions expressing information which often needs temporary
storage, and low elsewhere. If indicator cells are used, one would expect their dendritic design to
vary as well, being very compact in areas where their cell density is high, and perhaps arborizing
where they are rare.

The total area of one hemisphere of the human cerebral cortex is estimated to lie between 800
and 1300 cm? If it is supposed that about 400 cm? need to have access to the simple memory
(this figure may be too large), the memory will possess about 108 afferent fibres. This is the
approximate number of fibres needing free simple memory, and does not include the various
kinds of directed simple memory which may, for example, be involved in the planning of tem-
porally extended actions.

1.2.3. Capacity requirements

The design of a memory requires some idea of the number of events to be stored, and of the
amount of information from which recovery of a whole event should be possible. These two
factors are linked, since if a memory has to be capable of recovering events from a very small
amount of information, its capacity is much smaller than if most of the original event can be
used to initiate recall. It is necessary to make a rough estimate of both requirements.

Simple memory has many uses, and the brain probably employs different structures for each
use, though the structures are likely to conform to the same basic plan. For directed simple
memory, it is very difficult to provide even a rough guess at the storage requirements. For free
simple memory (an explicit model for which is developed in §3.1), some idea of the necessary
capacity can be obtained. The figure will not be very high, since it is part of the general theory
that information is moved out of the simple memory when it is known how best to do this. The
two possibilities for the re-storing of the information currently in simple memory are (i) that it is
moved to neocortex in the form of new classificatory units (see Marr 1970, §§4, 5); (ii) that it
is moved to neocortex in the form of associations between existing classificatory units (through,
for example, the basilar dendrites of neocortical pyramidal cells).

It has been suggested that at least a part of the transfer between simple memory and the
neocortex takes place during sleep (Marr 1970, §5). This implies that simple memory must
have adequate capacity for holding the events of at least one day. There are 864005 in 24 h, and
although many events will not be moved out for some time, one probably does not store a new
event every second. The figure of 105 is therefore taken as the kind of capacity required of the
free part of the simple memory.

The amount of information which can recall an event is even harder to estimate, but it should
probably be very small, less than a tenth of the information contained in the original event. The
model of § 3.1 operates at a level considerably below this figure.

1.2.4. The activity of a collection of cells

Let 2 be a population of M cells, by, b,, ..., by;. Suppose that at time ¢, exactly L of these cells
are firing: then the activity of 2 at time ¢ is defined to be L/M, and is written & = a(¢).
If 2 is being used to store n input events, and if its activity during each is a, then each cell of
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2 may expect to be used in an input events. If the storage is taking place in the cells of 2, each
cell will have to learn part of about an input events. The number of subevents a single cell can
learn is determined by the number of modifiable afferent synapses it has, and by the number
that are used in each subevent. For example, the number of fairly dissimilar events that a
cerebellar Purkinje cell can learn is probably about 200 (Marr 1969). Purkinje cells have more
afferent synapses than any cortical cells, and so it follows that most cortical cells will not be able
to learn substantially more than 200 subevents. The number of input events that the population
2 described above may learn is therefore bounded by about 200a~1. This is an important and
rather general constraint.

\_ : D
\_ Y

Ficure 1. A primitive associative memory. The current internal description is an event on the cells a, ..., ay:
this is given a codon representation in the cells by, ..., by; (which have Brindley afferent synapses), and the
return to the a;-cells is through Hebb modifiable synapses. The various inhibitory interneurons necessary
for the correct operation of the system have been omitted. This class of model provides an efficient associative
memory for events on the a; as long as their number and size are suitably restricted.

1.3. The form of the analysis

The model of figure 1 shows almost the simplest design for a free simple memory for events on
the set of fibres 4 = {ay, ..., ay}. This model may be derived most quickly as follows. Let X be a
subevent on 4. Then the problem of recovering the completion E of X (assuming that exactly one
such E has occurred) may be regarded as the problem of diagnosing those a; with E(a;) = 1 from
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the information contained in the subevent X on the basis of the information stored in the memory.
It is now possible to apply the interpretation theorem (Marr 1970, §§2, 4) to the problem, and
figure 1 contains one arrangement for applying the corresponding neural analysis.

The inputs @, ...,ay are the cells which constitute the vocabulary of the current internal
description, and the cells by, ..., b,, are suitable evidence cells. The technique of codon formation
is used to construct suitable evidence cells (see Marr 1970, §4), and for this reason, the b; afferents
end in Brindley synapses. (Hebb synapses will be taken to mean synapses that are initially
ineffective, but are facilitated by simultaneous pre- and post-synaptic activity. Brindley synapses
are Hebb synapses that also contain an unmodifiable excitatory component (Marr 1970, §4.3.1;
Brindley 1969).) The bj;-cell population contains appropriate threshold-setting inhibitory
interneurons, whose function is to keep the number of b-cells that are active roughly constant
during both storage and recall. These interneurons do not appear in the figure.

The return projection to the a-cells ends in Hebb synapses. There are inhibitory interneurons
in the a-cell population which, during recall, allow firing in only those a-cells the highest pro-
portion of whose activeafferentsynapses from the b-cells have been modified. This corresponds to
implementing the interpretation theorem at the a-cells, in response to the subevent X. The cell
a, measures P(a;|X) when X is applied to the set {ay, ..., ay} (Marr 1970, §2.5), and the b-cell
thresholds are lowered in such a way as to keep the number of b-cells that are firing roughly
constant (Marr 1970, §4.4). '

In principle, free simple memory is obtained by allowing the projections from the a-cells to
the b-cells and back to be distributed freely over both populations (as in figure 1). A directed
simple memory is obtained, for example, by arranging that only certain a-cells project to the
b-cells, and that only certain a-cells receive projections from the b-cells.

1.4, The consequences of the numerical constraints

In this section are outlined the principal effects of the constraints described in § 1.2when they are
applied to the kind of model to which the methods of § 1.3 give rise. The development is informal,
and is designed to give the reader an overall view of the theory developed in §§2 to 4. Its main
purpose is to show roughly why it is that the basic model of figure 1 is inadequate for simple
memory, and how this leads to the idea that a special working representation of each input has in
fact to be created in the memory. This central representation is a kind of template for each event;
it probably involves rather few cells—perhaps only 100 to 1000 even in man—and provides
an economical central storage pattern from which the event in the output space § at that
particular instant can be recovered. This representation, called the simple representation of the
current internal description, is a central feature of the present paper.

1.4.1. Synaptic modification

Where codon formation occurs, the relevant synaptic modification has been regarded as an
all-or-none process (Marr 1970, §4). In contrast, the afferent synapses to output (cortical pyra-
midal) cells need to have variable strength in order to measure P(2|¢;), although it may be that
this is in practice approximated by an all-or-none process (Marr 1970, §§4, 7). The numerical
constraints of § 1.2 imply that in the theory of archicortex, synaptic modification should probably
be regarded as an all-or-none process, although it is allowed that different classes of synapses
may have different maximum strengths.
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One reason for this is as follows. For evidence cells (i.e. in codon formation) the arguments
are the same as for neocortex: these synapses are involved in representing a diagnostic space, not
in measuring probabilities therein. For diagnostic processes in a simple memory, the argument
rests on the peculiar way in which the memory is used—as a temporary store to which new in-
formation is continually being added. At a neocortical output cell, the notion of a conditional
probability has a practical meaning, since the output cell and its supporting evidence cells are
structures which form a permanent part of the brain’s interpretive apparatus. This is not true of
simple memory. Much of the information held therein is needed only temporarily, and that which
is not will be removed to the neocortical store when it becomes clear how it should be represented
there. The notion of conditional probability in such circumstances has at best only a changing
meaning.

1.4.2. Inadequacy of the simple model

It is easy to show by using order-of-magnitude calculations that the simple model of figure 1
cannot be applied to the case where there are as many as 108 input cells @;. Since neocortical
pyramidal cells probably possess fewer than 100000 afferent synapses, most of which will be
occupied with standard diagnostic evidence and with permanent neocortical associative
information, it can probably be assumed that only about 104synapses are available for the simple
memory function. In the simple model outlined in figure 1, this means that the number of
b-cells, M, may be taken as 104, each one synapsing with every one of the 10% a-cells. The b-cells
must possess modifiable synapses since, otherwise, recall from subevents of learnt events would
be impossibly bad. If the capacity of the memory is taken to be about 105 events, and each b-cell
canlearn 102 (§1.2), the activity « of the b-cell population must be as low as 10~-3—that is, 10 cells
active at any instant. This number is too small to allow a reliable representation of the whole
input event by the b-cells, and the model is therefore inadequate.

1.4.3. The simple representation of the current internal description

Arguments like that outlined in § 1.4.2 show two things: first, that there must be more than one
layer of cells (like the b-cells) between the input and the return of a simple memory, if it is bound
by numerical constraints like those described in §1.2. Secondly, the small number of synapses
available at neocortical pyramids for the simple memory means in effect that there will be
rather little spare capacity in the projection back from the simple memory. That is, most of the
storage capacity at these synapses will be exhausted by the straightforward task of relating the
pyramids to the activity in the projection from the memory during full events: there will be little
left over to help in the task of completing a subevent of a learnt event. This means that during
recall of a learnt event from a subevent, the recall must have been virtually achieved by the
memory before the signals reach the projection back to the neocortex. Hence most of the diagnostic
analysis involved in discovering the completion of a subevent takes place in the memory itself,
not at the a-cells. In the simple case of figure 1 (which can be used to store rather few events),
this would mean that a subevent X of E could recall E only if it caused activity in the same
b-cells as did E.

This is a rather stringent condition on the structure of the memory. It means that there exists
a stage—a layer of cells—in (and by) which the completion process is achieved. Each input event
E has arepresentation as a firing pattern in this population of cells, and the problem of completing
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a subevent X of E is equivalent to the problem of recovering its corresponding firing pattern.
This pattern is called the simple representation of the input E.

1.4.4. Advantages of the simple representation

The notion of the simple representation of an event E of the current internal description makes
many of the problems of free and directed simple memory easy to express. A simple representation
needs to be formed only of those parts of E that contain the subevents through which E will later
be addressed: and the simple representation needs to be associated back (through the return from
the memory) only to those parts of E that will need to be recalled.

It will turn out that simple representations consist of collections of cells in a population whose
activity ®(§1.2.4) is very low. The activity is in fact so low (« & 0.001) that the cells of a simple
representation can be directly associated to each other by collaterals terminating in Hebb syn-
apses. The simple representation of E, written [E], can thus be regarded as a firing pattern which
can complete itself through its collateral synapses (called the collateral effect, §2.4). Again, simple
representations are somewhat limited in the maximum size they can attain, and this leads to the
notion that more than one simple representation may be formed, each dealing with a different
subevent of E. Within each simple representation, there is a full collateral effect, but between
any two, it is less full (see §4.5.1).

2. THE BASIC MODEL FOR ARCHICORTEX
2.0. Introduction

The arguments of §1 show that simple memory may be divided into two operations: the
creation of suitable diagnostic spaces for the input events as they occur; and the performance,
during recall, of diagnostic operations within those spaces. The representation of these two basic
functions requires a model consisting of two parts, closely analogous to codon formation and
output cell selection in the neocortical theory. Many of the factors which determine the shape of
each component have already arisen in the theory of the neocortex: they can therefore be
derived rather quickly, and with this the first two parts of this section are concerned.

Within the outlines established by these two basic models, the actual shape of a simple memory
is determined largely by numerical constraints. The rest of this section therefore shows how the
capacities and characteristics of various models may be calculated, and derives the conditions
imposed by the fact that the cells involved have to be physiologically plausible.

2.1. Codon formation

The first task to be discussed is the construction of evidence functions by input events. The
obvious way to do this is to use the technique of codon formation, described in some detail by
Marr (1970, §4.3). (Compare also the s-cells of Brindley 1969.) The basic models for this appear in
figure 2, and the arguments for each will be set out here only in so far as they differ from those
put forward in the neocortical theory.

2.1.1. Preference for the model 2 using Brindley synapses

The main differences between the arguments appropriate here and those for the neocortex arise
because the function of simple memory is to record all its incoming information: the difficulties
which arose in the neocortex, concerning the formation of evidence only over the appropriate
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diagnostic space, do not arise here. Model 1 of figure 2 is excluded for the same reasons as in the
neocortical theory: each cell can represent only one event, since after one modification, all the
synapses not used in that event become ineffective. Model 3 is excluded for two reasons: (a) a
climbing fibre system cannot both be simple and choose those cells most appropriate for each
event (i.e. those at which the greatest number of active afferents have synapses); (4) a climbing
fibre system in any case requires more cells than model (2).

model 1 model 2 model 3

Ficure 2. Three models for codon formation: model 1 uses synapses which are initially excitatory, but become
ineffective as a result of post- without pre-synaptic activity; model 2 uses Brindley synapses; model 3 uses a
climbing fibre and Hebb synapses.

2.1.2. Threshold setting in model 2

Brindley synapses contain an unmodifiable excitatory component, and are facilitated by a
combination of pre- and post-synaptic depolarization. The post-synaptic threshold for the
existence of modification conditions there will have to vary for two reasons: first the number of
active afferents will not be constant; and secondly the overall proportion of synapses that have
been modified will change, thus changing the amount of post-synaptic depolarization that an
unlearned input of fixed size may be expected to cause. These problems do not arise in the special
case considered by Brindley (1969), where the number of active afferents is always two, and the
ratio of modifiable to unmodifiable components in the synapses is 1: 2.

Synaptic modification probably depends on the local conditions prevailing in a piece of
dendrite, and hence inhibition intended to prevent these conditions from arising must be applied
directly to the dendrite. The use of Brindley synapses in codon formation therefore requires
that inhibition of the appropriate strength should be applied to the dendrites containing those
synapses.

There are broadly speaking two methods of providing such inhibition: either it is done by
inhibitory cells which are otherwise identical to the codon cells; they learn inputs at the same rate,
and are therefore excited at a rate which increases with the number of learnt events: or a
negative feedback system is used, built to keep the number of codon cells that are active roughly
constant. The first scheme is probably unsatisfactory, and the second is embodied in the model
of figure 3. This model contains two kinds of inhibitory influence on the codon cell dendrites
(often through different dendrites of the same inhibitory cell—e.g. the G-cells). One influence,
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the inhibition driven directly by the afferent fibres, sets the cell thresholds on the assumption
that no synapses have been modified. The other, a negative feed-back driven by codon cell
axon collaterals via the G-cells, provides the component required to counteract the extra excita-
tion which arises because a fraction of the population of synapses will have been modified by
previous events. The system is imagined to be constructed so as to maintain a constant activity
«in the set 2 of codon cells. The effect of all inhibition described here is subtractive, and dendritic
branches which are not close are imagined to be independent.

Ficure 3. The full model for codon formation using Brindley synapses. Modification conditions are decided
locally in the codon cell dendrites, and hence inhibition which controls these conditions is itself applied to the
dendrites. The S-cells, driven by codon cell afferents, subtract roughly the expected excitation due to the
unmodifiable component of the Brindley synapses. The G-cells, driven in part by codon cell axon collaterals,
use negative feedback to compensate for changes in the size of the input event, and in the number of synapses
which will already have been modified.

G.S. Brindley (personal communication) has pointed out that the need for G-cells in codon
formation evaporates if information decays in the memory at about the same rate as it is
acquired.

2.1.3. Recalling an event

The recall of an event is initiated by addressing the memory with a subevent. In order to avoid
the problem of how the memory knows whether to store a given input, or to use it to recall the
event most like it, it will be assumed that events which are to be stored are much larger than the
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subevents which initiate recall. The reason for making this assumption is that the effect of a small
subevent on the dendrites of the codon cells may then be regarded as being too mild to provoke
synaptic modification there, since synaptic modification presumably requires a rather severe
dendritic depolarization. The more general problem of controlling when a memory does and
does not store its inputs will be dealt with in the paper on input—output relations.

One other point is needed to complete the discussion of codon cells. If the subevent that is
being used for recall is wholly contained in the event to be recalled, then the best strategy is to
lower the codon cell threshold until about the usual number of cells becomes active. This step is
part of the usual procedure for implementing the interpretation theorem (Marr 1970, §§2.5 and
4.4), If, however, the subevent is only partially contained in the event to be recalled, then it will be
shown in § 3.1 that better results are obtained if codon cells are treated like output cells (see §2.2).
This is essentially because output cells (with afferent basket synapses) are regarded as being
capable of performing a division (Marr 1970, § 4.1.6); and, in the second situation, it turns out that
the fraction of active afferent synapses which have been modified is a more suitable measure than
the absolute number of such synapses.

2.2. Diagnosis in simple memory

It has been argued informally (§1.4.3) that the recall process in a simple memory has to be
virtually complete by the time information is returned to the neocortical pyramidal cells. This
means that the memory must contain internal diagnostic structure capable of recovering the
pattern of firing appropriate to the learnt event of which the current input subevent formed a
part. In this section, the cells at which the recovery is performed are described.

2.2.1. The simple representation

In the neocortical theory, it was imagined that information was represented by a family of
classes, each of which was formed because of a clustering of input subevents. The function of
simple memory is to record information as it occurs, without trying to produce the best
possible classification of the input on the spot. It is proposed that information in a simple
memory is also represented by a family of classes, but that in this case, the classes are chosen
randomly. An incoming event is assigned to a family of cells, analogous to neocortical output cells,
chosen because they happen to have more relevant synapses than any others. These cells may be
regarded as ‘random’ variables taking the value 0 or 1: the probability that they have the value
1 is assessed at each moment by consulting the relevant evidence, in the usual way.

When viewed as random classes in this way, it is seen that the diagnosis and interpretation
theorems may be applied to the assessment of the incoming evidence: indeed, these results,
strictly speaking, are more accurately applied to the problem of the diagnosis of random classes
than of the more organized objects for which they were developed (Marr 1970, §2). Since it is
assumed that modifiable synapses for simple memory have all-or-none modification character-
istics, it follows that they should transmit a measure of the fraction f of their active afferent
synapses which have been modified, provided that fexceeds some (variable) lower bound p (say).

It is thus proposed that the simple memory sets up, by a more or less random process, a set of
classes which is unique (with very high probability) to each input. Each class is represented by
a separate cell, although a given cell may represent more than one class. The set of cells which
represent a given input in this way is called the simple representation of that input. The recall of an
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event from a subevent is performed by recovering those classes by which the subevent is best
interpreted, in the sense of the interpretation theorem (Marr 1970, §2.5). In order to do this, the
cells involved in a simple representation need to be able to measure the fraction f defined above.

2.2.2 Output cells for a simple representation

The theory of output cells for the random classes described in §2.2.1 falls into two parts: the
first describes the formation of the classes, and the second deals with the subsequent interpretation
of inputs. The idea that these cells do two things—i.e. store and interpret—and that they do both
things all the time, leads naturally to the question of how they know what to do to a given input.
For now it is enough to assume that if an input is a subevent of a previously learnt event, it will
automatically cause recall of that event. If not, it is simply stored.

NG~ _

FiGURE 4. The output cell  has three kinds of afferent synapse: Brindley synapses (arrows) from codon cells, and
two kinds of inhibitory synapses. Those from S- and G-cells are spread over the dendritic tree (cf. figure 3),
and their effect is subtractive: those from the D-cells, concentrated at the soma, perform a division.

The problem of the formation of classes for the simple representation of an input has much in
common with the problems surrounding codon formation. The central requirement is to choose,
from the given population of cells, those which are best suited to representing the current input.
This is exactly the problem that was discussed in §2.1.1, and the possible mechanisms are again
those of figure 2. For the same reasons as were given there, Brindley synapses provide the most
suitable method of selecting such cells, and may therefore be expected at the cells involved
in a simple representation.
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It is interesting to note that output cells for the random classes involved in a simple representa-
tion require Brindley synapses, whereas output cells for classificatory units proper are best
served by having climbing fibres. The freedom allowed by Brindley synapses—independence of
different dendrites, and the ability to choose the most appropriate cells—which is such an advan-
tage in simple memory, is only a disadvantage in the neocortical representation of classificatory
units, The reason is that in the neocortex, it is crucial that all the relevant evidence for deduction
of a property be held at the synapses of a single cell. Modification conditions have to occur every-
where on its dendrites simultaneously, and for all (or enough) of the relevant subevents. Without
a climbing fibre, this cannot easily be arranged: a cell which is optimal for one subevent is not
especially likely to be optimal for its neighbours as well.

The second part of output cell theory for a simple representation concerns the diagnosis of
incoming events. Most of the problems that arise have been considered in output cell theory for
the neocortex (Marr 1970, §4.1). These arguments show that two kinds of inhibition are needed:
one to perform a subtraction (the S-cells of figure 4), and one to perform a division (the
D-cells or basket cells of figure 4). Such cells would cause the output cells’ firing rates to be
proportional to f—p. In the present case, however, some further information is available: the
output cells for a particular event were originally selected (through Brindley synapses) because
they had the greatest number of active afferent synapses. Such cells will therefore tend to have
more modified active afferent synapses during recall than other cells, and preliminary selection
can usefully be made by subjecting the population of output cells to a suitable absolute threshold
T (say). In figure 4, it is imagined that inhibition to produce this is provided by the G-cells
(driven in part by output cell axon collaterals). G-cells thus have two functions: to arrange
suitable modification conditions during the storage of an event, and to provide a (variable)
absolute threshold 7" during recall. It will be shown in §3.3 that the introduction of two kinds of
threshold into output cell theory—i.e. specifying both 7 and a lower bound on f—greatly
improves the performance of a memory.

In figure 5, the apparatus of figure 3 is added to that of figure 4 to produce the basic unit of
simple memory. This type of model is examined in detail in §3.

2.2.3. Structural differences between archicortex and neocortex

There are various differences in the fine structure of the models devised for archi- and neocortex,
of which perhaps the most striking concerns the absence of climbing fibres in archicortex. It is
also possible to deduce differences that are predicted by the theory and which concern the
large-scale arrangements of the two structures. If all of a large population of output cells tend to
receive afferents from the same collection of evidence cells, the disposition of cells and fibres will
contrast strongly with their arrangement in neocortex, where one expects that evidence cells
are relatively private constructions. There is no reason in archicortex to have evidence and
output cells particularly near one another: one can therefore expect to find cells involved in
different stages placed rather far apart, and joined by powerful projections. (The so-called
perforant path in the hippocampal formation may be an example of such a projection.)

For this reason, the numerical analysis which follows (§ 3.1) deals with layers of cells ,, which
project to one another with various contact probabilities. Some layers will contain evidence cells,
and some, output cells. The difference is however unimportant except in calculations about the
recalling abilities of the system.

73



38 D. MARR

2.3. The basic equation, and various constraints
The calculation of the capacity and recalling ability of the simple memory described in §2.2
rests on various assumptions and approximations. These are set out together in this section, and
the relations derived here are used in §3.

F1curE 5. A model for simple memory, obtained by combining figures 3 and 4. The output cell axons return to the
cells of the current internal description, after giving off collaterals which terminate in Hebb synapses at other

output cells. This kind of model is analysed in §3.1.

2.3.0. Notation

P, (i =0,1,2,...) is a population of N cells with activity ;. The set of cells of #; which fire in
response to an input is called the 2 -representation of the input. The terms event, subevent, and codon
will have their usual meanings. In addition, the following notation will be standard:

denotes an expectation;

the number of cells in 2;;

the number of active cells of ; (L; = a; N;);

the threshold of the cells in #; during the storage of information;

the number of afferent synapses possessed by each cell of 2; (assumed constant over £;);

the contact probability for the projection of the afferent fibres to #; (usually from 2, _,).
(Thus Z; = the probability that an arbitrary cell of 2; receives a synapse from an

arbitrary cell of Z;_,);
IT; the probability that an arbitrary afferent modifiable synapse in #; has been modified.

'»Nﬁt-",s.xpﬁz m
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2.3.1. The response in P; to an input event

If it is assumed that the afferents to #; distribute there randomly with contact probability Z;,
the variables defined in §2.3.0 are related by the following equation:

E(L) = N; Lil (L';_l) Zi(1-Z)Li-r  (Marr 1970, §3). (2.1)
r=R;

L, is the sum of expectations (corresponding to the individual terms of the expression), of which
one (obtained by putting r = R;) will usually be far larger than the rest. This is because R; will
usually be chosen to keep «; rather small, which implies that only the terms in the tail of the
binomial distribution are in practice used.

2.3.2. Modifiable synapses in P,

Itis helpful to have a rough guide as to when it is useful to have synaptic modification at the cells
of #,. Fortunately, it is easy to obtain a simple approximate criterion for this. a; = L,/ N; is the
activity in 2;: let a;_; = L,/ N;_, be the activity of the input fibres. This is done because the
input to #; will be from the population of cells 2,_,. It is roughly true that the proportion of
synapses active at each active cell of 2, is a;_;: it is certainly at least this; the amount by which it
exceeds it decreases as the value of S;e,_; increases. Therefore, the probability that after n events,
an arbitrary synapse of #; has been facilitated is (1—a,;_,)"%, which is approximately
1 —exp (—na;_,a;) if a;_,is small. Itis only worth having modifiable synapses in £, if, when the
inputs have all been learned, not all the synapses there have almost certainly been facilitated—
that is, if ne,_; «; is of the order of 1. Hence a rough, necessary condition that it be useful to have
modifiable synapses in 2, is

not;_q0; S 1. (2.2)
2.3.3. The condition for full representation

The second constraint also embodies a necessary condition—that the activity in £, provides
an adequate representation of the input event. In the present context, a rather weak criterion of
adequacy is sufficient, namely that a change in the firing of the input fibres should produce a
change in the cells which are firing in 2,.

The probability that an arbitrary but fixed active input fibre to #; does not terminate at any
active cell of 2, is approximately (1 — S;e;_;/L; ;)% This is approximately

exp (—a; 1§ L/ L) = exp (= S;a; N/ N;_y).

Most of the active cells of 2; would cease to fire if one of their active afferents were removed
(by the remarks of §2.3.1 about the tail of a binomial distribution), and hence the condition for
full representation of the input in £, is that the probability exp (— S;a; N;/ N;_;) should be kept
very small—say less than e~=%. The condition then becomes

S;a; Ny > 20N,_; ie. S;L; > 20N,_,. (2.3)
If 2, is being used to capacity, i.e. na,_;a; ~ 1, we find that

S, N; 2 20L,_,n. (2.4)

5 Vol. 262. B.
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2.3.4. Four practical constraints

It must always be remembered that the cells and synapses of #; are physiological objects,
which cannot be asked to perform unrealistic feats. One tendency of the theory is to use the
populations 2, of cells with very low activities, ;. The thresholds of the cells in #; have, however,
to be set by negative feedback devices, like the G-cells of figure 3, and these are to a certain
extent limited as to what they can do.

The basic difficulty lies in specifying the proportion of active afferent synapses to which a cell
may reasonably expect to be sensitive. Negative feedback devices like the G-cell will operate by
measuring afferent synaptic activity, and inhibiting the cells with which they synapse in such a
way as to keep « at the appropriate value. In what follows, & will be assumed to exceed 0.001
since this figure seems about as small a fraction of active synapses as would allow the activity to
be reliably detected. The true bound may be lower, but it cannot be a great deal lower, and
certainly not by an order of magnitude.

The same problem applies to the cells of 2; as applies to the G-cells which set their thresholds.
In the case where the 2;-cells have Brindley modifiable afferent synapses, the conditions on
2 ,~cells are probably more stringent than on their associated threshold controllers, since it
seems plausible that a considerable degree of post-synaptic depolarization is necessary in a
region of dendrite before the conditions for modification are created there. It is difficult to give a
numerical translation of the condition on the proportion of active synapses necessary for im-
plementing modification conditions: in what follows, the relevant lower bound will be taken to
be 0.005. In practice, it will be possible to alleviate this difficulty by arranging for related synapses
to be placed near one another on a dendrite.

Finally, the second tendency of the theory is to require that the number of synapses on a cell be
as large as is plausible. Cragg (1967) has shown that the average number of synapses per cell in
monkey motor cortex is 60000, and in monkey striate cortex it is 5600. Large archicortical cells
are comparable with large motor pyramidal cells, so it is wise to restrict the possible value of
S; to not much more than 60000. An absolute bound of §; < 105 will always be assumed.

There is no direct information about the numbers of synapses on archicortical cells, or the
contact probabilities of the various projections, or the activities (e;) of the various groups of cells.
It will not be possible to apply detailed quantitative tests to the present theory’s predictions until
numerical information of this kind becomes available.

2.4. The collateral effect

Let 2 be the population of cells in which the simple representation of an input is formed. If
each cell has about 60000 afferent synapses, then each one can probably learn about 100 input
events (cf. the cerebellar Purkinje cells, Marr 1969). Hence, if the population as a whole is to
learn about 105 events, the activity « of 2 must be about 10-3,

Equation (2.2) of 2.3.2 shows that for learning to be profitable in #; driven by cells of 2;_,, itis
necessary that na; ;o; S 1. Let #,_; = 2, = #: then the condition becomes na? S 1, and is
satisfied by the values of n (&~ 10%) and « (=~ 10~3) appropriate to the cells of a simple representa-
tion. In other words, it is possible to make good use of learning in synapses from the cells of 2 to
the cells of —that is, in synapses at cells of # driven by collaterals of other cells of 2. The
practical importance of this is that an input to # need not be sufficient on its own to re-stimulate
all the cells of the particular simple representation which that input is designed to stimulate:
collateral activity in 2 will help the recall process. Provided that the afferent information causes
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more than a critical fraction of the active cells in 2 to be cells of the required representation, the
collateral system will take over, suppress the cells which should not be active, and stimulate those
which should. The completion of a partially specified simple representation by #-cell collaterals
is called the collateral effect. It will be shown that the collateral effect is probably capable of
completing a simple representation when the fraction of currently active cells which are in that
representation is as low as one third.

The details of the structure required for the collateral effect are as follows:

(i) collaterals distributing in £ with the appropriate contact probability (see §3);
(i1) Hebb (or Brindley) modifiable synapses where the collaterals meet other cells of 2;
(1ii) the usual inhibitory threshold controlling cells.

3. CAPACITY CALCULATIONS
3.0. Introduction

For practical application of the theory, it is essential to have a firm grasp of the kind of per-
formance that may be expected from the basic simple memory of §2. This section gives the reader
direct experience of the available storage and recall capacity, for reasonable values of the
important parameters.

Storage of an event will be said to have been achieved when its simple representation has been
formed; and recall of that event, when its simple representation has been recovered.

3.1. Establishing and recovering a simple representation

There are various arguments which roughly decide the number of cells and synapses in the
different portions of the memory that is analysed here. The conclusions are stated first, in the
form of specifications of properties of a network which will form simple representations. These
conclusions are followed by the arguments which lead to them, and these, by remarks about the
memory’s storage and recall performance.

3.1.1. The basic memory

There are three populations of cells, 2,, 2, and 2;. The cells of 2; send axons to 2,, and those
of 2, send axons to 2,. 2, possesses a collateral system, and it is in 2 that simple representations
are formed. Table 1 shows the basic parameters for each of the 2, using the notation defined in
§2.3.0. Itisimagined that the 108 cells of 2, are split into 25 so-called blocks of cells, each of which
projects exclusively to a corresponding block in £, (see figure 6). The parameters for each block
are given in table 2. The projection from £, to 2 has no block structure, and table 3 describes
the parameters for this projection. #; also possesses a collateral system, which may be regarded
as a projection from £; to #3. The parameters for the collaterals appear in table 3 in the
column for 7 = 3’. These values have all been obtained using the equations of §2.3.

The probability that an arbitrary synapse has been modified can easily be calculated if it is
assumed that synapses are effectively chosen randomly each time an event is stored. The assump-
tions behind this have been set out already (Marr 1969, § 5) in the calculation of the capacity of a
cerebellar Purkinje cell. Suppose # events have been stored; then the probability /7, that an
arbitrary modifiable synapse in £, will have been facilitated is

IT; = 1— (1 —xy/8;)™,
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where a;, S; are as in §2.3.0, and x; is the expected number of synapses used at an active cell for
one event. x; is near to R;, the threshold of such a cell: in fact

X = Z }:;(R)'R’
RZRy

where P;(R) is the probability that an active cell of #; has exactly R active afferent synapses.
P,(R) is calculated from the terms of the equation in §2.3. Table 4 shows values of I7; for
n = 5x 104 and n = 10° stored events.

TABLE 1. GROSS PARAMETERS FOR A SIMPLE MEMORY &, > %, >,
Cells of 22, and &, possess Brindley modifiable afferent synapses

.. 1 2 3
N; 1.25 x 10¢ 500000 100000
L; 2500 3025 217
a; 0.002 0.006 0.002

TABLE 2. 2, AND &, OF TABLE 1 ARE SPLIT INTO 25 BLOCKS, EACH
"HAVING THE FOLLOWING SPECIFICATIONS:

o 1 2
N; 50000 20000
L; 100 121
R; _ 31
S; — 10000
a; 0.002 0.006
Z; — 0.2

TaBLE 3. THE PROJECTION %, — %, HAS NO BLOCK STRUCTURE,
AND HAS THE FOLLOWING PARAMETERS:

... 2 3 3
N; 500 000 100000 100000
L, 3025 217 200
R; — 351 —
S; — 50000 ) 10000
a; 0.006 0.002 0.002
Z; — 0.1 0.1

The column ¢ = 3’ gives the parameters for the collateral system in ;.
The expected number of active afferent collateral synapses at a cell of 2, is 21.7, but has been taken to be 20 for
simplicity.

TABLE 4. MODIFICATION PROBABILITIES JT; FOR MODIFIABLE SYNAPSES IN EACH
#,(i = 2,3,3") AFTER n EVENTS HAVE BEEN STORED

i = 3’ gives values for the collaterals in 2,

n m, 1T, 11,
5x 104 0.621 0.538 0.181
10% 0.857 0.787 0.330

3.1.2. The collateral effect in P,

The collateral system in 2, can aid the recovery of a simple representation in the following
way. Suppose that an input X is presented at 2,, and that X is a subevent of a previously learnt
event E,. Let #,, denote the simple representation of Ejin #; and let £y, denote the rest of 2,.
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Suppose that X causes firing of Cy cells in 2y, and C] cellsin #y,. Since Eyhas already been learnt,
all collateral synapses between cells of its simple representation will have been facilitated. Hence
collateral synapses between cells of 2,, will all have been facilitated, whereas those between other
cells will have no more than the usual probability of having been facilitated.

In order to analyse the effects of the 2, collaterals, it is assumed that once firing in the collec-
tion 2, has been established by the afferents from 2,, these afferents become silent, and the cells
in 2, are driven solely by the collaterals. The effects of the collaterals alone can be discovered by
regarding #, as projecting to an identical set of cells, called £, in the same way as the collaterals
distribute among the cells of ;. The behaviour of 24, which represents the new state of 2; after
one ‘application’ of the transformation on the 2, firing pattern induced by the collaterals, can
then be calculated using the equations of §2.3.

In the present theory, the important question is whether or not the collateral effect can lead to
the recovery of the simple representation of E;. Whether this happens depends on the parameters
associated with the collateral distribution, and on the relative sizes of C, and C,. For fixed para-
meters there is a threshold for the ratio G : C; above which the collaterals will tend to increase this
ratio, and below which they will tend to decrease it. The threshold is of a statistical nature,
because above it, the collaterals are more likely to increase the ratio, and below it, they are more
likely to decrease it. One has to move a little way away from this threshold before the outcome
either way is virtually certain.

The statistical threshold (for Cy+ C; = Lj) is defined as the value of the ratio Cy: C; such that the
expected effect of the collaterals is to maintain it. It may be calculated as follows.

Let b be an arbitrary cell of 2y, the copy of 2, to which the collaterals are imagined to
project. The number of active afferent synapses at b comes from a binomial distribution b(Ls; Zy.)
with expectation L;Z, from population L,. Ly is the number of active cells in Py and Zg is the
collateral contact probability. Hence the probability that b has exactly x active afferent synapses

® Pota) = (72) Zs01 -z (3.1)

If b is not in Zyy, the simple representation of Ky, the number of these active synapses that will
have been facilitated is drawn from the binomial distribution &(x: I1;) with expectation xII from
population of size x (from the definition (§2.3.0) of IT). Hence if Qg,(r) denotes the probability
that exactly r of the x active afferent synapses to b have been modified,

@) = (7) m1- )= (3

If b is in Py, all afferent synapses from other cells in 2y, will have been modified. Hence the
number of active afferent modified synapses at a cell in 2, is composed of two contributions:
one, with distribution 4(C,; Z,) from cells of 24, with probability Z,, all of which have been
modified: and one with distribution 5(C,; Z;) from 2, which have only chances given by (3.2)
of having been modified. For the purposes of calculation, this situation has been approximated by
assuming that, for a cell in the simple representation of Ey with x active afferent synapses, the
number of those synapses which have been facilitated has distribution

b(x; (Co+ G ITy) [ (Go + CY)).
Hence if Q,,(r) denotes the probability that exactly r of the x active afferent synapses to b have

been modified, .
Qo) = () (G (G T (1= Gy T, (33
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Hence, if the cells in 2 all have a threshold R, the expected number of active cells that are
not in the simple representation of E, is

L
Ci=(Ny—Ly) 3 3 Py(x) Quy(r), (3.4)
r>Rx=r
and the expected number of active cells in 2y, is
, Ly
Co = L3'>ER :Er Py (x) Quo(7)- (3.5)

Thus, when all cells of 2, have threshold R, the effect of the collaterals is to transform C, and C,
into new numbers with expectations Cg and C;. Hence the statistical threshold, as defined above,
for recovery of the simple representation of E, is that ratio C,: C, for which

Cy: Gy = Cy: Cy, subject to Cy+ C;=Co+Cy = L,. (3.6)

In practice, however, the cells will not have a uniform threshold, since the theory allows that
division can take place as well as subtraction. The effect of division may be incorporated by
assuming that a cell only fires if at least a fraction f of its active afferent synapses have been
facilitated: f is called the division threshold of the cell. The combined effects of a subtractive
threshold 7" and a division threshold f are to give a cell b of 2,, with x active afferent synapses,
a threshold R = R(b) where

) R(b) = max{T, fx}.

This transforms C; of (4) and (5) into C} where

Ch=(N-L) 3 5 Pux) Q) (3.7)

r>max{T, fx} z=r

Ci=L, % % Pylx)Qulr) (3.8)

r>max{T, fx} x=r
The statistical threshold becomes that ratio C: C; for which
C,: C, = C§: CF, subject to Cy+ C;=Cq + CF = L, (3.9)

the threshold parameters 7, f being chosen to minimize Cg/C;*. The expectations C§, Cf have
been computed for the relevant parameters, and selected values appear in the tables 5 to 7.
Cases Cy+ C; = Lyand Cy+ C, = 3L, have both been calculated, since it is often better to use the
smaller values during recall. The case n = 10°and C,+ C, = Ly resembles table 6 in the same
way as table 7 resembles table 5. Various other tables have been computed, and the statistical
thresholds obtained for selected values of L, and Z, are given in table 8.

Three points are worth noting about these results. First, Z; = 0.2 gives a statistical threshold
about twice as good as that for Z, = 0.1. Secondly, recovery of the whole of the simple representa-
tion depends upon suitable juggling of T and f, and is complete after about 3 cycles. f must start
low, and increase as the representation is recovered: 7T must decrease in such a way that the
activity in #; is kept roughly constant. And thirdly, the overall performance of the collateral
effect is impressive (see table 8): recovery of the whole of the simple representation of E, is almost
certain for values of about 0.1 L; greater than the statistical threshold value (assuming that
Cy+ C, is constant).

The collateral effect is valuable in any population of cells where na? S 1. This condition may
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often be satisfied in and between regions of neocortex, and the effect may be an important means
of providing indirect ‘associational’ aid for the interpretation of sensory inputs (see Marr 1970,
§2.4).
TABLE 5. THE COLLATERAL EFFECT IN %,
N; = 100000; L; = 200; Z;, = 0.1. 50000 simple representations have been stored.

Co G T S G a
100 0 3 1.0 200 6
6 1.0 188 0

80 20 6 0.8 151 15
6 0.9 119 3

60 40 8 0.6 70 19
7 0.7 86 26

50 50 7 0.6 70 82
6 0.7 73 101

40 60 7 0.6 41 82
6 0.7 41 101

Statistical threshold ~ 50:50.

TABLE 6. THE COLLATERAL EFFECT IN %,
N; = 100000; Ly = 200; Z; = 0.1. 100000 simple representations have been stored.

Co G T S % a
100 0 6 1.0 188 14
9 1.0 136 1

90 10 10 0.9 89 8

7 1.0 86 6

80 20 8 0.9 110 77

9 0.9 86 27

60 40 10 0.7 38 80

9 0.8 48 72

Statistical threshold ~ 85:15.

TABLE 7. THE COLLATERAL EFFECT IN %,
N; = 100000; Ly = 200; Z;, = 0.1. 50000 simple representations have been stored.

C, c T s cx cr
200 0 4 1.0 200 0
9 1.0 200 0

160 40 4 0.8 167 1
8 0.8 167 0

120 80 10 0.6 160 9
11 0.6 148 4

80 120 11 0.4 88 102
10 0.5 98 61

40 160 8 0.5 24 186
9 0.5 20 115

Statistical threshold ~ 60:140.

3.1.3. Recall performance Py — Py

The analysis of recall performance 2, -2, and 2, - 2, follows the same general line as the
arguments of § 3.1.2, except that the equations apply only to individual blocks. Let E; denote the
restriction of the input event E to one block £ of 2,, and suppose, as in § 3.1.2, that E has already

81



46 D. MARR

been learnt. A new input event is presented to_the block 8, 4, cells of which were active in Eg
and 4, of which were not. These in turn evoke (in the corresponding block of 2,) B, cells which
were also active in response to Eg, and B, cells which were not. The firing in 2, causes the firing in
2, described by the numbers G, C, of §3.1.2. The situation when more than one block of #, is
active can be solved by a simple extension of the methods used for exactly one block. Figure 6
illustrates the recall problem.

TABLE 8. ESTIMATED STATISTICAL THRESHOLDS (S.t.) FOR VARIOUS
VALUES OF THE MAIN PARAMETERS

N; = 100000; C = Cy+ Cy; s.t. accurate + 0.05L,.

L, Z, (o 10~4n s.t.

100 0.1 100 5 30:70
0.1 10 40:60
0.2 5 15:85
0.2 10 20:80

200 0.1 5 50:50
0.1 10 85:15
0.2 5 30:70
0.2 10 50:50
0.1 200 5 60:140
0.2 | 5 40:160

Ficure 6. The recall problem. £,, #, and %; are the populations of cells defined in table 1. Shading represents
the parts of these populations involved in the storage of an event E,. A new subevent X is presented to one block
of #,, 4, of whose cells were involved in E;, and 4, of which were not. This produces activity in one block
of #,, and in ;. B, of the active cells in &, were active in Ey, and B; were not: C, of the active cells in #
were also active in E,, and C, were not. The numbers 4;, B, C;, (i = 1, 2) are computed in the text.

The equations describing the relation between the B; and the C; (7,7 = 1, 2) are best derived
through a series of steps. The notation of § 2.3 is assumed to hold for all processes concerned with
the storage of the event E,; for example, L, is the size of the simple representation of £, in #;. The
relations between L;, N, R;, etc., are described by the equations of §2.3.
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S 1. Additional notation
The following symbols help to describe states occurring during recall. For ¢ = 1, 2, 3:

P,, = the set of cells of ; which were in the #;-representation of E,
P;, = the set of cells of 2; which were not in the £ -representation of E,;.

Thus there are
C, cells active in Py,

C, cells active in 2y,

B, cells active in Py,

and B, cells active in 2,,.
Let 4, be the number of active cells in £,,,
and let 4, be the number of active cells in 2,,.

S 2. Calculation of contact probabilities

The contact probability 2, 2 is Z;, but the contact probability £,,— 2, is not Z;, since
the cells of #,, were selected (through Brindley synapses) because they had the most active
afferent synapses from the 2,-representation of E;. Let R; be the threshold of the cells in 2
during the setting up of the simple representation of E;: then the contact probability from the
active cells of 2, to those of 2, at that time is

LY L3t 3 N, (I;Z) Z5(1-2Z)amrr = £, say:
2R,

and the contact probability between active 2, cells and inactive 2; cells is depressed slightly: it
is in fact £; where &, = (N;Z;— L,&,)/(N;— L;). The contact probability between all other
collections in 2, and 2, is Z,. In the following calculations, it will be assumed that distributions
between 2, and 2, are random, with the contact probabilities £,, £;, Z; between the special
groups described above.

S 3. Calculating the number of active synapses at a cell ¢ of P,

(i) If ¢ is in 2y, the number s of synapses active at ¢ is formed from two components: s, from
the active cells in £,, and s, from the active cells in 2,,. 5, comes from a binomial distribution
b(By; &), and s, from a binomial distribution 4(B,; Z;) (in the usual notation). Hence Py(s), the
probability that exactly s synapses are active at ¢, is

Pl =3 () ea-gres () zma-zgmen.

8t+81=8

(ii) If ¢ is not in P4, the two components s, and s; have distributions &(B,; §,) and b(B;; Z,)
respectively. Hence F;(s), the probability that exactly s synapses are active at ¢, is

Py(s)= X (Bo) Ep(1—£,)Bo (il) Z3(1 —Zy)Br=,

8gt8,=8 (1)

S 4. Calculating the number of active facilitated synapses at a cell ¢ of Py

(i) Let ¢ be in 23, and have s active afferent synapses, made up from the two components s,
and s, of S 3(i). All the s, synapses will have been facilitated, and the number of the s, synapses

6 Vol. 262. B.
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which will have been facilitated has distribution b(s,; IT;) where IT, is the probability that an

arbitrary 2, afferent synapse has been facilitated. So the probability that ¢ has exactly r active

afferent facilitated synapses is @Q3,(r) where

= [(Bo — B, — 51 - -

Qy(r) = X (s Ep(1—§y)Bo= 3 Z3(1-Z,)Br= T (1 — [T )%+,
s 0

&>r—s \ 1 7 —So,

(ii) Ifcisin 2;, the probability @ (r) that ¢ has exactly r active afferent modified synapses is

Qa(r) = X (i) IL5(1 - IL,)*—{ Py (s)},

s>r

since all active afferent synapses have chance IT; of having been facilitated.

S 5. Calculating the cells’ thresholds

All the cells in 2; are assumed to be subject to two kinds of threshold: an absolute threshold of
T; (say), and a division threshold (defined in §3.1.2) of f;. Thus if a cell has s active afferent
synapses, its threshold is set at

Ry = maximum {Tj, sf;}.

S 6. Calculating expected numbers of active cells

There are Ly cells in 2y, and ( N; — L) cells in 2g;. It is assumed that the cells of 2; are subject
to thresholds (75, f;) of S 5. Then the expected numbers of cells active in 2, and 2, are respec-
tively:

Go=Ly X X Qr), where R;= max{T;, (s+s51)fs},

S+5:=>Ty r> R,

C,=(N;—L;) ¥ X Qy(r), where R;isasdefined in S5 above.
s2T3r>R,
Close approximations to these distributions have been computed for various values of the
important parameters, and some results appear in table 9. They are summarized in §3.1.5.

3.1.4. Recall performance P, —~ P,

The problem of describing the effect of presenting a learnt subevent to 2, can be solved by
calculating the values of B, B, in terms of 4, and 4, (defined in S 1 of § 3.1.3). These relations
are very similar to those holding between the B; and the C; (i,j = 0, 1). The following steps §
are analogous to those of §3.1.3, and can be derived by the same arguments. Write 9, for the
contact probability between the active cells of 2, and 2, during the original setting up, and write
7, for the contact probability between active 2, cells and inactive 2, cells. 9, corresponds to
£oand 7, to ;.

$2 (i) 7= LilL' % N, (Ll) Zy(1—Z,) B,

>R, r

(i) 1= (NaZp— Lyo)[(Ny— Ly).

. 4 y|
36 Pal) =3 () ara-m)aes (D) zp0-z) s,

So

(@) Pal) = = () ntr-mpses () 250 zgpas.

st+s=s \So
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x 3 (§)za-zgmen( 8 ) M- e,

8>r—s, \S1 r—3

(@) Qulr) = 3 (0) 10~ Ty {Bals)
S5 R, = maximum {T}, sf,}.
S$6 (i) By=L, % X Qu(r), where R,=max{T;, (s,+s1)f2},

S+8,2T: r2R,

(if) By=(N3—L3) ¥ X Qu(r), where R,isasdefinedin S5 of this section.

s=2T3r>R,

Close approximations to these distributions have been computed for various values of the
important parameters, and selected results are shown in table 10.

TABLE 9. ADDRESSING #; WITH AN INPUT, FROM ONE BLOCK OF %,, WHICH
CONTAINS A SUBEVENT OF A LEARNT EVENT

The simple representation of E, occupied 217 cells of #;; n such representations have been stored. Notation is
from the text (see figure 6).

B, B, T; Js Co G
n = 50000
120 0 11 1.0 184 27
12 1.0 166 13
13 1.0 144 6
14 1.0 120 3
100 20 13 0.92 101 126
14 0.92 78 53
15 0.92 57 21
11 1.0 56 27
80 40 15 0.75 35 141
15 0.83 33 79
13 0.92 51 127
14 0.92 36 54
60 0 8 1.0 89 110
9 1.0 58 36
45 15 10 0.75 16 113
8 1.0 26 110
n = 100000
120 0 17 1.0 53 107
18 1.0 36 50
100 20 19 0.92 15 144
17 1.0 23 109
60 0 11 1.0 19 204

3.1.5. General summary of recall performance

Table 8 shows the statistical thresholds for recovery of a simple representation in #; and tables
9 and 10 can be used to discover the minimal conditions on an input for it eventually to cause the
recovery of such a representation. The memory consists of 1.25 million input fibres, divided into
25 blocks of 50000 fibres. A single input event causes activity in 2500 fibres—100 in each block—
and the simple representation of each event is formed. Suppose each #;-cell has 20000 afferent
collateral synapses. After 50000 events have been learned, recovery of an event £y will have very

6-2

85



50 D. MARR

high probability of success from stimulation of 30 fibres, all of which were active in E, provided
that those fibres belong to one block; or from stimulation of 100 fibres in one block, provided that
about 70 of those fibres were active in E,. After 100000 events have been learned, the
corresponding figures are 60, and 90 out of 100, still from a single block.

TABLE 10. ADDRESSING ONE BLOCK OF &, WITH AN INPUT, FROM ONE BLOCK OF
%,, WHICH CONTAINS A SUBEVENT OF A LEARNT EVENT E,

The 2,-representation of the part of E, in this block occupied 121 cells of £,; n such events have been stored.
Notation is from the text (see figure 6).

4, 4, T, Jfa B, B,
n = 50000

20 0 7 1.0 57 50
0 8 1.0 35 12
30 0 9 1.0 80 26
0 10 1.0 61 8
40 0 11 1.0 94 12
0 12 1.0 80 4
80 20 23 0.9 94 5
24 0.9 89 2
60 40 23 0.8 63 27
24 0.8 53 14

n = 100000
30 0 11 1.0 43 84
0 12 1.0 27 27
40 0 13 1.0 64 101
0 14 1.0 48 39
50 0 16 1.0 67 45
0 17 1.0 52 18
80 20 28 0.9 73 79
29 0.9 62 39

3.9.0. Generalities 3.2. Justifying the model of §3.1

There are three general constraints which are important in determining the general structure

of the memory of §3.1. They are
(i) that the memory should consist of a number of layers of cells, each receiving connexions
from one layer and projecting to one other;

(ii) thatthe memory needsa capacity, , of the order of 10° events, with good recall capabilities
and about 108 input fibres;

(iii) that recall should be complete before the projection out of the memory.

The constraint (i) arises because the theory is devised for certain regions of the brain which,
according to the available evidence, are connected in this way (see §4). A theoretician has two
general options when designing a memory: he can either specify an exact task, and prove that a
particular model is the most economical for that task (cf. Brindley 1969); or he can describe an
exact structure, and compute its performance (see, for example, Marr 1969). The present theory
has the disadvantage of no exact information; its task is the relating of previously unrelated pieces
of knowledge by deduction from plausible general assumptions, the whole being tested by the
predictions to which it leads. Condition (i) represents the injection of existing anatomical
information into the theory.

Constraint (ii) is important in so far as the design of the memory would have to be changed if
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it were shown that the figure of 105 was too low. If it were too high, the memory would need only
to be shrunk; but a collateral effect is not possible where na? is much larger than 1.

It is a matter of common experience that few people can memorize more than 100 randomly
chosen items in an hour, though the items may not correspond to the technical term ‘event’
since many are temporally extended. Even supposing each such item to correspond to 10 events,
only 1000 events would need to be stored every hour. This would give 16000 in a 16h day,
which would allow a reasonable number of full days to be accommodated. This seems sufficient
for a memory which, it is proposed, is only for temporary storage (information being transferred
to the neocortex at least in part during sleep). There is therefore not much danger that 105 is an
underestimate for z.

The third constraint—that recall should be completed before the return projection—may be
justified in two ways. If it is assumed that the return from the memory should occupy as few
neocortical synapses as possible, then the return projection must be used only for addressing the
neocortical pyramids. There will then be no spare capacity for noise elimination there, and so
recall has to be complete before this stage. The second point is that the number of events that
may be learned by a single cell is about 100 (§1.2.4). Hence if any neocortical pyramid is likely
to be active in such a number of learnt events, all its afferent synapses from the memory will be
occupied by the addressing problem. In this case also, there will be no spare redundancy for
noise elimination.

These two arguments suggest, but do not compel, the view that the final efferent projection
from the memory should perform little more than an addressing task. Constraint (iii) is therefore
assumed; but it should be remembered that any spare capacity on the return projection would
allow the memory to be correspondingly over-run in its earlier stages.

3.2.1. The form of the simple representation

It was shown in §1.4.2 that a model consisting of only one layer of cells (input 2, > %2,
return) cannot be constructed to satisfy the general constraints set outin§ 1. In§3.1, it wasshown
that a memory with two intermediate layers (#; - £, —> %, —>return) can. This section discusses
how the specifications for 2, could differ from those of §3.1.

A collateral effect can only be operated usefully among the cells of 2, ifnaZ < 1,i.e. 3 < 0.003.
In order that e, be this low, the number of cells in 2, must exceed 30000, since otherwise the
number of active cells in #; becomes unrealistically low. N, could be say 50000, but the chosen
figure was 100000, since this allows a slightly lower a; while remaining plausible.

Provided therefore that the need for a collateral effect in 2, is accepted, N, and a; must be
roughly as in §3.1. If there were no collateral effect in #,, the constraint that recall has to be
complete by then implies that at least one of the projections into 2, and into £, must have low
values of IT; i.e. the probability, that an arbitrary modifiable afferent synapse to 2, or 2, has
been modified, must be low. Hence, either not, &, <€ 1 or na,ay < 1. If recall is to be allowed from
one block of #,, IT; must be low, and so na, a3 < 1. Other things being equal, if IT, has to be so
low that recall is achieved almost totally in 2; from one block in 2,, «, has to be less than it is in
the model of §3.1 and thus a collateral effect is possible in £,.

The arguments are therefore strongly in favour of the form of simple representation shown in
§3.1. The memory, if it is anything like that described there, must be rather similar to it. There
may of course be other, very different solutions: but the available histological evidence suggests
that, for example, the hippocampus is built to a plan along the lines of §3.1 (see §4).

87



52 D. MARR

3.2.2. The specification of P,

The block structure in £, and £, is simply a crude attempt to approximate to an ordering of
some kind on the input fibres. The figures chosen have no particular justification: nor does it
matter greatly if they are changed.

Once the values of N,, a; have been chosen by the need to create in 2, a favourable environ-
ment for the collateral effect, the shape of 2, is roughly determined by the number S, of synapses
allowed for the projection 2, to #,. The best use of 2, requires that I7, lies between about 0.2 and
0.8; if 3 and N; are fixed, this roughly determines the number of active afferent fibres that each
active cell of 25 should possess. This determines the relation between L, and Z;, choice of one of
these remaining. The final condition, which roughly decides L, (and hence Z,) is the condition that
each active afferent to #;is received at an active cell of 2;. This fixes an upper bound to L, near
which (by economy arguments) L, should actually be found. The value of L, in the model of §3.1
is 3000, but values up to about 6000 are acceptable, provided slight changes elsewhere are made.

3.2.3. Input to P,

Once L, has been roughly decided, the other parameters of #, are determined by = (the
capacity), and by the input from 2. For modifiable synapses to be useful in £,, a, must be less
than 0.01, and recall performance is much impaired if 2, does not contain modifiable synapses.
This constraint on a,, together with the rough estimate for L,, decides N,. The only remaining
numbers are L,, S,, Z,; and the only freedom here is in the choice of S,, since the conditions
(i) nety ¢y < 1and (ii) that L, is fully represented in 2,, decide L, given S,. The model of§3.1 chooses
S, = 10000, giving L; = 100 per block. S, = 20000 would allow L, = 200 per block, but if L, isin
fact substantially larger than 100, it will be necessary to interpose another layer between the 2,
and the 2, of § 3.1. (The anatomy of the hippocampal formation suggests that, in the most direct
application of this theory, an extra layer of this kind is actually present.)

The general conclusion from the arguments outlined here is that, provided L, and VN, are roughly
asin § 3.1, the rest of the memory will have roughly the prescribed dimensions. The specifications
of §3.1 can be changed, and the general equations of § 2 provide rough guides to the consequences
of such changes. If L, is actually much larger than the value suggested, an extra layer is necessary
to transform it into a signal which is acceptable to #,. Detailed calculations must await the
discovery of some quantitative anatomical information.

3.3. Remarks concerning threshold setting
3.3.1. Subtraction and division
The computations of § 3.1 assumed that inhibition is capable of division and of subtraction. It
was proposed by Marr (1970, §4) that inhibition applied to pyramidal cell dendrites will be

subtractive in effect, but that inhibition concentrated at a soma is capable of performing a
division. Neither function has been demonstrated to occur.

The model (§3.1) does not depend upon the ability to set both a subtraction and a division
threshold, but its performance is impaired if only one of these is allowed. If only subtraction is
allowed, equations S 5 of §§3.1.3 and 3.1.4 become

R, =T, (i= 3,2 respectively).
If only division is allowed, they become

R, =sf; (i = 3,2 respectively).
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The equations for the projection #, %, have been recomputed for the cases where only a
subtraction or only a division function is allowed, and the results appear in table 11. It will be
seen that the results, especially for division alone, are much inferior to those when both are
allowed.
TaBLE 11. COMPARISON OF PERFORMANCE USING PURE SUBTRACTION AND PURE
DIVISION THRESHOLDS WITH PERFORMANCE USING A COMBINATION OF THE TWO

Figures are for one block of 2, - #, as in tables 1 and 2. T denotes the subtraction threshold; f, the division
threshold. 50000 events have been stored. % denotes no solutions involving between 10 and 1000 active cells.
A;, B; as in text, and figure 6.

subtraction division combination
input ——r— ——t— c A ~
Ao/ A T By /B, f B,y/B, (T, ) B, /B,
10/0 # ® (4, 1.0) 49/354
(5, 1.0) 23/95
(6, 1.0) 8/48
30/0 9 80/169 % 9, 1.0) 80/26
10 61/48 (10, 1.0) 61/8
11 43/12 (11, 1.0) 43/2
50/0 13 104/132 1.0 121/393 (13, 1.0) 104/5
14 94/47 (14, 1.0) 94/2
15 81/15 (15, 1.0) 81/1
16 67/5 (16, 1.0) 67/0

3.3.2. Changing f during recall

It can be seen from tables 5 to 7 that during the recovery of a simple representation by the
collateral effect, best results are obtained if f is raised for each new cycle. In the simple model
which was used to make the computations, recovery, if it happens at all, will take place within
about three cycles—that is, three successive applications of the collateral effect. In a physiological
memory of this type, the cycles as such will not exist in this discrete sense: recovery will be a smooth
process. But it will happen quickly, if at all, and will proceed best if f is increased gradually
throughout it. The fact that recovery will occur so quickly means that the ¢ program’ for increasing
f can without undue loss be the same for all inputs. (This would, for example, not have been so if
borderline cases had tended to spend a large number of cycles near the borderline, since fwould
then sometimes have had to be held for some time at (say) 0.3.)

In physiological terms, this means that the proportion of basket cell inhibition to inhibition
applied to the #;-cell dendrites should initially take some small value—say corresponding to a
value f ~ 0.3—and should be raised during recall until fis near 1.0. This increase can take place
at the same rate and from the same initial value for all recall problems. The likely time-course
of the change is of the order of 0.25 s, allowing 50 to 100 ms for each cycle, and the whole operation
must be carried out subject to the (negative feedback) condition that a roughly constant number
of P,-cells is kept active. There are various methods by which this could be done, though I can
find no single one which seems tobe particularly preferable to the others. One method, for example,
is to employ an external agency which gradually increases basket cell activity in #,. The sub-
tractive inhibitory level is then set at an appropriate level by the usual negative feedback through
#,-cell collaterals and an inhibitory interneuron (the G-cells).

3.4. The return from the memory

The analysis of the projection back to the neocortical pyramidal cells is straightforward. If,
say, each pyramid devotes 10000 synapses to the memory, an expected 22 will be active in each
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learnt event. These synapses need to be Hebb modifiable synapses, facilitated by simultaneous
pre- and post-synaptic activity. Inhibition needs to be applied to these dendrites so that the cells
fire only when all their active afferent return synapses have been modified. In view of the small
number active, they probably need to be close together, and perhaps a little larger than other
synapses.

3.5. Scanning during recall

Simple memory was originally suggested by the need for a direct form of storage which would
enable common subevents to be discovered. Addressing the memory with a subevent will cause
events to be recalled that contained most of the addressing subevent. Whole events presented to
the memory are unlikely to cause recall of other whole events, since any two events will
probably differ substantially.

It therefore appears that to use the memory for storage, whole events should be presented to
it. Using it for recall requires that subevents should address it, which in turn implies some cate-
gorization of the current internal description even at this early stage. The notion that, in order
for recall to take place, only a small part of the current internal description should have access
to the memory, is close to an idea of attention.

The two problems raised by this are, first, how are common subevents picked out; and secondly,
how are they copied out of the memory during the codon formation for new classificatory units?
The first problem is the partition problem (Marr 1970, §1.3.3). Simple memory shows how this
problem can be approached, since the ability of a subevent to pick out a related event despite a
fair amount of noise shows that test subevents do not have to be all that accurately chosen.
Rather general, and perhaps innate, techniques for scanning the current internal description
will lead to the discovery of many subevent clusters. The scanning process itself may well be
subject to neocortical control. The teaching of scanning techniques—how to ‘look’ at things—
may be a very important factor in the development of a child, since it will have a great influence
on the classificatory units that the child will form.

The second problem is more technical and easier to give some kind of answer to. Presumably,
when a subevent causes recall of a previous event, it is ‘marked’ in some way— that is associated
(in the technical sense) with a ‘marker’ input from some special centre. This centre also has a
measure of the ‘importance’ to the organism of this kind of information. When a subevent cluster
of sufficient size and importance has been formed, this centre will (perhaps during sleep) call
the information out from the memory during a period when codon formation is possible. This can
be done simply by addressing the memory with the marker event. The markers have to be fairly
simple stereotyped inputs, which can be reproduced when required, and which call up (by
association) the subevents that they mark. The obvious candidates for ¢ marker’ inputs, in view of
the ‘importance’ parameter necessary for this function, are the rather primitive firing configura-
tions which may perhaps be associated with the subjective experience of a fairly strong emotion.

The problems outlined in this section will form the subject of a later paper.

4. A THEORY OF HIPPOCAMPAL CORTEX
4.0. Introduction

In this section is presented the analysis of hippocampal cortex that follows from its inter-
pretation as a region in which the simple representations of many events are formed. The
discussion is restricted to the consideration of local properties of the cortex of various parts of the
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hippocampal formation, and includes a brief classification of cortical cell types, based on the
resultsof this paper and of Marr (1970). Aninterpretation of the macroscopicintrinsic and extrinsic
connexions of the hippocampal formation will appear in the paper on hippocampal input—output
relations.

4.1. The morphology of the hippocampal formation
4.1.0. Gross morphology

Most of the following description of the structure of the hippocampal formation is derived from
information about the mouse (Cajal 1911; Lorente de No 1934) and the rat (Blackstad 1956; White
1959). There is, however, a remarkable uniformity in the structure of the hippocampusin mammals
(Lorente de No 1934), so that the divisions made in the mouse are easily recognizable in man.
The only important histological difference is in the size of the elements involved: man’s hippo-
campus is larger in every way than that of the mouse. The homology of the afferent and efferent
paths in the two species is less good, since the many slight differences in the sizes of the relevant
tracts combine to give overall pictures which are considerably different. Those aspects of the
present theory which relate only to histology may however be applied to the hippocampal cortex
of most mammals.

Blackstad (1956) and White (1959) have recently used morphological information to classify
the various regions of the hippocampal region in the rat. Their findings agree closely, and the
present paper will usually follow the terminology of Blackstad. According to that author, the
hippocampus admits of the following subdivisions:

(1) area entorhinalis (a.e.)
(2) parasubiculum
(3) presubiculum (pres.)
(4) area retrosplenialis e
(5) subiculum (sub.)
(6) cornu ammonis (CA) (the hippocampus proper),
was divided into CA1l
CA2
CA3
CA4 by Lorente de No (1934)
(7) fascia dentata (FD)

The division is illustrated in figure 7: Blackstad (1956) gives the explicit criteria for distinguish-
ing the borders between the different regions (1) to (7). Regions (6) and (7) are those most
characteristic of the hippocampal formation. The subdivision of (6) CA into CA1 to CA 4 is
based on variations in the structure of the hippocampal pyramids. CA 4 is in many ways distinct
from the rest of the CA, and it will be discussed separately in §4.4, together with the FD (7).

4.1.1. The histology of the cornu ammonis (CA)

CA is composed principally of a layer of large pyramidal cells, whose axons constitute the
efferent tracts from the hippocampus. Many of these cells are extremely large, and their dendritic
trees usually span the whole thickness of the CA. They are arranged in a particularly neat row,
and it is the bodies of these cells which give the hippocampus its characteristic appearance.
Figure 8 illustrates their arrangement in the cortex.

7 Vol. 262. B.

91



56 D. MARR

Ficure 7. Diagram of the hippocampal region in the rat, based on horizontal silver-impregnated sections. The
posterior end of the hemisphere is at the top of the figure, the medial side at the right. Arrows show the
limits between the areas, which are abbreviated as follows: parasubiculum (par.), presubiculum (pres.),
subiculum (sub.), hippocampus (hip.), fascia (area) dentata (a.d.). Other structures shown are ps.d.
dorsal psalterium, alv. alveus, fis.h. fissura hippocampi, v.l. lateral ventricle, fim. fimbria, pl.ch. choroid
plexus, str.t. stria terminalis, g.1. lateral geniculate body, g.m. medial geniculate body, coll. ant. and post. the
anterior and posterior colliculus, and a.retr.e. area retrosplenialis e. (Fig. 2 of Blackstad 1956.)

Ficure 8. Longitudinal section of the adult mouse brain, Cox method. Fi is the fimbria:
the divisions are those of Lorente de No (his Fig. 5, 1934)-
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Hippocampal cortex is commonly regarded as having the four layers shown in figure 9. The
bodies of the hippocampal pyramidal cells lie in the Stratum Pyramidale (S. Pyr.), and their
basal dendrites span the Stratum Oriens (S. Oriens). Their apical dendrites rise through the
Stratum Radiatum (S. Rad.), where they may split into two or more shafts, and arborize freely
in the Stratum Moleculare (S. Molec.). The region between the S.Rad. and S. Molec. is often
called the Stratum Lacunosum (S. Lac.). Lorente de No (1934) combined information from his

own studies with that obtained by Cajal (1911) and earlier authors to give the following descrip-
tion of the cell types in these layers.

Ficure 9. Types of pyramids in fields CA 1, CA 2, CA 3, CA 4. 1 to 3 are pyramids of CA 1; 4 to 7 of CA 2;
9 a pyramidal basket cell of CA 3. Only axons of cells 12, 19, 21, 22 have been included in the drawing.
Twelve-day-old mouse, Golgi method. (Lorente de No 1934, Fig. 9.)

Stratum Pyramidale

(a) Pyramidal cells. These vary slightly in appearance from region to region, but figure 9
illustrates their basic uniformity. All pyramidal cells of this class send an axon out of the hippo-
campus. Those in CA 4 have a modified form, which is explained later.

(b) Pyramidal basket cells. Their bodies and dendrites are similar to those of the pyramidal cells,
but their axons are completely different: they travel horizontally and form baskets round the
somas of the pyramidal cells (cell 9, figure 9). There are no basket cells in CA 4, and those in
CA 3 do not receive synapses from the so-called mossy fibres (i.e. axons of the granule cells of
the FD).

(¢) Cells with ascending axon. Their bodies and descending dendrites are similar to those of the
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pyramidal cells, but the ascending dendrites leave the soma directly, and are not branches off a
single shaft. The axon arborizes chiefly in S. Rad. (cell 1 of figure 10).

Stratum Oriens
(d) Horizontal cells with ascending axons have dendrites which remain in S. Oriens: the axons
ascend to S. Molec. and arborize there (cell a, figure 12).
(¢) Polygonal cells with ascending axons are similar to (d) except in two respects: their axons
sometimes emit collaterals in S. Rad., and they send a dendrite to Ss. Rad. and Molec. (cell 5 of
figure 11).

F16ure 10. Types of cell with short axon in CA 1. Twelve-day-old mouse, Golgi method. (Lorente de No 1934, Fig. 7.)
FiGure 11. Types of cell with short axon in CA 1. Twelve-day-old mouse, Golgi method. (Lorente de No 1934, Fig. 8.)

(f)s () Basket cells are of two types, one with horizontal dendrites remaining in S. Oriens, and
one with a dendrite ascending to S. Molec. (cells 4 of figure 10, 2 of figure 11, and b of figure 12).

(h) Horizontal cells with axon in S. Rad., whose dendrites remain in S. Oriens (cell 1 of figure 11).

(i) Horizontal cells with horizontal axon are globular with dendrites remaining in S.Oriens,
and axons ramifying in S. Oriens and occasionally also in S. Pyr. (cells 2 and 5 of figure 10, cell 4
of figure 11).

Strata Radiatum and Lacunosum
Cajal (1911) described the S. Lac. separately in the rabbit, where the Schatfer collaterals are
especially distinctly grouped; but in the mouse, cat, dog, monkey and in man, the S.Rad. and
S. Lac. are notobviously distinct (Lorente de No 1934). They contain the following types of cell:
(j) Cells with axon ramified in S. Rad., of which there are four types, being all combinations of
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two kinds of dendritic and two axonal distributions. Some dendrites reach S. Mol., others remain
in S.Rad. and S. Lac.; some axons ramify only in S.Rad. and S. Lac., others give branches to
S. Pyr. (e.g. cells 3, 6,7 of figure 10).

(k) Cells with ascending axon ramified in S. Mol., after branching in S.Rad. and S.Lac. The
dendrites ramify in Ss. Lac., Rad., Pyr. and even Oriens (cells e to m of figure 12).

(!) Horizontal cells of S. Lac. have axonal and dendritic distributions both in S. Lac., the region
of the Schaffer collaterals (see below) (cell 3 of figure 10).

FI1GURE 12. Various short-axon cells of the CA. Six-day-old rabbit, double-silver
chromate method. (Cajal 1911, Fig. 476.)

Stratum Moleculare

The S. Molec. contains several cells with short axon, typical of a cortical molecular layer.
(m) Cells with short axon, and
(n) Horizontal cells,

both of which seem to be rather difficult to stain.

4.1.2. The histology of the fascia dentata (FD)

Cajal (1911) gave a full description of FD, which he divided into three layers, the molecular,
granular, and polymorph layers. The most notable elements of the cortex are the granule cells,
whose bodies, like those of the hippocampal pyramids, are neatly packed and arranged in a
granular layer (see figure 13). These cells have supporting cells analogous to those found in CA:
they are described on the next page.
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Molecular layer

(a) Displaced granule cells look, and will be treated, like granular cells displaced a little into the
molecular layer (cell a, figure 13).

(b) Short-axon cells, of which there are two main types. The more superficial (figure 14, f and g)
have delicate dendrites, mostly horizontal or descending. Their axons are extremely thin and
terminate locally, in the outer part of the molecular layer, with a considerable ramification.

Ficure 13. The FD in the region of the hilus of the CA. One-month-old guinea-pig,
Golgi method. (Cajal 1911, Fig. 478.)
The deeper cells are larger, and occupy the lower portion of the layer (figure 14¢). They possess
dendrites which spread and divide in all directions—even crossing the granule layer to reach the
polymorph layer. Their axons are larger than those of the more superficial cells; they arborize
freely in different directions, while remaining in their original layer.

Granular layer

Cajal (1911) regarded the granule cells of the FD as a variant of the cortical pyramidal cells.
Figure 13 contains many examples: it will be seen that they lack basilar dendrites, and send
about four or five dendrites up through the molecular layer. Their axons are thin, and become the
so-called mossy fibres of CA 4 (see below). As they cross the polymorph layer, they give off four or
five collaterals, which terminate there. These axons hardly ever give out collaterals after they
have crossed the polymorph layer.
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Polymorph layer
(¢) Pyramidal cells with ascending axon (figure 15). These cells possess basilar dendrites, which
give them a pyramidal shape. Their apical dendrites rise in the manner shown, and their
axons eventually ramify horizontally into the granular layer. The cells have obvious similarities
with the pyramidal basket cells of the hippocampus proper. Occasionally, but rarely, pyramidal
cells are seen that send their axon to the alveus.

Ficure 14. The FD. One-month old rabbit, Cox method. (Cajal 1911, Fig. 477.)

Ficure 15. The FD. One-month-old rabbit, Cox method. (Cajal 1911, Fig. 480.)
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(d) Cells with ascending axon, which crosses the granular layer and ramifies horizontally. They
have various kinds of dendritic distribution (figure 16, ¢ and f; i and o are basket cells).

(€) Cells with descending axon have long horizontal dendrites which never cross the granular
layer. Their axons become fibres in the alveus (figure 16g, j).

(f) Short-axon cells with local axonal and dendritic distributions: they are found throughout
the lower part of this layer (figure 15h).

(&) Various star and fusiform cells found low in this layer send their axons eventually to
the alveus.

Figure 16. The FD. Eight-day-old rabbit, Golgi method. (Cajal 1911, Fig. 481.)

4.1.3. The principal association systems of the hippocampus

The present investigation will not concern itself with the relationship between the hippocampi
of the two sides of one animal, and consequently little information about the various highly
organised commissural connexions will be required (see §4.5.2). There are four principal systems
for association in the hippocampus, and they are dealt with separately.

(1) The mossy fibres. The FD granule cell axons become the mossy fibres of the hippocampus.
These axons run from FD along CA 4 and CA 3 near the pyramidal cell bodies. They synapse
with the dendritic shafts in these regions, producing the distinctive thorns which show up so well
in Golgi preparations (figure 9) (Cajal 1911). Few if any penetrate beyond the boundary between
CA 3 and CA 2. There are two crucial points to note about these fibres: first, they form the only
efferent pathway for the dentate granule cells; and secondly, they specifically avoid the pyramidal
basket cells of the hippocampus. These cells thus lack the characteristic thorns (Lorente de No
1934). In CA 4, mossy fibres form the main source of afferent synapses with the pyramidal cells
there, and CA 4 contains no basket cells.

(i) The Schaffer collaterals are thick collaterals of the pyramidal cells in CA 3 and CA 4. They
travel away from the dentate fascia, and rise through S. Rad. as they go. They synapse in S. Lac.
with the pyramidal cells of CA 2 and CA 1 (Schaffer 1892).

(iii) The axon collaterals of CA 1 and CA 2. The Schaffer collaterals are a transverse association
system, joining CA 3 and 4 to CA 1and 2. CA 1 and 2 also possess a predominantly longitudinal
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association system consisting of collaterals synapsing with pyramidal cellsin S. Lac.-Molec. These
join CA 1 and 2 with other parts of CA 1 and 2. The associations stay more local in CA 1 than in
CA 2, but are clear in both cases (Raisman, Cowan & Powell 1963, in the rat).

(iv) Local associational paths. Itis evident from the descriptions of Cajal (1911) and of Lorente de
No (1934) that most hippocampal pyramidal cells have axons which give off collaterals. These
probably end locally if they do not contribute to (ii) or (iii), but they have not yet been studied
closely. It is necessary therefore to bear in mind that, at least on a local level, the hippocampus is
provided with an extremely rich system of interconnexions. It seems to be a general rule in the
hippocampus and dentate fascia that different afferent systems terminate both in specific regions
and in specific layers of the cortex, not by a random ramification (Blackstad 1956; Raisman et al.
1965).

The hippocampal pyramidal cells are extremely large, and so are likely to have at least as
many afferent synapses as large pyramidal cells in the motor cortex of the same animal.

4.2. The hippocampal pyramidal cells
4.2.0. The basic model

The pyramidal cells of sections CA 1, CA 2 and CA 3 of the mammalian hippocampus will be
regarded as being populations of cells in which simple representations of various input events are
formed. It is proposed that these cells are closely analogous to the cells of #; in the model
proposed in § 2and analysed in § 3.

The theory of §§2 and 3 requires that, if a cell participates in the simple representations set up
in a simple memory of about the specified dimensions, it should have the following properties:

P1 Itsinput fibres should be suitable.

P2 The activity ag, of the ammonic pyramids should be small: 0.01 > ¢, > 0.001 with
aca probably nearer 0.001.

P3 Each cell possesses very many (2 50000) afferent Brindley synapses from the previous
layer of cells, and many (2 10000) Hebb (or Brindley) synapses from other cells of the CA.

P4 Synapses from fibres likely to be co-active should be placed near one another.

P5 There should exist an extensive collateral system in CA, giving rise to the collateral
synapses of P 3, which allow the completion of the simple representations of partially
specified input events.

P6 There should exist appropriate supporting cells to supply the required inhibition.

P7 There should exist a means of clearing information from these cells when it is re-stored—
either as associations or as associations or as new classificatory units—in the neocortex.

Points P 2 to P 7 are discussed separately in the following paragraphs: P 1 is dealt with in a
later paper.

4.2.1. agy

If the hippocampus is involved in storing information in the proposed way, the number of
events it can store depends upon the size of each input event, and upon the number of cells used
for each. The smaller is &y, the greater is the capacity, and the more powerful is the collateral
effect. o, is bounded below by about 0.001, a figure which arises out of the necessity to be able
to detect those cells which are active (§2.3.4). It should not be very difficult to determine ¢, by
experiment.

8 Vol. 262, B.
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4.2.2. Modifiable synapses

The competing virtues of the three possible kinds of modifiable synapse of figure 2 have already
been discussed. Model 1 was rejected on the ground that each cell would need to be used for more
than one input; and the climbing fibre model 3 on the grounds that it needs additional cells, and
will not select such suitable cells as model 2 will. It was therefore concluded that model 2, using
Brindley synapses, was the preferred choice for all cells in a simple memory. The central feature
of Brindley synapses is that they are initially excitatory, and can therefore be used themselves to
decide at which cells there should be facilitation (Brindley 1969). This powerful trick solves the
problem of selecting the most suitable cells for storing a given input (cf. codon formation, Marr
1970).

There are two practical difficulties associated with the use of Brindley synapses to select CA
pyramidal cells for a simple representation. The first arises out of the usual problems associated
with a large dendritic tree. It has been pointed out (Marr 1970, §5.1.4) that in the absence of
climbing fibres, it is unreasonable to suppose that synaptic modification is consequent upon
simultaneous pre- and post-synaptic activity when these activities are far apart from each other:
for example, the spike frequency in an axonal initial segment probably has rather little direct
effect upon a synapse 1 mm away at the tip of an apical dendrite of the same cell. Conditions for
synaptic modification are therefore likely to hold only locally in a dendrite. This will, however,
not be a great disadvantage if input fibres are arranged in such a manner that those that are
often coactive tend to lie near one another. It is interesting in this connexion to note that there
exists a very marked lamination in the hippocampal afferent system (Blackstad 1956).

The second difficulty is related to the first, and concerns the setting of the thresholds of the CA
pyramids. The first time any input is presented to the memory, the appropriate threshold can be
computed easily: it is simply a multiple of the power of the unmodifiable component of a Brindley
synapse. But after a number of events have been learnt, a non-zero fraction of the CA pyramidal
cell afferent synapses will have been facilitated. The thresholds must rise to counteract this effect,
and so the amount of inhibition applied to the CA pyramids has to be increased with the number
of events that are stored there. Furthermore, if (as seems likely) synaptic modification occurs as a
result of a decision process in a local region of dendrite, this inhibition must be applied to such
local regions: it is, for example, no use increasing the inhibition at the soma in order to prevent
the modification of a synapse at the extremity of an apical dendrite.

The use of Brindley synapses, in output cell selection as well as in codon formation, therefore
requires that the amount of inhibition applied to the post-synaptic dendrite, for a given size of
input event, should increase with the number of events that the memory has learned. The most
satisfactory way of achieving this seems to be to drive the inhibition by collaterals of] in this case,
the CA pyramidal cell axons (§2 and Marr 1970, §4.3.1). The cells which achieve this inhibition
will be identified in §4.3.

The conclusion which may be drawn from these arguments, together with those of §4.3, is
that the inhibition level at the CA pyramids can be made to vary in a way which makes it possible
for their afferent excitatory synapses to be Brindley synapses. These synapses are in principle the
best choice for the function which the present theory assigns to the CA pyramids, and hence the
following prediction is made. Excitatory fibres from the area entorhinalis should terminate on the pyramidal
cells of CA'1 to CA 3 by Brindley synapses.
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4.2.3. Collateral synapses from other CA pyramids

The collateral effect (§2.4) is an important means by which the simple representation of an
incompletely specified input may be completed. The manifestation of this effect in the CA re-
quires that collateral synapses between CA pyramids are modifiable. The synapses included in
this discussion are those belonging to reciprocated collateral systems. They do not include either
the mossy fibres, or the Schaffer collaterals, both of which are projecting collaterals to which there
do not exist reciprocal counterparts: these collateral systems are dealt with in §4.5.

Collateral synapses should ideally be Hebb synapses: that is, they should initially be ineffective,
but should be facilitated by the conjunction of pre- and post-synaptic activity (see §1.3 for the
distinction between Hebb and Brindley synapses). Modification conditions are therefore the
same as for the standard CA afferents, except that collateral synapses should probably lack the
power to set up modification conditions by themselves.

It is interesting that most collateral synapses to the CA pyramids are found in the S.Rad.
(Lorente de No 1934): it seems likely that the importance of the collateral effect is one of the
main reasons for the huge development of this part of the dendrite in the CA pyramids. Spencer
& Kandel (1961) have shown that the apical dendritic shafts of the CA pyramids can sustain an
action potential. It is therefore reasonable to assume that the modification of synapses in S. Rad.
could depend on the coincidence of pre-synaptic activity and a burst of post-synaptic action
potentials. This would be appropriate on the assumption that decisions about synaptic modifica-
tion are taken locally in the apical dendritic tree for two reasons. First, spikes will travel at a high
rate down through S. Rad. only when that cell is being used to record an input event (though the
same activity may lead to the recall of another event): hence post-synaptic depolarization will
exist only at the correct times. Secondly, during the recall of an event through the collateral effect,
only dendrites in S.Rad. will be exposed to collateral excitation: thus the areas in S. Molec.
where the majority of afferents terminate will not be exposed to post-synaptic depolarization, and
so inappropriate synaptic modification will not occur there. Both these arguments show that the
situation in which the placing of the afferent and collateral synapses was reversed—i.e. where
most afferents made synapses in S. Rad.—would be unworkable.

There may be two true reciprocating collateral systems in CA 1 to 3; one distributing its
collaterals longitudinally among cells of CA 1 to 2, the relevant fibres rising from S. Oriens and
terminating in S. Rad. (Lorente de No 1934); and one being composed of local axon collaterals,
many of which distribute in S. Oriens (Lorente de No 1934). Many of the collaterals in the second
group will be involved in driving inhibitory threshold controlling cells (§4.3). Finally, it must be
noted that the associational paths between the hippocampal cortex of each side of the brain
must be composed largely of fibres of collateral status. There is evidence that many of these fibres
synapse in the contralateral S. Rad. (Lorente de No 1934; Blackstad 1956). (See §§4 5.1
and 4.5.2.)

4.2.4. Numerical predictions

There are so many unknowns in the equations computed in §3 that only the most tentative
estimates can be made for the expected values of the various parameters. It is probably useful to
have some idea of the values compatible with the present form of simple memory theory, if only
because if any are shown to be greatly different, it will immediately become clear that others
which are related to them must also be different. The following rough values are therefore
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given, with the accompanying reservation that they should be regarded only as guides to the
orders of magnitude of the various parameters.

(i) oga is near 0.001.

(ii) Sca R 50000.

(iii) The number of collateral synapses at a CA pyramidal cell 2 10000.
(iv) Zga, the contact probability of the afferent fibres, is of the order of 0.1.

4.2.5. Clearing the simple memory

The final point with which this section deals concerns the role of the CA pyramidal cells in the
transfer of information from simple memory to the neocortex.

The alternative ways of losing information from the simple memory are probably either by a
gradual decay applied to all information held therein, or by the selective destruction of a simple
representation as the information it represents is transferred to the neocortex. Neither method
seems particularly satisfactory: the first would mean that the combination of informations
acquired at greatly different times more or less requires that the earlier part has been put into
neocortex (a store which, if not actually permanent, is imagined to decay with a rather long
half-life). The successful combination probably requires that the earlier has since been rehearsed.
The second method is more difficult to make convincing, since the nature of simple memory is
such that synapses can be involved in the storage of more than one event: hence the cancelling of
one trace has the unwanted side effect of weakening the records of a number of other largely
unrelated events.

There seem to be no immediate reasons why either mechanism should be preferred to the other,
but the first requires what are probably simpler assumptions about the modification conditions at
the hippocampal pyramidal cell synapses.

4.3. Short-axon cells in the cornu ammonis
4.3.0. Introduction
According to the present theory, the CA contains no codon cells. It follows that none of the
short-axon cells found there are excitatory, and that they carry out all the functions required of
inhibitory threshold controlling cells. Hippocampal cortex is in this respect unusual: the cerebellar
cortex certainly contains short axon excitatory cells (the granule cells, Eccles, Llinas & Sasaki
1966), and the cerebral neocortex probably does (Martinotti cells, Marr 1970).

4.3.1. The functions of inhibition

The present theory requires that the thresholds of the CA pyramids be controlled in a very
careful manner. Suppose that synaptic modification is an all-or-none process, and that p, ¢
represent respectively the strengths of the unmodified and modified states of a Brindley synapse,
where 0 < p < ¢ < 1. Then [, q] is the analogue of the plausibility range for output cells (Marr
1970, §4.1.3).

The three principal tasks of the pyramidal cell threshold-setting mechanisms are as follows:

T 1. The storage of events: when an event E is presented, synaptic modification must take place
at those cells which have the greatest number of active afferents.

T 2. The recognition of subevents: when a subevent X is presented, those cells must fire which have
the greatest fraction f of active afferent modified synapses, provided that the number of such
synapses exceeds some number, 7.
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T 3. The completion of events: given the firing of a number of hippocampal pyramidal cells,
those cells must_fire at which the greatest fraction of active afferent collateral synapses have
been modified, provided that the number of such synapses exceeds some number 7.

These criteria have to be fulfilled without any other instructions, if possible: that is, the mech-
anism for performing T 1 should naturally perform T 2 when the current input subevent has
occurred in a previous event. Collateral synapses tend to lie in S. Rad., where they have their
own special inhibitory cells, so T 3 can to some extent be taken separately. The three tasks are
discussed below.

4.3.2. The storage of events

The crucial factor in the storage of events is that the correct conditions for synaptic modi-
fication prevail in the pyramidal cell dendrites. Excitation there is due to two components: one,
of fixed size, due to the unmodifiable excitatory component of the Brindley synapses; and one,
whose size increases with the number of events stored in the memory, due to the fraction of active
synapses that have already been facilitated.

The first component is a standard multiple of the number of active afferent fibres, and can
reasonably be expected to be counteracted by local inhibitory cells in the hippocampal cortex.
The function of these cells is to provide inhibition in the pyramidal cell dendrites such that when
no events have been learned, only those dendrites which receive more than a certain number of
active synapses are depolarized enough to modify their active afferent synapses. (The necessary
number of such synapses is the threshold which appears in table 3.) This inhibition can be pro-
vided by cells whose axonal and dendritic distributions are subject to the kinds of sampling
techniques outlined by Marr (1969). The obvious candidates for such cells in the hippocampal
cortex are the components of cells (¢) and (¢) due to their ascending dendrites; cells (7) (for this
function in S. Oriens); (j); ({); (m); and (n) (see §4.1.1).

The second component must increase with the number of events stored in the memory, and
again must act on the dendrites of the pyramidal cells, where it must affect the formation of post-
synaptic conditions for synaptic modification. It was argued in §2 that the simplest way of
achieving this is by having inhibitory cells driven by axon collaterals of the hippocampal pyra-
mids (analogous to the upper dendritic tree of the cerebellar Golgi cells). The following cells of
§4.1.1 are interpreted as performing this function: the components of cells (¢) and () due to their
descending dendrites; (d); () ; and (£). Thisis an important function for which, fortunately, many
of the described cells have appropriate axonal distributions. It remains for electron microscope
studies to show whether the dendrites of any of these cells receive synapses from the pyramidal cell
axon collaterals.

4.3.3. The recognition of subevents

It was shown in §§2, 3 that the most sensitive indicator of whether a given cell has previously
recorded a subevent similar to the current one is the fraction of the active synapses which have been
modified. This is computed by a division which Marr (1970, §4.1.6) has argued may be associated
with inhibition applied to the soma of a pyramidal cell. The requirement set out in the discussion
there of output cell theory was that the amount of inhibition applied to the soma should vary with
an estimate of the total number of active fibres: and this is obtained by dendritic sampling by
many inhibitory cells, whose synapses converge at the soma. Such cells are for this reason usually
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called basket cells, and are present in the hippocampus with suitable axonal distributions
(cells (8), (f) and (g) of §4.1.1). Andersen, Eccles & Loyning (1963) have shown that they are
inhibitory, but the question of whether they effectively perform a division has not yet been
investigated.

The second component of §4.8.2 is also needed for the recognition of learnt subevents.

}(1) and (3)

Ficure 17. Three functions of inhibition: (1) Remove pK where [p, q] is the plausibility range. S-cells (i.e. cells
¢, e,1,j, m, n, of §4.1.1: [ for the Schaffer collaterals). (2) Divide by K to obtain the fraction f of the active
synapses that have been modified. Basket cells (b, f, ¢ of §4.1.1). (3) Raise p to some value p’ such that:
(a) the correct number of cells have outputs in the range [#’, ¢]: p” depends on E; (b) the correct modification
conditions are implemented (cells ¢, d, ¢, k, k driven by pyramid collaterals (§4.1.1)).

4.3.4. The completion of a simple representation

According to §2.4, the principal mechanism available for the completion of a subevent X is
the collateral effect, which can recover the simple representation of the event E| X even though
Xissmall (§3.1). For this, collaterals of the pyramidal cells should synapse with other pyramidal
cells (in S. Rad.) through Hebb (or Brindley) synapses. Recovery of a simple representation by the
collateral effect has been discussed at length in § 3.1, where it was seen that best results are achieved
if the division threshold (basket inhibition) can be gradually increased during recall. The sub-
tractive inhibition must be decreased in a corresponding way, so as to keep the number of active
cells roughly constant.

Subtractive inhibition requires inhibitory synapses applied to S. Rad., and for this the cells
(¢) of §4.1.1 would be suitable. Cells (%) have the appropriate dendritic and axonal distributions
for the division function. Many of the cell types referred to in §4.3.2, however, have axons ramified
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in S.Rad. and S. Lac. as well as in S. Molec. This suggests that synapses in S. Rad. and S. Lac.
may also be Brindley synapses, and hence that selection of CA cells depends on their suitability
judged from the point of view of the collateral effect as well as of the exogenous afferents.

Although there are various ways by which the proportion of somatic to dendritic inhibition
might be changed during recall, the available information does not help one to decide if this is in
fact done. One possibility is that the transmitter at basket synapses tends to be degraded rather
slowly, causing the effect of these synapses to increase gradually during stimulation. The negative
feedback circuit through the other cells would ensure that dendritic inhibition is decreased in an
appropriate way.

The three functions performed by the inhibitory cells of the CA are summarized in figure 17;
the cells thought to be responsible for each are listed in the legend.

4.4. The fascia dentata
4.4.0. Introduction

The granule cells of the FD will be regarded essentially as extensions to the dendritic trees of
the CA pyramidal cells. It is proposed thatsimple representations are set up in FD in the same way
as in CA 1 to CA 3, but that instead of the FD granules sending their own axons elsewhere, they
synapse with what may be regarded as ‘collector’ cells in CA 4 and CA 3. The collector cells
send axons elsewhere, and a collateral effect probably operates amongst them.

There are various ideas behind this interpretation of the FD granule cells. The first is that the
proposed scheme will result in a saving in the total number of cells transmitting simple
representations elsewhere, and hence in savings elsewhere in the numbers of cells and synapses
needed to deal with them. It has been seen that the storage capacity for simple representations in a
population of cells depends on the activity a of that population; and that « is likely to be bounded
below by about 0.001. Hence above a certain point, it is unprofitable to increase the size of the
population carrying simple representations, the certain point being in the region of 105 cells. If
the amount of afferent information to be dealt with requires more cells than this, something like
the proposed theory for the FD becomes the natural scheme to adopt.

The second idea concerns agy, the activity of the FD cells. Once it has become unnecessary for a
collateral effect to operate among the cells of a simple representation, the lower bound on agy
ceases to be dictated by the constraint that only about 10000 synapses will be available for the
collateral effect. The value of app can be pushed down to the bound dictated by the weaker
constraints that apy can be detected by other cells all of whose synapses may be devoted to the
task—Dby the local inhibitory cells, and the proposed collector cells. This notion implies that the
collector cells should possess potentially powerful afferent synapses from FD granules, an impli-
cation which receives support from the huge size of the mossy fibre synapses in CA. Thirdly, the
activity in the population of collector cells must be comparable to that in the rest of CA, so that a
collateral effect is possible there.

Finally, it is worth noting that the present theory supports the opinion of Cajal (1911), based on
histological evidence, that the dentate granules are a variant of the hippocampal pyramids in
CA 3. Lorente de No (1934) remarks (p. 147) that, in the monkey and in man, the similarity
between CA and FD is outstanding.
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4.4.1. The FD granule cells

In the present theory of the FD, essentially the same remarks apply to the granule cells as were
made about the CA pyramids, except that there may be no collateral effect amongst them. (It may
be replaced by a collateral effect among the cells of CA 4 and CA 3 to which the granules project.)
The granule cells (figure 13) are therefore regarded as being like CA pyramids without an
S.Rad., S.Lac. or S. Oriens. Their principal afferents from elsewhere should terminate in
Brindley synapses: all synapses from local short axon cells should be inhibitory, and should
terminate in unmodifiable synapses. The inhibitory synapses on the granule cell dendrites
should have a subtractive effect, and those on the soma should perform a division (§4.3 and Marr
1970, §4). The activity agp should be very small, probably less than &g,. Synapses likely to be
coactive should be juxtaposed, and the afferent contact probability is probably in the region
of 0.1, and may be greater than that found in the CA.

The present theory gives no grounds for supposing that any granule cells should not possess
afferent basket synapses (or an equivalent grouping of inhibitory synapses just above the soma).
The special cells noticed by Cajal (cell a, figure 16) are therefore not explained by this theory,
unless they are found to be inhibitory and to have a local axonal distribution, or to be extremely
rare.

4.4.2. Short-axon cells in the FD

The requirements for inhibition in the FD are the same as in the CA 1 to CA 3, and the argu-
ments put forward in §4.3 need not be repeated. It remains only to summarize the different
functional elements required in the dentate cortex, and to identify them with the cells described
by Cajal (1911). The next three headed paragraphs correspond to the sections 4.3.2 to 4.3.4 on
short axon cells in the CA.

The storage of events. It was seen in §4.3.2 that two components of inhibition are required to
ensure that the correct numbers of synapses are modified by an incoming event. The first varies
only with the number of active afferent fibres, and is performed by short axon cells with local
dendritic fields. Such cells estimate the amount of local afferent fibre activity, and send inhibition
to the granule cell dendrites (cells 4 of §4.1.2, including only those parts of the activities of
cells e of figure 14 that are due to dendrites in the molecular layer). The second component of
inhibition must increase with the number of events stored in the memory. It should be supplied
by cells whose axons ramify in the molecular layer, but whose dendrites are exposed mainly to
activity in granule cell axon collaterals. The polymorph layer, below the granule cell bodies,
receives most of their collaterals: the natural candidates for these inhibitory cells are  and some
of d of §4.1.2.

The recognition of subevents requires basket cells and the cells of the last paragraph. Basket cells
are present in the FD (cells ¢ and others of d of §4.1.2).

The completion of subevents relies on the collateral effect. Although it is thought that this princi-
pally occurs in CA 4 and CA 3, it is worth noting that some FD granule cells do send axon col-
laterals to the molecular layer of the FD, where the appropriate inhibitory mechanisms are
already available.

Remarks. The only cells left unaccounted for are certain inhabitants of the polymorph layer
(cells, ¢, f, g of §4.1.2). It seems likely that these cells, found principally in the lower parts of the
polymorph layer, should properly be regarded as components of CA 4: the long axon cells as
‘collectors’ (see later) and those with short axon as the usual inhibitory threshold controlling cells.
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There is some evidence (Raisman ef al. 1965) that septal afferents to the FD terminate in the
polymorph layer, though this is not firmly established. If it is true, and if the polymorph cells
are largely inhibitory, the finding suggests that the septal nuclei play rather a special role in
controlling the FD.

4.4.3. CA3,CA 4 and the mossy fibres

Lorente de No (1934) described the large cells of CA 4 as modified pyramidal cells. They differ
in two major respects from the pyramids of CA 3: first, no basket plexus envelops their somas;
and secondly, they receive mossy fibre synapses over much of their dendrites, not (as in CA 3)
over small sections of dendrites near the soma.

Since no basket plexus envelops the somas of the CA 4 modified pyramids, it follows that the
mossy fibres fail to drive basket cell inhibition at these cells. This interesting characteristic is
preserved by the mossy fibres in CA 3, where they conspicuously avoid synapsing with the
pyramidal basket cells. No other hippocampal afferents share this feature.

In that part of CA4 which is closest to FD, almost the whole of the modified pyramids’
dendrites scem to be covered with long spines: the number appears to decrease slightly towards
CA 3. At the border between CA3 and CA 4, two things happen: the pyramids suddenly
start sending a dendritic stem to the molecular layer of the CA, so the number of their
afferent fibres that are not mossy increases sharply; and the basket plexus appears (Lorente
de No 1934).

It was proposed in § 4.4.0 that the cells of CA 4 are essentially collector cells for the FD granules,
in which an output representation of FD activity is set up and transmitted elsewhere. Thus
if mossy fibre synapses are modifiable, they are Brindley synapses, and the setting up process
proceeds in the usual way. For this, inhibition is required in CA 4, so that only the correct,
small proportion of CA4 cells is used each time. Short-axon cells of the required kind have
been described by Lorente de No (1934, p. 132). The situation is in outline the same as for the
ordinary pyramids of CA 1 to CA 3, and the remarks of §4.3.1 about the setting-up process apply
here.

One of the two anomalies concerning the mossy fibres—that they produce very large synapses
(Hamlyn 1962) and are not associated with basket inhibition—can be explained by assuming
that agp is extremely low. For this means that P(CA 4 & FD), the probability that a (randomly
chosen) CA 4 pyramid and an FD granule fire simultaneously, is extremely small—less than
P(CA 3 & CA3) for example—and hence that the mossy fibre synapses should be larger than
the CA3 to CA3 collateral synapses. The fact that the mossy fibres do not drive basket
inhibition may mean that these synapses are not modifiable.

4.5. Collaterals and their synapses in the hippocampus
4.5.1. Collaterals in the CA

All hippocampal pyramidal cells send collaterals to S. Oriens (Lorente de No 1934), of which
those from CA 2 seem to be the longest. Most give off ascending collaterals which ramify locally
in S. Rad., and many also produce a major long-distance collateral to S. Lac. This last category
includes the Schaffer collaterals from CA 3 and 4 to CA 1 and 2, and the longitudinal collaterals
which arise from cells in CA 1 and 2, and from those cells of CA 3 which have no Schaffer
collaterals (Lorente de No 1934).

The collateral effect proper (§2.4) is thought to be associated principally with the local axon

9 Vol. 262. B.
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collaterals which ramify in S. Oriens and S. Rad. If S. Oriens and S. Molec. are largely indepen-
dent (a conjecture suggested by their great distance apart), the collateral effects to which each
gives rise could be largely independent. Collaterals in S.Oriens are also expected to drive
recurrent inhibition (§§4.3.2 and 4.3.3).

The long-distance collaterals probably serve another function, analogous to that proposed for
the mossy fibres. The axons of the cells of CA 3 and 4 project in the rat to the septal region only;
those of CA 1 and 2 project to the anterior thalamus, the mammillary bodies, and to the septum
(Raisman, Cowan & Powell 1966). Thus the cells of CA 3 and 4, and hence also of FD, have
access to the mammillary bodies and the anterior thalamic nuclei only through the Schaffer
collaterals. It is not known to what extent the CA 1 and 2 longitudinal collateral system is a
reciprocal one, so it is not possible to say what kind of collateral effect these fibres produce. The
efferent projections from CA 1 and 2 are to a certain extent topographically organized (Raisman
et al. 1966), so the only way one part of (say) CA 2 can influence cells to which another part
projects is probably through the longitudinal association path. Such associational effects may
require that the relevant collateral synapses are Hebb (or Brindley) synapses, and that the
cortex is supplied with suitable inhibitory interneurons (e.g. cells / of §4.1.1 for the Schaffer
collaterals).

The afferent fibre systems to the hippocampus are also to some extent topographically
organized (Raisman et al. 1965). It is therefore possible that a subevent may be fed into
CA 3 and 4 alone: this subevent may previously have been associated with a simultaneous sub-
event in CA 1 and 2, but this may now be absent. The input to CA 3 and 4 can, through the
Schaffer collaterals, evoke the original activity in CA 1and 2 by stimulating cells there and relying
on a local collateral effect (in the usual way). Provided () that the activities & in CA 1 to 4 are
low enough for this simple kind of association to work (in conjunction with a local collateral
effect), and (4) that the Schaffer collateral synapses are strong enough to allow rather few active
facilitated synapses to stimulate a cell in CA 1 and 2, these collaterals could initiate this kind of
associative recall. The higher the probability that a given Schaffer collateral synapse has been
modified, the higher the number of facilitated collateral synapses that needs to be active at a
CA pyramid in order for that cell to fire.

Hamlyn (1962) and Andersen (1966) describe the Schaffer collateral synapses as having a size
between that of the usual spine synapses, and that of the mossy fibre synapses. This suggests that
the probability that a Schaffer collateral synapse has been modified lies between the values for
the other two kinds of synapse: i.e. if the probabilities that an ordinary collateral, a Schaffer
collateral, and a mossy fibre synapse have been modified are p,, p,, p,, respectively, one would
expect that p, > p; > py,.

4.5.2. Commissural connexions

Blackstad (1956) found that most hippocampal commissural fibres are very fine, and terminate
in the Ss. Oriens and Rad., with a certain number from the contralateral area entorhinalis to
S. Lac.-Molec. He was unable to determine the origins of many of these fibres, but from his
evidence, and that of Raisman et al. (1965), it would seem that the projections are probably
homotopic in CA 2 to 4, and are certainly homotopic and very symmetrical in CA 1.

The details of these projections are unimportant at the present crude level of theory: it is
important only to note that, since the connexions are probably reciprocal, they probably allow a
standard collateral effect (§ 2.4) between the hippocampi of the two sides. It is in accordance with
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the theory that those fibres which terminate above S. Pyr. do so in S. Rad. rather than in
S. Molec.; and with the notion that S. Molec. and S. Oriens are independent that they should
distribute both above and below S. Pyr.

4.5.3. The FD

Cajal (1911) and Lorente de No (1934) both describe the collaterals of the dentate granule
cells. They synapse with the dentate polymorph cells (as required by §4.4.2), and to some extent
they ramify in the molecular layer. This would enable something of the usual collateral effect to
take place among the dentate granules.

Blackstad (1956) describes massive degeneration in the inner one-quarter to one-third of the
molecular layer after contralateral lesions, but is uncertain of the origin of the fibres responsible.
Raisman et al. (1965) have some evidence which implicates the contralateral septum, but suspect
there may be a projection from the contralateral CA 1.

4.6. A brief functional classification of cell types
4.6.0. Introduction

The distinction between archi- and neocortex is thought to reflect a difference in their func-
tions. Archicortex is essentially memorizing cortex, in the sense that a given area of archicortex is
likely to contain one or more layers of a simple memory. It typically contains cells resembling the
hippocampal pyramids or the dentate granules, without climbing fibres. Neocortex, on the other
hand, though undoubtedly used a great deal for simple associational storage, can probably be
regarded as classifying cortex. Its operation depends on climbing fibres, and its success depends
upon the truth of the fundamental hypothesis (Marr 1970, §1.6.4).

In the following sections 4.6.1 and 4.6.2 are listed the principal types of cell which the theories
predict in memorizing (M) and in classifying (C) cortex. In general, archicortex is memorizing
cortex, and neocortex can do both. Special additional considerations probably apply to those
neocortical regions with special structure (e.g. primary sensory areas). This classification much
abbreviates the analysis (§4.7) of the rest of the hippocampal formation.

4.6.1. Memorizing cortex

M1. Large pyramidal cells without climbing fibres, with baskets. These cells usually form
simple representations (i.e. can support a collateral effect): they have Brindley afferent synapses,
and probably some dendritic independence. It is useful to refer to them as memorizing cells.

M 2. Star cells, and small pyramidal cells without climbing fibres, with baskets, are like M 1.
They may be used with baskets in a simple memory, where subevents not wholly included in a
learnt event are used to address that event, and are also included in the term ‘ memorizing cell’.

M3. Star cells or small pyramids, without baskets, without climbing fibres, with small den-
drites and ascending axons, are codon cells, used only at the first stage of a simple memory.
Perhaps with modifiable synapses (Brindley), their principal function is to reduce c.

M 4. Short-axon cells, without afferent baskets, without climbing fibres, with small dendrites,
driven mainly by M 1 or M 2 cell collaterals, and with ascending axons. These cells are inhibitory.
They control M1, M2 or M3 cell dendritic thresholds for synaptic modification, and the level
of subtractive inhibition during recall.

M 5. Short-axon cells like M4 only with local axons and dendrites. They synapse with M 1,
M2 or M3 cells, and are inhibitory.

9-2
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M 6. Basket cells, driven by the same afferents as drive M 1, 2 or 3 cells, and sending inhibitory
synapses to the somas of these cells. Basket cells may also receive synapses from M 1 to 3 cell axon
collaterals, since this would be one way of raising f during recall.

M7. Fusiform cells lying deep in the cortex, with a liberal dendritic expansion and local
axonal arborization, typically to M3 or M 1 and 2 cell dendrites. They are inhibitory threshold
controlling cells, like M 4, which operate by negative feedback to the cells whose thresholds they
control, and by direct sampling of afferents (cf. cerebellar Golgi cells).

4.6.2. Classifying cortex (Marr 1970)

C 1. Pyramidal cells with afferent climbing fibres and basket synapses, are cells representing
classificatory units.

C2. Star cells, or granule cells, without baskets, without climbing fibres, with small dendrites
and often an ascending axon, are codon cells. They are driven mainly by afferents to that region of
cortex, and some may have modifiable afferent synapses.

C3. Cells whose axons become climbing fibres.

C4. Short-axon cells other than G2, with local axonal and dendritic ramification: they are
inhibitory.

C5. Basket cells, similar to M 6.

C 6. Fusiform cells with single ascending and descending dendritic shaft, usually lying deep
in the cortex, and possessing an axon that goes to white matter without emitting any collaterals.
These cells are probably cortical indicator cells of some kind, and some may project to archi-
cortex.

4.7. The histology of various hippocampal areas

The letters (e.g. M 3) accompanying the following descriptions of the histology of allocortical
regions refer to the cell classifications of §4.6. No detailed justifications of these diagnoses are
given, since the arguments used for such justifications have all appeared in §4.

4.7.1. The area entorhinalis (a.e.)

The a.e. was studied by Cajal (1911) and by Lorente de No (1933), who reviewed and revised
Cajal’s work. The following summarizes the account given by Lorente de No (1933), which
combines his and Cajal’s work. Roman numerals indicate cortical layers, taken after Lorente
de No.

I. Plexiform layer, with the usual short-axon cells (M 5). The axons here are mainly ascending
axons from deeper layers (e.g. from layer V), and association fibres from other fields arriving
through the plexiform layer.

I1. Layer of star cells (M 2): their axons are thick and go to the white matter after giving off
many collaterals. There are also various short-axon cells, some of which may synapse with the
star cell somas (M5, M4, possibly M 6). ‘

III. Layer of superficial pyramids (M 2). These cells have many dendrites in I, no branching
in IT, and a dense basilar dendritic field. The cingulum afferents to a.e. seem to end among these
basilar dendrites (White 1959). The axon sends collaterals mainly to I and III (some to IT and V)
and goes to the white matter. Various short axon and miscellaneous other types of cell (M 4 to 7)
are also found (III includes Cajal’s (1911) layer 4°).

IV. Layer of deep pyramids, with thin unbranched dendritic shaft and immense basilar
dendritic plexus (M 2). In this layer it is indigenous dendrites, rather than foreign axons, whickh
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arborize and ramify. Their axons project to the white matter giving off many collaterals to
I, II, III and V. The ascending collaterals rise vertically. Horizontal cells are also found here,
probably including basket cells, and various cells with ascending axon (M 4 to 7). No collaterals
of any extrinsic afferents terminate in this layer.

V. Small pyramidal cells with recurrent axons (M 3). Their axons send collaterals to I, IT, ITI
and V but not to IV. In IV, however, the dendrites ramify profusely, and the ascending axons
synapse with them (probably) forming their main source of afferents. Globular cells with long
dendrites inhabit layers V and VI, their axons arborising densely in layer V or VI (M7).
Spindle cells with short axons and local dendrites (M4, 5) are also found. According to Cragg
(1965), it is the fibres from ventral temporal neocortex which terminate here, in the cat.

VI. Layer of polymorph cells: there are many types, none particularly surprising; globular,
polygonal, and those left over from V. They have various combinations of axonal and dendritic
distributions (M 3 to 7).

4.1.2. The presubiculum

Cajal (1911) is the only author who has written about the presubicular histology, though
Lorente de No (1934) was clearly familar with this area from his own observations (p. 137).
It appears that on histological grounds, the hippocampal formation should be divided into three
large regions, the Regio Entorhinalis, Regio Presubicularis and Regio Ammonica (Lorente de No
1934, p. 137). The Regio Entorhinalis and the Regio Presubicularis, in spite of many changes—
particularly the introduction of star cells to layer II of a.e.—have the same fundamental plan.
The Regio Ammonica starts with the introduction of the Ammonic pyramids in layer II of the
prosubiculum, and continues into CA and FD. Thus the subiculum may be regarded as
transitional cortex (Lorente de No’s Subiculum b). (Cajal took what Lorente de No calls
presubicular cortex (Sub. a) for his description of the human subiculum.)

The division of the hippocampal formation into three large areas, as suggested by Lorente de No
on histological grounds, will be adopted here. The argument will essentially be that the Regio
Entorhinalis and the Regio Presubicularis prepare information from many different sources for
its simple representation in the CA and FD. It seems probable that each collection of cells in the
Regio Entorhinalis and the Regio Presubicularis should be treated as preparing information
from a separate source: the different shapes of the cells reflect the particular statistical quirks
of the different kinds of information. The layer 2, of §3.1 is a rough model for all of them.

The lack of detailed information about the Regio Presubicularis prevents its detailed discussion.
The presubiculum of Cajal (1911) is presented as a typical example of presubicular cortex.

I. Plexiform layer, extremely wide, and containing many afferents to CA and FD. Its outer
zone is composed almost entirely of such fibres, but the inner part contains the terminal bushes of
ascending dendrites from layers described below, and so is a true plexiform layer. This region
presumably contains the usual short-axon cells (M 5), but they seem to be difficult to stain with
the Golgi method (Lorente de No 1934).

II. Layer of small pyramids and fusiform cells (M2, 3, M7?). The axons of many of these
cells descend to the white matter, some ending locally. The dendrites of all seem to be confined
to layers I and II.

III. Deep plexiform layer. (Lorente de No might have combined II and III as he did in a.e.)
This layer is thick, with relatively few cells; small and medium pyramids (M 2,3?) and various
other cells (M4, 5,7, 6?). It contains an extremely dense plexus, and apparently, the layers I
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to ITI receive here the terminal ramification of the massive pathway to the presubiculum carried
by the cingulum.

IV. Large and medium pyramidal cells (M 1, 2?): the smaller pyramids are probably on
average lower in the cortex, and their basilar dendrites generate a dense horizontal plexus. The
large ones seem to have a more irregular dendritic arrangement (though information is very
sparse, and these statements are inferences from Lorente de No’s (1934) incidental remarks).
All pyramidal cell axons go to the white matter. The large pyramids of this layer become layer
I1I of the prosubiculum, and seem to be associated with the existence of Martinotti type cells
(M 3) beneath them.

V. Fusiform and triangular cells, similar to those found in other cortical areas (M4,5,7),
and cells with ascending axon (M 3). No details are available,

4.7.3. The subiculum (Prosubiculum + Sub. & of Lorente de No)

It is convenient in this section to use the terminology of Lorente de No (1934, p. 134).

The subiculum lies next to CA 1, into which it gently merges. Only a very small region (Lorente
de No’s Sub. 4) can be said to have a distinctive structure in that the presubicular pyramids have
disappeared, but the prosubicular pyramids have not yet appeared. The huge terminal rami-
fication of the cingulum is strictly confined to the presubiculum, and does not spill over into the
prosubiculum (White 1959; Raisman et al. 1965; Cragg 1965).

1. An extremely wide plexiform layer, containing the perforant tract from a.e. to CA and FD.
The lower zone is a true plexiform layer, and contains horizontally running collaterals of some of
the fibres running overhead. There are the usual short-axon cells (M 5).

I1. Modified ammonic pyramids (M 1). The apical dendrites lack S. Lac. and S. Rad., which
ceases abruptly at the edge of CA 1. The basal dendrites are horizontal, and none descend to III.
There are also many short axon and basket cells (M 4,5, 6).

III. Prosubicular pyramids: the upper cells have no side branches in III to their dendritic
shafts, but the lower ones do. None have any in II; all have them in I. Thus the cells of IT avoid
the plexus in ITI, and the cells of IIT avoid the plexus in II. These cells are probably M 1. Again,
there are various short axon and basket cells (M 4 to 6).

Many pyramidal cells in the prosubiculum send axon collaterals to CA1 and CA 2. Most
axons enter the alveus of the CA, and thence enter the fimbria.

IV has two strata: (a) of globular cells, of which there are various kinds. Those whose axons
pass to the white matter are probably M1, and those with ascending axon are probably M 3;
and () of Martinotti (M 3) type cells with local dendrite and ascending axon. These seem to
be associated with the prosubicular pyramids, and to die out with them, which suggests that
their axons do not rise above III. It may be these axons which cells of II are anxious to avoid.

Layer IV, especially IV b, becomes very thin towards the CA. III becomes very wide, and the
cells seem to turn into Ammonic pyramids as IV b disappears (Lorente de No 1934, p. 129,
figure 11). The prosubiculum thus merges into and becomes the CA, which has already been
described.
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5. NEUROPHYSIOLOGICAL PREDICTIONS OF THE THEORY
5.0, Introduction

In this section are summarized the most important predictions which follow from the notion
that simple memory provides a model for the archipallium in general, and for the hippocampus in
particular. They are presented in two parts; the first summarizes the general model for archi-
cortex, and the second deals with the detailed predictions for the hippocampus.

The statements are made with varying degrees of firmness, which are indicated by the number of
stars accompanying each (after Marr 1970, §7). Three stars indicates a prediction whose dis-
proof would show simple memory theory to be an inappropriate model for archicortex; a no-star
prediction is a strong hint and nothing more: one and two star statements lie between these
extremes.

5.1. The general model for archicortex

Whereas neocortex is capable both of classifying and of memorizing inputs, archicortex is
capable only of memorizing them***. The variety of the functions performed by archicortex is
achieved in part by the application of its basic memorizing ability to widely different kinds of
information. Two examples of the uses to which archicortex may be put are free simple memory
(in which the memory projects to its own input cells), and directed simple memory (in which it
does not).

The central feature of archicortex is a collection of so-called memorizing cells, identified as that
class of cell which is most numerous and whose axons project elsewhere. Such cells will have at
least two kinds of afferent synapses* * *: excitatory afferent synapses with Brindley modification
conditions * * *; and unmodifiable inhibitory afferent synapses * * *, The dendrites of memorizing
cells are often independent* *, modification conditions being decided locally * *.

The inhibition applied to memorizing cells performs at least two principal functions: one is to
control the synaptic modification conditions in the memorizing cell dendrites during the learning
of events**; and the other is to control the cells’ thresholds during the recall of previously
learned events***, Cells for the first function apply inhibition to the dendrites of the memorizing
cells**, and are driven either by memorizing cell axon collaterals, or by afferent collaterals, or
both (by analogy with the cerebellar Golgi cells). They act so as to maintain the number of
memorizing cells involved in learning each new event at a roughly constant level **.

Cells for the second function are of two types**; basket cells, performing a division**, and
stellate cells, synapsing with the dendrites, performing a subtraction* *. The stellate cells act to
remove from the output signal some of the excitation due to the unmodifiable component of the
Brindley synapses*. The basket cells and stellate cells are driven by the main afferent system to
the memorizing cells (through unmodifiable excitatory synapses)**, and perhaps also by
memorizing cell collaterals*. It is appropriate in certain circumstances to raise the division
threshold of the memorizing cell during recall of a learnt event**. There are various circuits
capable of achieving this.

Archicortex may contain codon cells, perhaps with modifiable afferent synapses. If so, and if
the synapses are modifiable, then they are Brindley synapses**, and are accompanied by the
same kinds of inhibitory housekeeping cells as are memorizing cells* *. They are often small and
numerous* *, and are necessary when the activity (&) of the input fibres is too high for the learning
capacity required of the memorizing cells* * *,

It is the lack of climbing fibres which deprives archicortex of the clustering ability underlying
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the classification process in neocortex**. Archicortex is therefore bad at the kind of classification
of which neocortex is probably capable***,

This outline of the processes carried out in archicortex gives rise to a rough classification of
archicortical cell types. These have been labelled M 1 to M7, and are not set out here since they
have been summarized in the appropriate way in § 4.6.1. For the purposes of this section, they may
be regarded as owning two stars, except where overridden by the statements made above.

5.2. The hippocampal cortex

Star ratings in this section test the proposition that the various divisions of the hippocampal
formation form components of a simple memory.

The pyramidal cells of CA 1 to 3 and the granule cells of the FD are memorizing cells, in the
sense of §4.6.1***, Their main afferents therefore terminate by means of Brindley modifiable
synapses***. All other cells there are probably inhibitory * *, and certainly many are***, These
cells are concerned with the formation of simple representations, in the sense of § 3* *, That is, the
activities of these populations are low** (near 0.001) and there is an extensive collateral
system** which uses Hebb (or Brindley) modifiable synapses**. The collaterals aid the
completion of simple representations during recall* *. The performance of regions of the CA
(e.g. say CA 2) is qualitatively similar to that of the layer £, in the explicit model of §3.1**.

The star cells of the entorhinal area ‘are also memorizing cells***, and are qualitatively
analogous to the layer %, of the model of §3.1**. Various predictions follow from these remarks,
in particular that they possess Brindley modifiable afferent synapses***. Many other cells
in various archicortical areas have been discussed, and the predictions concerning them follow
the general lines of §5.1. In the following lists, the various cells are classified according to the
terminology of §4.6.1; the firmness of the classification is indicated; and the references specify
the relevant pieces of text.

5.2.1. Cornu ammonis: CA1 to 3

cell type described (§) stratum class reference(§) stars
pyramid 4.1.1 (a) pyr. M1lor2 4.2 *kk
pyr. basket ©4.1.1(b) pyr. . M6 4.3.3 *rk
asc. axon 4.1.1 (¢) pyr. M4,5 4.3.2 **
horizontal 4.1.1 (d) oriens M4 4.3.2 **
polygonal 4.1.1 (e) oriens M4,5 4.3.2 **
basket 4.1.1 (f) oriens Mo6 4.3.3 *k
basket 4.1.1 (g) oriens M6 4.3.3 *Ex
horizontal 4.1.1 (k) oriens M4 4.3.4 **
horizontal 4.1.1 (i) oriens M5 4.3.2 *x
various 4.1.1 () rad. & lac. M5 4.3.2 *kk
asc. axon 4.1.1 (k) rad. & lac. M4 4.3.2 *kk
horizontal 4.1.1 () rad. & lac. M5 4.34 ok
short axon 4.1.1 (m) molec. M5 4.3.2 ok
horizontal 4.1.1 (n) molec. M5 4.3.2 *kk

One kind of cell can fall into two classes if it possesses two kinds of dendritic or axonal distribu-
tion.

There may be an afferent system capable of changing the ratio of somatic to dendritic inhibition
at the CA pyramids. This would increase the amount of basket inhibition during recovery of a

simple representation. No-star estimates of the values of the relevant parameters for CA appear in
§4.2.4.
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5.2.2. The fascia dentata

cell described (§) layer class reference (§) stars
granule 4.1.2 granular M1lor2 4.4.1 ok
displaced gran. 4.1.2 (a) molec. M1lor2 4.4.1 **
short axon 4.1.2 (b) molec. M4,5 4.4.1 habd
pyr. basket 4.1.2 (c) polymorph M6 4.4.1 ok
asc. axon 4.1.2 (d) polymorph M4 4.4.1 *x
desc. axon 4.1.2 (e) polymorph ‘l
short axon 4.1.2 (f) polymorph probably CA 4.

star, etc. 4.1.2 (g) polymorph J
Qgp is probably rather low (near 0.001)*.

5.2.3. CA 3, CA 4 and the mossy fibres

The pyramids of CA 4 are ‘collector’ cells for the output of FD granule cell activity*,
(§884.4.0, 4.4.3). They may have Brindley modifiable afferent synapses from FD granule cell
axons*, being the short-axon cells of CA 4 the necessary class M4 and M5 cells*. The mossy
fibre synapses in CA 3 may be Hebb or Brindley synapses*. The large size of the mossy fibre
synapses suggests that opp is very low*—certainly lower than « for the other hippocampal
afferents** (§4.4.3).

5.2.4. Hippocampal collateral systems

All short hippocampal pyramidal cell collaterals to other hippocampal pyramids end in Hebb
or Brindley modifiable synapses**, Those collaterals which are reciprocated can take part in the
collateral effect* *. Those which do not are concerned with associating simple representations
formed in different regions of the hippocampﬁs (§4.5.1), these being completed by local recipro-
cating collaterals*. Examples of the second sort are the mossy fibres**, and the Schaffer
collaterals**. Examples of the first kind are local collaterals**, and perhaps commissural
connexions (§4.5.2). There should be 2 10000 collateral synapses at each CA pyramidal cell * *.
Local collaterals joining hippocampal pyramids tend to make synapses in S. Rad. * (§4.5). There
may be a collateral effect in FD (§4.5.3).

5.2.5. Area entorhinalis

cell described (§) layer class references (§) stars
short axon 4.7.11 I M5 4.7.1 *kk
star 4.7.111 1I M2 4.7.1 *kx
various 4.7.111 1I M 4,5, 6? 4.7.1 **
pyramid 4.7.11I1 III M2 4.7.1 *kx
various 4.7.1 111 III M4-7 4.7.1 **
pyramid 4.7.1 IV v M2 4.7.1 *kx
various 4.7.11V v M 4-7 4.7.1 **
pyramid 471V v M3 4.7.1 *okk
globular 471V v M7 4.7.1 **
spindle 471V v M4,5 4.7.1 **
polymorph 4.7.1 VI VI M3-7 4.7.1 *
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5.2.6. Presubiculum

cell described (§) layer " class references (§) stars
short axon few seen 1 M5 4.7.2 i
pyramids 4.7.211 I M2or3 4.7.2 *xx
fusiform 4.7.2 11 1I M7 4.7.2 none
various 4.7.2 111 111 M2-7 4.7.2 (little information)
pyramids 4.7.21V v M1?, M2 4.7.2 **
fusiform } 472V v M4,5,7 472 *
triangular
asc. axon 4.7.2V v M3 4.7.2 **

This region has been studied even less than the others.

5.2.7. Prosubiculum (of Lorente de No)

cell described (§) layer class reference (§) stars
short axon 4.731 1 M5 4.7.3 *hx
pyramid 4.7.311 1I Mlor2 4.7.3 *xk
short axon 4.7.311 11 M4,5 4.7.3 *%
basket 47311 11 Me 4.7.3 *kx
pyramid 4.7.3 I11 III M1or2 4.7.3 *EK
pyramid 4.7.31V IVa M1lor2 4.7.3 *kk
Martinotti 4731V IVb M3 4.7.3 *okk
short axon 4.7.3 III, IV M 46 4.7.3 **

The prosubicular pyramids are probably M 1** since they send collaterals to CA and axons to the
fimbria.

I wish to thank Professor G.S.Brindley, F.R.S. for his helpful criticisms, and Mr S.J. W.
Blomfield for many discussions. The following kindly gave me permission to reproduce figures
from other papers: Dr T. W. Blackstad and the Wistar Press for figure 2; Professor R. Lorente
de No and Akademie-Verlag GmbH for figures 8 to 11; and C.S.I.C. Madrid for figures 12 to
16. The work was supported by Trinity College, Cambridge.

Note added in proof, 15 April 1971

Lemo (1971) has published evidence for the facilitation of the perforant path—Dentate
granule cell synapses in the rabbit. His findings are necessary but not sufficient to prove this
theory’s prediction (§5.2.2) that these synapses are facilitated by simultaneous pre- and post-
synaptic depolarization.
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David Willshaw

Commentary on

Simple Memory: A Theory of the Archicortex

This is the third, and last, of David Marr’s series of three theoretical papers
on the neurobiology of leaming and memory (Marr 1969, 1970, 1971). In this
paper, he proposes a theory for the functioning of the mammalian hippocampus
— one of the most important but least understood parts of the brain.

The hippocampus is one of the phylogenetically older parts of the brain
(hence:archicortex). It is found in mammals, and a related structure exists in
birds. The mammalian hippocampus has a simple and regular structure, and
specific circuits have been identified within it. It has afferent and efferent
pathways to many parts of the neocortex, and these interconnections are fairly
well characterized.

It has proved difficult to assign positively any definite function, or func-
tions, to the hippocampus. Nonetheless, various proposals have been made.
At the time Marr wrote this paper, the startling results from such patients as
HM, who became amnesic after undergoing bilateral hippocampectomy for the
relief of epilepsy, suggested a role for the hippocampus in memory (Scoville
and Milner, 1957). More recently, the idea has been developed that a “cog-
nitive map” is built in the hippocampus (O’Keefe and Nadel, 1978). This is
based on the finding that there are “place units” in the rat hippocampus —
neurons that fire when the animal is at a specific place in the environment.

Marr had previously proposed (1970) that the neocortex is the site of long-
term associative storage of information, the information being stored in a form
that retains the essential details and removes the superfluous. In the hippo-
campus paper, he argues that it would be inefficient to store the raw associations
directly, before the salient features had been extracted; furthermore, neocortical
interconnectivity is not sufficiently complete to allow any arbitrary association
to be stored. Marr proposes that there is a special temporary memory store —
the hippocampal formation.

The central question is concened with the architecture required for this
temporary memory, and whether it matches the known structure of the hippo-
campus. As in his other papers on leaming and memory, Marr’s method
of working is to constrain the problem by a number of assumptions as to
the likely values of some of the parameters of the system. These values
either were derived intuitively (e.g., the number of items to be stored) or
had some biological basis (e.g., the number of synapses on a nerve cell).
To these assump- tions are added a number of computational constraints that
must hold if the memory is to perform satisfactorily. He concludes that there
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must be an intermediate layer of cells between the input and output layers
of the memory. In the present day parlance of Connectionism, this would
have a natural interpretation as a layer of hidden units. Having derived a
complete specification of this three-layer system, he goes on to relate this
three-layer model to the known facts of the hippocampus and its connections
to the neocortex.

In this paper, Marr’s use of a set of constraints to derive the minimal
structure for the given problem reaches a most sophisticated level. However,
his attempt is not wholly satisfactory, since there is an inconsistency in the
argument, which leaves his case for a three-layer model not proven. He there-
fore relies more heavily on his view of hippocampal circuitry than is stated
explicitly. In effect, he views the problem from two different perspectives:
(a) that the structure of the memory proposed is necessary on computational
grounds and (b) that it has to have this structure because this is the way that
the hippocampus was built. This double perspective can be seen in light of
his subsequent development of the importance of the computational, the algo-
rithmic and the implementational levels of explanation (Marr, 1982).

Although he does characterize in some detail the individual properties of
the cells that are meant to form the layers of his model, only a loose corres pon-
dence is made between the subdivisions of the hippocampus (together with the
associated neocortical circuitry) and the layers of his model. The most exten-
sive discussion is concerned with the nature of the cells of the output layer of
the memory, which are identified with the pyramidal cells of the hippocampus.
He does not distinguish between the various elements of the Dentate Gyrus-
CA3-CALl trisynaptic circuit, the existence of which was known at the time
(Andersen et al., 1971). This may have been a foresighted omission, given
that the notion of the trisynaptic circuit itself is now in the process of change
with the discovery of other extrinsic pathways of the hippocampus (Squire et
al., 1989). His major contribution is in his discussion, at a cellular and sub-
cellular level, of the properties that the individual elements of his model must
have. In particular, he proposes various types of dual strategies for setting the
thresholds of the cells (which have never been properly investigated since),
which are required for efficient storage and retrieval in the biologically realistic
cases of incompletely connected networks. The requirement that synapses be
modified by simultaneous presynaptic and post-synaptic activity, after the style
of Hebb (1949), predates the discovery of hippocampal long-term potentiation
(Bliss and Lgmo, 1973), although he does add a note in proof about Lgmo’s
earlier paper (1971) that showed synaptic facilitation in the perforant path —
dentate gyrus.

In summary, David Marr presents a somewhat abstract interpretation of the
hippocampus as a temporary memory store. The strength of his analysis lies
not in the translation of his formal model into neurobiological terms, but rather
in his discussion of what types of local circuitry are required to perform the
various computations that are needed for the memory to function efficiently.

It is unfortunate that this paper is not more widely read or understood. It
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required considerable effort to come to terms with the inaccessible style that
is characteristic of his earlier writings; but I found that the effort was well
worthwhile. Even 20 years after publication, Marr’s theory remains the most
complete computational model of the hippocampus.

This short commentary is based on a recent review of the computational
basis of Marr’s theory of archicortex (Willshaw and Buckingham, 1990). We
also describe the results of analysis and of computer simulations that were
designed to compare the performance of two-layer and three-layer models.
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Bruce McNaughton

Commentary on

Simple Memory: A Theory of the Archicortex

I regard it as a significant honor to be able to comment here, from a neuro-
biologist’s perspective, on the impact of David Marr’s theoretical neural net-
work models on our understanding of the biology of associative memory, in
particular in the mammalian hippocampal formation and neocortex. While
there is some truth to Willshaw and Buckingham’s (1990) suggestion that
some of us have cited Marr’s papers rather more widely than we have un-
derstood them, his three papers (Marr 1969, 1970, 1971) on the cerebellum,
neocortex and archicortex (hippocampus) have been guiding lights both to my-
self and to a number of other experimental neuroscientists. (It is unfortunately
also the case that Marr’s ideas are sometimes more widely exploited than they
are cited.) Marr’s approach, in its mathematical rigor, was always difficult,
and often obscure to the non-mathematician. This, unfortunately, led to his
theories being less widely appreciated (or understood) among neurobiologists
than they might otherwise have been; however, the value of Marr’s models for
neurobiological studies lies not so much in their mathematical sophistication
or overall correctness in detail (they are almost certainly wrong), but for the
far-reaching explanatory power of their relatively simple individual compo-
nents. It is the broad conceptual framework provided by these models, rather
than their correctness in detail, that will insure Marr his important place in the
historical development of our understanding of how biological neural networks
actually operate. Looking back to the sparsity of the experimental database
from which Marr developed his ideas, it is astounding the extent both to which
these insights have been substantiated, and to which they have brought order
to a number of otherwise disconnected data on the anatomy, biophysics and
information transmission of the mammalian hippocampal formation and its re-
lations with the neocortex. Contrary to Willshaw and Buckingham’s (1990)
statements, many of Marr’s predictions have, in fact, been followed up. In
the following I shall attempt to illustrate this with a few of the more salient
examples.
Synaptic Modification

Marr was the first theoretician to attempt to make use, in the context
of a detailed, neurobiologically constrained model, of Hebb’s postulate that
synapses should be enhanced under conditions of conjoint pre- and post-
synaptic depolarization. At the time that he wrote, the first experiments by
Lgmo, and subsequently by Bliss, Gardner-Medwin and Lgmo, were begin-
ning to reveal that hippocampal synapses exhibited a plasticity of sufficient
duration to be considered as a candidate for associative memory; however,
it was not until much later that the first evidence was obtained that Hebb’s
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principle might be implemented in this process (McNaughton, Douglas and
Goddard, 1978), and later still before this was fully confirmed and understood
mechanistically (Collingridge et al., 1983; Gustafsson et al.,1987; Harris et
al., 1984; Kelso et al., 1986; Wigstrom et al 1986). A substantial body of
literature has accumulated that is at least consistent with the idea that this
process does, indeed, reflect the experimental activation of mechanisms that
normally subserve at least the initial registration of associative memories (see
McNaughton and Morris, 1987, for overview). Most of the available data in-
dicate that the characteristics of the main modification process are consistent
with what Marr called “Brindley” synapses (which have a non-modifiable exci-
tatory component) rather than binary “Hebb” synapses, although this question
is by no means closed.

Pattern Completion

In the archicortex paper, Marr suggests that the completion of stored events
from fragmentary or noisy input information should be the primary function
of the “simple memory” system he envisioned for the hippocampus. This
fundamental idea has proven to be of immense value in the design of neuro-
physiological and behavioral experiments, and two lines of investigation now
suggest the fundamental correctness of this assertion. In the rodent hippocam-
pus, the “events acted upon relate primarily (or at least most obviously) to
the animal’s representation of space. Individual pyramidal cells are selectively
active in limited regions and orientations within the animal’s known environ-
ment. Although these “place fields™ are determined by the animal’s orientation
with regard to the distal visual landmarks, removal of any subset of these land-
marks has little or no effect on the spatial information transmitted by these
cells (O’Keefe, 1976; O’Keefe and Conway, 1978). More direct evidence for
pattern completion in hippocampal circuits was recently obtained in studies
(Mizumori et al., 1989b) in which the discharge rates and spatial selectivities
of CA3 pyramidal cells were severely curtailed by temporary inactivation of
a modulatory input from the medial septum, which is necessary to maintain
the excitability of CA3 cells. Pyramidal cells in CA1, whose major source of
modifiable excitatory input is CA3, were almost completely unaffected. Some-
how, the highly reduced subsets of spatial representations conveyed from CA3
were sufficient to enable complete spatial representations in CA1l.
Inhibitory Control of Global Threshold During Storage and Recall

Perhaps the most insightful and powerful of Marr’s ideas was his sugges-
tion that inhibitory intemeurons should control both the threshold for synaptic
modification during storage, and, by means of a division operation, the output
threshold for principal cells during associative recall (pattern completion). The
former notion has been verified in a number of studies that have shown that
the modification of hippocampal synapses is largely regulated by GABAergic
inhibition (Wigstrom and Gustafsson, 1983; Sharfman & Sarvey, 1983; Larson
et al., 1986). The latter idea, although more difficult to verify, has some exper-
imental support. Inhibition mediated by the chloride dependent GABA , chan-
nel is fundamentally a division operation (for elaboration, see McNaughton
and Barnes, 1990, and McNaughton and Nadel, 1989). Because the chloride
equilibrium potential is almost the same as the resting potential, the effect
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of inhibition (relative to rest) is primarily to increase membrane conductance.
Because the soma voltage change is roughly the outward excitatory synap-
tic current (%,,,) divided by membrane conductance (¢,,), and because resting
conductance is small, a division operation is implemented (DVy, = i, /gm).
Secondly, in the studies cited above by Mizumori et al. (1989b) in which CA1
output was preserved in the face of reduced and degraded CA3 input, the
activities of basket inhibitory interneurons were reduced in proportion to the
reduced CA3 input. This appears consistent with Marr’s idea that inhibitory
cells should sample the activity in the input fiber population and feed for-
ward a proportional division signal. Also consistent is the fact that, in all
hippocampal subfields, most inhibitory cells receive direct excitation from the
same modifiable excitatory inputs that project to the principal cells. As sug-
gested by the idea of setting the output threshold globally, these cells need not
be numerous, and indeed, in the hippocampus, they constitute only a small
population relative to the principal cells. It is also known that the behavioral
conditions under which the density of afferent activity from entorhinal cortex
to hippocampus is greatest are also the conditions under which hippocampal
inhibitory cells are most active. In further support of this idea, the probability
of inhibitory cell output is graded with stimulus intensity (i.e., number of active
afferents), whereas the principal cells do not normally fire until the intensity
is high enough to activate many more afferents than would be coactive in a
typical physiological event (Mizumori et al., 1989a).

Another interesting consequence of the threshold setting hypothesis is that,
unlike principal cells, which care about exactly which afferents are active in an
event, the inhibitory cells should care primarily only about how many are active
(McNaughton and Nadel, 1990). This clearly characterizes the differences in
spatial firing characteristics between hippocampal pyramidal and basket cells.

Finally, although Marr did not consider in detail the dynamics of his pro-
posed ‘input normalization’, there is one logical consequence of this scheme
which provides considerable insight into the dynamics of the feed-forward in-
hibitory networks of the hippocampus. In order for the division operation to
be effective, the division signal arriving at the principal cell soma must arrive
with or before the excitatory synaptic signal from the current event; however,
the inhibitory signal must cross two synapses, whereas the excitatory signal
need cross only one. To compensate for this, the inhibitory system appears to
have evolved an extremely rapid response mechanism. When hippocampal af-
ferent fibers are electrically activated, inhibitory cells fire well before principal
cells (Ashwood et al., 1984; Buzsaki, 1984; Douglas, McNaughton and God-
dard, 1983; Mizumori et al., 1989a) so that the inhibitory conductance in the
principal cells is already activated before most principle cells reach threshold.

The Necessity for Keeping a Low

Marr proposed that the simple memory system must satisfy the dual con-
straints of maximizing the event storage capacity, while at the same time
preserving cnough information from each event to ensure reliability. These
constraints esscntially dictated the size of the required networks, and the pro-
portion a of cells that could be used in the representation of any given event.
Marr proposed that the value of a should lie between 0.01 and 0.001, and be
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roughly constant across events. To translate this into actual neuronal firing
rates, take as the ‘time-step’ the apparent time constant of most hippocampal
and cortical neurons, which is on the order of 0.01 sec. The corresponding
average firing rates then become between 1.0 and 0.1 Hz, values that are quite
low by the standards of most cortical neurons. It tumns out that these are
about the typical mean discharge frequencies for hippocampal principal cells
recorded in alert rats during the performance of spatial leamning tasks depen-
dent on the integrity of the hippocampus (O’Keefe, 1976; McNaughton et al.,
1983). This ‘sparse’ encoding of events is also manifested in the exquisite spa-
tial selectivity exhibited by hippocampal pyramidal cells. In extended spaces,
a typical cell fires intensely only in a highly restricted region of the animal’s
known accessible environment, a region typically covering on the order of
0.01 to 0.001 of the total area (these values vary somewhat depending on the
size of the environment and other factors). It is also of interest that this sparse
coding scheme appears to be a unique characteristic of the hippocampus. In
both the entorhinal cortical input and the subicular output structures, spatial
coding is considerably more highly distributed, and a (mean firing rate) is
correspondingly substantially higher (Bames et al., 1990).

Marr proposed a rule of thumb for the relationship between a and the
number of events n to be stored:

na;_16; <1

This ensures that when n inputs have been leamed, not all of the synapses
have been modified. Using Marr’s proposed parameters, this translates to be-
tween about 60% and about 10% modified synapses at full capacity, depending
partly on how much information is to be made available for retrieval. Above
these values, information storage would be unreliable, a given subevent re-
calling either too many active output cells, or the wrong ones (this is quite
analogous to the psychological concept of interference). The prediction of
these considerations is that simple memory will fail if the above constraint
on the number of modified synapses is exceed. This is exactly the behavioral
consequence of artificially increasing the proportion of modified synapses in
the hippocampus by high-frequency stimulation of the main input pathways
bilaterally. Such stimulation induces a long-term enhancement (LTE/LTP) of
a significant proportion of perforant path synapses. This enhancement persists
for several weeks, during which time there is both a disruption of recently
stored spatial memories and an inability to store new ones (McNaughton et
al., 1986; Castro et al., 1990). It is also entirely consistent with Marr’s notion
of the hippocampus as a temporary memory system that electrically induced
synaptic enhancement decays over time, at least at these synapses.
The Collateral Effect

Marr suggested that pattern completion occurred in the pyramidal layers
via a “collateral effect”. The fundamental idea was that modifiable excitatory
collateral synapses would assist recall over several cycles of recurrent excita-
tion. After input of an appropriate subevent, additional cells belonging to the
original stored pattern would be activated on succeeding cycles. The “collat-
eral effect” mechanism has now come to be known as “recurrent autoassocia-
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tion” (Kohonen, 1972, 1978) and, in one form or another, figures importantly
in a number of connectionist style models. Although the implementation of
a collateral effect in the hippocampus has yet to be verified experimentally,
CA3 has an abundant system of modifiable recurrent collaterals which could
perform this function. Also, Marr made two predictions about the dynamics
of the collateral effect which seem to be approximately supported by mod-
em data. First, he supposed that about three cycles of the collateral effect
should be sufficient to complete the representation. When the hippocampus is
actively processing inputs, there is an oscillating cycle of excitation and inhi-
bition known as the theta rhythm, whose mean period is about 140 msec, and
to which all hippocampal cell output is phase locked. If one assumes that the
completion effect must be going on during the quarter cycle when excitation is
increasing, this allows about 35 msec. In the CA3 recurrent system, the com-
bination of conduction delay and synaptic delay amounts to about 6 to 8 msec.
This would thus be sufficient for about four to six cycles; only slightly more
than Marr predicted. The second prediction was that there should be some
external mechanism which gradually increases inhibition during the collateral
effect, to make sure only the correct cells were included in the output. The
medial septal nucleus, which paces the theta rhythm, has a strong modulatory
effect on inhibitory intemeurons. As predicted, the activity of the inhibitory
cells does increase during the rising excitatory phase of the theta rhythm.
Orthogonalization of Similar Input Vectors

One of the most powerful of Marr’s concepts was the idea that memory
capacity could be maximized if representations that were rather similar at the
input could be recoded by a separate group of cells in such a way as to
minimize the overlap in the output. In his cerebellum paper, Marr assigned
this function to the cerebellar granule cells, which he called “codon” cells.
In the cerebellar paper, the basic idea was to project the input vector onto a
higher dimensional space (there are about 40 billion granule cells in the human
cerebellum) and then use this orthogonalized representation as input to the
memory cells. In the models for neocortex and archicortex, it was considered
to be more economical if codons were not hard-wired, but could be created
on demand through the use of modifiable synapses. In this way only those
codons (subevents) which actually occurred in the experience of the animal
would be required. It turns out that the initial projection from the entorhinal
cortex into fascia dentata does involve a projection into a higher dimensional
space. There are about 105 entorhinal projection cells, and about 106 granule
cells in the fascia dentata. This projection terminates in modifiable synapses
(probably of the Brindley variety). Moreover, single neuron recording studies
of physiologically identified granule cells indicate that a in the granule cell
population is among the lowest of any hippocampal subfield (Mizumori et al.,
1989a). Thus, although the question requires more systematic investigation,
Leonard (1990) has obtained preliminary evidence for pattern separation in the
hippocampal output cells in CA1.

Readout from Simple Memory During Sleep
One of the boldest of Marr’s predictions was that readout from simple
memory should occur during sleep. This idea was first developed in the neo-
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cortex paper. Marr argued that “information from which a new classificatory
unit is to be formed will often come from a simple associative store,” (i.e.
hippocampus) “not from the environment ... the most natural way of select-
ing a location for a new classificatory unit was to allow one to form wherever
enough of the relevant fibers converge. This requires that potential codon
cells over the whole cerebral cortex should simultaneously allow their affer-
ent synapses to become modifiable. Hence, at such times, ordinary sensory
information must be rigorously excluded. The only time when this exclusion
condition is satisfied is during certain phases of sleep.”

It is unclear whether Marr was aware that at the time this was written, there
was a growing psychological literature on the possible role of sleep, particularly
REM sleep (Leconte and Bloch, 1971), in memory consolidation (for reviews
see Fishbein and Gutwein, 1977, Home and McGrath, 1984; Smith, 1985).
Certainly the basic idea seems to have fallen out from the premises of the
model. Recently, some very exciting neurophysiological studies have produced
strong support for the plausibility of Marr’s idea that information is transferred
from temporary (hippocampal) to permanent (cortical) memory during sleep.
Pavlides and Winson (1989) studied the effects of selective spatial experience
on the subsequent activity of hippocampal “place” cells during sleep. They
recorded from pairs of place cells with nonoverlapping place fields. During
the waking episode, they exposed the animal to the field of one member of the
pair but not to the field of the other. They then removed the animal to a neutral
location and allowed it to fall asleep. During the sleep episode, there was a
large increase in the output activity of the cells that had been exposed to their
place fields, in particular, the occurrence of high-frequency bursts increased,
and the interspike intervals during bursts decreased. This are exactly the sort
of activity that would be most likely to lead to synaptic modification in target
cells. The effect was present in all phases of sleep, but was greatest in REM
sleep. This phenomenon thus seems to fit precisely the requirements suggested
by Marr’s sleep hypothesis.

Closing the Loop

In the foregoing, I have tried to illustrate the astounding prescience of
Marr’s neurobiological models, and the deep influence his basic ideas either
have had or should have on the interpretation of experiments directed towards
understanding the different roles of the hippocampus and neocortex in asso-
ciative memory. Fortunately for the field of computational vision, but unfor-
tunately for the neurobiology of memory, Marr turned his attention away from
these problems before completing his theory with a model for the input-output
relations between hippocampus and neocortex. He clearly must have thought
deeply about this issue, because a forthcoming paper on it was promised but
apparently never completed. Many neurophysiologists and neuroanatomists
agree that this issue represents the single most important area of almost com-
plete ignorance in the field at present, and Marr’s keen insight could very prof-
itably have been applied to this problem. It is amusing to speculate whether,
given the rathcr dramatic increase in our knowledge about the organization of
cottical and archicortical memory systems over the past decade, Marr might
have tummed his attcntion back once again to these fundamental issues.
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It is proposed that the learning of many tasks by the cerebrum is based on using a very few
fundamental techniques for organizing information. It is argued that this is made possible
by the prevalence in the world of a particular kind of redundancy, which is characterized
by a ‘Fundamental Hypothesis’.

This hypothesis is used to found a theory of the basic operations which, it is proposed, are
carried out by the cerebral neocortex. They involve the use of past experience to form so-
called ‘classificatory units’ with which to interpret subsequent experience. Such classifi-
catory units are imagined to be created whenever either something occurs frequently in the
brain’s experience, or enough redundancy appears in the form of clusters of slightly differing
inputs.

I:_& (non-Bayesian) information theoretic account is given of the diagnosis of an input as an
instance of an existing classificatory unit, and of the interpretation as such of an incompletely
specified input. Neural models are devised to implement the two operations of diagnosis and
interpretation, and it is found that the performance of the second is an automatic consequence
of the model’s ability to perform the first.

The discovery and formation of new classificatory units is discussed within the context of
these neural models. It is shown how a climbing fibre input (of the kind described by Cajal)
to the correct cell can cause that cell to perform a mountain-climbing operation in an under-
lying probability space, that will lead it to respond to a class of events for which it is appro-
priate to code. This is called the ‘spatial recognizer effect’.

The structure of the cerebral neocortex is reviewed in the light of the model which the
theory establishes. It is found that many elements in the cortex have a natural identification
with elements in the model. This enables many predictions, with specified degrees of firmness,
to be made concerning the connexions and synapses of the following cortical cells and fibres:
Martinotti cells; cerebral granule cells; pyramidal cells of layers III, V and II; short axon
cells of all layers, especially I, IV and VI; cerebral climbing fibres and those cells of the
cortex which give rise to them; cerebral basket cells; fusiform cells of layers VI and VII.

Tt is shown that if rather little information about the classificatory units to be formed has
been coded genetically, it may be necessary to use a technique called codon formation to
organize structure in a suitable way to represent a new unit. It is shown that under certain
conditions, it is necessary to carry out a part of this organization during sleep. A prediction
is made about the effect of sleep on learning of a certain kind.
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§0. INTRODUCTION
0.1. The form of a neurophysiological theory

The mammalian cerebral neocortex can learn to perform a wide variety of tasks, yet
its structure is strikingly uniform (Cajal 1911). It is natural to wonder whether this
uniformity reflects the use of rather few underlying methods of organizing infor-
mation. The present paper rests on the belief that this is so, and describes a kind of
analysis which is capable of serving many aspects of the brain’s function. The theory
is necessarily general, but it in principle allows the exact form of the analysis for any
particular cerebral task to be computed.

There is an analogy between the shape of the general theory set out here, and that
of a recent theory of cerebellar cortex (Marr 1969). The essence of the latter theory
was a principle, that motor sequences are driven by learned contexts, which was
clearly applicable to the kind of function with which the cerebellum was thought to
be associated. The key ideas concerned the way information was stored, and the
way stored information could be used ; but the theory did not explicitly demonstrate
how any particular motor action was learned. For this, it would be necessary to have
a much fuller understanding of the nature of the elemental movements for which the
Purkinje cells actually code, and of the information present in the relevant mossy
fibres. The theory was however useful, because it postulated the existence of a
‘fundamental operation’ of the cerebellar cortex, and offered a candidate for it.
The present theory is once removed from the description of any task the cerebrum
might perform, in the same way as was the cerebellar theory from the description
of any particular motor action.

Something of this kind is probably an inevitable feature of the theory of any
interesting learning machine, but in the particular case of the cerebral cortex, it is
likely there exists a second, more concrete analogy between its working, and that
of the cerebellar cortex. The evidence for this is the analogy between the structures
of the two types of cortex. The cerebral cortex is of course irregular and very
complicated, but there do exist similarities between it and the cerebellar cortex:
the fundamental cerebellar components—the granule cells, Purkinje cells, parallel
fibres, climbing fibres, basket cells and so on—have recognizable counterparts in
the cerebral cortex. In view of the great power the codon representation possesses
for the economical storage of information (Marr 1969), it cannot be that this analogy
is accidental. There must be a deeper correspondence.

0.2. The nature of the present general theory

It was the suspicion that there may exist deep reasons for these similarities that
formed the starting point of the present enquiry. The motivation for the develop-
ment of the theory was provided by two intuitions. The first was that in the general-
ization of the basic cerebellar circuit, the analogue of the Purkinje cell (called an
output cell) need not have a fixed ‘meaning’. In the cerebellum, each Purkinje cell
probably has predetermined ‘meanings’, in that the responses its outputs can
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evoke are likely to be determined by embryological and early post-natal
development. In a more general application of this kind of model, it is clear that
what the output cell ‘means’ might be free to be determined by some aspect of the
structure of the information for which the system is being used.

The second intuition was that the codon representation, in the kind of model
applicable to the cerebellar cortex, may in fact be capable of doing more than the
simple memorizing task to which it can obviously be applied (Blomfield & Marr
1970). This feeling was tied to the idea that the recognition of a learned input ought
properly to be viewed as a process of diagnosing whether the current input belonged
to the class of learned inputs. This immediately suggests that the behaviour of an
output cell should not be an all-or-none affair, but should convey a measure
of how certain is the outcome of the diagnostic process. This has the attraction that
it could ultimately correspond to how ‘like’ a tree is the object at which one is
currently looking.

These two ideas were bound by the constraint that more or less whatever theory
was set up, it had to be grounded in information theory; or if not firm reasons why
thisis undesirable must be given. It was evident from the start that no very orthodox
information theoretic approach would be of any use; but the general ideas behind
the formulation of an information measure are so powerful that it would have been
surprising had they turned out to be totally irrelevant.

The result of these ideas was a general theory which divides neatly into two parts.
The first, with which this paper is concerned, describes the formation and operation
of a language of so-called classificatory units by means of which the sensory input
can eventually be usefully interpreted (§1). The formation of a classificatory unit is
imagined to occur roughly whenever enough related inputs happen to make it
worth forming a special description for them. The main results are the information
theoretic theorems of §2 on the diagnosis and interpretation of an input within a
class, and the theory of §5 for class formation. The power of these results is that
they lead to specific neural models, and to operations in those models, through which
a preliminary interpretation of the histology of cerebral cortex can usefully be
made.

The first part of the theory may therefore be described as a model for concept
formation and recognition, where concepts are ‘ classificatory units’. It argues that
there exists a basic information-handling scheme which is applied by the cerebral
cortex to a wide range of different kinds of information—that there exists a ‘way’
in which the cerebral cortex ‘ works’. This scheme has a wide application, subject to
reservations about the need in certain circumstances for special coding devices to
cope with particular forms of redundancy. But in principle, it can be applied to
anything from the recognition of a tree to the recognition of the necessity to take a
particular course of action.

The theorems of §2 provide a complete analysis of the problem of interpreting an
input within a particular class, but the ideas of §5 provide only a partial analysis of
the formation of the classes themselves. This problem cannot be dealt with using only
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the hardware developed in this paper; and its solution requires the results of the
second part of the general theory.

The second part of the theory embodies a second pair of ideas. One of these also
arises from the cerebellar theory, where it was seen that a codon representation is
extremely successful at straight memorizing tasks (Brindley 1969; Marr 1969). The
other is the everyday concept of an associative memory. The cerebellar theory is a
kind of associative memory theory, and it is not difficult to extend the idea of the
codon representation to the case of a general associative memory. This is developed
in the theory of Simple Memory (Marr 1971). Once this has been done, it is possible
to see how current descriptions of the environment can be stored, and recalled by
addressing them with small parts of such inputs. This is the facility needed to
complete the theory of the formation of classificatory units. It is, however, only a
small part of the use to which such a device can be put: almost the entire theory of
the analysis of temporally extended events, and of the execution ab initio of a
sequence of movements, rests upon such a mechanism. Though simple, it is im-
portant (and long) enough to warrant a separate development, and is therefore
expounded elsewhere, together with the theory of archicortex to which it gives rise.

0.3. Outlines of the present theory

This paper starts with a discussion of the kind of analysis of sensory information
which the brain must perform. The discussion has two main strands: the structure of
the relationships which appear in the afferent information; and the usefulness to the
organism of discovering them. These two ideas are combined by the ‘ Fundamental
Hypothesis’ of §1.6 which asserts the existence and prevalance in the world of a
particular kind of relationship. This forms an explicit basis for the subsequent
theoretical development of classificatory units as a way of exploiting these relation-
ships. The fundamental hypothesis is a statement about the world, and asserts
roughly speaking, that the world tends to be redundant in a particular way. The
subsequent theory is based, roughly, on the assumption that the brain runs on this
redundancy.

The second section contains the fundamental theorems about the diagnosis and
interpretation of events within a class. It assumes that the classes have been set up,
and studies the way in which they allow subsequent incoming information to be
interpreted. These theorems receive their neural implementation in the model of
figure 8.

The rest of the paper is closely tied to the examination of specific neural models.
After the technical statistics of §3, the main section §4 on the fundamental neural
models appears. This discusses the structures necessary for the implementation of
the basic theorems, and derives explicitly those models which for various reasons
seem preferable to any others. The first main result of the paper consists in the
demonstration that the two theorems of §2 correspond to closely related operations
in the basic neural model.

The second main result concerns the operations involved in the discovery of new
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classificatory units. It shows how a climbing fibre enables a cortical pyramidal cell
to discover a cluster in the space of events which that cell receives. This result,
together with the previous ones which show how classificatory units work when
represented, completes the main argument of the paper.

Finally, in §6, the available knowledge of the structure of the cerebral cortex is
briefly reviewed, and parts of it interpreted within the models of §4. This section is
incomplete, both because of a lack of information, and because Simple Memory
theory allows the interpretation of other components; but it was thought better at
this stage to include a brief review than to say nothing. Far too little is known about
the structure of the cerebral cortex.

0.4. Definitions and notation

0.4.1. Time, ¢, is discrete, and runs through the non-negative integers (¢t = 0, 1,
2, ...). t scarcely appears itself in the paper, but most of the objects with which the
theory deals are essentially functions of ¢.

0.4.2. An input fibre, or fibre, a,(t),is a function of time ¢ which has the value O or 1,
for each 4, 1 < ¢ < N. a4(t) = 1 will have the informal meaning that the fibre a,
carries a signal, or ‘fires’ at time ¢. A signal is usually thought to correspond to a
burst of impulses in a real axon. The set of all input fibres is denoted by 4, and the
set of all subsets of 4 by .

0.4.3. An input event, or event, on A assigns to each fibre in 4 the value 0 or 1.
Events are usually denoted by letters like E, F, and the value which the event E
assigns to the fibre a; is written E(a;), and equals Oor 1 (1 < 72 < N). Itis convenient
to allow the following slight abuse of notation: E can also stand for the set of @, which
have E(a;) = 1. The phrase ‘a; in E’ therefore means that E(a;) = 1, i.e. that the
fibre a; fires during the event E.

0.4.4. A subevent on 4, usually denoted by letterslike X, Y, assigns the value 0 or 1
to a subset of the fibres a,, ..., ay. For example, if

X(@)=1 (1<i1<7),
X(@)=0 (r<i<s),

X(a;) is undefined for ¢ > s, then X is a subevent on 4. As in the case of full events,
X can also mean the set of fibres a, for which X(a;) = 1: in the example therefore,
X can stand for the set {a,, ..., a,}.

0.4.5. If X is a subevent, the set of fibres to which X assigns a value is called the
support of X, and is written S(X). Thus in the above example, S(X) = {ay, ..., a,}.

0.4.6. A set of events is called an event space, and is denoted by letters like €, .
A set of subevents is called a subevent space, and is denoted by letters like ¥, 9).

0.4.7. Greek letters are usually reserved for probability distributions. The letter
A, for example, often denotes the probability distribution induced over ¥ (the set of
all possible events on a, ..., ay) by the input events. Thus A(E) is the number of
occurrences of the event E divided by the total elapsed time. If, instead of con-
sidering the whole of 4 = {a,, ..., ay}, attention isrestricted to A" = {a,, ..., a,}, then

134



A theory for cerebral neocortex 167

the space A’ of events on A’ corresponds to a set of subevents on the original fibre
set A. Every event in U defines a unique event in %', obtained by ignoring the fibres
@, .1, .-, ay. Thus the full distribution A over U induces a distribution A’ over A’
obtained by looking only at the fibres a,, ..., a,. A is called the projection onto A’ of A.
If X is a subevent space, then the phrase ‘A’is the distribution induced over X by
the input’ refers to the A’ induced from the full input probability distribution
A by projecting it onto X. If B is any subset of U, then the restriction A|B of A to B is
defined as follows:

(A|B) (E) = A(E) when E isin B,

(A|B)(E) =0 elsewhere.

0.4.8. Finally, it is often convenient to use various pieces of shorthand. The
following is a list of the abbreviations used.

{ | }is a method of defining a set. For example, {a;|1 < ¢ < N} means ‘the set
of fibres @, which satisfy the condition that 1 <7 < N’.
s.t. means ‘such that’,

means ‘is a member of the set’: e.g. a, € E,
means ‘not €’,
(X|Y) is the conventional conditional probability of X given Y,
means ‘implies’,
means ‘is implied by’,
means ‘implies and is implied by’,
means ‘if and only if’,
means ‘there exists’,
| means ‘the number of elements in’: e.g. |E| means ‘the number of fibres
that are active in the event £,

N M

—w s

The following set-theoretic symbols are also used:
EUF = the union of £ and F,

EnF = theintersection of £ and F,
E\F = the set of elements which are in £ but not in F,
EAF = the set of elements which are in exactly one of £ and F,

E = F means E is contained in or equal to F,
E c F means E is contained in ¥ and does not equal F.

The reader who is not familiar with this notation should not be put off by it. All
the important arguments of the paper have been written out in full. An adequate
understanding of its content may be achieved without reading the paragraphs in
small type, which is where these symbols usually appear.

0.5. Information measures

The only universal measures of suitability, fit, and so forth, are information
measures. Three are of principal importance in this paper, and are defined below.
Others are derived as they are needed. All the spaces with which the paper is
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concerned are finite, and therefore only discrete probability distributions need be
considered. Definitions are given here only for the finite case, although every
expression has its more general form.

0.5.1. Entropy (Shannon 1949).

The entropy of the discrete probability distribution p,, ..., p, will be denoted by the
letter k. Thus

8
k(py, .., D) = '§1 —p;log, p;.

All logarithms are to base 2.
0.5.2. Information gain (Shannon 1949, and see Renyi 1961).
Let 4, v be two discrete probability distributions over the same set of events:

p=(Py-ps) Zpi=1,
v=qy ) Zg=1
Then the information gain due to x given v is
I(uly) = ?Pilogzl’i/qz'-

0.5.3. Information radius (Sibson 1969).
Let u,, ..., p, be discrete probability distributions over the same s events.

Wi = Pi1s -5 Pis), ZPg5 = 1. Let p = (py, ..., p,), and write o > p; if p, = 0 implies
7

that p;;, = 0. Let wy, ..., w, be positive numbers. Then the information radius of the
M; with weights w,, is

n
2wl (| p)
K(’Z}lz’ﬁ”) = infimum =
1. Wy B3 s eees fin -21 w;
i=
This infimum is achieved uniquely when
n
2 Wiy
i=1
ﬂ = n *
2 w;
i=1
K, the information radius, is an information measure of dissimilarity.
o Mo
Gy

will be abbreviated to K (u,u,). The nature of K is explained more fully where it is
used.

§1. FoUNDATIONS
1.0. Introduction

This section is concerned with the problem of what the brain does. The background
and arguments it contains are directed towards the justification of the Fundamental
Hypothesis (1.6). It is shown that despite the complications which arise in the early
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processing of sensory information, this hypothesis is often valid for information
with which the brain has to deal. The discussion proceeds by first exploring notions
connected with the idea of eliminating information theoretic redundancy—an idea
which has had a somewhat chequered career in neuropnysiology (see Barlow 1961
for discussion and references). Secondly, ideas connected with biological utility are
developed; and finally these are combined with the ideas of the first part to produce
the philosophy from which the theory is derived.

L.1. Information theoretic redundancy
1.1.1. Redundancy and early processing of visual information

The notion that the processing of sensory information is an operation designed
to reduce the reduﬁdancy in its expression is attractive, and one that is helpful for
understanding certain aspects of early coding. For example, the coding in the optic
nerve of relative rather than absolute brightness prevents the repeated transmission
of the average brightness of the visual field. The use of on-centre off-surround coding
there is peculiarly suitable for another reason, namely that the visual world has a
tendency to be locally homogeneous. Given that a particular point in the visual field
has a certain luminance and colour, the chance that neighbouring points also do is
high. This kind of redundancy would not be present if, for example, the world was
like scattered, multi-coloured pepper.

The visual world has this tendency towards continuity because matter is cohesive:
the existence of edges and boundaries is a consequence of this. It may be possible to
view the next stages of visual processing—by the ‘simple’ and ‘complex’ Hubel
& Wiesel (1962) cells of area 17—as a further recoding designed round the redun-
dancy associated with the existence of edges, bars, and corners. The test of this is
whether using these cells, it is easier to represent scenes from the real visual world
than an arbitrary, peppery optic nerve input; and it probably is.

There are many other ways in which redundancies arise in visual information.
The next most obvious are those introduced by the operations of translation,
magnification, and by rotation. For these operations at least, the question of what
to do with the redundancy to which they give rise poses no great difficulties of
principle. The brain is, for example, much less interested in where an image is on the
retina than on the relative positions of its various parts. In this case, the clear object
of a portion of the processing must be to recode the input, perhaps gradually, in such
a way that relative positions are preserved. This should probably be done so that if
two objects are seen momentarily, each in adifferent position, orientation, and having
a different size, then the accuracy with which they may be compared should depend
upon the magnitude of these differences.

Various similar points can be made about early processing in the other sensory
modalities; but enough has probably been said to make the two main points. They
are first, that notions of pure redundancy reduction probably are involved in the
early analysis of sensory information. Secondly, redundancy can occur in many
forms. The variety is especially obvious nearer the periphery. Each form requires a

1I Vol. 176. B.
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special mechanism to cope with it, and so, especially lower down in the brain, it is
natural to expect a diversity of specialized coding tricks. Some of these have been
found, and some have not.

1.1.2. Redundancy and later visual processing

A great deal of the redundancy in visual information arises out of the permanence
of the world. This, which includes the tendency of matter to cohere, makes it natural
to code for changes, and to look for common subevents, like lines, corners, and so
forth, which concern only a small fraction of the total population of input fibres.
Common subevents are often called features, and the ideas associated with the
analysis of features are probably the most promising available concerning later
processing. Their potential advantage is most clearly seen in the analysis of objects:
the great hope they hold is in the possibility that objects may be recognized by
checking for the presence of particular features. These features are imagined to be
drawn from a central pool which is shared by all other objects, and which is not too
large.

This kind of scheme for later visual processing introduces five main categories of
problem:

(i) The discovery of the relevant feature vocabulary.

(ii) Coding features in a suitably invariant way.

(iii) Coding the relative positions of the features.

(iv) Partitioning the features so that information from one object is separated

from information about other objects.

(v) The decision process itself. )

‘Object’, in the case of visual information, has a fairly well-defined meaning,
because of the coherence of matter; but these general ideas have a wider application.
For example, an ‘impression’ of an auditory input may be obtained from its power
spectrum: in such cases, the ‘objects’ are less tangible. But for now, it is enough to
consider just the special, visual case.

Problems (i) and (v) are very general, and are dealt with later (§1.4, §2, §5).
Problem (ii) is special, and only two points about it will be made here. First, lines and
edges are preserved by magnification, so parts of problem (ii) are automatically
solved. Secondly, it is only necessary to localize the components of any particular
image to an extent that will prevent their confusion with other images. The exact
positions of the edges and corners of an object need not be retained, because the
general restraint of continuity of form will mean that exact relative positions can
always be recovered from a knowledge of approximate relative positions, the
number of terminations, and approximate lengths of segments. Hence the problems
associated with translation of an image across the retina can begin to be solved quite
early by recoding into elements which signal the existence of their corresponding
features within a region of a particular size. The exact size will depend upon how
unusual is the feature.

This in itself is of no use unless some way can be found of representing these
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approximaterelative positions: thisis problem (iii). Fortunately, it is very easy to see
how distance relations may be held by a codon representation (Marr 1969). The key
is an idea of ‘nearness’. Suppose {f, ..., f,} is a collection of features, endowed with
approximate distance relations d(f;,f;) between each pair. Suppose subsets of the
set {f, ..., fu} are formed in such a way that those features which are near one
another are more likely to be included in the same subset than those which are not.
Then the subsets would contain information about the relative positions of the
J; (see Petrie 1899 for an intriguing natural occurrence of this effect). Techniques
like multidimensional scaling can be used to recover metric information explicitly in
this kind of situation (Kruskal 1964; Kendall 1969), but for the present purpose, it is
enough to note that two different spatial configurations would produce two different
subset collections.

There is thus no difficulty of principle in the idea of analysis of shape by roughly
localized features: but it is clear that all these techniques rely a great deal on
the ability to pick out the components of a single shape in the first place. That is, a
successful solution to problem (iv) is a prerequisite for this kind of solution to
problems (ii) and (iii). This involves searching for hard criteria which will enable
the nervous system to split up its visual input into components from different
objects.

The most obvious suitable criteria arise from the tendency of matter to cohere:
they are continuity of form, of colour, of visual texture, and of movement. For
example, most parts of a fleeing mouse are distinguished from the background by
their movement. A solution in this case would be to have a mechanism which causes
signalsabout movementin adjacentregions of the visual field to enhance one another,
and to suppress information from nearby stationary objects. It is not difficult to
devise mechanisms for this, and analogous ones for the other criteria.

These ideas about joining visual data up using certain fixed criteria, are collec-
tively called techniques for wisual bonding. It would be surprising if the visual
system did not contain mechanisms for implementing at least some kinds of visual
bonding, since the methods are powerful, and can be innate.

It can be seen from this discussion that although ideas about redundancy elimina-
tion probably do not determine the shape of later visual processing, they are
capable of contributing to its study. Those problems of principle ((i) and (v)) which
arise quite quickly can and will be dealt with: the crucial point is that technical
problems ((ii)—(iv)) will usually involve the elimination of redundancy associated
with special kinds of transformation—perhaps specific to one sensory mode. These
problems can either be solved by brute memory (e.g. perhaps rotation for visual
information) or by suitable tricks, like visual bonding. The point is that these
problems usually can be overcome somehow; and this is the optimism one needs to
propel one to study in a serious way the later difficulties, which are genuinely matters
of principle.
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1.1.3. Redundancy and information storage

There is a quite different possible application of information theoretic ideas, and
it is associated with the notion of coding information to be stored. It is a matter of
everyday experience that some things are more easily remembered than others.
Patterns are easier to recall than randomly distributed lines or dots. It cannot be
argued that the random picture contains more information in any absolute sense,
since the calculation of its information content depends entirely upon the norm
with which it is compared. If the norm is itself, the random picture contains no
information. There can be no doubt that a normal person would have to store more
information to remember the random picture than the patterned one; but this, in the
first instance anyway, is a remark about the person, not about the pictures.

This illustrates the fundamental point of this section—that the amount of
information a memory has to store to record a given signal depends upon the
structure of the signal, and the structure of the memory. Let X be an event space,
and let o be the probability distribution corresponding to the afferent signal: thus
o(E), for £ in ¥, in the probability that £ will occur next. (The present crude point
can be made without bringing in temporal correlations.) Let # be the probability
distribution which describes what the memory expects. Then the amount of in-
formation the memory requires to store o is

h(o:p) = f% —log, u(E)do(E).

This expression exists if and only if
wE)=0=0c(H)=0.
h(o:u) and h(c), the entropy of o, are related by the following result. Assuming
the memory can store o, then:
Lemma. I(o|p) exists, and k(o:p) = k(o) + I(o|p).
Proof. If the memory can store o, u(E) = 0= o (E) = 0, and hence I(o|x) exists.

Now
Mo = [ ~logoB)do(h)

= f{logz Z% Qlogz o )} do(E)

= I(o|u) +h(o).

The term k(o) is inevitable, but the term I(o|x) reflects the fundamental choice a
memory has when instructed to store a signal o. It can either store it straight, at
cost h(o:u), or it can change its internal structure to a new distribution, g’ say, and
store the signal relative to that. The amount of information required to change the
structure from u to u' is at least K(u u'), where K is the information radius (§0.5.3);
but, though an expensive outlay, it can lead to great savings in the long run if 4’ is a
good fit to the incoming information.

These arguments are too general to warrant further precise development, but
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they do illustrate the two possibilities for a memory which has to store information:
either it can store it raw, or it can develop a new language which better fits the
information, and store it in terms of that. To this point, the next section §1.2 will
return.

Finally, this result shows howimportant it isto examine the structure of amemory
before trying to compute the amount of information needed to store any given
signal; it would therefore be disappointing to leave it without some remarks on the
type of internal distributions # we may expect to find in the actual brain. The
obvious kind of answer is the distributions induced by a codon representation—as in
the cerebellum. The reliability of a memory is measured by the number of wrong
answers it gives when asked whether the current event has been learned. This in
turn depends upon the number of possible input events: in cases where this is huge,
the memory need only arrange that the proportion of wrong to right answers
remains low. In smaller event spaces, a memory may have to represent the learned
distribution a good deal more accurately. The first case may well correspond to the
situation in the cerebellum and allows codons of a relatively small size: the second
may require them to be much larger. The result relevant to this appears in §3, but
the situation even in the cerebellum may in fact be rather more complicated
(Blomfield & Marr 1970).

1.2. Concept formation and redundancy
1.2.1. The relevance of concepts

It was shown in §1.1.3 that one policy available to a memory faced with having to
store a signal is to construct for it a special language. In the present context, this is
bound to suggest the notion of concept formation.

It is difficult to doubt that one of the imost important ways in which the nervous
system eventually deals with sensory information is to form concepts with which to
decompose and classify it. For example, the concepts chair, sun, lover, music all have
their use in the description of the world; and so, at a lower level, do the notions of
line, edge, tone and so forth.

Concepts, in general, are things which ease the nervous system’s task; and al-
though they do this in various ways, many of these ways produce their advantage by
characterizing (and hence circumventing) a particular source of redundancy. One
especially important example of how a concept does this is by expressing a part or the
whole of that which many ‘things’ or ‘objects’ have in common. This ‘common’
element may take many forms: the objects’ representations by sensory receptors
may be related; some aspect of their functions may be the same; they may have
common associations; or they may simply have occurred frequently in the experience
of the observing organism.

This notion has the corollary that concept formation should be a natural conse-
quence of the discovery of a large enough source of redundancy in the input generat-
ing a brain’s experience. For example, if it is noticed that a certain collection of
features commonly occurs, this collection should be recoded as a new and separate
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entity: for this new entity, special recognition apparatus should be set up, and this
then joins the vocabulary of concepts through which the brain interprets and
records its experience.

Finally, concepts have been discussed as a means of formulating relationships
between collections of other ‘things’, ‘objects’, or ‘features’. This appears to rest
upon the imprecise notions of ‘thing’, ‘object’ or ‘feature’: but there is in fact no
undefinable notion present, for these can simply be regarded as concepts (or roughly,
occurrences of concepts) that have previously been formed. This inductive step
allows the argument to be taken back to the primitive input elements on which
the whole structure is built; and in neurophysiology, there is no fundamental
problem to finding a meaning for these: they are either the signalsin axons that con-
stitute the great afferent sensory tracts, or the features automatically coded for in
the nervous system.

1.2.2. Obstacles

Something of a case can therefore be made for a connexion between concept
formation and the coding out of redundancy, but it would be wrong to suggest this is
all that is involved. Concept formation is a selective process, not always a simple
recoding: quite as important as coding out redundancy is the operation of throwing
away information which is irrelevant. For the moment however (until §1.4) it is
convenient to ignore the possibility that a recoding process might positively be
designed to lose information, and to concentrate on the difficulties involved in
recoding a redundant signal into a more suitable form.

The general prospects for this operation are not good: this is for the same reason
that the proofs of Shannon’s (1949) main coding theorems are non-constructive.
There exists no general finite apparatus which will ‘remove redundancy’ from a
signal in a channel. Different kinds of signal are redundant in esoteric ways, and
any particular signal demands an analysis which is specially tailored to its indi-
vidual quirks. Hence the only hope for a general theory is that a particular sort of
redundancy be especially common: a system to deal with that would then have a
general application. Fortunately, it is likely there does exist such a form; and with
its detailed discussion the next section is concerned.

1.3. Problems in spatial redundancy
1.3.0. Introduction

The term spatial redundancy means that redundancy which is preserved by any
reordering of the input events (of which only a finite number have occurred);
it thus fails to take account of causal or correlative relations which hold between
events at different times. It is the only kind of redundancy with whose detection
this paper deals. The complications introduced by considering temporal correla-
tions as well are severe, and anyway cannot be discussed without some way of
storing temporally extended events. This requires Simple Memory theory, and must
therefore be postponed.
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The particular kind of spatial redundancy with which this section is concerned is
the sort which arises from the fact that some objects look alike. This will be inter-
preted as meaning that some objects share more ‘features’ than others, where
‘features’ are previously constructed classes, as outlined in §1.1.2. It is conjectured
that this kind of information forms the basis for the classification of objects by the
brain: but before examining in detail the mechanism by which it is done, some
arguments must be presented for the general notion that something of this sort is
possible.

1.3.1. Numerical taxonomy

Evidence to support this hypothesis may be derived from recent studies in auto-
matic classification techniques. The most important work in this field concerns the
use of cluster methods to compute classes from information about the pairwise
dissimilarities of the objects concerned (Jardine & Sibson 1968). There are two
steps to the process. The first computes the pairwise dissimilarities of the objects
from data about the features each object possesses. For this, the information radius
(Sibson 1969; Jardine & Sibson 1970) is used, and in the case where the features are
of an all-or-none type (i.e. an object either does or does not possess any given
feature), this takes a simple form. Suppose object O, possesses features f;, ..., f,,,
and object O, possesses features f, ;, ..., f, 1 <7 < n < m. Then K(O, O,), the
information radius associated with O, and O,, (regarded as point distributions), is
simply r+ (m —n), the number of features which exactly one object of the pair
possesses.

The second step of the classification process uses a cluster method to compute
classes from the information radius measurements. Various arguments can be put
forward to show that some cluster methods are greatly to be preferred to others
(Sibson 1970). Unlike the measurement of dissimilarity, these have not been given an
information theoretic background; but to do so would require a firm idea of the
purpose of the classification. The kind of assumption one would need would be to
require that the classification provide the best way of storing the information relative
to some measure—for example, a product distribution generated by assigning
particular probabilities to the individual features. There is considerable choice,
however, and it is unlikely that any particular measure could be shown to be natural
in any sense.

It is not argued that any cluster process actually occurs in the brain: the impor-
tance of this work to the present enquiry is more indirect, and consists of two basic
points. The first arises out of the type of redundancy these methods detect. It is that
the objects concerned do not have randomly distributed collections of features:
what happens is that classes of objects exist which produce collections of features
that overlap much more than they should on the hypothesis of randomness. This
fact, together with some kind of convexity condition which asserts that an object
must be included if enough like it are, is fundamental to the classifying process.

The second point is that cluster analysis works. A large amount of information has
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been analysed by such programs, especially information about the attributes of
various plants. It has been found that these methods do give the classifications which
people naturally make. This is important, for it shows that people probably use
some process associated with the detection of this kind of redundancy for the classi-
fication of a wide range of objects. The motivation for studying methods for detecting
this kind of redundancy now becomes strong.

1.3.2. Mountain climbing tn a probabilistic landscape

In the brain, one may expect feature detectors to exist, if the recognition of
objects is based on this sort of analysis. If spatial redundancy (§1.3.0) is present
in the input, there will exist collections of features which tend to occur together.
This phenomenon can be given the following more picturesque description. Let the
input fibres a,, ..., ay represent feature detectors, and let U be the set of events on
{ay, ..., ay} (§0.4). Endow U with the distance function d, where d(E, F) = the
number of fibres at which the events E and F disagree. (2, d) is a metric space, and in
fact d(E,F) = K(E, F), where K is the information radius.

Imagine the space (2, d) laid out, with the probability p(E) of each event e
represented by an extension in a new dimension. p(E) is called the ‘height’ of E.
It will be clear that if E occurs more frequently than ¥, p(Z) > p(F') and £ is higher
than F'. In this way, the environment may be regarded as landscaping the space U,
in which the mountains correspond to areas of events which are frequent, and the
valley to events which are rare.

The important point about the choice of d for the metric on 9 is that nearby
inputs (under d) possess nearly the same features. Hence if a number of inputs
commonly occur with very similar collections of features, they will turn out as a
mountain in (U, d) under p. The detection of such collections is thus equivalent to
the discovery in the space ( U, d) of the mountains induced by p. The problem of
discovering such mountains is solved in §5. Two other problems concern the choice
of the feature detectors {a,, ..., ay} with which to form the space ; and the question
of what exactly one does with a mountain when it has been discovered. These are
dealt with next. The point that this section illustratesis that the mountain idea over
the space (U, d) characterizes the kind of redundancy in which we are interested.

1.3.3. The partition problem

The prospects for discovering mountains in the space U, given that they are there,
are good; but whether they are there or not depends largely on the choice of the
feature detectors {a,, ..., ay}. There can be no guarantee that an arbitrarily chosen
collection of features will generate a probabilistic landscape of any interest.

The discovery of an appropriate U needs methods whereby features which are
likely to be related are brought together. This is called the partition problem, and
is in general extremely difficult to solve. The problem for which visual bonding was
introduced in §1.1.2 was an example of how special tricks can in certain circum-
stances be used to solve it.
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If no bonding tricks are known, however, the discovery of suitable spaces must
rest upon measuring correlations of various kinds over likely looking populations of
events. This is an operation whose rate of success depends upon the size of the
available memory. It needs the theory of Simple Memory, and will be discussed more
fully there. Suffice it here to say that the problem is not totally intractable despite
the huge sizes of all the relevant event spaces. The reason is that only a very small
proportion of the possible events can ever actually occur, simply because of the
length of time for which a brain lives. This means, first, that the memory can be
quite coarse; and secondly, that if anything much happens twice, it is almost certain
to be significant.

1.4.0. Introduction 1.4. The recoding dilemma

The attraction of mountains is that when applied to the correct -space, they
provide a neat characterization of the type of redundancy which, there is reason to
believe, is important for the classification of objects, and probably much else
besides. The question that has now to be discussed is what to do with a mountain
when it has been discovered. The obvious thing to do is to lump the events of a
mountain together and call it a class. The problems arise because there is virtually no
hope of ever saying why this is the right thing to do, using purely information
theoretic ideas; and until this is specified, it will be impossible to say exactly how
the lumping should be done.

The basic difficulty is that the lumping process involves losing information—
about the difference between the events lumped together. The simplest reason why
this process might be justifiable, or even desirable, is reliability. It would be im-
plausible to suppose that the interpretation of an input might fail because of the
failure of a single fibre. Hence arecognition apparatusfor the particularevent X must
admit the possibility that an input ¥ with d(X, Y) = 1 or 2 (say) should be treated
like X. But it is only by introducing such an assumption that this kind of step could
be made, at least within the framework of the arguments set up so far.

1.4.1. Information theoretic assumptions of a suitable nature

The problem about trying to develop information theoretic hypotheses to act as
justification for ignoring the difference between two events is that from an absolute
point of view, one might just as well confuse two events with d(X, Y) large as with
d(X, Y) small: there is no deep reason for preferring pairs of the second sort. It is
natural to hope that in some sense, less information is lost by confusing nearby
events, but in order for this to be true, something has to be assumed about the way
two events can be compared. This effectively means comparing them to one—or a
family of—reference distributions, whose choice must be arbitrary, and equivalent
to some statement that nearby events are related. The theory thus becomes self-
defeating, and the realization that this must be so allows exactly one observation to
be made—namely that information theoretic arguments alone can never suffice to
form a basis for a neurophysiological theory.
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1.4.2. Landslide

The mountain structure of 1.3.2 depends on two things: the environmental
probability distribution p, and the metric d. But it has been shown in 1.4.1 that the
particular choice of d for the metric cannot be justified in any absolute way. The
view that these mountains are important can therefore receive no support from any
theory, based solely on ideas about storage, which does not assume that the first
information to be thrown out is that which distinguishes the different parts of one
mountain. In order to see how this might in fact be so, it is therefore necessary to
return to the real world, to discover how some information may be important,
while some may be expendable.

, 1.5. Biological utility
1.5.0. The general argument

The question with which this section is concerned is why should it ever be an
advantage to classify together the events of a mountain. To answer this requires a
clear idea of what the brain classifies for: only when this is known can it be deduced
what kind of information is irrelevant, and hence which events may be classified
together. The answer which will be proposed is that the classifications the brain
eventually derives are ones which allow the deduction of the presence or absence of a
‘property or properties, not necessarily directly observable, from such information as
is at the time available. The word ‘property’ means here a slightly generalized idea
of a feature: that is, it includes specifications of things an object can do, or can have
done to it, as well as, for example, the sound it makes or the colour it has.

1.5.1. Examples

It is helpful at this point to give some concrete instances of the general statement
made above. In its purest form, it implies a simple learning device, to which in-
stances of the property concerned are transmitted through one channel, while
information from which this propertyis to be diagnosed is conveyed through another.
This corresponds exactly to the situation proposed for the cerebellar cortex in a
recent theory of that structure (Marr 1969): the first channel is the climbing fibre
input, and the second, the mossy fibres. There clearly exist stern limitations to this
idea in any more general application, since in the cerebellar model, a property can
only be diagnosed in conditions which are virtually a replica of a previous state in
which the property was known to hold. It is, nevertheless, a primitive example of
the central idea.

The property concerned need not be the immediate implementation of a particular
elemental movement: it might be whether or not a particular branch can support the
weight of a particular monkey. The animal concerned clearly needs to be able to
make this discrimination, and to be able to do so by methods other than direct
experiment. The information available is the appearance of the branch, from which it
is possible to produce a reliable estimate of its strength. It is supposed that the
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animal used data obtained by direct experiment (in play during his youth), to set up
the appropriate classification apparatus.

These two cases illusirate the idea of a classificatory scheme designed for the
diagnosis of properties not directly or immediately observable. It is helpful to make
the following

Definition. An intrinsic property is one the presence or absence of which is
known, and which is being used to decide whether another property is present.
The word ‘intrinsic’ is used for this because if a property-detecting fibre a, is in the
support of a space over which there is a mountain, then that property is in a real
sense an intrinsic part of the structure of the mountain. The second part of the
definition follows naturally : an extrinsic property is one whose presence or absence is
currently being diagnosed. These two words have only a local meaning: they are
simply a useful way of describing which side of a decision process a particular
property lies.

Classification for biological utility may therefore be regarded as the diagnosis of
important but not immediately observable properties from information which is
easy to obtain; and although this to some extent begs the question of what is an
important property, it, nevertheless, represents some advance. Its strength is that
it shows what information may be lost—namely the difference between events which
lead to a correct diagnosis of a given property. The weakness of this approach is that
it contains no scope for generalization from situations in which a property is known
to hold, to new situations; and therefore seems to reduce operations in the brain to a
simple form of memory.

1.5.2. The dichotomy

It may fairly be said that the remarks of this and the last sections force a dicho-
tomy. On the one hand, there are the attractive and elegant ideas associated with
coding for features, and their connexion with mountains and pure classification
theory. These have been shown to be an insufficient basis for a theory, but they
have a strong intuitive appeal. On the other hand, there are the nakedly practical
ideas associated with strict biological utility. These have the advantage of giving a
criterion for what information can be ignored, but in this crude shape, they suggest a
memorizing system which performs more or less by brute force. There is no hope
for either of these approaches unless they can be reconciled; and for this task, the
next section is reserved.

1.6. The fundamental hypothesis

1.6.0. The nature of a reconciliation

Before trying to discover how these two views may be united, one must have a
clear idea of the nature of any statement which could bring them together. The first
view was of a kind of classification scheme which might be used by the brain. It
consisted of selecting regions of commonly occurring subevents in event spaces over
a collection of feature-detecting fibres, such that the subevents selected differed
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rather little from one another. The second view suggested that the main function of
the analysis of sensory information was to deduce properties of importance to the
needs of the animal from such information as is available. These can only be recon-
ciled if classification by mountain selection does prove a good guide to the presence
of important properties: to decide whether this is so, properties of the real world
must be considered.

1.6.1. Validity for properties which are usually intrinsic

Let A be the event space on the feature-detecting fibres {a,, ..., ay}, andlet A be the
probability distribution induced over % by the environment. d is the natural metric
defined in §1.3.2. In a general input subevent, the value of each fibre will be 0, or 1,
or will be undefined. The last case can arise, for example, in the case of visual
information, when part of an object is hidden behind something else. In this way, a
property which is usually observable may sometimes not be. It will now be shown
that classes obtained by lumping together events of a mountain over (2,d) can
usually act as diagnostic classes for such properties.

FI1GURE 1. An illustration of the form of redundancy being discussed: the probability dis-
tribution x induced by the environment over N,(X) has non-zero values only in N, (X).

Let X €U be an event of A, and let N(X) = {Y|Y eNand d(X, Y) < r}. A ‘moun-
tain’ in 9 might correspond to some distribution like # where

wY) =«k, YeN,(X),
MT) =0, YeNZIN\NX),

where s > r, r is small, and k is some positive constant. As soon as enough values of
the a; are known to determine an event as lying within Ny(X), it follows that the
event lies within N, (X) (see figure 1). Write p; = probability that (a; = 1given
E e N,(X)). Then if an event is diagnosed as falling within N,(X) without knowing
the value of a;, it can be asserted that a; = 1 with probability about p,. This is
useful if p, is near O or 1.

This kind of effect is a natural consequence cf any mountain-like structure of
A over U, and allows that, in certain circumstances, these classes can be used to
diagnose properties which are usually intrinsic. The values of a; are not necessarily
as expected—the piece of the object that is hidden may in fact be broken off; but the
spikier the mountain (i.e. the smaller the local variance of A), the nearer the p, will be
to 0 or 1, and the more certain the outcome.
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1.6.2. Extrinsic properties

The argument for this kind of classification is that whenever there is a tendency
for intrinsic properties to occur together in this way, it is extremely likely that there
will also exist other properties, perhaps not directly observable ones, which also
generalize over such groups of events. Hence, although the reason may not at the
time be apparent, it will be good strategy for the animal to tend to make these
classifications. Thus later, when a property is discovered to hold for one event in a
given class of events, the animal will be inclined to associate it with members of the
whole class. The generalization may or may not be found to be valid, but as long as it
is successful sufficiently often, the animal will survive.

One other way of looking at this kind of generalization is to alter slightly the way
one expresses the relevant kind of redundancy. It is equivalent to the assertion that
once a context is sufficiently determined, one property may be a reliable indicator of
another. The example cited earlier was of a monkey judging the strength of a
branch. In practice, the thickness of a branch of a tree is a fairly reliable indicator
of its strength, so that unless the branch is rotten, it will support the monkey if it is
thick enough. Rottenness, too, can be visually diagnosed, so that a completely
reliable assessment can be made on the basis of visual information alone. The context
within which thickness and strength are related isroughly that the object in question
is a branch of a tree, and is not rotten.

This kind of relationship is common in everyday experience; so common indeed
that further examples are unnecessary. But although the general notion of this kind
of redundancy has a clear importance, it is not obvious how the details might work
in any particular case, nor that they may work the same wayin any two. This problem
must be tackled before any methods can be given for prescribing limits to the classes.

1.6.3. Refining a classificatory unit

The rough heuristic for picking out likely looking classes has been discussed at
length. It was hinted that there may exist no a priori ‘correct’ way of assigning
limits: where, for example, is the boundary between red and orange ? The view that
the present author takes is that although there are likely to exist fairly good general
heuristics for class delimitation—like some kind of convexity property analogous to
that which the cluster analysts use—there are probably no universal rules. It will
be extremely difficult to give even these heuristics a satisfactory physical derivation:
the kind of argument required is very indirect. But to say there exist no precise,
generally applicable rules is merely to say that different properties have different
relations to their indicators, and so is not very surprising. If, for example, an impor-
tant extrinsic property is attached to a group of subevents, then its cessation marks
the boundary of the class. If the property ceases to hold in a gradual way, the class
will have problematical boundaries. This does not necessarily mean the class is not
a useful one: the dubious cases may be rare, or may fall less dubiously into other
classes. In any case, those falling well inside will be usefully dealt with.
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It is therefore proposed that the exact specification of the boundaries to the
classes should proceed by experiment. A new class is tentatively formed, upon the
discovery of a promising mountain. If it turns out to have no attached extrinsic
properties, it probably remains a slightly vague curiosity. If an extrinsic property
more or less fits the provisional class, its boundary can be modified in a suitable way:
this operation requires simple memory. If an extrinsic property is attached to it in
no very sensible way—that is, instances of the property are scattered randomly or
inconsistently over the class—then the class is no use as a reliable indicator, even
with the available scope for shifting the boundaries. This does not necessarily
render the class useless, for the property might be one which puts the animal in
danger, and the class may contain all inputs associated with this kind of danger. For
example, only a few kinds of snake are dangerous, but the class of snakes includes the
class of dangerous snakes. It may be impossible to produce a reliable classification of
snakes into dangerous and not dangerous without classifying some of them by
species. This requires the consideration of more information than is necessary
for diagnosis as a snake, and may be impossible without a potentially lethal
investigation.

The investigation of the viability of a prospective class should probably be a very
flexible process, drawing on the play of an animal when it is young, and upon the
experience of life later on. Those classes which turn out, with slight alteration, to be
useful will survive, while those which do not will not. Provided the initial class
selection technique is neither wrong too often, nor fails too frequently to provide a
guess where it should, the animal will be well served; and an instinct to explore his
surroundings should enable him to remove any important errors.

1.6.4. The Fundamental Hypothesis

The conditions for the success of the general scheme of classification by mountain
selection with later adjustments can now be explicitly characterized. It will work
whenever an extrinsic property is stable over small changes in its diagnostic intrinsic
properties. A given extrinsic property may possess more than one cluster of intrinsic
properties which diagnose it, but as long as this condition is satisfied within each,
the scheme will work. If a small change in intrinsic properties destroys an extrinsic
property, either the boundary of the class passes near that point, or this extrinsic
property cannot be diagnosed this way. In the former case, slight boundary changes
can probably accommodate the situation: in the latter, there are two possible
remedies. Either instances of the extrinsic property can be learned by rote—this
can only be successful if the relationship of the extrinsic to the intrinsic properties
is fixed—it is in any case arduous; or the intrinsic context has to be recoded. To the
general recoding problem, there exists no general solution (by the remarks of §1.2.2).

The present theory is thus based on the existence of a particular kind of redun-
dancy, not because it is redundancy as such, but because it is a special, useful sort.
This is expressed by the following Fundamental Hypothesis:

Where instances of a particular collection of intrinsic properties (i.e. properties
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already diagnosed from sensory information) tend to be grouped such that if some are
present, most are, then other useful properties are likely to exist which generalize over
such instances. Further, properties often are grouped in this way.

§2. THE FUNDAMENTAL THEOREMS
2.0. Introduction

The discussion has hitherto been concerned with the type of analysis which may
be expected in the brains of sophisticated living animals. It was suggested that an
important aspect of the computations they perform is the induction of extrinsic
from intrinsic properties. This conclusion introduces three problems: first, collec-
tions of frequent, closely similar subevents have to be picked out. The Fundamental
Hypothesis asserts that it is sensible to deal with such objects. This problem, the
discovery problem, is dealt with in §5. Secondly, once a subevent mountain has been
discovered, its set of subevents must be made into a new classificatory unit: this is
the representation problem, and is dealt with in §4. Finally, on the basis of previous
information about the way various extrinsic properties generalize over these
collections of subevents, it must be decided whether any new subevent falls into a
particular class. This is the diagnosis problem, and is dealt with now.

2.1. Diagnosis : generalities

A common method for selecting the hypothesis from a set (2, ..., £2,,) which best
fits the occurrence of an event E, is to choose that 2; which maximizes P(E|2Q;).
Such a solution is called the maximum likelihood solution, and is the idea upon
which the theory of Bayesian inference rests (see e.g. Kingman & Taylor 1966,
p. 274, for a statement of Bayes’s theorem). This method is certainly the best for the
model in which it is usually developed, where the £, may be regarded as random
variables, and the conditional probabilities P(E|®;), for 1 < 7 < n, are known. The
maximum likelihood solution will, for example, show how, and at what odds, one
would have to place a bet on the nature of £ in order to expect an overall profit. It is
of course important to know all the conditional probabilities; and if the 2, are not
independent, various complications can arise.

The situation with which the present theory must deal is different in several
ways, of which two are of decisive importance. First, the prime task of the diagnostic
process is to deal with events E; which have never been seen before, and hence for
which conditional probabilities P(E;|£2;) cannot be known. It will further often be
the case that E; occurs only once in a brain’s lifetime, yet that brain may correctly
be quite certain about the nature of E;.

Secondly, the prior knowledge available for inferring that E; is (say) an Q; comes
from the Fundamental Hypothesis. That is, the knowledge lies in the expectation
that if E; is ‘like’ a number of other E;, all of which are an 2, then E; is probably
also an 2;. This does not mean that P(E;|Q;) is likely to be about the same as
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P(E,|R2,): frequency and similarity are quite distinct ideas. Hence if the Funda-
mental Hypothesis is to be used to aid in the diagnosis of classes—the assumption on
which the present theory largely rests—then that diagnosis is bound to depend upon
measurements of similarity rather than upon measurements of frequencies.

The analysis of frequencies of the events E; is therefore relatively unimportant in
the solution of the diagnosis problem; but it is of course extremely important for the
discovery problem. The prediction that a particular classificatory unit will be useful
rests upon the discovery that subevents often occur which are similar to some
fixed subevent: the role of frequency here is transparently important. But when the
new classificatory unit has been formed, diagnosis itself rests upon similarity alone.

An example will help to clarify these ideas. The concept of a poodle is clearly a
useful one, since animals possessing most of the relevant features are fairly common.
Further, a prize poodle is in some sense a poodle par excellence, and is as ‘like’ a
poodle as one can get; but it is also extremely rare. The essential point seems to be
that in a prize poodle are collected together more, and perhaps all, of the features
upon which diagnosis as a poodle depends (or ought, in the eyes of poodle breeders,
to depend).

These arguments imply that for the diagnosis of classificatory units by the brain,
Bayesian methods are probably not used. Conditional probabilities of the form
P(E|Q) are thus largely irrelevant. The important question, when trying to decide
whether E is an £2, is how many of the events like £ are definitely known to be an 2.
The computation of this raises entirely different issues.

2.2. The notion of evidence

The diagnosis of an input requires that an informed guess be made about it on the
basis of the results for other inputs. If, for example, the present input £ (say) has
already occurred in the history of the brain, and has been found to deserve classifica-
tion in a particular class, then its subsequent recognition as a member of that class is
strictly a problem of memory, not of diagnosis. On the other hand, £ may never have
occurred before, though it might be that all E’s neighbours have occurred, and have
been classified in a particular way. The Fundamental Hypothesis asserts that this is
good ground for classifying E in the same way.

The existence of an event similar to £, and known to be classified as, say, an £,
therefore constitutes evidence that E should also be classified as an 2. It will be clear
that the more such events there are, the stronger the case for classifying £ as an Q.

It is appropriate to make two general remarks about evidence. The first concerns
the absolute weight of evidence provided by £2-classified events at different dis-
tances from E. Any theory must allow that for some categories of information,
nearby events consitute strong evidence, whereas for others, they do not. Diagnoses
within different categories will not necessarily employ the same weighting functions
in the analyses of their evidence. ‘

The second point about evidence concerns its adequacy. It may, for example,
never be possible to diagnose correctly the class or property on the basis of evidence
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from events on the fibres {a,, ..., ay}: they simply may not contain enough informa-
tion. On the other hand they may contain irrelevant information, whose effect is to
make the classifying task appear to be more difficult than it really is. This observa-
tion emphasizes the importance of picking the support of the mountain correctly.
The requirements of the diagnostic system can now be stated. It must:
(i) Operate only over a suitably chosen space of subevents (suggested by the
Simple Memory). This space is called the diagnostic space for the property in
question, £2.

(ii) Record, as far as condition (iii) requires, which events of the diagnostic
space have hitherto been found to be £’s or not to be £’s.

(iii) Be able, given a new event E, to examine events near E, discover
whether they are £2’s or not, apply the weighting function appropriate to the
category of 22, and compute a measure of the certainty with which £ itself may
be diagnosed as an Q.

The three crucial points now become:

P1. How is the evidence stored ?
P2. How is the stored evidence consulted ?
P 3. What is the weighting function (of (iii))?

The solutions to these which are proposed in this paper are not unique, but it is
conjectured that they are the solutions which the nervous system actually uses.
The key idea is that of an evidence function, which will in practice turn out to be a
subset detector analogous to a cerebellar granule cell. The three points are resolved
in the following way:

P1. Evidence is stored in the form of conditional probabilities at modifiable
synapses between ‘evidence function’ cells and a so-called ‘output cell’ for 2,
(eventually identified with a cortical pyramidal cell).

P2. Evidence is consulted by applying an input event £, which causes evidence
cellsrelevant to & to fire. The output cell then has active afferent synapses only from
the relevant evidence cells. The exact way in which it deals with the evidence is
analysed in §2.3.

P3. The weighting function comes about because nearby events will use over-
lapping evidence cells, just as very similar mossy fibre inputs are translated into
firing in overlapping collections of cerebellar granule cells. The exact size of subset
detector cells used for collecting evidence depends upon the category of £2: recogni-
tion of speech may, for example, require a generally higher subset size than the 4 or 5
used in the cerebellar cortex.

Let X be the diagnostic space for 2, and let ¢ be a function on X which takes the
value 0 or 1. ¢ may, for example, be a detector of the subset A’ of input fibres, in
which case, for E'in X, ¢(¥) = 1if and only if the event £ assigns the value 1 to all the
fibres in the collection 4’; but ¢ can in general be any binary function on X. Let
P(Q|c) denote the conditional probability (measured in the brain’s experience so
far) that the input is an £2 given that ¢ = 1.

12 Vol. 176. B.
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Definition. The pair {c, P(2|c)) is called the evidence for 2 provided by the
evidence function c.

The most important evidence functions are essentially subset detectors, (justi-

fied in §4.2.1), and it is convenient to give these functions a special name.

Definitions. (i) For all Ein X, let ¢(E) = 1,ifand onlyif E(a;) = 1,1 < ¢ <r < N.
In this case, ¢ is called an r-codon, or r-codon function, and is essentially a
detector of the subset {a,, ..., a,} of the input fibres.

(ii) For all E in X, let ¢(E) = 1 if and only if at least & of

E@)=1,1<i<R<N.

In this case, ¢ detects activity in at least @ of the R fibres {a,, ..., ag}, and is
called an (R, 6)-codon.

The larger subset size, the fewer events E exist which have ¢(£) = 1, and so the
more specifically c is tied to certain events in the space X. Let |X| denote the number
of events in X, and let « be the number of events E in X with ¢(£) = 1: then the
fraction «/|X| is called the quality of the evidence produced by cin X. The qualities of
various kinds of codon function are derived in §3.2.

2.3. The diagnosts theorem

The form of evidence has now been defined, and the rules for its collection have
been set out. The information gained from the classification of one event, E, has
been transferred to its neighbours in so far as they share subsets with Z, and the
subsets can be chosen to be of a size suitable for information of the category con-
taining 2. Thus problems P and P 3 of §2.2 have been solved in outline: the details
are cleared up in §§3 and 4. It remains only to discover the exact nature of the
diagnostic operation: that is, to see exactly what function of the evidence consulted
about E should serve as a measure of the likelihood that Z is an £.

The problem may be stated precisely as follows. Let € = {{c;, P(Q[ci))};ﬁ”= 1 be the
collection of evidence available for the diagnosis of £ over the space of events X.
Let E be an event in X, and suppose

(B =1 (1<i<k),
c;(B)=0 (k<i<M).

That is, the evidence relevant to the diagnosis of £ comes only from the functions
€y, --+» C, and is in the form of numbers P(2|c,), ..., P(2|c;). The question is, what
function of these numbers should be used to measure how certain itis that £ isan Q?
The answer most consistent with the heuristic approach implied by the Fundamental
Hypothesis is that function which gives the best results; this may be different for
different categories. But a general theory must be clear about basic general
functions if it can, and an abstract approach to this problem produces a definite
and simple answer.

Suppose that, in order to obtain some idea of what this function is in the most
general case, one assumes nothing except that £ has occurred, and that the relevant
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evidence is available. Then F effectively causes k different estimates of the proba-
bility of 2 to be made, since k of the c; have the value one, and P(Q2|c; = 1) is the
information that is available. That is, £ may be regarded as causing k different
measurements of the probability that £2 has occurred. The system wishes to know
what is the probability that £ has actually occurred; and the best estimate of this is
to take the arithmetic mean of the measurements. This suggests that the function
which should be computed is the arithmetic mean of the probabilities constituting
the available, relevant evidence; in other words, that the decision function, written
P(2|E) has the form
M M
PQ|E) = 3 ci(B)P@ley | 3, ci(B).

The conclusion one may draw from these arguments is that if one takes the most
general view, assuming nothing about the diagnosis situation other than the
evidence which E brings into play, then the arithmetic mean is the function which
measures how likely it is that £ is an . The diagnosis theorem itself simply gives
a formal proof of this. The meaning of the result is discussed in 2.4.

Lemma (Sibson 1969). Let T} be a random variable which takes the value 0 with
probability ¢;,and 1 with probability p, = (1 —g¢;),for 1 < 7 < l.Let T'be another
such variable, with corresponding probabilities ¢ and p. Let p, ¢ be chosen

1 1
to minimize Y, I(T;|T), and let p, = (1/I) X p,. Then p = p,, and is unique.
i=1 i=1

Proof. Let p, + 1, + 0, and let 7|, be its corresponding binary valued random
variable.

%I(TAT) - 1ZI(TilTo)
= Zp log, pi/p + 2g;log, %/q9— Zp:loge pilpo— 24 log, 4:/9,
= Zp;log, po/p + 3108, 00lg = U(T,|T).
Hence 1ZI(T@-IT) = %“I(TilTo)+lI(1{,|T)
and I is always > 0. Thus ?I(TilT) > lZI(TiITO),

equality occurring only when I(T}|T) = 0, i.e. when T' = T|,. Hence the minimum
value of 3I1(T;|T) is achieved uniquely when p = p,.
i

Diagnosis theorem. Let 2 be a binary-valued random variable, and let p,, ..., p, be
independent estimates of the probability p that £ = 1. Then the maximum likeli-
hood estimate for p is py = (1/k) Tp;.

Proof. The estimate p; of p may be regarded as being made through noise whose
effect is to change the original binary signal 2, which has distribution (p, 1 — p), into
the observed binary random variable 7 (say), with distribution (p;, 1—p,). The
information gain due to the noise is I(7};|2). Hence that value of p which attributes

12-2
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least overall disruption to noise, and is therefore the maximum likelihood solution,
is the one which minimizes 31(7;|2). By the lemma, p is unique and equals p,, the
B

arithmetic mean of the p;.

This result applies when the p, are independent, or are so to speak symmetrically
correlated. For example, if 7}, ..., 7},_, are independent, but 7 = Tj,_,, the result is
clearly inappropriately weighted towards 7j,_,. On the other hand, if & is even, and
T,="T,T,=1,...,T, = T, this is not harmful. The general condition is compli-
cated; but if ¢,, ¢,, ..., ¢5r form a complete set of r-codons over the fibres {a,, ..., ay},
or a large random sample of such r-codons, then they are symmetrically correlated
in the above sense.

P = P, gives the best single description of p,, ..., p, in the sense that it minimizes
SI(T;|T). The diagnosis theorem deals with a situation in fact rather far removed

i

from the real one, and the next section is concerned with reservations about its
application. It is not clear that any single general result can be established in a
rigorous way for this diagnostic situation.

2.4. Notes on the diagnosis theorem

The key idea behind the present theory is that the brain decomposes its afferent
information into what are essentially its natural cluster classes. The classes thus
formed may be left alone, but are likely to be too coarse. They will often have to be
decomposed still further, until the clusters fall inside the classes which in real life
have to be discriminated ; and they will often later have to be recombined, using, for
example, an ‘or’ gate, into more useful ones, like specific numeral or letter detectors.
These various operations are of obvious importance, but the basic emphasis of this
approach is that the natural generalization classes in the naive animal are the
primary clusters. Diagnosis of a new input is achieved by measuring its similarity to
other events in a cluster, and the similarity measure P of §2.3 is proposed as suitable
for this purpose. Its advantages are that it can be derived rigorously in an analogous
situation in which the c; are proper random variables; and that the result does not
absolutely require that the c; be independent. Moreover, the conditions under which
dependence between the c; is permissible (the ‘symmetric’ correlation of §2.3)
include those (when the c; are a large sample of r-subset detectors) which resemble
their proposed conditions of use (§4).

Nevertheless, the inference that if P(2|E) is sufficiently high, then E is probably
an £, rests upon the Fundamental Hypothesis. This observation raises a number of
points, about the structure of the evidence functions, and about ways in which
exceptions to the general rule can be dealt with. The various points are discussed in
the following paragraphs.

2.4.1. Codons for evidence

The validity of the statement that a high P(2|E) implies that E is an £2 rests upon
the structure of the evidence functions used to obtain P. The neural models of §4
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employ codons (i.e. subset detectors), but their physiological simplicity is not their
only justification.In §4.2 it isshown, as far as the imprecision in its statement allows,
that the Fundamental Hypothesis requires the use of rather small subset detectors
for collecting evidence. It is not clear that advantage can at present be gained by
sharpening the arguments set out there.

2.4.2. Use of evidence of approximately uniform quality

The reason for using functionsc, over X at all, rather thansimply collecting evidence
with fibres a;, is that the untransformed a; would often not produce evidence of
suitable quality. It may be possible simply to use fibres, especially for storing
associational evidence (see §2.4.5); but it is probably also often necessary to create
very specific codon functions giving high quality evidence for very selective classi-
ficatory units. This process must involve learning whenever the classes concerned
are too specialized for much information about them to be carried genetically.

The quality of a piece of evidence is a measure of how specific it is to certain events
in the diagnostic space X. In general, a given diagnostic task will require discrimina-
tions to be made above a minimum value p (say) of P, and the quality of the evidence
used will have to be sufficient to achieve such values of P. The higher the quality of
the evidence, the more there has to be to provide an adequate representation of X;
and hence economy dictates that evidence for a particular discrimination should
have as poor a quality as possible, subject to the condition on . Evidence of less
than this minimal quality will serve only to degrade the overall quality, and so must
be excluded. Hence, evidence should tend to have uniform quality. Mixing evidence
of greatly different qualities is in general wasteful.

This condition is satisfied by the models of §4, where evidence is provided by
(R, 0)-codons, and most of the evidence for a single classificatory unit has the same
values of R and 6.

2.4.3. Classifying to achieve a particular discrimination

The quality of evidence function for a particular classificatory unit depends upon
the minimum value p of P which is acceptable for a positive diagnosis, and this in
turn will depend on how fine are the local discriminations which have to be made.
The size of the clusters diagnosing the numeral ‘2’ (say) in the relevant feature space
.depends upon the necessity for discriminating ‘2’ from instances of other numerals
and letters. The usual condition is probably that the part of the diagnostic space
(over the relevant features) occupied by instances of a ‘2’ must be covered by
cclusters contained wholly in that part. This condition fixes the minimum permissible
value of p for diagnosis of a ‘2’, which in turn fixes the subset sizes over any given
-diagnostic space. There may however be important qualifications necessary about
this approach: the observations of §§2.4.4 and 2.4.5 can seriously affect the value
of p.
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2.4.4. Evidence against

P will be most successful as a measure for diagnosis when the properties being
diagnosed are stable over small changes in the input event. As £ moves away from
the centre of an Q-cluster in the diagnostic space X, the values of P(2|c) where
¢(E) = 1 gradually decrease, and P decreases correspondingly. Provided these
things happen reasonably slowly, all the remarks about symmetrical correlations
of the evidence functions will hold in an adequate fashion.

The possibility must, however, be raised that within a general area of ¥ which tends
to give a diagnosis of 2, there exist special regions in which for some reason, 2 does
not hold. Provided the region in which 2 does not hold is itself a cluster within the
larger Q-cluster, this state of affairs is not inconsistent with the Fundamental
Hypothesis. This contingency can be dealt with in the same way as the diagnosis
of 2, by collecting evidence for ‘not £2’—evidence against 2—within either %, or a
space related to X¥. The form of the analysis is exactly the same as for 2, except that
the classificatory unit for ‘not £2’ must be capable of overriding that for Q. It is of
course important for the successful diagnosis of 2 that diagnostic spaces for 2 and
for ‘not £’ should both be appropriate, and both have evidence functions of suitable
quality: but the mechanism which discovers the diagnostic space X for 2 can clearly
be used to discover the appropriate space for ‘not 2°.

It is interesting that this situation corresponds exactly to one proposed for the
primary motor cortex. It has been suggested by Blomfield & Marr (1970) that the
superficial cortical pyramidal cells there detect inappropriate firing of deep pyra-
midal cells. They presumably detect clusters in information describing the difference
between an actual and an intended movement. These clusters in effect correspond to
the need for deletion of activity in certain deep pyramids (an instance of the
Fundamental Hypothesis), and the superficial pyramids cause the deletions to be
learned in the cerebellar cortex. This distinction between the classes represented
by deep and superficial cortical pyramidal cells may well not be restricted to area 4.

2.4.5. Competing diagnoses and contextual clues

It is often the case that a single retinal image could originate from two possible
objects, yet contextual clues leave no doubt about which is the true source, and that
sourceis the only one which is experienced. Such circumstancesdemonstrate the great
importance of indirect information to the correct diagnosis of a sensory input. The
present theory contains three ways by whichsuch information may affect a diagnosis.

First, contextual information—for example, concerning the place one is in—may
be included in the specification of the diagnostic space for 2. There presumably
exist classificatory units in one’s brain for the places in which one commonly finds
oneself, and other units which describe less common locations more pedantically:
and these probably either fire all the time one is in the appropriate location, or
(roughly) fire whenever other parts of the brain ‘ask’ where one is. Such information
may be treated like more conventional sensory input.
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Secondly, diagnostic criteria within categories can be relaxed by changing p. It is
analogous to the ideas proposed in explanation of the collaterals of the cerebellar
Purkinje cells (Marr 1969; Blomfield & Marr 1970). A priori information is some-
times available which makes units in one category more likely to be present
following the diagnosis of units in another. In such cases, a general relaxation
of the minimum acceptable value p of P over the relevant category will be appro-
priate.

Thirdly, and perhaps most important, is the matter of ‘ associational’ contextual
information. No additional theory is required, since such information can be treated
as evidence in the usual way. It is probably for this kind of information that
evidence functions are least often needed: direct association of classificatory unit
detectors (cortical pyramidal cells) will often be adequate. The matter is touched
on in §4.1.8, and dealt with at more length in Marr (1971, §2.4).

2.4.6. General remarks about P

The direct technical importance of the Fundamental Hypothesis to the applica-
tion of the results of the diagnosis theorem raises the wider issue of the extent to
which one can feel justified in applying information-theoretic arguments to the kind
of situation with which the diagnosis theorem deals. The Fundamental Hypothesis
simply summarizes the view that clusters are useful. This is a heuristic approach,
and it is not obvious that the diagnosis problem deserves any better than a heuristic
approach itself. It probably matters rather little exactly what measure of similarity
or fit is used: the redundancies on which the success of the system depends are so
gross that there is probably more than one working alternative to P.

If this is so, the diagnosis theorem loses much of its importance as a derivation of
the ‘ correct’ measure, since there may be no genuine sense in which any measure is
correct, as long as it has a certain general form. The measure P does however seem
intuitively plausible, and the reader may be happy to accept it without much justi-
fication. Theorem 2.3 is the best argument this author has discovered in its support;
but it is not binding.

The measure P can be given a direct meaning in terms of the events of X. Let
X, be the set of events K of ¥ with c,(E) = 1. Then P(Q|c;) is the probability that if an
an event of X, occurred, it was an 2. Suppose that X is the set of all events of size L on
the fibres {a,, ..., ay}, and that the evidence functions c,, ..., ¢, are the set of all
r-codons. Let F' be the new input event of ¥, which must be diagnosed; and let E
be an arbitrary event of X. Write d(E, F') = x,d being the usual distance function
of §1.2.

The number of r-subsets which £ and F share is (Lr—x)’ taking (‘Z) to be zero

when y < 2. Hence the weighting function which describes the ‘influence’ of E on

the di sis of F is
agnosi L—x) (L)
r / r)’
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Thus the arithmetic mean obtained by the theorem of §2.3 is

20 ()/C)

P(Q|F) = Eane - ,
220 (7)0)

where A is the probability distribution induced over X hitherto by the environment.

2.5. The interpretation theorem

The diagnosis theorem 2.3 was concerned with the diagnosis of the property £
over the diagnostic space X on fibres {a,, ..., ay}. The events E in this situation
specify the values of all the fibres {a,, ..., ay}; but it will frequently occur in practice
that some values of the a; will be undeﬁned and a decision has to be made on the
basis of incomplete 1nformat10n The problem is that this will mean that many of the
evidence functions c; are also undefined, thus leaving little if any evidence actually
accessible to the input in question. For example, suppose a recognition system has
been set up for a particular face: then a pencil sketch of that face can be recognized
as such, even though much information—the colour of the eyes, skin, hair and so
forth—is missing. Such a sketch can itself be analysed and set up as a new classifi-
catory unit if that seems useful, and the mechanics of this process are the same as
for the original. But this is a notion quite separate from the idea that the sketch is in
some way related to the original face, and it is this idea with which the present
section is concerned. The crux of the relationship is that the original face is the one
which in some way best relates the sparse information contained in the features
presented by the sketch. The result which follows characterizes this relationship
precisely.

%, as usual, is the event space on {a,, ..., ay}. Let X be a subevent of X which
specifies the values of (say) a,, ..., a, for some » < N. Then the event £ in X is a
completion of X, written E |- X, if

(i) E specifies the valuesof alla;, 1 < ¢ < N,

(i) E(a;) = ( ;) where X (a,) is defined.

Let C = {¢;|1 < @ < M} be the set of functions on X which provide ev1dence for the
diagnosis of Q. Smce X is not a full event of X, c,(X) is undefined (1 < ¢ < M).
Now there clearly exists a sense in which ¢, (X) might be defined: for example,

either c;(E)=1 forall Ein X suchthat X,
or c;(E) =0 forall Ein X such that B} X;
but such a circumstance is exceptional, and cannot be relied upon to provide ade-
quate diagnostic criteria.
Let {E,, ..., Ex} be the set of all completions of X in X. Then clearly if (2| E;) has

the same value, ¢, forall 1 < 7 < K, there are strong grounds for asserting that on the
basis of the evidence from C, the estimate for P(2|X) is also ¢. This result is a
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special case of the following theorem. If P(2|X) denotes the maximum likelihood
value of the probability of 2 given X, taken from the evidence, P(22|E) denotes the
estimate arrived at in the diagnosis theorem, and P(E;|X) is a conventional con-
ditional probability, then we have the

Interpretation theorem. Let X be a subevent of X with completions E,, ..., Eg.

Then K
PQIX) = 3 P(QIE) P(5|X),

and is unique.

Proof. The argument is similar to that of the diagnosis theorem. Let 7, (X) be a
binary-valued random variable such that 7; (X) = 1 with probability P(Q|E;) = p,
(say), for each ¢, 1 <4 < K. Let P(2|X) correspond to a binary-valued random
variable 7' where T'(X) = 1 with probability p. Then each completion E; of X
corresponds to an estimate p; of p, and P(E;|X) specifies the weight to be
attached to this estimate. Hence by the same argument as that of the theorem 2.3,
the maximum likelihood solution for 7' is that which minimizes

K
3 P(E{X)I(T|T).

By an extension of the argument of the lemma 2.3., the value of p which achieves
this is unique, and is &
p= _;l P(E;| X) p;.

Hence PR|X) = ‘

and is unique.

P(Q|E,) P(E,|X),

TMm

Remarks. In general, no information about P(E;|X) will be available, so that
P(2|X) will usually be the arithmetic mean of P(Q2|E;) over those E;|- X.

This theorem shows that incomplete information should be treated in a way which
looks like an extension of the methods used for complete information, and the
reservations of §2.4 apply equally here. The result does, however, have the satis-
fying consequence that the models of §4 designed to implement the diagnosis
theorem automatically estimate the quantity derived in the interpretation theorem
when presented with an incompletely specified input event.

§3. THE CODON REPRESENTATION

This section contains the technical preliminaries to the business of designing the
concrete neural models which form the subject of the next. The results are mainly of
an abstract or statistical nature, and despite the length of the formulae, are essen-
tially simple.

3.1. Simple synaptic distributions

Let B, B, be two populations of cells, numbering N, and N, elements respectively.

Suppose axons from the cells of B, are distributed randomly among the cells of 3, in
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such a way that a given cell c,e‘B, sends a synapse to a given cell c,e‘B, with
probability z,,. 2, is called the contact probability for B, —B,.

If L of the cells in B, are firing, the probability that a given cell ¢, B, receives
synapses from exactly r active cells in B, is

L
(1‘) 2a(1 —zp) . (3.1.1)
Hence the probability that c, receives at least R active synapses is X where

L
XB. Lz = 3, ;) a1 -2

R-1 /],
=1-3 ( ) 2ha(1—2zp,) . (3.1.2)
r=0 \7
X(R, L, z,,) is called the formation probability for B, —B,.
Suppose the cells of B, receive synapses from no cells other than those of §, and
that they have threshold R. The probability that exactly s cells in B, are caused to
fire is

(1;72) X5(1—X)Ne=s, where X = X(R,L,z,,). (3.1.3)
Hence the probability that at least S fire is
N,
s (N2) X5(1— X)Ne-s, (3.1.4)
s=8\$§

It is of some interest to know how well represented the L active cells of B, are by
the cells of B, which they cause to fire. For most purposes, and all with which this
paper is concerned, it is sufficient that any change in the cells which are firing in ¥,
should cause a change in the cells of %B,. This is in general a complicated question,
but a simple and useful guide is the following. Suppose the L cells of B, cause
exactly R synapses to be active on each of § cells of ‘§,. Then the probability that at
least one of the L active cells in B, sends a synapse to none of the active cells in B, is
(1—R/L)S. If R/L is small, this is approximately

e~ BSIL, (3.1.5)

3.2. Quality of evidence from codon functions

Codon functions, introduced in §2.2, are associated with particular subsets of the
input fibres in the sense that knowledge of the values of the fibres in a particular
subset is enough to determine the value of the codon function. The larger the subset,
the smaller the number of events at which the function takes the value 1, so the
more specific that function is to any single event. Hence the general rule that r-codon
functions provide better evidence the larger the value of 7. This point is illustrated by
the discrimination theorem which follows, and by various estimators of the quality
of evidence to be expected from a codon function of a given size.
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It is convenient to use the event space X on fibres {a,, ..., ay} such that in each
event of X, exactly L of the fibres a; have value 1. The set of such events is called the
code of size L on {ay, ..., ay}. This involves no absolute restriction, but enables one to
deal only with codon functions which assign the value 1 to all the fibres in their parti-
cular subsets, rather than allowing any arbitrary (but fixed) selection of 0’s and 1’s.

Let X be the code of size L on {a,, ...,ay}, and let J be a set of events of X—for
example,J may be the set of events with the property 2. Let B, be the collection of
all subsets of {a,, ..., ay} of size r.

Definition. B, discriminates ¥ from the rest of X if given X e X, X ¢, there exists
a subset Ce®B, such that C < X but C ¢ Y, forany YeJ.

Theorem. Let § < X; then there exists a unique integer B = R(J) such that B,
discriminates § from X, all r > R.

Proof. If B, discriminates § from X, any B, s.t. B, > B, also discriminates J from
X. If can be discriminated by %,, then J can be discriminated by ,_,, some set
B®W,; of (r+ 1)-subsets, since there will exist a set W, of (r + 1)-subsets the set of
whose r-subsets contains 8,. Finally, § is always discriminated by 8, = {E|F € X}.
Hence there exists a unique lower bound R s.t. J is discriminated from X by all B, for
r > R.

This shows that for a given discrimination task, § from X, for which codon funct-
ions are to be used, the codons must be bigger than some lower bound B which
depends on .

Definition. R is called the critical codon size for J, and is written E.

An a priort estimate of the likely value of the evidence obtained from a codon can be
made by examining the number of events of various kinds over which the codon takes the

N
value 1. Let X be the code of size L on {a,, ..., an}: X contains ( L) events. Let A denote the

N
uniform probability distribution over X: i.e. A(E) =1 / ( L)’ all Ee€X; and for F< X
write A(§) = X A(E). Then A(§) simply measures the number of events in §.
Eed

The following results are useful.

3.2.1. Each input fibre is involved in L/N of the events in X (under the distribution A).

3.2.2. Let § = {E|(L— |E n F|) < p} where F is some fixed event of X, and p is a positive
integer. Thatis, & is the p-neighbourhood of F. Then the number of events in & is related to

N\ & L N-L
AE) = z .
®=() 562 (L)
3.2.3. Now suppose c¢ is an R-codon corresponding to an R-subset of the event F of
§3.2.2. The number of events £ such that E c § (of 3.2.2) and ¢(E) = 1 is related to

N\1 2 L—-R N-L
o= ;)" £ (225 (7 )

where € = {E| c(E) = 1}.
N\-1'/N—-R
saane=(2)" (V7
3.2.5. Suppose &, the p-neighbourhood of F, is a diagnostic class of X for which the
R-codon ¢ (corresponding to a subset of F) is used to calculate evidence. Let £2 be the

) , ¢ an R-codon.
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property of being in §: then the value of P(£2|c) that would be generated by the uniform
distribution A over X is given by

A(i}ﬂ(s)_(N—R -1 ﬁ ( L—R (N—L B
A(€) L—R) 220 L—R—x) " )—-pRsay,

where ¢ is an R-codon. Provided p is such that

(N - L) is large compared to (N - L)
i m
P p—1

(that is p is smaller than say (N — L)), pr < pr,ifp < (N —L)(L — R)/(N — R): so that for
the simple case where the diagnostic class is a p-neighbourhood of some event F, increasing
the codon size will, under any likely conditions, increase the expected quality of the
evidence.

3.2.6. In the more complicated case where c is an (R, 6)-codon intersecting F in exactly

S elements, we have
¥ (S)(L—S) (N—L—-R+S) (R—S)
;20 \%1 ry Z3 zy

AFnE) xf:ff:;f)

Min(R, L) —
A(€) $ (R) (N R)

=0 x L—x

§4. THE GENERAL NEURAL REPRESENTATION
4.0. Introduction

This section is concerned with the design of neural models for implementing the
theorems of §2. It is assumed that the exact nature of the classificatory units
required has already been decided: only the representation problem is dealt with
here. The discovery and refinement of new classificatory units is postponed until
§5, where it is discussed within the context of the models developed now.

The central difficulty with producing neural models for a specific function is that
there are many ways of doing the same thing: although the crucial averaging
operation probably has to be performed at exactly one cell, there are many ways in
which the supporting structure may vary. Both the form of the evidence, and the
exact conditions under which it is used, are undefined; so the rigorous derivation of
the basic neural models cannot proceed very far. This does not, however, commit the
discussion to unredeemed vagueness. The injection at strategic points of a little
common sense allows enough precision in the models to make their comparison in
§6 with the known histology of non-specific cerebral neocortex a useful venture.
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