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P r e f a c e  

Mastering modelling, and in particular numerical models, is becoming a 
crucial and central question in modern computational mechanics. Various tools, 
able to quantify the quality of a model with regard to another one taken as the 
reference, have been derived. Applied to computational strategies, these tools 
lead to new computational methods which are called "adaptive". The present 
book is concerned with outlining the state of art and the latest advances in both 
these important areas. Contributors belong to two communities : Applied 
Mathematics and Mechanics. 

Papers are selected from a Workshop (Cachan 17-19 September 1997) which is 
the third of a serie devoted to Error Estimators and Adaptivity in Computational 
Mechanics and started at Austin (16-18 October 1989) and Cracow (14-16 October 
1991). Cachan-Workshop dealt with latest advances in adaptive computational 
methods in mechanics and their impacts on solving engineering problems. It was 
centered too on providing answers to simple questions as : 

- What is being used or can be used at present to solve engineering problems ? 
- What should be the state of art in the year 2000 ? 
- What are the new questions involving error estimators and their 

applications ? 

Six distinct chapters define the main book topics : 
�9 Error estimators and adaptive computational methods for linear problems 
�9 Modelling error estimators and adaptive modelling strategies 
�9 Local error estimators for linear problems 
�9 Error estimators for non linear time-dependent problems and adaptive 

computational methods 
�9 Adaptive computational methods for 3D problems 
�9 Error estimators and mesh adaptivity for vibration, acoustics and 

electromagnetics problems 

We hope that these contributions provide answers to the basic questions 
addressed in Cachan-Workshop. 

P. Ladeveze and J.T. Oden 
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A B S T R A C T  

The procedures of error estimation using stress or gradient recovery were introduced 
by Zienkiewicz and Zhu in 1987 [3] and with the improvement of recovery procedures 
(introduction of Superconvergent Patch Recovery SPR) since that date the authors have 
succeeded in making these error estimators the most robust of those currently available. 
Very recently introduced methods of recovery such as REP (Recovery by Equilibrium 
in Patches) allow general application. 

In this paper the general idea of using recovery based error estimation in adaptive 
procedure of linear problems is explained through which the latest developments in 
recovery techniques is described. The fundamental basis of a 'patch test' introduced by 
Babuw et al [11]- [14] is explained and applied to the recovery based error estimators 
using both SPR and REP. 

1. I N T R O D U C T I O N  

Two types of procedures are currently available for deriving error estimators. They are 
either Residual based or Recovery based. 

The residual based error estimators were first introduced by Babuw and Rheinboldt 
in 1978 [1] and have been since used very effectively and further developed by many 
others. Here substantial progress was made as recently as 1993 with the introduction 
of so called residual equilibration by Ainsworth and Oden [2]. 

The recovery based error estimators are, on the other hand, more recent having 
been first introduced by Zienkiewicz and Zhu in 1987 [3]. Again these were extensively 
improved by the introduction of new recovery processes. Here in particular the , so 
called, SPR (or Superconvergent Patch Recovery) method introduced in 1992 by the 



same authors [41- [51 has produced a very significant improvement of performance of the 
Recovery based methods. Many others attempted further improvement [7]- [9] but the 
simple procedure originally introduced remains still most effective. 

In this paper we shall concentrate entirely on the Recovery based method of error 
estimation. The reasons of this are straightforward: 

(i) the concept is simple to grasp as the approximation of the error is identified as 
the difference between the recovered solution u* and the numerical solution uh; 
thus the estimate 

I1 *11- Ilu* - uhll (1) 

in any norm is achieved simply by assuming that the exact solution u can be 
replaced by the recovered one. 

(ii) as some recovery process is invariably attached to numerical codes to present more 
accurate and plausible solutions, little additional computation is involved; 

(iii) if the recovery process itself is superconvergent, it can be shown [5] that the 
estimator will always be asymptotically exact (we shall repeat the proof of this 
important theorem in the paper); 

(iv) numerical comparisons on bench mark problems and more recently by a 'patch 
test '  procedure introduced by Babuw et al [11]- [14] have shown that the recovery 
procedures are extremely accurate and robust. In all cases they appear to give a 
superior accuracy of estimation than that achievable by Residual based methods. 

It is of interest to remark that in many cases it is possible to devise a Residual method 
Which has an identical performance to a particular recovery process. This indeed are 
first noted by Rank and Zienkiewicz in 1987 [15] but later Ainsworth and Oden [16] 
observed that this occurs quite frequently. In a recent separate paper Zhu [17] shows 
that: 

(v) for every Residual based estimator there exists a corresponding Recovery based 
process. However the reverse in not true. Indeed the Recovery based methods 
with optimal performance appear not to have an equivalent Residual process and 
hence, of course, the possibilities offered by Recovery methods are greater. 

In this paper we shall describe in detail the SPR based recovery as well as a new 
alternative REP process which appears to be comparable in performance. 

With error estimation achieved the question of adaptive refinement needs to be ad- 
dressed. Here we discuss some procedures of arriving at optimal mesh size distribution 
necessary to achieve prescribed error. 



2. S O L U T I O N  R E C O V E R Y  A N D  E R R O R  E S T I M A T I O N  

In what follows we shall be in general concerned with the numerical solution of problems 
in which a differential equation of the form given as: 

sTDSu  q- b = 0 (2) 

has to be solved in a domain fl with suitable boundary condition on: 

o ~  = r (3)  

In above S is a differential operator usually defining stresses or fluxes as 

a = DSu  (4) 

where D is a matrix of physical parameters. 

We shall not discuss here the detail of the finite element approximation which can be 
found in texts [18]. In there the unknown function u is approximated as: 

u ~ uh = N o  (5)  

which results in approximate stresses being: 

ah = DSuh = DBfi (6) 

In above 

N = N ( z , )  i = 1 - 3  and B = S N  (7) 

are the spatially defined shape-functions. 

The solution error is defined as the difference between the exact solution and the 
numerical one. Thus for instance the displacement error is: 

e~, = u -  uh  (8 )  

and the stress error is 

er = e -  Ch (9)  

at all points of the domain. It is, however, usual to define the error in terms of a suitable 
norm which can be written as a scalar value 



= []~.[[ = f lu -  uhl[ (I0) 

for any specific domain ft. The norm itself specifies the nature of the quantity defined. 
The well known energy norm is given, for instance, as 

t 

llell E= [/n(o" -- ah)TD-Z (0 -- oh)dN] 2 (11) 

With the Recovery process we devise a procedure which gives , by suitable post- 
processing of uh and ah, the values of u* and / or a* which are (hopefully) more 
accurate and we estimate the norm of the error as: 

I1~11 ~ I1~'11 = I l u ' - u h l l  (12) 

In the case of energy norm we have: 

(13) 

The effectivity index of any error estimator is defined as: 

_ . .  I1~11-, 
I1,~11 (14) 

or in the case of recovery based estimators: 

o * =  I1~'11 
I1~!1 (15) 

A theorem proposed by Zienkiewicz and Zhu [5] shows that for all estimators based 
on recovery we can establish the following bound for the effectivity: 

I1,~11 o" I1~11 
1 -  [- '~ < < I +  ll;[ j 

In above e is the actual error (viz Equation (10) and (11)) and ~ is the error of the 
recovered solution i.e. 

I1~11 = ] l u -  u=ll (17) 

The proof of the above theorem is straight forward, if we rewrite Equation (12) as: 

I1~'11 = Ilu" - uhll = I 1 ( - -  u ~ ) - ( u -  u*)l l  = I1~ -  ~11 (18) 



Using now the triangle inequality we have: 

}fell--fill{ _< {le'{l _< {lell + }l~{l (10) 

from which the inequality (16) follows after division by Ilell. Two important conclusions 
follow: 

(1) that any recovery process which result in reduced error will give a reasonable error 
estimator and, more importantly, 

(2) if the recovered solution converges at a higher rate than the finite element solution 
we shall always have asymptotically exact estimation. 

To prove the second point we consider a typical finite element solution with shape- 
functions of order p where we know that the error (in energy norm) is: 

{lel{ = o(h~) (20) 

If the recovered solution gives an error of a higher order eg. 

{l~{l- o(v'+'~) {~l > 0 (21) 

�9 then the bounds of the effectivity index are: 

1 -  O(h '~) ~ O" < 1 + O(h ~) (22) 

and the error estimator is asymptotically exact i.e ; 

0 --~ 1 h --, 0 (23) 

This is a very important property of estimation based on recovery not generally shared 
by estimation of the residual type. 

3. T H E  S P R  R E C O V E R Y  P R O C E D U R E  

The SPR recovery is based on the assumption that in all element points fixed in space 
exist for which superconvergence occurs. 

For instance it can be shown that for many elements the unknown u is superconvergent 
at nodal points [19] and that the derivatives a are superconvergent on Gauss integration 
points [18, 20, 21]. These statements are not in general true for distorted, isoparmnetric, 
elements but hold well for simple, regular, one or two dimensional elements. Fuller 
discussion is available in [10]. 



Figure 1: $uperconvergent recovery of (a) tr and (b) u for bilinear and biquadratic ele- 
ments in regular patches 

The superconvergent recovery first establishes finite dement patches at fully con- 
nected, corner nodes and specifies in each element the superconvergent points. 

Figure 1 shows an example of two dimensional bi-linear and bi-quadratic elements on 
which superconvergent points for gradients tt (stresses), and displacement u are shown. 

In the SPR procedure we approximate within each patch, each component of the 
gradient, by a polynomial of order p + 1 for u and p for tr and make this approximation 
fit the superconvergent values in a least square sense. 

For the bi-linear elements we have/our  superconvergent points in two dimensions and 
a least square fit has to be used to find three constants of the linear expansion for tr. 

For the bi-quadratic elements we have similarly sixteen superconvergent points in 
two dimensions and for tt fit, in a least square sense, the six constants of a quadratic 
expansion for each component are necessary. 

However we can proceed differently assuming superconvergence of the function u itself 
at nodes. Now we have to pass the p + 1 polynomial which again is available for both 
bi-linear and bi-quadratic elements. Differentiation of the superconvergent u expansion 
will, presumably, yields again superconvergent expansion of tt and such methods has 
been used by Tabbara em et al [25] for elasticity problems. However, if the energy norm 
itself includes u values as well as derivatives, it is necessary to use the u expansion 
directly. 

This type of problems is typical of dynamics where acceleration has to be modified 
and such approximation have been used by Samuelsson et al [22] 



~ A  

u I 
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Figure 2: A one dimensional problem. Response to two element patches to exact solution 
of ~ and u one order higher than guaranteed by the polynomial p used (a) p = 1 linear 
elements (b) p = 2 quadratic elements 

It is important to note that  if the points which are being matched are exactly super- 
convergent then the approximation will again be superconvergent and hence solution 
giving gradients one order higher be automatically satisfied. This, as we shall see later, 
gives the fully optimal effectivity index as O* = 1 asymptotically. 

We note this superconvergence effect in one dimensional problems of Figure 2. Here 
we note that the solution for u is nodally exact ( as shown by Pin Tong in 1969 [23]) and 
hence both direct interpolation of ~ from superconvergent points or use of nodal u values 
gives identical answers. This example also shows why $PR gives much better answers 
near boundaries than previously used recovery by averaging of L2 projections [24]. 

The simple and direct SPR procedures here described have been variously augmented 
in attempts to improve their performance. Both Wiberg and Abdulwahab [7, 8] and 
Blacker and Belytschko [9] for instance added the constraint of satisfying overall equi- 
librium and/or  of stress boundary condition which may be known when using the least 
square fitting minimization. Such additional constraints will generally counter the re- 
quirement of superconvergence as the exact higher order polynomial solution will not 
fit the solution exactly. Thus although some improvement of accuracy can be achieved 
(usually near the boundaries where some of the exact stresses are known) the perfor- 
mance of recovery process from the point of view of error estimation deteriorates as 
shown by Babuw et al [14]. We thus strongly oppose the use of such devices. However 
many other recovery methods with sounder foundations may still exist; in the next sec- 
tion we describe one of these. 
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4. T H E  R E P  RECOVERY 

Although the SPR recovery has proved to work well generally, its logic for some appli- 
cation where superconvergent points do not in fact exist is doubtful. We have however 
sought to determine viable recovery alternatives. One of these, known by the acronym 
REP (Recovery by Equilibrium of Patches) will be here described. This procedure is 
presented in references [26, 27] with the second one describing a better variant. 

To some extent the motivation follows that of LadevSze [28, 29] who sought to estab- 
lish (for somewhat different reasons) a fully equilibrating stress field which can replace 
that of the finite element approximation. However we believe that the process derived 
in [27] is simpler though equilibration is only approximate. 

The starting point is the governing equation, Equation (2), written with the substi- 
tution of Equation (4) and in the finite element, Galerkin, approximation sense as: 

sTa + b = 0 (24) 

This in the finite element approximation is given as; 

/ Brahdft - / NrbdN-  frNTtdf~ - O (25) 

where the last term comes from the tractions on the boundary of the domain f~ which 
can, of course, represent the whole of the problem, an dement patch or only a single 
element. 

As is well known the stresses ah which result from the finite element analysis will in 
general be discontinuous and we shall seek to replace them in every element patch by a 
recovered system which is smooth and continuous. 

To achieve the recovery we proceed in exactly an analogous way to that used in the 
SPR procedure, first approximating the stress in each patch by a polynomial of appro- 
priate order a*, second using these to obtain nodal values of b* and finally interpolating 
these by standard shape-functions. 

The stress or gradient a is always a vector of appropriate components, which for 
convenience we write as: {oi} 
O" "~ 0" 2 

O'3 
(26) 

with 0.1 = 0.~, ,~ = 0.y and 0.3 = r~y in elastic two dimensional analysis for instance. 

We shall write each component of above as a polynomial expansion of the form: 

= (27) 
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where a / a re  unknown coefficients. 

For equivalence we shall at tempt always to ensure that the total smoothed stress it* 
satisfies in the least square sense the same patch equilibrium conditions as the finite 
element solution; i.e that 

np B T ~ h d~ ~' /ap B T ~ d~ ( 2 8 )  

where for convenient we write 

�9 �9 �9 ( 2 9 )  = 0 "  1 -~- 0"2 -~- O" 3 

try' = (li)Ttr~ ' 12 -- [0, 1, 0] etc (30) 

and 

tr~ - Pai (31) 

where P is polynomial terms and a i is the set of unknowns coefficients for describing 
the ith stress component. A similar decomposition is used for tr h. 

It has been found in practice [26, 27] that the constraint condition provided by Equa- 
tion (28) are often not sufficient to ensure a non singular minimization to obtain the full 
set of coefficients a ~ we therefore proposed in [27] that the Equation (28) be replaced by 

/ftp BTo'~ dn "~ /apBTtr[ - (/ftp BT(li) TPd~) a i (32) 

As above ensures also satisfaction of Equation (28) and merely enlarges the constrains 
set ensuring that each component of trh is equilibrated by the corresponding component 
of tr*. Further the imposition of the approximate equation of (32) allows each set of 
coefficients a i to be solved independently reducing considerably the algorithm cost (and 
here repeating the procedure used with success in SPR.) 

We minimize thus: 

II - (Hia i -  F~) T (H'a i -  F~) (33) 

where 

H~ --/n~ BT ( l i )TPd~ (34) 

and 
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Figure 3: A repeatable patch of arbitrary quadrilateral elements 

F : =  In, Bru~dfl= (/nl, BT1 i | l iBDdfl)  fi (35) 

resulting in 

a i = [HiTH']-IHiTF/p (36) 

The REP procedure follows precisely the detail of SPR near boundaries and gives 
overall an approximation which does not require the knowledge of any superconvergent 
points. The accuracy of both processes is comparable but we quote the new method 
here as it is our opinion that many other alternative recovery procedures are still pos- 
sible. 

5. A S Y M P T O T I C  BEHAVIOR AND ROBUSTNESS OF E R R O R  ESTIMA-  
TORS 

It is well known that elements in which polynomials of order p are used to represent the 
unknown will reproduce exactly any problem for which the exact solution is also defined 
by such a polynomial. Indeed the verification of this behavior is the essential part of 
the 'patch test' which has to be satisfied by all elements to ensure convergence [18]. 

Thus if we are attempting to determine error in a general smooth solution we will find 
that this is dominated by terms of the order (p + 1). The response of the patch to exact 
solution of this order will therefore determine the asymptotic behaviour when the size 
of the patch and at all the elements tends to zero. If that patch is assumed to be one 
of repeatable kind, the behaviour of the patch when subjected to exact solution of that 
order will show the exact finite element solution and the corresponding numerical solu- 
tion and establish the asymptotic error exactly. Thus any estimator can be compared 
with this exact value, and the asymptotic effectivity index can be established. Figure 3 
show such repeatable patch of quadrilateral elements which evaluates the performance 
for quite irregular meshes. 
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In Figure 2 we have indeed shown how true superconvergent behavior reproduces 
exactly such higher order solution and leads thus to an effectivity index of unity in the 
asymptotic limit. 

In the papers presented recently by Babuw et al [11]- [14] the procedure of dealing 
with such repeatable patches for various patterns of elements is developed. We shall not 
describe the details of the procedure here in which certain simplification are introduced 
to avoid some computational labour. However the basic process consists simply of 

(1) subjecting th~ patches to individual terms of the exact solution of (p + 1) order 

(2) computing the corresponding approximate, finite element, solutions and evaluating 
the exact error of these solution (by comparing it with the exact polynomial) 

(3) applying any error estimator we wish to test to the finite element solution and 
evaluating its effectivity index 8 

(4) determining the lowest (OL) and highest (Or) values of the effectivity for all possible 
combinations of the expansion terms used in the exact solution. This is simply 
accomplished by specifying a suitable eigenvalue problem. 

These bounds of the effectivity index are very useful for comparing various error 
estimators and their behaviour for different mesh and element patterns. However, a 
single parameter called the robustness index has also been devised [11] 

( 1 1) 
R = m a x  [1 + OLI + ll - Ovl, [1 - ~ 1  + ll + ~1 (37) 

A large value of this index obviously indicates a poor performance. Conversely the 
best behavior is that in which 

~L = ~U = 1 (38) 

and this gives 

R = 0 (39) 

In the series of tests reported in reference [11]- [14] various estimators have been 
compared. Table 1 below shows the performances of an Equilibrium residual based 
error estimator with the SPR recovery error estimator for a set of particular patches of 
triangular elements [13] 
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Table 1. Robustness index for the 
Equilibrated Residuals (ERpB) and SPR 
(ZZ-discrete) estimators for a verity of 
anisotropic situations and element patterns 
p = 2 .  

Estimator Robustness Index 
ERpB 10.2~ 
SPR (ZZ-discrete) . . . . .  0.02 

This performance comparison is quite remarkable and it seems that in all the tests 
quoted by Babuw at al [11]- [14] the SPR recovery estimator performs best. Indeed we 
observe that in many cases of regular subdivision when full superconvergence occur the 
ideal, asymptotically exact solution characterized by the parameter of Equation (38) is 
available. 

In Table 2 we show some results obtained for regular meshes of triangles and rectan- 
gles. In the rectangular elements used for problems of heat conduction type supercon- 
vergent points axe exact and the ideal result is expected for both linear and quadratic 
elements. It is surprising that this also occur in elasticity where the proof of superconver- 
gent points is lacking. Further, the REP procedure also seem to yield superconvergence 
(except for elasticity with quadratic elements which we believe is due to round-off errors 
encountered.) 

For regular meshes of quadratic triangles generally superconvergence is not expected 
and it does not occur for neither heat conduction nor elasticity. However the robustness 
index has very small values (R < 0.09 for SPR R < 0.1 for REP) and the estimators 
axe therefore very good. 

In Figure 4 very irregular patterns of triangular and quadrilateral elements are anal- 
ysed in repeatable figures. It is of course not possible to present here all tests conducted 
by the effectivity patch test. The results shown are however typical - others are given 
in [27]. It is interesting to observe that the performance of quadrilateral elements is 
always superior to that of triangles. 

In the recent paper of Babuw et al [14] the authors show that the alternative versions 
of SPR such as [7]- [9], such as those in [8], give a generally much worse performance 
than the original version especially on irregular elements assembled near boundaries. 

6. A D A P T I V E  R E F I N E M E N T  

Most error estimations can yield reasonable evaluation of the global error and of the 
error contribution of individual elements. However, once again, the local estimations 
are substantially improved by recovery procedures and the knowledge of such local error 
is particularly important during adaptive refinement (and derefinement) if the desired 
result is to be reached in a small number of solutions. 
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Table 2. Effectivity bounds  and  robus tness  of SPR and R E P  recovery e s t ima to r  for 
regular  pa t t e rns  of tr iangles or rectangles  with  linear and  quadra t ic  shape  func t ion  

(applied to heat  conduct ion  and  elasticity problems).  

LINEAR TRIANGLES AND RECTANGLES 
(BOTH HEAT CONDUCTION / ELASTICITY) 

Aspect SPR 
Ratio 

OL Ou R 
" 'i/1 " 1 .0000 'i.0000 0.0000 

1/2 1.0000 1.0000 0.0000 
1/4 1.0000 1 . 0 0 0 0  0.0000 
1/8 1.0000 1 . 0 0 0 0  0.0000 

1/16 1 . 0 0 0 0  1 . 0 0 0 0  0.0000 
1/32 1 . 0 0 0 0  1 . 0 0 0 0  0.0000 
1/64 1 . 0 0 0 0  1 . 0 0 0 0  0.0000 

REP 

0z; 0v R 
1.0000 1.0000 0.0000 
1.0000 1.0000 0.0000 
1.0000 1.0000 0.0000 
1.0000 1.0000 0.0000 
1.0000 1.0000 0.0000 
1.0000 1.0000 0.0000 

i 1.0000 1.0000 0.0000 

1/1 
1/2 
1/4 
i/8 
1/16 
1/32 
1/64 

QUADRATIC RECTANGLES (HEAT CONDUCTION) 

On ov R r eL ov 
1.0000 1 . 0 0 0 0  0.0000 I 
1.0000 1 . 0 0 0 0  0.0000 
1.0000 1 . 0 0 0 0  0.0000 
1.0000 1 . 0 0 0 0  0.0000 
1.0000 1 . 0 0 0 0  0.0000 
1.0000 1 . 0 0 0 0  0.0000 
1.0000 1 . 0 0 0 0  0.0000 

i R 
1.0000 1 . 0 0 0 0  0.0000 
1.0000 1 . 0 0 0 0  0.0000 
1.0000 1 . 0 0 0 0  0.0000 
1.0000 1 . 0 0 0 0  0.0000 
1.0000 1 . 0 0 0 0  0.0000 
1.0000 1 . 0 0 0 0  0.0000 
1.0000 1 . 0 0 0 0  0.0000 

QUADRATIC RECTANGLES (ELASTICITY) 

= i / i  

1/2 
1/4 
1/8 

1/32 
1/64 

OL OV R On OV R 
1.0000 1 . 0 0 0 0  0.0000 
1.0000 1 . 0 0 0 0  0.0000 
1.0000 1 . 0 0 0 0  0.0000 
1.0000 1 . 0 0 0 0  0.0000 
1.0000 1 . 0 0 0 0  0.0000 
1.0000 1 . 0 0 0 0  0.0000 
1.0000 1 . 0 0 0 0  0.0000 

0.9991 1 . 0 1 0 2  0.0111 
0.9991 1.0181 0.0189 
0.9991 1.0136 0.0145 
0.9991 1 . 0 0 3 0  0.0039 
0.9968 1.0001 0.0033 

! 0 .9950  1 . 0 0 0 0  0.0050 
0.9945 1 . 0 0 0 0  0.0055 

QUADRATIC TRIANGLES (ELASTICITY) 

1/1 
0L OU R 0L 0V R 

0.9966 1 . 0 9 2 9  0.0963 ' 0 .9562  1 . 0 5 0 3  0.0940 
1/2 0 . 9 9 6 6  1 . 0 9 3 1  0 . 0 9 6 5  0.9559 1.0481 0.0923 
1/4 0 . 9 9 6 7  1 . 0 9 3 7  0 . 0 9 7 0  0 . 9 5 3 5  1 . 0 4 5 5  0.0924 
1/8 0 . 9 9 6 7  1 . 0 9 4 3  0 . 0 9 7 6  0 . 9 5 2 2  1 . 0 6 0 3  0.1081 

1/16 0 . 9 9 6 6  1 . 0 9 4 6  0 . 0 9 8 0  0 . 9 5 1 8  1 . 0 6 6 6  0.1148 
1/32 0 . 9 9 6 6  1 . 0 9 4 7  0 . 0 9 8 1  0 . 9 5 1 7  1 . 0 6 8 4  0.1167 
1/64 0 . 9 9 6 5  1 . 0 9 4 7  0 . 0 9 8 2  0 . 9 5 1 6  1 . 0 6 8 8  0.1172 
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Figure 4: Irregular patterns of triangular and quadrilateral elements, repeatable subre- 
gions. 
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Tab le  3. Effect ivi ty b o u n d s  a n d  r o b u s t n e s s  indices for various i r regu la r  meshes  of 
t r i ang les  (a, b,  c, d)  a n d  q u a d r i l a t e r a l s  (e, f, g, h). 

LINEAR ELEMENT (HEAT CONDUCTION) 

Aspect SPR 
Ratio 

REP 

Oz Ov R i Oz Ov R 
0.9709 1.0145 0.0443 
0.9838 1.0167 0.0329 
0.8938 1.8235 0.9297 
0.9463 1.9272 0.9810 

a 0.9626 1.0054 0.0442 
b 0.9715 1.0156 0.0447 
c 0.9228 1.4417 0.5189 
d 0.8341 1.2027 0.3685 
e 0.9943 1.0175 0.0232 0.9800 1.0589 0.0789 
f 0.9969 1.0152 0.0183 0.9849 1.0582 0.0733 
g 0.9987 1.0175 0.0188 0.9987 1 . 0 1 7 5  0.0188 
h 0.9991 1.0068 0.0077 0.9979 1 . 0 0 6 2  0.0083 

LINEAR ELEMENTS (ELASTICITY). 

Oz Ov R I,, Oz O r  R 
0.940'4 1.0i09 '0.0741 0.9468 1 . 0 1 4 8  0.0707 
0.8869 1.0250 0.1520 0.9392 1 . 0 2 7 5  0.0915 
0.8550 1.6966 0.8415 0.8037 2 . 0 5 2 2  1.2486 
0.7945 1.2734 0.4788 0.7576 1 . 9 4 1 6  1.1840 
0.9946 1.0247 0.0301 ' 0.9579 1 . 0 5 0 8  0.0928 
1.0038 1 . 0 2 8 1  0.0318 0.9612 1 . 0 4 6 7  0.0855 
0.9959 1.0300 0.0341 0.9960 1 . 0 2 9 8  0.0338 
0.9972 1.0139 0.0168 0.9965 1.0122 0.0157 

QUADRATIC ELEMENTS (HEAT CONDUCTION) 

i b , 

C 

d I 

OL Ov R OL Ov R 
0.9443 1.0295 0.0877 0.9339 1.0098 0.0805 
0.8146 1.0037 0.2313 0.9256 1.0028 0.0832 
0.7640 1.0486 0.3553 0.9559 1.2229 0.2670 
0.8140 1.0141 0.2423 0.9091 1.2808 0.3717 

e " 0.9762 1.0053 0.0296 " 0.9901 1.0177 0.0276 
f 0.9691 1.0045 0.0363 0.9901 1.0322 0.0421 
g 0.9692 1.0004 0.0322 0.9833 1.0024 0.0195 
h 0.9906 1.0113 0.0207 1.0045 1.0261 0.0307 

QUADRATIC ELEMENTS (ELASTICITY) 

eL OV R - eL eU R 
a 0.9144 1.0353 0.1277 0.9197 1 . 0 2 4 4  0.1111 
b 0.7302 1.0355 0.4038 0.8643 1.0346 0.1905 
c 0.7556 1.1024 0.4163 0.8387 1 . 2 4 2 2  0.4035 
d 0.7624 1.0323 0.3430 0.8244 1.2632 0.4388 
e 0.9702 1.0102 0.0408 0.9682 1 . 0 0 5 8  0.0386 
f 0.9651 1.0085 0.0446 0.9749 1.0286 0.0537 
g 0.9457 1.0115 0.0688 0.9807 1 . 0 1 2 5  0.0321 
h 0.9852 1 . 0 1 4 1  0.0290 0.9996 1 . 0 5 2 2  0.0526 
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The degree and indeed the nature of the refinement will depend much on the criteria 
we wish to satisfy. The most commonly used procedure aims at achieving a specific 
percentage error T/in a global norm such as the well known energy norm and here we 
shall seek to achieve this in a manner we outlined originally in 1987 [3]. Many of the 
examples studied by the authors and others aim at satisfying; 

l lel l  _ (40) 

where ~/is the specified permissible error. 

The physical meaning of such a specified error level is not very dear, though approx- 
imately it aims at the RMS value of stress error being some specified fraction of the 
RMS value of stresses. 

A more logical aim perhaps would be to seek a specific value of error density: 

o'-~ ae ' ( 4 1 )  

where fie is the dement area. 

This gives in effect a specified value of the RMS stress error at all elements. This 
type of criterion has been discussed extensively by Ofiate and Castro [30] and generally 
requires a high degree of refinement. 

With specified total energy norm error we can at any stageevaluate both the dement  
error: 

Ilelln. (42) 

and the permissible total error: 

rTIluhll (43) 

As in general we shall aim at equal distribution of error between all dements and if n 
is the number of dements in a current analysis the permissible error in each element is: 

r T l l u , . l l l . .  ~ ( 4 4 )  

Now we can find the approximate size of the new dement v i sa  vis the old dement  
by assuming O(h ~) convergence and thus: 

h .~  (~lluhll/~�89 ~ 
hotd - Ilelln. (45) 
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Figure 5: A Poisson equation in a square domain (viz Zienkiewicz, Zhu 1992), contours 
of o. o. (b) 

Although the procedure is very crude ( as the subdivisions of course changes the 
dement number) in convergence, it is generally rapid and only one or two resolutions 
are generally needed to achieve final results. 

Two main procedures exist to obtain the refined mesh; these are either complete 
remeshing or subdivision. The former is more useful generally and in Figure 5 we show 
a linear example from reference [5]. Figure 6 show the convergence plot for various types 
of elements used in solving a Poisson type problem in a square domain. The details 
of the problem and of the refinement are given in reference [5] and we only show the 
progressive steps of adaptive refinements. In Figure 7 the convergence of the error is 
shown versus the degree of freedoms. The reader will observe the better performance 
of quadrilaterals in both linear and quadratic versions. 

7. C O N C L U D I N G  A N D  R E M A R K S  

In this paper we have summarized the achievements of an error estimation procedure 
based on recovery and have demonstrated on linear examples its effectiveness in adaptive 
refinement. We believe it is generally more efficient method than that based on residual 
computation. 

In Part II of this paper, we shall describe the application of the same procedure to 
non linear, plasticity, problems. 
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Figure 6" Adaptive mesh refinement for example of Figure 5, triangular and quadrilateral 
elements (a)(b) linear (c)(d) quadratic. Aim 10% error and 1% error respectively. 
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Figure 7: Convergence of adaptive refinement in example of Figure 5 
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ABSTRACT 

We present analytical and numerical investigation in the relationship of the recovery 
error estimator and the implicit residual error estimator. It is shown that analytically both 
error estimators are equivalent for one dimensional problems. Numerical study indicates that 
such equivalence also exist for two dimensional problems. 

1. INTRODUCTION 

The majority of the error estimators used in practical applications are either the 
residual type error estimators[l-13] which is computed by using the residual of the finite 
element solution explicitly (explicit residual error estimator) or implicitly (implicit residual 
error estimator), or the recovery type error estimator[14-20] which is computed by locally 
constructing an improved solution from the finite element approximation. The residual type 
of error estimator and the recovery type error estimator have always been derived by 
different methodologies in their original forms. The formation of the error estimators and 
their computational implementation are very much different. Researchers working on these 
error estimators have always been following different paths in the construction and the 
analysis of these error estimators, although some efforts were made to find the relationship 
between them[21-22]. 

Recently we have demonstrated that the recovery error estimator and the residual 
error estimator are related. We have shown that for both one dimensional and two 
dimensional model problems, the explicit residual type error estimators can be derived from 
recovery type error estimators by using specific recovery techniques [23]. In particular, 
when a recovery procedure involving local residual is used, the first residual type error 
estimator for one dimensional problems introduced by Babuska and Rheinboldt [1] was 
derived from the recovery error estimator. The popular explicit residual error estimator of 
Babuska and Rheinboldt for two dimensional problem [2] can also be derived from the 
recovery error estimator using average as recovery technique,. It was also shown that some 
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recovery techniques used in the computation of the recovery error estimator also forms the 
foundation of the implicit residual type error estimator. 

In this work we further investigate the relationship of the recovery error estimator 
and the residual error estimator, particularly the relationship of the recovery error estimator 
and the implicit residual error estimator. We will show analytically that for one dimensional 
problem the recovery error estimator involving local residual is equivalent to the implicit 
residual error estimator. We will also provide numerical evidence to demonstrate that such 
equivalence also exist for two dimensional problems. 

2. A RECOVERY TYPE ERROR ESTIMATOR 

We shall first introduce a recovery type error estimator. Considering the following 
two-point boundary value problem 

d (a(x) '~)  +t(x)u=/ x ~(0,1) (2.1a) 

\ with boundary conditions 

u(O) = O, u(1) = 0 (2.1 b) 

We assume that a, b and fare  sufficiently smooth and that 

0 < a o ~ a(x) < a, < oo 
x ~ [O,l] (2.10 

0 ~ b(x) ~ b, < a~ 

A subdivision of domain I 

O=X o <X l <X 2 <".<X N =I (2.2) 

divides I into N elements I, = (x,_, ,x, ) with element size 

h~ : x~ - X~_, (2.3) 

The finite dement solution 

M 

.1=-! 

M=RN+ 1 (2.5) 

can be obtained by standard Galerkin procedure [24], wherep is the order of the element. 
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The discretization error of the finite element approximation is defined as 

e = u -  u h (2.6) 

The error in the energy norm is written as 

Ilell a(xXu-u ,  + - ) '  (2.7) 

where ( ') represents the derivative. 

The recovery type error estimator for the two-point boundary problem is defined as, 

I1 = a(x u ' -u '~  (2.8) 

t 

where u" is the recovered solution. We note that the higher order term in (2.7) is omitted in 
the error estimator. 

t 

We shall now construct a recovery procedure to compute u" . Considering dement 
I, = [x,_, ,x, ] 

t 

* t Let u(,) = uho ) + ot~Z,, (2.9) 

where 

Z,(x)  = Z,(x,-L~h, )=  L,(~) ~ E[-1,1] (2.10) 

and Lp (,~) is the Legendre function of order p (same order as N.,). 

a, is determined by minimizing the following functional 

F(ot, ) = ~1(r ) " dx = I1, --~d a(x)u( 0.' + b(x)uh(,) - dx (2.11) 

The minimization condition of F(a~ ) gives 

d 
(2.12) 

where 
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d 
r = --;7|a(x)u'~o)+b(x)uhr o - f  

a x ~  , . 
(2.13) 

is the residual of u h in the element I ,  
t 

Once a, is known, u" can be readily computed from (2.9). 
w 

The global error estimator is obtained by substituting u* into I]~11, 

(2.14) 

The local, element error estimator has the form of 

nell:,, : f,, 

=~, a(xXa, z , ) ' d x  

(2.15) 

Remark 2.1. Starting from the recovery type error estimator (2.15), the explicit 
residual type error estimator of Babuska and Rheinboldt can be derived [15,23]. 

3. THE RELATIONSHIP OF *l'tl~ ERROR ESTIMATORS 

We shall, in the following, establish the asymptotic equivalence between the recovery 
type error estimator Ile-[[co R presented in Section 2 and the implicit residual error estimator 

discussed in [ 13] in the one-dimensional setting. We refer to reference [13] for additional 
details about the implicit residual type error estimator. 

By asymptotic equivalence we mean that there exist positive constants C~ and C2, 
independent of h, such that 

C, (1 + O(h))ll~llo)~ -< Ile-II(o < c, I1~11(,,~ (1 + O(h)). (3.1) 

We first consider a simple case of problem (2.1) with a(x) = 1, b(x) = O, and the 
exact solution is a polynomial of degree p + 1 (one order higher than the finite element 
space). We write the Legendre expansion of the exact solution on/i as: 

p + l  

u(x) = u(x,_, )N,_, (x)+ u(x, )N, (x) + ~ c,~ ~,~ (x), 
k = 2  

where 

x ~ I,, (3.2) 
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f 
l + ( x - x i ) l h ~ ,  

N, (x) = 1 + (x, - x) / I1,+,, 

O, 

x ~I~, 

X E I~§ 

otherwise, 

~,, (x)  = g,, (x, - ~ / I ,  ) = g, ( 0 ,  ~: ~(- l , l ) ,  

with 

~A(O=~/2k2-!s162 
and Lkq, the Legendre polynomial of degree k - 1. By orthogonality, we see that ca = 
(f, ~)/(O~,Og). It has been shown in [25] that in this special case, the finite element 
solution differs from the exact solution only by the last term, i.e., 

p 

uh(x )=u(x ,_ , )N ,_ , ( x )+u(x , )N , (x )+~_ ,c~k (x ) ,  x ~I , .  (3.3) 
k--.2 

We now examine the recovery element error estimator introduc~ in Section 2. 
Under the assumption a(x) --- 1 and b(x) = 0 when the exact solution is given by (3.2), we 
have 

.. = (j',. L 

We see that 

u~ +c,.,+,~," = u~ + z ; ,  .p§ Ci.p+l 

therefore, 

~ 2 p + l  (3.4) 
g~'i - -  C i .p+!  

and 

b l l , , ,  - a ,  ~ z , ~ - -  c ~ ' ' ' , , . , . ,  , ( ~ , . , , )  = , (u - u , )  (3 . s )  

It demonstrates that the recovery error estimator gives the exact error in this simple case. 
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Next, we consider the residual type error estimator discussed in [13] with the flux 
splitting of [7]. By splitting the flux at each node, the following local problem is solved. 

- ~ " = r  in I,, ~'(x,_l)= ~s, Ni_nrdx, ~'(xi)=-~lNirdx. (3.6) 

Note that the consistent condition 

~t N,-nrdx + ~s N, rdx= ~Tdx 

is satisfied. Therefore, the local problem is well post which has a unique solution up to a 
constant and has a unique solution for ~' .  The residual element error estimator is defined 
by 

f,, (3.7) 

When r = ct.p+~,.p+ I "  as we demonstrated earlier, it is easy to verify that ~' = -ct.p+ I ~..~'. 

Hence, the residual error estimator also yields the exact error in this case, i.e., 

(3.8) 

We summarize the result in the following theorem. 

Theorem 3.1. Let the exact solution be a polynomial of one degree higher than the finite 
element space, and let a(x) = 1, b(x) = 0. Then both the recovery and the residual (with the 
splitting) error estimators are exact. 

We now consider the general case. Again, we use the Legendre expansion of u: 

p+l 

u(x) = u(x,_, )N',_, (x) + u(x, )N, (x) + ~ c ,  ~, (x) + q(x). x ~ I,. (3.9) 
k=2 

with 

IIq'llo -< c (3.10) 

Where [[*n0 is the L: norm and ]*[p+2 is the order p+2 seminorm. We denote ut,  the 

Legendre projection of u by 

0, w v;, (3.11) 
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here V~ is the finite element space which consists continuous piecewise polynomials of 

degreep. From [25], 

p 

u, (x) = u(x~_, )N,_, (x)+ u(x, )Nj (x)+ ~ c ,  r (x), x ~ I,,  (3.12) 
k=2 

with c a = (u', ~ ). It is known that the difference between the finite element solution u~ 

and ut is superconvergent in the following sense [26]. 

(3.13) 

Where I1"11~| is the maximum norm and II.ll..... is the standard maximum norm up to p+ 1 

order of derivative. We now examine the residual term. 

r = -(a(x)u~)' + b(x)u h - f 
= -(a(x)u'~ )'  + b (x )u ,  - / + [ a ( x ) ( u ,  - u~ ) ' ] ' -  b(x)(u, - u~) 

= [ a ( x X u -  u,  ) ' ] ' -  b ( x X u -  u,  ) + [ a ( x ) ( u ,  - u h ) '1 ' -b(xXu, - u h) 

= ro + r i, 

(3.14) 

where 

ro = c~.,+, ( a ( x ) ~ , ,  ) '  = c,.,+~ . . . .  ( a ( x ) Z , ) ' .  

and 

r I = ( a ( x ) q ' ) ' -  b ( x X u  - u I ) + [ a ( x X u  I - u h) ' ] '  - b ( x ) ( u ,  - u h). 

We see that r~ is a higher order term compared with ro and more precisely, we have 

r = r o (1 + O(h)) .  (3.15) 

Therefore, the major part of the coefficient a~ is 

~t ( a ( x ) Z p ) ' r o  d r  

f,, [(a(~)z,)']' a~ = Ci,p+ I 

More detailed analysis shows that 

a, : c,.,+, ~/~P2+ i (l + o(h)). (3.16) 
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Hence, 

II l ,, = ot~ Il a(x)Z~dx 

,.,, a(x)(~.,+,) dx(l+O(h))2= a(x)c~,+,(~.p+,)~dxCl+O(h)) 2 (3.17) 

We see that the recovery type error estimator catches the leading error term c,.~t ~,'.p+t. 

In the case of residual error estimator, the local problem (3.6) can be decomposed to 
two problems, 

mZ,, r N, oa , 
# I 

(3.18) 

and 

-~,"=r,, inIi, ~t'(x,_t)=I~ N,_~r~dx, ~t'(x,)=-f~, N, rtdx; (3.19) 

Based on O-15), we have 

= ~o (1 + O(h)). (3.20) 

It is easy to verify that 

~'(x) =-c,.,.1 ~ 2 P +  ! (~_. (a(x)Z,)'-I, ' N~ (a(x)Z,)'dx) 

- -c,.,§ (a(x)Zp(x)+ ~,, N;a(x)Z,dx) (3.21) 

is the solution of (3.18). The first term in (3.21) is the leading error for 
second term is of higher order which can be seen from 

- -  I / I  . The 

~, N,'_,a(x)Z,dx = ~, N/_, (a(x)- ~)Z ,dx , 1 

Note that Zp is orthogonal to N,'_ ! . Therefore, 

~b' = -c,.p+i a(x)Zp (l + O(h)). (3.22) 

Taking into account of (3.20), we have 
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~' = -c,.,+, 42P2 + la(x)Z,  (, + O(h)) = a(x)c,.,,+,~:,., (, + O(h)). (3.23) 

Therefore, the residual element error estimator is 

(3.24) 

We now have the following theorem for the general case. 

Theorem 3.2. For the two-point boundary problem (2.1), when the exact solution has a 
Legendre expansion (3.9), the recovery error estimator and the residual error estimator are 
asymptotically equivalent in the sense that 

I1@,, = <J',, a(c,.p+, ~.~+, )2 dr)~ (1 + O ( h ) ) ,  (3.25) 

Ile-ll. . = (J',. v. (1 + O ( h ) ) .  (3.26) 

4. RECOVERY TYPE ERROR ESTIMATOR AND IMPLICIT RESIDUAL 
TYPE ERROR ESTIMATOR 

In this section, the relationship between the recovery error estimator and the implicit 
residual type error estimator, in particular the implicit residual error estimator proposed by 
Ainsworth and Oden [ 13], is investigated for two dimensional problems. 

Let f~ ~ R2 be a bounded polygonal domain and let ~T~ = cT~D LI ~ t ~  be its 
boundary. We shall consider the following problem 

- V �9 ( a ( x , y ) V u ) +  c ( x , y ) u  = f x, y e f~ (4.1a) 

with boundary condition 

u = O  on c~  o 

a -~  = g on 6T~u (4.1 b) 

We shall assume that a, c, f and  g are sufficiently smooth for our analysis and 

0 < a i < a ( x , y )  < a 2 
x ,  y ~. f l  (4.1c) 

0 < c~ <_ c(x,y) <_ c 2 
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Let u, denotes the finite element approximation of u. It was shown [13] that the 
discretization error e can be bounded from above as 

M 

Ilell -< )-". '7: (q,) (4.2) 
i=l 

where M is the number ofthe elements and for each element i 

rl2 (q, ) = r (q, ) + A2t (q, ) (4.3) 

with 

r (q,) = ~q al--q, �9 q,d~ (4.4a) 

A,(q, )= V.q ,  +r, dD (4.4b) 

Here 

r t = f + V . ( a V u h ) - c u  h (4.5) 

is the element residual. 
q~ is chosen such that r/~ (q,) is minimized. 

Assuming q~ = V ~ ,  rather than pursuing the minimization of ~2 (q~) directly to 

compute qh the minimization of r/~ (q~) is transferred into the boundary value problem: find 

q~ ~ H I ( ~ )  such that 

a, (r , w) = L, (w) - a, (Uh , W) + ~,~ W < n, �9 aVu, > ds co ~ H I (fl r ) (4.6) 

where a,(.,,o) is the bilinear form, L,(o) is the linear form, Jfl, is the boundary of 
element f~i and 

�9 .[(_, , I] 

Here ne is the outward norm to ~'2 t and a# is a linear function obtained by flux 

splitting. Obviously, in solving the boundary problem (4.6), the residuals are used as data. 
For details on how to perform flux splitting, we refer to [6] and [ 13]. 

The implicit residual error estimator then takes the form of 
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II~l. = I~1.'... = ~ ; ( q ,  (4.8) 

In the following, we shall construct the recovery type error estimators. Assume that 
aVu" is the recovered solution, and 

q, =aVu �9 - a V u  h (4.9) 

The recovery type of error estimator is written as 

Ile--ll= lle-II~.) 0.10) 

with 

2 �9 It" �9 

k (4.11) 

The following recovery technique is used in the computation of the recovered 
solution aVu' .  

RECOVERY PROCEDURE: The recovered solution aVu(,) is determined by the 

minimization of 

F : fc~ a(Vu('o - Vuh(,) )r (vu(~) - Vuh(,) ~ + ~ "2d~ 
_ . ) T  . 
- k  a(Vu(,)- Vuh(,)(Vuco-Vuh(,)) i~+~cj ,(-V~ (4.12) 

Immediately we observe that 

F , la-q, s q , d a +  , ( V s q ' + r ' )  2 

Compare with 

17, 2 (q, ) = 6~ (q, ) + A2~ (q, ) 
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~c~, 1 So., 1 )~ = a-q, .q, dfl+ - ( V . q ,  +r, dt2 
c 

(4.14) 

The equivalence of F and r/~ is evident. Therefore, the basic formulations used in 
the computation of residual type error estimator and the recovery type error estimator are 
equivalent. The methodology in deriving these error estimators and the computational 
implementation of these formulations are, however, completely different. 

The minimization condition o f f  is imposed over a patch of elements, as described in 
[16], in computing the recovered solution. The flux splitting is not required in the 
computation of the error estimator, which makes the recovery type error estimator 
computationaHy more efficient. The recovery proc~ure described here is similar, but not 
identical, to the one used by Wiberg et al. [19] and Belytschko et al. [20], which is a 
modification of the superconvergent patch recovery (SPR) technique originally proposed by 
Zienkiewicz and Zhu[ 16-18]. 

5. NUMERICAL STUDY OF THE EQUIVALENCE OF THE ERROR 
ESTIMATORS 

We have, in Section 4, established the equivalence relationship of r/~ and F .  The 

equivalence of the recovery error estimator lie-I] and the residual error estimator ]]e-I] R is 
however, not immediately apparent, because the procedures used in searching q~ to satisfy 

the minimization condition of r/~ and F are different. In this section we shall numerically 
study the equivalence of the recovery error estimator and the residual error estimator 
discussed in Section 4. 

We define 0 as the effectivity index of the error estimator, which is the ratio of the 
estimated error and the true error. Effectivity is used as a measure of the quality of the error 
estimator. The error estimator is said to be reliable if O is close to one while the finite 
solution converges to the true solution. 

From (3.1) we know that the equivalence of the recovery error estimator Ne-H and the 
residual error estimator [[e-[IR means that 

Ile-ll 
C, (1 + O ( h ) )  < <_ C 2 (I + O ( h ) )  . (5.1) 

In the numerical studies, we are interested in determining the value of C~ and C~ 
asymptotically. In other words, we are interested in the asymptotic equivalence of the error 
estimators. The numerical test will be performed over a patch of elements. 

Note that the value of C~ and C, are different dependent on the solution type and 
the mesh pattern. Further, for a mesh patch in the interior of the domain the values will be 
different from that at the boundary. Following assumptions are made in the numerical study: 
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a 

1 

/ /  
Regular Pattern 

j 
Chevron Pattern 

/ 

Union Jack Pattern Criss Cross Pattern 

Figure I. Mesh patterns used in the numerical study. 

A.,p~,-~.' I R,,~,~,," P.,,~r,, 

I c. I r 

III 
I/2 
114 
I/8 

1116 

111" 
I/2 
114 
I/8 

1116 

III  
I/2 
114 
I/8 

1116 

Laplace Equation, Au = 0 
C~vron'Paztern 'Union Jack Pattern ] Cri~ Cross Pattern 

i c,, .... i I . . . . . . . . . .  

0.885 
0.890 
0.893 
0.894 
0.894 

Linear Elements; Ful l  Residual Estimator 
1.22,5 1.732 1.:225 ..... 1.732 - 1.225 1.732 1.225 1.732 
1.225 1.732 1.225 1.732 1.225 1.732 t.225 1.732 
1.225 1.732 1.225 1.732 1.225 1.732 1.225 1.732 
1.22s 1.732 t . 2~  1.732 ~.22s ~.732 1.22s t.732 
1.225 1.732 1.225 !.732 1.225 t.732 t .225 1.732 

Linear Elements; Bubble Residual Estimator 
1.000 1.000 1.000 I.O00' " 1.0130 t.O00 I.O00 1.1306 
1.000 1.000 1.000 1.000 1.000 1.008 0.906 1.009 
1.000 1.000 1.000 1.000 1.000 1.008 0.781 1.046 
1.000 1.000 1.000 i.000 1.000 1.003 0.728 1.0~9 
1.000 1.000 1.000 1.000 1.000 1.001 0.713 1.109 

Une, ar Elements; Recovery ~timator " 
0.902 0.868 0.902 0.890 ' 0.902 0'~920 1.042 
0.904 0.861 0.914 0.895 0.915 0.920 1.049 
0.904 0.860 0.919 0.895 0.917 0.920 1.058 
0.905 0.860 0.921 0.896 0.921 0.920 1.062 
0.905 0.860 0.921 0.896 0.921 0.920 1.063 . . . . . . . . .  

Table I. Range of the effectivity index as a function of the aspect ratio for the four mesh 
patterns. Laplace Equation. Linear element. 
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Laplace Equation, ~ = 0 
, , ~ , ~ k  I e . ~ l . P , , =  Chev~ Pattern I Union '~k P."em I Criss Cross Patmm 

, , ,  

Quadratic Elements; Full Residual Estimator 
III 1.281 1.541 1.409 1.417 1.417 1.417 1.417 1.417 
I/2 1.139 I A87 1.407 1.419 1.407 !.423 !.271 1.724 
114 1.339 1.508 1.142 !.508 1.341 1.508 1.235 1.958 
!/8 1.306 1.558 1.306 1.559 1.306 1 558 1.227 2.047 
1116 1.294 1.575 1.295 1.575 1.295 !.575 1.225 2.078 

' Quadratic Elements; Bubble Residual Estimator 
' I l l  . . . . .  1.000 1 . 0 0 0  1.0(30 1.008 1.000 1.000 1.000 1.000' 

I/2 1.000 1.000 1.000 1.009 1.000 1.000 0.922 0.977 
114 1.000 1.000 1.000 1.004 1.0130. 1.000 0.796 0.98:5 
!/8 1.000 1.000 1.000 1.001 I.(300 1.000 0.733 0.995 
1116 1.000 1 .000  1 .000  1.000 1.000 I.(XX) 0.714 0.999 

Quadratic Elements: Recovery Estimator . . . . . . .  
III 0.9113 0 . 9 9 9  0 . 9 8 9  0.991 0.999 1.001 1.001 1.001 
I/2 0.988 0 . 9 9 7  0 . 9 8 4  0.998 0.998 1.002 1.005 1.013 
114 0.989 0 . 9 9 4  0 .981  0.995 0.997 1.003 I.OOS 1.029 
I/8 0.989 0 . 9 9 3  0.980 0.993 0.996 1.004 1.005 1.034 
1116 0.990 0 .993  0.980 0.992 0.996 1.004 1.005 1.035 

Table 2. Range of Ihe effectivity index us # function of Ihe aspect mio for the four mesh 
patterns. Laplace Equation. Quadratic r 

Laplace Equation. ~ - 0 

Cn" Ooss ratu~m 

Linear Elements: F~uivalence Constants 

Asi, ect-Rado 
Ill 
I/2 
I/4 
1/11 
1116 

R~overy/Full Residual  Recovery/Bubble Residual 
~, c, c, c, 

1.272 1.817 0.919 I.O42 
1.304 1.883 0.912 1.159 
1.317 1.977 0.879 1.354 
1.313 2.OI9 0.844 1.458 
1.313 2.032 0.829 1.49 I 
Quadratic Elements: Equivalence Constants 

Recovery/Full Residual 
Aspect-Ratio Co C2 

1.407 III 
I/2 
114 
I/8 
1116 

1.268 
1.237 
1.236 
1.238 

1.407 
1.687 
2.015 
2.296 
2.439 

Recovery/Bubble Residual 

CI Cz 
1.001 1.001 
1.029 1.099 
1.021 1.293 
1.010 1.409 
1.006 1.449 

Table 3. Equivalence constant for recovery type error estimator and residual type error 
estimator. Laplace equation. Criss cross pattern. Linear and quadratic r 
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Orxhotmpic Heat Conduction, V.  s  = 0 

Qu~t ic '  El~men.: ~nci~ M~=~al co~ts g, = iooo. J:, = 1 
Chevron Pattern Criss Cross Protein 

Angle of Orientation ' c, I c .  c~ I c .  
Full Residual Estimator . . . .  

1.292 I .$79 
3.657 12.285 
5.611 17.407 
1.002 25.903 
2.119 25.989 
4.607 16.134 
1.292 1.579 

Bubble Residual Estinudor . . . . . .  

O0 1.225 
1:5 1.349 
30 3.808 
45 1.292 
60 3.808 
75 1.349 
90 1.225 

oo 

t:eeO 1.000 -' 0.709 
o.sss 1.000 o.sos 
0.839 i.ooo 0.~1 
0.742 1.000 1.000 
0.934 1.000 0.941 
0.989 1.000 0.805 
1.000 1.000 0.709 

Recovery Estimator ' " 
0.980 0.998 I . |  
o.9s9 0.99,) 0.997 
0.997 I.OO1 0.997 
o.~3 o.994 o.~s 
0.991 0.998 0.997 
0.993 0.998 0.997 
0.996 0.997 1.005 . . . . . . . . . .  

2.079 
15.062 
14.229 
1.579 

14.229 
15.062 
2.079 

I.OO0 " 
0.989 
0.997 
1.000 
0.997 
0.989 
1.000 

1.038 
1.0.50 
1.026 
1.004 
1.026 
1.0.50 
1.038 

Table 4. Range of the effeclivity index as a function of the mesh-material 
orientation for the othotropic heat conduction problem. Chevron 
pattern and criss cross pattern. Quadratic element. 

Ortho~ropic Heat Conduction, V :-Ku = 0 
cris~ cross Panean ......... 

Quadratic Elcmcnu; Equivalen~ Commmts 
'" Xccovery/1~tl Residual l~covcrxtBubbie Residual 
Angle of Orientation C'I C2 

06 0.498 0.821 
15 0.069 0.740 
30 0.072 0.263 
45 0.635 0.773 
60 0.072 0.263 
7:5 0.069 0.740 
90 0.498 0.821 

Ct C2 
i.005 . . . . .  1.459 .... 
1.012 1.300 
1.001 1.089 
O.999 I .OO4 
1.001 1.089 
1.012 1.300 
1.005 1.459 

Table 3. Equivde..nce constant for recovery type error e.~imator and residual type 
error estimator. Orthotropic heat conduction problem. Crass cross pattern. 
Quadratic elements. 
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(1) The solution of the test problem is smooth. 
(2) The mesh patch considered is in the interior of the domain. 
(3) The mesh is locally periodic. 

Essentially, it means that the asymptotic solution corresponds to the local (/7+ 1) Taylor 
series expansion of the exact solution ( see, e.g. [27] for details ). Thus, following the 
procedure proposed by Babuska et al [27] we will be able to compute the asymptotic value 
of Ct and C 2 . We note that, as observed in [28], the conclusions obtained based on the 
periodic meshes also apply to the general meshes. 

The following problems are considered in the numerical study: 

(a) Au = 0 (Laplace equation) 

and 

(b) V �9 (KVu) = 0 (Orthotropic heat conduction equation) 

as reported in [2%25]. Where K is the 2 x 2 matrix with principal value Km ,K 2 and the 

principal axes oriented at f~" to the coordinates axes. 
The residual error estimator is computed in two different finite element space [27- 

28]. The corresponding error estimators are termed as full residual error estimator [[e-l[s.~ 

and bubble residual error estimator II~lR.s~, respectively. 

We study the performance of the error estimators by, as reported in Table 1 and 2, 
the values of the bounds C L and C U of the effectivity index (C L < 0 _< C U ) for recovery 
error estimator, full residual error estimator and bubble residual error estimator for problem 
(a). Here all the four mesh patterns shown in Figure 1 are tested. The value of the 
equivalence constant Ci and Cz are reported in Table 3 for Criss Cross pattern. We observe 
that both recovery error estimator and bubble residual error estimator are robust and C~, C 2 
are very close to one for ratio of the recovery type error estimator and the bubble residual 
error estimator II ll/kdlR. , ,. For ratio Iledl/ll ll . u, c, and C 2 are also asymptotically 

constants, although the full residual error estimator is lesss robust.. 
We present the results of problem (b) ~om similar studies for various value of the 

orientation of the principal material axes in Table 4 and Table 5. Here K! = 1000 
and K 2 = 1. The recovery type error estimator is found to be robust and the bubble residual 

error estimator is more robust than the full residual error estimator. Again it is observed that 
C~ and C 2 are very close to one for I[~[/lleq,.,,~,. However, For ratio Ile-ll/ll l,., u, c, and 

C 2 are functions of the orientation of the principal material axes. 

We conclude that the bubble residual error estimator is numedcaUy equivalent to the 
recovery error estimator and it's performance is also similar to the recovery error estimator. 
The full residual error estimator, on the other hand, although numerically equivalent to the 
recovery error estimator, but their numerical performances are not close. 
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Remark 5.1. We refer to [27-29] for the tests of the numerical performance of 
various error estimators. It was concluded that, in general, the recovery type error 
estimators are more robust than the residual type error estimators. 
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This paper deals with a posteriori error estimation for finite element approximations 
of the Stokes problem. The ultimate objective is to analyse how given error quantities of 
interest are influenced by the residuals, which are viewed as the sources of the numerical 
error. First, a global error estimator is proposed in terms of the norms of the residuals. 
Then, techniques to efficiently estimate these norms are advocated. This is followed by 
the investigation of a general approach to evaluate the numerical error in pointwise, local 
or global quantities of interest. 

1. I N T R O D U C T I O N  

Error estimation in computational processes has been a subject of interest for more 
than two decades since the pioneering work of Babu~ka and Rheinboldt [3]. We refer 
to Ainsworth and Oden [2] and Verffirth [19] for an extended account of the subject. 
In the particular case of the Stokes problem, several approaches have been investigated 
in [18,8,6,16,21 . 

The method we propose here belongs to the family of Implicit Error Residual Meth- 
oats. The errors in the velocity and pressure variables are driven by the residuals Tr 
and R~ in the momentum equation and the continuity equation respectively. The resid- 
uals represent the sources of error in the finite element approximations, and as such, are 
post-processed to provide meaningful error estimates in global "energy" norms. The eval- 
uation of ~ is shown to be exact, local and cheap. The calculation of the error measure 
Tr is however more demanding. A new technique has been developed which provides 
accurate approximations of ~ '  through a global but inexpensive iterative process. First, 
error estimates are obtained using spaces of low-order bubble functions as perturbations. 
These are then corrected by using enriched spaces constructed through an adaptive proce- 
dure. This approach avoids the major difficulty of prescribing proper boundary conditions 
for each subproblem in the Element Residual method [11,7,2]. The effectiveness of the 
methodology is demonstrated on various test cases of the Stokes problem with smooth 
and unsmooth solutions. 

In recent years, the success of a posteriori error estimation has prompted users to 
demand error estimates in quantities of interest other than the classical energy norm. 

"Director, TICAM, Cockrell Family Regents Chair in Engineering. 
t Graduate Research Assistant. 



44 

Works in this field have been undertaken by Babu~ka and Strouboulis [4] and Becket 
and Rannacher [10,9] in order to estimate and control the error by adapting the mesh 
parameters with respect to these quantities of interest. We extend the ideas to the Stokes 
problem and perform a preliminary investigation of the performance of such techniques 
to evaluate the error in pointwise, local or global quantities of interest. 

2. P R E L I M I N A R I E S  

Let f~ denote an open bounded Lipschitz domain in ~ " ,  n = 2 or 3, with boundary 
0[2. We consider the Stokes equations: 

- - A u T V p  = f in [2 
V . u  = 0 in 12 (1) 

with Dirichlet boundary condition: 

u = g, onOf~, (2) 

where u = u (z )  and p = p(x) are respectively a vector-valued and a scalar-valued 
function defined at point �9 = ( x l , x 2 , . . .  , x , )  in ~t. Since the Stokes equations can be 
derived as a linearization of the steady-state Navier-Stokes equations, the variable u and p 
are referred to as the velocity and pressure. The source term f = f ( x )  is a prescribed body 
force and g is a function defined on 0~  which must satisfy the compatibility condition, 

fo g"  n d s  = O. (3) 
f l  

In what follows, we restrict ourselves to the case of homogeneous boundary conditions, 
i.e. g = O on cOf~. This simplifies somewhat the theoretical analysis of the Stokes equa- 
tions, while retaining all their interesting features. We shall use standard notations for 
various Sobolev spaces of functions defined on f/. We begin by introducing the trial spaces 
of velocities V and pressures Q defined by: 

V - Ho~(~t) = (Ho~(~)) ", 

with corresponding norms: 

Ivl~ - / _  V v .  Vv d~, 
J ig  

Q = {q E L2(f~) �9 fa  q dx = 0}, 

Ilqll~ - fn q2 dx. 

We also introduce the bilinear forms a and b, 

Hl(fl) x Hl(fl) ~ ~; a(u, v ) =  fn Vu " V v  dr, a "  

b " H l ( f l )  • L2([2) --+ ~ ;  b(v, q) = - fa  qV  . v dx. 

The bilinear form a is the inner product associated to the norm ]'11 in V, so that 

= v .  v .  
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L e m m a  1 The bilinear form b is continuous on V • Q, and in particular, there exists a 
positive constant Mb such that 

b(v,q) < Mb [vl, Ilqllo, Vv E V,Vq E Q, 

where Mb = x/rff, where n is the geometrical dimension of the problem. 

P r o o f  Let v and q be arbitrary functions in V and Q. Since V.  v E Q, we have: 

b(v, q) < IIV. vii o [[qilo. 

It is now sufficient to show there exists Ms such that {iv, vii0 < Mb Ivl,, Indeed, 

IIV. ~110 = o~, ] dx < , \ Oxi ] dx < n V v  " V v  dx = , I~1" _ _ , .  (4) 
i--1 

so that [IV. vii 0 < v/~[v[t and Mb = x/'-~. 
Moreover, it can be shown that b satisfies the standard LBB condition (see Girault and 

Raviart [12]), i.e. there exists a constant fl > 0 such that 

sup Ib(v, q)l > ~ Ilql[o, Vq E Q. (5) 
e v \ { 0 }  

The Stokes problem is now reformulated in the equivalent weak form: 

For f E V' given, find (u, p) E V • Q, such that 
~(,~, v) + b(~,v) = ( f ,  v), w ~ v 

b(u, q) = O, Vq E Q 
(6) 

Extensive results concerning the existence, uniqueness and regularity of solutions (u, p) 
in V • Q of the Stokes problem can be found in Girault and Raviart [12]. 

Let V h C V and Qh C Q denote finite element spaces, possibly h-p finite element 
spaces [14], of the spaces V and Q. Approximate solutions to problem (6) are then 
obtained by solving the following system of discrete equations: 

For f E V' given, find (uh,ph) E V h x Q~, such that 
a(uh,v) Tb(v ,  ph) = ( f  ,v) ,  Vv e V h 

b(uh, q) = O, Vq E Qh 
(7) 

Let us consider a pair (uh,ph) E V h x Qn, not necessarily a solution of (7). The 
numerical error (e, E) E W x Q in (uh,Ph) is defined as 

(e ,E)  = (u,p) - (uh ,ph) .  (8) 

Then, substituting u and p in (6) by ~th + e and Ph + E respectively, we show that the 
distribution of (e, E) is governed by the system of equations: 

a(e, v) + b(v, E) = T<.'~(v), Vv e V 
b(e, q) = R~(q), Vq E Q (9) 
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where the linear functionals R~' �9 V ~, ~ and R~, �9 Q ----+ 

n r ( , , )  = ( n r , , , )  - ( l , , , ) - a ( , , h , , , ) - b ( , , , p h )  
~ ( q )  = (Ti,~, q) = - b(uh,  q) 

are respectively the residual in the momentum equation and the residual in the con- 
tinuity equation. The residuals R ~  and 7~ are viewed as the sources of error. Indeed, 
whenever they are zero, the numerical error is zero as well. We show in the next section 
how the residuals can provide reliable global error estimates in specific norms. 

3. G L O B A L  E R R O R  E S T I M A T I O N  

The objective here is to relate the residuals to the numerical errors expressed in some 
global norms. We recall (see [12, p.221) that the space V = H01(fl) can be decomposed 
into the direct sum V = J ~ J s  where the spaces J and j l  are defined as: 

J = { v 6 _ V ;  b(v ,q)=O,  Vq6_Q}, 

.r" = (~ e v ;  a(~,w) = 0, v,o e J} .  

The space j l  is the orthogonal complement of J with respect to Hol(fl) for the inner 
product a(., .). It follows that the error in the velocity variable e 6_ V can be uniquely 
decomposed into a sum of two vectors, e~ 6_ J and e l  6_ j l ,  such that e = e~ + ex. 

We naturally measure the error (e, E) in the usual global norm 

I](e, E)]I 2 - l e l~  + I[E}102 - ledl~ + le-]~ + IIEII~. (10) 

and consider the following norms for the residuals "R.~ and 7~ 

IR~ (v)l IR~ (q)l (11) 117Z~ll. -- sup ~ ,  II~ZlI. = sup . 
v e v \ { o }  Ivl~ q e  Q\{o} Ilqllo 

L e m m a  2 With the above definitions and assumptions: 

lexl~ < 117~11. < Mb lexl~. (12) 
P r o o f  From the definition of the residual 7~,  we have, for all q 6_ Q 

R~(q) = b(e, q) = b(e.t, q) < Mb lexla Ilqllo. 
The upper bound in (12) follows as 

~ ( q )  Mb lexl~ Ilqllo 
IIn~ll .-  ~up < sup < Mble . lx .  

q e Q Ilqllo q ~ Q Ilqllo - 

The divergence operator is an isomorphism of J J" onto Q, so the function V . e •  belongs 
to Q and therefore 

IIV" e• -- - 7 ~ ( v .  e~) < I1~11. IIv" e-IIo 
which yields IIV" e~llo -< I1~11.. From Girault and R~vi~rt [12, p.24, p.81], we obtain 
the lower bound in (12) as 

levi1 _< IIv-e~lfo _< II~ill.. 
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L e m m a  3 With the above definitions and assumptions, we have: 

(1) 
(e) 
(s) 

leala _< 117~TII.. 
117~TII. <_ lel~ § Mb IIEIio. 

IIEIIo _< 117~TII, § levi, ,  

P r o o f  

1. By simple algebra, we get: 

leal~ = a(ed, ed) = a(e, ea) = 7"gr~(ed) -- b(ed, E) -- ~'~(ea) <_ ]ITeTil. [ealz, 

which shows (13). 

2. We also have 

(13) 
(14) 
(1~) 

sup R~'(v) < sup a(e,v) +b(v,E) 
v e V  Ivlx - v ~ V  I~1, 

a(e, v) b(v E) 
sup ~ + sup ' < lel, + Mb IIEIIo. 

v ~ Y  Ivl, v ~ Y  ivl, 

3. The upper bound for the error in the pressure variable follows from the inf-sup 
condition on the bilinear form b, i.e. 

b(v,E) 
311EJlo < sup _< sup 

- . e v  i~J~  ~ e s "  
n';(v) 

_< sup ~ + sup 
v ~ J l  [vii v ~ J l  

< 117~TII. + le• 

b(v, E) ~'~(v) - a(e, v) 
~1~ < sup v E J•  Ivl~ 

a(e, v) T~'~(v) 
~i;  -< sup ~ +  ~up 

v e V Iv], v ~ j.t. 

a (e i , v )  

T h e o r e m  1 Let (e, E) be the numerical error in an approximation (uh, ph) of the Stokes 
problem. Then there exist positive constants C1 and C2 such that 

c ,  II(e, E)I! 2 _< I[~XII ~. § 117~11~. <_ C~ II(e, E)II ~ (16) 

where C, and C2 depend only on the constants/3 and Mb respectively: 

Cl - I/2min(l,/~4), C2 = max(2 -I- M~,2M~). (17) 
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P r o o f  The proof of this theorem directly follows from Lemma 2 and Lemma 3. In 
particular, the lower bound is obtained from inequalities (12), (13) and (15), while the 
upper bound is derived from the inequalities (12) and (14). 

This theorem is similar to the Theorem 6.1 introduced by Ainsworth and Oden in [2]. 
It shows that the global quantity IITr 2. + I[TCr i12. is equivalent to the global error measure 
II(e, E)II 2. We emphasize that it represents a meaningful quantitative global estimate as 
long as the constants CI and C~ do not take values far from one. Here the constant (72 
takes the value 4 in two-dimensions and 6 in three-dimensions since Mb = v/'n. Therefore, 
the accuracy and robustness of this error estimate essentially depends on the value of 
C1, a fortiori, fl, which depends itself on the problem in consideration. Moreover, we 
emphasize that such a global result does not provide any reliable information about the 
local (elementwise or pointwise) error, as we know that the error can propagate far away 
from their sources/r and ~ .  This actually motivated the work undertaken by Babu~ka, 
Strouboulis and co-workers [4] and Oden and Feng [15] on pollution error in order to esti- 
mate the contributions of the residuals to the error outside the region of interest. However, 
the quantity l i n t  II + ,n ll information about the location and intensity of the 
sources of errors, and as such, should be used to determine local refinement indicators. 

4. E V A L U A T I N G  N O R M S  OF R E S I D U A L S  

This section is devoted to the evaluation of 117~11, and 117~,11.. The objectives are, on 
one hand, to minimize the cost of the computations while retaining a certain accuracy, 
and, on the other hand, to obtain elementwise contributions of these quantities. 

4.1. Residual  in the cont inui ty  equa t ion  
The residual 7~, gives us information about whether the discrete velocity Uh does or 

does not satisfy the incompressibility constraint. This is stated in the next lemma, where 
the norm of the residual 7"r is expressed in terms of the divergence of Uh. 

L e m m a  4 Let uh E V h be the discrete velocity of the Stokes problem. Then, 

IITeT, II. = I IV. ~hllo. (18) 
P r o o f  From the definition of the residual ~ ,  we have, for all q in Q: 

-" --b(uh, q) = [_ qV . uh dx < IIV" u~ll0 Ilqll0. 7~(q) 
J l /  

It follows that 

IIT~,II. = sup T~7̀  (q) 
O ~llq,o < ~up qE q e Q  

IIV. ~11o Ilqllo < IIV. ~11o. (19) 
I l q l l o  - 

We also have 

IIV. ,,,110 = n ~ ( v .  ~,) < IIn~ll. IIV. ~,110, 

that i~. IIV. ~',110 < IIn~ll.. and the equality (18) has just been proven. 
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The result of Lemma 4 is remarkable in the sense that the evaluation of [IT~7,[I. is 
both exact and cheap, as it is equivalent to compute the L~(f~)-norm of the function 
V . u h .  In addition, it is straightforward to decompose IInT, II. into a sum of elementwise 
contributions as: 

II~Xll ~, = IIV. uhll~ = ~ IIV. uhll~,K = ~ fn 
K K K 

IV" uhl 2 dx 

where ~"]~K represents the sum over all the elements in a finite element partition. 

4.2. Res idual  in the m o m e n t u m  equa t ion  
Simple considerations reveal that the evaluation of [[7~' [[. is neither cheap nor exact. At 

best, one obtains approximations of it. There exist basically two approaches to compute 
such approximations. The first one always delivers lower bounds on [[7~'1[ , while the 
other provides upper bounds. Here we only consider the former, which is referred to as 
the conforming method. 

4.2.1. Exac t  evaluat ion 
Since V is a Hilbert space, the Riesz Representation Theorem tells us there exists a 

unique element r in V which satisfies: 

a(~,, ~) = n~'(~), W e V, (20) 

as well as: 

[~o[1 = y/a(~, ~o) = ][n~[I.. (21) 

In other words, the residual ~ '  E V' is identified with an element ~o E V of equal 
norm. Moreover, the function ~p gives information about the local intensity of the residual 
7~',  such as: 

i i n r l l .  ~ = i~1 ~ = f a  
K K ir 

However, the problem (20) cannot be solved numerically due to the infinite dimension 
of the space V. 

4 .2 .2 .  Conforming  finite e lement  app rox ima t ions  
The objective here is to construct a finite element subspace ~h C V, hence the label 

conforming method, in which to approximate problem (20), that is, to find ~o h E ~h  such 
that: 

a(~h,~) = n~'(~), W e V h (22) 

We show that the norm of ~o h is always smaller than the norm of R.~' and that both 
quantities are indeed equivalent. First, we observe from (20) and (22) that: 

a(~ - ~h, ~) = O, W e P~. (23) 
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In consequence, ~o h is simply the orthogonal projection of ~o onto the space V~ with 
respect to the inner product a(., .) associated to I'lt. It follows that: 

I~,^1~ + I ~ -  ~1~ = I~,1~, (24) 

which yields the inequality J~o - ~o~J~ < I~l~. Such a result can be sharpened, as stated 
in the next lemma. 

L e m m a  5 Let r e V and ~Ph e ~h satisfy (gO) and ( ~ )  respectively. If  ~p r O, let V h 
be such that ~Ph ~ O. Then, there exists a constant a, 0 < a < 1 such that: 

I~  - CAI ,  _< o-I,al~ �9 (25) 

P r o o f  Since I~,hl, # 0, I~, - w~l, i~ strictly less than I~,1, by (24). 

T h e o r e m  2 Let ~p E V,  ~Ph E ~h and ~h  satisfy the conditions of Lemma 5. Then, 
there exists a constant a, 0 < a < 1, such that: 

~i - a  2 II'rr < I~,,1~ < I 1 ~ 1 1 . .  (26) 

P r o o f  The upper bound follows from equality (24). Indeed, I~1, _< I~1, -- II~TII.. Now, 
making use of (24) and (25), we have: 

I~1~-  I~,,,1~ = I ~ -  ~1~ A ~,~ I~'1~, 

that  is 

(1  - 0 .2) I~o1~ < I~',,1~, (27) 

from which the lower bound follows. 
Theorem 2 shows that the quantities I~Phll and 117~]]. are equivalent. However, ]~hll 

provides a valuable approximation of II~ll ,  ~ long as ~ / 1 -  0*2 is close to one. The 
constant 0. clearly depends on how rich the finite element space ~h  is, but, at the same 
time, we point out that even a crude approximation ~o h of ~ may be sufficient to obtain 
an acceptable estimate of IIn~ll,. For instance, by committing a relative error 0. = 40% 
in approximating ~p, we still approximate II~ll ,  with an effectivity of 91.6%. 

The finite element space ~h  has to be chosen so that the action of the residual 7 ~  is 
different from zero for at least one element of ~h .  In the case where the pair (Uh, Ph) is 
the solution of problem (7), we observe that the residual vanishes on V h, that is: 

~ ' ( . )  = o, v .  E v h. (28) 

It follows that the space ~h  should be larger than V ~ itself. It is then constructed by 
enriching V h with elements of a space W h, called space of perturbations, which satisfies 

W h :~ {0}, W h C V, V h n  w h =  {0}. (29) 
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so that V h C V h =  v h +  W h C V.  Since V h C ~h,  problem (22)is more expensive to 
solve than the original one. At this point, we want to reduce the cost of the computations 
by taking advantage of the fact that the residual vanishes on the space V h. In other words, 
we would like to approximate 117~11. by the norm of the function q)n ~ W h satisfying 

~(r  = ze~'(~), w e w ~. (30) 

Following Bank [5], we suppose that a Strengthened Cauchy-Schwartz Inequality holds 
with respect to the spaces V h and W h, in the sense that there exists a positive constant 
7 < 1 such that for all vn ~ V h and for all Wh ~ W h, 

a(Vh, wh) <_ 7 IVhll Iwhl,, (31) 

which implies, using Young's inequality, that 

Ivh + wnl~ -- Ivhl~ § 2~(vh, w h ) §  Iwhl~ ~> IVhl~- 2~ Ivh}, IW~}, + IW~I~ 
> IVhl2~ -Ivhl~l - 7 2 IWh[~ + [Wh[21 = (1 -- 7 2) [Wh[~. 

Thus, 

IVh + Whll > r  -- 7 2 IWhll . (32) 

The Strengthened Cauchy-Schwartz Inequality allows us to relate the accuracy of the 
approximation I~hl~ ~ I~Ohlx to 7, the cosine of the angle between the spaces V h and Wh: 

T h e o r e m  3 Let ~p E V,  ~o h E ~h  and ~h  satisfy the conditions of Lemma 5. Let 
the strengthened Cauchy-Schwartz inequality (3I) hold for the spaces V h and W h, where 
V j' = V h + W h and Tt'~ = 0 on V h. Let q)h E W h satisfy (30). Then 

X/( 1 --a2)(  1 '3'{i IIn~ll. < IChl, < IlZe~ll.. (33) 

P r o o f  The upper bound is readily obtained as W h C V. In order to prove the lower 
lit ,It ,It bound, we write ~h = cp~ + r  where ~h E V h and 'kh E W h. Then, from equation (22), 

we have, since ~p~ E vh:  

a(~'h, ~7,) = ~ r ( ~ )  = 0, (34) 

and from (22) and (30), we get: 

~(~'h, ~ )  = T~(r = a(~h, r  (35) 

Hence, 

< Ir ICZI,. (36) 
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Applying the strengthened Cauchy-schwartz inequality to solution ~Ph yields: 

r  ' . . . .  ' " " Ir < l ,h + ' r  = I ' 11, (37) 
which, combined to (36), gives 

< I'r I'r _< 
1 

~1 ,3,2 I%1, I~,,I,, 

that is, 

1 
[~hll <- ~1 "  @2 I',r (38) 

Then, using inequality (27) shown in Theorem 2, allows us to write: 

1 I _ / .  I (39) 

The lower bound is proved. 
The above theorem shows that the accuracy of the approximation Ir ~ I~l, only 

depends on the constants a and 7. 
We recall that a depends on the richness of the space ~h, or W h. The main difficulty is 

to construct W h so that the approximations Ch E W h deliver reliable estimates of 117g ll. 
at the lowest cost. In h-p finite element methods, the perturbations can be conveniently 
constructed from layers of piecewise polynomial basis functions involving monomials of 
degree between p+ 1 and p+q, q > 1, where p is defined as the maximal degree of the basis 
functions in V h. Obviously, in two-dimensional problems, such basis functions consist of 
edge and/or interior bubble functions. In three-dimensional problems, they would consist 
of edge, face and/or interior bubble functions. One question one has to answer is "what 
is the best value for q ?" Actually, this is problem dependent, and one should consider a 
method in which the value of q is increased as needed, 

We recall that 7 represents the angle between V h and W a. Its value is directly related 
to the choice of the shape functions used to construct the basis functions of W ~ and W h. 
Here we use hierarchic shape functions based on integrated Legendre polynomials (see 
Szab6 and Babu~ka [17, chapt. 6]), which satisfy the orthogonality property with respect 
to the inner product a(., .). 

Meanwhile, the cost in solving (30) is controlled by the dimension of W h. However, 
the bilinear form a(., .) is symmetric and positive definite so that the finite system (30) 
can be cheaply solved using the iterative Conjugate Gradient method (CG). Moreover, we 
emphasize that the solution does not have to be highly accurate as shown by Theorem 2, 
so that it is usually sufficient to perform a few iterations. 

Finally, conforming methods always deliver lower bounds on Tr In order to construct 
upper bounds, one has to approximate problem (20) in a space larger than V. This lead to 
the equilibrated residual method developed by Ainsworth and Oden [1,2] or Ladev~ze and 
Leguillon [13]. In this approach, the global problem (20) is decoupled into a collection of 
local problems, usually constructed on each of the elements in the partition. Our present 
conforming method avoids the major difficulty of prescribing boundary conditions for each 
subproblem typical of the equilibrium methods at comparable cost. 
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5. E S T I M A T I O N  A N D  C O N T R O L  OF  E R R O R  Q U A N T I T I E S  OF I N T E R -  
E S T  

Let L denote a linear functional defined on the product space V • Q. We suppose 
that we are interested in the error quantity L(e, E) E ~ ,  which we want to estimate 
and control. For example, L(., .) may represent something more localized than the global 
estimate (16), such as the error in u and p or their gradients at a point z0 E l~ or along 
a curve F C ft; e.g. L(e, E) = E(xo) or L(e, E) = ~ e. nds, etc. We cite more examples 
later. The main objective is then to relate L(e, E) to the sources of error 7 ~  and T~; in 
other words, we would like to find linear functionals w m and w c, if they exist, such that 

L(e, E) = w'~(7"t'~ ) + wr (40) 

These functions are viewed as influence functions as they indicate the influence of the 
residuals on the quantity L(e, E). They are defined on the bidual of V and Q, and since 
these spaces are reflexive, we have: 

w m E V  and w ~ E Q .  (41) 

This is understood in the sense that for each wm E V" and each w ~ E Q", there exist 
D'~ E V and ~ E Q respectively such that 

(w 'n, T~'~)V,, • V, = (n'~, ~'n)V,• and (w~,n~)Q,,• = (nl ,  ~)Q,• 

By identifying Dm and &~ with w"  and w r respectively, the relation (40) becomes 

L(e, E) = 7~'(w m) + T~,(wr (42) 

Substituting for the terms nr(  and 7~,(w ~) in (42) using (9), rearranging and 
assuming a symmetric, we finally get 

L(e,E)  = aCe, w" ) + b(wm, E) + b(e,w ~) (43) 

= a(w' ,  e) + b(e, w ~) + b(w", E). (44) 

The influence functions can thus be obtained as solutions of the global dual problem: 

Find ( w ' , w  ~) E V x Q, such that 
a(w m,v)+b(v ,w  c)+b(w re,q) = L(v,q), V(v,q) E V  x Q  

(45) 

which is equivalent to the generalized Stokes problem" 

Find (w'~,w c) E V • Q, such that 
a(w m, v) + b(v,w ~) = L(v, O), Vv e V 

b(w re,q) = L(O, q), Vq e Q 
(46) 

It readily follows that the functions w m and w c do exist and are unique as L(v, O) E 
V' and L(O,q) E Q' (see Girault and aaviart  [12]). Obviously, (46) cannot be solved 
exactly for the functions w m and w c in the general case. At best, one seeks numerical 
approximations of w" and w c. This raises two questions, which should be simulatenously 
investigated: 
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1. How do we effectively calculate finite element approximations of w '~ and w ~ ? In 
particular, is it necessary to solve a global problem ? 

2. How do we utilize the relation (42) to derive elementwise refinement indicators in 
order to control the error quantity L(e, E) ? 

From a computational point of view, we observe that the cost involved in approximating 
w "  and w c in the spaces V h and Qh is almost negligible, as the resulting finite system 
has already been factorized once to calculate the solution (uh,ph). The cost therefore 
reduces to perform one backward and one forward substitutions. However, we recall that 
the residuals are identically zero on V h x Qh whenever the pair (uh, ph) is the solution of 
the finite system (7). Therefore, if we approximate w "~ and w c by w~ E V h and w~, E Q~, 
we obtain that 

Ti.~(w~) = 0 and 7~(w~,) = 0, (47) 

which implies 

L ( e , E )  = 'R'~(w m) + n~,(w c) ~ "R~(w~') + n~,(w~,) = O. 

In this case, the quantity L(e,  E) would be estimated by a quantity which proves to be 
0. This reveals that w"  and w c should be approximated in spaces of greater dimensions 
than V h and Qh. 

One strategy, proposed by Becker and Rannacher [10], consists in using (47) such that 

L ( e , E ) = T~'~ ( w ~ ) + Tt ~ ( w ~ ) - Tg,. ~ ( w '~ ) - Tt ~h ( w ~, ) 
= n ' ; ( , . , "  - , , " g )  + n i ( o . ,  ~ - ~,). 

Then, an upper bound can be derived as: 

IL(e .E) I  = InT(..., ~ - w ~ ' ) +  nT.(w~-.,~.)l = la(~..w ~ - w T ) - b ( u h . w  ~-w~,)l  

= I ~  a ~ ( ~ ' ' ' ' - ' ' ~ ' ) -  ~s- bK(~~ 
<_ ~ laK(~,r -- , . , ,r) l  + ~ IbJ,-(,.,. ,~ - ,.,4)1 

K K 

-< ~2 (I~I,,K I ~o'~ - ~orl,,K + IIV. ,~.11o,~ II ~o~ - ~o~llo,K) 
K 

< z .  rl' - ,.,,,- + II ,.,,~ -,.,.'~llo,,,,-, 
K 

(48) 

(49) 

where ~ is the function in V satisfying (20). Becker and Rannacher [101 use (48) to 
estimate the quantities L(e,  E) using local interpolation properties to evaluate the error 
quantity I w m -  w~'ll,g and lit c -  w~,llo, K. They thus introduce an interpolation constant 
they arbitrarily choose to be 1. Here, we could estimate L(e,  E) by introducing the global 
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error estimates developed in section 3 into (49). However, those estimates are not local 
and do not reflect the error propagation in w~' and w~,. In general, such a procedure 
overestimates IL(e, E)I by several orders of magnitude. If one is interested in accurate 
values of L(e, E), one has to consider another approach. 

The strategy we propose is to solve a global problem defined in some finite element 
spaces ~h  and (~h satisfying 

Y h c V  ~ c y ,  Q~c~hcQ. 
Obviously it is more expensive to solve this global problem than the solution problem 

in V h • Qh. In order to optimize the selection of ~h and (~h, we propose to construct 
them by adapting V h and Qh according to a combination of global error estimates on 
(w~', w~,) as well as error estimates on L(e, E) using (49). Thus, we can utilize the global 
error estimates (very cheap) developed in the previous sections. Let ( t~ ' , t~ )  denote the 
solution in ~h  • (~h. Then we have 

L(e,E) ~ n~(5,~)+T~(5~,) 

< zi, , ~,K + IIV. ,~hll I g' - ' ~ ' l , , K  + I1~, - ~hll0,s-. - -  0 , K  

K 

(50) 

Therefore, the quantity L(e, E) is estimated using (50) and controlled by adapting the 
mesh according to the elementwise indicators produced by (51). 

We now provide some examples for which we would be interested in calculating the 
quantity L(e, E) E ~.  The error measure L(e, E) obviously represents the numerical 
error we do in computing L(uh, Ph) instead of L(u, p). Indeed, 

L(e,E) = L ( u , p ) -  L(uh,ph). 

Linear quantities of potential interest in the variable (u, p) are pointwise values of the 
velocity component u, L(u,p) = u(:eo), s0 E ~, volume flow rates through a surface F, 
L(u,p) = fr u .  n ds, where n is the unit normal to F, or directional derivatives of the 
velocity averaged over one element ~g,  L(u,p) = faK V u .  I dx, where I is a given unit 
vector. In the case one is interested in nonlinear quantities N(u,p) E Kl, one performs 
the expansion: 

N(u,p) = N(uh,ph) + N'(uh,Ph) " (U -- Uh,p -- Ph) + . . .  

sothat  the error quantity N(u,p)  - N(uh,ph) may be approximated by 

N(u,p) - N(uh,ph) ..~ N'(uh,ph) " (e, E). 

Then, we denote the linear quantity N'(uh, Ph)" (e, E) by L(e, E) and all the analysis 
described above applies. For example, let us suppose that one is interested in the kinetic 
energy K, in some subregion ~K of ~. We employ 

ira u2dx. g(,, ,p) = Ko(,,)= ~ ,~ 
It results that the error in the kinetic energy may be approximated by 

K,(u) - K,(ua) ~ L(e, E) = / ~  uh . e dx. 
K 
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6. N U M E R I C A L  E X P E R I M E N T S  

6.1. Global  er ror  e s t ima t ion  
In the first example, the Stokes problem is solved on the unit square II = [0,1] • [0, 1] 

with the data f chosen such that the exact solution is given by the velocity profile u = 
(u, v) shown in Figure 2 and by the pressure p = 0. We consider uniform meshes formed 
of squared elements with size h • h, h = 1/2,1/4,1/8,1/16,1/32.  The polynomial degree 
p of the basis functions in V h is uniformly set to 2 or 3. 

Figure 1. Exact velocity component u. Figure 2. Exact velocity component v. 

We consider the global error estimator r/defined as: 

~2 = 117~11 ~. + 117~11~ = 19,12 , + IIV" uhllo ~ 

where (p E V is approximated by a function (Ph E ~h  or a function @h E W h satisfy- 
ing (22) or (30). We characterize the extra degree (with respect to p) of the perturbations 
in W h by the pair q = (qedge, qint), qedge being the extra degree for the edge bubbles 
and qint the extra degree for the interior bubbles. We recall that the cost of this error 
estimator is controlled by the cost in solving (22) or (30), that is, by the size of W h 
and the number of iterations performed using the Conjugate Gradient method. What is 
sought is a trade-off between accuracy in the approximations @h and cost (time) spent 
to solve for them. Values of approximations of ~ and corresponding times are given in 
Table 1 and Table 2 for various values of h, p and q. The approximations are normalized 
with respect to overkills using q = (2,2) while the times are normalized with respect 
to the times spent to solve for the solutions (uh,Ph). The number of iterations in the 
CG algorithm are determined according to a preset tolerance in solution accuracy. We 
first observe that the performances greatly increases as the size of the problem increases. 
For example, for h = 1/16, p = 2, the residual is estimated within a 1% accuracy while 
spending less than 7% of the solution time. We also observe that it is approximated with 



57 

Table 1 
Normalized values of approximations of IIR~'II.. 

, 

W h 

h p q = (0,1) q = (1,0) q = (1,1) 

1/2 2 0.7620 0.5235 0.8520 

1/4 0.7300 0.8282 0.8983 

1/8 0.8154 0.9684 0.9797 

1/16 0.8184 0.9941 0.9947 

1/4 3 0.8406 0.8952 0.9679 

1/8 0.8815 0.9781 0.9895 

q :  (1,1) 

0.8571 

0.9040 

0.9805 

0.9948 

0.9693 .... 

0.9896 

Table 2 
Normalized times and number of iterations () performed using the CG method. 

W h 

h p q = (0,1) q - (1, O) q = (1,1) q -- (1,1) 

1/2 2 0.169 (2) 0.196 (2) 0.695 (6) 3.454 (8) 

1/4 0.065 (2) 0.117 (4) 0.443 (7) 2.925 (9) 

1/8 0.015 (2) 0.042 (4) 0.241 (8) 1.309 (9) 

1/16 0.006 (2) 0.018 (3) 0.069 (5) 0.474 ( 8 )  

1/4 3 0.071 (2) 0.013 (4) 0.123 (9) 0.921 (9) 

1/8 0.004 (2) 0.004 (4) 0.088 (9) 0.339 (9) 

less than one percent of error using W h instead of ~h with q = (1,1). Moreover the 
number of iterations is kept very small while requiring reasonable accuracy of the order 
10 -2 . We also compute effectivity indices, defined as: 

_ 7/ 
7~,p _ ii(e ' E)]I 

as well as elementwise effectivity indices. Results are collected in Table 3 for the case 
Ch E W h, q = (1,1). We also show in Figure 3 and Figure 4 the elementwise distribution 
of the exact errors and of the effectivity indices for h = 1/8 and p = 2. The global 
effectivity indices are excellent as they are all close to unity. On the other hand, the local 
effectivity indices, as it is expected for the case of a global error estimator, may behave 
poorly, and in some cases drop to a value as low as 0.012. However, these are always near 
unity in elements with large error, and diverge from unity only in elements with rather 
small error. 

6 .2 .  B a c k w a r d  f a c i n g  s t e p  S t o k e s  prob l em 
The second example is the classical backward facing step Stokes problem. The problem 

is slightly different than in Bank and Welfert [8], as we consider a homogeneous Neumann 
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Table 3 
Global and elementwise effectivity indices. 

h p 7~,p minT~p maxT~P 
, 

1/2 2 0.760 0.717 0.921 

1/4 0.927 0.274 1.103 

1/8 1.038 0.069 1.321 

1/16 1.066 0.033 1.388 

1/32 1.073 0.012 1.408 

1/4 3 1.028 0.519 1.051 

1/8 1.084 0.167 1.339 

1/16 1.096 0.025 1.381 

Figure 3. Elementwise distribution of the 
errors. 

Figure 4. Elementwise distribution of the 
effectivity indices. 

boundary condition downstream of the domain. The solution develops a discontinuity in 
the pressure variable due to the discontinuity in the geometry of the boundary. The norm 
of the residual 7~' is then expected to be very large in the near region of the reentrant 
corner and small in the farfield, as illustrated in Figure 5, where the solution has been 
computed on a pre-adapted mesh of 120 elements. 

We are then motivated to construct W h in an adaptive manner in order to minimize 
its dimension, that is, the number of degrees of freedom associated to problem (30). As 
a first guess, the residual is approximated by ~h E W h with q = (1,0). Then the space 
is successively enriched with interior and edge bubble functions of higher degrees only in 
the elements for which the contribution to [r is large. Results are shown in Table 4 

h where the approximations of IIR2'II., computed either in the complete space W cmp, with 
h uniform q = (qedge, qint), or in the adapted space W adp with q varying between (0, 0) 
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Figure 5. Elementwise distribution of the residual IIT~TII,. 

to (qedge, qint) depending on the element, are compared. It is clear that the number of 
degrees of freedom, and afortiori the cost of the error estimator, is greatly reduced for 
comparable accuracy. The global effectivity index for this problem has been computed as 
7 ~'p = 0.884 and 0.915 for p = 2 and 3 respectively, noting that the exact solutions are 
actually approximated by overkills of degree p + 3. 

Table 4 
Approximations of NTr in complete or adapted spaces of perturbations with corre- 
sponding numbers of degrees of freedom (). 

q = (1,0) q = (1,1) q = (2,1) q = (2,2) 
W h h h h W h h W h cmp W adp L W cmp W adp cmp W adp cmp 
0.1078 0.1247 0.1275 0.1271 0.1301 0.1344 0.1361 

(530) (650) (1250) (716) (1780) (922) (2980) 

0.0291 0.0527 0.0531 0.0535 0.0539 0.0607 0.0612 

(530) (650) (1730) (686) (2260) (854) (3940) 

In Figures 6 and 7, we respectively show an adapted mesh and the corresponding 
solution (uh,ph). Such a mesh has been automatically adapted from a given coarse mesh 
in order to achieve a preset tolerance of 1.2% in the global relative error. 

6.3. E r ro r  e s t ima t ion  in the  q u a n t i t y  of in te res t  
The following results constitute a preliminary study of error estimation in local quan- 

tities of interest. We consider the test case described in section 6.1 and suppose we are 
interested in evaluating the quantity 

1 fa Ou L(u,p) = ~ ,, ~ dx C n 

where If~KI represents the area of a given subdomain flK C ~. Then, the error in the 
computed quantity L(uh,ph), where (uh,ph) is the finite dement solution in V h • Qh, is 
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Figure 6. Example of an adapted mesh (201 elements). 

given by L(e, E). We consider a uniform mesh with h = 1/8 and p = 2 and choose the 
subdomain ['~K tO be either element 1 located in the lower left corner of the domain, or 
element 55 the next to last element in the upper right corner. Then, L(e, E) is estimated 
by three quantities in ~ denoted rh, */2 and rt3. The first one, rh, is obtained as: 

where the discrete influence functions r and ~,  belong to the spaces ~h  and ~)h 
defined using basis functions up to the degree p + 1 and are solutions of the generalized 
Stokes problem (46). The second one, r/2, is calculated as 

~,g + IIV" uhlI0,K I~" -~'[1,K + I["*- "NIIo,K 
K 

where Iw" - w~ll, K and [Iw ~ - w~,[]0, K are approximated using the global error estima- 
tor. We also note that qJh E W h, q = (1,1), is an approximation of ~o E V, that is, of 
the residual 7Z~. Finally the last approximation, r/s, is computed as 

K 

where D~' and ~, have been defined earlier. The results are displayed in Table 5. The 
elementwise distribution of r/2 and r/3 are shown in Figures 8-9 and Figures 10-11 for 
element 1 and element 55 respectively. 

Table 5 
Estimates rh, r/2 and r/3 of the error quantity L(e, E) for elements 1 and 55. 

Element L(u, p) L(e, E) I"/1 rt2 rl3 
1 -0.000364 0.000088 0.000081 0.003304 0.015205 

55 1.6699 0.0258 0.0271 0.3733 0.4783 
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Figure 7. Velocity and pressure on adapted mesh with relative estimated error of less 
than 1.2%. 

The conclusions of this preliminary study are twofold. First, we observe that only the 
quantity r/l represents an accurate approximation of L(e, E). The other two quantities 
r/2 and r/3 provide very pessimistic estimates as expected, but provide local refinement 
indicators as they reflect the intensity of the elementwise contribution to the error quantity 
L(e, E). Secondly, we remark that the distribution r/2, relative to the case involving 
element 1 (see Figures 8 and 9) is very different from the one of r/3. This can be explained 
by the fact that the quantities [w" -w'~[~, K and II,o = -,o~,Jl0,K are approximated using a 
global error estimator, which does not take in account the propagation of the errors away 
from their sources. On the other hand, the discrepancy is less noticeable for element 55, 
because the region of large numerical errors in the influence functions superpose with the 
regions of large sources of errors R.~' and R~,. 
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A mathematical  f ramework for the P. Ladev~ze a posteriori  error  
bounds in finite element methods 

Ph. Destuynder, M. Collot and M. 8ala0n 

CNAM-IAT, 15 rue Marat, 78210 Saint-Cyr I'i~cole 

Using the Poisson model as an example, we analyze the a posteriori error bound 

suggested by P. Ladev~ze in his thesis. The method is applied to a non-conforming 

finite element method which seems to be particularly well adapted to the ideas of P. 

Ladev~ze. Few numerical results are given. Finally a comparison with a conforming 

method is mentioned. 

1. INTRODUCTION. Let D be an open set in IR 2 with a smooth enough boundary denoted 

by F. We consider the Poisson model defined by" 

I find u e H~ (f~) such that" 
I-Au = f in f~, 

(1) 

where f is a given function in the space L2(~) (at least). Let ~ be a triangulation of ~ which 

is assumed to belong to a uniformly regular family (see P.G. Ciarlet [1978]). Then we define 

an approximation space of Hl(f~) by" 

v" = {v {K)} (2) 

where P l (K) denotes the set of polynomials the degree of which are less or equal to one. The 

classical finite element approximation of the solution u of (1) consists in finding u h V h e such 

that : 

vv v,  u .vv ,3, 



66 

h 
The existence and uniqueness of u is very classical and one has the well-known 

asymptotic error bounds (see G. Strang -G.J. Fix [1973]): 

lU- Uhll,t.1 <- ch lul2,n (4) 
where e is a constant which is independent of both h and u and [ Im,2,~ denotes the 

semi-norm of the higher order derivatives in the space Hm(f~). Obviously a regularity 

assumption is necessary in order to make sense to (4). 

Unfortunately, (4) is neither an error bound nor an error indicator. Hence several 

publications have suggested a posteriori estimates. Let us point out the pioneer work of 

P. Ladev~ze [1975] who used the Prager-Synge relationship. Another way was opened by 
V 

I. Babuska - W.C. Rheinbolt [1978] using estimates in dual spaces. This last method was 

revisited and more conveniently formulated in view of applications (pratical computations) by 

R. Verfiirth C. Bernardi - B. M6tivet- R. Verftlrth [ 1992]. More recently B. M6tivet extended 

it to Stokes (and Navier-Stokes) problem. Up to now this last version seems to be one the 

most well founded and useful for mesh refinement algorithm. But its main drawbacks is that 

it only gives an error indicator, not an error bound. 

On the contrary, the method of P. Ladev~ze [1975] which has been widely studied by 

him and his co-workers (see P. Ladev~ze - J.P. Pelle - Ph. Rougeot [1991]), gives an explicit 

error bound. But the way to use of the method is not unique and several choices must be 

made. Furthermore few difficulties (from the theoretical point of view) arise for the elasticity 

model. 

Our goal in this paper is to revisit the Ladev~ze's method on a simple equation and to 

focus on a particular case for which this method is almost perfect. It corresponds to a non 

conforming finite element formulation. Then we shortly compare the results to a conforming 

case and to the error indicator strategy of C. Bernardi - B. M6tivet and R. Verftirth. Let us 

also point out that M. Ainsworth and J.T. Oden [1993] have suggested a mathematical 

analysis of Ladev~ze's method based on an hybrid-primal variational formulation. 

2. A NON CONFORMING APPROXIMATION OF THE POISSON MODEL. 

Let us define for each triangulation T h of the open set t'I, a finite dimensional space by: 

xh={v[VKeTh V]K~PI(K)'VT~//h IT[v]=0} 9 9 ~ t (5) 
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where ,qh is the set of all the sides of T h and the symbol [.] denotes the jump of a function 

across a side T. If T is on the boundary of f~, then the outside value of v is zero. Then we 
X h introduce the following bilinear form on by" 

VU, vEX h, ah (U, V) = Z ~K vuh " vvh 
K~T h 

and we define the approximate model of (1) by : 

find u h E X h, 

Vv E X h, a h (u h, v) = f d  v. 
(6) 

�9 The existence and uniqueness of a solution to (6) is classical and furthermore, there is 

an asymptotic error bound between u and u h (for details, see Ciarlet [ 1978]). Setting 

 lvill = 4 ah(v'v), (7) 

one has : 

where c is a constant which is independent of both h and u. An interesting property of the 

approximate solution u h of (6) is formulated in the next result. 

THEOREM 1. Let u h be the solution of (6) and T an arbitrary side inside the mesh T h. 

Then if K 1 and K 2 are the two elements adjacent to ~, then one has : 

ouh 

- 1 2 

~U h ~u h 
where ~v 1 (respectively -~2 ) denotes the normal derivative of UlKlh (respectively u hiK2 ) in 

the direction outwards K 1 (respectively K2). Finally, ~ is the fimction of X h equal to one 

at the middle of T and to 0 at all the other middles of sides, and [TI is the measure of 

The proof is very simple and obtained from (6) by choosing v = L, t. It is worth noticing 

that uh~  Hg(~).  Hence the method is called non-conforming. In order to furnish a 
h hh u h 

conforming solution from u we define a local projection - s a y  u - of onto the 

conforming space V h defined by" 

,,"- (8) 
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It is characterized by the values of u hh at the vertices of cch. One has: 

V S, inner vertex of ~h.  

X u~ (s) IKI 
hh K~r u (s)= ~IKI (9) 

K~e~ 

where G h is the set (cluster) of all the elements which have S as a vertex and IKI is the 

measure of the triangle K. We proved in Ph. Destuynder - B. M6tivet ([1996] a), that there 

exists a constant c such that" 

Ilu-u ll: In-u l,,o-< oh lul2,o. (lo) 

3. THE PRAGER-SYNGE RELATIONSHIP[1947] AND THE ERROR BOUND. 

Let us introduce the functional set for the dual problem associated to (1) : 

Hf (div ,t"l ) = p ~ (fl) , divp + f = 0 in f~ . 

Then one has the following basic result which is a particular version of Pythagore's 

Theorem. 

THEOREM 2 (Prager-Synge). Let u be the solution of  the Poisson model (1). Then : 

V pCHf(d iv ,  fl) ; Vv~H~(f~) ,  

lu- vl12n + lip- Vull~.. - lip- Vvll2.. 

A consequence of this Theorem is the inequality used by P. Ladev~ze and called 

"constitutive error bound" by this author : 

V p ~ H f ( d i v ,  f~); V v ~ H l ( f ~ ) ,  lu-vlm <- Ilp-Vvllo,n. 

Let us apply this inequality to the non-conforming finite element described previously. 

We set : 

hh u h V h v - u (the projection of on defined in (9)). 
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Then: 

V lo-U ll.~ _< UP-Vu llo. o. (II)  

The definition of a particular element p is based on the particular property satisfied by 
h 

u (non-conforming solution) and which has been formulated in Theorem 1. On each triangle 

K of the mesh T h, we set" 

~)u h 1 IK p �9 v = Ov f ~ '  on T c 0K (12) 

where v is the outwards unit normal to ), and L t the linear function equal to one at the middle 

of T and zero at the middle of the two other sides of K. Furthermore p must satisfied in K" 

d ivp+ f=0.  (13) 

The solution of (12) can be obtained as follows. We look for a particular solution of 
h 

(12) - say p - using Raviart-Thomas element (see P.A. Raviart- J.M. Thomas [1975]). Then 
h 

p is such that on each element K of ,.fla. 

h {aK + bK Xl 
p = CK+bKX,2 

and satisfies (the 3 • 3 linear system is well-posed) : 

h ~u h 1 IK p *v= OV [TI fXu VTc~)K.  (14) 

Then from ~ ~,~ - -  I : 
"fc~K 

I~K ph �9 V= T~K Iu ph �9 v = I/)K ~)uh~ IKf = - IKf (15) 

and therefore (div ph = 2 b K = constant in K)" 

h I IK f O. . ~ _ .  div p = [K] (16) 

In order to define p so that (13) would be satisfied, we introduce a local term denoted 

by r and solution of the following Neumann model. 
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-~a- K = f - ~  f 

~rK = 0 onaK 

IK rK 0. 

in K 

(17) 

The existence and uniqueness of r K is classical. Furthermore we can prove that Vr K is 

neglectible if f is smooth enough. Then setting on each triangle K of ~h. 

h 
p = p  + Vr K, 

we define an element p which satisfies both the relations (12) and (13). We proved in 

(Ph. Destuynder - B. Mdtivet ([1996] a)) that there exists a constant independent of both h 

and u such that : 

ilp-vu llo.o c, ..u..2.~ (]8) 

w ch ensures ",p- is a coho n, o or boun  
II II 0,~ 

Remark.  The definition of p is not unique. Let us introduce a new term on each K of T h 
satisfying. 

q �9 v = 0  on OK, 

div q = 0 in K. 
(19) 

Such an element is characterized as the rotational of a function defined up to an 

additive constant (in K) - say tF K - .  The boundary condition on aK implies that ~F K can be 

chosen such that. 

q = rot WK , WK e H 1 (K). 

Hence the best choice for ~IJK is the one which minimizes the error bound (the term tP K 

is local)" 

~ n  liP+rot ~ -  Vu"ll = . (20) 
U0,K ~PK e HI (K) 

Therefore (because rot(ph+ Vu hh) )" 

-A~FK = 0  ~FK e H1 (K) 
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which implies : 

~IJK - 0 . 

Finally we prove that p defined previously is the best choice satisfying (12) and (13). 

The result would be slightly different for higher order element as we show it in 

Ph. Destuynder [1997]. 

4. THE NUMERICAL TESTS FOR A NON-CONFORMING F.E.M. 

In order to compare the exact error and the error bound suggested in this paper, we 

have considered a simple square open set and a constant function f. The side of the square 

being L, the analytical solution of (1) is given by the sum of a series : 

U =  ~ Anm sin( nl-lxl L ) sin (mlIL~) 
n,m>_l 

where: 

Aom ~-- 

4 ~L~Lf(aq,X2)sin ( - ~ ) s i n ( n d ~ x 2 ) -  4 f (1-(-1) n) (1-(-1)  m) 

1-12(n2+m2 ) - H 2 ( n 2 + m  2) 

Two kind of grids have been used. One is regular and shown on figure 1 (seven sizes of 

meshes were used). The second one is obtained by a mesh generator and one of them is 

represented on figure 2. Again seven different sizes were used. Then we have represented on 

figures 3 and 4 the three following quantities. 

Let us make some comments on the obtained convergence curves. 

1) The slopes of the three curves for any kind of grids is 1. This is in agreement with the 

theoretical results. 

2) The relative positions of curves 1 and 2 are in accordance with the error bound (11). 

Furthermore the ratio between 1 and 2 is constant equal to: 1.3 (1 is the lower bound 

which can not be reached) for the regular meshes and to: 2 for an arbitrary mesh. 
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3) The projection of u h onto a conforming subspace leads to a slight improvement for a 

regular mesh. 

4) Because of Prager-Synge equality the numerical results given on figures 3 and 4 indicate 

that the error between p and Vu is smaller than the one between Vu and Vu hh (in L 2 (fl) 

- norm). The ratio is about .83. 

Figure 1. Example of a regular mesh Figure 2. Example of a mesh obtained by 
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Figure 3. The error bound and the exact error for  a regular mesh versus the mesh size 

Figure 4. The error bound and the exact error for  an irregular mesh versus the mesh size. 

5. THE CONFORMING APPROXIMATION 

Let us now consider that u h is solution of the classical conforming finite element 

method defined at (3). In order to apply the Prager-Synge relationship, one has to construct a 

vector field p lying in the set Hf (div, f~). Here again the Raviart-Thomas finite element can 

be used. A possibility is the following. At each node of the mesh T h -  say S i - we define 

(following the Ladev~ze's idea) a cluster of elements - say C h - which is the union of 

elements having S i as a vertex. 
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Then for each S i (even on the boundary of D), we set (~L i is the continuous piecewise 

linear function, equal to one at S i and 0 at all the other nodes). 

div ph = ~ ]  Vuh .  VX i _ f Xi , 

V K ~ C ~  

(21) 

where: 

RT1 = p ~ H  div, , p . v = 0  on ~C h and V K~C h PIK = c K + b K x  2 " 

The existence of a solution to (21) has been proved in Ph. Destuynder - B. M6tivet 

([ 1996] b). But the solution is not unique. The general solution is : 

ph = ph + ~i rot ~L i (22) 
~i 

where ph is a particular solution of (21) and oq an arbitrary constant. Then we set" 
~i 

h 
P = X Pi h=  ~ ,  ph+  X (xi r~ (23) 

i~sh i~sh -l  i~sh 

S h denoting the set of all the nodes of T h. As in the non-conforming case the coefficients IX i 

should be chosen in order to minimize the error bound (assuming that div ph + f = 0 or else 

that f is piecewise constant) �9 

oL I ! tz ~ > ph + ~ tx i rot ki - Vuh (24) 
i~S h ~0,f~ 

where: L = card (sh). 

Two strategies can be discussed. One consists in replacing (24) by a local minimization 

(one iteration of Jacobi algorithm). The second one consists in adding one iteration of SSOR 

algorithm. These two strategies have been checked on the test model presented in section 5. 

One can observe that the second one is more reliable for irregular mesh (see figures 5 and 6). 

As the additional cost is neglectible, it has to be recommended for general applications. 
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Figure 5. The error bounds, the exact errors and the error indicators for regular meshes. 

Figure 6. The error bounds, the exact errors and the error indicators for irregular meshes. 

Remark.  As a matter of fact one only has : 

div p 
1 

--iKi K f. 

Hence it is necessary to add a local term in order to satisfy exactly the divergence 

condition. But if f is smooth enough, this term is neglectible (the discussion is the same as in 
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the non-conforming case) with another respect, we proved in Ph. Destuynder - B. M6tivet 

([1996] b) that the error bound ]ph _ VU h ]0.n is 0 (h). 

In order to compare the methods of P. Ladev~ze up-dated as mentioned previously and 

the error indicator strategy of C. Bernardi - B. M6tivet - R. VerfUrth [1992], we have plotted 

this quantity (denoted by B h) on the figures 5 and 6. Let us recalled that it is defined by" 
" 2 1/2 

One can see, that the results are similar to those of the non-conforming model, but the 

error is larger for the same mesh. The B h indicator is larger (ratio of 6 with the exact error 

instead of 1.3 for the Ladev~ze based method). Another huge advantage of the error bound 

suggested by P. Ladev~ze is that it is possible to improve the approximation of u by a local 

minimization problem. For instance by adding degrees of freedom on the sides between 

elements (second degree polynomials) (see Ph. Destuynder- M. Collot- M. Salatin [ 1997]). 

6. CONCLUSION 

The explicit error bound based on the idea of P. Ladev~ze, coupled with the use of 

mixed finite element method, lead to very accurate results which are compatible with the 

theoretical results known in finite element methods. The extension to elasticity is also 
possible but the H (div, fl) finite element are then more complex (21 d.o.f .in 2D). This finite 

element has been developed by D.N. Arnold- J. Douglas and C.P.Gupta [ 1984]. 
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Abstract 

Many interesting tasks in technology need the solution of complex boundary value 
problems modeled by the mathematical theory of elasticity and elastoplasticity. Error 
controlled adaptive strategies should be used in order to achieve a prescribed accuracy 
of the computed solutions at minimum cost. 

In this paper, locally computed residual error indicators in the primal form of the 
finite-element-method for Elasticity as well as Hencky- and Prandtl-ReuB-plasticity 
without and with nonlinear hardening are presented, controlling global errors of 
equilibrium, plastic strain rates, the yield condition and the numerical integration of 
the flow rule. Furthermore, an error estimator based on local Neumann problems is 
extended to elastoplasticity, based on improved boundary tractions. This recovery 
technique is called PEM (Posterior Equilibrium Method). 

1. INTRODUCTION 

In the adaptive Finite-Element process for elastoplastic deformations, aside from the step- 
wise optimal choice of the spatial discretization we have to pay attention to the implicit 
time (load) dependency of the deformation process. 

As the usual decomposition of FEM in space and FDM in time (method of lines) does 
not permit a rigorous coupled a posteriori error analysis in space and time, an heuristic 
assumption based on the comparison of Prandtl-ReuB elastoplasticity with the so-called 
Hencky plasticity, (nonlinear elasticity with a yield limit), is used to split the total error 
into spatial and time discretization errors [6, 8]. 

In this paper three separate local spatial error indicators of the primal FEM are derived 
from global errors, namely for equilibrium, direction of plastic strains (using the plastic 
dissipation) and the yield condition. Each of them yields a scaled local indicator for mesh 
refinement. The error within the integration of the flow rule by the backward-Euler scheme 
is estimated by the maximal change of the normal (with respect to the yield function) 
between two time (load) steps. 

In section 2,.the basic equations for elastoplastic deformations with isotropic harden- 
ing are listed in a canonical form. Section 3 treats the differences between global and 
local error estimations. Section 4 describes the benchmark example used for the numerical 
tests. Section 5 presents numerical results of error indicators and refined meshes for all rel- 
evant errors. Section 6 gives an overview of the posterior equilibrium method (PEM) with 
anisotropic error estimation for elastic deformations and the extension to elastoplasticity, 
[7, 22, 11, 23]. In the last section, some numerical results are given, showing the efficiency 
of the adaptive process of computation. 
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2. THE BASIC EQUATIONS OF CLASSICAL ELASTOPLASTICITY 

Consider the solid body ft C ~3 with boundary 0 f / =  r = ru U Ft. The variational form 
reads 

~ e ( v ( x ) ) "  cr(u(x))d~/= ~ v ( x ) f d ~ ' l +  f r  v(~)~dr  (1) 
t 

with test functions v e V; V = {v(x) e [H~(f/)]n, fl C ~3 ,v  = 0 on ru} and mixed 
boundary conditions for the displacements u = 0, v = 0 on ru and given surface tractions 

= or. n = ~ on Ft. Herein, t are prescribed traction forces and f are body forces, a and 
e denote the macro stress tensor and macro strain tensor, respectively. 

Among the theories of elastoplastic deforming materials we consider the deformation 
theory or Hencky-plasticity [13] and the flow theory by Prandtl-ReuB [17]. The latter has 
the advantages that it can not only describe changes of the material parameters during 
the loading process but also 'plastic' unloading with resulting plastic deformations because 
of the existence of an 'internal time' which is represented by means of a loading history. 
Consequently, Hencky-plasticity is often referred to as 'non-linear elasticity' with a yield 
condition. 

Prandtl-ReuB elastoplasticity for small strains With nonlinear isotropic hardening can 
be described in the following canonical form, Table. 1: 

Elastic strains within linear kinematics 
Internal variable for isotropic hardening (micro strain) 
Free energy function 
Macro stress 
Micro stress 
Plastic dissipation 
Yield function 
Flow rule 
Evolution of c~ 
Loading and unloading (Kuhn-Tucker) conditions 

C~ 

~, = ~(~,~) 

= -oor 
DP - (r . ~ v _  B ' &  > 0 
r = r 

= -~0ar 
-~>_o, r q . , ~ = o  

Table 1: The basic equations for Prandtl-ReuB elastoplasticity V x E f / c  ]~3 

The free energy function ~ = ~(e  e, c~) can be split into a macroscopic part 

1 )~ 
{JMacro(e*) = ~ ~ (tr e c + # tr (~,)2 (2) 

with bulk modulus ~ and shear modulus p, and a microscopic part 

i ( i )  
~Micro(Oe) = "~ h a 2 + (Yoo - Yo) ~ + -w ( exp ( -wa) -  1) (3) 

which contains combined linear and exponential isotropic hardening with stress saturation. 
The yield function r = ~(cr,/~) can also be split into a macro- and a micro-part 

r = r  p) = Ildev(TII- ~ 'gCX~) (4) 
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with the macroscopic stress tensor cr and the microscopic stress/3. The saturation law for 
the stresses which combines linear and exponential hardening reads 

9(f~) = yo q- h a  -b (Yoo - Yo) (1 - exp(-w a)). (5) 

The material model has 6 parameters and the internal variable p. The plastic dissipation 
function for the macro- and the micro-terms 

:VP = a : k P  - f~. ~ (6)  

measures the rate of energy dissipation due to inelastic deformation. 

3. GLOBAL OR LOCAL A POSTERIORI ERROR ESTIMATORS A N D  
INDICATORS 

Since the end of the seventies, a posteriori global estimates of relative errors for elas- 
tic problems are available, especially the energy norm of the integrated local residual of 
equilibrium which are evaluated locally. 

The goal there is to obtain equidistributed error contributions throughout the system, 
i.e. to get the same desired accuracy of the approximated solution in each point of a 
system. 

Recently, local error estimators and indicators were developed by e.g. Ainsworth [2], 
Fish and Markolefas [12], Babu~ka and Strouboulis [4], Rannacher and Suttmeier [18], 
and Ohnimus and Stein [21], which search for an optimal adaptive process with respect 
to highest possible accuracy of a local quantity or a function of it. The shortcomings of 
this strategy are evident for non-linear consitutitve equations because, e.g., the position of 
maximum stress can vary considerably during the loading process. Therefore, the adaptive 
process would have to adapt to these conditions. Furthermore, the pollution error (the 
influence from outside onto the point in question) has to be computed as a global problem. 
On the other hand, it may be sufficient for complex systems with an easy load history to 
compute a solution of guaranteed accuracy at only some distinguished points. 

As a consequence, the choice of the optimal strategy for error estimation and adaptivity 
depends on the goal of the computation and the complexity of the problem. 

4. A NUMERICAL EXAMPLE 

We chose a 'rectangular plate with a circular hole under plane strain constraint' and uni- 
directional monotonous loading for numerical tests of the different error sources and their 
indicators, Fig. la. 

Three material parameters describe linear isotropic elastic and perfect plastic deforma- 
tions, while mixed linear and nonlinear isotropic hardening with saturation need addition- 
ally three parameters, Table 2. 

From a priori error considerations the adaptive computation of the above example 
starts with a sequence of graded meshes, ranging from 64 bilinear elements with 25 nodes 
to 8192 bilinear elements with 8385 nodes, Figs. 2b. Additionally, a reference solution with 
24200 bilinear elements, 24642 nodes and 49062 d.o.f, was computed. In order to obtain 
comparable results for all meshes and material equations, some selected points were chosen 
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Figure la: Benchmark system: 
Stretched square plate with a hole in 
plane strain, h=200, r=10 

Figure lb: Upper left quarter, using 
symmetry conditions, with point num- 
bers of computed data 

1. Young's modulus 
2. Poisson's ratio 
3. Initial yield stress 
4. Saturation stress 
5. Linear hardening modulus 
6. Hardening exponent 

E =206900.00 N / m m  2 
v = 0.29 
Y0 = 450.00 N / m m  2 
yoo= 750.00 N / m m  2 
h = 129.00 N / m m  2 
w = 16.93 

Table 2: Material parameters 

for data evaluation, Figs. la, 2b and Table 3. In the following sections, spatial distributions 
of the different error indicators are shown for a load factor of A -- 4.5 where the critical 
load for perfect plasticity is $crit = 4.66 and $crit = 7.89 for nonlinear hardening material. 
The load was applied in 18 load steps which renders the time discretization error negligible 
against the spatial discretization errors. All given results hold for hardening material, 
Table 2. 

Figure 2a: v. Mises stresses at $ = 4.5 
for hardening material 

Figure 2b: Smallest mesh with 16 ele- 
ments a=61.953, b--28.047, c=131.421 
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Physical quantity 
Displacement ux 
Displacement uy 
Displacement ux 
Stress cr~ 

node No. 

Table 3: Selected points and data of system in Fig. la,b 

5. GLOBAL ERRORS IN ELASTOPLASTICITY 

5.1. Spatial discretization errors 

As elastoplastic deformations are load-history dependent, the displacement fields u(x,  t) 
determine the actual stress and strains states for all points x E ~ at all implicit times 
0 < t < T. Thus, the spatial discretization error eu measures the difference between the 
exact displacement field u and its FE-approximation uh; e = u -  Uh. 

A physically meaningful error measurement is gained by considering the point-wise 
incremental total stress power 75, where -~ > 0 assures the yield constraint (I) _ 0 

7) := ~r. ~ +,~@ = ~ .  ~" + f~a + g" ~' - f~a +-~r = ,i, + v '  + ' ~ ,  

,i, z)p 

(7) 

where all terms have the physical unity of power, i.e. work per unit time. 
Time integration over the interval [to, tn+l] yields 

/o' ]2o'( ) "f'dr = @ + 7)" + "}/@ dr  

- ~ + (~P + -~(I)) dT -- �9 + (1:)' + "~(I)) dT, 
i=O d tl 

(8a)  

(8b) 

with 7 ~ = ~ holds in the limit case of vanishing plasticity. 
The occurring errors can be characterized as follows, see eqns. 8a, 8b: 

1. The error of equilibrium related to the elastic strains: 

2 ~,,,, = I1(o'" - ,,7,) �9 (6" - ~:~,)ll~:~c.) + I 1 ( ~ -  c~h)H(ot- ~h)ll~,,,c.) (9)  

2. The error increment of the directions of plastic strain rates, related to plastic dissi- 
pation: 

2 (10) ,Te, = I1,, " ( ~ "  - ~ ) l l ~ , c ~ )  + 11,0(~ - ,~,,)ll~,c~) 

3. The error increment in the Kuhn-Tucker conditions for yielding, loading and unload- 
ing of a load factor A: 

VKT(, ~) = [l~/hChllL,(n). (11) 
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5.2 Spatial error indicator 

The error in the global equilibrium can be controlled by means of the residual error esti- 
mator r M by Sabu~ka, Rheinboldt & Miller [3] and Johnson, nansbo [14]. It reads 

2 CRh211 2 I%q -- Rh]IL2(•) + CjhliJhl 21L2(F), [ , . ]  = Ng~m (12) 

with the residuals Rh = div t r h -  fh, the jumps of the stresses on inter-element boundaries 
Ja  and the interpolations constants CR and Cj which remain unknown in case of relative 
errors. Fig. 3a shows the spatial distribution of y~q for the load )~ - 4.5. 

Figure 3a: ~?eq for load )~ = 4.5 Figure 3b: Adapted mesh for yeq with 
1168 elements and 1242 nodes 

Figs. 3a, 3b illustrate that the areas of high relative errors are concentrated at the edge 
of the hole close to the singularity. It is obvious that this error indicator is not sufficient 
to describe the effects of elastoplastic deformations. 

The error increment of the directions of plastic strain rates kP at the and of a load-step 
is given by the weighted L2-norm 

2 ,~:,, = Ii,,"" (~:" - ~~)ll~c~) + I1~. (,~ - ~,,)ll~,~c~>. [y$p] = v/Nm: (13) 

introduced in [6]. As the exact solutions tr, kP,/? and ~ are unknown, we use smoothened 
discretized solutions er,, kP,,/~, and &,, gained by L2-projections according to [23]. Thus 
rl~p reads 

,7~:,. ~ I 1 , , .  (~:."- ~:~,) I ILc.)+ IIZ.. ( ,~ . -  ~,.)112.c.:) (14) 
Figs. 4a, 4b show the distribution of rl~p at ~ = 4.5 and the related adaptive mesh. 

This indicator acts inside the plastic domain. 
A third error occurs in the flow condition (I) outside the Gauss integration points and 

is controlled by the the error indicator of the Kuhn-Tucker conditions for yielding, loading 
and unloading 

r  ~>0,  ~r  (15) 

The related global error indicator ~KT by Barthold and Stein [8] reads with (11) 

~(T()~) -----I1~r ~t,'I'hllL, c . )=  Ii~t,':I't, llL,cn); [1}KT] "-- ~ .  (16) 
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Figure 4a: r/$p at a load of )~ = 4.5 Figure 4b: Adapted mesh from r/$v 
with 1285 elements, 1368 nodes 

The yield condition is fulfilled at all quadrature points but not elsewhere in the elements. 
The idea for rIgT is consequently an extrapolation of the given Gauss-point values to 
integration points of higher polynomial order. 

Figs. 5a,b show the error distribution of r/KT at a load of A = 4.5 and the resulting 
mesh refinement. This estimator concentrates at the transition zone between the elastic 
and the plastic parts of the domain. 

Figure 5a: r/KT at a load A = 4.5 Figure 5b: Adapted mesh for r/Kr 

AS mentioned before, the adaptive computations start with a sequence of graded 
meshes, Figs. 8a-8c. From there the error-controlled adaptive process starts accordingl 
to the three developed indicators r/eq, r/$~ and r/KT, see section 7.2, Figs. 10a-10d and 
l l a - l l d .  

5.3 T ime  error indicator  

Using numerical integration schemes such as the backward Euler rule, an additional error 
is present for each implicit pseudo time interval [ti; ti+l], which has an accumulation effect. 

The basic idea consists in detecting points within the plastic domain with maximal de- 
viation of Hencky-plasticity from Prandtl-Reui]-plasticity. In the latter theory, the plastic 
strain rates kP (instead of the plastic strains e p) are proportional to the stress deviator 
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in the flow rule. Therefore Hencky-plasticity only describes a non-linear elastic material 
with an additional yield condition but without a flow rule. The error r/at in the numerical 
integration of Hill's flow rule is defined by 

= II IIL,c.) 
Jt=ti  llL2(fl) 

(17) 

with the scaling factor IlallL~Cn) in order to characterize the influence on the stress power. 
The physical unit of the square of this error indicator is also Nm. 

For numerical computations we assume, that the space discretization does not affect 
the time discretization error, i.e. the quantities in the definition above can be replaced by 
FE-solutions. The error can then be bounded for each time step by 

m a x  II#(t:)n(t) - ") '~+lnd+l l lL2(n) (18)  <_ A t  telt,;t,+~] 

where n = deva/lldevalt denotes the outer normal to the yield surface. 

Assuming further that the difference of plastic flow directions n(t) and ni+l in the 
current time interval is maximal for t = ti and choosing the plastic multiplier ~(t) as 7i+1, 
the computable bound 

r / a , -  "h+llln, - n,+1[IAt (19) 

is obtained. The integrated staggered control of mesh size and time step was treated in 
[7]. In order to pay tribute to the accumulation error, the adapted time integration starts 
from the previous time step. The figures 6a,b show the spatial error distribution for r/at 
at different loads. It is significant for this error indicator that the regions with beginning 
plasticity contribute high values of r/Ae whereas already plastified sub-domains add only 
low values. 

Examples with the convergence properties for graded meshes and adapted meshes due 
to the above error indicators are given in Figs. l l a -  l ld.  

Figure 6a: r/at at ~ = 4.5 Figure 6b: r/at at )~ = 4.75 
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6. THE POSTERIOR EQUILIBRIUM METHOD (PEM) 

6.1. Formulation of PEM for error est imation on patches 

The posterior equilibrium method is based on local recovery analysis of improved tractions 
at the internal element boundaries with C~ condition in normal directions. PEM 
can be explained as a stepwise hybrid displacement method or as a Trefftz method for Neu- 
mann problems of element patches, see also [11, 20, 15, 16, 22]. We formulate regularized 
variational problems on patches which equilibrate these new tractions with the known en- 
ergy equivalent nodal forces from the previous finite element solution. Such it is possible 
to introduce an anisotropic error estimator for the discretization error and especially for 
the model error. The unknown locally equilibrated boundary tractions t~ on each patch k 
have to fulfill the weak equilibrium conditions (a hat denotes nodal quantities) 

A T  , ~  

v^ dO = (~^~(u^) %)k v v^ e vh e V ( ~ )  ; th e L2(r,) (20) 
aflk 

related to the previous approximated solution uh. The resulting element nodal forces 
P~-'he, the test functions (virtual displacements) vh and the unknown locally equilibrated 
boundary tractions th are given as 

A 

~he(Uh) = Ke Uh; vh = Nu ~h; t~ = Nt th. (21) 

From eqns. (20- 21) we get 

th ~ r  t N~ dO ~h = p^~(u^)~h 
on 
~ J 

Te 

V ~h E %rh (22) 

A 

which results in T T t'h -- ~he(uh) �9 Different from Ladev~ze and Leguillon [151 and Brink 
and Stein [10], eqns. 20 and 21 fulfill the element equilibrium exactly, such that anisotropic 
error estimation is possible. 

5 1 

2 

3 

a priori defined 
normal vectors at 
element sides of 

patch k 

Figure 7: Patch k for node k; element boundaries are described by side numbers i=1-5. A 
priori defined normal vectors at element sides i are plotted 
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Only C~ conditions for th in the normal direction of element surfaces are 
necessary, due to th E L2(F~) it is sufficient to describe the equilibrated tractions without 
(~ conditions in tangential direction of element surfaces. Consequently, a patch- 
wise calculation is possible, see Ladev~ze, Leguillon (1983) [15], Bank, Weiser (1985) [5] 
and Ainsworth, Oden (1992)[1]. 

To avoid coupling effects between neighboring patches it is recommendable to describe 
the new tractions with orthogonal shape functions Nt with respect to the shape functions 
Nv of the test space, see eqn. (22). Nv and Nt are different bases of the same approximation 
space. The orthogonality condition reads 

oft 

thus N~ forms a covariant and Nt the corresponding contravariant basis. 
The equilibrium conditions, eqn. (22), for a patch k in Fig. 7 are given by 

Element 1 " t h l - - t h 5  - -  Phl(Uh) 

2 �9 th2 - the. = ~h~(uh) 

3 �9 th. -- th~ = ~h3(Uh) 

4 �9 t . 4 - t h 3  = ~ h 4 ( u h )  

5 �9 thS--th4 = ~ h s ( U h )  

(24) 

and result in 

T 

+1 -1  
-1  +1 

-1  +1 
-1  4-1 

-1  4-1 

th 
~ ~ ,  ~h(Uh) 

- ~ ~(.~) 

~ ( u ~ )  

. t h 5  

where T can be interpreted as a topology matrix. Eqn. (25) can be written as 

(25) 

A A 

T Tt'h = U TT'th = U~he(Uh) = ~(Uh).  
eEk eEk 

(26) 

We introduce covariant Lagrangean base functions and their contravariant base functions 

N~(~ ,  ~) = N ~ ( ~ ,  ~) = N ~ ( ~ )  ~ N ~ ( ~ ) ,  (27) 

Nt(r, s) = N~(r, s) = NL(r) | N~(s) (28) 

or the hierarchical Legendre base functions, respectively. The topology matrix T, see eqn. 
(21),(26), is not regular and repeated as eqn. (i) 

(i) T r t h = ~ h ( u h )  ; de t (T  TT)  =0.  (29) 
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In 2D-problems there are one or more zero eigenvalues of TTT, and in 3D-problems there 
are five or more zero eigenvalues. 

The regularization of the local equation system for patch k is given by two additional 
conditions. 

The first additional condition is posed on Neumann boundaries of the structural system 
where equilibrium with the FE-nodal forces is satisfied explicitly as 

(ii) ~h(t) = ~h on r , .  (30) 

The second additional condition is gained with FE-stresses ah(Uh) in s by postulating 
that the boundary tractions from the previous finite element solution uh are approximately 
equal to the new tractions in the weak sense. 

afle aft, 

(r �9 n) r NvdO ~h "~ th N T - 

On,, One N~ 
% ~ ~ '  c l e t  ( J  ( r , $ ) ) O n  e A p.(cr.) 

^ _---T / 1 
P'-h(O'h) T "~h ~-- th  det (J(r, s))on, 

oI 

I 

= t , .  

This results in a least-squares-approximation 

( i i i )  Mi, . 

Summarizing the calculation of new tractions th :  

- } Nodal forces T T th - ~h(Uh) = 0 TT ^ 

Boundary tractions th -- ~ h ( t )  --  0 --: t'h ---- ~h  

,~dO ~h (32) 
Nr 

=-=T 
Ns N~ det (J(r, s))on, dO vh 

J 

(33) 

(34) 

(35) 

exactly fulfilled 
conditions (i), (ii) 

Regularization 
weakly fulfilled 
condition (iii). 

(36) 

6.2. Higher order equilibration for improved effectivity index 

Using higher order polynomials (p > 3) of the current approximation space and in case of 
solutions with very small errors the effectivity index tends to values much higher than 1. 
The reason is that the locally equilibrated tractions are not consistent to higher order 
deformation modes. The error is e = u - u h  E V and the discrete error of the hierarchically 
expanded test space reads eh+ -- eh + e+ with the interpolations e~ --  N v e h  {E V h  and 
e+ = Nv+~+ E V+. If, e.g., the error is zero (e = eh -t-e+ = 0) w.r.t, the locally higher 
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order approximation space than the following equation for the local Neumann problem on 
f/k holds 

LT+ K+ ~+ - ' fonh thN+dx 

with Kh := fnk B[CBhdx, K+ := fnk BTCB+dx, Lh+ := Ink BTCB+ dx" This leads to 
the demand for e = eh + e+ = 0, i.e. 

LLu  = (3s) 

This condition can only be fulfilled by higher order equilibration with introduction of locally 
higher order equilibrated tractions th+. 

6.3. PEM for anisotropic error estimation in Prandtl-Reu~ elastoplasticity 

In case of Prandtl-Reut3 elastoplasticity the error estimation has to be calculated in the 
tangential space. For linear elasticity the error estimation yields the local variational 
Neumann problem for the error e 6 V with higher test functions v+ 

a(e, vh+)n, = L(vh+)On,  -- a(Uh,  Vh+)n, V vh+ 6 Vh+. (30) 

For elastoplasticity the following tangential space of nonlinear deformation and the linear 
form have to be introduced on element level 

5(e, vh+)n. = ~ ;cvh+dO-/nBT+crhd~Z. (40) 
n e  �9 

For anisotropic refinement with discrete test- and solution spaces (V --+ Vh+) one has to 
take testwise p+ -- 1 and 2 for each local direction 1,2,3. For perfect plasticity the tangent 
is given by 

~(e, vh+)n. = ]_ eCe)(C - 2#n @ n)e(vh+) dV (41) 
J l l  e 

with the elasticity tensor C and the relations of the current approximation 

_ devO'h flow direction nh -- idevCrhi 

yield condition Ch [devcrh[ ~3. = - y0=0 

flow rule gh p = ~gradqr =Ana. 

The flow direction nh is given from FEM. Then the local anisotropic element error for 
Prandtl-ReuI] elastoplasticity is 

r/~ = ~/~(e, e)n" = Ilell :cn,). (42) 

6.4. Solution- and model-error est imation 

After calculation of the equilibrated tractions the discretization error can be calculated 
by the difference of the equilibrated tractions th and the previous FF_,-tractions th in the 
L2-norm or better by the energy norm of the difference of the new solution uh+ of the 
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Neumann problem (for postprocessed tractions th) minus the previous solution Uh, see 
also Ladev~ze, Leguillon [15] and Bank, Weiser [5]. 

Introducing the locally expanded test space vh+ EVa+ C V and the locally expanded 
solution space Uh+ E Vh+ C V, the local variational problem is formulated as 

a(uh+,vh+)n, = L(vh+)on, V va+ E Vh+ ; uh+ E Vh+ (43) 

with the locally enhanced test space 

Vh+ := {Vh+ e Hol(f~e) ;vh+ without rigid body modes} (44) 

and 
P 

L(vh+)on, = / vT+ ta dO. 

all, 

The local tractions t-h are gained from PEM. Mechanically, eqn. (43) describes the weak 
form of equilibrium of the tractions th and yields the displacements Uh+ without rigid body 
modes. The "equilibrium" discretization error estimator ~TD~ in ~ is given by the difference 
of the current FE-approximation uh and the locally improved approximation uh+ in the 
energy norm by 

r]~ e --  a ( (Uh+  -- Uh),  (Uh+ -- Uh))f~e and r/~G t = [IO'h+ -- O'h[[E(f~,). (46) 

The estimator, eqn. (47), yields an upper bound if the hierarchically expanded test spaces 
are sufficient. It has the same order of magnitude for convergence as the Babu~ka/Rheinboldt 
residual error estimator, but anisotropic error estimation and the interpolation constants 
are computed indirectly with higher accuracy. For model error estimation we introduce the 
local variational form aM for an hierarchically expanded model, connected with the reduced 
model by a monomorphic transformation, and the corresponding discretized solution fib+ 
using again enhanced local test spaces 

aM(rib+, Vh+)n ,  : L(va+)on, , V vh+ E Vh+ and fin+ E Vh+ (47) 

and yielding fib+ with the right-hand side 

L(Vh+)On, : f vT+thdO. (48) 
On, 

Eqn. (47) describes the weak form of equilibrium of the new boundary tractions th (of an 
element patch k) for the expanded model within element f~e. Note that uh+ and Uh+ must 
have the same dimension. 

Then, the "equilibrium" model error estimator ~Me in the energy norm within f/e reads 

~72Mue = aM(l lh+ -- Uh+,l~lh+ -- U h + ) n ,  ; fib+ e V h +  ; Uh+ e V h +  (49) 

with 
= l i a r +  - ( 5 0 )  

This model error is gained by the difference between the locally expanded approximation 
Uh+ (using the reduced 2�89 model of a thin-walled structure) and the locally expanded 
approximation fib+ (using the full 3D- model) in the energy norm. This model error 
estimator, eqn. (49), is subject to locking phenomena for thin walled plates whereas the 
model error estimator, eqn. (49), yields consistent estimates. 

To avoid substantial influences of the discretization error on the model error, the global 
discretization error has to be smaller than the global model error, 77~ I <_ ~). 
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7. FURTHER NUMERICAL RESULTS 

The following numerical examples were performed for the benchmark system described in 
section 4. The results were computed for Hencky-type non-linear elastic materials and 
elastoplastic materials with Hill's flow theory and nonlinear isotropic hardening. 

Figure 8a: Graded 
mesh No. 2 with 64 el- 
ements, see Fig. l b 

Figure 8b: Graded Figure 8c: Graded 
mesh No. 3 with 256 mesh No. 4 with 1024 
elements elements 

7.1. Hencky-type non-linear elasticity 

Mesh number 2, Fig. 8a, was refined in 10 steps using the equilibrium criterion by Babu~ka 
and Miller, yielding 875 elements with 1816 degrees of freedom. The results of the adaptive 
computation are shown in the following Figs. 9a-d in comparison with the results of the 
sequence of graded meshes. 

Figure 9a: Adapted mesh at A = 4.5 
for Hencky-plasticity 

Figure 9b: f451uuldx at ~ = 4.5 for 
Hencky-plasticity 

7.2. Prandtl-Reu~ elastoplasticity with mixed hardening 

In Figs. 10a-f, an adaptive computation starting from mesh 1, yielding finally 802 elements 
with 1674 degrees of freedom, is shown in comparison to the solutions of the sequence of 
graded meshes. Mesh No. 1 with 16 elements remains elastic throughout the whole loading 
process. 

In the Figs. l la-c below, the convergence rates for the three parts of spatial error are 
shown for a sequence of uniformly refined graded meshes from 256 (mesh no. 3) to 4096 
elements (mesh no. 5) for a load of ~ = 4.5. Adaptive computations were performed from 
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Figure 9c: Displacements u~ of node 4 
at A = 4.5 for Hencky-plasticity 

Figure 9d: Displacements u~ of node 5 
at A - 4 . 5  for Hencky-plasticity 

Figure 10a: Adapted mesh at A = 4.5 
for Prandtl-Reu6 elastoplasticity 

Figure 10b: Displacements u= of node 2 
over A for Prandtl-Reui] elastoplasticity 

Figure 10c: Displacements uy of node 4 
over A for Prandtl-Reui] elastoplasticity 

Figure 10d: Stresses r of node 2 over 
A for Prandtl-Reut] elastoplasticity 

start meshes number 2 and 4. Fig. l l a  presents the error of equilibrium rleq; Fig. l l b  
depicts the evolution of the error rlsv w.r.t, the plastic strain rates, and Fig. l l c  shows the 
evolution of the error rlKT of the Kuhn-Tucker-conditions. A higher rate of convergence is 
obtained for all the three adaptive computations. 

Finally the convergence of the combined spatial error indicators was considered. Fig. 
l l d  shows again that the convergence rate is higher for the adaptive computation starting 
from mesh number 4 than for graded meshes 

Figs. 1 2 a -  12h show results form elastoplastic plate with a hole, calculated with 
isotropic and anisotropic PEM. (~) : isotropic error estimation; [:3 : anisotropic error 
estimator. 
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Figure 12e: 4th Mesh with anisotropic 
PEM 

Figure 12f: 9th Mesh with anisotropic 
PEM 

Figure 12g: 4th Mesh with isotropic 
PEM 

Figure 12h: 9th Mesh with isotropic 
PEM 

8. CONCLUSIONS AND FUTURE WORK 

It was shown that the primal FEM for elastoplasticity of Prandtl-ReuB-type with FEM 
in space and FDM in time yields essentially three spatial discretization errors, namely of 
equilibrium, of the Kuhn-Tucker conditions (yield condition and loading conditions) and 
of the plastic strain rates which can be interpreted as a control of the plastic dissipation 
condition. At the time there is not yet a common mathematical basis for these three errors 
due to the complicated trace-spaces in which the elastoplastic solutions are located. 

Dual and dual hybrid FE-functionals, as applied in [9] for elasticity and in [19] for 
elastoplasticity, shall be investigated further on. Moreover local error analysis by using 
dual arguments is in progress. 

The Posterior Equilibrium Method (PEM) yields physically consistent orthogonalized 
boundary tractions t,h. With these tractions an error estimator was gained with solving 
local Neumann problems. For elastoplasticity the local Neumann problem was formulated 
in the tangential space. This method leads to anisotropic error estimators with upper 
bounds of the discretization error for elasticity and elastoplasticity and also an consistent 
model error estimator by locally changing from a reduced model to an enhanced model. 

In the concept of operator split (FEM in space, FDM in time) the coupling of space-time 
discretization errors is only possible in a crude way using time step control with constant 
time increments for the whole spatial system. Our staggered scheme for space-time error 
control, [7], is promising, especially for un- and reloading processes. A true coupled space- 
time error analysis is only possible for FEM in space and time which becomes also attractive 
for parallel computing by e.g. splitting a time slab into p subproblems, p being the number 
of processors. 
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An a posteriori error estimator is obtained for estimating the error in non-uniform order 
hierarchic models of elliptic boundary value problems on thin domains, and is shown to 
provide an upper bound on the actual error measured in the energy norm. The estima- 
tor has many similarities with a known heuristic refinement indicator used for adaptive 
hierarchic modelling and in this sense provides some theoretical support for the existing 
technique. Numerical examples show that the performance of both estimators is compa- 
rable, both yielding good results, with the new technique performing slightly better. 

1. Hierarchic  Model l ing 

Let w be a plane, polygonal domain with boundary Ow, and let fl = w • ( -d /2 ,  d/2) 
be the domain of thickness d > 0. If the thickness parameter d is small compared with 
the dimensions of the mid-surface w then fl is often referred to as a plate. 

Consider a steady state heat conduction problem with heat fluxes f+, f_  E L2(w) 
prescribed on on the upper and lower faces of the plate 

n~ = {z = (z ' ,z3):  z '  e w, z3 = +d12}. 

On the lateral boundary, F = Ow • ( -d /2 ,  d/2), the temperature u of the plate is pre- 
scribed to be zero. The heat flux vector q is assumed to be related to the temperature 
gradient according to 

b(2xa/d) ] 
q(x) = - b(2xa/d) Vu(z), z e a 

a(2z3/d) 

where the thermal conductivities a and b are even functions independent of the thickness 
d and satisfy a, b E Loo(-1,1) and 

0 < a.a. ~_ a(z), 0 < b_ ~ b(z). 

In particular, these assumptions allow the material properties to be piecewise constant 
as would be the case for the laminated domain shown in Figure 1. In addition to the 

*The support of the Engineering and Physical Science Research Council through a research studentship 
is gratefully acknowledged. 
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Figure 1. Plate-like domain of laminated construction. 

constitutive equation, the boundary value problem may be formally stated as 

V .q  = 0 in fl; n=l=. q(z' ,  =l=d/2) + f•  = 0 on f/~; u = 0 on r.  

The variational form of the problem is 

find u E V: B(u, v)= L(v) Vv E V (I) 

where V is the space 

v = HI(a) �9 = o on r} 

with B : V • V ~ R and L : V ~ R given by 

B(u,  v) = fn a + b V ' u  . V ' v  dz '  dzs 

and 

LCv) = f~ {f+Cs162 d/2) + f _ ( z ' ) v ( ~ / , - d / 2 ) }  dz' 

where V'  = (0/c9xl, c9/0x2, 0). 

1.1. A Simple Plate  Model 
Generally, the true solution u will vary through the thickness. However, if the domain 

is thin, then the variation will be relatively small in comparison with the variation over 
the mid-surface. Therefore, it is natural to attempt to simplify the problem by seeking an 
approximate solution that is constant through the thickness. Mathematically, this amounts 
to seeking the solution of the problem: find Uo E V0 such that 

B(uo, v ) =  L(v) Vv ~. Vo 
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where Vo c V is the subspace of admissible functions that remain constant through the 
thickness, 

Vo = {v E HX(fl) " v(m',xs) = ao(m'), c~0 = 0 on Ow}. 

For smooth data, this problem is readily found to be equivalent to solving a partial 
differential equation posed over the mid-plane w, 

-dbA'uo = f+ 4- f_ in w (2) 
D 

with u0 = 0 on Ow, where b is the value of the thermal conductivity coefficient b averaged 
through the thickness 

1 f _"/' b(2~Id)d~ = b(~) d,. b = -~ J-d/~ 2 I 

The equation (2) represents a dimensionally reduced, or plate model, for the original three 
dimension boundary value problem. It is natural to ask how accurately the solution of 
the reduced model approximates the full solution. 

1.2. An A Posteriori/Priori Error Estimate for the Simple Plate Model 
Suppose, for ease of exposition, that the prescribed fluxes are equal so that f+ = f_ = f. 

If the error in the dimensionally reduced approximation is denoted by eo = u - Uo E V, 
then for any v E V 

B(eo, v) = LCv) - B(uo, v). 

Let v0 E I/0 be defined by 

2 [,i~ b(2~/d)v(=', ~) d~, 
vo (= ') = ~ , - w ~  

then straightforward manipulations show that 

B(wo, v - vo) = 0 VWo ~ Vo. 

As a consequence, 

B(eo, v) = B(eo, v - Vo) = L(v - vo) - B(uo, v - vo) = LCv - Vo) 

where use has been made of the standard orthogonality property of the Galerkin approx- 
imation. Now, 

L(v - ~0) = ~ f(| {v(| d12) + ~(=',-dl~) - v0(| d='. 

The following identity is obtained via the Peano Kernel Theorem, 

f~/2 ov , v(=', d/2) + v(~,', -d12) - Vo(=') = r K(2xsld)-~xs (= ' xs) dxs 

where 

K(s) = ~ b(t)dt. 
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Therefore, 

[ ~-~/,-f/~ g(2~/d) ~ (~', ~) d~ d~' 0v 
L(~ - ~o) = L / ( ~ ' )  

and, with the aid of Cauchy-Schwarz inequalities, 

IL(~ - v0)l' _< ~ ds II/II~,(~)lllvll 

where II1~111' - B(~, ~). Gathering results shows that 

d [f:~ ~K(~)' ] " . llleolll'_< ~ d~ II/II~,(~) 

In particular, if the plate is homogeneous so that a = b = 1, then K(s) = s and the 
estimate simplifies to 

d I/IIL, c~) III~0111'_<~I ' �9 
These estimates show how the accuracy of the solution of the simplified model (2) depends 
on the data f,  the material properties a and b, and the thickness of the plate. In fact, 
the error bound is computable and provides a numerical estimate for the accuracy of the 
zeroth order model. 

2. Higher Order  P la t e  Models  

If the error in the simple plate model fails to meet the required tolerance, then it is 
necessary to turn to a higher order plate model. Let 

{r176 o C H1(-1,1)  

be a sequence of linearly independent functions that are dense, and let N be any non- 
negative integer. The subspace VN C V is defined by 

v~ = ,.~ = ~ ~(~)r , ~j ~ U~(~) 
j=O 

and the model problem is approximated by solving 

find UN E VN : B(UN, v ) -  L(v) Vv E VN. (3) 

As before, the problem is formally equivalent to solving a coupled system of PDEs on the 
mid-plane 

4 2 
-BA ' t~  + -~Aa = -~f in w 

subject to ct = 0 on aw, where 

[A]jk =/I I s [B]jk -- / I  I b(z)~)j(Z)~)k(Z ) dz 
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and 

[f]k -- Ck(1)f+(z') + ~k(--l)f-(z'); [a]k -- C~k(Z'). 

Thanks to the density property of the sequence {~j}#~176 the modelling error converges 
to zero in energy as the order N increases. The selection of the functions {~j}~Y=0 has been 
studied by Vogelius and Babuska [1]: define ~2j, j = 0,1, 2,... recursively by r = 0 
and 

, a(z)r  ) dz + b(z)r  dz  = ' (4) 
1 0, otherwise 

and define r j = 0 ,1 , . . .  by r = 0 and 

t a(z)r (z)v'(z) dz  + b(z)C2j_, (z)v(z)  dz = (5) 
1 1 0, otherwise 

for all v e Hi ( -1 ,1 ) .  
In particular, if the coefficient functions a and b are constant then the optimal choice 

is to take Cj to be a polynomial of degree j .  More generally, Vogelius and Babuska [2] 
show that this process generates a dense subspace. 

The Gram-Schmidt procedure may be applied to orthogonalize the basis functions so 
that without loss of generality we may assume 

/2 , b(z)r162 dz = Aj~jk (6) 

where 5jk is the Kronecker symbol. 

2.1. An  A Pos ter ior i  E r r o r  E s t i m a t e  for Higher  Orde r  Models  
It is possible to derive a posteriori error estimates for the error in the higher order plate 

models [3]. For instance, if the domain is homogeneous so that a = b = 1 and the data 
satisfies f+ = f_ = f then 

I1' d OU2N [! " (7) I l lu -   2N[II < 4)V + 3 f -- 0xs d/, 

The term on the right hand is the residual in the approximation to the boundary condition 
on the top (and bottom) surface. In particular, if N = 0, then the expression reduces to 
the bound obtained earlier for the error in the simple plate model. 

Babuska and Schwab [3] showed this estimator to have a number of highly desirable 
properties. In addition to providing an upper bound, if the data is sufficiently regular 
then the upper bound will tend to the actual error as either the order N -+ oo or as the 
thickness d -+ 0 +. 

2.2. Adap t ive  P l a t e  Model l ing  
Typically, the true solution u will have markedly different behaviour through the thick- 

ness direction in different parts of the domain w. For instance, if f = 1 then, away from 
the boundary 0w, the variation through the thickness will be virtually constant and could 
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be well-resolved by a low order model. However, a very high order model would be needed 
to resolve the boundary layer in the true solution in the neighbourhood of Ow. This sug- 
gests that there are advantages in using non-uniform model orders N in different regions 
of the domain. 

Let {wK �9 K E P} be a partitioning of the mid-surface w into the union of non- 
overlapping triangles or convex quadrilaterals such that neighbouring elements share a 
single common edge or vertex. Let N(K) denote the order of the model to be used on 
the region wK, and define V c V to be the subspace 

P = {v e v" e span{~" k = 0,...,N(K)} K e P}. 

The solution ~ of the non-uniform model is obtained by solving the problem: find ~ E P" 
such that 

B(~, v ) -  L(v) Vv E V. 

The selection of the model orders {N(K) �9 K E 7 ~} will depend on the particular features 
of the specific problem under consideration. Adaptive, hierarchic modelling consists of 
starting from a low order model and then designing a sequence of non-uniform models for 
a given problem based on assessing the accuracy of the current approximation on each 
of the elements WK and locally increasing the order of the plate model in those elements 
where the error iS too high. At the heart of the adaptive algorithm is an a posteriori 
estimator indicating the error on each element wK. 

3. An  A Poster ior i  E s t i m a t o r  for Adap t ive  Hierarchic Model l ing 

The purpose of this section is to describe a technique for estimating the error in a plate 
model of genera], non-uniform order. To date, there have been no reliable error estimators 
for non-uniform order plate models. The basic idea behind the estimator given here stems 
from an idea in [4] for estimating the errors in fully discrete hierarchic models (where the 
error in the finite element approximation of the dimensionally reduced model is also taken 
into account). The estimator requires the solution of an auxiliary residual problem posed 
over a local patch consisting of a small number of elements, and is similar in spirit to an 
estimator proposed by Babuska and Rheinboldt [5] for finite element approximation. 

3.1. Preliminaries 
Let W denote the vertices of the elements in the partitioning P of the domain. Associ- 

ated with each vertex z ,  is a first order (finite element type) Lagrange basis function On 
defined by the conditions 

e,,(| = 6,~., vm, ne~. 

The basis functions {On : n E ~ )  form a partition of unity on w, 

1, 
nG~ 

and satisfy 

0 < e,(=) < i, = e ~,. 
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Moreover, the support w~ of the basis function 8n consists of the elements wK having a 
vertex at zn, 

w, = supp(0,) = U(wK " z ,  G wK}. 

If a family of partitions is used in the adaptive modelling procedure, then it will be 
assumed that the number of elements forming the support of a basis function is uniformly 
bounded over the whole family. 

The basis functions are constructed using first order polynomials in the usual (finite 
element) way. Consequently, the gradients may be bounded as 

IV'O,,(z)l ___ A:  1 

where An depends on the dimensions of the elements forming the support of 0n. For 
instance, 

�9 if w is an interval then An is equal to the size of the smallest element on which 8n 
does not vanish identically; 

�9 if w C R 2 is partitioned into triangular or rectangular elements then v~An equals 
the length of the shortest edge that is connected to the vertex zn. 

A variation of the arguments leading to the standard Poincard inequality shows that there 
exists a positive constant Cs such that 

for all v G g ' ( - 1 , 1 )  such that j.1 b(s)v(s)ds = 0. In particular, for a homogeneous 
material (a = b = 1) then Cs = 1/~r. The following result will also prove useful: 

L e m m a  1 For any v G V there exists ~ e V such that for all n E 

IIIO.(v- ~)111--- v'~ I q- \2An ] IIIvlll.,.. 

Proof. Let v G V be given and let N be the largest global modelling order, 

- max{N(K)" K G 79}. 

Without loss of generality, it may be assumed that the basis functions {r " J = 0 , . . . ,  N} 
are selected so that r = 1 and (by solving a generalized eigenvalue problem) 

(bCj, Ck) = (ar r = 0 for j r k 

where (., .) denotes the inner product on L2(-1,1) .  Let the expansion of the function v 
in terms of these basis functions be 

. = _ .  

N 

j=O 
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where aj  E H~(w). A simple computation reveals that 

t -0  

Choose ~ = ao~o e Vo c g .  Then 
m 

IIIO,,(,, ~)111' ~ IIV'(o,,~.~) ' 2 II,.,,r (~,/,},,/,;) �9 - = II,.,,c,.,) Cb~.~, ~.~) + ~ I10,.,~.~ 
j= l  

The properties of the Lagrange basis functions imply that 

IIO,,~.~ll,.,,c,.,~ < II~.~ll,.,,c~,.~ 
and 

IIV'Co,,a.~)ll~,c~o <_ (llV'~jll~,c,,,,,~ + ~;111~.~11,.,,c,,,,,~) ~ 

( , ( ) ,  ) I~,c,.,.~ + ~ II~jll' �9 < 1 + \~-.:.) I IV%l 2 
- L ~ ( ~ . )  

Therefore, for j > O, 

d 2 
�9 ~ IIV'CO,~j)ll,.,,c,.,,)(b~,.~, ~.~) 

__< 1 + k2-~-:/ (~ j ,  ~)IIV%ll,.,,c,.,.~ + .~(~,/,.~ '6) 

The result follows at once by summing over both j > 0 and n 6 ~, and recalling the 
expression for IIIvlll. 

3.2. Local  Res idual  P rob l ems  
Let n 6 �9 be fixed and define the space V" to be 

V" = {v 6 V " supp(v) C w.}. 

The largest local model order on the support Wn of On is denoted by 

-N(n) = max{N(K) " w~ C wn} 

with the associated local space V" is defined as ( - / NC.) 
V " =  , , ~ v " . , , =  ~/~% . 

.i=O 

The local energy projection of the true error g onto the space V n is denoted by ~bn and is 
characterized by the condition: find ~bn ~ ~-n such that 

B(qbn, v) = B(~, v) Vv 6 "~. 

As a matter of fact, the function ~bn may be defined without explicit use of the true 
solution u since, for any v ~ V" C V, 

~(~, ~) = ~Cu, ~) - B(~,,) = L(~) - ~(~, ~), 
and so 4. may be obtained by solving the local residual problem 

B(~,, ~)= L(~)- B(~, ~) Vv ~ V". (8) 
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3.3. Derivation of Error Est imator  
The local projections Cn are needed for the a posteriori error estimator that will now 

be derived. Let v 6 V be arbitrary and let ~ be chosen as in Lemma 1, then, thanks to 
the Galerkin orthogonality property, 

B(~', v) = B(~, v - ~) = B(~', w) 

where w = v - ~. Moreover, since the Lagrange basis functions form a partition of unity, 

nE~ nE~ 

where w. = wO. 6 V n. Following [4], introduce the mapping Q. �9 V" ~ ~-n given by the 
rule 

. = .  

Q : ( z ' , z )  = ~ j=0 J-d/~ 

where Aj was defined in equation (6), and define Rn �9 V" ~ ~-n by 

w. = Q.w. + R.w.. 

Now, 

and then, 

B(~, R,,w.) = L C ~ w . )  - B(~,, ~ w . )  

and 

B(~, Q.w.)  = L(Q.w.)  - B(~, Q.w.)  = B(r Q.w.),  

so that 

B(~, ~ . )  = L ( P ~ . )  - B(~ + r R . ~ . )  + ? ( r  ~.).. 
=:7'I =:T2 

Integrating by parts in the thickness direction leads to 

Tx = [ {Rnw.(z',d/2)r+(~.') + R.w. (z ' , -d /2 ) r_ (x ' )}  dz' 
d t O  f t  

where 

0 (~ + r �9 
r+ = f+ q: a(-t-1) Oz 4-d/2 

(9) 

Applying Corollary 7 from [4] gives the following bound: 
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where the functions ~ are defined in [4] (and are discussed later), and 

f"/'  .(2./d)law" I' M ( w . ) 2 : t , , j _ a l 2  jO z d z d . ' .  

Observing ~0 is constant and using properties of the Lagrange basis functions shows 

- ~ = o . ~ _ ~ ~ =  Oz = g  
and in turn reveals 

IMC~.)i < liivlii~.. 
Gathering these results gives 

i ,i _< .+  + lIiviII... 

The second term is bounded more easily using Lemma 1 as follows 

IT2I ~ II1~,.,111111~,.,111 = III,/',.,1111110,(v- ~)llJ-< ~ 1 + \ ~ , , /  III,/,,.,111111~,111,,,,,. 

Collecting these results 

iB(~, ~.)i  < ~lii~lli~. 
where 

+ v~ x + k~-~. ) II1~.111. (lO) 
p, 

NOW1 " 

Ili'vlll~. = ~ ~ lilvlli~,,. _< "r ~ IIl~lil~ :',-II1~111 ~ 

where w is the number of vertices of each element. Therefore, 

IB(~', v)l _< ~ IB(~, w,,,,)l S n~ II1~111 
hE9 

and hence we have proved: 

Theorem 2 Let ~" denote the error in the non-uniform hierarchic model associated with 
the subspaee V C V. Then, 

II1~111 ~ <_ ,,. ~ ~. 

where ~. is defined in (10), I" is the number of vertices of the elements, r+ are defined in 
(9), ~. denotes the solution of the local residual problem (8) and ~'~ are given in Corollary 
7 o1[~1. 
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A few remarks are in order: 

1. The bound suggests using r}~ as an estimator for II1~111 ~. However, since the patches 
overlap, resulting in each part of w being counted r times, we shall instead base the 
estimator on ~'-l~}~. 

2. For a homogeneous material (a = b = 1) the functions s~ are given by 

2/(2N + 3), 
s+(N) = 2/(2N + 1), 

if N is even 
if N is odd 

and 

2/(2N + 1), 
~- (N)  = 21(2N + 3), 

if N is even 
if N is odd 

3. If ]+ = ]_ = f and a uniform model of order 2N is used then the solution of the 
local residual problems is Cn = 0. Consequently, the residuals satisfy r+ = r_ = 
f - a(1)OU~N/OXs. In addition, if the material is homogeneous a = b = 1 then the 
estimator reduces to (7). 

4. The factor involving the term Csd/2An may blow up if the the elements are small 
compared with the thickness of the domain. Consequently, this suggests that one 
should not attempt to vary the model order over a scale significantly smaller than 
the thickness of the domain. 

5. The estimator was based on solving residual problems formulated over patches com- 
posed of the elements. One obvious way to simplify the computation would be to 
solve residual problems posed on single elements. The local projection CK on the 
element wK would be characterized by: find CK E ~K such that 

B(r ~) = L ( v ) -  B(~, v) Vv e V ~ (ii) 

where V K is defined in a similar way to V-~ with the element wK replacing the patch 
wn. The estimator would then be defined using the same expressions given above 
with the patches wn replaced by single elements wK. (Of course, the theory given 
earlier is no longer applicable.) 

In fact, this estimator simplifies drastically if one notices that the solution of the 
local residual problem CK vanishes (since V K c ~' and the right hand side of (11) 
is identically zero). Therefore, the expression for the error indicator on element WK 
reduces to 

jd v?K = "~+ (N(K))lie+ + e'-IIL,(,..,,,.) + g~- (N(K) ) I1~ '+  - e-Ilk,c,.,,,.) (12) 
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Figure 2. Domain and partition used to construct adaptive hierarchic model for numerical 
example. 

where 

r-~ = f~ :F a ( •  a~[  

This method for estimating the error in non-uniform hierarchic models was suggested 
in Babuska et al. [6]. 

4. Numer i ca l  Examples  

The performance of the indicators described will be illustrated by solving the following 
problem: 

- A u  - 0 in fl - ( -1 ,1)  x (-d/2, d/2) 
subject to u -- 0 on the lateral boundary with prescribed heat fluxes f+ - f_ -- 1 on the 
upper and lower faces. The domain w is partitioned symmetrically into 20 subdomains 
with breakpoints located at-1.00,-0.998,-0.990,-0.975,-0.950,-0.925,-0.900,-0.850,  
-0.750, -0.500, 0.00 as shown in Figure 2. The exact solution contains a boundary layer at 
x -- +1 whose accurate resolution requires the use of very high local model orders. Con- 
versely, away from the boundary, the solution may be resolved with the use of relatively 
low model orders. 

Table I shows the sequence of hierarchical models used to approximate the problem on 
a domain of thickness d - 0.2. The solution of the dimensionally reduced systems posed 
on the mid-surface is accomplished using a p-version finite element method designed so 
that the discretization error is negligible in comparison with the modelling error. The 
performance of three error estimators is shown in Table 1. In particular, the ratio of the 
estimated error to the actual error is shown for the following estimators: 

1. r/K denotes the estimator based on (12) proposed in [6] obtained when the local 
residual problems are posed over single elements; 

2. r/n denotes the error estimator based on (10) analysed in the previous section and 
shown to yield an upper bound; 
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Table 1 
Details of sequence of non-uniform hierarchic models. The columns refer to each of the 
nine different hierarchic models used. Rows 1-10 show the model order used on each of the 
ten elements present in all the models. The final three rows show ratio of the estimated 
error to the actual error for three different error indicators. 

Adaptive Hierarchic Model 
1 2 3 4 5 6 7 8 9 

Element Number 

1 4 6 8 10 12 12 14 14 18 
2 4 6 8 10 10 12 10 12 18 
3 4 6 6 6 6 6 6 6 16 
4 4 4 4 4 4 4 4 4 12 
5 4 4 4 4 4 4 4 4 6 
6 4 4 4 4 4 4 4 4 4 
7 2 2 2 2 2 2 2 2 2 
8 2 2 2 2 2 2 2 2 2 
9 2 2 2 2 2 2 2 2 2 
10 2 2 2 2 2 2 2 2 2 

Effectivity Index 
17K 1.75 1.74 1.52 1.31 1 .21  1.13 1.11 1.04 0.91 
~7,, 1.70 1.68 1.51 1.35 1.30 1.25 1 .25 1.20 1.06 
17~ 1.70 1.66 1.45 1.30 1.16 1.19 1 .10 1.10 1.01 

3. rl~ denotes the error estimator based on (10) when the extra term II1  111 is excluded. 

The results confirm that the estimator r/n provides an upper bound on the actual error as 
the theory suggests. 
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Figure 3. Plots showing the resolution of the derivative of the solution in the thickness 
direction near the edge of the plate of thickness d = 0.2 for Models 1, 3, 8 and 9. The 
details of the local model orders in each case are shown in Table 1. 
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In this paper, we introduce a two-scale strategy to model scalar diffusion problems in 
heterogeneous structures and estimate a posteriori the quality of the model obtained. The 
modeling strategy involves the following steps: partition of the domain into subdomains, 
description of the temperature field as a "smooth" part plus a "correction" on each subdo- 
main, construction of a prolongation operator on each subdomain by minimizing the local 
potential energy with respect to the correction part and, finally, definition of the "ho- 
mogenized" problem through the minimization of the global potential energy expressed 
in term of the smooth part of the temperature field. By choosing properly the boundary 
conditions in the local minimization step, the strategy yields a continuous temperature 
field. To estimate the quality of this approximate solution, a second solution is locally 
built such that the heat flux field is in thermal equilibrium. Then, the energy in the differ- 
ence of the two solutions built is linked to the exact energy error in these solutions using 
the Prager-Synge hypercircle theorem. Finally, the results are revisited in the case of an 
approximate computation of the prolongation operator and a 2-D numerical experiment 
is studied to analyze the proposed approach. 

1. I N T R O D U C T I O N  

In recent times, the use of the notion of hierarchical modeling has arisen as an approach 
to very complex problems involving the analysis of heterogeneous media. One approach, 
advanced in [1,2], is to construct an adaptive modeling strategy called the Homogenized 
Dirichlet Projection Method (HDPM) in which the various fine-scale constituents in a 
heterogeneous media are present in the characterization of the material constants, and 
a homogenized solution is calculated. Once an estimate is obtained, only the fine-scale 
information sufficient to produce solutions within a preset level of accuracy is used, with 
the result that models containing orders-of-magnitude fewer degrees of freedom can be 
used to obtain acceptable resolutions of fine-scale phenomena. In these approaches, the 
homogenization step is regarded as a process provided by a black-box-homogenization 
unit outside the HDPM algorithm. 

*The authors gratefully acknowledges the support of this work by the U.S. Office of Naval Research 
under Grant N00014-95-1-0401 and the National Science Foundation under grant ECS-9422707. The 
assistance of Dr Carter Edwards in providing a C++ library useful in our calculations is also gratefully 
acknowledged. 
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In the present paper, we explore a slightly different strategy for hierarchical modeling 
in which the computation of an appropriate homogenized model is an intrinsic part of the 
hierarchical modeling process. Here a coarse scale model is produced which effectively 
projects fine-scale features onto a finite dimensional space. A prolongation operator of 
the coarse scale approximation into the fine scale solution is determined so as to minimize 
the potential energy based on the fine-scale features. A global coarse solution is likewise 
obtained through a minimization process. The boundary conditions for the local mini- 
mization are chosen so that the strategy yields a continuous temperature field. Then, to 
estimate the modeling error in this solution, we built locally a second solution for which 
the heat flux is in equilibrium. The energy in the difference of the two solutions may then 
be related to the modeling error. 

Our method exploits a number of strategies proposed in other applications. For exam- 
ple, the relation mentioned above is provided by the classical Prager-Synge hypercircle 
arguments [3]; the second solution is built using Ladev~ze equilibration technique [4]; the 
domain decomposition strategy is reminiscent of those proposed recently by Ladev~ze and 
Dureisseix [5], and a similar approach to homogenization techniques for porous media is 
being developed by Arbogast [6] using mixed finite element techniques. 

Following this introduction, we outline the details of the approach on a model class 
of scalar diffusion problems in n dimensions. We give a full development of techniques 
for constructing the coarse-scale homogenized models, and well-defined prolongations to 
the fine-scale model. This is followed by the local calculation of the equilibrated solution 
which is then used for a posteriori error estimation purposes. The practically important 
case of an approximate computation of the prolongation operator is studied and the 
meaning and validity of the results in this framework are analyzed. Finally, the technique 
is demonstrated through a representative numerical experiments and a summary is given 
of the major conclusions of this investigation. 

2. THE MODEL PROBLEM 

Vectors will be bold and scalars italic. For instance, the temperature will be denoted by 
u and the heat flux and the temperature gradient will be denoted by tr and ~, respectively. 
More complex operators will be uppercase (e.g. E for the conductivity tensor). 

We consider a material body composed of a linearly-conductive material in thermal 
equilibrium under the action of given volumetric and surface heat sources, fd  and td 

respectively, see Fig. 1. The domain, f~ C IR", n = 1,2, 3, occupied by the material body is 
considered bounded and regular with a simply-connected domain with Lipschitz boundary 
F. The boundary F consists of a portion Fu where the temperature Ud is given and a 
portion F t where surface heat sources td are prescribed, F = Pu U Pt, Fu fq F t = 0. The 
external sources are assumed to be regular and, in particular fd E L2(f~), td 6 L2(Ft). 
The problem to be solved on f~ is to find a triple (u, e, tr) such that the temperature 
constraints, the equilibrium equation and the constitutive law hold: 

- -  V u  o n ~ , u = U d  on ru 
div  tr = - fa o n f ~ , t r . n = t d o n F t  / (1) 

cr = Ee on f~ 
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n is the outward normal to the boundary. The conductivity tensor E is a function of the 
position z i.e. E = E(z)  E Lr162 "• and E is symmetric and elliptic; i.e. for a.e. z E ~, 
there are constants c~0, cq > 0, such that v~oata < atE(z)a < vqata for any a E R n. 
More precisely, problem (1) corresponds exactly to a heat transfer problem if tr, fd and 
td are the heat flux, the volumetric and surface prescribed heat sources, respectively (up 

to a sign). 
Eliminating e and tr in (1) we also have the classical heat-conduction formulation, 

-d i v (EVu)  = fd on ~, U = U d o n F u ,  E W u . n =  td on r t (2) 

A weak formulation of problem (2) is to find u E Yd such that 

B(u, v) = F(v) V v e Vo (3) 

where 

Ya = (v E V ' v  = ud on ru) ,  Vo = ( ,  e = 0 on ru}, v = H'(fl)  

B(u, v) = ~ Er . r dx, F(v) = f n f d v d x  + fr tdvds 
t 

and we have used the notation e(v) = Vv. 
Owing to the assumed properties of E, B(., .) is symmetric positive and induces the 

energy norm on V" 

JlVJJE(a) -- {B(v, v)} ~/2 (4) 

Problem (3) possesses a unique solution u for given data and, as it is well known, this 
solution also minimizes the total potential "energy" J: 

J(u) = inf J(v) J(v) = 1 ,,evd ' -~B(v, v) - F(v) (5) 

a. T W O - S C A L E  M O D E L I N G  S T R A T E G Y  

We are concerned with classes of problems in which the material body fl possesses 
complex microstructures in which case E = E(z)  exhibits highly heterogeneous structure 
with possible nonperiodic oscillations at one or more scales smaller that the characteristic 
length of fl itself. The present analyses focuses on cases in which the resolution of these 
fine scale features represents a computational problem of very large size, but within the 
capabilities of comtemporary massively parallel computers; e.g., fine scale features may 
be of the order of 10-3L, L being a characteristc length scale of ft. Our approach to the 
resolutions of the effects of the fine scale consists in the following steps. 
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Figure 1. Notations for the model problem Figure 2. 
subdomain 

Notations for a 

3.1. Partition of the domain 
We introduce a partition 7~o of the domain ~ into No subdomains ~K: 

~'~ : UK=I~K,  ~ K  N ~L  "-- O, g # L (6) 

The boundary, F K, of each subdomain is decomposed into the part of the boundary on 
which the temperature is prescribed, FKu, the part of the boundary on which surface heat 
sources are prescribed, Fgt, and the remaining interior part, Fro, Fig. 2: 

F'--K" -- Fgu U FKt U Fgi (7) 

where 

FK~ = r u n  r g ,  Fgt = r t  n FK, F m =  F g \ ( r g u  O rgt )  (8) 

We assume that ~g contains no holes or cracks and that its boundary does not cross any 
holes or cracks of ~. These cases need special attention and will not be considered in this 
paper. 

3.2. Decompos i t ion  of the  spaces 
On each subdomains ~ g ,  we shall define the space YK -- H i ( f i g )  which is decomposed 

into the spaces 1;g M and )4)K such that the following conditions hold: 

�9 V M is a finite dimensional subspace of ~)g whose dimension is d i m V  M = M > 1. 

We assume we have a sequence of nested spaces everywhere dense in l)g 

c + '  c . . .  c = (9)  

�9 For any dimension M >_ 1, 1) M must at least contain all the constant temperature 
fields defined on flK i.e. 

VM>__I" n s - C l )  M, n K = { v E ~ ) K ' e ( v ) = O }  (10) 
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�9 WK is a subspace of VK such that 

~'g = 1;~ @ WK (11) 

We understand this direct sum condition in the following algebraic sense 

~)M f'l ~VK = {0} (12) 

~V M E ] ) M , w  ~. W K  " V M q- w E "I)K (13) 

~V E ])K " =:]!I)M E "~)M, W ~ WI< " V -- V M 31- W (14) 

Note that for a given choice of V~., the choice of WE satisfying the previous condi- 
tions is not unique 

Example An example of such a decomposition of 1;g is provided by the case in which 
])M is thespace  of all the polynomials of order < M defined on f~K, and WK is the 
orthogonal complement in the HI(~K) norm, all the rigid body modes being excluded. 
Note that this example is particular since orthogonality is not required. 

V M = { v E Pu(f~t,')} 

WK = { w E l ) r ' ~  Vw.  V v d x = O  V v E V M , ~  w r d x = 0  VrET'a,.K} 
K K 

We note that the finite dimensional space vM characterizes a "coarse scale" representation 
of the solution for which we will eventually define an homogenized model. On the other 
hand, WK describes a correction space to take into account the fine scale features of the 
solution in f~h'. 

3.3. Defini t ion of the prolongation o p e r a t o r  
Our next goal is to establish a connection between the coarse scale components of ~)K 

and the fine scale components of l"g. This is accomplished if a prolongation operator PK 
can be constructed by mapping V M into VK. In particular, we seek a prolongation of the 
form 

P K "  ])M ~ V I i "  V M ~ O 11"I + C K  y M  (15) 

CK " "V M ~ WK " v M'+ w(v M) (16) 

where CK is a correction operator. 

3.4. Local  cons t ruc t ion  of a p ro longa t ion  
A natural way to construct the prolongation operator is to choose a perturbation w in 

WK which minimizes the total potential energy over f~K. Thus, we define w = w v by 

JK(vM+ w~'(vM)) = inf JK(v M + w) (17) 
wEI4)~ 
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where B2 v is 

~ -" {W E ~ K  "W -- 0 on FKu U FKi} (18) 

and 

1 
JK(v) = -~Bg(v, v) -- FK(V) (19) 

Bg(u,v) = fa Ee(u).e(v)dx, F g ( v ) = f a  fdvdx + / tdvds (20) 
A" K A't 

The D superscript used in the correction solution stresses the fact that we are consid- 
ering Dirichlet type boundary condition on Fgi in the local minimization problem. The 
corresponding correction and prolongation operators are denoted by C~ and P~., respec- 
tively. We shall see later that another useful choice of boundary condition is the Neumann 
type that will be denoted by the superscript Af. Concerning the imposed temperature, we 
assume that they may be taken into account exactly in the 1; M space, i.e. ~K,d N~R M- ~ {0} 
where 

"~K,d "-- {V E ])K :• "-- Ud on rKu) (21) 

3.5. Definition of the homogenized problem 
Knowing the prolongation operator, we can define the "homogenized" potential energy 

on each subdomain ftK in the following way: 

jKhOm,D. ])M _.~ R" V M --~ jh~ JK(Pl~V M) (22) 

Then we can sum these local potential energy to obtain the global "homogenized" poten- 
tial energy on 12 

1% 
jhom,V. ]]M _.+ ][~. vM _.~ jhom,'D(?)M)= E JK:--h~ IliA-) 

K=I 

where 

(23) 

.FM = {v E C~ ]nKE V M, 1 < IV <_ No} 

The homogenized problem then reads 

jh~ inf jh~ 
vM EVdM 

where 

(24) 

(2.5) 

V M = {v e V M :v =Ud on ru} (26) 

We assume that this space is not empty. 
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3.6. Pro longa ted  solution 
Once the homogenized solution u M,v is computed, we return to each subdomain and 

compute the prolongated solution u v. 

uV [a,r = P~. u M'v In,,. 1 < It" < No (27) 

The quality of the approximate solution u v will be studied in section 4. 

3.7. Local and homogenized variat ional  principles 
We now describe the variational principles associated with the minimum principles (25) 

and (17). 

Local variat ional principle 

The minimum principle (17) is equivalent to finding wV(v M) 6. W v such that 

Bs.(, ,  M + w~(vM), w) = Fs'(w) Wo e W~ (28) 

We observe that the solution may be written as the sum of a particular solution Wd ~ due 
to the linear functional FK(.) and a term depending linearly on v M denoted W~o(vM): 

wV(vM) = WVo (V M) + w v (29) 

wVo(v M) belongs to W v and satisfies 

B~.(v ~' + Wo~(~'), w) = 0 Wo e W~ (30) 

Wd ~ belongs also to W~ and satisfies 

B,,-(~, ~) = F,,.(w) Vw e W~ (31) 

Homogenized  variational principle 

We may now rewrite the expression (22) of 7hom,V ~ .  (.) ~ 

h o m , / g ,  M ,  J~?d"'V(v M) + JK(w~) (32) tv 1= 

where 

jKhOm, D 1 ,-,hom,D, M b-'h~ (V M) (33) o (vM) = ~'s" tv ,v M ) - . A .  

B~?"v( "M, oM) = BK(O M + wVo (vM), o M + WVo (oM)) (34) 

F~~ ~) = F,,-(,, M + W~o(V~'))-  B, , . (w~,  v M + ~o~(,M)) (35) 

The variational principle associated with (25) is thus to find u M'v E r~ t such that 

No N, 
Z ,-~hom,Dt M,D 1J K l,u ' v M ) -  Z rh2m'l~(vM) VvM ~" VoM (36) 
K=I K=I 

Compared to the initial variational principal (3), we see that the bilinear and linear 
functionals have been "homogenized" and that the homogenized problem is defined in a 
finite coarse scale space yM instead on the initial full space Y. 
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4. A P O S T E R I O R I  E R R O R  E S T I M A T I O N  

u v is an approximate solution to the problem and differs form the reference solution u. 
We note that u v belongs to 1) v 

y v =  iv  = v M + w" v M E V M , w  E L2 (a ) ,w ln  r E W ~  1 < K <_ No} (37) 

and satisfies Property 1, which is obvious since 1) v C Yd. 

P r o p e r t y  1 u v is an admissible temperature field, i.e. u v E Yd 

In order to estimate the quality of the solution u v,  we shall built locally from u v another 
temperature field denoted u Jr such that the corresponding heat flux will be in thermal 
equilibrium over the structure. This equilibrium property will allow us later to use the 
Prager-Synge hypercircle theorem and relate the difference in the solution u v and u ~f 
to the exact energy error in these fields. This strategy is inspired by the error-in-the- 
constitutive law approach [4]. 

The computation of u # is carried out in two steps: the construction of equilibrated 
surface heat source and the resolution of Neumann type subdomain problems. 

4.1 .  C o n s t r u c t i o n  of  equi l ib ra ted  surface h e a t  s o u r c e  
Using the coarse scale Dirichlet solution u M'v, we built surface heat source t M on the 

boundary Fgu U FKi of each subdomain such that they are continuous across Fgi and they 
are in thermal equilibrium over each subdomain; i.e. we require t M to be such that 

FK(r) + FK(r) = 0 Vr E Ti.K, 1 <_ K <_ No (38) 

No 
FK(v) -- 0 Vv E Vo (39) 

K = I  

w h e r e  

fi~K(v) = f t~v ds (40) 
Jr  KuUI"Ki 

Assuming that the subdomains fig, 1 _ K _ No, have been obtained using a finite 
element type decomposition of the structure and that the coarse scale spaces 1; M are 
finite element type local spaces, the construction of the equilibrated surface heat source 
may be carried out locally using the equilibration technique introduced in [4,7]. 

4.2 .  S u b d o m a i n  N e u m a n n  t ype  p r o b l e m s  
The temperature field u Ar is built in each subdomain separately: uArl~K = u~ were 

uK~r E I)K = Hl(f~tr is such that 

Bh' (u~ ,  v ) =  F g ( v ) + / ~ K ( v )  Vv E ~'K (41) 

f (u~-uvln,,.)rdz = 0 Vr E RK (42) 
K 
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The condition (42) allows us to define the solution uniquely. 
In order to solve efficiently the problem (41-42), we take advantage of the decomposition 

of the space Yg into the spaces vM and )4;K. We now look for u~ in the form 

~ = , , f , "  + w", e v~, w~ e w.- (43) 

such that 

B.(.~. '~ + J ,  v M) = F..(v ~) + &(v  ~) Vv ~ e VV 

BK(u~ '1r + w ~f, w) = Fg(w) + Fg(w) Vw e WK 

(44) 

(45) 

The solution of (45) may be expressed as the sum of a particular solution w~ due to 
the linear functional in the right hand side and a term, denoted W~o(uM'~f), depending 
linearly on uM'~': 

~ = ~o ~ (-  ~;,~) + ~ff (46) 

W~o(U~. 'Jr belongs to WK and satisfies 

B,,.(~,~ ,~ + ,,,g(~,~'~), w) = 0 V., c W,,- (47) 

Wd X belongs to )42K and satisfies 

B,,-(w~, ~)= F,,-(~)+ &(~)Wo e W,,- (48) 

Note that the problem (49) differs from the problem (30) only through the boundary 
conditions. The problem (44) now reduces to find u M'~r E 1 ;M such that 

Bhom,,~', M,Jr V M F~ym,Z ( v M) ~. rue , ) = 
~ (u~!. ' j r  uM'Vln,r dz = 0 

K 

Vv M ~. )2~. (49) 

Vr ~ Tr (50) 

where 

Bhom,Af (uM vM WNo (uM), M WNo (vM)) K ) = Bh'(U M Jr" v Jr" 
FKhom,Af (V M) "- FK(V M) Jr F'I,:(v M) -- BK(W~d , V M) 

(51) 

The condition (42) has been replaced by the condition of (50) which allows us to deal only 
with the coarse components of the fields. Note however that conditions (42) and (50) are 
equivalent in the case where )'VK is defined so as to contain all w such that 

f~ w r dz = O Vr E RK 
K 

(53) 
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4.3. Proper ty  of the N e u m a n n  type  solution 
In each subdomain f~K, we may define the heat flux vector associated with the local 

solution U~K by a ~  = Ee(u~K) which is well defined in (L2(FtK)) ". We have the following 
property 

P r o p e r t y  2 There exists a heat flux field r ~ E (L2(ft))" such that 

~ratla K = crag = Ee(u~g), 1 < K < No (54) 

which is admissible i.e. r E 8d where 

8a = {~- e (L2(f~)) " , d i v r  e n2(~) " f 1". e(v) dz = F(v), Vv e l~o} (55) 
Jn 

Proof: Owing to the definition of cry, we have 

f ern. e(v) dx = Fg(v) + ~'K(v), Vv e 1)K, 1 < K <_ No 
K 

Summing these relations over all the subdomains, we get 

(~6) 

No NO No 
f ,  - &(v). Vv v  57) 

K = I  K K = I  K = I  

where 

rat= (v e L2Cn) �9 vl . ,~ e rut 

Using (39) and the fact that r o e  rat,  (57) yields 

(58) 

No No 
E fa a~g" e(v)dx = E FK(v), Vv E ))o (59) 
K = t  h" K = I  

We may take v = ~o E Z)(12K) (space of test functions) in (56) and using standard 
arguments, we show that div r e L2(FtK) and div r + fa = 0 in L2(12K). From this 
and (59), it follows there exists a function erat such that div (r at e L2(1~) and erat[f~ K = ~r~, 
see [8]. 

4.4. Bounds  on the error  
, , uat solutions The energy in the difference of the "Dirichlet" u v and the "Neumann', , 

may be linked to the exact energy error in these solutions using the Prager-Synge hyper- 
circle theorem [3]. Since the solution uat belongs to Ht(f~) only on each subdomain but 
not on the whole domain, we need to introduce the notation 

III~,IllE(,~ = IlvlnKIl~(n,,.) 
\ K = I  

(60) 
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u 

u N 

D 
U 

Figure 3. Geometrical interpretation of 
the Properties 3 and 4 

P r o p e r t y  3 Defining the energy norm errors associated with the "Dirichlet" solution, 
the "Neumann" solution and their difference 

e v  = II u v  - u l lE(a~ ,  e ~  = Il lu ~ - u l l l E ( . ~ ,  e _  = Illu ~ --  u ~ l l l E ( . ~  (61) 

we have e_ = x/e~ + e~ 

The hypercircle theorem of Prager-Synge also gives us an interesting property concern- 
ing the average of the Dirichlet and Neumann solutions. 

P r o p e r t y  4 Defining the energy norm associated with the average between the Dirichlet 
and the Neumann solution, 

u v 4- u ~ 
e ~  - 1 1 1 - - - - 5 - - - -  - u l l l E ( . )  ( 6 2 )  

1 we have e.a = ~e_ 

Proofs: The geometrical interpretation of property 3 and 4 is shown Fig. 3. Property 3 
stems from 

N. 

e~.( , ,~  - , , , ~  - , )  = f ( ~  - ~ ) .  , ( , ~  - , ) d ~  = 0 
K = I  

(63) 

since r At, ~r E Sd and u v, u E Yd. Property 4 follows from 
U 9 - -  U U A t  - -  U 

1 2 g. 1 e2 = ~ ( ~  + ~ + 2 ~ B~-(u~ - u, ~ - ~)) = ~ _ 
K=I  

The last equality is obtained using Property 3 and relation (63). 
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5. F I N I T E  E L E M E N T  A P P R O X I M A T I O N  

In the two-scale strategy presented in Section 3, the space 1)g = Hl(ftK) was de- 
composed into the spaces V M and WK. In practice we shall work with a finite element 
subspace, Y~ C Yr. This subspace is decomposed into the spaces 12 M and YV~ so that the 
conditions described in the subsection 3.2 are fulfilled. Since we work with the subspace 
V~-, the prolongation operator will now be discrete. 

5.1. Discre te  prolongat ion o p e r a t o r  
We have to find wm'V(v M) 6. W'~. 'v such that 

aK(v M + w"V(vM), w ) =  FK(w) Vw 6 I/Y~: 'v (64) 

where 

W~ 'v = {w 6. W ~ . ' w  = 0 on FKu U FKi) (65) 

The prolongation operator is now denoted by p~,V to stress the fact that it depends on 
the choice of the subspace W~. The associate local and global homogenized potential are 
n o w  

jM,,n,v . 1)~ct ~ R" v M --r JM'm'V(vM) = JK(P~'Vv M) (66) 

iv. 
jM,~,v ,  vM ~ R" v M --~ JM'~'V(vM)= Z J~"'~'V(vM (67) 

K = I  

The homogenized problem is then 

JM'"V(uM'"v )=  inf JM'"V(vM) (68) 
vM EVdM 

and the prolongated solution reads 

u""v[rts. = P~.'VuM'~'v[a,,. 1 < K < No (69) 

5.2. Discre te  reference solut ion 
We see the solutions u M'~'v as an approximate solutions to a discrete reference solution, 

u "~, defined in what follows. We introduce the discrete global space ym defined on ft as 

l) m = {v 6. C ~  laKE l)~, 1 < K < No} (70) 

Clearly V '~ C Y. As a particular case, in the numerical experiments, the meshes defining 
the space ~ -  on each subdomain will be such that they match on the F h'i boundaries. 
Thus, the space Y '~ is defined on a global mesh obtained by assembling the local sub- 
domains meshes. Finally, we define the discrete reference solution u '~ as u"  6- V~ such 
that 

B ( u ' , , , )  = f ( v )  V ,, e 

where 

V~ = {v 6- Y '~ 'v  = Ud on F u } ,  I)~' = {v 6- V ' ~ ' v  = 0 on ru} (72) 
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5.3. A posteriori  error est imat ion 
u"  is our reference solution and u m'v is our approximate solution. We wish to analyze 

which results of Section 4 still hold and in what sense, u ' ' v  belongs to the space V ' ' v  
defined by 

V " , v =  ( v  = v M + w .  v M ~ V2',  w e L2(f~), win.. e W ~  'v 1 _< h" _< No} (73) 

Property 1 must now be understood as follows: 

P r o p e r t y  5 u m'v is an admissible discrete temperature field, i.e. u ' ' 'v E 1)~' 

Proof." This property is obvious since u ' ' 'v E 1) m'v C V~. 
Following the steps described in subsections 4.1 and 4.2, we are able to construct a 

Neumann solution u~ 'Jr over each subdomain. The corresponding heat flux try. ~ = 
Ee(u~.. ~ )  belongs to (L~(aK)) " and we have the property: 

P r o p e r t y  6 There exists a heat flux field o "~'~ 6. (L2(fl))" such that 

~rm'JCln r = (r~ 'Jr = Ee(u~  ''g) (74) 

which is admissible in the discrete sense i.e. ~r m'Jr E S~' where 

(r e (L'( f t ))" .[  r .  e(v)dx = F(v),  Vv e V~'} (75) s2 
Jn 

Proof: Following the path of the proof of Property 2, we may obtain the relation 

K = I  K K = I  

yielding the proof. 
Properties 3 and 4 must be rewritten as Properties 7 and 8. 

(76) 

P r o p e r t y  7 Defining the energy norm errors associated with the "Dirichlet" solution, 
the "Neumann" solution and their difference 

(77) 

we have e ~_ = x/(e'~) 2 + (e~) 2 

P r o p e r t y  8 Defining the energy norm associated with the average between the Dirichlet 
and the Neumann solution, 

u m,~ + u m,jr 

e~ = III 2 - ullle(a) (78) 

we have e'~ = ~e_l m 

Proofs: The proofs of Properties 7 and 8 are similar to the proofs of Properties 3 and 4. 
We note that the discrete exact stress ~r '~ = Ee(u m) belongs to S~ and thus we have 

No 
E BK(u~'"r - urn' u " v  - u") )  = ~ ( t y  ' ' '~  - o ' ' ) ,  e(u m'v - urn)dz = 0 

K = I  

since tr m'~, tr ~ E S~ and u '~'~, u"  t5 V~". 

(79) 
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Figure 4. A square domain divided into 
400 subdomains and prescribed tempera- 
ture along three segments of the boundary 

Figure 5. Mesh for a subdomain without 
and with inclusion 

6. N U M E R I C A L  E X P E R I M E N T S  

6.1. Re l a t i ve  e r ror ,  local c o n t r i b u t i o n s  and  effect ivi ty indices 
We shall need some notations to describe the numerical experiments. The relative error 

associated with the absolute errors ev, ear, e_, eA are defined using the energy of the exact 
solution. 

,:~ = ,~/11,.,"11~(~), ,:~' = e~ / l l , . , " l l s ( , ) ,  ,:~ = e~/ l lu" l lE;cn),  ,:~ = ,~/l l ' , . ," ' l l~c~) 
The contribution of a subdomain ftK to an absolute error will be denoted using a K index: 

~ . K  = II ~'"'v - ""lib(n,,), ~.~.K = II u"'~  -- ""lib(n,,) (8o) 
Urn,/) urn,Af 

- ,K  - I I  - s(a,,.), ~ ,s  II 2 -ul l~ca,, . )  (81) 
We also need the define the global effectivity indices: 

e_'2 0 a _  e_'2 
0 = ; ~ ,  - 2 ~  (82) 

and the local effectivity indices: 
ern e ra 

-,K 0hA. = -,K O K -  2e~, K, 2e~,K, 1 < It" _< No (83) 

Owing the Property 7, 0 should be greater than 1 and owing to Property 8, 0 ~t should be 
equal to 1. 
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6.2. An e x a m p l e  
We consider a square domain, ~ = [0, 20] • [0, 20], Fig. 4, insulated on its boundary 

except along three segments where the temperature is prescribed. The domain is decom- 
posed into 400 unit-square subdomains. Each subdomain is meshed using a 15 • 15 uniform 
mesh. Half of the subdomains are made of a material with uniform and isotropic con- 
ductivity, E = 1, and the other half contain a square inclusion of conductivity E = 0.01, 
Fig. 5. The distribution of the inclusions over the domain is obtained through a random 
process. 

On each subdomain, fig, l)~. is based on a 15 • 15 uniform mesh of four-node quadri- 
lateral, Fig. 5. The space 1; M is defined using bi-linear functions: 

"~M __ {13 ~. "~r~ "13 --  a l ( x  --  X 3 ) ( y -  Y3) "~- a2(x -- X l ) ( y -  Y3)-4- 

a a ( x  --  x , ) ( y -  Y l ) +  a 4 ( x  --  xa)(y -- y,),  ai e R , i  = 1 . . .  4 , ( z , y )  e nK} (84) 

where (xi, yi), i = 1 . . .  4, are the coordinates of the vertices of the subdomain. Note that 
we have indeed 1/M C Y~. The correction space }/Y~ is defined by 

W'~={wEl;'~'fa Vw. Vvdx=O VvEI;~, fn w r d x = 0  VrERK} 
K K (s5) 
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Figure 6. Correction field w re'v, over a subdomain containing an inclusion, associ- 
ated with a bilinear function v u whose value is one in the bottom left corner. Left: 
Dirichlet boundary condition on each edge; right: Dirichlet boundary condition on 
the bottom and right edges and homogeneous Neumann boundary condition on the 
other two edges. 

Figure 6 shows the correction function, wm'V(vM),  for a bilinear function whose value 
is one at the bottom left corner. Dirichlet conditions are applied on each edge for the left 
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Figure and only on the bottom and right edge for the right Figure, the two other edges 
being supplied with homogeneous Neumann-type boundary conditions. 

2O 
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Figure 7. Homogenized solution with the Figure 8. Prolongated solution with the 
Dirichlet approach: u M ' m ' v  Dirichlet approach: u m,v  

Figure 7 shows the homogenized solution, u M,m,v  and Fig. 8 the prolongated solution 
u m ' v .  We note that this latter solution involves local features that were not present in the 
homogenized solution. The exact relative energy error for this solution is e~ = 17.6%. The 
contribution of each subdomain to the error, e "~ v,K, are given Fig. 9. The contributions are 
the highest where a change of boundary condition occur and are small inside the domain. 
This latter observation may come from the fact that the boundary of a subdomain never 
cross an inclusion. 

The Neumann solution, u "~'~, is shown Fig. 10. It is discontinuous from subdomain to 
subdomain as expected. The exact relative error associated to this solution is e~ = 24.7%. 
The relative energy in the difference of the Dirichlet and Neumann solutions gives the 
estimated error e" = 30.3% so that the global effectivity index is 0 = 30.3/17.6 = 1.7, 
greater than one as expected. The local effectivity indices OK are shown Fig. 12. They 
are reasonably close to one on the subdomains contributing the most to the error. The 
average effectivity index is 1.46 and the standard deviation from this average is 0.78. 
Note that the equilibrated surface heat source were built in a crude manner since they 
are constant along the edges of the subdomains. Usually, linear representations are used 
for four-node quadrilateral elements [7]. 

The exact error associated with the average between the Dirichlet and Neumann solu- 
tions is e~ = 15.2% which is half the error in the difference of these two solutions (30.3%) 
as announced by Property 8. The local contributions e~,K to the error are given Fig. 11 
and do not differ much from the contributions e m shown Fig. 9. Finally, Fig. 13 shows D,K 
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Figure 9. Subdomain contribution to the 
absolute error for the Dirichlet solution 

the local effectivity indices 0~.. The average effectivity index is 0.90 and the standard 
deviation from this average is 0.23. 

The results for this example suggest that the average of the Dirichlet and Neumann 
solutions may be a better approximate solution than the Dirichlet solution itself since 

�9 we can can compute exactly the global energy error of the average without knowing 
the exact solution 

�9 the local effectivity indices are closer to one for the average than they were in the 
case of the approximate Dirichlet solution 

�9 the error in the average is smaller than for the Dirichlet solution (15.2% against 
~7.6~) 

The first observation is supported by Property 8 and will always hold. On the other 
hand, the two other observations may not be true in general and pertain to the particular 
example considered. 

7. CONCLUSIONS 

We have presented a two-scale strategy to model scalar diffusion in heterogeneous struc- 
tures. The structure is decomposed into subdomains over which the fine-scale components 
of the solution are expressed in terms of the coarse-scale component through a prolon- 
gation operator. The choice of Dirichlet types boundary conditions when solving for the 
prolongation operator yields a continuous approximate solution over the structure called 
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Figure 10. Neumann solution u "~162 Figure 11. Subdomain contribution to 
the absolute error for the average solution 

Figure 12. Local effectivity index on each 
subdomain, OK, for the dirichlet solution. 
The minimum and maximum values are 
0.35 and 8.79, respectively 

Figure 13. Local effectivity index on each 
subdomain for the average approximate 
solution, 0~. The minimum and maxi- 
mum values are 0.16 and 1.58, respectively 
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the Dirichlet solution. Using an equilibration technique and Neumann type subdomain 
problems we were able to build a second solution, called the Neumann solution, in thermal 
equilibrium over the entire structure. The energy in the difference of the two approximate 
solutions was found, using the Prager-Synge hypercircle theorem, to be an upper-bound 
to the error in the Dirichlet solution. The strategy was also analyzed in the important 
practical case of an approximate computation of the prolongation operator. A 2-D nu- 
merical experiment showed that the strategy yields a fast and fairly accurate first guess to 
the exact solution except in some zones generally near a point at which there is a change 
of boundary condition. We plan in a forthcoming paper to design a strategy to correct 
the solution where it is needed. 
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A modelling error estimator for dynamic structural model updating 
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Abstract: The key-point in structural model updating is to first design an error that's between a 
mathematical model with its parameters and tests, and then to minimize this error. The proposed 
modelling error estimator can be considered as an extension to the works previously conducted on a 
posteriori error estimators in quantifying the quality of a finite element computation. It is based on 
the "mechanics concept" of constitutive relation error. Damping effects and non-linearities are 
taken into account. All available experimental results may be used as either free or forced 
vibrations. Applications deal with the improvement of finite element models, i.e. the mass, 
stiffness and damping matrices. 

1. INTRODUCTION 

Controlling and master ing both mechanical  and numerical  models  has a lways  
been a major preoccupat ion in Mechanics, especially for engineers. So, wha t  has 
changed? Quan t i t a t ive  tools have  s ta r ted  to appear ;  they are capab le  of 
quant i fying the qual i ty  of an approx imate  model  wi th  respect to a reference 
model .  

In Mechanics and in part icular  for dynamic  problems,  there are not  just  two 
categories of model, but  rather there are three : 

�9 the cont inuum mechanics model ,  
�9 the numerical  model,  and 
�9 experimental  simulations.  

Therefore, two situations do indeed exist. Most papers appearing in the present  
book are devoted  to the s i tuat ion w h e r e b y  the cont inuum mechanics  mode l  
(resp. the numerical  model)  is the reference (resp. the approximate  model) .  The 
other situation s tudied in this paper  relies on experimental  s imula t ions  as the 
reference. The con t inuum mechan ics  mode l  now becomes the a p p r o x i m a t e  
model .  

For both of these situations, the first and most  critical concern is to develop  
error measures which are able to quantify the quality of the approximate  model ,  
i.e. to build a distance between the approximate  and reference models.  Since both 
the data of the reference model  and the approximate  solution are a s sumed  to be 
known, an a posteriori error est imator  can be derived. 
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The second concern differs for the two studied situations. In the case where the 
numerical model is the approximate one, it is to determine the best 
computational parameters for a given level of accuracy, i.e. those which lead to a 
minimum numerical cost. For the other situation, the second issue is to correct 
the approximate model so that it provides a better fit for the experimental results. 

References concerning the situation where the numerical model is the 
approximate one can be found in the present book. Concerning the situation 
studied herein where the reference has been defined through experimental 
simulations, many references are also available (see (Bui, Tanaka et al., 1994)). 
Most of the reference authors have been part of "Automatics and Control", with 
for them the model being represented by a black box. In the field of Dynamic 
Structural Model Updating, mention should be made of: (Baruch, 1982), 
(Mottershead, 1988), (Ibrahim et al., 1990), (Berger et al., 1991), (Natke, 1991), 
(Farhat and Hemez, 1993), (Nobari, 1993), (Piranda et al., 1993), (Berman, 1995), 
and (Kaouk and Zimmerman, 1995). 

At Cachan, still with respect to Dynamic Structural Model Updating, we have 
been developing a rather different approach which demonstrates a strong 
mechanics content. Such an orientation could be considered as an extension to 
the works previously conducted on a posteriori estimators in quantifying the 
quality of a finite element computation, i.e. in studying the situation where the 
approximate model is the numerical one. More precisely, the updating method 
we have been developing over the past 15 years is based on the concept of a 
posteriori constitutive relation error. This concept was introduced in (Ladev~ze, 
1983) for improving models by means of experimental free vibrations tests. The 
numerical strategy has been developed in (Ladev~ze, Reynier and Nedjar, 1994). 
The M.A.T. (Model Adjustment Technique) software was developed and 
implemented by the CNES (Bricout et al., 1993) to constitute a post-processor of 
the MSC/NASTRAN. Applications deal with the improvement of finite element 
models, i.e. the mass, stiffness and damping matrices. 

An additional step has recently been achieved (Ladev~ze, 1994), (Ladev~ze, 
Reynier and Maia, 1994), and (Chouaki et al., 1997). We have taken into account 
damping effects and, more generally, non-linearities due to the material 
behavior. All available experimental results may be used as either free or forced- 
vibration responses. These test data, combined with a certain knowledge of the 
model, constitute the reference which allows building the "modified constitutive 
relation error" used to define the model's quality. The basic equations (e.g. 
equilibrium and compatibility equations), along with reliable experimental data 
(e.g. excitations and measurement locations), have been verified exactly. 

The tuning procedure is iterative, with each iteration composed of two steps: 
(i) locating the most erroneous substructures, and (ii) correcting their structural 
parameters. This strategy is very well suited to the ill-posed property of tuning 
problems, thanks to the efficiency of the location step as well as the ability to 
introduce more information at each iteration. 
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The aim of this paper  is to focus on the main features of the proposed 
modelling error estimator and its corresponding updating strategy. Applications 
representing industrial problems are also presented. 

2. THE APPROXIMATE MODEL 

2.1. Forced-vibration mathemat ica l  m o d e l  - Classical  formulat ion 

Figure 1: The studied structure: Excitations and geometry 

Let us consider a structure occupying a domain f2 whose boundary is 3f2. It is 

being submitted to a body force f e i~ (applied on f~); a surface force F e i~ is .d,o~ _d,r 

given on a part  02~ of 0g~ The displacement U e k~ is prescribed on the 
�9 _ d,ta 
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complementary boundary part of 0292, namely 0192. co is the given angular 

frequency; Ud, to, fd, o~ and Fd, to are the amplitudes. 

The assumption of small displacements is then made; harmonic solutions are 
sought. Therefore, the problem becomes in the particular case where damping 
has not been taken into account" 
Find the amplitude Uto{M)M E g2 such that" 

�9 fo 

on Olg2 

t 

dQ + f. d,m o U_ d~ (1) 

2 Q . . . .  

eu.d,o ~_'1 =o, e 

denotes the space of the displacement fields defined over g2 that possess 

finite energy; K is Hooke's tensor, and p the mass density. The strain operator is 
written s. 

A new writing for the previous classical formulation of the forced-vibration 
mathematical model can then be given by introducing the basic equations of 
Continuum Mechanics" 

Find Sco = (U (M~ F_ (M~ o (M); M ~ g2 / which satisfies" 
S, ! CO 

�9 kinematic constraints: U •U 

_Ul,,o = _Ud,,o 

�9 equilibrium equations" (F, o)E .S" 

fo T~o.(~')] dO +fo :~ ~ o~" dO 

f. ~ " fo + Fa,cooU dS= F oU dg2 
1 Q  m _ .  _ _  

(2) 

(3) 
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�9 constitutive relations" 

F = - p m 2 U  (4) 

Remark  
The constitutive relations are generally the least reliable equations. They are 

determined by the following structural parameters, defined over fl: 

Notations 

LetS be the space of the t r ip le ts=  {_U (M~ F_(M~ c (M); M E ~} where U_ ~ U  

and (F, c )~  S .  Solutions to the kinematic constraints (2) and the equilibrium 

equations (3) are called "admissible". Sa~d denotes the corresponding subspace of 
S. 
The forced-vibration mathematical model can then be written �9 

Find % C Sa~d which satisfies the constitutive relations �9 

o o  

I" m = - p 0) 2 U m 
(5) 

2.2. Error o n  the  c o n s t i t u t i v e  r e l a t i o n  

Lets =(U, _F, c )~  S a~d . The global constitutive relation error is the sum of two 
terms which are associated with the two constitutive relations (5) �9 

(6) 

+ (12')  f~ Tq(o-K ~(U))K -1 ( a - K  ~(U))] d~ 

1 
where 7 is a weighting factor belonging to [0,1]. A typical value is y = ~. The 

norms involved in the global constitutive relation error are mechanical norms" 
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elastic energy norm and kinetic energy norm. Moreover, because Tim(s)> 0, it is 
easy to prove the following proposition : 

Proposition 1: Conditions (i) and (i, i) are equivalent for y E ~3, 1[ 

(i) Tim(S)=0 

(i,i) o = K,(_U) 

F = - p m 2 U  
on 

2.3. N e w  formulat ion  

Recognizing that 11r (s) is always either positive or equal to zero, the following 
minimization formulation is reached : 

Find sco=IU, F'~ o~ admissible (sm ESa~d) that minimizes the global error on 

the constitutive relation: 

s ~ TI2(S) (7) 
s,% 

Then, an approximate solution to such a new formulation exactly verifies the 
most reliable equations, which are the equilibrium equations and the kinematic 
constraints. The least reliable equations, i.e. the constitutive relations, are verified 
as well as possible. 

Proposition 2: If  a solution exists to the classical formulation, then the new 
formulation also has a solution and : 

Proof 
Let soj be a solution to the classical formulation. We then have : 

�9 soo E Sa~d 
�9 

I'_r : -  p 0j2 U_m 

It follows that ~ ( s m ) = 0 .  Since ~1r s~o is also a solution to the 

minimization problem (7). 
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Remark 1: As opposed to the classical formulation, the new formulation yields 
a solution for ill-posed forced-vibration problems, yet its value of the global error 
on the constitutive relation can be different from 0. Such ill-posed problems are 
typical for identification purposes. A common situation is the one in which both 
displacements and forces are known over the entire boundary 0II of the structure. 

Remark 2: Extension to both damping and nonlinear behavior has recently 
been performed in (Ladev6ze, 1994). Amplitudes then become complex numbers. 
Damping effects are taken into account by the following constitutive relations: 

F = - f m 2 U + a ~ U  
(8) 

where Bo~, a~ are damping operators that depend both on the material and on co. 

The new formulation displays the same form as (7). The only modification 
concerns the expression of the global constitutive relation error. Our proposed 
error has been derived from Drucker's stability inequality (Drucker, 1964) which 
is verified by most stable materials (Ladev~ze, 1985). 

3. EXPERIMENTAL DATA 

For to E [tOmini, tOmaxi ] , the excitation is defined by the data" 

dt~ = (Ud,~ .fd,~, Fd, to) (9) 

All of the quantities are not necessarily measured data. Some of them are 
merely reliable informational elements. For the sake of simplicity, let us consider 
a structure submitted to a single excitation, i.e. to a force excitation at a given 
point P and in a given direction. Let Fd,o~ be its value. It is clear that both the 
force location and the force direction generally constitute reliable information. 

Such is not the case for its value Fd,to, with the measured value being Fd,o~. More 

generally, it is possible to consider that the data d~ are not perfectly known, do~ 

depends on some quantity !~ which belongs to a certain space P (example �9 

p = Fd,o, p - R ) .  
In addition to the excitation points, both forces and displacements are known 

for other points and other directions as well. All of the measured quantities are �9 

~ '  _I'(~ ~ U~ (10) 
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where U', U are projection operators. They serve to define the unreliable part of 

the experimental data. The reliable part is that portion of dco which does not 

depend on E (E (~ P). 

4. QUALITY OF THE DYNAMIC STRUCTURAL MATHEMATICAL MODEL 

4.1. Modified error on the constitutive relation at a given frequency ca 

First, let us recall that s~ = ,--~U' F_, o~o~) has to be admissible, i.e. must verify the 

reliable equations and experimental data. The data that depend on E E p can be 
introduced by employing some obvious notations : 

 ~ } (11) 

The norm IlK (resp. ] IE) is a kinematic energy norm (resp. elastic energy 

norm) obtained after condensation. The condensation can be static or otherwise, 
as chosen, r is a confidence coefficient belonging to the interval [0,1]; r = 0.5 is the 
current value. With the error measure being defined, the following problem is 
thus an extension to problem (7) : 

Find so~ admissible and E ~  P which minimizes the modified error on the 
constitutive relation" 

- -  c 2) 

Sad( ) 

Remark: In determining the solution so~, the most important constraints are 

the admissibility conditions. They indicate the "possible shapes" of the solutions 
sco as defined on f~; these "shapes" are to be compared with the experimental 

values through the second term of the modified error on the constitutive 
relation. The first term of this error provides a distance between the model's 
constitutive relations and the various constitutive relations which can be 
associated with so~. 
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4.2. Quality of the model 
Let us introduce the function z as depending on the frequency co. z(co) is the 

"weighting factor" at frequency co. The function is scaled such that �9 

f~ c~ z~o~ld00 = 1 z :~ 0 (13) 
mini 

This weighting factor depends on the purpose of the model. The quality of the 
model is then defined by" 

E2 _. fO)maxi - -[ ~ 0~So~) ]2 z{co . . . . . . .  (14) 

where D~(s~) is the relative error on the constitutive relation at frequency m. 

ID~{s~)] is a combination of kinetic and elastic energies with the dissipated energy 
L - -  - 1  

for one cycle. 
If the structure is divided into substructures E E E, the contribution ~E of the 

structure E to the error can be easily defined, such that" 

= 2 (15) E2 ~ EE 
EEE 

A local error can also be introduced �9 

~loc= max E E (16) 
EEE 

.W...eJgh.tir~g.f.a..r 

[ ] �9 o v e r   m,m, 

1 m 
�9 Z(CO)=-- ~ 8coi(O) 

m i = l  

(17) 

Dco i is the Dirac distribution associated with the value oi,  where co i i ~ 1, ..., m 

denote the free-vibration eigenfrequencies which are included between m~ni and 

~maxi" 
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4.3. An initial example 
Figure 1 details the studied problem wherein a single excitation is present. The 

frequency bandwidth [0-20 Hz] contains the first five eigenfrequencies. 
"Experimental data" are computed introducing a rigidity error of 100% for 
element 8. Figure 2 displays, for each element, its contribution E E to the error for 

different experimental situations. The first curve is related to the use of 
maximum measured quantities : the displacement associated with all d.o.f, are 
measured. It shows an excellent space localization of the defect. In contrast, in 
using 15% of the measured d.o.f., the defect's detection is far from attaining such 
a good level. 

6 

J, ,,,,,, 
O J~ 
Im e2 
ILl 

x 10 4 using 100% measured dof 

1 2 3 4 5 6 7 8 9 101112131415 
Elements 

2.5 

= 2  

~.5 
L. 

2 
u~.5 

x 10 -4 uslng 50% measured dof 

1 2 3 4 5 6 7 8 9101112131415 
Elements 

x 10-4 using 25% measured dof x 10 -5 using 15% measured dof 

0.8 

0.6 
O m.  
O 

~o.4 

w 0.2 

1 2 3 4 5 6 7 8 9 101112131415 
Elements 

r 
o 4  
E 
O ~ 3  

, . 2  

W l  

1 2 3 4 5 6 7 8 9 101112131415 
Elements 

Figure 2" Effect of the amount of experimental information 
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Figure 3 �9 Beam structure under testing 

5. UPDATING METHOD FOR DYNAMIC STRUCTURAL MODELS 

5 . 1 .  P r i n c i p l e  

The mathematical model depends on structural parameters which are not 
necessarily well-defined : modulus,  thickness, damping coefficient, etc. More 
specifically, these are: 

- elastic coefficients: K(M) 

- mass density: p (M) 

- damping operators: B~, ~o 

These structural parameters are denoted by k and the corresponding space ~. 

The updating problem is then to determine for k the best value belonging to ~, 

i.e. minimizing over ~ the global modified error on the constitutive relation. The 

following is then obtained �9 

Find k E ~ which minimizes �9 
m 
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_ f~ k'--J(_k')- 
k 

d (18) 

As is the case with most inverse problems, this one is also ill-posed. This is 
why we are proposing herein an adaptive updating method which is iterative 
with two stages per iteration. Let us consider the n th iteration" 

�9 localization stage at iteration n 

The updating procedure is to be stopped if the error ~ is less than a certain 

value t 0, which serves to characterize the quality of the tests. If not, the most 

erroneous substructures are then detected by the criterion : 

E E ~ 0.8 max EEO) (19) 
EEE 

Complementary information can also be introduced. This defines a small 
r "] 

subset of ~" L]l~[n 

�9 Correction stage at iteration n 
The following "small" optimization problem has to be solved �9 

r 1 

Find k n E ] ~  [ which minimizes the modified error on the consti tut ive 
LJ  n 

relation �9 
k -.j(k_) 
['In 
5.2. Updating examples  

Industrial applications concern satellites, launchers, planes, etc. Here, we study 
the "Eight-Bay Truss" (see figure 3) whose real configuration is described in 
Figure 4. The "experimental  results" are to be computed  wi th  such a 
configuration. Tests conducted and experimental data collected are shown in 
Figure 5. 
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Figure 4" The real Eight-Bay Truss 

Figure 5 �9 Tests conducted and experimental data collected 
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Elements ~nd initial values of First step 
the structural parameters ..... 

Bar 21 
- Stiffness Pk = 1 pk := 0.0002 
- Mass �9 = 1 pm= 1.0467 , ,,, , 

Joint 110 
- Stiffness �9 pk = 1 
- Mass" pm = 1 
Error 1.109 , , 

Not localized 

Figure 6" First and second updating steps 

I ] 
Second step 

, i ,,,, 

corrected 

Pk = 0.5025 
Pm = 1.0007 

0.'147 

Exact values 

i ,,  

pk :- 0.0000 
Pm= 1.0000 

Pk = 0.5000 
Pm = 1.0000 

Figure 7" Error contributions of the various elements - second updating step 

Figure 6 presents the structural parametric corrections and the global error 
value for the first two updat ing steps. The chart of error contributions to the 
global error of the various elements is given in Figure 7 for the second updating 
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step; the joint 110 appears clearly as an incorrectly modelled zone. The updating 
procedure normally has to be stopped after the second step because the error 
value is small in comparison with the quality of the experimental results which 
have been contaminated by noise (level: + 3%). During this step, the modelling 
errors related to joints 136 and 140 have not yet been detected. If one were to 
proceed further, it would be possible to detect and then correct these errors. Figure 
8 shows, for the third updating step, the chart of error contribution to the global 
error of the various elements; modelling errors for joints 136 and 140 are clearly 
indicated. 

Figure 8" Error contributions of the various elements- third eventual updating 
step 
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6. CONCLUSION 

Remaining within the context of missmodelled complicated structures such as 
launchers, satellites or engines, and subsequent to the two issues raised in the 
introduction whose responses have been given herein, a third issue can now be 
raised: how to design a testing program that yields a satisfactory model after 
updating? This represents one of the key challenges for research over the next 
15 years. 
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ABSTRACT 

In this paper we address the problem of a-posteriori est imation of the error in 
the error estimate.  We cons ider  the case of es t imates  for the error  in the 
derivatives, the strains, or the stresses, which are constructed in terms of locally- 
computed  element error indicators of the e lement  residual, or the least-squares 
recovery type. The est imates  of the error  in the error est imate have the same 
structure as the original error estimates,  and are computed  in terms of indicators 
of the error in the error indicators,  which are determined by locally averaging 
(recycling) the original error indicators. The most  accurate indicators of the error 
in the error indicators are obta ined by employ ing  a "harmonic" basis in the 
recycling of the indicators,  namely ,  a basis which locally satisfies the part ial  
differential equation and the bounda ry  conditions. 
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1. A-POSTERIORI ESTIMATION OF THE ERROR IN THE MISES STRESS 

Let us consider the plane elasticity problem in a polygonal domain fl (e.g., the domain 

shown in Fig. 1 whichwill be used as the model problem throughout the paper), with 

boundary F -- 0ff, i ~ = i~v UrN, FDflFN = r where FD is the Dirichlet part of the 

K 

J I 

Fig. 1. An example of a polygonal domain. (a) The domain with the applied boundary tractions: 
g]r~ -- 5nr~'  glr~ - 3nr~. (b) The partitioning of the domain into an initial mesh of curvilinear 
superelements. 

boundary, where the displacements are prescribed (here we will assume that the boundary 

PD is fixed), and F N is the Neumann part of the boundary, where the tractions are 

prescribed. Let u Ex, denote the exact solution which satisfies the variational problem: 

Find u ~ x E  H~D(fl ) de f {V = ('01,?./2) I I[[vlllf~ def r  ) < oo, VIF v " - 0  } 

such that 

 a(u ,,) d"]a= 2 

id=l N 
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Here ~ n "  H~" D(n) X H~DCfl): .~ R is the energy inner product; H I  DCn) is the space 

of admissible displacements; ~ �9 H~v(fl) : ~ R is the virtual work functional for the 

applied loads, which are f 6 L2(n), the applied body force (in our model problem we will 
l ( Oui 

let f - 0), and g 6 L2(I~N), the applied boundary traction; eij(u) def___ 2kOXj + O'uj)OT, i}, 
i, j - 1, 2, are the components of infinitesimal strain corresponding to the displacement 

u, a~j, i , j  = 1,2, are the components of stress, which are obtained from the strain 

components by employing Hooke's Law, aij(u ) = Ei#tekt(u). 

Let us assume that the domain fl has been discretized by a mesh T~ which is obtained 

from the subdivision of an initial mesh of mapped squares (superelements, e.g., the mesh 

of mapped superelements shown in Fig. lb), let F r : ~ '  - ~- denote the mapping which 

maps the master square (element) ~ into the element r ,  and SP denote the space of bi-p 

polynomials over the master element. The finite element approximation u h is the solution 

of the discrete variational problem: 
p def{ l 

Find u h 6 STh,r v ----- V E C~ vl ,  o F ,  E SP V ~" E T h, V]s D = 0 ) such that 

~fl(U h, V h) = .~(V h) V V h E S~rh,FD (2) 

Le t t ing ,  e h de____f u E  x _ u h  ' denote the error, substituting u EX = e h + u h into (1), and 

integrating by parts the term g~r(u h, v) in each element T, we see that the error e h is the 

solution of the residual equation: 

Find e h E H1D (~) such that 

( Z  l f,  ) = 0 2  + �9 

TET  h ~. C._Oy 

VV E HI  D(n) (3) 

Here g~n.uh " H I  v (fl) : ~ R is the virtual work functional for the residual loads, ru~, 

J~,h, ~ c 0r,  r e T h, where 

rub de.f f + V.  (Ee(uh))  (4) 

is the interior residual in the element r (the residual distributed load in the interior of 

r),  and 

- n . C x ) ,  

2 ( g ( x ) -  er(uh)(x) nrs(X)) , 

x e ~ = Or f] Or* 

x e E C_ s N (5) 

0, x e e C F D 
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is the jump in the traction on the edge 6 (the residual line load on the edge ~). In the 

first case in (5) ~ is an interior edge, r and r* are the elements which share it, and n c 

is the unit normal on ~ which points into r*; in the second case, E is an edge on the 

Neumann boundary, and n r .  is the outward unit normal on r N. The orthogonality of 

the error gives that 

P ~f/,uh (V) = ~ f / ( e  h' v)  ~--- ,~(V) -- ~f / (U h' V) = 0 V V e STh,F D (6) 

namely, the work done by the residual loads for any admissible displacement from the 

finite element space STh,rv, p vanishes identically. 

Following Ladeveze (see [1, 2, 3]), we will partition the residuals into element groups 

such that an analogue of the condition (6) holds in each element. For each interior edge 

e = Or CI Or* let ~"~ 1~,r" �9 'uh and be such that  

= J . ~ ,  e = Or [3 Or" (7) 

and, for each edge on the boundary of the domain, e = 0r  f'l F, let Ju2 = J~h. We will 

call the groups of loads ru~, Ju~, e c_ Or, the element residuals of the element r.  Let 

Or D de=f Or [7 FD, and 

be the restriction of the finite element space S~a,r v, in the element r. We will construct 

the split jumps a~'~ such that the virtual work of the element residuals vanishes for any 
p displacement from S~,o-D, namely 

~EQ,~. V d e f 1  r r,u..( ) = r u b . V +  ~ J u ' [ ' v = 0  g v e S P r ,  Orv (9) 
egOr 

Here r~EQ'P �9 H ~ v ( r )  de' { H '  I } ~%,.h = v e (r) vlo~v = 0 : , R, is the equilibrated element 

residuum of the element r ,  namely the virtual work functional of the element residuals 

of the element r. For each element which does not have an edge or a vertex on the 

Dirichlet boundary, namely 0r  D = Orrl F D = {~, the mapped affine functions belong to 

p ~l(~),  and letting v itoF~'*, and SPr,0rD , namely, we have @ o F r  1 6 St,or D for any @ 6 = 

v = ~m it o F~ 1 into (9), we obtain the conditions of equilibrium of forces and moments 
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for the element residuals over the master element, namely 

rub + ~ Juh = 0 

(10) 
f T F r x  rub + ~ f e F r x  J ~  = 0  

cr 

Note also that from (8) it follows that 

~EQ'P v 1 ~a,uh(V) = ~ r~Lr,uh ( { r )  V v E HrD(f~ ) (11) 
TeT h 

and hence we have an exact splitting of the global residuum. In the numerical examples 

of this paper we employed the constructions of the split jumps J:'~ described in [4, 5]. 

(See also [6] for another method of splitting the jumps, which guarantees (10) but not 

(9).) 

Let us now construct a splitting of the error corresponding to the above splitting 

of the global residuum. We will denote by e h'r, the component of the error due to the 

residual loads rub , Ju~, ~ C_ 0r, of the element r, namely, the solution of the variational 

problem: 

Find e h," 6 H~D (f~) such that 

~ . ( e  h'', v) = a~O'P(vl~ ) V v E H 1 ~,%,uh rs(a ) (12) 

In the case r D = 0, e h'~ is defined up to an arbitrary rigid body motion, and the 

equilibrium condition (10) is a necessary condition for the existence of e h'~. Recalling 

(11) and (3), by superposition we have 

e h -  ~ e h'r (13) 
veT h 

We will use the functions e a,r to partition the error into two components with respect to 

any element of interest. Let ~ denote an element of interest, and let 

wh deJ {TE Thl cOrNCOf ~ 0} (14) 

be the patch of elements which are connected to the vertices of ~ (see, for example, Fig. 2, 

where the element ~ is shown shaded dark gray, and the patch w~ consists of f and the 

elements shown shaded light gray). We will employ the splitting 
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Fig. 2. Local error  and  pol lut ion error. The patch w~ (light gray) which corresponds to the element ~; 
the patch consists of the elements connected to the vertices of f, including f. 

p h,glob e ~ = e~ 'l~ + -~ (15a)  

where 

e~,,oc dej ~ eh,~, eh,g,ob d,j ~ eh,, (15b) 
~'ET h r E T  h 

and we will call e~'t~ the restriction of e~ 't~ in the element f, the local near-field or 
h,glob error in f, and eh'gt~ the restriction of e~ in the element the pollution far-field or 

error in f. 

R e m a r k  1. The component e~ 'l~ is the solution of the near-field residual equation: 

Find e~ 'z~ E H~D (~) such that 

n~e, , rD (f~) = = ~,,uh ( v )  V v e H I 
rcT h 

Similarly, ,~h,gtob ..~ is the solution of the far-field residual equation: 

Find e~ 'gt~ E H1 D (fl) such that 

~nCe h'gl~ v) --- ~/~f'gl~ de_f ( ) H o(a) 
ra t  h 

(16) 

(17) 
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R e m a r k  2. Let us underline that the near-field residual equation (16) is never solved in 

practical computations. Instead, the local error is estimated by an element error indicator 

which is determined, at a negligible cost, using local computations in w~. 

R e m a r k  3. In the numerical examples we will need e~ 'z~ in order to analyze the accuracy 

of the locally computed element error indicators, and we will employ the following overkill 

approximation: 
_h,loc Qp+m 

Find e~,ou k E ~T~d,r v such that 

~ , h,ioc V) -- ~f ' /~  ~- ~ obEQ'P(V) V V E ~T~,, F D ate~,~k , Qp+m (18) 
vET h 

Here T~ ef is a mesh obtained from T~ by refining several times the elements with a vertex 

_h,toc should be sufficiently high, such at a corner point, and m > 1. The accuracy of e~,ovk 

that it does not influence the conclusions of the analysis of the local error indicator. 

R e m a r k  4. Similarly, we will analyze estimates of the pollution error e~ h'g/~ by compar- 

,~h,gtob the approximate solution of the far-field residual equation which satisfies: ing it to ~,ovk, 
,~h,glob Qp+m 

Find ~,o~k E ~T~,f r D such that 

EQ:P v S p+~ ~..{~h,glob.v..~,ovk, V) = ~ f 'g l~  = ~ ~r,u'" ( ) V V e T~,,,F D (19) 
rET h 

Ten-w, h 

The overkill approximation (19) can be used as a practical method for approximating 

the pollution error within the context of iterative solvers; see Oden and Feng [7]. 

Let us assume that we are interested in estimating the stresses in the element ~. We 

will employ the splitting 

1 1 ~(eh)(~) = ( o ' ( e h ) ( ~ ) -  ~ f~ o'(eh)) + ]-~ f~ ~(e h) (20) 

local error pollution error 

We call the first term the local error because 

1 

N - 

and the second term the pollution error because 

(21) 

1 1 
(22) 
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R e m a r k  5. Let us justify (22). Note that 

1 1 1 
f~ r h) -- ~ f~ cr(e~ 't~ 4- ~ f~ r 'az~ (23) 

First, let f be an element in the interior of the mesh, and assume that the meshes T h are 

quasi-uniform, namely, we have 

7 h < h r < h de f max h r r E T h (24) 
- -  1 . E T  h 

where 0 < '7 <_ 1 is a fixed parameter which characterizes the entire sequence of meshes. 

Further, assume that the meshes are sufficiently refined in the neighborhood of ~ (see [8] 

for the precise assumptions). In [8] we have proven that the local error is locally periodic, 
up to higher order terms, and we have 

1 
]1 ~-~ f o'(e~'t~ ] IM ~ r hp+2 (25) 

where I1" IIM is any matrix norm, e.g., the norm which chooses the maximum of the 

entries, and because 
1 

the average local error may be neglected. 

R e m a r k  6. The majority of engineering computations are performed for the approxima- 

tion of solutions of boundary value problems in complex domains (curvilinear polygonal 

domains with one or several corner points, or corner points smoothened by sharp fillets). 

Assume that the domain has ncp corner points and let a de_J min c~1 be the smallest 
j = l  ..... n c p  

exponent in the asymptotic expansion 

- + ( 2 7 )  

where r~(~), Oj(~) are the polar coordinates of "~ centered at the j th  corner point, q~', 

i - 1, 2, . . . ,  are the eigenfunctions for the infinite wedge corresponding to the j t h  corner 

point (see pp. 176-177 in [9]), and u~ x is a smooth function which vanishes in the 

neighborhood of the corner points. Then, it can be proven (see [10]) that 

1 h2 ~ [ ] ~  f ,r(e~"l~ ~ ~ (28) 

It follows that, in the cases that 2 a < p, we have 

1 o.(e),gtob) I h2 ~ 



163 

which means that the local error at ~r is negligible when compared to the element average 

of the pollution error. Note that the condition 2 a < p is realized in the majority of engi- 

neering computations. Consider, for example, the case that the domain has a reentrant 

corner (e.g., the domain in Fig. 1); then, we have a < 1, and for elements of quadratic 

degree or higher (p >_ 2), we have 2a < 2 < p. The above arguments also hold in the 

case that f is adjacent to a smooth boundary (see [11]). In the case of an element f with 

a vertex at j th  corner point, we have 

1 

while 

where a '  = min 
k = l  . . . . .  n c p  

k#j 
neglected. 

1 h2 a, 

a~. It follows that, if ~ > 2a ' ,  the average local error can be 

R e m a r k  7. Below, we will construct estimates for the average values of the derivatives 

of the pollution error in the element f. From Remarks 6 and 7, it follows that these 

estimates can also be interpreted as estimates of the average error. 

Let ~ %  be the Green's function which corresponds to the average i j  component of 

the stress in the element f, namely, the solution of the variational problem: 

Find (~'J E n~v (12) such that 

(32) 

where no~ is the exterior unit-normal on 0f. Letting v = e h'~t~ into (32), employing 

the symmetry of the bilinear form g/In(., �9 ) and (19) we get 

1 h f a'i(e~'gt~ ~ O~EQ.p{~_~,,~ ~EQ,p p " " -'~,uh \ ' - ' ,  ] ~ ( r  (33) 

~'c_n-,,4 ~-c_rt-,,4 

where ~ C,~'J is the best approximation of .~% from the restriction of the finite ele- 

The second equality in (33), follows from the orthogonality condition ment space in wr. 

~EQ:p v P r,u.- ( ) = 0, for any v e Sf,o~ v, which follows from the splitting of the jumps. 

Let us also construct another representation of the average values of the derivatives 

of the pollution error. For each element r e T h, let ~.ERp be the exact solution of the 

element residual problem: 
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Find ~-,uh;'mZ~ e H ~  D (r) such that 

[aERp v) n~EQ,p v V v e H ~  v (7) (34) 

R e m a r k  8. In the elements for which 0r  D = Or n FD ---- ~}, the function a~Rp is deter- ~T,U h 
mined only up to s rigid body motion, and (10) is a necessary condition for its existence. 

Employing (33) and (34), we get 

1 
~-[ f a~j (eh'gt~ = 

rETa 
r g n - ~  

We will call the contribution 

(3~) 

Then, we expect that 

~,~ ~ ( ~ ; , ,  _ a :~  a ~ 

where X~ E S p~,IgfD is the local best approximation of the pollution error in (~~ and hence 

we can employ the approximation 

~EQ,  pf~-.,aij " .. 07~EQ,pl~_a,j " .. ~EQ,pf  AERp (40) 

(39) 

~q,~c~,,~,,, , d~j ~Q,~(e~,,o,~,u~ - ~ ~") = ~o.,.~,--. - ~ ~'~) (36) 

the exact pollution indicator in the element v, corresponding to the ij component of the 

average stress in the element f. We can then write (33) and (35) in the concise form 

1 
--l~I ], aijCe~'gt~ = ~ "  i~,%" EQ,nff~, , (37) 

rET a 

We will base the a-posteriori estimates for the derivatives, strains and stress of the pol- 

lution error on (35)-(37). 

Let G~'~r be the finite element approximation of G~'~ from S~h,rD, namely, the solution 

of the discrete variational problem: 

Find ~ ' ~  P such that "-" ~,h q STh,r D 

~'~ c~ffi', ",]11 V) = f~ ,  Sijk~.(~.]knO,,~.' + ~t nO,,k) V V q S~h,r D (38) 
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Remark  9. Note that (39) and (40) do not hold in general {see [12] for a counterexam- 

ple). However, they hold for the types of meshes and solutions encountered in engineering 

computations. 

It follows that the exact pollution indicators, ,,eQ,p(~) can be approximated by the 

computed pollution indicators 

fa~np fiFmp ) (41) .~.eQ,p(~; ERp) d,f ~gQ,pr~.ERp ~ = ~a.k%uh, .e,_',~ 

and we obtain the following estimate: 

1 f f  h glob ~ E R p  def ~EQ,p[~;  
]rl aii(e" ) ~ ~*"('~ ~ ERp) (42) - -  -~ ~r,ai j  k 

0 vET  h 

agRp Remark  10. The function ~r,r cannot be obtained exactly, in general, and must be 
al',h 

approximated in order to computed the pollution estimate; see (52)-(54) below. 

Remark  11. Noting that 

(43) 

{aEnp X~)= Eq p n gtrug (X~) = O, and the Cauchy- and using the orthogonality condition ~ k%,uh, 

Schwarz inequality we get 

I,~ERp I ~.~aij ~.2aij a E R p  !~,,,,,' EQ,p(V) _ I~EQ,p(~;~,~,, ERp)I -< II,~,u~,ll,  Il l(-- ,  - r  . . ,  ) - ~,~Z,... III, (44) 

Hence, the accuracy of the computed pollution indicators and the pollution estimate de- 

pends on the magnitude of the term [[I(G~-JiPh ~ ) _ ~ E R g  [![-, namely, the difference 

between the employed element error indicator and the error in 'the local best approximation 

of the extraction function &~J ~ . . ~  �9 

Remark  12. The exact pollution indicator can also be written in the form 

~.,,,, , o~..u~ - . . , , )  (4s) 

Above, we employed the representation (36) in terms of the error in the local best ap- 

proximation, because it underlines that it is not necessary to estimate the pollution error 

�9 ,.a,~, h �9 
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Let us also construct an estimate for the energy-norm of the error in the element f. 

We have 

Noting that 

[[[e~l[[, - ~/,l[e~J~ 2 + ]l[e~"t~ 2 + 2 ~ , (e~  '`~ e~ ,,t~ (40) 

I ~  ~ h,loc q,e.~ , e~'~'~ = I~,Ce~ ''~, e ~  '~'~ - .,4$e~'~~ (4v) 

it follows that  for sufficiently refined meshes we have 

I~,(e,~.% e,~.*'~ < Ille,~.'~ Ille,~.* 'ob --.,~e,~'~'~ << Ille,~"~lll,. Ille~'*'oblll , (48) 

See also [13] for numerical studies which illustrate (48). Hence, we can employ the 

approximation 

illehlll, .~ ~/llle~.t~lll~ + ille~.,Z,,blll~ ~ ~ER,, def= Vl, C~ loc!['cxERpl 2 -I" K,oy,glob/l~ERp 'li (49) 

where we have used the estimates 

ERp def iAEap (5o) 

a n d  .... 

c~ E Rp defQ ~ cR E R p ~ E Rp Ille,~"Z~ ~ ~,'.,,,,b = I~1 E~t 
i,j,k,f=l 'J ~"a~'g(') 

The error indicators ;.ERp will be approximated by ~:~ T,U h 

(51) 

AERpBp+m def {;.,ERpl 
~--- ~z~p+m ~1",u h ..%.,aro K'~Ir, u h ] (52) 

l~p+m def s P + m  p where r �9 H~r D (r) : " ~r, or D = r,o~ D - St, or D denotes the energy-projection into 

aEnpBp+m will B "+m (see Oden, Demkowicz, and coworkers [14]), and ~r,u, the bubble space T,0r D 

be determined by solving the following discrete element residual problem: 
l~ p-F m Find ~r, uh;'ERPSP+'n E ,.,r,O~ D such that  

~ I~ERpBp+~ v) ~Eq:p v ~ ,u~  , = ~ , , u -  ( ) ~P+~ (53) V E x.Jr,ar D 

The corresponding computed pollution indicators are 

{~ERpBp+m AERpBp+m "~ ~EQ,plf E R p B p  + m) dd ~EQ,p{~ERpSp+,.~ = ~lr \%,uh ~',~'".:i, / (54) 
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and 
~ERFBp+m def .~.,r = ~ r~,.,jhEq'n(f; ERpBp + m) (55) 

vet  h 
r C a - ~  

The corresponding estimate for the energy norm of the local error is 

c~ ERpBp+m ~lERpBp.t.m clef 
= III, II (56) 

Let us now consider the case that the finite element code does not have the capability 

of computing the above splittings of the residuals and the residual error indicators, but 

nevertheless, as it is now the case with many commercial codes, it can compute indicators 

of the error based on a local averaging of the displacement, the strain, or the stress. 

We call such an averaging a recovery (REC),e.g., the ZZ-SPR recovery proposed by 

Zienkiewicz and Zhu [15, 16, 17], the WA or the WAZ recoveries proposed by Wiberg 

and coworkers [18], etc. In this case we can always compute element error indicators for 

the stress in the form 

~REC def o.REC(uh ) __ O.(U h) (57) ~(u~)  = 

where REC - ZZ-SPR, or WA, or WAZ, etc., we can approximate the pollution 

indicators by 

/2~,% (r REC) def ~r, , ,REC )W 1 :REC (58) = (eo.(u,,) E -  eo.(~:~h) 

and we obtain the estimate of the pollution error in the derivatives of the error 

REC def (T; REC) (59) 
a~j r~Th 

and the corresponding estimate for the energy-norm of the local error 

/ 

REC clef ~ j f ,  ^ REC ",T E - 1  p, REC 
" ~ , l o c  - ( e c , ( u h ) )  ~ , , (uh)  ( 60 ) 

~ REC Similarly, we can obtain the estimate of the energy norm of the pollution error ~,9tob by 

employing the pollution indicators given in (58) into (42). 

R e m a r k  13. Let us note that the element residual problems can also be understood as 

local recoveries for the stress. For example, let 

._ ~.[ ,~ ERpBp+m o, ERpBp+m(uh ) def O,(uh) ..~ v k~l",uh ) (61) 
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and for the error indicator of the stress 

~ERpBp+m def .~(&ERpBp+m 
�9 = ) ( 6 2 )  

&ERpBp+m Employing--a(uh) into (57)-(60) we recover the estimates given in (52)-(56). 

R e m a r k  14. The representation of the error in the strains or stresses in terms of the 

energy-inner product of the error in the finite element solution with the error in the 

finite element approximation of the auxiliary function was first employed by Babu~ka 

and Miller [19, 20]. The same approach was recently employed in [21, 22] for the special 

case of bilinear elements (p = 1), and was based on explicit error indicators which are 

computed directly from the residuals. Let us also note that [19]-[22] do not employ a 

splitting of the error, and employ the same representation as (59), with the difference that 

the sum is taken over all the elements. In [23] we have shown that the error indicators for 

the Green's function in the elements in w~ can be very inaccurate and they can degrade 

the accuracy of the estimates for the average error in the stress in the element ~, if they 

are included in the sum in (59). 

R e m a r k  15. The symbol ~ is used throughout the paper to denote an estimate of the 

error for the quantity which appears as a subscript, while the superscript indicates the 
~ZZ-SPR averaging employed in the computation of this estimate. For example, ~ (x)  denotes 

def r ) which is computed using aZZ-SPR(uh). an estimate for ea(x) = 

Let us now illustrate the accuracy of the above estimates in the example problem 

depicted in Fig. 1 (see also [24] and [25] for details of the implementation of the above 

estimates). 

E x a m p l e  1. The accuracy of the ERpBp + m and ZZ-SPR estimates for the local, the 

pollution, and the total errors. We considered the domain, the loading, and the mesh of 

mapped biquadratic squares (p = 2) shown in Fig. 3. Fig. 3a shows the distribution of 

the yon Mises stress 

qVM(uh ) der 1 j2(q(uh) ) def 1 aDSV(uh)aDSV(uh) (63) 

where -DEvdefoii = aq - ~ 1 ( ~  akk)~q isthedeviatoricstress, 
k-1 

O'ref (U h) de~ max (aVM (uh)(~)) (64) 
xEfl 
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Fig.  3. An example which illustrates the a-posteriori estimation of the local error and the pollution 
error: (a) The mesh and the distribution of the yon Mises stress, aVM(uh), relative to the computed 
reference value arel(u h) = max (arm (Uh)(~)). (b) The mesh T h with the mesh patches A and B (shown 

zEf~ 
shaded), in which the yon Mises stress attains large finite values, and the estimates of its error will be 
computed and analyzed. (c) The mesh T~ el employed in the overkill approximation of the local and the 
total errors. This mesh was obtained from T h by recursively subdividing four times each element with 
a vertex at a reentrant corner. 



170 

Note that here we are computing the maximum for a fixed mesh T h and the computed 

maximum has finite value. This reference value does not have meaning as h tends to 

zero; nevertheless, here we are simply interested in scaling the von Mises stress, and we 

will analyze their error in areas away from the corner points where the exact values exist. 

From Fig. 3a we can see that the von Mises stress attains large finite values within the 

mesh-patches A and B shown in Fig. 3b. We will give the error in the von Mises stress 

and its estimates for the elements in these patches. In Fig. 4a we give the results for the 

exact relative error in the von Mises stress, 

def (TVM h o.VM 
eawM(uh),REL --'~ I Cu C6 ) 

where e~k is the overkill approximation of the error computed by employing elements of 

degree p + m = 4, and the refined mesh T~ e! shown in Fig. 3c (this mesh was obtained 

from the mesh Th, shown in Fig. 1, by recursively subdividing four times every element 

with a vertex at a reentrant corner), in the elements in patch A, and in Fig. 4b we give 

the estimated relative error in the von Mises stress, 

,,VM(.~,),REL = J2 (u h) + ~.-. , t ,)) (u h) ) 

c~ ER2B4 By comparing Fig. 4a and Fig. 4b we note that U~aVM(ua),RE L is 8~ reliable estimate of 

the exact relative error in the von Mises stress of the finite element solution in all the 

elements in the mesh patch. In Fig. 4c we show the regions of the relative value of the 

von Mises stress of the exact local error 

o.VM t_hlocx def vrVM(eh, loc) /o .VM(uh ) (67) 
~',REL ~t~f ' ) "- 

w h i c h  compare well with the corresponding regions of the yon Mises stress of the esti- 

mated local error (Fig. 4d) 

VM r,.ER2B4x aVM~"ER2B4 ,~  VMr hx 
a~,REL(er, u~ ) - -  (er, uh ) /a ( u )  (68) 

In Fig. 4e we show the regions of the von Mises stress of the exact pollution error 

h glob VM h ..VM r..h,gtob~ = aVM(e ,, ) /a ( u )  (69) 
U~,REL k ~  I 

It can be seen that the pollution error in the stresses in an element is practically constant 

when compared with the oscillatory behavior of the local error over the element. In Fig. 4f 

we give the values of the pollution-ratios 

pol~ de__t l]]e~,g~ob[)l~ '/llle~,,o~lll, (70) 
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(g) 

Fig. 4. An example which illustrates the a-posteriori estimation of the local error and the pollution 
error. The estimates based on the ER~B4 indicators: Regions of 0-1%, 1-2.5%, 2.5-5%, and 5-10% 
(shown with increasing intensity of gray shading) for the patch A shown in Fig. 3b, for the: (a) Exact 
relative error in the yon Mises stress %vM(,h),REL. (b) Estimated relative error in the von Mises stress 
~ER2B4 -VM , h,loc. cvAt(uh),RZ L. (C) Relative value of the von Mises stress of the local error vrf,,RZLle ~, ). (d) Relative 
value of the yon Mises stress of the element error indicator function ..VM t~.SR2S4~ ~,~,REn~,uh ]. (e) Relative value 

~VM (,.,h,glob,t of the yon Mises stress of the pollution error ~ , R S L ~  ;. (f) Values of pollution ratios pol~ in 
the elements in the mesh patch. Note that the pollution error and the local error have comparable 
magnitudes in all the elements in patch A. (g) Values of the effectivity index ~R2S4 for the ER2B4 
estimate of the element energy norm of the error. It can be seen that the estimates for the local, the 
pollution, and the total errors, based on the ER2B4 element error indicators, are rather accurate. 

in the elements in patch A, from which we can see that  the local error and the pollution 

error have comparable magnitudes in most  of the elements. In Fig. 4g we give the element 

effectivity indices 

,~B, d~j ~R~841111e~lll ' (71) 

for the elements in patch A; we see tha t  0.8 _~ ~ m s 4  _< 1.4. 

Let us also analyze the accuracy of the estimates based on the Z Z - S P R  error indi- 

cators. In Fig. 5b we give the regions of the yon Mises stress of the local error est imated 

by the Z Z - S P R  

VM, ZZ-SPR def 1 
= ~%(uh) ] / a  ~u ) O.,RE L " ~  j 2 , ^ Z Z - S P R , ,  VM, h" (72) 

these regions compare well with the corresponding exact regions _VM , hJoc, ~,REL~ef ) shown in 

Fig. 5a (Fig. 5a is identical to Fig. 4c). In Fig. 5c and 5e we give the element effectivity 

indices for the Z Z - S P R  estimates of the element energy norms of the local and the 
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(~) (f) 

(c) 
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Fig.  5. An example which illustrates the a.posteriori estimation of the local error and the pollution 
error: The estimates based on the ZZ-$PR indicators, compared with the corresponding estimates based 
on the ER2B4 indicators/or patch A. Regions of 0--1%, 1-2.5%, 2.5-5% and 5-10% (shown with 

~,V M f ... h,loc~ 
increasing intensity of gray shading) for the relative value of the yon Mises stress of: (a) v~,R~.L ~.~ i, 

V M , Z Z - S P R  (b) a ~ , R E  L . (c) Values of the element effectivity indices, " z z - s P R  ~,toc . (d) Values of the element 

effectivity indices, .ER2n4 ~,toc �9 (e) Values of the element effectivity indices, - z z - s P a  ~,utob . (f) Values of the 

element effectivity indices, ~ER2S4 Note that the ER2B4 estimates of the pollution error are more �9 " t ' , g l o b  " 
effective than the corresponding Z Z - S P R  estimates. 
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pollution error, namely 

and 

I~ZZ-SPR def ~ZZ-SPR /| le~,,o~ ,,zo  = / , I  III, (73) 

I&ZZ-SPR def ZZ-SPR / ,,,,oh = /llle '" lll, (74) 
and in Fig. 5d and 5f the corresponding element effectivity indices, ,,.ER2B4 and ,,.ER2B4 

�9 r~,loc r~,glob 

for the estimates based on the ER2B4 error indicators. It can be seen that  the estimates 

for the pollution error based on the ER2B4  error indicators are more accurate than the 

pollution estimates based on the Z Z - S P R .  This reflects the inferior accuracy of the 

Z Z - S P R  pollution indicators in the elements with a vertex at a corner point. 

Let us also give the corresponding results for the elements in patch B. Fig. 6 gives 

the results for the estimates based on the ER2B4  indicators in patch B, for the same 

quantities as the ones depicted in Fig. 4 for patch A. Fig. 7 compares the Z Z - S P R  

and the ER2B4 estimates of the local and the pollution errors exactly as in Fig. 5 for 

patch A. Once more, we see that the pollution estimates based on the Z Z - S P R  are 

less accurate than the corresponding estimates based on the ER2B4, due to the inferior 

quality of the Z Z - S P R  indicators in the elements with a vertex at a corner point. 

From the above example we clearly see that: 

(a) The estimates based on the ER2B4  and the Z Z - S P R  are sufficiently accurate for 

estimating the error in meshes of biquadratic elements. 

(b) The relative magnitude of the pollution error with respect to the local error in an 

element of interest cannot be predicted a-priori, and it is essential to have reliable 

estimates for both components of the error. 

(c) The accuracy of the pollution estimates depends on the accuracy of the error indi- 

cators over the entire mesh, and especially the elements with a vertex at a corner 

point. 

Above we considered the case of bi-quadratic elements (p = 2) because they are used 

most often in practical computations. Similar results can also be obtained for linear 

(p = 1) and cubic (p = 3) elements. For example, in Fig. 8 we give the shades of the 

exact and the estimated relative error in the von Mises stress for bilinear (p - 1) and 
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(g) Ille klll, 

Fig.  6. An example which illustrates the a-pasteriori estimation of the local error and the pollution error. 
The estimates based on the ER$B$ indicators: Regions of 0-1%, 1-2.5%, 2.5-5%, and 5-10% (shown with 
increasing intensity of gray shading) for the patch B shown in Fig. 3b, for the: (a) Exact relative error in 

~ER2B4 the yon Mises stress eavM(up,),RE L. (b) Estimated relative error in the yon Mises stress eav^,(uh),RE L. 

(C) Relative value of the yon Mises stress of the local error a T M  (eh~'l~ (d) Relative value of 
V M  ER284 h V M  h the yon Mises stress of the element error indicator function a (er,2 ( u ) ) / a  ( u ) .  (e) Relative 

value of the yon Mises stress of the pollution error a T M  (e~'gZ~ (f) Values of pollution ratios 
pol~ = Ille~'gZ~176 in the elements in the mesh patch. (g) Values of the effectivity index 

~R2S4 de=f ~R2S4/i]le~vklllr for the ER2B4 estimate of the element energy norm of the error. Note 
that the conclusions are the same as the ones obtained in Fig. 4, namely, that the estimates based on 
the ER2B4  indicators are rather accurate. 

bicubic (p = 3) elements, and the element effectivity indices for the estimate of the 

element energy-norm based on the ERpB2p error indicators for the elements in patch A. 

Let us now compute the error in the error estimates. We will denote the error in the 

error indicator by 
def =  REc (75) - '%(uh) 

and the relative error in the error indicator by 

.R o I 
C7O) 

where I1" [I~,,E-1 is the stress-enemy norm, namely 

def 0 'T E -  1 

We will also denote the relative error in the estimate of the element average of the 
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ls ,glob 

0 .80  

r~r 

(e) (f) 

Fig. 7. An example which illustrates the a-posteriori estimation of: the local error and the pollution 
error: The estimates based on the ZZ-$PR indicators, compared with the corresponding estimates based 
on the ER2B4  indicators for patch B. The regions of 0-1%, 1-2.5%, 2.5-5% and 5-10% (shown with 
increasing intensity of gray shading) for: (a) VM (e~JOC) VM,ZZ-SPn 0"I, R E L  , (b) O'~,,REL . (c) Values of the element 
effectivity indices, " z z - s P R  ~e,loc . (d) Values of the element effectivity indices, ,,ER2B4 "~,toc . (e) Values of the 

Z Z  S P R  E R 2 B 4  element effectivity indices, ~ g- (f) Values of the element effectivity indices, ~ rob Note that the ~, lob " ",9 �9 
E R 2 B 4  estimates of the pollution error are more effective than the corresponding Z Z - S P R  estimates. 
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(g) (h) 

Fig. 8. An example which illustrates the a-posteriori estimation of the total error: The estimates based 
on the ERpB2p indicators: The results given in (a)-(d) are for bilinear elements (p = 1). (a) Regions 
of the exact relative error in the yon Mises stress er (0-5% blank, 5--10% light gray, 10-20% 

r E R2B4 dark gray, 20-30% black). (b) Regions of the estimated relative error in the Mises stress ,~r 

(c) Values of the pollution ratios pol~ de__f Ille~,~toblll~/llleh,~lll," (d) The element effectivity indices 

~EmB~ de 2 ~mB2/ll[ehl]l ," The following results are for bicubic (p = 3) elements. (e) Regions of the 
exact relative error in the yon Mises stress eavM(u~,).RE L (0-0.1% blank, 0.1--0.2% light gray, 0.2-0.5% 

~ER2B4 dark gray, 0.5-1.0% black). (f) Regions of the estimated relative error in the Mises stress ~a~'^l (uh),REL. 

(g) Values of the pollution ratios pol~ de2 [l[e~'gt~176162 (h) The element effectivity indices 
tcER3B 6 def ER3B6 h 

= ~,,,  /111%~111,. 

derivative of the pollution error by 

L - , [ ~ R E C  def f ~ R E C l  ( e h , g t o b ) ) / j 2 ( 1  ]) - a,j(e~' ) (78) 

and the relative error in the error estimate for the element energy norm of the error by 

/ EREL(~" ) = --l l ie~l[l~ I [lle~[li~ �9 (79) 

for R E C  - E R 2 B 4  and R E C  - Z Z - S P R .  In Fig. 9 and Fig. 10 we give the values of 

EREL f :~REC ~ ~r REC ~r162 ), r_~REL[eOa~.9(, )) and EREL(<~ REC) in the elements in Patch A and Patch B, 

respectively. We see that the maximum relative error in the E R 2 B 4  error estimate of 

the element energy norm of the error in the elements in patches A and B is less than 

30%, while it is more than 100% for the Z Z - S P R  estimate. From these results, we can 

conclude that the error in the error estimate can be very significant and we must have 

the ability to estimate it. 



(b) 

(c) (d) 

(a) 
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(~) (f) 
Fig. 9. An example which illustrates the a-posteriori estimation of the local error and the pollution 
error. The relative errors in the error estimates for the elements in patch A: The values of: (a) 
E I-..ER2B4~ [~ZZ-SPR~ ~ tcDER2B4~ ~ t~ZZ-$PR~ ~ t~ER2B4~ 

R E L ~ ( u  h) I, (b) EREL~ cr(uh) j, (C) ~.aRELL~o=,{,)) (d)a~REL~o=,(,) 1, (e) a~REL~ ~ I, 

(f) EREL(~Z~Z-$PR). Note that the error in the Z Z - S P R  estimates can be more than 100%, while the 
error in the ER2B4 estimates does not exceed 30%. 



a'JRELkU~(u h) I 
(a) (b) 

bREL~,e~(uh) ) 
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4 
I$ 

(c) (d) 
.r;.c,) ) 

(e) (f) 

PR) 

Fig.  10. An example which illustrates the a-posteriori estimation of the local error and the pollution 
error. The relative errors in the error estimates for the elements in patch B: The values of: (a) 
ER [~.ER2B4~ E [~ZZ-SPR~ L-, t q T E R 2 B 4 ~  [~ZZ-SPR~ (~fR2B4) ELV~o.(uS) i, (b) REL~ er(u s) I, (C) ~REL~,~a~.(4,)] (d) EREL~,~, . ( , )  /, (e) ERE L , (f) 
ER [~ZZ-SPR~ 

EL ~ ,o ~, i. 
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2. A-POSTERIORI ESTIMATION OF THE ERROR IN THE ERROR ESTIMATE 

In this section we construct a-posteriori estimates of the error in the error estimates by 

employing indicators of the local error in the recovered stress. The error in the error 
r R E C  estimate ,~(~) can be split into two components,  namely 

a(eh)(~)  P, EC (e~JOc) ~.REC 

error in the error in the 
error indicator pollution estimate 

(8o) 

The error in the element error indicator will be estimated by 

o'(e~ J~) - ~..(up,)'~Rec ~ ~REC....EC(u t') de'= ~ReC, REC.(uh ) __ r h) (81) 

where cr Rec'REc* is a recovered stress which is constructed by locally averaging (recy- 

cling) crReC(u ~) (see [26] for the asymptotic analysis of recycling). The error in the 

pollution estimate will be estimated by 

{rteh,gtobltyO ~REC ~aEC. der 
- -  fOo, avg(.l' ) ~ ~ e R R E C  ~"  "~aa,,s(~') 

aRec. (82a) "-'t%.,.(-r;R.SC) 
r~T h 

where 
~REC* def JfT'^REC ~T E-1 ~REC, r (825) 
[*,,~II(f;REC) -~- te~(u")/ ~Rs 11~ 

@,h I 

is the indicator 4 the error in the pollution indicator fir,% (r; REC). Let us now show 

how (82) was obtained. Noting that 

1 f~ crCe~,Slob ) = o'(erh..,-ql~ (~:) ~ . EQ,pt~ ( 8 3 )  ~ r , o '  ~. J 

reT h 

the error in the pollution estimate is practically given by 

(I /o.(e~,gtob) ) ~,REC 
m q~o .avg(4 .  ) ~ .  

N E: r~T h 
re_n-,,4 

Rsc)) (84) 

Further, the error in the pollution indicators is 

- " :.REC . ee,r,(.~) _/2r,%Cf; REC)  jrv%.(u,,)j I ' z r , a t t  (85) 



183 

and employing the approximation 

~R~c .(r REc(~_~ ~ R ~ c . .  (86) 

we obtain the estimate (82). We obtained the last approximate equality in (86) by 

employing r nEc'R~c * (~- % a ((] ~'~ ,---~,h) to approximate ). 

Let us now give some constructions of the recycled recovered stress, ErREC'REC*: 

(i) Polynomial recycling: 

Let 
ITREC, POL(uh)I~, --~ ~l,U,,uh, REC, POL,) (87)  

where - REC, POL ~p+m U~,uh 6 (w~ h) is obtained by solving the following local minimization 

problem: 

I'" REc, po~. ,rR~C(Uh ) I'rtU,,u~ )-- I1~ D ' "  ' " ' ~  
' t t b k l k = l  

where 

= min . . _ _  _ ..Iler(U)--~r"~C(uh)II~,D,{~j~,_A (88) 
ue~+"(oj, h) 

nsp 
Ilcrl ~ def 1 , , . , .  ,.o. = ~-~'~(cr([k)) TD O'([k) (89) 

~'~ '~" ' l .bk J k = l  k=l 

and { ~  Jk-l'tnsP is the set of mapped 2 x 2 Gauss-Legendre points in the elements in w~. In 

the results given below we employed D - I (the identity matrix); another possibility is 

D = E -I, etc. 

R e m a r k  16. The polynomial recycling is rather general and can be easily implemented 

in any existing code which has the capability to compute a recovered stress. 

(ii) "Harmonic" recycling: 

,, ,, h which satisfies Let {Q~}~~ a local harmonic basis in the element w r, 

r IT r V.  (o'(Qk)) = O, (Qk) n[a~. = g, Q~.la,. D = 0 (90) 

where 0r  D de_.f 07"r] FD, and 07"s de__f 07" CI FN. In the cases that any of these sets is empty 

the corresponding boundary condition need not be enforced. We then have 

uEX I~ = ~ C~k q~ (91) 
k=l 
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Note that  (90) does not specify uniquely the basis functions. For elements in the interior 

of the mesh, or elements adjacent to a smooth boundary, we will employ the Muskhel- 

ishvili complex potentials [27] 

where 

x + i Qt,~ = ,~ vCz) - z v'Cz) - r (92) 

p+m 

q(z) = A z log z + B log z + ~ ak z k + %+m+kz -k 
k--1 

(93) 
p+m 

r = - ~  A log z + ~ b k z k + bp+m+kz -k 
k--1 

where z = x 1 + i x 2, i = vrL-1, ~ deJ 3 -  4 v for plane strain or ~ dej 3 -  v for plane 
l + v  

stress, and A, B, a k, b~ are complex and chosen such that Q[ has finite value in w h. 

In the computations we also constructed the basis, such that boundary conditions can 

be enforced on a circular arc (here we assume that  the boundary of the domain can be 

represented by circular arcs). 

For elements in the interior of the mesh, or adjacent to a smooth boundary , we 
r REC, HAR~ will determine the recycled stress o'REC'HAR(uh)I f = O'~Uf,uh ), where the recovered 

displacement 
N 

_REC, H A R ~ . ( N )  def{ I } u~,.~ e (~h) = q o = ~ ,  Q~ (94) 
i=l 

is obtained by solving the local minimization problem 

l'lO'[U~,uh" REC'HAR'--o'REC(uh~I[) k ,,, .h D '" '"'P -- min [IO'(U)--oREC(uh)IIw h D q; '"'P (95) 
w,, ,~, , ,=I u~S(N)(w)) ,, ,~ h,h=, 

Here {/Jk}~ is the set of mapped 2 x 2 Gauss-Legendre points in the dements in w h. 

We employed N = 4(p + m) for interior elements, N = 2(p + m) for elements adjacent 

to a straight boundary, N = 4(p + m) + 2 for elements adjacent to a curved boundary, 

and we let m = p. 

For elements with a vertex at a corner point we will also employ the vertex basis 

functions 

Q~:~ = (r,,o) xt ~PtCOxo) (96) 

where x ~ is the position vector of the corner point, and r~o, 0~o is a polar coordinate 

system centered at x ~ Here A t and ~ t  are, respectively, the gth eigenvalue and the 



185 

eigenfunction for the infinite wedge, corresponding to the corner point. In this case we 

will employ a recovered displacement in the form 

i=1 i=1 

(97) 

Analogously as in (87), will let ;,HAR denote the indicator of the error in the ~oREC(uh ) 
recovered stress, namely 

~HAR def {TREC, HAR(uh ) - -  o.REC(uh ) ~.EC(uh) = (98) 

and will compute the error in the pollution indicators as in (87)-(89) 

def f ,^EST )TE-I~HAR 
ef'"'%.t~-nAn (e;REC) = J~ te"(u~) ~"Ec( e-k't,,h ) (99) 

~ REC and the corresponding estimate of the error in ~u.vg(,) is 
k,t 

~ H A R  def 
..zo = ~ ]  ~_.AR (~,REC) (100) 
" avg ( f )  TETh t~lar'uk.t 

uk,t 
~c_n-~ 

Let us now give an example which compares the accuracy of the estimates of the error 

in the error estimate obtained by polynomial and harmonic recycling. 

E x a m p l e  2. The accuracy of the estimates of the error in the error estimates. Let us 

compare the exact relative error in the error-indicator 

V M,REC def 
O'S,RE L "-- J2(e,..~C(uh))/J2((r(eh,l~ (101) 

where we recall that %REC(uh) de..f (r(e~.loc)_;.REC -- "~(u~) is the exact error in the error indicator, 

and the estimated relative error 

aVM,aEC, aEC, def j2(~REC3(uh))l j2((r(eh,loc)) 
f ,REL --" (102) 

and we measure the accuracy by computing the element effectivity indices 

h loc,REC, REC, def [~REC, ,- = I, ,,"ECCu")II,.,E-,/lle,,"~CCu',)llT, E-, (103) 

where R E C ,  =- POL, HAR.  Let us first consider the case of polynomial recycling 

( R E C ,  = POL). In Fig. 11 we give the shades of the exact relative error in the R E C  

indicator O'f,RE LVM'REC (Fig. l la ,  for REC  - ER2B4, Fig. l lb ,  for REC - Z Z - S P R )  and 
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Fig. 11. An  example uJhich illustrates the accuracy of  the estimate of the error in the error estimate: 
The accuracy o.f the indicators o.f the error in the error indicators in the elements o.f patch A. The regions 
of 0-5% (white), 5-10% (light gray), 10-20% (gray), 20-30% (dark gray), above 30% (black) for: The 

h,loc exact relative error in the error indicator, J~(ecrR~C(uh))/Jz(cr(e ~ )), for (a) R E C  - E R 2 B 4 ,  and (b) 
~POL h Ioc R E C  - Z Z - S P R .  The estimated relative error in the error indicators, J2( ~R~C(u~))/J2(cr(e~ ' )), for 

(c) R E C  =_ E R 2 B 4 ,  and (d) R E C  - Z Z - S P R ,  obtained using polynomial recycling. The values of the 
element effectivity indices Un~R~c(u~)ll~POL Ill,E_1/[[e~a~c(uh) lit,E_ 1 for the estimate of the error in the error 
indicator, for: (e) R E C  - E R 2 B 4 ,  (f) R E C  - Z Z - S P R .  
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Fig. 12. An example which illustrates the accuracy of the estimate of the error in the error estimate: 
The accuracy of the indicators of the error in the error indicators in the elements of patch B. The 
regions of 0-5% (white), 5-10% (light gray), 10-20% (gray), 20--30% (dark gray), above 30% (black) for: 
The exact relative error in the error indicator, J2(e..EC(uh))/J2(~r(eh'Z~ for (a) R E C  =- ER2B4,  and 

"POL h loc (b) R E C  =- Z Z - S P R .  The estimated relative error in the error indicators, J2(e~ReC(uh))/J2(cr(e~,' )), 

for (c) R E C  -- ER2B4,  and (d) R E C  = Z Z - S P R ,  obtained using polynomial recycling. The values of 
the element effectivity indices I Is I I~aRrC(u~)Vlr,~_ t/lleaRrC(u~)llr,E_ ~ for the estimate of the error in the 
error indicator, for: (e) R E C  = ER2B4,  (f) R E C  = Z Z - S P R .  
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_VM, REC, POL (Fig. llc, the corresponding estimated relative errors in the REC indicator o~,a~ n 

for REC = ER2B4, Fig. 11d, for REC =_ ZZ-SPR), and the element effectivity indices 

~oc,REC, POL (Fig. 11e, for REC - ER2B4, Fig. 11f, for REC m ZZ-SPR) for the 

elements in the patch A. In Fig. 12 we give the corresponding results for the elements 

in patch B Note that the indicators aPOZ �9 ~oaSC(uh) have effectivity indices in the range (1.0, 

3.0). Let us now compute the estimates for the error in the stress in pollution estimate, 
~POL i.e, ~REC given in (85). The accuracy of c~POL ~aEC depends on the accuracy of the ~o.aug(~') ~aavg('r) 

indicators of the error in the pollution indicators. 

Let us now illustrate the accuracy of the "harmonic" recycling. In Fig. 13 we give the 

VM, REC (Fig. 13a for REC =_ shades of the exact relative error in the REC indicator a~,R~ n 

ER2B4, Fig. 13d for REC - ZZ-SPR), and the corresponding estimated relative errors 

in the REC indicator a VM'Rsc'HAR (Fig. 13b for REC - ER2B4, Fig. 13e for REC = 

ZZ-SPR). In Fig. 13c and Fig. 13f we give the effectivity indices SZ~,REC, HAR, for 

REC ~ ER2B4 and REC -- ZZ-SPR, respectively. Let us compare the estimated 
c~ HAR error in the error estimate ~REC with the exact error in the error estimate given by 

def ~REC (104) = 

for REC - ER2B4 and REC - ZZ-SPR. In Fig. 14 we give the shades of the exact 
~ REC relative error in ~(~)  (Fig. 14a for R E C  =_ E R 2 B 4 ,  Fig. 14d for R E C  =_- Z Z - S P R ) ,  

and the corresponding estimated relative error regions (Fig. 14b for R E C  = E R 2 B 4 ,  

Fig. 14e for R E C  =_ Z Z - S P R ) .  In Fig. 14c and Fig. 14f we give the effectivity indices 
I tc~HAR I ~~o~[~,z_,//lle.~o[l~z_, for R E C  = E R 2 B 4  and R E C  ~ Z Z - S P R ,  respectively. 

"~(~) ' �9 , 

In Fig. 15 and Fig. 16 we give the results which are analogous to Fig. 13 and Fig. 14, 

respectively, for the patch B. We note that the effectivity indices in all the above cases 

is in the range (0.7, 1.3). 

Let us now employ the "harmonic" recycling to predict the effectivity index of the 

global energy norm of the error, s~c. Recalling that 

(c~REC)2 def E Jfr ( o ' R E C ( u h ) -  O'(uh))T S-1 ( {TREC(uh ) - -O ' (uh ) )  (105) 
�9 eT a 

letting (rREC(U h) --(r(u ~) ---- ((rREC(uh)- or(u))+ (or(U)- Cr(Uh)), and expanding, we 
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Fig. 13. An example which illustrates the estimate of error in the error indicator: Accuracy of the 
indicators of the error in the error indicators in the elements of patch A. The regions of 0-5% (white), 
5-10% (light gray), 10-20% (gray), 20-30% (dark gray), above 30% (black) for: (a) J2(eu~R28,(u~))/ 
Jz(o'(e~"*c)); (b) r t .~ .AR ,, '~,,~,,=B,(u~)II,..B-,/II%~=,,,(,,~)II,.E-, ; 

[~HAR h,loc (d) J2Ce,,,,,,_s,.,,C,,,,~)/J2(o.(,?,,'~176 (~) J2, ,.z.-s,,,,cu,,~)/J,(o'(,,, )); (f),,.~,AR ||~o'ZZ-SPR(uh )II,.,E-' 
/ I le,,,~-,~R(,,~)II,.B_, �9 



190 

Fig. 14. An example which illustrates the estimate of error in the error indicator: Accuracy of the indi- 
cators of the error in the error indicators in the elements of patch A. The regions of 0-5% (white), 5-10% 
(light gray), 10-20% (gray), 20-30% (dark gray), above 30% (black) for: (a) J2(e~R2a,)/J2(cr(eh)); 

"~Q(Jt) 
H A R  h H A R  (b) J2(~g.r ) /  2( ( ) )  (c) -*(,, I,,~-, (d) a2(e~z.c~.;spR)lJ2(cr(ea)); (e) 

H A R  h H A R  z z - s P a  J, e r e  ; ~ s ~ z z - s P n l l _  _ J2(%,. )  ) /  2( ( ) )  (f) ll -o(,) . ,E,  /ll%zz-~.ll~,E-,_~(.) 
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Fig. 15. An example which illustrates the estimate 0.? error in the error indicator: Ac- 
curacy 0] the indicators oS the error in the error indicators in the elements o] patch B. 
The regions of 0-5% (white), 5-10% (light gray), 10-20% (gray), 20-30% (dark gray), 

-nan d above 30% (black) for: (a) Ja(e.EanS,(u.))lJa(crCe~'i~ (b) Jz(e.~a,s+(u~))/ i(~(eh'Z~ (c) 
IIr.HAR HAR ,,.+,,.,,,,,,r ;(d) J2(e~sn,s,)/J2(cr(eh)); (e) _ -,,,r - 

t ~ ( t t }  

[ n ~ H A R  

"o(+t) "o(m) 
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Fig. 16. An ezample which illustrates the estimate of error in the error indicator: Accuracy 
of the indicators of the error in the error indicators in the elements of patch B. The regions 
of 0-5% (white), 5-10% (light gray), 10-20% (gray), 20-30% (dark gray), above 30% (black) 

e h,loc j, ~HAR h,lor for: (a) ,12( ~rZZ-spR(uh))lJ2((r(e~. )); (b) ~( ~rzz-spR(uh))lJ2((r(e~, )); (c) -HAS lie,,= =-~,',, (u ~ ) I I.,B-, 
/ l le,.. .-~,., ,(, ,~)ll. ,~_,; (d) J2(e~.~;~,.,,)/J=(cr(eh)); (e) , / 2 (~ r~ , . , , ) / . / = (~ (eh) ) ;  (f) 

HAR I1~ Z,c,, ,,,z- s,., I I,..~_,/I I e,: �9 , -  s,.,, I I,..E-, . _ , , , , ,  
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get 

( gEC)2 _ illehlll  = fT (ITREC(uh)-" IT(u))T E-1 (ITREC(uh)- IT(U)) 
veT h 

(106) 
+2 Efr (ITREC(uh)-" IT(u))T E - I  (IT(U)- IT(uh)) 

reT h 

Employing ITREC'REC*(Uh) instead of IT(u) in (106) we get the estimate 

~REC* illehlll  (107) 

where 

~REC* def ~r f t6REC* )T E-* aREC, (108) (~ggEC)2 = E 12.REC* ~T E-1 xREC* �9 ~..EC(uh)J ~.EC(uh) - 2 ~ j ~  .-EC(uh) ~(uh) 
�9 ,'e% ",'e% 

r REC * We have (%~EC)2 r def ~o (,~arc)~ 

We considered the mesh shown in Fig. 3b (we will call this mesh the refined mesh). We 

also employed a coarser mesh which is obtained from the initial mesh of the superelements 

by subdividing each element only once (the refined mesh was obtained from the initial 

mesh of superelements by employing two recursive subdivisions). In Table 1 we give 

the values of ~ER2B4 and EZZ-SPR for the coarse mesh and the refined mesh and we 
/c~H;4R ' also compare the estimated values of effectivity indices V~(~gEe)2. Note that we have 

(~gEC)~ ~ for both meshes. 

Mesh 

Coarse mesh 
Refined mesh 

ER2B4 

ff.~R2B4 /c~HAR 
,i, 

1.877 2.034 

1.938 1.976 

ZZ-SPR 

~Z-SPR 
2.213 
2.306 

/~H AR 
.... 

2.469 

2.514 
, 

Table 1. An example which illustrates the accuracy of the estimates of the #lobal effectivity indez: The 
values of the global effectivity index ~n REc for the coarse mesh and the refined mesh (shown in Fig. 3b), 

I ~ A n  I~HAa ~RnEC and its estimate V e(~REc)2. Note that V e(~Rsc)~ ~ for both meshes. 
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3. CONCLUSIONS 

The main conclusions of the paper are: 

1. We have constructed reliable estimates of the error in the stress at any point (where 

the stress is finite) by splitting the error into two components with respect to the 

element which includes the point of interest. The local component (local error) 

is estimated by the error indicator, and the global component (pollution error) is 

estimated by a global extraction. 

2. The estimates of the error in the stress in the engineering model problem are suf- 

ficiently accurate when the element residual error indicator or the Z Z - S P R  error 

indicator are employed. Nevertheless, whenever the mesh is coarse, the effectivity 

index may be in the range (0.5, 2.2), and it is essential to estimate the error in the 

error estimate in order to guarantee the quality of the error estimate. 

3. The a-posteriori estimation of the error in the error estimate is also based on split- 

ting of the error in the error estimate, namely, the error in the error indicator and 

the error in the global extraction. The error in the error indicator and the error 

in the global extraction are estimated by locally averaging (recycling) the original 

error indicators. 

4. The a-posteriori estimates of the error in the error estimates are most effective when 

the local character of the exact solution is taken into account in the recycling. 
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We present a framework for the efficient calculation of lower and upper bounds to out- 
puts which are linear functionals of the solutions to symmetric or nonsymmetric second- 
order coercive partial differential equations. The method is based upon the construction 
of an augmented Lagrangian, in which the objective is a quadratic energy reformulation of 
the desired output, and the constraints are the finite element equilibrium conditions and 
interelement continuity requirements; the bounds are then derived by evoking the dual 
max-min problem for appropriately chosen candidate Lagrange multipliers. The bound 
computation comprises two components: several global calculations on a relatively coarse 
"working" finite-element triangulation TH consisting of KH elements TH; and 2KH in- 
dependent TH-local calculations on a relatively fine "truth" finite-element triangulation 
7i. 

In this paper we focus on three new developments. First, we introduce a modified 
energy objective, and hence modified Lagrangian, that permits both more transparent 
interpretation and more ready generalization. Second, we demonstrate that the bound 
gap - -  the difference between the upper and lower bounds for the desired output - -  can be 
represented as the sum of positive contributions - -  local indicators - -  associated with the 
elements TH of TH. Third, based on these local bound-gap error indicators, we develop 
adaptive strategies by which to reduce the bound gap - -  and hence improve our validated 
prediction for the output of interest - -  through optimal refinement of TH. The resulting 
method is applied to an illustrative problem in linear elasticity. 

1. I N T R O D U C T I O N  

The field of a posteriori error estimation and adaptive mesh refinement now has a long 
history in finite element analysis. The two goals of these related pursuits are, first, inex- 
pensive confirmation of the accuracy of a particular finite element solution, and second, 
efficient improvement of the finite element solution by optimal adaptive mesh refinement. 
We now make these notions more precise. 

We denote the exact solution to our coercive partial differential equation by u (say, 
the displacement), and the finite element approximation to u associated with a triangu- 
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lation TH by UH. The finite element error is thus given by e =_ u -  UH; we denote the 
(pseudo)metric in which we wish to measure the finite element error by E(v).  A posteriori 
procedures provide an estimate, C(TH), for the E-metric of the finite element error, E(e); 
this estimate E(TH) is typically expressed as the sum of positive contributions ~'TH asso- 
ciated with the KH elements TH of the triangulation TH. The elemental contributions 
ETH are interpreted as local indicators for the purpose of subsequent mesh refinement 
strategies. 

The general approaches to a posteriori error estimation may be categorized as "ex- 
plicit" or "implicit" [3]. Explicit techniques are typically based on residual evaluation 
and a priori approximation and stability results [4,18,7]: the advantage is computational 
efficiency; the disadvantage is the presence of constants that can not be precisely evalu- 
ated. Implicit techniques [11,6,2) are based on the solution of KH residual-forced TH-local 
independent subproblems: the advantage is more precise quantification; the disadvantage 
is increased complexity and computational effort. Although both explicit and implicit 
methods typically provide error bounds in the sense that (roughly) there exists a con- 
stant C~ independent of TH and u such that E(e) <__ CE ETH [6,18], the constant C~ is 
typically not known. In what follows, we shall reserve the term "bound" for estimators 
for which C~ is known to high accuracy. 

Most early work on a posteriori error estimation focused, first, on symmetric problems, 
and second, on the natural energy measure of the error, in which E(v) is chosen to be 
the norm induced by the symmetric bilinear form associated with the weak formulation 
of the problem. In this case, very effective explicit and implicit techniques [4,6,18] can 
be developed that require essentially no regularity assumptions and contain only mini- 
mal unknown approximation (and perhaps coercivity) contributions to CE. Furthermore, 
implicit procedures can be developed [11,2] that provide rigorous bounds for the error; 
the unknown contributions to C~ are reduced to the (typically very small) inaccuracies 
incurred in the solution of the TH-local subproblems. Many of these explicit and implicit 
methods can be readily generalized to nonsymmetric problems [18] and more general error 
metrics; in contrast, the earlier bound procedures [11,2] are developed only for coercive 
symmetric problems, and are fundamentally restricted to the natural energy norm. 

There has recently been greatly increased interest in the extension of a posteriori es- 
timation techniques to error metrics more directly relevant to engineering analysis. In 
particular, the quantity (or quantities) of interest in engineering studies is not the field 
variable u, or the error in the energy norm, but rather the output - -  the system perfor- 
mance metric - that reflects the specific goals and objectives of the design or optimization 
exercise. To be more precise, we denote this engineering output of interest by s (say, the 
force over part of the boundary); we further assume that s may be expressed as s = l~ 
where l~ is a (preferably bounded) affine functional. The finite element approxima- 
tion to s, SH, is then given by SH = lO(~g). It is clear that, in order to measure the 
error in the linear-functional output s, we should choose E(v) =_ II~ since then 
E(e) = It~ = = 

Explicit error estimation techniques - -  based on the Aubin-Nitsche duality proce- 
dure [10] - -  and associated adaptive refinement strategies are now available for linear- 
functional outputs, E(v) = II~ [7,8,16]. These procedures facilitate the assessment and 
improvement of finite element predictions for the desired engineering output, s. However, 
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in contrast to explicit indicators for the error in the energy norm, explicit indicators for 
the error in linear-functional outputs involve, first, more questionable assumptions, and 
second, more unknown contributions to Ce. In particular, Ce now reflects not only unde- 
termined approximation constants, but also regularity hypotheses on the adjoint (dual) 
variable r and potentially inaccurate (TH) estimates for higher-derivative norms of r 
Although these explicit techniques for output estimation can certainly yield good results 
[7,8,16], the goal of confirmation is less well-satisfied. Related reconstruction procedures 
share similar advantages and disadvantages [5]. 

We argue that engineering analysis and design is best served by a posteriori procedures 
that e l i m i n a t e -  or at least greatly reduce - -  the uncertainty in numerical predictions: 
rigorous and quantitative bounds for I s -  SH] are required if simulation results can be 
reliably incorporated into the engineering design and optimization process. To this end, 
we have developed an implicit procedure for the prediction of bounds for linear-functional 
outputs of coercive partial differential equations [13,15,14]. The method is based upon the 
construction of an augmented Lagrangian, in which the objective is a quadratic energy 
reformulation of the desired output, and the constraints are the finite element equilib- 
rium conditions and interelement continuity requirements; the bounds are then derived 
by evoking the dual max-min problem for appropriately chosen candidate Lagrange mul- 
tipliers. As in all implicit procedures, the bound computation comprises two components: 
several global calculations on the relatively coarse "working" finite-element triangulation 
TH; and 2KH independent TH-local calculations on a relatively fine "truth" finite-element 
triangulation 7~. 

More precisely, our procedure produces quantitative lower and upper bounds, SLO(TH) 
and Sup(TH), for sh = l~ the finite element approximation to the output s on the 
"truth" triangulation Th. These bounds, in turn, engender a predictor for sh, 

1 
8pre(TH) -" "~(SLO(TH) + Svp(TH)), (1) 

for which 

I ~ -  ~ ( T , ) I  _< A(T,,). (2) 
Here 

1 
A ( T , , )  = - ~ ( s . p ( T . )  - ~no(7- . ) ) .  (3) 

which we shall denote the (half) bound gap. It follows that Is-Spre[ (respectively, Is-s i l l )  
is within [ s -  sal of A (respectively, of A + ISpre -- SIll), and thus Ce is known to within 
the accuracy of the "truth" mesh. Note that whereas I sh -  sill may in fact be smaller 
than Ish -- Sprel, we prefer the predictor Spre since the error bound on Spre will be sharper. 

Our framework borrows from earlier bound (and other implicit) approaches to a poste- 
riori error estimation both in general methodology - -  the application of quadratic-linear 
duality theory [11,2] - -  and in specific t e c h n o l o g y -  the interelement continuity com- 
ponent of the Lagrangian, and relatedly, the construction of equilibrated hybrid fluxes 
[11,6,2]. However, there are also important differences between the earlier approaches 
and our new proposal. In particular, earlier bound procedures are based upon a La- 
grangian in which the objective function, not the constraints, recovers equilibrium: this 
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reliance on a variational principle limits these approaches to symmetric operators, and, 
even more fundamentally, to the natural-energy error norm. The Lagrangian in our ap- 
proach is rather different: the objective is an energy reformulation of the desired output; 
and the constraints include the finite element equilibrium equations, as is common prac- 
tice in optimization and control applications. These enhancements permit the treatment 
of much more general error measures, in particular linear-functional outputs, and the 
consideration of more general equations, in particular nonsymmetric operators [13,15]. 
Our method has also been extended to the Stokes equations [14,12] and certain nonlinear 
problems [14], however treatment of general noncoercive or nonlinear systems is not yet 
possible. 

We refer the reader to our earlier publications [13,15,14,12] for a complete description 
of our approach. In this paper we focus on three important extensions. First, we develop 
a modified energy objective - -  and hence modified Lag ra ng i a n -  that permits both more 
transparent interpretation (e.g., in terms of Aubin-Nitsche arguments) and more ready 
generalization (e.g., to inhomogeneous boundary conditions). Second, we demonstrate 
that the resulting bound gap, A(TH) of (3), can be represented as the sum of positive 
contributions, AT,  (TH) - -  local indicators - -  associated with the elements of TH. Third, 
based on these local bound-gap error indicators, we develop adaptive strategies by which 
to reduce the bound gap A(TH) - -  and hence the error bound on Spre - -  through optimal 
refinement of TH. We emphasize that our focus is less on error estimation, and more 
on output prediction: we view the refinement of TH primarily as a means by which to 
improve our bounds. Relatedly, we anticipate that sLO and sup are the quantities that 
will be of greatest interest in engineering design; svre and A(TH) are simply convenient 
artifices through which we can simultaneously sharpen both the lower and upper bounds. 

The outline of the remainder of the paper is as follows. In Section 2 we describe 
the problem that will be the vehicle for our exposition: a general second-order scalar 
(nonsymmetric) coercive partial differential equation. ~Ve also introduce the finite element 
spaces and bilinear and linear forms that we will require in subsequent sections. In Section 
3 we introduce our modified Lagrangian, and describe the associated bound procedure. In 
Section 4 we identify the local bound-gap indicators, and present our adaptive refinement 
strategy. Finally, in Section 5, we provide numerical results for a problem in linear 
elasticity. 

2. P R O B L E M  S T A T E M E N T  A N D  D E F I N I T I O N S  

2.1. Governing Equa t ion  
We shall consider a scalar second-order linear coercive boundary-value problem char- 

acterized by the following variational statement �9 find u 6 X D, and s 6 JR, such that 

a(v, u) = l N(v), Vv 6 X ,  (4) 

and 

= (5 )  

The field variable u is defined over a domain 12 C ~2 with boundary 012 = FD(JFN; 
u must reside in X D = {v + U D Iv  6 X}, where X = {v 6 Hi(12) ]v  = 0 on F D}. 



203 

Here Hl(f~) is the usual Sobolev space [1]; IF' D is the portion of the domain boundary 
on which the essential (Dirichlet) boundary data, gD, is imposed; UD is any function in 
Hl(fi) satisfying the essential boundary conditions, that is, UDIFD -- gD; and l"N is the 
portion of 0f~ on which natural (normal derivative) boundary conditions are imposed. 
Also, a : Hl(f~) x Hl(f~) ~ ~ is a continuous bi-linear form (not necessarily symmetric), 
and l N : HI(f~) ~ / R  (respectively, l ~ : Hl(fl) ~-+/R) is a continuous linear (respectively, 
affine) functional. (Treatment of unbounded output functionals l ~ is considered in [12].) 

Finally, we introduce a bilinear symmetric coercive form a s : X • X ~ ~ ,  defined as 

1 (a(v, w) + a(w, v)), Vv, w e X,  (6) a (v, = 

which induces the energy norm 

IIIvll12= aS(v,v), w, e x ,  (7) 
the "natural" metric in which to measure the finite element error. 

2.2. Finite Element Spaces 
Two triangulations of the computational domain ~ are considered: the working or 

design H-mesh, TH, consisting of KH elements TH; and the "truth" h-mesh, 7h, consisting 
of Kh elements Th. We require t h a t ~  is a refinement of TH; the geometric requirements 
on TH are discussed in the context of our refinement strategy. 

To each of these meshes we associate regular piecewise-linear continuous finite element 
subspaces, 

XH -- {v ~ X [ V]TH E P,(TH), VTH E TH}, (8) 

Xh = {v e X I VlT h e P,(Th), VTh e 7~}, (9) 

where P1 (T) denotes the space of linear polynomials over T. Similarly, we define X D - 
{v + UD I v e XH}, and X~ = {v + UD I v ~. Xh}. Note that, by construction, XH C 
Xh C X, and X~ C X D C X D. 

The algorithms to be presented require that our spaces and forms be expressed as sums 
of contributions over the H-elements TH. Towards this end, we introduce the subdomain 
local spaces ZH(TH) and Zh (TH), 

ZH(TH) = P,(TH), VTH E Tn, (10) 

Zh(TH) = {V]T~ e Px(Th), VTh E 7~TH } Cl H'(TH), VTH e TH, (11) 

where 7"r denotes the set of h-mesh elements contained in TH. The global representation 
of ZH(TH) and Zh(TH) are the "broken" spaces -~g and -~h, 

X". = {v e_. L2(fl) I vlT,, e ZH(TH), VTH E T . } ,  (12) 

Xh = {v E L2(fl) I vir .  E Z , ( T , ) ,  VTH C TH}, (13) 

where L~(fl) is the space of square-integrable functions. 
Finally, the b i l i n e a r -  a(., .), aS( ., .) - -  and l i n e a r -  IN(.), l~ ~ forms are extended 

to accept discontinuous functions in the "broken" spaces by redefining these forms as a 
sum of H-element contributions. For instance, a(., .) is now written as 

a(v, w) "- E aT. (V[Ttt, WlTlt), VV, W E 2h; (14) 
THETH 

similar expressions are obtained for a s, l N, and l ~ 
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2.3. Cont inu i ty  Form 

Let E(TH) (respectively, E(Th)) denote the set of open edges in the triangulation TH 
(respectively, 7~). We can then introduce a space of functions over the element edges 
7H E E(TH), 

QH -" {ql~H e PI(') 'H), V')'H E E(TH) I qar~, = 0}; 
analogously, 

V~ = {ql~ e P,(~h), v~h e ~(7~)nE(TH) I ql~. = 0}. 

(15) 

(16) 
It follows that QH C Qh C H-1/2(E(TH)); the functions in these spaces can, of course, be 
discontinuous [9]. 

Next, we introduce the "jump" bilinear form b" )(h x Qh ~ Et, 

b(v,q)= ~ f~ J~Hvq[~. ds, (17) 
~xe~(TH) H 

where JTxv is the jump in v across 7H when 7/ / is  an interior edge, and the trace of v on 
"TH when 7H is on the boundary Ogt. The form b(.,-) can be used to enforce continuity on 
functions in -~'H and Xh; in particular, 

x .  - {, e 2 .  I b(,, q )=  0, Vq e Q.}, 
x .  - {~ e 2~ I b(~, q) = O, Vq e Qh}. 

Note b(., .) places no restriction on v on natural boundaries. 

(18) 

3. B O U N D  P R O C E D U R E  

3.1. TH and 7~ Prob lems  
The Galerkin finite element solution on the working mesh, ux E X~, satisfies 

a(~,  ~,,) = z N(~), w e x . ;  (2o) 
the associated output, SH, is then computed as 

" -  = z ~  (21) 
Analogously, the Galerkin finite element solution on the "truth" mesh, Uh E X D, satisfies 

a(w, Uh) = IN(v), Vw e Xh; (22) 

the associated "truth" output, sh, is then computed as 

sh = lO(uh). (23) 

In the smooth case, I s -  SIll "~ O(H2), and I s -  Shl "" O(h2), where H and h are the 
diameters of TH and 7h, respectively. 

It will be assumed that the calculation of UH, and hence SH, can be performed at 
moderate cost. However, the h-mesh will typically be much finer than the H-mesh, in 
order to ensure that ] s -  Shl is suitably small; the computation of uh and sh in (22)-(23) 
will thus, most likely, be impractical. Our objective is, therefore, to devise a procedure 
that will yield sharp upper and lower bounds for sh in an affordable manner. 
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3.2. L a g r a n g i a n  F o r m u l a t i o n  
Noting that ua - UH E Xh, equation (22) gives 

a(uh - UH, Uh) -- 1N (Uh -- UH) = 0, (24) 

which can be combined with (6) to obtain the following energy equality, 

a s ( u h  - u . .  ~.h - ~ . )  - t N ( u h  - ~ , . )  + a ( u h  - u . .  ~.H) = o (25) 

Introducing the error eh E Xh as the difference between the h-mesh and H-mesh approx- 
imations, eh = Uh -- UH, and defining the residual 

tE(~) ----tN(v)- ~(~. U.). W e .r (26) 

the energy equality can be rewritten as 

as(~, ~)  - t ~ ( ~ )  = o. (27) 

Note that aS(eh, eh)is  simply Illehlll 2. 
We now introduce the set of functions S C -~h, 

s =  {~ e s I ~ ( ~ , u .  + ~) = t~(~), w e x~; b(v,q)=o, Vq e Q~}. (2s) 

We observe that the second constraint enforces continuity and the homogeneous essential 
conditions, that is, v E Xh, and the first constraint, from (22), then forces v = eh. 
Therefore, the space S consists of a single function, eh. The following trivial minimization 
statement can then be written, 

=l=sh = min g(aS(v v) -lE(v)) 4-lO(ug h- v), (29) 
vE8 

where ~ E ~ +  is a non-negative parameter that will be used later to optimize the com- 
puted bounds. 

The constrained minimization problem (29) suggests the formation of the quadratic- 
linear Lagrangian E" Xh x Xh x Qh ~ :~, 

s  = ~ ( a S ( v , v ) - l E ( v ) ) - l - l ~  u n + v ) - l N ( p ) + b ( v , q ) ,  (30) 

which allows us to express -r-sh as 

-I-sh = inf sup s #, q). (31) 
v~.Xh ltEXh, qEQh 

We know that, at the saddlepoint (eh, r 

eh = argmin [ sup /:~:(v, p, q)], (32) 
vEXa t~EXh, qEQh 

(r ph ~) = arg max [ inf E+(v, p, q)]. (33) 
I~EXh, qEQh vE.,~'h 

We shall refer to p as the adjoint (dual) variable, and q as the hybrid flux. 
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3.3. Dual i ty  
From quadratic-linear duality theory [17] and (31) it follows that 

4-sh = sup inf s #, q) >_ inf s p~, q~h), Vp:~ E Xh, Vq~h ~. Q~, (34) 
pEXh, qEQh vEf(h vEfCh 

with equality for ( /~ , /~)  = (r Upper and lower bounds for the output sh, sup 
and sLO, respectively, are now readily constructed as 

Sup = - inf s ph,qh ) _~ Sa _~ inf s - -  8LO. (35) 
vEXh v~ f(h 

We note that (35) holds for any functions p~: E Xh and q~ E Qh. In particular, we will 
choose these functions to be members of XH C Xh and QH C Qh. 

3.4. Adjoint  and Hybrid  Flux Calculat ions  
We consider here the problem of determining H-mesh approximations to the adjoint 

r ph ~, and the hybrid flux p~:, q~, that will yield sharp bounds. Towards this end, we 
look for the saddlepoint of the Lagrangian (30) in the subspaces )(H C f(h, XH C Xh, 
and Qh C QH, in particular 

(r P/~) = arg max [min/:• q)], (36) 
IJEXH, qEQH vEfCH 

and then set p~ = r and q~ = P~H- 
The stationarity conditions for (36) are obtained by requiring that the variations of s 

with respect to v,/~, and q vanish: Find e~H E X , ,  r E XH, and p~ E QH such that 

b(w,p~) = - { ~  (2aS(w,e~H) -- IE(w)) + l~ + a(r VW e )(H, (37) 
~(~, ~ .  + ~ )  = l~(~), v~  e x . ,  (as) 

b(e~, q) - O, Vq E QH. (39) 

First, equation (39) forces e~ E XH, which combined with (38) and (20) implies that 
e~ = 0. Next, equation (37) must be satisfied for all w E )(~, and thus, for all w E XH C 
XH. The adjoint, r E XH, can therefore be determined (precisely as in Aubin-Nitsche 
procedures [7]) as 

~(r ~)= -z~  w e x . .  (40) 

with r = +r Note that, in deriving (40), we exploit, first, l~(w) = O, Vw ~. Xt t ,  
which follows from (20), and second b(w,P~H) = O, Vw E XH, from (18). 

Finally, equation (37) can now be evoked to determine the hybrid fluxes p~ E QH, 

b(w,p~)  = gl~(w) :I: l~ - a(r w), Vw e X , .  (41) 

Alternatively, we can find Poll E QH and PIH E QH such that 

b(~.po.)  = - t  ~ - a(r ~). Woe 2H. 

b (~ .p l . )  = t~(~o) (= t~'(~) - ~(w. , , . ) ) .  V~ e 2 . .  

(42) 

(43) 

and then set p~ = =l=PoH -t- t';,PlH. 
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Note that Poll equilibrates the H-mesh adjoint (40), whereas Pill equilibrates the original 
H-mesh solution (20). 

Equations (42) and (43) represent a solvable but indeterminate system. The computa- 
tion of an acceptable compatible solution is known as the equilibration problem. We follow 
here the approach proposed in [11,6,2], which involves the solution of an indeterminate 
system at each vertex of the TH grid, the size of which is given by the number of edges 
that meet at the vertex. Details about this procedure can be found elsewhere [15,12]. 

3.5. Local P rob lems  
We consider here the solution of the minimization problems in (35). The minimizers of 

s r  (}h ~ E )~'h, will satisfy the following stationarity condition, 

2 ~ a S ( w , ~ )  = glE(w)  :F l ~  - a(r w) - b (w ,p~) ,  Vw E Xh,  (44) 

which we recognize as 2KH independent TH-local symmetric Neumann (or Robin) sub- 
domain problems. Note that, although a s is coercive over Xh x Xh,  it is typically only 
semi-definite over )(h X )(h; however, thanks to (41), if the singular modes of Xh are 
shared by -~H, (44) will be solvable, and our bounds finite. The equations for ~ and ~" 
can be rearranged into the following problems for e0h and ela, 

2~s(~.~0~)  = - t ~  - ~ ( r  - b ( ~ . p 0 . ) .  W e 2h.  (45) 

2as(w.~.h) = IN(~) -~(w.~, . ) -b(w.p . , ) .  Vwe2 , .  (46) 
from which we construct ~ = :t=; Oh + elh. Note that e0h and ~lh are related to the error 
in the adjoint CH, and the error in the solution U H, respectively. 

3.6. Bounds  Calcula t ion  
To evaluate the bounds, it remains only to insert the computed values for ~ ,  r  and 

p~ into our Lagrangian. In particular, evoking (44) with w = eX:, and (20)with w = r  
we obtain from (35) 

s v p ( T . . ~ )  - - s 1 6 2  = z ~  + ~s(~;.~;). (47) 

SLO(TH, ~) -- s  (~+, r  p+) = 1 ~ (Ug) -- Ra s (6 +, ~+), (48) 

where the arguments of sup  and SLO indicate that the quality of the bounds depends 
on the working mesh 7"g and the parameter R. Note that (47), (48) indicate that our 
bounds for sh are also bounds for Sg. Note also that, for the "compliance" case m a(.,-) 
symmetric, l ~ - l N, homogeneous essential conditions, and R = 1 - -  r = --UH and 
p+ = 0; it follows that ~ = 0, and thus sLO = lO(uH). 

We can also express our bounds in terms of e0h, elh, 

Sup(TH, ,~) = l~ -- 2aS(~oh, e,h) + las(eoh, eoh) + '~aS(~,h, e,h), (49) 

~o(T. .~)  = t ~  2aS(~o,..~.~) - -la~(~o,..~o~)- ,~s(~.,..~.~). (50) 

which we recall is valid for any positive value of the parameter ~. The choice of ~ will 
affect the (half) bound gap, 

1 1 A(TH,,~) -- ~ (Svp -  SLO) = aS(~oh,#.o~) + ,~aS(~,a,~,a), (51) 
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but will not affect the output predictor, 

1 
8pre('T'H) -~-- ~(8Up + 8LO) -- lO(~H) -- 2aS(eoh, elh). (52) 

(Recall from (2) that Is~ - snre(TH)[ <_ A(TH).) Since e0h and elh do not depend on the 
choice of ~, we can readily find that g which minimizes the bound gap, and hence renders 
the lower and upper bounds as sharp as possible. This procedure gives 

. .  = .[ .s(~0, .  ~o~) (53) 

and the optimized bounds 

~uP(T..,r = ~: , . (T. )  = z ~  2aS(~o,. .~. .)+ 2 II1~o~111 IIl~x~lil, 
s~o(T. .~*)  - s~o(T.)  = t ~  2aS(~o,. .~. . ) -  2 II1~o,.111 II1~.,.111. 

(54) 
(55) 

and associated bound gap 

ACT.,,~') - A(T~) - 2 Illeo,,lil Ille,,,lll. (56) 

(Note that, in the compliance case, a* - 1.) We thus see that our procedure is a bound 
formulation of the classical Aubin-Nitsche result; an implicit counterpart to existing ex- 
plicit schemes for linear functional outputs [7,8]. In the smooth case we expect that 
[[[e0h[l[ and [[[elh[[[ will each be O(H), and thus A(TH) ,'., O(H 2) will vanish at the same 
rate as I s -  SH[ as H --4 0. 

For the special situation in which ~ -- 1 and l~ + v) -- IE(v), we see from (27) 
that our upper bound corresponds to an upper bound for the error in the energy norm, 
and thus in this case our method is a (rather trivial) extension of the method of [2] to 
nonsymmetric operators. (The lower bound is zero, consistent with our compliance result.) 
Note that, for both the symmetric and nonsymmetric problems, CH -- 0, however only for 
the symmetric problem is r - 0. It follows that only for the symmetric problem is eh the 
minimizer of s CH=0, �9 ) (= 2J(v) of [2] in this particular case)over all v E Xh. This 
highlights the distinction between our energy functional [14], aS(v, v) - IE(v) •176 -b v), 
and a variational principle: the former is only required to evaluate to l~ for v = eh, 
while the latter must attain its minimum l~ at v = eh. We are able to consider 
more general objective functions since the task of enforcing v = eh has been moved to a 
constraint. 

Finally, we briefly summarize computational complexity. On TH, we require two global 
calculations, one for UH and one for CH, and two (local) hybrid flux equilibrations. On 7~ 
we need only invert 2KH independent TH-local symmetric Neumann operators. It follows 
from the superlinearity of most general solution algorithms that the effort to compute our 
bounds will be much less than the effort to directly compute uh and sh. Note that for each 
additional output of interest, we require only one additional global calculation on TH, and 
one additional equilibration, and only 1KH additional TH-local Neumann problems. 
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4. A D A P T I V I T Y  

4.1. Local Ind ica tors  
The procedure presented to calculate bounds can be implemented on any pair of meshes, 

TH and ~ ,  which satisfy the requirement that 7~ is a refinement of TH. Since the cost 
of computing the bounds is essentially a function of the number of elements KH in TH, 
it is desirable to construct optimized triangulations that maximize the bound accuracy 
(minimize the bound gap) for a given number of degrees-of-freedom. In this section we 
present an algorithm for generating such optimized grids in an adaptive iterative manner. 

We first note that the bound gap (56) can be expressed as a sum of elemental contri- 
butions, 

A(TH) = ~ AT, (TH), (57) 
TH ETH 

where 
1 Ar.(TH) = --:as.(~0h. e0h) + ~*aS.(~.h.~.h) (58) 

+ - ( 5 9 )  aS(~oh. ~oh) aS(~.h. ~.h) 

Note that AT s (TH) is non-negative and can thus be directly interpreted as the contribution 
to the bound gap from element TH. 

We can now describe our iterative adaptive strategy. Starting from an initial grid T~H 
with bound gap A(7~H), we generate a sequence of triangulations {T~. k -- 1, 2, . . .},  with 
corresponding bound gaps {A(T~), k -- 1, 2, . . .} ,  such that each triangulation T~ is a 
refinement of the preceding triangulation T~ -t.  The approach does not guarantee that 
A(TH k) _< A(TH k-~) for any particular k, but it does ensure that, for a sufficiently large k, 
A(TH k) _< A ta'g, where A ta'g > 0 is a specified positive gap target. 

In order to identify the elements in TH k-1 that need to be refined, we first calculate the 
k - 1  largest elemental contribution Area x to the bound gap A(T~-I),  

k - 1  Area x = max ATs(T~-t), (60) 
THET~ -t 

and then select for refinement all those elements TH E T~ -1 for which 

k- ,  (61) ~ .  ( ~ - ' )  _> ~ A  .~,. 

Here, 0 < c~ < 1 is a parameter which controls the fraction of elements to be refined at 
each iteration. At present, this parameter is specified a priori, and is independent of k. 
More sophisticated strategies for choosing a can, of course, be devised; for instance, we 
can determine ~k such that, based on a priori scalings, a given target gap A t~rg'k should 
be satisfied by the refined grid T~. 

The refinement process is terminated when a selected accuracy goal is achieved. In the 
applications that follow, the accuracy measure is the relative (half) bound gap 0 k, 

0 k -  A(THk) (62) 
- Sp,~(T~)" 

The iteration is thus halted when 0 k _< 0 ~ where 0 ~ is the prescribed accuracy. 
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4.2. Grid Refinement 
The triangulation TH k is generated from TH k-1 by refinement of the selected triangles 

k-1  (TH such that AT H (T~ -1) > aAmax) triangles into four similar triangles. This refinement 
strategy leads to the generation of hanging nodes whenever only one of the two triangles 
sharing an edge is refined. Since an element TH with a hanging node - -  a node on 
OTH which is not a vertex of TH ~ requires special computational treatment, we permit 
only one hanging node per element. We thus, first, refine all those elements satisfying 
equation (61), and then, in addition, recursively refine those elements that have more 
than one hanging node. At the conclusion of the process, only two types of elements 
(having either zero or one hanging node) are present. This approach has the benefit that 
fairly smooth grids are generated, and that only one type of special element needs to be 
developed. 

We note that in unrefined elements the TH-local operators required in (45), (46) are 
unchanged from iteration k -  1 to iteration k. This can be used (in conjunction with 
direct solution methods) to greatly reduce the cost of subsequent refinements. 

4.3. Computat ional  Treatment of Hanging Nodes  
Consider a triangle with nodes I JK ,  with a hanging node M located at the midpoint 

of edge IJ. It follows from (8) that functions in the finite element space X~ associated 
with the triangulation 7"~ must be continuous. This implies that any function v in X~ 
must vary linearly over the edge I J, and thus the value of v at M, VM, will be determined 
by the values of v at nodes I and J, vl and v j, respectively: VM = (vl + v j)~2. 

A convenient way to treat hanging nodes when solving equations (20) and (40) is to 
split the triangle I J K  into two standard triangles, I M K  and MJK,  and to proceed in 
forming the equation system as if M is a standard node. The equation corresponding to 
the hanging node M can then be conveniently removed from the system by simple row 
and column operations: one half of row (respectively, column) M is added to rows (re- 
spectively, columns) I and J. Performing this operation for every hanging node produces 
a system that involves only the true unknowns at the standard nodes. Once the system 
has been solved, the value of the solution at the hanging nodes is easily recovered. 

The next step is the solution of the equilibration problems (42) and (43). Here, we also 
follow the approach of splitting the triangle I J K  into the two triangles, I M K  and M J K .  
The equilibration problem, however, call not be carried out in the usual fashion, since 
the solution at points I, M, and J will generally not be in equilibrium. In fact, it can be 
shown that the effect of constraining VM to be the average of vl and vj is equivalent to 
the application of a "force" A E/R at nodes I and J, and a force -2A at node M. The 
magnitude of A - -  a Lagrange m u l t i p l i e r -  can be determined from the load imbalance 
at node M after all elements sharing M have been considered. With the addition of the 
elemental forces to element I M K  (respectively, M J K )  - -  A to node I (respectively, J) 
and -A to node M - -  the flux equilibration procedure (42) and (43) can then be carried 
out in its standard form. 

Finally, the two elements I M K  and M J K  are combined into the original element I J K  
before the local Neumann problems (45) and (46) are solved. The element hybrid fluxes 
over the edge M K  will cancel, and the equilibrating forces A introduced to compute the 
hybrid fluxes can be removed; the equations (45) and (46) remain solvable, since the sum 
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and moment of the ~ forces applied is zero. The only special treatment in this case is that 
the hybrid flux over the edge I J is defined in terms of two piecewise linear functions. 

5. R E S U L T S  

Results are presented for the two-dimensional generalized planar stress linear elasticity 
equations. Although here the solution field u is the displacement vector, the theory 
presented for the scalar problem can be trivially extended to handle this case [15]. The 
particular problem considered is that of one-fourth of a symmetrically loaded plate with 
two rectangular holes, as shown in Figure 1. The domain boundaries are denoted by 
FJ, j - 1 , . . . ,  6. A horizontal unit distributed force is applied along F 3, and homogeneous 
essential boundary conditions are enforced on the normal displacement on F 1, F 2, and Fs; 
stress-free condition apply on all other boundaries and components. The Young's modulus 
and Poisson ratio are taken to be 1 and 0.3, respectively. 

Figure 1. Geometry for linear elasticity example: one-fourth of a symmetrically loaded 
plate with two square holes. A normal traction is applied on F3; the outputs of interest are 
the normal force on F 5, and the average normal displacement over the segment F ~ C F 3. 

Two outputs are considered: the normal force on the boundary segment F 5, denoted 
by s 1, and the average horizontal displacement over the segment F ~ denoted by s 2. we 
express the force output as a bounded linear functional [15], 

OXiaij(u)dA, (63) t~ = f .  
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Figure 2. Bound gap A(TH) as a function of the number of elements KH, for the force 
output s 1, for meshes generated using uniform and adaptive refinement. 

where summation over repeated indices is assumed (i, j = 1, 2), aij(u) is the stress tensor, 
and Xi is a vector function defined as 

1 - 2 x l  " (xt,x2) Ef l '  
X I =  0 �9 (x,,x2) E• / • '  ' X 2 = 0 .  (64) 

Here f~' - {(xl,x2)] 0 <_ xl _< 0.5, 0.8 < x2 <_ 1.0}. Since there are no volume forces, or 
tractions applied at either F 4 or F 6, (63) is equivalent, for sufficiently smooth functions, 
to the integral along F 5 of the horizontal component of the traction vector. The average 
normal displacement linear functional is simply written as 

Z~ = l Ol /ro 
which is bounded for all F ~ of non-zero measure. 

The same initial triangulation 7~H and "truth" mesh Th have been considered for both 
outputs. The initial triangulation consists of 108 triangles. The "truth" mesh has been 
generated from this initial triangulation by four refinement interactions in which all trian- 
gles are subdivided; thus, the number of elements in the "truth" mesh is 27, 648 = 108 x 44. 
In the adaptive process, elements were selected for refinement based on equation (61) with 
a = 0.3 for all the iterations. The accuracy goal, 0 ~ for the relative (half) bound gap, 
(62), is 0.003 (or 0.3%). 

For the force output s 1, 16 refinement iterations are required starting from a relative 
bound gap of 15.64%; only 12 refinement iterations are required for the displacement 
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Figure 3. Bound gap A(TH) as a function of the number of elements KH, for the dis- 
placement output  s 2, for meshes generated using uniform and adaptive refinement. 

Figure 4. Adaptively generated meshes for normal force output s ~. Figure shows 7"~H, 
7"~H, and Tt} 6, with K ~ = 108, g 8 = 432, and K ~  = 1917 elements; predicted outputs 

1,0 -0.3198, l s are spr ~ = sp;~ = -0.3215, and ~pr~̂ 1'16 _ -0.3220; and relative bound gaps are 
01'~ = 15.64%, 0 l's = 2.59%, and 01'16 ---0.30%. 
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Figure 5. Adaptively generated meshes for the displacement output s 2. Figure shows 
7"~H, 7"~H, and 7"~} 2, with K ~ = 108, K~ = 531, and K~ 2 = 2382 elements; predicted 
outputs are s~; ~ = 0.4056, .2,6 ~pre = 0.4204, and _212 %;e - 0.4226; and relative bound gaps are 
02,o = 13.82%, 02'6 = 1.83%, and 02,12 = 0.23%: 

output s 2, for which the initial relative bound gap is 13.82%. Figures 2 and 3 show the 
relative bound gap as a function of the number of elements, at each adaptive iteration, for 
the force and displacement outputs, respectively. We also show the bound gap computed 
for a sequence of grids obtained by uniform refinement, the finest of which still has four 
times fewer elements than the "truth" mesh ~ .  For both outputs we observe that, 
the uniformly refined meshes require approximately four times as many elements as the 
adaptive meshes for comparable levels of accuracy. 

We note that, say for the force output, Ir ^I'16 ~ 16 ,~pre -sh)/Sp~e I = 0.0001, whereas 01,16 = 0.003, 
and thus the effectivity of the estimator in the classical sense is not as good as we may 
hope, even though the convergence rate of A(TH) is optimal. We emphasize, however, that 
our bounds provide certainty that [(~p~e'l 16 _ Sh~/Sl,161,, pre,--  < 0.003 w and more importantly, 
that sh lies between 1,16 SLO 0.3230 and _1,16 = - Sup = -0.3211 - -  without calculating Sh on 
the uniformly highly refined (and hence expensive) "truth" mesh 7~. Future work will 
address techniques by which to reduce the ratio A(TH)/[Sh-  Sprel as H --+ 0; this, in turn, 
will permit to achieve 0obj on coarser meshes TH. 

Finally, in Figures 4 and 5, we show the initial, an intermediate, and the final adaptive 
triangulations obtained for the force and displacement outputs, respectively. Refinement 
around the singular re-entrant corners is apparent in both cases but, in addition, in the 
displacement output case, further refinement is observed near the points where l ~ is 
"discontinuous". 

In conclusion, we have shown that the goals of validated outputs and optimal mesh 
refinement can be simultaneously satisfied within our bounds framework. Clearly much 
work is required to translate these "end results" into computationally effective algorithms; 
our focus in the current paper is on the development of the appropriate foundation. 
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1. INTRODUCTION 

Much of theory of error indicators and error estimators which has been developed in the 
context of f'mite elements is applicable to all Galerkin methods. Consequently, the methodologies 
apply directly to meshfree methods based on Galerkin methods. Among the tools which can be 
used direcOy are: relationships between residuals and local errors, concepts such as pollution 
en'or, and the fundamental techniques for error extraction. 

Meshfree methods offer several unique opportunities in the implementation of adaptivity: 
1. it is easy to add nodes to a model, since a corresponding element structure need not be 

developed; 
2. error indicators of the residual type can be used more easily since the displacements can 

easily be constructed to be C1, so that one can compute useful residuals at points; 
3. meshfree approximations are closely related to wavelets, so some useful techniques and 

knowledge from that field can be exploited. 
The first point is easily appreciated, but there are some provisos on this statement. While it 

is simple to add nodes in a meshfree model, for effectiveness, the procedure must usuaUy be more 
complicated because simply inserting nodes between existing nodes degrades the quality of the 
resulting approximation. For example, in a one dimensional problem, if two nodes are simply 
added in a high gradient region, the error is decreased very little due to the poor behavior of the 
approximation. Instead, the nodes should usually be graded somewhat around the area where 
nodal insertion is required for extra resolution. 

There is a rich theory in error indicators of the residual type and their application in finite 
elements has been hampered by the presence of residuals of two types: 

1. residuals interior to the elements, which can be evaluated directly from the partial 
dift~rential equation; 

2. residuals on element interfaces, which consist of the violation of the required jump 
conditions. 

Combining these two types of residuals often involves the introduction of extra scaling 
factors. Moreover, it becomes difficult to define the residual, and consequently the error, easily in 
a pointwise manner, which is desirable in certain implementations of adaptMty as the new model is 
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being constructed. 
For meshfree solutions, these error indicators are much more attractive because their higher 

continuity is markedly different than finite dement solutions, particularly with low order elements. 
Low order finite element solutions exhibit jumps in the derivatives, such as strains and stresses in 
elastostatics, in areas of insufficient resolution. On the other hand, in meshfree solutions, in areas 
of insufficient resolution the derivatives exhibit wiggles or osculations. Thus jumps in f'mite 
element solutions turn to wiggles in meshfree solutions. 

Another interesting aspect of meshfree methods is their relationship to wavelet theory, 
which provides a large horizon of new methods for error estimation. In Section 4, we will 
demonstrate this relationship to wavelets and how it can be applied to error indicators. 

Meshfree methods originated with Smoothed Particle Hydrodynamics (SPH) developed by 
Lucy (1977), Gingold and Monaghan (1977), and Monaghan (1988). With moving least square 
interpolants, Belytschko et a1.(1994) and Lu et a1.(1994) developed the Element Free Galerkin 
(EFG) method and successfully simulated the static and dynamic crack problems. Other work 
includes the hp-Cloud method by Duarte and Oden (1995), Partition of Unity FEM by Babuska 
and Melenk (1995), Free-Mesh method by Yagawa (1995) and Finite Point method by Ofiate et 
a1.(1995); these are all examples of meshfree methods that do not need meshes or grids in their 
formulation. Therefore, these methods can all be grouped in the category of mesh (or grid) free 
particle methods. 

Reproducing Kernel Particle Method (RKPM), developed by Liu et a1.(1993, 1995c, 
1995d), is similar to SPH in the sense that it begins the formulation from the kemel estimate of a 
function. The multiple scale Reproducing Kernel Particle combines multiresolution analysis and 
wavelet theory with a meshless method. However, RKPM modifies the kernel function by 
introducing a correction function in order to enhance its accuracy near or on the boundaries of the 
problem domain. This modified kernel function employing the correction function was first 
suggested by Liu et al. (1993, 1995d) in both continuous and discrete forms. Due to this correction 
function, RKPM's kernel function satisfies the consistency conditions (Liu et al.(1995d)). 

2. KERNEL REPRESENTATION 

2.1. Meshfree Approximation Functions 

We consider the approximation of a single function u(x) in a domain [2. The domain f~ is 
assumed to be described by the usual methods of computational geometry. Within the domain, a 
set of nodes x i, i=l to nr~, is constructed and the parameter associated with the approximation at 
node i is denoted by u i. 

. A rationale for the first meshfree methods was provided by invoking the notion of a kernel 
approximation for u(x) on a domain f~ is generated by 

u R (x)  = ~ u ( y ) r  - y ,h)dI2y (2.1) 
n 

where uR(x) is the approximation, ~(x-y,h) is a kernel or weight function, and h is a measure of the 
size of the support; in the SPH literature, it is often called a smoothing function. For purposes of 
developing approximations, discrete analogs of (2.1) are needed. The discrete form of (2.1) is 
obtained by numerical quadrature of the fight-hand side. 

2.2. Reproducing Conditions 

The derivation of a meshfree discretization begins with the approximation of a function u(x) 

in a domain f~ by 
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u R (x) = ~ u(Y)~,,(x - ~)dY (2.2a) 
gl 

From this convolution, the given function u(x) is reproduced up to any degree desired by choosing 
m 

a suitable window function q~,,(x). The Taylor series expansion of u about x is given as 

(-1)" ( x -  $)"d")(x)  u(~)=u(x)-(x-~)u'(x)+ . (x-~)2u"(x)+"'+ n! 

+( -1 )  "+l 
(x -  ~)"+~ur"+~(x + ~(~- x)) 

(n + 1).t 
~ (0, 1) (2.2b) 

Substituting equation (2.2b) into equation (2.2a) yields 

U H ( X )  

0 0 1"1 

+. . .+  (-1!" u r . ~ ( x ) ~ ( x _ y ) , ~ ( x _ Y ) d y  
n! 1"1 

(_1) "§ 
+(n + 1)t. ut"+'~ (x + l~(.~ - x))~ ( x -  2) "§ ~.(x  - Y)dY (2.3) 

The integrals in equation (2.3) can be used to define the moments of the window function as 

"fffk(a,x) = ~ ( x - Y ) k ~ , ( x - Y ) d Y  k = O, .... n 
gJ 

(2.4) 

Rewriting equation (2.3) using equation (2.4) gives 
u"(x) 

uR(x) = u ( x ) ' ~ o ( a , x ) - u ' ( x ) ~ ( a , x ) +  . T-n.~(a,x)+... 
2/ 

+ (-1)" u t , ) ( x )~ . (a , x  ) + (-1) "+' ut"+l)(x + ~(.~- x))~,+l(a,x) (2.5) 
n! ( n + l ) !  

In order to reproduce the function up to degree n, the following reproducing conditions need to be 
satisfied [Liu et al. (1996a), (1996b)]" 

"i'ffk(a, x ) =  SkO k = O, 1, 2 ..... n (2.6) 

! 

The window function ~o ( x -  J) can be expressed as 

~-,(x- ~) = ~ b~(a,x)(x- ~: ~o(x- ~) 
k = 0  

= p r  (x - J ) b ( a , x ) ~ o ( x -  ~) 



220 

= q fx; x -  ~)r ~) (2.7) 

with 

I 1 []bo(a,x) 

P(x ~) (x-  ~) and b(a,x) bl(a'x) 
- = . = . ( 2 . 8 )  

L(x- Lb2(a,x) 
= _ . ,  

The function ~)a(X) is an arbitrarily chosen window function which does not necessarily satisfy 

the reproducing conditions. The scalar product of polynomial base vector pr(x - ~) and b(a,x) is 
called the correction function C,(x; x - ~) for the window function. The coefficient b(a,x) can be 
obtained by using the reproducing condition. Substituting equation (2.7) into the definition of the 
moments of window function tPa(X) yields 

m"'k(a,x)=~(x-~) k bk(a,x)(x-Y)kOo(x-Y) d~ 
It Lk=O 

= bo(a,x)mk(a,x)+ bl(a,x)mk,l(a,x)+... + b.(a,x)mk+.(a,x) (2.9) 

where rnk(a, x) is the k-th moment of the original window function r - 2). Equation (2.9) can 
also be written in matrix form as 

I 
~o(a,x) [mo(a,x) m,(a,x) " "  m.(a,x) ]Fbo~a,x) l 

. .  _ 

km.(a,x) km.(a,x) m.§ m~.(a,x)Jkb~(a,x) j 

o r  

~(a, x) = M(a, x)b(a, x) (2.10) 

where M(a,x) is called the moment matrix and can be written as 

M(a,x) = ~ P ( x -  ~)~,(x-  ~)pr (x - ~)d~ 
It 

(2.11) 

Equation (2.6) which gives the reproducing conditions is rewritten in vector form as 

I 
rao(a, x) 
rff~(a, x) 

~.(a,x) 

1 

:! =P(O) (2.12) 
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Combining equation (2.10) with equation (2.12) immediately leads to 

M(a,x)b(a,x)  = P(O) (2.13) 

The coefficients bk(a,x) can then be obtained by solving equation (2.13) to yield 

b(a ,x )=M-t (a ,x )P(O)  (2.14) 

2.3. Discrete Form of the Reproducing Conditions 

In a computation, discretization is inevitable so the continuous form has to be discretized 
into a set of points or particles. Recall equation (2.2a): 

uR(x) = u(x)* '~(x)  = Iu($)~o(x - i )d2  (2.15) 
n 

On an arbitrary particle distribution, a discrete convolution can be defined by 

NP 
uh(x) = ~ u ( x , ) - ~ ( x -  x l )aV  

I=1 

(2.16) 

where AV is the nodal volume distributed to each node or particle. The number of particles in the 
discrete system is denoted by NP. The window function, ~a (x - xt),  normalized with respect to 
the dilation parameter, is 

r  x,) = 1 ~ (  x -  X, ) (2.17) 
a a 

Then, the discrete moment of the window function is 

NP 

,~k(a,~)= ~ . , ( x -  x , : ~ ( x -  x,)z~,  k = O, 1 .... n (2.18) 
i=l 

The window function ~ , ( x - x  t) can be expressed as the product of the correction function 
C,,(x; x -  xt) and the originally chosen window function O,.(x- x I) as 

r  x,) = Co(x; x -  x , ) r  x,) (2.19) 

Here, we define the shape function as 

Nt(x) = Ca(x; x -  xt)~,(x - xt)Ax t (2.20) 

Thus, the interpolation equation can be written as 

NP NP 
uR(x) = z~NI(X)U(Xl ) ~ Z~, Nl(X)Ul (2.21) 

I=1 I=1 



222 

3. MULTIRESOLUTION KPM 

From the analysis of Fourier transformations, it is noted that the RKPM kernel function can 
be regarded as a low-pass filter in the reconstruction procedure (Liu and Chen (1995) and Liu et 
al.(1996b)). The multiresolution RKPM is defined by a family of those kernel functions. The 
wavelet which corresponds to each level def'med by those kernel functions is 

~m,t(x) = r162 (3.1) 

Therefore, a multiple scale decomposition of any response can be written as 

u h (x) = Uo (x) finest scale 

= u~(x)+ w~(x) two-level decomposition 

= u2(x) + w~(x) + w,(x) three-level decomposition 

�9 o 

o e 

m 

= u,,(x) + ~ wi(x)  (m+ 1)-level decomposition (3.2) 
i=1 

where 

u,,,(x) = ~ C(2" a,x,s - .~)u(.~)d~ r (3.3) 
t2 

w i ( x )  = ~ Ip'i(x - .g)u(.~)d~7 (3.4) 
12 

with 

V i ( x  - ~) = C(2 ~-l a, x, X)~i_l(x - .~) - C(2 ~ a, x, .~)t~i(x - .~) (3.5) 

where C is the correction function and a is the dilation parameter given in a previous section. For 
applications, the integrals in equations (3.3)-(3.4) are converted to their discrete forms. The 
discrete counterparts of the above equations (3.3)-(3.5) are written as 

NP 
Um(X ) = ~ N j ( x ,  x j ;  2m a)uj ( 3 . 6 )  

J-..l 

NP 
w,(x)  = ~.~[N~(x,x,;2 '-~a) - N j ( x , x , ; 2 ' a ) ] , , ,  (3.7) 

J=l 

in which NJ is the shape function of RKPM. The two dimensional two-level decomposition of a 
function Uh(X) in discrete form is given by 
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NP 

u~(x) = ~,N,(x;  a)u, 
1=1 

NP NP 

= ~ Nj(x; 2a)u, + ~_~[Nj(x; a)-  N,(x; 2a)Itj 
1=1 1=1 

NP NP 

J=l  J=l 

= ut(x)+ wl(x) (3.8) 

The shape function is decomposed into a low scale (or scaling function) component, N~(x), and a 

high scale (or wavelet) component, N~ (x). 
According to the multi-decomposition procedures of RKPM shape functions, a two-level 

decomposition of the response of a mechanical system can be conducted. If the solution of a 
mechanical system is given, the low scale and high scale components are obtained by the 
decomposition of equation (3.8). A review and other literature about multiresolution analysis and 
multiple scale RKPM is given in Liu et al.(1995a, 1996a, 1996b, 1995b, 1996c, 1996d, 1997a). 

4. E R R O R  E S T I M A T E  B A S E D  O N  R E S I D U A L  

The projected solutions of RKM in the a- scale and the 2a-scale are given as 

(-1) n+l u(n+l)(x)[in+lan+l~(n+l)(o) ] + h.o.t, a 
u R~ (x) = u(x)+ (n + 13! 

- (_l)n+l uR2=(X) = u(x)+ (n + 1)! u(n+l)(x)[ in+l(2a)n+l ~'(n+l)(o)] + h'~ 

The RKM wavelet solution in 2a-scale is in the form of 

wR2*(X)=(2n+I- 1) (--1)n+l(n + 1)! U(n+I) (x)[in+lan+l~(n+l)(o)] +(h'~ 2a _h.o.t.a) 

(4.1) 

(4.2) 

(4.3) 

Neglecting the h.o.t.'s, the wavelet solution is proportional to the error term 

wR'* (x)= (2 "+l -1)error(x) (4.4) 

Eq. (4.4) reveals a possibility that the wavelet solution can be an index for the error estimate of the 
computed solution. 
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5. ADAPTIVITY BASED ON LOCALIZED SHEAR DEFORMATION 

It has been shown, in Liu et a1.(1996) and references therein, that the multiple scale RKPM 
performs well for high gradient linear problems and its associated adaptivity. Some large 
deformation problems, such as shear band problems, also involve high gradient properties. In the 
following, the measure of shear deformation for multiple scale analysis is suggested. Additionally, 
the validity of the measure is demonstrated by detecting the location of high gradients. 

A formula is proposed here for the high scale component of the second invariant 12 of the 
Cauchy-Green deformation tensor. The second invariant of the left or the fight deformation tensor 
is given as 

12 = l [ ( t rG)2-  tr(G)2] = l [ ( t rC)2-  tr(C) 2 ] 

where the left G and right C Cauchy-Green deformation tensors are defined as 

G = F .  F r and C = F r .  F (5.2) 

For plane strain problems, the deformation gradient F is defined as 

= 0u2 1 + 0u2 [ 
aXt ~ "~2 J 

(5.3) 

The high scale component of 12 can be obtained by inserting u i = vi + w~, into equation 
(5.3) to bbtain 

l+ l+a l ] 
OXl OXl OX2 ax2 I 

F -  0V 2 0w 2 1+ _0v2+ 0w21 (5.4) 

-~11+-~1  8X 2 OX2 J 

It is noted that no extra degree of freedom is needed in this multiple scale analysis and the 
components of v i and w i are defined according to Eq. (3.8) using the corresponding scaling and 
wavelet window functions. Next, if equation (5.4) is substituted into equations (5.2) and (5.3), the 
second invariant of the Cauchy-Green deformation strain tensors may be written as a sum of its 
low and high scale terms 

12 = ~ + ( 5 . 5 )  

The high scale component is defined by grouping the terms involving only the high scale term of 
displacement, w i, and is written as 
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+ ax, i t  - ax,  ax, j - 
(5.6) 

The terms collected, with the omission of the high scale components obtained above, are defined as 
the low scale components of the second invariant of the Cauchy-Green deformation tensor. 

In order to apply the multiple scale method to large deformation problems, the explicit 
RKPM formulation, based on the reference configuration as presented by Jun and Liu (1996), is 
employed. Here, an adaptive procedure based on the high scale component of 12 is presented. The 
example for this model is a plane strain compression problem. The initial shape of the material is 
given in Figure 1 (a). The upper boundary is moving down with a constant velocity Vo = 5x 10 +~ 
(in/sec) while the bottom surface is fixed. For convenience, a constant time step of 2.5x 10 .7 (sec) 
is used. The size of the material is 1.0 (in) x 2.0 (in) and the total number of particles is 961. The 
upper and lower boundaries are perfectly bonded, which generates severe shear deformation in the 
material. The deformed shape at t=3.5x10 ~ (sec) is illustrated in Figure 1 (b) and the contours of 
the high scale components of 12 are plotted in Figure 1 (c). 

Figure 1: Compression problem for adaptive procedures; (a) initial shape, (b) deformed shape, (c) 
contours of high scale component of 12 on deformed configuration. 
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Figure 2: Comparison of deformation; (a) coarse distribution (961 particles), (b) 1st refinement 
(1113 particles), (c) 2nd refinement (1213 particles), (d) fine distribution (2601 
particles). 

It is seen that the high gradient values of 12 are concentrated around the upper and lower 
boundaries. New particles are added at the center of the cells which share a node indicating high 
scale location. In this method, the algorithm for the addition of nodes is similar to that of the finite 
element method. We have recently changed the algorithm to include the insertion of an additional 
node between any two high gradient nodes. This new algorithm is valid for arbitrarily distributed 
particles. The high scale is selected if the absolute value of 12 is larger than 30% of the highest peak 
of 12. From the contours of 12 in Figure 1 (c), it can be seen that the high gradient values are 
localized at the comers of the material. The deformations at t=3.25x 10 .6 (sec) of each particle 
refinement are presented in Figure 2. The initial coarse discretization has 961 nodes. The first and 
second refinements have 1113 nodes and 1213 nodes, respectively. For comparison, the results 
for the finer particle distributions of 2601 and 5041 nodes are illustrated in Figure 2. It is shown 
that the first refinement provides a deformed shape which is very close to the deformed shapes of 
the finer particle distributions. 
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7. CONCLUSION 

The framework for meshfree methods based on kernel approximations has been presented. 
The modification of the kernel required to satisfy reproducing conditions is also described. A 
wavelet interpretation of the kernel approximation enables the approximation to be subdivided into 
high and low scale (short wavelength and long wavelength) components. It is suggested that the 
highest scale component can be used as an error indicator. As an example of adaptivity driven by 
this indicator has been given. 
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Today quite a lot of a posteriori error estimators are available to control finite element 
calculations. We describe here error estimators based on constitutive relation residuals 
which have been developed for 20 years, in particular at Cachan. This approach has a 
strong physical meaning and is quite general. Different errors on constitutive relation can 
be easily introduced to measure the quality of finite element computations of plastic and 
viscoplastic structures whose behavior is described by internal variables. These measures 
take into account, over the studied time interval, all the classical sources of error involved 
in the computation: the space discretization (the mesh), the time discretization and 
the iterative technique Used to solve the nonlinear discrete problem. To quantify more 
specifically each source of error, we introduce quantities called indicators. Numerical 
experiments show that the indicators are linked to the error in a limit sense. The errors and 
the indicators may then used to simultaneously adapt the mesh, the time discretization 
and the stopping criteria to meet a prescribed accuracy. The adaptive control is illustrated 
on two plane stress problems using the Prandtl-Reuss plastic model and it's viscoplastic 
version. 

1. I N T R O D U C T I O 1 N  

Nowadays, numerical simulations are used to solve more and more complex problems. 
The control of such computations has become a critical issue for their performance. Con- 
cerning a posteriori error estimate for the finite element approximation of linear elliptic 
problems, a vast literature is available. Three main approaches must be distinguished. 
Chronologically speaking, the first one is based on the concept of error in the constitutive 
law [1]. This concept is a priori independent of the type of numerical approximation 
used. It's application in the case of finite element approximations may be found in [2,3,1]. 

"The second author gratefully acknowledges the support of this work by the U.S. Office of Naval Research 
under Grant N00014-95-I-0401 and the National Science Foundation under grant ECS-9422707. 
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The second approach, introduced by Babuska and Rheinboldt [4,5], then developed by 
Zienkiewicz, Gago, Kelly [6,7] and more recently by Oden et al. [8,9], uses the equilib- 
rium residuals through local problems to estimate the error. The last one, developed 
by Zienkiewicz and Zhu [10-12], consists of comparing the finite element solution to a 
smoother one obtained by special averaging techniques. A validation of these a posteriori 
error estimators may be found in [13,14]. 

Here, we are interested in plastic and viscoplastic problems under the small strains, 
small displacements and isothermal assumptions. These problems are time-dependent 
nonlinear problems. The literature available is much narrower compare to the linear 
case. Also, it is important to distinguish between the nonlinear time-dependent and time- 
independent problems. Concerning the later type, let us mention Babuska [15] for the 
design of estimates for nonlinear elasticity problems of rods, Johnson [16] in the field 
of Hencky-type plasticity, and Verfurth for the proof of bounds on the error [17]. For 
nonlinear time-dependent problems, viscoplasticty problems were treated in [18], strain 
localization problems in [19-21] and large strains problems in [22-25]. In most cases, 
techniques devised for linear problems or time-independent nonlinear problems are used 
at each time step so that the error due to the time discretization may hardly be taken 
into account. 

We focus here our attention here on solid mechanics but the design of a posteriori error 
estimator for nonlinear fluid related problems is also an active area of research [26-28]. 

In nonlinear time-dependent problems, three error sources must be distinguished: the 
space discretization, the time discretization and the iterative technique used to solve 
the nonlinear discrete problem. Several error estimators based on the constitutive law 
residuals have been introduced in Cachan to take these three sources into account, mainly 
the Drucker error and the dissipation error. 

The Drucker error is based on a sufficient condition insuring the stability of the material 
(Drucker's inequality [29]). It was introduced in [30] and first applied in [31] for plane 
stress problems and three-node triangular elements. A procedure to adapt the mesh is 
also described in this paper. Later, the error has been reused and enhanced in order to 
conduct a simultaneous adaptive control of the space and time discretization for three 
and six-node triangular elements in plane and axisymmetric problems [32]. The Drucker 
error only assumes that the functional law linking the present stress state to the strain 
history satisfies Drucker's stability condition. 

Nowadays, characterization of material behaviors using internal variable formulation is 
increasingly employed at the theoretical, experimental and computational levels. In this 
case, a more natural error has been elaborated in [33] and [34]. It was named dissipation 
error since the error is estimated through the residuals of the laws describing the evolution 
of the state of the material, thus the dissipation process. It's usefulness has been evaluated 
in the framework of the classical incremental finite element method in [35]. 

As for the Drucker error, the dissipation error does take into account all the error 
sources involved in the computation. For adaptive purposes, it is important to know the 
contribution to the total error of each error source. We define three errors: the time error, 
the space error and the iteration error. For a given time (space resp.) discretization, the 
time (space resp.) error is the limit of the error (dissipation or Drucker) as the mesh size 
(time-step size resp.) tends to zero. For a given stopping criteria of the iterative strategy, 
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the iteration error is the limit of the error (dissipation or Drucker) as the mesh size and 
time-step size tends to zero. Space, time and iteration error are theoretical quantities 
that are estimated through error indicators: space, time and iteration error indicators, 
respectively. In [32], space and time error indicator were introduced for the Drucker 
error and allowed the adaptation of the mesh and the time discretization. Concerning 
the dissipation error, space and time error indicators were introduced in [35] and an 
iteration indicator in [36]. A simultaneous time, space and iteration adaptive scheme is 
also presented in [36]. Basically, the error indicators are introduced by modifying the 
reference problem: to obtain the time (space resp.) error indicator, the reference problem 
is taken as the space-discrete (time- resp.) problem. For the iteration error indicator, the 
reference is the time-space discrete problem. 

The present paper is basically a review of the use of the error in the constitutive law in 
the control of finite element approximations of plastic and viscoplastic problems. How- 
ever, concerning the Drucker error, we take the opportunity to introduce an iteration error 
indicator that was missing and we define a new space error indicator in the philosphy de- 
scribed at the end of the previous paragraph. So that now, time, space and iteration error 
indicators, based on the same philosophy, are available for the dissipation and Drucker 

approach. 
The plan of the paper is as follows. In section 2, the reference problem and the for- 

mulation of the material behavior are recalled. The next section is devoted to the error 
in the constitutive law for nonlinear problem. Then, in section 4 the implementation of 
the errors in the finite element framework is explained. Error indicators are reviewed in 
section 5 and two new ones are proposed. They are tested on examples. Finally, in the 
last section, simultaneous time, space and iteration control of the computation are shown 
for two examples. 

2. T H E  M O D E L  P R O B L E M  

Concerning the notations, vectors will be underlined (u, v_,... ) and second-order tensors 
shaded. For instance, the stress and strain tensors will be denoted by tr and e, respectively. 
This notation will also be used to denote the additional internal variables. More complex 
operators will be in bold (e.g. K for the Hooke's tensor). 

The solid medium under study occupies a domain 9t, bounded by 0f~, which is indepen- 
dent of t (small strains and displacements assumption). The environment of the medium 
is schematized for all t E [0, T], with an imposed displacement u__ a on a part 01fl of the 
boundary, a traction F_. a on 02f~ (complementary to 0~fl), and a body load f-,t on the 
domain ~. The partition of 0~ in 01~ and 02~ is assumed constant in time. 

H denotes the space of the displacement field u_u_ defined on ~, and S the space of the 
stress field, also defined on ft. The extensions of these two spaces to the entire time range 
[0, T] will be denoted U [~ and S [~ 

The solution must satisfy the kinematic constraints, the equilibrium equations and the 
constitutive equations describing the behavior of the material. 
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2.1. K i n e m a t i c  cons t r a in t s  and  e q u i l i b r i u m  equa t ions  
H[0,T] The displacement solution, u_u_, must belong to the space v, ad �9 

7J[~ {~ E U [0'T] such that v ~ on t)l~ • [0, T]} ~.A E "~ad = - =  

.r The stress solution, or, must belong to space "~d " 

r {r E S [~ satisfying (3) Vt E [0, T]} {lr E '~'ad --" 

(I) 

(2) 

f f f 
/ ,  - / L / = 0, Uo (3) 
./N J~ Ja2 

where �9 denotes the doL product of second order tensors; �9 the scalar product and 

Uo = {v_ r U such that v__ = 0 on 0 ~ }  . 

2 . 2 .  C o n s t i t u t i v e  r e l a t ion  
The functional approach expresses the stress state at a given time t as a function of the 

past history of the strain rate: 

~,(t) = ~(~(t ' ) ,  t ' <  t) (4) 

In the internal variable approach, the state of the material is characterized at each 
point by the total strain e, the inelastic strain e p and a set of internal variables denoted 
by X.  The associated variables are the quantity Y for X and the stress ~r for e, e p and 
ee. The expression of the dissipation is given by 

(7"" ~P -- Y o 2 (5) 

The second term specifies the contribution of (X ,  Y) to the dissipation. If X denotes a 
column of R", then Y is also a column of IR" and we have 

Y o . X  = y t j ~  

where t stands for the usual transposition. More precisely, two spaces e and f are placed 
in duality by the following bilinear form: 

_X. , y ~ or" - Y o  

e x f  ~ R 

As we work with the small strains assumption, the strain is given by the symmetric part 
of the gradient of the displacement. In an orthonormal basis, we have 

1 [~(~)],~ = ~(~,~ + ~j,,) 

and we also have the additivity relation of the elastic strain rate d e and the inelastic strain 
rate &P: & = &e + &p. The material behavior is described in term of state laws, evolution 
laws and initial conditions. 
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The s ta te  laws 

According to the first principle of thermodynamics, a free energy r depending only 
on the state variables e, e p and X can be introduced. The following classical modeling 
assumptions are made 

�9 r depends only on the elastic strain ~e and the internal variables X 

�9 r  x )  = + r  

t Kee where K is Hooke's tensor. �9 linear elasticity: r  e) = 5 " e*, 

The derivation of r yields the state equations or = Ke ~, Y = G(X)  where G ( X )  is the 
derivative of Cp with respect to X.  

T h e  evolut ion laws 

The second principle of thermodynamics, written as or �9 &P - Y o X" > 0, imposes a 
constraint on the evolution laws relating (&P,-Jf) to (or, Y). This law can be written 

EP or 

B is an operator relevant to the material. It must be positive to respect the second 
principle of thermodynamics. A typical way to define the operator B is to give a scalar 
function qo*(or, Y), generally convex, called the potential of dissipation, and to write 

_j~ e Oy~o*(or, Y) (71 

where (0or~o*, Oy~') denotes the subdifferential of ~o* at (or, Y). This defines a standard 
material. When the potential is differentiable, the subdifferential becomes a classical 
gradient and the belonging an equality. The interest of a standard model lies in the 
following classical property. The second principle of thermodynamics is fulfilled if the 
potential satisfies 

~* convex, qo*(0, 0) = 0, qo'(., .) > 0 (8) 

Concerning the initial conditions, we assume that the material is initially virgin: 

e p=O,  X = O ,  f o r t = O  (9) 

Finally, note that by eliminating the internal variables in the state laws and evolution 
laws, one can always, at least formally, associate a stress-strain functional law to an 
internal variable formulation. 

E x a m p l e s  

As an example of material behavior described by internal variables, consider the Prandtl-  
Reuss plastic model. In addition to the plastic strain, the model involves another scalar 
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internal variable p that can be interpreted as the cumulative plastic strain. The free 
energy is of the form 

e r 1 6 2  = ~ K r  �9 e ~ + g(p) 

where g is a function characterizing the hardening law. By derivation, we obtain the state 
laws tr = Ke e, R = g'(p), where g' denotes the derivative of g with respect to p and R 
is the associate variable to p. Classical hardening laws are R = k~p (linear hardening), 
R = k~p l/m (power hardening) and R = R M ( 1 -  exp(-Tp)) (exponential hardening) 
where k~, m,  RM and 7 are constant material parameters. Prandtl-Reuss materials are 
standard with a dissipation potential given by 

f 0 if < 0 z 
~o'(o- R ) =  ~ where z((7, R ) =  II# ll- (R + Ro) (10) 

' t. +oo if z > O  

a "D is the deviatoric part of the stress tensor, R0 the initial yield stress, and ll# ll = (#D : 
t r D ) U  2. 

A viscoplastic version of the Prandtl-Reuss plastic model may obtained by the regular- 
ization of the plastic potential; for instance, with a power law: 

- kv 
nv + 1 (11) 

kv, nv are positive constant materials parameters and (z)+ denotes the positive part of z: 
( z ) +  = ~+1~1 

2 " 

~. E R R O R  I N  T H E  C O N S T I T U T I V E  L A W  

The notion of error in the constitutive law has been introduced in [37]. It relies on 
splitting the equations of the problem into two groups. 

When the constitutive law is of the functional type, the first group combines both the 
equilibrium equations and the kinematic constraints, and the second group contains the 
constitutive law. The quality of an approximate solution satisfying the first group (i.e. an 
admissible solution) is quantified by the non-fulfillment of the second group of equations 
(constitutive law). If Drucker's stability inequality, [29], holds for the material, a natural 
way to measure the error can be obtained [32,31]. 

When the constitutive law is described in terms of internal variables, the notion of 
admissibility must be revised. Indeed, the state equations - associated with the free 
energy - and the evolution laws - associated with the dissipative phenomena- must be 
distinguished in the formulation. In [34], the state equations are included in the definition 
of admissibility, the error being measured on the evolution laws alone. 

3.1. T h e  Drucker  e r ro r  
The Drucker error is based on a sufficient condition ensuring the stability of the material. 

Let (tr, e) and (tr', e') be two stress-strain couples satisfying the behavior described by (4) 
on I = [0, T], with (~r, e) = (tr', e') = 0 at t = 0. The material is said to be stable in the 
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Drucker sense if it satisfies (12). Moreover, if (13) is satisfied, the material is said to be 
strictly stable in the Drucker sense 

Vt E I, ( t r -  tr ')" ( ~ -  i ' ) d t  > 0 (12) 

v t e I ,  r  v t e I ,  , (13) 
O" --" O" 

We shall need the convenient notation ")'t(', "): 

3,t(tr, e) = fo}tr - tr')(~' - ~) dt (14) 

where (tr, e') and (tr', e) are two stress-strain couples satisfying the behavior on I = [0, T] 
with (tr, e') = (tr', e) = 0 at t = 0. 

Let (ft, &) be a displacement-stress couple defined on fl • [0, T] such that fi_ is kinemat- 
ically admissible and & is statically admissible, i.e. 

_ 71[0'T] O" E -K'[0'T] ft e '~.d , '-'.d (15) 

This couple satisfies all the equations of the problem except, in general, the constitutive 
relation. It is an approximate solution to the problem (1)-(3)-(4). To the strain field, 

= e(fi), one can associate the stress field &' using the constitutive relation (4). Similarly, 
one can associate the strain field ~' to the stress field & using the reverse relation. The 
couple (fi, &) is the exact solution of the problem if and only if 

7 ,(&,t)  = 0 on fl x [0, T] (16) 

To estimate the quality of the couple (ft, &) as the approximate solution to the problem, 
one may define the absolute error as 

e 2 = sup f 7t(&, ~)dr/ (17) 
tE[O,T] J a  

and the relative error by e = e/D where 

0 2 2 sup f 7t(&, 0) + 3",(0, ~)df~ (18) 
te[O,T] da 

The contribution of the time interval [0, t] to the error is defined by et 

 )dn/D 
t'e[0,t] Ja  

3.2. T h e  d i s s ipa t ion  e r r o r  
The problem is divided precisely into two groups: 

�9 The first group - related to the free energy - defines the admissibility of a solu- 
tion. It combines the equilibrium equations, the kinematic constraints and the state 
equations. The initial conditions are also included in this group. 
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�9 The second group - related to the dissipation - only includes the evolution laws. The 
quality of an admissible solution will be estimated through the quality of satisfaction 
of these laws. 

The practical definition of the error depends on the form of the evolution laws. We 
shall here consider standard materials that possess a normal standard formulation. This 
class is important and gathers many practical stable material. For the definition of the 
dissipation error for other types of evolution laws, see [34,35]. A standard material possess 
a normal standard formulation if by definition there exist a change of variables X = R(X)  

t , o  

Y = S ( Y )  such that 

�9 the state equations become linear: tr = K(r - CP), Y = AX where A is a constant 
t ~ t  ~ , t  

symmetric definite positive operator; 

�9 the standard character of the evolution laws is kept with the potential ~'* satisfy- 

ing (8) " 

X - 0 ,  E p - -0 ,  f o r t = 0  (20) 
e ~  

�9 the new formulation still yield the same stress-strain functional law. 

The condition for a standard material to possess a normal standard formulation are not 
too restrictive in practice, see [33]. For instance, the Prandtl-Reuss model previously 
described fulfills them. For the sake of simplicity in notations, the tilde will be dropped, 
so that the state laws an evolution laws are now written 

o" = K ( ~ -  EP), Y = A X  (21) 

_ X E Oy~o'(tr, Y )  = r  f o r t = 0  (22) X 0, 

Finally, note that a standard material possessing a normal standard formulation is strictly 
stable in the Drucker sense. In other words, the associated stress-strain relation satis- 
fies (13). See [38] for the proof. 

With the help of the Legendre-Fenchel transform, one can associate a dual potential 
~ ( ~ P , - X )  to the primal one ~*(tr, Y). 

~,(,~P,-..Y) = sup (o'" ,~P- Y o X -  ~p'(o', Y)],, (23) 
(o'.Y)~ f 

The Legendre-Fenchel transform possesses two interesting classical properties: 

r/(,~ p, .X, tr, Y) > 0 V (o', Y, ,~P,-.X) 

r/(& p 2 tr, Y ) =  0 o X. E ~,, 
' ' - O y  ( tr ,  Y )  

(24) 

(25) 
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where the condensed following notation has been used: 

rt(& p, X ,  or, Y) = r162 ~" ~*(O', Y)  - er" EP ~- Y o j f  (26) 

The inequality (24) is usually called the Legendre-Fenchel inequality, and the equality 
relation (25) simply means that r t is zero if and only if the evolution laws are satisfied. 

For example, we give below the expression of the dual potentials for the Prandtl-Reuss 
model. We shall use the convex sets 

C ; = { ( c r ,  R) e f l  z < 0 ) ,  C ~ = { ( & P , - # ) e e l T r [ &  p ] = 0 ) ,  

C~={(c r ,  R) 6 f I R > 0 } ,  6 ' 2 = { ( ~ P , - / ~ ) 6 e l I I ~ P I I - / ~ < 0 }  

where Tr is the trace operator. In the plastic case, the dual potential are given by 

~'(~, R) = ~cr .c ; ,  ~ (~P , -# )  = RolI&Pll + ,~c, .c,  (27) 

where ~A is the indicator function associated with the convex domain A. The introduction 
of the condition R >_ 0 is explained in [35]. In the visco-plastic case, we have 

~'(~, R) = k~ n, + i'(z)"'+' , + + ~c~ 

,k, (llV'll) ''+' , , , (v ' , -~)  = RollV'll + n,. + 1 \ - ~ - ,  + ,I,o,,.,o, 

' is the inverse of n, .  where n v 

Dis s ipa t ion  e r ro r  for n o r m a l  s t a n d a r d  fo rmula t ion  

Let us consider an admissible solution (~_, E %, ~ ,  X ,  ~, Y, ), i.e.. a solution satisfying 

^ .t0.~l  ~ c s !~  'n (28) 
u_ 6 '~ad , 

= K ~  = K ( e ( ~ ) -  ~ ) ,  :Y = AX,  on f~ • [0,T] (29) 

e'b = ~ = 0 at t = 0 on f~ (30) 

This solution is the exact solution of the problem if and only if 

r/(t'b, X ,  ~, Y) = 0 on f~ x [0, T]. (31) 

Thus, the absolute error, e, may be defined as 

= ~ ( ~ , x , ~ , ? ) a a a t  (321 

and the relative error by e = e/D where 

D = 2 sup dr, 
t6[0,T] 

/0'L ^ L d t - -  sup{~'(~ Y) -]- ~)(&P X), Ir + !~1~ + IYIX dfl It (33) 
. . i1~11 
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We have used the notation [~r[~ = 1/2K-~cr �9 cr and [Y[] = 1 /2A- 'Y  o Y. The 
denominator is chosen so that the relative error is reasonable in elasticity in comparison 
to classical error norm for such problems, see [35]. The contribution of the time interval 
[0, t] to the error is defined by et 

e, = ,7(~, J~, ~, I") dl2dt/D (34) 

The norm chosen allows writing a direct link between the error and the gap occurring 
between the exact and admissible solutions: 

_ ^ 

e = r/(~ p, X ,  ~,  Y) + r/(~ p, X ,  ~, Y) df~dt + ]~ - ~1~r + 1~" - Y[~ df~ IT 

where (&P, X,  ~,  Y) denotes the exact solution. This property has been established in [34] 
and is an extension of the famous Prager-Synge theorem [39]. 

4. I M P L E M E N T A T I O N  OF T H E  E R R O R S  F O R  T H E  F E M  

We consider the classical incremental finite element method. The Drucker and dissi- 
pation error cannot be directly measured on the finite element solution because it is not 
generally admissible. For instance the finite element stresses are only in equilibrium in a 
weak, average, sense. We thus need to build an admissible solution from the finite element 
one. But, let us first detail the discrete problem. 

4.1. T h e  d iscre te  p rob l em  
The problem to be solved on [0, T] is divided into a succession of resolutions over 

[t,,,t,,+l] (n - 0 , . . . ,  N; to -- 0; tN+l -- T). Assuming the solution is known up until 
the time instant tn, one must then build the solution over [tn, tn+l]. Both time and space 
discretizations need to be performed. 

T i m e  d iscre t iza t ion  

A common choice is to assume a linear evolution of the solution over [t,~, tn+l]. Thus, 
the problem reduces to the search of the solution at tn+l. The equilibrium equations 
and kinematic constraints are written at tn+l and the constitutive law is discretized to 
express algebraically the field at t~+l in term of the field at tn+l. The discretization of 
the functional law (4) over [tn, in+l] may formally be written 

(35) 

The notation A,, reminds that the stresses at t ,+, are no longer expressed as a functional 
of the strain rate history on [t,,, t,,+l], but as an algebraic, nonlinear, function of the strain 
increase (en+l - e n ) .  In the case of an internal variable formulation of the behavior, the 
state laws are written at t,+l" 

p #~+, = K(e~+1 - e~+,), Y~+, = AXe+,  (36) 
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and we consider the generalized mid-point rule to discretize the evolution laws: 

.e,,+, E X0 = O, e~ = 0 (37) 
-Xr,+l Oy~*(tro, Yo) ' 

where we have used the notation 

Xn+l -- Xn 
Xn+l ----- t.+, - t . '  z0 = (1 -O):r,, + OXn+l,  0 < 0 < 1 (38) 

The relations (35) and (36)-(37) may be viewed as "discrete constitutive law" compared 
to their continuous counter-part (4) and (21)-(22), respectively. 

Space  d i sc re t i za t ion  

Concerning the space discretization, the displacement space, H, is replaced a finite 
element subset" L/h C/4. The equilibrium equations (3) is imposed in the weaker sense: 

~ -r �9 e(v) dQh - f f.d �9 vdf~ - f0 F_.d �9 v_dS = 0, Vv E Hh,O (39) 
h 2fl 

where 

bth,o = {v.v_ e Hh such that v.v_= 0 on 0~ft} (40) 

The notation f~n, instead of f~, in the first term of (39) expresses the fact that due to 
the nonlinear stress-strain relation, this term cannot be in general integrated exactly and 
therefore is expressed in term of a numerical integration. 

i t e r a t i ve  t echn ique  

The system to be solved at each time step is an algebraic nonlinear system. This 
system is solved using an iterative technique, typically Newton's method. As the iterations 
proceed, two types of solutions cohabit" a solution satisfying the discrete kinematic and 
static equations, and a solution satisfying the discrete kinematic and constitutive relation. 
When the difference between the two types of solutions is under a given tolerance gtol, for 
instance in the L 2 norm of the difference in stresses (choice for the numerical experiments 
to be shown later), the iterative procedure stops and the finite element code generally 
gives the solution satisfying the discrete constitutive relation. 

4.2. C o n s t r u c t i o n  of an admis s ib l e  so lu t ion  
From the finite element solution, one must construct an admissible solution prior to 

evaluate the error. For the Drucker error, the admissibility is defined by (15) and the 
error is measured by (17)-(18). For the dissipation error, the admissibility is defined 
by (28)-(29)-(30) and the error is measured by (32)-(33). The construction techniques 
are detailed in [31,32] for the Drucker error and in [35] for the dissipation error. 

4.3. Examples"  two p lane  s t ress  p r o b l e m s  
Here are two examples of error estimation on problems for which the discretization is 

coarse. These discretizations will be enhanced in the last section of this paper using the 
tools described in the next section. The parameter 0 in the mid-point rule integration, 
(37), is taken as 0 = 1. 
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Figure 1. The geometry and applied load- 
ing on the frame. 

Figure 2. Evolution of the loading and ini- 
tial mesh optimized in elasticity, 194 six- 
node triangles. 

A f rame  prob lem 

A frame, Fig. 1, is submitted to a growing then decreasing load on its right side (thin 
line in Fig. 2). Then, an increasing pressure is applied to its upper part (thick line 
in Fig. 2). The Prandtl-Reuss plastic model with linear hardening is considered. The 
dimensionless material parameters are Ro = 1., ku = 8.16, E = 244.95 and u = 0.3. 
E and u denote Young's modulus and Poisson's ratio, respectively. The mesh has been 
optimized in elasticity for an error of 10%, Fig. 2. It is composed of 194 six-node triangular 
elements. Three time steps are used and the tolerance for the iterative technique is set to 
~tol "- 10 -2 .  The errors obtained are 28.15% for the dissipation error and 26.90% for the 
Drucker error. 

Ex tens ion  of a s t r ip  weakened by an angular  notch 

Fig. 3 shows the geometry and the applied loading which evolves monotonically, Fig. 5. 
We consider the same plastic material as for the previous example and it's viscoplastic 
version with nv = 2 and kv = 2.25. The associate one dimensional behaviors are compared 
Fig. 6 at a given strain rate speed, 0.05s -1. The mesh used, Fig. 4, is composed of 88 
three-node triangular elements and was optimized in elasticity for 10% error. A single 
time-step is used and the tolerance is ~tol = 10 -3. The dissipation errors obtained are 
24% and 17.79% in plasticity and visco-plasticity, respectively. Concerning the Drucker 
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error, we obtain 27.55% and 26.26%, respectively. 

O.S 

F 

r 

Figure 3. The geometry and applied load- 
ing for the angular notch. 

! 
TIME 

Figure 4. Initial mesh optimized in elas- 
ticity for 10% error. 
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Figure 5. Evolution of the 
loading. 

Figure 6. Stress-strain curves for three 
different models. The viscoplasticity 
curve corresponds to a strain speed of 
0.05s -1. 

5. E R R O R  I N D I C A T O R S  

Consider an initial coarse computation. To know how the mesh and the time discretiza- 
tion need to be refined to meet a prescribed accuracy, the single total error information 
is not enough. One needs to know the contribution to the error of the mesh, the time 
discretization and the iterative technique. 

These contributions are estimated through quantities called error indicators: time, 
space and iteration error indicator. Time and space error indicator were developed in [38, 
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32] for the Drucker error and in [35] for the dissipation error. An iteration error indicator 
was also proposed in [36]. 

To introduce these indicators, four types of problem are distinguished: the continuous 
time-space problem (the model problem), the space discrete problem (continuous in time), 
the time discrete problem (continuous in space) and the time-space discrete problem. 

5.1. T i m e  e r ro r  ind ica to r  
When the reference is the continuous time-space problem, the error associated to the 

finite element solution is due to the space discretization, the time discretization and the 
iterative technique. We shall call this error the total error. Let us now suppose that the 
mesh size tends to zero. The total error then tends to a limit that we shall call the time 
error. The time error is estimated through a quantity called the time error indicator. To 
compute the time error indicator, the reference is taken as the space discrete problem, 
so that  the error associated to the finite element solution is now only due to the time 
discretization and the iterative technique. The equations describing the space discrete 
problem are divided into two groups. The first group gathers the kinematic constraints, 
the weak form of the equilibrium equations (plus the state equations and the initial 
conditions for the dissipation approach) and the second group gathers the rest of the 
equations: functional constitutive relation for the Drucker approach and evolution laws 
for the dissipation approach. The time error indicator is measured on an admissible 
solution, i.e.. a solution satisfying the first group, by the non-fulfillment of the second 
group of equations. In other words, the t ime error indicator is obtained using the same 
strategy as for the total error except that the reference problem is different. 

5.2. Space  e r ro r  ind ica to r  
The space error is defined as the limit of the total error as the size of the time steps 

tends to zero. It is estimated by a quantity called the space error indicator. In [32], the 
space error indicator for the Drucker approach was basically obtained by the difference 
between the total error and the time error indicator. Another way, is to take the reference 
problem as the time discrete problem and to proceed as for the time error indicator. The 
difficulty is that in this problem, the constitutive law has now a discrete form. It turns out 
that with the generalized mid-point rule the discrete evolution laws (37) are still written 
in a standard way so that that the error may still be measured using the 7? quantity (26), 
see [35]. Concerning the discrete constitutive relation (35), a question arise" under what 
conditions does the Drucker stability condition still apply and in what sense? A sufficient 
condition is given below. 

Let (trk,r and (tr~.,e~:) be two stress-strain sequences defined at every instant tk, 
k E {0 . . .  N + 1}, satisfying the discrete constitutive relation (35) with tr0 = e0 = tr~ = 
e~) = 0. We shall say that a discrete constitutive relation, is strictly stable in the Drucker 
sense if there exist a parameter a, 0 < a < 1, such that the two following conditions are 
satisfied: 

n 

v { 0 . . .  N}, Z ( . o  - �9 - > 0 
k=O 

(41) 
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n 

Vn E {0. . .  N}, E ( t r a  - o") ' (~k+~ - ~+, )Atk  = 0 
k=0 (42) 

! 
4~ (o'k, ek) = (trk, e~),V k E (0 . . .  N + 1} 

The notations (38) have been reused, 0 being replaced by a, and Atk = tk+l -- tk. 
A sufficient condition to have strict stability is to define the operator .,4,, as the one 

obtained by eliminating the internal and state variables in the discrete internal variable 
formulation (36)-(37), with 1/2 < 0 < 1. The parameter a is then simply 0. The key for 
the proof is the following, easy to establish, relation: 

�9 ' "P' " ' Y o )  + (0" 0 -- O'~)" (~k+l -- ff'tk+l ) -- ' (E~+I '  X k + l ,  0" 0, Y0) q-/](Ek+ 1 , X k + l ,  tTo, 

K-l(tr0 - o'~) �9 (&k+, - ~'k+,) + A - ' ( Y o  - Y~) o (~'k+, - l~'k+,) (43) 

where the set of prime and non-prime variables satisfy the system (36)-(37). Taking into 
account the zero initial boundary conditions and the algebraic relation 

xo = -~(xk+l + xk) + ( 2 0 -  1)(xk+l - xk) (44) 

we obtain by summing the relation (43) over the time steps 

- o - ; )  �9 - G )atk = 

k=O 

E /](Ek+l' "p Xk+l  , O.O,t yto) _[_ r](Ek+l,Xk+l,~ro, Yo  Ark "4" 
k=o 

- ' Y '  [ I +  Itr.+~ t r .+~[~+ I Y . + I -  .+~ 

( 2 0 -  1 ) ~  ( [&k+l -  &~:+,[~: + [ Y k + , -  I2'k+,[~) At~ 
k=0 

The result stem from this last relation which is positive for 0 > 1/2 and is zero if and 
only if the prime and non-prime variables coincide. 

Let (ilk, &k) be a displacement-stress couple defined on f~ for all the time instant tk, 
k E {0 . . .  N + 1} ({tk} in short). We assume that this couple is admissible for the 
time-discrete problem, i.e. 

u-a E ~aa'J{t~} --- {v__ E br (tk} such that _v = u_~ on Oxfl x {tk}} (45) 

.r __ ('i" ~ S {tk} satisfying (3) Vt E { t k } }  ( 4 6 )  &k E '-',~a - 

This couple satisfies all the equations of the time discrete problem except, in general, 
the discrete constitutive relation (35). It is an approximate solution to the time discrete 

^' using the problem. To the strain field, ek = e(fik), one can associate the stress field trk 
,,! 

relation (35). Similarly, one can associate the strain field e k to the stress field &k using 
the reverse relation. The absolute space error indicator, I~pr may be defined by 

I~2pr = sup (&o - &;) " (ek+l - ak+l)Atk df~ (47) 
nfi{0...N} k=O 
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and the relative space error indicator by ispce = lspce/Dspce where 

fN ~ ~,t At " D,2pce = 2 sup (#e "ek+a + aa" ~k+l)Atk dft (48) 
nE(0-..N} k=O 

5.3. I t e ra t ion  error  indicator  
The iteration error is defined as the limit of the total error as both the size of the 

elements and the size of the time steps tend to zero. It is estimated by the iteration 
error indicator. The reference is taken as the fully discrete space-time problem, so that 
the error associated to the finite element solution is only due to the iterative technique. 
This lead to the iteration error indicator introduced in [36] for the dissipation approach. 
Concerning the Drucker approach, expressions similar to (47)-(48) are used. 

s 

Ztime 
ispce 
itot 

iite * 10 2 

Table 1 

s 

/time 
ispce 
itot 

iite * 10 2 

Dissipation 
meshl mesh2 mesh3 mesh4 mesh5 mesh6 
40.94 28.99 25.74 23.96 20.80 18.92 
19.29 18.33 17.68 1 7 . 6 5  17.65 17.65 
34.08 15.42 10.90 8.40 4.05 1.61 
53.37 33.75 28.58 26.05 21.70 19.26 
0.38 0.16 0.07 0.17 0.33 0.53 

Drucker 
meshl mesh2 mesh3 mesh4 mesh5 mesh6 
44.75 27.12 23.57 20.89 16.83 15.14 
15.23 14.70 14.45 1 4 . 4 6  14.45 14.44 
44.67 23.56 19.27 15.69 9.06 4.88 
47.19 27.77 24.09 21.34 17.06 15.24 
0.80 0.46 0.15 0.31 0.51 0.76 

Influence of a growing quality of the space discretization on the error and the indicators. 
The computations were carried out with a stopping criteria of ~tol = 10 -3. 

5.4. Numer ica l  exper iments  
We present here numerical experiments to analyze the behavior of the error and the 

indicators as either the mesh, the time discretization of the stopping criteria is modified. 
We consider the frame problem. All the results are given in relative % values. Table 1 
shows the influence of the quality of the mesh and Table 2 the influence of the quality 
of the time discretization. /time, /spce and /ite denote respectively the time, space and 
iteration error indicator Meshl, mesh2, . . .  are increasingly refined meshes. To see how 
the time and space indicators are related to the total error, e, we have computed the 
quantity/tot which is defined by/tot = /time + /spce for the dissipation approach and by 

~/z2 .2 / t o t  "" t i m e  + Z~p~e for the Drucker approach. We see that 
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Dissipat ion Drucker 
nb steps 3 6 12 24 48 2 4 8 16 32 

Ztime 
$spce 
Ztot 

iite * 10 2 

25.74 16.36 13.85 13.76 14.00 
17.69 4.87 1.00 0.34 0.21 
10.91 11.67 12.48 13.39 13.87 
28.60 16.54 13.48 13.73 14.08 
2.89 6.48 7.83 10.25 14.39 

23.57 20.91 19.79 19.72 19.80 
14.43 8.50 3.97 2.02 1.04 
19.27 19.72 19.96 20.15 20.21 
24.07 21.47 20.35 20.25 20.24 
5.78 10.25 14.75 16.67 18.15 

Table 2 
Influence of a growing quality of the time discretization on the error and the indicators. 
The computations were carried out with a stopping criteria of d;tol = 10 -2. 

Table 3 

r 

ltime 
~spce 

iite/~tol 

C 

Ztime 
Zspce 

iite/~tol 

Dissipation 
100 10-:'1 ...... 10_ ~ ..... i0., 3 1 0 - 4  1 0 - 5  

26.60 16.42 16.36 16.37 16.37 16.37 
21.62 5.32 4.87 4.82 4.82 4.82 
22.74 11.75 11.67 11.67 11.67 11.67 
17.78 5.59 6.48 4.48 5.08 5.17 

Drucker 
27.78 20.94 20.91 20.91 20.91 20.91 
20.57 8.57 8.50 8.50 8.50 8.50 
28.41 19.74 19.72 19.72 19.72 19.72 
21.25 9.30 10.25 6.57 8.55 10.71 

Nb ite 28 72 106 130 154 180 

Influence of the stopping criteria on the error and indicators for a coarse time-space 
discretization. 
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Table 4 

~tol 
C 

Ztime 
Zspce 

Ztime 
Zspce 

iite/C~tol 
Nb ite 

Dissipation 
I0 ~ 10-' 10 -2 10 -3 10 -4 10 -5 - 

12.40 6.05 5.37 5.36 5.36 5 . 3 6  
10.74 2.39 0.64 0.55 0.55 0.55 
12.59 5.13 4.47 4.47 4.47 4.47 
11.09 17.01 8.23 6.20 7.54 8.04 

..... Drucker . . . .  
15.26 9.42 9.36 9.35 9.34 9.34 
12.68 3.54 3.07 3.07 3.07 3.07 
16.68 9.55 9.38 9.37 9.37 9.37 
14.24 25.69 16.96 12.97 14.51 15.03 

40 112 i94 262 322 386 
, 

Influence of the stopping criteria on the error and indicators for a fine time-space dis- 
cretization. 

�9 first, the error decreases but then tends to stabilize; 

�9 the time indicator is almost insensitive to the quality of the mesh and approximate 
very well the time error; 

�9 the space indicator barely depend on the number of time steps and approximate 
very well the space error; 

�9 the space and time indicators decrease monotonically with respect to the quality of 
the mesh and the number time steps, respectively; 

�9 the total error, e, is close or bounded from above by the quantity/tot; 

�9 for the stopping criteria chosen, the iteration error indicator, iite, is very small 
compared to the space and time indicators. 

Table 3 and 4 give the influence of the stopping criteria for a coarse and fine space-time 
discretization, respectively. Nite is the total number of iteration in the computation. We 
note that 

�9 the error decreases but then quickly stabilizes; 

�9 under a critical stopping criteria, 6crit , the error and the space and time indicators 
are insensitive to the stopping criteria; 

, the critical stopping criteria is smaller for a finer time-space discretization; 

�9 the iteration indicator is more or less linear with respect to the stopping criteria; 

�9 Nite grows roughly logarithmically with the decrease of the stopping criteria. 
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6. A D A P T I V E  C O N T R O L  

Using the Drucker error, an adaptive strategy to control the space and time discretiza- 
tion for three- and six-node triangular elements in plane and axisymmetric problems was 
presented in [32]. Concerning the dissipation error, a simultaneous time, space and it- 
eration adaptive scheme was presented in [36]. We summarize here the basic features 
of the strategy. Basically, the idea is to meet the prescribed accuracy while minimizing 
the numerical effort. The prescribed accuracy is linked to the time and space indicators 
through the/tot quantity. The numerical effort is expressed as the number of time steps 
times the number of elements raised to a power (2 in the examples). 

The time and space indicators need to be related to the mesh size and the time step size. 
We assume that the space error indicator has a local convergence O(h p) (from numerical 
experiments, p = 1 and p = 2 for three- and six-node triangular elements, respectively), 
h being the local size of the element. Concerning the time error indicator, we assume a 
local convergence O(At q) (q = 1 and q = 2 for the Drucker and dissipation time error 
indicator, respectively), At being the local size of the time step. 

Minimizing the numerical in order to reach the prescribed accuracy yield a new mesh 
size map an a new time step size map, which are used to remesh in space and "time" the 
problem. When the p and q parameters are uniform, the minimization of the numerical 
effort implies that the prescribed accuracy, e0, should be shared in the ratios 

�9 4 / p  . I / q  (49) ~ . , o  = 4/p + I /q ~~ ~ , o  = 4/p + I /q ~~ 

for the objective space and time error indicators respectively, in the dissipation error case 
and in the ratios 

4/p 1/2 �9 1/q 
i,pr = ( 4 / p +  1/q ) eo, Ztlm~,O = ( 4 / p +  1/q )ll2e~ (50) 

for the Drucker case. 
The stopping criteria for the iterative procedure is chosen such that the iteration error 

indicator is about on tenth of the minimum of the space and time error indicators. This 
allows that enough-  and not too m a n y -  iterations are made to avoid the influence of 
the non-convergence of the iterative technique. 

Finally, note that when the prescribed accuracy is too far form the actual error ob- 
tained with the initial coarse computation, some intermediate steps are introduced in the 
adaptive strategy. 

The  f r ame  e x a m p l e  

Tables 5 and 6 summarize the adaptive procedure using the dissipation and Drucker 
error, respectively. The prescribed accuracy is 5% and six-node triangular elements are 
used. We note that the numerical effort needed to reach the 5% error is more important in 
the Drucker error sense than in the dissipation error sense. The optimized meshes at the 
last step are shown Fig. 7 and 8 and the evolutions of the contribution to the error with 
respect to the time for the successive stages, Fig.7. These contributions were defined by 
equations (19) and (34). Note that the time stepping, indicated by the squares, s tars , . . ,  is 
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not uniform and takes into account the unloading. The Von Mises stresses obtained at the 
final time are shown Fig.10. They are compared to the Von Mises stresses obtained with 
the Hencky-Mises model, Fig.ll .  Since the loading does not evolve monotonically, the 
difference is important. Indeed, the Hencky-Mises model assumes a simple monotonous 
evolution of the stresses which is obviously not the case here. 

�9 �9 ~ 

.~, 2spce Ztime Zite 
Inltially 28.15 14.33 17.90 0.03 

Asked 10 8. 2. 0.20 
Obtained 12.30 10.03 2.18 0.38 

Asked 5 4. ].. 0.10 
Obtained 5.37 4.48 0.74 0.17 

nb elts nb steps- Sto| 
194 3 1.10 -2 

253 7 7.41 10 -2 

661 11 1.91 10 -2 

Table 5 
Summary of the optimization procedure using the dissipation error for the frame problem. 

�9 �9 ~ 

~spce $time $ite 
....... initially 26.90 23.26 14.56 0.06 

Asked . . . . .  15. 12.2 8.7 0.9 
Obtained 17.02 15.34 8.45 0.77 

...... A~sked 10. 8 . 2  5.8 0.6 
Obtained 10,54 10.29 4.44 1.8 

Asked 5. 4:1 2.9 0.3 
Obtained 5.75 5.69 2.63 0.40 

nb elts nb steps Jtot 
194 3 i. i0 -2 

262 5 16.210 -2 

502 7 12.510 -2 

1286 12 2.0710 -2 

Table 6 
Summary of the optimization procedure using Drucker error for the frame problem. 

Ex tens ion  of a s t r ip  weakened by an angu la r  notch 

Finally, we consider the strip weakened by an angular notch with three different models: 
the elastic model, the Prandtl-Reuss plastic model and it's viscoplastic version. Table 7 
summarizes the adaptive procedure in the plastic and viscoplastic cases, using the Drucker 
error and three-node triangular elements. The prescribed accuracy is again 5%. For an 
elastic problem, the Drucker error coincide with the classical energy norm error used in 
elasticity, see [32]. The Von Mises stresses obtained at the final time are quite different 
for the three models, Fig.12, 14 and 16. The optimized meshes are also quite differ- 
ent,Fig. 13, 15 and 17. 
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Initially 
Asked 

Obtained 

Plastic computation 
, , ,  

{~ !spce /time iite 
27.55 21.49 20.53 0.44 

10. 8.9 4.4 0.4 
9.68 10.13 4.86 3.9 

Asked 5. 4.4 2.2 0.2 
Obtained 4.81 4.74 2.12 0.26 

nb elts nb steps $tol 
88 1 i. 10 -a 

411 5 9.10 -3 

1744 7 4.6 10 -3 

Initially 
, 

Asked 
Obtained 

Viscoplastic computation 

e ispce /time iite 
26.26 16.95 22.42 0.04 

10. 8.9 4.4 0 .4  
9.47 8.40 5.78 1.9 

Asked 5. 4.4 2.2 0.2 
Obtained 4.73 4.44 1.94 0.58 

nb eits nb steps Stol 
88 1 1.10 -3 

296 5 10.10 -3 

982 8 1.10 -3 

Table 7 
Summary of the optimization procedure using Drucker error for the angular notch prob- 
lem. 

7. CONCLUSIONS 

The error in the constitutive law concept allows to define error with strong mechanical 
foundations. When the constitutive law is characterized by a functional stress-strain for- 
mulation, the error is based on a sufficient condition insuring the stability of the material, 
Drucker's stability condition. When the constitutive law is described in terms of internal 
variables, the error is measured on the equations associated the dissipation process in the 
material, i.e. the evolution laws. An extension of the famous Prager-Synge theorem may 
be obtained in this later case. 

The error itself is not enough to carry an efficient adaptive procedure. The contributions 
of each error source to the error are also needed. These contributions are estimated 
through quantities called error indicators: time, space and iteration error indicators. They 
are defined in the same way as the error except that the reference problem is different: 
space discrete, time discrete and space-time discrete problems, respectively. The behavior 
of the indicators was shown to be robust. 

When used along with the error, the error indicators allows to adapt simultaneously 
the quality of the time and space discretization, and the choice of the stopping criteria 
for the iterative technique. This was illustrated on two examples. The first examples was 
the occasion to recall the danger in using an Hencky-Mises formulation when the loading 
is not evolving monotonically. We also noticed that the numerical effort needed to reach 
a given accuracy was more important in the Drucker approach than in the dissipation 
approach. This point, which is not surprising since the foundations of the two errors are 
different, should be investigated in future works. 
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Figure 7. Final mesh optimized with the 
dissipation error, 661 six-node triangles. 
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Figure 8. Final mesh optimized with 
Drucker error, 1286 six-node triangles. 
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Figure 9. Evolution of the contribution to the error with respect to the time for the 
successive adaptive steps, dissipation error on the left and Drucker error on the right. 

Figure 10. Von Mises stresses obtained 
with the Prandtl-Reuss plastic model. 

Figure 11. Von Mises stresses obtained 
with the Hencky-Mises model. 
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Figure 12. Von Mises stresses in elasticity. Figure 13. Optimized mesh: 456 three- 
nodes triangles. 

Figure 14. Von Mises stresses in plasticity. Figure 15. Optimized mesh: 1744 three-- 
nodes triangles. 

Figure 16. Von Mises stresses in viscoplas- 
ticity. 

Figure 17. Optimized mesh: 982 three- 
nodes triangles. 
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1. I N T R O D U C T I O N  

Adaptive mesh-refinement techniques based on a posteriori error estimators have become 
an undispensable tool in large scale scientific computing. In what follows we will present 
some of the most popular error estimators and will discuss their common features, their 
main differences, and the underlying basic principles. 

The essential point will be the equivalence of the norm of the error, which should 
be estimated, and a corresponding dual norm of the residual, which only involves the 
given data of the problem and the computed numerical solution. This equivalence is a 
consequence of the stability of the infinite dimensional variational problem. Thus, in a 
posteriori error analysis the situation is quite different from a priori error analysis where 
the stability of the discrete problem is the main ingredient. 

The error estimators considered here can be viewed as a device for rendering com- 
putable the above-mentioned dual norm of the residual. They differ in the way they try 
to achieve this goal. We will show that all yield upper and lower bounds on the error 
and that  they axe all equivalent in the sense that the ratio of any two of them remains 
bounded independently of the mesh-size. 

The upper bounds on the error are always global ones. This is due to the fact that  
upper bounds involve the inverse of the differential operator which is a global operator. 
Some of the lower bounds on the errors are local ones. This is possible since lower bounds 
involve the original differential operator which is a local operator. 

Upper bounds, of course, are mandatory for reliability, i.e. to ensure that  the error is 
below a given tolerance. Lower bounds on the other hand, are indispensable for efficiency, 
i.e. to ensure that the required tolerance is achieved with a nearly minimal amount of 
work. Moreover, locality of the lower bounds guarantees that the spatial distribution 
of the error is properly reproduced by the error estimator. Unfortunately, this point is 
often not sufficiently taken into account. 

In order the simplify the exposition and to keep the technicalities at a minimum we 
present the error estimators within the framework of displacement methods for linearized 
elasticity. In the last quarter of this contribution we show how the results and techniques 
can be extended to displacement methods for non-linear elasticity. 
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In what follows we only consider displacement methods based on a primal variational 
principle. We completely omit mixed methods based on a dual or hybrid primal/dual 
variational principle. Since these methods play an important role, e.g. in the context of 
locking phenomena, this is a serious omission. It is due to two reasons. First, a profound 
consideration of dual methods would unduely overload the presentation. Second and 
more important,  the theory of a posteriori error estimators for mixed methods is not 
as well developed as for primal methods. First approaches can be found, e.g. in [6, 7, 
17, 18] and the literature cited therein. But all these are concerned with membrane 
problems and cannot directly be applied to linearized elasticity. 

2. T H E  E Q U A T I O N S  O F  L I N E A R I Z E D  E L A S T I C I T Y  

We consider the equations of linearized elasticity 

- d i v a ( u ) = f i n f ~ ;  u = u o o n r D ;  n . o ( u ) = t n o n r N  (1) 

in a connected bounded domain f~ C lR",n = 2 or 3, with a polyhedral boundary 
r = r o u FN, Fo  fl FN = @. As usual, u : ~ --, lRn denotes the sought displace- 
ment, f is the external load, t N are the prescribed boundary tractions, and n de- 
notes the unit outward normal. The stress tensor a(u) is related to the strain tensor 
g(U)  "-" ( l ( O i U j q - O j U i ) ) l < i , j < n  by the material law O(U)i j  "- El<_k,l<_n C i j k i g ( U ) k l  with a 

symmetric positive definite n 2 • n 2 matrix C. In order to guarantee unique solvability of 
problem (1) we assume that the Dirichlet part Po of r has a positive (n-1)-dimensional  
Lebesgue-measure. 

For any open subset w of f~ with Lipschitz boundary 7, we denote by Hk(w), k E 
INT, L2 (w)  -~ H~ and L2(') ') the usual Sobolev and Lebesgue-spaces equipped with 
the standard norms II~pllk;,~ :=  II~llH~(ta), [l~llta 1-- [l~pllL,(w), and HtplI.y := II~OllL,(.~). If 
w = f~, we will omit the index w. We use the same notations for the norms of vector- 
valued and matrix-valued functions. 

Set VD := {v E Hl(f t )  n : v = 0 on t o } .  Then the standard weak displacement 
formulation of problem (1) is to find u E u o + lid such that 

[ a(u) . ,(v) = [ f . v + [ tN . v Vv E Vo. (2) 
J ~] J l] J F N 

Since rD has a positive ( n -  1)-dimensional Lebesgue-measure, problem (2) admits a 
unique solution. 

3. F I N I T E  E L E M E N T  D I S C R E T I Z A T I O N  

Let Th, h > 0, be a family of partitions of ~ into triangles or quadrilaterals, if n = 2, or 
into tetrahedra or hexahedra, if n = 3. Each Th must be consistent with FD and I"N, 
i.e. F D and r~v are the union of edges, if n = 2, resp. of faces, if n = 3, of elements in 
Th. Moreover, Th must satisfy the following two conditions: 
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(1) admissibility: Any two elements of 7"t, are either disjoint, or share a vertex, or 
share an edge or, if n = 3, share a face. 

(2) shape regularity: cqr := sup{hK/pg : g  E 7"h, h > 0} < oo. 

Here, hK and PK denote the diameter of K and the diameter of the largest ball inscribed 
into K,  respectively. If n = 2, shape regularity means that the smallest angle of all 
elements is bounded away from zero. 

Let Vh C VD be any conforming finite element space associated with 7"h. We assume 
that  it contains all continuous, piecewise linear or n-linear functions. The finite element 
discretization (in displacement form) of problem (1) then consists in finding U h E u D + Vh 

such that 

J n  Jf~ J F  iv 

Since FD has a positive ( n -  1)-dimensionM Lebesgue-measure problem (3) admits a 
unique solution. 

4. A U X I L I A R Y  R E S U L T S  

For K E 7"h we denote by Af(K) and s  the set of its vertices and the set of its edges, if 
n - 2, or of its faces, if n = 3, respectively. Let Afh := UKeT',, .N'(K), gh "= UgeTh s  
be the sets of all vertices resp. of all edges or faces in Th. Afh and Sh naturally split 
into the sets Afh,ft,Afh,D,./tfh,N resp. Ch,a,Ch,D, Eh,N of all vertices resp. edges or faces 
in ft, on I"D, and F N, respectively. With each E E s we associate a unit vector 
n E orthogonal to E and denote by J E ( ~ )  the jump of a given piecewise continuous 
function T across E in direction hE.  Of course, JE(~O) depends on the orientation of rtE, 

but quantities like JE(TnE) do not. 

For any K E Th, E (5 s and x E Afh we denote by 
wg the union of all elements sharing an edge, if n = 2, resp. a face, if n = 3, with K,  
wE the union of all elements having E as an edge, if n = 2, resp. as a face, if n = 3, 
tot the union of all elements having x as a vertex. 

Given a vertex z (5 Afh we denote by Az the corresponding nodal shape function, i.e. 
the continuous, piecewise linear or n-linear function which takes the value 1 at x and 
which vanishes at all other vertices. Note that Ax vanishes identically outside wx. With  
each K E 7"h and each E E ~'h we associate a cut-off function CK and CE, resp. by 

H H (4) 
ze~(g)  xe~(E) 

Here, N'(E) denotes the set of all vertices of E; the constants aK and aE  are determined 
by the requirements maxzeh- CK(X) = 1 and maxzeE CE(X) = 1. Note, that  Cg  and CE 
vanish identically outside K and WE, respectively. 

Finally, we define a quasi-interpolation operator It, by 

Ih~ := ~ A~'~r 
z EN'h,nuN'h,lv 
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where lr~p is the mean value of ~ on w~. Note, that Ih~ vanishes on FD. For vector- 
valued functions, Ih is defined by applying it to the components of the function. In 
particular, we have Ihv fi Vh for all v 6 L2(ft) n. For any v 6 VD we can prove the 
following interpolation error estimate (cf. [15] or adapt Exercise 3.2.3 in [9]) 

{E E v -  - <_ c z l l v l l a ; . .  ( 5 )  
KETa EEgh 

The constant Cl only depends on the shape parameter c~r. 

5. E Q U I V A L E N C E  OF E R R O R  A N D  R E S I D U A L  

Denote by u and uh the unique solutions of problems (2) and (3), resp. and by e : -  u-uh 
the error of the finite element discretization. From equations (2) and (3) we immediately 
get the error representation 

N 

The right-hand side of this equation implicitely defines the residual R(uh) of uh as an 
element of the dual space of VD: 

(R(uh),V) : = ~ f  . v + /  t jV.v--~a(Uh).~(v)  VvE Vo. (7) 
N 

The corresponding norm of R(uh)is given by IIR(ua)ll_l := supllvll,= 1 (R(ua), v). From 
the definition of R(uh), the error representation, and the Cauchy-Schwarz inequality we 
get for all v 6 VD: 

(n(Uh), v) -- f a  a (e) .  e(v) < ]lu(e)lllle(v)[[ < ~*ll~ll,}l~ll,. 

The constant c* only depends on the largest eigenvalue of the matrix C in the material 
law. This estimate and the definition of IIR(uh)ll-, imply that IIR(~h)ll-, < ~*ll~ll,. 
From the positive definiteness of C and from Korn's inequality we conclude on the 
other hand that 

The constant cl only depends on the smallest eigenvalue of C; the constant c. in addition 
depends on 12 and on F D. This estimate and the definition of IIR(u,)ll-, yield the 
estimate c.llelll _< [[R(uh)ll-1. Combining both estimates of HR(uh)ll_, we finally arrive 
at 

~,11~11, _< IIn(uh)ll-~ _< c*llelll. (8) 
I.e., the energy norm of the error is bounded from below and from above by a dual norm 
of the residual of the finite element solution. Since, by definition, R(uh) only includes 
the given data f and tN and the computed finite element solution Uh, its norm may 
be used as an a posteriori error estimator. Unfortunately, the norm [IR(uh)]]_l is not 
directly amenable to numerical calculations. Its computation would require the solution 
of an infinite dimensional variational problem. Most a posteriori error estimators try to 
approximate ]]R(uh)]]-I by quantities which are much easier to compute. 
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6. A R E S I D U A L  E R R O R  E S T I M A T O R  

Since Vh C VD equations (2) and (3) imply Galerkin orthogonality, i.e. 

(R(uh), Vh) "- 0 VVh e Vh. 

Since Ihv E Vh for all v E VD, this in particular yields 

(R(uh),V) "- (R(uh), v -- bY)  Vv E YD. ( 9 )  

Next, we derive an L2-representation of R(uh) which originally was defined as an 
element of a dual space being "larger" than L 2. To this end we start from equation (7) 
and perform integration by parts elementwise. This yields for all v E VD 

KETh EEs 
(i0) 

where 
RK(uh) := d iva (uh)+  f ,K E Th, 

--JE(nE" a(uh)) ,E  E s (11) 
RE(Uh) "= tN -- n . a(uh) ,E  E. ~h,N, 

0 , E E s 

This is the L2-representation of R(uh). Note that 
RK(Uh), K E 7"h, is the elementwise residual of uh w.r.t, the differential equation (la), 
RE(Uh), E E Eh,N, is the residual of uh w.r.t, the traction boundary condition (lc), 
RE(Uh), E E s is the interelement-jump of that trace operator that associates the 

weak formulation (2) with the strong formulation (1). 

Now, we consider an arbitrary v E VD with I[v][1 = 1. Equations (9) and (10), the 
error estimates (5), and the Cauchy-Schwarz inequality then yield the estimate 

(R(u~ ), ,) =(R(u~),, - hv) 

<~C{ E h2K]]R'K(~h)]]~" -[" E hE][RE(~th)][2E} 1]2][~]]1" 
KETh E~.s 

Here, the constant c only depends on the shape parameter c7". For abbreviation, we set 

~R,K := { h~~ )ll2K Jr 

{E fir := r/~, K 
KET'h 

~Eh E[IRE(Uh )[[~: } '/2 
EEs (12) 

where fiE = �89 if E E s and fiE = 1, otherwise. Then the above estimate and the 
definition of [[R(uh)ll-~ imply that [IR(uh)[l_l <_ crtR. Together with the first inequality 
in (8) this yields the following upper bound on the error 

I l e l l ,  _ c:'c~R. (13) 
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In order to establish the converse estimate, we denote by fh and t N,h some finite 
element approximations of  jr and t N. For.. example, these may be piecewise constant. 
We then define residuals RK(uh) and RE(uh) as RK(uh) and Rs(uh)  with f and tN 
replaced by fh and t N,h, respectively. Consider an arbitrary element K E Th and an 
arbitrary edge or, if n = 3, face E of K. Inserting the functions wK := ~k'RK(uh) and 
wE := ~hERE(Uh) as test-functions in equation (10) on arrives at the following lower 
bound on the error 

,TR,~c _< c{ll~ll,;o,,~ + ~ hK, IIS- ShlIK' + 
K'Ctatc 

Y~ h~/=lltN -- tN, hllE}. (14) 
EEg(K)ns 

The constant c depends on the constant c* in inequality (8), the shape parameter c7", 
and the polynomial degree of the functions fh, iN, h, and of those in VD. The second and 
third terms on the fight-hand side of estimate (14) only depend on the given data and 
are usually higher-oder perturbations. 

In conclusion, r/R ~lields, up to higher order perturbation terms, global upper and local 
lower bounds on the error of the finite element solution. 

7. E R R O R  E S T I M A T E S  B A S E D  O N  T H E  S O L U T I O N  O F  A U X I L I A R Y  
L O C A L  P R O B L E M S  

The residual error estimator of the previous section tries to approximate the dual norm 
llR(uh)][-1 of the residual R(uh) by a suitable L2-representation of the residual. The 
estimators which we will describe now try to lift the residual into a subspace of H1(ft)" 
by solving suitable local discrete problems similar to the original problem (3) and by 
evaluating the energy norm of the solutions of these local problems. 

We start with an estimator which originally was introduced by Babu~ka and Rhein- 
boldt [2, 3]. Consider an arbitrary vertex z0 E A/'h,~ N Afh,N and keep it fixed in what 
follows. With z0 we associate a finite element space 11=0 on fox0 such that its elements 
vanish on aw=o\rN and in all vertices contained in to=0 and are continuous, piecewise 
polynomials of a sufficiently high degree (this condition will be made more precise later 
on). Then the following auxiliary problem admits a unique solution: Find u= 0 E Vx0 
such that 

f a(U=o).,(v)= f f.v+ f t~ . . v - f  a(~h)'~(v) 
t"= o W=o rN h a w =  o w= o 

w e V=o. (zs) 

Set 

,vO.=o "-II=(u=,)ll~,.,, ,7o : -  { E 2 }1/2 
l?o,t . ( 1 6 )  

= e.,%,n u.,%,~, 

This will be the error estimator. Problem (15) can be interpreted as a discrete elasticity 
problem on w= 0 with load jr, traction t N on aw= 0 f3FN, and displacement uh on 0oJ= 0 \F  N. 



263 

In order to see that  r/D yields upper and lower bounds on the error e = u - uh, 
we first observe that the right-hand side of equation (15) is equal to f~-0 a ( e ) .  e(v).  

Inserting u~ 0 as a test-function v in (15) therefore immediately yields 

L <,(u:o). L .:(u,:)_< 
I O  I 0 

c" The constant c only depends on and hence the lower error bound 7?D,xo <_ yilelil;,o,.. 
the smallest eigenvalue of the matrix C in the material law. Note, that  this estimate 
holds without any restriction on the polynomial degree of the functions in Vx0. 

In order to show that r/D also yields upper bounds on the error, we must specify the 
condition that  the polynomial degree of the functions in Vx0 is sufficiently high. More 
precisely, we assume that  V~ 0 contains, for each K C wx. and each E E Ch having x0 as 
a vertex, the functions w g  and WE of the previous section. 
In order to better understand this condition, assume, e.g., that we approximate problem 
(1) by bilinear finite elements on a quadrilateral mesh in ]R 2. Then, Vz0 must have at 
least two degrees of freedom for each K C 7"h contained in wx0 and each E E Eh having 
x0 as a vertex. Since in the generic case wx0 consists of four quadrilaterals, problem (15) 
is a linear system of equations with 16 unknowns. 
One can then prove that,  up to higher order perturbation terms,/70 yields global upper 
and local lower bounds on the error. Moreover, 770 is equivalent to ~R, i.e., up to higher 
order perturbation terms and multiplicative constants, which do not depend on h, each 
quantity gives upper and lower bounds on the other one. 

Next, we consider an estimator which originally was introduced by Bank and Weiser 
[4]. Consider an arbitrary element K E 7"h and keep it fixed in what follows. We associate 
with K a finite element space VK on K such that  its elements vanish on OK N FD and at 
the vertices of K and have a sufficiently high polynomial degree (this condition, again, 
will be made more precise later on). Then the following auxiliary problem admits a 
unique solution: Find u K E Vh- such that  

f f f 
] a(UK) " e(V) = / RK(Uh)  " V "k- ] RE(Uh) " V Vv 6 VK. 
JK JK JO K\rD 

(:7) 

Set )'" 
 N,K "= II ( K)LI , : =  . ( 1 8 )  

K ETh 

This will be the error estimator. Problem (17) may be interpreted as a discrete elasticity 
problem on K with load R1v(uh), traction RE(uh)  on OK\FD,  and zero displacement 
on OK f) r D. 

Inserting, u g as a test function v in equation (17) and using the scaling properties 
of u,~- which are due to its vanishing nodal values, we get the estimate YN, K <_ cya, g 
with a constant c which depends on c7" and the lowest eigenvalue of the matrix C in 
the material law. Combining this estimate with inequality (14) shows that ,  up to higher 
order perturbation terms, rlN,g yields a lower bound on the energy norm of the error 
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on W K. This holds without any condition on the polynomial degree of the elements of 
vK. 

In order to establish upper bounds on the error, we must once more specify the 
condition that the polynomial degree of the functions in V~ is sufficiently high. More 
precisely, we assume that the functions WK and WE, E E C(K)\~h,D, are contained in 
VK. If, e.g., we approximate problem (1) by bilinear elements on a quadrilateral mesh 
in lR 2, this means that Vh" must have at least two interior degrees of freedom plus 
two degrees of freedom for each edge of K which is not part of the Dirichlet boundary 
FD. Thus, in the generic case, problem (17) is a linear system of equations with 10 
unknowns. Since the functions wE and wK are contained in VK we may procede as 
for r/D and conclude that ~N yields global upper and local lower bounds on the error. 
Moreover, YN is, as YD, equivalent to YR. 

8. H I E R A R C H I C A L  E R R O R  E S T I M A T O R S  

Consider a finite element space Wh which satisfies Vh C Wh C VD and which either 
consists of higher order elements or corresponds to a refinement of Th. If, e.g., Vh consists 
of bilinear elements on a quadrilateral mesh in ]R ~, Wh may either consist of biquadratic 
elements on the same mesh or of bilinear elements on a refined mesh which is obtained 
by cutting each quadrilateral into four new ones by connecting the midpoints of edges. 
Denote by wh E Wh the unique solution of problem (3) with Vh replaced by Wh. Assume 
that the following saturation assumption holds: There is a constant fl with 0 < fl < 1 
such that 

Ilu - whll~ < ~llu - ~hll,. ( 1 9 )  

From the saturation assumption (19) and the triangle inequality we immediately con- 
clude that Huh - whlll yields upper and lower bounds on the energy norm of the error 
u - uh with amplification factors (1 - / 3 )  -1 and (1 + 13), respectively. Note, that, in 
contrast to the previous sections, both bounds are global ones. 

Thus, the energy norm of uh - w h  could be used as an error estimator. This device, 
however, is not efficient since the computation of wh is at least as costly as the one of 
uh. In order to obtain a more efficient error estimation, we use a hierarchical splitting 
Wh = Vh + Zh and assume that the spaces Vh and Zh are nearly orthogonal, i.e. there 
is a constant 3' with 0 < 3' < 1 such that the following strengthened Cauchy-Schwarz 
inequality holds 

I fn <'YIl (v)llll (z)ll w e vh,  e (2o) 

A strengthened Cauchy-Schwarz inequality holds true if, e.g., Vh and Wh consist of 
bilinear and biquadratic elements, respectively. 
Denote by zh E Zh the unique solution of 

f O'(Zh)'~(~h)--fnf'~h-l-fF N tN. ~h - fn a(uh). ~(~h) V~h E Zh. 
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From the definitions of Uh, wh, and zh and from the strengthened Cauchy-Schwarz in- 
equality we infer that Ilzhll~ yields upper and lower bounds on II=h - w n l l ,  and, conse- 
quently, on the energy norm of the error. Thus, it can be used as an error estimator. 
At first sight, the computation of Zh seems to be cheaper than the one of Wh since the 
dimension of Zsi is smaller than that of Wh. It, however, still requires the solution of 
a global system and is therefore as expensive as the calculation of Uh and wh. But, in 
most applications the functions in Zh vanish at the vertices of Th. This in particular 
implies that the stiffness matrix corresponding to Zn is spectrally equivalent to a suit- 
ably scaled lumped mass matrix. Therefore, zh can be replaced by a quantity z~, which 
can be computed by solving a diagonal linear system of equations. 
More precisely, on Zh there is a bilinear form b such that the corresponding stiffness 
matrix is diagonal and such that 

Aliffh 112, --< b(ffh, Ch) ~ AIIc~h 11,2 V~h E Zh (21) 

holds with constants 0 < A < A that are independent of h. Let z~, E Zh be the unique 
solution of 

b(z~,,~h) -- f n f  "~h A- s  tN. ~h -- f~ o(uh)- e(r V~a E Zh. (22) 

The definitions of Zh and of z~, and inequality (21) then imply that IIz?,ll~ ~/ields upper 
and lower bounds on the energy norm of the error. Moreover, problem ( ~ )  cart be solved 
element by element. 

9. A V E R A G I N G  T E C H N I Q U E S  

In [21, 22] Zienkiewicz and Zhu proposed an error estimator which is based on an 
averaging or postprocessing of the computed stress tensor a(uh). In order to explain 
the underlying idea we resort to the simplest case and assume that Vh consists of linear 
elements on a triangular mesh. The stress tensor then is piecewise constant. Suppose 
that we dispose of an approximation S(uh) of a(u) such that 

II~r(~) -- s(~h)ll -< # l l ~ ( u )  - ,~(~h) l l  

holds with a constant 0 _< fl < 1. Then by the triangle inequality II~(~h)-- S(~,h)ll yields 
upper and lower bounds on the energy norm of the error and may be used as an error 
estimator. 

The idea for computing S(uh) is to project a(uh), which is piecewise constant, onto 
the space of continuous, piecewise linear stress tensors. In order to obtain an easy-to- 
compute projection it is performed with respect to a lumped mass matrix. 
More precisely, denote by S~ '-1 and S~ '~ the spaces of all discontinuous resp. continuous, 
piecewise linear stress tensors corresponding to Th. Since a(uh) is piecewise constant it 
is contained in S~ '-1. On S~ '-1 we define a mesh-dependent scalar-product by 

KETh zEAl(K) 
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Here, IKI is the area of K and 'PIK(z) is the value of 7~ restricted to K at the vertex z. 
~,1,0 Now, S(uh) is defined as the ( . . )h-project ion of a(uh) onto ~'h : 

= Vrh E S~ '~ (23) 

Since the quadrature rule fir ~ " ~ ~-,=e~(K)r exact for all linear functions, we 
deduce from (23) by inserting the corresponding shape function that, at a given vertex, 
S(uh) is the average of the a(Uh) on the neighbouring elements: 

S ( " h ) ( = )  = 
KCw= 

Vx e Afh. (24) 

The ZZ-estimator of Zienkiewicz-Zhu is now given by 

: =  ~Z,K} 1/2 
KE'Th 

'TZ, K : -  IiS( h) - 

It can be shown (el. [13] and Section 1.5 in [14]) that yz yields upper and lower bounds 
on the energy norm of the error. 

When using bilinear elements on quadrilateral meshes one may retain the above 
expressions for S(uh) and r/z with a(Uh)[K replaced by a(uh)(Xg), where x g  is the 
barycentre of K. 

10. T H E  E Q U I L I B R A T E D  R E S I D U A L  M E T H O D  

In [11] Ladev~ze and Leguillon proposed a technique for a posteriori error estimation 
which is based on a dual variational principle. In what follows we will shortly sketch the 
underlying idea. For a more detailed presentation we refer to [11] and [1]. 

We define a norm and a quadratic functional on VD by 

IIIvlll : =  S ( v )  : =  - (R(u , , ) , v ) .  

From the definition of ]H.]]],J, and R(uh) we conclude that -�89 2 = J(e) <_ J(v) 
for all v ~. VD. Hence, the energy norm of the error can be computed by solving the 
variational problem J(v) ; min in VD. 

Unfortunately, this is an infinite dimensional minimization problem. In order to 
obtain a more tractable problem we want to replace VD by the broken space Vz := 
{v e L2(~)"  : VIK E H1(K)" VK ~. Th, v = 0 on FD}. Obviously, a function v e VT" 
belongs to VD if and only if JE(v) = 0 for all E E gh,n. It can be proven that the space of 
Lagrange multipliers corresponding to this constraint is given by M := {A E L2(f~) "x"  : 
div A E L2(12)n,n �9 A = 0 on FN}. 

Next, we must extend the residual R(uh), which is a linear functional on Vo, to a 
linear functional on the larger space VT. To this end we associate with each E E Eh 
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a smooth vector field gE. The choice of gE is arbitrary subject to the constraint that  
gE = tNIE for all E E g'h,N. The particular choice of the fluxes gE for the interelement 
boundaries will later on determine the error estimation method; for E C FD the value 
of gE is completely irrelevant. Once we have chosen the gE's we can associate with 
each element K E 7"t, a vector field gg defined on OK such that Ege'Ta fol( gI<" v = 
~-,EeZh fE gE" JE(v) for all v E VT". Here, we use the convention that  JE(v) "= v if 

E C F. We then define the extension R(uh) of R(uh) to V~- by setting for all v E VT 

KETh K EEgh,a 

Moreover, there is a # ,  E M such that the last term in (R(uh), v) can be identified with 
#,(v). Now, we define a Lagrangian functional on V~r • M by 

~"(~3'12) :~- "2 E O'(V) " 6(?3) -- (Rh(Uh) ,13)  -- t l (V) .  
K E"]'h 

Since M is the space of Langrange multipliers for the constraint JE(v) = 0 we conclude 
that  

1 
-~[][ell[2= inf J ( v ) =  inf sup s  sup inf f..(w,#). 

vEVD wEVT- pEM gEM wEVT- 

Hence, we get for all # e M that -�89 2 >_ infwEVr s The particular choice 
# = #,  therefore yields 

Ii1 1112 < - 2  inf J g ( w g ) ,  (25) 
KET"h wKEVK 

where 

Each choice Of WK E VK, K E Th, will yield a lower bound for the energy norm of the 
erTor. 

Thanks to (25) the computation of the energy norm of the error is reduced to a 
family of minimization problems on the elements in 7"h. However, for each K E Th, the 
corresponding variational problem still is infinite dimensional. In order to overcome this 
difficulty we first rewrite Jg .  Using integration by parts we see that 

l f K  f g  fO ^ 
j (w) = o ( w )  . e ( w )  - R K ( u h  ) . w - R (u. ) . w 

K 

where Rg(uh) := gK -- nh''  a(uh). Given K E Th we set 

Wg "= {r E L2(K) " x " "  d iv r  E LU(K)",div r = Rh' (Uh) ,ng 'v  = RK(uh)}. 
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The complementary energy principle then tells us that 

inf JK(w)= sup 1 f g  
w E V K  r E W K  - ~  T �9 T.  

Together with (25) this implies that  

Illelll 2 < - 2  E sup 1 
K 6. Th rK E W K  - -  "2 7"K �9 7"K . 

Hence, any choice of rK ~_. WK, K E Th, gives an upper bound for the energy norm of 
the error. This is the announced dual variational principle. 

The concrete realization of the equilibrated residual method now depends on the 
choice of the rt~-'s and on the definition of the gK's. Ladev~ze and Leguillon [11], e.g. 
chose gtc to be the average of n.  a(uh) from the neighbouring elements plus a suitable 
piecewise linear function on OK. The functions rK are often chosen as the solution of a 
maximization problem on a finite dimensional subspace of WK corresponding to higher 
order finite elements. With a proper choice of gK and rK one may thus recover the 
Bank-Weiser estimator r/N of Section 7. 

11. C O M P L E M E N T S  

The quality of an error estimator is often measured by its e~ciency indez, i.e. the ratio 
of the estimated versus the true error. It is called efficient if its efficiency index together 
with its inverse remain bounded for all mesh-sizes. It is called asymptotically ezact if its 
efficiency index tends to 1 when the mesh-size converges to zero. The estimators consid- 
ered in the previous sections are efficient regardless of the mesh-topology. Asymptotic 
exactness, however, is in general based on super-convergence and only holds for particu- 
lar mesh-topologies. The Bank-Weiser estimator r/iv of Section 7, e.g., is asymptotically 
exact on a Courant triangulation but not on a criss-cross triangulation. On a uniform 
quadrilateral mesh r/N is also asymptotically exact. This property, however, is lost when 
the mesh is slightly distorted in a non-uniform way. 

The residual error estimator of Section 6 consists of two contributions: the element 
residuals and the jump-terms across interelement boundaries. On a uniform square 
grid in ]R 2 it can be shown that  either the element residuals or the jump-terms are 
dominant depending on whether the polynomial degree of Vh is even or odd (cf. [19, 
20]). This result strongly depends on the special structure of the mesh. For simplicial 
finite elements a similar result is not known. Recently, however, it was shown that for 
linear elements on a triangular grid the element residuals may be disregarded (cf. [8]). 

In the previous sections we have only considered energy norm error estimates. Some- 
times, however, one is more interested in estimating the error with respect to another 
norm, e.g. the L2-norm or the maximum-norm, or with respect to a given functional, 
e.g. the shear stress in a particular point or region. This task can often be achieved by 
combining the previously used techniques with an appropriate duality argument (of. [5, 
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12, 14, 16]). For example, one can thus show that  hKrlR,K yields upper and lower bounds 
on ][u - uh]l. The same holds for the Babu~ka-Rheinb01dt and Bank-Weiser est imators 
of Section 7 provided one replaces in definitions (16) and (lS) the energy norm by the 
corresponding L2-norm. In a similar way one obtains maximum-norm error estimates 
by a duality argument and sharp a priori estimates for the Green's function. 

12.  T H E  E Q U A T I O N S  O F  N O N - L I N E A R  E L A S T I C I T Y  A N D  T H E I R  DIS-  
C R E T I Z A T I O N  

Formally, the elliptic system under consideration is still given by equation (1). But, now, 
the matrix C in the material law, the external force f ,  and the boundary traction t N 
may depend on the displacement u and the strain tensor e(u). 

To simplify the presentation, we will assume in what follows that the boundary 
displacement U D vanishes. Then the standard variational formulation of problem (1) is 
to find u E X such that  

:= f . , ( , )  - f f . o - f . , = O Vv E Y 
fl fl FN 

(26) 

where X = W~'v(~)  n "= {v e W"n(Q)  n "v  = 0 on r,~} and Y = W~'r (~)"  : -  {v E 
w l ' r ( ~ )  n : v = 0 on FD}. The Lebesgue exponents 1 < p,r  < c~ depend on the 
non-linearities. In the simplest ease we will have p = r = 2, i.e. X = Y = VD. 

Any finite element discretization of problem (26) can now be written as 

(Fh(uh), vh) = 0 Vvh ~ r~. (27) 

Here, Fh : Xh ---* Yh* is a continuous non-linear mapping between a finite element space 
Xh approximating X and the dual of  a finite element space Yh approximating Y. In 
the simplest case we will have Xh = Yh and (Fh(uh),vh) = ( r (uh ) , vh ) .  In general the 
definitions of Fh, Xh, and Yh will have to take into account variational crimes such as 
numerical quadrature, selected reduced integration etc. 

13. E Q U I V A L E N C E  O F  E R R O R  A N D  R E S I D U A L  F O R  T H E  N O N - L I N -  
E A R  P R O B L E M  

Let u E X and uh E Xh be a solution of problem (26) and an approximate solution 
of problem (27), respectively. Note that  in general problems (26) and (27) will have 
several solutions and that  we take into account additional errors which are committed 
when solving the discrete algebraic problem (27) only approximately by some iterative 
method, e.g. Newton's method. 

We want to derive computable upper and lower bounds for ]]u-uh]]x.  For linearized 
elasticity we have seen in Section 5 that  the first and essential step in achieving this goal 
consists in establishing an equivalence between ]]u - uhUx and a suitable dual norm of 
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the residual of uh. This is also the case for the present non-linear problem. We therefore 
assume that u satisfies the following two conditions: 

(1) u is a regular solution of problem (26). I.e. the derivative DR(u)  of F at u is a 
bounded linear map of X onto Y* with a bounded inverse DF(u)  -1. 

(2) D F  is locally Lipschitz continuous at u. I.e. there are numbers R > 0 and fl > 
0 such that [[DR(u)-  DF(v)[[c(x,v.) < fl[[u- vl[x holds for all v q X with 
Ilu- vllx < R. 

Condition (1) is the non-linear analogue of estimate (8) which means that the weak for- 
mulation of problem (1) defines a bounded linear operator of VD into its dual having a 
bounded inverse. Condition (1) excludes limit, turning, or bifurcation points. The treat- 
ment of those singular solutions requires some additional techniques which we cannot 
present here (cf. Section 2.2 of [14]). Condition (2) is  not needed for linear problems 
since then the mapping u --. DF(u) is constant. It requires extra smoothness on the 
data C, f, and tN such as, e.g., twice continuous differentiability. Note that for a linear 
operator A" X ---} Y* its norm is given by ]]A[[~(x,v.) = supllvllx= 1 supll~llr= 1 (Av, ~p). 

Recalling that F(u) = 0 and using the identity 

(DF(u)(v - u), ~) = (F(v), ~) +/o* ([DF(u) - DF(u + t(v - u))l(v - u), ~o)dt 

which holds for all v 6 X and ~0 6 Y and conditions (1) and (2), one can prove (cf. 
Proposition 2.1 in [14]) that the estimate 

1 
_2][DF(u) ]l~:(x,v.) ]]F(t,)]lv . - 1  _< [i u _ v[]x <_ 2][DF(u)-lHr.(y.,x)[IF(v)l[y. 

holds for all v e X with U u -  v]]x <_ Ro := min{R , B-l][DF(u)- l]]~y . ,x  ) , 
IIDF(u)ll cx,v.  } 

Hence, if [ [u-  uaJ[x <_ Ro, the error JJu- uallx is bounded from above and from 
IIF( h)llv- = linear problems this is 

nothing else than the dual norm IIR( h)ll-  of th~ residual. The amplification fac- 
tors in the above equivalence betweeen error and residual are the operator norms 
IfDF(u)ll  xy.) IIDF(u)- ll  y.x  of the derivative of F at u and of its inverse. 
Note that IlDF(u)-~Hctv.,x) = {infll,,llx= 1 supll~llr= l (DF(u )v ,~ )} - l .  The product 
[]DF(u)[]s162 is the condition number of the linearization of F 
at u. It measures the sensitivity of the non-linear problem (26) with respect to small 
perturbations and is independent of the particular finite element scheme. Thus, inde- 
pendently of the finite element discretization, there will be a large gap between the upper 
and lower bounds when the non.linear mechanical system is ill-conditioned, i.e. if it is 
very sensitive to small perturbations. 

Note that the above equivalence between error, and residual only holds if the finite 
element solution uh is sufficiently close to the true displacement u, i.e. if I[u-uh][x <_ Ro. 
This is not surprising since we are dealing with a non-linear problem which may have 
a large variety of solutions. For linear problems which are uniquely solvable this extra 
condition is of course not needed. 
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14. A R E S I D U A L  E R R O R  E S T I M A T O R  F O R  T H E  N O N - L I N E A R  P R O B -  

L E M  

In Section 6 we have seen that the dual norm of the residual can be bounded from 
below and from above by a weighted sum of element residuals and of jump-terms across 
interelement boundaries. The main tools for establishing this were an L2-representation 
of the residual, local error estimates for a quasi-interpolation operator, and suitable 
local cut-off functions. This technique can be embedded in a general framework which 
then allows the treatment of non-linear problems. We do not have the place to present 
this framework here. Instead we refer to Sections 3.1 and 3.3 of [14] and only present 
the final result. 

r the dual Lebesgue exponent of r. In analogy to (12) we then set Denote by q := 

~Tn,K "= { h~ /K IRK(uh )lq "b E ~EhE/EIRE(Uh)]q}I/q 
EEg(K) 

, ~ R  := YIR,K 
KETh 

Note that, in evaluating RK(uh) and Rs(uh) according to (11), one has to use the 
corresponding non-linear material law. Then we obtain the following a posteriori error 
estimates: 

I1 -  hllX + sup (F(uh) - Fh(Uh),~O,) + sup (Fh(Uh),~h)} (28) 
,,,,h e vh ~ ' h e r h  

II ~h  II Y = t  U'Ph II y == 

,7-,K - (29) 

The constants cl and c2 depend on the shape parameter c7", IIDF(u)llc(x,v.), and 
[IDF(u)-lllc(y.,x). The second term on the right-hand side of estimate (28) is the 
consistency error of the discretization. It can be bounded a priori and it vanishes when 
using a conforming finite element discretization without numerical integration. The third 
term on the right-hand side of estimate (28) is the residual of the algebraic system (27). 
It takes into account errors which stem from an approximate solution of (27) with an 
iterative method. Both perturbation terms were not present in the linear case since 
there we assumed that we use a conforming method with exact integration and that we 
exactly solve the discrete problem. 

Under some additional assymptions about elliptic regularity (cf. [16] and Remark 
3.15 in [14]) one can prove estimates similar to (28) and (29) also for the LP-norm of 
the error. One then has to replace rIR,K and ~/n by h/cTin,lr and {~Ir hqK T1R,~C } q  l/q, 
respectively. 

15. E R R O R  E S T I M A T O R S  B A S E D  O N  T H E  S O L U T I O N  O F  A U X I L I A R Y  
L O C A L  P R O B L E M S  F O R  T H E  N O N - L I N E A R  P R O B L E M  

The Babftska-Rheinboldt error estimator r/D of Section 7 can be generalized to non- 
linear problems (cf. Sections 2.3 and 3.3 in [14]). Using the notations of Section 7 it is 
given by 

=E.,V'h. nu.,%, n 
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where u~ o E V~ o is the unique solution of 

L "<,,o),<v):L ,.,+i, 
zO z 0 H t'~(9oJz 0 

t N  . v - f , ,  o ( u h )  . 
z o  

Vv E Vxo. (30) 

The differences with the linear problem treated in Section 7 are: 

(1) The L~-norm in (16)is replaced by an LP-norm. 
(2) As in (15) we use on the right-hand side of (30) the original-  now non-linear - 

material law. But on the left hand side of (30) it is replaced by the simpler linear 
material law ~(v)ij = ~ l < k  t<, C(uh(xo), 7rotT(Uh))ijkl~(V)kl. Here, ~oa(uh) is 
some averaging of the possibTy'd'i'scontinuous stress tensor a(uh) over neighbouring 
elements of x0. If a(uh) is continuous we may take 7roa(uh) = a(ua)(Xo). Thus, 
for the auxiliary local problem (30) the non-linear material law is linearized and 
its coefficients are frozen to appropriate constant values. 

It can be proven (cf. Proposition 3.14 in [14}) that r/D yields upper and lower 
bounds for [ l u -  uhiix similar to estimates (28) and (29). Similarly, one can prove 
that liux0iiL,(,,=0) yields upper and lower bounds on the LP-norm of the error (cf. [16] 
and Remark 3.15 in [14]). 

16. C O M P L E M E N T S  ON T H E  N O N - L I N E A R  P R O B L E M  

The constants relating the estimated error with the true error, i.e. the constants cl and 
c2 in estimates (28) and (29), consist of two multiplicative ingredients: 

(1) A factor cz which only depends on the shape parameter c7" and which stems from 
local inverse estimates (for lower bounds on the error) or local interpolation error 
estimates (for upper bounds on the error). 

(2) A factor cp which is problem dependend and which essentially is [[DF(u)Ur..(x,y. ) 
(for lower bounds on the error) or [[DF(u) -1 ]]s (for upper bounds on the 
error). 

The factor cz is relatively harmless. In principle, it can be estimated explicitely (cf. [15]) 
and is of moderate size. The factor cp, on the other hand, is much more dangerous. It 
is related to the condition of the variational problem, i.e. its sensitivity with respect 
to small perturbations. Since it depends on the unknown solution u of the variational 
problem it cannot be computed explicitely. Often only crude a priori estimates for cp 
are available which for complex problems are nearly useless due to their unrealistic size. 
Hence, one must try to get more realistic estimates of this constant. This is an important 
point of current research (cf. [5, 10]). Many approaches try to replace {IDF(u)iir..(x,y.) 
and I]DF(u)-liir.(y.,x) by the extreme eigenvalues of DFh(uh) and to estimate these 
parallel to the computation of the numerical solution uh by solving an appropriate dual 
problem. 
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A new technique for a posteriori  error control and adaptive mesh design is presented for 
finite element models in elasticity and elasto--plasticity. It is based on weighted a posteriori 
error estimates for general error functionals which are derived by duality arguments. This 
approach was originally proposed in [6] as a natural extension of the ideas developed by 
C. Johnson, et al., [11] and [13], for adaptive finite element methods. The conventional 
strategies for mesh refinement in finite element methods are mostly based on a posteriori 
error estimates for the global energy norm in terms of local residuals of the computed 
solution. These estimates reflect the approximation properties of the trial functions by 
local interpolation constants while the stability property of the continuous model enters 
through a global coercivity constant. However, meshes generated on the basis of such 
global error estimates may not be appropriate in computing local quantities like point 
values or contour integrals and in the case of very heterogeneous or nonlinear material 
behavior. More accurate and efficient error estimation can be achieved by using suitable 
weighting factors which can be obtained numerically in the course of a feed-back process 
from the solutions of discretised dual problems. This general approach is discussed here 
for finite element models in linear elasticity and perfect plasticity. 

1. Introduct ion  

The fundamental problem in the flow theory of linear-elastic perfect-plastic material 
in classical notation reads 

d i v a = - f ,  e(6) = A : b  + A inf , ,  

A : ( r - a ) < 0  V r w i t h Y ' ( r ) < 0 ,  A : b = 0  i n n ,  

u = O  on I "D ,  a . n = g  onrlv. 
(1) 

where a and u are the stress tensor and displacement vector, respectively, and a stress- 
free initial state a(0) = 0 is assumed. This idealized model describes the deformation 
of an elasto-plastic body occupying a bounded domain f~ C R d (d = 2 or 3) under the 
action of a body force f and a surface traction g along FN. Along the remaining part of 

*This work has been supported by the German Research Association (DFG) under contract no. RA 
306/8-2, Institut fiir Angewandte Mathematik, Universitiit Heidelberg, INF 294, D-69120 Heidelberg, 
Germany 
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the boundary, FD = 0f~ \ rN ,  the body is fixed. We assume a quasi-static process, i.e., 
acceleration effects are neglected. Further, the displacement u is supposed to be small, 
so that the strain tensor can be written as e(u) - �89 + Vur). The material tensor A 
is assumed to be symmetric and positive definite. The plastic growth is denoted by A, 
and ~" is the yon Mises yield function, Jr(r) = I rDI-  a0, with a0 > 0 and r D being the 
deviatoric part of r. For the choice a0 = oo, (1) reduces to the standard problem in linear 
elasticity. 

This problem is to be solved by the finite element Galerkin method on adaptively opti- 
mized meshes. By variational arguments, we derive weighted a posteriori error estimates 
for controlling arbitrary functionals of the error. This new approach leads to effective 
strategies for designing economical meshes and to practically useful bounds for the error. 

The implementation of the finite element code for the test computations in this paper is 
based on the object-oriented FE package DEAL (Differential Equations Analysis Libary)[5] 
which enabled our group to do studies on adaptivity for various kinds of problems (see, 
e.g., [4],[15],[19] and [7]). Special thanks go to Guido Kanschat who started together with 
the second author in 1991 in Bonn the developement of this software project. 

2. Variat ional  formulations of  the plastici ty problem 

For applying a finite element method, one has to rewrite problem (1) in a variational 
setting. Typically the behaviour of plastic materials is an evolutionary process over a time 
interval I := [0,T], where the load functions may be given in the form / = / ( t , x ) ,  g - 
g(t, x), t 6- I,  z 6- f~. We introduce the function spaces 

L2(~)d := L2(n, iRd), 2 d• L2(~ ll~d• L (fl) ,v~ := ' --,u~,' 

V := {v 6- Hl(n,  Rd), v = 0 on rv}, 
L2(D~ d• divr  6 L2(f~)d}, H div :={r6_ ~--,,~m, 

HI ally {r 6. H air div r f in f~, r n g on rt~} ,  ,g : =  ) - -  = �9 = 

and define for any such function space E the admissible set as II(E) = {r 6- E,.T(r) <_ 0}. 
Further, (., .) and II" II denote the L2-inner product and norm over ft and (.,.)rN is the 
L2-inner product over the curve segment rN. Then, following [14], we can state the dual- 

m ixed  formulation of (1): Find a pair {v,o} �9 I ~ L2 (~ )  d x rl(r~d~ with a(0) = 0, 
satisfying 

(Ah, r - a) + (v, div r - div a) >__ 0 

- (d iv  a, ~o) = (f, ~o) V~o 6- L2(fl) d, 

Vr E 1711 r4divx 
k*** ,0  1~ 

(2) 

where v = d is the displacement velocity and t h e ,  in ~div indicates that the correspond- atat , !  0 

ing value is not fixed. Integrating by parts in (2) leads to the primal.mixed variational 
formulation" Find a pair {v, a} �9 I -+ V x II(L 2 dxd (f l ) ,~)  with a ( 0 ) -  0, satisfying 

(A#, r - a) - (e(v), r - a) > 0 

(~, ~(~)) = (I,~) + (g,~)r~ 

VT 6 II(L 2[fl~dxd x--/sym)~ 
e v. (3) 
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Neglecting the rate dependence in (3), we obtain a material behaviour of Hencky-type 
(c.f. [10]). This means that a pair {u, a} of displacement and stress is sought satisfying 

(Aft,  7" -- o') -- (g (u ) ,  T -- O') ~ 0 VT 6. I I ( L  2 (~).ym),dxd 

(a, e(tp)) - (f, ~) + (g, ~)rN V~ 6. V. (4) 

Examining (4), we see that a is just the projection of A-le(u) onto II(L2(fl)oum).d• In 
this note, we consider the case of the linear elastic isotropic material law 

a = 2pe D (u) + ~ div u I, 

with material dependent constants p > 0 and ~ > 0. Hence, observing the von Mises flow 
rule, (4) becomes 

a(u;tp) := (II(2peD(u)),e(tP)) + (~ divu, div~p) = (f, tP) + (g,~P)rN Vto 6. V, (5) 

where 

2peP(u) , if 12/~eD(u)l <ao,  
II(2peD(u)) := oo 6D(u ) if 12peD(u)l > ao. 

iL D(u)l ' 

Usually, in the plastic zone there holds ~ •• IH(eD(u))l, i.e., nearly incompressible material 
behaviour occurs. In this case, the relation between 6(u) and a becomes stiff causing a 
poor approximation behaviour for discretisations based on (5). One may account for 
this difficulty by introducing an auxiliary variable p := ~ div u which plays the role of 
a pressure. Then, introducing the pressure space Q := L2(f~), a pair {u,p} 6. Y x Q is 
determined by the saddle-point problem, see [21], 

(n(2peD(u)), e(~)) + (div ~o,p) = (f ,~)  -I-(g,~)rN Vtp 6. V, 
1 

(div u, q) - ~(p, q) = 0 V q 6. Q, (6) 

where, in the case Fo = Off, Q is supplemented by the condition (q, 1) = 0 . .  

3. T h e  l inear e las t ic  case  

First, we consider the linear-elastic case. The primal formulation obtained from (5) 
reads 

a(=, = (f,  + (g, v e v ,  (7) 
with the linear energy form a(., .) := (Ce(.), e(.)), where C := A -1. Starting from (7) the 
choice of finite element subspaces Vh C V is straightforward. Here we confine ourselves to 
the lowest-order approximation by linear or (iso-parametric) d-linear shape functions. The 
underlying meshes are assumed to satisfy the usual regularity conditions (shape regularity, 
cf. [8]) and to properly match the decomposition 0fl = FD U Fly. Further, in order to 
ease the refinement and coarsening process, hanging nodes are allowed, but only one per 
element edge. The width of the finite element mesh Th is characterised in terms of a 
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piecewise constant mesh size function h = h(x), 0 < h _< h0, where h x  := hlx = diam(K) 
and hm,, - maxr~rh {hr}. The discrete solutions Uh E Vh are determined by the equation 

~(~h,~h) = ( f , ~ , )  + (0 ,~ , )r~ V~h e Vh. (8) 

If problem (7) is sufficiently regular, we have the following well known a priori convergence 
result (see, e.g., [8]), 

- - = (h .~  (9) Ilu uhll + h.,.=ll<, <,hll 0 
where the discrete stresses are obtained locally in the form O'hl K = C6(Uh)l K. 

3.1. A posteriori  error es t imate  
Now, the a posteriori error analysis starts with selecting an error functional J(.) which 

is to be controlled. We assume that the corresponding dual problem 

a(~o, z) = J(~o) V ~o e V. (10) 

possesses a solution z 6 V. This is automatically satisfied if J(.) is well-defined on V. 
Taking ~o - e := u -  uh in (10) and using the usual Gahrkin orthogonality relation 
aCe, ~o) = O, ~o F. Vh, we obtain the error identity 

J(e) =aCe, z ) =aCe, z - zh), (11) 

with an arbitrary function Zh E Vh. Then, by element-wise integration by parts, it follows 
that 

J(e) = E {(f + d i v C e ( u h ) , z  - Zh)K -- �89 [CeCuh)],z -- zh)0U}, (12) 
KET~ 

where [C(e(uh))] denotes the jump of C(e(uh)) across the interelement boundary. On 
edges F belonging to the boundary part FN, we understand our notation in the sense that 
n'[Ve(Uh)]lr -- (n 'ee(uh)- -g) l r ,  in order to properly include the non-homogeneous surface 
traction. At this point, we have assumed that the domain fl is polygonal (or polyhedral) 
in order to ease the approximation of the boundary. In the presence of curved parts of 
the boundary 0fl the error formula (12) contains additional terms representing the error 
caused by the polygonal approximation of the boundary (see, e.g., [7] or [9]). In the 
tests presented below these terms are suppressed. From the error representation (12) we 
conclude the following theorem (see [17]). 

Theorem 3.1. Under the foregoing assumptions, the finite element scheme (8) admits 
the a posteriori error estimate 

I S ( u -  Uh)l < ~(uh) :-- ~ wK~K, (13) 
KETh 

with the local residuals OK al'~d weighting factors W K defined by 

e~ = (h~l l !  + divCe(uh)ll~ + �89 [ ce (= . ) ] l l ~ ) ' / ' ,  

{ ~ K  --'-- ( hr  - zhll~r + �89 - zhll~K) 
1/2. 
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For zh being an suitable local approximation of z, the weights WK in (13) can be 
estimated by 

wK _< C~,rh~cllV~zll~, (14) 

with certain interpolation constants Ci,r. Following the approach proposed in [6], in the 
a posteriori error estimate (13) the exact dual solution z is replaced by an approximation 
zh which is computed on the same mesh on which uh has been obtained. Accordingly, the 
weights wr are approximated by 

2 2 WK ~ ~K := Ci,rhK]Vhzh(xr)l,  (15) 

where XK is the midpoint of K and V~,~h are certain second-order difference quotients of 
~h approximating V2z. The local interpolation constants Ci,g essentially depend on the 
geometry of the elements K and vary in the range CI,K ~ 0.1 - 1. In the computational 
tests presented below, we have used the conservative value Ci,K = 1. Further, in the case 
that the functional J(.) is "irregular", i.e., if it is not properly defined on the solution 
space V, one has to work with a regularised functional J~(.) defined on V, such that 
[J~(u)- J(u)l ~ TOLL on each refinement level L. Otherwise, local over-refinement may 
occur. An example is the contour integral over normal stresses, discussed below. We 
remark that the explicit a posteriori error estimator of Theorem 3.1 may be combined 
with the locally implicit approach of Bank and Weiser [3] in order to better balance the 
two residual terms (see [2]). 

The weighted error estimate (13) will be compared against the traditional energy error 
estimate (see, e.g., [1] or [221) 

KETh 

with the local residuals 8r  as defined above. 

3.2. Numerica l  test  for the l inear elastic case 
The approach described above is applied for a model problem in linear elasticity em- 

ploying the two dimensional plane strain model (cf. [17]). A square elastic disc with a 
crack is subjected to a constant boundary traction acting on half of the upper boundary 
(see Figure 1). Along the right-hand side and the lower boundary the disc is fixed and 
the remaining part of the boundary (including the crack) is left free. This problem is 
interesting as its solution develops a singularity at the tip of the crack where a stress 
concentration occurs with an asymptotic behaviour of the form a ~ r -1/2 (expressed in 
terms of polar coordinates (r, 0)).  The material parameters are chosen as commonly used 
for aluminium, i.e., # - 80193.SN/mm2,t~ -- 164206N/mm 2 (see, e.g., [16]). For our 
tests, we consider the computation of the total normal stress over the clamped part of the 
boundary which is measured by the ("irregular") functional 

-- [ n. Ce(~). nds. (17) J(~) 
J r  D 

Three different mesh refinement processes are compared, where the solution on a very fine 
adapted mesh with about 200000 cells is taken as reference solution u,,! for determining 
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the relative error RelErr on coarser meshes, while Ratio is the overestimation factor of 
the error estimator, 

ReIErr := 
IS(un - I ,7(,,,,) 

i S ( u , . , l ) l  , R a t i o  := "i'.)'(uh - , , , , , ) 1  " 

The parameters L and N indicate the refinement level and the corresponding number of 
cells, respectively. In the computation the error functional J(.) has been regularised as 
described above. 

1) On a sequence of uniformly refined meshes, the weighted estimator (13) with the 
approximation (15) is evaluated. The results are shown in Table 1. 

Table 1 
The weighted error estimator on uniformly refined meshes (from [17]) 

L N 
1 256 
2 1024 
3 4096 
4 16384 
5 65536 

s(,,.) 
0.017080 
0.019528 
0.021137 
0.022161 
0.022802 

0.023850 I " 

Rel.Err Ratio 
0.0283 1.80 
0.0181 1176 ' 
0.0113 1.70 
0.0070 1.66 
0'.0043 1.62 

I .... I 

2) A sequence of refined meshes is generated on the basis of the energy-error estima- 
tor (16). The so-called fixed fraction strategy is used, i.e., in each refinement cycle the 
elements are ordered according to the size of the local error indicators and then a fixed 
fraction, here 30%, of all elements is refined resulting in about a doubling of the number 
N of cells. The results are shown in Table 2 and in Figure 2. The overestimation factor 
"Ratio" is stated, though the global energy-error estimator 71E(uh ) cannot be expected to 
give a reliable bound for the local quantity J( . ) .  

3) A sequence of refined meshes is generated on the basis of the weighted error estimator 
(13) with the approximation (15). This time the so-called fixed reduction strategy is 
used, i.e., in each refinement cycle the varying tolerance is reduced by a fixed factor 
to TOLL = 0.5r/(uh). Since, as mentioned above, the functional J(.) is irregular, it is 
regularised in computing the dual solution according to 

'f, : =  . .  r,  = {x e R',dist(x, ro) < ~e}, (18) 

with 6 = TOLL. The results obtained are shown in Table 2 and in Figure 2. 
In this test case the weighted estimator leads to slightly more economical meshes 

than the energy estimator but also provides a reliable (as well as efficient) bound for 
the error functional considered. We remark that the square-geometry used in this test 
is particularly favorable for the energy error estimator r/E as the necessity of properly 
resolving the strong crack-singularity dominates the computation of the localized quantity 
J(u). The superiority of our selective estimator over the energy-error estimator would be 
more pronounced if the distance between the corner and the support of J(.) were larger 
(see the examples in [7]). 
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Table 2 
Adaptive refinement based on the energy-error estimator (left) and the weighted error 
estimator (right) (from [17]) 

L N 
4 2659 
5 6193 
6 13423 
7 31336 
8 65332 

J(uh) 
0.020528 
0.021538 
0.022319 
0.022811 
0.023153 

Rel.Err 
0.0139 
0.0096 
0.0064 
o.0043 

0.0029 

Ratio L N Y(uh) 
0.79 4 2113  0.022157 
0.80 5 4435  0.022795 
0.84 6 8830  0.023198 
0.86 7 15886 0.023428 
0.90 8 29947 0.023593 

Rel.Err 
o.oo~0 
0.0044 
0.0027 
0.001'7 
0.0010 

, ,  

Ratio 
1.96 
1.92 
1.86 
1.79 
1.79 

g 

t t t t t  
' I 

, ,  

/////////// 

/ 
I 
/ 
/ 
/ 
/ 
/ 
/ 
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Figure 1. Geometry sketch of the test problem "square disc with slit" 

Figure 2. Finest meshes obtained by the energy-error estimator (left) and the weighted 
error estimator (right) (from [17]) 



282 

4. The elasto-plastic case 

Next, we consider the elasto-plastic case. As starting point for discretising problems of 
Prandtl-Reuss-type, we choose the primal-mixed formulation (3). Splitting the continu- 
ous loading process f ( t ) ,g( t )  into a sequence of incremental load steps, 

/" = /" -~  + k./0, g- = g.-1 + k.go, 

with pseudo-time step lengths k. := t ,  - t , - l ,  we obtain a sequence of Hencky-type 
problems, 

( A a " ,  r - a") - (Aa"-*  + k . e ( v " ) ,  r - a")  >_ 0 

(~",e(~)) = (/",~) + (g",~)r~ V~ e V, 
Vr E IIL2(n~ d• x--Jaym, 

(19) 

with the initial values a ~ = 0 and u ~ -- 0. According to the above discussion, each such 
load step is equivalent to a nonlinear problem of the form 

(c(~(,")),e(~)) = (/",~) + (g",~)r~ 

where 

v~ e v, (20) 

c(~(~")) := n(~ --~ + k.ce(~-)). 

Solving this equation gives us an update for the displacement velocity v" E V and then 
the new stress and displacement as 

a" := II(a "-1 + k, C6(v")) 6 IIL2ln~ d• u" u "-1 ,--,,~m, := + k.v" E V. 

This process is equivalent to applying the backward Euler time-stepping scheme to the 
nonstationary problem (3). We assume that  the incremental steps kJ0 ,  and k, go are 
chosen small enough that the resulting time-discretization error can be neglected com- 
pared to the error resulting from the finite element approximation. Our numerical tests 
show that this is realistic, at least for the type of problems considered. The stationary 
Hencky model (4) may be viewed as the approximation of the Prandtl-Reuss model by 
one time step of length k = 1 starting form the initial state a ~ -- 0, u ~ = 0. 

The nonlinear problems (20) are approximated by a damped Newton iteration. Starting 
from the result at the preceding load level, v ",~ :-- v "-1, the step v ",~-1 ~ v ",~ reads 

(c'(~(~""-~))~(~""),E(~)) = (/",~) + (g",~)r~ - (c(~(~""-~),6(~)) v~ e v, (21) 

with the Jacobian C'(.) of the function C(.) ,  followed by the update 

v", i = v-,i-I + Ai6v "'i. 

The damping parameter 0 < Ai _< 1 is determined in the form Ai = 2 -~ such that 
the residual norm is decreased. Hence, on the continuous level the nonlinear plasticity 
problem (3) is reduced to a sequence of linear problems of the form 

(c'(E(~))~(~), ~(~)) = l(~) v~ e w, (22) 
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with certain functionals 1(.) defined on V. These are now discretized by the finite element 
method, 

(c'(~(,,,,))~(w,,),~(~)) = l(~) v,,,, e v,., (23) 

where Vh is a finite element space as defined before. The resulting linear subproblems 
are solved by the CR-method with multigrid acceleration. The use of multigrid is rather 
natural as in the course of the mesh refinement process a sequence of nested meshes 
is automatically generated. Since the theme of this note is the aspect of a posteriori 
error estimation and mesh design, we do not go into the details of the algebraic solution 
techniques and instead refer to [19] and [20]. 

Again our error estimation uses the general approach described above applied to the 
stationary nonlinear problems (20). In each load step a stationary Hencky-type prob- 
lem is solved using an adaptive finite element discretization. The finite element meshes 
are optimized separately within each load step in accordance to the particular target 
functional J(.) leading to a dynamic development of refinement and coarsening over the 
whole loading process. We remark that, in contrast to really dynamic problems involving 
acceleration terms, the control of the time-stepping error in the quasi-stationary Prandtl-  
Reuss model is less critical. Since in each incremental load step the displacement velocity 
v" = 6" is updated, we do not expect much accumulation of these local errors over the 
loading path. Hence it seems justified to estimate the global spatial error in this process 
by simply treating it as a sequence of stationary problems. This approach, of course, 
would be disastrous in the case of a parabolic problem like the heat equation. 

The loading process is started from the initial state a ~ - 0. In each load step t._a --+ t . ,  
the nonlinear problem (20) has to be solved resulting in an equation for the discrete 
deformation velocity v [E  Vh, 

(II(a~-' + k,,C~(v'~)), ~(~o)) = (f", ~o) + (9", ~O)r~ V~o E Vh. (24) 

From this, the stress update is obtained, 

~ := n(o.~-' + k.c6(~)), (25) 
where the projection II is as defined above. Further, starting from the initial displacement 
u~, = 0, corresponding approximate displacements are obtained, 

u~ := u~ -1 + k.v~. 

Hence, (24) may be rewritten as 

(II(a'~-' +C6(u'~ - u~-')),6(%o)) = (f",  %o) + (9", %o)r,~ V~0 6 Vh. (26) 

From now on, we suppress the superscript n and consider Hencky-type problems of the 
form 

(n(~ + c e ( ~  - ~)),~(~)) = ( / , ~ ) +  (g,~)r~ v~ e vh, (27) 

with given initial stress 5 and deflection ft. From (27), we obtain deflections uh 6 Vh 
and associated stresses 

ah := n(~ + c~(u~) - c~), 
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2 dxd approximating the solutions u 6. V and ~r 6. IIL (f~),um of the corresponding continuous 
problem 

(~(~ + c~(~ - a)). @)) = (I. v) + (g. v)~. 

Clearly, for h = 0 and fi = 0, this reduces to the usual Hencky model (5). 

4.1. A posteriori  error es t imate  for the  Hencky model  
Combining (27) and (28), we obtain the nonlinear Gahrkin orthogonality relation 

( c ( 6 ( , 0 )  - c ( e ( , , , ) ) , @ ) )  = (c'(E(. ,~ + (1 - .),~,l)e(,~ - , ~ . ) , @ ) l  d.  = o, (29) 

for ~ 6. Vh. Suppose that the quantity J(u) has to be computed. For representing the 
error J(e), we use the solution z of the linear dual problem 

L*(u, uh; z, ~p) - J(to) v~, e v ,  (30) 

with the adjoint of the bilinear form 

L(,~,,~.; ~,,,~) :=  (C'(~(.,~ + (x - .) ,~.))e(~o),e(,~)l d..  

We assume that this dual solution is well defined. This, of course, requires the underlying 
problem to satisfy certain structural conditions. By the orthogonality relation (29), there 
holds 

J(e) = L(u, uh; e, z - zh), 

with a suitable zh 6. Vh. Then, analogously as in the linear case, we obtain the error 
representation 

J(e) = ~ {(f-divC(e(uh)),z- zh)K- ~(n. [C(e(uh})],z- zh)oK}. 
KETh 

From this, we conclude the following theorem for the elasto-plastic case (see [18]). 

Theorem 4.1. Under the foregoin 9 assumptions, the primal finite element scheme (~6} 
admits the a posteriori error estimate 

IJ(u- ~,)1 _< ,(.,):= ~ ~e~, 
/t'ETh 

with the local residuals OK and weight factors wK defined by 

e~  := (h~,ll!  - divC(e(uh))ll~ + �89 [ c (e (= , ) ) ] l l$~) ' / ' ,  

wK := (h~211z - zhn~ + �89 - zhll2o~) 1'~. 

(31) 
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In order to evaluate the a posteriori bound (31), we replace the unknown solution u 
in the bilinear form L(u, uh; ", ") by the currently computed approximation Uh, and solve 
the corresponding perturbed dual problem by the same method as used in computing uh, 
yielding an approximation zh 6 Vh to the exact dual solution z, 

L* (uh, Uh; zh, ~0) = J(~) V~o 6 Vh. (32) 

The weights wK may then again be approximated as in the linear case described above. 
We emphasize that the computation of the weights requires only to solve linear problems 
and normally only amounts to a small fraction of the total cost within a Newton iteration 
for the nonlinear problem. 

We will compare our weighted error estimator (31) against two more traditional ap- 
proaches. 
1) The ZZ-approach: The error indicator proposed by Zienkiewicz and Zhu [23] for finite 
element models in structural mechanics is based on the idea of higher-order stress recovery 
by local averaging. The element-wise error }la - ahllK is thought to be well represented 
by the auxiliar quantity rlK := ]]~hah--ah]lK, where J~4hah is a local (super-convergent) 
approximation of a .  The corresponding (heuristic) global error estimator reads 

: =  .(5: 
KETh 

For our purpose we assume the discrete stresses to be constant over each cell. One possible 
construction of ~Ahah is the patch-wise L2-projection PKah onto the space of (bi-)linear 
shape functions. Here the nodal value at a point of the triangulation determining Jg4hah 
is obtained by averaging the cell-wise constant values of ah of those cells having this point 
in common. For cells containing hanging nodes this process is appropriately modified. 
~) An energy error estimator: Johnson and Hansbo [13] proposed an error estimator 
for the primal-mixed formulation of the Hencky model which is based on monotonicity 
properties of the energy form and, under some additional heuristic assumptions, bounds 
the error in the global energy norm. Let f~ and f~ denote the union of elements where 
the discrete solution behaves elastic and plastic, respectively. Then, the estimator reads 

KETh 

with the local error indicators 

{ h~ max,: IR(uh)l ~ , if g 6 f~, 

Y~ := hlr max~ IC~(uh)l fK IR(uh)l dx, if g 6 fl~, 

where on each element K 6 Th the local residual is defined by 

1 - 1  R(uh) := I divC~(uh)l + $h K fin. Ce(uh)][. 

Here, C~ is some interpolation constant usually set to one. This estimator is rather 
heuristic, as it relies on the assumption that the plastification zone is already correctly 
captured on the current mesh. Furthermore, it is of only sub-optimal order in the plastic 
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zone which results in mesh over-refinement in ft~, though the stresses are suspected to 
be rather smooth there. The ZZ--estimator (33) does not suffer from this deficiency as 
it essentially relies on the smoothness of a. Hence, we are led to modify the estimator 
(34) by replacing the obviously too crude bound maxK[C6(uh)l in the plastic zone by 
maxK[Ce(uh) - AdhCe(uh)[. This gives us the local (still heuristic) error indicators 

{h~c maxK I R ( u , ) l  2 , if g E fig, 

~ := hg maxg Iee(uh) - .b~hCe(uh)l f x  IR(uh)l dz, if g e fl~. 

4.2. Numerica l  test  for the Hencky model  
As the first example, we take the model case "disc with crack" from above (c.f. [18]). 

The material values are as before ~ = 164206, p = 80193.8, and further a0 = 450. The 
boundary traction is assumed in the form g - tgo, with go = 100 and t > 0. In the case of 
the Hencky model, we choose tti,, = 2.234, since already for t = 2.3 plastic collaps occurs. 
Again, we compute the mean normal stress over the clamped part of the boundary, 

= ~ n. C(e(u)).nds. (35) J.(u) 
D 

The refinement strategy is as described above and the quantities Rel.Err and Ratio have 
the same meaning as before. 

Our weighted error estimator turns out to be rather sharp even on relatively coarse 
meshes, see Table 3. This indicates that the strategy of evaluating the weights wx 
computationally works also for the present nonlinear problem. Further, this approach 
yields more economical meshes than the other error estimators (Figure 3). This is in 
agreement with our observations in the linear elastic case. 

Table 3 
Results for Jr with adaptivity based on the weighted a posteriori error estimator 
(from [18]) 

N J~(~h) 
1000 2.2224e+02 
4000 2.2405e+02 
8000 2.2zi75e+02 
12000 2.2509e+02 
16000 2.2532e+02 

Rel.Err Ratio 
1.5757e-02 
7.7387e-03 
'4.6647e-03 
3.1559e-03 
2.1360e-03 

1.6650e+00 
1.7360e+00 
1.6205e+00 
1.5455e+00 
1.7726e-I-00 

As a second test, we apply our adaptive approach to a standard benchmark problem 
described as follows (c.f. [20]). A geometrically 2-dimensional square disc with a hoh is 
subjected to a constant boundary traction acting upon two opposite sides. 

We use again the plain-strain approximation and assume perfectly plastic material 
behavior. In virtue of symmetry the consideration can be restricted to a quarter of the 
domain as shown in Figure 4. The height and width of the quarter corresponding to lines 
4"-5 and .~  are 100, and the radius of the hole is 10. The material parameters are the same 
as for the example above. The boundary traction is written in the form g = tg0, with 
go = 100 and load factor t E [0, 6]. 
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Among the quantities to be computed are the component a22 of the stress tensor and the 
horizontal deflection ul at point 2, and the horizontal displacement ul at point 5. Again, 
the result on a very fine adapted mesh with about 200000 cells is taken as reference 
solution Uref. Some of the results of these benchmark computations are summarized in 
Figures 5, 8 and 9. They show that, comparing the relative errors on adaptive grids 
produced by the "weighted", the "energy" and the "ZZ"-approach, the first one yields 
more economical meshes. We remark that in this case the additional cost for the adaptive 
process is equivalent to two steps of the Newton iteration and therefore amounts to less 
than 20 % of the total cost. 

4.3. Decoupled pressure discretisation 
We employ a stabilised finite element discretisation corresponding to (6) in the form 

(c.f. [12]) 

(II(2peD(Uh)),e(~)) + (div~,ph) -- (f ,~) V~ E Vh, 
1 

(div uh, q) - "~(Ph, q) - E JKh~(Vph, Vq)K = 0 V q e Qh, (36) 
KETh 

where Vh and Qh are constructed by the standard conforming bilinear shape functions. 
For comparing the accuracy of the standard primal formulation to the mixed displace- 
ment/pressure formulation, we use the first model problem "disc with a crack" and con- 
sider the computation of the integral Ju(u) 

J.(u) = ~su .nds  ~ divudx, (37) 
$ 

where S is a suitable circular path around the tip of the crack, f~s is the domain with 
boundary Of~s = S,  and n the outer normal unit vector along S. The results are presented 
in Table 4. It turns out that by the displacement/pressure formulation significantly higher 
accuracy can be achieved. 

Table 4 
Results for Ju(uh) on adaptive grids for the primal and the displacement/pressure dis- 
cretisation (from [21]) 

N 
4000 
8OOO 
16000 
32000 

primal pressure 
1.6875e-04 1.696680e-04 
i.6926e-04 
1.6963e-04 
I16986e-04 

1.699004e-04 
1.699354e-04 
1.700872e-04 

, , , 

II 1"7020e-04 

4.4. Numerical test for the  P rand t l -Reuss  model 
Finally, we present some results obtained with our adaptive method for the time de- 

pendent Prandtl-Reuss model. The test case is again the benchmark problem "disc with 
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a whole" (see Figure 4) and, this time, we compute the stress component or11 at point 7 
by the scheme (24). The resulting sequence of meshes for k -- 0.0025 with a constant 
number of N "~ 3200 mesh cells is shown in Figure 7. Further, we test the dependence of 
the solution on variations of the loading step k and the number N of mesh cells. Figure 
6 (left) shows the results for a sequence of reduced loading steps k - 0 .08-  0.01 with a 
fixed number of N = 8000 mesh cells. Figure 6 (right) shows the results obtained with 
a fixed load-step k = 0.01 for a sequence of adapted meshes with increasing numbers of 
mesh cells N = 1 0 0 0  - 8000. 

Eventually, in Table 5 we show the dependence of the critical load level t! for which 
plastification begins and the limit load level tb at which final break down occurs. 

Table 5 
Critical load level t! and limit load level tb computed with fixed k -- 0.01 and varying N 
(left) and for varying k and fixed N = 8000 (right) (from [20]) 

N t! tb k t! tb 
1000 3.095 4.655 o.os 1.sso 4.680 
2000 2.975 4.655 0.04 1.860 4.660 
4000 2.485 4.655 0.02 1.950 4.655 
8000 2.115 4.655 0 .01  2.115 4.655 

. 

Figure 3. Relative error for J~(uh) on grids based on the different estimators and stucture 
of "optimal" grid for J ,(u,)  with N ~ 8100 (from [18]) 
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Figure 4. Geometry of the benchmark problem and plot of Io'DI (plastic region black, 
transition zone white) computed on a mesh with N ~ 10000 cells 

Figure 5. Relative error for computation of az2 at point 2 using different estimators and 
"optimal" grid with about 10000 cells (from [20]) 
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Figure 6. Computation of or11 at point 7 over the loading pass 1.5 _< t _~ 5: Dependence 
on the loading step k (left) and on the number of mesh cells N (right) (from [20]) 

Figure 7. Computation of ~11 at point 7 over the loading pass 3.6 _~ t ~_ 4.2: Sequence 
of adapted grids (zoom) with about 3200 mesh cells (from [19]) 
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Figure 8. Relative error for computation of ul at point 2 using different estimators and 
"optimal" grid with about 10000 cells (from [20]) 

Figure 9. Relative error for computation of ul at point 5 using different estimators and 
"optimal" grid with about 10000 cells (from [20]) 
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Abstract 

In an adaptive finite element approach elasto-plastic problems with associated and 
non-associated flow rules are investigated. The first part of the paper deals with the 
underlying numerical formulation for a classical continuum model and a hierarchical 
h-adaptive mesh refinement strategy. Essential ingredients of the adaptive process are a 
suitable error indicator and transfer operations for the mapping of history-dependent 
state variables between different meshes. These are imbedded in a nonlinear incremental 
finite element procedure. For non-associated plasticity a standard continuum approach 
may lead to an ill-posed problem. Therefore, in the second part a generalization in the 
framework of a Cosserat theory is considered. The underlying equations possess a similar 
structure, and the adaptive finite element formulation can be extended in a straightforward 
manner. Numerical examples demonstrate the general applicability of the approach to 
elastic-plastic problems including associated as well as non-associated plasticity. They 
show the superior behaviour of the Cosserat formulation in the case of localization 
phenomena als0 for non-associated plasticity. 

1. INTRODUCTION 

The quality of finite element solutions of elastic plastic problems is very much influenced 
on how the structural system is discretized, especially when the load carrying capacity has 
to be determined. Adaptive mesh refinement strategies provide a good basis to improve 
the accuracy of the solutions. Essential ingredients of adaptive finite element calculations 
are the estimation of the discretization error and the design of the refined meshes. In the 
nonlinear analysis of path-dependent problems the mesh refinement has to be controlled 
by suitable error measures and integrated into the incremental solution procedure. 
In the first part of the paper we present an adaptive finite element formulation for a 
classical continuum model including associated and non-associated plasticity. A standard 
displacement formulation with conforming shape functions for the displacements is used 
as the basis of the underlying finite element approach. The mesh refinement is controlled 
by an error indicator calculated after each load step in the course of the nonlinear 
incremental solution. This indicator represents a modification of an error estimator 
derived in [1] which takes into account the stress residuals within the elements and on their 
boundaries as well as the incremental strains. 
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Based on the error distributions successive refined meshes are generated by simply 
subdividing those elements for which the error exceeds a permissible tolerance. This leads 
to a hierarchical finite element approach in which the shape functions of the coarser 
meshes are retained in the basis of the shape functions of the finer meshes. In 
path-dependent problems this facilitates the mapping of state variables like stresses and 
internal variables between different meshes. 
The performance of the approach is demonstrated by the results of numerical calculations 
for different problems. The results illustrate the necessity of adaptive calculations, 
especially when limit states are investigated. 
In non-associated plasticity localization phenomena are encountered which may lead to 
an ill-posed problem when classical continuum theory is applied. Therefore, in the second 
part of the paper a generalization of the approach in the framework of a Cosserat 
continuum model is presented. In this formulation an internal length scale is introduced 
which leads to strain concentrations in shear bands of finite width. This is illustrated by the 
results of numerical calculations which also demonstrate the superior behaviour of the 
extended formulation in contrast to the standard continuum model. The problem common 
to all formulations including an internal length scale is that they need an extremely fine 
discretization. Therefore, an adaptive approach is absolutely necessary for the analysis of 
problems where localization phenomena have to be taken into account. 

2. FORMULATION OF THE CLASSICAL ELASTIC-PLASTIC FINITE ELEMENT 
MODEL 

The governing equations of the standard elastic plastic continuum model are outlined first. 
The equilibrium is defined by the local equations 

trjii + fli - 0 in V , (1) 

crji n j -  ti = 0 on Ss �9 (2) 

A variational or weak form of these equations is given by 

f - I - (aji  + d V  + fi) d S  = O ,  (3) 
v s, 

which is equivalent to the common principle of virtual work: 

I ~ t i j c r i j d V - I c ~ u i ~ d V - I c ~ u i f i d S  = 0 .  (4) 

v v s, 
The constitutive law applied is based on an elastic-plastic model with isotropic hardening. 
The total strain increment is decomposed into an elastic and a plastic part 

de.# = dr. e. + art. p. (5) 
zj tJ ' 

where deij d t e  and deP denote the total, elastic and plastic strain components, , q q 

respectively. For infinitesimal deformations the kinematic relations are given by 

deij = 1 (  dui, j + duj, i ) .  (6) 
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The elastic constitutive relation is defined by a hypoelastic stress-strain law 
de e ij --- Cij kl dakl  " (7) 

For the description of the plastic response the yield surface is expressed in terms of the 
stress invariants 11, J2 and -/'3, representing the first invariant of the stress tensor and the 
second and third invariant of the stress deviator, respectively" 

f ( a, ~ ) - f ( !1, ']'2, "]'3, ~ ) -" 0, (8) 

where 11 = a(i ~ij , si j = ai j _  l l l~ij , 

"]'2 = I S ij S ij , "]'3 = ~ S ij Sjk Ski"  

Isotropic hardening is included by an internal variable x. 
A special type of yield function that is used in our numerical examples is given by 

f = m ( O ) ~  + ~ ( r l l m - k )  <_ O ,  (9) 
0.25 

where m ( 0 ) =  ( ( 1 - s i n 3 0 ) + ~ ' 4 ( l + s i n 3 0 ) )  
2) ,4  

= v/~ , sin( 30 ) = ~/27 J3 

This allows the representation of different yield criteria like yon Mises, Drucker-Prager 
as well as a Coulomb-type criterion with a smooth yield surface in the z - p l a n e  sections. 
A graphical representation in the principal stress space is given in Figure 1. 

Figure 1" Graphical representation of the yield and failure surfaces in 
principal stress space and in the n-plane 

Plastic deformations are defined by the flow rule in the form 

de p = Og d2 , d2 >__ 0 , (10) 
ij Oaij 

where g denotes the plastic potential. Classical associated plasticity is included with g --- f, 
whereas the more general non-associated case is obtained by a definition of g which is 
independent of f. In the numerical calculations a special form of plastic potential is used 
that allows the description of both associated and non-associated plastic flow: 

= f ( a )  - . ( 1 1 )  
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The consistency condition 

df = flf do i. + ~-~f dx = 0 (12) 
atrO. ,~ 

and a law for the evolution of the parameter  x representing s t ra in-hardening or 
work-hardening completes the equations of the elastic plastic model: 

o~dx = = - h d 2  . (13) 
of ax og d 
O~ OF, .P. O(Tij 

~J 

The finite element formulation follows the common path based on the principle of virtual 
work. Generally, eight-node or n ine-node  quadrilaterals are used for plane strain 
problems with standard isoparametric displacement functions within each element: 

u = N v .  ( 1 4 )  

N represents the shape functions and v are the generalized displacements at the element 
nodes. The strain field may be computed by the discrete strain matrix B by 

-'- B v. (15) 

The discrete version of the equilibrium equations results in 

f B T a d V = f N T , d V + f N T i d S  . (16, 

v v s, 

The stress integration algorithm follows a conventional linearization procedure of the 
nonlinear incremental equations where the elastic-plastic constitutive relations are 
evaluated locally at the Gauss points. 

3. ERROR INDICATORS AND ADAPTIVE MESH REFINEMENT 

A-posteriori error estimators for finite element solutions of linear elliptic problems are 
usually based on bilinear forms associated with the energy norm. As an extension to the 
case of associated plasticity, an appropriate bilinear form for the linearized elastic-plastic 
problem can be given that represents an incremental form of the complementary free 
energy function as: 

V V V 

Inserting Equations (7), (10), (12) and (13) under the condition that Drucker's stability 
postulates apply leads to a quadratic form which is positive for a hardening material: 

~t=fdcrilCijkldCrlddV+fhd~,2dV. (18) 

v v 
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A corresponding global error of the finite element solution may be obtained in terms of 
finite increments of stress and strain by 

II e II = I (Acr-A~ ) (A~..A~h ) dV , 
V 

(19) 

where A a ,  At  and Ao "h , Ae h are the stress and strain increments of the exact and the 
finite element solution, respectively. In accordance with the work of Johnson and Hansbo 
[1] an estimate is used that represents an error measure in which the maximum norms of 
the residuals of the equilibrium equation within the elements and of the stress jumps on 
the element boundaries are weighted by the L 1-norm of the total strain increments: 

II e II - II A~ IlL, ( C~ h II r IlL. + C 2 ~  II J IlL. ), 

where r i = tTji J -b fi in ge 

(20) 

(21) 

and Ji = l ( ~ + - a j ;  )nj on Se (22a) 

o r  Ji = ~ i  n j ' -  ti ) on Ss . (22b) 

Due to the assumptions stated above the mathematical foundation of the estimator is 
restricted to associated plasticity. But it still can serve as a reasonable heuristical error 
indicator also for problems with n o n -  associated plasticity. Due to the combination of the 
norms of the residuals with the norm of the strain increments it represents a weighted 
residual that measures errors in the equilibrium equations also in the n o n -  associated case. 
Moreover, the appearance of the norm of the strain increments in this error measure may 
also serve for the detection of zones of strain localization. 
Within each load step the mesh refinement is controlled by the restriction that the error 
measure in Equation (20) should be less than a permissible fixed percentage r/, say 1-5%,  
of a similar weighted norm of the stresses themselves: 

II e II <-- '7 II z II , 

where  II z I! - U ~a~ U L, II a i l , .  �9 

This is satisfied if the restriction for the contribution I[e 11 e of each element holds: 

(23) 

(24) 

II z II (25) 
1[ e II, - ~  g~ /  ' 

where Net is the total number of elements. Successive adaptive meshes are generated by 
a hierarchical subdivision of those elements for which the error exceeds the permissible 
value. To ensure conformity at the interface between refined and non-refined zones (see 
Figure 2) the displacements of inconforming nodes are coupled to the neighbouring ones 
through additional kinematic conditions (hanging nodes). 
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n 

v v 

nonconforming 
nodes 

r |  | 

k !  

�9 Irl I 
w 1 .  

Figure 2: Refinement of 4-node quadrilaterals 

An incremental adaptive solution procedure for path-dependent problems requires the 
projection of various state variables between meshes of different discretization levels. 
These state variables are displacements, strains, stresses and internal history variables. The 
hierarchical refinement implies that the shape functions for the displacements of coarser 
meshes are embedded in the function space of the elements in a refined mesh. Therefore, 
for the displacement field transfer standard interpolation may be used to determine the 
discrete displacements in subdivided elements: 

nodes 
a new (~, rl) = ~" Ni(~, rl) ~Ji old . (26) 

iffil 

A transfer operator for stresses, strains and internal variables which are defined by their 
discrete values at the (nip) Gauss points (see Figure 3) is obtained also in a straightforward 
manner by a simple interpolation: 

nip 
,~ n e w  (~, rl ) = ~ M i ( ~  ' rl ) 7"i old . (27)  

iffil 

�9 oio "o 

olo 

Figure 3: Transfer of data at integration points 

Due to the hierarchical refinement this is equivalent to a variational formulation proposed 
in [2]. 

4. EXTENSION OF THE FINITE ELEMENT MODEL FOR THE ELASTOPI~STIC 
COSSERAT CONTINUUM 

The classical continuum model may lead to an ill-posed problem due to the unstable 
material behaviour in the case of non-  associated plasticity. Therefore, an extension of the 
adaptive finite element formulation for a Cosserat continuum is presented in this section 
which should lead to a regularized problem. 
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The regularization effect is obtained by the introduction of additional kinematic and static 
variables which are the micro-rotations to i, the micro-curvatures Xij, and corresponding 

stress couples ,uij. 
An extended set of equilibrium equations is given in terms of the now non-symmetric 
stress tensor tr 0. by Equation (1) and the stress couple tensor in addition to (1) by 

~Uji ~ + eij k ajk = 0 in V , (28) 

where eij k denotes the permutation tensor. The kinematic relations are defined as 

ei j = Uj, i -  eijk t, Ok in V ,  (29) 

in V (30) Xij m ooj, i 

An equivalent variational form of these equations is given by the corresponding principle 
of virtual work with 

�9 j f &ij  aij + 6Xij laij) d V -  6u i f i  d V -  6u i ti dS  = O. (31) 

v v s, 

The stress and strain tensors are splitted up into a symmetric part cr(ij) ,e(ij) and a 

skew-symmetric part crtij] , e [ij]. 
In accordance with the classical formulation the strain components as well as the 
micro-curvature components are decomposed additively into their elastic and plastic 
parts as in Equation (5) and in 

dxij = dx~ + dxi~. (32) 

The elastic constitutive relation between the symmetric parts of the stress and the elastic 
strain increments is identical with the classical formulation 

d~ e , (ij) = C~J kl dcr(kl) " (33) 

The components of their skew-symmetric parts are related by the so called Cosserat shear 
modulus Gc as 

de[~ 1 = 1 c dcr[ijl. (34) 

Because the stress couples and the curvature tensor are related by a type of bending 
modulus an internal length scale lc is introduced into the formulation. The elastic relation 
may be given in terms of this internal length and the shear modulus G by 

, =  1 (35) 
dx ij G Ic 2 dlt ij " 
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The representation of the yield function is chosen as a generalization of the classical 
formula t ion  with some addit ional  terms arising from the in t roduct ion of the 
skew-symmetric stress and the stress couple tensors: 

f (  aij'~ij '~  ) -- f (  a(ij),a[ij],~ij, Tr ) = f ( I1 J2, 3"3, a[ij]' flij, ~ ) <- O ,  (36) 

where I1 = e(ij) ~ij , s/j = a(/j)- 1 iI~ij , 

J2 -" l sij $ij , J3 -- l sij Sjk Ski .  

A possible choice that is used in the numerical calculations is given by 

f = { (m(O) ~) 2 + j2 cr[iyl Cr[iy] + J3 ~c2 /~ij lZiy }~ + x ( ~7 ll - k ) <_ O , (37) 

where ~ = V/~,  sin( 3 0 ) =  ~/27 J3 . . . . . . . .  �9 

With J2 - J3 = 0 the classical formulation of the yield function is included as a special 
case. 
The plastic deformations are given by the flow rule where the plastic potential g is defined 
as in Equation (11) with 

dtP = Og dll,, 
,j oo o. 

og >__ 0 (38) 

The structure of the fundamental equations of the classical continuum model is retained 
in the Cosserat theory. Therefore, the adaptive finite element formulation is just 
straightforward. Standard shape functions are used for the interpolat ion of the 
displacements and micro-rotat ions as in equation (14). Restricted to plane strain 
conditions the generalized displacement vector takes the form 

n -  {U l, U2, 0 3 } . (39) 

The nodal displacement vector v includes nodal displacements and rotations. The 
generalized strain field �9 is redefined as 

= {e ,  Z }  = {t/j,  Zij} (40) 

which may be computed by a modified discrete strain matrix B with 

e = B v. (41) 

When the generalized stress field a is defined corresponding to the strain field [ with 

b { or, / ~ } =  {o/j, /t/j} (42) 
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the discrete equilibrium equations are given by 

I BT (x dV = f NT , dV + I NT i dS . (43) 

v v s, 
According to equation (19) the global error measure of the finite element solution has thus 
to be redefined in terms of increments of the generalized stress and strain field by 

II e II = I (A~-A~h) (A~-A:) aN (44) 

= I ((Ao_A~h) (~_A~h) + (Al,-A~h) (~X-Axh)) dr. 
V 

The generalization of the error indicator from the classical continuum, Equ. (20), to the 
Cosserat model leads to: 

h II e II - II Ae IlL, ( cl h II r IlL. + C2~k II J IlL. ) 

+ II AX IlL, ( C1 h II m lit.. + C2h~ II M IlL. ) , (45) 

where ri = crjii + f i  in Ve , (46) 

Ji - 1'(5+'-r )nj on Se (47a) 

or Ji = (~ji n j -  ti ) o n  Ss , (47b) 

m i = ~tji J -F ely k cr]k in Ve , (48) 

1 + - 
and Mi = ~(luji-Pji )hi on Se (49a) 

or M i = P]i n] on Ss . (49b) 

This error indicator consists of two additive parts in which the first is identical with that for 
the classical model. In the second part maximum norms of the residual moments of the 
equilibrium equations within the elements and of the couple stress jumps on the element 
boundaries are weighted by the L 1-norm of the total micro-curvature increments. Based 
on this error indicator the mesh refinement including the transfer of the state variables can 
now be performed in the same manner as described in the previous section. 

5. NUMERICAL EXAMPLES 

The approach described in this paper was applied to various examples in which different 
aspects were investigated. As a benchmark problem for several research groups a metal 
sheet with a hole under uniaxial extension was analyzed. Several adaptive methods were 
compared for elastic and elastic-ideally plastic material with avon Mises yield condition 
and associated flow rule. 
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Figure 4: Metal sheet with a hole, system and finite element idealization 

For the results of our research group the reader is referred to the literature [3]. They 
confirmed that the error indicator as well as the transfer process described are very well 
suited for the adaptive nonlinear finite element method. 
in a further example a strip footing on cohesive soil with a small angle of internal friction 
and an associated flow rule was considered in [3,4]. The yield condition was formulated by 
a modified Coulomb criterion with a smooth yield surface. In this example results of 
different discretizations were compared with those obtained by the adaptive process. 

Figure 5: Strip footing on a cohesive soil, system and initial mesh a) 

Figure 6: Load-displacement curves for different discretizations 
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The corresponding load-displacement curves for different meshes are given in Figure 6. 
The solution with the finest mesh is almost identical with the adaptive solution. This is not 
surprising as this discretization represents the final adaptive mesh whereras the solutions 
with the three other meshes show quite considerable deviations, however. This 
demonstrates the improvement of finite element computations by adaptive mesh 
refinements. 
As an example for a non-associated flow rule a strip footing near a slope under vertical 
loading was investigated in [3,4]. It was observed that the error indicator is also capable to 
detect zones with localized shear deformations. 

Figure 7: Sequence of refined meshes for r/ = 0.025 

A frictional material with nearly no cohesion and a friction angle of ~ -- 25*was assumed 
with a yield condition according to Equation (9) with a n o n -  associated flow rule (10), (11). 

Figure 8" Strip footing near a slope 
under vertical loading 

The load-set t lement  curve of the footing obtained in the adaptive finite element 
calculation is given in Figure 9. The comparison with results of non-adaptive finite 
element calculations illustrates that a localization will not be noticed at all without adaptive 
mesh refinements. This may lead to a complete misjudgement of the carrying behaviour 
of a structure. But also numerical difficulties were encountered for further adaptive 
refinement leading to a non-converged solution. This is due to an unstable material 
behaviour caused by the n o n -  associated flow rule accompanied by a sharp decrease of the 
load carrying capacity. 
In this case the governing differential equations of the classical continuum loose its 
ellipticity leading to an i l l -posed problem. Therefore, in numerical simulations an 
extreme mesh sensitivity may be observed which is the crucial point in adaptive finite 
element calculations. 
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Figure 9: L o a d - s e t t l e m e n t - c u r v e s  for different discretizations 

Thus, the formulation of the localization regime has to be extended to general ized 
continuum models like the polar cont inuum theory with additional rotational degrees of 
f reedom employed in this paper.  For illustration of this approach two examples with 
non-assoc ia ted  flow rule are investigated and described in more detail: the numerical  
simulation of aplane strain compression test and the strip footing near a slope similar to the 
example mentioned above but differing in the material description. 

5 . 1 .  L o c a l i z a t i o n  i n  a p l a n e  s t r a i n  c o m p r e s s i o n  t e s t  

The different behaviour of the classical finite element model and the Cosserat model  as 
well as the influence of different internal length scales shall be illustrated in this example. 
A p lane  strain compress ion  test  for  a genera l ized  D r u c k e r - P r a g e r  mate r ia l  with 
non-assoc ia ted  flow rule is considered. The geometric and material characteristics are 
shown in Figure 10. To evaluate the influence of the internal length scale in the Cosserat 
model  different analyses are performed with the three different parameters le = 0.1 ram, 
1.0 ram, and 10.0 ram. 
In addition, the system is analysed using the classical continuum model. Different uniform 
discretizations are considered to illustrate the mesh dependence (see Figure 11). 



305 

Figure 10: Geometry and material characteristics of the plane strain compression test 

Figure 11: Finite element discretizations for the plane strain compression test 

The load-displacement curves of the finite element calculations with the classical 
continuum model are shown in Figure 12. Localization initiated by a small weak zone with 
lower strength is achieved for all discretizations as illustrated in Figure 12. However, the 
results show the strong mesh dependence leading to different load-displacement 
characteristics. The width of the observed shearbands depends on the mesh size and no 
convergence may be achieved with any further mesh refinement. 
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Figure 12: Load-d i sp lacement  characteristics and deformations of the classical 
continuum model for different discretizations 
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Results obtained by the Cosse ra t - con t inuum model for different values of the internal 
length parameter  are presented in Figure 13. They illustrate the strong influence of the size 
of the internal length parameter.  The load-d i sp lacement  curves of the different finite 
element discretizations for the small length parameter  lc = 0.1 m m  show no convergence 
of the finite element solution. For the mean value of lc = 1.0 m m  however, a converged 
finite element solution with a continously decreasing load-displacement  curve is achieved 
when the ratio of the mesh size to the internal length parameter  has the order  of one in the 
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localization zone. On the other hand, when lc approaches the system size as illustrated by 
the results for lc = 10.0 m m ,  a much stiffer behaviour of the system with no decrease in 
the load displacement curve is observed. 
Therefore, it is very essential to specify the internal length parameter in an appropriate 

order of magnitude. In addition, the finite element size in zones of strain localization 
should also be of the same order. 

5.2. Strip footing near a slope 

As a first test of the Cosserat model in a rea l - l i fe  problem an adaptive finite element 
analysis of a strip footing near a slope under vertical loading is investigated. 

E = 3 0 0 0 0 k N / m  2 ,  v =  0.20 

= 25 ~ , ~ = 50 , c = 5.0 k N / m  2 

r/ = 0.144, if" = 0.11, k = 4.59 

;~ = 1.0 

m ( O )  = 1.0, j 2 = O ' O ,  J3 = 1.0 

Figure 14: System and material characteristics of the strip footing near a slope 

An e las t ic  ideal  p las t ic  b e h a v i o u r  of the  soil was assumed  with  a g e n e r a l i z e d  
Drucke r -P rage r  criterion and a non-assoc ia ted  flow rule. The system and material  
characteristics are shown in Figure 14. The internal length parameter was specified to 
lc = 4 .0cm.  
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Figure 15: Load-d isp lacement  curves, Cosserat model and classical model 
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The load-displacement curve of the load-controlled calculation is represented in Figure 
15. A convergent adaptive finite element analysis with six hierarchical refinement Steps can 
be performed until a horizontal tangent is reached when the Cosserat model is applied. A 
sequence of the adaptively refined meshes is shown in Figure 16 which illustrates the 
evolution of shearbands within the system. For comparison the load displacement curve of 
an adaptive calculation with the classical continuum model is represented in Figure 15 by 
the dashed line. In contrast to the Cosserat model it was not possible to obtain a converged 
solution in this case. The analysis could be performed up to a distinct load level where an 
uncontrolable sequence of mesh refinements was initiated. 
These first results illustrate the superior behaviour of the Cossera t -model  for 
non-associated plasticity. Of course, further experience with problems of similar 
complexity is necessary in which especially the influence of the size of the internal length 
scale is investigated. 

Figure 16: Sequence of adaptively refined meshes of the Cosserat model 
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1. I N T R O D U C T I O N  

The standard Galerkin finite element method is known to fail for solution of 
advective-diffusive problems for moderate and high values of the advective terms [1,2]. 
Over the years a number of techniques have been proposed to obtain the so called stable 
(or oscillation-free) solutions. Original remedies were based on the heuristic addition of 
the right amount of balancing diffusion to the original problem [1-4]. 

A more rigorous approach is based in adding to the Galerkin finite element 
formulation the sum over all elements of the integrals over the element interiors 
of the residual of the original differential equation times an "ad-hoc" perturbation 
of the weighting functions and the so called stabilization parameter. By choosing 
adequately the perturbation function the standard SUPG [5], GLS [6], Taylor-Galerkin 
[7], Characteristic approximation [1,8] and Subgrid Scale [9] methods can be recovered 
as shown in [10]. As for the stabilization parameter, this can be interpreted either as 
a "characteristic length" of the discrete problem, as a proportion of a typical element 
dimension, or as the "intrinsic time" taken for a particle to travel half the characteristic 
length at the advective speed. 

The precise computation of any of the equivalent forms of the crucial stabilization 
parameter can only be attempted for simple one dimensional (1D) problems such the 
sourceless 1D advection-diffusion case [1,2]. Attempts to generalize the computation of 
this parameter were due to Idelsohn [1] using a pseudo-variational principle. Hughes 
[9] and later Brezzi and co-workers [12-14] have proposed a numerical expression for 
the stabilization parameter involving an approximation of the element Green's function 
using bubble shape functions. None of these procedures has however succeeded so far 
to present evidence of its usefulness for practical multidimensional problems. 

In [15,16] Ofiate proposed a different approach for computing the stabilization 
parameter. The method is based in introducing "a priori" the stabilizing terms within 
the differential equations governing the balance of fluxes over a finite domain. This 
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kind of f in i t e  i n c r e m e n t  calculus (FIC) procedure allows to obtain any stable discretized 
scheme using finite difference, finite element or finite volume methods in a straight 
forward manner. For instance it can be shown that the Galerkin finite element form of 
the new stabilized governing equations is identical to that obtained with the well known 
SUPG and Characteristic-Galerkin methods, among others [15,16]. 

The interest of the FIC approach is that it leads naturally to an interative scheme 
for evaluating the stabilization parameter in terms of the residuals of the numerical 
solution. The efficiency of the new approach for computing the streamline stabilization 
parameter in a variety of 1D and 2D advective-diffusive problems was reported in [15- 

In this paper the FIC method is used as the basis for a new "alpha-adaptive" 
procedure (where alpha denotes the stabilization parameters) for obtaining stable 
solution in advective-diffusive problems where arbitrary sharp transverse gradients are 
present. The new stabilization thechnique can be viewed as an alternative class of 
adaptive methods where the numerical solution is enhanced by searching "adaptively" 
the optimal value of the streamline and transverse (crosswing) stabilization parameters 
while keeping the mesh and the finite element approximation unchanged. Indeed the 
basic alpha-adaptive process can be enhanced by combining it with standard h, p or hp 

adaptive schemes. 
In the first part of the paper the basis of the FIC stabilized method for advective- 

diffusive problems are explained. Next the algorithm for computing the streamline and 
transverse stabilization parameters via the new "alpha-adaptive" procedure is described. 
Finally, the efficiency and accuracy of the new approach are shown in two examples of 
application. 

2. STABILIZED G O V E R N I N G  E Q U A T I O N S  F O R  A D V E C T I V E - D I F F U -  
SIVE T R A N S P O R T  

2.1 One dimensional  advective-diffusive problem 
Let us consider for simplicity the standard advective-diffusive transport problem to 

be solved in a one-dimensional domain of length I (Figure la). Figure lb shows a typical 
segment A B  of length A B  - h where balance (equilibrium) of fluxes must be satisfied. 
The values of the diffusive flow rate q and the advective transport rate ur at a point 
A with coordinate XA = XB - h can be approximated in terms of values at point B 
using third order Taylor's expansion. A linear variation of the source term Q over the 
segment is also assumed. Under these assumptions and using Fourier's law the govening 
balance equation can be obtained as [15,16]. 

h dr 
r - -0  

2 d x  
0 < x < l (la) 

with 

+Q (lb) 
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(b) 

(a) 
_Q(x) 

qt qn 

-- A B - 
[ur ~ h ~ [u~]n 

Figure 1. (a) One-dimensional advection-diffusion problem. (b) Finite balance 
domain AB 

In eq.(lb) v and k are the advective and diffusive material parameters, respectively. 
Note that for h -~ 0 (i.e. when the length of the balancing domain is infinitesimal) 

then the standard form of the governing equation for 1D advective-diffusive transport 
(r = 0) is recovered. 

The essential (Dirichlet) boundary condition is the standard one given by 

r  on (2) 

where r is the prescribed unknown field at the Dirichlet boundary. 
For consistency the stabilized form of the Neumann boundary condition is needed. 

This can be obtained by invoking again the balance law in a segment AB next to a 
boundary point. For convenience the length of this segment is taken as half of the 
characteristic length h for the interior domain points [15,16]. 

Assuming now second order expansion for the advective and diffusive fluxes and 
taking the source Q to be constant over AB, the balance equation is obtained as [15,16] 

h =0 on x - - I  (3) 

where r is given by eq.(16). Obviously for h --+ 0 the standard form of the Neumann 
boundary condition is recovered. 

Equation (la) can now be solved together with eqs.(2) and (3). These equations 
are the starting point to derive stabilized numerical schemes using any discretization 
procedure. 

The extension of this stabilization concept to the transient case can be found in 
[15,16]. 

2.2 Two dimensional  advect ive-d i f fus ive  p r o b l e m  
The concepts of previous section will be extended now to the solution of advection- 

diffusion problems in a two-dimensional domain ~ with boundary F. Let us consider a 
finite rectangular domain of dimensions hz and h~ in directions x and y, respectively. 
Both the advective and diffusive fluxes are assumed to vary linearly along the four sides 
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of the balance domain (Figure 2). The flux balance equation will be obtained using 
the following Taylor expansions: diffusive term, third order expansion; advective term, 
third order expansion; source term, second order expansion. 

DLLt: B - 
--~~I V (VV@ +qy)DB 
Z ', 

I1 

+qx)Ae 

Figure 2. Balance domain for 2D advection-diffusion problem. Advective and diffusive 
fluxes are assumed to vary linearly along the sides 

The balance of fluxes across the four sides of the rectangular domain of Figure 2 
gives after some algebra [16] 

where 

and 

r l h T V r  = 0 in f~ (4) 

r -- - v v T f  + V T(DVr + Q 

In eq. (5) 

(5) 

f = [Ur re] T, 

h = [h~, h~] r (6) 

[o 0] 
V =  0--xx' , D =  ky (7) 

The boundary conditions are written as 

r  r = 0 ' on Fr (8) 

where Fr is the Dirichlet boundary, where the variable is prescribed, and 

-~o~o~+o~~+~-~~,o, 01 o ~  I~) 
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where qn is the prescribed total flux across the Neumann boundary Fq with F - Fr U Fq 

and n = [nx, ny] T is the normal vector. Eq.(9) has been obtained by balance of fluxes 
in a finite boundary domain [15,16]. 

The standard differential equations are simply obtained by neglecting the stabilizing 
terms in eqs.(4) and (9) (i.e making h - 0). The extension to three-dimensional 
problems is straightforward and identical stabilized expressions are obtained. 

REMARK 1 

It is interesting to note that the finite element Galerkin form of the new stabilized 
governing equations leads to a set of discretized equations identical to those obtained 
with the standard SUPG formulation [15]. Alternatively, the stabilized transient form 
leads to the well known Characteristic-Galerkin procedure [15]. This indicates that the 
new governing equations can be considered as the intrinsic stabilized equations of the 
problem. 

2.3 The  concept  of intrinsic t ime  
It is usual to accept that h and u are parallel, so that h = i~-Tu. The distance 

h - (h 2 + h2) 1/2 is then called the characteristic length of the 2D advective-diffusive 
problem. The intrinsic time parameter is now defined as [6] 

h 
= ' l j  (10) 

Note that this coincides with the time taken for a particle to travel the distance h/2 
at the speed lul. 

The assumption of the characteristic length vector h being parallel to the velocity 
vector u is a simplification which elliminates any transverse diffusion effect. This 
assumption is the basis of the standard SUPG approach. However it is well known that  
when arbitrary sharp transverse layers are present, additional transverse (or crosswind) 
diffusion is required to capture these discontinuities. Different "ad hoc" expressions for 
the transverse diffusion terms, typically of non linear nature, have been proposed [18-20]. 
Indeed the introduction of this additional stabilizing effect can be simply reproduced in 
the FIC approach here proposed by abandoning the assumption of h being parallel to u 
and keeping the two characteristic lengths hx and hy as "free" stabilization parameters. 
The computation of these two parameters is described in the following section. 

3. C O M P U T A T I O N  OF T H E  S T A B I L I Z A T I O N  P A R A M E T E R S  

Let us consider the finite element solution of an advective-diffusive problem. The 
standard interpolation within an element e with n nodes can be written as 

n 

r r ~ Nir (11) 
i=1 
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yT 

3 
lax 

r . . . . . . . .  

x 

Figure 3. Characteristic length in global and velocity axes. 

where N i a r e  the element shape functions and r are nodal values of the approximate 
function r Substitution of eq.(l l)  into eq.(4) gives 

1 
- ~hTv~  - rfl in (12) 

where ~ - r(r 
Let us now define the average residual of a particular numerical solution over an 

element as 

r(~) ~(~) c,) = r f l d~  (13) 

Substituting eq.(13) into (12) gives 

r(e) ~(e) ( 2 h T v , )  (e) -- - ( 1 4 )  

where 

a(e) 1 /f~ 
- a d ~  (15) ~(e) (e) 

For simplicity the characteristic length vector will be assumed to be constant over 
each element, i.e. h = h (e). With this assumption eq.(14) can be simplified to 

r(e) _ f(e) _ 1 [h(e)]T (V~)(e) (16) 
2 

Let us express the characteristic length vector in terms of the components along the 
velocity vector u and the normal velocity direction Un (Figure 3) as 

h = ~u~[hsu + hnun] (17) 

where Un = [-v ,u]  T and hs and hn are streamline and transverse (crosswind) 
characteristic lengths, respectively. 
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Substituting (17) into (16) gives 

r(e) _ f(e) 1 [hsu T + hnuT] (e) -- 2 in---- ~ (Vr) ce) (18) 

The characteristic lengths hs and ha can be expressed now as a proportion of a 
typical element dimension l (e) 

where a~ e) and a(n e) are the streamline and transverse stabilization parameters, 
respectively. In the examples shown next l (e) has been taken equal to the length of 
the longest side of each triangular element. 

Clearly for a(n e) = 0 just the streamline diffusive effect, typical of the SUPG 
approach, is reproduced. 

Let us consider now that an enhanced numerical solution has been found for a given 
finite element mesh. This can be simply achieved by projecting into the original mesh 
an improved solution obtained via global/local smoothing or superconvergent recovery 

of derivatives [21,22]. If r~ e) and r~ e) respectively denote the element residuals of the 
original and the enhanced numerical solutions for a given mesh it is obvious that 

o (20) 

Eq. (11) assumes that r 1 is positive. Clearly for the negative case the inequality 
should be appropiately reversed. 

Combining eqs.(18),(19) and (20) gives 

(21) 

3.1 C o m p u t a t i o n  of ~ for e l emen t s  a t  t he  b o u n d a r i e s  
The stabilized balance equation at a boundary can be written after discretization 

a s  

~ ~HTu~  + n T D v r  + q - ~hTn~ -- r r (22) 
z 

where q represents the prescribed normal flux at a Neumann boundary, or alternatively 
the unknown normal flux at the Dirichlet boundary where r is prescribed. 

Following the arguments used previously the equation defining the stabilization 
parameters at a boundary element can be obtained as 

(23) 
where (.)(e) denotes average values over a boundary domain and indexes 1 and 2 refer 

to the original and enhanced solutions, respectively. The enhanced nodal values ~e) 
can be obtained by superconvergent nodal recovery of primary variables [22]. 
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Note that the equality sign in eqs.(21 ) and (23) provides the value of the stabilization 
parameters ensuring no growth of the numerical error. In reference [15] it is proved that 
this yields the standard critical value of c~ in the simplest sourceless one dimensional 
problem solved with linear elements. 

Eqs.(21) and (23) are the basis for the alpha-adaptive scheme to be described in 
next section. 

4. A L P H A - A D A P T I V E  STABILIZATION S C H E M E  

The following scheme can be devised to obtain an stable numerical solution in an 
adaptive manner. 

(1) Solve the stabilized problem defined by eqs.(4), (8) and (9) using the FEM with an 
initial guess of the stabilization parameters, i.e. 

(2) Recover an enhanced derivatives field. Evaluate ~(1), ~(2), ~,~e) and V ~  e). 

(3) Compute an enhanced valued of the streamline stabilization parameter a~ e) by 

If the element lays in one of the boundaries the expression for a~ e) as deduced from 
eq.(23) should be used. 

(4) Repeat steps (1)-(3) until convergence is found for the value of a~ e) while keeping 
a (e) constant. 

(5) Repeat steps (1)-(4) for computing a(n e) while keeping a~ e) constant and equal to 
the previously converged value. In the first iteration an = ~ 4-e where e is a 
small value should be used. The updated value of a~ ) is computed as 

21ul - T(w  (26) 
- -  l(e)uTCx-/~'(e)n ~--'2 - Vr~ e)) 

Again for a boundary element the expression for a (e) deduced from eq.(23) should 
be used 

(6) Once C~{n e) has been found steps (1)-(5) can be repeated to obtain yet more improved 
values of both a~ e) and a (e). 
Note that for a (e) = 0 above adaptive scheme provides the value of the critical 

streamline stabilization parameter c~ e) corresponding to the well known SUPG 
procedure. It can be shown that for the simplest 1D sourceless advective-diffusive 

case solved with linear elements the well known critical value a~ e) = 1 1 - 7-~, where 

~,(e) = u .~  is the element Peclet number is obtained. Indeed accounting for the cross- 
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wind stabilization parameter an has proved to be essential for obtaining stable solution 
in presence of arbitrary transverse sharp layers. 

In the examples shown next the enhanced derivative field has been obtained by 
the simplest nodal averaging procedure. It has also been found useful to smooth the 

distribution of the a~ e) and c~ (e) values and this has been done again using nodal 
averaging. Note also that the number of iterations in the above adaptive process is 

substantially reduced if the initital guess for (~e) and (~(n e) are not far from the final 

converged values. This can be ensured by using as initial value for a~ e) the standard 
expression derived from the straight forward extension of the simple 1D case, whereas 

the initial guess ~ - 0 provides a good approximation in zones far from sharp layers 
non orthogonal to the velocity vector. 

5. E X A M P L E S  

5.1 E x a m p l e  1. Two d imens iona l  advect ive-di f fus ive  p r o b l e m  w i t h  no source ,  
d iagonal  veloci ty  and  un i fo rm Di r ich le t  b o u n d a r y  condi t ions  
The first 2D example chosen is the solution of the standard advection-diffusion 

equation in a square domain of unit size with 

k x = k y = l  , u = [ 1 , 1 ]  T , v = l x l 0 1 0  , Q - - 0  

The following Dirichlet boundary conditions are assumed 

r = 0 along the boundary lines x = 0 and y - 0 
r = 100 along the boundary line x = 1 
qn - 0 along the boundary line y = 1 

The expected solution in this case is a uniform distribution of r -- 0 over the whole 
domain except in the vecinity of the boundary y --- 1 where a boundary layer is formed. 

The domain has been discretized with a uniform mesh of 800 three node triangles as 

shown in Figure 4. The initial values ~ -- ~ -- 0 have been taken in all elements. 

Figure 5 shows the initial distributions of r for c~ e) - c~(n e) = 0 (standard Galerkin 
solution). Note the strong oscillations obtained as expected. 

The final converged solution for r after 7 iterations is displayed in Figure 6. Note 
that the boundary layer originated in the vecinity of the boundary at y - 1 is well 
reproduced with minimum oscillations. These oscillations grows considerably higher if 

the value of the transverse stabilization parameter c~(n e} is kept equal to zero during the 
adaptive process, thus yielding the standard SUPG solution, as shown in Figure 7. 

Figure 8 shows finally the smoothed distribution of the stabilization vector a = 
OtsU + OtnUn. Note that in the central part of the domain the a vectors are aligned 
with the velocity direction (i.e. an = 0), whereas in the vecinity of the boundaries the 
effect of the transverse stabilization parameter an leads to a noticeable change of the 
direction of a. 
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Figure 4. Example 1. Sourceless advective-diffusive problem with diagonal velocity. 
Finite element mesh of 800 linear triangles. 

Figure 5. Example 1. Initial oscillatory distri- 
bution of ~b for a(. e) = a~ ) = 0. 

Figure 6. Example 1. Final distribution of 
after 7 iterations. 

5 .2  E x a m p l e  2. T w o  d i m e n s i o n a l  a d v e c t i v e - d i f f u s i v e  p r o b l e m  w i t h  n o  s o u r c e  
a n d  n o n  u n i f o r m  D i r i c h l e t  b o u n d a r y  c o n d i t i o n s  
The  advection-diffusion equat ions  are now solved with 

1 1 1 1 n =]- ~, ~[x]- ~,-~[ u = [cos O, - sin O] T 

- {1  if (x,y)err 
k x = k  v = 1 0  -6  , Q ( x , y ) = O  , r  0 if ( x ,y )  e r r  

with r~1 - {-1/2} • [1/4, 1/2] U]- 1/2, 1/2[• Fr = Fr rr and Fq =0. 



319 

Figure 7. Distribution of ~ along a central line obtained with the present discontinuity 
capturing method (DC) and the SUPG formulation (an = 0). 

Figure 8. Example 1. Final distribution of the stabilization vector a = a,u + a,u, .  

A unstructured mesh of 902 linear triangles has been chosen (Figure 9.). The 
problem has been chosen for an angle of u given by tan 8 = 2. Once again the initial 

values ~ = ~ = 0 have been taken. 
Figure 10 shows the oscillatory distribution of r obtained for the first solution, as 

expected. The final distribution of r after 7 iterations is displayed in Figures 11 and 
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Figure 9. Example 2. Two dimensional advective-diffusive problem with zero source 
and non uniform boundary conditions. Geometry and unstructured finite 
element mesh of 902 linear triangles. 

Figure 10. Example 2. Initial oscillatory so- 
' lution for r obtained for a (e) = 

a~ ) = O. 

Figure 11. Final solution of ~b after 7 itera- 
tions. 

12. Note that  both the boundary layers at the edges and the internal sharp layer are 
captured with minor oscillations. These oscillations are more pronounced near the right 

hand side edge (Figure 13 and 15) when a (e) = 0 is taken through out the adaptive 
process (SUPG solution). 

Figure 14 shows finally the distribution of the stabilization vector a = c~su + OlnUn. 

Again note that the direction of c~ in the smooth part of the solution is aligned with 
tha t  of the velocity vector, whereas the effect of the transverse stabilization term is very 
pronounced near the sharp gradient boundary regions. This leads to a change in the 
direction of a in these zones. 
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Figure 12. Example 2. Final distribution of ~b after 7 iterations. 

Figure 13. Example 2. Final distribution of 
obtained with an = 0 (SUPG 

method). 

Figure 14. Example 2. Final distribution of 
the stabilization vector a = asu + 
~ n U n  �9 

C O N C L U S I O N S  

The new stabilized form of the governing differential equations derived via a 
"finite increment calculus" approach seems to be the natural  root  for obtaining stable 
finite element methods  for advective-diffusive problems. The stabilized governing 
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Figure 15. Distribution of @ along a central line obtained with the present discontinuity 
capturing method (DC) and the SUPG formulation (an = 0). 

equations are also the basis for computing line the streamline and crosswind stabilization 
parameters necessary to capture arbitrary sharp transverse layers. The new stabilization 
approach can be interpreted as a class of adaptive methods where the numerical solution 
is enhanced by progressively improving the value of the stabilization parameter, while 
keeping the mesh and the finite element approximation unchanged. The efficiency of 
this alpha-adaptive procedure has been shown for two problems with sharp gradients 
where accounting for the crosswind stabilization parameter has proved to be essential 
to obtain accurate solutions. 
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The interest in adaptive strategies for the finite element method is growing at a fast pace. 
Researchers are now fully convinced that this should be part of any numerical modelling and 
try to incorporate the methodology to their problems. Even the industry begins to require 
such an approach to increase the quality of the numerical results and to get more effective 
analyses to increase the ratio between computer costs and target error level. 

The adaptive strategy has first been applied to linear elliptic problems, e.g. linear 
infinitesimal elasticity (Ainsworth et al. [ 1 ], Ewing [6], Verfiirth [ 16], Tie [ 11 ]). It is now 
enlarged to nonlinear and transient problems ( Tie et al. [ 12] [ 14], Eriksson et al. [5], Safjan 
et al. [ 10], Tie et al. [ 13], [15], Wiberg [17]). It is the aim of this paper to illustrate the 
application of the technique of residuals to adaptive refinement of coupled problems and to 
elastic wave propagation. 

There are many other approaches to a posteriori error estimations. Well-known alternate 
techniques are presented in this workshop and they will not be recalled here. Some of them 
appear difficult to be extended easily to coupled and transient problems. It is believed that the 
residual approach is versatile enough to be easily applied to more complex problems. The 
two basic ideas used here rely on a space-time Galerkin formulation which provides a 
variational formulation of the error with respect to the residual, and the adjoint state which 
gives an upper bound of the error by the norm of the residuals weighted by some power of h 
and At. 

1. COUPLED T H E R M O E L A S T I C I T Y  

The coupled equations of thermoelasticity are considered first. Let u(t), "c(t) be 
respectively the displacement and temperature fields which satisfy the following coupled 
equations associated respectively with the conservation of the linear momentum and of the 
energy for given body forces f and thermal flux 9 on a domain f~: 

Div C:e(u(t)) - tx grad x(t) + fit) = 0 (1) 
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c x'(t) = t0(t) + K Ax(t) - o~ div u'(t) (2) 

where C stands for the elasticity tensor, tt the dilatation coefficient, c the heat capacity, K 
the conductivity. A symbol with a prime like x' denotes the time derivative. Boundary and 
initial conditions should clearly be added to these equations, and it will be assumed here that 
homogeneous Dirichlet boundary condtions prevail on the boundary of the domain and the 
following initial conditions occur: 

u(0) = u0, x(0) = x o (3) 

Classically these equations are decoupled either in the stationary regime or when the 
deformation term in the conservation of energy may be neglected. This will not be assumed 
here and full coupling may occur between the displacement and temperature dependant 
variables. The time interval is I = ]0,At[ which may be considered as a time step as well. The 
effect of successive time steps will not be analyzed here. 

1.1 Space-time variational residual error 

A space-time weak form of the above coupled equations ( Eriksson et al. [5]) is easily built 
by introducing first a displacement trial function space u ( t ) eV.and  a temperature trial 
function space x(t)~V, and then a displacement test function space u ~ V. and a temperature 
trial function space ~r ~ V," 

Ix (C:E(u(t)), ~(u))-  ~, (t~ x(t), div u ) =  I, (f,z-~), V u e V. (4) 

J, (c x'(t), ~ )+  ~, (tx div u ' ( t ) ,~)+ ~A, (K grad x(t),grad ~ )=  ~, (tO,~), ~ ' ~  V. (5) 

(x(0), z') = (x 0, "r), (u(0), u) = ( u o, u) (6) 

In the above equation the following notatior~ is used for two fields a and b which may be 
either scalars, vectors or tensors: (a,b) = Jtaa.bdV, where a.b stands for the standard 
appropriate dot product depending on the nature of the implied variables. 

It is now possible to proceed to the space-time discretisation of the weak form by 
introducing two subspaces V.h and V~, of the trial spaces V u and V,. Basically they are 
assumed to be polynomial of degree one with respect to time on I and generated by  a 
classical finite element space triangulation with respect to space. As for the test spaces V.h 
and V~ they will be assumed to be generated by functions constant with respect to time on I 
and by finite element classical basis functions with respect to space. 

uh(t) = (t/At) Uh, + (1 - (t/At)) Uh0 (7) 

Clearly more general polynomial dependency may be assumed. The approximations u h and 
x h to the displacement and temperature are solutions of the equation underneath: 

~t (C:E(Uh), e(Uh)) dt-  ~ (r X h, div u h) dt = ~t (f, Uh) dt ,  V u h ~ V.h (8) 

~, (C Xh',~ h) dt+ ~, (0t div Uh',~h)dt + ~t (K grad xh,grad~h)dt = .[, (9,~ h) dt, V~h~ V,h (9) 

The preceeding equations are thus equivalent to: 
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(C:e(<uh>). e(uh)) - (tX <Xh>. div uh) = (<f>.uh).  'v' u h ~ V,h 

(c (Xh,-XhO),Z h) + (t~ div(uh,-Uho),r h) + (Kgrad <Xh>,gradTrh) = (<9>,zh), V zh~ V~h 

(10) 

(11) 

where the following notation is Used: </~> = At (~hl+~h0)/2. The displacement and 
temperature errors are now introduced: e, = u - u h , e, = x - x h. They satisfy the two 
following equations" 

~, {(C:e(e,), E(u)) - (t~ e,,divu)}dt = ~, {(f,u) - (C:e(uh), e(u)) + (iX xh,divu)} dt (12) 

i {(c e~, "r) + (~ d i v e , ,  "t') + (Kgrad e~,grad x') } dt = 

~! {(tp, z)  - (c xh' ,z) - (ct div Uh',Z) - (K grad xh,gradz) }dt (13) 

This is a residual equation (Eriksson et al. [5]) because the right-hand side may be 
transformed to residual mechanical equilibrium and thermal and fluxes across each element. 
By choosing u =e~' and ~ =e, in the preceeding equation we get the following equation: 

Ileu(At)ll 2 + le~(At)l 2 + ~ Ile~ll 2 dt = ~! [(Ru, %) + (R~, e~') ]dt  (14) 

with: I1%112 = (C:e(eu), e(e,)) ; levi 2 = (c e~, e~) ; Ile,II 2 = (K grad e~,grad e~). 

By using a Gronwall type of inequality it is possible to arrive at a bound on both errors 
with respect to the residuals. Then when the test functions (u,  z)  belong to V.uhx V~ then 
the two right-hand sides vanish. Thus to evaluate the compound error(e u, ex. _) it is required 
to test the residual on a larger space than Vuhx V,h, for instance V~haX V,h~2. The cost 
implied by such a strategy should of course be small compared to the overall computation. 
Consequently only local thermoelastic problems are solved on patches of potentially refined 
elements to estimate the error in displacement and temperature. The concept of adjoint state in 
the next paragraph will allow to arrive at a better representation of the error with respect to 
the residual. 

1.2 Error representation with adjoint state 

Erikson et al. [5] has shown recently that the concept of adjoint state is particularly helpful 
to get an error representation. This approach is followed here and extended to thermo- 
elasticity. Let us define the adjoint-state (u*, x*) which is a thermo-elastic solution with 
specially designed final conditions: 

Div C:~(U*) - ct grad x* = 0 ,  -c x*' = K Ax* + ~ div u*' (15) 

u*(At)= eu(At) ; x*(At)= e,(At) 

Then it is easy to show that: 

Ileu(At)ll "z- + le~(At)l 2 = (E(u*), C:E(eu))(0) + (x*,c e0(0 ) + 

~l [(e(u*'),C:e(eu)) - (div u*',o~ e~) + (x*,c e~') + (x*,t~ div eu' ) + (grad x*,K grad e~)]dt 

But here appears on the right-hand side the residual equation with the test functions equal 
to the adjoint state. The trick now is to take benefit of the time-space Galerkin formulation 
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which implies that the residual vanishes on the finite element space so that the interpolate of 
the adjoint state may be introduced in the right-hand side above. Finally this term may be 
bounded above by the local residuals and a norm of the adjoint state. But if regularity results 
are assumed the norm of the adjoint state is itself bounded by the data (eu(At), e,(At)). This 
then implies an upper-bound on the error by the thermo-elastic residual. Clearly the analysis 
presented above was restricted to a given time step At but can be considered to several time 
steps. Then the projection phase from one mesh to the other as soon as mesh refinement is 
taken into account in the initial error. 

1.3 Numerical results 

As a numerical example, the solidifying test proposed by Celentano et al. [4] is considered. 
It consists in casting aluminium into an instrumented steel cylindrical mould. In our analysis 
the problem is transformed into a plane strain problem (Figure 1), and no interface treatment 
is made between aluminium and steel. The analysis begins when the mould is completely 
filled with aluminium in the liquid state. The initial temperature are assumed to be 700~ for 
the casting and 200~ for the mould. This initial temperature is kept at the exterior mould 
wall. We refer to [4] and Tie et al. [14] for the numerical value of the parameters. 

The initial mesh is uniform and composed of 4-nodes quadrilateral elements (Figure 1). 
During the numerical computation, a series of nested FE meshes and a corresponding series 
of embedded FE spaces are built using h-version hierarchical bases. All newly added degrees 
of freedom are relative corrections with respect to FE solutions defined on coarser meshes 
(Tie [11],[12]). For each time step, several adaptive meshes can be generated. The global 
system of equations have a hierarchical block structure and is resolved by the hierarchical 
multimesh iterative solvers, whose convergence behaviour keeps relatively ligthly 
deteriorated, despite the highly local mesh refinement. In Figure 2, the adaptive refined 
meshes at different time steps are presented. On the one hand, the zone around the casting- 
mould interface is refined at the beginning of the cast process, large variation of the stress 
field is observed at this zone. On the other hand, the moving solidification front is captured 
and followed up by the local mesh refinement. It is obvious that the local unrefinement of 
mesh behind this moving front would be interesting for decreasing the numerical cost of the 
computation. 

Figure 1. Solidification test: Problem description and initial FE mesh 
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Figure 2. Adaptive mesh refinement and moving solidification front development 

As far as phase changes effects are concerned, the problem is nonlinear. The residual 
approach presented above is simply applied here without more rigorous analysis. 
Furthermore local residuals are only measured on the spatial FE mesh at each time step as 
only spatial mesh refinement is considered here. It is however obvious that a whole time- 
space control and refinement would be possible and simple if it had been based on the 
residual analysis presented above. 

2. TRANSIENT ELASTODYNAMICS 

It is intended in the second part of this paper to show now that the two key ingredients that 
is the error residual and the adjoint state may also be extended to transient elastodynamics. 
The classical Navier equations are recalled" 

p u" = Div if(u) + f (16) 

with Dirichlet boundary conditions and initial conditions : u(0)=u 0, u'(0)=v 0. First of aU 
the system will be recast in a first-order system by introducing the velocity as a 
supplementary unknown and by adding a compatibility condition suggested by Johnson 
which will warranty conservation of energy: 

p v' = Div i(u) + f ,  Div i (u ' )  = Div if(v) (17) 

Then a space-time variational formulation (Hughes et al. [7], Hulbert [8], Johnson [9]) is 
obtained on the time interval I= ]0,At[: 

f, (p v ' , v ) =  I, (f, v ) -  ~, (ff(u),e(v)) V v  ~V v (18) 

i (~(u ' ) ,e(u))  = l (~(v) ,e(u)) ,  Vu  ~V u (19) 

It is now possible to proceed to the space-time discretisation of the weak form by 
introducing two subspaces Vvh and Vuh of the trial spaces V, and V u. Basically they are 
assumed to be polynomial of degree one with respect to time on I and generated by a 
classical finite element space triangulation with respect to space. As for the test spaces V vh 
and V uh they will be assumed to be generated by functions constant with respect to time on I 
and finite element classical basis functions with respect to space. 

Uh(t ) = (fiAt) Uh~ + (1 - (fiAt)) Uho (20) 
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Clearly more general polynomial dependency may be assumed. The space-time 
discretization leads to the following variational equation" 

f, (p vh', v n ) -  ~, (f, vn)-~, (o(un),E(vh) ) ,'V' vn~ Vvh (21) 

This is equivalent to the following standard discrete scheme with the unknowns (Vh~,Uh~): 

(p (Vhl-Vh0), Vh) = At (<f>, Vh) - At (O(<uh>),e (vh) ) V v h ~ V,h (23) 

(O(Uh,-Uh0),e(Uh)) = At (O(<Vh>),e (Uh)), V u h ~ Vuh (24) 

2.1 Residual error equation 

Let us again define the error by: e, = uh-u, e. = vh-v. Then it satisfies the following 
variational residual equation which cancels on the space V.hx V,h itself" 

f, (~(e,'- %),8(u)) = -  ~! (t:r(u'h" Vh),e(U)) , V u e V u (26) 

Note here how the concept of residual is here generalised especially with respect to the 
second equation to the compatibility between the displacement derivative and the velocity, 
where in the context of finite differences it would be considered as a truncation error. Again 
it is possible by testing this residual equation on a finer mesh or through local Dirichlet 
elastodynamics problems to implement an adaptive strategy both with respcet to space and 
time discretization. To arrive at a nice representation of the error the concept of the adjoint 
state will be again used in the next paragraph. 

2.2 Residual error representation by adjoint state 

In the case of the elastodynamie equation the adjoint state (v*,u*) adapted to error 
representation is defined by the following backwards wave equation ( Eriksson et al. [6]): 

p v*' = Div o(u*), Div o(u*')= Div o(v*) (27) 

u*(At) = eu(At), v*(At) = ev(At ) (28) 

Now if we multiply the first equation by e v and the second equation by e u, perform 
adequate integration by parts and add the two equations, we get" 

lev(At)l 2 + Ileu(At)ll2= (v*,p %)(0) + (~(u*),t~(eu))(0) 

+ ~! (v*,p e . ' )+ I! (e(v*),O(eu)) + ~! (e(u*),c(e,'-e.)) (29) 

which is again the variational residual equation applied on the adjoitn state plus the initial 
error. Then taking into account the Galerkin projection result, the projection of the adjoint 
state may be introduced without perturbing the above equation. The estimation of the norm 
of the error then boils down to the estimation of the distance between (v*,u*) and its 
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interpolate and a regularity results which give an upperbound of the adjoint state with respect 
to its final value (e,(At),eu(At)). 

2.3 Numerical examples 

Two numerical examples will now be given where the refinement procedure is controlled 
by the residual defined above. As indicated in the first section, the local residuals are only 
measured and controled on the spatial meshes at each time step. The first example is a square 
membrane in plane stress. The left boundary is clamped and the fight one is submitted to a 
uniform Heaviside loading. The lateral boundary is free. The results are shown at different 
time steps. The generated P-wave is clearly seen together with refinement in the vicinity of 
the front of the wave, before it reaches the left end. Then due to the clamped boundary 
condition at the left, waves at the comer are triggered, diffract from them and interfere with 
the pure reflected P-wave from the left boundary. Clearly such a complex behaviour could be 
obtained only with a much refined mesh and a coarser one would not capture wave 
interferences. 

Figure 3. Displacements norms at different time steps 

In the second example, there is a further geometrical singularity with a reentrant corner (L 
shaped domain). On a vertical segment at the upper left end again a Heaviside traction is 
applied. The initial mesh is made of 68 triangles. Deformed and adapted meshes are shown 
again at different time steps (Figure 4). 

Figure 4. Adapted and deformed meshes at different time steps 

3. CONCLUSION 

The residual technique has been extended to a coupled system such as thermoelasticity and 
transient elastodynamics. Using a space-time Galerkin approach it embodies both the 
classical residual and the truncation error usually expressed as a compatibility condition 
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between the velocity and the time derivative of the displacement. The adjoint state allows to 
represent elegantly the error at the end of a time step with respect to the residuals and thus to 
design an adaptive strategy based on them (Aubry et al. [3]). It is believed to be an efficient 
technique versatile enough to be extended to coupled and transient problems where the lack 
of intuition and insight into the singularities of the exact solution makes adaptive approches 
mandatory. In both cases only much refined meshes would be able to capture sharp 
temperature or wave fronts. Obviously the whole potential of the approach will be of greatest 
interest in the three-dimensional case applied to complex structures. 
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1. I N T R O D U C T I O N  

Adaptive finite element computations are nowadays regarded as a natural approach for 
the analysis of localization in strain softening solids, because the localization area ~where  
a very fine mesh is needed-- is usually not known a priori .  These adaptive strategies have 
three main ingredients. The first one is an algorithm for increasing/decreasing the richness 
of the interpolation in a particular area of the computational domain. For instance, a good 
mesh generator if h-refinement [11,21] is used. In this work, the mesh generator developed 
by Sarrate [19] is used. The second one is an error estimator or error indicator, which 
is employed to locate where there is a need for refinement/de-refinement. Finally, the 
third ingredient is a remeshing criterion, which must be used to translate the output of 
the error analysis into the input of the mesh generator (for instance, the distribution of 
desired mesh sizes). The criterion proposed by Li and Bettess [9] is used here. 

Only the error analysis is discussed here, because it is probably the most crucial com- 
ponent of the adaptive strategy for softening problems, [12]. The main difficulty is that it 
must tackle the material nonlinearity associated to path-dependent constitutive models. 
Two basic approaches can be used: error indicators or error estimators. In the literature, 
adaptivity in softening problems has been associated to error indicators, [13,16,20], which 
are based on heuristic considerations. In contrast to that, a tool for assessing the error 
measured in the energy norm is proposed in this work. The obtained approximation to 
the error is asymptotically exact, that is, tends to the actual error if the element size 
tends  to zero [2,3]. In that sense, this tool is an error estimator. 

The nonlinear error estimator is presented in Section 2. Its application to adaptive 
computations in softening problems is shown by means of numerical examples in Section 
3, where two regularized constitutive models are employed: Mazars nonlocal damage and 
Perzyna viscoplasticity. Finally, some concluding remarks are made in Section 4. 
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2. E R R O R  E S T I M A T I O N  

As previously said, an error estimator is a key. feature in any adaptive procedure. 
This section is devoted to briefly describe a residual-type a-posteriori error estimator 
(introduced in [5]) which can be used in general nonlinear cases. 

Using a mesh of characteristic size h, the Finite Element Method (FEM) provides a 
discrete equilibrium equation where the unknown is the nodal displacement vector Uh: 

f~nt(uh)_ f~t, (1) 

where f~nt(Uh) is the vector of nodal internal forces associated with Uh and f~t is the 
discretized external force term. 

Once Eq. (1) is solved, the solution uh is affected by an error that has to be estimated. 
Since the actual displacements are unknown, the actual error cannot be computed. How- 
ever, using a much finer mesh of characteristic size tt (It <<  h ) ,  the FEM gives a new 
solution uh which is much more accurate than uh because the regularized model ensures 
that the Finite Element Analysis converges as the element size goes to zero [7]. This 
solution can be taken as a reference solution and, consequently, the actual error can be 
fairly replaced by the reference error eh := uh - Uh. 

Nevertheless, the determination of u~ (or eh) requires to solve an equation analogous 
to Eq. (1) but in the finer mesh: 

int lint fext f~ (u~) = "h (uh + e~,) = 'h �9 (2) 

This problem is much more expensive than the original one and it is unaffordable from a 
computational point of view. 

In the remainder of this section a method for approximating e~ by low cost local com- 
putations is presented. That is, instead of solving Eq. (2), e~ is approximated by solving 
a set of local problems. This method is splitted in two phases. First, a simple residual 
problem is solved inside each element and an interior estimate is obtained. Second, a new 
family of simple problems is considered and the interior estimate is complemented adding 
a new contribution. The first phase is called interior estimation and the second one is 
called patch estimation. 

2.1. An  error e s t i m a t o r  based on local  c o m p u t a t i o n s  
Inter ior  e s t i m a t i o n  

The natural partition of the domain in order to solve local problems is the set of elements 
of the "coarse" computational mesh (denoted by ~k, k = 1,.. .).  

A finer reference mesh is constructed by the assembly of submeshes discretizing each 
element. These elementary submeshes are built from a discretization of the reference 
element mapped into the elements of the actual mesh (see Figure 1). 

Then, the elementary submeshes can be used to solve the error equation (2) on each 
element f~k of the original mesh. However, the solution of such problems requires proper 
boundary conditions for the error. Most of residual type error estimators [1,4,8], solve 
Eq. (2) prescribing the error flux around each element ~k. This is imposed using a flux 
splitting procedure which is generally involved and expensive from a computational point 
of view. Here, the elementary problems are solved in a straightforward manner imposing 
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(b) (c) 

Figure 1. (a), reference submesh mapped into (b), 
an element, to get (c), an elementary submesh 

Figure 2. Patch submesh 
centered in a node of the 
computational mesh 

the displacement error to vanish along the boundary of each element Ftk (see [5]). That 
is, the error is prescribed to zero in all the boundary nodes of the elementary submesh. 
An approximation to the error wihtin each element ftk is obtained solving each of these 
discrete local problems, this local approximation is called interior estimate and denoted 
by ek. The vector r is an approximation to the restriction of the reference error eh inside 
the element f~k. 

Once the elementary problems are solved, the local interior estimates can be assembled 
to build up a global estimate �9 having values in the whole domain f~, 

= ( 3 )  
k 

The previous choice of the homogeneous boundary condition implies that I1~11 < <  Ilehll. 
The reference error eh is, most probably, nonzero along the element edges, thus e may be 
a poor approximation to eh. In other words, the information contained in the flux jumps 
is ignored. 

Patch est imation and complete  est imate 
Once the interior estimate is computed, it is necessary to add the contribution of the 

flux jumps, that is, to improve the error estimation by adding non-zero values in the 
element boundaries. This can be done following the same idea of the interior estimation, 
precluding the direct computation of flux jumps and avoiding any flux splitting procedure. 

In this second phase, a different set of subdomains, called patches, is considered, each 
one overlapping a few number of elements and covering a part of the elementary bound- 
aries. Using the elementary submeshes of Figure 1, the most natural choice for patch 
subdomains is to associate them with the nodes of the mesh: each patch is associated 
with a node and includes a fourth of every element sharing that node (see Figure 2 for an 
illustration). 
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The idea is to use this new partition to define new local problems for the error and to 
solve them. Local boundary conditions are imposed in the same fashion as in the previous 
phase (interior estimate). A new approximation to the error is obtained. This new 
approximation takes non-zero values in the boundary of the elements, where the interior 
estimate ~ vanishes. In order to solve these problems each patch must be discretized by a 
patch submesh. The discretization of Eq. (2) using this patch submesh leads to a system 
of equations analogous to the interior estimation case. Since patches cover the edges of 
the elements, the restriction of Eq. (2) to each patch accounts for the flux jumps. 

For the patch estimate, local and global estimates can be computed following the same 
strategy used for the interior estimate. In order to properly add the contribution of the 
patch estimates to the previously computed interior estimates, the patch estimate must 
be forced to verify an additional restriction: it must be orthogonal to the global interior 
estimate ~. This orthogonality condition can be easily implemented using the Lagrange 
multiplier technique. 

Thus, the interior estimate �9 is completed and a new approximation to e h is found. 

2.2. Error equations for linear and nonlinear problems 
A method for approximating the reference error by low-cost local computations has 

been described. The particularization of the error equation (2) to linear and nonlinear 
problems is discussed next. These are the equations that must be solved locally in order 
to estimate the error. 

If the problem is linear, f i a t ( u )  i s  a linear function of u and, consequently, 
fhint / int  ~uh) = Khuh and f~ (u h) = Khu h, (4) 

where Kh and K h stand for the stiffness matrices associated with the coarse mesh and the 
finer mesh respectively. These equations can be easily manipulated and a linear equation 
for the reference error is found: 

Kheh = f[xt _ f~nt(ua) =: _rh(uh), (5) 

where rh(uh ) is the residual. 
Figure 3 shows a graphic illustration of the meaning of the reference error and its 

relation with the residual. The reference error, eh = u h - u h ,  and the residual, rh(uh) := 
f~nt(uh) _ f[xt, are related in terms of the stiffness matrix in the reference mesh, Kh, as 
indicated in Eq. (5). Although this illustration may appear trivial in the linear case, a 
variation of this figure provides a good understanding for the nonlinear case. 

On the contrary, if the problem is nonlinear, Eq. (5) does not hold and the only available 
equation for the error is Eq. (2). This is a general nonlinear equation and must be solved 
using any standard nonlinear solver, see Figure 4. However, it is important to notice that 
the approximate solution uh can be used as a good initial guess for u h and, consequently, 
the solution of the nonlinear equations providing uh is straightforward (tipically only two 
iterations are needed to reach the prescribed accuracy). 

Moreover, here, the unknown eh is small compared with uh and, consequently, this 
nonlinear problem is much easier than the original one. If this assumption is true and the 
tangent stiffness matrix is available, the internal force vector can be approximated by a 
linear Taylor expansion, that is, 
f~int / l i n t  / , (uh + eh) ,~ h (Uh) + Kr,h(uh)e h, (6) 
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Figure 3. Graphic interpretation of refer- 
ence error in linear problems 

Figure 4. Graphic interpretation of refer- 
ence error in nonlinear problems and fully 
nonlinear error estimation 

where K r,h(uh ) is the tangent matrix describing the linear behavior of the system (dis- 
cretized with the finer mesh) around Uh. 

Replacing Eq. (6)in Eq. (2), a new error equation is found" 

Kr, h (uh)e h = --r h (Uh), (7) 

where rh(Uh ) is the residual, following the definition given in Equation (5). It is worth 
noting that Eq. (7) is linear and has exactly the same structure of Eq. (5). 

Following the idea of the graphic illustration of Figure 3 and Figure 4, Figure 5 shows 
how the nonlinear case can be treated using a tangent approximation. 

Once the error equation is set as a linear equation (for linear problems or nonlinear 
problems with available tangent stiffness matrix) or a fully nonlinear equation (if tangent 
matrix is not available), the reference error is approximated solving the local problems 
described in the previous section. Thus, the estimation of the error is splitted in two 
steps. First, elementary problems are solved with null error boundary conditions, and an 
interior estimate is computed. Second, adding the contribution of the patches, a complete 
estimate is obtained. 

3. N U M E R I C A L  EXAMPLES 

3.1. Example  1: Mazars  nonlocal  damage model 
The Mazars damage model is used for describing the behavior of brittle materials, 

such as concrete and other geomaterials [10,18]. A non-decreasing scalar damage factor 
D, which ranges between 0 (intact material) and 1 (completely damaged material), is 
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Figure 5. Graphic interpretation of refer- 
ence error in nonlinear problems and error 
estimation using tangent approximation 

Figure 6. Three-point bending test on 
notched beam 

employed to represent the loss of stiffness caused by damage. The evolution of D is 
controlled by the principal positive strains. The one-dimensional stress-strain law shows 
a clear softening behavior both in tension and compression. Because of softening, some 
kind of regularization is needed. The nonlocal regularization [15] can be applied to the 
Mazars model [10]. The basic idea is to use an average value of positive strains around 
each point as the internal variable that controls D. Because of this nonlocal regularization, 
tangent stiffness matrices are not readily available for the Mazars nonlocal damage model 
[17], and the linear tangent error equation (7) cannot be employed. 

These ideas are illustrated with a simple test: the three-point bending of a notched 
beam, see Figure 6. The same material parameters of reference [18] are used. Figure 7 
shows the final damage distribution and deformed shape. As expected, both damage and 
strains concentrate in the midspan. Figure 8 shows the load-displacement curve, with a 
clear softening structural response. 

Two different adaptive computations were carried out with an acceptability criterion 
(maximum acceptable error) of 0.5%. In the first one, the beam lies on two point supports. 
Figure 9 shows the sequence of meshes obtained during the adaptive process. The error is 
considerably reduced (from 2.50% to 0.91%) in the first two steps. However the error is not 
further reduced in the subsequent steps, despite the increase in the number of elements, 
and the goal of 0.5% error cannot be attained. This is mainly due to the singularities 
associated to the point supports. As the mesh is refined near the supports, more errors 
are detected, and this process does not converge. 

A completely different result is obtained if singularities are suppressed. In the second 
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case, the beam lies on two distributed (20mm wide) supports. Figure 10 shows the results 
of the adaptive computation. In only two steps, the error is reduced from 1.93% to an 
acceptable 0.48%. As expected, small elements are needed in the midspan and near the 
supports. 
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Figure 7. Damage distribution and de- 
formed shape (• 200) 

Figure 8. Load-displacement curve 

3.2. Example 2: Perzyna viscoplasticity 
Due to the rate-dependent effects, viscoplastic constitutive models lead to regularized 

problems. Here, a simple viscoplastic model by Perzyna [14] is employed. For this model, 
tangent stiffness matrices are readily available, so the tangent version of the error equation, 
Eq. (7), may be employed. This is illustrated here by means of a numerical example, which 
also shows that an adaptive strategy based on error estimation is essential to capture 
complex failure mechanisms. 

A plane strain rectangular (50 • 100 mm 2) specimen with two circular openings (2 mm 
radius, 11 mm vertical distance between centers) is subjected to uniaxial compression, 
see Figure 11. Two cases are considered: large and small horizontal separation between 
openings (examples 2a and 2b respectively), because this parameter has a great influence 
on the collapse mode. Due to the central symmetry, only one half of the specimen is used 
in computations. The acceptability criterion is set to 1.5%. The material parameters for 
this test can be found in [6]. 
Example  2a (distant openings) 

If the horizontal distance between the circular openings is large enough, one shear band 
is developed aligned with the two openings. The remeshing process (see Figure 13) leads 
to a mesh with a large number of elements concentrated along the two edges of the band. 
Starting with the initial mesh, which is roughly uniform, the error estimator detects large 
errors along this band, so more elements are added during the remeshing process. 

Figure 12 shows the general behavior of the solution, with a clear softening behavior 
in the force-displacement curve. The equivalent inelastic strain is concentrated along the 
shear band, both in the original and the final meshes of the remeshing process. That is, 
the captured collapse mechanism is the same in both meshes. 
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Figure 9. Sequence of meshes with point 
supports 

Figure 10. Sequence of meshes with dis- 
tributed supports 

Example  2b (close openings) 
On the contrary, if the circular openings are closer, the behavior of the solution is much 

more complex and the original mesh is not able to reproduce such a mechanism. 
Figure 14 shows the sequence of meshes in this case. It is worth noting that, according 

to the concentration of elements, two bands are developed in the final mesh. In fact, 
the resulting bands are not aligned with the imperfections (as in example 2a), but have 
the opposite inclination. Indeed Figure 15 shows how the computed equivalent inelastic 
strain and the deformation evolve along the remeshing process. Only after two remeshing 
steps the mesh captures two bands. In the previous meshes the discretization is not 
accurate enough and only one band is completely developed. Since large deformations 
are considered, once the first band evolves enough, the kinematic mechanism associated 
with this band locks: then a second band appears as a new deformation mode with less 
energy. 
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Figure 11. Specimen with two symmetric imperfections: examples 2a (left) and 2b (right) 

Figure 12. General solution for example 2a: Reaction versus imposed displacement, 
deformation of mesh 5 and inelastic strain contours for meshes 0 and 5 
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Figure 13. Example 2a. Remeshing process for a prescribed accuracy of 1.5%: sequence 
of meshes and estimated error distributions 
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Figure 14. Example 2b. Remeshing process for a prescribed accuracy of 1.5%" sequence 
of meshes and estimated error distributions 
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Figure 15. Numerical bifurcation in the first meshes: mesh deformation amplified 40 times 
and equivalent inelastic strain contours 
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Figure 16. Two consecutive failure mechanisms for the final mesh: mesh deformation 
amplified 40 times and equivalent inelastic strain contours at two moments of the loading 
history 
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Figure 15 shows also how the force-displacement curves for meshes 0 and 1 are quali- 
tatively different from meshes 2 to 5. In fact the shape of the force-displacement curve 
for meshes 2,3,4 and 5 are practically identical and have two inflections in the descending 
branch. In Figure 16 it is shown how the inflections correspond to the formation of a new 
failure mechanism. The solution given by the last mesh is obviously more accurate than 
the original one because the energy of deformation (area under the force-displacement 
curve) is lower. In fact, since the error is controlled in the energy norm, one can be sure 
that the actual curve, associated with the exact solution, is not too far from the obtained 
curve (the error in energy norm is less than 1.5% and, consequently, the difference of the 
area under the curves is less than 1.5%). The first meshes are not able to reproduce the 
behavior of the actual solution because the elements along the later band (which develops 
in a further stage of the loading process) are too large and, consequently, the discretiza- 
tion is too stiff. Then, the size of the elements in this zone does not allow the inception of 
softening. On the contrary, once the remeshing process introduces small enough elements 
along the second band, the second mechanism can be captured. 

Thus, this example demonstrates that adaptivity based on error estimation is an es- 
sential tool for the determination of a priori unpredictable final solutions. Without this 
adaptive strategy, the initial mesh (mesh 0 in figure 14) and the resulting solution could 
be regarded as correct, and the second mechanism would not be detected. 

4. C O N C L U D I N G  R E M A R K S  

Adaptivity based on objective error estimation has been applied for softening mechan- 
ical problems. This computational strategy allows to deal with the two scales of the 
problem, providing a good mesh in order to capture both the geometry (macroscale) 
and the behavior in the localization zone (microscale). The generality of the proposed 
approach is shown by using two very different regularized constitutive models: Mazars 
nonlocal damage and Perzyna viscoplasticity. The numerical examples illustrate the ef- 
fectiveness of the adaptive strategy, which is capable of detecting non-trivial features of 
the solution, such as singularities or unexpected complex collapse modes. 
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The main objective of this work is to discuss aspects of adaptive strategies for finite element 
simulation of large deformation problems in the presence of finite elastic-(visco)plastic strains. 
The need for a rigorous treatment of both theoretical and algorithmic issues is emphasised and 
the practically important aspects of automatic data generation and adaptive mesh refinement 
procedures are discussed. A set of numerical examples is provided to illustrate the effectiveness 
and robustness of the developed approach. 

1 I N T R O D U C T I O N  

The formal structure of adaptive finite element methods for linear elliptic problems is 
now well understood thus forming a solid foundation upon which effective and reliable 
techniques of error estimation and adaptive refinement may be established. Although 
certain issues still remain unresolved, it may be said that nowadays, adaptive strategies 
for linear problems can be routinely performed within finite element computations. On 
the contrary, although some advances have been recorded for certain classes of nonlinear 
problems (see e.g. Babu~ka et hi. (1986) for some early contributions) only a limited 
amount of published work exists on a pos ter ior i  error estimates and adaptive approaches 
for history dependent nonlinear problems in solid mechanics. Notable exceptions are 
contributions by Ladev~ze et hi. (1986), Jin et al. (1989), Belytschko et hi. (1989), 
Ortiz and Quigley (1991), Johnson and Hansbo (1992), Lee and Bathe (1994), Perid et 
hi. (1994,1996), Gallimard et hi. (1996) and Barthold et al. (1997). 

On the practical side, since for a large number of industrially relevant solid mechanics 
problems, the optimal mesh configuration changes continually throughout the deformation 
process, the introduction of adaptive mesh refinement processes is crucial for the solution 
of large scale industrial problems. 

In this work some practical aspects of adaptive strategies are discussed that are 
relevant for finite element simulation of large deformation problems in the presence of 
finite elastic-(visco)plastic strains. The need for a rigorous treatment of both theoretical 
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and algorithmic issues is emphasised and the practically important aspects of automatic 
data generation and adaptive mesh refinement procedures are discussed. 

For problems involving non-linear behaviour, and plastic deformation in particular, 
issues related to the transfer of variables from the old mesh to the new mesh are crucially 
important for preserving the accuracy, robustness and convergence properties of the finite 
element solution. The problems in this area are especially acute when deformations 
are large, since the adaptive procedure must account for frequent substantial changes in 
geometry during the process. 

Error indicators, used in this work, are of the post-processing type which employ 
the smoothing of the appropriate variables over the local mesh of finite elements. The 
standard stress error in the energy norm is reformulated in the generalised energy norm 
that is suitable for history dependent evolution processes. Also in view of the dissipative 
nature of inelastic problems of evolution, an error indicator based on the plastic dissipation 
functional and the rate of plastic work is considered. 

The benefits of the above computational development will be illustrated by the solu- 
tion of a range of industrially relevant problems. 

COMPUTATIONAL M O D E L L I N G  OF INELASTIC 
MATERIAL B E H A V I O U R  

Some important aspects of computational treatment of inelastic solids at finite strains are 
briefly reviewed in this section. These relate both to the mathematical formulation and 
essential ingredients of the numerical integration scheme. 

Due to the nature of large deformation problems at large inelastic strains, which 
are for many practical applications mostly pressure insensitive in the plastic region, the 
problem of the proper treatment of incompressibility of plastic flow becomes important. 
Aspects of technology of elements capable of the treatment of incompressibility are dis- 
cussed in Section 2.2. 

2.1 Finite strain plasticity 

~. I.I Multiplicative decomposition 

The main hypothesis underlying the approach employed for finite strain elasto-plasticity 
is the multiplicative split of the deformation gradient into elastic and plastic parts, i.e., 

F : -  F e F p (1) 

This assumption, firstly introduced by Lee (1969), admits the existence of a local un- 
stressed intermediate configuration. Due to its suitability for the computational treat- 
ment of finite strain elasto-plasticity, the hypothesis of multiplicative decomposition is 
currently widely employed in the computational mechanics literature (Eterovic & Bathe, 
1990; Simo, 1992; Perid et al., 1992). 
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Figure 1 �9 Multiplicative decomposition of deformation gradient. 

~. I.~ Stress update for finite strains 

In the context of finite element analysis of path dependent problems, the load path is 
followed incrementally and a numerical approximation to the material constitutive law 
is needed to update stresses as well as the internal variables of the problem within each 
increment. Then, given the values of the variables {tr,,, q,} at the beginning of a generic 
increment [t,, t,,+l] an algorithm for integration of the evolution equations is required to 
obtain the updated values {trn+l, q,,+l } at the end of the increment. 

In the present work, the backward Euler scheme is employed for time integration and 
the Newton-Raphson algorithm is used in the solution of the resulting set of nonlinear 
equations. For convenience, the operations, on the kinematic level, of the algorithm for 
integration of the constitutive equations at finite strains are summarized in Box 1 while 
Box 2 describes stress update for small strains. We note that the small strain algorithm 
represented in Box 2 describes a simple procedure for von Mises elasto-plasticity. 

2.2 Fini te  e lement  t echnology  

It is a well known fact that the performance of low order kinematically based finite ele- 
ments is extremely poor near the incompressible limit. Large deformation problems under 
dominant plastic deformations and the assumption of isochoric plastic flow are included 
in this class of analysis. In such situations, spurious locking frequently occurs as a con- 
sequence of the inability of low order interpolation polynomials to adequately represent 
general volume preserving displacement fields. However, due to their simplicity, low order 
elements are often preferred in large scale computations and several formulations have 
been proposed to allow their use near the incompressible limit. Within the context of 
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Box 1. Algorithm for integration of constitutive equations 

(i) For given displacement u and increment of displacement Z~u, evaluate 
total and incremental deformation gradient 

F,,+I := 1 + Gradx.+, [u,+l], F,, := 1 + Gradx.+,[Au,+~ ] 

(ii) Evaluate elastic trial deformation gradient and elastic trial Fingers tensor 

b. t,.i,,! F,,(b~)(F~)r n-F1 :'-- 

(iii) Compute eigenvalues (principal stretches ~" trial) a n d  eigenvectors (rota- 
]g~e trial tion tensor -~.+1 ) of elastic trial Fingers tensor b e trial n + l  

(iv) Evaluate elastic trial left strain tensor and its logarithmic strain measure 

]/re trial [ l~e  triai~ T trial~ lt~e trial .+1 := ~n+ l  y (~e I""n+1 
e trial . _  [ l ~ e  triai~ T ln[~e trial] e trial 

e n + l  "-- ~,~"~n+ 1 I Rn+l 
(v) Perform stress updating procedure for small strain 

(vi) Update Cauchy stress and internal variable 

O'n+l := det[Fn+l]-lT.+l 

V,~+, := expte~,+ll, b.~+, := (V2+i) ~ 

geometrically linear theory, the class of assumed enhanced strain methods described by 
Simo and Rifai (1990), which incorporates popular procedures such as the classical in- 
compatible modes formulation (Taylor et al., 1976) and B-bar methods (Hughes, 1980), 
is well established and is employed with success in a number of existing commercial fi- 
nite element codes. In the geometrically non-linear regime, however, the enforcement 
of incompressibility is substantially more demanding and the development of robust and 
efficient low order finite elements is by no means trivial. Different approaches have been 
introduced in the computational literature; the class of mixed variational methods devel- 
oped by Simo et al. (1985), the mixed u/p formulation proposed by Sussman and Bathe 
(1987), the non-linear B-bar methodology adopted by Moran et al. (1990) and the family 
of enhanced elements of Simo and Armero (1992) are particularly important. However, 
due to the occurrence of pathological hourglassing patterns, a serious limitation on the 
applicability of enhanced elements has been identified by de Souza Nero et al. (1995) for 
the elasto-plastic finite strain case. 

g.E l A low order element for large deformations of near-incompressible materials 

The implementation of a simple 4-node quadrilateral and a simple 8-node hexahedron 
for finite strain analysis of nearly incompressible solids has been presented by de Souza 
Neto et al. (1996). Briefly, the elements are based on the concept of multiplicative devia- 
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Box 2. Stress updating procedure - Small Strains 

(i) Elastic predictor 

�9 Evaluate trial elastic stress 
Tnt ri al �9 t r i a l  

+1 "= h �9 e n +  x 

�9 Check plastic consistency condition 

r / T ~ t r i a l ~  K(R~) Ty < 0 THEN IF r : ' -  J 2 k  . + 1  ) - -  - -  

Set (').+x = t.~triat and RETURN k ] n + l  

ELSE go to (ii) 

(ii) Plastic corrector (solve the system for 7"n+1, and AT) 

l " n +  1 - -  h " ~.~n+ll~e t r i a l  _ A7 0r~b.+l) 0 

with 

= ' .~2(7",~+t) 

(iii) Update elastic part of the strain e t and plastic consistency parameter R 

e e h - 1  n + l  " - -  " 7 " n + l ,  R , n + I  " - -  R ,n  -~" A ' ) ,  

(iv) RETURN 

toric/volumetric split in conjunction with the replacement of the compatible deformation 
gradient field with an assumed modified counterpart. The resulting formulation can be 
used regardless of the material model adopted. In addition, the strain driven format of 
the algorithms for integration of inelastic constitutive equations of the purely kinematic 
formulation is maintained. 

The key idea underlying this formulation is the use of an assumed modified deforma- 
tion gradient to compute the stresses. Firstly, the volumetric/deviatoric split is applied 
to the deformation gradient F at the gauss point of interest as well as to the deformation 
gradient Fo that results from the conventional displacement interpolation at the centroid 
of the element. The modified deformation gradient, F,  is then defined as the composition 
of the deviatoric component of F with the volumetric component of F0, i.e., 

(det[Fol)  1/3 
" - -  F d  (Fo)v : det[F] F (2) 

Having defined the modified deformation gradient, the proposed elements are obtaine_d by 
replacing F with 1~ to compute the Cauchy stress at each gauss point, i.e. tr = b(F).  

3 A D A P T I V E  S O L U T I O N  U P D A T E  

The history dependent nature of the process necessitates transfer of all relevant problem 
variables from the old mesh to the new one, as successive remeshing is applied during 
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the process simulation. As the mesh is adapted, with respect to an appropriate error 
estimator, the solution procedure, in general, cannot be re-computed from the initial 
state, but has to be continued from the previously computed state. Hence, some suitable 
means for transferring the state variables between meshes, or transfer operators, needs to 
be defined. A class of transfer operators for large strain elasto-plastic problems occurring 
in large deformation problems is defined in Section 3. 

3.1 Er ro r  indicators 

The extension of the error estimation based on the plastic dissipation functional and the 
rate of plastic work described by Perid et al. (Perid et al., 1994) for large strain elasto- 
plasticity has been found to be an appropriate choice to the adaptive solution of large 
deformation problems at finite elasto-plastic strains. 

3.2 Mesh  regeneration 

An unstructured meshing approach is used for the mesh generation and subsequent mesh 
adaptation. The algorithm employed is based on the Delaunay triangulation technique 
which is particularly suited to local mesh regeneration. An extension of the Delaunay 
scheme to quadrilateral elements is also available and creates the possibility of employment 
of the low order elements described in Section 2.2. 

3.3 Transfer  opera t ions  for evolving meshes 

After creating a new mesh, the transfer of displacement and history-dependent variables 
from the old mesh to a new one is required. Several important aspects of the transfer 
operation have to be addressed ((Perid et al., 1996), (Lee & Bathe, 1994)): 

(i) consistency with the constitutive equations, 

(ii) requirement of equilibrium (which is fundamental for implicit FE simulation), 

(iii) compatibility of the history-dependent internal variables transfer with the displace- 
ment field on the new mesh, 

(iv) compatibility with evolving boundary conditions, 

(v) minimisation of the numerical diffusion of transferred state fields. 

To describe the transfer operation, let us define a state array hA, = (hu,,,h e, ,  h try, h q,)  
where hu,,h e,,, h tr,,, h q, denote values of the displacement, strain tensor, stress tensor and 
a vector of internal variables at time t ,  for the mesh h. Assume, furthermore, that the es- 
timated error of the solution hA,, respects the prescribed criteria, while these are violated 
by the solution hA,+1. In this case a new mesh h + 1 is generated and a new solution 
h+lA,,+~ needs to be computed. As the backward Euler scheme is adopted the internal 
variables h+l q, for a new mesh h + 1 at time t,, need to be evaluated. In this way the state 
h+l ~., = (o, e, e, h+l q,) is constructed, where a symbol ~ is used to denote a reduced 
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hA n 

h+lqn -- ~Tl[hqn] 

h+l An 

tn+l I 
hAn+l 

h +  1 ~a trial '~'n+l = ~T2[hlSn+l] 

| 

._. h+l A n +  1 I h 4- 1 ] 

Figure 2 : Transfer operator diagram 

state array. It should be noted that this state characterises the history of the material 
and, in the case of a fully implicit scheme, provides sufficient information for computation 
of a new solution h+l An+l. 

Conceptually, Figure 2 summarises a typical transfer operation that includes both, 
the mapping of the internal variables and mapping of the displacement field. The imple- 
mentation of the given general transfer operation is performed for the case of evolving 
finite element meshes composed of constant strain triangles in the following fashion: 

�9 Mapping of the internal variables - Transfer operator 
Algorithm of the transfer operator ~ comprises the following steps: 

- /.., 

- \  / -  

Step (1) Step (2) Step (3) 

Figure 3 : A procedure illustrating the implementation of the transfer operator h+lqn.a - ~[hqn,~] for 
finite element meshes composed of three noded triangles. 

(1) The Gauss point components of the old mesh hqn,G are projected to nodes hq,,N us- 
ing the finite element shape functions. The nodal point averages are then performed 
resulting in hq~,N. 

(2) In the second step the nodal components of the state variables hq~,, N will be trans- 
ferred from the old mesh h to a new mesh h 4- 1 resulting in h+lq~,, N. This step of 
the transfer operation is the most complex one and can be subdivided as follows: 
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�9 Construction of the background triangular mesh 
For each node A of the new mesh h + 1 with known coordinates h+lz,,, A the 
so-called background element is found in the old mesh h, i.e. element hft(~} for 
which h+~zn,a E hl~(~). 

�9 Evaluation of the local coordinates 
Knowing the coordinates of all nodal points for both old and new meshes, the 
local coordinates (hra,nSa) within the background element corresponding to 
the position of nodal point A in the new mesh can be found by solving the 
following equation 

3 
h+l~'n, a -- Z hNb(hra,hsa)hzn, b ( 3 )  

b=l 

where nNb represent shape functions of the element n~(~). Since three noded 
elements are used for the background mesh, local coordinates for each node of 
the new mesh h + 1 can be obtained by resolving the linear system (3). 

�9 Transfer of the nodal values 
By using the shape functions hNb(hra,haA) the state variables hA,,, n = nq~,, s 
are mapped from the nodes B of the old mesh h to the nodes A of the new 
mesh h + 1. This mapping may be expressed as 

3 

n+13,.a = ~ nNb(hra,hSa)h~4,.b (4) 
b=l 

(3) The state variables at the Gauss points of the new mesh h+lq~,, a can be easily 
obtained by employing the shape functions of the element h+l~(~) , i.e. 

3 

h+ 3.,A = (5) 
a ' - I  

where (ra, sa) are the Gauss point coordinates. 

�9 Mapping of the displacements- Transfer operator 
Since the displacement field over new mesh h + 1 is fully prescribed by the nodal values 
h+au,,,, and element shape functions of the new mesh h+l N~(h+lr~,h+lS~) defined for each 
element h+lf~(,) of the new mesh, the task of transferring displacements (i.e. transfer 
operator ~ ) is performed by repeating the step Mapping of the nodal values, in the 
procedure describing the transfer operator T1. 

4 N U M E R I C A L  V E R I F I C A T I O N  

To illustrate the adaptive strategy, its application to examples of some industrial large 
deformation problems exhibiting finite elasto-plastic strains are presented in this section. 
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Figure 4 �9 Axisymmetric piercing. Figure 5 �9 Axisymmetrir piercing. 
Geometry. Initial mesh. 

EXAMPLE 4.1 Axisymmetric piercing. The finite element simulation of the axisym- 
metric piercing of a cylindrical workpiece is presented. The geometry of the problem is 
shown in Figure 4 and the initial mesh in Figure .5. The workpiece is assumed to be made 
of an elastic-plastic material with Young's modulus E = 210GPa, Poisson ratio v - 0.3, 
yield stress a = 100MPa and linear hardening with hardening modulus H = 900MPa, 
while the punch is assumed to be rigid. Frictional contact between workpiece and tool is 
defined by a Coulomb law with coefficient of friction p = 0.1. 

In analysis an error indicator based on the rate of plastic work is used. The initial 
mesh consists of 101 quadrilateral elements and the final mesh contains 426 elements. 
Convergence of the finite element solution is established on the basis of the standard 
Euclidean norm of the out-of-balance forces with a tolerance "of 10 -3. No difficulties 
related to the convergence have been observed during the simulation despite frequent 
remeshings. 

Distribution of effective plastic strain on deformed meshes at various stages of the 
process is shown in Figure 6. The deformed meshes show no hourglassing patterns, which 
is in agreement with analyses of a similar class of problems carried out in (Souza Neto 
et al., 1996). 

EXAMPLE 4.2 Plane strain spike forming. The finite element simulation of plane strain 
spike forming is presented. The geometry of the problem is shown in Figure 7 and the 
initial mesh in Figure 8. The workpiece is assumed to be made of an elastic-plastic 
material with Young's modulus E = 125GPa, Poisson ratio ~, = 0.3 and yield stress 
a -- 40MPa with an exponential hardening law. In the present FE analysis the punch 
is assumed to be rigid. A Coulomb law with a coefficient of friction p = 0.2 defines the 
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Figure 6 �9 Axisymmetric piercing. Evolution of effective plastic strain. (a) U = 0.62, (b) U = 
5.66, (c) U = 9.83, (d) U = 11.00. 

frictional contact  between workpiece and tool. A convergence tolerance of 10 -3 of the 
finite e lement  solution is established on the  basis of the s tandard Euclidean norm of the 
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Figure 7 �9 Plane strain spike form- 
ing. Geometry. 

Figure 8 �9 Plane strain spike form- 
ing. Initial mesh. 

out-of-balance forces. 

In total 12 mesh adaptions were performed, which involve complete new mesh def- 
initions related to the error indicator based on the rate of plastic work. The number of 
elements varies in subsequent meshes from initially 302 quadrilateral elements to finally 
353 elements. Deformed meshes obtained after adaptive remeshing are shown in Figure 9. 
Similarly to the previous analysis, meshes at various stages show no hourglassing patterns 
despite very large deformation. 

EXAMPLE 4.3 Impact of an elasto-plastic projectile on a ceramic block. Geometry 
and loading for this problem are depicted in Figure 10(a). The projectile is assumed 
to be made of an elastic-plastic copper material with Young's modulus E = 117[GPa], 
Poisson ratio t, = 0.35 and yield stress a = 400[MPa] with linear isotropic hardening 
modulus H = 100MPa. The target is made of an elastic-plastic brittle material with 
Young's modulus E = 211.69[GPa], Poisson ratio t, = 0.286, yield stress a = 958[MPa] 
and fracture energy DI = 0.1[MPa]. 

A Coulomb law with coefficient of friction/~ = 0.9 defines frictional contact between 
the projectile and target and the initial velocity of the projectile is Vo = 1800[m s-l]. 
In analysis an error indicator based on L 2 stress norm is used. In this case, analysis is 
performed by a transient dynamic explicit time integration approach in view of the high 
loading rates. 

Continuous change in geometry of the projectile near the contact area necessitates 
frequent remeshings during the process. In addition, mesh adaption is required to pro- 
vide for accurate description of multiple fracturing of the block. It should be emphasised 
that the present discrete element model allows for crack propagation both, along ele- 
ment boundaries and through the finite elements. The deformation of the projectile, 
the adapted finite element meshes and fracturing process of the block are depicted in 

Figure 10(b)-(c). 
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Figure 9 : Plane strain spike forming. Evolution of deformed mesh. (a) U = 6.3, 
(b) U = 12.1, (c) U = 13.5, (d) U = 15.0. 

5 CONCLUSIONS 

Some recent advances in the adaptive finite element analysis of large deformation problems 
of elasto-(visco)plastic solids at finite strains have been described in this work. It has been 
indicated that, for this class of problems, a successful and practically applicable adaptive 
strategy depends on both the theoretical understanding of inelastic material behaviour 
under finite strains and the associated numerical implementation. 

It is emphasised that, although adaptive strategies are, at present, routinely per- 
formed for linear elliptic problems, their extension to nonlinear elliptic problems - in 
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Figure 10 �9 Impact of an elasto-plastic projectile on a ceramic block" (a) Geometry and loading conditions. 
Evolution of deformed mesh at various time instants (b) t=0.013 [ms], (c) t=0.026 [ms], (d) t=0.050 [ms]. 

particular to large deformation problems of inelastic solids at finite strains - is by no 
means trivial. Apart from the issues briefly mentioned in this paper, several important  
aspects of adaptive strategies related to nonlinear industrial applications which need fur- 
ther attention include the introduction of various types of error estimators and their 
comparative analysis, and the consideration of alternative data transfer strategies. 
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Abstract 

Adaptive solution in forming process simulation are presented, covering the the- 
oretical aspects of the a posteriori error estimation as well as the practical aspects 
of the dynamic mesh optimization algorithm. A simple error estimate for time- 
dependent nonlinear problems is described with a special attention to the 2D forging 
application. Example of 3D automatic remeshing with a local size mesh enforcement 
is presented for a polymer cutting application. A new level of optimization allowed 
by anisotropic mesh techniques is introduced in the context of 3D extrusion, with 
primarily results of error estimation with anisotropic meshes. A 3D colliding jets 
example based on a fixed mesh approach is analyzed in term of flow front position 
error, both a priori and a posteriori, in the L 2 norm. 

1. INTRODUCTION 

The numerical simulation of forming processes has been early concerned with the need of 
automatic remeshing, leading to control effectively the mesh size locally. In fact, most of 
the forming applications presented below need to deal with meshing or remeshing tech- 
nique just in order to carry out a calculation. It is well admitted that forging simulation 
cannot be done without remeshing. It is unavoidable when using a Lagrangian method. 
In this case the mesh is deformed along with the material and the mesh distortion clearly 
limits the level of computable deformation. Although enhanced formulations makes it 
possible to delay the mesh distortion, the mesh topology becomes poorly adapted to the 
shape of the studied domain .In order to overtake these limitations, automatic remesh- 
ing procedure have been developed both in 2D and in 3D. This paper is based on the 
presentation of different results of simulation. 
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2. FINITE ELEMENT SOLVER AND ADAPTIVE ANALYSIS 

Most of the adaptive schemes are based on the convergence properties and the associated 
a priori error estimate of the finite element method. It assumes that a mesh independent 
solutionexists and that the numerical solutions approximate it. More precisely, it is 
expected that  the error decreases along with the mesh size parameter. In this context, 
the behavior of finite element method is well known for linear elasticity problems and it 
has been extended to incompressible materials both in fluid and solid applications through 
the mixed finite element theory [5]. 

Both in metal and polymer forming, the viscoplastic behavior of the material can be 
modeled by a flow formulation, the viscosity being a function of the second invariant of 
the strain rate tensor e(v): 

= K(v%:C,,)IY "-1. (1) 

On a time depending domain f/, inertia effects and volume forces being negligible, the 
velocity v and pressure p fields are solution of the following problem : 

vp = 0 
V.v = 0  in fl 

(v - v ~  > 0 
on Ofl CI DO (v v ~ or  - ) . n  = 0,  

and r = 0  
and r = a ( l v -  v ~  - v ~  

( 2 )  

The inequality characterizes the unilateral contact boundary condition which plays a 

crucial role in the applications presented here. v ~ denotes the velocity of the contacting 
rigid bodies (the forming tools) described by the domain O, n being the outside normal of 
its boundary c90. The relationship which gives the tangent shear stress r at the interface 
matter/tool as a function of the relative tangent velocity follows a power friction law. The 
viscoplasticity coefficient m usually ranges between 0 and 1. It is often around 0.1 in hot 
metal forming applications.. 

The solvers behind the applications presented in this paper are designed to be used 
with triangle elements in 2D and tetrahedral elements in 3D, making it possible to deal 
with general meshing techniques detailed after. In 2D the mixed finite element will be 
based on the Crouseix-Raviart element (P2 + / P 1 )  and on the P2/PO element [16]. In 
3D, we use a first order element entering in the mini-element family [1]. The bubble is 
constructed with a pyramidal function which is condensed at the element level, without 
taking into account the nonlinear part of the behavior law [9]. This element enters in 
the equivalent class of stable/stabilized mixed formulation [20, 15, 27]. An important 
advantage of this formulation is to enable a fully parallel iterative solution [14]. 

Despite of the unilateral contact condition, this flow formulation can be analyzed in 
term of a generalized Stokes problem. From the numerical analysis standpoint, the con- 
vergence of the finite element method for the viscoplastic problem (quasi-Newtonian flow) 
has been analyzed in term of the a priori estimate in [3], using the W l'''+l norm, m being 
the viscoplastic power index. In term of the a posteriori estimate, the residual technique 
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introduced for the Stokes equation [30] has been extended to the quasi-Newtonian flows 
[2]. In engineering, the error analysis is often based on an energy norm point of view. In 
this context, the simple Zienkiewicz-Zhu adaptive procedure [25] based on the smooth- 
ness of the stress tensor has been adopted in [18, 17, 19] from which several 2D examples 
are presented in this paper. From the mechanical point of view, a constitutive relation 
error analysis has been introduced by Ladeveze and specifically applied to elastoplastic 
materials [24]. 

3. ADAPTIVE MESH GENERATION TECHNIQUES 

3.1. Mesh generation techniques 

The 2D code Forge2 is equiped with a remesher based on the classical Delaunay trian- 
gulation technique [21]. It has been extended in order to work under the constraint of a 
mesh size map for 2D forging applications [18]. This 2D remeshing procedure must be 
understood as a rebuilding process. The mesh and its boundary are entirely built at each 
remeshing stage. 

The three-dimensional meshing routine is based on a different idea, the remeshing 
being an improvement process [10]. The advantage of this technique is evident in the 
context of a moving mesh method, because it makes it possible to progressively change the 
mesh topology rather to built a complete new one. In fact, it has been especially designed 
to solve the remeshing stage in forming calculations [13, 10]. In the forging code Forge3, 
the remeshing is required both to avoid the element distortions and to dynamically adapt 
the mesh to the contact between the moving dies and the material. Another advantage of 
this approach, is its ability to work in parallel without any modification. The complete 
remeshing procedure can be applied on each subdomain of a partition, independently 
running on each processor of a parallel platform [11], as shown on Figure 3.1. 

3.2. Adaptive remeshing by a local optimization principle 

In 2D and in 3D, the meshing topics can be revisited through a local optimization principle 
[12]. The general mesh improvement method [7] is the basis of the mesher used in the 
presented 3D applications. It is an extension the mesh improvement technique described 
in [29]. This method allows to deeply improve a mesh and includes mesh refinement, 
mesh coarsening and node repositioning [8]. Moreover, it efficient enough to be used as 
a mesh generation technique, enables to locally control the mesh size in an isotropic or 
anisotropic way (Figure 3.2). 

The improvement process is controlled by a minimal volume principle which guarantees 
the validity of the resulting mesh as ploted on Figure 3.2. Indeed, on this Figure, an initial 
mesh topology is obtained by connecting one particular node to every boundary nodes. 
The final mesh (without internal node in this case) is derived from this initial guess by 
successive local improvements. The change are chosen to minimize the surface covered by 
the triangles. The improvement process is also controlled by the mesh quality criterion. 
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Figure 1" Parallel adaptive remeshing by independent remeshing with interface constrain- 
ing and repartitioning 

The shape of a simplex (triangle or tetrahedron) can be evaluated by the a-dimensional 
ratio between its volume and diameter �9 

c(T) = v(T) 
h(T)" ' 

where n = 2, 3 is the dimension, v(T) denotes the volume of the element T and h(T) 
its diameter. An objective function, for instance the averaged value of the above shape 
factor can be locally optimized: 

r = ( ~  C(T))/ITI, 
TET  

where T is the set of simplex and ITI its number. 
The local mesh size control is performed just by changing the shape factor �9 

c(T) = 
min(~(x),v(T) 

h(T)" 

where fi(x) is the required element volume at position x. fi(z) can is derived from h(z), the 
required mesh size at point coordinate x. Finally, the extension to anisotropic meshing 
is obtained by the calculation of the shape factor in the local metric (a volume and a 
length). 
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Figure 2: Automatic mesh generation example 

Figure 3: Mesh generation by the minimal volume principle 
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4. EXAMPLES OF ADAPTIVE SOLUTION IN LARGE DEFORMATION 

4.1. 2D orthogonal metal cutting 

Figure 4.1 shows the chip formation in orthogonal cutting. The cutting tool can be seen 
on the right part of the figures, and the initial workpiece is a simple rectangle. In order 
to accurately model the flow in the two mean shear zones, an adaptive meshing technique 
is used. At each time step, the error is estimated. If it is larger than a prescribed 
value of 10%, a new adapted mesh is generated and the computations start again. It 
makes it possible to dynamically track the shear zones. The error estimate used in this 

Figure 4: Adapted meshes in orthogonal metal cutting process simulation. Different 
stages of the chip formation. 

adaptive scheme is based on the Zienkiewicz-Zhu [25] error estimators. The Liska/Orkisz 
finite difference method is used as smoothing operator. It improves the efficiency of the 
estimation [17]. Being a second order smoothing technique, it can be compared to the 
superconvergence patch recovery techniques, and provides a robust and reliable estimation 
. The error of the estimation is less than 5% for elasticity problems and less than 10% 
for viscoplasticity problems. 

The discretization error is defined in term of an energy norm for both the elasticity 
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and plasticity problems" 

I1~- vhlls = ( s  sh). (e(~)- e ( ~ ) )  d~  (3) 

In the context of a viscoplastic material modeled by a power law, this can be related 
to the W ~'=+' (semi)norm used in [2]. 

Using classical C ~ approximation for the velocity, the discrete deviatoric stress tensor 
S h defined by the constitutive equation is discontinuous. A simple idea, used in the 
example of Figure 4.1, is to built a continuous interpolation of the stress from the natural 
discontinuous one and to compute the gap between these two value of the stress field. 

The natural discrete space for the stress field is the one spanned by the symmetric 
gradient operator : 5 'h = e(vh), 13 h being the velocity discrete space. For a continuous 
polynomial interpolation of degree k : 

S h =  {tensor fieldS, S e Pk-l(s 
A more regular discrete space is then introduced �9 

~h = {tensor fields e C~163 s ~. Pl(s 

where I is generally greater than k -  1 and the continuity is enforced. The last stage is to 
build a projection operator from S h to ~h (for instance using the the superconvergence 
patch recovery techniques, or a second order local finite difference scheme as proposed by 
Liska and Orkisz) and finally to define the estimate by �9 

E = ( ~  .(le(~)l)-'(s - sh) �9 ( s -  s ~) an){ (4) 

Adaptive refinement is based on error indicators, which can be the contribution of 
the element to the global error (4). For 2D problems, a Delaunay remeshing procedure 
provides six node quadratic triangles. The quality of the finite element mesh is checked 
at each time increment. Then, a new mesh is generated when the estimated error is too 
high. The example of Figure 4.1 and the details of the method is given in [18]. 

4 . 2  3 D  p o l y m e r  c u t t i n g  

The example of Figure 4.2 (obtained in [28]) is probably among the more difficult trial in 
numerical simulation involving remeshing. Figures 4.2 and 4.2 show the polymer granular 
formation by cutting a cylinder extrudate. The aim of the simulation is to predict the 
shape aspect of the granular, which depends on the cutting stage and more particularly 
on the relative value of the extrusion flow rate and the knife velocity. 

This example combines several difficulties, as it is a problem mixing fluid and solid 
dynamic. As in the 2D metal example, the cutting is obtained by a local deformation. 
The unilateral contact condition is enforced by changing the inequality to an equality and 
using a penalty method �9 

(~ - ~ ) . ~  > 0 , = ,  [ ( - e  - ~ ) . ~ ] -  = 0 
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Figure 5: 3D cutting simulation in a mixed extrusion deformation application. Flow 
1 velocity/knife velocity = 1"5 

where [z]- denotes the negative part of z. Although in this case, the remeshing is not 
controlled by a volume error estimate, the mesh size is locally enforced both by the contact 
adaptive procedure and by an a priori local mesh size map. 

In Figure 4.2, the knife velocity is slower, giving the time to the formation of a material 
jet before it leaves. This shows the possibilities in terms of numerical simulation offer by 
a dynamic remeshing scheme. The meshing becomes a full part of the calculation and the 
results will depend both on the ability to compute such a deformation and to provide the 
mesh fitting it. 

5. MESHING IN EXTRUSION 

5.1. 2D extrusion 

The error control procedure and the corresponding adaptive scheme are illustrated in 
Figure 5.1, for a metal die extrusion problem. In this example, the adaptive process tends 
to exacerbate the refinement at the neighboring of the singularities of the inner corner 
and of stick/slip transition. If the estimated error is greater than a prescribed value, a 
totally new optimal mesh is generated. This is due to the mesh generator based on the 
standard Delaunay triangulation algorithm. The situation is different in our 3D examples 
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1 Figure 6" 3D extrusion-cutting. Flow velocity/knife velocity = 
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Figure 7: Adaptive remeshing in a 2D (axisymmetric) metal extrusion application 

since the mesh generator is based on the general mesh improvement principle and can use 
the old mesh as a starting point. 

This new mesh is said to be optimal if the error is uniformly distributed over all the 
elements. Under the hypothesis of a uniform convergence rate p of the finite element 
method, the predicted size of each new element is a function of the present size of the 
element and its contribution to the error. 

The size of a quadratic triangle is defined as the maximum length of its three linear 
sides. For a viscoplastic material this value depends both on the value of m and on the 
degree of the interpolation functions. For a value of m around 0.1 which is the common 
value in metal application, the a priori convergence rate of the finite element method can 
decrease to 1.1 for a quadratic interpolation. A new mesh is subsequently generated and 
the size criterion is imposed over all the elements. At each time step the error is estimated 
in the workpiece ( and possibly in the tools). If at any time the prescribed value is not 
respected, a new adapted mesh is generated. If the problem exhibits a singularity or if 
boundary conditions change very quickly, several iterations of this remeshing procedure 
are required to reach the prescribed accuracy for a given time step. 

5.2. Anisotropic mesh in 3D die extrusion problem 

The 3D meshing problem of the 3D die extrusion problem is not only due to the multiple 
singularities encountered in the realistic geometries ploted on Figure 8, but also to the 
shape ratio between the entrance and the exit which exhibits a factor of about 1]100. 

The only way to do any computation with such a geometry is to reduce the number 
of elements by using an anisotropic meshing technique [23]. By this way it possible 
to guarantee several elements in the thickness at the die exit. However it is not yet 
theoretically well established, the use of such meshes showing stretched tetrahedra can be 
a posteriori justified by numerical experiments. The finite element convergence can even 
be reached by means of an asymptotically mesh independent solution. 

An error estimate based on the residual method has been implemented in [22] for the 
heat transfer equation showing clearly the anisotropic character of the error. 
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Figure 8: boundary of the mesh of a die extrusion geometry and detail of the mesh in the 
exit thickness 

The temperature field is solution of : 

C ,OT P t -~ + xTr.v) = k A T + go (5) 

The thermal and mechanical equations are coupled by the dissipative term tb = a : ~. 
Assuming that a standard Galerkin method is used to solve the above equation, on 

each element the error indicator is given by : 

I, '= Ift, I J,,[ (pC ~7 T .v-  d~)'dN, + Z IFI /F(k[~TT.n])'dS (6) 
* FEOIle  

where [vT.n] is the jump through the face F of tetrahedron fie. This jump gives rise 
to an error indicator in the three spatial directions, indeed : 

~ (ktvT.nl)2dS < 3 • ~ Err,  2 
i=1,3 

with 

Err, = (/F(k[(vT),nil)2dS)�89 

f o r / =  1,3. 
In table 1, the first column contains the number of nodes of the different tested meshes, 

showing that the error in the z-axis is about 10 times greater than the error in the other 
directions. 

Although the construction of a mesh with anisotropic properties, by means of different 
mesh length requirement in different directions at space points is a difficult task in 3D, the 
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nodes Ie :~ max 

55 11263 
8005 

1377 1356 
9537 427 

Err-x max 282 Err-y max 448 Er809Oax [ 

193 341 3714 [ 
83 95 1149 [ 
! s , 2 5  , I 

Table 1: Error estimate on the complete heat transfer equation with respect to the mesh 
refinement 

building of the Riemann metrics from the computed solution is also not obvious. From 
the numerical analysis point of view, the background theory of the finite element method 
needs still to be extended. 

A first approach is based on the second derivative of a scalar field [4], providing a tensor 
from which is deduced the metric tensor. This is a natural idea when one uses simple P1 
finite element. Indeed in this case, the a priori error depends on the second derivative of 
solution. This technique requires to built a second derivative from the discrete solution 
which not exists. Moreover each scalar field provides a metric tensor and each component 
of a vector field (in particular the velocity) must independently analyzed, giving rise to 
different metrics which must be combined. 

A another idea has been proposed in [19]. The error on the stress field AS = S -  S h 
of Equation 4 can be rewritten by using its eigenvalues : 

Error = (AS" AS)B = (fn ,1-I (ASx2 + ASIfl + ASttf l)df~)�89 

where ASx are the principal value of AS in the principal direction. 
Assuming the validity of the error estimate, it is clear that the error will be optimally 

minimized in the eigenvector basis. Consequently, the metric M can be defined by : 

( IAs I 0 o 1 
M - ,7-�89 0 IASHI 0 R -~ o o IAsml (7) 

6. L 2 ERROR ESTIMATION 

6.1. Domain interpolation 

Generally in finite element method the domain of calculation is assumed to be known 
and it is supposed that the mesh represents it exactly. However for certain fluid dynamic 
application it is easier to adopt an Eulerian approach with a fixed mesh. Then the moving 
domain is not any longer represented by a deformable mesh. 

We set the following problem : let N be a bounded domain in H. The characteristic 
function Of this domain llais defined by : 

11a(x) = l if x E 12 (8) 

0 elsewhere 
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The following development is based on the fact that it is possible to approximate a do- 
main by interpolating its characteristic function. However this function is discontinuous. 
Let us introduce the following finite element interpolation (in the sense of the Clement 
operator [6]) using discontinuous piecewise constant function. 

It~ = ~ ll"lla, 
eel. 

where g in the set of geometric elements 

Theorem 1 If  lib n is the best approzimation of ]1n in the L 2 norm (the projection onto the 
piecewise function finite space} then �9 

la n n'l 
In'l 

and the error 

and in ~2 . 

l i t . . -  "n~llL2r ( ~  ~" (:1-,- 
eEE 

[ ]n~-  11~[[L,(n) ~ C(r)h�89 

G(r) is a constant depending on the regularity of r the boundary of the domain. 
Although, it is still unclear, it is expected that the error evaluation is valid in 3D. 

One important point is that the error estimate (1) depends only on the local values 
11 e. When these value are given otherwise, it can be used as an a posteriori error estimate. 
That is the case in the following where the approximate function ll~is also solution of a 
transport equation. 

6.2. Dynamic a posteriori estimation of a flow front position 

The 3D mold filling can be solved by coupling an extended Stokes solver and the solution 
of the following transport equation [2(5] : 

dllh a 0. 
dt 

It is solved at element level by using a Taylor discontinuous Galerkin method. The front 
position is given as an average surface in Figure 9 and it corresponds to the region of the 
maximum value of the above error estimate. 

7. CONCLUSION 

Examples have been presented showing the new possibilities in the numerical simulation 
of forming processes provided by adaptive solutions. The 2D examples show the complete 
adaptive procedure with a prediction of the numerical error for nonlinear behavior material 
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Figure 9: Calculation of a two colliding jets in 3D �9 the average front surfaces and the a 
posteriori error est imate at successive t ime in a vertical and horizontal cutt ing plans 
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and the rebuilding of the mesh under the constraint of the calculated mesh size map, all 
in the context of dynamic simulation with time dependent moving domain. Examples 
where the local mesh size control is essential are given for cutting application both in 2D 
and in 3D. The extrusion problem with multiple singularities can be treated adaptively. 
In 3D, for the die extrusion problem, the new emerging technique of anisotropic meshing 
has shown to be unavoidable in order to carry out any calculation. Finally, an L 2 error 
estimate has been used to quantify the error in the fluid domain representation for 3D 
mold filling application. 
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A B S T R A C T  

The first part of this paper [1] discusses in some" detail the use of recovery procedures 
for stress, strain or gradients for efticient error estimator and the methods of arriving 
at adaptive, h, refinement. In this paper we extend such procedure to deal with of 
elasto-plasticity and discuss in detail some special features of such computation. 

1. I N T R O D U C T I O N  

Error estimation procedures and adaptive mesh design based on recovery of stresses 
, strains other gradients have been discussed in some detail on Part I of this paper for 
linear problems. Indeed application of such methods to practical engineering analysis 
is t o d a y  widely available.  T h e  e x t e n s i o n  of t he  me thodo logy  to non- l inear  p r o b l e m s  
appears at first glance straightforward as the solution is generally obtained by successive 
linearization, however several difficulties arise which we shall discuss in this part of the 
paper. Much research has been devoted to the subject in the last decade as is evident 
from reference [2]- [171. 

The applications in this paper are focused on static problems of elasto-plasticity, 
common in engineering, but the methodology as equally application of large strain 
problems and in dynamic phenomena. 

Generally, due to path dependency of the solution in materially non-linear analyses, 
the loading is applied in an incremental manner with an iterative linearization, using 
the Newton-Raphson precess in each increment. The iteration is usually continued 
until a suitable norm of variables falls within a prescribed tolerance. Depending on the 
tolerance used in the termination of Newton-Raphson iteration, an additional error to 
that due to discretization will occur in the computational process. This paper mainly 
focuses on the discretization error and we assume that the magnitudes of the increments 
and tolerance used are sufficiently smaU to make the iteration errors secondary. 
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The magnitude of error due to spatial discretization itself, is a function of time (or 
pseudo time defined by the load history in static problems). The procedure usually 
starts with the selection of a reasonable dement  distribution over the mesh . The 
decision of remeshing while the non-linear computation is being curried out, requires an 
important  engineering judgement. An appropriate norm of variables must be devised 
to monitor the accuracy of the solution helping to recognize the necessity of remeshing. 
The norm must be capable of describing the error and depending on the importance 
and computation cost of the problem the desired bounds of permissible error itself may 
vary. 

Various measures of error are adapted by investigators. The majority use either the 
/,2 norm [6] of displacements or the energy norm [6, 8, 12]. Some however use local indi- 
cators for refinement. Here local values of plastic strain [7] and more usefully gradients 
(or curvatures) of total displacement [4, 5, 10, 11] have been used for this purpose.  In 
this paper we shall use energy norm in the same sense as in linear cases. As the recov- 
ery based error estimates have proved to be the best in linear problems, we shall adapt 
them in non-linear ones to construct the energy error norm. Obviously the performance 
of the recovery method used plays a predominant role in the asymptotic exactness of 
the error estimates and therefore we shall take the advantage of two recovery meth- 
ods SPB. (Superconvergent Patch Recovery [18]) and REP (Recovery by Equilibrium in 
Patches [19, 20]) which have shown excellent performance in linear problems. 

If the error is controlled up to nth increment, the procedure will reduce to control the 
error occuring in the next increment. Therefore instead of defining the energy norm for 
the whole process up to increment n we use an incremental energy norm. The procedure 
wiU therefore be simply that of solving the non-linear problem with the old mesh for 
increment n + 1 and checking the incremental energy norm. If the relative error exceeds 
a prescribed limit, the analysis will be repeated for the same increment with a new mesh. 
The new element sizes will be calculated by introducing a-priori assumptions about the 
convergence rate and using the optimal mesh concept in which a uniform distribution 
of error is considered for the new mesh configuration. 

The history of the solution is usually stored at integration points and after generating 
a new mesh, a corresponding history must be constructed for the new integration points. 
Various transfer operators can be found in the literature [4, 7, 13]. The state variables 
at the end of increment n satisfy the constitutive relations of material and the stresses 
are in equilibrium state in finite element sense. However, there is no guarantee that 
the new state variables satisfy such conditions. It seems to be impossible to satisfy 
both consistency and equilibrium (in FEM sense) conditions on the new mesh. Here 
engineering judgement is required for selection of one of these conditions. Satisfaction 
of the consistency condition and the neglect of the equilibrium condition is, sometimes, 
preferred [7, 13]. 

In this paper, after a brief overview of general formulation of plastic problems, we 
explain the error norm used in error estimator. The problem of updating the state 
variable will be discussed and here we shall introduce a new transfer operator through 
which we transfer the information directly from old integration points to the new ones. 
The authors have proposed in another paper [17] a procedure in which the SPR method 
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is used to derive nodal values and to obtain integration values by interpolation but 
occasionally the procedure appears to be divergent. Finally We shall conclude our paper 
by some numerical examples of adaptive refinement. 

2. G E N E R A L  F O R M U L A T I O N  OF E L A S T O - P L A S T I C I T Y  [21] 

For a brief review of general plasticity procedure, for infinitesimal deformation, we 
start  from the differential equilibrium equation as: 

S t r =  b in fl (1) 

with tr being Cauchy stress tensor. The constitutive equation results from the following 
assumptions: 

t(u) = , .  + q  q = 2C q 
a = De, 
6e.p = if)~(OF/Oa) 

where u, ~, ~,, ~ and D denote the displacement field, total strain, elastic strain, 
plastic strain and elastic modulus of material, respectively, and $ is a proportionality 
parameter. Further, F represents the yield surface defined in terms of stresses and some 
internal variables x (hardening etc) as: 

F ( a , x )  = 0  (2) 

The equilibrium equation (1) in the finite element sense is written as: 

~b(u) - In B T a d ~ -  f = 0 (3) 

Here B = SN where N is 'shape' function for u and f represents the nodal loads due 
to the body forces b and tractions t as a vector. In incremental schemes for non-linear 
problems, in which we define the loading incrementally, the above equation should be 
satisfied in each increment: 

~n(u) = fn B T ~  - fn = 0 (4) 

where 

f n = / n N T b n d f ~ + f r N T t n a T  (5) 
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Equation (4) together with the constitutive plastic relations must be satisfied simul- 
taneously. This can be achieved by a Newton-Raphson iterative scheme within the load 
increment writing: 

r + = o 
o u  

(6) 

This leads to 

J~n i -i BTo~dfl - f,~ + K.Su.  -- 0 (7) 

where i is the iteration number, ~Q~ denotes the incremental nodal displacements and 
K~ is an appropriate global tangent matrix evaluated from the application of constitu- 
tive plastic relations: 

K~ = fn BTD~pBdf~ (8) 

The incremental nodal displacements can now be determined by: 

~Q~ = K~-Z[~] (9) 

from which the total displacement at increment i can be obtained as: 

i 
--i -= u, - u._, + ~ ~fi~ (10) 

i----O 

Having the former situations of history dependent parameters, such as stress compo- 
nents and hardening parameters, and using the constitutive plastic relations leads to a 
new set of values for the parameters: 

(oi.,Ir ~e~) ~ (~1,~:~1) ~ Di+Z (11) 

By returning to Equation (7) the procedure will continue until reasonable convergence 
is achieved. 

The state of material at each integration point is recognized by using the incremental 
stresses and hardening values in the yield surface relation: 

, ~+z) < 0 Elastic F (~ ~/+1 
F(o~ +1, ) >__ 0 Plastic (12) 

At the start of each iteration new trial values for stresses are computed from the strain 
changes assuming that the material is elastic: 



387 

, ,  - u va lue  

v -  p value 

v " ~  , w  

(b) 

Figure 1: Two triangular elements used in adaptive analyses with nearly incompressible 
behaviour (a) T6/1 - quadratic displacement, constant pressure (b) Tf/3B - quadratic 
displacement using bubble function and linear discontinuous pressure field 

~r~ 1 =~rn+' D6~ (13) 

Equation (13) is called the elastic predictor. If the material remains elastic the compu- 
tation will be continued by restoring the new values of stresses and hardening values 
and using the elastic modulus D/+1 = D. But if the material is plastic a new set of 
stresses and hardening parameters should be found so that the yield surface relation of 
Equation (2), is satisfied. 

A dimensionless norm of variables is usually selected as: 

__ __ I1r • 100  < ( 1 4 )  
Ilfll 

to terminate the Newton-Raphson iteration. If the tolerance ~ is chosen to be very 
small, the errors due to the linearization process will be negligible compared with the 
error of discretization. 

Recent advances in computational plasticity have led to a new algorithm for some 
classes of flow rules such as Von Mises criterion, called return mapping algorithm [22]- 
[23] (for Von Mises it is called radial return mapping). In this algorithm, after evaluating 
elastic predictor, a new state of stresses is usually found on the yield surface by project- 
ing the stresses from their new position along the unit normal to the surface. Based on 
this new state of stresses an algorithmic elasto-plastic tangent modulus "consistent tan- 
gent modulus" is computed. The main advantage of the latter algorithm is the increase 
of rate of convergence in the Newton-Raphson iteration. 

The convergence of plasticity procedure is also affected by other factors such as the 
possibility of incompressibility. For Yon Mises criterion, when the material is fully 
plastic, the behavior of the material is nearly incompressible. In such situations a 
'locking' phenomenon may happen which can lead to divergence. There are several 
remedies for solving problems near incompressibility. In this paper we have used the so 
called 'B-bar' method [24, 25]. This is essentially a mixed procedure of analysis using 
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as variables the displacement u and the mean stress (or pressure p) and is described 
in some detail in text by Zienkiewicz and Taylor [21]. For success of the method only 
certain forms of shape functions can be used. In the examples dealt with in the paper 
two triangular dements shown in Figure 1 were used. These dements are introduced 
and discussed in reference [26]. 

3. E R R O R  ESTIMATION AND A D A P T I V E  R E F I N E M E N T  

In this section we shall explain the procedure of adaptive refinement in a typical 
plasticity problem. The aim is to perform adaptive procedure incrementally refining 
the mesh at any increment in which the error has exceeded a prescribed value, and to 
continue the procedure without restarting from the first load step. 

3.1. E R R O R  ESTIMATION 

Several refinement criteria have been so far suggested. Two main categories can be 
identified in literature for refinement criterion in non-linear adaptivity: 

(1) Refinement criterion based on gradients (or curvature) of displacement. This kind 
of criterion is usually used in localization problems [4, 5, 10] and can only indicate 
the existence of error but not its magnitude. 

(2) Refinement criterion based on evaluation of errors in each dement. The error is 
usually evaluated through computing an improved values of stress/strain (or other 
parameters) by suitable recovery method in the manner described in Part I of this 
paper. 

In this paper we shall be exclusively concerned with error evaluation using recovery 
procedures and thus using the second method of refinement. The concept of using 
recovery procedures for error estimation was first introduced by Zienkiewicz and Zhu 
in 1987 [27]. In that paper simple stress averaging and L~ projection were used as 
recovery procedures. In non-linear application many authors followed precisely this early 
approach. Belytschko and Tabbara [6] found the recovery by L2 projection performing 
well (though they also have shown that another recovery suggested by Daiz et al [28]). 
Oallimard et al [12] use an incremental form of error estimation and a recovery based 
on achieving equilibrating stresses between dements [29]. 

Lee and Bathe [7] use a pointwise error in strains to guide the refinement and a 
recovery procedure introduced by Hinton and Campbell [30]. 

In reference [8], Peric et al have used some element-wise error estimators based on 
incremental energy norms though they also introduced an alternative norm based alone 
on the elastic modulus(also see [14]). Here they compare the behavior of two classes of 
material models, those of Classical plasticity and of Cosserat continuum. The improved 
fields of stress or strains are computed by L2 smoothing method (see [211). It has been 
concluded that the performance of the error estimators lies in the superconvergence 
property of the recovery method. 
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New methods of recovery such as the SPR procedure [18] and the REP procedure [19, 
20] result, in linear cases, in much improved error estimation and their use for non-linear 
problems of plasticity is made for the first t ime in this paper. 

The error occurring in a typical increment will be measured by an energy norm defined 
a s :  

II II- [/o I o- 
In above a and ah denote the exact and finite element stress fields, respectively. 

This kind of norm may be considered as related to an average stress (or strain) error 
over the domain. But what makes it attractive is that  it also represents the accuracy of 
the displacement field since energy can be considered as a product of the displacement 
and applied force. Therefore energy error norm represents average error of displacements 
at points with external forces (or average error of displacements over the whole domain 
in the presence of body forces) or average error of reactions at points with prescribed 
displacements. 

In n th  increment the above norm may be written as: 

lie] I = [f~ .(a,- a,.)T(Ae,,- Aeh.)]dft] �89 (16) 

in which 

At,, = e. -- e._l AO,. = eh. -- eh._a (17) 

If we define also: 

A n .  = A a .  - ~._~ a a h .  = Aah.  -- ah._, (18) 

then using triangle inequality we have: 

]] 1[ < [/fl[(ffn-I O'h.-a)T(Aen Aeh,,)ldn] �89 e _ -- -- 4- 

The first conclusion of this decomposition is that in an efficient adaptive procedure 
where we control the error up to time step n- I, the difference between stress values 
(o,-I - ah._a) will be sufficiently small therefore the magnitude of llell win mainly be 
governed by the magnitude of the product of (Ae~ - Aeh.) and (An, - Aah.) which 
belong to time step n. 

The second conclusion from (19) is that  in t ime step n the stress values from previous 
steps act as constants and therefore , supposing that  the order of solution is p and 
a-priori assumptions for convergence of gradients in linear problems are valid for non- 
linear ones, the convergence of the error norm will be: 
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I1 11 = o(h ) + o ( h . )  (20) 

Therefore the convergence of the adaptive procedure will not be the same as that of 
linear problems. This may affect the number of successive remeshing steps when we use 
a-priori assumption of O(h p) for the convergence at element level. 

Similarly to linear examples, since there is no information about the exact solution, an 
improved stress and strain field can be used in the incremental energy error norm (16), 
thus: 

I 

(21) 

In order to have a robust error estimate, we recover the stress and strain fields by use of 
two recovery procedure, REP and SPR. For stress recovery we note that the information 
is only available at integration points and therefore the REP which is insensitive to 
the number of integration points can be used. The equilibration used in REP is very 
consistent with the general procedure of plasticity. Since the procedure is based on a 
patch-wise equilibrium, we can directly obtain the improved stress field a~ at the end 
of time step n from the finite element answers ah~ as: 

fQ BToh,.dfl ~ /npBTa~d~ (22) 

As we recommended elsewhere [20] t h e  procedure can be performed component by 
component: 

(23) 

Here er~i~, a~. are components of stress vector a and a i is a vector of polynomial coeffi- 
cients corresponding to the ith component of stress. The detail of minimization process 
can be found in reference [20]. The nodal values obtained from this process will t h e n  
be interpolated to construct the new field of stresses in (21). 

For strain recovery, the procedure of SPR can directly be used since derivatives of 
displacement are available at any arbitrary point inside the elements including sampling 
points. Thus a polynomial will be fit over the strain values at sampling points with a 
least square sense for each component: 

�9 h )2 II --, minimum (24) n = - 

and 

e~ - P a i  (25) 
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Since we are dealing with incremental strains At  the answer of smoothing process of 
the previous increment step n -  1 needs to be stored at nodal points. To avoid this the 
incremental values of strains can be directly smoothed. 

Having found the incremental energy error norm (21) the relative error of the solution 
can be obtained as: 

' I 0) 

In a successive mesh refinement within an increment, we seek to obtain an accuracy 
better than a prescribed value i.e.: 

T/< ~/ (27) 

The procedure of obtaining the refinement criterion follows exactly that used in linear 
problem by assuming equal distribution of error over the elements: 

h o ,  d - Ile*lln. ] (28) 

In which N is the number of elements in the old mesh. We note that here we again 
assumed that the rate of convergence of Ile*lln. is p and this might affect the number of 
remeshing. 

3.2. DATA T R A N S F E R  O P E R A T O R  

3.2.1. G E N E R A L  S U R V E Y  OF P R O C E D U R E  

Having computed the new element sizes, a new mesh is generated which can be 
completely different from the old mesh. For such a mesh a set of new state variables 
such as displacements, stresses and hardening parameters must be constructed for the 
new mesh using the information from the old mesh. There are two kinds of state 
variables; namely, those which are stored at nodes (i.e displacements) and those which 
are stored at integration points (i.e stresses, etc). 

For those state variables which are available at nodes a direct interpolation from the 
old nodes to the new ones may be used. However, the transfer of information from old 
Gauss points to the new ones is quite a challenging problem and has been addressed by 
many authors [4, 7, 9, 13]. In most cases a new field of nodal values is constructed for a 
particular variable (existing at Gauss points) after which a simple interpolation, similar 
to those of the first kind, is followed. Here we shall briefly describe the methods used. 

In reference [4] a so called consistent transfer operator, using appropriate Hu-Washizu 
functional, is proposed. The method uses a discontinuous distribution of history depen- 
dent parameters using local interpolation functions. These functions are chosen so that 
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the interpolated field gives exactly the values at integration points. This can easily be 
achieved by employing local shape functions having unit values at integration points. In 
other words the method is based on interpolation of values at integration points when 
the new Gauss points (of the new mesh) are inside the group of old Causs points in a 
particular element and extrapolating the values when the new Gauss point is outside 
the group of old Gauss points (but not outside the old element) ~. Therefore, clearly, 
the discontinuity of the field along the boundaries of the elements makes some difficul- 
ties for evaluating the values at those new Gauss points laying on the element edges. 
To solve this problem a specific form of remeshing is used in which the old element is 
divided into smaller elements so that the new Gauss points wiU always be inside the 
group of old ones in the old element. It is also shown that, for displacements, the con- 
sistency condition will be satisfied if the new displacement field is evaluated by simple 
interpolation of the nodal values from the old mesh. The methodology for transferring 
data from Gauss points fails when a general new mesh is used. In such a case a/ ,2 
projection of variables from old Gauss points to new ones is suggested to evaluate a set 
of nodal values (viz [15, 161). 

The procedures used in references [7, 9] and [131 are very similar. In these approaches 
first the history dependent values in the old mesh are projected to nodes. Then the 
values at the new nodal points in the new mesh are computed by simple interpolation 
of the old nodal value using the original shape-functions. Construction of the set of 
nodal values in [7, 9] is performed by considering a patch of elements connected to 
the node and projecting the variable using a least square scheme in a similar fashion 
as SPIt, procedure from integration points (instead of sampling point in SPR). In [13] 
also, a patch-wise computation of nodal values using average of extrapolated fields of 
integration points, has been suggested. Similar to reference [4] the new displacement 
field is evaluated by interpolation of the values from the old nodes to the new ones. In 
order to have self-consistent parameters, in reference [7], only few parameters are first 
transferred. The remaining part of these parameters is computed from the constitutive 
relation. For example for ,/2 materials only effective plastic strain ep and the trial elastic 
deformation gradients St are transferred to the new mesh. The same discussion has been 
made in [13] but instead of transferring trim elastic deformation gradients to the new 
mesh, the transferred values of the displacements at the end of load step n in the old 
mesh is considered as a trim solution of the new mesh for this load step. 

There can be an argument about the necessity of self-consistency of the history depen- 
dent parameters in the last two approaches. The reader can notice that by transferring 
the information to nodes and recalculating them at the new Gauss points the equilib- 
rium of the system will be violated. In fact even if the mesh is not changed the above 
procedure will violate the equilibrium of the system. This can easily be observed by 
performing the procedure in a single mesh while the material is still elastic. Such a 
procedure, indeed, has been suggested to improve the finite element answers in elastic 
problems by Loubignac et al [31]. 

In another paper [1.7.] the authors have used the SPIt procedure to obtain nodal 

l In this method the stress field resulting from this interpolation will be exactly the same as the 
conventional stress distribution if the element remains elastic. 
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stresses before interpolating these to new Gauss points. If this is practiced at every step 
of the iteration, we recover an SPR-version of the Loubignac method. Unfortunately 
the process is not always convergent and for this reason we have adapted here the direct 
transfer (Gauss point of the old mesh to the Gauss points of the new mesh). 

In L2 form of projection of data to nodes, since the integration is taken over the 
whole domain, the information in a small area will spread over a comparatively larger 
zone. This effect is smaller for patch-wise approaches. For example if only one Gauss 
point in the patch becomes plastic, after smoothing, the information will be projected 
to the patch node and by interpolation of such value the whole patch area will receive 
a fraction of information of the Gauss point. In the following section a weighted form 
of the patch-wise approach will be introduced by which we can directly transfer the 
information from old Gauss points to the new one and since the weight is considered 
over the area of each Gauss point the data will not spread over a large area. 

In summary in this paper we shall use: 

a - a direct interpolation of variables available at nodes using interpolation basis: 

fi, ,~ = NfioZ~ (29) 

b - a direct Gauss point to Gauss point transfer operator described in the next 
section for information at integration points. 

3.2.2. D I R E C T  GAUSS P O I N T  T O  GAUSS P O I N T  T R A N S F E R  O P E R A -  
T O R  

In this section we shall propose a suitable scheme which does not need nodes as 
reference points but still uses them for assembling the patches. We shall try to obtain 
a continuous field of parameters with the values at the integration points sufficiently 
close to the original ones. Therefore the produced continuous field of parameters will 
satisfy the properties proposed in [4]. 

The idea is very simple and is based on using some appropriate weight functions in 
passing polynomials over the integration points. Although we do not evaluate the nodal 
values, we use these points to construct the patches. For this, we use all nodal points 
and in addition to corner nodes, in quadratic elements for example, the edge nodes and 
central nodes will be used. Typical forms of such patches for nine node elements are 
shown in Figure 2. 

For simplicity we use a as a representative of history dependent parameters. The 
process of evaluating a continuous field of a is similar to what we had before but with 
a small difference. In order to recover the values at integration points close enough 
to their original former values, we shall use an appropriate weight function inside the 
minimization process: 

II = ~ & ( a * - a g )  2 a * =  Pa (30) 
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Figure 2: Typical patches required in direct Gauss point to Gauss point transfer operator 
(a) patch for corner nodes (b) patch for edge nodes (c) patch for inside nodes. 

The weight function & is such that it has a comparatively large value at the points 
near the patch node (where the patch is assembled). For this we define a normalized 
continuous weight function for each patch node having unit value near the patch node 
and very small value elsewhere. To construct such function we allocate a part of element 
area to each Gauss point so that & ~ 1 at the position of Gauss point. The area allocated 
to the Gauss point can be determined according to the weight of the Gauss point in 
numerical integration process. 

Having such weight function, we minimize II with respect to a: 

OH 'Oa'- 0 (31) 

which leads to a system of equation with series of unknowns as a. Having solved this 
system of equation, the new distribution of the parameter can be determined as cr* = Pa  
which is suitable for points very close to the patch node. 

Now we assume that the new Gauss point is inside element number i. The above 
mentioned procedure can ~ be performed for all nodes of the element. Therefore we need 
to determine the local relative position of the new Gauss point to all other old Gauss 
points inside the element in order to recognize which one of these patches are suitable 
for computing the new Gauss point value. This seems to be impractical for an adaptive 
procedure in which we need to perform the transfer procedure for many times. However 
there is a simple solution for this problem. Suppose that for each node j of the element 
(element i) we have a set of unknown coefficients aj which can define the variation of 
the parameter near node j ,  namely: 

cr~-  Paj  (32) 

The value at the new Gauss point b can be evaluated by a weight form of averaging: 
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Figure 3: The allocated areas to Gauss points (according to their weights) for different 
dements. (a) quadratic triangles dements a = 0.234469341. (b) quadratic quadrilateral 
elements b = 0.555555556. (c) linear quadrilateral elements 

N N 
~ ( ~  wj) = ~ wj~ (33) 

j=l j=l 

or: 

N N 
= (~-~ wjo~)/ (~ •j) (34) 

j = l  j = l  

Here N is the number of nodes of the element and wj is associated weight function 
of node j varying smoothly from wj ~ O, for points far from the node, to wj "~ 1 for 
points close to the node. Generally this weight wj can be different from ~ used in 
Equation (30). But we can use: 

= max(e, w) (35) 

with e being very small value (~ <<  1). Using & as Equation (35) in minimization 
process of (31) gives the opportunity of using all Gauss points in the patch when w = 0 
for some of them. 

The allocated areas of different integration points, according to their weights, for 
some elements widely used in plasticity are shown in Figure 3. Here we introduce these 
weight functions at element level for various forms of elements: 

(a) For bilinear elements: 

wl = ~b1(~ + 1, 0,1, 0, n).~x(r/ + 1,0,1,0,n) 
w2 = ~2(~ + 1, 0,1, 0, n).~b~ (T/ + 1 ,0 ,1 ,0 , - )  
w3 = ~2(~ -I- 1, O, 1, O, n).~2(T/-I- 1, O, 1, O, n) 
w4 = ~I(~-I- 1, 0,1, 0, n).~2(T/ -l- 1 , 0 ,1 ,0 ,n )  

(36) 



396 

Here ~, r/are normalizes coordinates. Node numbering begins from ~ = - 1 ,  r / =  - 1  
with anti-clockwise direction and: 

1 (1 + X) i f  2()~ + # r /o ) -  ~o > 0 ~x(~o,~o,~,g,n) = ~ 

ffl(~o,r/o,~,p,n) = 0 i f  2(~ + # r / o ) - ~ o  < 0 
(37) 

1 ~2(fO,~O,,X,t,,n) = ~ (1 - x) i f  2(,k +/ .t~/o)-  ,~o >__ o 

~2(~'o,,~o,~,~,,n) = 1 i f  2C,~ +/ . t t /o) -  ,~o < o 

in which 

( ) xCfo,,~o, ~, ~, n) = sznCr 2(~ + ~ o )  ) ( ) cos 2(~ + gr/o) 

(b) For biquadrat ic  elements: 

(38) 

(39) 

0)2 

(~3 

004 

O J5 

006 

(~8 

r 9 

= ~,~(f + 1, 0, a, O, n) .~(~ + 1,0,a,O,n) 
- ~ l ( I f l ,  O, #,  O, n) . ~l  (,7 + 1 , o , ~ , o , n )  
- -  ~ l ( 1 - - , ~ , O , o ~ , O , n ) . ~ l ( r / +  1,0,~,O,n) 
= ~1(1 - f, o, ~, o, n).~l(l~l, o, #, o, n) 
= ~1(1 - f, O, cr O, n).~t(1 - ~, O, cr O, n) 
= /,l(Ifl, o, #, O, n).~l(1 - ,7 ,0 ,r162 
"-- ~}1(~ "4- 1, 0, a, O, n).~x (1 - ~,O,~,O,n)  
= ~ (~ + 1, 0, ct, 0, n).~1(1r o, #, o, n) 
= ~x(l~l, o, #, o, n).~lCIr~l, o, #, o, n) 

(40) 

Where  a = 0.555555556, ~ = 1 - a. Here again node numbering begins from ~ = -1,17 = - 
with anti-clockwise direction. Functions ~bl, ~b2, .. are similar to case (a). 

(c) For quadratic triangular elements: 

W1 

p2 

q2 
W2 

W3 

P4 
q4 
q.~4 

~J5 

P6 
q6 
~,0 6 

-- ~,1 (~, ~, % o, n).~l(~, ~', ~, o, n) 
-- ~'1(~, r ~, #, n).~'2(r ~, #, n) 
= ~2(~,,7, r162 o, n).~2(r r162 o, n) 
= p2.q2 
= ~1(r ~,% o, n) .6(~,  r o, n) 
= ~1(r ~, ~, #, n).~2(~,,7,,~, #, n) 
= ~2('7, r O, n).~2Cf, r c~, O, n) 
= P4.q4 

= ,~1(~, r % o, n).,~1(r ~, q,, o, n) 
= ~1(~,,7,,~, #, n).~2(,7, r #, n) 
= ~2(r f, r162 o, n).~2(,7, f,,~, o, n) 
= Po.qo 

(41) 
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Figure 4: Variation of suggested weight functions at element level in direct Gauss point 
to Gauss points data transfer for corner and edge nodes of quadratic triangular elements. 
(a)/(c)/(e) Weight functions with n=l,  (b)/(d)/(f) Weight functions with n=lO. 
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Figure 5: Variation of suggested weight functions at element level in direct Gauss point to 
Gauss points data transfer for corner, edge, and middle nodes of quadratic quadrilateral 
elements. (a)/(c)/(e) Weight functions with n=l, (b)/(d)/(f) Weight functions with n=10. 
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Figure 6: The allocated area to each nodal point (a) typical patches on corner nodes (b) 
typical patches on edge nodes. 

Where a = 0.5, fl = -0 .5 ,  7 = 0.234469341 and r = 1 - ~ - r/. Here ~, q and r are 
area coordinates and node numbering begins from ~ = 0, r /=  0 with anti-clockwise 
direction. Functions ~bl, ~b2, .. are similar to case (a). 

Figures (4) to (5) show the variation of proposed weight functions for different ele- 
ments. 

It should be mentioned that there is no need of special treatment for boundary patches 
and they can consist of even one dement .  To balance the number of unknowns and 
equations in (39), the polynomial order can be chosen automatically so that  the number 
of coefficients in the polynomial is always less than that of elements times the number 
of Gauss points 2. However, in order to have a cheap operator linear polynomial may 
be used. 

One important  point should be mentioned here is that, according to.Equation (34) 
evaluation of information at each new Gauss point needs an averaging process for values 
from the patches made by all nodes of the old mesh. To avoid repetition of the least 
square procedure for a node, since there may be several new Gauss points inside a 
particular element, a three step procedure can be followed: 

1 - Using an efficient search algorithm, the old element containing a new Gauss point 
is identified and the local coordinates of the point are computed. This must be 
performed for all Gauss points so that  at the end of this step those new Gauss 
points failing inside a particular element are identified (and visa versa). 

2Some additional points can be considered in each element in order to use a high order polynomial in 
the least square procedure. In this ease the corresponding information of the new point can be obtained 
by a simple relation as (34) with N being the number of Gauss points in the element. 
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The reader will notice that, in the case that the new element size is less than (or 
nearly equal to ) the  old element size, by identifying the old element of the first 
Gauss point of the new element, the procedure for the rest of the Gauss points 
becomes quite fast and the search needs only to be performed on old elements 
connected to the first element. 

2 - The least square procedure of (30) and (31) is performed for all nodes of the 
old mesh and the contribution of each node to the new Gauss points inside the 
elements connected to the node is computed for both weight wj and the state 
variable wjtr~ (viz Equation (33)) and added to the current values. 

3 - The values stored at Gauss points are divided by the corresponding summation 
of the weights for all new Gauss points (Equation (33)). 

In the following section we briefly explain the procedure of element identification (the 
first step) for a new node or Gauss point. 

3.2.3. E L E M E N T  I D E N T I F I C A T I O N  

Supposing that the local position of a point with global coordinate Xp = [:~p, yp]T is 
required to be determined in an old mesh, a simple two step scheme can be employed 
aS" 

1 - We find the closest node to the point in the old mesh and consider all elements 
connected to the node (the efficient algorithm will be reported in the future pub- 
lication). 

2 - By an inverse mapping we find the local coordinates of the point in each element. 
The search for the element will stop when the local coordinates of the point are 
within an appropriate range (for instance in quadrilateral elements this range is 
[-1,1] and in triangular elements [0,1]). The inverse mapping is very simple and, 
except for triangular elements with straight edges, the local coordinates can be 
found through a small Newton-Raphson iteration. For this, in each element, we 
write; 

G = X p -  ~ N i X i  = 0 (42) 

Where N are interpolation functions in terms of local coordinates ~ and rl. We 
can start from ~ = 0 and r/= 0 and write linearized form of Equation (42) for kth 
iteration as: 

[SG] ~x~ - 0 (43) G -  G k + -~x h 

o r "  
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Figure 7: The position of each new node is determined in the old mesh by finding the 
nearest old node and using inverse mapping to calculate the local coordinates of the point 
in the elements connected to the old node. 

G = Gk + Jk6xk = 0 (44) 

with x = [~, T/] T and J being the well known Jacobian matrix in the FEM formu- 
lation. Solving for x gives: 

~xk = -J;~Gk (45) 

Now the local coordinates can be computed as: 

x = ~ 6xk (46) 

Once the local position of the point is obtained the data can be transferred either by 
interpolation functions, for nodal values, or direct Gauss point to Gauss point operator 
described in Section 3.2.1. 

3.2.4. T H E  S T E P  BY S T E P  A D A P T I V E  P R O C E D U R E  

Here we give the general form of step by step adaptive procedure in a typical non- 
linear analysis. 

We consider a generic load step as step number n: 

1 - At the end of the step, the continuous fields of stresses tr and incremental stress 
At  are evaluated using the REP and SPR procedures, respectively. 

2 -  The incremental error is computed by Equation (21) for all elements as well as 
the whole domain. 

3 - If the error is within a prescribed limit, the non-linear analysis will be continued 
for the next increment. 



402 

4 - If the error exceeds a prescribed limit then; 

4-a new mesh sizes are evaluated by relation (28) at each vertex of the old mesh 
and 

4-b all state variables for increment n -  1 at nodes and integration points are 
stored as a reference values for subsequent remeshings, 

4-c a new mesh will be generated by the new size of elements available at nodes, 

4-d the information at old nodes and Gauss points are transferred to the new 
ones by the described procedure in the preceding sections, 

4-e the new mesh and the new information are considered as the starting point of 
increment n and therefore the corresponding non-linear analysis is performed 
on the new mesh. 

In order to reduce the effect of data transfer operator on the incremental error 
(note that At = B[u , -u , ,_ l ]  and that un-1 has already been transferred from 
the old mesh to the new one), the new increment can be divided into two 
parts and the error can be evaluated for the second part. This can be done by 
dividing the load increment Sf, to aSf,, and (1-a)~f , .  If a is considered to be 
zero (c~ = 0) the procedure will convert to equilibration of the state variables 
at the beginning of the load step (after transferring the data) resulting to a 
new state of these variables which not only satisfy the equilibrium condition 
but also the constitutive relations. 

4-f If the error at the end of the nth step, for the new mesh, is less than the 
prescribed limit, the non-linear analysis will be continued for the next incre- 
ment, otherwise the procedure will be repeated from 4-c noting that the new 
state variables can be transferred from the first old mesh (the state variable 
of which was stored in stage 4-b). 

In the following section some numerical examples, solved by above procedure, are 
presented. 

3.3. N U M E R I C A L  E X A M P L E S  OF A D A P T I V E  R E F I N E M E N T  

Example 1 A perforated tensile specimen with displacement control is considered as an 
example. The problem and the material properties are shown in Figure 8. A compara- 
tively fine mesh with quadratic elements has been used as a benchmark and plays the 
role of exact solution. In order to study the discretization errors and reduce the effect 
of errors due to magnitude of the increments, in both fine solution and adaptive ones, 
identical load steps are used. 

Assuming that the reactions obtained by the solution of the fine mesh are very close 
to exact ones, exact incremental energy error can be obtained as: 

e,=_____2__= _ ({P,~ - P~ I) �89 
e,= - ( I v : = ~ -  P ~ l )  �89 - IP:= 1�89 - IP,'~l (47) 
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Figure 8: A tensile specimen and the mesh used for so called exact solution. 

in which P~, P~ and 8 are exact reaction (from the fine mesh), approximate reaction 
(from a typical mesh in adaptive procedure) and the corresponding deformation at an 
instant during the increment n, respectively. For convenience the reactions at the end 
of increment can be used to achieve a rough measure of the exact error. 

Figures and 10 demonstrate the adaptive error control procedure starting from a 
very coarse mesh. In both figures quadratic triangular elements are used and the aim 
of the adaptive procedures is to achieve 5% relative incremental error. After each step 
of remeshing the data have been transferred from the old mesh to the new one. These 
two figures clearly show success of the suggested methodology. 

The main difference between Figure and 10 is the number of pressure variables in 
the plastic solution. In Figure , six node elements (p = 2) with one pressure variable 
are used. Although the elements are quadratic, the behavior is vary similar to linear 
elements and this, of course, affects the rate of convergence in the adaptive solution. 
In Figure , six node elements with three pressure variables and bubble function are 
used. The effect of the number of pressure variables, for those problems that locking 
phenomenon is predominant, can be considered in the refinement criterion (28) by an 
engineering judgement. 

Example P The second example is a slope carrying a rigid foothing with a point load and 
solved by assuming the plane strain condition. The geometry and material properties are 
shown in Figure 11. The point load is in fact induced by vertical control of displacement 
of the footing. The elasticity modulus of the footing is considered to be 100 times as 
much as that of the slope. Forty equal displacement steps are considered to achieve the 
maximum displacement u = 1.0 at the restrained point on the footing. Plastic solution 
of a very fine mesh with 1080 quadratic (9 node) elements and 4455 node is considered 
as a benchmark for the comparisons. 

Figure 12 shows the result of the proposed adaptive procedure starting from a very 
coarse mesh (Mesh A). The aim of this adaptive analysis is to achieve less than 15% 
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A 
B 
C 
D 
E 
F 

K 

Elem. 

65 
221 
194 
231 
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348 
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574 
730 
914 

1134 

Node 

24 
486 
431 
506 
723 
747 
914 
1201 
1523 
1897 
2341 

Figure 9: Variation of relative incremental energy 
error in an adaptive analysis with step by step 
remeshing aiming at 5 % relative error. Quadratic 
triangular elements with one pressure variable 
(T6/1) are used. 
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Figure 10: Variation of relative incremental energy error in an adaptive analysis with 
step by step remeshing aiming at 5 % relative error. Quadratic triangular elements with 
bubble function and three pressure variables (Tf/3B) are used. 
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Figure 11: Geometry and material properties of an elasto-plastic slope. 

incremental energy error in order to have less than 2.5% error in ultimate load. However, 
because of the singularity at the comer of the footing, in the first few steps we aimed 
at 5% energy error in order to localize the singularity effect. The plastic behaviour 
starts from the first load step in a very small area around the singular point. Meshes 
B to H shown in this figure are the representatives of the meshes used in the adaptive 
analysis. The figure also demonstrates the behaviour of the coarse and the fine meshes 
in a simple plastic solution without adaptive procedure. As expected, the solution of 
the coarse mesh shows a very stiff behaviour. Although the fine mesh with nine node 
elements shows a much improved behaviour, it can be seen that this mesh is not an 
optimal mesh and the solution obtained cannot be considered as an exact solution. The 
problem is solved again from the first load step using the last mesh (named as 'Optimal 
Mesh') to assess the final results of the adaptive procedure. It can be seen that this 
mesh shows even better behaviour than the fine mesh though the number of degrees 
of freedom is less. Comparison of P - /~  diagram of the 'Optimal mesh' and that of 
the adaptive analysis clearly show an excellent performance of the proposed adaptive 
procedure. 

4. C O N C L U S I O N  

In this paper we have presented, in detail, an adaptive procedure suitable for non- 
linear elasto-plastic problems using recovery techniques as both error estimation and 
transfer operator. Although the procedure has been described for plasticity problems, 
it can be used in general non-linear problems. 

An incremental energy error norm has been employed to estimate the error. In prin- 
ciple, the procedure follows the same steps as linear cases described in Part I of this 
paper. In this way two recovery methods, the REP and SPR, are used to recover the 
total stresses and incremental strains used in the error definition, respectively. These 
two recovery methods are proved to be most robust in linear cases. 

The problem of transfer of data from the old mesh to the new mesh has been also 
addressed in this paper and a new transfer operator using weighted form of least square 
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Figure 12: P -  6 diagram of elasto-plastic slope aiming at 2.5 % error in ultimate load 
(15% incremental energy error)using quadratic triangular elements (T6/3B); Mesh A: 
u = 0.0 (coarse mesh), Mesh B: u = 0.025, Mesh C: u = 0.15, Mesh D: u = 0.3, Mesh E: 
u = 0.45, Mesh F: u = 0.6, Mesh G: u = 0.75, Mesh H: u = 0.9. The last mesh (Mesh 
H named as 'Optimal Mesh') is used for the solution of the problem from the first load 
step without further refinement. The Fine structured mesh of Fig. 11 consists of 1080 
quadratic (9 node) elements with 4455 nodes. 
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procedure, in the same sense as the recovery procedure, has been suggested. The weight 
functions are defined at element level for each Gauss point according to the weight of 
the Gauss point in the numerical integration process. This makes the procedure capable 
of transferring the information directly from old Gauss points to the new ones. The 
main advantage of this method is that it prevents the spread of the local information 
over a large area when several remeshing is required in the adaptive analysis. In order 
to use such data transfer operator, compatible algorithms for element identification and 
inverse mapping have been explained. 

Performance of the combination of all suggested procedures has been demonstrated on 
two elasto-plastic problems from which excellent results have been obtained indicating 
the high efficiency of the procedure. 
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SUMMARY 

In 3-D finite element analyses, error estimation and mesh adaptation are absolutely necessary 
to warranty the reliability and the quality of the results. To achieve this goal, suitable error 
estimators have to be developed. They must be able to provide a good a posteriori estimation 
of the obtained precision for any kind of models, especially for 3-D structures involving both 
solid parts and thin regions where the mesh in very coarse in one direction. New techniques 
have been developed to fulfil these requirements. 

1. BASIC METHOD 

The first step in the estimation of the precision of a finite element method solution is 
generally to build a comparison stress field that will be assimilated to the exact one. According 
to the name given in one of the standard techniques of recovering this field, we will call it the 
smoothed stress field. The most difficult step of the whole procedure is to obtain a sufficiently 
good smoothed stress field. For displacement models, the stress components should be 
continuous and satisfy the equilibrium equations. Focusing the recovering procedure on the 
second condition we obtain a first family of estimators like the models developed in Cachan 
[1-2], or on the first condition, and we obtain a S.P.R. like formulation [3]. Recently, two 
attempts have been performed in order to base the stress recovering on both methods. Their 
names are respectively R.E.P. (Recovering by Equilibrium in Patches [4]), and I.P.R. (in 
french recovering by weighted integration [5]). 

In this method, some of the weighted equilibrium equations present in a kinematically 
admissible model and applied to the finite element stresses are used to project the smoothed 
stress field on the F.E.M. stress field. The idea is to force this smoothed stress field to respect 
the equilibrium equations in a weak sense. In particular situations such as uniform rectangular 
first degree meshes, this method is identical to the S.P.R. method where smoothed and F.E.M. 
fields are identified at the superconvergent points. 

This new method can be seen as a generalization of the S.P.R. one, but with the fundamental 
advantage that it can be applied to any displacement model. In the begin of the finite element 
software development it was proposed in many programs to use mean values for element 
stresses. The use of other averages was proposed later [6], but only for postprocessing 
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purposes and with the drawback that this procedure was increasing the difficulty of interpreting 
higher order stress averages. The main interest of the new method is to apply this concept for 
building the smoothed stress field directly on a patch so as to transform averages into local 
values easier to process later. 

Tests performed in 2-D [4] and in 3-D [5, 7] show that the new method is very efficient 
when it works inside the domain but that it must still be improved close to the boundaries of 
the model or when the structure is very thin. 

The extension of the method toward the loaded boundaries is rather obvious if we apply the 
same idea of making equal weighted averages of applied surfaces traction and of the smoothed 
stress field. Here the weight functions are the displacement shape functions used for defining 
the generalized forces. With respect to method [1], the main advantage of this procedure is 
that it can deal with any kind of boundary condition on surface traction. 

The second ingredient of the procedure is now classical, it consists in choosing suitable 
patches centred either on nodes or on elements. Some strategies have been set up to have a 
good compromise betweenquality and computing cost. The last step is not dependent of the 
recovering procedure, standard techniques are used to compute the energy norm of the error, 
the convergence rate of the solution and finally to adapt the mesh [8]. The described methods 
have been implemented in a finite element method postprocessor and tested in 3-D [7]. 

2. BACKGROUND 

The main advantage of the finite element method is its ability to model a wide variety of 
structures or components and to adapt easily to any particular situation. With the development 
of efficient algorithms to compute the solution of linear or non linear systems of equations, 
the method is virtually able to solve any engineering problem in the field of structural 
mechanics. 

However, the counterpart is the tedious and very time consuming task for defining the input 
of the model and analyzing the output of the simulation. When the finite element model is 
very small, an interesting but difficult study of the model before and after process, aided by 
some engineer judgment, coming from experience, makes possible a very fruitful 
understanding of the behaviour of the structure and should the mesh be coarse or not, it is 
possible to obtain useful results. 

Today, because of the still increasing power of the computers there is no difficulty to handle 
very fine meshes, but the problem is to generate these models and to interpret the results. 

2.1. Modelling step 
For the step of generation, if the designer is concerned with the analysis of homogeneous 

and regular domains, he can use automatic mesh generation algorithms and obtain very easily 
a refined mesh. These programs are efficient and reliable in 2-D and they also become 
sufficiently robust to generate 3-D models. 

But the modelling of an object still remains difficult if we must analyze complex structures 
involving different components with sophisticated joins. Here, specific tools are necessary, 
they must be able not only to perform the job automatically but also to help the user to check 
that the mesh fulfil the basic requirements of the finite element theory. 

Many research teams and software companies are trying to identify rules and develop new 
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programs involving as basic tools, classical mesh generation but also C.A.D. mechanisms able 
to simplify the geometry, to remove details and to check that the essential characteristics of 
the structure are preserved: mainly the global stiffness, the total mass and their distribution in 
the whole structure. 

The idea is to make sure that the forces are acting in the model in the same way that in the 
true object and that a first analysis will provide sufficiently reliable results in the local 
components so as to allow detailed analyses. These complementary simulations have to be 
made in order to give the information necessary to design or to optimize the small parts of the 
structure and to eventually detect local accidents that can produce structural damages. 

All these developments are assumed to replace or to help the engineer skills in order to 
produce a suitable analysis model. 

2.2. Analysis step 
The second difficulty that has to be overcome by using fine meshes is the interpretation of 

the results and the identification of important information coming from the model. 
The recent developments of computer graphics tools help to produce easily and quickly high 

quality graphics of the output. Many techniques are available to represent all the state variables 
of the problem, mainly in mechanical engineering: displacement, strains, stresses or equivalent 
variables. This postprocessing step can however be dangerous because it implicitly involves 
some transformation of the output, like smoothing, mapping of values into colours, etc. 

The designer must then absolutely know, not only how the finite element model was built 
and how is working the finite element package, but he also must know what type of 
postprocessing was used to lead to the final results. 

And finally he must know what is the reliability of the results and what is the influence of 
the initial hypotheses made on the model. 

It is important at this step to note that when using very simple model, it is easy to repeat 
analyses, to make small modifications or to test variants of the model. These actions are giving 
to the user some feedback of the numerical simulation and help him to better know the 
behaviour of the model. It is the reason why it was possible to obtain useful results with very 
coarse meshes twenty years ago. At that time, when simulating some mechanical behaviour 
with a finite element model some effort was made to interpret the results, a very coarse mesh 
was sufficient and its reliability was strongly depending on the link between modelling 
hypotheses and interpretation rules. 

With very large models this method is no more usable, because with a big amount of output, 
it is impossible to compare the results and to make a synthesis of the modelling and analysis 
processes. If we try to make both aspects independent we have to control the quality of the 
mesh. It means that we have to know the error coming from the discretization. 

For this reason, some new formulations or new kind of analyses are necessary. To be useful 
they must reproduce the quality of the information provided by the previous simple models. 
These new requirements can be easily summarized; the first important aspect, is to know the 
influence of a component or of an hypothesis on the global response: this is a sensitivity 
analysis. It helps to check the validity of modelling hypotheses, for example how to represent 
a fixation, how to represent a join between two components. The second aspect is the control 
of the finite element mesh: it is the main concern of this presentation. 

When a measure of the error is available different strategies can be used: either we use this 
information to give safety margins, either we try to improve the model so as to reach a given 
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level of precision. It will be the second part of the presentation: mesh adaptation. This step 
is important not only because it allows to improve the results but also because it gives the 
possibility to save computation time. 

3. ERROR ESTIMATION 

We assume that the mechanical model is convenient and that the error of the solution is only 
due to the imperfection of the finite element mesh. 

To compute the error, the only way is to compare the results with something else. 
The ideal but rarely found situation is to compare with the exact solution. Its existence can 

help to find good criteria to quantify the error of the approximate solution. 
The second method is to compare with another finite element model. Happily, the method 

itself is providing good rules to indicate how to built the second model. 
We have basically two possibilities either we build the second model with completely 

different hypotheses, for example equilibrium model if the first one is a displacement model. 
The second possibility is to use the convergence property of the method: if we refine a given 
finite element model or if we increase the degree of the elements, the solution is improved. 

In some way it is necessary to define a distance between the two fields (approximate and 
exact). A norm has to be used and the most practical one, at least in linear elasticity, seems 
to be the energy norm of the error. It can be computed at the element level and by adding all 
the contributions, at the structure level. This method provides a single value that quantify the 
precision of the solution and allow comparisons between different approximations. 

Now if we have two finite element models, we can compute the "distance" between them 
that is assumed to be a good image of the error. The energy norm of the error field is 
computed from the difference between the finite element stress and the stress produced by the 
second analysis. 

3.1. Global analyses 
In order to compute a second model, let us first compare the solution with the same mesh 

using a different model. The first proposed method was the so-called dual analysis [9]. It 
offers three advantages, first the same mesh can be used, secondly this model gives an upper 
bound on the global error and finally, dual analysis helps to understand the mechanism of the 
modelling process. 

In some situations, the drawback is that it is not obvious to reformulate an equivalent 
problem with statically admissible elements. The reason is that these models accept only the 
loads defined inside the model, generally, constant or first and second degree polynomials. But 
they are more flexible with respect to the displacements boundary conditions even if this 
situation is less frequent in most engineering problems and if concentrated fixations are not 
allowed. Finally it is also observed that it is difficult to build 3-D equilibrium models. 

The second method to compare finite element solutions is to introduce a more refined model 
either with more elements (h-extension) or with higher degrees (p-extension). With this second 
finite element model it is possible to compute a convergence rate and to extrapolate the 
solution to get a better approximation of the exact one. 

A very efficient method often used in p-methods consists in using three levels of 
approximations (same mesh with three different degrees) and to perform a Richardson 
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extrapolation [10]. Another method mainly used in h-extension consists in taking into account 
the results of this comparison to guide the procedure towards more suitable meshes. 

3.2. Local analyses 
For all the previous methods it is necessary to perform a second finite element analysis. So 

the idea is to get the results of a comparison mesh without performing a full second analysis. 
Several procedures are available, all the methods try to perform a local analysis that is giving 
a good approximation of what should be the second analysis. 

The basic idea is to work in a region or a patch, the most simple patches are composed of 
all the elements surrounding a node or an element. Some smoothing is performed atthis level 
in order to obtain in the central node or in the central element more information about the 
higher order derivatives of the field. Basically knowing the linear displacement field of two 
1-D element sharing a node, it is possible to compute the first derivative at the node by 
interpolating the slopes. 

Coming back to the method [1], it is also possible to perform a local dual analysis, for 
instance to build a local equilibrium field. 

Independently of the chosen method, the new comparison field has to fulfil two 
requirements: first, the comparison field must correspond to the finite element solution, it is 
the prolongation condition [1], and secondly, it must be close to the exact solution, so it must 
avoid at least one of the two defaults and hopefully both of the finite element solution, lack 
of continuity and lack of equilibrium. 

To conform to the finite element solution, one can try to match directly to local values of 
stresses (S.P.R. method) or we can find a stress field that satisfy the surface traction applied 
to the patch. Another possibility that will be explored in the following consists in respecting 
the level of the generalized stresses conjugated to the deformation modes and balanced by the 
generalized forces. This last procedure conforms perfectly with the finite element method 
philosophy. 

4. STRESS INTERPRETATION 

4.1. Energy conjugate stresses 
When the body forces are not taken into account, the displacement models are derived from 

the minimum total energy principle: 

~f r f ~  8 ( U + P )  = 6 ( 2  e h H e  h - t u h d F )  = 0 (1) 

where: 
U is the strain energy, 
P is the potential energy (here, the body forces are not considered), 

e h is the column vector of the strain components, 
H is a symmetric matrix of elastic coefficients, 

t is the column vector of surface traction on F t, 

u h is the displacement vector, 
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l" t is the part of the boundary where surface traction is prescribed. 
The superscript T denotes transposition and the bar prescribed values. 

The displacement field in the finite element is discretized in the form 

u h - w q (2), 

where W is the matrix of assumed shape functions and q represents the discrete nodal values 
of this displacement. The column vector of the strain tensor components is then expressed in 
terms of generalized displacements by 

e h = a W q  = B q  (3) 

the stress vector, 

o h = H e h = H B q (4) 

The strain energy becomes: 

I f T T 1 T U= -2 d q B H B q d f ~  = -2q Kq 
fl 

(5) 

where K is the stiffness matrix. The virtual work (V.W.) is expressed in terms of the 
prescribed surface traction by: 

v . w .  - f Uh ~ d r  - f ~ d r  - q r g (6) 
r, r, 

It allows to define the generalized forces 

g= f W r t d P  
r, 

(7) 

conjugated to the displacement modes q. 
Expressed in terms of weighted averages it gives by (7) and (4), the equilibrium relations 

between stresses and surface traction modes: 

f Wr~dS  = f B r  dP 0 (8) h 
r, Q 

This can be expressed in terms of the generalized displacements in the following way. By 
(5) and (6), the principle (1) becomes 

( ~ rg) 8 (U+P) - 6 - ~ q r K q - q  (9) 

and after variation of the parameters q, we obtain the well known relations 
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g=Kq (10) 

equivalent to the equilibrium equations (8). 

4.2. Practical signification of the energy conjugate stresses 
For all the elements which pass the patch test [11], a sufficient condition for convergence 

is the existence of constant deformation modes. Their shape function are equal to 1 and 
amongst the weighted average stresses we find the simple averages of the stresses or of their 
linear combinations. The simplest models like linear membrane triangles provide only these 
averages. In more sophisticated models, higher order averages are not easily interpreted. 

Instead of analyzing the properties of the full set of energy conjugate stresses, we can make 
some observations on the simple stress averages. 

First, their definition is very general and allows to use the same procedure for all the types 
of elements. Secondly, their computation is cheap because they form a sub-product of the 
computation of the stiffness matrix. Thirdly they satisfy always the equilibrium equations in 
the mean sense of relation (8). 

However some difficulties remain unsolved; first we cannot get useful information on the 
boundary of the element and secondly, as the interpretation of higher order conjugate stresses 
is more difficult, only the simple averages are of direct use. 

4.3. Interpretation of the genera l i zed  forces 
The generalized forces constitute also a special stress output. They are related to the stresses 

by relations (7) and (8) and can be directly computed from the displacements by relations (10). 
It is important to note that they are a natural direct output of the computation. They are not 
independent because they verify the global equilibrium equations of the element. It is well 
known that the generalized forces are very useful to check the global equilibrium of the 
structure or to find the loads which are transmitted from a substructure to another. 

However at the element level their interpretation is more difficult due to the presence of the 
corner loads for which it is impossible to separate as seen in expression (7) the effects of the 
surface traction modes of the edges adjacent to the comer. 

For elements of higher degree (2 or more), the interface loads come only from interface 
surface traction contribution. With a mixed formulation, it is possible to change the connector 
which is the displacement associated to this load into a equilibrium connector which will 
provide an easier interpretation of the surface traction [11]. The procedure will consist in 
building a particular hybrid model [12]. 

For this purpose the principle (1) is modified by relaxing the compatibility condition on the 

interface Yu" The new principle is written: 

s- : - ) e r He d f l  - t r u dP - t r ( u - u )  dF (II) 
o i', r. 

The Lagrange multipliers t are easily identified as the surface traction. Nov the discretized 

fields are u in the volume and on the boundary Yt  and the surface traction t on the boundary 
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F u. The displacement and the surface traction are discretized in the same way as for 
equilibrium models. The principle becomes: 

1 T T ) f q . H . q d . -  f Wqdr- f g v (Wq- )dr 
o r, r .  

(12) 

In this principle the generalized displacements associated to the surface traction modes 

introduced on 1" u are defined by the weighted averages: 

- f q - V T u d r  (13) 
r, 

For example, if the surface traction mode introduced on the interface is constant, the conjugate 
displacement is simply the average of the displacement on the interface. 

When a constant surface traction mode is introduced in an interface of quadratic 
displacement model it only changes the definition of the connectors. The local displacement 
becomes an average displacement and the weighted average of the surface traction becomes 
the intensity of the constant surface traction mode. 

In membrane theory, when a surface traction mode of degree n is defined on an interface 
the continuity properties of the displacement model are not changed if the displacement field 
is of degree n+2. 

The advantage of this procedure is that it allows to obtain directly, as in the equilibrium 
models the surface traction modes of the interface. On the separation surface of two 
substructures involving many interfaces of displacement elements for which the displacement 
connectors have been transformed in force connectors, there are two possibilities of 
connection: 
- firstly, to connect the nodal displacements and the interface forces. The solution is exactly 
the same as for the displacement models but with a modified interpretation of the interface 
forces and displacements. The picture of surface traction modes is given partially by the 
interface connectors and partially by the forces conjugated to the nodal displacements. 
- secondly, to connect only the interface forces. The interface between the two substructures 
behave exactly as in equilibrium models and the surface traction modes are directly available. 

This last procedure is providing the best information on stresses along chosen boundaries. 

5. COMPUTATION OF NODAL VALUES 

The recovery procedure is now very simple, it consists in defining a polynomial stress field 
on a patch centred either on a node or on an element. With this field, it is necessary to 
compute the generalized stresses according to expression (8) in which the finite element stress 
is replaced by the smoothed stress of the patch and to identify the two values. 
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fn B r (op_o h ) dP = 0 (14) 

The integral is performed on all the elements pertaining to the Patch and o p represents the 

smoothed stress field defined on the patch. 
According to expression (8), the inter-element equilibrium equation are automatically 

satisfied in a weak sense by o h while O p is continuous by construction. 

In many situations it is possible to use simplification. In order to decrease the number of 
equations it is possible to use only a sub-set of the generalized stresses. A second way used 
to simplify the problem consists in replacing the stress modes function by simple low degree 
polynomials in order to avoid the coupling between components. In many tests performed in 
[5], it has been shown that for low degree elements, the constant modes are sufficient to obtain 
good results. 

In a general situation, the system of equations is over-determined and a least square method 
has to be used. Note that these conditions are easy to set up because they are only using the 
conditions defining the element characteristic matrices and vectors. They are also very general 
and can be applied to any model and formulation without important modifications. 

If the patch is connected to a loaded boundary, it is convenient to add other equations 
ensuring that the smoothed field respects the surface traction condition (7). This condition is 
very important when the mesh in very coarse in one direction because in this situation the 
stress field is strongly influenced by the generalized applied loads. However to express these 
additional conditions it is necessary to know the imposed surface traction. 

The condition is: 

fr, Wr (t-tp) - 0 (15) 

where tp is the surface traction computed from O p. 
The only difficulty is the choice of the polynomial smoothed stress field. Numerous 

experiments have shown that a good choice is a full polynomial with the same degree as the 
displacement field. Inside the domain this solution has proven to be very efficient. However 
in the thin parts of the structure the smoothed field has to include a sufficient number of terms 
in order to be able to represent the exact stress modes. A not yet investigated possibility could 
be to use an equilibrium stress field defined on the patch. 

The tests also show that for solid structures, patches centred on nodes are sufficient inside 
the domain what means a significant saving in computation. For 3-D problems the best 
solution consists in using nodal patches inside the domain and element patches on the 
boundary. 

Moreover, it is also observed that the introduction of surface traction mode is more 
important than high order stress modes. 

After the solution of this system of equations, the value of the smoothed stress field is 
assigned to the central node and the nodes belonging to its adjacent edges or to the nodes of 
the central element. 
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6. INTERPOLATION SCHEME AND MESH ADAPTATION 

In order to obtain standard output and to simplify the production of graphics, the nodal 
values are averaged and the results are displayed using the interpolation scheme of the 
displacement field. The obtained smoothed stress field is no more compatible, but continuous. 
It don't satisfy the equilibrium equation except on the loaded boundaries in the sense of least 
square method. However part of the weak equilibrium conditions are fulfilled at least before 
the averaging procedure. 

If the estimated error of an element is higher than the prescribed one, subdivision of this 
element is required. In order to know how to refine each element, an estimation of the error 
sensitivity with respect to the size of the element must be provided. The a priori convergence 
law at element level has the following form: 

e~ - C i h~' (16) 

where C i is a constant, hi. the element size and 13 i the element convergence rate. In 3-D, if the 
element size is sufficiently small, 13 i is given by formula: 

13 t = min(p,~.) (17) 

where p is the degree of the polynomial approximation and ~, a parameter characterizing the 
smoothness of the solution. 

Several methods can be used to estimate fSi [13, 14], i.e. methods based on uniform mesh 
refinement, methods based on local analysis and methods based on numerical adjustment. The 
last one is chosen in the proposed procedure. 

6.1. Mesh optimization 
Knowing the sizes of elements, the estimated errors and the convergence rates, we have to 

build the optimal mesh: it minimizes the total number of elements and ensures a prescribed 
total error level. The problem of mesh optimization has been solved in [13, 14] by minimizing 
a Lagrangian function with an equality constraint. 

6.2. Adaptation 
After a first analysis using the initial mesh supplied by an automatic mesh generator, an 

error estimation is performed and the optimal mesh densities are computed. All the information 
needed to improve the mesh is thus available. 

This problem of mesh adaptation has been solved for 2-D problems using subdivision and 
transition techniques [13]. For 3-D geometries the new mesh is preferably obtained by 
remeshing techniques. 

They consist in using an automatic mesh generator to build a new mesh which respects the 
elements sizes map given as a result of the mesh optimization process. 

Once more, it seems here that hexahedral mesh generators. (transfinite methods) are in 
general not adapted to respect local densities. On the other hand, more and more tetrahedral 
mesh generators based on Delaunay-Vorono'i or frontal methods are able to produce the 
strongly graded meshes required for the adaptive procedures. 
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In some of them, local densities of internal elements are controlled by the densities of the 
surface triangles [15]. In more up-to-date techniques a background mesh, usually the current 
mesh is provided to deliver the necessary density information. For the generation of the new 
mesh, it is possible to get the size of the elements everywhere in the domain by interpolating 
values on the previous one. Those remeshing techniques seem to be the most attractive to 
perform 3-D mesh adaptation [16-19]. 

7. NUMERICAL EXAMPLE 

" Many attempts have been made previously to introduce discretization error control in the 
process of shape optimization, either in 2-D or in 3-D, [16-18]. 

As explained above, in 3-D, a good control of the adaptive meshing can only be obtained 
if free mesh generation is used, generally Delaunay or frontal methods. However, in this case, 
it still remains to overcome the important difficulty of handling sensitivity analysis with 
unstructured meshes. 

In shape optimization, sensitivity analysis consists in computing the influence of shape 
perturbations on objective function, inequality constraints and structural responses. 

This computation is achieved by repeating a significant part of the finite element analysis 
for all the design variables. The computing cost of this operation is then proportional to the 
number of design variables and is strongly dependent of the number of D.O.F. The necessary 
increase in the precision is thus paid by a significant increase in the computing time and fine 
tuning of the overall procedure has to be set up to limit the cost of the process [17]. 

The following example is designed to show 
what should be the benefit or such a procedure. 
But, it is not yet fully achieved, only a small 
number of steps have been run to demonstrate 
the feasibility of the method. 

A clamped "I" beam is assumed to be loaded 

with an uniform pressure P = 100 on the 
upper spar cap (figure 1). The objective 
function corresponds to the minimization of the 
weight. The inequality constraints impose that 
the yon Mises stress is less than 1000. 

The design variables are the thicknesses of 
the spar caps S1 and $2 whose initial value is 
"a" and the radius of the filled allowed to 

20 ~ t 

figure 1 : Geometric model 

linearly vary between the fore and the back sections of the beam (variables R1 and R2, 
reported in table 1). 

Table 1. Dimensions and optimal values for the tetrahedral mesh 

H L S1 $2 a R1 R2 

33 20 3 3 3.0 2.0 6.0 
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Table 2. Error estimation for the tetrahedral mesh 

L . . . . . .  

Nodes Elements D.O.F. ~Uh~ 2 1  21 e2 f]2 % Oh Oh b 

639 2008 1506 9829.36 1617.18 14.128 898 1097 1.301 
1839 7213 5 1 7 5  1 2 2 6 3 . 6 7  1187.36 8.827 1202 1247 1.718 
3293 13842 9417 12773.45 928.33 6.775 1325 1370 1.825 
9903 46942 28644 13435.69 515.09 3.692 1624 1655 1.956 

17456 86132 50727 13629.35 375.67 2.682 1696 1859 1.999 
, , 

figure 2 : a) Initial mesh, b) final adapted mesh 

Elasticity module and Poisson's coefficient are E = 21000, v = 0.3. The optimization has 
been carried on with a finite element model composed of tetrahedra (figure 2a). The results 

are shown in table 2 where -re2 is the absolute error and vl 2 the relative error, 0 represents 
2 

the smoothed stress field. After the optimization for which the relative energy error is equal 
to 14%, an adaptive study was performed in order to obtain a prescribed level of relative 

energy error 112 = 2.5%. 
As expected, the adaptation is increasing the number of D.O.F., it also demonstrates that the 

optimization performed with a coarse finite element model yields to a very important violation 

of the maximum von Mises stress (about 80%). The maximum displacement (6,  table 2) is 
also significantly growing during the adaptive process proving that the structural stiffness was 
very badly modelled. 
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figure 3 : Final mesh a) relative error density b) yon Mises stress 

8. CONCLUSION 

The developed method based on the computation of weighted averages of stresses on patches 
is very general and easy to implement. Tested on some analytical examples it exhibits a very 
good behaviour and all the observed effectivity indices are very good and seems to always 
converge to 1. 

In practical 3-D examples, the method is able to provide precise information on optimal 
mesh densities and allows to control the quality of the finite element solution for static linear 
elastic problems. 

The techniques presented here derive from previous 2-D developments [13] and behave very 
well. Their 3-D versions have been successfully tested in several numerical examples. Even 
if a careful examination of the different output of the program allows to conclude that the 
results are satisfactory, more tests are necessary to verify the exactness of all the numerical 
values. However the next challenge, in shape optimization, is to produce a fully optimized 
mesh satisfying exactly the requirements of the background map of element sizes. 

Experiments are currently performed to compare the respective efficiencies of Delaunay and 
frontal methods. Moreover, these procedures of error control are now used in the frame of 
advanced techniques like shape optimization [17]. 
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This paper presents some recent results on the development of adaptive procedures 
for finite element formulations locally enforcing the equilibrium conditions. The topics 
covered include the control of spurious kinematic modes, solution techniques, the defini- 
tion of compatibility defaults, the derivation of compatible displacement fields and possible 
error estimators and indicators. 

These procedures are illustrated with a simple example in 2D elastostatics. 

1. I N T R O D U C T I O N  

Though considerable attention has been given to the development of dual approaches 
in structural problems [1-4], the approach based on conforming displacement elements, 
nodal variables, and stiffness methods was bound to become popular due to its inherent 
mathematical simplicity. Indeed this approach has become the dominant method. 

Whilst the displacement approach may be said to have reached a state of maturity, it 
�9 

suffers, from an engineering viewpoint, in placing its first priority on compatibility and 
relaxing local equilibrium. This is the reverse of the priorities commonly required in 
structural engineering, and this reversal appears to have made a significant contribution 
to the catastrophic collapse of the Sleipner offshore platform in 1991 [5]. 

These priorities are reversed in the alternative approach based on stress elements with 
locally enforced equilibrium. The earlier proponents and advocates of such an approach 
also realised the benefits of dual approaches in that they provided the opportunities 
to complement each other, and bound quantities of interest, e.g. strain energy. This 
bounding property has become of considerable importance more recently in the context 
of error analysis and adaptivity in the finite element method [6]. 

More recent developments [7-12] have tended towards hybrid forms of equilibrium ele- 
ments with side variables. The hybrid approach has the advantage of allowing the de- 
velopment of new elements with extreme ease, and it is hoped that it will further allow 
progress into investigating many topics where the equilibrium formulation has not, yet 
had a chance to make an impact, e.g. error estimation and adaptivity in finite element 
modelling, non-linear analysis (both geometric and material non-linearities), and 3-D 



428 

modelling. 
The present authors have been involved in developing the hybrid equilibrium approach, 

and this paper will present some of the results that have been obtained in two relevant 
areas in this context" 

�9 determination of robust equilibrium finite element models [12]; 

�9 development of error estimators and indicators for adaptive strategies [13]. 

2. T E R M I N O L O G Y  

In this paper the following terminology is used: 

d i s p l a c e m e n t  formulations are normally based on the use of displacement fields as vari- 
ables, and a form of possibly incomplete compatibility is imposed. This implies that  
the equilibrium conditions are integrated by parts (explicitly or implicitly) and are 
meant to be satisfied on average; 

c o m p a t i b l e  formulations are obtained when the displacement fields are constrained to 
be kinematically admissible, i.e. to satisfy the compatibility equations in an exact 
(strong) sense; 

s t ress  formulations are normally based on the use of stress fields as variables, and a form 
of possibly incomplete equilibrium is imposed. This formulation implies that the 
compatibility conditions are integrated by parts (explicitly or implicitly) and are 
meant to be satisfied on average; 

e q u i l i b r i u m  formulations are obtained when the stress fields are constrained to be stat- 
ically admissible, i.e. to satisfy the equilibrium equations in an exact (strong) sense; 

h y b r i d  formulations are based on independent approximating functions within an ele- 
ment and on element boundaries, the latter serving to impose interelement condi- 
tions, e.g. using the concept of Lagrange multipliers. 

In this paper only hybrid equilibrium formulations are considered for linear elastostatic 
problems in 2-D. These concepts are currently being extended to 3-D elastostatics [13-15]. 

3. B A S I C  E Q U A T I O N S  

The basic governing equations for linear elastostatic problems, where for the sake of 
simplicity initial strains are not considered, are in matrix format: 

�9 equilibrium of stress vector r with body forces b, 0tcr + b = 0; 

�9 compatibility of strains r with displacements u,  O u  = r 

�9 constitutive relations, e = f(r;  

�9 static boundary conditions, Ne t  = t r  on Ft; 

�9 kinematic boundary conditions, u = Ur on F,. 

(1) 
C2) 
(3) 
(4) 
(5) 
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Matrix N transforms the stress vector to boundary traction components, t r  represents 
the prescribed tractions on Ft and u r  represents the prescribed displacements on F~. 

4. H Y B R I D  E Q U I L I B R I U M  F I N I T E  E L E M E N T  F O R M U L A T I O N S  

This paper deals with a hybrid equilibrium formulation that satisfies the local equilib- 
rium conditions of stress within elements and across element interfaces. This formulation 
belongs to a broader class of hybrid formulations [9,10] based on multi-field approximating 
functions within each element and on an element boundary. The boundary is discretised 
into sides. To locally enforce equilibrium between elements, independent functions are 
defined for each side. Therefore the functions for adjacent sides of an element are not 
constrained to be continuous ("frame" functions), unlike the hybrid formulations of Pian 
[16]. Hybrid-Trefftz formulations [11,17] are hybrid formulations for which the element 
stress fields are both statically and kinematically admissible, i.e. the strains corresponding 
to the stresses are locally compatible. Trefftz polynomials are not so convenient for equi- 
librium elements, because they provide fewer functions to form a solution that satisfies 
local equilibrium on the sides. 

The element equations are built up in matrix format as follows: 

�9 equilibrium within an element (7" = S s  + ao, cOtcro + b = 0, and cOtS = 0, where 
the columns of matrix S form a basis for stress fields that are statically admissible 
with zero body forces, vector s contains ns  stress parameters, and or0 represents a 
particular solution; 

�9 kinematic boundary conditions of side j ,  u = V~vj ,  where the columns of Vj  
form a basis for assumed displacements for side j; this equation can be extended to 
include all sides of an element, u --- V v .  The vector v contains n v  displacement 
parameters; 

�9 weak equilibrium on the boundary of an element is imposed by: 

or D s + g o  - g, where here t r  represents tractions applied to the boundary segments 
of an element. Vectors go and g can be identified as generalised boundary tractions; 

�9 weak compatibility within an element and its boundary is imposed by: 

~r( 1VS) tu  dF = ~ S t e  d~,  or 

~ r S t N ~ V d F v = ~ S t f S d g l s + ~ S t f c r o  d~2, 

or D r y  = F s  + eo. 
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Combining equilibrium and compatibility for an element leads to the partitioned matrix 
equation: 

o, } { ) 
D �9 v Y -  Y0 , or g , 

in the absence of prescribed body forces. 
Since F is positive definite, s can be eliminated to yield an alternative stiffness equation, 

e.g. D F - 1 D t v  = y. 
Note that the weak form of equilibrium becomes the strong form No" - t r  when the 

displacement functions in V and the tractions ( N a -  tr)  are described in terms of the 
same set of functions. For then, f r u t t  dF = 0 for all u =~ t = 0. For example this will 
occur when displacements are based on complete polynomials of degree p and the degree 
of tractions (or stresses when the sides are straight) does not exceed p. 

Generalised displacements v and tractions g form dual variables by virtue of the scalar 
work product: 

/ r U t t d F = V t ~ r V t t d F = v t g = v t D s  = s t F s ,  (9) 

when tractions t are self-balanced in the absence of body forces. The (nw • ns )  matrix 
D represents the boundary work done by each stress field with each boundary displace- 
ment field. Depending on the definition of these fields, it may be possible for non-zero 
displacements represented by a vector v to incur zero work for all stress fields in S, and 
hence zero stress or strain energy within the element. In this case v satisfies: 

D r y  = 0, (10) 

or in other words, v belongs to the nullspace of D ~. Clearly this will occur when V 
includes the na rigid body movements of the complete boundary of an element. However 
the nullspace of D t may also include nskm spurious kinematic modes (SKM's), which can 
be considered in a similar way to mechanisms, 

nskm = n v  - n a -  rank(D). (11) 

Furthermore, the existence of spurious kinematic modes influences the manner in which 
an element may be loaded with boundary tractions. Tractions are admissible only if they 
do not excite mechanisms corresponding to the spurious kinematic modes. In terms of 
dual bases for the vectors, a traction vector y is admissible if zero work is done with the 
nullspace of D t, and in particular if 

A g  = O, 

where A t represents that subspace of the nullspace which is based on the spurious kin- 
ematic modes. Zero work by g with the rigid body modes is of course a consequence of 
the overall equilibrium requirement of the tractions. If g is admissible, then it is also 
consistent with 

= g ,  (12) 
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and thus allows for a solution for s. Multiple solutions to this equation are possible when 
S allows nayp hyperstatic, or residual, stress fields for which Nor - 0, or more generally 
Nor - t which is orthogonal to all displacements in V. When strong equilibrium is 
enforced t = 0, 

n h y p  - -  n s  - -  rank(D), and thus n s k m  - -  ( n v  - -  ha) -- (ns - n h y p ) .  ( 1 3 )  

For an assembly of elements, the system of equations can be expressed as: 

- F  D t s 0 (14) 

For this system two fundamental questions arise: 

1. Do spurious kinematic modes of the elements propagate through the system, if so 
in what form and how many such modes exist for the system? 

2. Is the load admissible for the system? 

These questions can be answered before attempting to solve the system equations._ A 
possible pre-evaluation of the system can be made by focusing on the matrix D. For 
simplicity of presentation it is now assumed that the sides are (re)ordered so that: 

{o,) {o,} {o,). 
9 =  92 ; ~/= 02 ; a n d D =  1)2 ' 

where 91 and gl refer to the unknown side displacements and specified side tractions re- 
spectively; 92 and 02 refer to prescribed displacements and reactive tractions respectively. 
Then spurious kinematic modes for the supported system are defined by the nullspace of 

- t  - t  D1, represented by A1; and admissible loads satisfy fi-lgl = 0. 
An alternative, and possibly simpler, way of pre-evaluating the stability of the system 

comes from focusing on mesh compatibility. That is, 

1. Determine the spurious kinematic modes for each element, and form 

I A ' 0 
A t - . -  " . .  . 

0 A ~ 

Spurious kinematic modes for the unassembled system are defined by Ark for ar- 
bitrary vectors k. 

2. In the assembled system, the above modes propagate when they are compatible 
between elements. Compatibility is checked with the aid of a system kinematic 
matrix H t i.e. for compatibility H~Atk  = 0 or CLk = 0 where C = A H .  H t can 
be simply formed by appealing to contragradience, and using the statical relations 
of the statically indeterminate system, i.e. g = H p  where the vector p contains 
biactions, and g represents self-balancing element tractions within the system. 

Then the number and definition of the spurious kinematic modes of the system can 
be found from the nullspace of matrix C t. In this case it should be noted that the 
dimensions of C may be much smaller than those of D1, but in addition the nullspaces 
of each elemental matrix D ~ are also required. 
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5. S O L U T I O N  T E C H N I Q U E S  IN T H E  P R E S E N C E  OF SKM'S  

For meshes without spurious kinematic modes the systems of equations described in the 
previous section can be solved using any technique appropriate for symmetric matrices. 

As the matrices are very sparse an important gain in solution time may be achieved 
by using appropriate algorithms. Banded and skyline algorithms can be used, but are 
not optimal. The best results have been obtained by using procedures for general sparse 
matrices [18]. 

If spurious kinematic modes are present in the mesh, the system of equations is singular. 
The solution of such a system may be either undetermined or impossible. 

If the solution of the system is impossible a combination of the approximation functions 
that equilibrates the applied loads cannot be found and the load is inadmissible. 

When the solution is possible some of the displacement variables are undetermined. 
To solve these systems standard algorithms for non-singular matrices cannot be used. 

One alternative is to transform the system equations after performing an explicit singu- 
lar value decomposition of the matrix in equation (14), o r / ) .  This procedure has the 
advantages of being very stable, and explicitly calculating the spurious kinematic modes, 
but in practice the computational cost is likely to be too high. Instead it is preferred to 
use a Gaussian elimination technique with control of zero pivots. 

Good results have been obtained using an adaptation of an "off the shelf" procedure 
prepared for symmetric, diagonal dominant, sparse matrices [18]. An high performance 
routine for unsymmetric sparse matrices which can handle singular systems has also been 
used to solve these systems, with good computational performance [19]. 

6. C O N T R O L  OF T H E  S P U R I O U S  K I N E M A T I C  M O D E S  

The direct solution technique described above must be used with extreme care, because 
in situations of numerical instability it is difficult to distinguish the numerical zeros from 
small non-zero values. It is always better to establish a priori  that there are no SKM's. 
If this is not possible then is is preferable to know how many exist, so that the solution 
procedure can be controlled. 

One way to control the number of SKM's is to use special assemblies of triangular 
primitive elements, macro elements, as those presented in Figure 1. Meshes built using 

Figure 1. Typical macro elements. 

triangular macro elements are free from SKM's. When quadrilateral macro elements are 
used it is guaranteed [12] that with approximation functions of degree 2 or higher there 
may exist at most one SKM per macro element, but this is not excited by external side 
tractions. Based on this characterisation it is possible to eliminate the SKM's in the 
assembly process or to do a check on the number of SKM's that were found by the solver. 
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The hybrid finite element formulation used easily allows for the inclusion of irregular 
elements (triangles with more that three sides/nodes or quadrilaterals with more than 
four sides/nodes), as those presented in Figures 6 to 8. This is extensively used in the 
refinement procedures as it eliminates the need for remeshings or mesh regularization 
procedures. 

Numerical experience has shown that for meshes obtained using this type of refinement 
the number of SKM's remains constant throughout the adaptive process. 

7. C O M P A T I B I L I T Y  D E F A U L T S  

Unless the exact solution can be represented by the approximation functions used in the 
finite element model, there will be an error associated with the equilibrium finite element 
solution. This error is due to the fact that the corresponding strains do not satisfy locally 
the compatibility conditions. 

Inside the elements this lack of compatibility can be measured by the residual in the 
St Venant compatibility equation, 

02cxx 0 2 E y y  02-cxy 
= 2 ,  , .  (15 )  Oy 2 Ox 2 OxOy 

On the sides between the elements and on those that belong to the kinematic boundary 
there may also exist compatibility defaults. These defaults are associated with the possible 
existence of different tangential strains and curvatures [13]. 

@J @ Q @ 

J] #o J]' #o 
Figure 2. Compatibility defaults of side j between two elements. 

As shown in Figure 2, for side j that connects elements i and k a tangential strain 
jump, 

J~ = [eu]j,,- [eu]j,k, (16) 

can be defined. A curvature jump may also exist, which for a straight side is defined by 

�9 = + [ 02 f j = 2 + 2 , ( 1 7 )  L 02t J j,~ ~,k Ot On ~,~ Ot On j,k 

where each ~ is the external normal of the corresponding element and t' = [ - n  u nx] t. 
Similar quantities can be defined for the sides of the elements that belong to the kinematic 
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boundary. These quantities are similar to the unbalanced body forces and the traction 
jumps for compatible finite elements [20,21]. Likewise, as will be presented later, they 
can be used to indicate the error of the solution. 

8. D E R I V A T I O N  OF C O N F O R M I N G  D I S P L A C E M E N T  FIELDS 

A finite element solution obtained using hybrid equilibrium elements of degree p yields, 
for each side j, a displacement field uj of degree p. 

A compatible displacement field may be constructed from the equilibrium finite ele- 
ment solution and the kinematic boundary conditions. This is achieved by calculating a 
displacement field that is continuous within each element, and then by making this field 
compatible in the whole domain and on the kinematic boundary [13]. This is the dual of 
the Ladeveze approach [24] for displacement formulations. 

If p _< 1, the strains computed from the discretised stresses correspond to a displacement 
field which is continuous within each element but is normally discontinuous across the 
sides. If p > 1, normally it is not possible to obtain a displacement field, within each 
element, for which the strains will match exactly those computed from the stress field. 

Nevertheless, it is always possible, in each element, to calculate a displacement field of 
degree p + 1, u~, for which the strains are a projection of those calculated from a stress 
field of degree p. 

This displacement field is given by ue = ~ 5  = ~(Ss + R ~R), where ~ is a matrix 
of approximation functions for displacements of an element with displacement paramet- 
ers 5, and matrix R transforms the rigid body mode amplitudes 5R into displacement 
parameters. 

The deformed shape of an element as described by g25s is computed, to within the 
rigid body displacement, from the stress solution: 

( s  (O~)tJ'-l(O~)dFl)Ss= s (O~)tcr dl2. (18) 
i i 

This system has three dependencies, corresponding to the rigid body movement. The 
displaced position of an element may be calculated from the side displacements of the 
hybrid finite element solution when spurious kinematic modes are not present. In this 
case a least squares solution to the local overdetermined system of equations, 

which apply simultaneously for each side F3 of element fli, provides the amplitudes 5n of 
the three degrees of freedom for rigid body displacement. 

As both a and uj correspond to the same equilibrium finite element solution, three 
of the equations in (19) are linearly dependent. Thus, for triangular elements, all the 
equations in (19) can be satisfied exactly. 

For triangular elements, a system without redundant equations is formed by equations 
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for each side Fj of element f/i. 
The displacement field ue is normally discontinuous across the sides and does not satisfy 

the kinematic boundary conditions. A compatible displacement field of degree p + 1, 
uc, may be obtained by smoothing the displacements ue and enforcing the kinematic 
boundary conditions. Simple nodal averaging may be used, but several of the more 
sophisticated methods used for stress smoothing [22] may also be adapted for smoothing 
displacements. 

9. E R R O R  E S T I M A T O R S  A N D  E R R O R  I N D I C A T O R S  

Both element error indicators and global error estimators, always directed at the energy 
norm, may be obtained a posteriori in a variety of ways for equilibrium finite element 

solutions. 
In the following we will focus on two different approaches. Methods that compute an 

upper bound of the error of the equilibrated solution using a compatible displacement 
field and methods that are based on the explicit use of compatibility defaults. 

For these approaches the error estimator is always calculated as the sum of element 
error indicators. 

_ .  s  (21) 

9.1. D U A L  A N A L Y S I S  
Given a compatible displacement field uc, which is associated with a (normally non 

equilibrated) stress field ac, and an equilibrated stress field (re, then the following relation 

holds [23]: 

+ U(e ) = - r  ( 2 2 )  

Where U(.) is the strain energy, ee = O'e - O'exact and ec = O'c - O'exact. 
As U(ec) > 0 and U(ee) > 0, an upper bound of the global error of either solution can 

be obtained from a pair of dual solutions: 

l le l l  ___ = - = (2  u( o - ( 2 3 )  

The value of the error bound can be calculated element-wise and each of the contribu- 
tions can be used as an indicator of the error within the corresponding element [24]. 

The compatible displacement field can either be obtained from a compatible finite ele- 
ment model [15] or derived from the equilibrated solution. The quality of the displacement 
field is crucial as regards the effectivity of the error estimator. When dual solutions of 
different quality are used, the upper bound will be closer to the error of the worst solution. 

9.2. U S E  OF C O M P A T I B I L I T Y  D E F A U L T S  
The compatibility defaults r, j t  and j11 are related to the errors in the equilibrated 

stress fields. An element error indicator suitable for estimating the energy error norm is 
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expressed by: 

2 
s a cxh~f~  r 2df~+ 

i 

3 i 

f r  1 H d r  (24) d r  + c3 h~ ~ , 
J 

where the summation extends to all the sides of element i. This expression is similar 
to the one that has been used in [20,21] for compatible elements, and the �89 factors 
are included to equally divide the contributions from the deformation jumps across an 
interface between elements. An alternative division of these terms could be based on using 
the local deformations of the interface, as quantified from uj, as a common approximation 
for the real deformations. 

To ensure the correct dimensionality of the expression, coefficient a has the units of 
a stress, h of a length and the ci are nondimensional. The values of coefficients ci, the 
criteria to define the h for each side and the appropriate value for a have been determined 
by numerical experimentation [13]. 

10. A D A P T I V E  P R O C E D U R E S  

The square cantilever presented in Figure 3 is modelled as a plane stress problem, and 
is used to show the characteristics of an h-adaptive strategy based on three different 
procedures for defining element error indicators. Triangular elements are used for all 
meshes, and the initial mesh for each procedure is also shown in Figure 3. The procedures 
for defining the error indicators are as follows: 

i) use dual solutions for compatible displacements and equilibrating stresses from the 
analyses of pairs of finite element models, with primitive elements and quadratic 
approximation functions; 

ii) use finite element equilibrium models with macro-elements and piecewise linear 
stress fields, and piecewise quadratic compatible displacement fields derived from 
the stress fields as in Section 8; 

iii) use finite element equilibrium models with primitive elements and quadratic approx- 
imation functions, and derive the error indicators from the compatibility defaults 
as in Section 9.2. 

The general strategy for each procedure is based on: 

h-ref inement  - this is performed by sucessively dividing each element or macro-element 
into 4 elements, until the new mesh has the required refinement level at each vertex 
of the current mesh; 

op t ima l i ty  cri teria - refinement is organised with the aim of achieving equal error in 
each element of the new mesh. The required element error is computed taking into 
account the global convergence rate. The refinement levels are based on the error 
indicators and local convergence rates; 
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Figure 3. Square cantilever and initial finite element mesh. 

i te ra t ive  process - the target in each stage of refinement is to reduce the global error 
to one quarter of its current value. 

Further details of this adaptive strategy, including the detection of singularities, are given 
in [13]. 

Table 1 shows the values of the actual relative errors of the equilibrium solutions 
Ileell/llull and the corresponding effectivity ratios f~ = e/lle~ll, during the adaptive proced- 
ures. The actual errors were evaluated with reference to a very accurate solution obtained 
using procedure i) with elements of fourth degree and then applying a dual extrapolation 
to the last three pairs of energy values [13]. 

The numbers of (primitive) elements or macro-elements are indicated by n E  o r  r i M E  

respectively. For the initial meshes n E  o r  r i M E  - -  8. 

Table 1 
Refinement steps for the different procedures. 

Procedure i) Procedure ii) Procedure iii 
nE I1~11/11~11 /~ nM~ II~ll/llull ~ n~ II~ll/lluil 
8 0.473727 1.340 8 0.723374 3.322 8 0.473727 1.351 
83 0.114939 1.644 26 0.340692 2.848 38 0.157006 1.346 
311 0.020929 2.157 104 0.125922 2.664 185 0.036445 1.077 

434 0.036972 3.112 

Figures 4 and 5 present the results graphically as convergence graphs of error energy and 
effectivity ratio respectively, using log scales for error energy and the numbers of elements. 
It is apparent that although the behaviours of the effectivity ratios are very different, 
nevertheless tile convergence rates of error for all three procedures are similar. The model 
with piecewise linear macro-elements starts with the largest error, but converges at a 
similar rate as for the models with the quadratic primitive elements as proved by Johnson 
[25]. In this example the effectivity ratio of procedure (iii) is clearly superior to the 
other procedures. This reflects the phenomenon of greater relevance being attributed to 
the worse solution when dual solutions are used to generate upper bounds. 



438 

I~011 
I1~11 

0.1 

�9 �9 1 . . . . . . . .  " /  . . . . . . .  �9 "~ "  

procedure  i ) - . + - -  
procedure ii) 

m , . . , ~ . . ~  _ procedure iii) - c~-. 

"~" ~" " ' : ~ ~  "" ~ '" "': "" :": :E . . . . .  

" % , ,  " ' ' ' 4 ,  

~  
" +  

O.O l  , , I , , , , , �9 �9 �9 l 

10 100 
12 E o r  riME 

Figure 4. Convergence graphs for the different procedures. 

3 .5  ' ~ ' ~  : ~ . . . . .  I ' �9 

2.5 

1.5 

0 . 5  " 

0 i I I , . , I 

10 100 
n E  o r  rtME 

Figure 5. Effectivity of the different procedures. 

o oO 
o . -  . o *  

. . . . . .  4.. o ' * .  

. . . . . . . .  - O -  - .  _ , ,  

"El 

procedure  i )"  "+'" 

procedure ii) 
procedure iii)- ~ - "  

o . . 

As expected procedure (i), which is based on a pair of dual finite element solutions, 
gives better values of effectivity ratios compared with procedure (ii). Nevertheless as the 
convergence rate of the compatible solution is slightly lower than that of the equilibrium 
solution, in spite of using the same mesh, the quality of the estimator decreases during 
the adaptive process. On the contrary for procedure (ii) the quality of the estimator is 
not subject to such variations. 

The initial and final deformed meshes for each procedure are presented in Figures 6 
to 8. Figure 6 refers to procedure (i), and the deformations are shown for the hybrid 
displacement model. 

Figure 7 refers to procedure (ii) which involves macro-elements. In this case the stress 
field in each primitive triangle is linear and corresponding element-wise continuous dis- 
placement fields are derived exactly since there are no compatibility defaults within the 
primitives. Rigid body positioning of the primitives is determined using the method of 
Section 8. These deformed elements are shown in Figure 7 before smoothing the displace- 
ments to obtain compatible displacement fields. It should be noted that procedure (ii) 
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Figure 6. Displacements of the compatible finite element solution for procedure (i). 

Figure 7. Element displacements, before smoothing, for procedure (ii). 

Figure 8. Side displacements for procedure (iii). 
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leads to unnecessary mesh refinement in some regions. More sophisticated displacement 
smoothing techniques may reduce this problem. 

Figure 8 refers to procedure (iii), and the deformations are shown for the hybrid equi- 
librium model as discontinuous side displacements. Spurious kinematic modes are in 
evidence, particularly at the lower right hand corners of the meshes. It should be noted 
that procedure (iii) results in not only good non-diverging effectivity ratios for the global 
error, but also the minimum number of elements for the required convergence. Compar- 
ing the numbers of elements and the actual global errors for procedures (i) and (iii), it 
can be seen that procedure (i) converged a little faster than required and procedure (iii) 
converged a little slower. 

I I .  C O N C L U S I O N S  

For equilibrium finite element formulations three error indicators capable of driving 
adaptive refinement procedures were presented, all with good performance. 

The error indicators obtained from an equilibrium solution only, have the advantage of 
requiring a smaller computational effort. The approach which uses a derived displacement 
field provides an upper bound of the solution error (which is often overestimated) to the 
user, as well as a compatible displacement field. 

The error estimator based on the compatibility defaults is simpler, immune to SKM's (as 
long as the loading is admissible for the initial mesh), but needs a theoretical justification 
for the coefficients. 

The full dual approach is, from a formal viewpoint the most appealing method, it 
is also immune to SKM's, but is computationally more expensive and may have the 
tendency to converge towards the error of the worse solution. Nevertheless it should be 
pointed out that this method is parallel in nature, so that both analyses can be performed 
independently. 

Further investigation and experimentation are required before general conclusions can 
be made with confidence. 
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1. INTRODUCTION 

During the design phase of a structure, it is necessary to conduct several studies of the 
mechanical behavior. These computations often rely upon finite element analyses within an 
industrial setting. Each study consists of three steps: mesh generation, finite element analysis 
and post-processing and control of results. The finite element analysis, strictly speaking, no 
longer poses any difficulty on account of the numerous finite element software programs 
available on the market. However, with three-dimensional complex structures, the generation 
of the mesh is carried out interactively by specialized engineers or, at best, semi- 
automatically. The cost in human time is much greater than that to derive the finite element 
results. The post-processing and control of the results also generate sizable costs in term of 
human time. Moreover, in order to assure the quality of the computed results, the analyses are 
generally performed on several meshes with different sizes which strongly increases the 
overall cost of a design. Finally, it should be noted that even with today's powerful 
computers, it is illusory to think that the mesh just has to be refined in order to obtain a very 
accurate result. Indeed, a very fine and regular mesh for a three-dimensional structure quickly 
leads to saturating the available computational resources. 

The purpose of this paper is to propose and develop procedures, available within an 
industrial setting, which allow us to automatically achieve finite element analyses of complex 
3D structures while respecting the level of accuracy prescribed by the user and minimizing as 
much as possible the total cost of computation. Achieving this aim is essential in order for 3D 
finite element analyses to be used during the phase of design. 

Two main difficulties must be overcome to reach this aim. The first difficulty consists of 
controlling the quality of the computations performed. To do so, we must be able to evaluate 
the discretization errors and then to define the element sizes necessary to obtain the 
prescribed accuracy as specified by the user. The second difficulty is to decrease the human 
time spent in the computation process by automating as much as possible the different steps 
of the computation and especially the mesh generation. 

To overcome the first difficulty, we rely on the studies conducted in the domain of finite 
element control. Indeed, over the last 15 years, substantial advances have been made in the 
control of analysis quality and in the development of methods to actually quantify 
discretization errors. Three main approaches can generally be discerned: 

�9 error estimators using the residuals from the equilibrium equations [ 1-4], 
�9 error indicators obtained by comparing the finite element stress field with a smoothed 

stress field [5-7], and 
�9 error estimators based both on the concept of error in constitutive relation and on 

adapted techniques for building admissible fields [8-10]. 
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In the framework of this study, the error measures developed in the LMT are used and 
briefly presented in the second section. In particular, we have applied the results of the study 
in [10] which has led to the development of the error estimator software ESTEREF3D. It 
should be noted that this software program has been supplemented by a procedure which 
automatically takes into account the steep gradient areas for computing the optimal size map; 
the selected method is a 3D extension to the method proposed in 2D [11-12]. Obviously, any 
method that allows obtaining a global measure E of the discretization errors as the local 
contributions •e of the elements to the global error can be used with the proposed procedures. 

From an initial finite element analysis with a relatively coarse mesh, these tools allow us to 
define the size map which must be configured to reach the prescribed accuracy while 
minimizing the element number of the mesh and hence the computation cost. Thus, the main 
difficulty herein is to generate the 3D mesh while respecting the imposed sizes. While there 
are many automatic 2D meshers able to correctly respect a size map, such tools don't actually 
exist in 3D. Presently, the most efficient automatic meshers on the market (for example, 
GHS3D [13]) are only able to mesh the volume from the skin mesh while assuring that the 
tetrahedral elements generated are not overly stretched. However, respecting a 3D size map is 
still at the research stage. To overcome this difficulty, several procedures for helping to pilot 
meshers are proposed. These procedures maximize the use of the software programs available 
within an industrial setting; they are entirely automated and allow a reasonable conformance 
within a 3D size map, even for relatively complex geometries. With the automatic procedures, 
naturally coupled to an efficient 3D automatic mesher, generating an optimized mesh, which 
can necessitate up to ten hours of an engineer's time, requires only several minutes of CPU 
time on a work station. 

The definition of an optimal mesh, the extension to 3D of the automatic method that takes 
the steep gradient areas into account and the definition of the nodal sizes are all presented in 
the third section. The different procedures for piloting meshers and the automation procedure 
are detailed in the fourth and fifth sections respectively. All these procedures are applied to 
industrial geometries. 

2. ERROR IN CONSTITUTIVE RELATION 

To set the framework, we consider herein the problem of the analysis of a structure in 
elasticity [9]. Suppose that U is a kinematically-admissible displacement field, i.e. it satisfies 
the kinematic constraints and that ~ is a statically-admissible stress field, i.e. it satisfies the 
equilibrium equations. The quantity: 

s = 6 -  g e ( 0 )  (1) 

where K denotes the Hooke's tensor is called the error in the constitutive relation associated 
with the pair (0,@). If s is equal to zero, the pair is the solution to this problem. Otherwise, 
s allows us to estimate the quality of (U, ~) as an approximate solution. To measure the error 
~, we use the standard energy norm over the whole structure: 

e =  II~l]ta = ~(~ with II ~ = [~n or  K-' adf~] '/2 (2) 

From the absolute error, we define a relative error: 
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is sufficiently smooth, we then have [ 16-17]" 
�9 q= 1 for the 4-node tetrahedra, and 
�9 q= 2 for the 10-node tetrahedra. 

If the exact solution includes a singularity of strength ct on the structure, the convergence rate 
q of the error is defined by [ 16-17]" 

q = min(t~,p) (7) 

In practice, the global convergence rate varies between tx and p.  Thus, the theoretical 
result of convergence cannot be used directly. We observe numerically [11] that the 
convergence rate PE of the elements connected to the singularity is close to t~, whereas it 
displays a value close to p for the other elements. Hence, we propose a two-step procedure 
as in the 2D: 

�9 detection of singular areas ( and more generally steep gradient areas), and 
�9 if the area is detected, we evaluate the value of the coefficient PE; else we use Pe = P" 

3.2.1 Detection of the steep gradient areas 

The detection of the steep gradient regions is enabled by the computation of the local 
errors EE, defined by: 

-:2 ~1 2 (8) E E = E E 
I W 

where e e denotes the contribution to the relative error of the element E, IE1 the volume of the 
element and If l the volume of the structure. 

Indeed, we can observe that the local errors are larger in the singular areas (Figure 5) than 
in the other areas. Thus, a node i of the mesh will be considered as singular i f  the average 
of local errors E e for the elements connected to the node and the average M i of local errors 
E E on the whole structure satisfy: 

m--] > ~5 M~ (9) 

where ~i is a coefficient. The numerical experiments in 3D lead to 8 = 3. 

Figure 1. Detection of the steep gradient areas in 3D 

The detection of the steep gradient areas in 3D for a problem of a crack in mode I is shown 
in Figure 1. The above test allows us to define the areas where the coefficients PE o f  the 
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as the contribution to the relative error of an element of the mesh E: 

~ -  ii ~ + K~<O)llo with Ilcr]le = [~ c~ r K-' ~dE] '/2 (4) 

The global measure e allows us to quantify the global quality of the approximation (U,6) 
and the local contributions e E to localize the errors on the structure. 

To apply this process, a post-processing of the finite element solution (Uh,c~h) must be 
carried out in order to build an admissible displacement-stress (0h,0h) pair from the data of 
the reference problem (3) and the solution (U s , oh). 

Within the framework of the finite element method in displacement, the displacement field 
U s is kinematically admissible. For the sake of simplicity, we generally choose: 

On the other hand, the computed stress crs is not statically admissible. It is necessary, 
therefore, to build a stress field 6 s that satisfies the equilibrium equations. This construction 
is carried out in two steps: 

�9 building on the edges of force densities in equilibrium with volumic loadings, and 
�9 building of a simple solution for the equilibrium equations in each element. 

3. DETERMINATION OF A 3D OPTIMIZED SIZE MAP 

3.1. Definition of an optimal mesh 

The aim of all adaptive procedures is to provide the user with a mesh that respects the level 
of accuracy e0 at a minimal computational cost. The present study will be restricted to the h- 
version which is the most commonly used procedure: one modifies the size and the topology 
of elements while preserving the same type of shape functions for the various meshes. 
Moreover, tetrahedral elements will be used because automatic meshers only work for this 
kind of element. 

A mesh T" is considered optimal with respect to a measure of the error E if [ 14]: 

E" = E 0 prescribed accuracy (6) 
N" minimal (number of elements o fT ' )  

This criterion of optimization naturally leads to a minimization of computation costs. To 
solve problem (6), the following procedure is used: 

(i) an initial analysis is performed on a relatively coarse mesh T, 
(ii) the global error e and the local contributions es are computed for this mesh and 

(iii) the characteristics of the optimal mesh T" are determined. 

The optimized mesh T' is built and a second finite element analysis is carried out. 

3.2. Taking into account the singularities 

The determination of a size map uses the convergence rate q of the error ~ as a function of 
the element size h. In elasticity, the error in constitutive relation exhibits the same behavior 
as the classical error between the exact and finite element solutions [ 15]. If the exact solution 
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singularities must be estimated. 

3.2.2 Computation of the coefficient p~ 

The computation of the convergence coefficients pe is based, as in 2D, on the 
computation of the finite element energy density ~h in the steep gradient areas. In 3D, 
isolated singularities (however, this case is unusual) and singularities on the edges can appear. 

Figure 2. Computation of the coefficients pe by cylinders 

If the method of detection identifies two nodes at the extremities of a same edge as 
singular, the edge is considered as singular. In this case, the middle energy density eh of the 
co-axial cylinders C built on the edge (Figure 2) is evaluated: 

1 ! (10) 
e~ = vol(Ci Tr[e(Uh)Ke(Uh )]dC 

The energy density is identified by the least squares method with the theoretical value: 

e(r) = kr u~-t) + c (11) 

where k and c are coefficients which depend on the mechanical problem and 0t is the strength 
of the singularity. A coefficient ~ close to the searched value is therefore identified. 

In the case of isolated nodes, a similar technique is used with concentric spheres. The 
identified value of the coefficients PE for a problem of a clamped cube is shown in Figure 3. 
The value is close to 0.8 on the singular lines of the clamping. 

In practice, this method of identification allows us to account for not only the singularities 
(clamping, crack tip, etc.), but also the steep gradient areas which are not mathematically 
singular (for example, in the case of a fillet radius with a strong curvature). In addition, we 
find that the body loadings are very smooth for most static problems in elasticity, and that the 
steep gradients are at the edge of the structure. Under these conditions, the computation is 
performed only for the nodes close to the boundary and consequently requires very little CPU 
time. 

3.3. Determination of the size map 
Taking into account the steep gradient areas in the determination of the size map 

necessitates, as in 2D, both a modification to the problem (6) in order to introduce the 
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coefficients Pr and a more precise definition of the size coefficients which allows the size to 
vary more rapidly in the steep gradient areas. To do so, nodal size coefficients are introduced 
and inside an element of the initial mesh, a hypothesis of the linear distribution of the volume 
is forwarded. The element number N~ can then be evaluated by: 

1 t. h~ = .-----V-de 

iffil 

and the contribution er of an element to the global error e* by: 

2p~ 

._ f ji_~l 2 

N{ hg"  .dE 
(13) 

where n denotes the number of vertices, h E its size, PE the computed convergence 
coefficient and X~ the barycentric coordinates. Lastly, hi" are the prescribed sizes on the mesh 
T* computed at the nodes of the present element. 

The problem can be formulated in the following manner: 
�9 2 = ~ ~  Minimize N'  = ~ N~ with e 0 

E E (14) 

This optimization problem is numerically solved; its solution provides at every node of the 
mesh the size for building the optimized mesh T*. 

Figure 3. Distribution of the coefficients PE 

3.4. Control of the quality of the size map 

The control of optimality is crucial in judging the quality of the results. In some cases, the 
prescribed accuracy can be obtained without a minimum number of elements. Control is 
achieved by the following method: on the optimized mesh, if the computed error e" is near 
the prescribed error e0, we compute again the size map for an imposed error equal to E'. If 
the mesh T* is perfectly optimal, the size modification coefficient r E must be equal to one. In 
practice, such meshes don't exist and the mesh is considered as optimal if: 
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h e prescribed size 
rE = h"~- = present size 

and 2/3 <_ r e <_ 3/2 (15) 

Results are then visualized on a histogram that represents an overall study of optimality. 

4. ASSISTANCE IN PILOTING 3D MESHERS 

To automate the building of the three-dimensional mesh with respect to the size map, two 
piloting procedures have been developed: 

~ The first and simpler method consists of generating a mesh whose boundary respects 
the size map and then to use an automatic mesher to generate the volumic mesh. 

~ The second uses possibilities of mesher GHS3D developed by INRIA [ 13]. Once the 
skin mesh has been generated, the user can specify the prescribed size at some internal 
nodes. During the building of the volumic mesh, these nodes are used as vertices of the 
tetrahedra and the prescribed size is in conformance in the vicinity of the control nodes. 
An automatic strategy for choosing their position is presented. 

The procedures require a good mesh of the surface of the structure. Indeed, most 3D 
automatic meshers available within an industrial setting usually use this mesh as a starting 
point. 

If the structure's skin to be meshed is constituted of plane surfaces, it is relatively easy to 
build the mesh with one of the 2D plane meshers which are able to respect a size map. This 
technique can also be envisioned for sufficiently simple curved surfaces (parts of cylinders, 
cones and spheres) by using a projection on a plane surface. 

However, the situation is more complicated for the complex curved surfaces defined by 
patches. Meshers which are able to respect a map size for any curved surface don't exist to 
our knowledge. It must be noted that such a skin mesher is being developed [18], but the 
adaptation of the mesh still requires some interactive work. 

4.1. Method by optimization of the skin mesh 

Many automatic volumic meshers use as a starting point a discretization of the skin object. 
This discretization is analyzed and is useful in determining the sizes assigned to the skin and 
thus the size of the volumic elements which are connected. By continuity, the sizes of the 
elements in the volume arc determined by predefined criteria (arithmetic or geometric 
evolution) which only take into account the data on the skin. 

An initial method (called METH 1) to control the element sizes consists of optimizing the 
surfaces of the structure with a mesher that is able to respect the size map and allowing the 
3D mesh generator to run without any other information. If the variation in sizes is smooth in 
the interior, we can hope to correctly adapt the 3D mesh. It is obvious that this technique is 
inadequate when the internal variations are complex. Nevertheless, this very simple technique 
quickly enables obtaining an initial result. 

4.2. Method by the points of size control 

The second method uses a specificity of the mesher GHS3D developed in INRIA. In 
addition to the classical data of the skin mesh, GHS3D accepts the data of internal vertices 
coupled with sizes which are to be respected in the neighborhood of the vertices. However, 
the internal vertices are obligatory points of passage, that is to say nodes of the future mesh. 
Hence, it is necessary to limit the number of these vertices and to verify their relative 
positions, in order not to create any stretched elements or not to respect the prescribed sizes. 
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This technique requires the development of an automatic procedure for the choice of the 
internal control vertices. It uses the initial mesh (or previous one) and is based on the direct 
analysis of the size map. To do so, we compute for every node n" 

S n = Sup, ; I n = I n f  (16) 

where h~" describe the requested size at node i, with i varying on each node of the elements 
connected to node n. If the sizes gradients S n or I n are more than ~ and less than 1/[3 
respectively, the node of the initial mesh is kept as the vertex of control P~. Thus, the control 
vertices are positioned in the regions where the size gradients are steep. 

In order to both limit the number of control vertices and not constrain too heavily the 
mesh, some criteria of relative distance and distance to the surface have been introduced. 
Every point P~ is then tested: 

d(P/, P~) >_ prescribed size in P~ (17) 

where P~ denotes a control vertex or a node near the skin mesh. If the relation is not satisfied, 
then the control vertex is not created. 

The coefficient 13 is a parameter of the method. Different examples show that a reasonable 
value is near 1.3 to 1.5. 

This method is almost as simple to carry out as the method by optimization of the skins, 
but it does allow for an important improvement of the size respect with, consequently, a 
significant decrease in the element number. 

4.3. Control of the size respect 

To estimate the quality of the meshing procedures, an indicator of size respect is defined in 
comparing real sizes created by the mesher to the sizes actually defined by the map of sizes: 

IE = real size (18) 
prescribed size 

The ideal ratio is equal to 1; however, the respect of sizes is considered satisfactory if the 
coefficient is such that: 2/3 < I e _< 3/2. Results are visualized on a histogram with respect to 
coefficients r e that represent an overall study of the respect of sizes. 

This indicator allows us to compare the different methods. The analysis of both size 
respect (18) and optimality (15) coefficients can enable discerning when the mesh is not 
optimal, whether this is due to poor respect of the size map or an incorrect computation of the 
sizes. 

4.4. Examples of mesh adaptation 

To illustrate the methods discussed above, two examples are presented. The first is a 
symmetric geometry with a low radius of curvature. We show in Figure 4 the initial mesh as 
meshed with 4-node tetrahedra and in Figure 5 the meshes obtained both with the method of 
optimizing the skin mesh (METH1) and with the method of control vertices (METH2). The 
prescribed error is 20%. 

The second example is a simplified structure meshed with 10-node tetrahedra. For 
symmetry reasons, only an eighth of the structure has been meshed. The optimized mesh 
(Figure 8) has been obtained from the initial mesh (Figure 7) for a prescribed error of 7%. 
The size respect and modification coefficients are shown in Figure 10 and 11, respectively. 
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Figure 4. Initial mesh - 17,229 elements - 3,755 nodes - e=40.14% 

Figure 5. Optimised mesh 
METH1 - 31,510 elements - 6,800 nodes - e=21.55% 
M E T H 2 -  25,170 e lements-  5,757 nodes-  e=23.13% 

Figure 6. Coefficient of size respect - METH 1 Figure 7. Coefficient of  size respect - METH2 
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Figure 8. Initial mesh - 5,132 elements - 8,350 nodes - E=13.57% 

Figure 9. Optimised mesh - 5,008 elements - 8,012 nodes - e=6.97% 

Figure 10. Coefficient of size respect Figure 11. Coefficient of size modification 
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The first example shows a decrease of 6,300 elements between the method of optimizing 
the skin mesh and the method of the control vertices with errors close to 20%. The same 
observation can be made for the size respect where the second method creates 90.8% of the 
elements in the admissible area (Figure 5), while the first method only creates 75.3% 
(Figure 6). For the second example, we notice that the optimized mesh contains fewer 
elements than the initial mesh, while its error has been divided by two. 

5. AUTOMATION OF THE COMPUTATIONS 

5.1. Algorithm 

The aim of automation is to minimize the involvement of the user in the analysis itself. In 
order to do so, we need the following tools: 

(i) an efficient and conservative measure of the discretization errors, 
(ii) an efficient method for determining the optimal sizes which requires no knowledge of 

the mechanical problem, and 
(iii) in 2D, an automatic mesh generator that is able to respect the size map and in 3D, an 

automatic mesh generator for use with the above procedures. 

With these tools, it is possible to entirely automate analyses in elasticity. More precisely, 
the involvement of the user should be limited to the following operations: 

1. a description of the geometry by a CAD-CAM software program, 
2. a description of the mechanical data (imposed displacements, loadings, coefficients of 

elasticity of the materials), and 
3. an indication of the prescribed accuracy e 0. 

i Definition of the geometry I 

i ,,rs,*mos  I 
. . . . . . .  ,, ~ ,, 

I !nteff, ace m;shanalysis ,, l 

I "FE analy sis I 

, ~ 

i ' Computation of the error s [ 

i e>_ % } yes 
�88 No 

i: :~!~!!: .::!' �9 ! :�84184 ::: ::::�84 ::i : 
11 Three-dimensional 
i automatic 
I remeshing 

I 
Computation of the 

geometrical characteristics 

Figure 12. Diagram of the 3D analysis 

From a coarse mesh T 0, the algorithm described in Figure 12 provides in just a few iterations 
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an optimized mesh for the accuracy e0. When the first mesh is built, we conduct an initial 
finite element analysis, whose accuracy e is computed with our post-processor. Then, this 
accuracy is compared with the prescribed accuracy E 0. Since mesh T O is coarse, we generally 

have e> e 0. Thus, an iteration of optimization is required to attain the accuracy e 0. If e is not 
too high compared to e 0, in practice if: 

~-< Oeo (19) 

where 0 is a coefficient, we choose as target value: 

E~8~, = Eo (20) 

Otherwise, the target value is imposed by: 

et~s~, = e / d (21 ) 

where d denotes a coefficient. Experimentally, we have observed that the values: 

0 = 4  and d = 3  (22) 

yield good results for 2D and 3D computations, respectively. 
A map of mesh sizes has been computed with et~set as an imposed accuracy. The new 

mesh is built with the above procedures and automatic mesh generators. Then, we begin 
another iteration by conducting a new finite element analysis. After a few iterations (one to 
four, depending on the initial mesh and Co), the prescribed accuracy is reached. 

5.2. Examples  of automation 

A piece of wheel is meshed (Figure 13) with 10-node tetrahedra by using the second 
method of adaptation and the automation. From the initial mesh, the final mesh (Figure 15) 
has been built with an intermediate step (Figure 14) for a prescribed error of 10%. 

The second example is the simplified structure meshed with 10-node tetrahedra. The 
optimized mesh (Figure 18) is built from the initial mesh (Figure 16) with an intermediate 
step (Figure 17). The prescribed error is 5%. 

CONCLUSION 

The examples presented show that it is possible to generate well-adapted 3D meshes with 
entirely automated procedures. The methods employed are very simple to develop and their 
computation costs remain far below those of the finite element analysis. Associated with an 
efficient technique of optimal size prediction which takes the steep gradient areas 
automatically into account, these methods allow for a real automation of the 3D finite element 
analyses, at least in elasticity. 

We have presented a procedure that allows obtaining adapted meshes in 3D by the use of 
an automatic surface mesher that is able to respect a map of sizes, an automatic 3D mesher 
and a post-processor for the control of finite element analyses. 

Naturally, several difficulties remain to be overcome, such as: 
�9 the adaptation of curved surface meshes which is essential for the generation of 

well-adapted 3D meshes and 
�9 the improvement of a CAD-computation connection; the transfer of a geometry to an 

automatic mesher is far from being adequately solved. 
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Figure 13. Initial mesh-  1,731 elements - 3,435 nodes - e - 36.89% 

Figure 14. Intermediate mesh-  14,105 elements - 23,268 nodes- e=16.16% 

Figure 15. Final mesh-  25,018 e lements-  40,880 nodes- ~=11.52% 
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F igure  16. Init ial  m e s h  - 355  e l e m e n t s  - 777 nodes  - e = 3 4 . 3 0 %  

Figure  17. In te rmedia te  m e s h  - 3 ,364  e l emen t s  - 5,673 nodes  - E = 9 . 9 5 %  

Figure  18. Final  m e s h  - 10,249 e l e m e n t s  - 16,346 nodes  - ~- -4 .88% 
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Abstract 

The Superconvergent Patch Recovery technique is used to improve the displacement field of vi- 
brating eigenmodes. The improved eigenmodes are used in the Rayleigh quotient to obtain im- 
proved eigenfrequencies, which replace the unknown exact solution in the error estimates. The 
improved eigenmodes are used to determine the error locally as error indicator and is the funda- 
mental ingredient in the adaptive strategy. 

KEYWORDS: Adaptivity; Eigenfrequency; Error estimation 

1. INTRODUCTION 

Quality aspects have received increased interest in recent years in the engineering communi- 
ty. In particular quality assessed computations. The most general tool for engineering computa- 
tions is recognized to be the Finite Element Method, FEM. Dynamic problems require, in general, 
eigenfrequencies and eigenmodes with some specified accuracy. Techniques to solve the algebra- 
ic eigenproblem efficiently and with a demanded accuracy are well established. However, by us- 
ing FEM we also introduce a discretization error, which must be controlled for the solution to 
be acceptable. Engineering needs create large problems, which require adaptive procedures in 
order to be solvable. The final goals of adaptivity in modal analysis are three fold: 

1) optimal mesh for one eigenfrequency; 
2) optimal mesh for a set of eigenfrequencies; 
3) quality assessed dynamic response. 

Work have been conducted on the topic, and this work is a continuation of the work presented 
in [1] and it meets 1) and partly 2). 

A posteriori error estimation is a fundamental ingredient in an adaptive procedure. The basic 
idea in a posteriori error estimation is simply to construct a new higher quality solution to replace 
the unknown exact solution in the error expression. Zienkiewicz and Zhu, [2], [3], devised the 
Superconvergent Patch Recovery, SPR, technique as an efficient mean to construct improved 
stress fields for static problems. The SPR technique has been applied to static problems and dy- 
namic wave problems to improve the stress field and to estimate the spatial discretization error, 
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[4], [5], [6], and [7]. Ladeveze and Pelle, [8], proposed a technique to obtain upper and lower 
bounds for the eigenfrequencies of elastic structures. The technique requires global systems of 
equations to be solved and the computation of a constant characteristic of the discretization sub- 

space. Avrashi and Cook, [9], proposed a technique for C O eigenproblems. The procedure starts 
with smoothing of the stress field and then the smoothed stresses are used to modify the displace- 
ment field. An improved eigenfrequency is then obtained by the Rayleigh quotient. The tech- 
nique requires user tuned parameters. The current approach for eigenproblems is to improve the 
displacements directly and obtain an improved eigenfrequency by the Rayleigh quotient. We im- 
prove the displacements by SPR techniques, henceforth referred to as SPRD techniques, see Wib- 
erg et  al, [ 10], [ 11 ], [ 1 ]. In [ 12], an h-adaptive eigenfrequency analysis was presented based on 
the estimated strain energy of the error and an accepted error tolerence of the strain energy, and 
was not directly coupled to the error in eigenfrequencies. Stephen and Steven, [13]; proposed 
another approach to improve the displacements where the differential equation is solved for local 
patches and the superconvergent nodal values are used as boundary conditions. 

However, the previously mentioned improvement techniques for eigenproblems either suf- 
fer from limitations in reliability or a low accuracy combined with a low order of convergence 
or they require user tuned parameters. The node patch SPRD technique advocated in [ 1 ] may fail 
when applied to general quadrilateral elements due to the fitting of a high degree polynomial to 
a few points giving a highly distorted behavior between the sampling points. The technique pro- 
posed in [13] has a low order of convergence, indicating that the superconvergence properties 
can be better utilized. The drawback of the SPRD technique can be remedied by decreasing the 
order of the polynomial used the recovery. We exploit the technique in an h-adaptive algorithm 
for which the mesh refinement strategy is based on the difference of strain energies of the FE solu- 
tion and the improved solution, and coupled directly to the accepted error in eigenfrequencies. 

Numerical examples show that it is possible to use the node patch strategy to obtain eigenfre- 
quencies to a specified accuracy within a few iterations for complicated problems. We also in- 
clude numerical examples that show an increase of order of convergence which demonstrates su- 
perconvergence. Moreover, the accuracy of the node patch SPRD technique using linear 
triangular and bilinear quadrilateral elements is compared to the accuracy of the corresponding 
one order higher finite element solution. 

2. BASIC EQUATIONS 

Consider elliptic eigenvalue problem of order 2m which are governed by the following dif- 
ferential equation 

- 7 "  - 

- 2 0 u ( x )  + V DVu(x) = O , in t2 (1) 

with boundary conditions 

u(x)  = u b on F, , ,  (2) 

- T  - 
V n O V u ( x )  = % on Fo (3) 
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where V is the differential operator, ~'n is the boundary operator, D is the constitutive matrix and 
t9 is the mass density..(2 is a spatial domain under consideration with boundary 

r = r. 1.3 ro (r. N ro = 
The solutions of equation (1) are the functions which give the Rayleigh quotient 

a(v, v) 
R(v) - b(v, v) (4) 

a stationary value when taken over all possible functions v ~ ~162 where 

qf'(12) = {Vv" v E ~1~1(12), v = 0 on Fu}.Here b(v, w) is a kinematic energy scalar prod- 
uct on .(2 as 

b(v, w) = I pvwdx 

t2 

(5) 

and a(v, w) is a strain energy scalar product on .(2 as 

a(v, w) = I (fTv)TDfTwdx 

Q 
(6) 

The stationary values of R(v) are the eigenvalues 2 i and the corresponding functions are the 
eigenmodes u i. 

When the finite element method is applied, the stationary values of R(v) are determined over 

a finite dimensional space qf'(~h)p h = {v h E ~ l ( ~ h )  �9 vhlr E ~p Vr E ~h} where T h is a 

spatial finite element mesh space associated with .(2 and ~P is the set of p-th order polynomials. 

A function v h is expressed in the form v h = ~ Nj(x, y)vj = NTV, where Nj(x, y) are local basis 
j = !  

functions and vj are the nodal values of v h. 
On substituting this expression for the eigenmodes u i in the Rayleigh quotient we obtain 

(7) 

where Kis the stiffness matrix, M is the consistent mass matrix of the structure and U i is the eigen- 

vector containing the nodal values of u h. 
The stationary values of R(v) are found by solving the generalized eigenvalue problem 

( t o -  g h ~ u  = o (8) 

The eigenfrequencies are the square roots of the eigenvalues, to h = ~t.~. 

h for each mode i of interest can h and the associated eigenmode u i The eigenfrequency to i 
be done by any convenient solution procedure of the generalized eigenvalue problem. 
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3. POST-PROCESSED EIGENFREQUENCIES BY NODE PATCH SPRD 

3.1. General 
The post-processed eigenfrequencies are calculated using the Rayleigh quotient without 

solving the generalized eigenvalue problem. A new improved eigenfrequency will be of the form 

Z I(fTui.. ) r D ~ . / . ,  dx 

(~oi* * )2 a.  = (9) 

~ J(ui**)Toui**dx 
t2, 

where e is summed over the total number of elements, and ui* is a displacement field with a 

higher order of accuracy. The recovered displacement ui* * field of the eigenmode number i will 
be determined by the SPRD technique, described below. It is important to keep in mind that since 
the integrands of the integrals in equation (9) includes, as we shall see below, higher order terms 
than the finite element solution, then the numerical integration must be properly adjusted to be 
sufficiently accurate. 

The SPR technique is based on the fact that for finite element solutions there exist certain 
points in each element at which the prime variables (displacements) or the derivatives (stresses) 
have superior accuracy to that found globally. These points are called the superconvergent points 
of the finite element solution. 

From the expression of the Rayleigh quotient it is clear that in order to improve an eigenfre- 
quency it is sufficient to determine a higher accuracy displacement field for the corresponding 
eigenmode. The exceptional points where the prime variables have higher order accuracy as 
compared to the global accuracy are known to be the nodal points of the finite element approxi- 
mation. We anticipate that SPRD based on these points gives a recovered diplacement field, 
which is more accurate and which has a higher order of convergence. 

The proposed recovery method is local, i.e. no global system of equations has to be 
constructed and solved. Let the element for which SPRD currently is performed be called the 
master element. The index i denoting the eigenpair number is henceforth omitted in order to in- 
crease the readability of the equations. The improved displacement field is computed in a three 
major steps. Step one is to define local patches for the vertex nodes of the master element and 
for each patch construct a displacement field, u k , by a least squares fit of a local polynomial 

.~  (x) = p(x)a (1 O) 

to displacement values at higher accuracy points in the patch. P(x) = [ 1 x I x 2 XlX2 ... ] is 
the basis of the polynomial, and x -- (x 1, x2) is the spatial variable, and k denotes the vertex 
node number, and a is unknown parameters to be determined. 

In order to determine the unknown parameters a we minimize 

NP 

i=I 

( l l )  
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where N P  is the number of superconvergent points in the patch and us h denotes the finite element 
solution in these superconvergent points. This implies 

A a  = b (12) 

where 

N P  h ip  

A -- ~ pT(X~, xi2)P(x~,xi~) , b - ~ pT(x~, x2)Us(xl h i x~) 
i=1 i l l  

(~3) 

The second step is to weight and sum the node patches 

N E V N  

= ~ NkUk* (14) 
k = l  

In expression (14) N E V N  denotes the number of vertex nodes on the master element and the 
weight N k is the local, linear or bilinear, basis function on node number k. 

In the third step we change the basis to a finite element basis, where the polynomials have 
at least one degree higher terms than the complete polynomial appearing in the original finite ele- 
ment basis. The change of basis is simple 

u ** = N p + I ' u  (15) 

m , - -  ", N E N  U = -.,-J=u'~-=] 
f u(xj, yj) if j old node 

- = ~a(xj ,  yj) if j new node 

uj [(u-~. + g~)/2 if (xj, yj) ~ QA U aQB (16) 

where N E N  denotes the the new number of nodes on the element and A and B are two adja- 
cent elements. In words: comer node values of the original finite element solution are kept and 
additional nodal values are calculated by (14). It will be clear, from the patch selecting strategy 
presented below, that the displacement fields for adjacent elements not are identical over inter- 
element boundaries. In case the new node lies on an inter-element side the new value is calculated 
by averaging the two displacements for the node. See Figure 1 for an example. 

A - =  

4 =7 3 

8 9 
A 

1 5 2 

1~ N e w  node on in tere lement  edge 

* *  ! 
u = N  p+ U 

Figure 1. Recovered displacement field for element A, expressed by nodal values 
and finite element basis functions of degree p+l. The new node, 6, belongs to both 
element A and B and the final value is the average of the values obtained for each of 
element A and B by equation (14). 
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3.2. Patch selecting strategy 
The strategy is based on the following arguments: local information have a greater impor- 

tance than distant information for a curve fit (c.f. a Taylor expansion); a large number of sampling 
points in a least squares fit decreases accuracy; a small number of sampling points may cause dis- 
tortions. 

Strategy for quadrilateral elements.. We select one patch for each element and vertex node 
on that element, called master element and assembly point. Thus, a patch will be identified by 
a pair of numbers--an element number and a vertex node number. The patch includes the master 
element and those elements which share a side with the master element and which also have the 
assembly point as a vertex node, see Figure 2. In most cases this will be three elements, except 
for boundary vertex nodes where the patch then will have less than three elements, for these cases 
some more element/s have to be included for the patch to have optimum number of sampling 
points. The rule is that elements to be included should lie on as a small distance as possible from 
the assembly point and that the patch ideally has three elements. 

O I 

i i 
J,, 

O 

l 

j k 

(~) Node patch assembly point 

�9 Superconvergent points/ 
patch sampling points 

colour of patch 

[ ~  colour of master element 

Figure 2. Selecting node patches on a quadrilateral mesh. 

Strategy for triangular elements. Also for triangular elements we let a pair of element num- 
ber and element vertex node number define each patch as for quadrilateral elements. The patch 
includes all elements with the assembly point as a vertex node, see Figure 3. When it is the case 
that the patch has too few sampling points we add some more elements to the patch, so that the 
number of sampling points will be equal to or one or two more than the number of terms in the 
polynomial P. 

O Node patch assembly point 

�9 Superconvergent points 

~ colour of patch 

~ colour of master element 

Figure 3. Typical scenario when selecting a node patch on a triangular mesh subject 
to SPRD. 
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3.3. Remarks  
If there are more nodes than necessary in the patch one must ensure that the polynomial 

equals the value of the finite element solution in the node patch assembly point, which can be 
accomplished by weighting in the least squares fit. 

4 .  E R R O R  E S T I M A T I O N  

The absolute and relative error in eigenfrequencies of the original finite element solution 
is expressed as 

Aa,.h 
! 

Atoh = toh _ toi r/~' = toi " 100 (17) 

of the postprocessed solution as 

** A to i* �9 
** ** �9 1 0 0  A t o i  = toi -" toi  ~ = toi ( 1 8 )  

and the estimated error of the finite element solution 

A r  ,o, ,o, = - * *  - , ,  �9 1 0 0  ( 1 9 )  
to i  

The quality of any error estimator is measured by an effectivity index which gives the ratio 
of the estimated errors to the actual ones as follows 

0 i ---- A ~ i i  
A to h 

i 
(20) 

The error estimator is said to be asymptotically exact if the estimated errors approach the 
exact errors as the finite element mesh is refined. This is equivalent to the effectivity index con- 
verging to unity as the finite element mesh is refined. 

5. ADAPTIVITY 

Let (toh, U)  denote a finite element solution eigenpair and let (to * * , U**) denote an im- 
proved eigenpair (improved by any technique). Then we want the estimated relative error to satis- 
fy 

~to = t o h _ t o * *  
< 77To/" (21) t o * *  

Manipulation of the left hand side of equation (2 l) reveals that 

toh  . -  t o * *  toh  _ t o * *  toh  -I- t o * *  /1,h ._ ~ * *  
X "- 

to * * to * * toh + to � 9  tohto �9  + 2** (22) 

and 

2 h - 2** 2 h - 2** 
< 22"* since to** < t o h  

toh to  * * + / l * *  -" ' - -  (23) 
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Clearly, (21) will hold if the following holds 

2h - ~** < ~h ** **._-to 
22** --~rOt.  =~' - - 2  < 22 r/rOt" . (24) 

Restrict the refinement technique so that we by using the Rayleigh quotient, equation (7), 
can write 

Z UTK~U Z U**rK**'U** 
2 h l** e �9 

- = - (25) 
Z UrMeU Z U**rM'*~U'* 

e e 

The matrices K** Z K**e and M** Z M**e = = are the stiffness and mass matrices of some 
g �9 

finite dimensional space which allows improved solutions. The summation is over all elements, 
NEL, in the mesh. Equation (25) simplifies if the eigenvectors are normalized such that 

Z UrMeU = l a n d  Z U**rM**eU** = l to 
�9 c 

2 h - 2** = Z(UrKeU - U**rK**eU ~ - Z A  e (26) 

�9 e. 

whereA �9 is the error indicator. 
W e  wish to predict a new mesh size so that equation (24) holds, which we write 

2 h . . . . .  A.**,'' <__ 22**"''~TOL (27) 

Then (25) and (27) yields 

~ ' ~ Z l e e w  <- 2 / ] .**" ' '~TOL ( 2 8 )  

e 

The optimality criterion, [ 14], on a mesh is that the error is equally distributed, thus we re- 
quire 

A eew = A new , 'de (29) 

Then equation (28) can be written 

* *  . __-.xr NELnewLI new <- 22 ""rlTOL (30) 

Since the eigenvectors minimizes the Rayleigh quotient, [ 15], we know that / l  ___ 2 h, be- 

cause Zh is the minimum over a possible smaller set than 2. Therefore we also know for 2"* to 

be an improved estimate of 2, it must hold that A _< 2 ~ _< 2 h. The eigenvalues will be greater 
than zero if the matrices are positive definite, which is the case that we consider, we have 

it h - ,,1, ~ <_ ,1. h - ;t. Then basic a priori error estimates,[15], yields 

2 h - 2"* < A h - 2 < 26h2(p+l-m)~ (p+l)/m (31) 

where 6 is constant with respect to the characteristic mesh size h. 
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For a sequence of optimal meshes we assume that equation (31) can be stated in terms of 
the error indicator and the local mesh size. 

A e ~ Ch2(p+ l-m)A(p+ I)/m (32) 

or with the notion of a new mesh and an old mesh 

Anew ~ p h2(p+ l-m)~l(p+ l)/m �9 ,.,,new, ~llew 
(33) 

z le  ~ Ch2(P+ l-m)~(p+ I)/m 
old 

Equation (33) gives 

2(p+ l-m) 
h new ~ C'  A new 
h2o~ + l -m)  ~.~ (34) 

Equation (34) and equation (30) yields that we require 

** ._-=(.o 
2(p+ l-m) 2~ "'WTOLh2(P+ l -m)  (35) 

hnew < C'  N E L n e w d  e old 

We do not know 2**n'- and NELnew so we replace them with the known quantities of the old 

** and NEL and make the assumption that NELnew ~ N E L ( ~ )  D for a D-dimensional mesh, 2 

problem. We assume that C' = 1. Hence, the mesh refinement is performed according to 

2~** 2(p+l-m)+O < ~ t,2(p+l-m)+D (36) 
hnew -- NEIA e "1TOL"old 

22** 22** 
If the old mesh is optimal then ~ = NELd e 2 h - 2**" 

6. NUMERICAL EXAMPLES 

6.1. Rectangular plate, regular mesh 
In order to study convergence rate and accuracy of the proposed method, we considered a 

rectangular plate subject to plane stress for which the exact solution is known. The plate has uni- 
form thickness. See Figure 4 for boundary conditions and dimensions of the plate. The vibrations 

are in-plane. We used nondimensionalized eigenfrequncies to v~/E. 
In order to study convergence rate and accuracy of the proposed technique, we used a se- 

quence of five meshes with 4x4, 8x8, 10xl0, 15x15 and 30x30 equally sized rectangular ele- 
ments. Figure 5 shows the effectivity indices of the error estimator for the 1-st and 8-th eigenfre- 
quency. Figure 6 shows the convergence rate for the exact error using 4-node elements and 8-node 
rectangular elements, it also shows the convergence rate of the SPRD improved 4-node solution 
and the estimated rate of convergence for the 4-node element. 

We make the following observations from the regular computation. The recovered solution 
demonstrates superconvergence properties if regular elements are used. Effectivity index shows 
that the error estimate is asymptotic exact. 
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Figure 4. Dimensions and boundary 
conditions of rectangular plate. 

Figure 5. Effectivity indices for rectangular 
plate using 4-node quadrilateral elements. 
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Figure 6. Convergence rates for rectangular plate using 4-node quadrilateral ele- 
ments. 

6.2. Rectangular plate, adaptive computation 
In order to study the behavior of the error indicator equation (36), the eigenfrequencies of 

the rectangular plate was computed adaptively. We used 4-node quadrilateral elements. The toler- 
__-h ence of the estimated relative error, c.f. equation (21), was set to r/TOL = 0 .05%. We made two 

adaptive sequences: In the first the mesh was refined according to the error indicator of the l-st 
eigenfrequency; In the second the mesh was refined according to the error indicator of the 8-th 
eigenfrequency. The maximum number of adaptive iterations was limited to three. The mesh gen- 
eration was performed using advancing front technique, Peraire et al. [ 16]. 
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In both the adaptive sequences the error tolerence was met for the eigenfrequency consid- 
ered. It can also be seen that if the demanded accuracy of a higher frequency is met, then also 
(often) the accuracy of the lower frequencies meet the same demands. 

Figure 7. Sequence of meshes for adaptive computation of the 1-st eigenfrequency. 

Table 1. 
Results obtained for adaptive computation of the 1-st eigenfrequency 

Mesh co I a~ h ca?* ~ co 8 

1 0.6494 0.6575 0.6514 0.940 1.9790 
2 0.6494 0.6502 0.6495 0.104 1.9790 
3 0.6494 0.6497 0.6495 0.040 1.9790 

2.1576 1.9860 7.740 
1.9824 1.9792 0.164 
1.9804 1.9791 0.065 

Figure 8. Sequence of meshes for adaptive computation of the 8-th eigenfrequency. 
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Table 2. 
Results obtained for adaptive computation of the 8-th eigenfrequency 

Mesh ~ ~ h ~l** ~11 to 8 to~ a~8** 

1 0.6494 0.6575 0.6514 0.940 1.9790 2.1576 2.0025 
2 0.6494 0.6498 0.6495 0.053 1.9790 1.9806 1.9791 
3 0.6494 0.6496 0.6495 0.018 1.9790 1.9798 1.9791 

7.740 
0.080 
0.038 

6.3. Tunnel 
In order to study the applicability of the method to more complicated engineering problems 

the eigenfrequencies of a vibrating tunnel, Figure 9, was computed adaptively for the 1-st and 

the 8-th eigenfrequency. The error tolerence was ~OL = 0 . 3 % .  We used linear triangular ele- 
ments. 

In both cases convergence was reached within one adaptive refinement of the same starting 
mesh, Figure 10 Mesh 1. Adaptive refinement according to the l-st eigenfrequency resulted in 
Mesh 2a in Figure 10. Adaptive refinement according to the 8-th eigenfrequency resulted in Mesh 
2b in Figure 10. The results are listed in table 3. 

O ...... 
1732~ 

L 33000 

13 

R=2950 

r=2450 

Plane strain 

A 

E = 6 6 9 . 4  

0 = 1 . 7 0 8 5 .  10 -IZ 
v = . 2 9  

B 
E = 3600 .0  

0 = 2 .  551" 10 - l~  
v = . 2 5  ,, 

Figure 9. Geometry, material properties and boundary conditions of tunnel structure. 
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Figure 10. Sequence of meshes for adaptive computation. 

Table 3. 
Results obtained for adaptive computation of the 1-st (2a) and 8-th (2b) eigenfrequency 

J 

Mesh toll' r ~ ~h 8 ~~ "~ 

1 117.01 116.09 0.788 3?6.81 3"/4.05 
2a 115.27 115.10 0.150 373.10 372.31 
2b 115.55 115.41 0.122 3?3.06 372.56 

O.736 
0.213 
0.133 
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7. CONCLUDING REMARKS 

The local updating technique provides an effective and reliable mean to improve eigenfre- 
quencies without any user tuned coefficients. The improved eigenfrequencies exhibit supercon- 
vergence so that the order of convergence of the improved values are at least two orders higher 
compared to the finite element solution. An h-adaptive scheme converges for a group of eigenva- 
lues to a demanded accuracy within one or two steps. 
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1. INTRODUCTION 

The acoustic wave propagation in an inviscid medium is described by the Helmholtz 
equation A p + k2p = 0 where p is the spatial distribution of a small harmonic perturbation of 
pressure p ' (x , t )  = p(x)  eJ t~ around a steady state and k = toe -1 is a given physical 
parameter. Classically, a distinction is made between interior and exterior problems, coupled or 
uncoupled to a structure. 

Let f~ ~ R. 3 be the domain of a closed thin-walled shell. If f~ is assumed as rigid, only the 
incidental and diffracted waves are propagating. In most applications however, f~ is elastic and 
the dynamic vibrations then add a radiated sound field to the fields above. Acoustic fluid-solid 
interaction is modelled by a coupled system of equations for dynamo-acoustic solid-fluid 
interaction. If the sound propagates into an unbounded exterior medium, the assumption that 
~o waves are reflected from the far field is formalised by the Sommerfeld boundary condition 

rP- jkp[  = o(R -~) where R is the radius of a fictitious sphere in the far field. For exterior 
solid-fluid interaction, this condition introduces the effect of radiation damping into the 
boundary value problem, that is, the vibrations of the elastic structure are damped if the acoustic 
medium fills an unbounded domain. If the acoustic medium (fluid or gas) fills the interior of a 
cavity, the damping effect is not significant. If no other damping conditions such as structural 
damping are assumed, the interior problem becomes singular at the eigenfrequencies of the 
cavity. Detection and prediction of the eigenmodes is thus an important issue of computational 
simulation. 

As in other application fields, error control is an important issue in acoustic computations. It 
is now clear that the numerical parameters (mesh size h and degree of approximation p) must be 
adapted to the physical parameter k, or better to the non-dimensional wave number K scaled by 
a characteristic length (~:=kL). The well known rule for the h version with p= 1 is to resolve a 
wavelength g=2nk "l by six elements (that is kh-~ 1). This 'rule of the thumb' was shown for 
interpolation of a given sinusoidal wave, i.e. it characterises the approximability of a given 
finite element mesh for the Helmholtz equation. If the numerical discretisation is stable, the 
quality of the numerical solution is entirely controlled by the approximability of the finite 
element mesh. The situation is quite different in the presence of singularities. In that case, 
stability (or the lack thereof) is equally (sometimes more) important. 

Adaptive approximation of singularities has become a well researched field with many 
implementations in engineering practice, especially in the traditional field of structural analysis 

* Present address: Germanischer Lloyd, Vorstzen 32, D-20459 Hamburg, ihl@hamburg.germanUoyd.de 
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where singularities mostly arise from geometry features (e.g. sharp comers, stiffeners, etc.) or 
from boundary conditions (e.g. concentrated loads). The solutions characteristically have high 
local (i.e. in the vicinity of the singularities) gradients which have to be properly resolved by 
the numerical approximation. 

The situation is different in wave propagation with high wave numbers where the solutions 
are 'rough', i.e. highly oscillatory. For instance, the function p=sin(kx) is a solution of the 
Helmholtz equation in One dimension. The higher wave number k, the more oscillatory the 
solution becomes. Its gradient p'=kcos(kx) is large everywhere, i.e. globally. This is a 
singularity inherent to the differential operator rather than to the domain or to the boundary 
conditions and is called k-singularity [ 1-3]. 

Similarly, the discrete operator (stiffness matrix) becomes singular at eigenvalues of the 
discretised interior problem (or nearly singular at damped eigenvalues in solid-fluid interaction) 
defining the g-singularities. 

Both singularities are of global character and without adaptive correction, their destabilizing 
effect generally leads to large error of the finite element results, even if the finite element mesh 
has sufficient approximability. For example, it is well known that the 'rule of thumb' does not 
guarantee small error if wave number k grows. This is due to the k-singularity which causes an 
increasing phase shift of the discrete solution (even with h respecting the 'rule of the thumb' 
kh = constant). In the presence of 3,-singularity, a large error can be observed also for small 
wave numbers. Due to these specific phenomena of dynamo-acoustic computations, error 
control cannot, in general, be accomplished by just 'transplanting' methods that worked well in 
static computations. As a first step towards reliable computations, the nature of the error has to 
be understood. 

The paper is organised as follows: Section 2 establishes the finite element formulation for 
the acoustic problem and defines the discretisation error. A short review of a priori error 
estimations for the Helmholtz equation and rules for k-adaptive mesh design is given in the 
Section 3. First investigations on the effect of k- and Z-singularities for elastic scattering and 
for the interior problem are also discussed. Section 4 is dedicated to the reliability of two a 
posteriori error estimators. Finally, Section 5 illustrates on a real-life problem the specific 
singularities of the Helmholtz operator and shows that, with low wave numbers, h-adaptive 
refinements are necessary in order to control the accuracy. 

2. THE FINITE ELEMENT METHOD FOR ACOUSTICS 

2.1. Strong formulation 
The acoustic wave propagation, under the assumption that the wave is a small harmonic 

perturbation of pressure around a steady uniform state in an inviscid fluid f~, is addressed by 
the Helmholtz equation 

A p + k 2 p = 0  (1) 

and the appropriate boundary conditions of three types" 

Dirichlet on Fo p = ~ (2) 

Neumann on FN Vn = Vn or Vnp = -jpck~n (3) 
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Robin on FR Vn = Anp or Vnp = -jpckAnp (4) 

where p is the mass density. The particle velocity v is linked to the gradient of the pressure by 
the harmonic equation of motion 

-1 v = jpck V p (5) 

2.2. Finite element discretisation 
The formulation and the model problems will be defined using the following non- 

dimensional variables 

= x K: = kL h = h (6) 
L L 

The acoustic problem (Eqs. 1-4) can be cast in a weak form and discretised by a standard 
Galerkin procedure resulting in a linear algebraic system of equations 

(K +jk C -  k 2M)qp =-jk f (7) 

where K, C and M are the classical stiffness, damping and mass matrices analogous to those 
arising in structural dynamics. 

f 
C=  . _ ! _ |  N t N AndF 

pc Jr R 

M = f ~  N t N d~ (8) 

with N denoting usual shape functions of order p. The qp vector contains the unknown nodal 
admissible values of pressure. The right-hand side of Eq. (7) contains normal velocity 
boundary conditions (Eq. 3) 

f = ~ l  fFPC NtvndF  
N 

(9) 

2.3. Discretisation error 
The discretisation error considered throughout this paper is defined in the H l-seminorm for 

complex variables 

Ip- ph [2 = ff~ (~._ ~-h )t(v "vh )d~ (1o) 

where "/denotes the complex conjugate. In the following, this error will be equivalently denoted 
as the error in L 2 norm on the velocity 

]p .ph  [1 = Uv- II0 
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2.4. Model problem I 
Throughout the paper, two one dimensional model problems will be used in order to 

illustrate the specific singularities of the Helrnholtz operator. Model problem I is defined by 

d2p + ~:2p = 0 

d{ 2 
in (0, 1) (12) 

p(O) = 1 d__pp( 1 ) - j  ~r p( 1 )=  0 (13) 

and has the exact solution, corresponding in fact to an exterior problem with a propagating one 
dimensional wave 

p(~) = eJK~ 

= cos(~:~) +j sin(~c~) 
(14) 

Indeed, consider the exterior scattering problem in three dimensions. The physical process 
is formulated as an exterior Helmholtz boundary value problem 

A p + k 2 p = O  inf~ + (15) 

Vnp =w onF, lim R 
R-->** 

~gp 

~rr - jkp  
r=R 

=0  (16) 

For application of the finite element method, the exterior domain is decomposed by 
introducing an artificial boundary l"a enclosing obstacle ft. A usual finite element partition is 
then introduced in the near field between 1" and Fa. In the remaining exterior domain outside 
Fa, the boundary value problem is discretised by other means (e.g. boundary elements, infinite 
elements, absorbing or non reflecting boundary conditions). This exterior discretisation is 
mapped into the near field by a so-called Diriehlet-to-Neumann map. The most simple 
procedure is to impose the Sommerfeld condition on a spherical boundary Fa rather than in the 
far field. Model problem 1 corresponds to this approach in one dimension and was first studied 
in [1-2]. Unlike applications in two and three dimensions, no spurious reflections are caused by 
the far field approximation at Fa, hence the numerical error is only due to the finite element 
discretisation. 

2.5. Model problem II 
Model problem U is defined by 

d2p + K:2p = 0 

d~ 2 
in (0, 1) (17) 



4 8 1  

dp 
d p (  0 ) = jpc  ~: v o ~ (  1 ) = 0 (18) 
d~ d~ 

and has the exact solution 

cos [ ~: ( 1 -~) ] 
P = - j p c v 0  sin( ~: ) (19) 

Model problem II defines an interior undamped problem and has eigenmodes corresponding 
to the non-dimensional wave numbers 

K:=m~; m ~ N  (20) 

Note that the eigenfrequencies depend on the length of the tube by definition of the non- 
dimensional wave number ~: (Eq. 6). 

3. A PRIORI E S T I M A T E  

3.1. Rule of the thumb 
Most acoustic finite element analyses are computed by keeping the product kh constant. 

This is called 'rule of the thumb' and is only based on the simple assumption that a wavelength 
should always be resolved by a constant number of elements (Fig. 1). According to the user's 
manual of SYSNOISE [4], five or six elements are sufficient for linear elements (p=l) which 
corresponds to kh = 1. 

) ) 

'.-pPh 
: / /  ! 

Figure 1. Rule of the thumb: the resolution of 
a wavelength is usually kept constant (kh--1). 

Figure 2. Splitting of the error between the 
error on the interpolant pI (approximation 
error) and on the finite element wave ph 
(pollution error). 
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3.2. k - s i n g u l a r i t y  
The influence of the k-singularity is well highlighted on model problem I. The theoretical 
analysis reveals: 

1. First, both the exact and discrete Helmholtz operators are increasingly unstable as wave 
number k grows. This effect is quantified by the (continuous and discrete) inf-sup 
constants 3', V ~ which are of order k -1 [ 1 ]. 

2. Second, the general estimate for the relative error in Hl-seminorm of the hp version can 
be rewritten as [2] 

[p 'phl l  < C10 + C2K:O 2 Ipl~ (21) 

where O-  (rt~p)t' is the scale of the finite element mesh. Estimate (21)splits the error in two 
terms: the firstone corresponds to the approximation error between the exact solution and the 
interpolant. The second one estimates the numerical pollution due to the k-singularity. This term 
can be, for large wave numbers, larger than the approximation error (Fig. 2). 

1 10 100 

100.0% . . . .  t 
Ip_phll 1/h 

Ipll 
10.0% A~..... 

"~'~"~A 
1.0% .... -A-- kl.,= 1.01 (f=40 Hz) "~'- 

--x--kL= 10.05 (f=400 Hz) ~ A  
! kI~25.13 (f= 1000 Hz) 

~ k L = 5 0 . 2 7  (f=2000 Hz) 
0.1% x kL= 100.53 (f=4000 Hz) 

Figure 3. Model problem I: Convergence in Hl-seminorm for several non-dimensional wave 
numbers ~:. 

Fig. 3 gives, for model problem I with a length of 1 m, the convergence in Hl-seminorm 
for several non-dimensional wave numbers showing that: 

1. for low wave numbers (r~l), the asymptotic convergence is immediately reached, 

2. for high wave numbers (~:>1), there is a preasymptotic range before the asymptotic 
convergence. 

The non-dimensional wave number plays thus an important role. For instance, Fig. 4 
shows that the error grows if the length of the tube in model problem I increases. This is 
remarkable since the rule of the thumb typically does not incorporate this phenomenon. 
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Figure 4. Model problem I: Error in Hl-seminorm is a growing function of the tube length. 

Estimate (22) shows the advantage of the hp method, as compared to the traditional h 
method, since the magnitude of the scale decreases when p grows. Hence, the pollution of the 
error by large ~c is smaller for p=2,3,4 compared to the h version with p= 1. The resulting a 
priori rule for k-adaptive mesh design is now 

where C(rl) is a constant depending on the prescribed tolerance. The 'rule of thumb' guarantees 
a small error only asymptotically, when O is small enough so that the pollution term can be 
neglected with respect to the approximation error. 

1oo  Ip-p l, T 
80% -t- 

60% 

~ k h = c s t  
~ k 3 h 2 = c s t  

40% 

20% 

- K 
0% ~ , , s 

0 50 100 150 200 

Figure 5. Model problem I: Error in H l-seminorm: keeping K3h 2 constant vs. keeping r,h 
constant. 
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Fig. 5 gives the error in Hl-seminorm as a function of the non-dimensional wave number ~: 
with rule (22) vs. rule of the thumb r,h constant (p= 1). It shows that the error is well controlled 
by keeping 1c3h 2 constant while the error grows with the wave number when only keeping r,h 
constant. 

3.3. A - s i n g u l a r i t y  
Consider now the undamped interior model problem II. When computing the acoustic 

forced response of discretised Helmholtz equation (7), there exist eigenfrequencies for which 
the system matrix is singular and the corresponding discretisation error in Hl-seminorm is 
infinite. Fig. 6 shows the effect of the X-singularity at the wave numbers corresponding to the 
finite element eigenvalues X h. 

5 TtP-Phl, i I~1 I~i I~V: ~1 I: I 
t I, ~ t I t I Ici !,: I,: ,!!! I 

/ I Igl It: It : t/ l :  I~ 
/ I Igl It: It : t /  l :  I~ 

I', I ', I ' / ~ ~f I !11 h, h ,  ,V: i 
I I llI I~: I~ :i jt :L |, 

1 I,  I , I 
t i I  ' ~ , - 1 -  ', h I 

o  J_Ik_.Ji ' - - j  ,. , 
0 3.14 6.28 9.42 12.56 15.7 18.84 

Figure 6. Model problem 11: error in Hl-seminorm as a function of the wave number. The error 
is infinite for the wave numbers corresponding either to the exact eigenvalues L or to the finite 

element eigenvalues L h. 

4. A POSTERIORI E R R O R  ESTIMATION 

Now that the specific singularities of acoustics have been described and the nature of the 
error is well understood, it is necessary to develop the tools that can control the discretisation 
error in acoustics. Two error estimators that have been initially developed for elliptic problems 
are investigated here showing that they can not control either the influence of the k-singularity 
nor the ;t-singularity. 

4 . 1 .  E r r o r  e s t i m a t o r s  
Two error estimators, based on completely different principles, have been applied to the 

acoustic problem (Eqs. 1-5): 

1. Error estimation based on the Superconvergent Patch Recovery technique due to O. C. 
Zienkiewicz and J. Z. Zhu [5]. In this case, one computes from the finite element 
solution v h a recovered velocity field v* using a local superconvergent smoothening 
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technique. The error is then simply estimated by substituting the exact velocity field v by 
the recovered one v* 

2. Error in admissible fields based on the construction of fields satisfying strongly, element 
by element, the equations of acoustics (Eqs. 1-4) except the link between the pressure 
and the velocity (Eq. 5). This method is known in structural mechanics as the error in 
constitutive law and is due to P. Ladev~ze. Here, the error in admissible field is defined 
by 

~t 1 v t ~  
-jpck (~" + jp l  V ~ ) d n  (24) 

ck 

We can prove [6] that with an admissible pressure ~ and an admissible velocity ~, it 
holds 

ii ,a-p 2, lip-ph ii02 (25) 

Unlike elastostatics, this theorem shows that the error in admissible field is an upper 
bound of the exact error only asymptotically because the error in L 2 norm (last term in 
Eq. 26) can not be neglected for practical engineering computations. 

4.2. Quality of the a posteriori er ror  estimation vs .  k-singularity 
In order to assess the efficiency of the error estimation, we use the effectivity index defined 

by 

e �9 0 = (26) 
II v -  v h Iio 

where e* stands either for e SPR or for e ADM. The estimation is efficient and convergent if, 
respectively, 

0.8 < 0 < 1.2, lim 0 = 1 (27) 
h--->0 

For a Babuska-Miller residual estimator, convergence is proved in [7]. There, also a lower 
bound for the efficiency is shown. This bound does not satisfy the first condition of (27) if K is 
large and r,h constant. 

Fig. 7 gives the effectivity index as a function of the wave number. It shows that the 
estimation is efficient for meshes satisfying rule (22) but deteriorates for meshes satisfying rule 
of the thumb, wh constant. The definition of the k-singularity (Eq. 21) shows that this is related 
to the phase lag between the exact and numerical waves and also to the error on the amplitude. 
It is then expected that an error estimator based on a local procedure (smoothening like in the 
Superconvergent Patch Recovery or solving local problems like in the construction of 
admissible fields) is only able to estimate the approximation error but not the pollution term. 
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On the same model problem, Fig. 8 shows that the estimated error is convergent for all 
wave numbers. As a matter of fact, estimate (21) shows that the pollution term is asymptotically 
negligible so that only the approximation error remains which is properly estimated. 

Figure 7. Model problem I: effectivity index of the SPR estimated error as a function of the 
non-dimensional wave number. 

Figure 8. Model problem I: Convergence of the effectivity index of the SPR estimated error for 
several non-dimensional wave numbers. 

4.3. Quality of the a p o s t e r i o r i  error estimation vs. ~,-singularity 
Consider now model problem II. Error estimation based on the post-processing of the finite 

element forced response cannot give any information on the exact eigenvalue. Then, as shown 
in Fig. 9 plotting the exact and estimated SPR errors as functions of the non-dimensional wave 
number K, the estimated error only recognises the existence of the finite element eigenvalues. 
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For industrial purpose, it is clear here that one will be interested in the error on the eigenvalue 
itself more than on its amplitude which is infinite. 

Fig. 10, giving the effectivity index 0 as a function of the wave number, confirms this 
conclusion but also shows that, between two eigenvalues, the estimated error deteriorates very 
fast due to the k-singularity. 

Figure 9. Model problem II: Absolute error in H l-seminorm as a function of the non- 

dimensional wave number K: (exact and SPR). 

Figure 10. Model problem II: Effectivity index as a function of the non-dimensional wave 

number r (SPR). 
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5. A P P L I C A T I O N  

5.1. Finite element analysis with accuracy control 
Consider now a two dimensional section within the cabin of a car, excited by the vibrations 

of the front panel and damped by Robin boundary conditions. This analysis has been first 
performed by J. Nefske [8]. Fig. 11 shows the model and its discretisation by finite elements. 
The mesh consists of 264 elements (198 quadrilaterals and 66 triangles) of degree p= 1 and non- 
dimensional size h=0.034. With the application of the rule of the thumb r,h constant, the user 
expects confident results up to K=29.38 (f=600 Hz). 

Figure 11.2D section of a car: mathematical model and initial mesh (h=0.034, p= 1). 

Our purpose here is double: 

1. To show that, due to the k-singularity, the confidence in the results should be restricted 
under the limit of rule (Eq. 22 with C(rl)= 1 for instance), i.e. K:=9.79 (f=200 Hz). 

2. To show that, for low wave numbers (to<l), it is necessary to control the mesh 
according to the geometric (sharp corners) or to the physical (discontinuity in the 
boundary conditions) singularities. 

First, Fig. 12 gives the convergence of the est imated error SPR in Hl-seminorm for 
uniform successive refinements. From results of the previous paragraph, we expect that this 
estimation is not reliable for K: > 9.79. Yet, the examination of the figure shows: 

1. ~: < 9.79: the curves are already in the asymptotic range. The quality of the meshes can 
be controlled by a posteriori error estimators. 

2. 9.79 < ~: < 29.38" the curves exhibit a preasymptotic behaviour for the coarse meshes 
and an asymptotic behaviour for the refined meshes, i.e. the coarse meshes are polluted. 
No confidence can be given to the finite element results nor to the error estimation for 
the coarse meshes. 

3. tc > 29.38: finite element results are completely misleading for the coarse meshes which 
are under the limit of resolution of rule of the thumb r,h constant. 
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Figure 12. Convergence in Hl-seminorm for the estimated error SPR for several non- 
dimensional wave numbers ~:. 

For low wave numbers, the comparison between both error estimators defined in the 
previous section shows a very good agreement and suggests that the error is now dominated by 
the pollution due to the geometric singularities (mainly near the seats) or the physical 
singularities (discontinuity of the boundary conditions near the front panel for instance). Fig. 
13 (a-b) gives the distribution of the absolute error in seminorm estimated by the SPR estimator 
(enhanced by the incorporation of the boundary conditions) and by the error in admissible 
fields, respectively. 

Figure 13 (a). Distribution of the estimated error in Hl-seminorm by the SPR method (~:=4 9, 
f=100 Hz). 
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Figure 13' (b). Distribution of the error in admissible fields (~:--4.9, f= 100 Hz). 

5.2. h.adaptive refinements 
Consider now the acoustic analysis with a low wave number, e. g. ~:=2.45 (f=50 Hz). The 

error in Hl-seminorm estimated by the smoothening of the velocity field by the SPR method is 
10.9 %. Suppose that the user prescribes a maximum tolerance of 5 %, it is then possible to 
define an optimal size ratio by 

~x (~) = h~ (29) 
h new 

where h new is predicted under the assumptions that the finite element solution already converges 
asymptotically and that we are able to generate a mesh distributing equally the absolute error. 
Fig. 14 gives the distribution of the optimal size ratio (29) F,x 01=5%) for the initial mesh 
(element x must be refined if F~x > 1). By applying successive refinement procedures, the 
optimal h-adapted mesh is reached after two steps and is given in Fig 16 (rlSPR=4%). The 
advantage of the h-adaptive procedure v s .  the uniform refinements is shown in Fig. 18 where 
the h-adaptive curve exhibits a better order of convergence. 

Figure 14. Distribution of the optimal size ratio F,x(~= 5 %) for t:=2.45 (f=50 Hz). 
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Figure 15. Optimal mesh step 2 - 1"1 = 4 % (K=2.45, f=50 Hz) 

Figure 16. Convergence in Hl-seminorm for the estimated error SPR uniform refinement vs. 

adaptive refinement for r=2.45 (f=50 Hz). 

6. CONCLUDING REMARKS 

The finite element solutions of Helmholtz equations exhibit two specific singularities 
inherent to the variational problem for the Hehnholtz equation arising from time-harmonic 
problems (as well as elasto- or electrodynamics): the k-singularity is defined by the error 
between the interpolant wave and the finite element wave. Its influence grows with the non- 
dimensional wave number ~ and is not controlled by the traditional rule of the thumb 
r,h=constant. The ~,--singularity is defined, for undamped interior problems, by the singularity 
of the discretised Helmholtz system of equations at the natural frequencies. 

Efficient accuracy control in acoustic finite element computations cannot, in general, be 
achieved by ' transplanting' methods developed for other application fields, e.g. elastostatics. 
The reason is the specific character of the k- and ~,-singularities illustrated in this paper both on 
one dimensional problems and on a real-life application. In this last case, we also show that the 
adaptivity is required for low wave numbers, in the absence of specific Helmholtz singularities 
and present a successful h-adaptive procedure. 
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ABSTRACT 

An extension of the error through the constitutive relation is proposed in the 
case of beams and plates, for static and modal analyses. The error associated to the 
performed computation is estimated from the lack of verification, by two 
admissible fields, of the constitutive relation. One is an admissible stress 
resultant field and the other is the finite element one. Admissible stress fields are 
obtained by local calculations at the node or element level. A set of examples is 
presented where the estimated error is compared to the error obtained from the 
exact solution. Theses examples show that beam and plate analyses are areas well 
adapted to the method. In the case of normal mode analyses an error estimation 
is made for each eigenvector Which has an associated frequency within a given 
range. An example of beam structure shows that it is possible to define a mesh 
that automatically insures a given accuracy for all modes within a given range. 

1. NOTATIONS, DEFINITIONS 

Uh, Uh 

~(Uh) 

e h 

o h ,Sh 
A 

u 

A ^ 

o , S  

C 
rr r E 

finite element displacement and generalised displacement 
1 deformation related to Uh ( ~ ( u , )  = ~(grad u + grad Tu) ) 

generalised deformation e h = L Uh (L convenient differential operator) 

stress and generalised finite element stress 

kinematically admissible (KA) displacement field derived from Uh 

statically admissible (SA) stress and generalised stress 

elastic Hooke's tensor or elastic matrix for beams 

error through the constitutive equation on domain f~, on element E 

el, e2, e3 natural orthogonal basis in plate analyses, e3 is normal to the plate 

np unit vector in plane el, e2 
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a, 13 indices taking the value 1 or 2 

o plane stress tensor in the case of plates, o = o~  ea @% 

T, M, Q generalised stress: membrane forces, bending moments, shear force 

f2 T T = T,r e~ @% ; T,r = oo0 dx 3 membrane tensor (plate) 

= M~r e,, @ e 0 ; M ~  = _~~ x 3 oor dx 3 bending moment tensor (plate) M M 

Q Q=-Q~ e~ ; Qa = f.a~ ~ ~ dx3 shear force vector (plate) 

Sm mid surface of a plate 

P, P3 column of inplane.load components and normal load on Sm (plate) 
i)Sm, i)Su part of the boundary of Smwith prescribed applied loads, displacements 

9", ~,f prescribed in plane load vector, moment vector on i)Sm 
qe 3 prescribed transverse load vector on i)Sm 

~] column of prescribed load components on 0S~m, ~]- [~r ~ ~ ]T 
T 

[p] column of prescribed load components on Sm, [p]--" P3 

F segment, edge an element or common two adjacent elements 
A A ^1 ^2 ^3 
9"r 9-r = Cret +Cre2 +Cre3 load vector on F 
A A ^ 4  A5 

~ r  ~ r  =Crel +Cre2 moment vector on F 

N ~ linear interpolation function (scalar) related to node i 
N displacement interpolation matrix of an element 
B strain interpolation matrix of an element 

i p(c) = f& N i C dF weighted value of a scalar density C along line A, at node i 
A 

"rE, Yi set of edges F of element E, set of edges F connected to node i 
11, [11] virtual displacement vector and related components verifying 11 = 0 on 

i)Sm. 6 being the mid-surface virtual displacement, and 0 the virtual 

rotation, we have q = 8 + 0 x3 for plates. 

[8~ ,[0.~ column of mid-surface nodal virtual displacement components and 

column of nodal virtual rotation components 
[~rE, [~rE' orientation functions of two adjacent elements E and E' with common 

edge F. For instance, [$rE = 1 and [SrE' = -1  if E' has a greater index than E 

in the global numbering. [~r have opposite signs otherwise. 
13 length of edge F 

U i, r i exact mode shape i and its natural angular frequency 
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S i 
2 

Yi, tOhi 

m 

Fli 
K,M 
A E 

Uhi 

YEi 

generalised stress associated to mode i for the theory (beam or plate) 

finite element eigenvector and eigenvalue associated to mode i 

mass operator depending on the theory (beam or plate) 

Fii = o0i2m U i generalised inertia forces associated to mode i 

stiffness matrix and consistent mass matrix 
dof localisation operator for element E 

generalised finite element displacement for mode i �9 Uhi = N YEi 

column of dof associated to mode i for element E: YEi = AE Yi 

2. INTRODUCTION 

Numerical tools able to give a bound or to estimate the error of a finite 
element computation have become essential for practical analyses. In addition to 
the quality of a calculation, they allow an automatic definition of so-called 
'adaptative meshes' after a first coarse analyse, using a mesh generator and the 
map of the error over a structure. Several methods or families of methods have 
been proposed in order to estimate a posteriori errors. The most commonly used 
error estimators have been proposed by Zienkiewicz and Zhu [1-2] and are based 
on recovery methods and especially on a superconvergent patch recovery 
technique [3-6]. Another family of indicators is based on the element equilibrium 
residuals and has been initiated by Babuska [7-8]. The concept of "error through 
the constitutive relation" has been introduced by Ladev~ze [9]. An error 
estimation is calculated from strictly admissible static and kinematic fields built 
from the finite element results. Their lack of verification of the constitutive 
relation defines the error which is calculated as a strain energy. Its strong 
mechanical foundation is the main interest of the method since the exact 
solution of the problem is strictly admissible. Especially, the lack verification of 
the boundary conditions is taken into account. The method has been adapted to a 
large class of 2D and 3D linear and non-linear analyses. In particular for linear 2D 
analyses [10-13], linear 3D analyses [14-15], elastoplasticity [16-18], viscoplasticity 
[19], vibrations [16], [20] or large strains [21]. 

In practical finite elements analyses, a large class of structures present one 
or two dimensions that are small with respect to others. They can be respectively 
analysed within the beam, plate or shell theories. The finite elements including 
the kinematic assumptions of these theories are numerous, efficient and very 
much used in practice. The objective of this paper is to present an application of 
the error through the constitutive relation method to 2D and 3D beam [22-23] and 
Mindlin plates [24] static and free vibration analyses. It also aims to show the 
efficiency of the method in these kinds of applications. 

In a first section, the calculation of the error from the construction of an 
optional statically admissible stress field is presented for static Mindlin plate 
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analyses. The good efficiency of the calculation is shown on a set of classical 
examples performed using a three node finite element. Then the calculation of 
the error through the constitutive equation is presented for nodal analyses of 2D 
and 3D beam structures. On the example of a "damped beams" truss, it is shown 
that the error estimation allows the automatic definition of a mesh insuring a 
given quality over a prescribed frequency range. The complexity of the mode 
shapes under consideration renders an empirical approach quasi impossible. At 
last the error estimation method for eigen frequency calculations is extended to 
plate analyses. For all the presented results, the comparison of the estimated error 
with the error obtained from the exact solution (analytical one or solution 
obtained from a very fine mesh) is emphasised. 

3. ERROR THROUGH THE CONSTITUTIVE RELATION 

Notations and definitions are given in section 1. The study is restricted to 
geometric and material linearity, so the constitutive relation is: 

o h = C" e(uh) (1) 

Within a classical displacement approach, Uh is kinematically admissible and 
we can choose to take: 
A 

U = U  h (2) 

The error through the constitutive relation on a domain fl is defined from the 

lack of verification of the constitutive relation by the couple of admissible fields 
A A 
u and o [12],[25] 

A A 

Ilo-c:  r c-' 
rQ = U~+ C : e  (u) lla where [l~ =(  o -  �9 o d V )  (3) 

An adaptative meshing procedure needs a map of the error over the structure. 
The contribution from each element is considered 

II ̂  All o - C :  t (u)  E 

o + C :  ~(u) o 
with r~= ~ r 2 (4) 

elements 

From the Prager-Synge's theorem, it has been shown in [10] that, in statics, the 
error through the constitutive relation provides an upper bound of u h error. 

4. STATIC ANALYSES OF MINDLIN PLATES 

4.1. Error for Mindl in  plates 
A 

A statically admissible stress field o corresponds to generalised stress 
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A A A 

S =[X, Q, l~] T verifying local equilibrium equations (5) for the Mindlin plate 
model in Sm and static boundary conditions on i)Sm(6). 

A 

f div T + p = 0 A 

div Q + p3 - 0  
A A 

div M -  Q -- 0 

which can be written more concisely 
A 

D S + F - 0  (5) 

A m 

f T" np=F A . .  

Q" np = q (6) 
A . - . .  

M. np =5~f 
A A A I T  

The error through the constitutive relation rQ is obtained from S = [T, Q, M] ,  
and the finite element result S h = [Th, Mh, Qh] T. It is defined by: 

( k ^  ^ , ^  ^ , ^  

(M-M0:D b : ( M - I ~ ) + ( ~ 0 : D  ~ :(I~-Q0+(I '-T~:D ~ :(T-T~)d 
- (7) 

r f~= , ( f s  '^  ' -t A' -t ^ _~ (M+Mh):D b ^ ^ s-' ^ '  +(T+Th):D m :(T+Th)dS) 1/2 :(M+M~+(Q+Qh):D :(Q+Qu) 

Bending, membrane and shear parts of the error can be separated limiting the 
numerator to the corresponding energy in (7). 

4.2. C ~ plate finite e l ement s  

Three node C ~ plate finite elements with linear interpolations are considered 
here. The triangular shell element proposed in [26-27] will be used in the 
examples. Other plate elements with linear interpolations such as Belytshcko's 
3 node plate element proposed in [28] can be used as well. In so far the 
deformation interpolation matrix B used in the error calculation is the one used 
in the finite element calculation, the method is unchanged. 

4.3. Bases of the statically admissible stress resultants construction 
A A A 

The statically admissible stress resultants T, Q, M ( the knowledge of which is 
equivalent to the one of ~ ) have to verify (5) and (6). Statically admissible stress 
resultant are not unique. Their calculation will be made in order to obtain an 
error estimation as efficient as possible. In that goal, two ideas lead the 
determination of the admissible stress resultants. 

Calculations are chosen to be local in order to render efficient, in term of 
numerical cost, the error estimation for large number of degrees of freedom 
analyses. To this aiArn,Aand as it as been done for 2D and 3D problems [10~, [16,], [17] 
the calculation of T, Q, M verifying (5) and (6) is done by means of TE, QE, ME, at 
the element level. Theses generalised stresses have to verify: i) local equilibrium 
within element E, ii) boundary conditions on the edges F of element E. To 
manage these boundary condition, loads and bending moments densities Fr and 
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A 

M r due to the neighbouring elements (or exterior loads) are introduced. They 
insure the equilibrium of each element and are associated to each edge F. 

As Prager-Synge's theorem shows that the error through the constitutive 
relation provides an upper  bound of the error, the error estimation will be 
minimised by choosing SA stress resultants as close as possible to the finite 
element field. This last choice plays a major role in the determination of an 
efficient admissible stress field and in practical definition of the different stages 
described below. 

4.4. In equilibrium and reciprocal load and moment densities on element edges 
A A 

In a first stage loads Fr and bending moments  M r are calculated on each 
element edge F in order to insure the equilibrium of element E submitted to 

A A A 

I~rs~ and I~rEMr and eventually exterior loads. These densities 13r~" r and 
~rE Mr represent the actions of its neighbours on element E. They insure to get 
o~pp~ite values for two elements connected to the same edge. The componentsAof 

, M r a r e  equal to exterior loads on the part ~)Sm of the boundary. Densities F r ,  
M r will be chosen as close as possible to the finite element result Frm, Mrm 
defined by the finite element stress solution on the edge I" relating nodes i and j: 

FF m -- (NiOJm § NJOJm). n r dx 3 MFm = X 3 (NioJ m 4- NJoJm). 11 r dX 3 (8) 

i o m is the nodal average stress usually calculated by finite element post-processors. 
A A 

Fr and M r are defined by (9) and have a linear evolution along each edge F 

A A A A A A 

FF ----Fr . + Fib ar id  M F - M i h  + Mro (9) 
A A 

First densities Y'r., Mr, are directly calculated from the finite element solution. 
The goal is to make a simple calculation and to get back some qualities of the 
finite element solution concernAing the "on average" proximity with the exact 
solution. Second densities Fro, Mro are used to improve the first ones and render 
A A 

Y'r, Mr as close as possible to Frm, Mrm" For plate analyses, restricting the test 
displacement q = 6 + 0 x3 to its interpolated form 

8 = ~ e k ,  0 = 0  % ,  [6]=N[6~ , [0]=N[0~ (10) 

Virtual work principle applied to the whole structure leads to the finite 
element solution such that: 
n = number 

[(6~T(0~ 1] B x [Oh] dV - NT[p] dS-  NT[t] d =0 (11) 
n=l m Snm 

Considering the particular case where 6~ and 0: are equal to zero for any node 
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to which element E is not connected, (11) leads to: 

[F.~r~bo~] + ~E] = 0 (12) 

[Fn,i~bo~ ~ is a column (13) containing nodal load components. It corresponds to 
the actions of neighbouring elements on element E. The finite element solution 
insures the equilibrium of any element E submitted to these actions with other 
exterior loads applied on E. 

p :mumberof 
neighbouri~g�9169 ~. ~ ~ 1") 

[Fneighbou ] = Pf' ~k JQp B T [Oh] dV -- Pm NT[p] dS- SP= NT[i] d (13) 

FE]----LBT[~h] dV-/S E N'[p]dS-fa NT[t]dF (14) 
m sere 

A ^ 
As stated before, y'~, and Mr^ are,, chosen linear along each edge F, such as the 

oriented actions ~ns 9rra and,~m Mr^ have nodal components equal to [F..tsht,o,~.]. 
Introducing components of Y'r., and Mr . ,  equations (12-14) lead to: 

fOE ^ [ ^ka)] ~ T^ fSEm ~0 NT[i]dS (15) NT[~nsck]ds: i P(~nsC r = B [Oh]dS- NT[p]dS- S~ 
aE 

^k 
Consequently, i p(f3rE C ~  are quantifies determined from the finite element aE ak 

calculation. Considering a node i, nodal components i p(13rE C ~  are related to 

components on each edge 

= Cra dr  (16) 
aE r~En ~ 

A local and very small system (17) is obtained for each node i: 
^k ~I'E ip (~a) i p (~FE Cra) V E containing node i. (17) r aE 

^k 
Nodal load components i p (Cry) are the unknowns. 
Their number is equal'to file number of edges related to node i. The number n 

of equations in (17) is equal to the number of element connected to i. When node 
i is interior, the rank of system (17) is n - 1. In this ease, a supplementary 
equation is obtained choosing to minimise of the distance between the unknown 
nodal components and those of ~'rm and Mrm i .  e.: 

~.. [ i p ( ~ _  i p (Ckm) ]2= minimum (18) 
F F 

rer n 
^k 

(17) has a unique solution if Cr~ is imposed on one or two edges of ?i. 
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A A 

Densities Fr, Mr, insure the equilibrium of each element and the global 
P A A 

equilibrium of Athe structure. As stated before, densities ~'rb, Mrb aim improve the 
quality of Fr, Mr in the sense they are chosen as close as possible to ~m, ~(r~" In 
order to preserve the equilibrium properties, the calculation of Fro, 9'~rb is made 
prescribing the following conditions on any edge F 

1; ^ erb -- 9"rbdF = 0 (19) 

[L~b---- Mrbdr + OM ^ , rbd r  = 0 (20) 

^ 3  ^ 4  ^ 5  
The calculations of shear load and bending moment components Crb, Crb, Crb 

AI  A 2  
in one hand and membrane loads Crb Crb on the other hand are independent. 

Shear and bending components are calculated in order to render(er~ e3~ e a and 
o 3 $ 

(ttrb. %)eo equal to zero and to obtain three bending: components C~, C r , C, with 
^ 3  ^ 4  ~ . " . " 

slopes equal to those of the components C~., C ~ ,  C,-m respectively. This leads to 
A 3  A4 A 5  ~ ..u �9 ..~ z 

six conditions determining Crb, Crb, Crb , due to their linear nature: 

^ 3  l i t (c3  ~ d r  + 3 ^3 Crb = -  Fr - Crm-C n (21) 

Crb = -  Cra + x 2 C dF + Crm-Cra (22) 

Crb = - Vr - C r , -  x l dr' + Crm - C~t (23) 

^ 1  ^ 2  
Membrane components Crb and Crb are calculated in order to render t 2 e/w e~, 

3 ~t~ equal to zero. Their determination with slopes equal to those of Crm, C~m is 
not possible exactly. A least square minimisation of their distance is made. 

4.5. Statically admissible stress resultants within the element 
A A 

Once loads 13r~ r and moments 13ram r on the edges of each element E have 
been calculated, they are introduced in boundary conditions (6). Stress resultants 
A A A 

TE, QE, ME verifying local equilibrium equations (5) can thus be calculated. This 
second stage, as the previous one is local^ and concerns each element sepAarately. 

Determination of the shear force QE and bending moment tensor ME on the 
�9 A 

one hand and normal tensors TE on the other hand can be done separately, 
equi l ibr ium equAations and b o u n d a r y  condit ions being independent .  
Determination of T~ is formally identical to those proposed for the stress tensor 
in case of 2D,~lane stress problems [17]. We only present the determination of the 
couple QE , ME. Nodal value computation for these fields only needs boundary 
conditions. However, these constraints coAnnected with each element edge do not 
allow the construction of a regular field M over the triangular plate element. At 
node i, boundary conditions on the two edges FE and VE' of element E connected 
to node i imposes: 
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d~ A d% A 

ME.ritE= [Sr~ " ~t4' r and ME-nr'E= [St' E ~ar r' (24) 

which does not have any solution is the general case. A subdivision of Watwood 
[29] in three subtriangles, based on the centre G of the element, is used. This 
subdivision has been used in the case of plane stress [16-17] for equivalent 
reasons. Moment boundary conditions and contin~ty conditions at each vertex 
node of the element determines nodal values of M at the corresponding nodes 
for the two connected subtriangles. 

A 

Different choices are possible for the variation of Q and M over each sub- 
triangle. The approach we follow here and that has proved to be efficient from 
the effectivity point of view, is to determine the stress resultants within a set 
which is large enough and where the solutions verifying equilibrium equations 
and boundary conditions are not unique. This allows to add supplementary 
conditions aiming an error minimisation. This gives the best solution amon~ the 
set of admissible ones. In the case of plate static analyses, for instance, Q is 
assumed to be linear and M quadratic over each subtriangle. Under these 
assumptions,  equil ibrium equations, boundary  conditions and continuity 
conditions within an element leads to a system with thirty-nine equations and 
thirty-nine unknowns. However, due to the fact that the external loading on 
element E is already in equilibrium, the rank of this system is only thirty-six. This 
system is solved in order to get an optimal stress field leading t o  a minimum for 
the error through the constitutive relation. Denoting H(M,Q) the part of the 
error through constitutive relation associated to bending and transverse shear, a 
new function (25) is introduced,  where fi for iE[ l  ..... 36] represent  the 
independent constraint equations and Xi are Lagrange's multipliers. 

^ ^  ^ ^  36 

R(M,Q~i) = H(M,Q) + X X~fi (25) 

O R  0 OR OR .-~ = :. = 0 ~ = 0 V i E [1 . . . . .  36]  (26)  
0 M  O Q  

5. NORMAL MODES OF BEAMS OR PLATES 

We consider here undamped vibration of general structures in the case of the 
displacement approach. Then, we particularise to beams and plates. The natural 
vibrations are the particular solutions of the problem, in the absence of applied 
external loads: 

~  U i ( , t )  - U i(M) cos c0 it 
~r 

S i (M,t) = S i (M) cos c0 it 

(27) 

(28) 

In the case of free vibrations, the equilibrium equation becomes: 
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V [lq] fQ (- [~ T FI i , (L[1I])T Si ) dQ = 0 (29) 

Once the problem has been discretized, the displacement approach leads to the 
usual equation: 

( K - 0) h i 2 M ) Yi = 0 (30) 

5.1. Error indication for a frequency range. 

For dynamic analyses, finding a good mesh is a tricky job, even when focusing 
only on the first mode shapes and frequencies. As a matter of fact, mass and 
stiffness distributions complicate very deeply the behaviour of the structure. 

The indicator (z we propose is still based on the concept of error through the 
constitutive relation defined in statics. The main difference is that an estimator 
o. i has to be used for each natural mode i. 

a i has been introduced by Pelle [16], [20] and we have shown its application to 
beams in [22-23]. 

It is important to emphasise that, as in statics, a zero value for o~ i implies that 
mode i as described by Uhi and Ohi is the exact one, with respect to the underlying 
beam or plate theory. Indicator (z is defined by: 

c~= max o~ i (31) 
i a ima x 

where ima x must be carefully chosen due to the following difficulties which 
appear when dealing with approximate modes. 

A first difficulty, when considering natural  modes of vibration, comes from 
the fact that, using a coarse mesh, it is not  possible to know the actual exact 
number  of modes existing wi th in  a g iven  range of f requency [0, fmax] 
(fmax =Camaxx/2n) �9 However,  this information is very important  in engineering 
practice. 

A second difficulty, comes from the fact that, in structures, the accuracy of 
modes is not a decreasing function of index i for a given mesh. This can be 
observed, for instance, on a simple beam when longitudinal modes and bending 
modes are both considered. An example of procedure to derive ima x is given in 
the section devoted to the automatic refinement strategy. 

5.2. Dynamically admissible stress field for mode i. 

Another difficulty arises when considering natural  modes of vibration: in 
opposition to the static case, loads that generalised stresses have to equilibrate, for 
exact mode i, are the inertia forces Fli which are not known. Their definition 
shows explicitly their dependence upon the unknown exact mode shape. 

In order to construct the estimator ct i associated to FE mode i, we utilise the 
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expression FIh i available in the analysis and defined by 

2 
Flh i = (Oh i m Uhi (32) 

So we define a dynamically admissible stress field for mode i as a stress field 
which is in equilibrium with zero applied external load but under inertia loads 

Flh i. 
The main difference with statics is that, using this approach, we do not 

preserve the upper bound property of the estimator. This is a consequence of the 
fact that Fih i depends upon the mesh and that Fli cannot be known a priori. 

5.3. Beam s t ruc tures .  

For the sake of simplicity, we consider  plane (2D) straight Euler beam 
elements. The generalisation to the corresponding 3D beam element including 
torsion is straightforward. 

We consider here the usual C ~ linear element for longitudinal displacement u 
and C 1 cubic element for transverse displacement v. 0 = v' is the associated 
rotation of cross section. This element gives directly the exact the solution in 
statics, when loads are only applied on nodes. 

In local coordinate system of element E: 

, , , )T N U E (33) U h = (u h v h v h = 

eh = ( u  h, , Vh,, )T = (longitudinal strain , bending curvature )T = B U E (34) 

Sh = ( Th ' Mh )T = (membrane force, bending moment)T (35) 

S h = C e h with C = diag (EA, El) (36) 

when taking into account rotational inertia: 

m = diag( pa,  pA, pI ) (37) 

if rotational inertia is neglected, m and U h reduce to: 

Uh = (u h , Vh )T and m = diag( pA, pA ) (38) 

We adopt this assumption in the following. It can easily be removed as done 
for plates. We have thus for FE mode i, in element E: 

= ) T  2 
Fih i tahi2 (Uhi, Vhi tahi pA N YEi (39) 

= , , , , )T 
YEi (Uli Vli 01i, u2i v2i 02i (40) 

For beams, the construction of a dynamically stress field S becomes simple due 
to the fact that element edges F are reduced to the two beam sections which are 
connected to the nodes. In this case, a dynamically stress field is such that: 

1) any node is in equilibrium with forces applied by connected beams, 
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2) in any element, ~ satisfies the equilibrium equation (41) where D is the 
convenient differential operator, 

D~ i + Fih i =0 (41) 

for the considered beam element, this can be written: 

^ . i 2 T i = - c a  h pAUhl (42) 

^ ,, 2 pA Vh (43) Mi =r176 i 

denoting by ~ : x/L the reduced abscissa on E, L its length, integration leads to : 

~2 
= 2pA ( (I~- ~-) Ti(x) Ti(~ L ) = -  OOhi Ulh i 

~2 
+ 2- tl2hi ) + "Fi(0) (44) 

Mi(x) = r  2 pA I~tt C + ]~ii'(0) x + ]~i (0) (45) 

L( _ -4- + 1-0 li + 6- _ ~_ + ~_0)qli+ ( _4._ _ ~_~ )v2i+ L(_ ~4~ + ~52_0 ) q2i (46) 

Quantities ]'i(0), l~i'(0) and 1Vii(0) appearing in above expressions are 
quantities which are extracted from the FE results, as shown in next section. 

5.4. Determination of S i in the case of b e a m s  

In the case of beams, determination of Si is a very particular case of the process 
used for other elements and presented in previous sections for plates. Let REi, be 
the generalised forces applied for mode i by the two nodes to which E is 
connected. Principle of virtual work applied to beam element E in the 
approximate displacements space leads to: 

V [~ , [~ = N V E, - VETfo NT Fli dx + VETf0t' BT Shi dx = VETREi (47) 

If N contains rigid body modes, and if a consistent mass matrix has been used, 
writing (47) for rigid body motions gives 3 equations which show that 
components of REi are in equilibrium with the inertia force Fii. Moreover, the 
assembly of the FE equations (47) corresponds to write the equilibrium of each 
node. It must be emphasised that, in dynamics, this is only true if no reduction 
has been applied to the FE model. 

This allow to take values from REi to build Si because REi insure equilibrium 
of nodes and are in equilibrium with inertia loads on each element. 

I"~(0),. ̂1~'(0). ̂ and Mi(0)are extracted from values associated to node 1 in REi. 
Values Ti(L), Mi'(L) and Mi(L) are then compatible with corresponding values for 
node 2 in REi due to their equilibrium properties. In the case of beams, the 
solution obtained by this approach is unique. 

Here, the contribution of element E to the error through the constitutive 
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relation for mode i is chosen as : 

f L  ((Th i _ ~i)2/E A + (Mhi_ l~i)2/Ei ) dx 

rEi = f f t  ( Thi 2/EA + Mhi 2/EI ) dx 
(48) 

5.5. Automatic refinement strategy for beams. 

In the case of beams, an automatic strategy has effectively been implemented 
for 2D beams [22-23]. The user prescribes a tolerance ato I and a frequency range 
[0, fmax] in which he desires an accuracy (Zto I in other words ct < ato 1. 

The choice of ima x cannot be done without  some precision from the user, who 
must  give information concerning density of modes beyond fmax. The fact that, 
for coarse meshes, some exact modes in [0, fmax] are not visible is thus taken into 
account. A safety coefficient ~ and a an additional number of modes to check iad d 
have to be given. Denoting i I the number of modes in [0, fmax] and i~ the number 
of modes in [0, ~ fmax] for the FE model, ima x is defined by: 

ima x = max( i I + iad d , i~ ) (49) 

This definition of ima x results of observations made on numerical  results 
when the current FE element model does not  predict the good position of last 
modes in the range of interest: in this case, the presence of an important error 
estimation o~ i for i > i 1 but close to i 1 was a good indication of such a situation. 
Automatic subdivision of elements is then based on a modified expression of rEi. 
In order to take into account very bad higher mode definitions for coarse meshes, 
and not get an overrefined new mesh in this case, a bound is also set to values 
leading to mesh generation in the new mesh definition. 

5.6. Plate structures. 

For plate structures, as before, the only difference with statics is that we have to 
consider inertia forces which are given by FIh i instead of applied loads. So a 
dynamically generalised stress field associated to mode i has to satisfy: 

^ 2 
d i r T  i+oJhi p h ( u  i e  l + v  i e  2 ) = 0  

^ 2 d i v ~  +OOhi p h w i =0  ^ 
or DS i+ Fhi=O 

^ ^ 2 h3 
d i v M  i - ~ + o ~ h i  p ~ -  ( q l i e l  +q2ie2 ) = 0  

By inspection of these equations, it can be seen that the min imum degree 
needed for generalised stress S i mus t  be compatible with the choice of the 
weighting functions introduced in N for the element. For the element presented 
here, membrane components in Ti must  be at least quadratic functions over each 

^ 

sub-triangle. The same choice has to be done for shear components ~ ,  while for 

(50) 
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bending components in 1~/[ i cubic interpolations are needed. This choice allows 
local optimisations to be done for ~I' i and I~. 

5.7. Modif icat ions  when  a static condensat ion  is done.  

In the case where a reduction is made for the dynamic solution, the global 
column of dof q is reduced to a smaller one qf, after the choice of a convenient set 
of selected dof. q is related to qf by means of a transformation involving a known 
matrix G 

q = G q f  (51) 

G is a constant matrix. Equilibrium of individual nodes no longer occurs. After 
reduction, we get: 

Q @  

Mff q f + Kff qf = Qf where Mff = G T M G, K = G T K G and Qf = G T Q (52) 

approximate modes satisfy 

Kff Yfi = ~ 2 Mff Yfi , and Ya i = G Yfi (53) 

This is an application of the classical modal acceleration method. It must  be 
noted that (53) does not imply (54) 

2 M Ya (54) K Y a i =  r176 i 

It is then sufficient, for each mode i for which indicator o~ i is needed to solve a 
s t a t i cp rob lem on the whole uncondensed  model, considering the structure 
submitted to inertia loads co a i 2 m U h i" We then get: 

~'i = IC1 ~ 2 m G Yfi (55) 

Associated element loads REi have the properties of the REi used when no 
condensation is made, which allows to construct, in the same way a dynamically 

A 

stress field Si. 
In the case where the condensation leads to a mode of poor quality, this can 

come from a too coarse mesh or from a bad choice of final dof qv 
Estimation ui measures s imultaneously these  two aspects. Introducing an 

indicator 15 i �9 

T K y  ~i = (~(i - Ya i )T K (Yi - Ya i ) / Ya i a i 

[3 i allows to evaluate the error through the constitutive relation of Yi obtained 
by reduction. If ~i is high, a better choice of the set of dof in qf must be made, if 
not, the mesh as to be refined first. 
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6. NUMERICAL EXAMPLES 

6.1. Circular plate with a hole submitted to a constant pressure 

A holed circular plate is subjected to a shear load on the interior edge. The 
exterior edge is simply supported and clamped (figure 1). The error on 
constitutive relation and the error given by the Kirchhoff analytical solution are 
in good agreement (figures 2, 3) 

Simply supported 

Clamped 

Figure 1. Circular plate under constant pressure 

e r r o r  % -e-Exact error ('KirchhOff)- I 
2 0 l~ Error through the I--O- constitutive relation 

10 

n u m b e r  of  e l e m e n t s  p e r  s ide  

Figure 2. Simply supported drcular 
plate under constant pressure; Error 

through the constitutive relation 

e r r o r  % .......... - - - - .  . . . . . . . . . . . . .  - . . . .  ._  l-e-Exact error (Kirchhoff) [ 
301 _].. Error .t.hrough t,h~ion 

zol 

l o  

Om i i s �9 1"o I"2141"6 i= =b 
n u m b e r  of  e l e m e n t s  pe r  s ide  

Figure 3. Clamped circular plate 
under constant pressure; Error through 

the constitutive relation 

6.2. Square plate under constant pressure 

A square plate with simply supported edges or clamped edges is submitted to a 
constant pressure (figure 4). The error through the constitutive relation is 
compared to the error given by the Kirchhoff analytical solution (figures 5, 6). 
Because the solution of this problem is more complicated, especially near the 
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corner of the plate, the number of elements needed to get a very efficient 
estimation is larger than for the previous examples. This example is the most 
important because two bending moments appear in principal directions of the 
plate. That is why it is a strong test for our error estimator. 

Y 
supported 

Clamped 

NNXNX 
X, NNXX XXXXX 
XXNX X 
XXNXX 

Figure 4. Square plate under constant pressure 

e r r o r  % 
4 0 

i~ --~Exact error (Kirchhoff)' / 
3 0 . ~  i Error through the II ~ I-a.. constitutive relation , ,1_ 

10 

Oo ~'' ~' ~' ' ~ " 1 b ' " r  
n u m b e r  of  e l e m e n t s  p e r  s ide  

e r r o r  96 
_ --,~Exact error (Kirchhoff) ! 

10 0 ~ _ Error.t.hrougl~ --aqt'h-e'on I 8O I 

60  
4 0  
20  

0 

n u m b e r  of  e l e m e n t s  pe r  s ide  

Figure 5. Simply supported square 
plate under constant pressure; Error 

through the constitutive relation 

Figure 6. Clamped square plate under 
constant pressure; Error through the 

constitutive relation 

6.3. Free vibrations of beams 

The presented example concerns a plane, free-free, flexible frame. The adopted 
frequency range corresponds to ima x = 45 modes, and ato I = ~ = 1%. 

The minimal mesh hl shown figure 7 is used to start the automatic analysis 
(regular mesh, one element per beam). It can be seen, for this mesh, that despite 
the physical good looking of the second mode, it is completely wrong. 

The asked accuracy is reached in two iterations. The second computation gives 
a 3.45% error and the indicator is inferior to 1% for the first 45 modes. The mesh 
c2 used in this second computation is regular with 3 elements per beam (c2 = h3). 
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This is due to limitations which are introduced in the subdivision process, when 
the indication is too large. Information about too wrong modes is only partially 
taken into account. This leads to an error indication which can be too large 
during the first steps. The third computation (c3) leads to a 0.3% error widely 
inferior the asked accuracy with only 510 DOF due to the consideration of 
additional modes in the process for avoiding the missing of modes in the range. 

Figure 7. - First two elastic 
modes shapes. 

1 0 0 0 .  ,. 

1 0 ,  - I - 

1 , ~ -  
@,! -, , 

�9 ~ u  �9 J J m m  �9 mm~/  �9 0,01 

1,4 

e r r o r  on the  e igenval ,  

---e----hi 

" h 2  

Figure 8.- Effectivity of the error 

estimator czi with respect 

to the eigenvalue error 

The automatically reached optimal mesh is as follows: 4 elements in the 
horizontal and vertical beams; diagonals: (6, 7, 6, 6, 7, 7, 6, 6, 7, 6). The effectivity 
of the error indicator is shown figure 8 for regular meshes hl, h2, h3, h4, by 
comparison with the error given using the best results of the analyses for the 
eigenvalue. A good agreement is shown especially for low errors and a very 
strong warning for errors larger than 10%. It must be noted that, when large 
errors are considered, we do not make the comparison between the exact mode 
and the closest approximated one: we compare the modes in sequence, which can 
explain the apparent discrepency between the error indication and the exact one. 

6 . 4 .  F r e e  v i b r a t i o n s  o f  a p l a t e  strip 

The modal analysis of a plate strip is performed using different mesh  
refinements. In order to get a reference solution, the analysis has been performed 
with a very fine mesh and high order elements. For the first three modes (figure 
9), we present the computed error ai in comparison with the quasi exact one 
obtained from reference solution. Figure 10 to 12, show that this agreement is 
good. That is true for higher order modes too. 
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Figure 9. Three first mode shapes for a 
plate strip analysis with two simply 

supported edges 

Figure 10. Plate strip with two simply 
supported edges; First mode; 

�9 Estimated error and error from the 
reference solution I 

Figure 11. Plate strip with two simply 
supported edges; second mode; 

Estimated error and error from the 
reference solution �9 

Figure 12. Plate strip with two simply 
supported edges; third mode; 

j Estimated error and error from the 
reference solution �9 

7. CONCLUSION 

Extensions of the so called "error through the constitutive relation" error 
estimation method has been presented in case of beam and plate static and modal 
analyses. It is based on the building of statically or dynamically admissible stress 
resultant fields. In the case of plate analysis these fields are obtained in two stages. 
In a first one load and moment densities along the edges of the element, insuring 
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the equilibrium of each element are obtained as the sum of two densities 
rendering the result as close as possible to finite element results. Computations 
are local, at the node level or at the element edge level. Computation of the stress 
resultant fields within each element consider the solution in a large set and uses 
an error minimisation to keep the best one. Calculations are local there too. 

The method is also presented in case of modal analyses of beam and plates. It 
has been shown on a structure made of beams that it is possible to define a mesh 
that insures a given accuracy for any mode within a frequency range. 

A set of examples has been proposed for the different analyses under  
consideration where the error estimated has been compared to the error with 
respect to the exact solution. The examples show that the beam and plate analyses 
appears to be a field where the method is well adapted. 
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A posteriori error analysis for steady-state Maxwell's equations 

L. Demkowicz 

The Texas Institute for Computational and Applied Mathematics, The University of Texas 
at Austin, Taylor Hall 2.400, Austin, Texas 78712, USA 

1. INTRODUCTION 

This paper presents a simple version of the Implicit Element Residual Method for steady- 
state Maxwell's equations, and an hp FE approximation presented in [1, 2]. The idea 
originated from a series of papers by Babuw and Rheinboldt, see e.g. [3], and was 
formulated in [4, 5, 6]. The possibility of residual equilibriation, using the technique of 
Ladev6ze or Ainsworth and Oden (see [7, 8] and references therein) allows for the use of 
a local Neumann problem, significantly improving the quality of the method. 

It turns out that the relaxed continuity assumptions for H(curl)-conforming approx- 
imations (only the tangential component of the approximated vector field must be con- 
tinuous) allow for a straightfoward approximation of fluxes and residual equilibriation for 
2D Maxwell's equations. A generalization to 3D involves solution of "patch problems" as 
in [7, 8]. 

The plan of the contribution is as follows. We start with a short presentation of the hp 
FE method for Maxwell's equations. The idea of the error estimation is explained next, 
followed by a couple of simple numerical experiments. A comparison with the Laplace 
equation and 3D Maxwell's equations concludes the paper. 

2. A ROBUST (STABLE) MIXED hp FE 
MAXWELL'S EQUATIONS 

A P P R O X I M A T I O N  FOR 

We shall consider the following model problem. Given a bounded domain fl C R2(I~) with 
boundary 0fl consisting of two disjoint parts FI and F2, we wish to determine electric 
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field E(z)  satisfying the following boundary-value problem: 

V x ( V x E ) - w 2 E  = J  inf l  

n •  = 0  on 1"1 (2.1) 

n x ( V x E )  = 0  onr2.  

Here J denotes a given field, related to an impressed current. For the sake of simplicity 
of the presentation, the material constants are normalized to unity, and all quantities are 
assumed to be real-valued. Multiplying the reduced wave equation by a test function, 
integrating over domain f~, and integrating by parts, with the use of natural boundary 
condition (2.1)3, we arrive at the standard variational formulation: 

E E W  

( V x E ) o ( V •  2 E o F =  J o F  V F e  W 

where W is the space of admissible solutions, 

W = { E e L 2 ( f l )  : V x E e L 2 ( F t ) ,  n •  (2.3) 

Variational formulation (2.2) gives rise to standard finite element (FE) discretizations. 
Approximations of this type, in general, are unstable and lack convergence. One way to see 
the defficiency of formulation (2.2) is to introduce a spectral decomposition corresponding 
to the curl-curl operator present in the reduced wave equation, 

o o  

E = Eo + ~ Eiei. (2.4) 
i--1 

Here E0 denotes the curl-free component corresponding to the zero eigenvalue of the 
operator (the corresponding eigenspace is infinite-dimensional), and ei are eigenvectors 
with corresponding positive eigenvalues Ai forming a sequence converging to infinity, 

V x Eo = O, V x ( V  x ei) = Aiei, Ai-+oo. (2.5) 

The eigenvectors and the eigenspace of curl-free components are L2-orthogonal. Setting 
F = E0 in (2.2), we obtain the following stability estimate for the curl-free component: 

IlEollL~(n) < w-~llJollL2(n) (2.6) 

where Jo denotes the curl-free component of the impressed current J.  In other words, 
the stability of E0 is controlled only by the zero-order term and it deteriorates as the 
frequency approaches zero. 

A remedy to this problem was proposed by Kikuchi [10] and recently by Demkowicz 
and Vardapetyan [1, 2]. We begin by introducing a scalar space (of Lagrange multipliers): 

V = {q e H ' ( a )  �9 p = 0 on r,}. (2.7) 
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We shall assume that the following compatibility condition between spaces W and V 
holds: 

E ~ W ,  V x E = 0 r  3 r  ~ V, E = V r  (2.8) 

Upon substituting F = Vq, for q E V, we observe that the solution to variational problem 
(2.2) satisfies automatically the constraint: 

/ a E ~ 1 7 6  Vq. E V  (2.9) 

The condition is equivalent to a divergence equation in fl (continuity equation) and a 
boundary condition on ['2. Thus, any solution to the original problem satisfies the extra 
equation and boundary condition. This, in general, does not hold at the discrete level. 
The idea now is to reimpose (2.9) as an additional equation at the cost of introducing 
a corresponding Lagrange multiplier p. We end up with the following mixed variational 

formulation: 

E E W , p E V  

s  • (v  • f . (E + vp)  = s j o F vF w (2.10) 

Two simple observations follow. First of all, the explicitly imposed constraint implies now 
a frequency-independent stability of the curl-free component. 

IlE0[lL~r < [IY0llL~{~) (2.11) 

Secondly, upon substituting F = Vq, q E V in (2.10)1 and using (2.10)2, we obtain a 
weak form of the Laplace equation for the Lagrange multiplier p. Consequently, p must 
vanish. 

Based on the compatibility condition (2.8), one can prove [1] the following lower bound 
for the inf-sup constant 3' associated with the mixed variational formulation: 

m a x { l + w  2 l+,Xi , IX/_  w2l, i =  1,.. .} < 3'. (2.12) 

We are ready now to introduce a stable FE discretization with a variable order of ap- 
proximation. As an example, we shall present the concept for triangular elements only, 
although the idea holds for quads in 2D, and tetrahedra, bricks and prisms in 3D, as well. 

The scalar element space of shape functions is identified as the space of polynomials 
of order p + 1 whose restrictions to element sides reduce to polynomials of lower order 

Pl -4- 1, P2 + 1, P3 "4- 1, respectively. That is, we assume that 

p > max{p,, p2, p3}. (2.13) 
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The key in understanding the construction of the vector element lies in compatibility 
condition (2.8) that we postulate to hold for the discrete spaces as well. This implies 
that we must employ different orders of approximation for the tangential and normal 
components of the E-field. More precisely, the vector space of element shape functions 
consists of (vector-valued) polynomials of order p whose tangential components on the 
element sides reduce to polynomials of orders pl,p~,p3, respectively. One can prove [1, 2] 
that the FE discretization admits optimal convergence error estimates. 

The elements are depicted in Fig. 1. We do not discuss here the choice of particu- 

~2 
A 

v 3 

A 

a (p3 +1) 3 
A 

P2 +1) 

~'l ~l<pl +l) ~'2 

a2(P 2 ) 

A t  

a l (P  1 

L A 

a 4(P) 
m, 

a~ (p) 

Figure 1" Scalar (left) and corresponding vector (right) triangular element with variable 
order of approximation 

lar degrees of freedom which results in the definition of the corresponding scalar shape 
functions ~k(t~) and vector shape functions 6k(~). Neglecting the round-off error, such a 
choice has no effect on our discussion. For details on a current implementation we refer 
to [11]. 

As a simple illustration, we present a solution to the model problem in a rectangular 
domain. The exact solution is a polynomial of order 5. Fig. 2 presents a sample mesh 
consisting of four linear and four quadratic elements with the corresponding contour plots 
of the first component of the electric field E. Notice the continuity of the tangential 
components only. 

Finally, Fig. 3 displays typical h-convergence rates for the same rectangular domain 
problem, using uniform meshes of quadratic and cubic elements. 

We also mention that the concept of the approximation generalizes in a standard way 
to curvilinear elements. With 

=~(~) (2.14) 

denoting the map from the master triangular element onto a curved element, the deformed 
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Figure 2: Solution of the model problem (a) an h p  FE mesh of linear and quadrat~ic 
elements (b) x component of the electric field 

Error Analysis, Rectangular Domain 
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r  
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D,,Uk, ich~ BC 
N=N~m'mnn BC 

Figure 3: Experimental convergence rates for quadratic and cubic elements 

element shape functions Xk(=) and 6k(=) are defined as follows: 

x~(=)  = :~k(~) 
2 cg~t (2.15) 

t=l i ) x j  " 

The definition above is a key to satisfy again the compatibility condition (2.8) and prove 
convergence with optimal rates. 

R E M A R K  1 If we neglect the round off error, and assume that there is no quadrature 
error, then, due to the compatibility condition (2.8), the discrete Lagrange multiplier 
must vanish as well. Thus, for the proposed FE discretization, the solutions to discrete 
equivalents of (2.2) and (2.9) coincide with each other! From that point of view, the mixed 
formulation might be understood only as a key to constructing the stable element and 
proving convergence. In practice, however, we never integrate exactly. Another essential 
difference between the two discrete problems is the conditioning of the corresponding 
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stiffness matrices. 

3. A POSTERIORI ERROR E S T I M A T I O N  FOR THE MAXWELL 
EQUATION IN 2D 

T h e  e l e m e n t  i m p l i c i t  r e s i d u a l  e s t i m a t e  

We recall first the idea of the error estimation using the standard abstract variational 
formulation: 

(3.16) 
b ( ~ , , )  = l ( , )  W e V. 

Introducing a finite element space Vn C V, we calculate the corresponding FE solution 
un by solving the approximate problem: 

,,n ~ VH 
(3.17) 

b(ILn, l~S) = I(1~H) VVH G_ VH. 

Similarly, we introduce a fine FE mesh space Vh, and the corresponding fine mesh solution 

Uh. 

The goal is now to estimate the fine mesh residual: 

where II" II is the energy norm: 

Ib(un, vh) - / ( vh ) l  
sup (3.18) 

II~,ll ~ = ,(~,, ~,). (3.19) 

Here a(u, v) denotes a symmetric, V-coercive bilinear form, and b(u, v) is the actual 
bilinear form (possibly neither symmetric nor coercive) corresponding to the problem of 
interest. 

The methodology consists in splitting the residual into the corresponding contributions 
over elements K and introducing the element flux functionals AK 

,'(,,n; ~,h) := b(,,n, ,~) - t(~h) 

= 2E {bK(~...,,.) -tK(v,.)} 
K 

- ~K I bK(uH'vh) -IK(vh) -- 

We shall postulate now two main assumptions: 

,XK("h) 
element flux functional 

(3.20) 

�9 the element residuals are in equilibrium with respect to the coarse mesh: 

~K(UH; V.) := bK(UH, VH) -- tK(Vn) -- AK(V.) = 0 VVn ~ VH( K); (3.21) 
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�9 Consistency: 
Ag(Vh) = 0 Vh E Vh. (3.22) 

K 

Here Vn(K) denotes the space of element K shape functions, possibly incorporating 
Dirichlet boundary conditions, if element K is adjacent to F1 part of the boundary. 

Introducing the local element Neumann problems: 

{ r e vh(g) 
(3.23) 

a~(r r  = ~ ( u s ;  r vr ~ V~(K), 

we can conveniently now express the fine mesh residual in terms of the element error 
indicator functions Oh,K, 

IT(ItH; 13h)l --" I Z aK(r Vh)l 
K 

_< ~ IIr IIv.ll. 
K 

This leads to the final estimate: 

We make now the following observations. 

�9 The local problems can be solved equivalently on the bubble spaces Vh,H(K), 

Vh(K) = VH(K) (9 Vh,H(K) (aK(', ")-  orthogonal decomposition). (3.26) 

�9 Fo~ b(=, ~) = ~(=, v) (~r162 ~.g. [91), 

II~llv~ - II=h - =HIl" (3.27) 

In particular, if we identify the bilinear form a with the curl-curl form in the reduced 
wave equation (2.1), the proposed residual estimate should approximate well the fine 
mesh error for small frequency w. 

, The element flux functional AK is specified uniquely on the coarse element space 
VH(K). 

The big question thus is" 

How to extend functionals AK to the fine element space Vh(K) ? 

This is precisely the place where the information about the actual, continuous problem 
comes into the picture. 
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D e t e r m i n a t i o n  o f  f l u x e s  f o r  2 D  M a x w e l l ' s  e q u a t i o n s  

The procedure will consist of three steps. 

Step 1: We introduce the space of coarse mesh traces of tangential components: 

YH(i)K) = {FtloK : F E WH(K)} (3.28) 

equipped with the L2(OK) product (., ")OK. 

Step 2: The functional AK restricted to the coarse space WH(K) depends only upon 
the tangential components of test function F. Consequently, we can find its Riesz 
representation fH,K using the L2(OK) product, 

fH,K E YH(OK) " 

(fH,K, FtlOK) = bK(EH, FH) -- IK(FH) VFH E WH(K). (3.29) 

Step 3: We define the extension to the fine space Wh as: 

~K(Fh) = (/H,K, Fh,)aK. 

A few important observations are in place. 

�9 Due to a decoupling between the element edges, determination of fluxes fH is done 
edge-wise, f.,K = {f~l.K},e - -  1, 2, 3. 

�9 For two adjacent elements Kl and K2 with a common edge e, 

f~,Kt = --fH,K2" (3.30) 

This guarantees the consistency! 

�9 In order to determine Ah" we need data from element K only t. 

D e f i n i t i o n  o f  t h e  l o c a l  p r o b l e m  f o r  t h e  M a x w e l l  e q u a t i o n s  

We identify the bilinear form a(E, F) inducing the energy norm as: 

a(E,F)  = fa (V  x E)o  (V  x F) + E o F 

and solve the local problems using the mixed formulation: 

Ch,K ~ wh(g), ph,~ ~ vh(g) 

/ ,~(v x r o (v  • r  +/,~(vp~,,~ + ~,,K) o ~ ,  = ~K(E,,, ~,,) 

/K r o Vqh = Vqh ~_ Vh(K) 0 

(3.31) 

v.,r e W~(K) 

(3.32) 
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where rK(EH, ~h) denotes the element K residual (3.21) including the element flux func- 
tional defined above. Imposing local divergence condition in the local problem should be 

interpreted as an extra step in extending the element flux functional AK(FH) to the fine 
space, with a simultaneous enforcement of the orthogonality condition" 

bK(EH, Vqh) - IK(Vqh) -- Ah-(Vqh) = 0 Vqh E Vh(K) (3.33) 

A numerical experiment 

We illustrate the proposed technique with results of the a-posteriori error estimation for 
the rectangular domain problem, and the polynomial exact solution discussed earlier, for 
a small frequency w = .01. According to the remark above, for small w, the fine mesh 

residual should coincide with the relative error, i.e. 1lull - =hll. Neglecting the difference 
between the exact and fine mesh solutions, we will compare the error estimate directly 
with the actual error. 

Table 1 compares the elemental contributions to the residual estimate, i.e. 

~K 2 {(V x Ch,g) 2 + Ch,K} dK (3.34) 

with ~bh, K being the solution to the local problem, with the element contributions to the 
error measured in the energy norm, i.e. 

/K{(V X ( E -  EH)) 2 + ( E -  EH) 2} dK. (3.35) 

The comparison has been done for four meshes with order of approximation p = 1,2, 3 
and the mesh with linear and quadratic elements displayed in Fig. 2. The corresponding 
global estimates are compared with the global error at the bottom of the table. The global 
effectivity indices are consistently close to unity. 

For an arbitrary frequency w, the simple relation between the residual and the error is 
lost. Table 2 displays the comparison of the estimate of the residual with the error for a 
number of frequencies including those close to the first resonant frequency of the operator. 
To our best knowledge, the a-posteriori error estimation for "forced vibrations" problems 
remains an open research issue. However, we would like to emphasize that, in our opinion, 
the residual estimate may still be used as a meaningful basis for mesh adaptation. 

4. A D I S C U S S I O N  F O R  T H E  L A P L A C E  E Q U A T I O N .  
MAXWELL'S EQUATIONS IN 3D 

The essential point in the construction of the errror estimate for the 2D Maxwell equations 

is the fact that the interaction between neighboring elements takes place only through 
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Element mesh p=l  mesh p=l /2  mesh p=2 mesh p=3 
number estimate/error estimate/error estimate/error estimate/error 

1 1.94/2.00 1.94/1.95 .32F_,-2]'.42E-2 ..33E-3/.34E-3 
2 1.41/1.49 1.41/1.46 .56E-2/.61E-2 .19E-3/.19E-3 

. . . . . . . .  

3 1.55/1.73 1.55/1.66 .34E-2/.32E- 2 .19E-3/.20E-3 
4 0:53/0.62 0.53/0.60 .20E-1/.20E-1 .36E-4/.39E-4 

5 ' 2 .06/2. i9  .6:3E-2/.43E-1 .75F_,-2/.78~_~2 .34E-3/.34E-3 
6 1.76/1.90 .12E-1/.15E-1 .12E-1/.12E-1 ,10F_,-3/.11E-3 
7 0.62/0.64 .72E-2/.26E-1 .20E-1/.21E-i .40E-4/.39E-4 
8 2.37/2.30 .12E-1/.14E-1 .12E-1/.13E-1 .12E-3/.12E-3 

Global 3.50/3.60 2.34/2.40 .294/.298 .371F_,- 1/.374E- 1 
Eft. index 0.97 0.98 0.98 0.99 

. . . . . . . . . . . . . . . . . .  

Table 1: Comparison of the a-posteriori error estimate with the error. Frequency w = 0.01 

element edges. This manifests itself in the observation that there are no degrees-of- 
freedom to approximate electric field E that would be associated with vertices (except for 
the approximation of geometry and the Lagrange multiplier, which is a different story). 
The degrees of freedom are either interior (local) to an element or correspond to element 
edges, hence the name of the edge elements is frequently used. The edge degrees of freedom 
are shared by only two elements and, consequently, the edge fluxes determined for two 
neigboring elements are identical (modulo sign) which implies the consistency condition. 

Another explanation comes from the Lagrange multipliers method and the idea of the 
hybrid finite elements [12, 13]. Enforcing the continuity of the tangential component of 
the electric field through Lagrange multipliers (interpreted as the magnetic flux across the 
interelement boundaries), we end up with a method that is ezactly equivalent to the alS- 
proximation described here, provided the Lagrange multipliers (fluxes) are approximated 
with the same number of degrees of freedom as the tangential component of the E-field 
shared by two adjacent elements. In other words, the electric fields obtained using either 
method are identical, and the described determination of fluxes can be interpreted as a 
reconstruction of the Lagrange multipliers. 

The situation is more difficult in three dimensions where the E-field degrees of freedom 
are associated with elements interiors, sides, and edges. The edge degrees of freedom 
are shared, in general, by more than two elements, and the reconstruction of fluxes is 
more dimcult. Similarly as for the Laplace equation in 2D, we run into the problem of 
non-uniqueness of the representation for the Lagrange multipliers. As the methodology 
for both 2D Laplace and the 3D Maxwell equations is practically identical, we take the 
freedom of presenting the idea of the method using the 2D Laplace equation only. The 
resulting procedure reduces then just to a slight reinterpretation of the method of Ladev6ze 
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frequency w 

1.00 
1.82 

1.825 
1.8275 

1:83 
. . . .  

1.84 
1.90 
2.00 
3 . 0 0  
10.00 

. . . . . . . .  

residual estimate I error 
,,, . . . .  

3.32 3.66 
29.8 133.5 
102.8 427.5 

110i'6 4427.8 
92.3 ...... 359.3 
22.4 77.3 
6.74 14:4 
4.80 718 
3.36 4'31 
5.66 8.27 ' 

. . . .  

Table 2: Comparison of the residual estimate with the error for various frequencies w 

and Maunder [7]. 

For simplicity we shall restrict ourselves to a mesh of linear (Courant) triangles only. 
Let K be a typical element in the mesh with vertices al,  a2, a3. The determination of the 
fluxes will be done in the following four steps. 

S tep  1: Representation of AK with vertex nodal forces (Dirac's deltas, see Fig. 4), 

where 

AK(vn)= Y~ Pi,gvn( ai ) (4.36) 

i=I,2,3 i-th vertex 

P,',K = bK(uH, Xi,K ) -- IK(xi,h') (4.37) 

i-th vertex shape function 

The representation of the fluxes in terms of the Dirac functionals reflects the con- 
tinuity of the restriction (trace) of FE solution to the element boundary. This 
representation, however, cannot be used to extend the flux functional to the fine 
space (or perhaps even all the way to the continuous space), as it has little to do 
with the actual fluxes (normal derivatives across the interelement boundaries) which 
are, in particular, dicontinuous at the element vertices. So the task now is to switch 
from the Dirac deltas representation to a representation which would correspond to 
the actual fluxes and, at the same time, would be consistent. 

Step 2: Representation of AK with edge nodal fluxes 

(Lagrange multipliers, see Fig. 5), 

3 

AK(vH) = ~ 4- {P~lvHCa,) + Re2vH(ae+l)} (4.38) 
e=l  
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Figure 4: Flux representation in terms of "nodal forces" 

Given a global orientation for all the edges in the mesh (e.g. determined by the 
vertex node numbers), we use in (4.38) the plus sign if the global and the local 
(counterclockwise) orientations of edge e are consistent, or the minus sign other- 
wise. The + / -  sign convention guarantees the consistency as the fluxes now are 
represented edge-wise. 

Re I 

Figure 5: Flux representation on terms of "edge nodal forces" 

Step3: Patch equilibrium. 
Obviously, the two representations have to be identical. In particular, the two 
functionals have to take the same values for each nodal basis function. That leads 
to the following patch equilibrium problem: 

R i -  Ri-1 = Pi i = 1 , . . . ,  number of elements in the patch (4.39) 

Here, the "nodal forces" Pi are known from Step 1, and the "nodal edge forces" Ri 
are to be determined. Due to the global equilibrium equation corresponding to the 
considered node, system (4.39) does have a solution but the Ri's can be determined 
only up to a (the node related) constant. An extra normalizing condition per node 
is needed! The situation is illustrated in Fig. 6. 
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R i 

lement,  

--i-I 

Figure 6: Nodal patch problem 

Step 4: L2-edge representation of the Lagrange multipliers. 
Finally, in the last step we need to switch to a continuous representation for the 
edge fluxes which will be more appropriate to define the extension to the fine space, 
see Fig. 7. 

I I 
R 1 R 

Figure 7: Switching to the L 2 representation of the edge fluxes 

Consequently, 

( )( ) ( ) ~ f, R, 
I ! g S f2 R2 

f~=-~n, +~R~ 

(4.40) 

(4.41) 

The choice of an optimal normalizing condition, remains a separate issue [7]. 
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