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Preface

Reverse Logistics is an area that has attracted growing attention over the last
years both from the industrial as well as from the scientific side. The proper
management of reverse flows of products and materials is of considerable im-
portance in many industries because of its influence on economic performance
and environmental impact. The respective management tasks, however, are
connected with new challenging planning and control problems. This espe-
cially holds for product recovery management concerning remanufacturing
operations where used products, after being returned to the manufacturer,
are reprocessed such that they are as good as new and can be re-integrated
into the forward logistics stream.

A major issue in remanufacturing is how to optimally coordinate the poten-
tial activities directed at meeting customer demands for serviceable products
and to deal with returns of products after end-of-use. The respective decisions
refer to finding a proper mix of manufacturing original and remanufacturing
used products as well as of stock-keeping and disposing of returned items.
Hereby, relevant cost impacts and time patterns of demand and returns have
to be taken into consideration.

Up to now, research contributions to this field of Reverse Logistics have
addressed only two main aspects that result in high complexity of decision
making in product recovery management. One aspect is that of capacity re-
strictions and fixed costs in manufacturing and remanufacturing systems that
makes coordination of lot-sizing a challenging problem. The second aspect
refers to uncertainty of demands and returns that leads to complicated sto-
chastic interactions which have to be coped with by appropriate decision rules
and safety stock policies. While these issues are highly relevant for operational
and tactical decision making, a third aspect with mainly strategic importance
has largely been ignored. This is the aspect of time-variability and dynamic
change of major input parameters for product recovery decisions. On the one
hand, this refers to the variability of product demand and return schemes that
can be observed both due to seasonality and the classical life cycle pattern for
many product categories. On the other hand, over larger time spans we also



face specific cost dynamics caused by experience effects in manufacturing and
remanufacturing processes.

It is the commendable contribution of this book that it sheds some light
into this complicated field of how to respond most effectively to the dynami-
cally changing environment in product recovery strategy. This response refers
to choice of time-varying coordination strategies of manufacturing, remanufac-
turing and disposal activities as well as to the timing of investment decisions in
product recovery technologies. Embedded in these considerations an analysis
is developed of how and why to use different kinds of strategic inventories to
enable best reactions to dynamic cost, demand and return processes. Based on
advanced quantitative modeling and optimization techniques a deep analysis
of the addressed complex dynamic decision problems is given.

Summarizing, this book presents major progress in scientifically investigat-
ing the field of complex problems of product recovery management induced
by several types of dynamics in the planning environment. The underlying
dynamic problem aspects are of enormous practical importance, but have not
been addressed appropriately in research contributions before. By studying
this book the reader will learn novel and interesting findings on how to re-
spond strategically to ongoing changes of a product recovery environment by
responsive recovery policies and dynamic inventory management.

Magdeburg, April 2006 Karl Inderfurth
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1

Introduction

1.1 Objective and Motivation

The integration of product recovery into regular production processes has
developed into a challenge for the manufacturing industry (Guide and Van
Wassenhove (2002)). While in the past a firm’s main concern was to sell its
products leaving the burden of final disposal to society, it is now increasingly
assigned responsibility for what happens with the product after use. Conse-
quently, product recovery leads to additional restrictions firms must take into
account, but it also enables new opportunities (Stock et al. (2002)).

There are many reasons for this development. An increasing environmen-
tal consciousness of the public and limited availability of natural resources to
manufacture new products on one side and the necessity to find alternatives to
landfilling and incineration of waste led to new regulations that aim at reduc-
ing the quantity and environmental impact of waste. Environmental legislation
incorporates the prohibition of substances that aggravate material recovery,
the enforcement of collection networks, and industry specific take back and
recovery obligations. Some of the many examples are the German Recycling
and Waste Control Act (Kreislaufwirtschafts- und Abfallgesetz, KrW-/AbfG)
enacted in 1996 that extended product responsibility of manufacturers to the
end of life phase and the EU Directive on Waste Electric and Electronic Equip-
ment (WEEE) from 2003 which calls for the installment of collection networks.
A recent overview on end-of-life legislation issues with examples from the US,
Europe, and Japan can be found in Toffel (2003).

In addition, economic motives lead to a voluntary product take back of
original equipment manufacturers (OEMs), as detailed and classified in Tof-
fel (2004). First, recovering products allows us to reduce production cost by
using recovered material and components in lieu of virgin material and newly
produced components. Second, the fact that there is demand for leased prod-
ucts in the marketplace forces us to confront these products again at the end
of the lease period. In this example, dealing with returns is part of the ‘price
we pay’ to service the demand for these products. Third, customer behavior
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seemed to be influenced by the environmental image of firm, and therefore
using recovered material in products or merely engaging in product recov-
ery itself increases the demand from this market segment. Fourth, aftermar-
kets are often lucrative revenue generators, and therefore must be protected
against third parties servicing demand for spare parts, etc. Finally, it is also
viewed that taking environmentally friendly steps, for instance implementing
a product recovery system before take-back laws exist, at times successfully
preempts environmental legislation. On the other hand, Reinhardt (1999) also
points out that encouraging environmental legislation can lead to an improved
position of the firm, forcing competitors into compliance.

An increasing return of used products encourages OEMs to produce more
environmental friendly yet recoverable products. A large number of examples
for product recovery due to varying incentives are assembled by de Brito et al.
(2005) and range from the reprocessing of chemicals in the pharmaceutical in-
dustry (see Teunter et al. (2005)) to the remanufacturing of Kodak single-use
cameras or of complex products like engines in the car manufacturing indus-
try (the latter two examples will be further detailed below as case studies).
Thierry et al. (1995) put forth an overview on strategic product recovery
issues and differentiate between product recovery options recycling, repair,
cannibalization, refurbishing, and remanufacturing. Out of these options, re-
manufacturing seems especially appealing to OEMs since large parts of the
added value can be recovered (Klausner and Hendrickson (2000)).

Product recovery management is charged with the coordinated planning
and control of both production and recovery processes that serve the same
demand for materials, parts, or final products. In the context of remanufac-
turing, both sources are assumed to be perfect substitutes, and recovered
products are usually said to be as good as new. It should be noted that al-
though we might choose other recovery options (e.g. repair or refurbishing)
to be performed on the returns, we restrict our attention to remanufacturing
as we presume substitutability.

When dealing with product returns, logistic processes are more compli-
cated to control since both forward and backward flows must be coordi-
nated. Production planning is more complex since there now exist two possible
sources to serve the demand which need to be coordinated, therefore raising
new operational questions. These problems receive growing interest from re-
searchers and practitioners alike and are summarized in the field of Reverse
Logistics. The European Working Group on Reverse Logistics (REVLOG)
uses the following definition:

The research area of Reverse Logistics covers “the process of plan-
ning, implementing and controlling backward flows of raw materials,
in process inventory, packaging and finished goods, from a manufac-
turing, distribution or use point, to a point of recovery or point of
proper disposal.” (de Brito and Dekker (2004))



1.2 Inventory Management in Reverse Logistics 3

Quantitative approaches in reverse logistics have been surveyed by Fleisch-
mann et al. (1997) and more recently by Dekker et al. (2004). According to
the example of the latter work one can distinguish between three important
domains of research within this field, namely: extended supply chain manage-
ment dealing with relations between different partners inside a reverse logis-
tics system, reverse distribution which includes collection and transportation
aspects, and production and inventory management. Here, we focus on the
last aspect and assume that an appropriate collection network exists which
provides an OEM access to its own used products.

1.2 Inventory Management in Reverse Logistics

There are several reasons to keep stock in traditional production settings, as
discussed in Silver et al. (1998), Chapter 3, and inventories can be classified
based on their economic motivation. Specifically, safety stock is used to buffer
from short term uncertainty of demand and supply, cycle stock is used to
account for trade-offs between e.g. fixed setup and holding costs, and antic-
ipation stock is often used to smooth capacity utilization in a dynamic (e.g.
seasonal) environment.

Managing inventory in the presence of returns leads to additional com-
plexity. In the case of safety stock, we must now account (in addition to the
traditional demand uncertainty) for the uncertainty surrounding the supply of
returns, whereas in lot sizing we must coordinate lot sizes and setup times for
both production and remanufacturing. Stocks have to be distributed among
inventories for serviceables and recoverables (returns). These issues have re-
ceived attention in research (for reviews on inventory management in reverse
logistics see Dekker and van der Laan (2003), de Brito and Dekker (2003) and
Fleischmann and Minner (2004)), but they hardly explain the large amount
of returned used products held in stock at remanufacturing facilities, as is
confirmed by Seitz and Peattie (2004). When adapting our treatment of an-
ticipation stock, we find that the addition of the return stream yields entirely
new situations in which we hold stock, which directly result from the dynamic
environment firms operate in.

A closer look at the product recovery environment reveals many factors
which fluctuate over time. Starting with an obvious one, the demand for the
product will vary over time. However, this is no surprise. Frequently, life cy-
cle patterns as well as seasonality will influence demand. In medium-range
aggregate production planning (Silver et al. (1998), Chapter 14), we seek to
smooth capacity utilization by using seasonal inventory. The resulting solution
lies between two extremes of nearly constant production (level) and produc-
tion which is synchronized with demand (chase). The amounts of returned
products may likewise vary over time, as is documented in the following two
cases:



4 1 Introduction

Case 1.1. DaimlerChrysler engines (see Kiesmüller et al. (2004))
DaimlerChrysler operates several facilities for recovering parts from used cars,
one of which remanufactures used engines for Mercedes Benz cars at the plant
Berlin-Marienfelde (MTC). Annually, about 12,000 engines from 28 classes
and 800 different model variants are remanufactured. An ABC-classification
revealed that 60% of the returns are contributed by 3 classes.
Dynamic issues, i.e. time dependent demands and returns, have to be con-
sidered for two reasons. First, demands for an engine class follow the shape
of a product life cycle, starting with a phase of increasing sales, followed by
the maturing phase and finally declining sales towards the end of a product’s
life cycle. Returns follow demands in a similar pattern, delayed by the usual
life time of an engine and reduced by the number of not returned engines. In
the growth phase, demand for remanufactured engines is significantly higher
than available returns and all returned cores are remanufactured. Later in the
maturing phase, demand decreases and returns can exceed remanufacturing
orders. This divides the product life cycle into two main phases, the first with
insufficient cores and another one with excessive cores. Similar effects, i.e. dy-
namic fluctuations of both, demand for remanufactured items and supply of
returns, leading to shortage and overage situations have also been reported
for car part remanufacturing at Volkswagen (van der Laan et al. (2004)).

Case 1.2. Kodak single-use cameras (see Goldstein (1994) and Guide
et al. (2003b))
Introduced by Fuji Photo Film Co. as ‘film with lens’ and originally designed
to be thrown away after use, the single-use camera now is another example of
successfully closing the loop on a higher level of product recovery. According
to Kodak (2003), about 775 Million cameras have been processed since the
start of the product recovery program in 1990 and currently a worldwide re-
turn rate of 75% has been achieved. The amount of reusable materials ranges
between 77-90% (by weight) of the product. Most recovered parts are plastic
bodies, which are reused up to six times and the circuit boards required in
flash cameras, which are used up to 10 times.
An important issue that Kodak faces is to deal with dynamic demand and
return streams. Goldstein (1994) stated that there is “a lot of seasonality and
cyclical behavior” in the market for single-use cameras. This stems from peak
selling periods that differ among the various models: Underwater cameras
mostly are sold in summer and winter vacation season, while flash cameras
sell best around winter holiday season, and peak season for single-use cam-
eras is between March and early September. On the reverse flow side, batch
shipments from smaller photofinisher labs to collection facilities can lead to
a delay of a couple of months between development of film and shipment to
Kodak. On average it took between three and five months for a camera to
be returned after being (re)manufactured. Although these numbers have been
reduced in recent years, a large number of used products return at the end of
a peak season or during off-season.
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As the two cases have shown, there will be periods where returns exceed
demand (excess returns) and other moments where demand exceeds returns
(excess demand). Since available returns can also be seen as a capacity to re-
cover products, an inventory can be used to enlarge the capacity when needed.
Fleischmann and Minner (2004) call such stocks ‘opportunity stocks’, because
they enable additional recovery opportunities. From a more strategic point of
view, cost parameters themselves can change over time caused not only by
external influences (such as ever-increasing disposal fees) but also by internal
impacts like learning (or experience) curve effects. Lastly, in the long run,
available capacity for product recovery is also not fixed over time but can be
changed through capacity expansion or reduction.

Most of product recovery and inventory management models are either
restricted to stationary conditions or treat dynamic aspects only numerically,
for recent overviews on stochastic inventory control see van der Laan et al.
(2004) and for lot sizing issues Minner and Lindner (2004). As a consequence,
Dekker et al. (2000) suggest more examination of the effects of non-stationary
demand/return conditions on inventory control for joint manufacturing re-
manufacturing systems.

This thesis concerns itself with the incorporation of dynamic issues in
medium and long-term product recovery management. In doing so, we ex-
pressly ignore more operative disassembly issues, which would complicate
matters. We also restrict ourselves to time-varying deterministic environ-
ments, ignoring short term stochastic fluctuations as is common practice in
other medium to long term models. We avoid more unnecessary complication
by examining the simplest case of a single product or a single part/module.
Decisions faced in this realm include (1) when to invest in remanufacturing
capabilities (if at all), (2) when to start collecting, hold stock of, and dis-
pose of returns. It specifically deals with use of anticipation inventories for
smoothing both capacity supply (e.g. return availability) as well as capacity
demand. Strategic implications are expressly considered, especially the deci-
sion of whether to engage in a higher level of recovery or not, including aspects
such as knowledge acquisition (e.g. experience curve effects) and the additional
operational and investment expenditures required to implement product re-
covery processes (Toffel (2004)). The consideration of more strategic issues
in research has been recently demanded by Guide et al. (2003a) since it is
seen to be of particular value for practitioners. Long term decisions involve
significant sums of money and are often difficult (if not impossible) to change.
Examining our problem specifically, we can see that the decision on when to
invest if made erroneously could result in opportunity costs rising from either
lost recovery cost advantage (if made late) or capital costs (if made early).
Investment on product recovery capability is a decision made very carefully
by managers, and one that they certainly do not want to get wrong. Likewise,
deciding on the correct time to start keeping excess returns is also important
and has far reaching effects. If we start too early, we sacrifice capital costs
filling our inventory with unusable scrap. This error would be particularly
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painful if we could have reaped a salvage value by ‘disposing’ of the returns.
Waiting too long, on the other hand, results in lost recovery cost advantage.

1.3 Methodology

An appropriate way to examine long term issues is to use a continuous time
model, which avoids the discretization of time and the influence of the choice
of time units on the model and results. Another advantage of this modeling
is that parameters can be given by continuous time functions, eliminating
the need to specify them for each time period. Dynamic modeling properties
motivates the use of the theory of Optimal Control as a solution method.
Starting with the pioneering work by Pontryagin et al. (1962) it has reached
a wide range of applications in economics and management, see e.g. Seierstad
and Sydsæter (1987), Kamien and Schwartz (1991), or Sethi and Thompson
(2000). It can be compared with dynamic programming methods developed
by Bellman (1957) at about the same time but, according to Feichtinger and
Hartl (1986), a main advantage of optimal control is the possibility of gaining
insights into the general structure of solutions for an entire problem class.

Although there are extensions to solve discrete time problems, optimal
control literature mainly deals with continuous time systems. A system in
this sense is characterized by one or more state variables (e.g. an inventory
stock level) which are changed by external influences (demand) or by choosing
control variables (production). The development of the states is characterized
by a differential equation named state (transition) equation. Both, state as well
as control variables, can be subject to constraints which have to be considered.
An optimal solution is given by optimal trajectories (functions of time) of the
state and control variables which maximize (or minimize) a given objective
function.

Pontryagin’s Maximum Principle provides a set of necessary conditions for
an optimal solution, which is also sufficient under certain conditions. Using
the Maximum Principle the dynamic problem is decomposed into an infinite
sequence of interrelated static problems, one for each time instant. These are
connected by introducing co-state (also called adjoint) variables, which can
interpreted as the shadow price of changing the system state. A static objective
function, called Hamiltonian, is constructed in a way that it measures the total
effects of the decisions at a certain time point on the objective. These can be
split into a direct and an indirect effect. The direct effect is given for instance
by the costs of producing an item. The indirect effect arises since decisions
also have an influence on future opportunities by changing the system’s state,
e.g. by decreasing or increasing the inventory level. It is measured by the rate
of change of the state times the corresponding shadow price (given by the
co-state). This yields another advantage of optimal control since the co-states
can also be interpreted as the value of e.g. another returned item, a produced,
or remanufactured product.
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As in dynamic programming, where an optimal decision is taken at each
stage (instant of time) assuming that up to that point all decisions have
been taken optimally and the same will hold for future decisions, the Hamil-
tonian has to be maximized at each instant of time by appropriately choosing
the controls for given optimal state and co-state values, subject to relevant
constraints on control and state variables. This is applied by using standard
methods of non-linear programming. Further necessary conditions contain the
rate of change of the co-state variables. Thus, a system of differential equa-
tions including the state transitions, co-state transitions, and optimal control
policies has to be solved.

For an overview on traditional continuous time production and inventory
models see e.g. Feichtinger and Hartl (1986), Chapter 9 or Sethi and Thomp-
son (2000), Chapter 6. Well known examples are variants of the HMMS-model
(Holt et al. (1960), Thompson and Sethi (1980)) that uses a quadratic objec-
tive in order to retain goal levels for both inventory and production. Linear
inventory and convex production costs are used in Arrow-Karlin type models
(Arrow and Karlin (1958)). More recently, these models have been extended to
cope with environmental issues. Wirl (1991) and Hartl (1995) analyzed effects
of environmental constraints in the Arrow-Karlin model and Dobos (1998)
used the HMMS approach. Product recovery systems including remanufac-
turing and disposal of returned products under non-linear cost regimes are
covered e.g. by Kistner and Dobos (2000). In most practical situations, how-
ever, a linear cost regime is present and will be used throughout this work.
Recent applications of optimal control in dynamic product recovery are re-
viewed by Kiesmüller et al. (2004).

1.4 Outline of the Thesis

The road-map followed in the succeeding chapters is given as follows.
In Chapter 2, a basic model for product recovery is presented. It aims

to explain under which conditions returns should be kept in an anticipation
stock. It extends the investigation of a single product/single stage product
recovery system by Minner and Kleber (2001) by allowing for discounting.
Some attention is paid to the valuation of inventories which in this case can
be quite easily accomplished through exploiting the advantages of the solution
methodology.

In traditional medium-term aggregate production planning an anticipation
stock is used when capacity of the cheaper regular mode becomes binding in
order to avoid high costs of overtime. However, the second supply source might
also be limited. Therefore, Chapter 3 discusses the implications of capacity
constraints on both the cheaper source (remanufacturing) and the ‘overtime’
mode (production).

Chapter 4 relaxes the assumption of general preferability of remanufactur-
ing over manufacturing. Knowledge acquisition during repeated remanufac-
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turing operations can itself lead to profitable remanufacturing, even if there
is no immediate cost advantage. The influence of learning in the remanufac-
turing process on stock-keeping decisions is analyzed, revealing that (under
certain circumstances) another motive for holding recoverables is to postpone
the start of remanufacturing.

Chapter 5 deals with the use of anticipation inventory in controlling re-
manufacturing capacity over the product life cycle in the most simple case,
the choice of the investment time of a remanufacturing facility with unlim-
ited capacity. More specifically, when introducing a new product, two related
decisions have to be considered, namely product design and the choice of
the recovery mode and a corresponding technology. This is accomplished by
considering the influences of such decisions on direct production costs and
initial investment expenditures. Taking into account the limited availability
of used products in the beginning of a products life cycle and a decreasing
time value of the required investment expenditures connected with the set-up
of the remanufacturing process, the issues addressed here are when to initiate
this process and how the use of a strategic recoverables inventory does affect
this decision.

Some concluding remarks are given in Chapter 6, along with a recapitula-
tion of the main results of the thesis, as well as a short discussion of related
work.



2

A Basic Quantitative Model for Medium and

Long Range Product Recovery Planning

2.1 Overview

This chapter deals with a basic dynamic model of product recovery. A single-
stage and single item version of a product recovery system is presented and
analyzed under a linear cost regime. The remainder of this chapter is organized
as follows. The dynamic optimization problem is formulated (Section 2.2) and
solved (Section 2.3). Thereby, some general properties of an optimal recovery
strategy and a construction method are outlined. In the first instance, this is
accomplished by disregarding initial inventories. However, initial recoverable
stocks play a role in rolling planning frameworks, and an explicit consideration
of positive serviceables will facilitate our discussion in the case of limited
capacities (see Chapter 3). We therefore present a method on how to deal
with initial inventories in Section 2.4. The findings are illustrated using several
numerical examples in Section 2.5. A comparison with the outcome of using
an undiscounted (average) cost approach is provided in Section 2.6. The main
results are summarized in Section 2.7.

2.2 A Basic Quantitative Model of Dynamic Product

Recovery

In the following we analyze a generalized version of the single-product, single-
stage product recovery system presented by Minner and Kleber (2001) that
allows for discounting. The system under consideration is depicted in Figure
2.1. The system faces an external customer demand rate d(t). Customer return
used products with rate u(t). Both rates are deterministic, non-negative, and
continuous functions within a finite planning horizon [0, T ], and can not be
influenced by the decision maker.

As an example consider the following functions for cyclical demand and
returns over a planning horizon of T = 4π:
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Fig. 2.1. Product recovery system

d(t) = 1 + 0.5 sin(t) and u(t) = 0.7d(t − π)

The demand function consists of a time independent base level of 1 which is su-
perimposed by some seasonal influence introduced by a cyclical part 0.5 sin(t).
A fraction of 70% of previous demand becomes available after staying with
the customer for a period of π. Here, it is additionally assumed that there
existed demand before the begin of the planning period, i.e. for t < 0. This
scenario is depicted in Figure 2.2.

Product requirements are satisfied from serviceables inventory which can
either be replenished by producing new items with rate p(t) or by remanufac-
turing of returned products with rate r(t). We assume that remanufactured
products have the same quality as produced items and therefore serve as
perfect substitutes. Returned products that are not instantaneously reman-
ufactured can either be kept in a recoverables inventory for future remanu-
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Fig. 2.2. Demands and returns in the example
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facturing or disposed of with rate w(t). There are no binding constraints on
either process, i.e. it is possible to produce and to remanufacture at any rate.
Additionally, the disposal level is assumed not to be limited.

The state of the recovery system is described by a serviceables ys(t) and
a recoverables inventory yu(t). Initial values for the state variables are given
by ys(0) = y0

s and yu(0) = y0
u. The planning horizon T characterizes the end

of all obligations for the product. Therefore, both inventories have to be zero
at time T , i.e. ys(T ) = 0, yu(T ) = 0.

Since we assume zero lead times, decisions are implemented instanta-
neously. Thus, the corresponding state transition equations are represented
by differential equations where the rate of change in the serviceables inven-
tory (ẏs(t) = dys(t)/dt) equals the sum of production and remanufacturing
rate minus demand rate at time t

ẏs(t) = p(t) + r(t) − d(t). (2.1)

Analogously, the marginal increase of recoverables inventory is given by the
return rate minus the sum of remanufacturing and disposal rates at time t

ẏu(t) = u(t) − r(t) − w(t). (2.2)

Since we do not allow for backlogging, the serviceables inventory has to be
non-negative

ys(t) ≥ 0. (2.3)

The availability of recoverable items limits both, remanufacturing and disposal
decisions, being expressed by non-negativity of the recoverables inventory

yu(t) ≥ 0. (2.4)

Further, non-negativity constraints hold for production, remanufacturing, and
disposal control variables

p(t) ≥ 0, r(t) ≥ 0, w(t) ≥ 0. (2.5)

The objective of the model is to satisfy customer demands over the plan-
ning horizon with a minimal total discounted cash (out-)flow for production,
remanufacturing, disposal and holding serviceables and recoverables inventory.
It is assumed that all payments depend linearly on the respective decision, i.e.
we assume constant and time independent per unit payments for production
cp > 0, remanufacturing cr > 0, and disposing items cw, as well as constant
out-of-pocket inventory holding costs per unit and time unit hs > 0 and
hu > 0, respectively. The discount rate α > 0 reflects real costs of capital (net
of inflation), possibly calculated as weighted average of the companies equity
and debt capital (see, e.g., Kaplan and Atkinson (1998)). In contrast to all
other parameters, unit payments for disposing of a returned item can also be
negative, as would be the case if a salvage revenue can be obtained.
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In order to ensure that remanufacturing is an alternative to production,
direct costs of remanufacturing must be less than the sum of direct production
and disposal costs per unit

cp + cw > cr. (2.6)

Otherwise, disposal of a returned product and production of a new one is
always superior to remanufacturing it, and the model would reduce to a pure
production/inventory model with linear direct costs, for which it is optimal
to produce the demand at every time point (see Feichtinger and Hartl (1986))
after consuming initial inventories. The difference (cp + cw) − cr is therefore
referred to as (direct) recovery cost advantage.

Further we assume, that out-of-pocket holding cost per item and time unit
for serviceables is higher than for recoverables

hs > hu, (2.7)

which is reasonable, because serviceables usually are treated more carefully
than recoverables. Finally, it is not advantageous to hold unneeded returned
products as opposed to disposing of them

hu > αcw. (2.8)

If this would not be the case, disposal would never take place because interests
saved when delaying the disposal of an item would always outweigh out-of-
pocket holding costs.

Both equations (2.1) and (2.2) imply that production, remanufacturing
and disposal are executed with finite rates. But since we assume all controls
(processes) to be unrestricted, state variables are allowed to jump, e.g. if there
are more recoverables in inventory than needed, one can dispose of a real quan-
tity by an impulse control, which leads to a negative jump in yu. A (positive)
jump in ys by a production or remanufacturing impulse is more expensive
than synchronizing production and remanufacturing with demand because of
the additional holding costs incurred. A jump in yu can only be advantageous
at time zero by disposing a quantity w0 with an impulse control. For later time
points, disposal in advance reduces recoverables holding costs. The following
proposition summarizes the sketched results on impulse controls.

Proposition 2.1. A (positive) jump in the serviceables inventory by produc-
tion or remanufacturing impulse controls will never occur in an optimal policy.
A (negative) jump in the recoverables inventory may be advantageous only at
time zero.

A note on Proofs. For all proofs and derivations see the appendices of the
respective chapter.

In the following, x(t−), x(t+) denote left- and right-side limits of x, respec-
tively. With the introduced assumptions, the following control optimization
model with two states (ys and yu), three control variables (p, r, w) and a single
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impulse control variable (w0) has to be solved subject to the state equations
and one jump equation, two pure state constraints, initial and terminal condi-
tions for the state variables as well as non-negativity constraints for all control
variables

min NPV = cww0 +

T∫
0

e−αt (cpp(t) + crr(t) + cww(t) + hsys(t) + huyu(t)) dt

s.t. ẏs(t) = p(t) + r(t) − d(t), ẏu(t) = u(t) − r(t) − w(t),

ys(t) ≥ 0, ys(0) = y0
s , ys(T ) = 0, (2.9)

yu(t) ≥ 0, yu(0−) = y0
u, yu(T ) = 0,

yu(0+) − yu(0−) = −w0,

p(t) ≥ 0, u(t) ≥ 0, w(t) ≥ 0, 0 ≤ w0 ≤ yu(0−).

2.3 Solution of the Model Without Initial Inventories

2.3.1 Solution Methodology

The dynamic optimal control problem (2.9) is solved by applying the direct ad-
joining approach for Pontryagin’s Maximum Principle as shown in Feichtinger
and Hartl (1986) for a deterministic, linear, non-autonomous model with pure
constraints both in state and control variables and a possible jump in a state.
Because of the linear objective function, the necessary conditions given below
are also sufficient for an optimal policy.

The solution process as sketched in Section 1.3 requires to solve a system
of differential equations which is complicated for several reasons. First, opti-
mal trajectories of control variables are in general not given as closed form
expressions and in case of unrestricted controls, there might even be ‘jumps’
in the slope of the state variables. Second, there might be no predetermined
initial or terminal value for the co-state. And finally, co-state variables can
be discontinuous under certain conditions. A construction of the optimal tra-
jectory can therefore be arduous. In order to overcome these difficulties, the
following general approach is used. Exploiting necessary conditions presented
in Section 2.3.2, general properties of an optimal policy can be derived in
Section 2.3.3 by defining cases with respect to state variables and deriving
respective optimal decision structures. Since there can also be other influenc-
ing conditions, further sub-cases might be distinguished. Within such defined
intervals closed form expressions for the control, state and co-state functions
can be stated. Since such a case or policy will in general not be optimal for
the whole planning horizon, in Section 2.3.4 it is determined under which
conditions a transition from one case to another one occurs. These points in
time are identified as so called transition points. Then, properties of optimal
intervals where stock-keeping is present are derived in Section 2.3.5 and finally
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a solution algorithm is given in Section 2.3.6 that numerically determines the
optimal solution.

For ease of the following discussion we first restrict to the case where both
initial inventories are equal to zero (y0

s = y0
u = 0), and therefore the jump

parameter w0 must be equal to zero. In Section 2.4 we show what changes
when initial stocks have to be considered. For the remainder of this chapter,
we omit time indices where appropriate for reasons of simplicity.

2.3.2 Necessary Conditions

There are two equivalent possibilities to formulate necessary conditions. The
first way is to use the so-called present-value formulation in where the static
objective (Hamiltonian) explicitly includes the discount factor e−αt. Instead
of that, we prefer to state conditions by using the so-called current-value
formulation which has the advantage that both, the static objective and the
static optimality conditions do not change in time.

The current-value Hamiltonian H(ys, yu, p, r, w, t, λ0, λs, λu) = H(.) for a
maximization problem corresponding to (2.9) is given by multiplication of
the (negative) objective by a constant λ0 and the state transitions by adjoint
variables λs(t), λu(t) respectively

H(.) = λ0(−cpp − crr − cww − hsys − huyu)

+λs(p + r − d) + λu(u − r − w). (2.10)

In the appendix we show that λ0 = 1. Then, the adjoints or co-state variables
λs(t) and λu(t) are unequivocally defined and can be interpreted as shadow
price of a change in the corresponding inventory level. Since there are sev-
eral ways to change the inventory level, the co-states also have the following
meaning: λs(t) is the value of a produced item or the negative value of an ad-
ditionally demanded item at t. λu(t) can be seen as value of another returned
item or negative value of a disposed item at t. λs(t)−λu(t) can be interpreted
as value of a remanufactured item. We will also refer to the adjoints as the
value of a stored item.

In order to account for the control and state inequality constraints, La-
grange multipliers µi(t), i = 1, 2, 3 for the three control variables and
kj(t), j = 1, 2 for the two state variables are defined. The corresponding
Lagrangian L(., µ1, µ2, µ3, k1, k2) = L(..) is given by

L(..) = H(.) + µ1 · p + µ2 · r + µ3 · w + k1 · ys + k2 · yu. (2.11)

The derivation of the necessary conditions for the optimal solution is made
in accordance with the methodology put forth in Feichtinger and Hartl (1986),
pp. 164-169.

Let (y∗
s , y∗

u) represent the optimal trajectory of the state variables and
(p∗, r∗, w∗) the (piecewise continuous) trajectory of optimal control policies
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to problem (2.9). Then, there exist piecewise continuous functions of time
λs, λu, µi, i = 1, 2, 3, kj , j = 1, 2 and two sets of time points θs ∈ Θs

and θu ∈ Θu where the co-states λs and λu jump with corresponding height
parameters ηs(θs) and ηu(θu). Except for points of discontinuity in the controls
and junction points, i.e. points where one of the non-negativity constraints for
inventories become or leave the state of being binding, the following necessary
conditions (2.12)–(2.24) have to hold.

Due to its linearity in all controls, the Hamiltonian is maximized, if

p∗ =

⎧⎨
⎩

0 λs < cp

singular λs = cp

∞ λs > cp

(2.12)

r∗ =

⎧⎨
⎩

0 λs − λu < cr

singular λs − λu = cr

∞ λs − λu > cr

(2.13)

w∗ =

⎧⎨
⎩

0 λu > −cw

singular λu = −cw

∞ λu < −cw

. (2.14)

Note that infinite values for the controls can be excluded as shown below.
The so-called bang-bang equations (2.12)–(2.14) can be interpreted as fol-
lows. If production costs cp exceed the value of a stored serviceables item λs,
the production rate obtains its lower bound of zero. If unit production cost
and adjoint variable are equal, the production rate can be positive but it is
not to be determined from this condition alone (‘singular’). Analogously, the
remanufacturing rate is zero if the increase in value of a used product when
remanufacturing it (value of a serviceables item minus the value of the recov-
erable item) is smaller than remanufacturing cost cr and positive when both
are equal. If the value of a returned item is larger than its salvage revenue
(−cw), no items are disposed of.

Further necessary conditions account for inequality conditions for the
control variables. Equations (2.15)–(2.17) maximize the Lagrangian. Non-
negativity as well as complementary slackness conditions (2.18)–(2.20) must
apply:

∂L

∂p
= −cp + λs + µ1 = 0 (2.15)

∂L

∂r
= −cr + λs − λu + µ2 = 0 (2.16)

∂L

∂w
= −cw − λu + µ3 = 0 (2.17)

µ1 ≥ 0 µ1 · p∗ = 0 (2.18)

µ2 ≥ 0 µ2 · r∗ = 0 (2.19)

µ3 ≥ 0 µ3 · w∗ = 0 (2.20)
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From (2.15)–(2.17) together with (2.18)–(2.20) it follows that the infinite up-
per values for p∗, r∗ and w∗ in (2.12)–(2.14) cannot occur in an optimal
solution because λs ≤ cp from (2.15) and (2.18), λu ≥ −cw from (2.16) and
(2.19), and λs − λu ≤ cr from (2.17) and (2.20).

Equations (2.21)–(2.22) represent optimal co-state transitions, and (2.23)–
(2.24) are complementary-slackness conditions for the state variables:

λ̇s = αλs − ∂L

∂ys
= αλs + hs − k1 (2.21)

λ̇u = αλu − ∂L

∂yu
= αλu + hu − k2 (2.22)

k1 ≥ 0 k1 · y∗
s = 0 (2.23)

k2 ≥ 0 k2 · y∗
u = 0. (2.24)

Conditions (2.21)–(2.22) together with (2.23)–(2.24) imply that if serviceables
inventory is positive (therefore k1 = 0), the marginal increase of the value of a
serviceables item equals interest on the current value which would be realized
by selling the item plus the serviceables out-of-pocket holding cost rate and if
recoverables inventory is positive (k2 = 0), the increase of the corresponding
value equals the sum of interests to be paid on the current value and the
recoverables out-of-pocket holding cost rate.

Now we address times where above conditions might not hold and where
adjoints may be discontinuous, i.e. where jumps in λs or λu and in the Hamil-
tonian occur. At junction points where a state constraint is binding or it
reaches (entry time), leaves (exit time), or just touches (contact time) the
boundary, e.g. y∗

s = 0, there can be jumps in λs at time points θs ∈ Θs of
height ηs(θs) such that

λs(θs
−) = λs(θs

+) + ηs(θs) (2.25)

where ηs(θs) ≥ 0 and ηs(θs) · y∗
s(θs) = 0.

The same holds for time points θu ∈ Θu with y∗
u = 0

λu(θu
−) = λu(θu

+) + ηu(θu) (2.26)

where ηu(θu) ≥ 0 and ηu(θu) · y∗
u(θu) = 0.

Note that only downward jumps are possible for λs and λu.
Using the necessary conditions described in this section, we can deduce the

structure of the optimal solution, which is done in the following subsection.
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2.3.3 The Structure of an Optimal Solution

The trajectory of optimal decisions (p∗, r∗, w∗) is determined by the devel-
opment of the state of the system (consisting of optimal values for state and
co-state variables). Especially, the control policy can be given by simple rules
which depend on whether a state restriction is binding or not. We therefore
distinguish between four different cases with respect to their serviceables and
recoverables inventory status. Where necessary, cases are further subdivided,
if different control policies are applicable. As a result, we provide optimal de-
cisions within each of the distinguished (sub-)cases and other required prop-
erties concerning co-states and demand/return rate developments. Since, in
general, none of the cases will be optimal for the entire planning horizon, the
question of under which circumstances to enter or to leave a certain case has to
be answered as well, which will be discussed later. Thus, the following propo-
sitions should provide optimal decisions within an interval of the respective
case and given that one does not switch into another case. In the remainder,
let θe,i and θx,i denote the entry and exit time of a Case i interval.

Proposition 2.2 (Optimal decisions in Case 1 intervals).
If both, serviceables and recoverables inventory are positive (y∗

s > 0, y∗
u > 0),

no items are produced (p∗ = 0), remanufactured (r∗ = 0), or disposed of
(w∗ = 0).

Under linear cost functions and positive serviceables inventory (to satisfy de-
mand), holding costs can be saved by postponing production to a point in
time where inventory is depleted. Remanufacturing cannot be optimal be-
cause recoverables holding cost would be substituted by higher holding cost
for serviceables. Disposal cannot be optimal because if decisions before t were
optimal, items held in the recoverables inventory could have been disposed
of in the past realizing recoverables holding cost savings. Applying optimal
decisions, the state variables develop as follows

ẏs = −d < 0 and ẏu = u > 0. (2.27)

In a Case 1 interval, the adjoint variables increase (from (2.21) and (2.22))
with rates

λ̇s = αλs + hs and λ̇u = αλu + hu (2.28)

and therefore by assuming the interval to start at θe,1, solving above first
order differential equations (2.28) yields the values of stored serviceables and
recoverables

λs(t) =

(
λs(θ

+
e,1) +

hs

α

)
eα(t−θe) − hs

α
(2.29)

λu(t) =

(
λu(θ+

e,1) +
hu

α

)
eα(t−θe) − hu

α
(2.30)
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where λs(θ
+
e,1), λu(θ+

e,1) have to be determined later. Optimal decisions in Case
1 intervals imply the following limitations on the co-states which follow from
(2.12)-(2.14)

λs < cp, λs − λu < cr, and λu > −cw. (2.31)

Proposition 2.3 (Optimal decisions in Case 2 intervals).
If serviceables inventory is zero and recoverables inventory is positive (y∗

s = 0,
y∗

u > 0), the optimal policy is not to produce (p∗ = 0) and not to dispose
(w∗ = 0). The remanufacturing rate equals the demand rate (r∗ = d).

Under zero serviceables and positive recoverables inventory, demand is satis-
fied from remanufacturing only. Disposal is not optimal for the same reason
given for Case 1. Thus, co-states are limited by the following conditions

λs = λu + cr and − cw < λu < cp − cr. (2.32)

In a Case 2 interval starting at θe,2, both co-states rise at the same rate

λ̇s = λ̇u = αλu + hu, (2.33)

and the adjoint variables (from (2.16) and (2.22)) are given by

λs(t) = λu(t) + cr, (2.34)

λu(t) =

(
λu(θ+

e,2) +
hu

α

)
eα(t−θe,2) − hu

α
. (2.35)

The recoverables inventory develops according to

ẏu = u − d, (2.36)

where the direction of this change depends on the relation of demand and
return rate.

Proposition 2.4 (Optimal decisions in Case 3 intervals).
If serviceables inventory is positive and recoverables inventory is zero (y∗

s > 0,
y∗

u = 0), the optimal policy is not to produce (p∗ = 0) and not to remanufacture
(r∗ = 0). All returns are disposed of (w∗ = u).

Production cannot be optimal under positive serviceables inventory since hold-
ing cost can be saved by postponing production until inventory becomes zero.
For the same reason, remanufacturing cannot occur as long as no costs can
be saved by shipping recoverables to serviceables inventory. Collecting returns
instead of disposing of them implies to terminate Case 3 and to move to Case
1.

In a Case 3 interval starting at θe,3, the value of a serviceables item is
restricted by

λs < cr − cw, (2.37)
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and it increases with rate

λ̇s = αλs + hs, (2.38)

while the value of an item put into the recoverables inventory stays constant
at −cw since an additional return must be disposed of. The adjoint variables
(from (2.17) and (2.21)) are

λs(t) =

(
λs(θ

+
e ) +

hs

α

)
eα(t−θ+

e ) − hs

α
, λu(t) = −cw. (2.39)

As in Case 1, the serviceables stock must decrease, since production and re-
manufacturing do not take place, i.e.

ẏs = −d < 0. (2.40)

Proposition 2.5 (Optimal decisions in Case 4 intervals).
If serviceables and recoverables inventories are zero (y∗

s = 0, y∗
u = 0), optimal

decisions depend on how demand relates to the return rate and two subcases
can be distinguished:
Subcase 4(1) ⇔ d ≤ u
Demand is satisfied completely by remanufacturing returns (r∗ = d) and excess
returns are disposed of (w∗ = u − d). No items are produced (p∗ = 0).
Subcase 4(2) ⇔ u < d
All returns are remanufactured (r∗ = u) and the missing items are produced
(p∗ = d − u). No items are disposed of (w∗ = 0).

The case of zero inventories is characterized by demand and return syn-
chronized activities. In absence of inventory holding cost, simultaneous pro-
duction and disposal is suboptimal because of the general recovery advantage
assumption. Situations with excess demand require production, while situa-
tions with excess returns require disposal.

With zero inventories, the co-states can be interpreted as financial im-
plications of an additional return (λu) or additional demand (λs). If returns
exceed the demand rate (d(t) ≤ u(t)), the adjoint variables (from (2.16) and
(2.17)) are

λs(t) = cr − cw, λu(t) = −cw, (2.41)

i.e. an additional demand unit would be satisfied from remanufacturing a
returned unit which would have otherwise been disposed of, whereas another
returned item has to be disposed of because it can neither be stored nor
remanufactured.

For u(t) < d(t) we find (from (2.15) and (2.16))

λs(t) = cp, λu(t) = cp − cr. (2.42)

Since there are not enough returns available to satisfy demand completely,
demand for another item is satisfied by additional production, while an addi-
tional return could be used to replace production by remanufacturing.

The main results of the four cases are summarized in Table 2.1.
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Table 2.1. Main results of optimal cases in the basic model.

p∗ r∗ w∗ ẏs ẏu λs λ̇s λu λ̇u

Case 1: ys > 0, yu > 0

0 0 0 −d u < cp αλs + hs −cw < αλu + hu

Case 2: ys = 0, yu > 0

0 d 0 0 u − d λu + cr αλu + hu −cw < αλu + hu

< cp − cr

Case 3: ys > 0, yu = 0

0 0 u −d 0 < cr − cw αλs + hs −cw 0

Case 4: ys = 0, yu = 0

(1) (d ≤ u) 0 d u − d 0 0 cr − cw 0 −cw 0
(2) (u < d) d − u u 0 0 0 cp 0 cp − cr 0

Case 4 generalized: p∗ = max{d − r∗, 0}, r∗ = min{u, d}, w∗ = max{u − r∗, 0}

2.3.4 Optimal Transitions Between Cases and Subcases

After determining the optimal production, remanufacturing, and disposal pol-
icy for each of the four inventory situations it is necessary to derive conditions
for the possible order of different intervals. First, this order is derived from
inventory non-negativity constraints which may be binding. Second, a tran-
sition from one case to another can be necessary in order to maximize the
Hamiltonian, i.e. the change is associated with a higher value of the Hamil-
tonian. At this point, it is important to distinguish between two kinds of
possible transitions, namely forced and automatic. An automatic transition
occurs when applying the optimal control rule for the current case leads to
a transition to another case. For instance, the serviceables inventory running
empty would necessitate an automatic transition from Case 1 to Case 2. In
contrast to this a forced transition is result of a decision. This happens when
inventory is build up in anticipation of an impeding use.

There is a relation between the kind of transition and the co-state variables
λs and λu because some transitions can only occur if the co-state variables are
not continuous. These transitions are further called discontinuous as opposed
to continuous case changes. For this reason, it is necessary to investigate the
continuity of the adjoints.

Proposition 2.6. λs and λu are continuous, i.e. jump parameters ηs and ηu

vanish everywhere, except at time points θ ∈ Θ where ys(θ) = yu(θ) = 0 and
u(θ) = d(θ) holds.

Proposition 2.6 implies that any transition between cases with the excep-
tion of transitions from and to (and within) Case 4 intervals must be contin-
uous w.r.t. the co-states. If it is not, from (2.25) and (2.26) we know that the
co-states must fall at the jump point. This immediately excludes transitions
from Case 4(1) to Case 4(2).
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Corollary 2.1. Within Case 4 Subcase 4(2) is followed by Subcase 4(1). This
automatic and discontinuous transition requires demand to equal the return
rate. A transition in the opposite direction is not possible.

From the optimal decisions in Case 1 and Case 3 intervals it follows, that
it is not possible to produce or to remanufacture an amount that exceeds
current demand. Thus, at any time t where ys(t) > 0 holds, the inventory
level must decrease, i.e. ẏs(t) = −d(t) ≤ 0.

Corollary 2.2. It is never optimal to build up a serviceables inventory.

Corollary 2.2 excludes any transition from Cases 2 or 4 to 1 or 3. Further, the
optimal policy in Case 1 requires that this case must terminate in a Case 2
interval. Transitions from Case 1 to Cases 3 or 4 are therefore not possible.

Corollary 2.3. A Case 1 interval automatically and continuously terminates
in another of Case 2.

A direct transition from a Case 3 (ys > 0, yu = 0) to a Case 2 (ys =
0, yu > 0) interval is not possible because there must be a time of Case 4
(ys = 0, yu = 0) between Case 3 and 2. This leaves two possible transitions
at the end of a Case 3 interval, as stated in the following corollary.

Corollary 2.4. There exist two types of transitions starting at a Case 3 in-
terval. A continuous and automatic transition to Case 4(1) occurs when the
serviceables inventory is depleted, and a forced and continuous transition to
Case 1 when a decision is made to stop disposing of the returns.

It remains to be seen which transitions are possible between Case 2 and
Case 4 intervals. Here, we have 4 possibilities as stated in the following corol-
lary.

Corollary 2.5. In order to build up recoverables inventory, a forced transition
from Case 4 to Case 2 is necessary. This can happen either continuously
(starting in Subcase 4(1)) or discontinuously (starting in Subcase 4(2)).
When the recoverables inventory is depleted, an automatic transition from
Case 2 to Case 4 takes place. This can be either continuous (terminating in
Subcase 4(2)) or discontinuous (terminating in Subcase 4(1)).

Figure 2.3 summarizes all possible transitions.
From Corollary 2.2 it follows that only in the model with initial inventories

Cases 1 and 3 appear in an optimal time path. Therefore, Cases 2 and 4 and
transitions between them (highlighted through a grey shaded area in Figure
2.3) build the focal point of the model and are examined further in the next
section.
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Fig. 2.3. Optimal case transitions in the basic model

2.3.5 Properties of Optimal Return Collection Intervals

After showing which transitions are possible in an optimal solution the ques-
tion arises at what time these transitions take place. In case of automatic
transitions the changes are triggered by following the optimal control policy
within a case. But in case of a forced transition the decision maker has to de-
termine the optimal switching time. Therefore, the problem has to be solved
to determine the optimal entry point θe,2 and the optimal exit point θx,2 of a
Case 2 interval. Unfortunately, it is not possible to give an analytical expres-
sion for these points, but we can describe the optimal Case 2 intervals and
we can provide some properties, especially their optimal entry and exit time.
Based on these results an algorithm can be constructed in order to compute
these values numerically.

The first property results from the fact that only downward jumps of
λs and λu are permitted inside Case 4 intervals. This leads to the following
corollary.

Corollary 2.6 (Location Property).
Let θ denote a time point where d(θ) = u(θ). If returns cross demand from
above, i.e. there exist ε1 > 0 and ε2 > 0 with d(θ − ε1) < u(θ − ε1) and
d(θ + ε2) > u(θ + ε2) as well as ε1 + ε2 being sufficiently small, then it
is always optimal to have a positive recoverables inventory at (and around)
time θ (yu(θ) > 0).

Corollary 2.6 follows immediately from the cost advantage of holding a
returned item for an infinitesimal (sufficiently small) time and identifies the
time where returns (that otherwise would be disposed of) can be saved be-
fore θ and used with higher benefits after θ by remanufacturing it instead of
producing a new item. Considering that it might only be beneficial to store
returns for a limited time (this aspect is discussed below in more detail), there
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Fig. 2.4. Example of a Case 2 interval which has maximal length.

might be a special case, that returns equal demands for some period. In this
case, we have to ensure that this period does not exceed the maximum time
for which it is beneficial to store returns.

In the following the maximal length of a Case 2 interval is investigated.
Inside this case, a lower bound for the value of a returned item λu is given
by −cw and an upper bound is cp − cr. Due to the increasing co-state λu

and its continuity, inserting these minimal and maximal values into the co-
state development equation within a Case 2 interval (2.35) yields the following
condition which is illustrated in Figure 2.4.

Proposition 2.7 (Maximal Length Property).
The maximal length τu of a Case 2 interval I = (θe,2, θx,2) is given by

(θx,2 − θe,2) ≤ τu :=
1

α
ln

(
α(cp − cr) + hu

−αcw + hu

)
.

The Maximal Length Property represents a marginal criterion for collecting
one returned item which can be interpreted as follows. An additionally col-
lected return at θe,2 is needed for reuse at time θx,2. Therefore, it will be
stocked for a time interval of length θx,2 − θe,2. This can only be optimal if
the corresponding holding costs do not exceed the recovery cost advantage
and also accounting for discounting and different time values of the respec-
tive payments. τu will further be referred to as Maximal Holding Time (of
returns).

It can easily be shown, that

lim
α→0

τu =
cp + cw − cr

hu
(2.43)

holds which constitutes the maximal length property as shown by Minner
and Kleber (2001) for the undiscounted case. In the absence of time value
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considerations, an item will be stored until there is equality of holding costs
hu · τu and the direct recovery cost advantage cp + cw − cr.

The question arises if all optimal Case 2 intervals have maximal length
or when such an interval does not have maximal length. Before we answer
this question we provide another property of the optimal Case 2 intervals.
Obviously, at the beginning and the end of a Case 2 interval the recoverables
inventory is empty. Therefore, cumulative returns and cumulative remanufac-
turing rate over the entire time interval have to be equal. Further, during the
time interval, cumulative returns have to exceed cumulative remanufacturing
rates in order to remain in Case 2. This is intuitively clear and leads to the
following proposition (presented without proof).

Proposition 2.8 (Inventory Conditions).
Let I = (θe,2, θx,2) be an open time interval where yu > 0 and yu(θe,2) =
yu(θx,2) = 0. Then,

(i) cumulative demand equals cumulative returns over the whole interval

∫ θx,2

θe,2

(d(t) − u(t))dt = 0, (2.44)

(ii)at any point θ ∈ I, cumulative returns must be larger than cumulative
demand ∫ θ

θe,2

(u(t) − d(t))dt > 0. (2.45)

As an implication of Proposition 2.8 it must hold that at θe,2, the return rate
must not be smaller than the demand rate in order to start collecting returns
and at θx,2, the opposite must hold.

In order for a feasible solution which holds under above inventory condi-
tions, lengths of optimal Case 2 intervals may be smaller than the maximal
length given in Proposition 2.7. There are two reasons for this. First, it is
possible that there are not enough returns available to save further units for
later remanufacturing. In such cases the interval starts at a point in time
where returns equal demand rate or at the begin of the planning period (at
time zero). Otherwise, it would have been possible to start collecting returns
earlier and thereby, increasing the Case 2 interval length. A second reason for
non-maximal interval lengths is no excess demands. Then, the Case 2 interval
must end at a point where returns equal demands or at the planning hori-
zon T . If this is not the case, additional demand could have been satisfied by
extending the Case 2 interval.

Proposition 2.9. If the interval I does not reach its maximum length, i.e. if
(θx,2 − θe,2) < τu holds, and if θe,2 > 0 and θx,2 < T , then
(i) u(θe,2) = d(θe,2) or
(ii) u(θx,2) = d(θx,2) must hold.
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Up to now we have shown how given optimal entry and exit points of Case 2
intervals can be characterized. How these results can be used in order to de-
termine the optimal entry and exit points of optimal Case 2 intervals (without
having this information) is shown in the following section where an algorithm
for this problem is provided.

2.3.6 Solution Algorithm

The Cases 2 and 4 build the focal point of the model with zero initial inven-
tories, because from Proposition 2.2 it follows that Cases 1 and 3 will never
appear in an optimal solution. From the initial and terminal conditions we
know that at both points, t = 0 and t = T , Case 4 must apply. Note that
if there exists no time where Corollary 2.6 holds, it is never optimal to have
a positive recoverables inventory. For constructing an optimal time path we
suggest a forward algorithm that proceeds as follows.

Algorithm 2.1

Step 1
Identify all K time points for which Corollary 2.6 holds.
let θk denote the intersection points k = 1, ..., K.

Step 2
let k := 1.
while k ≤ K do

Apply Propositions 2.7, 2.8, and 2.9 to determine the corresponding
interval Ik = (θk

e,2, θ
k
x,2):

let θk
e,2 = θk

x,2 = θk. Decrease θk
e,2 and increase θk

x,2 so that
Proposition 2.8 always holds until one of the terminating con-
ditions given in Propositions 2.7 or 2.9 (i) or (ii) are achieved,
θk

e,2 = 0 or θk
x,2 = T .

let k := k + 1.
end while

Step 3

while there exist two consecutive intervals with θk
x,2 = θj

e,2, j > k and

θj
x,2 − θk

e,2 < τu do

let θk
x,2 := θj

x,2. Delete point j from the set of construction intervals.

Decrease θk
e,2 and increase θk

x,2 so that Proposition 2.8 always holds
until one of the terminating conditions given in Propositions 2.7 or
2.9 (i) or (ii) are achieved or θk

e,2 = 0 or θk
x,2 = T .

end while
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Fig. 2.5. Example for applying the forward algorithm

The following example with a constant return rate and a seasonal demand
pattern as depicted in Figure 2.5 is used to illustrate Algorithm 2.1. First, Step
1 identifies two intersection points k = 1, 2 where returns intersect demands
from above. According to Step 2, the collection intervals (θ1

e,2, θ
1
x,2) for k =

1 and (θ2
e,2, θ

2
x,2) for k = 2 are extended until one of the stopping criteria

holds. In this case, the interval construction ends with criterion (i) and (ii)
from Proposition 2.9 because at the time where demands intersect returns
from above, the first interval cannot be extended to the right and the second
interval cannot be extended to the left without violating the integral condition.
Note that (in general) if we assume a rather small value for τu, that both
interval constructions may not reach this point and the interval construction
would terminate because of maximal length reached. Because this example
also covers the special situation dealt with by Step 3, we find two intervals
that directly follow each other. Let us assume that the cumulative length of
both intervals is still smaller than τu. Then, a joint interval is constructed by
extending the interval to θ̃1

e,2 on the left and to θ̃1
x,2 on the right. Here, it is

assumed that the construction ends because maximum length of a collection
interval is reached, i.e. θ̃1

x,2 − θ̃1
e,2 = τu.
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2.4 Dealing with Initial Inventories

The main difference that arises from allowing for initial stocks is that the
jump variable w0 does not necessarily vanish in problem (2.9). w0 stands for a
disposal quantity (impulse) of unwanted returns which immediately decreases
recoverables stock by a quantity (jump). This scenario requires the generalized
maximum principle that allows for jumps in state variables, i.e. in our case yu.
Since we know that a jump in yu is possible only at time zero, the following
necessary conditions have to be added (see Feichtinger and Hartl (1986)).

Define the impulse Hamiltonian function H0 (being valid at time zero)

H0(ys(0), yu(0−), w0, λu(0)) = −cw · w0 − λu(0) · w0. (2.46)

Due to its linearity, (2.46) is maximized if (omitting time indices)

w∗
0 =

{
0 λu > −cw

singular λu ≤ −cw.
(2.47)

Since the states do not appear in the impulse Hamiltonian the adjoints do not
jump at time zero, i.e. λu(0−) = λu(0+). It is clear that w0 vanishes if the
value of stored returns exceeds (negative) payments (‘revenue’) for disposal
(λu > −cw). This implies that the disposal rate equals zero. Otherwise, the
height of the jump w0 must be determined by searching for a desired inventory
level ỹ0

u followed by setting the optimal disposal quantity equal to w∗
0 =

max{0, y0
u − ỹ0

u}.
Proposition 2.10. The desired initial recoverables inventory level ỹ0

u is given
by the net demand during a time interval [0, θu]

ỹ0
u = max

{
0,

∫ θu

0

(d(t) − u(t))dt − y0
s

}
.

θu ≤ τu is the largest value for which holds at any point θ < θu cumulative
demand exceeds cumulative returns∫ θu

θ

(d(t) − u(t))dt ≥ 0. (2.48)

Except for the trivial case ys ≥ ∫ T

0
d(t)dt, a starting interval with ys > 0

will always (at time θs ∈ (0, T )) terminate in an interval with ys = 0 after
using all serviceables inventory to satisfy demand, i.e.

θs :

∫ θs

0

d(t)dt = y0
s . (2.49)

Let us consider the four cases outlined in Section 2.3.3 as initial conditions
(after disposing of quantity w∗

0). Case 4 initial conditions y0
s = ỹ0

u = 0 lead
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to the results derived before. If the system starts in Case 1 (y0
s > 0, ỹ0

u > 0)
it will turn to Case 2 (ys = 0, yu > 0) at some time θs and finally (at time
θu > θs) terminate automatically into a Case 4 interval. For a starting Case
2 interval, the same holds with θs = 0.

The most interesting case is a starting interval of Case 3 where y0
s > 0,

ỹ0
u = 0 holds. While the above starting inventory (except Case 4) configura-

tion always terminates with both state variable constraints binding, the end
of a Case 3 starting interval can also be driven by a cost advantage of col-
lecting returns. The alternatives are (1) to continue with the Case 3 policy
of satisfying demand from serviceables inventory and to dispose of all returns
and (2) switch to Case 1 and start collecting excess returns for future recov-
ery within a subsequent Case 2 interval. The conditions for switching from
Case 3 to Case 1 can be determined by applying the following modification of
Proposition 2.8 (presented without proof).

Proposition 2.11. Let I = (θe,1, θx,2) be an open time interval (of Case 1
immediately followed by Case 2) where yu > 0 and yu(θe,1) = yu(θx,2) = 0.
Then,

(i) cumulative demand equals the sum of cumulative returns over the whole
interval plus serviceables inventory at θe,1∫ θx,2

θe,1

(d(t) − u(t))dt − ys(θe,1) = 0,

(ii)at any point θ ∈ I the sum of cumulative returns and serviceables inventory
at θe,1 must be larger than cumulative demand

ys(θe,1) +

∫ θ

θe,1

(u(t) − d(t))dt > 0.

After collecting recoverables in a Case 1 time interval, these stocks are used
to remanufacture for demand in a Case 2 interval with positive initial recov-
erables inventory.

The solution algorithm changes in the following way. First, one determines
the desired initial recoverables inventory ỹ0

u and thus obtains the initial dis-
posal quantity. Considering that until some time point θs the demand can be
satisfied by using the serviceables inventory, we define the adjusted demand
rate

d̃(t) =

{
0 if t ≤ θs

d(t) otherwise.
(2.50)

Afterwards, one continues with the proposed solution algorithm using ỹ0
s = 0,

ỹ0
u, i.e. the transformed initial conditions and d̃ are used. Until time θu, we

always have a time interval with yu > 0. Note, that due to the possible jump
in the demand rate at time θs, the necessary conditions do not hold at this
point, which can lead to a jump in the adjoint variables. At time θs it is
therefore necessary to check whether d̃ jumps above the return rate which
implies that it is optimal to have a recoverables inventory at this time.
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2.5 Numerical Examples

In this section the results of the basic model are illustrated by using three
examples (Examples 2.1-2.3) based on the demand/return scenario introduced
in Section 2.2. According to the Location Property, intervals with positive
recoverables inventory will be located around time points θk ∈ {5.92, 12.21}.
All three examples differ with respect to initial stock levels in both serviceables
and recoverables inventories as shown in Table 2.2. Cash flow parameters are
set as follows: cp = 2, cr = 1, cw = 1, hu = 1, and α = 0.1. Therefore, a Case
2 interval length will not exceed 2.00 units time.

Table 2.2. Initial inventory levels in Examples 2.1-2.3

Example y0
s y0

u

2.1 0 0
2.2 1 1
2.3 2 1

For now, we consider the case of zero initial inventories (Example 2.1). Us-
ing the solution algorithm shown in Section 2.3.6 the following two collection
intervals are determined: [θ1

e,2, θ
1
x,2] = [4.85, 6.85] and [θ2

e,2, θ
2
x,2] = [11.82, T ].

The first interval has maximum length, but the second one is shorter because
it reaches the end of the planning horizon where no further demand is avail-
able. Figure 2.6 shows optimal Case 2 intervals and the optimal development
of the value of returns λu. The resulting inventory levels are depicted in Figure
2.7.

Outside optimal Case 2 intervals demand is satisfied either from remanu-
facturing and production if demand exceeds the return rate, or from remanu-
facturing alone if the opposite applies. In the first case, an additional return
would have a value of cp − cr = 1 since it could be used immediately to forego
production. In the second case, the additional return ought to be disposed
of, thus having a value of −cw = −1. Inside Case 2 intervals demand is met
by remanufacturing currently or previously collected returns, which both are
valued equally. The value of an additional (marginal) return increases with
time, since the time it spends in inventory until usage decreases and thus, cor-
responding out-of-pocket holding costs and opportunity costs would reduce.
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Fig. 2.6. Optimal Case 2 intervals and co-state λu development in Example 2.1.

�

� � �

� � �

� � �

� � �

� � � � � � � � �

� �

Fig. 2.7. Optimal inventory levels in Example 2.1.
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Let us now presume two scenarios with positive initial inventory levels for
serviceables and recoverables. Under such situations there are two additional
questions to be answered. First, it has to be determined whether to keep all
recoverables available at time zero or to dispose of a certain quantity w0 and
secondly, we want to know how operative decisions change.

In Example 2.2 where y0
s = 1, y0

u = 1, the serviceables inventory is depleted
first which completes at time θs = 0.83. Thus, the desired recoverables inven-
tory level at time zero (which can be used up within economically reasonable
time) amounts to ỹ0

u = 0.81. A quantity of w0 = 0.19 is therefore disposed of
at time zero. The remaining returns are kept and further accumulated using
incoming returns until after θs, upon which recoverables inventory is reduced
by filling all demand from remanufacturing. In other words, at θs a transi-
tion from a Case 1 to a Case 2 interval occurs. The latter finishes at time
θ0

x,2 = τu = 2 as the inventory runs empty. Then, the same policy is optimal
as described in Example 2.1. Optimal Case 1 and 2 intervals as well as the
changed evolution of the value of returns (λu) can be seen from Figure 2.8.
The corresponding serviceables and recoverables inventory levels are depicted
in Figure 2.9.

Since in Example 2.3 initial serviceables stock is higher than in the previous
example, it is not used up before θs = 1.52. It is possible to acquire sufficient
returns during this initial period making it superfluous to have any returns
available at time zero (ỹ0

u = 0). All initial returns are disposed of (w0 = 1). The
system therefore starts in a Case 3 situation. Under these circumstances one
wants to know whether to have a positive recoverables inventory at θs and at
what point to start collecting returns, i.e. when to switch from Case 3 to Case
1. Since after θs demand surpasses currently available returns, stockkeeping
of returns is profitable and it starts at time θ0

e,2 = 0.11. At θs a transition
from a Case 1 to a Case 2 interval takes place, and since stock-keeping of
returns here yields maximal length at θ0

x,2 = 2.11 the recoverables inventory
is depleted. As in the previous example, subsequent optimal decisions follow
the same pattern as in Example 2.1, being depicted on top of optimal co-
state developments in Figure 2.10. The changed stock levels are to be found
in Figure 2.11.
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Fig. 2.8. Optimal Case 1/2 intervals and co-state λu development in Example 2.2.
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Fig. 2.9. Optimal inventory levels in Example 2.2.
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Fig. 2.10. Optimal policies and co-state λu development in Example 2.3.
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Fig. 2.11. Optimal inventory levels in Example 2.3.
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2.6 Comparison of Holding Cost and Discounted Cash

Flow

In inventory control Holding Cost (HC, also called Average Cost, AC, for
cyclic infinite horizon problems) models often are used as approximation to
the as correct recognized Discounted Cash Flow (DCF) approach because
they are easier to solve. It has been shown for a number of models (see, e.g.,
Grubbström (1980), Corbey et al. (1999)) that the HC framework leads to
almost the same optimal decision as the DCF approach when choosing the
HC holding cost rate appropriately. While in DCF models actual cash flows
are considered and holding an item in inventory causes out-of-pocket-costs
only, the cost oriented HC approach also includes the opportunity costs of
capital tied up in stock. Thus, valuation of inventories becomes crucial in
order to find almost correct inventory control decisions.

A lot of effort has been spent in order to determine the ‘right’ holding
cost rate and to correctly value stored items (see, e.g., Teunter et al. (2000),
Teunter and van der Laan (2004)). Although there exists general criticism of
such undertaking (see, e.g., Fleischmann (2001a)), the deterministic frame-
work presented above can also be used to find a holding cost rate that leads
to the same results when comparing above DCF and the corresponding total
undiscounted costs solutions provided by Minner and Kleber (2001). Since
there is no motivation for having a positive stock in the serviceables inventory
in this model, the results are restricted to the holding cost rate for recover-
ables. In contrast to the usual approach where the HC objective constitutes
a first order approximation of the respective DCF objective (Fleischmann
(2001a)), in the sequel we deal with properties of the respective optimal so-
lutions.

2.6.1 Holding Cost Results

A main result from solving both discounted and undiscounted models is that
the value of stored returns as expressed by the co-state λu is not constant
over time, and therefore no unequivocal value and with it no ‘right’ holding
cost rate exists. However, given identical parameters for all other operational
cash flows and costs a recoverables holding cost rate hHC

u can be determined
leading to the same results as are obtained in the DCF approach with out-
of-pocket holding cost rate hDCF

u by valuing the returns with some kind of
average value.

When solving the HC or the corresponding DCF problem a difference
occurs in setting the holding time, i.e. the maximum length an interval with
positive recoverables inventory can possibly have. Since α vanishes in (2.22),
the co-state λu rises linearly with rate λ̇u = hu in a Case 2 interval where
yu > 0. Thus, the Maximal Holding Time in the HC case is given by (see
Minner and Kleber (2001), compare with (2.43))
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τHC
u =

cp + cw − cr

hHC
u

, (2.51)

and in the DCF case it is (see Proposition 2.7)

τDCF
u =

1

α
ln

(
α(cp − cr) + hDCF

u

−αcw + hDCF
u

)
. (2.52)

If τDCF
u = τHC

u , both approaches lead to the same solution.
The difference between both holding cost rates can be modeled as a mark-

up mh = hHC
u − hDCF

u . In the following the precise mark-up for the recov-
erables holding cost rate as well as two approximations for small values of α
will be determined. Several numerical examples are used in order to assess the
quality of the approximations.

2.6.2 A Comparison of Different Approximations

Now, let us determine the value of the mark-up mh that assures

τHC
u = τDCF

u (2.53)

by assuming identity of all parameters except for the holding cost rates. Fur-
ther, it is required that out-of-pocket holding costs exceed costs from post-
poning disposal (hDCF

u > αcw) in order to assure a finite value of τDCF
u .

For instance this is always true in situations where disposal earns a salvage
revenue (cw < 0).

Exact solution. For finite values of τDCF
u , solving equation (2.53) for mh gives

the exact value of the mark-up

mh =
α(cp + cw − cr)

ln
(

α(cp−cr)+hDCF
u

−αcw+hDCF
u

) − hDCF
u , (2.54)

for which two approximations are elaborated.

Approximation 1. Replacing the logarithm term in (2.54) by its first order
Taylor series approximation (ln x ≈ x− 1) which is valid for small values of α
yields

mh ≈ α(cp + cw − cr)
α(cp−cr)+hDCF

u

−αcw+hDCF
u

− 1
− hDCF

u

=
α(cp + cw − cr)

α(cp−cr)+hDCF
u +αcw−hDCF

u

−αcw+hDCF
u

− hDCF
u = −αcw.

A nearly optimal HC recoverables holding cost rate is given by out of pocket
costs, reduced by the interests on the disposal cost rate, i.e. hDCF

u − αcw .
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This value can be interpreted as follows. Holding costs only play a role during
intervals where the recoverables inventory is positive. If an additional return
arrives during such a collection interval, there are two options, it can be either
be stocked (which will be done in order to shorten the collection interval) or
it can be disposed of at cost cw. Therefore, the value of this item is given by
the opportunity cost saved by storing it, i.e. the negative disposal cost rate.
Holding an item becomes cheaper by (saved) interests on disposal −αcw or
more expensive by (lost) interests on the salvage value.

Approximation 2. A first order MacLaurin series approach applied to the
whole term (2.54) yields the following approximation being valid for small
values of α

mh = α

(
cp − cr

2
+

−cw

2

)
+ O(α2). (2.55)

For a complete derivation see page 44. In order to obtain results similar to the
DCF solution, the value of a returned item should be set to the unweighted
average of the difference of direct production and remanufacturing costs cp−cr

and the opportunity cost saved by not disposing the item −cw. This makes
sense if one considers that mh has been derived by using a marginal criterion
regarding the first item to be put on stock. The value of this (marginal)
returned item (represented by the co-state variable) continuously increases
during the interval where it is kept on inventory and for small values of α
(no discounting) this movement is approximately linear. Since the minimum
value of the stored return is given by −cw (otherwise it would be disposed of)
and as a maximum cp − cr may be reached (otherwise production would be
preferred), above average value results.

Comparison. It remains to be seen whether these approximations perform well
or not. In order to answer this question, optimal and approximated holding
times are plotted against the discount rate using a number of different scenar-
ios. These were derived by using a factorial design that helps to find out how
the parameters interact with each other. Since unit production and remanufac-
turing costs only appear as a difference in all relevant terms, these parameters
have been fixed in such a way that the difference (cp − cr) ∈ {−1, 1, 3, 5}. The
disposal parameter uses the following values in order to account for high, zero,
and negative (i.e. positive salvage revenue) per unit cost rates cw ∈ {−2, 0, 2}.
Finally, we considered two levels (high and low) for the out-of-pocket holding
cost rate hDCF

u ∈ {0.1, 1}. By excluding invalid parameter combinations this
design leads to eighteen different scenarios. Cost parameters of the examined
scenarios as well as the maximal allowed discount rate αmax for a finite Max-
imal Holding Time and average values of the recoverables on stock according
to Approximations 1 and 2 can be found in Table 2.3.

In order to gain insight into the quality of the approximations, a maximum
permissible discount rate for a given approximation error in the holding time is
calculated for maximum relative errors of 1%, 10%, 20% and 50%, see Tables
2.4 and 2.5.
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Table 2.3. Cost parameters in examined scenarios.

Scenario cp − cr cw hDCF
u αmax −cw

cp−cr

2
− cw

2

1 -1 2 0.1 .05 -2 -1.5
2 -1 2 1 .5 -2 -1.5

3 1 0 0.1 ∞ 0 .5
4 1 0 1 ∞ 0 .5
5 1 2 0.1 .05 -2 -.5
6 1 2 1 .5 -2 -.5

7 3 -2 0.1 ∞ 2 2.5
8 3 -2 1 ∞ 2 2.5
9 3 0 0.1 ∞ 0 1.5
10 3 0 1 ∞ 0 1.5
11 3 2 0.1 .05 -2 .5
12 3 2 1 .5 -2 .5

13 5 -2 0.1 ∞ 2 3.5
14 5 -2 1 ∞ 2 3.5
15 5 0 0.1 ∞ 0 2.5
16 5 0 1 ∞ 0 2.5
17 5 2 0.1 .05 -2 1.5
18 5 2 1 .5 -2 1.5

From comparing values in Tables 2.4 and 2.5 it follows that Approximation
2 performs considerably better than Approximation 1 in all scenarios, which
is understandable as it uses a more sophisticated method. Further it can be
stated, that the performance of the preferable Approximation 2 depends on the
parameters in such a way that it tends to perform better under circumstances
that lead to a small (correct) Maximal Holding Time, i.e. for smaller cp − cr,
higher salvage revenues (negative disposal costs) −cw, or higher out-of-pocket
holding cost rates hDCF

u (see e.g. Scenario 8). This result is intuitive, since
a smaller holding time also implies a smaller impact of compound interest.
On the other hand, the approximation should not be used if a high Maximal
Holding Time is expected (Scenario 17).

The first approximation tends to perform better as its valuation of returns
gets closer to that of the second, i.e. where −cw ≈ cp−cr holds (Scenarios 1 to
4, 7 and 8). Although it seems to be (without knowing the technical details)
more intuitive than the second, it should generally not be used.

Our results also show that one has to be very careful when designing
experiments for determining the ‘right’ holding cost rate in more complex
models, which can not be solved analytically, e.g. when stochastic influences
or setup costs are considered. For instance, Teunter et al. (2000) compared five
different reasonable methods for setting the holding cost rates in a model with
stochastic demand and return rates as well as setup costs for manufacturing
and remanufacturing by using simulation methods, but these did not include
valuation methods like that one which we derived by using Approximation 2.
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Table 2.4. Maximum discount rates αmax for different error levels when using
Approximation 1.

Scenario 1% 10% 20% 50%

1 0.0019 0.0146 0.0230 0.0348
2 0.0193 0.1461 0.2297 0.3479

3 0.0020 0.0206 0.0425 0.1144
4 0.0201 0.2065 0.4250 1.1440
5 0.0007 0.0060 0.0110 0.0216
6 0.0066 0.0605 0.1104 0.2163

7 0.0021 0.0352 0.2835 > 100
8 0.0209 0.3517 2.8351 > 100
9 0.0007 0.0069 0.0142 0.0381
10 0.0067 0.0688 0.1417 0.3813
11 0.0004 0.0038 0.0073 0.0157
12 0.0040 0.0381 0.0727 0.1570

13 0.0007 0.0080 0.0198 0.1607
14 0.0068 0.0798 0.1977 1.6069
15 0.0004 0.0041 0.0085 0.0229
16 0.0040 0.0413 0.0850 0.2288
17 0.0003 0.0028 0.0054 0.0123
18 0.0029 0.0279 0.0541 0.1232

Table 2.5. Maximum discount rates αmax for different error levels when using
Approximation 2.

Scenario 1% 10% 20% 50%

1 0.0227 0.0408 0.0454 0.0495
2 0.2274 0.4079 0.4538 0.4945

3 0.0417 0.2214 0.4906 4.5063
4 0.4170 2.2143 4.9064 45.0633
5 0.0109 0.0298 0.0383 0.0484
6 0.1088 0.2981 0.3829 0.4839

7 0.2510 > 100 > 100 > 100
8 2.5103 > 100 > 100 > 100
9 0.0139 0.0738 0.1635 1.5021
10 0.1390 0.7381 1.6355 15.0211
11 0.0071 0.0235 0.0331 0.0474
12 0.0715 0.2349 0.3312 0.4737

13 0.0192 > 100 > 100 > 100
14 0.1925 > 100 > 100 > 100
15 0.0083 0.0443 0.0981 0.9013
16 0.0834 0.4429 0.9813 9.0127
17 0.0053 0.0194 0.0292 0.0464
18 0.0532 0.1938 0.2918 0.4640
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2.7 Managerial Insights

In this chapter, we presented an optimization approach that accounts for
demand and return dynamics in deterministic recovery management under a
linear discounted cost regime. We showed ,that there exist another motivation,
besides of cycle stock, safety, and seasonal stocks, for keeping inventory, which
arises from a dynamic environment. An anticipation stock is used if returns
arrive at times when they can not be used immediately, but are stored in order
to satisfy demand some time later and therefrom realizing a cost advantage.

The model presented allows the determination of return collection and re-
covery time intervals. The optimal control framework seems fairly promising
to investigate several other aspects of reverse logistics. First, the simultane-
ous determination of the adjoint trajectories to serviceables and recoverables
inventories yields a dynamic economic valuation of returned products. Such
value is not simply given by the remanufacturing cost advantage cp + cw − cr

but also must account for holding costs from return to reuse period. The first
return not disposed of in a collection time interval has a value of λu = −cw

because of the assumption that undesired returns cannot be rejected. The last
collected return, which is immediately recovered and sold, has a value equal to
the difference of production and remanufacturing cost rate λu = cp − cr. For
returns being collected and kept in inventory, the respective inventory hold-
ing costs have to be subtracted. This reasoning yields a property regarding a
Maximal Holding Time of returns (τu) which together with inventory condi-
tions was used to construct a forward solution algorithm. Another interesting
implication is that the Maximal Length Property can be used to determine
the least required length of the planning horizon within a rolling planning
environment (see e.g. Inderfurth et al. (2004) for an overview on production
planning for product recovery management). This is due to that fact that only
demand and return information for the next τu periods are needed in order
to answer the question of whether to keep a currently returned item or not.

Further, an optimal way to deal with initial inventories was presented.
Since it was shown that it is never optimal to build up a serviceables inventory,
after depletion of a given initial stock by filling complete demand for a certain
period, production and remanufacturing rates are synchronized with demand
rate, which is always possible in the absence of capacity constraints. Regarding
an initial recoverables stock, a desired initial recoverables inventory level was
determined, which gives the maximum amount of returns that can be used
within (economically) reasonable time. If initial stock exceeds desired stock,
excess returns have to be disposed of.

In order to investigate commonalities and differences of undiscounted cost
(see Minner and Kleber (2001)) and discounted cash flow approach, we com-
pared the results and determined an HC holding cost rate leading to the same
optimal solution as our DCF approach. Using an appropriate approximation
method, this holding cost rate could be separated into out-of-pocket hold-
ing and interest rate based opportunity cost of capital, where the ‘value’ of
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returned products is given as an (unweighted) average of the direct remanu-
facturing advantage cp − cr and the opportunity costs saved by not disposing
of the item −cw.

The assumption of linear unit costs for production, remanufacturing, and
disposal concerns most business practitioners and with appropriate extension
it allows for more insights with respect to capacity aspects and economies of
scale. When explicitly considering capacity constraints, an optimal produc-
tion/inventory policy smoothes demand variations. These aspects are consid-
ered in more detail in Chapter 3. Economies of scale are often justified by cost
degression under learning curve effects, which are discussed in Chapter 4.

2.8 Proofs and Derivations

Proof (Proof of Proposition 2.1).
The proof is divided into three parts. We show that, (i) a production impulse
and (ii) a remanufacturing impulse are never optimal, whereas (iii) a disposal
impulse can be excluded for all t > 0.
(i) Assume that there exists a time point θ where a jump in ys takes place
by an impulse production quantity vp > 0. This quantity is used to satisfy

demands from θ until θ+ω, ω > 0. Therefore, vp =
∫ θ+ω

θ
d(t)dt. The difference

∆NPV(i) between the impulse control strategy and the financial impact that
arise from synchronizing demand with production is given by

∆NPV(i) = e−αθcpvp +
∫ θ+ω

θ e−αths

(
vp − ∫ t

θ d(s)ds
)

dt−∫ θ+ω

θ e−αtcpd(t)dt .

Since

e−αθcpvp − ∫ θ+ω

θ
e−αtcpd(t) dt > e−αθcpvp − e−αθcp

∫ θ+ω

θ
d(t) dt = 0

it follows

∆NPV(i) > hs

∫ θ+ω

θ e−αt
(
vp − ∫ t

θ d(s)ds
)

dt > 0.

Thus, synchronizing demand with production is always superior to impulse
production.
(ii) Assume that there exists a time point θ where an impulse remanufacturing
quantity vr leads to jumps both in ys and yu. Then, the difference between
this strategy and synchronizing demand and remanufacturing rate is

∆NPV(ii) = e−αθcrvr +
∫ θ+ω

θ e−αths

(
vr −

∫ t

θ d(s)ds
)

dt

− ∫ θ+ω

θ
e−αthu

(
vr −

∫ t

θ
d(s)ds

)
dt − ∫ θ+ω

θ
e−αtcrd(t)dt

> (hs − hu)
∫ θ+ω

θ e−αt
(
vr −

∫ t

θ d(s)ds
)

dt,

which is larger than zero because of hu < hs.
(iii) Assume that there exists a time point θ > 0 where an impulse disposal
quantity vw > 0 leads to a jump in yu. Because the return rate is finite, there
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exists a point θ − ω, ω > 0 where yu(θ − ω) > 0. Then, an earlier disposal

w(θ−ω) = min{vw, yu(θ−ω)} saves holding costs of
∫ θ

θ−ω
e−αthuw(θ−ω)dt >

0 and the objective value changes by

∆NPV(iii)= e−α(θ−ω)cww(θ − ω) − ∫ θ

θ−ω
e−αthuw(θ − ω)dt − e−αθcww(θ)

=
(
e−α(θ−ω) − e−αθ

)
cww(θ − ω) − ∫ θ

θ−ω
e−αthuw(θ − ω)dt

=
(
e−α(θ−ω) − e−αθ

)
cww(θ − ω) + hu

α

(
e−αθ − e−α(θ−ω)

)
w(θ−ω)

=
(
e−α(θ−ω) − e−αθ

) (
cw − hu

α

)
w(θ − ω)

NPV(iii) exceeds zero because of assumption (2.6). Disposal activities will
therefore be carried out as soon as possible. Thus, a positive impulse quantity
can only appear at time zero, as no earlier disposal is possible.

Proof (Proof of λ0 = 1).
We only consider the cases λ0 = 0 and λ0 = 1. All other cases can be trans-
formed to the case λ0 = 1 by rescaling of λs and λu. First, let us assume
λ0 = 0. Then, the Lagrangian simplifies to

L(..) = (λs +µ1)p+(λs −λu +µ2)r +(−λu +µ3)w−λsd+λur +k1ys +k2yu,
(2.56)

and necessary conditions (2.15)–(2.17) change to

∂L

∂p
= λs + µ1 = 0, (2.57)

∂L

∂r
= λs − λu + µ2 = 0, (2.58)

∂L

∂w
= −λu + µ3 = 0. (2.59)

From non-negativity of multipliers µ1, µ2, µ3 it follows that

λs ≤ 0, λs − λu ≤ 0, λu ≥ 0.

Condition (λ0, λs, λu) �= 0 for a non-trivial solution requires at least λs or λu

to be different from zero. A positive remanufacturing rate r > 0 would require
λs = λr = 0 which contradicts non-triviality (because of µ2 = 0). Therefore,
remanufacturing cannot take place, which leads to an obviously non-optimal
solution as cp + cw > cr.

Proof (Proof of Proposition 2.2).
From (2.23) and (2.24) it follows that k1 = k2 = 0. Thus, (2.21) and (2.22)
imply

λ̇s = αλs + hs and λ̇u = αλu + hu. (2.60)

p > 0 requires µ1 = 0 in (2.18) which yields λs = cp in (2.15). It follows

that λ̇s = 0 which contradicts (2.60). u > 0 requires µ2 = 0 in (2.19) which
yields λs − λu = cr in (2.16). It follows that λ̇s = λ̇u which contradicts the
assumption that hs > hu. w > 0 requires µ3 = 0 in (2.20) which yields
λu = −cw in (2.17). It follows that λ̇u = 0 which contradicts assumption
(2.8).
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Proof (Proof of Proposition 2.3).
From (2.24) it follows that k2 = 0. Thus, (2.22) implies

λ̇u = αλu + hu. (2.61)

The proof for w∗ = 0 is the same as in Case 1. p > 0 and (simultaneously)
r > 0 requires µ1 = µ2 = 0 from (2.18) and (2.19) which yields λs = cp in

(2.15) and λu = cp − cr in (2.16). It follows that λ̇u = 0 which contradicts
(2.61). In any interval where p > 0 and r = 0 hold, the definition of Case 2
(ẏs = 0) requires p = d and ẏu = u ≥ 0. From (2.12) and (2.13) it follows
λu > cp − cr and λ̇u = hu. Continuity of λu within a Case 2 interval (which
follows from (2.26)) requires that the optimal control never switches back
to r > 0, and therefore, yu will never decrease, which contradicts the final
condition yu(T ) = 0. The optimal policy in Case 2 is therefore given by
p∗ = 0 and r∗ = d. (2.13) necessitates λs = λu + cr and λ̇s = λ̇u.

Proof (Proof of Proposition 2.4).
From (2.23) it follows that k1 = 0. (2.21) implies

λ̇s = αλs + hs. (2.62)

p > 0 requires µ1 = 0 which yields λs = cp. It follows that λ̇s = 0 which
contradicts (2.62). r = 0, w = 0 requires ẏu = u which is not feasible as long
as yu = 0. r > 0, w > 0 requires µ2 = µ3 = 0 in (2.19) and (2.20) which yields
λu = −cw in (2.17) and λs = cr − cw in (2.16). It follows that λ̇s = 0 which
again contradicts (2.62). r > 0, w = 0 requires µ2 = 0 in (2.19) which yields
λs − λu = cr in (2.16). It follows that λ̇s = λ̇u. Inserting (2.62) and (2.22)
yields k2 = α(−cr)+hu−hs and k2 ≥ 0 in (2.24) contradicts the assumptions
that hs > hu and cr > 0. The optimal policy is therefore given by r∗ = 0 and
w∗ = u, which is required in order to stay in Case 3 (ẏu = 0 has to hold), and
from (2.14), λu = −cw.

Proof (Proof of Proposition 2.5).
From the definition of Case 4 it follows ẏs = ẏu = 0 which implies p + r = d
and r + w = u. When neglecting boundary situations, i.e. where demand or
return rate equal zero, this already excludes the alternatives (p = 0, r = 0) and
(r = 0, w = 0). p > 0, r > 0, w > 0 requires µi = 0 ∀i which yields λs = cp

in (2.15), λu = −cw in (2.17). Then, (2.16) becomes cp + cw = cr which
contradicts the assumption of a positive recovery advantage (2.6). Similarly,
for p > 0, r = 0, w > 0 we find λs = cp, λu = −cw and µ2 = cr−cp−cw which
has to be non-negative (2.19). Again, this contradicts assumption (2.6). For
p > 0, r > 0, w = 0 we find r = u to ensure ẏu = 0 and then p = d−u to ensure
ẏs = 0. This configuration is only feasible if d ≥ u. For p = 0, r > 0, w > 0 we
find r = d to ensure ẏs = 0 and then w = u − d to ensure ẏu = 0.

Proof (Proof of Proposition 2.6).
In the following we use the results derived in Feichtinger and Hartl (1986),
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especially Corollary 6.3 (p.168). From (2.25) we know that λs is always con-
tinuous when ys > 0 holds, i.e. inside Cases 1 and 3. The same is true for λu

if yu > 0 inside Cases 1 and 2. Thus, we will restrict our analysis to examine
(i) time points inside intervals where ys = 0 or yu = 0 holds and (ii) entry
and exit points of such intervals.
(i) A constraint qualification guarantees the continuity of the adjoint variables
λs or λu inside intervals defined by ys = 0 or yu = 0, respectively. Thus,
continuity of the respective adjoint variables is given, if the matrix (with line
numbers given on the right hand side)⎛

⎜⎜⎜⎜⎝
1 0 0 p 0 0 0 0
0 1 0 0 r 0 0 0
0 0 1 0 0 w 0 0
1 1 0 0 0 0 ys 0
0 −1 −1 0 0 0 0 yu

⎞
⎟⎟⎟⎟⎠

I
II
III
IV
V

(2.63)

has full rank of five. First, we note that the first three rows are always inde-
pendent. Analysis of the above matrix yields that the constraint qualification
is not satisfied in three situations.

• If p = 0, r = 0 and ys = 0 then I + II = IV .
This can only happen in Cases 2 and 4 if d = 0. As we already know, in
Case 2, λu is continuous and λs = λu + cr is therefore also continuous. If
one assumes that in Case 4, u > d = 0 holds, then λs = cr − cw proves
continuity.

• If r = 0 ,w = 0 and yu = 0 then −II − III = V .
This can only happen in Cases 3 and 4 if u = 0. In Case 3, λu = −cw and
in Case 4, under the condition d > u = 0, λu = −cp − cr holds. Thus, λu

does not jump.
• If p = 0, w = 0, ys = 0 and yu = 0 then I − III = IV + V .

This situation occurs in Case 4 (ys = 0, yu = 0) when demand equals
returns and the policy switches from p > 0, r > 0 to r > 0, w > 0 or vice
versa. Only in this case we find a discontinuity of both adjoint variables.
The height of both jumps is ηs = ηu = cp + cw − cr. Note, this situation
includes the conditions neglected before (u = d = 0).

(ii) Let θ1
s be the entry time of an interval where ys = 0 holds. Then, λs is

continuous at this time point if ys enters this interval in a non-tangential way,
i.e. ẏs = p + r − d jumps. This happens if one of the controls p and r jumps
at θ1

s . An entry point θ1
s can only be present at a switch from Cases 1/3 to

Cases 2/4. There, r jumps if d(θ1
s) > 0 which must hold to ensure leaving the

first cases. An exit time θ2
s does not exist because it will never be optimal to

build up a serviceables stock, which can easily be seen from the production
and remanufacturing decisions which will in sum never exceed the demand
rate.
Let θ1

u be the entry time and θ2
u the exit time of an interval, where yu = 0

holds. Then, λu is continuous at these time points if yu enters or leaves this
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interval in a non-tangential way, i.e. ẏu = u − r − w jumps. That happens
again if one of the controls r and w jumps at θ1

u or θ2
u, respectively. This will

always be the case except for u = d at one of the time points.

Proof (Proof of Proposition 2.7).
From (2.14) we get a minimal value for λu of λmin

u = −cw. For Case 2 we can
give an upper bound for λmax

u = cp − cr which together with the continuity of
λu (Proposition 2.6) and (2.35) yields

cp − cr ≥ (−cw + hu

α

)
eατu − hu

α

where τu = t − θe,2. Solving for τu yields

α(cp − cr) + hu ≥ (−αcw + hu) eατu ⇔ eατu ≤ α(cp−cr)+hu

−αcw+hu

⇔ τu ≤ 1
α ln

(
α(cp−cr)+hu

−αcw+hu

)
.

Proof (Proof of Proposition 2.9).
Assume that the inequality in Proposition 2.9 holds and that at both time
points u(θe,2) > d(θe,2) and u(θx,2) < d(θx,2), which is necessary to build up
a stock or to decrease it, respectively. From Proposition 2.6 it follows that λu

will not jump at these time points and λu(θe,2) = −cw, λu(θx,2) = cp − cr.
Considering that there can be no jump point of λu inside the interval I and
that λu grows at rate λ̇u = αλ + hu yields θx,2 − θe,2 = τu which contradicts
the assumption.

Proof (Proof of Proposition 2.10). It is optimal to replace production by re-
manufacturing as long as the cost advantage is larger than the costs that arise
from holding recoverables inventory, i.e. for at most τu time units. Equation
(2.48) ensures, that initial inventories are in fact needed to satisfy demand
within the interval.

Proof (Derivation of Equation (2.55)).
For a first order MacLaurin approximation of (2.54) (A) the value of mh as
well as (B) its first derivative at α = 0 have to be determined. Thereby, the
following relationship will be used

∂

∂α
ln

(
α(cp − cr) + hDCF

u

−αcw + hDCF
u

)
=

hDCF
u (cp + cw − cr)

(α(cp − cr) + hDCF
u )(−αcw + hDCF

u )
.

(A) Since in the first term of (2.54) both numerator and denominator tend
to 0 as α tends to 0, l’Hôpital’s rule must be applied

lim
α→+0

mh =
”0”

0
− hDCF

u = lim
α→+0

cp + cw − cr

hDCF
u (cp+cw−cr)

(α(cp−cr)+hDCF
u )(−αcw+hDCF

u )

− hDCF
u

=
(hDCF

u )2

hDCF
u

− hDCF
u = 0.
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(B) The first derivative of (2.54) is given by

∂mh

∂α
=

(cp + cw − cr) ln X − αhDCF
u (cp+cw−cr)2

(α(cp−cr)+hDCF
u )(−αcw+hDCF

u )

[ln X ]2
(2.64)

where X =
(

α(cp−cr)+hDCF
u

−αcw+hDCF
u

)
.

Again, l’Hôpital’s rule is used in order to find the right hand side limit of
(2.64) as α tends to 0, i.e.

lim
α→+0

∂mh

∂α
=

“0”

0

= lim
α→+0

(cp + cw − cr)
(
1 − (hDCF

u )2+α2cw(cp−cr)
(α(cp−cr)+hDCF

u )(−αcw+hDCF
u )

)
2 ln

(
α(cp−cr)+hDCF

u

−αcw+hDCF
u

) =
“0”

0

= lim
α→+0

−2αcw(cp−cr)+
((hDCF

u )2+α2cw(cp−cr))(hDCF
u (cp−cr)−hcw−2αcw(cp−cr))

(α(cp−cr)+hDCF
u )(−αcw+hDCF

u )

2hDCF
u

=

(
(hDCF

u )2(hDCF
u (cp−cr)−hcw)
(hDCF

u )2

)
2hDCF

u

=
cp − cr

2
+

−cw

2
.

Thus, the first order MacLaurin approximation of mh is given by

mh =

(
cp − cr

2
+

−cw

2

)
α + O(α2).
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On the Effects of Capacity Constraints in

Product Recovery

3.1 Motivation

In the previous chapter, a product recovery system with dynamic demand and
return streams was investigated. It was found that a recoverables inventory
is built up if there are some excess returns which can later be used to replace
production with remanufacturing and thereby realizing a cost advantage of
recovering returned items, which is for a certain time period larger than the
resulting out-of-pocket holding costs and the decrease of the recovery cost
advantage due to discounting. When reconsidering the optimal policies and
their dynamics, there are a number of reasons which necessitate highly flexible
processes. Firstly, since the serviceables inventory is not used, production and
remanufacturing rates are synchronized with demand and undergo (in sum)
the same variations. Secondly, in situations where it is optimal to have a
positive recoverables inventory, demand is served from remanufacturing alone,
which also means that the production rate is zero. Finally, at time points
where stock-keeping starts or where the recoverables inventory is depleted,
both production and remanufacturing rates undergo sudden and considerable
changes, e.g. the production rate jumps from zero up to the difference of
demand and return rates.

In many practical situations, processes are not that flexible and therefore,
a smoothing of manufacturing and remanufacturing volumes is required. In
medium-range aggregate production planning of a pure production system,
if it is not possible to influence the productive capacity (‘hard’ constraint),
a level strategy (see Silver et al. (1998), Chapter 14) is employed where a
serviceables inventory is built up at times when the constraint is not bind-
ing and used up when it is. An application of optimal control theory to a
production/inventory model is presented e.g. by Gaimon (1988). There, in
addition to production quantities, optimal prices and capacity expansion are
determined in order to maximize total profits. Another modeling option for
inflexible processes is to use convex cost functions, which represent ‘soft’ con-
straints where regular capacity can be extended at increasing (overtime) unit



48 3 On the Effects of Capacity Constraints in Product Recovery

costs. An application of convex cost functions has been presented by Kistner
and Dobos (2000) for a product recovery system without disposal option. But
there it is assumed that the number of returns at t directly depends on the
current demand rate at t, i.e. it is modeled as a fraction of demand. Finally,
process levels are smoothed if there are costs of changing e.g. the produc-
tion rate or deviating from an optimal level. A production/inventory model
as presented by Thompson and Sethi (1980) for instance penalizes the devia-
tion from a target production rate and inventory level by using quadratic cost
functions.

In this chapter, we deal with ‘hard’ capacity constraints that cannot be
influenced. These restrictions can be present in different ways. If the processes
take place in different facilities, independent capacity constraints, i.e. maxi-
mum production p̄ > 0 or remanufacturing rate r̄ > 0, are given. A similar
approach can be applied if, due to legislative regulations, also the disposal
rate is limited. If production and remanufacturing take place in a common
facility, the joint capacity usage can be limited. Given a total capacity ā > 0
and capacity requirements coefficients ap > 0 and ar > 0 for both processes
this can be modeled as

app(t) + arr(t) ≤ ā. (3.1)

The analysis of bottleneck situations, i.e. situations where a constraint
becomes binding, adds another motive for holding inventory because in sit-
uations where e.g. demand exceeds the current total capacity of the system,
it is necessary to have a positive (serviceables or recoverables) inventory. An
optimal solution must therefore answer the question which inventory to use.
Going one step further, an issue of operations strategy would be to choose
from different capacity levels or expansion paths. In such a case, capacity
constraints would be functions of time. A discussion of the connection of clas-
sical inventory management and capacity expansion strategies is for instance
to be found in Slack and Lewis (2003). The optimal control framework used
to solve dynamic problems of product recovery is able to deal with capacity
dynamics because there is no general reliance on static parameters. Although
not explicitly stated below, the following analysis is therefore not only re-
stricted to stationary constraints but these can also be assumed to be (given)
continuous functions of time.

In order to account for the medium and long term horizon of capacity
expansion, the application of a discounted cash flow approach as introduced
in Chapter 2 is continued in the following. Changes that are relevant when
assuming a zero discount rate are stated explicitly. A simple application to
product recovery is presented in Chapter 5, where the questions are answered
on when to make an (unrestricted) remanufacturing process available, if at
all.

The remainder of this chapter is organized as follows. Single capacity con-
straints for production and remanufacturing are considered and pure effects
(i.e. under exclusion of situations where stock-keeping already took place in



3.2 Limited Production Capacity 49

the basic model) of introducing the respective restriction are discussed. The
investigation is supported by several numerical examples. For technical rea-
sons and in order to simplify the discussion, demand and return rates are
assumed to be strictly positive, i.e.

d(t) > 0 and u(t) > 0. (3.2)

3.2 Limited Production Capacity

3.2.1 Changes to the Basic Model

In this section, the effects of a single capacity constraint are shown. Thereby,
it is assumed that production and remanufacturing take place in different
facilities and the latter process is only limited by available returns. Thus,
solely the production process is restricted

p(t) ≤ p̄(t). (3.3)

An optimization problem is given by (2.9) and an additional constraint (3.3).
Since both sources to satisfy demand are limited, a feasible solution exists

if for every point in time 0 ≤ t ≤ T the cumulative demand up to this point
reduced by initial serviceables does not exceed the sum of maximal production
and cumulative returns, i.e.∫ t

0

d(s)ds − y0
s ≤ y0

u +

∫ t

0

(p̄(s) + u(s))ds ∀t ∈ [0, T ]. (3.4)

In order to simplify our discussion it is assumed that there exist no ‘points
of contact’ of demand, return and constraint functions, e.g. if demand and
constraint rates meet (d(t) = p̄(t)) then they truly intersect (ḋ(t) �= ˙̄p(t)).

3.2.2 Properties of an Optimal Solution

Necessary Conditions

As only a pure control constraint was added to control optimization model
(2.9), the Hamiltonian (2.10) does not change. By defining a Langrange multi-
plier µ4 in order to account for the additional restriction (3.3), the Lagrangian
is

L(..) = H(.) + µ1 · p + µ2 · r + µ3 · w + µ4 · (p̄ − p) + k1 · ys + k2 · yu.(3.5)

The proof of λ0 = 1 can be accomplished in the same way as in the basic
model and is therefore not treated here. Proceeding as in Section 2.3.2, neces-
sary conditions (2.12)–(2.24) change as follows. The Hamiltonian maximizing
condition (2.12) now reads
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p∗ =

⎧⎨
⎩

0 λs < cp

singular λs = cp

p̄ λs > cp

, (3.6)

equation (2.15) is replaced by

∂L

∂p
= −cp + λs + µ1 − µ4 = 0, (3.7)

and because of constraint (3.3) we get an additional non-negativity as well as
a complementary slackness condition

µ4 ≥ 0 µ4 · (p̄ − p∗) = 0. (3.8)

All other conditions remain unaltered.
In contrast to the basic model, production at the upper bound p̄ takes

place, if the value of an item to be added to the serviceables inventory (λs)
exceeds production unit costs. Consequently, also the value of a used product
can be higher than cp − cr, as it would (arriving at a time where λs > cp)
allow for a higher cost advantage when replacing production.

The Structure of an Optimal Solution

Although we still distinguish between four cases with respect to the service-
ables and recoverables inventory status, Cases 1 and 2 may show different
optimal policies than provided in Propositions 2.2 and 2.3. Thus, the follow-
ing propositions provide further sub-cases within intervals of the respective
case.

Proposition 3.1 (Optimal decisions in Case 1 intervals).
If both serviceables and recoverables inventory are positive (y∗

s > 0, y∗
u > 0),

no items are remanufactured (r∗ = 0) or disposed of (w∗ = 0). The optimal
decision on whether to produce new items or not depends on the co-state λs <
λu + cr and two subcases can be distinguished:
Subcase 1(1) ⇔ λs < cp and λu > −cw

No items are produced (p∗ = 0).
Subcase 1(2) ⇔ λs > cp and λu > cp − cr

Production takes place at its upper bound (p∗ = p̄).

In contrast to the model without a capacity constraint, Subcase 1(2) shows
that it is possible to produce even if there are serviceables available and if
there exists a positive recoverables stock from which current demand could
be satisfied completely. Such a decision only makes sense if one considers that
there might be a later bottleneck situation for which both stocks are held
for. It requires that the value of a serviceables item is higher than actual
unit production costs and that the value of a recoverables item exceeds the
difference of production and remanufacturing costs. Production takes place at
its upper limit.
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The co-states development takes place as shown in the basic model, i.e.

λ̇s = αλs + hs and λ̇u = αλu + hu. (3.9)

Because of the different decision structure in Subcase 1(2) and in contrast to
the first subcase, the serviceables inventory level changes with rate p̄− d, and
it increases if demand rate is smaller than the manufacturing constraint.

Proposition 3.2 (Optimal decisions in Case 2 intervals).
If serviceables inventory is zero and recoverables inventory is positive (y∗

s = 0,
y∗

u > 0), no items are disposed of. The optimal decisions on production and
remanufacturing depend on the co-state λu and on the relationship between
demand and return rates. Three subcases are distinguished:
Subcase 2(1) ⇔ −cw < λu < cp − cr, λs < cp

No items are produced (p∗ = 0) and the remanufacturing rate equals the de-
mand rate (r∗ = d).
Subcase 2(2) ⇔ λu > cp − cr, λs = cp, and d ≤ p̄
Production equals demand rate (p∗ = d) and no items are remanufactured
(r∗ = 0).
Subcase 2(3) ⇔ λu > cp − cr, λs > cp, and p̄ < d
Production takes place at its upper bound (p∗ = p̄) and remanufacturing is
used to fill remaining demand (r∗ = d − p̄).

Under zero serviceables and positive recoverables inventory, there are two
new subcases when considering a restricted production process. Both have
in common that production becomes favorable, since the value of a service-
ables item at least equals production unit costs (λs ≥ cp). Therefore, as many
items as possible are manufactured without building up a serviceables stock
(p∗ = min{d, p̄}) and thus, more returns can be saved for later use as would be
the case in Subcase 2(1). While in Subcase 2(2) no items are remanufactured,
because their increase in value would be smaller than remanufacturing costs.
In Subcase 2(3) one is indifferent between satisfying demand from remanufac-
turing or production of new items (λs = λu + cr).

Since there is no change in optimal decisions in Cases 3 and 4, Propositions
2.4 and 2.5 are still applicable. Table 3.1 summarizes the main results of the
four cases.

Optimal Transitions Between Cases and Subcases

From the optimal decisions inside Case 4 intervals it can be seen that the max-
imal possible demand rate that can be satisfied immediately without having
inventory available is u + p̄. If this current capacity of the product recovery
system is exceeded by the demand rate, either serviceables have to be available
in stock (as it would be the case in a pure production system) or recoverables
must have been collected before in order to satisfy excess demand. Intervals
where the current capacity of the system is smaller than demand are further
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Table 3.1. Main results of optimal cases when considering a manufacturing constraint.

p∗ r∗ w∗ ẏs ẏu λs λ̇s λu λ̇u

Case 1: ys > 0, yu > 0

(1) 0 0 0 −d u < cp αλs + hs −cw < αλu + hu

(λs < λu + cr)
(2) p̄ 0 0 p̄ − d u cp < αλs + hs cp − cr < αλu + hu

(λs < λu + cr)

Case 2: ys = 0, yu > 0

(1) 0 d 0 0 u − d < cp αλu + hu −cw < λu < cp − cr αλu + hu

(λs = λu + cr)
(2) (d ≤ p̄) d 0 0 0 u cp 0 cp − cr < αλu + hu

(3) (p̄ < d) p̄ d − p̄ 0 0 u − d + p̄ cp < αλu + hu cp − cr < αλu + hu

(λs = λu + cr)

Subcases 2(2) and (3) generalized: p∗ = min{d, p̄}, r∗ = max{0, d − p̄}, w∗ = 0

Case 3: ys > 0, yu = 0

0 0 u −d 0 < cr − cw αλs + hs −cw 0

Case 4: ys = 0, yu = 0

(1) (d ≤ u) 0 d u − d 0 0 cr − cw 0 −cw 0
(2) (u < d) d − u u 0 0 0 cp 0 cp − cr 0

Case 4 generalized: p∗ = max{d − r∗, 0}, r∗ = min{u, d}, w∗ = max{u − r∗, 0}



3.2 Limited Production Capacity 53

called bottleneck situations. The required serviceables and recoverables to deal
with such situations are referred to as bottleneck stock.

In Section 2.3.4, we distinguished between two types of case transitions,
namely forced and automatic. Here, a third type is introduced, which helps
to differentiate between forced transitions that are made to build up anticipa-
tion stock (those already known from the basic model) and others which are
required to deal with bottleneck situations. These are called constraint-forced
transitions. Constraint-forced transitions require co-states to have a higher
value than was allowed in the basic model. This becomes possible because the
necessity to fill demand may require us to keep stock for a longer time period
than was possible in the basic model where production always was able to
satisfy demand immediately. As before, continuous and discontinuous tran-
sitions are distinguished. Subsequently, A → B reads as a transition from a
Case A to a Case B interval.

In order to determine dynamic properties of the system, especially on pos-
sible case and subcase transitions, it is necessary to know under which condi-
tions the co-states, λs and λu, are allowed to jump. Proposition 3.3 collects
all situations, in which one or both co-state variables may be discontinuous.

Proposition 3.3 (Continuity of λs and λu).
λs and λu are continuous, i.e. jump parameters ηs and ηu vanish everywhere,
except at time points θ where one of the following conditions holds:

(i) 2(3) → 2(2) :

λs jumps if d(θ) = p̄(θ) and ḋ(θ) < ˙̄p(θ).
(ii) 4(2) → 4(1) :

λs and λu jump if u(θ) = d(θ) and ḋ(θ) < u̇(θ).
(iii) 1(2) → 2(2) as well as 2(3) → 1(2) :

λs jumps if d(θ) = p̄(θ) and ḋ(θ) < ˙̄p(θ).
(iv) 2(1) → 4(1) as well as 4(2) → 2(1) :

λs and λu jump if d(θ) = u(θ) and ḋ(θ) < u̇(θ).
(v) 2(3) → 4(2) :

λs and λu jump if d(θ) = u(θ) + p̄(θ) and ḋ(θ) < u̇(θ) + ˙̄p(θ).

The following Corollaries 3.1–3.7 have been developed by using results
regarding optimal decisions within the subcases as well as co-states properties,
especially by using Proposition 3.3. A transition from one case to another
is excluded if (1) optimal decisions and requirements on parameter relation
together do not allow for accumulation or depletion of a certain inventory, (2)
an upward jump in one or both co-states is required, or (3) downward jumps
are necessitated for other switches than those stated above.

Corollary 3.1. Within Case 1 Subcase 1(1) can be followed by Subcase 1(2).
This constraint-forced and continuous transition requires the value of a ser-
viceables item to equal production unit costs (λs = cp). At switching time,
the value of recoverables must exceed the difference of unit production and
remanufacturing costs (λu > cp − cu).
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Case 1(1) only allows for a maximum value of the serviceables held in stock.
When surpassing cp without emptying the serviceables stock, a switch to
Subcase 1(2) must take place. A reverse transition is not possible because it
would require a jump in the serviceables co-state λs which is forbidden in an
interval with positive inventory level.

Corollary 3.2. Within Case 2 the following transitions are possible:
2(1) → 2(2). This constraint-forced and continuous transition requires λs =

cp, λu = cp − cr, and d ≤ p̄.
2(1) → 2(3). This constraint-forced and continuous transition requires λs =

cp, λu = cp − cr, and d > p̄.
2(3) → 2(2). This automatic and discontinuous transition requires demand

to intersect the production constraint from above (d = p̄ and
ḋ < ˙̄p).

As the value of a recoverables item reaches the difference of unit production
and remanufacturing cost, a transition from Subcase 2(1) to one of the other
subcases takes place. Whether Subcase 2(2) or 2(3) is reached depends on
the relation between demand rate and constraint. If this relation changes, i.e.
demand gets smaller than the constraint, a transition from Subcase 2(3) to
2(2) takes place.

Corollary 3.3. Within Case 4 Subcase 4(2) is followed by Subcase 4(1). This
automatic and discontinuous transition requires demand to intersect the return
rate from above (d = u and ḋ < u̇).

Other transitions between subcases within a case are not optimal. Now, we
turn to transitions between different cases.

Corollary 3.4. Starting at a Case 1 interval where ys > 0 and yu > 0 the
following transitions are possible:
1(1) → 2(1). This automatic and continuous transition requires λs = λu+cr

and λu < cp − cu.
1(1) → 2(2). This constraint-forced and continuous transition requires λs =

cp, λu > cp − cu, and d ≤ p̄.
1(1) → 2(3). This constraint-forced and continuous transition requires λs =

cp, λu > cp − cu, and d > p̄.
1(2) → 2(2). This automatic and discontinuous transition requires d = p̄

and ḋ < ˙̄p.
1(2) → 2(3). This automatic and continuous transition requires λs = λu+cr

and d > p̄.

Since returns are neither remanufactured nor disposed of, a Case 1 interval
terminates into a Case 2 subcase when depleting the serviceables inventory.
Depending on the value of recoverables λu, Case 1(1) switches either to Case
2(1) (if λu < cp − cu) or to Cases 2(2)/2(3). Case 1(2) can be left if demand
exceeds the manufacturing constraint at the end if this interval. Since λu >
cp − cu also holds there, only transitions to Cases 2(2)/2(3) are possible.
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Corollary 3.5. Starting at a Case 2 interval where ys = 0 and yu > 0 the
following transitions are possible:
2(1) → 4(1). This automatic and discontinuous transition requires d = u

and ḋ ≤ u̇.
2(1) → 4(2). This automatic and continuous transition requires u ≤ d, λs =

cp, λu = cp − cr.
2(2) → 1(2). This constraint-forced and continuous transition requires d <

p̄.
2(3) → 1(2). This constraint-forced and discontinuous transition requires

d = p̄, ḋ < ˙̄p.
2(3) → 4(2). This automatic and discontinuous transition requires d = p̄+u,

ḋ ≤ ˙̄p + u̇.

In addition to the case transitions known from the basic model, a switch
from Case 2(2)/(3) to Case 1(2) is possible, requiring demand not to be larger
than the remanufacturing constraint (d ≤ p̄). Further, a depleting recoverables
inventory allows for a transition from Case 2(3) to 4(2). This requires demand
to be larger than the current capacity of the system at the end of the Case
2(3) interval as well as the opposite inside the Case 4(2) interval in order to
be able to satisfy demand without having a positive stock.

Corollary 3.6. Starting at a Case 3 interval where ys > 0 and yu = 0 the
following transitions are possible:
3 → 1(1). This forced and continuous transition requires d ≤ u.
3 → 4(1). This automatic and continuous transition requires λs = cr−cw

and d ≤ u.

Transitions starting at a Case 3 interval are the same as discussed for the
basic model.

Corollary 3.7. Starting at a Case 4 interval where ys = yu = 0 the following
transitions are possible:
4(1) → 2(1). This forced and continuous transition requires d ≤ u.
4(2) → 2(1). This forced and discontinuous transition requires d = u and

ḋ < u̇.
4(2) → 2(2). This constraint-forced and continuous transition requires d ≤

p̄.
4(2) → 2(3). This constraint-forced and continuous transition requires d >

p̄.

Adding to the already known switches, Case 4(2) can be left for a transition
into a Case 2(2)/2(3) interval in order to build up a bottleneck stock.

As in the basic model, an accumulation of serviceables through a transition
from any subcase of Cases 2/4 to 1(1) or 3 is excluded because building up
stock would require ẏs > 0 which contradicts optimal decisions within the
mentioned subcases with positive serviceables inventory level (1(1) and 3).
Since also 1(2) does not terminate into those cases, they are only possible
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during an initial period. We therefore distinguish between transitions that can
only occur at the beginning of the planning horizon when having a positive
initial inventory level (depicted in Figure 3.1) and others that occur during
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Fig. 3.1. Optimal case transitions at the beginning of the planning horizon when
considering a manufacturing constraint

the planning period after using up initial stock (see Figure 3.2).
In what follows, we concentrate on the latter kind of case changes by

assuming y0
s = y0

u = 0. A discussion on how to deal with initial stock would
proceed in a similar manner as been applied for the basic model (see Section
2.4). Additional transitions have to be considered if parts of initial stock are
used during a subsequent bottleneck situation.
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Fig. 3.2. Optimal case transitions when considering a manufacturing constraint
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3.2.3 Pure Effects of a Manufacturing Constraint

Figure 3.2 distinguishes between two reasons for keeping stock. On the one
hand, as in the basic model, the anticipation of a later change in the de-
mand/return relationship leads to an accumulation of returns in a Case 2(1)
interval (shaded area in Figure 3.2). This motive only allows for using the
recoverables inventory. Another cause that may also require a serviceables
stock is to prepare for a bottleneck situation using Cases 2(2), 2(3) and 1(2).
The required constraint-forced transitions are shown on the right hand side
of Figure 3.2. A general solution to our problem requires the simultaneous
consideration of both motivations, because a bottleneck situation for instance
may not become binding if there is enough anticipation stock available to
satisfy demand from remanufacturing returns.

To begin with, we deal with pure effects of a manufacturing constraint.
Therefore, it is assumed that returns do not exceed demand during the plan-
ning horizon, i.e.

d(t) > u(t) ∀t ∈ [0, T ] (3.10)

If the opposite holds, demand can always be satisfied from (unrestricted)
remanufacturing alone. Later, combined effects are discussed, that occur when
allowing demand and return rate to intersect.

Limitation (3.10) immediately excludes Case 4(1) and Case 2(1) intervals,
where the cost advantage of remanufacturing motivates stock keeping. There-
fore, the number of case transitions reduces to those depicted in Figure 3.3.
Two further implications result. Firstly, since recoverables can immediately
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Fig. 3.3. Optimal case transitions when considering a manufacturing constraint
assuming u < d

be used to serve demand, they obtain a minimal value of λu ≥ cp − cr. Like-
wise, since production is necessary to fill part of the demand, serviceables
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are not valued less than production costs, i.e. λs ≥ cp. Secondly, produc-
tion capacity always becomes binding in intervals where demand exceeds the
current production and remanufacturing capacity. This leads to the following
proposition.

Proposition 3.4 (Location of a bottleneck interval).
If demand exceeds current capacity of the system, i.e.

d(θ) > p̄(θ) + ur(θ), (3.11)

it is necessary to have a positive (serviceables or recoverables) inventory at θ.

Proof. Proposition 3.4 directly follows from the definition of Case 4 intervals.

In order to simplify the discussion we consider a situation with a single bot-
tleneck interval as well as no planning horizon effects, i.e. we do not deal with
situations where the treatment of a bottleneck interval requires to take the
borders of the planning period into account. Furthermore, it is assumed that
a valid solution exists, i.e. feasibility condition (3.4) holds.

Let θe,b the begin and θx,b the end of a bottleneck situation as described
in the preceding proposition with

θe,b : d(θe,b) = p̄(θe,b) + u(θe,b) and ḋ(θe,b) > ˙̄p(θe,b) + u̇(θe,b),

θx,b : d(θx,b) = p̄(θx,b) + u(θx,b) and ḋ(θx,b) < ˙̄p(θx,b) + u̇(θx,b).

Reconsidering the limited current capacity of the system, at θe,b a certain
number of serviceables or recoverables have to be stocked in advance to sat-
isfy bottleneck demand DB. It is defined as that part of demand during the
bottleneck interval (θe,b, θx,b) which can not be satisfied by using current ca-
pacity of the system, i.e.

DB =

∫ θx,b

θe,b

d(t) − (u(t) + p̄(t)) dt. (3.12)

Now, the question will be answered how to collect stock and under which
circumstances to use each of the inventories.

In an optimal solution Case 4(2) cannot be followed by Case 1(2) or vice
versa, which means that before starting an interval where both inventories
are positive (Case 1(2)), there must be an interval where only returns are
collected (Case 2). In a Case 1(2) interval returns are collected and only a
transition back to Case 2 is possible. Therefore, the following sequences can
occur in an optimal solution

Case 2 → Case 4(2) → Case 2 and Case 2 → Case 1(2) → Case 2.

As no further stock is required at the end of the bottleneck interval (θx,b),
Case 4(2) is present afterwards. Since d > p̄ holds at this point, a transition
from Subcase 2(3) to Case 4(2) must take place.



3.2 Limited Production Capacity 59

Let θc denote the start time of a corresponding collection interval (θc, θe,b).
This time point depends on how many items have to be stored to cover bot-
tleneck demand and how long it takes to collect them. Case 4(2) is present
before θc. Depending on the relation between demand and maximum produc-
tion rate, at θc either a transition from Case 4(2) to Case 2(2) or to Case 2(3)
takes place. Within the Case 2 interval, recoverables inventory increases with
rate

ẏu = min{u, u − (d − p̄)} (inside Case 2(2)/2(3)) (3.13)

and since both switches are continuous transitions, co-states develop starting
with

λs(θc) = cp and λu(θc) = cp − cr. (3.14)

During the collection interval, building up a serviceables stock and thus
switching from Case 2 to Case 1(2) becomes preferable in a period where
demand falls below the capacity constraint followed by another where the op-
posite holds. This situation technically reflects the impossibility of a transition
from Subcase 2(2) to 2(3) without passing a Case 1(2) interval, and leads to
the following corollary.

Corollary 3.8 (Location property of a Case 1(2) interval). Let θ denote
a time point inside a collection interval where d(θ) = p̄(θ). If demand crosses
the manufacturing capacity from below, i.e. ḋ(θ) > ˙̄p(θ), then it is always
optimal to have a positive serviceables inventory at time θ.

In a Case 1(2) interval, the recoverables inventory increases with rate

ẏu = u (inside Case 1(2)) (3.15)

which is larger than it would have been when staying in Case 2 where
d(θ) > p̄(θ). Therefore, using the serviceables inventory allows to save ad-
ditional returns for later use during the bottleneck interval and likewise de-
creases the length of the collection interval thus saving holding costs in the
recoverables inventory. This reasoning will later be used to develop a maximal
length criterion.

Since there might be several points meeting Corollary 3.8 within the
collection period, we assume that there are n ≥ 0 Case 1(2) intervals
J i = (θi

e,1(2), θ
i
x,1(2)), i = 1, 2, ..., n. Analogously to Proposition 2.8, the fol-

lowing inventory conditions must hold (presented without proof).

Proposition 3.5 (Inventory Conditions of Case 1(2) intervals).
Let J i = (θi

e,1(2), θ
i
x,1(2)) be an open time interval where ys > 0, yu > 0 and

ys(θ
i
e,1(2)) = ys(θ

i
x,1(2)) = 0. Then,

(i) cumulative production equals cumulative demand over the whole interval

∫ θi
x,1(2)

θi
e,1(2)

(p̄(t) − d(t))dt = 0, (3.16)
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(ii)at any point θ ∈ J i, cumulative production must be larger than cumulative
demand ∫ θ

θi
e,1(2)

(p̄(t) − d(t))dt > 0. (3.17)

Comparing the optimal return collection between Case 2 and a Case 1(2)
intervals to be seen in (3.13) and (3.15), in the latter case additional returns

are stored with a total quantity of
� θi

x,1(2)

θi
e,1(2)

(max{p̄(t) − d(t), 0}) dt. Using this

result, inventory conditions regarding the use of a recoverables inventory can
be given (presented without proof and omitting the non-negativity condition).

Proposition 3.6 (Inventory Condition for the joint collection and
bottleneck interval).
Let I = (θc, θx,b) be an open time interval where yu > 0 with ys(θc) = yu(θc) =
ys(θx,b) = yu(θx,b) = 0 and J i = (θi

e,1(2), θ
i
x,1(2)) ⊂ I, i = 1, 2, ..., n be open

time intervals where ys > 0, yu > 0 and for which Proposition 3.5 applies.
Then, cumulative stored returns must equal bottleneck demand

θx,b∫
θc

(u(t) − max{d(t) − p̄(t), 0}) dt +

n∑
i=1

θi
x,1(2)∫

θi
e,1(2)

(max{p̄(t) − d(t), 0}) dt = 0.

(3.18)

As already mentioned, increasing the length of a Case 1(2) interval leads
to a decreasing length of the collection period. But this is only profitable as
long as the induced serviceables holding costs lead to a higher reduction of
recoverables holding costs. Using this trade-off a condition for maximal Case
1(2) interval lengths can be given.

Proposition 3.7 (Maximal Length of a Case 1(2) interval).
The maximal length of a Case 1(2) interval J i = (θi

e,1(2), θ
i
x,1(2)) is time de-

pendent and it is given by

θi
x,1(2) − θi

e,1(2) ≤
1

α
ln

⎛
⎝ αcr + hs − hu

α
(
cp − λu(θi

e,1(2))
)

+ hs − hu

⎞
⎠ . (3.19)

The reasoning behind marginal criterion (3.19) is as follows. Assume there are
two possibilities to satisfy the last demand unit of a bottleneck interval. This
can be done either by reducing θc (increase the length of the collection period)
or by decreasing θi

e,1(2) (increase length of Case 1(2) interval). Independent

of this (marginal) decision, the same amount of returns will be on stock at
θi

x,1(2), i.e. at the end of the Case 1(2) interval. In an optimal solution, one has
to be indifferent between both options and holding costs up to this time need
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to be balanced. A Case 1(2) interval with maximal length, however, implies
the following sequence

Case 2(2) → Case 1(2) → Case 2(3).

There are two interesting implications of Proposition 3.7. On the one hand,
maximal Case 1(2) interval lengths increase during a collection period. And
on the other, there might be a time after which the maximal length of the
Case 1(2) interval becomes infinity, because a long collection period leads to
such a high value of recoverables that the serviceables co-state is not able to
catch up. This is the case if the denominator in the logarithm term of 3.19
becomes negative.

Corollary 3.9. There exists no maximal holding time for a Case 1(2) interval
J i = (θi

e,1(2), θ
i
x,1(2)) if it starts at a time point θi

e,1(2) which is larger than a

critical value θcrit
e,1(2)

θcrit
e,1(2) : λu(θcrit

e,1(2)) > cp +
hs − hu

α
(3.20)

There exist two other types of situations where (3.19) does not hold with
equality. First, the collection interval cannot start earlier because there is
no excess capacity available (demand would exceed capacity constraint) and
thus, inventory condition (Proposition 3.5) would be violated. This situation
requires d(θi

e,1(2)) = p̄(θi
e,1(2)) and ḋ(θi

e,1(2)) < ˙̄p(θi
e,1(2)) and Case 1(2) is

reached originating in a Case 2(3) interval. Second, a Case 1(2) interval may
not be extended because of absent excess demand. This would require a switch
from Case 1(2) to Case 2(2).

In rather short term problems, discounting can be neglected and co-state
developments inside intervals with positive inventory simplify to linear func-
tions, i.e. λ̇u = hu in intervals where yu > 0 and λ̇s = hs if ys > 0. The results
with respect to cases and case transitions remain unaffected but the maximal
holding time criterion given in Proposition 3.7 changes as follows

θi
x,1(2) − θi

e,1(2) ≤
λu(θi

e,1(2)) − (cp − cr)

hs − hu
. (3.21)

Maximum holding time is reached if equality holds. As in the equivalent cri-
terion under consideration of discounting, there is indifference between (1)
increasing the Case 1(2) interval and accepting additional holding costs in the
serviceables inventory or (2) enlarging the length of collection interval.
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3.2.4 Mixed Effects of a Manufacturing Constraint

When allowing for intersections of demand and return functions, both the
anticipation as well as the capacity motive for keeping stock play a role, if
for instance during an interval where returns are collected for use during a
later bottleneck interval the demand and return rates intersect. Thus, it might
happen that returns exceed demand before the start of the collection interval
θc. These excess returns can be used to replace production which would take
place right after θc by remanufacturing of returns that have been stored before
this time. Then, the collection interval is preceded by a Case 2(1) interval,
where anticipation stock is built up. The same trade-off has to be struck which
is already known from the basic model and the maximal length of a Case 2(1)
interval is given by Proposition 2.7.

Since part of the anticipation stock is used to fill bottleneck demand,
inventory condition (3.18) must be adapted as follows.

Proposition 3.8 (Inventory Condition for the joint collection and
bottleneck interval, adapted for mixed effects).
Let I = (θe,2(1), θx,b) be an open time interval where yu > 0 with ys(θc) =
yu(θc) = ys(θx,b) = yu(θx,b) and J i = (θi

e,1(2), θ
i
x,1(2)) ⊂ I, i = 1, 2, ..., n

be open time intervals where ys > 0, yu > 0 and for which Proposition 3.5
applies. Let θc denote the time of leaving Case 2(1). Then, cumulative stored
returns must equal bottleneck demand∫ θc

θe,2(1)

(u(t) − d(t)) dt +

∫ θx,b

θc

(r(t) − max{d(t) − p̄(t), 0}) dt (3.22)

+

n∑
i=1

∫ θi
x,1(2)

θi
e,1(2)

(max{p̄(t) − d(t), 0}) dt = 0.

Note that it might happen that a bottleneck situation will not become binding
when demand is completely satisfied by remanufacturing anticipation stock.

3.2.5 Numerical Examples

Three examples are used to show the essential properties of optimal solutions
in the presence of a limited production rate. Let demand, return, capacity
constraint over a planning horizon of T = 2π be given as stated in Table
3.2 (approximately 6 months). The discount rate is set to zero (α = 0) and
holding cost parameters are hs = 1.5 and hu = 1. The remaining relevant cash
flow parameters as well as the beginning and end of the respective bottleneck
intervals can also be found in Table 3.2.

In Example 3.1 (see Figure 3.4) demand d is generally larger than (con-
stant) return rate u and capacity constraint p̄, and for some positive time
it even becomes larger than the current production and remanufacturing ca-
pacity of the system p̄ + u. Therefore, an interval with positive recoverables
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Table 3.2. Demands, returns and capacity constraint functions as well as cash flow
parameters in three considered scenarios

Example d(t) u(t) p̄(t) θe,b θx,b cp cr cw

3.1 3.1 + 1.5 sin(t2/12) 3 1 2.8 5.5 4 2 1

3.2 4 + 2 sin(6 − t) 0.5 4 3.1 5.7 4 2 1

3.3 1.8 + 3 sin(t2/12) 3 1 3.1 5.3 3 2 1
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Fig. 3.4. Demands, returns and capacity constraint in Example 3.1

inventory must start and terminate in Subcase 4(2) and optimal decisions in
the collection interval follow Subcase 2(3). For determining the start time θc of
the collection interval, inventory condition (3.18) can be used which simplifies
to ∫ θx,b

θc

(r(t) − max{d(t) − p̄(t), 0}) dt = 0 (3.23)

since there is no Case 1(2) interval to be considered (n = 0). Solving (3.23)
yields θc = 0.7. Optimal decisions in Example 3.1 can be found in Figure 3.5,
and the optimal co-state movements are depicted in Figure 3.6.
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Fig. 3.5. Optimal solution of Example 3.1
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Fig. 3.6. Optimal co-state developments in Example 3.1

In Example 3.2, which is depicted in Figure 3.7, there is a point satisfying
Corollary 3.8 inside the collection interval (at 2.9) and thus, it is optimal to
have a Case 1(2) interval at (and around) this time. The optimal solution
must satisfy inventory conditions (3.16), (3.17), (3.18), as well as Maximal
Length Condition for a Case 1(2) interval (3.21), and it is depicted in Figure
3.8. The collection interval starts at θc = 0.45, a switch to Case 1(2) takes
place at θe,1(2) = 1.65 and back to Case 2(3) is located at θx,1(2) = 4.06.

Since the extension of both collection and Case 1(2) intervals is not limited
and because of a zero discount rate, the recoverables co-state at the begin of
the Case 1(2) interval is given by λu(θe,1(2) = 1.65) = cp−cr+hu(θe,1(2)−tc) =
3.2 and (3.21) holds with equality, yielding maximal length of the Case 1(2)
interval of θx,1(2)−θe,1(2) ≤ 1.2/.5 = 2.4. Equality holds except for a rounding
error. The optimal co-state developments can be seen from Figure 3.9.
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Fig. 3.7. Demands, returns and capacity constraint in Example 3.2
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Fig. 3.8. Optimal solution of Example 3.2
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Fig. 3.9. Optimal co-state developments in Example 3.2
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Fig. 3.10. Demands, returns and capacity constraint in Example 3.3

Now, we will examine Example 3.3 (see Figure 3.10), where it is optimal
to have a positive inventory even in the unrestricted case because demand and
return functions intersect. There the maximal holding time in the recoverables
inventory τu = 2. The optimal unrestricted solution is depicted in Figure 3.11,
showing a period where the capacity constraint is violated (grey shaded area).
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Fig. 3.11. Optimal solution of the unrestricted problem for Example 3.3

The optimal solution under consideration of the manufacturing constraint
consists of a sequence 4(1) → 2(1) → 2(3) → 4(2). Using inventory condition
(3.22) (again with n = 0, see Example 3.1) as well as maximum length prop-
erty of Case 2(1) intervals both optimal time point when to switch from Case
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4(1) to Case 2(1) θe,2(1) as well as time θc after which manufacturing takes
place are determined: θe,2(1) = 0.6 and θc = 2.6. The solution of Example
3.3 is depicted in Figure 3.12, and the optimal co-state movements are to be
found in Figure 3.13.
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Fig. 3.12. Optimal solution of Example 3.3
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Fig. 3.13. Optimal co-state developments in Example 3.3

A number of more complex examples, also including several successive
bottleneck situations within the planning horizon, can be found in Baranczyk
(2001). In this work, a discrete time approximation of the constraint model
was solved using linear programming methods.
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3.2.6 Managerial Insights

Adding a production capacity constraint to the basic model leads to an ad-
ditional motivation for keeping stock, namely to prevent against bottleneck
situations where current capacity of the system does not suffice to satisfy
demand. In contrast to the results presented in Chapter 2, generally both
inventories can be used. Since there exists a holding cost advantage, bottle-
necks are primarily served using previously collected returns. The size of the
bottleneck determines how many returns to save and when to start collecting
returns. Building up a serviceables stock during the collection interval is ben-
eficial in periods where excess production capacity is available. It is used in
order to shorten the collection period, because more returns are accumulated.
The optimal policy must balance a trade-off regarding the holding costs which
can be expressed by an interval length property.

Depending on the size of the bottleneck situation and the time that is
required to collect returns, holding costs might achieve substantial dimensions
and it is questionable whether the assumption to satisfy all demand should be
kept. When allowing for a backlogging of demands, improvements are possible
because in such an environment parts of the demand during a bottleneck
situation are collected and satisfied after its end. See Kiesmüller et al. (2000)
for a discussion of the profitability of having backorders in a product recovery
system without capacity restrictions. One step further, the question has to be
answered which parts of the demand to satisfy at all. This can be answered
by using a profit maximizing approach.

3.3 Limited Remanufacturing Capacity

3.3.1 Changes to the Basic Model

This section deals with the influence of a remanufacturing constraint r̄(t) > 0
on optimal decisions in the product recovery system introduced in Chapter 2.
The corresponding optimization problem is given by (2.9) and an additional
constraint

r(t) ≤ r̄(t). (3.24)

Since production is unrestricted, demand can always be satisfied with-
out producing in advance. Therefore, a condition ensuring the existence of a
feasible solution as provided in Section 3.2 is not needed.

In what follows, since we are not dealing with boundary effects, starting
inventory levels are set to zero, i.e. y0

s = y0
u = 0. As an additional simplifying

condition, it is assumed that there exists no joint intersection of demand,
return and maximal remanufacturing rate within the planning horizon, i.e.

� t ∈ [0, T ] with d(t) = u(t) = r̄. (3.25)
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Without restricting generality too much, (3.25) together with the assumption
of strict positive demand and return rates leads to a considerable reduction
of possible case transitions.

3.3.2 Properties of an Optimal Solution

Necessary Conditions

Proceeding in the same way as in the model with a remanufacturing constraint
(see Section 3.2), the Lagrangian now reads

L(..) = H(.) + µ1 · p + µ2 · r + µ3 · w + µ4 · (r̄ − r) + k1 · ys + k2 · yu. (3.26)

Necessary conditions (2.12)–(2.24) known from the basic model are adapted
as follows. The Hamiltonian maximizing condition (2.13) changes to

r∗ =

⎧⎨
⎩

0 λs − λu < cr

singular λs − λu = cr

r̄ λs − λu > cr

, (3.27)

equation (2.16) is replaced by

∂L

∂r
= −cr + λs − λu + µ2 − µ4 = 0, (3.28)

and constraint (3.24) leads to an additional non-negativity as well as comple-
mentary slackness condition

µ4 ≥ 0 µ4 · (r̄ − r∗) = 0. (3.29)

The remaining conditions remain unchanged.
When introducing a remanufacturing constraint, the difference of the val-

ues of a serviceables item λs and a recoverables item λu can be higher than
remanufacturing unit costs cr because the latter might not be usable due to
the capacity restriction. Since production and disposal rate are unbounded,
the maximal value of serviceables is given by unit production costs (λs ≤ cp),
and the value of returns cannot be lower than disposal revenue (λu ≥ −cw).

The Structure of an Optimal Solution

The introduction of a remanufacturing constraint allows for additional sub-
cases in each of the four cases being distinguished with respect to their ser-
viceables and recoverables status.

Proposition 3.9 (Optimal decisions in Case 1 intervals).
If both, serviceables and recoverables inventory are positive (y∗

s > 0, y∗
u > 0),

no items are produced (p∗ = 0) or disposed of (w∗ = 0). The optimal decision
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on whether to remanufacture or not depends on the relation of both co-states
and two subcases can be distinguished:
Subcase 1(1) ⇔ λs − λu < cr

No items are remanufactured (r∗ = 0).
Subcase 1(2) ⇔ λs − λu > cr

Remanufacturing takes place at its upper bound (r∗ = r̄).

In analogy to the model with a restricted production rate, it is now possible
to remanufacture even if demand could be served from serviceables stock. In
addition to Subcase 1(1) which is already known from the basic model there is
another Subcase 1(2). There the remanufacturing rate obtains its upper bound
if the change of the value of a recoverables item when remanufacturing it to
serviceables stock (λs − λu) exceeds unit remanufacturing costs. It requires
that the value of a serviceables λs is located in the interval (cr − cw, cp) and
for the value of a returned item λu ∈ (−cw, cp − cr) must hold. The inventory
levels change with rates ẏs = r̄ − d and ẏu = u − r̄.

Proposition 3.10 (Optimal decisions in Case 2 intervals).
If serviceables inventory is zero and recoverables inventory is positive (y∗

s = 0,
y∗

u > 0), no items are disposed of. The optimal decisions on production and
remanufacturing depend on the co-states and on the relationship between de-
mand and return rates. Three subcases are distinguished:
Subcase 2(1) ⇔ cr − cw < λs < cp, λu < cp − cr, d < r̄
No items are produced (p∗ = 0) and the remanufacturing rate equals the de-
mand rate (r∗ = d).
Subcase 2(2) ⇔ λs = cp, λu > cp − cr

Production equals demand rate (p∗ = d) and no items are remanufactured
(r∗ = 0).
Subcase 2(3) ⇔ λs = cp, λu < cp − cr and r̄ < d
Remanufacturing takes place at its upper bound (r∗ = r̄) and production is
used to fill remaining demand (p∗ = d − r̄).

Similar to the previous section, two additional cases have to be considered
in which production takes place. In Subcase 2(2) demand is filled completely
from producing new items and thus, the recoverables inventory level must
rise (ẏu = u > 0). As will be shown below, this subcase is not relevant for
determining the optimal solution. Subcase 2(3) shows both remanufacturing
with maximal rate as well as production. This makes sense in situations where
demand is so high that it cannot be satisfied using the preferred mode.

Proposition 3.11 (Optimal decisions in Case 3 intervals).
If serviceables inventory is positive and recoverables inventory is zero (y∗

s > 0,
y∗

u = 0), the optimal policy is not to produce (p∗ = 0). The value of a returned
item equals the disposal revenue (λu = −cw), and the optimal decision on
whether to remanufacture or not depends on the co-state λs. The following
subcases are possible:
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Subcase 3(1) ⇔ λs < cr − cw

No items are remanufactured (r∗ = 0) and all returns are disposed of
(w∗ = u).
Subcase 3(2) ⇔ cr − cw < λs < cp and u > r̄
Remanufacturing takes place at its upper bound (r∗ = r̄) and remaining re-
turns are disposed of (w∗ = u − r̄).

Although it is not optimal to produce when having a positive serviceables
inventory, in a new Subcase 3(2) remanufacturing takes place with maximal
possible rate. The serviceables stock develops inside this case with rate ẏs =
r̄ − d and it increases if the constraint exceeds demand and decreases if the
opposite holds. Such a decision is reasonable if one considers that serviceables
are accumulated by remanufacturing more items than currently required in
order to satisfy demand in a situation where the remanufacturing constraint
is binding. Returns that exceed the capacity are disposed of if they can not
be used within a reasonable period.

Proposition 3.12 (Optimal decisions in Case 4 intervals).
If serviceables and recoverables inventories are zero (y∗

s = 0, y∗
u = 0), optimal

decisions depend on how demand rate, return rate, and remanufacturing con-
straint relate to each other and three subcases can be distinguished:
Subcase 4(1) ⇔ d ≤ u and d < r̄
Demand is satisfied completely by remanufacturing returns (r∗ = d) and ex-
cess returns are disposed of (w∗ = u − d). No items are produced (p∗ = 0).
Subcase 4(2) ⇔ u < d and u < r̄
All returns are remanufactured (r∗ = u) and the missing items are produced
(p∗ = d − u). No items are disposed of (w∗ = 0).
Subcase 4(3) ⇔ r̄ < u and r̄ < d
Remanufacturing takes place at its upper bound (r∗ = r̄) and the missing
items are produced (p∗ = d − r̄). Remaining returned items are disposed of
(w∗ = u − r̄).

In the absence of both recoverables and serviceables stock, the decision on
remanufacturing depends on the relation of demand, return and maximum
remanufacturing rate. It is given by the minimum of those three values (r∗ =
min{p, u, r̄}) and the determination of how many items to produce and/or to
dispose of directly follows this decision.

The value of an additional return λu is either given by cp − cr if it can be
used immediately (Subcase 4(2)), or it is −cw if the returned item cannot be
used due to insufficient demand or capacity. This happens in Subcases 4(1)
and 4(3). The value of a serviceables item λs is cr − cw if demand can be
satisfied from remanufacturing alone (Subcase 4(1)), requiring both enough
returns and remanufacturing capacity, or it is given by cp if the last demanded
unit was satisfied from production. This is relevant in Subcases 4(2) and 4(3).

Table 3.3 summarizes the results of the four cases.
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Table 3.3. Main results of optimal cases when considering a remanufacturing constraint.

p∗ r∗ w∗ ẏs ẏu λs λ̇s λu λ̇u

Case 1: ys > 0, yu > 0

(1) 0 0 0 −d u − d < cp αλs + hs −cw < αλu + hu

(λs < λu + cr)
(2) 0 r̄ 0 r̄ − d u − r̄ cr − cw < λs < cp αλs + hs −cw < λu < cp − cr αλu + hu

(λu + cr < λs)

Case 2: ys = 0, yu > 0

(1) (d < r̄) 0 d 0 0 u − d cr − cw < λs < cp αλu + hu −cw < λu < cp − cr αλu + hu

(λs = λu + cr)
(2) d 0 0 0 u cp 0 cp − cr < αλu + hu

(3) (r̄ < d) d − r̄ r̄ 0 0 u − r̄ cp 0 −cw < λu < cp − cr αλu + hu

Subcases 2(1) and 2(3) generalized: p∗ = max{0, d − r̄}, r∗ = min{d, r̄}, w∗ = 0

Case 3: ys > 0, yu = 0

(1) 0 0 u −d 0 < cr − cw αλs + hs −cw 0
(2) (r̄ < u) 0 r̄ u − r̄ r̄ − d 0 cr − cw < λs < cp αλs + hs −cw 0

Case 4: ys = 0, yu = 0

(1) (d < u, d < r̄) 0 d u − d 0 0 cr − cw 0 −cw 0
(2) (u < d, u < r̄) d − u u 0 0 0 cp 0 cp − cr 0
(3) (r̄ < u, r̄ < d) d − r̄ r̄ u − r̄ 0 0 cp 0 −cw 0

Case 4 generalized: p∗ = max{d − r∗, 0}, r∗ = min{u, d, r̄}, w∗ = max{u − r∗, 0}
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Optimal Transitions Between Cases and Subcases

Because of the additional subcases, there is a substantial increase of the num-
ber of possible case transitions. Therefore, cases are excluded that never occur
in an optimal solution (especially when neglecting initial stocks) before de-
scribing relevant transitions. Similar to the case of a manufacturing constraint,
Subcases 1(1) and 3(1) can only be present at the beginning of the planning
period. This is because from the optimal serviceables state developments in-
side Case 1(1) and Case 3(1) intervals (ẏs < 0) it follows that any transition
from a case where ys = 0 to one of these two cases is forbidden. Moreover,
because of co-state continuity if the respective inventory is non-empty, there
is no possibility for transitions from Case 3(2) to Case 1(1)/3(1) or from Case
1(2) to Case 1(1), because a downward jump in λs would be required. Thus,
the occurrence of both cases requires positive initial inventory conditions,
leading to similar effects as discussed for the basic model.

In any interval where Case 2(2) applies, the recoverables stock must in-
crease (ẏu > 0). Therefore, a switch to another case where yu = 0 is excluded.
Since the value of a recoverables item exceeds the difference of unit production
and remanufacturing cost rate (λu > cp − cr), a transition to another case
where yu > 0 (Cases 1(2), 2(1), and 2(3)) cannot take place. There the co-
state requires a lower value and a downward jump in the co-state is excluded
when having positive recoverables inventory. Case 2(2) will therefore never be
left contradicting final condition yu(T ) = 0. The following corollary collects
results regarding the exclusion of cases.

Corollary 3.10 (Cases that do not occur in an optimal solution).
It is never optimal to have intervals of Cases 1(1), 3(1), and 2(2) in a solution
to a problem with zero initial and terminal conditions.

Following our usual procedure, Proposition 3.13 collects all situations, un-
der which one or both co-states are allowed to jump.

Proposition 3.13 (Continuity of λs and λu).
λs and λu are continuous, i.e. jump parameters ηs and ηu vanish everywhere,
except at time points θ where one of the following conditions hold:

(i) λs jumps if d(θ) = r̄(θ) and ḋ(θ) < ˙̄r(θ) hold in situations where ys = 0,
allowing for the following transitions:
2(3) → 2(1), 4(3) → 4(1), 4(3) → 2(1), 1(2) → 2(1), 3(2) → 4(1),
2(3) → 1(2), 4(3) → 1(2), and 4(3) → 3(2).

(ii) λs and λu jump if u(θ) = d(θ)and ḋ(θ) < u̇(θ) hold in situations where
ys = yu = 0, allowing for the following transitions:
4(2) → 4(1), 2(1) → 4(1), and 4(2) → 2(1).

(iii) λu jumps if u(θ) = r̄(θ) and u̇(θ) > ˙̄r(θ) hold in situations where yu = 0,
allowing for the following transitions:
4(2) → 4(3), 1(2) → 3(2), 1(2) → 4(3), 2(3) → 4(3), and 4(2) → 2(3).
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The following Corollaries 3.11–3.16 state possible case and subcase tran-
sitions and are derived by using the same methods described in the previous
section.

Corollary 3.11. Within Case 2 Subcase 2(3) can be followed by Subcase 2(1).
This automatic and discontinuous transition requires d = r̄ and ḋ < ˙̄r.

In Case 2(3) as many items as possible are remanufactured (r = r̄). This is
only feasible without accumulating a serviceables stock as long as demand
exceeds the remanufacturing constraint. As the demand rates falls below the
constraint, decisions must change and an automatic transition to Case 2(1)
takes place.

Corollary 3.12. Within Case 4 the following transitions are possible:
4(2) → 4(1). This automatic and discontinuous transition requires d = u <

r̄ and ḋ < u̇.
4(2) → 4(3). This automatic and discontinuous transition requires u = r̄ <

d and u̇ > ˙̄r.
4(3) → 4(1). This automatic and discontinuous transition requires d = r̄ <

u and ḋ < ˙̄r.

Since there is no stock available in Case 4 intervals, the minimum of demand,
return rate and constraint determines the remanufacturing rate. Therefore, as
another component begins to decide about this rate, also the subcase of Case
4 must change.

Now, possible transitions between different cases are presented.

Corollary 3.13. Starting at a Case 1(2) interval where ys > 0 and yu > 0
the following transitions are possible:
1(2) → 2(1). This automatic and discontinuous transition requires d = r̄

and ḋ < ˙̄r.
1(2) → 2(3). This automatic and continuous transition requires λs = cp and

r̄ < d.
1(2) → 3(2). This automatic and discontinuous transition requires u = r̄

and u̇ > ˙̄r.
1(2) → 4(3). This automatic and discontinuous transition requires λs = cp,

u = r̄ < d and u̇ > ˙̄r.

In Case 1(2) remanufacturing takes place at its upper bound. The serviceables
inventory decreases if demand exceeds the constraint and recoverables inven-
tory depletes if more recoverables are remanufactured than currently returned.
Depending on the development of demand, return, and constraint rates, one
of both inventories depletes first, and a switch to Case 2 or Case 3 occurs.
As a special case, a transition to Case 4(3) takes place if both inventories are
emptied simultaneously.



3.3 Limited Remanufacturing Capacity 75

Corollary 3.14. Starting at a Case 2 interval where ys = 0 and yu > 0 the
following transitions are possible:
2(1) → 1(2). This constraint-forced and continuous transition requires d <

r̄.
2(1) → 4(1). This automatic and discontinuous transition requires d = u <

r̄, ḋ ≤ u̇
2(1) → 4(2). This automatic and continuous transitions requires λs = cp,

λu = cp − cr, and u < d < r̄.
2(3) → 1(2). This constraint-forced and discontinuous transition requires

d = r̄, ḋ < ˙̄r.
2(3) → 4(2). This automatic and continuous transition requires λu = cp−cr

and u < r̄ < d.
2(3) → 4(3). This automatic and discontinuous transition requires u = r̄ <

d and u̇ > ˙̄r.

Similar to the model with a limited production rate, a Case 2 interval may
terminate into Case 1(2), requiring demand not to exceed the constraint (d ≤
r̄). A switch to Case 4 either takes place under conditions known from the
basic model (2(1) → 4(1)/4(2), u ≤ d < r̄), or it occurs starting from a Case
2(3) interval, which necessitates u ≤ r̄ < d.

Corollary 3.15. Starting at a Case 3(2) interval where ys > 0 and yu = 0
the following transitions are possible:
3(2) → 1(2). This automatic and continuous transition requires u > r̄.
3(2) → 4(1). This automatic and discontinuous transition requires d = r̄ <

u and ḋ < ˙̄r.
3(2) → 4(3). This automatic and continuous transition requires λs = cp,

r̄ < u, and r̄ < d.

As before, after completing a Case 3(2) interval, either (1) a constraint-forced
switch to Case 1(2) is possible, if the return rate is larger than the remanufac-
turing constraint, or (2) a depleting serviceables inventory leads to a transition
to Case 4 requiring demand to exceed the remanufacturing constraint.
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Corollary 3.16. Starting at a Case 4 interval where ys = yu = 0 the following
transitions are possible:
4(1) → 1(2). This constraint-forced and continuous transition requires d <

r̄ < u.
4(1) → 2(1). This forced and continuous transition requires d < u and d < r̄.
4(1) → 3(2). This constraint-forced and continuous transition requires d <

r̄ < u.
4(2) → 2(1). This forced and discontinuous transition requires d = u < r̄,

ḋ < u̇
4(2) → 2(3). This constraint-forced and discontinuous transition requires

u = r̄ < d and u̇ > ˙̄r.
4(3) → 1(2). This constraint-forced and discontinuous transition requires

d = r̄ < u and ḋ < ˙̄r.
4(3) → 2(1). This forced and discontinuous transition requires d = r̄ < u

and ḋ < ˙̄r.
4(3) → 2(3). This constraint-forced and continuous transition requires d > r̄

and u > r̄.
4(3) → 3(2). This constraint-forced and discontinuous transition requires

d = r̄ < u and ḋ < ˙̄r.

Starting in a Case 4 interval, a broad range of forced transitions is possible.
These can be organized into four groups. The first is already known from the
basic model and uses the anticipation of a change in the relation between
demands and returns motive. It terminates in a Case 2(1) interval. A second
group, culminating in a Case 2(3) interval uses a related motivation. Here,
in a situation with high demand (d > u and d > r̄), a recoverables stock is
collected in a period where u > r̄ in anticipation of a return rate falling below
the constraint. In the third group, where a switch to a Case 3(2) interval
takes place, situations with a high return rate (d < u,u > r̄) require to use
a serviceables inventory in anticipation of a demand increasing above the
constraint. A combination of the last two motivations leads to a transition to
Case 1(2), necessitating that both collecting returns and building serviceables
stock can be done simultaneously. This requires d ≤ p̄ < u at switching time.

All possible transitions are depicted in Figure 3.14.

3.3.3 Pure Effects of a Remanufacturing Constraint

When considering a remanufacturing constraint, the current capacity of the
product recovery system always suffices to immediately fill demand. Therefore,
there is no such inherent reason that requires us to build up stock in order to
obtain feasibility as it has been when assuming a limited manufacturing rate.
Production in advance never takes place as can be seen from optimal decisions
in cases where the serviceables inventory is positive. On the other side, the
recovery cost advantage suggests to efficiently use available capacity and thus
there are situations where it might be preferable to keep stock to ‘smooth’
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Fig. 3.14. Optimal case transitions when considering a remanufacturing constraint

its usage. The corresponding constraint-forced transitions are discussed in the
following. As a result, additional motivations for keeping stock are developed.

Since we are concentrating an pure effects of a limited remanufacturing
rate, and in order to reduce the potential complexity of the solution, we restrict
ourselves to two scenarios with respect to the relation of demand and return
rates. Thus not all transitions present in Figure 3.14 are considered. First, pure
effects of a remanufacturing constraint are discussed by assuming a situation
with high demand, i.e. the return rate is smaller than the demand rate during
the whole planning period. Afterwards, we deal with a situation where the
opposite holds (low demand). In doing so, we neglect situations where the
anticipation motive leads to keeping stock. Some of the results are applied in
a model for product recovery strategy and presented in Section 5.5.

Pure Effects of a Remanufacturing Constraint when u < d

In a planning situation where demand exceeds the return rate, Case 4(1)
plays no role. Exclusion of all switches between cases that require d ≤ u
leaves transitions as depicted in Figure 3.15.

Here, available returns can immediately be used to fill demand as long
as these do not exceed the remanufacturing capacity (Case 4(2)). If they
do, all returns exceeding the constraint cannot immediately be used, and
are therefore called bottleneck returns. An optimal solution must answer the
question on how to deal with these items. For simplifying the discussion, let
us assume there exists a single interval where returns do not exceed maximal
remanufacturing rate amid of two adjacent bottleneck intervals during the
considered planning period. This situation is sufficient to explain all of the
relevant effects. Let θu

x,b represent the end of the preceding and θu
e,b the begin

of the subsequent bottleneck interval with
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Fig. 3.15. Optimal case transitions when considering a remanufacturing constraint
assuming high demand

θu
x,b : u(θu

x,b) = r̄(θu
x,b) and u̇(θu

x,b) < ˙̄r(θu
x,b),

θu
e,b : u(θu

e,b) = r̄(θu
e,b)) and u̇(θu

e,b) > ˙̄r(θu
e,b).

At the end of the preceding bottleneck period it might be preferable to keep
returns and use them at a time where the return rate has fallen below the
constraint. There, the stored returns can be used to maximize remanufacturing
capacity usage and replace an otherwise necessary production of new items.
The following corollary results from the fact that Case 4(3) can only terminate
into a Case 2(3) interval.

Corollary 3.17 (Location of an interval with positive recoverables
inventory when demand is high).
Let θ denote a time point where u(θ) = r̄(θ) < d(θ). If returns cross the
constraint from above, i.e. u̇(θ) < ˙̄r(θ), then it is always optimal to have a
positive recoverables inventory at (and around) time θ (yu(θ) > 0).

Let θe,u denote the start of a bottleneck collection period, i.e. the time of a
transition from Case 4(3) to Case 2(3) at which accumulation of returns starts.
Then, at θe,u the return rate must not be smaller than the remanufacturing
constraint (u(θe,u) ≥ r̄(θe,u)) in order to start building up stock. The end
of a bottleneck interval θu

x,b (which satisfies Corollary 3.17) separates the
collection from a consumption period where stored recoverables are used up,
being completed at time θx,u.

Figure 3.16 shows a situation where demand exceeds both the return rate
as well as the remanufacturing constraint. There exists a point satisfying
Corollary 3.17 which therefore separates a bottleneck return collection pe-
riod from a return consumption period. Before θe,u part of the returns, i.e.
those exceeding the constraint, are disposed of and after θx,u the production
rate gets higher than would be required when remanufacturing with highest
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Fig. 3.16. An interval where returns are kept during a bottleneck collection interval
for later use within a consumption period with maximal length.

possible rate. Therefore, a trade-off is balanced which is similar to that one
being known from the basic model for collecting a returned item and later us-
ing it for replacing production by remanufacturing, instead of disposing of it.
A corresponding marginal criterion leads to a maximal holding time condition
for recoverables as presented in the following proposition.

Proposition 3.14 (Maximal Length of an interval where yu > 0).
The maximal length of an interval I = (θe,u, θx,u) where yu > 0 holds is given
by

θx,u − θe,u ≤ τu (3.30)

where τu is determined in Proposition 2.7.

A bottleneck collection and consumption period having maximal length is
exemplified in Figure 3.16 showing a transition sequence 4(3) → 2(3) → 4(2).
Here also optimal co-state movements can be seen. Since production takes
place in all cases, the serviceables value is cp. The value of a returned item
rises during the Case 2(3) interval starting with −cw at θe,u and reaching
cp − cr at θx,u.

Intervals with positive recoverables inventory not having maximal length
require intersections of return rate and constraint at either θe,u or θx,u. In
the first case, the collection period cannot start earlier, since there are not
sufficient returns that exceed the remanufacturing capacity. A correspond-
ing case sequence would be 4(2) → 2(3) → 4(2). Secondly, the consumption
period must end, because there is no remaining excess capacity available to
remanufacture stored returns resulting in a sequence 4(3) → 2(3) → 4(3).

Another interesting question would be what happens if demand intersects
the constraint. By definition this is only possible inside a consumption period
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because otherwise the assumption that demands exceed the return rate would
be contradicted. As demand falls below the constraint, it is no longer necessary
to remanufacture with maximum rate and a transition from Case 2(3) to
2(1) takes place at a time θ with d = r̄ and ḋ < ˙̄r. An example where the
joint interval (where yu > 0) has maximal length is depicted in Figure 3.17.
It shows a sequence 4(3) → 2(3) → 2(1) → 4(2). Since production is not
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Fig. 3.17. A consumption period showing a Case 2(1) interval

required inside Case 2(1) intervals, the value of serviceables drops down to
the sum of the value of recoverables and the remanufacturing cost rate at the
transition time. The same reasons as explained above allow also in this case
for Case 2 intervals of less than maximal length corresponding to sequences
4(2) → 2(3) → 2(1) → 4(2) and 4(3) → 2(3) → 2(1) → 4(3).

If inside a consumption period demand crosses the constraint from below,
it is preferable to remanufacture with maximum rate before the intersection
time and to keep serviceables in stock, since it now allows to fill additional
demand from remanufactured and kept items (see Figure 3.18). The following
corollary results from the impossibility of a transition from Case 2(1) to Case
2(3).

Corollary 3.18 (Location of an interval with positive serviceables
inventory when demand is high).
Let θ denote a time point where u(θ) < d(θ) = r̄(θ) and yu(θ) > 0. If demand
crosses the constraint from below, i.e. ḋ(θ) > ˙̄r(θ), then it is always optimal
to have a positive serviceables inventory at (and around) time θ (ys(θ) > 0).

There might be several time points meeting Corollary 3.18 within a con-
sumption period. Therefore, it is assumed that there are n > 0 intervals
J i = (θi

e,s, θ
i
x,s), i = 1, 2, ..., n where it is optimal to keep serviceables (ys > 0).
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Fig. 3.18. A consumption period showing a Case 1(2) interval.

For each one of these, the following inventory conditions must hold (presented
without proof).

Proposition 3.15 (Inventory Conditions of intervals with positive
serviceables inventory).
Let J i = (θi

e,s, θ
i
x,s) be an open time interval where ys > 0 and ys(θ

i
e,s) =

ys(θ
i
x,s) = 0. Then,

(i) cumulative remanufacturing equals cumulative demand over the whole in-
terval ∫ θi

x,s

θi
e,s

(r̄(t) − d(t))dt = 0, (3.31)

(ii)at any point θ ∈ J i, cumulative remanufacturing must be larger than cu-
mulative demand ∫ θ

θi
e,s

(r̄(t) − d(t))dt > 0. (3.32)

Inside intervals with serviceables in stock, more demand is satisfied from
remanufacturing than inside Case 2 and thus, additional returns are used

adding up to
∫ θi

x,s

θi
e,s

(max{r̄(t)− d(t), 0})dt. This result can be used in order to

derive inventory conditions for the recoverables inventory (presented without
proof and omitting the non-negativity condition).
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Proposition 3.16 (Inventory Condition for the joint collection and
consumption interval).
Let I = (θe,u, θx,u) be an open time interval where yu > 0 with ys(θe,u) =
yu(θe,u) = yu(θx,b) = 0 and J i = (θi

e,s, θ
i
x,s), i = 1, 2, ..., n be open time in-

tervals where ys > 0, yu > 0 and for which Proposition 3.15 applies. Then,
cumulative stored returns during bottleneck periods must equal consumed re-
turns∫ θx,u

θe,u

(u(t)−min{d(t), r̄(t)}) dt−
n∑

i=1

∫ θi
x,s

θi
e,s

(max{r̄(t)−d(t), 0}) dt = 0. (3.33)

As an implication from consuming more recoverables, also the consump-
tion period reduces when increasing the length of an interval with a positive
serviceables stock. This lowers costs as long as the induced serviceables hold-
ing costs are accompanied by a higher reduction of recoverables holding costs.
This trade-off yields the following proposition.

Proposition 3.17 (Maximal Length of a Case 1(2) interval).
The maximal length of a Case 1(2) interval J i = (θi

e,s, θ
i
x,s) is time dependent

and it is given by

θi
x,s − θi

e,s ≤ 1

α
ln

(
αcp + hs

α
(
λu(θi

e,s) + cr)
)

+ hs

)
. (3.34)

In short term problems when assuming α = 0, condition (3.34) changes to

θi
x,s − θi

e,s ≤ cp − λu(θi
e,s) − cr

hs
. (3.35)

Marginal criterion (3.34) (respectively (3.35)) can be interpreted as follows.
Assume there are two possibilities to use a collected returned unit available at
θi

e,s. This can be either (1) keeping it until θx,u where it is remanufactured to
fill demand at that point (increase the consumption period) or (2) remanufac-
turing it immediately to stock at θi

e,s for satisfying demand at θi
x,s and thus,

increasing the length of the interval where ys > 0. In an optimal solution, one
needs to be indifferent between both options except for situations explained
later. As another implication of Proposition 3.17, the maximal length of an
interval with positive serviceables inventory must decrease during a consump-
tion period, because the later θi

e,s the higher the recoverables co-state and
thus, the right hand side of (3.34) must fall. This is because remanufacturing
cost advantage is balanced against total holding costs for a marginal item.
The later a stored return is remanufactured and transferred to serviceables
stock the higher are already accumulated recoverables holding costs and thus
less serviceables holding cost are allowed to be added.

Since the serviceables co-state increases faster than the recoverables value
inside a Case 1(2) value, the serviceables inventory must be emptied before
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Fig. 3.19. A consumption period terminating into a Case 3(2) interval.

depleting the recoverables inventory except for one reason. Namely that if the
time period, where the recoverables inventory is positive is limited because
the return rate rises above the remanufacturing constraint at the end of this
interval θx,u, then the consumption period does not reach maximal length.
There, it might be preferable to hold serviceables even longer than until θx,u.
This allows for sequences (at the end of a consumption period) 1(2) → 4(3),
if both inventories are depleted simultaneously and 1(2) → 3(2) → 4(3) if
recoverables inventory is emptied first. An example is depicted in Figure 3.19.

Pure Effects of a Remanufacturing Constraint when u > d

Planning situations under which the return rate always exceeds the demand
rate never show Case 4(2) intervals, and excluding all transitions requiring
d ≥ u leaves switches as depicted in Figure 3.20. In what follows, we con-
centrate on a main effect of a remanufacturing constraint when demand is
low by additionally assuming u ≥ r̄. Thus, there are always sufficient returns
available for remanufacturing and stockkeeping is not performed under use of
a recoverables inventory. Under this assumption therefore only sequences

Case 4 → Case 3(2) → Case 4

occur in an optimal solution. Further results could be obtained when allowing
for more complex interactions as has been accomplished in the case of high
demand.
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Fig. 3.20. Optimal case transitions when considering a remanufacturing constraint
assuming low demand.

As long as demand does not exceed the remanufacturing constraint, it
is satisfied from current remanufacturing, and excess returns are disposed
of (Case 4(1)). An optimal solution must answer the question from which
source to satisfy demand that exceeds the remanufacturing capacity, which is
therefore called bottleneck demand. Analogously to the previously considered
situation, our discussion is restricted to a single interval where d < r̄. Let θd

x,b

be the end of the preceding and θd
e,b the beginning of a subsequent bottleneck

interval with

θd
x,b : d(θd

x,b) = r̄(θd
x,b) and ḋ(θd

x,b) < ˙̄r(θd
x,b),

θd
e,b : d(θd

e,b) = r̄(θd
e,b)) and ḋ(θd

e,b) > ˙̄r(θd
e,b).

Before θd
e,b it is favorable to remanufacture as many returns as possible and

to build up a serviceables stock. These items can later be used to replace
otherwise necessary production. Since Case 4(3) can only be preceded by a
Case 3(2) interval, Corollary 3.19 follows.

Corollary 3.19 (Location of an interval with positive serviceables
inventory when demand is low).
Let θ denote a time point where d(θ) = r̄(θ) < u(θ). If demand crosses the
constraint from below, i.e. ḋ(θ) > ˙̄r(θ), then it is always optimal to have a
positive serviceables inventory at (and around) time θ (ys(θ) > 0).

Let θx,s denote the end of a serviceables consumption period, i.e. the time
of a transition from Case 3(2) to Case 4. At θx,s, demand must not be smaller
than the remanufacturing constraint in order to deplete the serviceables in-
ventory. The beginning of a bottleneck interval θd

e,b separates a serviceables
collection from the respective consumption period. The first is assumed to
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Fig. 3.21. An interval where returns are remanufactured with maximal rate during
a serviceables accumulation interval for later use within a demand bottleneck with
maximal length.

start at θe,s. For the interval (θe,s, θx,s) an inventory condition as stated in
Proposition 3.15 must hold.

Figure 3.21 shows a situation where the return rate exceeds both demand
and remanufacturing constraint. A point satisfying Corollary 3.19 separates
a serviceables accumulation period from a consumption period. Before θe,s,
all returns exceeding current demand are disposed of. After θx,s, the part of
demand which is higher than the remanufacturing capacity is served from
production. Therefore, a marginal criterion applies for remanufacturing a re-
turned item to stock and later using it for serving demand from inventory
and replacing production instead of disposing of it. A maximal holding time
condition for serviceables results as presented in the following proposition.

Proposition 3.18 (Maximal Length of an interval where ys > 0).
The maximal length of an interval I = (θe,s, θx,s) where ys > 0 holds is given
by

θx,s − θe,s ≤ τs =
1

α
ln

(
αcp + hs

α(cr − cw) + hs

)
. (3.36)

When assuming a short planning period and setting α to zero, (3.36) simplifies
to

θx,s − θe,s ≤ τs =
cp + cw − cr

hs
(3.37)

Figure 3.21 illustrates an interval where ys > 0 with maximal length showing
a sequence 4(1) → 3(2) → 4(3) as well as optimal co-state movements. While
the serviceables value steadily increases, the value of returns is given by −cw

because in all cases returns must partly be disposed of. There are two reasons
for not having a Case 3(2) interval with maximal length. Either there is no
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remaining capacity available at θe,s and thus, the serviceables accumulation
period cannot be extended, or consumption of serviceables ends because there
exists no further bottleneck demand at θx,s. The first case leads to a sequence
4(3) → 3(2) → 4(3) and the second to 4(1) → 3(2) → 4(1).

3.3.4 Managerial Insights

Although the current capacity of the system always suffices to satisfy demand
without using inventories, a limitation of the cheaper mode, namely remanu-
facturing, motivates stock-keeping in order to improve the usage of available
capacity. Even when restricting to pure effects, i.e. neglecting interactions with
the anticipation stock motive, this motivation allows for a number of differ-
ent situations where stock-keeping takes place, but all of these jointly require
that there are periods where the remanufacturing rate is restricted through
another circumstance which can be either insufficient returns or demand.

In situations with high demand (d > u), returns are kept in intervals
where they cannot be immediately used for later remanufacturing if an in-
terval with returns exceeding the constraint is followed by another where the
opposite holds. The maximum length of these intervals is given by the Maxi-
mal Holding Time τu which is already known from the basic model. If during
a return consumption period demand falls below the remanufacturing capac-
ity it might be preferable to additionally build up a serviceables inventory
through remanufacturing with maximum rate. This stock is used up in a pe-
riod where demand rises above the constraint. A maximal length criterion
holds which also takes into account the period where returns have been held
in the recoverables stock and therefore, the maximal length of an interval with
positive serviceables stock decreases in time.

If the return rate is larger than the demand rate (d < u), primarily a
serviceables inventory is used in situations where an interval with demand
being lower than the remanufacturing capacity is followed by another where
demand exceeds the constraint. As before, a maximal length of the interval
can be given.

3.4 Proofs

Proof (Proof of Proposition 3.1). From (2.23) and (2.24) it follows that k1 =
k2 = 0. Thus, (2.21) and (2.22) imply

λ̇s = αλs + hs > 0 and λ̇u = αλu + hu > 0. (3.38)

The proofs for r = 0 and w = 0 are the same as in Proposition 2.2. Thus,

λs < λu + cr and λu > −cw (3.39)

0 < p < p̄ requires µ1 = 0 in (2.18) and µ4 = 0 in (3.8) yielding λs = cp in
(3.7) which contradicts (3.38).
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p = 0 requires λs < cp and p = p̄ necessitates λs > cp from (3.6). Together
with (3.39), in the latter case it follows λu > cp − cr.

Proof (Proof of Proposition 3.2). From (2.24) it follows that k2 = 0. Thus,
(2.22) implies

λ̇u = αλu + hu > 0. (3.40)

The proof for w = 0 is the same as in Case 1 (see proof of Proposition 2.2).
Thus,

λu > −cw (3.41)

follows from (2.14).
0 < p < p̄ requires µ1 = µ4 = 0 from (2.18) and (3.8) which yields λs = cp in
(3.7). If simultaneously r > 0 than from (2.19) it follows µ2 = 0, leading to
λu = cp − cr in (2.16). It follows that λ̇u = 0 which contradicts (3.40).
In any interval where 0 < p < p̄ and r = 0 hold, the definition of Case 2
(ẏs = 0) requires p = d < p̄ and ẏu = u ≥ 0. From (3.6) and (2.13) it follows
λu > cp − cr.

r > 0 from (2.13) necessitates λs = λu + cr and λ̇s = λ̇u. p = 0 requires r = d
in order to fill the demand and λs < cp from (3.6) from which λu < cp − cr

follows. p = p̄ requires (using the definition of the case) d > p̄ and thus
r = d − p̄ as well as λs > cp from (3.6) from which λu > cp − cr follows.

Proof (Proof of Proposition 3.3). This proof proceeds in the same way as the
proof to Proposition 2.6. (i) time points inside intervals where ys = 0 or
yu = 0 holds are examined and (ii) we deal with entry and exit points of such
intervals.
(i) First we look for circumstances under which the matrix⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0 p 0 0 0 0 0
0 1 0 0 r 0 0 0 0
0 0 1 0 0 w 0 0 0
−1 0 0 0 0 0 p̄ − p 0 0
1 1 0 0 0 0 0 ys 0
0 −1 −1 0 0 0 0 0 yu

⎞
⎟⎟⎟⎟⎟⎟⎠

I
II
III
IV
V
V I

(3.42)

has not full rank of six. Reconsidering p̄ > 0, d > 0, and u > 0, this is not the
case in the following five situations:

• (i-i) If p = 0, r = 0 and ys = 0 then I + II = V .
This requires d = 0 and can therefore be excluded.

• (i-ii) If p = p̄, r = 0 and ys = 0 then −IV + II = V .
This requires d = p̄ and a jump in λs may occur
(a) inside Case 2 intervals when switching from Subcase 2(3) to 2(2). From
the definition of both cases it follows ḋ < ˙̄p. This completes the proof of
Proposition 3.3(i).
(b) inside Case 4 intervals. But here r = min{u, d} > 0 and therefore the
co-state is continuous.
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(c) at entry and exit times of Case 4 intervals when switching from/to
Case 2. Since only downward jumps are allowed for λs and because d > 0,
this would allow for a transition from Case 2(3) to Case 4(2). Additionally,
a jump in λu is required which can only occur under conditions put forth
in part (ii) of this proof.

• (i-iii) If r = 0, w = 0 and yu = 0 then II + III = −V I.
This requires u = 0 and can therefore be excluded.

• (i-iv) If p = 0, w = 0, ys = yu = 0 then I − III = V + V I.
This situation occurs when demand equals returns (d = u) and is already
known from the basic model. See proof of Proposition 2.6.
(a) Inside Case 4 intervals a jump in both λs and λu occurs when switching
from Case 4(2) to Case 4(1). The definition of both cases requires ḋ < u̇.
This completes the proof of Proposition 3.3(ii).
(b) At entry and exit times of Case 4 intervals in the case of a transition
from/to Case 2, a jump in λs may occur when switching (b1) from Case
4(2) to Case 2(1), (b2) from Case 2(1) to Case 4(1) as well as (b3) from
Case 2(3) to Case 4(2). As before, all transitions (b1-3) also require a
jump in λu. Therefore, (b3) would require d − p̄ = u < d (necessary for
a non-tangential entry into the yu = 0 interval) which contradicts d = u
because of p̄ > 0.

• (i-v) If p = p̄, w = 0, ys = yu = 0 then −IV − III = V + V I.
This requires d = u + p̄ > u and may appear
(a) inside Case 4 intervals. Since this inequality shows the presence of
Subcase 4(2), the co-states are fixed and therefore continuous.
(b) at entry and exit times of Case 4 intervals when switching from/to
Case 2, λs may jump when switching from Case 2(3) to Case 4(2). As
before, this transition also requires for a jump in λu.

(ii) Let θ1
s be the entry time of an interval where ys = 0 holds, i.e. the begin

of a Case 2 or Case 4 interval. Then, λs is continuous at this time point if ys

enters this interval in a non-tangential way, i.e. ẏs = p + r − d jumps. This
happens if the sum of the controls p and r jumps at θ1

s . An entry point θ1
s can

only be present at a switch (a) from Case 1 to Case 2 or (b) from Case 3 to
Case 4 (other transitions are not possible when applying the optimal decisions
in Case 1 and Case 3 intervals). In the first case (a), p + r does not jump if
d = p̄ holds at the end of Subcase 1(2) interval, where λu(θ1

s) > cp − cr. Since
yu > 0 holds for both intervals, λu must be continuous, thus only transitions
to Cases 2(2) or (3) are possible. Since λs < λu +cr holds inside Subcase 1(2),
λs = λu + cr inside Subcase 2(3), and λu is continuous during this transition
(yu > 0), λs must be continuous as well when switching from Subcase 1(2) to
2(3). In the second case (b), p + r = 0 holds at the end of a Case 3 interval,
thus the Case 4 interval is entered non-tangentially, because by definition of
this case p + r = d > 0 must hold. Thus the only not continuous entry into
an interval where ys = 0 holds (i.e. where λs jumps) is a transition from Case
1(2) to 2(2) if d = p̄. In order to leave Case 1(2), d > p̄ is required at the end
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of such an interval. This leads to ḋ < ˙̄p at switching time. This completes the
first part of the proof of Proposition 3.3(iii).

An exit time θ2
s is present at a transition from Case 2 to Case 1 and from

Case 4 to Case 1 or Case 3. A switch from Case 4 to Case 1(1) or Case 3 is not
possible because there no serviceables stock can be accumulated by applying
optimal case decisions. Since upward jumps in the co-states are not allowed,
a transition from Case 4 to Case 1(2) must take place continuously. The same
holds for transitions from Case 2 (1) to Case 1(2). Proceeding similarly as for
the entry time shows that only the transition from Case 2(3) to Case 1(2)
allows for a jump in λs, if d = p̄. In order to enter Case 1(2), d > p̄ is required
at the begin of such an interval. Again, this leads to ḋ < ˙̄p at switching time.
This completes the second part of the proof of Proposition 3.3(iii).

Let θ1
u be the entry time and θ2

u the exit time of an interval, where yu = 0
holds (Case 3 or Case 4). Then, λu is continuous at these time points if yu

enters or leaves this interval in a non-tangential way, i.e. ẏu = u−r−w jumps.
That occurs if r+w jumps at (c) θ1

u or (d) θ2
u, respectively. (c) Case 3 can not

be reached, neither from a Case 1 nor a Case 2 interval by following optimal
policies. An entry point of Case 4 is only present after a Case 2 interval. Thus,
λu will always be continuous except for transitions from Case 2(1) to Case
4(1) where d = u and ḋ < u̇, and for transitions from Case 2(3) to Case 4(2)
where d = u + p̄ and ḋ < u̇ + ˙̄p. In both cases, also λs may jump, because
the system is inside a boundary situation w.r.t. the serviceables inventory and
situations as put forth in (i-iv) and (i-v), respectively, apply. This completes
the proof of the first part of (iv) as well as part (v) of Proposition 3.3. In
case (d), all transitions starting at Case 3 or Case 4 intervals can be excluded
or must proceed continuously in λu with the exception of a transition from
Case 4(2) to Case 2(1) requiring u = d. From (i-iv), also λs jumps under such
circumstance. This completes the second part of the proof of Proposition
3.3(iv).

Proof (Proof of Proposition 3.7). From Proposition 3.1 we get a minimal value
for λs of λmin

s = cp. For Case 1(2) we can give an upper bound for λmax
s =

λu + cr. Given λu(θi
e,1(2)), the recoverables co-state is

λu(t) =
(
λu(θi

e,1(2)) + hu

α

)
eα(t−θi

e,1(2)) − hu

α .

Together with continuity of λs and λu inside the Case 1(2) interval and the
solution of co-state development (3.9) yields

(
cp + hs

α

)
eα(θi

x,1(2)−θi
e,1(2)) − hs

α ≤ λs(θ
i
x,1(2)) and

λs(θ
i
x,1(2)) ≤

(
λu(θi

e,1(2)) + hu

α

)
eα(θi

x,1(2)−θi
e,1(2)) − hu

α + cr

Solving the combined inequality for θi
x,1(2) − θi

e,1(2) finally yields



90 3 On the Effects of Capacity Constraints in Product Recovery

θi
x,1(2) − θi

e,1(2) ≤
1

α
ln

⎛
⎝ αcr + hs − hu

α
(
cp − λu(θi

e,1(2))
)

+ hs − hu

⎞
⎠ .

Proof (Proof of Proposition 3.9). From (2.23) and (2.24) it follows that k1 =
k2 = 0. Thus, (2.21) and (2.22) imply

λ̇s = αλs + hs > 0 and λ̇u = αλu + hu > 0. (3.43)

The proofs for p = 0 and w = 0 are the same as in Proposition 2.2. Thus,

λs < cp and λu > −cw. (3.44)

0 < r < r̄ requires µ2 = 0 in (2.19) and µ4 = 0 in (3.29) yielding λs −λu = cr

in (3.28). This requires λ̇s = λ̇u which contradicts (3.43) because hs > hu.
r = 0 requires λs − λu < cr and r = r̄ necessitates λs − λu > cr from (3.27).
Together with (3.44), in the latter case it follows λu < cp−cr and λs > cr−cw.

Proof (Proof of Proposition 3.10). From (2.24) it follows that k2 = 0. Thus,
(2.22) implies

λ̇u = αλu + hu > 0. (3.45)

The proof for w = 0 is the same as in Case 1 (see proof of Proposition 2.2).
Thus,

λu > −cw (3.46)

from (2.14).
0 < r < r̄ requires µ2 = µ4 = 0 from (2.19) and (3.29) which yields λs −λu =
cr in (3.28). If simultaneously p > 0, then from (2.18) it follows µ1 = 0,
leading to λs = cp in (2.15) as well as λu = cp − cr in (3.28). It follows λ̇u = 0
which contradicts (3.45).
In any interval where 0 < r < r̄ and p = 0 hold, the definition of Case 2
(ẏs = 0) requires r = d < r̄ and ẏu = u − d. From (2.12) and (3.27) it follows
λs = λu + cr, λu < cp − cr, and λ̇s = λ̇u.

p > 0 from (2.12) necessitates λs = cp and λ̇s = 0. r = 0 requires p = d in
order to fill the demand and λs − λu < cr from (3.27) which also requires
λu > cp − cr. p > 0 and r = r̄ requires (using the definition of the case) d > r̄
and thus p = d − r̄ as well as λu < cp − cr from (3.27).

Proof (Proof of Proposition 3.11).
From (2.23) it follows that k1 = 0. (2.21) implies

λ̇s = αλs + hs > 0. (3.47)

p > 0 requires µ1 = 0 from (2.18) which yields λs = cp. It follows that λ̇s = 0
which contradicts (3.47). Thus, p∗ = 0 and

λs < cp. (3.48)
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r = 0, w = 0 requires ẏu = u which is not feasible as long as yu = 0.
0 < r < r̄ requires µ2 = µ4 = 0 in (2.19) and (3.29) which yields λs −λu = cr

in (3.28). It follows that λ̇s = λ̇u. Applying to (3.47) and (2.22) and solving
for k2 yields k2 = α(−cr) + hu − hs and k2 ≥ 0 in (2.24) contradicts the
assumptions that hs > hu and cr > 0.
r = 0 and w > 0 necessitates w = u in order to stay in Case 3 (ẏu = 0 has to
hold). It further requires µ3 = µ4 = 0 in (2.20) and (3.29), yielding λu = −cw

in (2.17) and finally λs < cr − cw in (3.28).
r = r̄ and w > 0 requires w = u − r̄ as well as u > r̄. As before, λu = −cw

holds and together with µ2 = 0 from (2.19) this yields λs > cr − cw in (3.28).

Proof (Proof of Proposition 3.12).
From the definition of Case 4 it follows ẏs = ẏu = 0 which implies p + r = d
and r + w = u. When neglecting boundary situations, i.e. where demand or
return rate equal zero, or where demand or return rate exactly match the
remanufacturing constraint, this already excludes the alternatives (p = 0, r =
0), (r = 0, w = 0), (p = 0, r = r̄), and (r = r̄, w = 0).
For p > 0, 0 ≤ r < r̄, w > 0 we find λs = cp, λu = −cw and µ2 = cr − cp − cw

which has to be non-negative (2.19). This contradicts the assumption of a
positive recovery advantage (2.6).
For p = 0, 0 < r < r̄, w > 0 we find r = d to ensure ẏs = 0 and then w = u−d
to ensure ẏu = 0. This decision requires d < r̄ and d < u. The co-states are
given by λs = cr − cw and λu = −cw.
For p > 0, 0 < r < r̄, w = 0 we find r = u to ensure ẏu = 0 and then p = d−u
to ensure ẏs = 0. This configuration is only feasible if d > u and u < r̄. The
co-states are given by λs = cp and λu = cp − cr.
p > 0, r = r̄, w > 0 requires p = d − r̄ and w = u − r̄ leading to d > r̄ as well
as u > r̄. The co-states are given by λs = cp and λu = −cw.

Proof (Proof of Proposition 3.13). This proof proceeds in the same way as
the proof to Proposition 2.6. (i) time points inside intervals where ys = 0 or
yu = 0 holds are examined and (ii) we deal with entry and exit points of such
intervals. Thereby, boundary Cases 1(1), 3(1) and 2(2) are neglected.
(i) First we look for circumstances under which the matrix⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0 p 0 0 0 0 0
0 1 0 0 r 0 0 0 0
0 0 1 0 0 w 0 0 0
0 −1 0 0 0 0 r̄ − r 0 0
1 1 0 0 0 0 0 ys 0
0 −1 −1 0 0 0 0 0 yu

⎞
⎟⎟⎟⎟⎟⎟⎠

I
II
III
IV
V
V I

(3.49)

has not full rank of six. Reconsidering r̄ > 0, d > 0, u > 0, as well as
assumption (3.25), this is not the case in the following five situations:

• (i-i) If p = 0, r = 0 and ys = 0 then I + II = V .
This requires d = 0 and can therefore be excluded.
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• (i-ii) If p = 0, r = r̄ and ys = 0 then I − IV = V .
This requires d = r̄ and a jump in λs may occur
(a) inside Case 2 intervals when switching from Subcase 2(3) to 2(1).
(b) inside Case 4 intervals when switching from Subcase 4(3) to 4(1).
(c) at entry and exit times of Case 4 intervals when switching from/to
Case 2. Since only downward jumps are allowed for λs, this would allow
for transitions from Case 2(3) to Case 4(1) as well as from Case 4(3) to
Case 2(1). From the definition of Case 2(3) and 4(1), the first transitions
would require d = u = r̄ which contradicts (3.25).
From the definition of the cases or in order to clear the recoverables in-
ventory, ḋ < ˙̄r is required in all relevant situations (a-c). This completes
the first part of the proof of Proposition 3.13(i).

• (i-iii) If r = 0, w = 0 and yu = 0 then II + III = −V I.
This requires u = 0 and can therefore be excluded.

• (i-iv) If p = 0, w = 0, ys = yu = 0 then I − III = V + V I.
This situation occurs when demand intersects returns from above (d = u,
ḋ < u̇) and is already known from the basic model. See proof of Proposition
2.6.
(a) Inside Case 4 intervals a jump in both λs and λu occurs when switching
from Case 4(2) to Case 4(1).
(b) At entry and exit times of Case 4 intervals in the case of a transition
from/to Case 2, a jump in λs may occur when switching (b1) from Case
4(2) to Case 2(1) and (b2) from Case 2(1) to Case 4(1). All transitions
(b1-2) also require for a jump in λu. In anticipation of part (ii) of this
proof, from optimal decisions within the respective cases it can be seen
that intervals where yu = 0 holds are entered or exited in a non-tangential
way and thus, also λu jumps. This completes the proof of Proposition
3.13(ii).

• (i-v) If r = r̄, w = 0, yu = 0 then −IV + III = −V I.
This requires u = r̄ and may appear inside Case 4 intervals when switching
from Case 4(2) to Case 4(3). Here also u̇ > ˙̄r holds. This completes the
first part of the proof of Proposition 3.13(iii).

(ii) Let θ1
s be the entry time and θ2

s the exit time of an interval where ys = 0
holds, i.e. the beginning of a Case 2 or Case 4 interval. Then, λs is continuous
at these time points if ys enters or leaves this interval in a non-tangential way,
i.e. ẏs = p + r − d jumps. This happens if the sum of the controls p and r
jumps at θ1

s .
(ii-i) An entry point θ1

s can be present at a switch (a) from Case 1(2) to Case
2 or (b) to Case 4 and (c) from Case 3 to Case 4 (other transitions are not
possible when applying the optimal decisions in Case 1 and Case 3 intervals).

(a) In the first case, the transition is non-tangential (p + r does not jump)
if d = r̄ holds at the end of Subcase 1(2). Since λs > λu + cr holds
inside Subcase 1(2) and λs = λu + cr inside Subcase 2(1), λs jumps at
transition time. In order to leave Case 1(2), d > r̄ must hold. Together
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with the definition of Subcase 2(1), ḋ < ˙̄r must hold at θ1
s . Since λs < cp

holds inside Subcase 1(2) and λs = cp in Subcase 2(3), a transition from
Subcase 1(2) to Subcase 2(3) would be continuous.

(b) In situation (b), d > r̄ > u must hold in order to clear both inventories
simultaneously. The only transition requiring a jump in λs would be to
Case 4(1). But from the definition of a Case 4 interval d = r̄ = u must
hold which is excluded by assumption (3.25).

(c) In the third case, d > r̄ must hold to empty the serviceables inventory.
The only transition requiring a jump in λs is from Case 3(2) to Case 4(1).
This necessitates d = r̄ as well as ḋ < ˙̄r at θ1

s .

(ii-ii) An exit time θ2
s is present at a transition from (a) Case 2 to Case 1

and from Case 4 (b) to Case 1 or (c) Case 3.

(a) A jump in λs only is required at a switch from Case 2(3) to Case 1(2) and
it requires d = r̄. Since d < r̄ is required to build up serviceables stock
during a Case 1(2) interval, ḋ < ˙̄r is required.

(b) A switch from Case 4 to Case 1(2) necessitates d < r̄ < u at the beginning
of the Case 1(2) interval. This already excludes a transition starting in
Case 4(2) since this would require d = r̄ = u. A transition starting in Case
4(3) needs d = r̄ as well as ḋ < ˙̄r.

(c) d < r̄ at the beginning of the Case 3(2) interval is required for a switch
from Case 4 to Case 3(2). As before only a transition starting in Case 4(3)
is possible, and d = r̄ as well as ḋ < ˙̄r must hold at θ2

s .

This completes the last part of the proof of Proposition 3.13(i).
Let θ1

u be the entry time and θ2
u the exit time of an interval, where yu = 0

holds (Case 3 or Case 4). Then, λu is continuous at these time points if yu

enters or leaves this interval in a non-tangential way, i.e. ẏu = u−r−w jumps.
That occurs if r + w jumps at (c) θ1

u or (d) θ2
u, respectively.

(ii-iii) An entry time θ1
u is present when switching from Case 1(2) (a) to Case

3(2) or (b) to Case 4, and (c) from Case 2 to Case 4.

(a) A non-tangential transition from Case 1(2) to Case 3(2) requires u = r̄.
In order to leave Case 1(2), u < r̄ must hold. Together with the definition
of Subcase 3(2), u̇ > ˙̄r must hold at θ1

u.
(b) When switching from Case 1(2) to Case 4, d > r̄ > u must hold in order

to clear both inventories simultaneously. The only transition requiring a
jump in λu terminates in Case 4(3), requiring u = r̄. From the definition
of a Case 4 interval u̇ > ˙̄r must hold.

(c) Besides the transition already discussed in (i-iv)(b) requiring a simulta-
neous jump in λs and λu, only a switch from Case 2(3) to Case 4(3) is
possible. Depleting the recoverables inventory requires u < r̄. Together
with the definition of a Case 4(3) interval, besides u = r̄ as well as u̇ > ˙̄r
hold.

(ii-iv) An exit time θ2
u is present when switching (a) from Case 3(2) to Case

1(2) and from Case 4 (b) to Case 1, or (c) to Case 2.
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(a) A transition from Case 3(2) to Case 1(2) proceeds continuously.
(b) A discontinuous switch w.r.t. λu from Case 4 to Case 1(2) would only be

possible starting with a Case 4(2) interval. d < r̄ < u must hold in order
to build up both inventories simultaneously. From the definition of a Case
4(2) interval d = r̄ = u must hold which is excluded by assumption (3.25).

(c) As before, a transition of situation (c) has been discussed in (i-iv)(b).
Aside from this, a switch from Case 4(2) to Case 2(3) is possible. A start
of collecting returns in the recoverables inventory requires u > r̄ at the
beginning of a Case 2(3) interval. Together with the definition of a Case
4(2) interval, u = r̄ and u̇ > ˙̄r hold at θ2

u.

This completes the proof of Proposition 3.13(iii).

Proof (Proof of Proposition 3.14).
In all cases where yu > 0 it must hold that −cw < λu < cp − cr and λ̇u =
αλu +hu. Proceeding in the same way as done in the proof of Proposition 2.7
finally yields θx,c − θe,c ≤ τu.

Proof (Proof of Proposition 3.17). From Proposition 3.9 we get a minimal
value for λs of λmin

s = λu(θi
e,s) + cr. The upper bound is given by λmax

s = cp.
Together with continuity of λs inside the interval with positive serviceables
stock and the solution of co-state development (3.9) yields

(
λu(θi

e,s) + cr + hs

α

)
eα(θi

x,s−θi
e,s) − hs

α ≤ λs(θ
i
x,s) ≤ cp

Solving the combined inequality for θi
x,s − θi

e,s finally yields

θi
x,s − θi

e,s ≤ 1

α
ln

(
αcp + hs

α
(
λu(θi

e,s) + cr)
)

+ hs

)
.

Proof (Proof of Proposition 3.18). From Proposition 3.12 we get a minimal
value for λs of λmin

s = cr − cw. The upper bound is given by λmax
s = cp.

Together with continuity of λs inside the interval with positive serviceables
stock and the solution of co-state development (3.9) yields(

cr − cw + hs

α

)
eα(θx,s−θe,s) − hs

α ≤ λs(θ
i
x,s) ≤ cp

Solving the combined inequality for θx,s − θe,s finally yields

θx,s − θe,s ≤ 1

α
ln

(
αcp + hs

α (cr − cw)) + hs

)
.
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Knowledge Acquisition and Product Recovery

4.1 Motivation

So far, our analysis based on the assumption that all processes maintained an
initial performance level and constant cost rates. However, ongoing competi-
tion and the search for profit maximization provide incentives for productivity
improvements. This chapter relates to an empirical phenomenon found quite
often in practical applications dating back to the 1920’s and intends to explore
effects of acquiring knowledge in product recovery on strategic recoverables in-
ventory management. The learning curve, introduced by Wright (1936), shows
a (potential) relationship between cumulative output and labor hours per
unit produced. It’s empirical evidence has been proven in a large number of
studies, for comprehensive literature surveys see Yelle (1979) or Dutton and
Thomas (1984). Traditionally, learning is seen as autonomous acquisition of
tacit knowledge which is more prominent in labor intensive processes, but it
also has been proven to occur in highly mechanized industries.

Because of the shortening of manufacturing times or more generally, re-
duction of input quantities, learning leads to an increase of the capacity of
a manufacturing system and a decrease of direct production costs. This rela-
tionship has led to two main representations of the experience curve, as the
relationship between cumulative output and unit costs is called. Let c0 be the
unit costs of producing the first item, c the unit costs of the X-th one, and
b > 0 a learning parameter. According to Zangwill and Kantor (1998), the
most widespread used functional forms of learning curves are

(a) the so-called Power Law form

c(X) = c0 · X−b (4.1)

(b) and the Mixed Exponential Learning form

c(X) = c0 · e−bX . (4.2)
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The first type (a) represents the classical type first introduced by Wright
(1936). This form predicts a reduction of unit production costs by a constant
percentage each time the cumulative output doubles. The second function (b)
is well-known from psychological learning theory, but also used for economic
analyses (see Kantor and Zangwill (1991)). Both functional forms have in
common that unit costs persistently decrease at a decreasing rate, i.e. further
efficiency improvements become increasingly difficult to achieve. It should be
noted, however, that since these functions only represent results of a system’s
inherent learning process, efforts have been taken to explain the underlying
causes, resulting in refinements of the functional forms. Adler and Clark (1991)
for instance investigate the impact of forced engineering changes and train-
ing on productivity improvement. Further factors that influence the learning
rate have been elaborated by Argote and Epple (1990). These factors include
organizational forgetting and employee turnover, both having a negative ef-
fect, and different ways to transfer knowledge between products or different
departments of a company, which in turn increase the learning rate.

Quantitative approaches integrating learning effects into production plan-
ning decisions have been surveyed by Gulledge and Khoshnevis (1987). They
include the following issues

• break-even analysis
Pegels (1976) aims to predict at which level of production volume total
costs equal total revenue or at which point marginal costs equal marginal
revenue.

• aggregate production planning
Ebert (1976) extends the well known HMMS model (Holt et al. (1960)) by
introducing a dependence between productivity of workforce and cumula-
tive production. Liao (1979) and Reeves and Sweigart (1981) consider this
issue on a more detailed level aiming to determine the optimal product-
mix. In this work, a number of different resource requirements depend on
the number of manufactured items of a product.

• economic lot sizing
The influence of learning on economic manufacturing quantity has been
reviewed by Smunt and Morton (1985) and, more recently, by Jaber and
Bonney (2001). In this context a number of different learning and ‘forget-
ting’ effects are investigated. For instance learning in the set-up of batch
production leads to smaller lot sizes and a reduction of cycle stocks.

• dynamic pricing
Li and Rajagopalan (1998) analyze a dynamic profit maximization model,
where a monopolistic firm sets price and production quantities by assum-
ing a generic learning function and additionally considering knowledge
depreciation.

Cost reductions due to learning are not restricted to production alone. It
can also be presumed to occur for remanufacturing processes, if there are re-
peated operations performed on a large number of similar items. In such a case,
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and since remanufacturing operations usually include labor intensive tasks
(Guide et al. (2000)), there exists a considerable potential for cost-reductions
from acquiring e.g. tacit disassembly know how or due to specialized tools
developed during the remanufacturing process. It must also be stated, that
if there is a large diversity of remanufactured products with only a few in-
formation on how to deal with them correctly, sufficient experience might be
more difficult to obtain. Under such circumstances remanufacturing usually
would be dominated by lower levels of product recovery. This especially holds
for independent recyclers whereas OEM have a competitive advantage due to
an easier access to required information. See Toffel (2004) for a more detailed
discussion.

In addition to the traditional volume learning effects, there is a second
level of using the knowledge that was acquired during recovery operations.
As indicated by Toffel (2004), a transfer of product recovery knowledge back
to the production stage may lead to improvements in product design and
manufacturing processes such that overall profitability increases.

The single-use camera case (see Chapter 1) provides a good example of
large scale product recovery. Figure 4.1 exemplifies the increase in yearly vol-
ume indicating that considerable productivity improvements have been real-
ized. With respect to the above-mentioned second level learning, there is an
ongoing process of design changes to increase the reusability level. This is
facilitated by the fact that the products are designed for ‘reverse compatibil-
ity’, which means that a new product generation can by design use some parts
recovered from a previous generation. This helps to serve customer demand
while still benefiting from a high product recovery level. For a more detailed
discussion of this issue see Goldstein (1994).
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Fig. 4.1. Single-use cameras recycled by Kodak between 1990 and 2003 (in Millions).
Sources: Annual Reports 1999-2003, The Kodak Corporation.
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Quantitative approaches devoted to effects of knowledge accumulation in
product recovery can rarely be found. Exceptions are offered in the context
of Total Quality Management. For instance, Lapré et al. (2000) present a
model where learning leads to a reduction of unwanted by-products or waste
inside the production process. The scarcity of these approaches is intuitive,
because similar effects are expected when dealing with the pure remanufac-
turing process as encountered in production planning. When dealing with
an integrated product recovery system new results are likely to occur. This
chapter starts to fill this gap by analyzing the impact of acquiring reman-
ufacturing knowledge on optimal decisions in such an environment. Possible
research questions are how strategic stock-keeping changes and what would be
the effect on optimal remanufacturing and production policies. For instance,
as a strategic implication of productivity improvements, remanufacturing can
be profitable in the long run, even if there is no immediate cost advantage
over the production of new items, because subsequent unit remanufacturing
costs are lowered. Here, benefits are derived from using an optimal control
framework because, as explained in Chapter 2, the indirect effect of current
decisions on future expenses is also valued.

The remainder of this chapter is organized as follows. In Section 4.2 an
optimal control model is introduced which is further analyzed in Section 4.3.
Special attention is drawn on the impact of zero and nonzero interest rates
and by further distinguishing between specific cost/cash flow conditions, the
main qualitative additions to the results of the basic formulation known from
Chapter 2 are identified in Section 4.4. Numerical examples are used in Section
4.5 to illustrate the findings and final conclusions are presented in Section 4.6.

4.2 A Model with Remanufacturing Knowledge

Acquisition

In this section a model is presented where current decisions on remanufac-
turing have an additional impact on future cash flow, because they change a
knowledge stock which in turn lowers unit remanufacturing costs. The model
uses the basic formulation introduced in Chapter 2 which has been adapted
in order to account for knowledge acquisition. The following changes and as-
sumptions are made.

Since only learning effects in the remanufacturing process are considered,
it is assumed that the manufacturing process uses a ‘mature’ or old technology
with negligible learning rate. Further, a re-transfer of remanufacturing knowl-
edge back to the production stage (second level learning) is disregarded here,
because this would destroy homogeneity of produced and later returned used
products. Rate effects and knowledge decay are also not considered. A possi-
ble method for including knowledge depreciation into a dynamic framework
has been presented by Li and Rajagopalan (1998).



4.2 A Model with Remanufacturing Knowledge Acquisition 99

Learning in the remanufacturing shop is based on cumulative remanufac-
turing volume R which is derived, given an initial stock of knowledge R0, by
using

Ṙ(t) = r(t) ≥ 0 and R(0) = R0 > 0. (4.3)

Constant out-of-pocket remanufacturing unit costs are replaced by a generic
exogenous and deterministic function cr(R) measuring the learning curve ef-
fect realized so far. For this function we assume

c′r(R) < 0, c′′r (R) > 0, as well as lim
R→∞

cr(R) ≥ 0, (4.4)

i.e. unit remanufacturing costs decrease at a decreasing rate. Initial reman-
ufacturing costs cr(R0) can be so high that assumption (2.6) is violated
and thus, a situation with a negative initial remanufacturing cost advantage
(cp + cw − cr(R0) < 0) in general is allowed.

All processes are supposed to be unrestricted. A serviceables inventory is
therefore not considered here (ys(t) = 0 ∀t). Production quantity p(t) imme-
diately follows, when setting a corresponding remanufacturing rate r(t), from
the necessity to immediately satisfy all demand. Therefore, we have

p(t) = d(t) − r(t). (4.5)

Non-negativity of the production rate requires the return rate not to exceed
the demand rate (r(t) < d(t)).

Besides an unchanged recoverables inventory transition equation

ẏu(t) = u(t) − r(t) − w(t) (4.6)

initial and final recoverables inventory levels are set to zero (yu(0) = yu(T ) =
0). As usual, it should not be advantageous to hold unneeded returned prod-
ucts

hu > αcw. (4.7)

For analytical convenience but without loss of generality we assume strictly
positive demand and return rates during the whole planning horizon

d(t) > 0 and u(t) > 0. (4.8)

Thus, a constraint qualification required for the results presented in the next
section is always satisfied.

Now, an optimal control problem with two states (R and yu) and two
control variables (r and w) has to be solved such that the total discounted
cash outflow during a finite planning horizon is minimized. The problem is
subject to the state equations, a pure state constraint, initial and (partly)
terminal conditions for the state variables as well as non-negativity constraints
for control variables and an upper limit for the remanufacturing rate
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min NPV =

∫ T

0

e−αt (cp(d(t) − r(t)) + cr(R(t))r(t) + cww(t) + huyu(t)) dt

s.t. (4.3), (4.6), (4.9)

yu(t) ≥ 0 yu(0) = 0, yu(T ) = 0,

d(t) − r(t) ≥ 0, r(t) ≥ 0, w(t) ≥ 0.

4.3 Optimality Conditions and General Results

Necessary Conditions

There is no fundamental difference in optimal control theory when dealing
with dynamic instead of static parameters and thus, the general solution pro-
cedure known from Chapter 2 can also be applied to the extended problem.
Since the remanufacturing costs depend on a state, the objective loses the
property of linearity in both controls and states. Necessary conditions as pre-
sented below are therefore no longer sufficient for optimality.

After introducing a new co-state variable λR, which corresponds to the
stock of accumulated experience R, the Hamiltonian reads as

H(.) = λ0(−cp(d − r) − cr(R)r − cww − huyu) + λu(u − r − w) + λRr.(4.10)

Using Kuhn-Tucker multipliers µ1, µ2, µ3, and k2 the Lagrangian is given by

L(..) = H(.) + µ1(d − r) + µ2r + µ3w + k2yu. (4.11)

In the appendix we show that λ0 = 1. The adjoint λR rates the impact of
the current remanufacturing decision on future costs and can therefore be
interpreted as the shadow ‘price’ or value of acquiring knowledge and thereby
changing the stock of experience R. It incorporates the discounted value of all
improvements in future remanufacturing costs.

Now, let (y∗
u, R∗) represent the optimal trajectory of the state variables

and (r∗, w∗) be a piecewise continuous trajectory of optimal control policies to
problem (4.9). Then, there exists a continuous function of time λR as well as
piecewise continuous functions of time λu, µi, i = 1, 2, 3, k2 and a set of points
θu ∈ Θu where the co-state λu jumps with corresponding height parameters
ηu(θu). Except for points of discontinuity in the controls and junction points,
the following necessary conditions (4.12)–(4.24) must hold.

The Hamiltonian is maximized, if the following bang-bang equations (4.12)
and (4.13) hold

r∗ =

⎧⎨
⎩

0 λu > cp − (cr(R
∗) − λR)

singular λu = cp − (cr(R
∗) − λR)

d λu < cp − (cr(R
∗) − λR)

(4.12)

w∗ =

{
0 λu > −cw

singular λu = −cw.
(4.13)
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The remanufacturing rate is zero and demand is filled from production, if
the value of a recoverables item exceeds the difference of current production
expenses and the net expenses of remanufacturing (current direct costs less
the future cost reductions valued by λR). r∗ equals demand if the opposite
holds and it can take any value between 0 and the demand rate, if there is
indifference (equality of both sides). Similarly, a returned item is kept only, if
its value exceeds a salvage revenue (−cw).

In order to maximize the Lagrangian, (4.14) and (4.15) must hold. Non-
negativity of controls as well as complementary slackness conditions apply as
stated in (4.16)-(4.18).

∂L

∂r
= cp − cr(R

∗) − λu + λR − µ1 + µ2 = 0 (4.14)

∂L

∂w
= −cw − λu + µ3 = 0 (4.15)

µ1 ≥ 0 µ1 · (d − r∗) = 0 (4.16)

µ2 ≥ 0 µ2 · r∗ = 0 (4.17)

µ3 ≥ 0 µ3 · w∗ = 0 (4.18)

Optimal co-state transitions are given in (4.19) and (4.20), and complementary
slackness condition for the recoverables inventory is represented by (4.21).

λ̇u = αλu − ∂L

∂yu
= αλu + hu − k2 (4.19)

λ̇R = αλR − ∂L

∂R
= αλR + c′r(R

∗) · r∗ (4.20)

k2 ≥ 0 k2 · y∗
u = 0. (4.21)

New condition (4.20) can be interpreted as follows. The value of knowledge
(i) increases with the interest to be paid on it (αλR), i.e. a later acquisition of
experience through remanufacturing would have been cheaper in terms of the
discounted value of required remanufacturing expenses, and it (ii) decreases
with the rate at which remanufacturing unit costs decrease (ċ∗r = c′r(R

∗) ·
r∗). This is because a current cost reduction lowers the remaining reduction
potential.

Transversality conditions for the co-state variables are given in (4.22) and
(4.23)

λu(T ) is free, (4.22)

λR(T ) = 0. (4.23)

The value of stored recoverables at the end of the planning period can not be
predetermined because there the inventory is forced to zero. Instead of this,
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λu(T ) depends on the relation of demand and return functions. At the same
time, remanufacturing knowledge becomes useless. Therefore, the correspond-
ing co-state takes on a value of zero.

As in the basic model, there are points θu ∈ ΘU with y∗
u = 0 where

downward jumps in λu and in the Hamiltonian occur.

λu(θ−u ) = λu(θ+
u ) + ηu(θu) (4.24)

where ηu(θu) ≥ 0 and ηu(θu) · y∗
u(θu) = 0.

Downward jumps in λR are not permitted.

Properties of an Optimal Solution

In this section particular features are derived that must hold for any optimal
solution. We start with general results regarding the co-states, which are fol-
lowed by a derivation of optimal policies in different cases in the state space.
Lastly, conditions for case transitions are deduced. These findings are later
used in Section 4.4 to examine optimal policies in more specific situations
with respect to cash flow parameters.

General Properties of the Co-states λR and λu

Reconsidering co-state movement (4.20), bounds for the value of acquiring
knowledge λR as well as for its rate of change can be derived. Except for
the special case where discounting can be neglected (α = 0), the direction
of the co-state development is not predetermined in (4.20), but it depends
on the relation of the two terms on the right hand side of (4.20). Since c′r is
strictly negative, the second term is negative. If additionally the first term is
less than zero, requiring the co-state to be negative, then the co-state is not
able to rise again which contradicts transversality condition (4.23). Thus, the
value of acquiring knowledge is limited to non-negative values, i.e.

0 ≤ λR(t). (4.25)

The largest possible decrease of λR is given by the rate of change of remanufac-
turing costs (obtained when assuming a zero discount rate) and the maximal
rise is determined by the opportunity costs of a later learning. Thus, in an
optimal solution the following must hold

ċr(t) ≤ λ̇R(t) ≤ αλR(t), (4.26)

i.e. the shadow price of acquiring knowledge must not decrease faster than
current remanufacturing costs and it does not increase more rapidly than the
interest to be paid on it.

The maximal possible decrease of λR in (4.26) determines an upper bound
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λR(t) ≤ cr (R∗(t)) − cr(R
∗(T )) . (4.27)

Otherwise, transversality condition (4.23) again would be infeasible. Inequal-
ity (4.27) implies that the value of knowledge acquisition at time t lies below
the remaining remanufacturing cost reduction. As can easily be seen when in-
serting α = 0 into (4.20), equality must hold in (4.27) if α = 0. The following
lemma summarizes the results regarding λR (presented without proof).

Lemma 4.1. The value of acquiring knowledge λR must lie between zero and
the remaining remanufacturing cost reduction. If discounting can be neglected
(α = 0), then λR exactly equals the remaining remanufacturing cost reduction.

Another important result concerns the upper bound of the value of returns
(λu). In the basic model, this bound was given by the difference of manufac-
turing and remanufacturing costs, λmax

u = cp − cr. In our case, a similar but
time dependent boundary applies if remanufacturing takes place, i.e. r∗ > 0
requires λu ≤ cp − (cr(R

∗)− λR) from (4.12). The first derivative of the right
hand side of this inequality w.r.t. time yields

d

dt
(cp − (cr(R

∗(t)) − λR(t))) = αλR(t). (4.28)

That means that the difference between production expenses and net expenses
of remanufacturing increases with non-negative rate αλR. Consequently, if
α = 0 it is time independent and equals the projected difference of production
and remanufacturing expenses at the end of the planning period. This leads
us to Lemma 4.2 (presented without proof).

Lemma 4.2. The maximal level which the value of returns is allowed to
achieve if remanufacturing takes place (r∗ > 0) rises with rate αλR. In
case of zero discounting (α = 0), this level is constant and given by λmax

u =
cp − cr(R

∗(T )).

Cases in State Space and Optimal Policies

Since only a single stocking point (the recoverables inventory) is considered,
there are only two cases, one with a positive (yu > 0) and another with a
zero inventory level (yu = 0). In order to remain consistent with Chapter
2, these cases are named Case 2 and 4, respectively. The basic model can
be seen as a special case with a zero learning rate, all policies (cases and
subcases) that apply are also relevant in the present situation. Further policies
are available and conditions for the already known subcases change as shown
in the following two propositions.

Proposition 4.1 (Optimal decisions in Case 2 intervals).
If recoverables inventory is positive (y∗

u > 0), the optimal policy is not to dis-
pose of returns (w∗ = 0). The decision on whether to remanufacture or to
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produce depends on a relationship based on co-states and current remanufac-
turing costs. Two subcases can be distinguished:
Subcase 2(1) ⇔ λu < cp − (cr(R

∗) − λR)
Demand is satisfied from remanufacturing returns (r∗ = d) and no items are
produced (p∗ = 0).
Subcase 2(2) ⇔ λu > cp − (cr(R

∗) − λR)
Remanufacturing does not take place (r∗ = 0) and demand is filled from
production alone (p∗ = d).

Under positive recoverables inventory conditions, two different policies
might apply. Both have in common that disposal is not optimal, because oth-
erwise items could have been disposed of earlier (from stock or directly when
arriving) which would have saved holding costs. Thus λu > −cw. The question
on how to fill demand, either completely from remanufacturing out of stock or
by producing new items, depends on whether or not the value of returns ex-
ceeds the difference of production expenses cp and net remanufacturing costs
(including indirect learning effects) cr(R

∗) − λR.
The already known Subcase 2(1) was used in the basic model for build-

ing an anticipation stock. Subcase 2(2), however, might be used in order to
postpone remanufacturing decisions, if holding an item and remanufacturing
it later would be cheaper than immediately processing it.

Proposition 4.2 (Optimal decisions in Case 4 intervals).
If recoverables inventory is empty (y∗

u = 0), optimal decisions depend on the
net recovery cost advantage and on how demand relates to the return rate.
Here three subcases can be distinguished:
Subcase 4(1) ⇔ d ≤ u, λu = −cw, and cp + cw > cr(R

∗) − λR

Demand is satisfied completely by remanufacturing returns (r∗ = d) and excess
returns are disposed of (w∗ = u − d). No items are produced (p∗ = 0).
Subcase 4(2) ⇔ u < d, λu = cp − cr(R

∗) + λR, and cp + cw > cr(R
∗) − λR

All returns are remanufactured (r∗ = u) and the missing items are produced
(p∗ = d − u). No items are disposed of (w∗ = 0).
Subcase 4(3) ⇔ λu = −cw, cp + cw < cr(R

∗) − λR

Remanufacturing does not take place (r∗ = 0) and demand is filled from
production alone (p∗ = d). All returns are disposed of (w∗ = u).

In the case of zero inventories, besides those two policies already known
from the basic model, a third subcase applies. While the first two aim to
maximize current remanufacturing volume, Subcase 4(3) is characterized by
a zero remanufacturing rate and disposal of all returns. It is preferred to the
other two if net remanufacturing costs exceed the costs of producing a new
item and disposing of the old one, i.e. in situations where remanufacturing is
not preferable. Depending on optimal decisions λu either takes on its lower
bound −cw if disposal takes place (Subcases 4(1) and 4(3)) or its upper bound
λu = cp − cr(R

∗) + λR in case it does not (Subcase 4(2)).
Main results of both cases including state and co-state developments are

summarized in Table 4.1.
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Table 4.1. Main results of optimal cases in a product recovery system with learning.

r∗ w∗ ẏu λu λ̇u λR λ̇R k2

(Ṙ)

Case 2: yu > 0

(1) d 0 u − d −cw < αλu + hu B < αλR + c′r(R
∗)d 0

< A (> 0)
(2) 0 0 u −cw < αλu + hu αλR 0

A < (> 0)

Case 4: yu = 0

(1) (d ≤ u) d u − d 0 −cw 0 B < αλR + c′r(R
∗)d hu − αcw

< A
(2) (u < d) u 0 0 A αλR B < αλR + c′r(R

∗)u α(λu−λR) + hu

−cw <
(3) 0 u 0 −cw 0 < B αλR hu − αcw

A <

Abbreviations:

A = cp − (cr(R
∗) − λR) ... cost advantage of remanufacturing including learning

B = cr(R
∗) − cp − cw ... current (direct) cost disadvantage of remanufacturing

Optimal Transitions Between Cases and Subcases

As in the previous chapters, we classify transitions with respect to their depen-
dence on an actual decision to build up stock, and differentiate between forced
and automatic case transitions. A new type is named a learning forced transi-
tion which happens, if the optimal policy switches between non-performance
and start of the remanufacturing process. As usual, A → B reads as a tran-
sition from a Case A to a Case B interval, and continuous and discontinuous
transitions are distinguished.

An exploration of the continuity properties of the adjoints leads to Propo-
sition 4.3.

Proposition 4.3 (Continuity of the co-states). λR is always continuous.
λu is continuous, i.e. jump parameter ηu vanishes everywhere, except at time
points θ ∈ Θ where yu(θ) = 0 and u(θ) = d(θ) holds.

Corollaries 4.1-4.3 provide results regarding possible case transitions. The
proofs are not completely straightforward and therefore explicitly given in
the proof section. Since not all transitions are possible under all cash flow
parameter conditions, we distinguish between low (L), moderate (M), and
high (H) values of cr(R

∗(t)) being defined as follows

• Low: cr(R
∗(t)) ≤ cp + cw (and consequently, α(cr(R

∗(t)) − cp) < hu),
There currently exists a positive direct recovery cost advantage.

• Moderate: cr(R
∗(t)) > cp + cw and α(cr(R

∗(t)) − cp) ≤ hu,
Remanufacturing does not immediately pay off. Out of pocket holding
costs are higher than savings from deferring to remanufacture an item.
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• High: hu < α(cr(R
∗(t)) − cp) (including cr(R

∗(t)) > cp + cw),
Remanufacturing is so expensive, that holding an item is cheaper than the
interests that are saved when postponing remanufacturing of that item.

The following discussion concentrates on transitions that are not known from
the basic model. Each transition incorporating one of the new cases (Subcase
2(2) and 4(3)) will be briefly discussed and it is indicated which cost condition
is required.

Corollary 4.1. Within Case 2 Subcase 2(2) is followed by a Subcase 2(1) in-
terval. This continuous and automatic transition requires λu = cp − (cr(R

∗)−
λR) and is only possible under high remanufacturing cost conditions (H).

Subcase 2(2) accumulates returns. In order to deplete the stock, a switch
to Subcase 2(1) is required. This happens at a time at which the value of
returns equals the difference of production and net remanufacturing costs.
The required cost scenario (H) indicates that Subcase 2(2) is used to postpone
the start of remanufacturing in Subcase 2(1) while still able to recover value
from collected returns.

Corollary 4.2. Within Case 4 the following transitions are possible:
4(2) → 4(1). This automatic and discontinuous transition requires d = u

and ḋ < u̇.
4(3) → 4(1). This learning forced and continuous transition requires d < u,

λR = cr(R
∗)− cp − cw, and moderate or high remanufacturing

costs (M,H).
4(3) → 4(2). This learning forced and continuous transition requires d > u,

λR = cr(R
∗) − cp − cw, and moderate remanufacturing costs

(M).

As the value of acquiring knowledge reaches a critical value, i.e. the current
recovery cost disadvantage, a switch from Subcase 4(3) to one of the other two
subcases takes place. Transition 4(3) → 4(2) additionally requires a moderate
cost situation. Otherwise, stock-keeping of returns and postponing the start
of remanufacturing would be preferable. This is feasible since there is excess
demand available after a transition time which could be filled from stored
returns.

Corollary 4.3. Between a Case 2 and a Case 4 interval the following tran-
sitions are possible:
2(1) → 4(1). This automatic and discontinuous transition requires d = u

and ḋ < u̇.
2(1) → 4(2). This automatic and continuous transition requires d > u.
4(1) → 2(1). This forced and continuous transition requires d < u.
4(2) → 2(1). This forced and discontinuous transition requires d = u and

ḋ < u̇.
4(3) → 2(2). This learning forced and continuous transition requires high

remanufacturing costs (H).



4.3 Optimality Conditions and General Results 107

A transition from Case 4(3) to 2(2) takes place as disposal of returns ceases
and accumulation for later remanufacturing during a Subcase 2(1) interval
starts. Since Subcase 2(2) is left terminating in a Subcase 2(1) interval, the
same remanufacturing cost condition must hold.

All possible transitions and relevant initial cost conditions are depicted in
Figure 4.2. The grey shaded area highlights transitions that are known from
the basic model.
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Fig. 4.2. Optimal case transitions in a product recovery system with learning.

Corollaries 4.1-4.3 showed that there are no optimal transitions from the
already known (2(1),4(1),4(2)) to new subcases (2(2), 4(3)). The latter might
therefore only occur during an initial period and the whole planning period
can be divided into two parts, the first where no remanufacturing takes place
and another where it does. Let θl ∈ [0, T ] be the time which divides the two
parts, i.e. after which remanufacturing is used. Corollary 4.4 summarizes the
results regarding case transitions (presented without proof).

Corollary 4.4. After remanufacturing a first returned item at time θl this
process is continued until the end of the planning horizon, i.e. r∗(t) ≥ 0 ∀t ≥
θl. Cases 4(3) and 2(2) are only present during an initial period and in both
cases it holds that R∗ = R0.

Therefore, for any transition involving Subcases 2(2) and 4(3) it holds
R∗(t) = R0 and the (L/M/H) distinction introduced before bases on initial
unit remanufacturing costs cr(R0). Corollaries 4.1-4.3 have to be adapted
accordingly.

As another interesting implication of the split planning period the devel-
opment of the value of acquiring knowledge λR in general proceeds as follows

λ̇R(t) =

{
αλR t < θl

αλR + c′r(R
∗) · r∗ t ≥ θl

. (4.29)
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Using boundary condition (4.23) the solution of this differential equation is

λR(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

eα(t−θl)

(
−

T∫
θl

eα(θl−s) (c′r(R
∗(s)) · r∗) ds

)
t < θl

−
T∫
t

eα(t−s) (c′r(R
∗(s)) · r∗) ds t ≥ θl

. (4.30)

Equation (4.30) can be interpreted as follows. At any point later than θl, the
value of knowledge acquisition is given by the discounted value (in terms of
that time point) of all later cost reductions ċr = c′r(R

∗) · r∗. For all time
points t < θl, λR(θl) is only adapted to account for different time value, i.e.
it is discounted from θl down to t.

4.4 Optimal Policies in Specific Situations

This section deals with qualitative additions of remanufacturing knowledge
accumulation on the strategic stock-keeping known from the basic model.
Since the effects differ when having a zero or non-zero interest rate, in the next
two subsections optimal policies for each of these two cases are developed.

4.4.1 Optimal Policy with a Zero Interest Rate

The case of negligible discounting is characterized by an equal valuation of all
payments independent of their timing. A postponement of remanufacturing
decisions does therefore not make sense and the solution takes on a simple
structure as provided in Proposition 4.4.

Proposition 4.4. If the interest rate is zero, then either remanufacturing
takes place right from start of the planning period or it does not take place at
all, i.e. θl ∈ {0, T }.

Thus, the optimal solution either is characterized by a sequence of intervals
of Cases 2(1), 4(1) and 4(2) (Type 1 ), or alternatively Case 4(3) is present
throughout the planning period (Type 2 ). Both types are now examined in
detail.

A Type 1 solution exhibits the same structure as the basic model without
initial inventories. It requires the value of acquiring knowledge (1) to exceed
a possible direct recovery cost disadvantage (λR(t) > cr(R

∗(t)) − cp − cw ∀t)
and (2) to continuously decrease with the same rate at which remanufacturing
costs fall (λ̇R = ċr). The value of returns depend on the relation of demand and
return functions and on whether it is optimal to build up an anticipation stock
of recoverables. Optimal Case 2(1) intervals require attributes like a Location
Property (Corollary 2.6) and Inventory Conditions (Proposition 2.8), which
both remain unchanged. A Maximal Length Property similar to Proposition
2.7 can be derived by using results provided by Lemma 4.2. Subsequently, let
θe,i and θx,i denote the entry and exit time of a Case i interval.
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Proposition 4.5 (Maximal Length Property where α = 0).
If the interest rate is zero, then the maximal length of a Case 2(1) interval
I = (θe,2(1), θx,2(1)) is given by

(θx,2(1) − θe,2(1)) ≤ τu := max

{
0,

cp + cw − cr(R
∗(T ))

hu

}
.

The Maximal Holding Time τu is constant over time, and it immediately
anticipates all later-acquired experience right from the beginning. It now bal-
ances a trade-off between incurred holding costs and the net recovery cost
advantage.

A Type 2 solution is characterized by disposal of all returns which is only
optimal if λu(t) = −cw ∀t. Since there is no learning, the value of acquiring
knowledge is zero and it never exceeds the recovery cost disadvantage, i.e.
0 = λR(t) < cr(R

∗(t)) − cp − cw ∀t.
It remains to be seen which type of solution applies. In the case of low

initial remanufacturing costs (L) where cr(R0) ≤ cp + cw, Case 4(3) is invalid
and remanufacturing takes place. But if we have a situation with moderate
initial remanufacturing costs where cr(R0) > cp + cw (M, while H conditions
are excluded by definition when interest rate is zero) it is questionable whether
the investments spent for ‘riding down the experience curve’ (i.e. into the
initial recovery cost disadvantage) can later be recaptured. Since independent
of their timing all payments are valued equally, this question can be answered
by using a break-even type of analysis. Let R̃ be a return quantity at which
total remanufacturing costs equal total costs of disposal and production of
new items, i.e.

R̃ :

R0+R̃∫
R0

cr(x) dx = (cp + cw)R̃. (4.31)

Then, the following proposition is used to decide upon the solution type.

Proposition 4.6. If the interest rate is zero, then remanufacturing takes
place if the total remanufacturing quantity surpasses a break-even total re-
manufacturing quantity, i.e. R∗(T ) ≥ R̃.

Since the total remanufacturing quantity R∗(T ) plays a role both in deter-
mining τu and in the question whether to remanufacture or not, the choice of
the planning horizon T becomes a critical decisive factor. A longer planning
period would lead to an increased Maximal Holding Time and thus to more
stock-keeping. But also remanufacturing would more likely pay off because
total remanufacturing rises. This result complies with the strategic focus of
the learning curve approach.

The main problem when constructing the optimal solution, is to find the
right total remanufacturing quantity R∗(T ) which on one side depends on the
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Maximal Holding Time τu and on the other side is required to determine just
it. In order to overcome these difficulties we propose the following solution
algorithm.

Algorithm 4.1

Step 1

Start with an initial total remanufacturing quantity R̂(T ). Determine a
preliminary solution by using Algorithm 2.1 (see Section 2.3.6) assuming a

Maximal Holding Time of τu = max
{
0,

cp+cw−cr(R̂(T ))
hu

}
. Evaluate for this

solution the total remanufacturing quantity R0(T ).

Step 2
let i := 0.
repeat

let i := i + 1
Determine a preliminary solution under the assumption of a Max-

imal Holding Time τu = max
{

0,
cp+cw−cr(Ri−1(T ))

hu

}
. Evaluate for

this solution the total remanufacturing quantity Ri(T ).
until |Ri(T ) − Ri−1(T )| < ε.

Step 3

The solution determined in Step 2 is (approximately) optimal if Ri(T ) ≥ R̃.
Otherwise remanufacturing does not take place.

Algorithm 4.1 starts with an initial guess of the total remanufacturing
quantity (Step 1) and it iteratively improves this value in Step 2 until a suffi-
cient precision (measured by a parameter ε) is reached. In Step 3, it is checked
whether remanufacturing is performed at all. A possible way to initialize R̂(T )
would be to use break-even quantity R̃ or the maximal potential total expe-
rience given by the sum of initial experience and accumulated return rate,

i.e. R0 +
∫ T

0 u(t)dt . The algorithm converges, because if Ri−1(T ) was chosen
too large, then terminal remanufacturing costs are under- and Maximal Hold-
ing Time is overestimated. Thus, still too many items are remanufactured
and therefore Ri(T ) is also located in between R∗(T ) and Ri−1(T ). A similar
argument holds for too low values of Ri−1(T ).

4.4.2 Optimal Policy with a Positive Interest Rate

When discounting matters, three main modifications to the previous case oc-
cur. First of all, even if remanufacturing does take place it is not necessarily
useful to start it at the beginning of the planning horizon. Therefore, the ques-
tion must be answered when to start this process. A trade-off is struck between
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early remanufacturing that leads to higher but later direct cost savings, and
a lower discounted value of the initial expenses if it is started later. Secondly,
under (H) initial remanufacturing cost conditions, a strategic inventory might
be used to postpone remanufacturing. Finally, the Maximal Holding Time is
no longer constant. The following proposition uses results derived in Lemma
4.2.

Proposition 4.7 (Maximal Length Property where α > 0).
If the interest rate is positive, then the maximal length of a Case 2 interval
I = (θe,2, θx,2) is time dependent, and it increases over time. It is given as a
function of the exit time of the respective Case 2(1) interval

(θx,2 − θe,2) ≤ τu(θx,2) :=
1

α
ln

(
α (cp − (cr(R

∗(θx,2)) − λR(θx,2))) + hu

−αcw + hu

)
.

The Maximal Length Property corresponds to that known from the basic
model (Proposition 2.7), but here remanufacturing expenses (cr) are replaced
by net remanufacturing costs (cr(R

∗(θx,2)) − λR(θx,2)). In the case of posi-
tive discounting, not all later acquired experience is anticipated because the
respective cost savings are valued less than current expenses. Since this dif-
ference in time value decreases as time advances, the Maximal Holding Time
rises with time, i.e. a later Case 2 interval is allowed to be longer than an
earlier one.

Next, we consider the different initial remanufacturing cost situations.

Low Initial Remanufacturing Costs: cr(R0) ≤ cp + cw

Under (L) conditions there is an immediate advantage of remanufacturing
over producing new items and disposing of the old ones. The optimal policy
in such a situation therefore is to start remanufacturing as early as possible,
i.e. θl = 0 and to follow a Type 1 policy. An anticipation stock of returns
is held under circumstances as described before, but in contrast to the zero
discounting case, the Maximal Holding Time τu utilizes Proposition 4.7 and
must therefore be determined individually for each Case 2(1) interval. This is
accomplished by applying a simple procedure as sketched below.
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Algorithm 4.2

Start with the solution of Algorithm 4.1. Let n be the number of Case 2
intervals and for all i = 1 to n let τ i

u = (θi
x,2 − θi

e,2).
repeat

for all i = 1 to n.
if τu(θi

x,2) < τ i
u then decrease τ i

u

if τu(θi
x,2) > τ i

u then increase τ i
u

end for
Determine a new solution by using Algorithm 2.1 under the assump-
tion of a sequence of individual Maximal Holding Times {τ i

u}.
until max{τu(θi

x,2) − τ i
u} < ε.

Algorithm 4.2 iteratively improves an initial guess for the sequence of
Maximal Holding Times {τ i

u}. Note that the algorithm neglects the possibility
of a Case 2 interval that has been joined during interval construction (see
Algorithm 2.1 in Section 2.3.6). This means that when decreasing the Maximal
Holding Time during Step 2 it might occur that this interval is split into
two succeeding independent intervals, and for each one a different Maximal
Holding Time must be determined.

Moderate Initial Remanufacturing Costs: cr(R0) > cp + cw and
α(cr(R0) − cp) ≤ hu

If the initial remanufacturing expenses exceed the sum of direct cost of produc-
ing a new item and disposing of the old one (M) it is possible to start reman-
ufacturing later than at time zero, which leads to a third solution type (Type
3 ) being attributed by a period where Case 4(3) is present followed by an-
other sequence including Cases 2(1)/4(1)/4(2). Depending on the current de-
mand/return situation both periods are connected by a transition 4(3) → 4(1)
or 4(3) → 4(2) at time θl. For these transitions, a break-even like condition
for the net recovery cost advantage at the time where remanufacturing starts
is provided by Proposition 4.8.

Proposition 4.8. At the optimal start time of remanufacturing θ∗l > 0 it
must hold that

λR(θ∗l ) = cr(R0) − cp − cw. (4.32)

Thus, at θ∗l the value of acquiring knowledge must exactly outweigh the initial
recovery cost disadvantage. If it would be lower, then the net recovery cost
advantage would be negative and production would be preferable. In the op-
posite case, remanufacturing could have been started earlier since there also
was a positive cost advantage.

Similarly to the zero interest rate case, having a point satisfying Proposi-
tion 4.8 does not necessarily mean that investments in knowledge acquisition
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pay off. But in contrast to that case it is not possible to formulate a simple
condition as presented in Proposition 4.6. But when considering the differ-
ences in the time values it needs to be said that the total remanufacturing
quantity must be higher than break-even quantity R̃ derived before in order
to amortize initial high costs.

Since only first order necessary optimality conditions were considered, lo-
cal and global optimality as well as existence and uniqueness of a candidate
satisfying condition (4.32) is not assured. A possible solution method would
therefore be to numerically search for all points for which break-even condition
(4.32) holds and to compare the respective objective value of each candidate
with the non-performance of remanufacturing (θl = T ) and with start of re-
manufacturing at time zero (θl = 0).

High Initial Remanufacturing Costs: hu < α(cr(R0) − cp) (and
cr(R0) > cp + cw)

Under high remanufacturing cost conditions (H), a strategic inventory might
be used in order to further postpone the start of remanufacturing. This occurs
as a sequence 4(3) → 2(2) → 2(1) → 4(1)/4(2), i.e. at time θe,2(2) disposal
of returns stops which then are accumulated during a Subcase 2(2) interval.
After switching to Subcase 2(1) at time θl, the returns are used up. This
requires that at the end of the respective interval demand exceeds the return
rate in order to deplete the recoverables stock.

The Case 2 interval is built around a time point θl where

λu(θl) = cp − cr(R
∗(θl)) + λR(θl) (4.33)

which can be interpreted as another Location Property. Aside a Maximal
Length Property as provided with Proposition 4.7, Inventory Conditions must
hold which assure a positive stock-level during the whole Case 2 interval and a
zero level at exit time. These considerations lead to Proposition 4.9 (presented
without proof).

Proposition 4.9 (Inventory Conditions).
Let I = (θe,2(2), θl)∪ [θl, θx,2(1)) be the open time interval of a sequence 2(2) →
2(1) where yu > 0 and yu(θe,2) = yu(θx,2) = 0. Then,

(i) cumulative demand equals cumulative returns over the whole interval

θl∫
θe,2(2)

u(t) dt +

θx,2(1)∫
θl

(u(t) − d(t)) dt = 0, (4.34)

(ii)at any point θ ∈ [θl, θx,2(1)), cumulative returns must be larger than cumu-
lative demand, especially
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θl∫
θe,2(2)

u(t) dt +

θ∫
θl

(u(t) − d(t)) dt > 0. (4.35)

This result has been adapted from Proposition 2.8 by additionally taking into
account the two different policies inside the interval where recoverables are
kept.

4.5 Numerical Examples

In this section four numerical examples based on two different demand/return
scenarios are used to exemplify the main results of the model with learning.
All examples use a learning function according to the Power Law, i.e.

cr(R) = c0
rR

−b (4.36)

holds with an 80% progress ratio (b=0.32) and R0 = 1. Common cash flow
parameters are cp = 2, cw = 1.

Example 4.1 The first example aims to show the effects of learning when
having a zero interest rate. It uses a scenario which remains basically the same
as Example 2.1 in Chapter 2 except for remanufacturing cost rate. Demand
and return functions are given as follows

d(t) = 1 + 0.5 sin(t) and u(t) = 0.7d(t − π). (4.37)

The planning horizon has been extended to T = 6π in order to increase the
number of possible Case 2 intervals. This cyclical scenario is depicted in Figure
4.3.

� � � �

�

� � �

� � �

� � �

� � �

�

� � �

� � �

� � � � � � � � � � � � � � �

�

�

Fig. 4.3. Demands and returns in Examples 4.1 and 4.2.
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Further parameters are c0
r = 3 and hu = 1. Thus, there is no initial recovery

cost disadvantage leading to a break-even total remanufacturing quantity R̃ =
0. The solution is naturally of Type 1 (θl = 0).

Algorithm 4.1 was used to solve this example yielding a total optimal
remanufacturing quantity R∗(T ) = 11.1371, cr(R

∗(T )) = 1.3872 and thus,
a Maximal Holding Time τu = 1.6128. The optimal solution is depicted in
Figure 4.4 showing three collection intervals where the first two have maximal
length and the last one is shorter because the planning horizon is reached.
Optimal Case 2(1) intervals are shown in Table 4.2.
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Fig. 4.4. Optimal solution of Example 4.1.

Table 4.2. Optimal Case 2(1) intervals in Examples 4.1 and 4.2.

θ1
e,2 θ1

x,2 θ2
e,2 θ2

x,2 θ3
e,2 θ3

x,2

Example 4.1 5.0715 6.6842 11.3547 12.9674 18.1107 T

Example 4.2 5.0752 6.6814 11.3141 12.9990 18.1107 T

The optimal development of the value of returns λu can be found in Figure
4.5 and Figure 4.6 exhibits the decreasing slope of the value of acquiring
knowledge λR.

The sensitivity of the Maximal Holding Time on the length of the planning
horizon can be seen when modifying it, T = 4π would lead to τu = 1.4126
whereas T = 8π yields τu = 1.7394.

Example 4.2 For the second example the discount rate was modified to α =
0.2. This leads to modified optimal Case 2(1) intervals which are determined
by using Algorithm 4.2 and also shown in Table 4.2. The first two intervals
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Fig. 4.5. Optimal development of co-state λu in Example 4.1.
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Fig. 4.6. Optimal development of co-state λR in Example 4.1.

each having full length show an increasing holding time of τu(θ1
x,2(1)) = 1.6062

and τu(θ2
x,2(1)) = 1.6849. As before, the length of the third collection interval

is limited by the end of the planning period, but at this point a maximal length
of τu(θ3

x,2(1)) = 1.7277 be allowed. Figure 4.7 shows the optimal solution.
The optimal recoverables co-state development is depicted in Figure 4.8.

The upper dotted line shows how the maximal allowed value of returns rises
with time and therefore, the Maximal Holding Time increases. The evolution
of the value of acquiring knowledge can be seen from Figure 4.9.
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Fig. 4.7. Optimal solution of Example 4.2.
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Fig. 4.8. Optimal development of co-state λu in Example 4.2.
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Fig. 4.9. Optimal development of co-state λR in Example 4.2.
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Example 4.3 The third and fourth examples are used to exemplify the problem
of choosing the time at which remanufacturing starts (θl). In both examples
a scenario is used where the planning horizon T = 3π. Demand and return
functions are

d = 1 + sin(t/2) and u = 0.75 d(t− 1.5π). (4.38)

While the demand function approximates a product life cycle, the return
function is set in a way that it shows two peaks. This could for instance be
motivated by assuming that each peak corresponds to one out of two classes of
returns: (i) commercial returns, e.g. defective items that are assumed to occur
more often in the beginning of the product life cycle and (ii) used products.
Both types are assumed to be remanufactured using the same process and at
the same costs. This scenario is depicted in Figure 4.10.
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Fig. 4.10. Demands and returns in Examples 4.3 and 4.4.

Cash flow parameters are as in Example 4.2 except for initial remanufac-
turing costs, which now are given by a moderate level of c0

r = 3.8. Therefore,
a situation with a positive discount rate and parameter condition (M) is con-
sidered.

The optimal time where remanufacturing starts is determined using Propo-
sition 4.8. Since there is no reason for keeping stock in this example, λR(θl)
follows from inserting the optimal remanufacturing decisions in Cases 4(1)/(2)
into (4.30)

λR(θl) = −
T∫

θl

eα(θl−s)

⎛
⎝c′r

⎛
⎝R0 +

s∫
θl

min{d(t), u(t)} dt

⎞
⎠min{d(s), u(s)}

⎞
⎠ ds

(4.39)
Inserting (4.39) into (4.32) and solving for θl yields 1.7176 and 5.9718. Com-
paring the respective objective values with the non-performance of remanu-
facturing and with starting at time zero yields θl = 1.7176 as the optimal
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time to start remanufacturing. The optimal policy is therefore characterized
by disposal of commercial returns up to θl because later cost savings that are
due to the acquired knowledge do not suffice to compensate the higher time
value of remanufacturing expenses when starting early.

Figure 4.11 shows the optimal development of λR.
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Fig. 4.11. Optimal development of co-state λR in Example 4.3.

Example 4.4 For the fourth example out-of-pocket holding costs are re-
duced to hu = 0.3. Therefore (H) conditions apply and it is beneficial to
have a positive recoverables stock under conditions that characterize the
optimal start time of remanufacturing in the previous example. Maximal
Length Property (Proposition 4.7), Inventory Conditions (Proposition 4.9)
and the Location Property like condition (4.33) are used to determine a se-
quence 4(3) → 2(2) → 2(1) → 4(2). The optimal solution is represented by
θe,2(2) = 1.2304, θl = 3.9514, and θx,2(1) = 4.3646, and is illustrated in Figure
4.12. Optimal co-state developments are depicted in Figures 4.13 and 4.14.

Compared with Example 4.3 a smaller holding cost rate (or relatively
higher initial remanufacturing costs) leads to the possibility to use a strategic
recoverables stock in order to postpone the start time of remanufacturing θl.
High initial remanufacturing expenses are pooled at and after that time when
they are valued less than at the time when returns would have been reman-
ufactured without stock-keeping. Moreover, a higher total number of returns
is recovered because return collection starts earlier than remanufacturing in
the case without stock-keeping.
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Fig. 4.12. Optimal solution of Example 4.4.
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Fig. 4.13. Optimal development of co-state λu in Example 4.4.
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Fig. 4.14. Optimal development of co-state λR in Example 4.4.
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4.6 Conclusions and Managerial Insights

In this chapter the effects of introducing a ‘learning’ remanufacturing process
into the optimal control framework from Chapter 2 are investigated. The
anticipation of later knowledge acquisition led to the possibility to remanu-
facture used products even if there exists no immediate cost advantage. More
specifically when neglecting discounting, the Maximal Holding Time only de-
pends on remanufacturing costs at the end of the planning horizon after all
cost reductions due to learning have occurred. The decision on whether to
remanufacture starting at time zero or not at all is made based on a sim-
ple break-even like condition for the total remanufacturing quantity during
the planning period. In case of positive interest rate this process might start
later than the begin of the planning period. The case with discounting is fur-
ther characterized by two main additions to strategic stock-keeping. First,
the maximal length of collection intervals increases with time and secondly,
we discover another motivation for stock-keeping. Strategic inventory can be
used to postpone the beginning of remanufacturing under conditions where
initial remanufacturing costs are high enough that more interest is saved when
delaying it compared to incurred holding costs.

Results are sensitive to planning horizon changes. This especially holds
for small planning periods with considerable potential for cost-improvements
after the end of the planning period. Since the learning curve concept is a
strategic one, the planning horizon should be chosen sufficiently large. But
used together with the product life cycle concept, this analysis can be a helpful
tool for deciding whether to engage in remanufacturing at all.

Besides learning curve effects, there is a number of other reasons why cost
parameters change over time. For instance, this might occur when varying
prices for expensive raw materials lead to significant fluctuations of direct
production costs. In addition to a reason for stock-keeping of these materials
in anticipation of a price increase such a situation also leads to price depen-
dent holding times for recoverables. Another example might be that due to
the growing regulation in many industrialized countries intended to reduce
the outcome of waste, using the disposal option becomes more and more ex-
pensive, influencing both stock-keeping and the decision when to start the
remanufacturing process.

4.7 Proofs

Proof (Proof of λ0 = 1).
This proof proceeds in a similar manner as its equivalent in Chapter 2. Let
us assume λ0 = 0. Then, the Lagrangian reduces to

L(..) = λu(u − r − w) + λRr + µ1(d − r) + µ2r + µ3w + k2yu, (4.40)

and necessary conditions (4.14), (4.15), (4.19), and (4.20) change to
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∂L

∂r
= −λu + λR − µ1 + µ2 = 0 (4.41)

∂L

∂w
= −λu + µ3 = 0 (4.42)

λ̇u = αλu − ∂L

∂yu
= αλu − k2 (4.43)

λ̇R = αλR − ∂L

∂R
= αλR. (4.44)

From (4.44) together with transversality condition (4.23) it follows that λR =
0 and λ̇R = 0. Non-triviality condition (λ0, λu, λR) �= 0 thus requires λu �=
0 ∀t. Non-negativity of µ3 requires λu > 0 and µ3 > 0 in (4.42). Thus,
w = 0 in (4.18). In order to achieve equality with zero in (4.41), µ2 > 0 must
hold, which in turn requires r = 0. Thus ẏu = u > 0 which contradicts final
inventory condition (yu(T ) = 0).

Proof (Proof of Proposition 4.1).
yu > 0 requires k2 = 0 from (4.21); (4.19) thus reduces to

λ̇u = αλu + hu > 0. (4.45)

w > 0 necessitates µ3 = 0 in (4.18) yielding λu = −cw in (4.15). It follows
λ̇u = 0, which contradicts (4.45). Thus, λu > −cw and w∗ = 0.

Three cases are possible for remanufacturing rate r:

• 2(1) r = d (p = 0) requires µ2 = 0 in (4.17) yielding λu < cp − cr(R)+λR

in (4.14). States and co-states develop as follows: ẏu = u − d, Ṙ = d, and
λ̇R = αλR + c′r(R) · d.

• 0 < r < d (p = d − r > 0) requires µ1 = µ2 = 0 in (4.16) and (4.17).
Inserting into (4.14) yields

λu = cp − cr(R) + λR. (4.46)

Differentiating both sides with respect to time leads to λ̇u = αλR. Together
with (4.45) it follows λR = λu + hu

α . Re-inserting into (4.46) leads to

cr(R) = cp +
hU

α
. (4.47)

Since the RHS of (4.47) is a constant, R must not change which contradicts
the definition of this case (Ṙ = r > 0).

• 2(2) r = 0 (p = d) requires µ1 = 0 in (4.16) yielding λu > cp − cr(R)+λR

in (4.14). States and co-states develop as follows: ẏu = u > 0, Ṙ = 0, and
λ̇R = αλR.

Proof (Proof of Proposition 4.2).
Case 2 conditions (yu = 0) require p = d − r and w = u − r. Therefore, four
situations with respect to the remanufacturing rate r are to be distinguished.
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• 0 < r < min{d, u} (p > 0, w > 0) requires µ1 = µ2 = µ3 = 0 in (4.16)–
(4.18), leading to λu = −cw in (4.15). Therefore, 0 = cp − cr(R)+ cw +λR

in (4.14). Differentiating RHS with respect to time yields 0 = αλR which
necessitates λR = 0 as well as λ̇R = 0. Inserting both values into (4.20)
leads to 0 = c′r(R) · r which contradicts r > 0.

• 4(1) r = d < u (p = 0, w > 0) requires µ2 = µ3 = 0 in (4.17) and (4.18).
This yields λu = −cw in (4.15), λ̇u = 0, as well as k2 = hu − αcw > 0
in (4.19). Inserting µ2 and λu into (4.14) leads to λR > cr(R) − cp − cw.

Remaining optimal state and co-state movements are given by λ̇R = αλR+
c′r(R) · d and Ṙ = d.

• 4(2) 0 < r = u < d (p > 0, w = 0) requires µ1 = µ2 = 0 in (4.16) and
(4.17). Inserting into (4.14) leads to

λu = cp − cr(R) + λR > −cw. (4.48)

Differentiating with respect to time leads to λ̇u = αλR. Together with
(4.19) it follows k2 = α(λu − λR) + hu. Solving inequality (4.48) for λR

yields λR > cr(R)− cp − cw. State and co-states develop as follows: λ̇R =

αλR + c′r(R) · u and Ṙ = u.
• 4(3) r = 0 (p > 0, w > 0) requires µ1 = µ3 = 0 in (4.16) and (4.18).

Proceeding as in the first subcase yields λu = −cw in (4.15), λ̇u = 0,
k2 = hu − αcw > 0, as well as λR < cr(R) − cp − cw. Optimal state and

co-state movements are λ̇R = αλR and Ṙ = 0.

Proof (Proof of Proposition 4.3).
Continuity of λR has already been established when rendering necessary op-
timality conditions (see Section 4.3). The proof of continuity of λu proceeds
in two steps. In the first step (i) points inside intervals where yu = 0 holds
are examined. Afterwards, step (ii) deals with entry and exit points of such
an interval.
(i) A constraint qualification guarantees the continuity of adjoint variable λu

inside intervals where yu = 0. Thus, continuity is given, if the matrix (with
line numbers given on the right hand side)⎛

⎜⎜⎝
−1 0 d − r 0 0 0
1 0 0 r 0 0
0 1 0 0 w 0
−1 −1 0 0 0 yu

⎞
⎟⎟⎠

I
II
III
IV

has full rank of four. Analysis of the above matrix yields that the constraint
qualification is not satisfied in three situations.

• If p = d − r = 0 and r = 0 then I = −II.
This can only happen in Case 4 (yu = 0) in situations where d = 0 which
is excluded by assumption (4.8) (d > 0).
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• If r = 0 ,w = 0 and yu = 0 then −II − III = IV .
This can only happen in Case 4 if u = 0 which again contradicts assump-
tion (4.8) (u > 0).

• If p = d − r = 0, w = 0, and yu = 0 then I − III = IV .
This situation occurs in Case 4 (yu = 0) when demand equals returns
and the policy switches from p > 0, r > 0 to r > 0, w > 0 or vice versa.
Only in this case we find a discontinuity λu. The height of this jump is
ηu = cp + cw − cr(R) + λR.

(ii) Let θ1
u be the entry time and θ2

u be the exit time of an interval, where
yu = 0 holds. Then, λu is continuous at this point if yu enters this interval in
a non-tangential way, i.e. ẏu = u− r−w jumps. This requires a jump in r +w
which might occur if d = u. Then, a tangential transition between cases 2(1)
and 4(1) or 4(2) happens. The height of this jump is ηu < cp+cw−cr(R)+λR.
Any other tangential transition (between 2(1) and 4(3)) would require d =
u = 0 which is excluded by assumption (4.8).

Proof (Proof of Corollary 4.1).
Since returns are accumulated but not used in Subcase 2(2) the only tran-
sition starting in such an interval is one that terminates into Subcase 2(1),
where recoverables inventory can be depleted. Thus, any sequence of transi-
tions between Subcases of Case 2 must terminate in a Subcase 2(1) interval.
Both types of transition must take place continuously, and at transition time
it must hold that

−cw < λu = cp − (cr(R
∗) − λR) (4.49)

as well as λ̇u = αλu + hu > d
dt (cp − (cr(R

∗) − λR)) = αλR for 2(1) →
2(2) or λ̇u = αλu + hu < d

dt (cp − cr(R
∗) + λR) = αλR for 2(2) → 2(1),

respectively. Inserting the value for λu as determined in (4.49) finally leads us
to the following cost condition at transition time

hu

{
≤ α (cp − cr(R

∗)) for 2(1) → 2(2)

> α (cp − cr(R
∗)) for 2(2) → 2(1)

. (4.50)

It can easily be seen that since cr is a decreasing function, a transition 2(1) →
2(2) prevents from a later transition in the opposite direction, and that a
transition therefore is not possible.

Transition 2(2) → 2(1) takes place requiring condition 4.49 as well as high
remanufacturing costs (H).

Proof (Proof of Corollary 4.2).
4(1) → 4(2) would require an upward jump in λu except for a situation where
−cw = λu = cp − cr(R

∗) + λR implying λR = cr(R
∗)− cp − cw which contra-

dicts the definition of both cases in Proposition 4.2.
4(1) → 4(3) and 4(2) → 4(3) necessitate λR = cr(R

∗) − cp − cw and
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λ̇R < ċr(R
∗) ⇔ d

dt (λR − ċr(R
∗)) < 0 at transition time. This contradicts

(4.28).
4(2) → 4(1) proceeds discontinuous and thus, it requires d = u.
4(3) → 4(1) and 4(3) → 4(2) are continuous and need −cw = λu =
cp − cr(R

∗) + λR ⇔ cr(R
∗) > cr(R

∗) − λR = cp + cw. Moderate or high
remanufacturing costs are necessitated (M,H). In the second case, at and af-
ter entering Subcase 4(2) it must hold that k2 = α(λu − λR) + hu ≥ 0. Thus,
hu ≥ α(cr(R

∗) − cp) only allowing for moderate remanufacturing costs (M).

Proof (Proof of Corollary 4.3).
Case 2 can only be left starting from a Subcase 2(1) interval. Transitions to
Subcases 4(1) and 4(2) proceed under the same conditions as in the basic
model without learning. 2(1) → 4(3) would require a downward jump in λu.
For a non-tangential transition, d = u = 0 are required, which contradicts
assumption (4.8).
Transitions starting in Subcases 4(1) and 4(2) to 2(1) proceed under the same
conditions as in the basic model without learning. 4(1) → 2(2) requires −cw =
λu = cp − cr(R

∗) + λR ⇔ λR − cr(R
∗) = −cw − cp. Since in Subcase 4(1) it

holds that λR − cr(R
∗) > −cw − cp and RHS of this inequality increases with

rate αλR > 0 (see (4.28)), the transition can be excluded.
4(2) → 2(2) necessitates −cw < λu = cp − cr(R

∗) + λR ⇔ λu − λR = cp −
cr(R

∗). At the end of the Subcase 4(2) interval it must hold that k2 = α(λu −
λR)+hu ≥ 0. Inserting previously determined value for the co-state difference
λu − λR yields hu ≥ α(cr(R

∗) − cp). In analogy to the proof of Corollary 4.1
this would exclude a later transition 2(2) → 2(1) and thus contradict the zero
final inventory level condition.
4(3) → 2(2) does not require any special condition, but since Subcase 2(2)
can only be left under high remanufacturing cost (H), it must also hold here.
For a transition 4(3) → 2(1), switching time is (a) determined by demand/re-
turn developments and at the same time (b) the value of learning must exactly
equal the initial cost disadvantage of remanufacturing which also depends on
demand and return development. Thus, the transition is a rare event which
is not of practical interest and can be neglected in our discussion. In order to
keep generality, it is further treated as a special case of a 4(3) → 2(2) → 2(1)
with zero Case 2(2) length.

Proof (Proof of Proposition 4.4).
A zero interest rate excludes the case of high initial remanufacturing costs
(H). All transitions requiring such circumstances are impossible. Therefore,
Subcase 2(2) will not be present in an optimal solution.

Subcase 4(3) can not be left, because from Lemma 4.1 together with the
definition of the case in Proposition 4.2 inside this case it holds that λR =
cr(R0) − cr(R

∗(T )) < cr(R0) − cp − cw, and therefore cr(R
∗(T )) > cp + cw.

Throughout the planning period it is not possible to obtain a positive recovery
cost advantage and remanufacturing does not occur.
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Proof (Proof of Proposition 4.5).
From (4.13), a minimal value for λu is given (λmin

u = −cw). For a Case 2(1)
interval the upper bound is provided by Lemma 4.2 as follows λmax

u = cp −
cr(R

∗(T ). In the undiscounted case the development of λu is linear within a
Case 2 interval which together with its continuity yields

−cw ≤ λu(t) = λu(θe,2) + hu · (t − θe,2) ≤ cp − cr(R
∗(T ) (4.51)

Let t = θx,2 and λu(θe,2) = −cw. Solving (4.51) for θx,2 − θe,2 yields

−cw + hu · (θx,2 − θe,2) ≤ cp − cr(R
∗(T )

⇔ (θx,2 − θe,2) ≤ cp + cw − cr(R
∗(T ))

hu

Proof (Proof of Proposition 4.7).
The proof proceeds in the same way as the proof of Proposition 4.5 with
λmin

u = −cw, but now we have λmax
u (t) = cp − cr(R

∗(t) + λR(t). Solving
differential equation (4.19) assuming λu(θe,2) = λmin

u leads to

λu(θx,2) =

(
−cw +

hu

α

)
eα(θx,2−θe,2) − hu

α
≤ cp − cr(R

∗(θx,2)) + λR(θx,2),

(4.52)
i.e. it must be smaller than λmax

u (θx,2). Solving for (θx,2 − θe,2) finally yields

(θx,2 − θe,2) ≤ 1

α
ln

(
α (cp − cr(R

∗(θx,2)) + λR(θx,2)) + hu

−αcw + hu

)
. (4.53)

From (4.28) we know λ̇max
u (t) = αλR(t) ≥ 0. Thus the numerator in the

logarithm expression in (4.53) increases and with it the whole term.

Proof (Proof of Proposition 4.8).
Proposition 4.8 directly follows from Corollaries 4.2 and 4.4.

–



5

Technology Selection in the Context of Reverse

Logistics

5.1 Motivation

When developing new products and setting up production facilities, firms
often have the choice between different technologies in order to manufacture
the product. Besides the quality and service aspects, this decision has a major
impact on direct (variable) production costs and necessary capital expendi-
tures in building and maintaining new facilities or modifying existing ones.
In the context of reverse logistics, an additional issue has to be considered:
tightened recycling and reuse legislation and environmental awareness of cus-
tomers forces firms to take back their products from customers after use. At
this point, the selected production technology also affects the ways on how
to deal with returned/used products. That raises the question of whether to
design and produce a product for single use only, or in a way that allows for
reuse after some recovery process (e.g. rework, upgrading or remanufacturing,
see de Brito and Dekker (2004) for an overview on available options). This
can yield additional profit, as some of the added value will not be lost under
certain recovery options, as it would be the case with material-recycling or
disposing of the returned item. On the other side, there can be higher ex-
penses for setting up production facilities, as well as higher direct production
unit costs, that are caused by the necessity to add properties to the product
in order to make it usable. This is illustrated by the following real-life example.

Case 5.1. CopyMagic (See Thierry et al. (1995) and Thierry (1997))
As a multinational copier manufacturing company, CopyMagic sells its prod-
ucts in all segments of the copier market, mainly by using leasing contracts.
This creates a continuous flow of returned used products namely off-lease
copiers. Depending on the returned product one or more of the following
product recovery options is used: repair, cannibalization, remanufacturing and
recycling. In particular the last two options require a special product design
which is different from a ‘classical’ single use product which can only be dis-
posed of after use. Design for recycling requires a reduction in the number
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of used materials, a replacement of non-recyclable with recyclable materials
and easy separability of materials. Design requirements for remanufacturing
go even further. Here it must be ensured that a product or its components are
(in principle) capable to be used for more than one life time for the product
to be sold ‘as-good-as-new’. This causes higher production expenses and to-
gether with outlays for product recovery the question is which recovery option
is preferable.

Although there exists a wealth of literature on operative issues in reverse
logistics (for literature surveys see Fleischmann et al. (1997), Guide et al.
(2000), or Fleischmann (2001b)), aspects of financial justification of product
recovery, which are highly influential to investment decisions, have widely been
neglected so far. Because they require both, a dynamic consideration as well
as the application of discounted cash flow (DCF) techniques, which substan-
tially complicates the matter, models usually deal with stationary situations
and focus on average cost/profit. Debo et al. (2005) for instance consider
the problem of technology selection in connection with market segmentation.
Thereby, they assume a situation where remanufactured products are valued
less than newly produced items, but both compete on the same market where
customers have a heterogeneous willingness-to-pay. The chosen technology is
characterized by a level of remanufacturability influencing variable produc-
tion costs, but investment expenditures are not considered. The objective is
to select a remanufacturability level which maximizes average profit under
equilibrium conditions.

Durable products tend to remain with the customer for a considerable
amount of time compared to the time period where they are sold. Demand
may be subject to dynamic processes like the product life cycle and thus,
a static (equilibrium) analysis based on average costs is often not appropri-
ate. A dynamic DCF framework is required which also takes into account the
time value of money and, especially, of investments. In the previous chapters
it was assumed that both, production and remanufacturing facilities already
existed, i.e. the choice upon remanufacturability and the selection of an ap-
propriate technology has already been made. Since introducing a technology
for remanufacturing may require additional investments, it remains to be seen
if these investments will pay off or not. Furthermore, when considering more
than one technology with different investments and variable unit costs, the
optimal product recovery technology has to be determined. Consequently, a
technology in our sense is described by four key characteristics – investment
expenditure for setting up the production and remanufacturing facilities and
variable costs for producing new items as well as remanufacturing returns.

Regarding the remanufacturing activities, it is seldom preferable to start it
immediately when production starts, as this often requires a considerable cap-
ital commitment while not yet yielding a large number of returns. For instance
in the case of engine remanufacturing in car industry (see, e.g., Seitz and Peat-
tie (2004)) the usual life time of an engine must be considered while specialized
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equipment is required that sometimes must meet even higher standards than
the one used for producing new engines. New production technologies like
the use of aluminum instead of steel for engine components necessitate high
investment in the remanufacturing process as well. Therefore, a decision has
to be made when to introduce the process. This decision has to balance a
trade-off which is given by the fact that postponing the investment reduces
its time value whereas an earlier process introduction increases the potential
benefit from remanufacturing.

Another question is whether to hold returned items in strategic inventory
for later use or just to keep items that are necessary to satisfy current demand
and therefore dispose excess returns. Practitioners often apply simplistic rules
(e.g. collecting all returns and disposing of none, see Kiesmüller et al. (2004)).
Both issues are related to the problem of timing a capacity expansion known
from production/inventory theory (see, e.g., Slack and Lewis (2003)), where a
(serviceables) inventory is used to postpone capacity expansion compared to
a strategy without stockkeeping where capacity expansion must lead demand
in order to avoid backorders. It is questionable whether recoverables inventory
would influence the remanufacturing investment time in the same way.

This chapter is organized as follows. In Section 5.2, we propose a dy-
namic environment for strategic decision making in the context of reverse
logistics based on simple assumptions regarding the product life cycle and an
availability cycle for returns. Three investment projects representing different
environmental policies are introduced in Section 5.3, and for each one the op-
timal policy parameters are determined. Main results of a numerical study, in
which effects of strategic inventory are examined together with a comparison
of simple heuristic rules with optimal strategies are presented in Section 5.4.
Section 5.5 discusses the effects of introducing a remanufacturing constraint
and the last section provides conclusions and further research possibilities.

5.2 A Dynamic Modeling Environment for Strategic

Decision Making

In this section, we propose a simple generic environment for investment deci-
sions for product recovery which integrates used product returns into a prod-
uct life cycle development. First, we present the required assumptions on
such a dynamic situation which are used in the optimization procedures of
the next section. Later, we show that these structural properties hold for a
specific modeling environment.

A Generic Dynamic Environment

In the following, we consider a demand/return scenario as illustrated in Fig-
ure 5.1 which complies with the following assumptions:
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A.1 Demand d(t) is assumed to be a deterministic continuously differentiable
function of time showing the typically unimodal shape of a product life cycle
with its maximum located at tmax

d > 0. At the end demand must vanish, i.e.
limt→∞ d(t) = 0.

A.2 Returns u(t) are not available prior to time point ∆ > 0 (u(t) = 0 ∀ t < ∆)
and otherwise given by an unimodal function of time with u(t) > 0 ∀ t ≥ ∆
representing the availability cycle of returns. Further, the return function has
a maximum at tmax

u and is continuously differentiable for t > ∆. As demand,
returns finally vanish, i.e. limt→∞ u(t) = 0.

A.3 There exists at most a single intersection of demand and return functions
tI ≥ max{tmax

d , ∆} for which it holds u(t) < d(t) if t < tI and u(t) > d(t)
if t > tI . We thus presume that returns do not exceed demand during the
growth phase of the product life cycle. If demand always exceeds the return
rate there is no intersection, and tI is set to infinity.

It is intuitively clear that at tI the product life cycle has already entered
its decline phase, i.e. demand is decreasing and intersects the return rate from
above. Using ∆ and tI , one can distinguish between three different regions.
In Region I, which ends at ∆, there are practically no returns accessible. De-
mand has to be filled completely by producing new items. Region II shows
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Fig. 5.1. A generic environment complying with assumptions A.1-A.3.
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less returns than demand (excess demand) and Region III is characterized
by returns exceeding demand (excess returns) and decreasing demand. If the
remanufacturing option is available, product returns can be used in both re-
gions (II and III) to satisfy part or all of the demand. Moreover, in the last
region it makes no sense to keep more than currently needed returns, because
returns remain larger than demand until the end of the product’s life cycle.
Therefore, excess returns are to be disposed of.

A Specific Model

The demand process can be modeled by using one of the many different new-
product diffusion approaches which are quite common in marketing theory
(for an overview see Mahajan et al. (1993)), but have also been introduced to
operations management, for instance in combined forecasting and inventory
models (see Kurawarwala and Matsuo (1996)). The most prominent exam-
ple being applicable to durable goods has been developed by Bass (1969).
According to Mahajan et al. (1993), this model and its revised forms have
been proven to have a good predictive capabilities and have been successfully
applied in retail service, industrial technology, pharmaceutical and consumer-
durable markets. The Bass model uses three parameters, M > 0 is the number
of potential adopters, representing the cumulative demand as time reaches in-
finity. P > 0 denotes the so-called coefficient of innovation and Q ≥ 0 is the
coefficient of immitation. All parameters are assumed to be known in advance.
In the continuous variant of the model, demand at time t is given by

d(t) =
MP (P + Q)2 · e−(P+Q)t

(P + Qe−(P+Q)t)2
(5.1)

This function comprises the demand of two kinds of adopters, namely inno-
vators and immitators. These two groups differ in the reason why they are
buying the product. An innovator’s decision to buy the product is indepen-
dent of the decision taken by others and it is purely induced externally by
marketing techniques. Thus, a constant fraction P of the remaining potential
customers’ demand at time t is demanded by this group. This relation leads to
a typically positive initial demand rate d(0) = MP > 0. In contrast to the first
kind of adopters, immitators are more likely to buy the product the higher the
proportion of potential customers who have already bought the product, i.e.
they are said to be internally influenced. Demand rate d(t) reaches its maxi-
mum at the Point of Inflection of the typically S-shaped cumulative adoptions
curve located at tmax

d = − 1
P+Q ln (P/Q) (for P < Q, otherwise it is zero).

Forecasting of product returns becomes complicated because there is un-
certainty with respect to time, quantity and quality of returns. Nevertheless,
there exists a dependence of the return flow with historic demand data. De
Brito and van der Laan (2002) give an overview on recent publications on
the forecasting of product returns that exploit this connection by additionally
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using past return flow properties. Uncertainty with respect to time and quan-
tity of returns can be reduced considerably when using leasing contracts that
oblige the customer to give back the product after a fixed period ∆ > 0. But
it is likely that not all products can be sold in this manner and some returns
may not be in a condition to be recovered, only a fraction F ∈ (0, 1] of pre-
vious demands becomes available for remanufacturing. In the simplest case,
both parameters can be assumed to be deterministic and known in advance.
Thus, the return rate u(t) is given by

u(t) =

{
0 for t < ∆

F · d(t − ∆) otherwise
. (5.2)

The return rate reaches its maximum at tmax
u = tmax

d + ∆.
A typical demand/return situation with parameters P = 0.028, Q = 0.25,

and M = 100000, F = 0.4, and ∆ = 5 is depicted in Figure 5.2, both show-
ing growth, maturity and decline phases of the respective life cycle. We now
consider properties of the planning situation, exemplified by using demand
and return functions as defined above. Proposition 5.1 discusses the relation
between them.

Proposition 5.1. Under demand and return conditions (5.1) and (5.2), there
exists at most one intersection point tI of demand and returns. There is no
intersection point, if

(i) F < e−(P+Q)∆, or

�

� � � �

� � � �

� � � �

� � � � � � � ��

� � � � � �

� � 	 
 � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � �

� � �� �
 � � � �

 � �

! � "

� � � �

Fig. 5.2. Demands and returns in a specific model.
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(ii)F · P · M > d(∆).

Proposition 5.1 states that there exist two settings where product life cycle
and availability cycle of returns do not intersect. If (i) either the time lag ∆
and/or the return fraction F are sufficiently small, returns will never exceed
demand. In this case, tI is defined to be infinity. If (ii) the time lag ∆ is
large and/or return fraction F is high enough, then returns at ∆, i.e. u(∆) =
Fd(0) = F ·P ·M , immediately exceed demand rate d(∆). Here, tI is defined
to equal ∆.

5.3 Three Investment Projects

In this section we present three basic investment projects differing with re-
spect to design and technology decisions. After introducing the respective op-
timal dynamic policies that describe how production, remanufacturing, and
disposal decisions evolve over time, individual policy parameters are derived
for each investment project. Finally, rules on how to determine the optimal
parameters are deduced from minimizing the Net Present Value (NPV) of the
respective series of payments within the planning horizon which for analytical
convenience is set to infinity.

The following types of operational cash outflows are considered: invest-
ment expenditures for production and remanufacturing processes, constant
production, remanufacturing and disposal per unit payments as well as out-
of-pocket inventory holding costs. Revenues, as well as payments connected
with the take back of used products are not taken into account, since both
demand as well as returns are assumed to be given and thus not subject
of our considerations. Investment expenses include all discounted outlays for
acquiring, maintaining, extending, and (possibly) salvage revenues for selling
facilities with sufficient capacity. Therefore, restrictions on operative processes
are supposed to never become binding.

Regarding the environmental policy of the firm and the existence of a
strategic inventory that keeps returns for a later use, the following capital
investment projects are considered:

(a) Design for single use
Products are designed in such a way that they can not be remanufactured.
Thus, all returns have to be disposed of at costs cw, which can be positive, if
actual payments are necessary, or negative, if there is a positive salvage value.
The corresponding investment into the production process at t = 0 is Ks

p > 0.
Direct unit production costs are given by cs

p > 0.

(b) Design for reuse
Products are designed such, that all returned products can serve as perfect
substitutes to newly produced items after remanufacturing. This also implies
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that products might be remanufactured several times, i.e. we assume unlim-
ited (or at least sufficient) durability. See Geyer and Van Wassenhove (2005)
for a discussion on the impacts of limited remanufacturability. Investment ex-
penditures for setting up production at t = 0 amount to Kr

p > Ks
p, producing

each item would cost cr
p > cs

p. Both values exceed the above expenses for
single use design because of the additional requirements which are needed for
a later remanufacturing. Returning used products can be remanufactured at
unit costs cr > 0 after introducing a remanufacturing process at time tr ≥ ∆.
This leads to a cash outlay of Kr > 0. In order to assure that this investment
project constitutes a viable option a benefit must be realized if, instead of
simultaneous production of a new item and disposal of the returned one, the
latter is merely remanufactured, i.e. there is a positive direct recovery cost
advantage

cr
p + cw − cr > 0. (5.3)

Otherwise, no remanufacturing would take place. A possibility to store returns
is not considered; all returns arriving before tr must be disposed of.

(c) Design for reuse with strategic inventory
In addition to (b), it is now possible to keep returns for later use in inventory,
e.g. in order to store items at a time where remanufacturing is not yet possi-
ble. The inventory level at t is denoted by yu(t). Out-of-pocket holding costs
are assumed to be proportional to the time and quantity of used products on
stock. The respective holding cost parameter is denoted by hu > 0. A mean-
ingful solution is assured if it is not advantageous to hold unneeded returned
products as opposed to disposing of them, i.e.

hu > αcw. (5.4)

If this were not the case, disposal would not take place, because delaying the
disposal of an item saves interests on the expense which would be higher than
out-of-pocket costs incurred by holding the item.

5.3.1 Valuation of Investment Project (a) - Design for Single Use

When assuming a single use product, the optimal dynamic policy is obviously
to dispose of all returns immediately upon receipt, i.e. w∗(t) = u(t). Product
requirements are satisfied by producing new items (p∗(t) = d(t)) as depicted
in Figure 5.3 for the demand/return scenario known from Figure 5.2. This
leads to the following expression for the Net Present Value

NPVa = Ks
p +

∫ ∞

0

e−αt
[
cs
pd(t) + cwu(t)

]
dt. (5.5)

NPVa can be considered as a benchmark against which the financial benefit
of the other investment projects have to be compared.
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Fig. 5.3. Optimal decisions in investment project (a)

5.3.2 Investment Project (b) - Design for Reuse

Dynamic policy. The remanufacturing option is available after a capital ex-
penditure of Kr at time tr, subdividing the planning horizon into two parts.
Before tr, only production can be used to satisfy demand. Since returned items
cannot be stored, the same policy applies as for investment project (a), i.e.

p∗(t) = d(t), r∗(t) = 0, w∗(t) = u(t) ∀t < tr.

The optimal policy for t ≥ tr is to remanufacture as many units as possible,
to produce excess demand (if necessary), and to dispose of remaining returns,
yielding

p∗(t)=max{d(t) − u(t), 0}, r∗(t)=min{d(t), u(t)}, w∗(t)=max{u(t) − d(t), 0}
∀t ≥ tr.

The dynamic policy is shown in Figure 5.4.

Optimization of policy parameter. The Net Present Value of investment
project (b) NPVb depends on the investment time tr, and minimizing it leads
to the following non-linear optimization problem

min
tr

NPVb = Kr
p + � tr

0

e−αt � cr
pd(t) + cwu(t) � dt + e−αtrKr (5.6)

+

∞

�
tr

e−αt � cr
p max{d(t) − u(t), 0} + cr min{d(t), u(t)} + cw max{u(t) − d(t), 0} � dt
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Fig. 5.4. Optimal decisions in investment project (b)

Although the properties of this function depend to a certain extent on the
underlying demand and return functions, it can be shown that based on the
assumptions A.1-A.3 from Section 5.2, NPVb(tr) is strictly decreasing and
convex for tr < ∆, and there exists a point t after which it finally becomes a
strictly decreasing and convex function. Depending on the parameters, there
is either a single local minimum between ∆ and tI which is followed by a local
maximum or the function is decreasing during the whole planning period
[0,∞). The first derivative of NPVb(tr) is a continuous function except for
tr = ∆, given a jump discontinuity of the return function u(t) at ∆. Typical
shapes of the objective and its first derivative for the demand/return scenario
used in Figure 5.2 are depicted in Figure 5.5 for relatively high (i) and low
(ii) expenditures for the remanufacturing facility.

When choosing the investment time tr, a trade-off has to be made between
the lower discounted value of investment expenses Kr if the introduction of
the remanufacturing process is postponed and a larger realized recovery cost
advantage if it is placed earlier. Reconsidering the dynamic environment in-
troduced in Section 5.2 and exemplified in Figure 5.4, it is easy to see that
in Region I, where no returns are yet available, changing tr only affects the
discounted value of expenses required for the recovery investment. Therefore,
postponing it would always be preferable. Analogously for Region III, as time
goes to infinity, the demand rate approaches zero, and with it the potential
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Fig. 5.5. Typical shape of the objective function and its first derivative in a de-
mand/return scenario with (i) high and (ii) low investment expenditures.

current benefit of remanufacturing diminishes and again, a delay (this time un-
til infinity) of the recovery investment is favorable. This consideration leads
to local properties of the optimal investment time t∗r (given it is finite and
thus, located in Region II) as expressed by Proposition 5.2 which is derived
by exploiting the first and second order derivatives of the objective (5.6).

Proposition 5.2. If it exists, a finite investment time t∗r must be located
within the half open interval [∆, min{tmax

u , tI}), and one of the following sit-
uations must apply

(i) u(t∗r)(c
r
p + cw − cr) = αKr and u̇(t∗r) > 0 if t∗r > ∆,

(ii)u(t∗r)(c
r
p + cw − cr) ≥ αKr if t∗r = ∆.

Proposition 5.2 states that at t∗r , the current cost advantage of remanu-
facturing u(t∗r)(c

r
p + cw − cr) must at least earn interests on the investment,

i.e. αKr. If (i) equality holds, the remanufacturing rate must increase at t∗r to
start recouping the investment expenses. This is not possible at or later than
either the time where returns reach their maximum tmax

u or the intersection
time of demand and return rate tI . Because in both cases the remanufacturing
rate no longer increases. Thus, investment time t∗r must lie in an interval given
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by [∆, min{tmax
u , tI}). As a special case (ii), at time ∆ there may be a jump

in the return rate (and consequently in the potential remanufacturing rate)
from u(∆−) = 0 up to a point u(∆+) > 0 where a higher recovery cost ad-
vantage may be realized than interests on investment expenses require. This
leads to a different condition in Proposition 5.2. Both situations are sketched
in Figure 5.5.

Resorting the first order condition in Proposition 5.2 leads to a critical
value for the return rate ucrit

ucrit =
αKr

cr
p + cw − cr

(5.7)

which can be interpreted as a dynamic break-even point. If the investment
into a remanufacturing facility takes place at all, then it is placed at a point
in time where an increasing return rate surpasses ucrit as seen in Figure 5.6.
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Fig. 5.6. Return rate surpassing ucrit at optimal final investment time t∗r .

Since the remanufacturing rate is limited to the available returns, a fi-
nite investment time t∗r does not exist if the return rate never exceeds the
critical return rate ucrit in Region II. In such a case, the initial interest rate
on the investment exceeds the maximum possible current cost advantage of
remanufacturing (to be earned at min{tmax

u , tI}) as stated in the following
corollary.
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Corollary 5.1. There exists no finite optimal investment time t∗r , if

u (min{tmax
u , tI}) ≤ ucrit ⇔ u (min{tmax

u , tI}) (cr
p + cw − cr) ≤ αKr. (5.8)

So far, only local conditions ensuring the possibility to start recouping the
investment expenditures required for the remanufacturing facility have been
considered. Of course, these investments have to be paid off completely. If
the expenses are rather high, even in the optimal case, the cumulative cost
advantage may not be sufficient for amortization. In this case, the optimal
investment time is infinity. By comparing the values of the objective function
of the finite candidate satisfying Proposition 5.2 with its limit as time ap-
proaching infinity, the following sufficient (global) condition for optimality of
a finite investment time t∗r must hold.

Proposition 5.3. For the optimal investment time t∗r it must hold that the
total realized advantage of remanufacturing discounted to t∗r at least equals the
expenses needed for setting up the remanufacturing facility

Kr ≤
∫ ∞

t∗r

e−α(t−t∗r)
[
cr
p + cw − cr

]
min{d(t), u(t)}dt . (5.9)

Comparison with Investment project (a). There exists no simple rule for de-
termining the best of the two investment projects, but by comparing (optimal)
Net Present Values it can be stated that investment project (b) is preferable
to (a) if the total discounted net advantage of remanufacturing Ab

r ≥ 0

Ab
r =

∫ ∞

t∗r

e−αt(cr
p + cw − cr)min{d(t), u(t)}dt − e−αt∗rKr (5.10)

exceeds the increase of the total discounted expenditures for the production
process Db

p > 0

Db
p =

(
Kr

p − Ks
p

)
+

(
cr
p − cs

p

) ∫ ∞

0

e−αtd(t)dt. (5.11)

It is easy to see that if there is no finite optimal investment time for investment
project (b), then Ab

r = 0 holds and (a) should be chosen. If Ab
r is positive,

then preferability of the design for reuse depends on the increase of initial
investments in the production process compared with a single use production
as well as on the increase of direct production costs.

5.3.3 Investment project (c) - Design for Reuse with Strategic
Inventory

Dynamic policy. As an extension to investment project (b), returns can be
stored in a recoverables inventory. As such, the problem becomes truly dy-
namic, because the decision to store a returned item influences future possi-
bilities of remanufacturing. In analogy to (b) and given a value for tr and for
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the system’s state at this time yu(tr), the planning horizon can be subdivided
into two parts. Prior to tr, the question arises when to start collecting returns
in order to achieve the desired stock. Obviously, it is not useful to dispose of
returns during the collection period, because otherwise one could have started
gathering later and thus, saved holding costs. Therefore, to each value yu(tr)
a corresponding time point te ≤ tr can be given where disposal stops and all
returns are put to stock, being defined by the following equation∫ tr

te
u(s)ds = yu(tr). (5.12)

Since stock-keeping can start earliest at ∆, i.e. te ≥ ∆, the maximum possible
quantity on stock at tr is given by

yu(tr) ≤
∫ tr

∆ u(s)ds. (5.13)

Thus, optimal decisions in the first part are given by

p∗(t) = d(t), r∗(t) = 0, w∗(t) = u(t) ∀ t < te,

p∗(t) = d(t), r∗(t) = 0, w∗(t) = 0 ∀ te ≤ t < tr.

The optimal solution of the second part is derived by using results of
the basic model presented in Chapter 2. First, the recoverables inventory is
depleted by filling excess demand d(t) − u(t) from remanufacturing stored
returns. This is completed at a time tx ≥ tr, given by∫ tx

tr
(d(s) − u(s)) ds = yu(tr). (5.14)

Completion time tx must not be larger than tI because afterwards returns al-
ways exceed the demand rate and carrying an inventory is no longer necessary.
Beside (5.13), this gives another condition for yu(tr)

yu(tr) ≤
∫ tI

tr
(d(s) − u(s)) ds. (5.15)

After tx, the same policy is used as in investment project (b) because it is not
useful to build up stock again, yielding the following optimal decisions in the
second part

p∗(t) = 0, r∗(t) = d(t), w∗(t) = 0 ∀ tr ≤ t < tx,

p∗(t) = max{d(t) − u(t), 0}, r∗(t) = min{d(t), u(t)}, w∗(t) = max{u(t) − d(t), 0}

∀t ≥ tx.

The dynamic policy in investment project (c) is depicted in Figure 5.7. Of
course, this policy requires sufficient capacity and a high flexibility both in
the production as well as in remanufacturing process. This is for instance the
case if workers that normally are employed to produce new items, can easily
be switched to remanufacture used products. In the presence of capacity con-
straints, a more complex model would be necessary for which only numerical
results can be obtained. See Section 5.5.



5.3 Three Investment Projects 141

�

� � � � � �

� � 	 
 � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � �

� � �

� � � � 
 � � � � � 	 � � �

� � � � � � � � � � 	 � � �

� � � � � 
 � � � 	 
 � � � � � 	 � � �

� 	 � � � � � 
 	 � � � 	 � �

� � � � � � � � �  � � � � � � � � 	 � � �

� � � � � 
 � � � 	 
 � � � � � 	 � � � � � � � � �

� � � � � � � � �  � � � � � � � � 	 � � �

� �� 	 � �

� � � �

Fig. 5.7. Optimal decisions in investment project (c)

Optimization of policy parameters. In contrast to investment project (b), the
optimal solution to policy class (c) not only consists of investment time t∗r , but
additionally the corresponding recoverables stock y∗

u(t∗r) has to be determined.
Equivalently, and probably even more interesting than the actual stock value,
the starting time of collecting returns t∗e will be determined. In the following,
we restrict ourselves to find the best finite solution, i.e. ∆ ≤ te < tr < tI .
Since the option of investing never, i.e. te = tr = ∞, still belongs to the
set of solution candidates, it has to be considered in order to find the global
optimum. Note that we disregard demand and return constraints as given
by Proposition 5.1 (ii) (see Section 5.2) in the following, because under such
circumstances (returns exceed demands immediately after ∆) it is obviously
not optimal to hold recoverables for later use.

Restricting ourselves to finite solution candidates, we get the following
optimization problem (5.16)-(5.21).

min
te, tr

NPVc = Kr
p + � te

0

e−αt � cr
pd(t) + cwu(t) � dt (5.16)

+ � tr

te

e−αt � cr
pd(t) + huyu(t) � dt + e−αtrKr + � tx

tr

e−αt [crd(t) + huyu(t)] dt

+

∞

�
tx

e−αt � cr
p max{d(t) − u(t), 0} + cr min{d(t), u(t)} + cw max{u(t) − d(t), 0} � dt

with
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yu(t; te, tr, tx) =

⎧⎪⎨
⎪⎩

∫ t

te
u(s)ds for t ∈ [te, tr]∫ tr

te
u(s)ds − ∫ t

tr
(d(s) − u(s))ds for t ∈ (tr, tx]

0 otherwise

(5.17)

and tx being implicitly defined by a function f(te, tr, tx)

tx : f(te, tr, tx) =

∫ tr

te

u(s)ds −
∫ tx

tr

(d(s) − u(s))ds = 0 (5.18)

subject to the restrictions

∆ ≤ te, (5.19)

te ≤ tr, (5.20)∫ tI

tx
(d(s) − u(s)) ds ≥ 0. (5.21)

The objective function (5.16) incorporates all payments connected with the
optimal policies in each of the above distinguished regions. Function (5.17) is
used to determine the inventory level and (5.18) gives an implicit definition of
point tx where the inventory is depleted. Constraint (5.19) ensures continuity
of the objective by limiting the admissible set and (5.20) is needed in order to
assure a meaningful solution. Restriction (5.21) is equivalent to tx ≤ tI but
technically it is easier to handle. This inequality represents remaining excess
demand between tx and tI , which must be non-negative.

Due to the quite general assumptions on demand and return functions,
objective (5.16) is neither a (quasi-)convex function in each nor in both deci-
sion parameters. Moreover, the admissible region is not convex because of our
general assumptions on demand and return developments in (5.21). Hence,
conditions derived below by using standard methods of non-linear program-
ming are only necessary for optimality. As a consequence, a solution candidate
can represent a local minimum, maximum, or a saddle point. Further, there
may be several solution candidates for a single problem instance, in order to
find the optimal solution the respective objective values need to be compared.

In the following, four different types of solution candidates are distin-
guished. For ease of representation, a candidate is given by a triplet (te, tr, tx),
bearing in mind that tx is a function of the other two points.

Proposition 5.4 (Solution Candidates). If (t∗e , t
∗
r , t

∗
x) is an optimal so-

lution to problem (5.16)-(5.21), t∗e < t∗r(< t∗x) must hold, and one of the
following four cases applies

(i) ∆ < t∗e, t∗x < tI (interior solution)
(ii) ∆ = t∗e, t∗x = tI (complete use of interval [∆, tI ])
(iii) ∆ = t∗e, t∗x < tI (availability of returns is binding restriction)
(iv) ∆ < t∗e, t∗x = tI (availability of excess demand is binding restriction)

Figure 5.8 shows all cases, for which candidates for the optimal solution can
be determined. Now, by exploiting first order necessary conditions, properties
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Fig. 5.8. Cases representing candidates for the optimal solution.

of these cases are discussed. Firstly, a general condition regarding the optimal
holding time t∗x − t∗e can be given.

Proposition 5.5 (Maximal Holding Time). If (t∗e, t
∗
r , t

∗
x) is an optimal

solution to problem (5.16)-(5.21), it must hold that t∗x − t∗e does not exceed a
maximal holding time τu, i.e.

t∗x − t∗e ≤ 1

α
ln

(
α(cr

p − cr) + hu

−αcw + hu

)
=: τu. (5.22)

Maximal holding time τu as defined in Proposition 5.5 comprises the same
marginal criterion known from the basic model (see Section 2.3) which bal-
ances the cost advantage of storing an otherwise disposed item between t∗e and
t∗x in order to replace production by remanufacturing at t∗x and the required
holding costs.

The following Propositions 5.6-5.9 present results for each of the cases.

Proposition 5.6 (Case (i) - interior solution). A triplet (te, tr, tx) with
∆ < te < tr < tx < tI is a solution candidate to problem (5.16)-(5.21) of
Case (i), if it satisfies the following equations

tx − te = τu, (5.23)

−e−αtr [cr
p − cr]d(tr) = hu

� tx

tr
e−αtdt d(tr) − e−αtx [cr

p − cr]d(tr) − αe−αtrKr.(5.24)

Equations (5.23) and (5.24) follow from setting the first derivatives of the
objective (5.16) to zero and can be interpreted as follows. Since tx − te equals
the maximal holding time τu, the decision maker must be indifferent between
(1) disposing of a (marginal) return unit arriving at te, and producing a
new one to meet demand at tx or (2) holding this item until tx when it
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is remanufactured to serve demand. Next, at tr one needs to be indifferent
between starting the remanufacturing process and thereby realizing the direct
cost advantage of remanufacturing immediately or to postpone it which saves
interests on the investment expenses. Then, a (marginal) demand d(tr) is
served from producing new items and the thus saved (marginal) return is
kept until tx which results in holding costs and lowers the discounted value of
the direct remanufacturing cost advantage.

Using (5.23) together with the definition of the case requires

tI − ∆ > τu, (5.25)

which has to be assured first in order to find a Case (i) solution candidate.
Then, simultaneously solving (5.18), (5.23) and (5.24) for (te, tr, tx) yields the
candidate, given it exists.

Proposition 5.7 (Case (ii) - complete use of interval [∆, tI ]). A triplet
(te, tr, tx) with ∆ = te < tr < tx = tI is a solution candidate to problem
(5.16)-(5.21) of Case (ii), if the following conditions are satisfied

e−α∆cwd(tr) ≥ hu

� tr

∆
e−αtdt d(tr) − e−αtr [cr

p − cr]d(tr) + αe−αtrKr, (5.26)

−e−αtr [cr
p − cr]d(tr) ≥ hu

� tI

tr
e−αtdt d(tr) − e−αtI [cr

p − cr]d(tr) − αe−αtrKr. (5.27)

Inequality (5.26) implies that it would be preferable to put additional
returns in stock at te for use at tr by simultaneously lowering te and tr,
even at the cost of an earlier investment. But this is not possible because
∆ = te. Likewise, using (5.27), the value of the objective could be lowered by
postponing investment time tr. This is also forbidden because we would need
to increase tx = tI which again is not possible.

A Case (ii) candidate may only exist, if

tI − ∆ ≤ τu. (5.28)

Thus, it is not possible to have a planning situation where we could obtain
solution candidates in both Case (i) and Case (ii) simultaneously. If the Case
(ii) pre-requirement is fulfilled, from (5.18) one gets a value for tr which is
verified if (5.26) and (5.27) hold.

Proposition 5.8 (Case (iii) - availability of returns is binding restric-
tion). A triplet (te, tr, tx) with ∆ = te < tr < tx < tI is a solution candidate
to problem (5.16)-(5.21) of Case (iii), if the following conditions are satisfied

tx − ∆ ≤ τu, (5.29)

−e−αtr [cr
p − cr]d(tr) = hu

� tx

tr
e−αtdt d(tr) − e−αtx [cr

p − cr]d(tr) − αe−αtrKr.(5.30)

From (5.29) we know that maximal holding time is not yet reached. But, in
contrast to Case (ii), from (5.30) we are indifferent regarding the postpone-
ment of tr. Placing it earlier is also not possible, because te is fixed to ∆. A
Case (iii) candidate is to be found by simultaneously solving equations (5.18)
and (5.30) for tr and tx by assuming te = ∆. The result is a solution candidate
if inequality (5.29) is satisfied.
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Proposition 5.9 (Case (iv) - availability of excess demand is binding
restriction). A triplet (te, tr, tx) with ∆ < te < tr < tx = tI is a solution
candidate to problem (5.16)-(5.21) of Case (iv), if the following conditions
are satisfied

tI − te ≤ τu, (5.31)

e−αtecwd(tr) = hu

� tr

te
e−αtdt d(tr) − e−αtr [cr

p − cr]d(tr) + αe−αtrKr. (5.32)

As before, but with tx fixed to tI , (5.31) implies to decrease te which is not pos-
sible without changing tr. Choosing tr requires indifference between disposing
a (marginal) returned item at te or using it to lower tr which in turn causes an
increase in associated holding and interest expenses due to sooner investment
but it also replaces production by remanufacturing at tr. The determination
of a Case (iv) candidate requires to simultaneously solve equations (5.18) and
(5.32) for te and tr assuming tx = tI . The result is a solution candidate if
inequality (5.31) is satisfied.

Algorithm 5.1

Step 1
if tI − ∆ > τu

then Simultaneously solve (5.23),(5.24), and (5.18) for (te, tr, tx).
add result to set of candidates.

else Set te = ∆, tx = tI and solve (5.18) for tr.
add result to set of candidates, if (5.26) and (5.27) are satisfied.

set te = ∆, and simultaneously solve (5.30) and (5.18) for tr and tx and
add result to set of candidates, if (5.29) is satisfied.

set tx = tI , and simultaneously solve (5.32) and (5.18) for te and tr and
add result to set of candidates, if (5.31) is satisfied.

add (te, tr, tx) = (∞,∞,∞) to set of candidates.

Step 2
For all candidates, evaluate the objective value (5.16). Smallest value gives
the (global) optimum.

Comparison with Investment project (b). Investment project (c) generally
leads to a lower Net Present Value than (b) because it is a generalization
of (b) which uses a strategic inventory to maximize the benefit from replacing
production by remanufacturing. Another interesting question is how the pos-
sibility to hold returns for later use affects investment time tr. Unfortunately,
there is no general answer. A scenario that allows for postponing the invest-
ment time is that it no longer has a direct effect on the remanufacturability of
returns since these also can be put in stock and remanufactured later. Other
aspects make it possible to start remanufacturing earlier, e.g. a higher direct
cost advantage of remanufacturing can be realized at tr because demand is
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sourced completely from remanufacturing returns. In order to gain more in-
sight into this question we conducted a numerical investigation presented in
the next section.

5.4 A Numerical Investigation

The purpose of this study is threefold. First, a pre-test should show that all
types of (finite) solution candidates of investment project (c) as presented in
Proposition 5.4 are relevant for determining the optimal solution. Further, an
assessment of the potential benefit derived from permitting stock-keeping had
to be performed and finally, the influence of a strategic recoverables inventory
on the investment time tr was assessed. A second test was used to clarify,
under which conditions simple heuristic rules relevant for a practical applica-
tion perform sufficiently well. Since the effects of changes in the interacting
parameters are manifold, we decided to perform the study based on a large
number of randomly generated examples.

In this pre-test study we used a demand function according to the Bass
model (see Section 5.2) with parameters P = 0.01, Q = 0.3, M = 100 000.
Since we did not have real-live data, the parameters for each one of 30 000
instances were generated from uniform probability distributions over each
of the following ranges, partly including extreme values: Range(F ) = [0; 1],
Range(∆) = [0; 12], Range(α) = [0.05; 0.15], Range(cr

p) = [4; 5], Range(cr) =
[1; 3], Range(cw) = [−1; 1], Range(Kr) = [20 000; 100 000] and Range(hu) =
[0; 1]. Since the cash outlays for setting up the production facility were not
relevant for our comparison, we set Kr

p equal to zero.
In total, 10 658 examples showed finite optimal solutions for investment

project (c) according to Cases (i)-(iv). Of these, 4 685 (44.0%) belonged to
Case (i), 90 (0.8%) to Case (ii), 5 872 (55.1%) to Case (iii), and only 11
(0.1%) examples were Case (iv) solutions. Although all cases are relevant for
determining the optimal solution these numbers show that in more than half
of all considered instances it was optimal to immediately start storing returns.
Less than half of the instances showed an interior solution.

Next, by comparing the optimal objective values for investment projects
(b) and (c), we found that the benefit from keeping stock averaged to about
2% but the maximum difference was more than 11%, found in a scenario with
the following parameters: F = 0.63, ∆ = 0.60, α = 0.14, cr

p = 4.23, cr = 1.07,
cw = 0.93, Kr = 91 628, hu = 0.16. Thus, taking into account that aside of
operational expenses also investment expenditures where savings amount to
a remarkable amount of money.

Regarding the investment time tr, the results indicate that it is usually (i.e.
in 81.7% of all considered examples) postponed due to the strategic inventory,
except for cases where the optimal investment time is infinite in investment
project (b) but finite in (c) because of the additional benefit from storing
returns. This happened for 15.7% of all examples. But 280 instances (2.6%)
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including all Cases (i)-(iv) exhibited the opposite behavior. Particularly note-
worthy, all examples where the availability of excess demand was a binding
restriction (Case (iv)) exhibited an earlier investment time when allowing for
stockkeeping. This result was confirmed by another 2 000 instances, which
were generated in order to increase the number of Case (iv) solutions, where
we changed the ranges for the following parameters: Range(F ) = [0.8; 1],
Range(∆) = [0; 2], Range(α) = [0.1; 0.15], Range(Kr) = [60 000; 100 000],
Range(hu) = [0.1; 0.3]. Thereby, 161 (11.5%) out of 1396 finite optimal solu-
tions were of Case (iv).

In a second test we compared the performance of four simple heuristic
rules, which are described in the following. While the first two neglect the
possibility of keeping stock and just try to select an appropriate investment
time, H3 and H4 use more or less sophisticated methods to control storing
of returns for later use by following the most common investment project
(c) cases identified before. Since the change of the optimal investment time
when allowing for stock-keeping averaged to just about 1.1 in the pre-test,
all heuristics except of the first use as investment time tr the value which is
optimal for investment project (b). The heuristics are now explained in more
detail.

H1 The remanufacturing facility is set up as soon as the first returns arrive,
i.e. at time tr = ∆. Thus, there is no need for stock-keeping. This heuristic
neglects the decreasing time value of investment expenses due to discounting
and is expected to perform well if investment expenditures for the remanu-
facturing facility are low or discount rate is small.

H2 The optimal solution of investment project (b) is used as a second heuris-
tic. It should lead to good results in circumstances where the Maximal Holding
Time is relatively small, e.g. where out-of-pocket holding costs are large.

H3 The third heuristic combines H2 with a simple rule with respect to stock
keeping. Returns are kept starting at time ∆ and used up after tr. If there
are any items left on stock at tI , these are disposed of. This heuristic approxi-
mately corresponds to a Case (iii) solution candidate and might perform well
if out-of-pocket holding costs are low because it disregards a possible limita-
tion of stock-keeping in time.

H4 In contrast to H3, this last heuristic only keeps stock that can be used
up before tI and stored no longer than the Maximal Holding Time. Thus,
building up the anticipation inventory may start later than ∆ leading to a
Case (i) candidate like solution. Since this heuristic considers both, holding
time and the time value of investment expenses, its performance is expected
to be superior to that of the other heuristics.
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The heuristic rules are tested for a collection of classes of randomly gen-
erated instances. The variety is based on a single demand and a number of
return scenarios, as well as on levels of key parameters, namely direct recovery
cost advantage, discount rate, out-of-pocket holding cost rate, and investment
expenditures for setting up the remanufacturing facility. For each of these pa-
rameters two ranges representing comparably high and low values have been
defined. More precisely, we used the following experimental design.

• Demand function is fixed as in the pre-test (P = 0.01, Q = 0.3, M =
100 000).

• Four return scenarios are used with a low/high return fraction F and
small/large duration of use ∆ as depicted in Table 5.1. Since after tI not

Table 5.1. Four considered return scenarios

Scenario F Delta tI Total returns Usable returns

I 0.4 3 28.4 40 000 39 982
II 0.4 6 17.7 40 000 33 059
III 0.7 3 15.1 70 000 62 562
IV 0.7 6 15.3 70 000 46 063

all returns can be used, the last column in Table 5.1 shows the maximal
usable number of returns which better expresses the potential benefit from
remanufacturing.

• As in the pre-test, initial investment expenditures into the remanufacturing
facilities were set to zero (Kr

p = 0). The difference cr
p − cr is normalized to

1. Objective values are calculated by using cr
p = 1 and cr = 0.

• Since the other parameters (cr
p and cr) are fixed, the recovery cost advan-

tage only depends on the disposal cost rate cw. Two intervals are consid-
ered, one with a relative low disposal costs, i.e. cw ∈ (−1, 0), and another
one with a comparably high cost rate cw ∈ (0, 1). In the first case, the
direct recovery cost advantage ranges between 0 and 1, and in the second
it is in an interval between 1 and 2.

• In order to find a possible impact of discounting, α is assumed to belong
to one out of two intervals, being either low (α ∈ (0.05, 0.1)) or high
(α ∈ (0.1, 0.15)).

• Holding cost rate hu was assumed to be taken either out of an interval with
a relative low level, i.e. hu ∈ (0, 0.25), or from another with comparably
high level hu ∈ (0.25, 0.5). Hereby it is ensured that only values are used
which satisfy assumption (5.4).

• For the investment expenditures Kr we chose the following two ranges:
Kr ∈ (0, 40 000) and Kr ∈ (40 000, 80 000). The upper border is motivated
by the fact that because of discounting, in case of a highest possible re-
covery cost advantage a and lowest possible discount rate, this number
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represents maximal investment expenditures that can be earned from re-
manufacturing in Scenario III where most usable returns are present.

In total, there have been 64 combinations of scenario and parameter inter-
vals which correspond to a certain setting (4x2x2x2x2 factorial design). Since
we fixed some of the parameters, we could suffice with only 200 examples for
each setting (12 800 in total) yielding enough material for statistical tests.
For each example the relative errors of the heuristic (H1-H4) objective values
were calculated. In order to do a fair comparison, only those examples were
considered, under which remanufacturing actually would be useful, i.e. where
a finite investment project (c) solution is optimal. With other words, it is
assumed that the decision maker is able to decide whether remanufacturing
actually makes sense or not, and the only concern is ascertaining at which
time to invest and whether and when to start collecting returns. By appropri-
ately grouping the examples, a sensitivity analysis of the average performance
of the heuristics with respect to return scenarios as well as the examined key
parameters was performed.

This analysis was complemented by statistical tests which ensured the
comparison of average performance of the heuristics one against each other,
where the results originated from the same experiments (matched pairs), but
the change of the heuristics performance due to different settings (independent
group means), two different types of tests had to be performed. In the first
case, a paired t-test was carried out which, because of the large sample sizes,
was approximated by a Normal z Test. For comparing independent group
means w.r.t. the same heuristic in different settings, a single-sided version of
the approximative two groups Normal z Test was performed. Because of the
large sample size, the significance was tested on a 99% level. For a detailed
treatment of the tests performed see Section 5.7. All comparisons of average
errors are significant except where stated otherwise. In spite of this proce-
dure, since it is not possible to generate a general setting which integrates
all possible demand/return situations and cash flow parameter combinations,
all following statements should rather be seen to express tendencies, which
should be verified before applying to an actual situation.

The main results of the study are presented in Tables 5.2-5.6 showing
average and maximal relative errors of the heuristic solutions with respect to
the objective. Here also the fraction of finite optimal investment project (c)
solutions in the respective subset of all experiments can be found, represented
by the sign #. This number expresses a relationship between the setting and an
average profitability of remanufacturing. The variability of the performances
of the heuristics is presented in Section 5.7.

Overall results and scenario comparison. Considering all examples (see last
row in Table 5.2), H4 performs best in terms of the average error as previously
expected. It also shows the smallest maximal deviation from the optimal so-
lution. Also not unexpectedly, H1 performs worse than all other heuristics in
both criteria. Especially when comparing the performance with H2, a large
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benefit can be obtained only by postponing the investment time. Introducing
a simple rule for stock-keeping (H3 instead of H2) yields in average an addi-
tional benefit, but under circumstances described below it can also lead to a
substantial performance loss.

Table 5.2. Maximal and average NPV deviations of heuristics from optimal solution
(in percent) within the considered return scenarios.

H1 H2 H3 H4
Scenario # avg. max. avg. max. avg. max. avg. max.

I 27.8 8.9 49.2 3.1 13.6 1.5 13.7 1.2 13.6
II 25.1 5.3 27.7 2.1 8.1 1.0 6.5 0.8 6.5
III 44.4 11.7 59.0 4.2 15.9 2.1 33.3 1.4 14.5
IV 35.5 6.2 33.4 2.8 10.2 1.3 11.9 1.2 8.0

Overall 33.2 8.4 59.0 3.2 15.9 1.6 33.3 1.2 14.5

By comparing the results in the different scenarios and reconsidering the
corresponding number of usable returns, it can be seen that the higher this
number the higher the potential benefit from remanufacturing. In such cases,
specifically the number of instances where remanufacturing takes place in-
creases (e.g. in Scenario III it is higher than in Scenario II). The performance
of the heuristic approaches decreases if either the return fraction F increases
or returns arrive (relatively) early. Since both cases allow for higher invest-
ment expenses, an erroneous determination of investment time has a higher
impact on the performance.

Low versus high recovery cost advantage (disposal cost rate). Having high dis-
posal costs or a high recovery cost advantage noticeably increases the number
of instances where remanufacturing makes sense as shown in Table 5.3. Perfor-
mance of the considered heuristics decreases except for H3 where the difference
lacks significance, because of its generally large variability of relative devia-
tions from the optimal solution. Another reason why this heuristic does not
perform much worse is the positive effect of the recovery cost advantage on
the Maximal Holding Time τu. Thus, the profitability of using a recoverables
inventory increases, but also the possible error when neglecting τu decreases.
This reasoning also explains why H3 performs poorly compared with H2 if cw

is low.

Low versus high discount rate. Although the effect can hardly be termed large
(see Table 5.4), a higher discount rate leads to a decreasing profitability of re-
manufacturing, but it also lowers the precision of H1-H3. This especially holds
for H1, which does not consider time value. The potential benefit of keeping
stock increases (H2 performs worse), because it would allow for a further post-
ponement of the investment time which has a stronger effect than would be
with a lower discount rate. In contrast to H3 which performs worse when in-
creasing the discount rate, there is probably (although it lacks significance)
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Table 5.3. Maximal and average NPV deviations of heuristics from optimal solution
(in percent) with relative high and low recovery cost advantages.

H1 H2 H3* H4
cw # avg. max. avg. max. avg. max. avg. max.

low 15.3 3.8 38.3 1.2 10.1 1.4 33.3 0.3 7.4
high 51.1 9.8 59.0 3.8 15.9 1.6 14.5 1.5 14.5

* Averages are not significantly different.

an improvement for H4, which is due to H4 reacting on a modification in
discounting both by changing the investment time and by correctly adapting
the modified Maximal Holding Time.

Table 5.4. Maximal and average NPV deviations of heuristics from optimal solution
(in percent) with relative high and low discount rates.

H1 H2 H3 H4*
α # avg. max. avg. max. avg. max. avg. max.

low 36.4 6.0 40.3 2.9 15.3 1.4 15.0 1.3 13.6
high 30.1 11.4 59.0 3.5 15.9 1.8 33.3 1.1 14.5

* Averages are not significantly different.

Low versus high out-of-pocket holding cost rate. Similarly to a high discount
rate, a high out-of-pocket holding cost rate decreases the profitability of re-
manufacturing, especially of items that have been kept in stock for later use
(see Table 5.5). As intuition suggests, it improves the performance of those
heuristics which do not keep stock, but surprisingly H3 and H4 also perform
better. For H3 this at first glance appears counter-intuitive, but it becomes
reasonable because less stock-keeping also results in a smaller deviation from
the approximated investment time from the optimum and an improvement of
the investment time estimation overcompensating higher holding costs.

Table 5.5. Maximal and average NPV deviations of heuristics from optimal solution
(in percent) with relative high and low out-of-pocket holding cost rate.

H1 H2 H3 H4
hu # avg. max. avg. max. avg. max. avg. max.

low 34.9 9.9 59.0 4.0 15.9 1.9 20.3 1.8 14.5
high 31.6 6.8 44.2 2.3 9.0 1.3 33.3 0.6 7.7

Low versus high investment expenditures for remanufacturing facility. High
investment expenditures clearly lead to a strong decrease of the number of
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instances where remanufacturing makes sense (see Table 5.6). All heuristics
perform worse, as they do not correctly reflect the potential of changing the
investment time due to stock-keeping, which has a larger effect if investment
expenditures increase. This can especially be seen from the average error H4
exhibited.

Table 5.6. Maximal and average NPV deviations of heuristics from optimal solution
(in percent) with relative high and low investment expenditures.

H1 H2 H3 H4
Kr # avg. max. avg. max. avg. max. avg. max.

low 59.0 6.9 46.8 2.9 15.9 1.5 33.3 1.1 13.6
high 7.4 20.7 59.0 5.4 15.4 2.6 14.5 2.4 14.5

Summary of results. Summarizing the results it can be seen that ‘dumb’ in-
vestment time rule H1 should not be used, because there exists a considerable
amount of savings to be realized by applying H2. It is also clear that the use of
an anticipation stock not only becomes reasonable because of the additional
remanufacturing but it also can be used to change (mostly postponing, as seen
in the pre-test) the investment time tr. This yields the biggest effect with low
out-of-pocket holding costs or a high recovery cost advantage. The question on
whether to apply one of the heuristics (H2-H4) depends (a) on the situation
and (b) on the error which the decision maker is willing to accept. Especially,
the knowledge of data and computational requirements which H4 necessitates
are comparable to those needed for finding the optimal solution.

5.5 Effects of a Limited Remanufacturing Capacity

So far, capacity aspects did not play a role in our discussion. The optimal
solution, however, shows a large variability in both production and remanu-
facturing rates, leading to an optimal dynamic strategy which requires demand
to be completely satisfied from remanufacturing between tr and tx and there-
fore to stop production completely. In this section we deal with the changes
caused by a time independent capacity constraint for the remanufacturing
process r̄ when applying the results derived in Chapter 3.

Investment Project (b). In case of investment project (b), the optimal pol-
icy for t ≥ tr changes to r∗(t) = min{d(t), u(t), r̄}, p∗(t) = d(t) − r∗(t),
w∗(t) = u(t) − r∗(t) and thus, remanufacturing would be limited if r̄ <
u(min{tmax

u , tI}). The results with respect to the optimal investment time
as stated in Proposition 5.2 remain valid but existence and pay back con-
ditions have to be adapted. A finite investment time does not exist if the
critical return rate ucrit as defined in Corollary 5.1 exceeds the constraint, i.e.
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ucrit > r̄. In this case, the interest rate on the investment always exceeds the
maximal feasible cost advantage of remanufacturing. The pay-off condition
presented in Proposition 5.3 now must take into account the changed optimal
policy and thus, the total discounted net advantage of remanufacturing Ab

r

from (5.10) changes to

Āb
r =

∫ ∞

t∗r

e−αt(cr
p + cw − cr)min{d(t), u(t), r̄}dt − e−αt∗r Kr. (5.33)

Since returns are not stored, profitability of remanufacturing reduces because
at times when the constraint is binding, part of returns can not be used and
have to be disposed of.

Investment Project (c). A (binding) remanufacturing capacity may change
the dynamic policy allowing for stock-keeping in two ways (see Figure 5.9).
Regarding the already known stock-keeping motive around investment time
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Fig. 5.9. Optimal decisions in investment project (c) when having a limited reman-
ufacturing rate.

tr (leading to interval [t1e, t
1
x]), since only part of demand can be satisfied from

remanufacturing there is a tendency towards having less returns in inventory
at tr. In an extreme case it might no longer be necessary to have a positive
stock at all if the return rate already exceeds the constraint, i.e. u(tr) > r̄.
Secondly, by reconsidering the pure effects of a remanufacturing constraint
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derived in Corollary 3.18, having a positive recoverables stock is beneficial, if
there is a time θ in between tmax

u and tI (where demand is still higher than
return rate but return rate is already falling) with u(θ) = r̄. Of course, this
requires a situation where tmax

u < tI . Starting at t2e < θ, returns which exceed
the remanufacturing constraint can be saved and used up after this time by
remanufacturing with maximal remanufacturing rate. This is completed at
a time t2x ≤ tI . Since depending on the present situation both effects can
interact with each other, i.e. returns that are collected before tr might be
used up after θ, a general solution procedure for the constrained problem is
considerably more complicated.

5.6 Conclusions and Possible Extensions

In this chapter we used properties of a dynamic situation consisting of a
product life cycle and an availability cycle for returns in order to find opti-
mal dynamic policies for three investment projects that differ with respect to
the environmental policy. For investment projects that incorporate remanu-
facturing, the time of the remanufacturing investment proved to be a crucial
decision variable because it influences both the time value of the expenses
accompanied with it, but the advantage that can be obtained by replacing
production of new products by remanufacturing of returns. We have shown
that improvements exist if returns can be kept in a strategic inventory. From
our experiments it looks that this option should not be implemented as a
rule of thumb e.g. by generally keeping all returns. That being said, further
research using real life data is required to quantify the performance losses of
heuristic approaches.

A number of possibilities exist for further research. It would be interesting
to see how robust our results behave when assuming imperfect knowledge
on future demand and return developments. A more complex demand/return
situation (for instance with a relaunch of the product life cycle) can be solved
by using general results for controlling the product recovery system as shown
in Chapter 2. But in contrast to the simplified situation introduced above,
only numerical results can be derived.

Although capacity aspects have been neglected while performing the analy-
sis they have an impact on profitability of the considered investment projects.
In cases, where the remanufacturing process is limited by a capacity constraint
the potential advantage of remanufacturing generally decreases but as a side
effect, an additional motivation for stock-keeping must be taken into consid-
eration, namely to deal with a situation where the constraint leaves the state
of being binding. As an extension, for instance the optimal level of remanufac-
turing capacity may be obtained. Furthermore, in a strategic model optimal
production/remanufacturing capacity expansion and contraction paths can
be determined. As in pure production models, building up capacity might
be postponed or avoided by using a strategic serviceables inventory. Next,
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since there are two options to fill the demand, the choice of capacity in the
remanufacturing shop influences the required production capacity and vice
versa.

We assumed that demand development does not depend on the chosen
technology. Marketing aspects like consumer awareness towards environmen-
tal conscious products are neglected. Further, competition both on demand as
well on the return side are not considered. For instance, the easier products are
recoverable, the higher the possibility that other firms will want to participate
and to carry out remanufacturing in competition against the OEM. This can
be seen for example in the case of refilling toner cartridges for laser printers
utilized by Majumder and Groenevelt (2001) to motivate a two-period model
which aims to explain how the level of remanufacturability of a product in-
fluences competition. An active returns acquisition management as has been
described by Guide and Van Wassenhove (2001) can therefore lead to further
cost reductions. See Minner and Kiesmüller (2002) for a detailed analysis of
return acquisition in a dynamic framework.

5.7 Proofs and Statistical Tests

Proofs

Proof (Proof of Proposition 5.1).
An intersection point t ≥ ∆ of demand and return functions requires

d(t) = MP (P+Q)2·e−(P +Q)t

(P+Qe−(P +Q)t)2
= FMP (P+Q)2·e−(P +Q)(t−∆)

(P+Qe−(P +Q)(t−∆))2
= r(t). (5.34)

Let X(t) := e−(P+Q)t be a strictly decreasing function of time with co-domain
(0, 1] and Y := e(P+Q)∆ > 1 be a constant, then (5.34) can (omitting time
indices) be rewritten as

MP (P + Q)2X

(P + QX)2
=

FMP (P + Q)2XY

(P + QXY )2

⇔ P 2 + 2PQXY + Q2X2Y 2 = FY P 2 + 2FPQXY + FQ2X2Y.

Rearranging terms leads to the following quadratic equation of form ax2 +
bx + c = 0 in X(t)

Q2Y (Y − F ) · X2 + 2PQY (1 − F ) · X + P 2(1 − FY ) = 0. (5.35)

A solution to (5.35) is given by
(
x = −b±√

b2−4ac
2a

)

X =
−2PQY (1−F )±

√
(2PQY (1−F ))2−4(Q2Y (Y −F ))(P 2(1−FY ))

2Q2Y (Y −F )

= − P (1−F )
Q(Y −F ) ±

√
4FP 2Q2Y (1−Y )2

2Q2Y (Y −F )

= − P (1−F )
Q(Y −F ) ± P |1−Y |

√
FY

QY (Y −F ) (5.36)
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Two positive real roots may exist if the first term in (5.36) is positive, which
is not true because 1−F as well as Y −F never take on negative values. Since
1 − Y < 0 and given X exists, it is

X = P/Y (Y −1)
√

FY −P (1−F )
Q(Y −F ) , (5.37)

and intersection tI is uniquely given tI = − ln(X)
P+Q .

From (5.35) one can see, that a positive root X requires 1−FY < 0. Therefore,
if

F ≤ 1/Y = e−(P+Q)∆ (5.38)

no intersection between the demand and return function can exist and we can
deduce using F < 1, that r(t) < d(t)∀t. Note that this condition is sufficient
only.
In order to derive a necessary and sufficient condition for the existence of
intersection point tI , it additionally has to be assured that X (as derived
from using (5.37)) is located in the co-domain (0, 1]. Further, for the inverse
of X it must hold that the derived time point tI = X−1 exceeds ∆, which is
equivalent to r(∆) = Fd(0) < d(∆).

Proof (Proof of Proposition 5.2).
When inserting u(t) = 0 for t < ∆ and replacing the max / min operators in
(5.6) the objective is (omitting time indices) given by

NPVb=

����������������������
���������������������

Kr
p +

∆�

0

e−αtcr
pd dt + e−αtrKr

+
tI�

∆

e−αt[cr
p(d − u) + cru]dt +

∞�

tI

e−αt[crd + cw(u − d)]dt

tr < ∆

Kr
p +

∆�

0

e−αtcr
pd dt +

tr�

∆

e−αt[cr
pd + cwu]dt + e−αtr Kr

+
tI�

tr

e−αt[cr
p(d − u) + cru]dt +

∞�

tI

e−αt[crd + cw(u − d)]dt

∆ ≤ tr < tI

Kr
p +

∆�

0

e−αtcr
pd dt +

tr�

∆

e−αt[cr
pd + cwu]dt + e−αtr Kr

+
∞�

tr

e−αt[crd + cw(u − d)]dt
tI ≤ tr

(5.39)

The first derivative of the objective (5.39) is different for each of the three
regions as defined in Section 5.2 and given by

∂NPVb

∂tr
=

⎧⎪⎪⎨
⎪⎪⎩

−αe−αtrKr for tr < ∆ (Region 1)
undefined for tr = ∆

e−αtr [(cr
p + cw − cr)u(tr) − αKr] for ∆ < tr < tI (Region 2)

e−αtr [(cr
p + cw − cr)d(tr) − αKr] for tI ≤ tr (Region 3).

(5.40)
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Note that except for tr = ∆, (5.40) is continuous. Candidates for t∗r are given
by points where (5.40) changes its sign from negative to positive. This is not
possible in Region 1, where the derivative is negative.
The time point tr,1 = ∆ is a candidate for t∗r if lim

tr→∆+0

∂NPVb

∂tr
≥ 0. This leads

to
u(∆)(cr

p + cw − cr) ≥ αKr. (5.41)

Further candidates, tr,2 and tr,3, are given by setting the first derivative in
the two remaining regions to zero, which gives the following conditions

u(tr,2)(c
r
p + cw − cr) = αKr for ∆ < tr,2 < tI or (5.42)

d(tr,3)(c
r
p + cw − cr) = αKr for tI ≤ tr,3. (5.43)

The second derivative of NPVb is given by

∂2NPVb

∂t2r
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α2e−αtrKr for tr < ∆
undefined for tr = ∆

e−αtr [(cr
p + cw − cr)(u̇(tr) − αu(tr)) + α2Kr] for ∆ < tr < tI

undefined for tr = tI
e−αtr [(cr

p + cw − cr)(ḋ(tr) − αd(tr)) + α2Kr] for tI < tr.

(5.44)

Inserting (5.42) and (5.43) for αKr in the respective part of (5.44), conditions
for a local minimum can be derived. tr,2 is a local minimum if

∂2NPVb

∂t2r

∣∣∣∣
tr=tr,2

= e−αtr (cr
p + cw − cr)u̇(tr,2) > 0 ⇔ u̇(tr,2) > 0 (5.45)

and thus, tr,2 < tmax
u . Analogously, tr,3 is a local minimum if ḋ(tr,3) > 0. Since

demand must decrease for any point tr,3 ≥ tI (from assumption), candidate
tr,3 fails the second order necessary conditions.
From our assumptions about the return function (unimodal) it follows that
if inequality (5.41) holds, i.e. tr,1 = ∆ is a candidate for an optimal solution,
there will be no candidate tr,2 and vice versa. Hence, there exists at most a
single finite solution, located in an half open interval [∆, min{tmax

u , tI}).
Note, that this proof must be adapted in order to apply to a situation

as defined in Proposition 5.1 (ii) and as a result, only tr,1 = ∆ = tI is a
solution candidate, because immediately afterwards the remanufacturing rate
must decrease.

Proof (Proof of Proposition 5.3).
Since NPVb decreases for sufficient high tr, i.e. there exists a time tr > tI for
which it holds ∀t > tr : d(t) < αKr

cp+cw−cr
, solution candidate t∞r = ∞ (invest

never) has to be considered.
In order to find the best alternative, the Net Present Value of the payment
stream arising by assuming a relevant finite candidate t̃r ∈ [∆, min{tmax

u , tI}),
i.e. NPVb(t̃r), has to be compared with NPVb(t

∞
r ), which is given by
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NPVb(t
∞
r ) = Kr

p +

∫ ∞

0

e−αt
[
cr
pd(t) + cwu(t)

]
dt. (5.46)

This gives an expression of the total discounted advantage of remanufacturing
Ab

r

Ab
r = NPVb(t

∞

r ) − NPVb(t̃r)

= −e−αt̃rKr + � ∞

0

e−αt � cr
pd(t) + cwu(t) � dt

−

∞

�
t̃r

e−αt � cr
p max{d(t) − u(t), 0} + cr min{d(t), u(t)} + cw max{u(t) − d(t), 0} � dt

= −e−αt̃rKr + � ∞

t̃r

e−αt � (cr
p + cw − cr) min{d(t), u(t)} � dt (5.47)

Therefore, t∗r = t̃r if Ab
r > 0, i.e.

Kr ≤
∫ ∞

t̃r

e−α(t−t̃r)
[
cr
p + cw − cr

]
min{d(t), u(t)}dt. (5.48)

Otherwise t∗r = ∞.

Proof (Proof of Propositions 5.4 to 5.9).
Propositions 5.4 to 5.9 are results of an optimization approach which is car-
ried through in the following. Since both the objective function NPVc and
constraint (5.21) are in general not convex, in accordance with Sydsæter and
Hammond (1995), p 608 the following solution method is used:

(1) Determination of the partial derivatives of the objective function.
(2) Identification of possible solution candidates (Steps 1 and 2 in Sydsæter

and Hammond (1995)) using standard methods of Nonlinear Program-
ming. This proofs Proposition 5.4. Exploring a joint property of all valid
cases proofs Proposition 5.5 while individual properties confirm results
stated in Propositions 5.6-5.9.

(3) Comparison of values of NPVc at candidate points against each other
(Step 3) and with the Net Present Value of investing never NPVb(t

∞
r )

as given in (5.46). Smallest value is the (global) minimal value of NPVc

(Step 5). As this requires actual data, we will omit this part.

(1) Partial derivatives of the objective function
Subsequently, the partials of tx with respect to te and tr are needed. This is
applied by using the implicit differentiation rules

∂tx
∂te

= −
∂f
∂te
∂f

∂tx

= − u(te)
d(tx)−u(tx) (5.49)

∂tx
∂tr

= −
∂f
∂tr
∂f
∂tx

= d(tr)
d(tx)−u(tx) (5.50)

The first partial derivative of NPVc(te, tr) with respect to te is given by
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∂NPVc

∂te

= e−αte � cr
pd(te) + cwu(te) � − e−αte � cr

pd(te) + huyu(te) �
+ � tx

te

e−αthu
∂yu(t)

∂te

dt

+ � e−αtx [crd(tx) + huyu(tx)] +
� tx

te
e−αthu

∂yu(t)
∂tx

dt

−e−αtx � cr
p(d(tx) − u(tx)) + cru(tx) � � ∂tx

∂te

.

Collecting terms and inserting yu(te) = yu(tx) = 0 yields

∂NPVc

∂te
= e−αtecwu(te) +

∫ tx

te
e−αthu

∂yu(t)
∂te

dt

+
(
−e−αtx

[
cr
p − cr

]
(d(tx) − u(tx)) +

∫ tx

te
e−αthu

∂yu(t)
∂tx

dt
)

∂tx

∂te
.

Since the partial of yu(t) with respect to te equals

∂yu(t)

∂te
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

undefined for t = te

−u(te) for t ∈ (te, tx)

undefined for t = tx

0 otherwise

(5.51)

and because of ∂yu(t)
∂tx

= 0 it follows that

∂NPVc

∂te
= e−αtecwu(te) −

∫ tx

te
e−αthuu(te)dt − e−αtx

[
cr
p − cr

]
(d(tx) − u(tx)) ∂tx

∂te
.

Replacing ∂tx

∂te
by − u(te)

d(tx)−u(tx) using (5.49) gives

∂NPVc

∂te
=

(
e−αtecw − hu

∫ tx

te
e−αtdt + e−αtx

[
cr
p − cr

])
u(te). (5.52)

Equation (5.52) can be interpreted as follows. If te increases, a marginal return
u(te) arriving at this time is no longer stored but disposed of, leading to
additional unit costs of e−αtecwu(te) . Since this (marginal) return is not
available for later remanufacturing, tx decreases and thus, costs for producing
a (marginal) new product at tx are caused, given by e−αtx

(
cr
p − cr

)
u(te) . On

the other hand, storing less returns reduces inventory holding costs per unit
by hu

∫ tx

te
e−αtdt u(te).

Evaluating the integral in (5.52) finally yields

∂NPVc

∂te
=

(
e−αte

[
cw − hu

α

]
+ e−αtx

[
cr
p − cr + hu

α

])
u(te). (5.53)

The first partial derivative of NPVc(te, tr) with respect to tr is given by

∂NPVc

∂tr

= e−αtr � cr
pd(tr) + huyu(tr) � − αe−αtrKr − e−αtr [crd(tr) + huyu(tr)]

+ � tx

te

e−αthu
∂yu(t)

∂tr

dt

+ � e−αtx [crd(tx) + huyu(tx)] +
� tx

te
e−αthu

∂yu(t)
∂tx

dt

−e−αtx � cr
p(d(tx) − u(tx)) + cru(tx) � � ∂tx

∂tr

.
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Collecting terms and inserting yu(tx) = 0 yields

∂NPVc

∂tr
= e−αtr

[
cr
p − cr

]
d(tr) − αe−αtrKr +

∫ tx

te

e−αthu
∂yu(t)

∂tr
dt

+

(
−e−αtx

[
cr
p − cr

]
(d(tx) − u(tx)) +

∫ tx

te

e−αthu
∂yu(t)

∂tx
dt

)
∂tx
∂tr

.

Using

∂yu(t)

∂tr
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

undefined for t = tr

d(tr) for t ∈ (tr, tx)

undefined for t = tx

0 otherwise

(5.54)

it follows that

∂NPVc

∂tr
= e−αtr

[
cr
p − cr

]
d(tr) − αe−αtrKr +

∫ tx

tr
e−αthud(tr) dt

−e−αtx
[
cr
p − cr

]
(d(tx) − u(tx)) ∂tx

∂tr
.

Replacing ∂tx

∂tr
by d(tr)

d(tx)−u(tx) from (5.50) yields

∂NPVc

∂tr
=

(
(e−αtr − e−αtx) [cr

p − cr] + hu

∫ tx

tr
e−αtdt

)
d(tr) − αe−αtrKr.

(5.55)

A later investment time tr decreases the Net Present Value of the investment
expenses by αe−αtrKr. A (marginal) demand d(tr) is no longer satisfied by
remanufacturing returns at tr, which instead are stored for a later use at tx.
Therefore, a cost reduction at tx by remanufacturing instead of producing
faces an increase in costs at tr. Additional holding costs are caused by storing
the (marginal) return.
Continuing in the same manner as above gives

∂NPVc

∂tr
= (e−αtr − e−αtx)

[
cr
p − cr + hu

α

]
d(tr) − αe−αtrKr. (5.56)

(2) Identification of solution candidates
By introducing Lagrange multipliers µi, i = 1, 2, 3 which are associated with
constraints (5.19)-(5.20) the Lagrangian L(te, tr, µ1, µ2, µ3) is defined as

L(te, tr, µ1, µ2, µ3) = NPVc(te, tr) − µ1(te − ∆) − µ2(tr − te)

−µ3

(∫ tI

tx

(d(s) − u(s))ds

)
. (5.57)

The partials of L(te, tr, µ1, µ2, µ3) have to equal zero:
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∂L
∂te

=
∂NPVc

∂te
− µ1 + µ2 + µ3(d(tx) − u(tx))

∂tx
∂te

=
∂NPVc

∂te
− µ1 + µ2 − µ3u(te) = 0 (5.58)

∂L
∂tr

=
∂NPVc

∂tr
− µ2 + µ3(d(tx) − u(tx))

∂tx
∂tr

=
∂NPVc

∂tr
− µ2 + µ3d(tr) = 0 (5.59)

The complementary slackness conditions are given by

∂L
∂µ1

= ∆ − te ≤ 0, µ1 ≥ 0, µ1(∆ − te) = 0 (5.60)

∂L
∂µ2

= te − tr ≤ 0, µ2 ≥ 0, µ2(te − tr) = 0 (5.61)

∂L
∂µ3

= −
∫ tI

tx

(d(s) − u(s))ds ≤ 0, µ3 ≥ 0, µ3

(∫ tI

tx

(d(s) − u(s))ds

)
= 0

(5.62)

Having three constraints, either active or inactive, in total eight cases have
to be distinguished. Cases 1-4 are excluded, cases (i)-(iv) make up solution
candidates in Proposition 5.4.

Case 1 te = tr, ∆ = te,
∫ tI

tx
(d(s) − u(s))ds = 0 ⇔ ∆ = te = tr = tx = tI

This case is only feasible if ∆ = tI and can therefore be excluded immediately.

Case 2 te = tr, ∆ = te,
∫ tI

tx
(d(s) − u(s))ds > 0 ⇔ ∆ = te = tr = tx < tI

From tx < tI using (5.62), µ3 = 0 follows. Inserting this value into (5.59) gives

µ2 =
∂NPVc

∂tr

∣∣∣∣
tr=tx=∆

= −αe−α∆Kr < 0.

This contradicts µ2 ≥ 0.

Case 3 te = tr, ∆ < te,
∫ tI

tx
(d(s) − u(s))ds = 0 ⇔ ∆ < te = tr = tx = tI

Case 3 does not include an interval with a positive recoverables stock and
has already been excluded from the set of solution candidates to investment
project (b). See proof to Proposition 5.2.

Case 4 te = tr, ∆ < te,
∫ tI

tx
(d(s) − u(s))ds > 0 ⇔ ∆ < te = tr = tx < tI

Both, first and third conditions are inactive. Then, µ1 = 0 and µ3 = 0 by
(5.60) and (5.62), respectively. From (5.58) it follows

µ2 = − ∂NPVc

∂te

∣∣∣∣
te=tr=tx

= −e−αtr
[
cr
p + cw − cr

]
u(tr).

Because cr
p + cw − cr > 0 from (5.3) and u(t) > 0 ∀t ≥ ∆, µ2 is negative and

thus contradicts µ2 ≥ 0.
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Since all cases (1-4) with te = tr are excluded, for the optimal solution (t∗e, t
∗
r)

it holds t∗e < t∗r . The remaining cases constitute the different types of solution
candidates as stated in Proposition 5.4. This completes the proof to Proposi-
tion 5.4.

For all remaining cases (i)-(iv) holds t∗e < t∗r which requires from (5.61) µ2 =
0. Inserting this value into (5.58) (reconsidering non-negativity of µ1, µ3, and
u(t∗e)) necessitates ∂NPVc

∂te
≥ 0, yielding

∂NPVc

∂te
=

(
e−αt∗e

[
cw − hu

α

]
+ e−αt∗x

[
cr
p − cr + hu

α

])
u(t∗e) ≥ 0 (5.63)

Because of u(t) > 0 ∀t ≥ ∆ this is equivalent to

e−αt∗e
[
cw − hu

α

]
+ e−αt∗x

[
cr
p − cr + hu

α

] ≥ 0

and solving for t∗x − t∗e finally yields

t∗x − t∗e ≤ 1

α
ln

(
α (cp − cr) + hu

−αcw + hu

)
=: τu, (5.64)

i.e. the maximum length condition known from Kleber et al. (2002) for the
special case of a single product. This completes the proof to Proposition 5.5.

Case (i) te < tr, ∆ < te,
∫ tI

tx
(d(s) − u(s))ds > 0 ⇔ ∆ < te < tx < tI

None of the conditions is active. Thus, µ1 = 0, µ2 = 0 as well as µ3 = 0.
Inserted into (5.58), this yields

∂NPVc

∂te
=

(
e−αtecw − hu

∫ tx

te
e−αtdt + e−αtx

[
cr
p − cr

])
u(te) = 0.

Proceeding as above (5.63)-(5.64) leads to

tx − te = τu. (5.65)

Further, inserting Lagrange Multipliers into (5.59) requires

∂NPVc

∂tr
=

(
(e−αtr − e−αtx) [cr

p − cr] + hu

tx∫
tr

e−αtdt

)
d(tr) − αe−αtrKr = 0.

⇔ −e−αtr [cr
p − cr]d(tr) = hu

tx∫
tr

e−αtdt d(tr) − e−αtx [cr
p − cr]d(tr) − αe−αtrKr

(5.66)

This completes the proof to Proposition 5.6.

Case (ii) te < tr, ∆ = te,
∫ tI

tx
(d(s) − u(s))ds = 0 ⇔ ∆ = te < tr < tx = tI

Inserting µ2 = 0 into (5.59) yields
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µ3 = − ∂NPVc

∂tr

∣∣∣
tx=tI

1
d(tr)

= − (e−αtr − e−αtI ) [cr
p − cr] − hu

∫ tI

tr
e−αtdt + αe−αtrKr

1
d(tr) .

µ3 ≥ 0 requires(
(e−αtr − e−αtI ) [cr

p − cr] + hu

tI∫
tr

e−αtdt

)
d(tr) − αe−αtrKr ≤ 0

⇔ −e−αtr [cr
p − cr]d(tr) ≥ hu

tI∫
tr

e−αtdt d(tr) − e−αtI [cr
p − cr]d(tr) − αe−αtrKr.

(5.67)

Further, inserting µ3 into (5.58) leads to

µ1 = ∂NPVc

∂te

∣∣∣
te=∆, tx=tI

+ ∂NPVc

∂tr

∣∣∣
tx=tI

u(∆)
d(tr)

=
(
e−α∆cw − hu

∫ tI

∆ e−αtdt + e−αtI
[
cr
p − cr

])
u(∆)

+
(
(e−αtr − e−αtI ) [cr

p − cr] + hu

∫ tI

tr
e−αtdt

)
u(∆) − αe−αtrKr

u(∆)
d(tr)

=
(
e−α∆cw − hu

∫ tr

∆
e−αtdt + e−αtr [cr

p − cr]
)

u(∆) − αe−αtrKr
u(∆)
d(tr) .

(5.68)

Since µ1 ≥ 0, (5.68) implies(
e−α∆cw − hu

∫ tr

∆ e−αtdt + e−αtr [cr
p − cr]

)
d(tr) − αe−αtrKr ≥ 0

⇔ e−α∆cwd(tr) ≥ hu

∫ tr

∆
e−αtdt d(tr) − e−αtr [cr

p − cr]d(tr) + αe−αtrKr.

(5.69)

This completes the proof to Proposition 5.7.

Case (iii) te < tr, ∆ = te,
∫ tI

tx
(d(s) − u(s))ds > 0 ⇔ ∆ = te < tr < tx < tI

Both second and third conditions are inactive. Then, µ2 = 0 and µ3 = 0 from
(5.61) and (5.62), respectively. Inserting both values into (5.59) yields

∂NPVc

∂tr
=

(
(e−αtr − e−αtx) [cr

p − cr] + hu

tx∫
tr

e−αtdt

)
d(tr) − αe−αtrKr = 0.

⇔ −e−αtr [cr
p − cr]d(tr) = hu

tx∫
tr

e−αtdt d(tr) − e−αtx [cr
p − cr]d(tr) − αe−αtrKr.

(5.70)

This completes the proof to Proposition 5.8.
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Case (iv) te < tr, ∆ < te,
∫ tI

tx
(d(s) − u(s))ds = 0 ⇔ ∆ < te < tx = tI

Both, first and second conditions are inactive. Then, µ1 = 0 and µ2 = 0 from
(5.60) and (5.61), respectively. Both values inserted into (5.58) yields the value
for µ3

µ3 = 1
u(te)

∂NPVc

∂te

∣∣∣
tx=tI

= e−αtecw − hu

∫ tI

te
e−αtdt + e−αtI

[
cr
p − cr

]
Inserting µ3 into (5.59) gives

∂NPVc

∂tr

∣∣∣
tx=tI

+ d(tr)
u(te)

∂NPVc

∂te

∣∣∣
tx=tI

= 0

⇔ e−αtecwd(tr) = hu

∫ tr

te
e−αtdt d(tr) − e−αtr [cr

p − cr]d(tr) + αe−αtrKr.

(5.71)

This completes the proof to Proposition 5.9.

Statistical Tests

The objective of the statistical analysis was to test the average performance
of the heuristics (A) one against each other, where the results originated
from the same experiments (matched pairs), but also (B) the change of the
heuristics performance due to different settings (independent group means),
two different types of tests had to be performed. In the first case, a paired t-test
was carried out which, because of the large sample sizes, was approximated
by a Normal z Test. For comparing independent group means w.r.t. the same
heuristic in different settings, a single-sided version of the approximately two
groups Normal z Test was performed. Because of the large sample size, the
significance level α was set to 1% resulting in a quantile value of about 2.33.
The difference of two average values can in both tests be assumed statistically
significant if the corresponding absolute test value is larger than 2.33.

(A) The results of the first test are shown in Tables 5.7 and 5.8. As can be
seen, the equality of average performances of two different heuristics can be
rejected under all considered scenarios.

(B) For use during the second test, the standard deviation of the relative
error when applying heuristic solutions instead of the optimal solution was
required, which is depicted in Figure 5.9. Using these values, test values of
the two groups Normal z Test have been calculated as shown in Figure 5.10.
Only in two cases were differences of the compared means not significantly
large. These have been highlighted by bold letters.
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Table 5.7. Average difference, sample standard deviation and z test values for
comparison of the average performance of different heuristics.

H1 vs. H2 H1 vs. H3 H1 vs. H4
mean std.dev. z test mean std.dev. z test mean std.dev. z test

Overall 0.052 0.077 44.62 0.069 0.085 52.81 0.072 0.084 55.88

Scenario I 0.058 0.080 21.73 0.074 0.084 26.10 0.077 0.083 27.51
Scenario II 0.033 0.046 20.37 0.044 0.049 25.46 0.045 0.048 26.54
Scenario III 0.075 0.097 28.95 0.096 0.109 33.20 0.103 0.107 36.11
Scenario IV 0.034 0.049 23.40 0.048 0.055 29.48 0.050 0.055 30.86

cw low 0.027 0.040 20.75 0.024 0.046 16.27 0.035 0.044 24.79
cw high 0.060 0.083 41.44 0.082 0.089 52.70 0.083 0.090 52.97

α low 0.031 0.047 31.61 0.046 0.056 39.57 0.047 0.056 41.16
α high 0.079 0.095 36.37 0.096 0.103 40.84 0.102 0.102 44.18

hu low 0.059 0.087 32.11 0.081 0.095 40.35 0.082 0.094 41.04
hu high 0.045 0.063 32.30 0.055 0.070 35.48 0.062 0.071 39.37

Kr low 0.040 0.060 40.81 0.054 0.070 48.05 0.058 0.069 51.63
Kr high 0.153 0.112 29.66 0.181 0.107 36.96 0.183 0.107 37.27

Table 5.8. Average difference, sample standard deviation and z test values for
comparison of the average performance of different heuristics (continued).

H2 vs. H3 H2 vs. H4 H3 vs. H4
mean std.dev. z test mean std.dev. z test mean std.dev. z test

Overall 0.016 0.030 35.11 0.020 0.025 52.24 0.004 0.016 14.92

Scenario I 0.016 0.025 18.49 0.019 0.022 25.54 0.003 0.011 8.12
Scenario II 0.011 0.016 19.79 0.012 0.014 24.41 0.001 0.005 7.52
Scenario III 0.021 0.042 18.91 0.028 0.032 33.21 0.007 0.025 10.59
Scenario IV 0.014 0.022 22.23 0.016 0.020 27.40 0.002 0.008 7.36

cw low -0.003 0.032 -2.77 0.008 0.011 23.50 0.011 0.030 11.57
cw high 0.022 0.027 46.33 0.023 0.027 50.10 0.001 0.007 12.10

α low 0.015 0.023 31.83 0.017 0.021 38.01 0.002 0.008 10.51
α high 0.017 0.037 20.71 0.023 0.028 36.87 0.006 0.022 12.08

hu low 0.022 0.030 34.14 0.023 0.029 37.35 0.001 0.008 6.25
hu high 0.010 0.028 15.56 0.016 0.019 39.94 0.007 0.022 13.85

Kr low 0.015 0.029 31.09 0.019 0.023 50.03 0.004 0.017 14.12
Kr high 0.028 0.035 17.49 0.030 0.035 18.60 0.002 0.007 6.73
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Table 5.9. Standard deviation of the relative error of heuristic solutions from op-
timal solution.

H1 H2 H3 H4
std.dev. std.dev. std.dev. std.dev.

Overall 0.089 0.029 0.021 0.016

Scenario I 0.090 0.026 0.018 0.016
Scenario II 0.052 0.017 0.010 0.010
Scenario III 0.111 0.035 0.028 0.019
Scenario IV 0.059 0.023 0.015 0.014

cw low 0.046 0.013 0.029 0.007
cw high 0.094 0.029 0.017 0.017

α low 0.061 0.027 0.016 0.015
α high 0.107 0.030 0.025 0.017

hu low 0.100 0.033 0.020 0.019
hu high 0.072 0.018 0.022 0.009

Kr low 0.072 0.026 0.020 0.014
Kr high 0.112 0.034 0.025 0.026

Table 5.10. Z test values for comparison of the average performance of the same
heuristic between different scenarios/settings.

H1 H2 H3 H4

Scenario I vs. II 10.09 9.67 8.13 6.26
Scenario I vs. III -6.75 -9.03 -6.52 -3.02
Scenario I vs. IV -8.18 -10.39 -8.43 -3.30
Scenario II vs. III -18.40 -19.75 -14.36 -10.18
Scenario II vs. IV -3.27 -7.70 -6.74 -6.48
Scenario III vs. IV -16.26 -12.95 -9.37 -4.29

cw low vs. high -26.98 -40.15 -1.70 -30.15

α low vs. high -19.61 -6.16 -5.06 2.09

hu low vs. high 11.85 22.09 9.18 25.69

Kr low vs. high -26.15 -15.14 -9.28 -10.53
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Conclusions

We have addressed dynamic issues in product recovery management. A contin-
uous time framework was used which enables to account for external dynamic
aspects such as demand seasonality and product life cycle effects but it also
enables us to deal with internal cost dynamics. Since we dealt with fairly sim-
ple models, optimal policies could be determined that lead to general insights
into the optimal behavior of product recovery systems.

In a basic model, there is a direct cost advantage of remanufacturing over
production, an anticipation stock is used in order to enhance product re-
covery opportunities if a period with excess returns is followed by another
with excess demand. As a main result, a maximal holding time for returns
was derived which balances the direct cost advantage of remanufacturing and
holding costs. This period limits the time interval which can be influenced by
a current decision and it therefore can be used in order to specify the minimal
length of the planning horizon within a rolling planning scheme for an inte-
grated production planning. This approach was also useful in valuing product
returns which is of importance for accounting issues.

An extended version of the basic model was used to investigate the smooth-
ing effect of anticipation stocks in capacitated product recovery systems. In
the case of a manufacturing constraint the current capacity of the system can
be insufficient to service demand and thus, stock-keeping is required for bot-
tleneck situations. Exploiting the holding cost advantage of recoverables, such
demands are primarily filled from remanufacturing of additionally collected
returns. Since the length of a corresponding collection interval depends on
the total ‘bottleneck size’, it might exceed a time period which is motivated
through a recovery cost advantage. In such cases, a serviceables inventory is
used at times where excess production capacity is available during the col-
lection interval in order to reduce its length. For determining the respective
maximal interval lengths, a trade-off between serviceables and recoverables
holding costs is made.

Beside the availability of returns there might also exist other limitations
for remanufacturing, e.g. a maximal possible rate. Although in contrast to the
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previously considered case, the current capacity of the system always suffices
to immediately satisfy demand, cost reductions due to exploiting the recov-
ery cost advantage led to a diversity of situations where inventory is used.
In a situation where demand is higher than both return rate and remanufac-
turing constraint, for instance before the constraint leaves the binding state
recoverables are collected for later use. Under other circumstances even pre-
remanufacturing to a serviceables stock can be favorable.

We also considered two strategic applications of dynamic product recovery.
The integration of recovery knowledge acquisition into the basic framework
allowed for remanufacturing even under circumstances where there is no imme-
diate advantage over producing new items. Besides the usual results of fully
or partly anticipating learning effects when having zero or positive interest
rates, another outcome affects the decision when to start the remanufacturing
process. This is only possible because there exists another way to fill demand.
This decision is accompanied by another motivation to keep stock, namely to
postpone the start of remanufacturing. A similar effect results mainly from
the combined problem of choosing upon the product’s design, a corresponding
recovery mode, and the investment time into a remanufacturing facility under
product life cycle conditions.

There exist several other recent applications of using the optimal control
approach for dynamic product recovery than those already presented in the
introductory chapter. Under the assumption of different variants of the same
basic product with differing profitability of remanufacturing (e.g. spare parts
for the original and an upgraded version of the product), it must be deter-
mined for which demand class returns should be used. In extending the basic
model presented in Chapter 2, Kleber et al. (2002) showed that in contrast to
that case it can be optimal to satisfy a certain demand from production al-
though there still are recoverables available on stock from which demand could
be serviced. The underlying trade-off balances differences in the profitability
between the available recovery options and holding costs.

Another option that could be considered is not to immediately satisfy all
demand but to backlog parts of it. This is preferable at the end of time periods
with excess demand which are satisfied when excess returns become available.
Here a trade-off between the associated costs (like price cuts required to keep
a customer) which also may depend on the time a customer is required to
wait and the remanufacturing cost advantage is balanced. An optimal control
model analyzing this issue has been presented by Kiesmüller et al. (2000).

Throughout this work it was assumed that demand and returns could not
be influenced by the decision maker. An active return acquisition management,
however, can considerably enhance profitability by increasing or reducing the
availability of returns when needed. This can be implemented through incen-
tives like advertising or buy back prices for returns. An application of optimal
control for dynamically setting a buy back price is provided by Minner and
Kiesmüller (2002).
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P., Leopold-Wildburger, U., Möhring, R. H., and Radermacher, F.-J., editors,
Models, Methods and Decision Support for Management - Essays in Honor of
Paul Stähly, pages 147–164. Physica, Heidelberg.

Fleischmann, M. (2001b). Quantitative Models for Reverse Logistics. Lecture Notes
in Economics and Mathematical Systems 501. Springer, Berlin.

Fleischmann, M., Bloemhof-Ruwaard, J. M., Dekker, R., van der Laan, E. A., van
Nunen, J. A. E. E., and Van Wassenhove, L. N. (1997). Quantitative models for
reverse logistics: A review. European Journal of Operational Research, 103:1–17.

Fleischmann, M. and Minner, S. (2004). Inventory management in closed-loop sup-
ply chains. In Dyckhoff, H., Lackes, R., and Reese, J., editors, Supply Chain
Management and Reverse Logistics, pages 115–138. Springer, Berlin.

Gaimon, C. (1988). Simultaneous and dynamic price, production, inventory and
capacity decisions. European Journal of Operational Research, 35:426–441.

Geyer, R. and Van Wassenhove, L. N. (2005). The impact of constraints in closed-
loop supply chains: The case of reusing components in product remanufacturing.
In Fleischmann, B. and Klose, A., editors, Distribution Logistics: Advanced So-
lutions to Practical Problems, Lecture Notes in Economics and Mathematical
Systems 544, pages 203–219. Springer, Berlin.

Goldstein, L. (1994). The strategic management of environmental issues: A case
study of Kodak’s single-use cameras. M.S. Thesis, Sloan School of Management,
MIT, Cambridge, M.A.

Grubbström, R. W. (1980). A principle for determining the correct capital costs of
work-in-progress and inventory. International Journal of Production Research,
18(2):259–271.



References 179

Guide, Jr., V. D. R., Harrison, T. P., and Van Wassenhove, L. N. (2003a). The
challenge of closed-loop supply chains. Interfaces, 33(6):3–6.

Guide, Jr., V. D. R., Jayaraman, V., and Linton, J. D. (2003b). Building contin-
gency planning for closed-loop supply chains with product recovery. Journal of
Operations Management, 21:259–279.

Guide, Jr., V. D. R., Jayaraman, V., Srivastava, R., and Benton, W. C. (2000).
Supply-chain management for recoverable manufacturing systems. Interfaces,
30(3):125–142.

Guide, Jr., V. D. R. and Van Wassenhove, L. N. (2001). Managing product returns
for remanufacturing. Production and Operations Management, 10(2):142–155.

Guide, Jr., V. D. R. and Van Wassenhove, L. N. (2002). The reverse supply chains.
Harvard Business Review, February 2002:2–3.

Gulledge, Jr., T. R. and Khoshnevis, B. (1987). Production rate, learning, and pro-
gram costs: Survey and bibliography. Engineering Costs and Production Eco-
nomics, 11:223–236.

Hartl, R. F. (1995). Production smoothing under environmental constraints. Pro-
duction and Operations Management, 4(1):46–56.

Holt, C. C., Modigliani, F., Muth, J. F., and Simon, H. A. (1960). Planning Pro-
duction, Inventories, and Work Force. Prentice-Hall, Englewood Cliffs, NJ.

Inderfurth, K., Flapper, S. D. P., Lambert, A. J. D., Pappis, C. P., and Voutsinas,
T. G. (2004). Production planning for product recovery management. In Dekker,
R., Fleischmann, M., Inderfurth, K., and Van Wassenhove, L. N., editors, Reverse
Logistics: Quantitative Models for Closed-Loop Supply Chains, pages 249–274.
Springer, Berlin.

Jaber, M. Y. and Bonney, M. (2001). Economic lot sizing with learning and con-
tinuous time discounting: Is it significant? International Journal of Production
Economics, 71:135–143.

Kamien, M. I. and Schwartz, N. L. (1991). Dynamic Optimization: The Calculus of
Variations and Optimal Control in Economics and Management. North-Holland,
Amsterdam, 2nd edition.

Kantor, P. B. and Zangwill, W. I. (1991). Theoretical foundation for a learning rate
budget. Management Science, 37(3):315–330.

Kaplan, R. S. and Atkinson, A. A. (1998). Advanced Management Accounting.
Prentice Hall, Upper Saddle River, NJ, 3rd edition.

Kiesmüller, G. P., Minner, S., and Kleber, R. (2000). Optimal control of a one
product recovery system with backlogging. IMA Journal of Mathematics Applied
in Business and Industry, 11:189–207.

Kiesmüller, G. P., Minner, S., and Kleber, R. (2004). Managing dynamic product
recovery: An optimal control perspective. In Dekker, R., Fleischmann, M., Inder-
furth, K., and Van Wassenhove, L. N., editors, Reverse Logistics: Quantitative
Models for Closed-Loop Supply Chains, pages 221–247. Springer, Berlin.

Kistner, K.-P. and Dobos, I. (2000). Optimal production-inventory strategies for
a reverse logistics system. In Dockner, E. J., Hartl, R. F., Luptačik, M., and
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