
S P R I N G E R B R I E F S I N CO M P U T E R S C I E N C E

Dariusz Mrozek

High-Performance
Computational
Solutions
in Protein
Bioinformatics

SpringerBriefs in Computer Science

Series editors

Stan Zdonik, Brown University, Providence, USA
Shashi Shekhar, University of Minnesota, Minneapolis, USA
Jonathan Katz, University of Maryland, College Park, USA
Xindong Wu, University of Vermont, Burlington, USA
Lakhmi C. Jain, University of South Australia, Adelaide, Australia
David Padua, University of Illinois Urbana-Champaign, Urbana, USA
Xuemin (Sherman) Shen, University of Waterloo, Waterloo, Canada
Borko Furht, Florida Atlantic University, Boca Raton, USA
V.S. Subrahmanian, University of Maryland, College Park, USA
Martial Hebert, Carnegie Mellon University, Pittsburgh, USA
Katsushi Ikeuchi, University of Tokyo, Tokyo, Japan
Bruno Siciliano, Università di Napoli Federico II, Napoli, Italy
Sushil Jajodia, George Mason University, Fairfax, USA

For further volumes:
http://www.springer.com/series/10028

http://www.springer.com/series/10028

Dariusz Mrozek

High-Performance
Computational Solutions
in Protein Bioinformatics

123

Dariusz Mrozek
Institute of Informatics, Silesian University

of Technology
Gliwice
Poland

ISSN 2191-5768 ISSN 2191-5776 (electronic)
ISBN 978-3-319-06970-8 ISBN 978-3-319-06971-5 (eBook)
DOI 10.1007/978-3-319-06971-5
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014939535

� The Author(s) 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

For my beloved wife Bo_zena,
and my two sons Paweł and Henryk,
with all my love

Foreword by Jack Dongarra

High-performance computing most generally refers to the practice of aggregating
computing power in a way that delivers much higher performance than one could
get out of a typical desktop computer or workstation in order to solve large prob-
lems in science, engineering, or business. Big data is a popular term used to
describe the exponential growth and availability of data, both structured and
unstructured. The challenges include capture, curation, storage, search, sharing,
transfer, analysis, and visualization. This timely book by Dariusz Mrozek gives you
a quick introduction to the area of proteins and their structures, protein structure
similarity searching carried out at main representation levels, and various tech-
niques that can be used to accelerate similarity searches using high-performance
computing and big data concepts. It presents introductory concepts of formal model
of 3D protein structures for functional genomics, comparative bioinformatics, and
molecular modeling, and the use of multithreading for efficient approximate
searching on protein secondary structures. In addition, there is a material on finding
3D protein structure similarities accelerated with high-performance computing
techniques.

The book is required reading to help in understanding for anyone working in the
area of structural bioinformatics and biomedical databases and the use of high-
performance computing. It explores the area of proteins and their structures
in-depth and provides practical approaches to many problems that may be
encountered. It is especially useful to applications developers, students, and
teachers.

I have enjoyed and learned from this book and feel confident that you will as
well.

Knoxville, April 2014 Jack Dongarra

vii

Foreword by Albert Y. Zomaya

The field of Bioinformatics has undergone many advances over the last 20 years.
Many of these advances are due to many developments in algorithmics and high-
performance computing. The sub-field of proteomics is a major discipline in
bioinformatics research and has great importance and this book deals with prob-
lems related to the structure of proteins. The book also shows how specialized
computer architectures, such as GPUs and Cloud computing environments, can be
used to accelerate the different computational problems.

I believe that the current book is a great addition to the existing literature on
protein computations. It will serve as a source of up-to-date research in this
continuously evolving area. The book also provides an opportunity for researchers
to explore the use of advanced computer architectures and their impact on
advancing our capabilities to conduct more sophisticated modeling and simulation
studies.

The book should be well received by the research and development community
and can be beneficial for graduate classes focusing on bioinformatics, computa-
tional biology, and systems biology.

Finally, I would like to congratulate Dr. Mrozek on a job well done, and I look
forward to seeing the book in print.

Sydney, April 2014 Albert Y. Zomaya

ix

Preface

For the last three decades we have been witnesses of the exponential growth of
biological data in repositories such as GenBank, Protein Data Bank, UniProt/
SwissProt. The specificity of the data has inspired the scientific community to
develop many algorithms that can be used to analyze the data and draw useful
conclusions. A huge volume of the biological data caused many of the existing
algorithms to become inefficient due to their computational complexity. Fortu-
nately, the rapid development of computer science in the last decade has brought
many technological innovations that can also be used in the field of bioinformatics
and life sciences. The algorithms demonstrating a significant utility value, which
have recently been perceived as too time-consuming, can now be efficiently used
by applying the latest technological achievements like multithreading, Graphics
Processing Units (GPUs), or cloud computing.

The book focuses on proteins and their structures, protein structure similarity
searching carried out at main representation levels, and various techniques that can
be used to accelerate similarity searches. The content of the book is divided into
four parts. Part I provides a formal model of 3D protein structures for functional
genomics, comparative bioinformatics, and molecular modeling. Part II focuses on
the use of multithreading for efficient approximate searching on protein secondary
structures. Parts III and IV concentrate on finding 3D protein structure similarities
accelerated with the use of GPUs and cloud computing. Both parts describe the
acceleration of different methods.

So, why proteins?, somebody can ask. I could answer the question by following
Arthur M. Lesk in his book entitled Introduction to Protein Science: Architecture,
Function, and Genomics. Because proteins are where the action is. But in fact, I
have fallen in love with the beauty of protein structures at first sight inspired by the
research conducted by R. I. P. Lech Znamirowski from the Silesian University
of Technology in Gliwice, Poland. I decided to continue his research on proteins
(Fig. 1).

xi

I believe this book will be interesting for scientists, researchers, and software
developers working in the field of structural bioinformatics and biomedical dat-
abases. I hope that readers of the book will find it interesting and helpful in their
everyday work.

Gliwice, April 2014 Dariusz Mrozek

Fig. 1 Preliminary architecture of the cloud-based solution for protein structure similarity
searching drawn by me during the meeting (March 6th, 2013) with Artur Kłapciński, my asso-
ciate in this project. Institute of Informatics, Silesian University of Technology, Gliwice, Poland

xii Preface

Acknowledgments

Through many years there were many people involved in the research that I
conducted. I find it hard to mention all of them. I would like to thank my wife
Bo _zena Małysiak-Mrozek and also Bartek Socha, Miłosz Bro _zek, and Artur
Kłapciński for their direct cooperation in my research leading to the emergence of
the book. I would like to thank Alina Momot for her valuable advice on mathe-
matical formulas and Henryk Małysiak for his mental support and constructive
guidance resulting from the decades of experience in the academic and scientific
work.

I would like to thank Microsoft Research for providing me a free access to
computational resources of the Microsoft Azure cloud under the Microsoft Azure
for Research Award program.

The emergence of this book was supported by the European Union from
the European Social Fund (grant agreement number: UDA-POKL.04.01.01-00-
106/09).

On a personal note, I would like to thank my family for all their love and
patience in the moments of my absence resulting from my desire to write this
book.

xiii

Contents

1 Formal Model of 3D Protein Structures for Functional
Genomics, Comparative Bioinformatics,
and Molecular Modeling . 1
1.1 Introduction . 1
1.2 General Definition of Protein Spatial Structure 2
1.3 A Reference to Representation Levels 4

1.3.1 Primary Structure . 4
1.3.2 Secondary Structure . 6
1.3.3 Tertiary Structure . 8
1.3.4 Quaternary Structure . 11

1.4 Relative Coordinates of Protein Structures 13
1.5 Energy Properties of Protein Structures 17
1.6 Summary . 19
References . 20

2 Multithreaded PSS-SQL for Searching Databases
of Secondary Structures . 25
2.1 Introduction . 25
2.2 Storing and Processing Secondary Structures

in a Relational Database. 28
2.2.1 Data Preparation and Storing . 28
2.2.2 Indexing of Secondary Structures 30
2.2.3 Alignment Algorithm. 30
2.2.4 Multithreaded Implementation 33

2.3 SQL as the Interface Between User and the Database 36
2.3.1 Pattern Representation in PSS-SQL Queries 37
2.3.2 Sample Queries in PSS-SQL . 38

2.4 Efficiency of the PSS-SQL . 41
2.5 Discussion . 43
2.6 Summary . 45
References . 45

xv

http://dx.doi.org/10.1007/978-3-319-06971-5_1
http://dx.doi.org/10.1007/978-3-319-06971-5_1
http://dx.doi.org/10.1007/978-3-319-06971-5_1
http://dx.doi.org/10.1007/978-3-319-06971-5_1
http://dx.doi.org/10.1007/978-3-319-06971-5_1#Sec1
http://dx.doi.org/10.1007/978-3-319-06971-5_1#Sec1
http://dx.doi.org/10.1007/978-3-319-06971-5_1#Sec2
http://dx.doi.org/10.1007/978-3-319-06971-5_1#Sec2
http://dx.doi.org/10.1007/978-3-319-06971-5_1#Sec3
http://dx.doi.org/10.1007/978-3-319-06971-5_1#Sec3
http://dx.doi.org/10.1007/978-3-319-06971-5_1#Sec4
http://dx.doi.org/10.1007/978-3-319-06971-5_1#Sec4
http://dx.doi.org/10.1007/978-3-319-06971-5_1#Sec5
http://dx.doi.org/10.1007/978-3-319-06971-5_1#Sec5
http://dx.doi.org/10.1007/978-3-319-06971-5_1#Sec6
http://dx.doi.org/10.1007/978-3-319-06971-5_1#Sec6
http://dx.doi.org/10.1007/978-3-319-06971-5_1#Sec7
http://dx.doi.org/10.1007/978-3-319-06971-5_1#Sec7
http://dx.doi.org/10.1007/978-3-319-06971-5_1#Sec8
http://dx.doi.org/10.1007/978-3-319-06971-5_1#Sec8
http://dx.doi.org/10.1007/978-3-319-06971-5_1#Sec9
http://dx.doi.org/10.1007/978-3-319-06971-5_1#Sec9
http://dx.doi.org/10.1007/978-3-319-06971-5_1#Sec10
http://dx.doi.org/10.1007/978-3-319-06971-5_1#Sec10
http://dx.doi.org/10.1007/978-3-319-06971-5_1#Bib1
http://dx.doi.org/10.1007/978-3-319-06971-5_2
http://dx.doi.org/10.1007/978-3-319-06971-5_2
http://dx.doi.org/10.1007/978-3-319-06971-5_2
http://dx.doi.org/10.1007/978-3-319-06971-5_2#Sec1
http://dx.doi.org/10.1007/978-3-319-06971-5_2#Sec1
http://dx.doi.org/10.1007/978-3-319-06971-5_2#Sec2
http://dx.doi.org/10.1007/978-3-319-06971-5_2#Sec2
http://dx.doi.org/10.1007/978-3-319-06971-5_2#Sec2
http://dx.doi.org/10.1007/978-3-319-06971-5_2#Sec3
http://dx.doi.org/10.1007/978-3-319-06971-5_2#Sec3
http://dx.doi.org/10.1007/978-3-319-06971-5_2#Sec4
http://dx.doi.org/10.1007/978-3-319-06971-5_2#Sec4
http://dx.doi.org/10.1007/978-3-319-06971-5_2#Sec5
http://dx.doi.org/10.1007/978-3-319-06971-5_2#Sec5
http://dx.doi.org/10.1007/978-3-319-06971-5_2#Sec6
http://dx.doi.org/10.1007/978-3-319-06971-5_2#Sec6
http://dx.doi.org/10.1007/978-3-319-06971-5_2#Sec7
http://dx.doi.org/10.1007/978-3-319-06971-5_2#Sec7
http://dx.doi.org/10.1007/978-3-319-06971-5_2#Sec8
http://dx.doi.org/10.1007/978-3-319-06971-5_2#Sec8
http://dx.doi.org/10.1007/978-3-319-06971-5_2#Sec9
http://dx.doi.org/10.1007/978-3-319-06971-5_2#Sec9
http://dx.doi.org/10.1007/978-3-319-06971-5_2#Sec10
http://dx.doi.org/10.1007/978-3-319-06971-5_2#Sec10
http://dx.doi.org/10.1007/978-3-319-06971-5_2#Sec11
http://dx.doi.org/10.1007/978-3-319-06971-5_2#Sec11
http://dx.doi.org/10.1007/978-3-319-06971-5_2#Sec12
http://dx.doi.org/10.1007/978-3-319-06971-5_2#Sec12
http://dx.doi.org/10.1007/978-3-319-06971-5_2#Bib1

3 Parallel CUDA-Based Protein 3D Structure
Similarity Searching. 49
3.1 Introduction . 49

3.1.1 What Makes the Problem. 50
3.1.2 CUDA Architecture and Construction

of GPU Devices . 51
3.1.3 CUDA-Enabled GPUs in Processing Biological Data . . . 52

3.2 CASSERT for Protein Structures Similarity Searching 53
3.2.1 General Course of the Matching Method 55
3.2.2 First Phase: Low-Resolution Alignment 56
3.2.3 Second Phase: High-Resolution Alignment. 58
3.2.4 Third Phase: Structural Superposition

and Alignment Visualization . 59
3.3 GPU-Based Implementation of the CASSERT 60

3.3.1 Data Preparation . 60
3.3.2 Implementation of Two-Phase Structural Alignment

in a GPU . 63
3.3.3 First Phase of Structural Alignment in the GPU 64
3.3.4 Second Phase of Structural Alignment in the GPU 68

3.4 GPU-CASSERT Efficiency Tests . 70
3.5 Discussion . 74
3.6 Summary . 76
References . 77

4 Cloud Computing for 3D Protein Structure Alignment 81
4.1 Introduction . 81

4.1.1 Cloud Computing in Bioinformatics
and Life Sciences . 82

4.1.2 Cloud Deployment and Service Models 83
4.1.3 Microsoft Azure . 84

4.2 Cloud4Psi for 3D Protein Structure Alignment 86
4.2.1 Use Case: Interaction with Cloud4Psi 87
4.2.2 Architecture and Model of the Cloud4Psi 89
4.2.3 Algorithms for Protein Structure Similarity Searching . . . 92
4.2.4 Implementation of Similarity Searching

in Azure Cloud . 92
4.3 Efficiency of the Cloud4Psi . 98
4.4 Discussion . 100
4.5 Summary . 100
References . 101

xvi Contents

http://dx.doi.org/10.1007/978-3-319-06971-5_3
http://dx.doi.org/10.1007/978-3-319-06971-5_3
http://dx.doi.org/10.1007/978-3-319-06971-5_3
http://dx.doi.org/10.1007/978-3-319-06971-5_3#Sec1
http://dx.doi.org/10.1007/978-3-319-06971-5_3#Sec1
http://dx.doi.org/10.1007/978-3-319-06971-5_3#Sec2
http://dx.doi.org/10.1007/978-3-319-06971-5_3#Sec2
http://dx.doi.org/10.1007/978-3-319-06971-5_3#Sec3
http://dx.doi.org/10.1007/978-3-319-06971-5_3#Sec3
http://dx.doi.org/10.1007/978-3-319-06971-5_3#Sec3
http://dx.doi.org/10.1007/978-3-319-06971-5_3#Sec4
http://dx.doi.org/10.1007/978-3-319-06971-5_3#Sec4
http://dx.doi.org/10.1007/978-3-319-06971-5_3#Sec5
http://dx.doi.org/10.1007/978-3-319-06971-5_3#Sec5
http://dx.doi.org/10.1007/978-3-319-06971-5_3#Sec6
http://dx.doi.org/10.1007/978-3-319-06971-5_3#Sec6
http://dx.doi.org/10.1007/978-3-319-06971-5_3#Sec7
http://dx.doi.org/10.1007/978-3-319-06971-5_3#Sec7
http://dx.doi.org/10.1007/978-3-319-06971-5_3#Sec8
http://dx.doi.org/10.1007/978-3-319-06971-5_3#Sec8
http://dx.doi.org/10.1007/978-3-319-06971-5_3#Sec9
http://dx.doi.org/10.1007/978-3-319-06971-5_3#Sec9
http://dx.doi.org/10.1007/978-3-319-06971-5_3#Sec9
http://dx.doi.org/10.1007/978-3-319-06971-5_3#Sec10
http://dx.doi.org/10.1007/978-3-319-06971-5_3#Sec10
http://dx.doi.org/10.1007/978-3-319-06971-5_3#Sec11
http://dx.doi.org/10.1007/978-3-319-06971-5_3#Sec11
http://dx.doi.org/10.1007/978-3-319-06971-5_3#Sec12
http://dx.doi.org/10.1007/978-3-319-06971-5_3#Sec12
http://dx.doi.org/10.1007/978-3-319-06971-5_3#Sec12
http://dx.doi.org/10.1007/978-3-319-06971-5_3#Sec13
http://dx.doi.org/10.1007/978-3-319-06971-5_3#Sec13
http://dx.doi.org/10.1007/978-3-319-06971-5_3#Sec14
http://dx.doi.org/10.1007/978-3-319-06971-5_3#Sec14
http://dx.doi.org/10.1007/978-3-319-06971-5_3#Sec15
http://dx.doi.org/10.1007/978-3-319-06971-5_3#Sec15
http://dx.doi.org/10.1007/978-3-319-06971-5_3#Sec16
http://dx.doi.org/10.1007/978-3-319-06971-5_3#Sec16
http://dx.doi.org/10.1007/978-3-319-06971-5_3#Sec17
http://dx.doi.org/10.1007/978-3-319-06971-5_3#Sec17
http://dx.doi.org/10.1007/978-3-319-06971-5_3#Bib1
http://dx.doi.org/10.1007/978-3-319-06971-5_4
http://dx.doi.org/10.1007/978-3-319-06971-5_4
http://dx.doi.org/10.1007/978-3-319-06971-5_4#Sec1
http://dx.doi.org/10.1007/978-3-319-06971-5_4#Sec1
http://dx.doi.org/10.1007/978-3-319-06971-5_4#Sec2
http://dx.doi.org/10.1007/978-3-319-06971-5_4#Sec2
http://dx.doi.org/10.1007/978-3-319-06971-5_4#Sec2
http://dx.doi.org/10.1007/978-3-319-06971-5_4#Sec3
http://dx.doi.org/10.1007/978-3-319-06971-5_4#Sec3
http://dx.doi.org/10.1007/978-3-319-06971-5_4#Sec4
http://dx.doi.org/10.1007/978-3-319-06971-5_4#Sec4
http://dx.doi.org/10.1007/978-3-319-06971-5_4#Sec5
http://dx.doi.org/10.1007/978-3-319-06971-5_4#Sec5
http://dx.doi.org/10.1007/978-3-319-06971-5_4#Sec6
http://dx.doi.org/10.1007/978-3-319-06971-5_4#Sec6
http://dx.doi.org/10.1007/978-3-319-06971-5_4#Sec7
http://dx.doi.org/10.1007/978-3-319-06971-5_4#Sec7
http://dx.doi.org/10.1007/978-3-319-06971-5_4#Sec8
http://dx.doi.org/10.1007/978-3-319-06971-5_4#Sec8
http://dx.doi.org/10.1007/978-3-319-06971-5_4#Sec9
http://dx.doi.org/10.1007/978-3-319-06971-5_4#Sec9
http://dx.doi.org/10.1007/978-3-319-06971-5_4#Sec9
http://dx.doi.org/10.1007/978-3-319-06971-5_4#Sec10
http://dx.doi.org/10.1007/978-3-319-06971-5_4#Sec10
http://dx.doi.org/10.1007/978-3-319-06971-5_4#Sec11
http://dx.doi.org/10.1007/978-3-319-06971-5_4#Sec11
http://dx.doi.org/10.1007/978-3-319-06971-5_4#Sec12
http://dx.doi.org/10.1007/978-3-319-06971-5_4#Sec12
http://dx.doi.org/10.1007/978-3-319-06971-5_4#Bib1

5 General Discussion and Concluding Remarks 103
5.1 General Discussion . 103
5.2 Concluding Remarks . 105
References . 106

Index . 107

Contents xvii

http://dx.doi.org/10.1007/978-3-319-06971-5_5
http://dx.doi.org/10.1007/978-3-319-06971-5_5
http://dx.doi.org/10.1007/978-3-319-06971-5_5#Sec1
http://dx.doi.org/10.1007/978-3-319-06971-5_5#Sec1
http://dx.doi.org/10.1007/978-3-319-06971-5_5#Sec2
http://dx.doi.org/10.1007/978-3-319-06971-5_5#Sec2
http://dx.doi.org/10.1007/978-3-319-06971-5_5#Bib1

Acronyms

AFP Aligned fragment pairs
BLOB Binary large object
CUDA Compute Unified Device Architecture
DBMS Database management system
GPU Graphics processing unit
IaaS Infrastructure-as-a-Service
OODB Object-oriented database
PaaS Platform-as-a-Service
PDB Protein Data Bank
RMSD Root mean square deviation
SaaS Software-as-a-Service
SIMD Single instruction, multiple data
SIMT Single instruction, multiple thread
SQL Structured Query Language
SSE Secondary structure element
SVD Singular Value Decomposition
VM Virtual machine
XML Extensible Markup Language

xix

Chapter 1
Formal Model of 3D Protein Structures
for Functional Genomics, Comparative
Bioinformatics, and Molecular Modeling

Proteins are where the action is. Arthur M. Lesk, 2010
The great promise of structural bioinformatics is predicted on
the belief that the availability of high-resolution structural
information about biological systems will allow us to precisely
reason about the function of these systems and the effects of
modifications or perturbations.

Jenny Gu, Philip E. Bourne, 2009

Abstract This chapter shows how proteins can be represented in processes per-
formed in scientific fields, such as functional genomics, comparative bioinformatics,
and molecular modeling. The chapter begins with the general definition of protein
spatial structure, which can be treated as a base for deriving other forms of rep-
resentation. The general definition is then referenced to four representation levels
of protein structure: primary, secondary, tertiary, and quaternary structure. This is
followed by short description of protein geometry. And finally, at the end of the
chapter, we will discuss energy features that can be calculated based on the general
description of protein structure. The formal model defined in the chapter will be used
in the description of algorithms presented in the following chapters of the book.

Keywords 3D protein structure · Formal model · Primary structure · Secondary
structure · Tertiary structure · Quaternary structure · Energy features · Molecular
modeling

1.1 Introduction

In the biological context, functioning of living organisms is tightly related to the
presence and activity of proteins. Proteins are macromolecules that play a key role in
all biochemical reactions in cells of living organisms. For this reason, they are said
to be molecules of life. And indeed, they are involved in many processes, including:

D. Mrozek, High-Performance Computational Solutions in Protein Bioinformatics, 1
SpringerBriefs in Computer Science, DOI: 10.1007/978-3-319-06971-5_1,
© The Author(s) 2014

2 1 Formal Model of 3D Protein Structures

reaction catalysis (enzymes), energy storage, signal transmission, maintaining cell’s
cytoskeleton, immune response, stimuli response, cellular respiration, transport of
small biomolecules, regulation of cell’s growth and division.

Analyzing their general construction, proteins are macromolecules with themole-
cular mass above 10kDa (1Da = 1.66 × 10−24 g) built up with amino acids (>100
amino acids, aa). Amino acids are linked to each other by peptide bonds forming a
kind of linear chains [5]. Proteins can be described with the use of four representa-
tion levels: primary structure, secondary structure, tertiary structure, and quaternary
structure. The last three levels define the protein conformation or protein spatial
structure. The computer analysis of protein structures is usually carried out on one
of the representation levels.

The computer analysis of protein spatial structure is very important from the
viewpoint of the identification of protein functions, recognition of protein activity
and analysis of reactions and interactions that the particular protein is involved in.
This implies the exploration of various geometrical features of protein structures.
There is no doubt that the structure of even small molecules are very complex,
proteins are built up of hundreds of amino acids, and then thousands of atoms. This
makes the computer analysis of protein structures more difficult and also influences
a high computational complexity of algorithms for the analysis.

For any investigation related to protein bioinformatics it is essential to assume
some representation of proteins as macromolecules. Methods that operate on pro-
teins in scientific fields, such as functional genomics, comparative bioinformatics,
andmolecular modeling, usually assume a kind of model of protein structure. Formal
models, in general, allow to define all concepts that are used in the area under consid-
eration.Theyguarantee that all concepts that are usedwhile designing andperforming
a process will be understood exactly as they are defined by an author of the method or
procedure. This chapter attempts to capture the common model of protein structure
which can be treated as a base model for the creation of dedicated models, derived
either by the extension or the restriction, and used for the computations carried out
in the selected area. In the following sections, we will discover a general definition
of protein spatial structure and we will refer it to four representation levels of protein
structure.

1.2 General Definition of Protein Spatial Structure

We define a 3D structure (S3D) of protein P as a pair shown in Eq. (1.1).

S3D = 〈A3D, B3D〉, (1.1)

where A3D is a set of atoms defined as follows:

A3D =
{

an : n ∈ (1, . . . , N) ∧ ∃ fE : A3D −→ E
}

(1.2)

1.2 General Definition of Protein Spatial Structure 3

Fig. 1.1 Fragment of sample protein structure: (left) atoms and bonds, (right) bonds only. Colors
and letters assigned to atoms distinguish their chemical elements. Visualized using RasMol [49]

where N is the number of atoms in a structure, fE is a function which for each
atom an assigns an element from the set of chemical elements E (e.g., N-nitrogen,
O-oxygen, C-carbon, H-hydrogen, S-sulfur).

The B3D is a set of bonds bi j between two atoms ai , a j ∈ A3D defined as follows:

B3D = {bi j : bi j = (ai , a j) = (a j , ai) ∧ i, j ∈ (1, . . . , N)}. (1.3)

Fragment of a sample protein structure is shown in Fig. 1.1.
Each atom an is described in three-dimensional space by Cartesian coordinates

x , y, z:
an = (xn, yn, zn)T where xn, yn, zn ∈ R. (1.4)

Therefore, the length of bond bi j between two atoms ai and a j can be calculated
using the Pythagorean theorem:

∩bi j∩ =
√

(xi − x j)2 + (yi − y j)2 + (zi − z j)2, (1.5)

which is equivalent to the norm calculation [8]:

∩bi j∩ = ∩ai − a j∩ =
√

(ai − a j)T (ai − a j). (1.6)

We can also state that:

an ∈ A3D =⇒ ∀n∈{1,..,N } ∃ fV a : A3D −→ N+ ∧ ∃ fV e : E −→ N+, (1.7)

where fV a is a function determining the valence of an atom and fV e is a func-
tion determining the valence of chemical element. For example, fV e(C) = 4 and
fV e(O) = 2.

4 1 Formal Model of 3D Protein Structures

1.3 A Reference to Representation Levels

Having defined such a general definition of protein spatial structure we can study
what are the relationships between this structure and four main representation levels
of protein structures, i.e., primary, secondary, tertiary, and quaternary structure. These
relationships will be described in the following sections.

1.3.1 Primary Structure

Proteins are polypeptides built up with many, usually more than one hundred amino
acids that are joined to each other by a peptide bond, and thus, forming a linear amino
acid chain. The way how one amino acid joins to another, e.g., during the translation
from the mRNA, is not accidental. Each amino acid has an N-terminus (also known
as amino-terminus) and C-terminus (also known as carboxyl-terminus). When two
amino acids join to each other, they form a peptide bond between C-terminus of
the first amino acid and N-terminus of the second amino acid. When a single amino
acid joins the forming chain during the protein synthesis, it links its N-terminus to
the free C-terminus of the last amino acid in the chain. Therefore, the amino acid
chain is created from N-terminus to C-terminus. Primary structure of protein is often
represented as the amino acid sequence of the protein (also called protein sequence,
polypeptide sequence), as it is presented in Fig. 1.2. The sequence is reported from
N-terminus to C-terminus. Each letter in the sequence corresponds to one amino
acid. Actually, the sequence is usually recorded in one-letter code, and rarely in
three-letter code.

Protein sequence is determined by the nucleotide sequence of appropriate gene in
theDNA. There are 20 standard amino acids encoded by the genetic code in the living
organisms. However, in some organisms two additional amino acids can be encoded,
i.e., selenocysteine and pyrrolysine. All amino acids differ in chemical properties
and have various atomic constructions. Proteins can have one or many amino acid
chains. The order of amino acids in the amino acid chain is unique and determines
the function of the protein.

The representation of protein structure as a sequence of amino acids fromFig.1.2a
is very simple and frequently used bymany algorithms and tools for protein compari-
son and similarity searching, such as Needleman-Wunsch [44] and Smith-Waterman
[54] algorithms, BLAST [1] and FASTA [46] family of tools. The representation
is also used by methods that predict protein structures from their sequences, like I-
TASSER [61], Rosetta@home [29], Quark [63], andmany others, e.g., [59] and [67].

Let us now reference the primary structure to the general definition of the spatial
structure defined in the previous section. We can state that protein structure S3D

consists of M amino acids P3D
m � S3D such that:

P3D
m = 〈AP

m, B P
m 〉, (1.8)

1.3 A Reference to Representation Levels 5

Fig. 1.2 Primary structures of Deoxyhemoglobin S chain A in Homo Sapiens [PDB ID: 2HBS]
[19]: a in a one-letter code describing amino acid types, b in a three-letter code describing amino
acid types. First line provides some descriptive information

where
AP

m � A3D and B P
m � B3D. (1.9)

Sample protein P can be now recorded as a sequence of peptides pm :

P =
{

pm |i = 1, 2, . . . , M ∧ ∃ fR : P −→ Π
}
, (1.10)

where M is a length of the sequence (in peptides), fR is a function which for each
peptide pm assigns a type of amino acid from the set Π containing twenty (twenty
two) standard amino acids.

Assuming that pm = P3D
m we can associate the primary structure with the spatial

structure S3D (Fig. 1.3):

S3D =
{

P3D
m |m = 1, 2, . . . , M

}
. (1.11)

Although
M⋃

m=1

P3D
m � S3D, (1.12)

in many situations related to processing of protein structures, we can assume that:

S3D =
M⋃

m=1

P3D
m . (1.13)

6 1 Formal Model of 3D Protein Structures

Fig. 1.3 Fragment of a sam-
ple protein structure showing
the relationship between the
primary structure and spatial
structure. Successive amino
acids are separated by dashed
lines

1.3.2 Secondary Structure

Secondary structure reveals specific spatial shapes in the construction of proteins.
It shows how the linear chain of amino acids is formed in spiral α-helices, wavy
β-strands, or loops. Indeed, these three shapes, α-helices, β-strands and loops, are
main categories of secondary structures. Secondary structure itself does not describe
the location of particular atoms in 3D space. It reflects local hydrogen interactions
between some atoms of amino acids that are close in the amino acid chain.

Protein structure represented by means of secondary structure elements can have
the following form:

SS =
{

ssek |k = 1, 2, . . . , K ∧ ∃ fS : SS −→ δ
}

, (1.14)

where ssek is the kth secondary structure element, K is the number of secondary
structure elements in the protein, fS is a function which for each element ssek assigns
a type of secondary structure from the set δ of possible secondary structure types.
Actually, the fS is a function that is sought by many researchers. Secondary structure
prediction methods, like GOR [17], PREDATOR [15], or PredictProtein [48], try to
model and implement the function in some way based on amino acid sequence.

In order to cover all parts of the protein structure the set δ distinguishes four
(sometimes more) types of secondary structures:

• α-helix,
• β-sheet or β-strand,
• loop, turn, or coil,
• and undetermined structure.

The first three types of secondary structures are visible in Fig. 1.7 (right) in the tertiary
structure of a sample protein.

1.3 A Reference to Representation Levels 7

Fig. 1.4 Secondary structures of Deoxyhemoglobin S chain A in Homo Sapiens [PDB ID: 2HBS].
First line provides some descriptive information

Each element ssek is characterized by two values:

ssek = [SSEk, Lk], (1.15)

where SSEk describes the type of secondary structure (asmentioned above), Lk ≤ M
is the length of the kth element ssek (measured in amino acids), M is a length of the
amino acid chain. Such defined secondary structure can be represented as it is shown
inFig. 1.4,where particular symbols stand for:H—α-helix, E—β-strand,C/L—loop,
turn or coil, U—unassigned structure.

The representation of protein secondary structures defined in Eqs. (1.14) and
(1.15) and shown in Fig. 1.4 is used in some phases of the LOCK2 [52], CASSERT
[39] and GPU-CASSERT [43] algorithms for 3D protein structure similarity search-
ing, and in the indexing technique used in [18] and PSS-SQL [41] domain query
languages.

Referencing the secondary structure to the general definition of the spatial struc-
ture we can state that a single element ssek is a substructure of the spatial structure
S3D containing usually several amino acids:

ssek = 〈AS
k , BS

k 〉, (1.16)

where
AS

k � A3D and BS
k = (BS∗

k ∪ Hk) � B3D. (1.17)

In formula (1.17) we take into account standard set of covalent bonds between
atoms in the secondary structure ssek , represented by the BS∗

k , and additional hydrogen
bonds stabilizing constructions of secondary structure elements, represented by the
set Hk .

A spatial structure of sample protein can be now recorded as a sequence of sec-
ondary structure elements ssek :

S3D =
{

ssek |k = 1, 2, . . . , K ∧ ∃ fL : AS
k −→ R

3
}

(1.18)

where K is the number of secondary structure elements in the protein, fL is a func-
tion which for each atom an of the secondary structure ssek assigns a location in
space described by Cartesian coordinates (xn, yn, zn). There are many approaches to
modeling the function fL and finding the Cartesian coordinates for atoms of the pro-
tein structure. Physical methods rely on physical forces and interactions between
atoms in a protein. Representatives of the approach include already mentioned

8 1 Formal Model of 3D Protein Structures

Fig. 1.5 Secondary structure andprimary structure ofDeoxyhemoglobin S chainA inHomo Sapiens
[PDB ID: 2HBS]. First line provides some descriptive information

I-TASSER [61], Rosetta@home [29], Quark [63], WZ [59] and NPF [67]. Com-
parative methods rely on already known structures that are deposited in macromole-
cular data repositories, such as Protein Data Bank (PDB) [4]. Representatives of the
comparative approaches are Robetta [26], Modeler [13], RaptorX [24], HHpred [56],
Swiss-Model [2] for homologymodeling, and Sparks-X [64], Raptor [62], and Phyre
[25] for fold recognition.

It is also interesting to follow the relationship between protein secondary structure
and primary structure. We can record a single element ssek as a subsequence of amino
acids:

ssek = (pl , pl+1, . . . , pm) , where 1 ≤ l ≤ m ≤ M, (1.19)

and where element p is any amino acid forming part of the secondary structure ssek ,
and M is a length of the protein (in amino acids).

It can be also noted that for any pm = P3D
m = 〈AP

m, B P
m 〉:

AP
m ⊆ AS

k and B P
m ⊆ BS

k . (1.20)

Such a relationship between secondary structure and primary structure is usually
represented as it is shown in Fig. 1.5 and can be visualized in a similar fashion to
that shown in Fig. 1.6. The representation of protein secondary structures shown in
Fig. 1.5 is used as one of the protein geometry features in algorithms for 3D protein
structure similarity searching, e.g., CTSS [9] and mentioned CASSERT [39].

1.3.3 Tertiary Structure

Tertiary structure is a higher degree of organization. Proteins achieve their tertiary
structures through the protein folding process. In this process a polypeptide chain
acquires its correct three-dimensional structure and adopts biologically active native
state [5]. Many proteins have only one amino acid chain, so that tertiary structure is
enough to describe their spatial structure. For those that are composed of more than
one chain, the quaternary structure is required.

1.3 A Reference to Representation Levels 9

Fig. 1.6 Relationship between secondary structure and primary structure of Deoxyhemoglobin S
chain A in Homo Sapiens [PDB ID: 2HBS] visualized graphically at the Protein Data Bank [4] web
site (http://www.pdb.org, accessed on March 7th, 2014)

Tertiary structure requires 3D coordinates of all atoms of the protein structure
to be determined. Therefore, we can state that if the number of polypeptide chains
H = 1 the general spatial structure S3D describes the tertiary structure ST of a
protein:

H = 1 ⇐⇒ ST = S3D, (1.21)

and:
ST = 〈AT , BT 〉. (1.22)

At this point, description of tertiary structure is the same as the description of the
general spatial structure S3D . Example of tertiary structure is presented in Fig. 1.7.

From the viewpoint of secondary structures, the tertiary structure specifies posi-
tional relationships of secondary structures [8], which is presented in Fig. 1.7 (right).
The set of atoms of the tertiary structure AT consists of atoms forming all of the
secondary structures packed into the protein structure (represented as the set AT ∗).
It also includes possible atoms from additional functional groups (represented as the
set AFG), e.g., prosthetic groups, inhibitors, solvent molecules, and ions for which
coordinates are supplied. Example of prosthetic group is shown in Fig. 1.8. Similarly,
in addition to covalent and noncovalent bonds between atoms forming amino acids
of the protein chain (represented as the set BT ∗):

BT ∗ =
M⋃

m=1

B P
m , (1.23)

http://www.pdb.org

10 1 Formal Model of 3D Protein Structures

Fig. 1.7 Tertiary structure
of sample protein Cyclin
Dependent Kinase CDK2
[PDB ID: 1B38] [7]: (left)
representation showing atoms
and bonds, (right) represen-
tation showing secondary
structures and their relative
orientation. Visualized using
RasMol [49]

Fig. 1.8 Prosthetic heme
group responsible for oxygen
binding, distinguished in the
structure of Myoglobin [PDB
ID: 1MBN] [60]

the set of bonds of the tertiary structure BT may also consist of bonds between
atoms from the functional groups (represented as the set BFG) and additional bonds
stabilizing the tertiary structure (represented as the set Bstab), e.g., disulfide bridges
(S–S) between cysteine residues (Fig. 1.9). Therefore:

AT = AT ∗ ∪ AFG ∧ BT = BT ∗ ∪ BFG ∪ Bstab. (1.24)

The representation of the 3D protein structure, having regard to formulas (1.21)–
(1.24) and earlier formulas (1.1)–(1.7), is used by many algorithms for protein struc-
ture alignment and similarity searching, includingDALI [21], LOCK2 [52], FATCAT
[65], CTSS [9], CE [53], FAST [66], and others [39]. To complete the search task,
these algorithms usually does not explore whole sets of atoms AT and bonds BT , but
use reduced sets AT ′ of chosen atoms, e.g., Cα atoms of the backbone, and distances
between the atoms (calculated using the formula (1.5) or (1.6)):

AT ′
α =

{
am |m = 1, 2, . . . , M ∧ ∀m am ∈ AP

m ∧ fV a(am) = Cα

}
, (1.25)

where M is the length of protein chain (in residues).

1.3 A Reference to Representation Levels 11

Fig. 1.9 Disulfide bridge
between two sulfur atoms
in cysteine residues in
sample protein Glutaredoxin
-1-Ribonucleotide Reductase
B1 [PDB ID: 1QFN] [3]

Some algorithms, like SSAP [58], also use the Cβ atoms in order to include an
information on the orientation of the side chains:

AT ′
β = {am |m = 1, 2, . . . , M ′ ∧ M ′ ≤ M

∧ ∀m am ∈ AP
m ∧ fV a(am) = Cβ}, (1.26)

or combinations of the two atoms:

AT ′
αβ ⊂ AT ′

α ∪ AT ′
β . (1.27)

Molecular viewers, like Chime [11], QMOL [16], Jmol [23], PMV [40], RasMol
[49], PyMOL [50], and MViewer [57], also make use of the whole set of atoms AT

and bonds BT or just subsets of them (depending of the display mode) during protein
structure visualization. For example, in the balls and sticks display mode (Fig. 1.7,
left) they use whole set of atoms and bonds, and in the backbone mode they use just
positions of the Cα atoms to display the protein backbone.

1.3.4 Quaternary Structure

Quaternary structure describes spatial structures of proteins that have more than one
polypeptide chain. Quaternary structure shows mutual location of tertiary structures
of these chains in the three-dimensional space. Therefore, we can represent a qua-
ternary structure as follows:

SQ = {ch |h = 1, 2, . . . , H

∧ ∃ fC I D : SQ −→ {A, B, C, . . . , X, Y, Z}
∧ ∃ fT : SQ −→ ST }. (1.28)

12 1 Formal Model of 3D Protein Structures

Fig. 1.10 Quaternary struc-
ture of Human Deoxyhe-
moglobin [PDB ID: 4HHB]
[14] containing four chains
and heme

where H is the number of protein chains, fCID is a function which for each chain ch

of the quaternary structure SQ assigns a chain identifier, e.g., A, B, …, Z, and fT

is a function which for each chain ch of the quaternary structure SQ assigns tertiary
structure ST .

Therefore, we can state that if the number of polypeptide chains H > 1 the general
spatial structure S3D describes the quaternary structure SQ of a protein:

H > 1 ⇐⇒ SQ = S3D. (1.29)

Such protein structures that are composed of a number of chains are called
oligomeric complexes [8]. Examples of quaternary structures are shown in Figs. 1.10
and 1.11.

If each chain ch has its tertiary structure, we can note that:

ch = 〈AT
h , BT

h 〉, (1.30)

and that:

A3D = AQ =
(

H⋃
h=1

AT
h

)
∪ AFG, (1.31)

B3D = B Q =
(

H⋃
h=1

BT
h

)
∪ BFG ∪ Bstab. (1.32)

Again, the set of atoms AQ forming quaternary structure of a protein consists
of atoms belonging directly to particular component polypeptide chains (AT

h) and
atomsof additional functional groups (AFG). The set of bonds B Q consists of covalent

1.3 A Reference to Representation Levels 13

Fig. 1.11 Quaternary struc-
ture of Insulin Hormone [PDB
ID: 1ZNJ] [55] containing six
chains and zinc atoms

bonds linking atoms of each of the polypeptide chains BT
h , bonds linking atoms of

functional groups BFG, and bonds stabilizing the quaternary structure Bstab, e.g.,
intra-chain disulfide bridges.

1.4 Relative Coordinates of Protein Structures

Some of the computational processes prefer to use relative coordinates, rather than
absolute coordinates of particular atoms of protein structures. For example, in protein
structure prediction by energy minimization many different relative coordinates are
used while performing a computational process. These relative coordinates can be
derived based on the protein structure S3D , for which absolute coordinates are being
known.

We have already had the opportunity to see one of the relative coordinates when
we talked about a set of bonds, the B3D component of the protein structure S3D .
These were bond lengths. Bond lengths (Fig. 1.12) were studied intensively during
past years and after making some statistics we know that lengths of bonds between
particular types of atoms in protein backbone are similar. Bond length for N − Cα is
1.47Å(1Å=10−10 m), for Cα −C is 1.53Å, and for C − N is 1.32Å [51]. However,
investigation of differences and similarities between bond lengths is still interesting.
Some computational procedures require bond lengths to be calculated. For example,
while comparing two protein structures selected types of bonds, like Cα −C ′, can be
compared for each pair of compared amino acids. Bond lengths are also used while
calculating bond stretching component energy of total potential energy of protein

14 1 Formal Model of 3D Protein Structures

Fig. 1.12 Graphical inter-
pretation of bond length (top
left), interatomic distance
(top right), and bond angle
(bottom)

structure (Sect. 1.5). Bond lengths can be calculated according to formulas (1.5) and
(1.6) shown earlier in this chapter.

A kind of generalization of bond lengths can be interatomic distances. Inter-
atomic distances describe the distance between two atoms (Fig. 1.12). However,
these atoms do not have to be connected by any bond. Interatomic distances can
be calculated according to the same formulas (1.5) and (1.6) as bond lengths. And
they are very useful when we want to study interactions between particular atoms in
protein structure or between atoms of two molecules, e.g., two substrates of cellular
reaction. They are also frequently calculated in protein structure comparison. For
example, popular DALI algorithm [21] uses distances between Cα atoms in order
to calculate the so-called distance matrices that represent protein structures in the
comparison process.

Another relative feature, which is studied by researchers in the field of chemistry
and molecular biology, is bond angles. Bond angles or valence angles are, next to
the bond lengths, the principal relative features that control the shape of 3D protein
structures. In order to calculate a bond angle, we have to know the positions of three
atoms (Fig. 1.12).

The angle between two bonds bi j and bkj linking these three atoms can be calcu-
lated from a dot product of their respective vectors (Fig. 1.12, bottom right):

cos θ j = bi j · bkj

∩bi j∩∩bkj∩ (1.33)

A very important information for the analysis of 3D protein structures bring also
torsion angles. Torsion angles are dihedral angles that describe the rotation of protein
polypeptide backbone around particular bonds. There are three types of torsion angles
that are calculated for protein structures, i.e., Phi (φ), Psi (ψ), and Omega (ω). The
Phi torsion angle describes the rotation around the N –Cα bond, the Psi torsion angle
describes the rotation around the Cα –C ′ bond, and Omega torsion angle describes
the rotation around the C ′ – N bond (see Fig. 1.13).

Looking at Fig. 1.13 we can notice that the peptide bond formed by C, O, N,
H atoms is planar which restricts the rotation around the C ′ – N bond. The Omega

1.4 Relative Coordinates of Protein Structures 15

Fig. 1.13 Overview of
protein construction. Visi-
ble atoms forming the main
chain of the polypeptide. Side
chains are marked as R0, R1,
R2. Reproduced from [68]

angle is then essentially fixed to 180◦ due to the partial double-bond character of the
peptide bond. Therefore, main chain rotations are restricted to the Phi and Psi angles,
and these angles provide the flexibility required for folding the protein backbone.
This information is utilized in algorithms for protein structure prediction, e.g., WZ
[59] and NPF [67], that model protein structure by random choosing and rotating the
Phi and Psi angles.

Torsion angles can be calculated using the dot product of the normal vectors of
the two planes defined by three successive atoms ai , a j , ak and a j , ak, al as shown
in Fig. 1.14.

These normals can be calculated from the cross products of vectors:

n1 = bi j × bkj and n2 = b jk × blk, (1.34)

creating particular planes (vectors defined by three successive atoms ai , a j , ak and
a j , ak, al) and then, used to calculate a dihedral angle from the dot product n1 · n2:

cosω = n1 · n2

∩n1∩∩n2∩ , (1.35)

where ω is a calculated torsion angle (Phi, Psi, Omega), depending on which succes-
sive atoms of the backbone are inserted in place of ai , a j , ak, al . For the Phi torsion
angle these should be atoms C ′

i−1 − Ni − Cαi − C ′
i , for the Psi these should be

Ni − Cαi − C ′
i − Ni+1, and for Omega these should be Cαi − C ′

i − Ni+1 − Cαi+1.

16 1 Formal Model of 3D Protein Structures

Fig. 1.14 Calculation of the dihedral angle between two planes based on normal vectors (left).
Calculation of the normal vector as a cross product of vectors defining a plane (right). Redrawn
based on [8]

Fig. 1.15 Ramachandran
plot showing distribution of
torsion angles Phi and Psi for
a sample protein structure.
Generated by PROCHECK
program [27]

Theoretically, the Phi and Psi angles can take values ranging from −180◦ to
180◦. However, in protein molecules rotations of Phi and Psi torsion angles are
restricted to certain values due to sterical collisions betweenmain chain and side chain
atoms. Moreover, protein regions that form a particular secondary structure, impose
additional constraints on the values of these torsion angles. This was noticed by
Ramachandran and colleagues in [47]. The chart showing real-values of the Phi and
Psi angles and possible combinations of these values for various types of secondary
structures is known today as Ramachandran plot (Fig. 1.15).

1.4 Relative Coordinates of Protein Structures 17

On the Ramachandran plot, values of the Phi angle are plotted on the x-axis and
values of the Psi angle are plotted on the y-axis. For many years the Ramachan-
dran plot has been widely used by scientists in order to validate torsion angles and
asses the quality and correctness of protein structures that were obtained by means
of experimental methods (X-ray crystallography and NMR spectroscopy) or by ho-
mology modeling [13]. For example, Ramachandran plots are created by the popular
PROCHECK, a program that provides a detailed check on the stereochemistry of a
protein structures [27].

1.5 Energy Properties of Protein Structures

Protein structure S3D can be also analyzed in terms of forces that act on an each
atom within the molecule. In such an approach, atoms are considered as masses that
interact with each other. Various forces between interacting atoms cause changes in
the potential energy of the molecular system S3D . The molecular system can be then
modeled bymolecular mechanics, where the potential energy of the set of atoms A3D

is described by empirical force fields providing a functional form for the potential
energy and containing a set of parameters for particular atoms in the set A3D . This
kind of description of the molecular system S3D usually takes place while studying
molecular dynamics of proteins or modeling the protein structure by minimizing
the conformational energy. Scientists assume here that when a protein stabilizes
the positions of its atoms, the energy of such a molecular system is minimized.
Consequently, any changes in the protein conformation causing deviations of bond
lengths, angles, and intermolecular distances from reference values comewith energy
sanctions [28].

There are various types of force fields that were derived experimentally or by
using quantum mechanical calculations. The most popular ones include: AMBER
(Assisted Model Building and Energy Refinement) [12], CHARMM (Chemistry at
HARvard Molecular Mechanics) [6], and GROMOS (GROningen MOlecular Sim-
ulation package) [45], but there are also many others. These force fields provide
different functional forms that model the potential energy of the molecular system
S3D . However, they usually contain the following common energy terms:

ET (S3D) = EBS + EAB + ETA + EVDW + ECC, (1.36)

where ET (S3D) denotes the total potential energy, and particular component energies
contributing to the total potential ET are defined as follows:

• bond stretching (EBS)

EBS(S3D) =
bonds∑
j=1

k j

2

(
d j − d0

j

)2
, (1.37)

18 1 Formal Model of 3D Protein Structures

where k j is a bond stretching force constant, d j is a distance between two atoms
(real bond length), d0

j is an optimal bond length;
• angle bending (EAB)

EAB(S3D) =
angles∑

j=1

k j

2

(
θ j − θ0j

)2
, (1.38)

where k j is a bending force constant, θ j is an actual value of the valence angle, θ0j
is an optimal valence angle;

• torsional angle (ETA)

ETA(S3D) =
torsions∑

j=1

Vj

2
(1 + cos(nω − γ)), (1.39)

where Vj denotes the height of the torsional barrier, n is a periodicity, ω is the
torsion angle, γ is a phase factor;

• van der Waals (EVDW)

EVDW(S3D) =
N∑

k=1

N∑
j=k+1

(
4εk j

[(
σk j

rk j

)12

−
(

σk j

rk j

)6
])

, (1.40)

where rk j denotes the distance between atoms k and j , σk j is a collision diameter,
εk j is a well depth, and N is the number of atoms in the structure S3D;

• electrostatic (ECC), also known as Coulomb or charge-charge

ECC (S3D) =
N∑

k=1

N∑
j=k+1

qkq j

4πε0rk j
, (1.41)

where qk , q j are atomic charges, rk j denotes the distance between atoms k and j ,
ε0 is a dielectric constant, and N is the number of atoms in the structure S3D .

The first three terms are called as bonded interactions, since they occur between
atoms that are covalently bonded. Their graphical interpretation is shown in Fig. 1.16.
The last two terms are referred as nonbonded interactions, since they occur between
nonbonded atoms.Graphical interpretations of these two terms are shown inFig. 1.17.

There can be more energy terms in the function describing the total potential
energy. Further description of these and other component energies is out of the scope
of the book. However, readers who are interested in details of these potentials are
encouraged to read the book of the Leach [28].

As can be also seen, calculations of the potential energy require both components
A3D and B3D of the defined model of the protein structure S3D , as well as some of
the relative coordinates that can be derived from the structure. It is also worth noting

1.5 Energy Properties of Protein Structures 19

Fig. 1.16 Schematic interpretation of bonded interactions: (top left) bond stretching, (top right)
angle bending, and (bottom) torsional angle

Fig. 1.17 Schematic interpretation of nonbonded interactions: (left) electrostatic and (right) van
der Waals

methods that make use of energy properties of protein structures for investigating
protein sequence-structure-function relationships, protein conformational modifica-
tions [33], and protein activity in cellular reactions [10, 22, 34] through energy
properties. Representatives of the methods are ePros [20], and successive versions
of the EAST method [30–32], including FN-EAST [37] and FS-EAST [38, 42], that
use the EDB database [36] and EDML data exchange format [35].

1.6 Summary

The model of protein structure S3D shown in this chapter has a general purpose
and can be used while describing protein molecules in many different processes
related to functional genomics, comparative biology, and molecular modeling. In
fact, protein structures can be described bymany various features and those presented
in this chapter do not cover all of them. Which features are used, depend on the
particular process. However, most of them, if not all, can be derived from the general
model S3D .

The general model of protein structure shown in this chapter is especially use-
ful in any process related to protein modeling, drug design, or protein structure

20 1 Formal Model of 3D Protein Structures

comparison. In these processes acting at the level of individual atoms and inspection
of their positions is particularly important. Some of the methods and particular rep-
resentations of protein structures will be shown in the following chapters.

References

1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search
tool. J. Mol. Biol. 215, 403–410 (1990)

2. Arnold, K., Bordoli, L., Kopp, J., Schwede, T.: The SWISS-MODEL workspace: a web-based
environment for protein structure homology modelling. Bioinformatics 22(2), 195–201 (2009)

3. Berardi, M., Bushweller, J.: Binding specificity and mechanistic insight into glutaredoxin-
catalyzed protein disulfide reduction. J. Mol. Biol. 292, 151–161 (1999)

4. Berman, H., et al.: The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000)
5. Branden, C., Tooze, J.: Introduction to Protein Structure, 2nd edn. Garland Science, New York

(1999)
6. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., Karplus, M.:

CHARMM: a program for macromolecular energy, minimization, and dynamics calculations.
J. Comp. Chem. 4(2), 187–217 (1983)

7. Brown, N., Noble, M., Lawrie, A., Morris, M., et al.: Effects of phosphorylation of threonine
160 on cyclin-dependent kinase 2 structure and activity. J. Biol. Chem. 274, 8746–8756 (1999)

8. Burkowski. F.: Structural Bioinformatics: An Algorithmic Approach, 1st edn. Chapman and
Hall/CRC, Boca Raton (2008)

9. Can, T., Wang, Y.: CTSS: a robust and efficient method for protein structure alignment based
on local geometrical and biological features. In: Proceedings of the 2003 IEEE Bioinformatics
Conference (CSB 2003), pp. 169–179 (2003)

10. Chen, P.Y., Lin, K.C., Lin, J.P., et al.: Phenethyl isothiocyanate (PEITC) inhibits the growth of
human oral squamous carcinoma HSC-3 cells through G0/G1 phase arrest and mitochondria-
mediated apoptotic cell death. Evidence-Based Complementary and AlternativeMedicine, vol.
2012. Article ID 718320, pp. 1–12 (2012)

11. Chime and Jmol Homepage: Molecular Visualization Resources. http://www.umass.edu/
microbio/chime/

12. Cornell,W.D.,Cieplak, P., Bayly,C.I.,Gould, I.R.,Merz,K.M. Jr., Ferguson,D.M., Spellmeyer,
D.C., Fox, T., Caldwell, J.W., Kollman, P.A.: A second generation force field for the simulation
of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995)

13. Eswar, N., Marti-Renom,M.A.,Webb, B., Madhusudhan, M.S., Eramian, D., Shen,M., Pieper,
U., Sali, A.: Comparative Protein Structure Modeling with MODELLER. Current Protocols in
Bioinformatics, Supplement 15, pp. 5.6.1–5.6.30. John Wiley & Sons Inc, New York (2006)

14. Fermi, G., Perutz, M.F., Shaanan, B., Fourme, R.: The crystal structure of human deoxy-
haemoglobin at 1.74 A resolution. J. Mol. Biol. 175, 159–174 (1984)

15. Frishman, D., Argos, P.: 75% accuracy in protein secondary structure prediction. Proteins 27,
329–335 (1997)

16. Gans, J., Shalloway, D.: Qmol: a program for molecular visualization on windows-based PCs.
J. Mol. Graph Model 19(6), 557–559 (2001)

17. Garnier, J., Gibrat, J.F., Robson, B.: GOR method for predicting protein secondary structure
from amino acid sequence. Methods Enzymol. 266, 540–553 (1996)

18. Hammel, L., Patel, J.M.: Searching on the secondary structure of protein sequences. In: Pro-
ceedings of the 28th International Conference on Very Large Data Bases. Hong Kong, China,
pp. 634–645 (2002)

19. Harrington, D., Adachi, K., Royer Jr, W.: The high resolution crystal structure of deoxyhe-
moglobin S. J. Mol. Biol. 272, 398–407 (1997)

http://www.umass.edu/microbio/chime/
http://www.umass.edu/microbio/chime/

References 21

20. Heinke, F., Schildbach, S., Stockmann, D., Labudde, D.: eProSa database and toolbox for in-
vestigating protein sequence-structure-function relationships through energy profiles. Nucleic
Acids Res. 41(D1), D320–D326 (2013)

21. Holm, L., Kaariainen, S., Rosenstrom, P., Schenkel, A.: Searching protein structure databases
with DaliLite v. 3. Bioinformatics 24, 2780–2781 (2008)

22. Hong, H.J., Chen, P.Y., Shih, T.C., Ou, C.Y., Jhuo, M.D., Huang, Y.Y., Cheng, C.H., Wu, Y.C.,
Chung, J.G.: Computational pharmaceutical analysis of anti-Alzheimer’s Chinese medicine
Coptidis Rhizoma alkaloids. Mol. Med. Rep. 5(1), 142–147 (2012)

23. Jmol Homepage: Jmol: an Open-Source Java Viewer for Chemical Structures in 3D. http://
www.jmol.org

24. Källberg, M., Wang, H., Wang, S., Peng, J., Wang, Z., Lu, H., Xu, J.: Template-based protein
structure modeling using the RaptorX web server. Nat. Protoc. 7, 1511–1522 (2012)

25. Kelley, L.A., Sternberg, M.J.E.: Protein structure prediction on the web: a case study using the
Phyre server. Nat. Protoc. 4(3):363–371 (2009)

26. Kim, D.E., Chivian, D., Baker, D.: Protein structure prediction and analysis using the Robetta
server. Nucleic Acids Res. 32(Suppl 2), W526–W531 (2004)

27. Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M.: PROCHECK: a program to
check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283–291 (1993)

28. Leach, A.: Molecular Modelling: Principles and Applications, 2nd edn. Pearson Education
EMA, London (2001)

29. Leaver-Fay,A., Tyka,M., Lewis, S.M., Lange,O.F., Thompson, J., Jacak,R., et al.: ROSETTA3:
an object-oriented software suite for the simulation and design of macromolecules. Methods
Enzymol. 487, 545–574 (2011)

30. Małysiak, B., Momot, A., Kozielski, S., Mrozek, D.: On using energy signatures in protein
structure similarity searching. In: Rutkowski, L., et al. (eds.) AISC 2008, Lecture Notes Com-
puter Science, vol. 5097, pp. 939–950. Springer, Heidelberg (2008)

31. Mrozek,D.,Małysiak,B.,Kozielski, S.:Anoptimal alignment of proteins energy characteristics
with crisp and fuzzy similarity awards. In: Proceedings of the IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE), pp. 1508–1513 (2007)

32. Mrozek, D., Małysiak, B., Kozielski, S.: EAST: energy alignment search tool. In: Wang, L.,
et al. (eds.): Proceedings of the 3rd IEEE International Conference on Fuzzy Systems and
Knowledge Discovery. Xi’an, China, Lecture Notes Computer Science, vol. 4223, pp. 696–
705. Springer, Berlin (2006)

33. Mrozek, D., Małysiak, B., Kozielski, S.: Energy profiles in detection of protein structure modi-
fications. In: Proceedings of the IEEE International Conference on Computing and Informatics,
Kuala Lumpur, pp. 1–6 (2006)

34. Mrozek, D., Małysiak, B., Kozielski, S.: Energy properties of protein structures in the analysis
of the human RAB5A cellular activity. Adv. Intell. Soft Comput. 59, 121–131 (2009)

35. Mrozek, D., Małysiak-Mrozek, B., Kozielski, S., Górczynska-Kosiorz, S.: The EDML format
to exchange energy profiles of protein molecular structures. Lecture Notes Computer Science,
vol. 5754, Springer, pp. 146–157 (2009)

36. Mrozek, D., Małysiak-Mrozek, B., Kozielski, S., Świerniak, A.: The Energy Distribution Data
Bank: collecting energy features of protein molecular structures. In Proceedings of the 9th
IEEE International Conference on Bioinformatics and Bioengineering, IEEE, pp. 1–6 (2009)

37. Mrozek,D.,Małysiak-Mrozek, B., Kozielski, S.: Alignment of protein structure energy patterns
represented as sequences of fuzzy numbers. In: Fuzzy Information Processing Society, 2009.
NAFIPS 2009. Annual Meeting of the North American Fuzzy Information Processing Society,
pp. 1–6 (2009)

38. Mrozek, D., Małysiak-Mrozek, B.: An improved method for protein similarity searching by
alignment of fuzzy energy signatures. Int. J. Comput. Intell. Syst. 4(1):75–88 (2011)

39. Mrozek, D., Małysiak-Mrozek, B.: CASSERT: a two-phase alignment algorithm for matching
3D structures of proteins. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2013, CCIS, vol. 370,
pp. 334–343 (2013)

http://www.jmol.org
http://www.jmol.org

22 1 Formal Model of 3D Protein Structures

40. Mrozek,D.,Mastej, A.,Małysiak, B.: Proteinmolecular viewer for visualizing structures stored
in the PDBML format. In: Pietka, E., Kawa, J. (eds.) Information Technologies in Biomedicine,
AISC, vol. 47, pp. 377–386. Springer, Berlin (2008)

41. Mrozek, D., Wieczorek, D., Małysiak-Mrozek, B., Kozielski, S.: PSS-SQL: protein secondary
structure–structured query language. In: Proceedings of 32th Annual International Confer-
ence of the IEEE Engineering in Medicine and Biology Society, EMBS 2010, Buenos Aires,
Argentina, pp. 1073–1076 (2010)

42. Mrozek, D., Małysiak-Mrozek, B., Kozielski, S.: Protein comparison by the alignment of fuzzy
energy signatures. RSKT 2009. Lect. Notes Comput. Sci. 5589, 289–296 (2009)

43. Mrozek, D., Brożek,M.,Małysiak-Mrozek, B.: Parallel implementation of 3D protein structure
similarity searches using a GPU and the CUDA. J. Mol. Model 20, 2067 (2014)

44. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in
the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–453 (1970)

45. Oostenbrink, C., Villa, A., Mark, A.E., van Gunsteren, W.: A biomolecular force field based
on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5
and 53A6. J. Comp. Chem. 25, 1656–1676 (2004)

46. Pearson, W.R.: Flexible sequence similarity searching with the FASTA3 program package.
Methods Mol. Biol. 132, 185–219 (2000)

47. Ramachandran,G.N., Ramakrishnan,C., Sasisekaran,V.: Stereochemistry of polypeptide chain
configurations. J. Mol. Biol. 7, 95–99 (1963)

48. Rost, B., Liu, J.: The predict protein server. Nucleic Acids Res. 31(13), 3300–3304 (2003)
49. Sayle, R.: RasMol, molecular graphics visualization tool. Biomolecular Structures Group,

GlaxoWelcome Research &Development, Stevenage, Hartfordshire, 5/02/2013 (1998). http://
www.umass.edu/microbio/rasmol/

50. Schrödinger, L.L.C.: The PyMOL molecular graphics system, version 1.3r1 (2010). http://
www.pymol.org

51. Schulz, G.E., Schirmer, R.H.: Principles of Protein Structure. Springer, New York (1979)
52. Shapiro, J., Brutlag, D.: FoldMiner and LOCK2: protein structure comparison and motif dis-

covery on the web. Nucleic Acids Res. 32, 536–541 (2004)
53. Shindyalov, I., Bourne, P.: Protein structure alignment by incremental combinatorial extension

(CE) of the optimal path. Protein Eng. 11(9), 739–747 (1998)
54. Smith, T., Waterman,M.: Identification of commonmolecular subsequences. J. Mol. Biol. 147,

195–197 (1981)
55. Smith, G.D., Dodson, G.G.: The structure of a rhombohedral R6 insulin hexamer that binds

phenol. Biopolymers 32(4), 441–445 (1992)
56. Söding, J.: Protein homology detection by HMM-HMM comparison. Bioinformatics 21, 951–

960 (2005)
57. Stanek, D., Mrozek, D., Małysiak-Mrozek, B.: MViewer: visualization of protein molecular

structures stored in the PDB, mmCIF and PDBML data formats. In: Kwiecień, A., Gaj, P.,
Stera, P. (eds.) CN 2013, CCIS vol. 370, pp. 323–333 (2013)

58. Taylor, W.R., Orengo, C.A.: A local alignment method for protein structure motifs. J. Mol.
Biol. 233, 488–497 (1993)

59. Warecki, S., Znamirowski, L.: Random simulation of the nanostructures conformations. In:
Proceedings of International Conference on Computing, Communication and Control Tech-
nology, vol. 1, The International Institute of Informatics and Systemics, Austin, Texas, pp.
388–393 (2004)

60. Watson, H.: The stereochemistry of the protein myoglobin. Prog. Stereochem. 24, 299 (1969)
61. Wu, S., Skolnick, J., Zhang, Y.: Ab initio modeling of small proteins by iterative TASSER

simulations. BMC Biol. 5, 17 (2007)
62. Xu, J., Li, M., Kim, D., Xu, Y.: RAPTOR: optimal protein threading by linear programming,

the inaugural issue. J. Bioinform. Comput. Biol. 1(1), 95–117 (2003)
63. Xu, D., Zhang, Y.: Ab initio protein structure assembly using continuous structure fragments

and optimized knowledge-based force field. Proteins 80(7), 1715–1735 (2012)

http://www.umass.edu/microbio/rasmol/
http://www.umass.edu/microbio/rasmol/
http://www.pymol.org
http://www.pymol.org

References 23

64. Yang, Y., Faraggi, E., Zhao, H., Zhou, Y.: Improving protein fold recognition and
template-based modeling by employing probabilistic-based matching between predicted one-
dimensional structural properties of the query and corresponding native properties of templates.
Bioinformatics 27, 2076–2082 (2011)

65. Ye, Y., Godzik, A.: Flexible structure alignment by chaining aligned fragment pairs allowing
twists. Bioinformatics 19(2), 246–255 (2003)

66. Zhu, J., Weng, Z.: FAST: a novel protein structure alignment algorithm. Proteins 58, 618–627
(2005)

67. Znamirowski, L.: Non-gradient, sequential algorithm for simulation of nascent polypeptide
folding. Computational Science ICCS 2005. Lecture Notes in Computer Science vol. 3514, pp.
766–774 (2005)

68. Znamirowski, L.: Switching. VLSI Structures, Reprogrammable FPAA Structures, Nanostruc-
tures. Studia Informatica, vol. 25, no. 4A (60), Gliwice, pp. 1–236 (2004)

Chapter 2
Multithreaded PSS-SQL for Searching
Databases of Secondary Structures

...; life was no longer considered to be a result of mysterious and
vague phenomena acting on organisms, but instead the
consequence of numerous chemical processes made possible
thanks to proteins.

Amit Kessel, Nir Ben-Tal, 2010 [13]

Abstract Protein secondary structure (PSS), as an organizational level, provides
important information regarding protein construction and regular spatial shapes, in-
cluding alpha-helices, beta-strands, and loops, which protein amino acid chain can
adopt in some of its regions. The relevance of this information and the scope of its
practical applications cause the requirement for its effective storage and processing.
In this chapter, we will see how PSSs can be stored in the relational database and
processed with the use of the protein secondary structure-structured query language
(PSS-SQL). The PSS-SQL is an extension to the SQL language. It allows formula-
tion of queries against a relational database in order to find proteins having secondary
structures similar to the structural pattern specified by a user. In this chapter, we will
see how this process can be accelerated by parallel implementation of the alignment
using multiple threads working on multiple-core CPUs.

Keywords Proteins · Secondary structure · Query language · SQL · Relational
database · Multithreading · Parallel computing · Alignment

2.1 Introduction

Secondary structures are a kind of intermediate organizational level of protein struc-
tures, a level between the simple amino acid sequence and complex 3D structure.
The analysis of protein structures on the basis of the secondary structures is very
supportive for many processes that are important from the viewpoint of biomedicine

D. Mrozek, High-Performance Computational Solutions in Protein Bioinformatics, 25
SpringerBriefs in Computer Science, DOI: 10.1007/978-3-319-06971-5_2,
© The Author(s) 2014

26 2 Multithreaded PSS-SQL for Searching Databases of Secondary Structures

and pharmaceutical industry, e.g., drug design. Algorithms comparing protein 3D
structures and looking for structural similarities quite oftenmake use of the secondary
structure representation at the beginning as one of the features distinguishing one
protein from the other. Secondary structures are taken into account in algorithms,
such as VAST [8], LOCK2 [20], CTSS [5], CASSERT [16]. Also in protein 3D
structure prediction by comparative modeling [12, 28], particular regions of protein
structures aremodeled through the adoption of particular secondary structure types of
proteins that structure is already determined and deposited in a database. Secondary
structure organizational level also shows what types of secondary structure a protein
molecule is composed of, what is their arrangement—whether they are segregated or
alternating each other. Based on the information proteins are classified by systems,
such as CATH [19] and SCOP [18]. All these examples show how important the
description by means of secondary structures is.

For scientists studying structures and functions of proteins, it is very important to
collect data describing protein construction in one place and have the ability to search
particular structures that satisfy given searching criteria. Consequently, this needs
an appropriate representation of protein structures allowing for effective storage
and searching. The problem is particularly important in the face of dynamically
growing amount of biological and biomedical data in databases, such as PDB [4] or
Swiss-Prot [3].

At the current stage of development of IT technologies, awell-established position
in terms of collecting andmanaging various types of data reached relational databases
[6]. Relational databases collect data in tables (describing part of reality) where
data are arranged in columns and rows. Modern relational databases also provide
a declarative query language—SQL that allows retrieving and processing collected
data. The SQL language gained a great power in processing regular data hiding details
of the processing under a quite simple SELECT statement. However, processing
biological data, such as protein secondary structures (PSSs), by means of relational
databases are hindered by several factors:

• Data describing protein structures have to be managed by database management
systems (DBMSs), which work excellent in commercial uses, but they are not
dedicated for storing and processing biological data. They do not provide the
native support for processing biological data with the use of the SQL language,
which is a fundamental, declarative way of data manipulation in most modern
relational database systems.

• Processing of biological data must be performed by external tools and software
applications, forming an additional layer in the IT system architecture, which is a
disadvantage.

• Currently, results of data processing are returned in different formats, like: table-
form datasets, TXT, HTML, or XML files, and users must adopt them in their
software applications.

• Secondary processing of the data is difficult and requires additional external tools.

In other words, modern relational databases require some enhancements in order
to deal with the data on secondary structures of proteins. The possibility of collecting

2.1 Introduction 27

Fig. 2.1 Exploration of protein secondary structures in relational databases using PSS-SQL
language. Secondary structure description of protein molecules is stored in relational database. The
databasemanagement system (DBMS) has the PSS-SQL extension that interprets queries submitted
by users. Users can connect to the database from various tools, desktop software applications, and
Web applications. They obtain results of their queries in a table-like format or as an XML document

protein structural data in appropriate manner and processing the data by submitting
simple queries to a database simplifies a work of many researchers working in the
area of protein bioinformatics. Actually, the problem of storing biological data de-
scribing biopolymer structures of proteins and DNA/RNAmolecules and possessing
appropriate query language allowing processing the data has been noticed in the last
decade and reported in several papers. There are only a few initiatives in the world
reporting this kind of solutions.

For example, theODMBLAST [23] is a successful implementation of theBLAST
family of methods in the commercial Oracle database management system. ODM
BLAST extends the SQL language by providing appropriate functions for local align-
ment and similarity searching ofDNA/RNAand protein amino acid sequences. ODM
BLAST works fast, but in terms of protein molecules it is limited only to the primary
structure. In [9], authors describe their extension to the SQL language, which allows
searching on the secondary structures of protein sequences. The extension was devel-
oped in Periscope (dedicated engine) and in Oracle (commercial database system).
In the solution, secondary structures are represented by segments of different types
of secondary structure elements (SSEs), e.g., hhhllleee. In [24], authors show the
Periscope/SQ extension of the Periscope system. Periscope/SQ is a declarative tool
for querying primary and secondary structures. To this purpose authors introduced
new language PiQL, new data types, and algebraic operators according to the de-
fined query algebra PiOA. The PiQL language has many possibilities. In this paper
[25], the authors present their extensions to the object-oriented database (OODB)
by adding the Protein-QL query language and the Protein-OODB middle layer for
requests submitted to the OODB. Protein-QL allows to formulate simple queries that
operate on the primary, secondary, and tertiary level.

Finally in 2010, me and a group of researchers from my university (Silesian
University of Technology in Gliwice, Poland) developed the PSS-SQL [15, 17, 26,
27], which is an extension to the Transact-SQL language and Microsoft SQL Server
DBMS allowing for searching protein similarities on the secondary structure level
(Fig. 2.1).

28 2 Multithreaded PSS-SQL for Searching Databases of Secondary Structures

I had the opportunity to be the manager and supervisor of the project, and I have
never stopped thinking on its improvement in the following years. New versions of
the PSS-SQL consists of many improvements leading to the significant growth of
the efficiency of PSS-SQL queries, including:

• parallel and multithreaded execution of the alignment procedure used in the
searching process,

• reduction of the computational complexity of the alignment algorithm by using
gap penalty matrices, and

• indexing of sequences of SSEs.

The PSS-SQL language containing these improvements will be described in this
chapter. In the chapter, wewill also see results of performance tests for sample queries
in PSS-SQL language and how to return query results as table-like result sets and as
XML documents.

2.2 Storing and Processing Secondary Structures in a Relational
Database

Searching for protein similarities on secondary structures by formulating queries
in PSS-SQL requires that data describing secondary structures should be stored
in a database in an appropriate format. The format should guarantee an efficient
processing of the data. In PSS-SQL the search process is carried out in two phases, by:

1. Multiple scanning of a dedicated Segment Index for secondary structures.
2. Alignment of found segments in order to return k-best solutions.

All these steps, including data preparation, creating and scanning the Segment
Index, and alignment will be discussed in the following sections.

2.2.1 Data Preparation and Storing

The PSS-SQLuses a specific representation of PSSswhile storing them in a database.
Let us assume,we have a protein P described by the amino acid sequence (primary

structure):
P = {pi |i = 1, 2, . . . , n ∧ pi ∈ Π ∧ n ∈ N}, (2.1)

where n is the length of protein amino acid chain, i.e., the number of amino acids,
and Π is a set of 20 common types of amino acids.

Secondary structure of protein P can be then described as a sequence of SSEs
related to amino acids in the protein chain:

S = {si |i = 1, 2, . . . , n ∧ si ∈ Σ ∧ n ∈ N}, (2.2)

2.2 Storing and Processing Secondary Structures in a Relational Database 29

Fig. 2.2 Sample amino acid sequence of Zinc transport system ATP-binding protein adcC in the
Streptococcus pneumoniae with the corresponding sequence of secondary structure elements

Fig. 2.3 Sample relational table storing sequences of secondary structure elements (SSEs) (sec-
ondary field), amino acid sequences (primary field), and additional information of proteins from
the Swiss-Prot database. The table (called ProteinTbl) will be used in sample queries presented in
next sections. Secondary structures were predicted from amino acid sequences using the Predator
program [7]

where each element si corresponds to a single element pi , andΣ is a set of secondary
structure types. The set Σ may be defined in various ways. A widely accepted defin-
ition of the set provides DSSP [10, 11]. The DSSP code distinguishes the following
secondary structure types:

• H = alpha helix,
• B = residue in isolated beta-bridge,
• E = extended strand, participates in beta ladder,
• G = 3-helix (3/10 helix),
• I = 5 helix (pi helix),
• T = hydrogen bonded turn, and
• S = bend.

In practice, the set is often reduced to the three general types [7]:

• H = alpha helix,
• E = beta strand (or beta sheet), and
• C = loop, turn or coil.

An example of such a representation of protein structure is shown in Fig. 2.2, where
we can see primary and secondary structures of a sample protein recorded as se-
quences. In such a way both sequences can be effectively stored in a relational
database, as it is shown in Fig. 2.3.

30 2 Multithreaded PSS-SQL for Searching Databases of Secondary Structures

Fig. 2.4 Part of the segment
table

2.2.2 Indexing of Secondary Structures

At the level of DBMS, the PSS-SQL uses additional data structures and indexing in
order to accelerate the similarity searching. A dedicated segment table is created for
the table field storing sequences of secondary structures elements. The segment table
consists of secondary structures and their lengths extracted from the sequences of
SSEs, together with locations of the particular secondary structure in the molecule
(identified by the residue number, Fig. 2.4). Then, additional Segment Index is created
for the segment table. The Segment Index is a B-Tree clustered index holding on the
leaf level data pages from the additional segment table. The idea of using the segment
table and segment index is adopted from the work [9]. The Segment Index supports
preliminary filtering of protein structures that are not similar to the query pattern.
During the filtering, the PSS-SQL extension extracts the most characteristic features
of the query pattern and, on the basis of the information in the index, eliminates
proteins that do not meet the search criteria. Afterward, proteins that pass the filtering
process are aligned to the query pattern.

If we take a closer look at the segment table, we will see that it stores secondary
structures in the form that has been described in Sect. 1.3.2. During the scanning
of the Segment Index the search engine of the PSS-SQL tries to match segments
distinguished in the given query pattern to segments of the index.

2.2.3 Alignment Algorithm

The alignment implemented in the PSS-SQL is inspired by the Smith–Waterman
method [21]. The method allows to align two biopolymer sequences, originally
DNA/RNA sequences or amino acid sequences of proteins. When scanning a data-
base the alignment is performed for each pair of sequences—query sequence given
by a user and a successive, qualified sequence from a database. In PSS-SQL, af-
ter performing multiple scanning of the Segment Index (MSSI), a database protein
structure SD of the length d residues is represented as a sequence of segments (see
also formulas 1.14 and 1.15), which can be expanded to the following form:

SD = SSE D
1 L1, SSE D

2 L2, . . . , SSE D
n Ln, (2.3)

http://dx.doi.org/10.1007/978-3-319-06971-5_1
http://dx.doi.org/10.1007/978-3-319-06971-5_1
http://dx.doi.org/10.1007/978-3-319-06971-5_1

2.2 Storing and Processing Secondary Structures in a Relational Database 31

where SSE D
i ∈ Σ describes the type of secondary structure (as defined in

Sect. 2.2.1), n is the number of segments (secondary structures) in a database protein,
Li ∈ d is the length of the i th segment of a database protein SD .

Query protein structure SQ , given by a user in a form of string pattern, is rep-
resented by ranges, which gives more flexibility in defining search criteria against
proteins in a database:

SQ = SSE Q
1 (L1; U1), SSE Q

2 (L2; U2), . . . , SSE Q
m (Lm; Um), (2.4)

where SSE Q
j ∈ Σ describes the type of secondary structure (as defined in

Sect. 2.2.1), L j ∈ U j ∈ q are lower and upper limits for the number of successive
SSEs of the same type, q is the length of the query protein SQ measured in residues,
which is the maximal length of the string query pattern resulting from expanding the
ranges of the pattern, m is the number of segments in the query pattern.

Additionally, the SSE Q
j canbe replacedby thewildcard symbol ‘?’,whichdenotes

any type of SSE from Σ , and the value of the U j can be replaced by the wildcard
symbol ‘*’, which denotes U j = +∧.

The advantage of the used alignment method is that it finds local, optimal align-
ments with possible gaps between corresponding elements. A big drawback is that it
is computationally costly, which negatively affects efficiency of the search process
carried out against the whole database. The computational complexity of the original
algorithm is O(n ∃ m(n + m)) when allowing for gaps calculated in a traditional
way. However, in the PSS-SQL we have modified the way how gap penalties are
calculated, which results in better efficiency.

While aligning two protein structures SQ and SD , the search engine of the PSS-
SQL calculates the similarity matrix D according to the following formulas.

Di,0 = 0 for i ∈ [0, q], (2.5)

and
D0, j = 0 for j ∈ [0, d], (2.6)

and

Di, j = max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0

Di−1, j−1 + di, j

Ei, j

Fi, j

, (2.7)

for i ∈ [1, q], j ∈ [1, d], where q, d are lengths of proteins SQ and SD , and di, j is the

matching degree between elements SSE D
i Li and SSE Q

j (L j ; U j) of both structures
calculated using the following formula:

32 2 Multithreaded PSS-SQL for Searching Databases of Secondary Structures

di, j =
{

ω+ if SSE D
i = SSE Q

j ∧ Li → L j ∧ Li ∈ U j

ω− otherwise
, (2.8)

where ω+ is the matching award, and ω− is the mismatch penalty. If the element
SSE Q

j is equal to ‘?’, then the matching procedure ignores the condition SSE D
i =

SSE Q
j . Similarly, if we assign the ‘*’ symbol for the U j , the procedure ignores the

condition Li ∈ U j .
Auxiliary matrices E and F , called gap penalty matrices, allow to calculate hori-

zontal andvertical gap penaltieswith the O(1) computational complexity (as opposed
to the original method, where it was possible with the O(n) computational complex-
ity for each direction). In the first version of the PSS-SQL, the calculation of the
current element of the matrix D required an inspection of all previously calculated
elements in the same row (for a horizontal gap) and all previously calculated elements
in the same column (for a vertical gap). By using gap penalty matrices we need only
to check one previous element in a row and one previous element in a column. Such
an improvement gives a significant acceleration of the alignment method, and the
acceleration is greater for longer sequences of SSEs and greater similarity matrices
D. Elements of the gap penalty matrices E and F are calculated according to the
following equations:

Ei, j = max

{
Ei−1, j − δ

Di−1, j − σ
, (2.9)

and

Fi, j = max

{
Fi, j−1 − δ

Di, j−1 − σ
, (2.10)

where σ is the penalty for opening a gap in the alignment, and δ is the penalty for
extending the gap, and:

Ei,0 = 0 for i ∈ [0, q], Fi,0 = 0 for i ∈ [0, q], (2.11)

E0, j = 0 for j ∈ [0, d], F0, j = 0 for j ∈ [0, d]. (2.12)

The PSS-SQL uses the following values for matching award ω+ = 4, mismatch
penalty ω− = −1, gap open penalty σ = −1, and gap extension penalty δ = −0.5.

Filled similarity matrix D consists of many possible paths how two sequences of
SSEs can be aligned. Backtracking from the highest scoring matrix cell and going
along until a cell with score 0 is encountered allows to find the highest scoring
alignment path. However, in the version of the alignment method that is implemented
in the PSS-SQL, the search engine finds k-best alignments by searching consecutive

2.2 Storing and Processing Secondary Structures in a Relational Database 33

maxima in the similarity matrix D. This is necessary, since the pattern is usually not
defined precisely, contains ranges of SSEs or undefined elements. Therefore, there
can bemany regions in a protein structure that fit the pattern. In the process of finding
alternative alignment paths, the alignment method follows the value of the internal
parameter M P E (minimum path end), which defines the stop criterion. The search
engine finds alignment paths until the next maximum in the similarity matrix D is
lower than the value of the M P E parameter. The value of the M P E depends on the
specified pattern, according to the following formula.

M P E = (M P L × ω+) + (NoI S × ω−), (2.13)

where M P L is the minimum pattern length, NoI S is the number of imprecise seg-
ments, i.e., segments, for which L j ∩= U j . For example, for the structural pattern
h(10;20), e(1;10), c(5), e(5;20) containing α-helix of the length 10–20 elements,
β-strand of the length 1–10 elements, loop of the length 5 elements, and β-strand of
the length 5–20 elements, the M P L = 21 (10 elements of the type h, 1 element of
the type e, 5 elements of the type c, and 5 elements of the type e), the NoI S = 3
(first, second, and fourth segment), and therefore, M P E = 81.

2.2.4 Multithreaded Implementation

In the original PSS-SQL [17], the calculation of the similarity matrix D was per-
formed by a single thread. This negatively affected performance of PSS-SQL queries
or, at least, this left a kind of computational reserve in the era of multicore CPUs. In
the new version of the PSS-SQL we have reimplemented procedures and functions
in order to use all processor cores that are available on the computer hosting the
database with the PSS-SQL extension. A part of the work was carried out by B.
Socha [22], my associate in this project.

However, the multithreaded implementation required different approach while
calculating values of particular cells of the similarity matrix D. Successive cells
cannot be calculated one by one, as in the original version, but calculations are
carried out for cells located on successive diagonals, as it is shown in Fig. 2.5. This
is because, according to Eqs. (2.7), (2.9), and (2.10) each cell Di, j can be calculated
only if there are calculated cells Di−1, j−1, Di−1, j and Di, j−1. Such an approach to
the calculation of the similarity matrix is called a wavefront [2, 14].

Moreover, in order to avoid too many synchronizations between running threads
(which may lead to significant delays), the entire similarity matrix is divided to so-
called areas (Fig. 2.6a). These areas are parts of the similarity matrix that have a
smaller size q ⇒ × d ⇒. Assuming that the entire similarity matrix has the size of q × d,
where q and d are lengths of two compared sequences of SSEs, the number of areas
that must be calculated is equal to:

34 2 Multithreaded PSS-SQL for Searching Databases of Secondary Structures

Fig. 2.5 Calculation of cells in the similaritymatrix D by using thewavefront approach.Calculation
is performed for cells at diagonals, since their values depend on previously calculated cells. Arrows
show dependences of particular cells and the direction of value derivation

Fig. 2.6 Division of the
similarity matrix D into areas
(left)—arrows show mutual
dependencies between areas
during calculation of the
matrix. (right) An order in
which areas will be calculated
in a sample similarity matrix

n A =
⌈

q

q ⇒

⌉
×

⌈
d

d ⇒

⌉
. (2.14)

For example, for the matrix D of the size 382× 108 and size of the area q ⇒ = 10
and d ⇒ = 10, the n A = ⌈ 382

10

⌉ × ⌈ 108
10

⌉ = 39 × 11 = 429. Areas are assigned to
threadsworking in the system. Each thread is assigned to one area, which is an atomic
portion of calculation for the thread. Areas can be calculated according to the same
wavefront paradigm. The area Az,v can be calculated, if there have been calculated
areas Az−1,v and Az,v−1 for z > 0 and v > 0, which implies an earlier calculation
of the area Az−1,v−1. The area A0,0 is calculated as a first one, since there are no
restrictions for calculation of the area.

In order to synchronize calculations, each area has a semaphore assigned to it.
Semaphores guarantee that an area will not be calculated until the areas that it de-
pends on have not been calculated. When all cells of an area have been calculated,
the semaphore is being unlocked. Therefore, each area waits for unlocking two
semaphores—for areas Az−1,v and Az,v−1 for z > 0 and v > 0. While calculat-
ing an area each thread realizes the algorithm, which pseudocode is presented in
Algorithm 1.

2.2 Storing and Processing Secondary Structures in a Relational Database 35

In Algorithm 1, after initialization of variables (lines 2–4), the thread enters the
critical section marked with the lock keyword (line 5). Entering the critical section
means that a thread obtains the mutual-exclusion lock for a given object. The thread
executes some statements, and finally releases the lock. In our case, the thread obtains
an exclusive access to the coordinates (z, v) of the area, which should be calculated
by calling GetAreaZ() and GetAreaV () methods (lines 6–7). In the critical section,
the thread also triggers the calculation of the (z, v) coordinates of the next area that
should be calculated by another thread (line 8). Lines 9–11 determine whether this
will be the last area that is calculated by any thread. Upon leaving the critical section,
the current thread waits until areas Az−1,v and Az,v−1 are unlocked (lines 13–14).
Then, based on coordinates (z, v) and the area size in both dimensions, the thread
determines absolute coordinates (i, j) of the first cell of the area (lines 15–16). These
coordinates are used inside the following two for loops in order to establish absolute
coordinates (i, j) of the current cell of the area. Figure 2.7 helps to interpret the
variables used in the algorithm. The value of the current cell is calculated in line 21,
according to formulas (2.5)–(2.7). When the thread completes the calculation of the
current area, it unlocks the area (line 24) and asks for another area (lines 25–27).

Algorithm 1 The algorithm for the calculation of an area by a thread
1: procedure CalculateArea
2: z ∀ 0
3: v ∀ 0
4: bool Finish ∀ true
5: lock ≤ starts critical section
6: z ∀ Get AreaZ()

7: v ∀ Get AreaV ()

8: Calculate (z, v) coordinates of the next area
9: if calculation successful (i.e., exists next area) then
10: bool Finish ∀ f alse
11: end if
12: endlock
13: Wait for unlocking the area Az−1,v
14: Wait for unlocking the area Az,v−1
15: absStart_i ∀ z ∃ areaSizeZ
16: absStart_ j ∀ v ∃ areaSizeV
17: for rel_i ∀ 0 to areaSizeZ − 1 do
18: for rel_ j ∀ 0 to areaSizeV − 1 do
19: i ∀ absStart_i + rel_i
20: j ∀ absStart_ j + rel_ j
21: Calculate cell Di, j according to formulas 2.5-2.7
22: end for
23: end for
24: Unlock area Az,v
25: if ¬bool Finish then
26: Apply for the next area (enqueue for execution)
27: end if
28: end procedure

36 2 Multithreaded PSS-SQL for Searching Databases of Secondary Structures

Fig. 2.7 Interpretation of variables used in the Algorithm 1 for the calculated area

The order in which areas are calculated is provided by a scheduling algorithm
dispatching areas to threads. For example, the order of calculation particular areas in
similarity matrix of the size 5× 5 areas is shown in Fig. 2.6b. Such a division of the
similarity matrix into areas reduces the number of tasks related to initialization of
semaphores needed for synchronization purposes and reduces the synchronization
time itself, which increases the efficiency of the alignment algorithm. For the PSS-
SQL, the size of the area was set to 3×7 elements (3 for query protein, 7 for database
protein) on the basis of experiments conducted by Socha [22].

2.3 SQL as the Interface Between User and the Database

PSS-SQL extends the standard syntax of the SQL language by providing additional
functions that allow to search protein similarities on secondary structures. SQL lan-
guage becomes a user interface (UI) between the user, who is a data consumer,
and DBMS hosting secondary structures of proteins. PSS-SQL discloses three im-
portant functions for scanning PSSs: containSequence, sequencePosition, and se-
quenceMatch; all will be described in this chapter. PSS-SQL covers also a series
of supplementary procedures and functions, which are used implicitly, e.g., for ex-
tracting segments of particular types of SSEs, building additional segment tables,
indexing SSEs sequences, processing these sequences, aligning the target structures
from a database to the query pattern, validating patterns, and many other operations.
PSS-SQL extension was developed in the C# programming language. All procedures
were assembled in the ProteinLibrary DLL file and registered for the Microsoft SQL
Server 2008R2/2012 (Fig. 2.8).

2.3 SQL as the Interface Between User and the Database 37

Fig. 2.8 General architecture of the system with the PSS-SQL extension. The PSS-SQL extension
is registered in theMicrosoft SQLServer DBMS.When the user submits a query invoking PSS-SQL
functions (actually, Transact-SQL functions) the DBMS redirects the call to the PSS-SQL exten-
sion, which invokes appropriate functions assembled in the ProteinLibrary DLL library, passing
appropriate parameters

2.3.1 Pattern Representation in PSS-SQL Queries

While searching protein similarities on secondary structures, we need to pass the
query structure (query pattern) as a parameter of the search procedure. In PSS-SQL
queries the pattern is represented as in the formula (2.4). Such a representation allows
users to formulate a large number of various query types with different degrees
of complexity. Moreover, we assumed that query patterns should be as simple as
possible and should not cause any syntax difficulties. Therefore, we have defined the
corresponding grammar in order to help constructing the query pattern.

In simple words, in PSS-SQL queries, the pattern is represented by blocks of
segments. Each segment is determined by its type and length. The segment length
can be represented precisely or as an interval. It is possible to define segments, for
which the type is not important or undefined (wildcard symbol ‘?’), and for which
the upper limit of the interval is not defined (wildcard symbol ‘*’). The grammar
for defining patterns written in the Chomsky notation has the following form. The
grammar is formally defined as the ordered quad-tuple:

G pss = ∗Npss,Σpss, Ppss, Spss∪, (2.15)

38 2 Multithreaded PSS-SQL for Searching Databases of Secondary Structures

where the symbols respectively mean: Npss—a finite set of nonterminal symbols,
Σpss—afinite set of terminal symbols, Ppss—afinite set of production rules, Spss—a
distinguished symbol S ∈ Npss that is the start symbol.

Assumption: <begin> ∈ <end>

The following terms are compliant with the defined grammar G pss :

• h(1;10)—representing an α-helix of the length 1–10 elements;
• e(2;5),h(10;*),c(1;20)—representing a β-strand of the length 2–5 elements,
followed by an α-helix of the length at least 10 elements, and a loop of the length
1–20 elements;

• e(10;15),?(5;20),h(35)—representing a β-strand of the length 10–15 ele-
ments, followed by any element of the length 5–20, and an α-helix of the exact
length 35 elements.

With such a representation of the query pattern, we can start the search process
using one of the functions disclosed by PSS-SQL extension.

2.3.2 Sample Queries in PSS-SQL

The PSS-SQL extension provides a set of functions and procedures for processing
PSSs. Three of the functions can be effectively invoked from the SQL commands,
usually the SELECT statement.

The containSequence function verifies if a particular protein or a set of database
proteins contain the structural pattern specified as a query pattern. This function
returns the Boolean value 1 (true), if the database protein contains specified pattern,
or 0 (false), if the protein does not include the pattern.

Sample invocation of the function is shown in Listing 2.1.
1 SELECT protID, protAC
2 FROM ProteinTbl
3 WHERE name LIKE ’%Escherichia coli%’ AND
4 dbo.containSequence(id, ’secondary’, ’h(5;15),c(3),?(6),c(1;5)’)=1

Listing 2.1 Sample query invoking containSequence function and returning identifiers of proteins
from Escherichia coli containing the given secondary structure pattern.

The sample query returns identifiers and accession numbers of proteins from
Escherichia coli having the structural region containing an α-helix of the length
5–15 elements, 3-element loop, any structure of the length 6 elements, and a loop of
the length up to 5 elements (pattern h(5;15),c(3),?(6),c(1;5)).

Partial results of the query from Listing 2.1 are shown below.

protID protAC
------------ --------
ACTP_ECOUT Q1R3J9
ADD_ECOLC B1IQD2
ADD_ECOLI P22333
ADEC_ECO24 A7ZTM0
ADEC_ECO57 Q7A9L5
...

2.3 SQL as the Interface Between User and the Database 39

The containSequence function can be used in the SELECT and the WHERE
phrase of the SQL SELECT statement. It is also possible to use the function in
the WHERE clause of other DML statements, including UPDATE and DELETE, if
needed. Detailed description of input arguments of the containSequence function is
given in Table 2.1.

The sequencePosition and sequenceMatch functions allow to match the specified
pattern to the structure of a protein or a group of database proteins. Pattern searching
and matching is performed by multiple scanning of the segment index built on the
segment table, followed by the alignment of the found segments. Both functions re-
turn a table containing information about the location of query pattern in the structure
of each database protein. Both functions differ in the way how they are invoked in
PSS-SQL queries.

Sample queries invoking both functions are shown in Listing 2.2. The function
accepts the same arguments according to the list presented in Table 2.1. Since they
return a table of values, they are nested in the FROM clause of SQL statements
(mainly SELECTs, but also possible in some variants of UPDATE and DELETE
statements). The use of the CROSS APPLY operator, instead of traditional JOIN,
allows to avoid specifying the join condition, shortens the query syntax and,what even
more important, improve performance, in the case of complex filtering conditions in
the WHERE clause.

1 − invoking sequenceMatch and CROSS APPLY
2 SELECT p.protAC AS AC,p.name, s.startPos, s.endPos, p.[primary],
3 s.matchingSeq, p.secondary
4 FROM ProteinTbl AS p CROSS APPLY dbo.sequenceMatch(p.id, ’secondary’,
5 ’e(1;10),c(0;5),h(5;6),c(0;5),e(1;10),c(5)’) AS s
6 WHERE p.name LIKE ’%Staphylococcus aureus%’ AND p.length > 150
7 ORDER BY AC, s.startPos
8
9 − invoking sequencePosition and standard JOIN
10 SELECT p.protAC AS AC, p.name, s.startPos, s.endPos, p.[primary],
11 s.matchingSeq, p.secondary
12 FROM ProteinTbl AS p JOIN dbo.sequencePosition(’secondary’,
13 ’e(1;10),c(0;5),h(5;6),c(0;5),e(1;10),c(5)’,
14 ’p.name LIKE ’’%Staphylococcus aureus%’’ AND p.length > 150’) AS s
15 ON p.id=s.proteinId
16 ORDER BY AC, s.startPos

Listing 2.2 Sample query invoking sequenceMatch and sequencePosition table functions and
returning information on proteins from Staphylococcus aureus having the length greater than 150
residues and containing the given secondary structure pattern.

These sample queries return Accession Numbers (AC) and names of proteins
from Staphylococcus aureus having the length greater than 150 residues and struc-
tural region containing β-strand of the length from 1 to 10 elements, optional loop
up to 5 elements, an α-helix of the length 5–6 elements, optional loop up to 5
elements, a β-strand of the length 1–10 elements and a 5 element loop—pattern
e(1;10),c(0;5),h(5;6),c(0;5),e(1;10),c(5).

Partial results of the query from Listing 2.2 are shown in Fig. 2.9. Detailed
description of the output fields of the sequenceMatch and sequencePosition func-
tions is given in Table 2.2.

40 2 Multithreaded PSS-SQL for Searching Databases of Secondary Structures

Table 2.1 Input arguments of PSS-SQL functions

Argument Description

@proteinIda Unique identifier of a protein in the database table that contains sequences of
SSEs (e.g. id field in case of the ProteinTbl)

@columnSSeq Database field containing sequences of SSEs of proteins (e.g. secondary)
@pattern Query pattern represented by a set of segments, e.g., h(2;10), c(1;5),?(2;*)
@predicateb An optional, simple, or complex filtering criteria that allow to limit the list of

proteins that will be processed during the search, e.g.,: length < 150
aexcept sequencePosition
bonly sequencePosition

Fig. 2.9 Partial results of the sample queries from Listing 2.2 returned as a relational table, re-
turned fields: AC—accession number, name—molecule name, startPos, endPos—position, where
the pattern starts and ends in the target protein from a database, primary—amino acid sequence of
the database protein, matchingSeq—exact sequence of SSEs, which matches to the pattern defined
in the query, secondary—sequence of secondary structure elements SSEs of the database protein

Table 2.2 Output table of sequenceMatch and sequencePosition functions

Field Description

proteinId Unique identifier of the protein that contains the specified pattern
startPos Position, where the pattern starts in the target protein from a database
endPos Position, where the pattern ends in the target protein from a database
length Length of the segment that matches to the given pattern
matchingSeq Exact sequence of SSEs, which matches to the pattern defined in the query

Results of the PSS-SQLqueries are originally returned in a tabular form.However,
by adding an extra FOR XML clause at the end of the SELECT statement, like in
the example in Listing 2.3, produces results in the XML format that can be easily
transformed to the HTML web page by using appropriate XSLT transformation file,
and finally, published in the Internet. Partial results of the query from Listing 2.3
are shown in Fig. 2.10. An additional function—superimpose—that was used in the
presented query (Listing 2.3) visualizes the alignment of the matched sequence and
the database sequence of SSEs.

2.3 SQL as the Interface Between User and the Database 41

Fig. 2.10 Partial results of
the query from Listing 2.3

1 SELECT p.protAC AS AC, p.name, s.startPos, s.endPos, s.matchingSeq, p .[primary], dbo.superimpose
(s.matchingSeq, p.secondary) AS alignment

2 FROM ProteinTbl AS p CROSS APPLY dbo.sequenceMatch(p.id, ’secondary’,
3 ’e(1;10),c(0;5),h(5;6),c(0;5),e(1;10),c(5)’) AS s
4 WHERE p.name LIKE ’%Staphylococcus aureus%’
5 AND p.length > 150
6 ORDER BY AC, s.startPos
7 FOR XML RAW (’protein’), ROOT(’proteins’), ELEMENTS

Listing 2.3 Sample query invoking sequenceMatch table function and returning results as an XML
document by using the FOR XML clause.

2.4 Efficiency of the PSS-SQL

The efficiency of the PSS-SQLquery languagewas examined in various experiments.
Tests were performed on theMicrosoft SQL Server 2012 Enterprise Edition working
on nodes of the virtualized cluster controlled by the HyperV hypervisor hosted on
Microsoft Windows 2008 R2 Datacenter Edition 64-bit. The host server had the
following parameters: 2x Intel Xeon CPU E5620 2.40 GHz, RAM 32 GB, 3x HDD
1TB 7200 RPM. Cluster nodes were configured to use 4 CPU cores and 4GB RAM
per node, and worked under the Microsoft Windows 2008 R2 Enterprise Edition
64-bit operating system.

Most of the tests were performed on the database storing 6,360 protein structures.
However, in order to compare our language to one of the competitive solutions, some
tests were performed on the database storing 248,375 protein structures.

During the experiments, we measured execution times for various query patterns.
The query patterns were passed as a parameter of the sequencePosition function.
Tests were performed for queries containing the following sample patterns:

• SSE1: e(4;20),c(3;10),e(4;20),c(3;10),e(15),c(3;10),e(1;10)
• SSE2: h(30;40),c(1;5),?(50;60),c(5;10),h(29),c(1;5),h(20;25)
• SSE3: h(10;20),c(1;10),h(243),c(1;10),h(5;10),c(1;10),h(10;15)
• SSE4: e(1;10),c(1;5),e(27),h(1;10),e(1;10),c(1;10),e(5;20)
• SSE5: e(5;20),h(2;5),c(2;40),?(1;30),e(5;*)

42 2 Multithreaded PSS-SQL for Searching Databases of Secondary Structures

Fig. 2.11 Execution time
for various query patterns
SSE1–SSE4 and for three
variants of the PSS-SQL
language: without
multithreading (−MT),
with multithreading,
but without multiple
scanning of the Segment
Index (+MT−MSSI), with
multithreading
and with multiple
scanning of the Segment
Index (+MT+MSSI)

SSE1 SSE2 SSE3 SSE4

0

20

40

60

80

100

120

Query

ti
m
e
(s
)

-MT
+MT-MSSI
+MT+MSSI

Pattern SSE1 represents protein structure built only with β-strands connected
by loops. Pattern SSE2 consists of several α-helices connected by loops and one
undefined segment of SSEs (‘?’ wildcard symbol). Patterns SSE3 and SSE4 have
regions that are unique in the database, i.e., h(243) in pattern SSE3 and e(27)

in pattern SSE4. Pattern SSE5 has a wildcard symbol ‘*’ for undetermined length,
which slows down the search process.

In order to verify the influence of particular acceleration techniques on the exe-
cution times, tests were carried out for the PSS-SQL in three variants:

• without multithreading (−MT),
• with multithreading, but without MSSI (+MT–MSSI), and
• with multithreading and with MSSI (+MT+MSSI).

Results of the tests shown in Fig. 2.11 prove that the performance of +MT–MSSI
variant is higher, and in case of SSE1 and SSE2 even much higher, than −MT
variant (implemented in original PSS-SQL). For +MT+MSSI we can see additional
improvement of the performance. It is difficult to estimate the overall acceleration,
because it tightly depends on the uniqueness of the pattern. The more unique the
pattern is, the more proteins are filtered out based on the Segment Index, the fewer
proteins are aligned and the less time we need to obtain results. We can see it clearly
in Fig. 2.11 for patterns SSE3 and SSE4 that have precisely defined, unique regions
h(243) and e(27). For universal patterns, like SSE1 and SSE2, for which we can
find many fitting proteins or multiple alignments, we can observe longer execution
times. In such cases, the parallelization and MSSI start playing a more significant
role. In these cases, the length of the pattern influences the alignment time—for
longer patterns we experienced longer response times. We have not observed any
dependency between the type of the SSE and the response time.

However, specifying wildcards in the query pattern increases the waiting period,
which is visible for the pattern SSE5 (Fig. 2.12). In Fig. 2.12 for the pattern SSE5, we

2.4 Efficiency of the PSS-SQL 43

Fig. 2.12 Execution time for
query pattern SSE5 for three
variants of the PSS-SQL
language: without
multithreading (−MT),
with multithreading,
but without multiple
scanning of the Segment
Index (+MT−MSSI), with
multithreading and with
multiple scanning of the
Segment Index (+MT+MSSI)

SSE5

0

200

400

600

800

1,000

1,200

ti
m
e
(s
)

-MT
+MT-MSSI
+MT+MSSI

can also see how beneficial the use of the MSSI technique can be. In this particular
case, the execution time was reduced from 920s in −MT (original PSS-SQL), and
550s in +MT−MSSI, to 15 s in +MT+MSSI, which gives 61.33-times acceleration
over the −MT variant and 36.67-times acceleration over the +MT−MSSI variant.

2.5 Discussion

PSS-SQL language complements existing relational DBMSs, which are not designed
to process biological data, such as PSSs stored as sequences of SSEs. By extending
the standard SELECT, UPDATE, and DELETE statements of the SQL language,
it provides a declarative method for retrieving, modifying, and deleting records.
Records that satisfy the criteria given by a user can be returned in a table-like form
or as an XML document, which is easy to display as a Web page. In such a way, the
PSS-SQL extension to relational database management systems (RDBMS) provides
a kind of domain-specific language for processing PSSs. This is especially impor-
tant for relational database designers, wide group of biological data analysts, and
bioinformaticians.

The PSS-SQL language can be used for the fast classification of proteins based
on their secondary structures. For example, systems such as SCOP [18] and CATH
[19] make use of the secondary structure description of protein structures in order to
classify proteins into classes and families. PSS-SQL can be also supportive in protein
3D structure prediction by homology modeling, where appropriate structure profile
can be found based on primary and secondary structure and the secondary structure
can be superimposed on the protein of the unknown 3D structure before performing
a free energy minimization.

44 2 Multithreaded PSS-SQL for Searching Databases of Secondary Structures

Comparing the PSS-SQL to other languages presented in Sect. 2.1, we can no-
tice that all variants of the PSS-SQL extend the syntax of the SQL. This makes
the PSS-SQL similar to PiQL [24], rather than to ProteinQL [25]. ProteinQL was
developed for the OODB and relies on its own domain-specific database and ded-
icated ProteinQL interpreter and translator. As opposed to ProteinQL, both PiQL,
and PSS-SQL extend capabilities of RDBMS. They extend the syntax of the SQL
language by providing additional functions that can be nested in particular clauses
of the SQL commands. However, the form of queries provided by users is differ-
ent. PiQL accepts query patterns in a full form, like in BLAST [1]—a tool used for
fast local matching of biomolecular sequences of DNA and proteins. Query patterns
provided in PSS-SQL are similar to those presented by Hammel and Patel in [9].
The pattern defined in a query does not have to be specified strictly. Segments in the
pattern can be specified as intervals and they can have undefined lengths. Both lan-
guages allow specifying query patterns with undefined types of the SSE or patterns,
where some SSE segments may occur optionally. Therefore, the search process has
an approximate character, regarding various possible options for segment matching.
The possibility of defining patterns that include optional segments allows users to
specify gaps in a particular place.

The described version of the PSS-SQL also uses the method of scanning the
Segment Index in order to accelerate the search process. The method was adopted
from thework ofHammel and Patel [9]. However, aftermultiple scans of the Segment
Index Hammel and Patel used sort-merge join operations in order to join segments
from the same candidate proteins and decide, whether they meet specified query
conditions or not. The novelty of PSS-SQL is that it relies on the alignment of the
found segments. Alignment implemented in PSS-SQL gives the unique possibility
of finding many matches for the same database protein and returning k-best matches,
matches that in some particular cases can be separated by gaps. These are not the
gaps defined by a user and specified by an optional segment, but the gaps providing
better alignment of particular regions. This type of matching is typical for similarity
searching between biomolecular sequences, such as DNA/RNA sequences or amino
acid sequences. Presented approach extends the spectrumof searching andguarantees
the optimality of the results according to assumed scoring system.

Despite the fact that PSS-SQL uses the alignment procedure, which is computa-
tionally complex, it gained quite a good performance. We have compared the effi-
ciency of the PSS-SQL (+MT+MSSI variant) and language presented by Hammel
and Patel for single-predicate exact match queries with various selectivity (between
0.3 and 6%) using the database storing 248,375 proteins (515 MB for ProteinTbl,
254 MB for segment table storing 11,986,962 segments). The PSS-SQL was on
average 5.14 faster than Comm-Seg implementation, 3.28 faster than Comm-CSP
implementation, both implemented on a commercial ORDBMS, and 1.84 faster than
ISS-MISS(1) implementation on Periscope/SQ. This proves, that PSS-SQL compen-
sates the efficiency loss caused by alignment procedure by using the Segment Index.
In such away, the PSS-SQL joinswide capabilities of the alignment process (possible
gaps, mismatches, and many solutions), provides optimality and quality of results,
and guarantees efficiency of scanning databases of secondary structures.

2.6 Summary 45

2.6 Summary

Integrating methods of PSS similarity searching with DBMSs provides an easy way
for manipulation of biological data without the necessity of using external data min-
ing applications. The PSS-SQL extension presented in this chapter is a successful
example of such integration. PSS-SQL is certainly a good option for biological and
biomedical data analysts who want to process their data on the server side. This has
many advantages that are typical for such a processing in the client-server archi-
tecture. Entire logic of data processing is performed on the database server, which
reduces the load on the user’s computer. Therefore, data exploration is performed
while retrieving data from a database. Moreover, the number of data returned to the
user, and the network traffic between the server and the user application, are much
reduced.

The use of multithreading allows to utilize the whole capable computing power
more efficiently. The PSS-SQL adapts to the number of processing units possessed by
the server hosting the DBMS and to the number of cores used by the database system.
This results in better performance of the language while scanning huge databases of
PSSs. For the latest information on the PSS-SQL, please visit the project home page:
http://zti.polsl.pl/dmrozek/science/pss-sql.htm.

Parallelization of calculations in bioinformatics brings tangible benefits and re-
duces the execution time of many algorithms. In this chapter, we could see one of
many examples of such parallelization. For readers that are interested in other ex-
amples I recommend the book Parallel Computing for Bioinformatics and Compu-
tational Biology by Zomaya [29] for further reading. In the next chapter, we will see
how a massive parallelization of the 3D structure similarity searching on many-core
CUDA-enabled GPU devices leads to reduction of the execution time of the process.

References

1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search
tool. J. Mol. Biol. 215, 403–410 (1990)

2. Anvik, J., MacDonald, S., Szafron, D., Schaeffer, J., Bromling, S., Tan, K.: Generating parallel
programs from the wavefront design pattern. In: Proceedings of the 7th InternationalWorkshop
on High-Level Parallel Programming Models and Supportive Environments (HIPS’02), Fort
Lauderdale, Florida, April 2002, pp. 1–8 (2002)

3. Apweiler, R., Bairoch, A., Wu, C.H., et al.: Uniprot: the universal protein knowledgebase.
Nucl. Acids Res. 32(Database issue), D115–D119 (2004)

4. Berman, H., et al.: The Protein Data Bank. Nucl. Acids Res. 28, 235–242 (2000)
5. Can, T., Wang, Y.: CTSS: a robust and efficient method for protein structure alignment based

on local geometrical and biological features. In: Proceedings of the 2003 IEEE Bioinformatics
Conference (CSB 2003), pp. 169–179 (2003)

6. Date, C.: An Introduction to Database Systems, 8th edn. Addison-Wesley, Reading (2003)
7. Frishman, D., Argos, P.: Incorporation of non-local interactions in protein secondary structure

prediction from the amino acid sequence. Protein Eng. 9(2), 133–142 (1996)
8. Gibrat, J., Madej, T., Bryant, S.: Surprising similarities in structure comparison. Curr. Opin.

Struct. Biol. 6(3), 377–385 (1996)

http://zti.polsl.pl/dmrozek/science/pss-sql.htm

46 2 Multithreaded PSS-SQL for Searching Databases of Secondary Structures

9. Hammel, L., Patel, J.M.: Searching on the secondary structure of protein sequences. In: Pro-
ceedings of 28th International Conference onVery LargeData Bases, HongKong, China, 2002,
pp. 634–645 (2002)

10. Joosten, R.P., Te Beek, T.A.H., Krieger, E., Hekkelman, M.L., et al.: A series of PDB related
databases for everyday needs. Nucl. Acid Res. 39(Database issue), D411–D419 (2011)

11. Kabsch, W., Sander, C.: Dictionary of protein secondary structure: pattern recognition of
hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983)

12. Källberg, M., Wang, H., Wang, S., Peng, J., Wang, Z., Lu, H., Xu, J.: Template-based protein
structure modeling using the RaptorX web server. Nat. Protoc. 7, 1511–1522 (2012)

13. Kessel, A., Ben-Tal, N.: Introduction to Proteins: Structure, Function, and Motion, 1st edn.
CRC Press, Boca Raton (2010)

14. Liu,W., Schmidt, B.: Parallel design pattern for computational biology and scientific computing
applications. In: Proceedings of the 2003 IEEE InternationalConference onClusterComputing,
pp. 456–459 (2003)

15. Małysiak-Mrozek, B., Kozielski, S., Mrozek, D.: Server-side query language for protein struc-
ture similarity searching. In: Human-Computer Systems Interaction: Backgrounds and Appli-
cations. Springer, Berlin, Advances in Intelligent and Soft Computing 99(2), 395–415 (2012)

16. Mrozek, D., Małysiak-Mrozek, B.: CASSERT: a two-phase alignment algorithm for matching
3D structures of proteins. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) Proceedings of 22nd Inter-
national Conference on Computer Networks, Communications in Computer and Information,
Springer-Verlag, CCIS 370, 334–343 (2013)

17. Mrozek, D., Wieczorek, D., Małysiak-Mrozek, B., Kozielski, S.: PSS-SQL: protein secondary
structure—structured query language. In: Proceedings of 32nd Annual International Confer-
ence of the IEEE Engineering in Medicine and Biology Society, EMBS 2010, Buenos Aires,
Argentina, pp. 1073–1076 (2010)

18. Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C.: SCOP: a structural classification of
proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536–540
(1995)

19. Orengo, C.A., Michie, A.D., Jones, S., Jones, D.T., et al.: CATH—a hierarchic classification
of protein domain structures. Structure 5(8), 1093–1108 (1997)

20. Shapiro, J., Brutlag, D.: FoldMiner and LOCK2: protein structure comparison and motif dis-
covery on the web. Nucl. Acids Res. 32, 536–541 (2004)

21. Smith, T., Waterman,M.: Identification of commonmolecular subsequences. J. Mol. Biol. 147,
195–197 (1981)

22. Socha, B.: Multithreaded execution of the Smith-Waterman algorithm in the query language
for protein secondary structures. MSc thesis, supervised by Mrozek D., Silesian University of
Technology, Gliwice, Poland (2013)

23. Stephens, S., Chen, J.Y., Thomas, Sh.: ODM BLAST: sequence homology search in the
RDBMS. In: Bulletin of the IEEE Computer Society Technical Committee on Data Engi-
neering (2004)

24. Tata, S., Patel, J.M., Friedman, J.S., Swaroop, A.: Declarative querying for biological se-
quences. In: Proceedings of 22nd International Conference on Data Engineering, IEEE Com-
puter Society, 2006, pp. 87–98 (2006)

25. Wang, Y., Sunderraman, R., Tian, H.: A domain specific data management architecture for
protein structure data. In: Proceedings of 28th IEEE EMBS Annual International Conference,
New York City, USA, pp. 5751–5754 (2006)

26. Wieczorek, D., Małysiak-Mrozek, B., Kozielski, S., Mrozek, D.: A metod for matching se-
quences of protein secondary structures. J. Med. Info. Technol. 16, 133–137 (2010)

References 47

27. Wieczorek, D., Małysiak-Mrozek, B., Kozielski, S., Mrozek, D.: A declarative query language
for protein secondary structures. J. Med. Info. Technol. 16, 139–148 (2010)

28. Yang, Y., Faraggi, E., Zhao, H., Zhou, Y.: Improving protein fold recognition and
template-based modeling by employing probabilistic-based matching between predicted one-
dimensional structural properties of the query and corresponding native properties of templates.
Bioinformatics 27, 2076–2082 (2011)

29. Zomaya, A.Y.: Parallel Computing for Bioinformatics and Computational Biology: Models,
Enabling Technologies, and Case Studies, 1st edn. Wiley-Interscience, New York (2006)

Chapter 3
Parallel CUDA-Based Protein 3D Structure
Similarity Searching

The structural alignment between two proteins: is there a unique
answer?

Adam Godzik, 1996

Abstract Finding common molecular substructures in complex 3D protein
structures is still challenging. This is especially visible when scanning entire data-
bases containing tens or even hundreds of thousands protein structures. Graphics
processing units (GPUs) and general purpose graphics processing units (GPG-
PUs) promise to give a high speedup of many time-consuming and computationally
demanding processes over their original implementations on CPUs. In this chapter,
we will see that a massive parallelization of the 3D structure similarity searching on
many core CUDA-enabled GPU devices leads to reduction of the execution time of
the process and allows to perform it in real time.

Keywords Proteins ·3Dprotein structure ·Tertiary structure ·Similarity searching ·
Structure matching · Structure comparison · Structure alignment · Parallel comput-
ing · GPU · CUDA
3.1 Introduction

Protein 3D structure similarity searching is a process in which a given protein
structure is compared to another protein structure or a set of protein structures col-
lected in a database. The aimof the process is to findmatching fragments of compared
protein structures. On the basis of the similarities found during this process, scientists
can draw useful conclusions about the common ancestry of the proteins, and thus the
organisms (that the proteins came from), their evolutionary relationships, functional
similarities, existence of common functional regions, andmany other things [6]. This
process is especially important in situations, where sequence similarity searches fail
or deliver too few clues [15]. There are also other processes inwhich protein structure

D. Mrozek, High-Performance Computational Solutions in Protein Bioinformatics, 49
SpringerBriefs in Computer Science, DOI: 10.1007/978-3-319-06971-5_3,
© The Author(s) 2014

50 3 Parallel CUDA-Based Protein 3D Structure Similarity Searching

similarity searching plays a supportive role, such as in the validation of predicted
protein models [23]. Finally, we believe that in the very near future, scientists will
have the opportunity to study beautiful structures of proteins as a regular diagnostic
procedure that will utilize comparison methods to highlight areas of proteins that
are inadequately constructed, leading to dysfunctions of the body and serious
diseases. This goal is currently motivating work leading to the development of sim-
ilarity searching methods that return results in real time.

3.1.1 What Makes the Problem

Although protein structure similarity searching belongs to a group of the primary
tasks performed in a structural bioinformatics, it is still a very difficult and time-
consuming process. There are three key factors deciding on this:

1. the 3D structures of proteins are highly complex,
2. the similarity searching process is computationally complex,
3. the number of 3D structures stored in macromolecular data repositories such as

the Protein Data Bank (PDB) [2] is growing exponentially.

Among these three problems, the bioinformaticians can attempt to easy the second
one by developing new, more efficient algorithms, and to—at least partially—help
with the first one by using appropriate representative features of protein 3D structures
that can then be fed into their algorithms. The collection of algorithms that have been
developed for protein structure similarity searching over the last two decades is large,
and included methods such as VAST [13], DALI [17, 18], LOCK2 [46], FATCAT
[52], CTSS [9], CE [47], FAST [56], and others [33, 42]. These methods use vari-
ous representative features when performing protein structure similarity searches in
order to reduce the huge search space. For example, local geometric features and
selected biological characteristics are used in the CTSS [9] algorithm. Shape signa-
tures that include information on Cα atom positions, torsional angles, and types of
the secondary structure present are calculated for each residue in a protein structure.
A very popular DALI algorithm [17, 18] compares proteins based on distance matri-
ces built for each of the compared proteins. Each cell of a distance matrix contains
the distance between the Cα atoms of every pair of residues in the same structure
(inter-residue distances). Fragments of 6×6 elements of thematrix are called contact
patterns, which are compared between two proteins to find the best match. On the
other hand, the VAST algorithm [13], which is available through the web site of the
National Center for Biotechnology Information (NCBI), uses secondary structure
elements (SSEs: α-helices and β-sheets), which form the cores of the compared pro-
teins. These SSEs are then mapped to the representative vectors, which simplifies the
analysis and comparison process. During the comparison, the algorithm attempts to
match vectors of pairs of protein structures. Other methods, like LOCK2 [46], also
utilize the SSE representation of protein structures in the comparison process. The
CE [47] algorithm uses the combinatorial extension of alignment path formed by
aligned fragment pairs (AFPs). AFPs are fragments of both structures that indicate

3.1 Introduction 51

clear structural similarity and are described by local geometrical features, includ-
ing positions of Cα atoms. The idea of AFPs is also used in the FATCAT [52].
A more detailed overview of methodologies used for protein structure comparison
and similarity searching is given in [3, 7, 8].

Even though better methods are developed every year, performing a protein struc-
ture similarity search against a whole database of protein 3D structures is still a
challenge. As it was shown in the works [27, 30] on the effectiveness and scalabil-
ity of the process, performing the search with the FATCAT algorithm for a sample
query protein structure using twenty alignment agents working in parallel took 25h
(without applying any additional acceleration techniques). Tests were carried out
using a database containing 3D structures of 106,858 protein chains. This shows
how time-consuming the process is, and it is one of the main motivations for design-
ing and developing the new methods that are reported every year, such as RAPIDO
[31], FS-EAST [32], DEDAL [11], MICAN [29], CASSERT [33], ClusCo [20], and
others [36, 38, 53–55].

3.1.2 CUDA Architecture and Construction of GPU Devices

The evolution of computer science and computer architectures has led to (and will
continue to lead to) new hardware solutions that can be used to accelerate various
time-consuming processes. Recent years have shown that promising results can be
obtained by using graphics processing units (GPUs) and general purpose graphics
processing units (GPGPUs). GPU devices, which were originally conceived as a
means to render increasingly complex computer graphics, can nowbe used to perform
computations that are required in completely different domains. For this reason, GPU
devices, especially those utilizing the NVidia Compute Unified Device Architecture
(CUDA) [35, 43], are now widely used to solve computationally intensive problems,
including those encountered in bioinformatics.

InGPUdevices that support theCUDAarchitecture, high scalability is achievedby
the hierarchical organization of threads, which are basic execution units. Threads exe-
cute, in parallel, user-defined procedures called kernels, which implement some com-
putational logicworking on different data. Each thread has its own index, the vector of
the coordinates corresponding to its location in the one-, two-, or three-dimensional
organizational structure called a block. Thread blocks form a one- or two-dimensional
structure called a grid. Each thread block is processed by a streaming multiprocessor
(SM), which has many scalar processor cores (SP). The number of multiprocessors
and processor cores available depends on the type of GPU device. The GPU device
has also two special function units, a multithreaded instruction unit (IU), a set of
registers available for each thread block, and several types of memory (Fig. 3.1).

Threads can access global memory, which is the off-chip memory that has a
relatively low bandwidth but provides a high storage capacity. Each thread also has
access to the on-chip read/write shared memory as well as the read-only constant
memory and texture memory, both of which are cached on-chip. Access to these

52 3 Parallel CUDA-Based Protein 3D Structure Similarity Searching

Fig. 3.1 Architecture of the GPU computing device, showing streaming multiprocessors, scalar
processor cores, registers, and global, shared, constant, and texture memories

three types of memories is much faster than that to the global memory, but they all
provide limited storage space and are used in specific situations.

Multiprocessors employ a new architecture, called single instruction, multiple
thread (SIMT). In this architecture, a multiprocessor maps each thread to a scalar
processor core, where each thread executes independently with its own instruction
address and register state. The multiprocessor SIMT unit creates, manages, sched-
ules, and executes threads in groups of 32 parallel threads calledwarps. Threads in the
warp perform the same instructions, but operate on different data, as in the SIMD (sin-
gle instruction, multiple data) architecture. Therefore, appropriate preparation and
arrangement of data is highly desirable before the kernel execution begins, and this is
one of the factors that influence the efficiencyof anyGPU-based implementation [35].

3.1.3 CUDA-Enabled GPUs in Processing Biological Data

The computational potential of GPU devices has been also noticed by specialists
working in the domain of life sciences, including bioinformatics.Given the successful
applications of GPUs in the field of sequence similarity [24–26, 28, 39, 44, 50],
phylogenetics [51], molecular dynamics [12, 40], and microarray data analysis [5],
it is clear that GPU devices are beginning to play a significant role in the 3D protein
structure similarity searching.

3.1 Introduction 53

It is worth mentioning two GPU-based implementations of the process. These
methods use different representations of protein structures and different computa-
tional procedures, but demonstrate a clear improvement in performance over the
CPU-based implementations. The first one, SA Tableau Search presented in [49],
uses simulated annealing for tableau-based protein structure similarity searching.
Tableaux are based on orientations of secondary structure elements and distance
matrices. The GPU-based implementation of the algorithm parallelizes two areas:
multiple iterations of the simulated annealing procedure and multiple comparisons
of the query protein structure to many database structures. The second one, called
pssAlign [37], consists of two alignment phases—fragment-level alignment and
residue-level alignment. Both phases use dynamic programming [1]. In the fragment-
level alignment phase so-called seeds between the target protein and each database
protein are used to generate initial alignments. These seeds are represented by the
locations of the Cα atoms. The initial alignments are then refined in the residue-level
alignment phase. pssAlign parallelizes both alignment phases.

In the following sections, we will see the GPU-based implementation of the
CASSERT [33], one of the newest algorithms for protein 3D structure similarity
searching. Like pssAlign, CASSERT is based on two-phase alignment. However,
it uses an extended set of structural features to describe protein structures, and the
computational procedure differs too. Originally, CASSERTwas designed and imple-
mented as a CPU-based procedure, and its effectiveness is reported in [33]. Its GPU-
based implementation will be referred as GPU-CASSERT throughout the chapter.

3.2 CASSERT for Protein Structures Similarity Searching

Three-dimensional protein structure similarity searching is typically realized by per-
forming pairwise comparisons of the query protein (Q) specified by the user with
successive proteins (D) from the database of protein structures. Here, we will see
how protein structures are represented in both phases of the comparison process
performed by the CASSERT.

Let us assume that Q represents the structure of the query protein that is q residues
(amino acids) long, and D is the structure of a candidate protein in the database that
is d residues (amino acids) long.

In the first phase of the alignment algorithm, protein structures Q and D are com-
pared by aligning their reduced chains of secondary structures formed by secondary
structure elements SEi :

Q = (SEQ
1 ,SEQ

2 , ...,SEQ
n), (3.1)

where n ≤ q is the number of secondary structures in the chain of the query protein
Q, and

D = (SED
1 ,SED

2 , ...,SED
m), (3.2)

54 3 Parallel CUDA-Based Protein 3D Structure Similarity Searching

Fig. 3.2 Secondary structure elements: (left) four α-helices in a sample structure [PDBID: 1CE9],
(right) twoβ-strands joined by a loop in a sample structure [PDB ID: 1E0Q]; visualized byMViewer
[48]. Full and reduced chains of secondary structure elements formarked subunit (left) and thewhole
structure (right) are visible below

where m ≤ d is the number of secondary structures in the chain of the database
protein D.

Each element SEi , which is a part of the chain that has been selected on the basis
of its secondary structure, is characterized by two values, i.e.,

SEi = [SSEi , Li], (3.3)

where SSEi describes the type of the secondary structure selected, and Li is the length
of the ith element SEi (measured in residues). The alignment method distinguishes
between three basic types of secondary structures (Fig. 3.2):

• α-helix (H),
• β-sheet or β-strand (E),
• loop, turn, coil, or undetermined structure (L).

Elements SEQ
i and SED

j , hereinafter referred to as SE regions or SE fragments,
are built from groups of adjacent amino acids that form the same type of secondary
structure. For example, six successive residues folded into an α-helix form one SE
region. Hence, the overall protein structures are, at this stage, represented by the
reduced chains of secondary structures.

In the second phase of the alignment algorithm, protein structures Q and D are
represented in more detail. At the residue level, successive residues are described
by so-called molecular residue descriptors si . Proteins are represented as chains of
descriptors si :

Q = (s Q
1 , s Q

2 , ..., s Q
q), (3.4)

where q is the length of the query protein Q (i.e., the number of residues it contains),
and each s Q

i corresponds to the ith residue in the chain of protein Q,

D = (s D
1 , s D

2 , ..., s D
d), (3.5)

3.2 CASSERT for Protein Structures Similarity Searching 55

Fig. 3.3 Structural features
included in molecular residue
descriptors marked on part
of a sample protein structure:
residue type (Met, Gln, Ile,
Phe), secondary structure type
(β-strand in this case), length
of the vector between Cα

atoms (|Ci |) and the γ angle

where d is the length of the database protein D, and each s D
i corresponds to the ith

residue in the chain of protein D.
Each descriptor si is defined by the following vector of features:

si = 〈|Ci|, γi ,SSEi , ri ∈, (3.6)

where |Ci| is the length of vector between Cα atoms of the ith and (i+1)th amino
acid in a protein chain, γi is the angle between successive vectors Ci and Ci+1, SSEi

is the type of secondary structure formed by the ith residue, ri is a type of amino
acid (Fig. 3.3).

3.2.1 General Course of the Matching Method

Pairwise comparisons of protein 3D structures are performed using the matching
method, which consists of two phases (Fig. 3.4):

1. The first phase involves the coarse alignment of spatial structures represented by
secondary structure elements (SSEs). This is the low resolution alignment phase,
because groups of amino acids occurring in each structure are grouped into one
representative element (the SE region). This phase allows us to run fast alignments
in which small similarity matrices are constructed. This eliminates the need for
computationally costly alignments for proteins that are entirely dissimilar. Pro-
teins that exhibit secondary structures similarity are subjected to more thorough
analysis in the second phase.

56 3 Parallel CUDA-Based Protein 3D Structure Similarity Searching

Fig. 3.4 Overview of the two-phase alignment algorithm. In phase 1, low-resolution alignment
is performed; protein structures are represented as reduced chains of secondary structures; the
similarity matrix SSE used in the alignment is small—proportional to the number of secondary
structures in both proteins. In phase 2, high-resolution alignment is performed; protein structures are
represented as chains of molecular residue descriptors; the similarity matrix S used in the alignment
is therefore large—proportional to the length of both proteins

2. The second phase involves the detailed alignment of spatial structures represented
by the molecular residue descriptors. This alignment is performed based on the
results of the coarse alignment realized in the first phase. The second phase is
the high-resolution alignment phase, because amino acids are not grouped in it.
Instead, each amino acid found in the structure is represented by the correspond-
ing molecular residue descriptor si . Therefore, in this phase CASSERT aligns
sequences of molecular residue descriptors using much larger similarity matrices
than were utilized in the first phase. In the second phase, the algorithm analyzes
more features describing protein structures, and the protein itself is represented
in more detail.

In both phases, the alignments are carried out using dynamic programming proce-
dures that are specifically adapted to the molecular descriptions of protein structures
in each phase. The detailed courses of both alignment phases are shown in the fol-
lowing sections.

3.2.2 First Phase: Low-Resolution Alignment

The low-resolution alignment phase is performed in order to filter out molecules
that do not show secondary structural similarity. Originally, this phase was also used
to establish initial alignments that were projected onto the similarity matrix in the
second phase. However, since both phases are executed independently in the GPU-
based implementation, alignment paths are not transferred between alignment phases
in the GPU-based approach.

3.2 CASSERT for Protein Structures Similarity Searching 57

In order tomatch the structures of proteins Q and D that are represented as reduced
chains of secondary structures, the algorithm builds the similarity matrix SSE of size
n × m, where n and m describe the number of secondary structures in the compared
chains of proteins Q and D. Successive cells of the SSE matrix are filled according
to the following rules:

For 0 ≤ i ≤ n and 0 ≤ j ≤ m:

SSEi,0 = SSE0, j = 0, (3.7)

SSE(1)
i, j = SSEi−1, j−1 + δi j , (3.8)

SSE(2)
i, j = Ei, j , (3.9)

SSE(3)
i, j = Fi, j , (3.10)

SSEi, j = max
v=1..3

{SSE(v)
i, j , 0}. (3.11)

where δij is the similarity reward, which reflects the degree of similarity between

two regions SEQ
i and SED

j of proteins Q and D, respectively, and vectors E and F
define possible horizontal and vertical penalties for inserting a gap.

The similarity reward δi j takes values from the interval [0, 1], where 0 means
no similarity and 1 means that the regions are identical. The degree of similarity is
calculated using the formula:

δi j = σi j −
(

σi j ∧ |L D
j − L Q

i |
(L D

j + L Q
i)

)
, (3.12)

where L Q
i , L D

j are lengths of compared regions SEQ
i andSED

j , whileσi j describes the
similarity degree of secondary structures building ith and jth SE regions of compared
proteins Q and D. This parameter can take three possible values according to the
following rules:

(i) σi j = 1, when both SE regions have the same secondary structure of α-helix
or β-strand;

(ii) σi j = 0.5, when at least one of the regions is a loop, turn, coil, or its secondary
structure is undefined;

(iii) σi j = 0, when one of the regions has the construction of α-helix and the
second the construction of β-strand.

Values of gap penalty vectors are calculated as follows:

Ei, j = max

{
Ei−1, j − gE

SSEi−1, j − gO
, (3.13)

Fi, j = max

{
Fi, j−1 − gE

SSEi, j−1 − gO
. (3.14)

58 3 Parallel CUDA-Based Protein 3D Structure Similarity Searching

In order to assess the similarity between two reduced chains of secondary struc-
tures, CASSERT uses the Score measure, which is equal to the highest value in the
similarity matrix SSE:

Score = max {SSEi, j }. (3.15)

Auxiliary vectors E and F allow us to perform alignment procedure and to cal-
culate the Score similarity measure in linear space, because the value of cell SSEi, j

depends only on the value of cell SSEi−1, j−1, SSEi−1, j , and SSEi, j−1. During the
calculation of the similarity matrix SSE CASSERT has to store the position of the
maximum value of the Score in the matrix as well as the value itself.

3.2.3 Second Phase: High-Resolution Alignment

Molecules that pass the first phase (based on the user-defined cutoff value) are further
aligned in the second phase. A database protein structure is qualified to the second
phase if the following condition is satisfied:

ScoreQ D

ScoreQ Q
∃ Qt , (3.16)

where ScoreQ D is a similarity measure employed when matching the query protein
structure to the database protein structure, ScoreQ Q is the similaritymeasure obtained
when matching the query protein structure to itself (i.e., the maximum Score that
the compared chain can achieve), and Qt → [0, 1] is a user defined qualification
threshold for structural similarity.

The second phase is carried out similarly to the first phase, except that the align-
ment is carried out on the residue level, where aligned molecules Q and D are
represented by chains of molecular residue descriptors. However, the way that GPU-
CASSERT calculates the similarity reward for the two compared residue molecular
descriptors si and s j is different. The similarity reward ssi j is calculated according
to the following formula:

ssi j = wCσC
i j + wγ σ

γ

i j + wSSEσ SSE
i j + wrσ

r
i j , (3.17)

where σC
i j is the degree of similarity of a pair of vectors CQ

i and CD
j in proteins Q

and D, σγ

i j is the similarity of angles γ
Q

i and γ D
j in proteins Q and D, σ SSE

i j is the
degree of similarity of secondary structures of residues i and j (calculated according
to the rules (i)–(iii) listed for the first phase), σ r

i j is the degree of similarity of residues
defined by means of the BLOSUM62 substitution matrix [16] normalized to range of
[0, 1], and wC , wγ ,wSSE, wr are the weights of all of the components (with default
value of 1).

3.2 CASSERT for Protein Structures Similarity Searching 59

The similarity of vectors CQ
i and CD

j is defined according to the formula:

σC
i j = e

−
(
|CQ

i |−|CD
j |

)2
, (3.18)

where |C Q
i | and |C D

j | are the lengths of vectors CQ
i and CD

j , respectively, and the

similarity of the angles γ
Q

i and γ D
j is defined as follows:

σ
γ

i j = e
−

(
γ

Q
i −γ D

j

)2
. (3.19)

In high-resolution alignment, the value of the degree of similarity of molecular
residue descriptors ssi j (Eq. 3.17) replaces the similarity reward δi j (Eq. 3.8).

The relative strength of each component in the similarity search (Eq.3.17) can
be controlled using participation weights. The default values for each is 1, but this
can be changed by the user. For example, researchers who are looking for surprising
structural similarities but no sequence similarity can disable the component for the
primary structure by setting the value of wr = 0.

The Score similarity measure, the basic measure of the similarity of protein struc-
tures, is also calculated in this phase. Its value incorporates all possible rewards for
a match, mismatch penalties, and penalties for inserting gaps in the alignment. The
Score is also used to rank highly similar proteins that are returned by the GPU-
CASSERT.

3.2.4 Third Phase: Structural Superposition and Alignment
Visualization

In the third phase, the algorithm performs superposition of protein structures on the
basis of aligned chains of molecular residue descriptors. The purpose of this step
is to match two protein structures by performing a set of rotation and translation
operations that minimizes the root mean square deviation (RMSD):

RMSD =
√√√√ 1

N

N∑
i=1

d2
i , (3.20)

where N is the number of aligned Cα atoms in the protein backbones, and di is the
distance between the i th pair of atoms.

Two approaches are widely used to complete this step. One of the approaches
uses quaternions [19]. CASSERT uses the approach proposed by Kabsch [21, 22]
that makes use of the Singular Value Decomposition (SVD) technique. These two
approaches are said to be computationally equivalent [10], but there can be some
circumstances deciding that one can be more convenient than the other.

60 3 Parallel CUDA-Based Protein 3D Structure Similarity Searching

CASSERT performs the superposition of protein structures on the CPU of the
host workstation. In this phase, CASSERT also calculates the full similarity matrix
S in order to allow backtracking from the maximum value and full visualization of
the structural alignment at the residue level. This step is performed on the CPU of
the host and only for a limited number (M , which is configured by the user) of the
most similar molecules.

3.3 GPU-Based Implementation of the CASSERT

GPU devices can accelerate calculation speeds greatly, but this also requires the
application of an appropriate programming model. In terms of 3D protein structure
similarity searching, this also involves preparation of data that will be processed. In
this subsection, we will focus on the GPU-based implementation of the CASSERT,
data preparation, and we will gain insight into the implementation details of both
alignment phases. A part of the work was carried out by Brożek [4], my associate in
this project.

3.3.1 Data Preparation

Early tests of the first implementations of the CASSERT algorithm on GPU devices
showed that read operations from the database system storing structural data were too
slow. Therefore, the present implementation of the GPU-CASSERT does not read
data directly from the database, because single execution of the searching procedure
would take too long. GPU-CASSERT uses binary files instead. These files contain
data packages that are ready to be sent to the GPU device. The only data that are read
directly from the database are those that describe the query protein structure Q. But,
even in this situation, the data are stored in an appropriate way in binary files. Using
binary files with data packages allows the initialization time of the GPU device to be
reduced severalfold. This is necessary to ensure that the GPU-CASSERT has a fast
response time.

Binary files are refreshed in two cases:

• changes in the content of a database,
• changes in parameters affecting the construction of data packages.

Data packages that are sent to the GPU device have the same general structure,
regardless of what is stored inside.

Due to the size of the data packages utilized by the CASSERT algorithm, these
packages are placed in the global memory of the GPU device. As we know from the
Sect. 3.1.2 when discussed GPUs and the CUDA, global memory is the slowest type
of memory available. For this reason, it is worth minimizing the number of accesses
made of this type of memory.

3.3 GPU-Based Implementation of the CASSERT 61

Fig. 3.5 Preferred allocation of 128-byte memory segment to warp threads. Thread 0 takes first 4
bytes of the transaction, thread 1 takes the next 4 bytes, etc

Access operations are carried out in 32-, 64-, or 128-byte transactions. When the
warp (which is composed of 32 threads) reaches the read/write operation, the GPU
device attempts to perform this operation using a minimum number of transactions.
Basically, the greater the number of transactions needed, the greater the amount
of unnecessary data transmitted. This unnecessary overhead can be minimized for
CUDA 2.x if memory cells that are read by all warp threads are located within a
single 128-byte memory segment. In order to satisfy this condition, the address of
this area must be aligned to 128 bytes and the threads need to read data from adjacent
memory cells. For devices with compute capabilities of 1.0 or 1.1, upon which the
GPU-CASSERT can also run, there is the additional restriction that warp threads
must be in the same order as memory cells being read [35]. If these conditions are
met, we can get 4 bytes of data for each of the threads in a single 128-byte transaction.
These 4 bytes correspond to a single number of the type int or float, which is used
while encoding data in data packages. The preferred allocation of 128-byte memory
segment to threads is presented in Fig. 3.5.

Data are transmitted to the GPU device in the form of a two-dimensional array of
unsigned integers (Fig. 3.6). The array is organized in row-major order. This means
that the cells in adjacent columns are located next to each other in the memory.
This has an important influence on performance when processing an array, because
contiguous array cells can usually be accessed more quickly than cells that are not
contiguous. Each column of the array is assigned to a single block thread. Threads
start at an index given by the following code:

int tid=blockIdx.x*blockDim.x+threadIdx.x;

where blockIdx.x is the block index along the x dimension (GPU-CASSERT uses
a one-dimensional blocks), blockDim.x stores the number of threads along the x

dimension of the block, and threadIdx.x is the thread index within the block.
A single chain of structural descriptors is stored in a single column of the array

(Fig. 3.6). Such a solution satisfies the condition that contiguous addresses must
be read, because block threads will always read adjacent cells, moving from the
beginning to the end of the chain (from top to bottom). Every cell in the array is 4
bytes in size, so the transfer of data to a wrap’s 32 threads will be made in one 128-
byte read transaction. This allows to take a full advantage of data transfer from the
memory to the registers of the GPU device. This way of organizing data in memory
is used and described in [28, 39].

Another factor affecting the performance is the density at which the data are
packed in memory cells. The distribution of data in memory cells depends on the

62 3 Parallel CUDA-Based Protein 3D Structure Similarity Searching

Fig. 3.6 Arrangement of chains of structural descriptors S1, S2, S3, ... in a memory array. Block
threads are assigned to particular columns. One column stores one chain of structural descriptors.
Each cell contains 4 bytes of data (structural descriptors). All block threads read contiguousmemory
areas (coalesced access)

phase of the algorithm and the type of structural descriptors that are used in the phase.
There are five types of data that are sent to the memory of the GPU device:

• reduced chains of secondary structures formed by secondary structure elements
SEi (phase 1),

• secondary structure elements SSEi that are components of nonreduced chains of
molecular residue descriptors (phase 2),

• amino acid residue types ri that are components of nonreduced chains ofmolecular
residue descriptors (phase 2),

• lengths of the vectors between Cα atoms of subsequent residues that are compo-
nents of nonreduced chains of molecular residue descriptors (phase 2),

• γi angles between successive vectors Ci and Ci+1 that are components of nonre-
duced chains of molecular residue descriptors (phase 2).

Regardless of the type of data present in the memory cells, the chains included
in the package may be of various lengths. For this reason, all chains of structural
descriptors are aligned to the length of the longest chain. Empty cells are filled with
zeros. In principle, comparing these zeros in the course of the algorithm does not
affect the scoring system assumed and the final results.

Chains of structural descriptors contained in a data package are sorted by their
lengths in ascending order. In this way, we minimize differences in processing time

3.3 GPU-Based Implementation of the CASSERT 63

for individual block threads and their idle times (threads that have already completed
their work must wait for the other threads to finish processing). A similar method is
used in the work presented in [28, 39].

Data packages are divided into subpackages. Each subpackage consists of 32
chains of structural descriptors. This is exactly the same as the number of warp
threads.

3.3.2 Implementation of Two-Phase Structural Alignment
in a GPU

Implementation of the two-phase structural alignment algorithm in a GPU with the
CUDA requires a dedicated approach. GPU-CASSERT operates according to the
Algorithm 1.

In both alignment phases, the similarity matrix is stored in the global memory of
the GPU device as an array of the type float. This means that a read/write of a single
element requires just one transaction. It is also worth noting that, due to memory
restrictions, each thread remembers only the last row of the similarity matrix. This
is sufficient to determine the maximum element of the similarity matrix, which also
provides a value for the Score similarity measure, which is needed to check whether
a database structure qualifies for the second phase. The similarity measure alone is
sufficient to assess the quality of the alignment before the second phase.

Algorithm 1 GPU-CASSERT: a general algorithm
1: Read data packages describing database protein structures from binary files
2: Read query protein structure (Q) from database and create appropriate data package with query

profile
3: for all database proteins D do
4: Perform (in parallel) the first phase of the structural alignment on the GPU device
5: end for
6: Qualify proteins for the second phase according to formula 3.16
7: Prepare data packages describing database protein structures for the second phase
8: Read data packages describing database protein structures from binary files
9: Read query protein structure (Q) from database and create appropriate data packages with query

profiles
10: for all qualified database proteins D do
11: Perform (in parallel) the second phase of the structural alignment on the GPU device
12: end for
13: Return a list of the top M database molecules that are most similar to the query molecule,

together with similarity measures
14: if the user wants to visualize the alignment then
15: Perform the second phase on the CPU of the host computer for molecules from the list of

the most similar ones to the query molecule returned by the GPU device
16: Perform structural superposition
17: Return alignment visualization to the user
18: end if

64 3 Parallel CUDA-Based Protein 3D Structure Similarity Searching

Fig. 3.7 Encoding a reduced chain of secondary structures in a data package. The secondary
structure of the protein is first translated to a reduced chain of SE regions. Subsequently, every two
SE regions are placed in a data package in the manner shown, taking up 4 bytes, and in such a way
they are loaded to the global memory of the GPU device

On the other hand, the second phase is performed on the GPU device for all qual-
ified structures, and once again on the CPU of the host for the database proteins that
are most similar to the query molecule in order to get alignment paths and to per-
form structural superposition. As a result, the user obtains a list of the structures that
match most closely to the query structure and a visualization of the local alignments
of these structures at the residue level.

3.3.3 First Phase of Structural Alignment in the GPU

The first phase requires data to be delivered in the form of data packages containing
reduced chains of secondary structures (SE regions). Separate data packages are
built for the query protein and candidate protein structures from the database. For
the purpose of processing, SE regions are encoded using two bytes: one byte for the
type of secondary structure and one byte for its length (Eq.3.3). Types of secondary
structures are mapped to integers. In Sect. 3.3.1, where we talked about the overall
structure of a data package, we also mentioned that the data in memory are arranged
into 4-byte cells. In such a 4-byte cell, we can store two encoded SE regions. This is
illustrated in Fig. 3.7.

The data package for the query chain of secondary structures is built on the basis
of a slightly different principle. If it was created in the same way as the data packages
for database structures, then in order to extract the similarity coefficient of secondary
structures σi, j wewould have to read the cell (SSEA

i , SSE
B
j) from a predefinedmatrix

of coefficients (a kind of substitution matrix constructed based on rules (i)–(iii) in
the Sect. 3.2.2), which would affect performance negatively. We can avoid this by

3.3 GPU-Based Implementation of the CASSERT 65

Fig. 3.8 Encoding the
reduced chain of secondary
structure for query protein
Q (left) and construction
of the query profile (right).
The query profile shows all
possible (encoded) scores
when comparing the reduced
query chain of secondary
structure to SE regions from
candidate protein structures
from the database

precomputing and writing all possible similarity coefficients directly into the data
package of the query protein, creating something like the query-specific substitution
matrix proposed in [41] and called a query profile in the GPU-based alignment
algorithm for sequence similarity presented in [28]. Therefore, the data package for
the query protein passes through an additional preparation step. For each SE region,
four versions of the similarity coefficient are created, one for each of the secondary
structure types and one for the neutral element 0 (as shown in Fig. 3.8). In the query
profile created, the row index is defined by the index of structural region SE divided
by 2, and the column index is defined by the type of secondary structure present
(with the additional neutral element 0). The coefficients are converted to integers in
order to fit them into 1 byte, according to the following rules:

• if coefficient σi, j = 0, it is encoded as 0,
• if coefficient σi, j = 1, it is encoded as 1,
• if coefficient σi, j = 0.5, it is encoded as 2.

Lengths of SE regions do not change. This process is illustrated in Fig. 3.8.
Once the data packages are loaded into the host memory and a data package for

the reduced query chain is created, the program transfers data to the GPU device. To
do this, it uses four streams. Each stream has its own memory buffers on the GPU
device side and in the page-locked memory on the host side. The host loads data into
the page-locked memory and then initiates an asynchronous data transfer to GPU
device for each of the streams. This allows transmission to take place in parallel with
the ongoing calculations, again improving performance. Results are received prior
to the transfer of the next data package or after all available packages have been
processed.

Block threads perform parallel alignments of reduced chains of secondary struc-
tures. Each block thread performs a pairwise alignment of the query protein versus

66 3 Parallel CUDA-Based Protein 3D Structure Similarity Searching

Fig. 3.9 Calculation of similarity matrix SSE. Structural elements (SE regions) of the candidate
database structure are (virtually) located along the vertical edge of the matrix and SE regions of the
query protein structure along the horizontal edge of the matrix. Calculations are performed in areas
2 × 4 in size. Values of the cells in these areas are calculated according to the given order. Colors
reflect the type of read/write operation required and the memory resources that are affected

one candidate database protein. In order to limit the number of accesses to the global
memory of the GPU device, the similarity matrix SSE is not calculated cell-by-cell
but is divided into rectangular areas 2× 4. Calculations are performed area-by-area,
and row by row in each area, from left to right, as shown in Fig. 3.9.

Structural elements (SE regions) of the candidate database structure are (virtually)
located along the vertical edge of the matrix, and SE regions of the query protein
structure are located along the horizontal edge of the matrix. The pseudocode of the
CUDA kernel for the calculation of the matrix SSE by a block thread is presented
in Algorithm 2. The thread reads consecutive four elements SED

j , SE
D
j+1, SE

D
j+2,

SED
j+3 of the database protein from the global memory of the GPU and saves them

in registers (lines 1–3). They will be used many times while calculating successive
areas to the right of the leftmost area (Fig. 3.9, left and middle). Then, for each
successive pairs of elements SEQ

i , SEQ
i+1 of the query protein the thread reads values

of SSEi, j−1, SSEi+1, j−1 and Fi, j−1, Fi+1, j−1 (calculated for the previous area, if
any) from the global memory of the GPU and saves them in registers (lines 4–6).
These values stored in registers will be swapped many times by current values of
SSEi, j , SSEi+1, j and Fi, j , Fi+1, j during the calculation of area rows, since actually,
at the end of the calculation we do not need the whole similarity matrix SSE, but the
ScoreQ D value. In the next step, for each row of the area the tread reads elements
SEQ

i , SEQ
i+1 of the query protein from the texture memory (lines 7–8). These two

3.3 GPU-Based Implementation of the CASSERT 67

elements of the query protein correspond to only one row of the query profile. In
line 9, the thread calculates values of Fi, j , Fi+1, j , Ei, j , Ei+1, j and saves them in
registers. They are required to calculate values of SSEi, j and SSEi+1, j of the matrix
SSE according to formulas 3.7–3.11 (line 10). The value of SSEi−1, j−1, which is
also required for the calculation is stored in registers, as well. The values of SSEi−1, j

and Ei−1, j are equal to 0 for the leftmost areas (Fig. 3.9, left and right) or stored in
registers after the calculation of the previous area (Fig. 3.9, middle).

Algorithm 2 Phase 1: kernel pseudocode for the calculation of the matrix SSE by a
block thread (GM—global memory, TM—texture memory)

1: for each consecutive four elements SE D
j , SE D

j+1, SE D
j+2, SE D

j+3 : j = 1, ..., m do
2: Reset registers
3: Read from GM elements SE D

j , ..., SE D
j+3 and save in registers

4: for each successive pairs of elements (SE Q
i , SE Q

i+1) : i = 1, ..., n do
5: Read from GM values SSEi, j−1, SSEi+1, j−1 and save in registers
6: Read from GM values Fi, j−1, Fi+1, j−1 and save in registers
7: for each row of the area do
8: Read from TM the element of the query profile that corresponds to (SE Q

i , SE Q
i+1)

9: Calculate Fi, j , Fi+1, j , Ei, j , Ei+1, j and save in registers
10: Calculate SSEi, j and SSEi+1, j according to formulas 3.7- 3.11
11: ScoreQ D ∩ max(ScoreQ D, SSEi, j , SSEi+1, j)

12: Save in registers values of SSEi, j , SSEi+1, j for the next row of the area

13: Save in register value of Si+1, j for the next pair (SE Q
i , SE Q

i+1) (next area)
14: end for
15: Save values of SSEi, j , SSEi+1, j in the GM
16: Save values of Fi, j , Fi+1, j in the GM
17: Save in register value of SSEi+1, j that will be used as diagonal value for another area
18: end for
19: end for
20: Save in GM the value of ScoreQ D/ScoreQ Q

In line 11, a temporary value of the ScoreQ D similarity measure is calculated.
In line 12, current values of SSEi, j , SSEi+1, j are stored in registers, replacing old
values SSEi, j−1, SSEi+1, j−1. Values of SSEi+1, j for successive rows are also stored
in additional set of registers for the calculation of the next area to the right (line 13).
They serve as values SSEi−1, j for successive rows of the next area to the right of
the current area. At the end of the calculation of the area, the thread writes values of
SSEi, j , SSEi+1, j and Fi, j , Fi+1, j , calculated for the last row, to the global memory
(lines 15–16). They will be read and used again, when the thread processes the area
below the current area. The value of SSEi+1, j for the last row of the area is stored
in additional register (line 17). It will be used as diagonal value of SSEi−1, j−1 at
the beginning of the calculation of another area (down-right). Finally, when all cells
of the matrix SSE are calculated, the thread knows the final ScoreQ D and is able to
calculate the value of ScoreQ D/ScoreQ Q , which will decide if the candidate protein
is qualified for the second phase. The value is stored in the global memory (line 20).

68 3 Parallel CUDA-Based Protein 3D Structure Similarity Searching

During the calculation of each 2 × 4 area, the values of the four elements of the
vector E representing the horizontal gap penalty and four elements of the matrix
SSE to the left of the current area are stored in GPU registers. Four consecutive
elements of the reduced chain of secondary structures for the database protein are
read from the global memory once, before the calculation of each leftmost area
of the matrix begins. They are also stored in GPU registers and reused during the
calculation of other areas located on the right of the leftmost area. Calculation of a
2 × 4 area requires two reads and two writes to the global memory for the vector F
representing the vertical gap penalty, and two reads and two writes for the similarity
matrix SSE. It also requires four reads for the query profile placed in the texture
memory. In total, the calculation of 8 cells of an area of the similarity matrix SSE
requires eight read/write transactions to the global memory of the GPU device and
four reads from the texture memory. The order of calculation of cells and read/write
operations performed are shown in Fig. 3.9.

For the latest source codes of the GPU-CASSERT, please visit the project web
site: http://zti.polsl.pl/dmrozek/science/gpucassert/cassert.htm

3.3.4 Second Phase of Structural Alignment in the GPU

After filtering candidate database proteins based on the qualification threshold Qt ,
the program creates new, smaller data packages that are needed in the second phase.
Separate data packages are built for each of the features included in the molecular
residue descriptors. In data packages for amino acid types and secondary structure
types, we can store elements for four successive molecular residue descriptors in
every 4 bytes (and then in every 4-byte memory cell). The arrangement of bytes and
cells in memory is similar to that used in the first phase (see Fig. 3.6). Vector lengths
and angles occupy 4 bytes each, which is one cell of the prepared array in memory.

For the query protein structure, data packages for amino acid types and secondary
structures are generated in a similar manner to how this is done in the first phase. The
programcreates separate query profiles for secondary structures and for residue types.
The query profile for secondary structures is formed from the secondary structure
similarity coefficients σi, j in such a way that the row index is the index of the current
element from the query chain divided by 4, and the column index is the type of the
secondary structure of the element from the compared database protein (Fig. 3.10).
The query profile for residue types is derived from the normalized BLOSUM62
substitution matrix in such a way that the row index is the index of the current
element from the query chain divided by 4, and the column index is the type of the
residue from the compared database chain. Data packages containing vector lengths
and angles between these vectors, for the query protein structure, are created by
rewriting these values to separate packages.

Transfer of data packages to the device is performed in the same manner as in
the first phase. Four streams are used for this purpose. After the first part of data
has been transferred to the GPU device, the high-resolution alignment procedure is

http://zti.polsl.pl/dmrozek/science/gpucassert/cassert.htm

3.3 GPU-Based Implementation of the CASSERT 69

Fig. 3.10 Encoding the
secondary structure elements
(SSEs) from chains of
molecular residue descrip-
tors for query protein Q
(left) and construction of
the query profile (right).
The query profile shows all
possible (encoded) scores
when comparing the query
chain of SSEs to SSEs from
candidate protein structures
from the database

initiated. Block threads perform parallel alignments of chains of molecular residue
descriptors. Each block thread performs a pairwise alignment of the query protein
versus one candidate database protein. In order to limit the number of accesses to the
global memory of the GPU device, the similarity matrix S is divided into rectangular
areas of size 4× 4. Calculations are performed area-by-area, and row-by-row inside
areas, from left to right, as shown in Fig. 3.11.

Molecular residue descriptors of the candidate database structure are (virtually)
located along the left vertical edge of the matrix S, and molecular residue descriptors
of the query protein structure are located along the top horizontal edge of the matrix.
During the calculation of each 4×4 area, the values of four elements of the vector E
representing the horizontal gap penalty and themolecular residue descriptors for four
successive elements of the database chain are stored in GPU registers. Calculation
of a 4 × 4 area requires four reads and four writes to the global memory for the
vector F representing the vertical gap penalty, and four reads and four writes for the
similarity matrix S. It is also necessary to perform four reads for the query profile for
secondary structures, four reads for the query profile for residue types, four reads for
vector lengths, and four reads for angles between vectors. These reads are performed
from the texture memory, where these structural features are placed and arranged in
an appropriate manner. In total, the calculation of the 16 cells in each area of the
similarity matrix S requires 16 read/write transactions to the global memory of the
GPU device and 16 reads from the texture memory. The order of calculation of
cells and the read/write operations performed are shown in Fig. 3.11. The kernel
pseudocode is similar to the one presented for the first phase, with the exception
that the thread processes 4 × 4 areas, which implies more I/O operations, and the
similarity is calculated according to formula 3.17.

70 3 Parallel CUDA-Based Protein 3D Structure Similarity Searching

Fig. 3.11 Calculation of the similarity matrix S in the second phase of alignment. Molecular
residue descriptors of the candidate database structure are (virtually) located along the vertical edge
of the matrix and molecular residue descriptors of the query protein structure are located along
the horizontal edge of the matrix. Calculations are performed in areas of size 4 × 4. Values of the
cells in these areas are calculated according to the given order. Colors reflect the type of read/write
operation that are required and the memory resources that are affected

3.4 GPU-CASSERT Efficiency Tests

The efficiency of the GPU-CASSERT algorithm was tested in a series of experi-
ments. In this subsection, we will see results of these tests and we will compare the
GPU-CASSERT to its CPU-based implementation that was published in [33]. Both
implementations, i.e., the GPU-based and the CPU-based implementations, were
tested on a Lenovo ThinkStation D20 with two Intel Xeon CPU E5620 2.4GHz
processors, 16GB of RAM, and a GeForce GTX 560 Ti graphics card with 2GB
of GDDR5 memory. The workstation had the Microsoft Windows Server 2008 R2
Datacenter 64-bit operating system installed, together with the CUDA SDK version
4.2. The CUDA compute capability supported by the graphics card was 2.1. The
graphics card had the following features:

3.4 GPU-CASSERT Efficiency Tests 71

Table 3.1 Query protein
structures used in the
performance tests

PDB ID Chain Length PDB ID Chain Length

2CCE A 29 1AYE _ 400
2A2B A 40 2EPO B 600
1BE3 G 80 1KK7 A 802
1A1A B 101 1URJ A 1027
1AYY B 142 2PDA A 1230
2RAS A 199 2R93 A 1421
1TA3 B 300 2PFF B 2005

• 8 multiprocessors (384 processing cores),
• 48 KB of shared memory per block,
• 64 KB of total constant memory,
• 32,768 registers per block,
• 2 GB of total global memory.

Tests were conducted using the DALI database (the same as that used by the DALI
algorithm [17, 18]), which contained the structures for 105,580 protein chains.While
testing performance, 14 selected query protein structureswith lengths between 29 and
2005 amino acids were used. These were randomly selected molecules that represent
different classes according to SCOP classification [34], i.e., all α, all β, α + β, α/β,
α&β, coiled coil proteins, and others. The list of query protein structures used in the
tests performed in the present work is shown in Table 3.1.

Tests were performed using different qualification thresholds QT = 0.01,
0.2, 0.4, 0.6, 0.8 that the structures had to attain for them to pass from the first phase
to the second phase of CASSERT. CASSERT execution times for QT = 0.01 and
QT = 0.2 are shown in Fig. 3.12. The thresholds used were not chosen randomly.
The QT = 0.2 is an experimentally determined threshold that filters out a reasonable
number of structures based on the secondary structure similarity but still allows short
local similarities to be found. This will be discussed further later in the sections. The
QT = 0.01 means that almost no filtering is done based on the secondary structure
similarity, and almost all structures in the database qualify for the second phase.

The results of the efficiency tests presented in Fig. 3.12 prove thatGPU-CASSERT
scans the database much faster than the CPU-based implementation. Upon analyzing
execution times for the first phase of the CASSERT algorithm (Fig. 3.12a, b) for both
qualification thresholds, we can see that increasing the query protein’s length causes
the execution time for the algorithm to increase too. This is expected, since a longer
query protein chain implies a longer alignment time for every pair of compared
proteins. Small fluctuations that are visible for short chains when using the GPU-
based implementation and QT = 0.01 (Fig. 3.12a, blue) are caused by variations
in the number of secondary structures identified in the investigated proteins, which
affect the alignment time. We can observe a similar (expected) dependency between
the length of the query protein and the execution time while analyzing the measured
execution times after both phases of the CASSERT algorithm for both qualification
thresholds (Fig. 3.12c, d). However, since the number of proteins that qualify to
the second phase varies and depends on the length and complexity of the query

72 3 Parallel CUDA-Based Protein 3D Structure Similarity Searching

0 1,000 2,000
10− 2

10− 1

100

101

102

Queryprotein length (residues)

Queryprotein length (residues)Queryprotein length (residues)

Queryprotein length (residues)

T
im

e(
s)

CPU

GPU

0 1,000 2,000
10− 2

10− 1

100

101

102

T
im

e(
s)

CPU

GPU

0 1,000 2,000

10− 5

10− 4

10− 3

10− 2

T
im

e(
s)

CPU

GPU

0 1,000 2,000

10− 5

10− 4

10− 3

10− 2

10− 1

T
im

e(
s)

CPU

GPU

(a) (b)

(c) (d)

Fig. 3.12 Total execution time for the first phase (a, b) and average execution time of both phases
per protein that qualified for the second phase (c, d) for qualification thresholds of 0.01 (a, c)
and 0.2 (b, d) as a function of the length of the query protein structure Q. Time is plotted on a
log10 scale. Comparison of two implementations of the CASSERT algorithm: CPU-based (red)
and GPU-based (CUDA, blue). Results for 14 selected query protein structures between 29 and
2005 amino acids long. Searches were performed against the DALI database, containing 105,580
structures. a Execution time for the first phase for QT = 0.01. b Execution time for the first phase
for QT = 0.2. c Average execution time per protein qualified for the second phase for QT = 0.01.
d Average execution time per protein qualified for the second phase for QT = 0.2

structure, average execution times per qualified protein are shown in Fig. 3.12c, d.
When executing the CASSERT for various query proteins, it can be noticed that, in
some cases, more database protein structures qualify for the second phase for shorter
query protein structures rather than longer (between 1000 and 2000 residues) query
protein structures.

The execution timemeasurements that have been obtained during the performance
tests allowed to calculate acceleration ratios for GPU-CASSERT with respect to
CPU-CASSERT. Figure 3.13 shows how the acceleration ratio changes as a function

3.4 GPU-CASSERT Efficiency Tests 73

0 1 ,000 2 ,000
0

200

400

Queryprotein length (residues) Queryprotein length (residues)

n
-f
o
ld

sp
e
e
d
u
p

both phases

1st phase

0 1 ,000 2 ,000

100

200

300

n
-f
o
ld

sp
e
e
d
u
p

both phases

1st phase

(a) (b)

Fig. 3.13 Acceleration achieved by GPU-CASSERTwith respect to CPU-CASSERT as a function
of query protein length after the first phase (blue) and both alignment phases (red) with qualification
thresholds 0.01 (a) and 0.2 (b). a Acceleration GPU versus CPU for QT = 0.01. b Acceleration
GPU versus CPU for QT = 0.2

of query protein length for the first phase and both phases for QT = 0.01 and
QT = 0.2.

We can see that the acceleration ratio for the first phase remains stable. In this
phase, GPU-CASSERT is on average 120 times faster than CPU-CASSERT. How-
ever, for the whole alignment, i.e., after the first and second phases, the acceleration
ratio greatly depends on the length of the query protein structure, its construction, and
complexity. The whole alignment process when performed on the GPU is 30–300
times faster than the same process performed on the CPU.

Actually, for qualification thresholds QT ∃ 0.1, it is possible to observe a kind of
compensation effect. For longer query protein chains, which also have more compli-
cated constructions in terms of secondary structure, the number of candidate struc-
tures from the database that qualified for the second phase decreases with the length
of the query protein. This causes a situation in which fewer database proteins need
to be aligned during the entire process. But, at the same time, the length of the query
protein grows, causing the alignment time to increase. This growth is compensated
for by the smaller number of database structures that need to be aligned.

Figure 3.14 shows the relationship between query protein length and the number of
structures that qualified for the second phase when various values of the qualification
threshold QT were applied. For example, for QT = 0.01 we can see that almost all
of the database structures qualified for the second phase, regardless of query protein
length. In this case, there is practically no filtering based on the secondary structures
identified in the query protein. On the other hand, for QT = 0.8, we can notice that
for query proteins over 150 residues in length, only single database structures are
eligible for further processing.

In many situations, such a high value of the qualification threshold will filter out
too many molecules. However, this depends on the situation for which the entire

74 3 Parallel CUDA-Based Protein 3D Structure Similarity Searching

0 500 1 ,000 1 ,500 2 ,000

0

0 .2

0 .4

0 .6

0 .8

1

·105

Query protein length (residues)

#
 s

tr
u
c
tu

re
s

q
u
a
li
fi
e
d

QT = 0.01

QT = 0.2

QT = 0.4

QT = 0.6

QT = 0.8

Fig. 3.14 Number of structures from the database that qualified for the second phase as a function
of query protein length for various values of the qualification threshold

process of similarity searching is carried out. For example, in homology modeling,
we may want to find referential protein structures that are very similar to the given
query protein structure. For functional annotation and while searching for homol-
ogous structures, QT = 0.2 could be a reasonable threshold, since it filters out
many candidate molecules and, even for very long query proteins, it allows several
thousands of structures at least to pass through to the second phase.

We should also remember that the first alignment phase can be turned off com-
pletely by specifying QT = 0.0. Then, all of the database molecules pass through
to the second phase, which prolongs the similarity searching process.

3.5 Discussion

The results of the efficiency tests have confirmed our expectations. Using a graphics
card with a CUDA compute capability is one of the most efficient approaches to use
when performing protein structure similarity searching. Upon comparing execution
times, we can see that theGPU-based implementation is several dozen to several hun-
dred times faster (an average of 180 times faster for QT = 0.2) than the CPU-based
implementation. This is very important, since the number of protein structures in
macromolecular databases, such as the Protein Data Bank, is growing very quickly,
and the dynamics of this growth is also increasing. The use of GPU-based imple-
mentations is particularly convenient for such processes because GPU devices are
reasonably inexpensive compared to, say, big computer clusters. Presented experi-
ments were performed on a middle-class GPU device, which was set up on a small

3.5 Discussion 75

PC workstation with two processors. For this reason, GPU devices can be usefully
applied in the implementation of many algorithms in the field of bioinformatics.

The novelty of CPU-CASSSERT lies mainly in the fast preselection phase based
on secondary structures (the low-resolution alignment phase), which precedes the
phase of detailed alignment (the high-resolution alignment phase). This allows the
number of structures that will be processed in the second, costly phase to be limited,
which, in turn, significantly accelerates the method itself. A comparison of CPU-
CASSERT with the popular DALI and FATCAT algorithms is presented in [33].

GPU-CASSERT provides additional acceleration over its CPU-based version by
executing the computational procedure in parallel threads on many cores of the GPU
device. The resulting increase in speed is even greater than those achieved with the
methods mentioned in the Sect. 3.1.3. SA Tableau Search provides a 33-fold increase
in speed when using a GTX 285 graphics card and a 24-fold increase when using a
C1060 GPU device rather than the CPU implementation. However, the optimization
procedure is based on simulated annealing, which is run in parallel CUDA threads.
Individual thread blocks perform the optimization procedure for different candidate
protein structures from a database. Protein structures are represented as tableaux
containing the orientations of secondary structure elements and distance matrices.
However, one of the problems with this algorithm is encountered when comparing
big protein structures that generate big tableaux and distancematrices, as they cannot
be stored inside the constant and shared memory during computations. This makes
it necessary to use a slower version of the GPU kernel which exploits the global
memory rather than the faster constant and shared memory. GPU-CASSERT avoids
this problembyusing a different representation of protein structures: linear sequences
of structural descriptors (where secondary structure elements are also included) are
employed rather than two-dimensional representative structures.

In terms of representation of protein structures and the implementation of the
method, GPU-CASSERT is closer to pssAlign [37], which shows up to a 35-fold
increase in speed with the NVIDIA Tesla C2050 GPU over its CPU-based imple-
mentation. Both algorithms consists of two alignment phases. The fragment-level
alignment phase of pssAlign uses an index-based matched fragment set (MFS) in
order to find so-called seeds between the target protein and each database protein.
These seeds, which are represented by the locations of theCα atoms, are used to gen-
erate initial alignments which are then refined in the residue-level alignment phase.
Just like GPU-CASSERT, both phases utilize dynamic programming. However, in
GPU-CASSERT, the low-resolution alignment is treated as a preselection phase for
detailed alignment. In contrast to pssAlign, both phases are executed independently
in GPU-CASSERT. GPU-CASSERT does not store alignment paths after the first
phase of the algorithm, which was done in the original CASSERT published in [33].
Consequently, it also does not perform backtracking in the kernel of the first phase,
since GPU-CASSERT only needs the Score measure to calculate the qualification
threshold QT for the next phase. The Score is calculated in a linear space, which also
influences the effectiveness. Backtracking is also not performed in the GPU after the
high-resolution alignment phase. It is executed on the host instead, and only for the

76 3 Parallel CUDA-Based Protein 3D Structure Similarity Searching

highest-scoring database molecules that are returned for the user to visualize. This
allows computational time to be saved.

Additional savings can be achieved when working with small query structures.
After filtering candidate database proteins based on the qualification threshold, the
program creates new, smaller data packages that are needed in the second phase.
This usually takes some time. For this reason, for shorter query proteins (less than
100 amino acids in length), it is reasonable to omit the first phase by setting the
qualification threshold to 0.0. The probability that such a small protein structure
(after it has been reduced to a chain of SE regions) will be similar to many of the
database proteins is very high. This means that all or almost all of the proteins qualify
for the next phase (this is visible in Fig. 3.14), which makes the first preselection
phase almost useless.

GPU-CASSERT also provides additional unique features. Following research
into GPU-based sequence alignments [24, 25, 28, 39], the data are arranged in an
appropriate manner before sending them to the global memory of the GPU device.
Chains of structural descriptors representing protein structures are stored in a pre-
paredmemory array that guarantees coalesced access to the globalmemory in a single
transaction. Structural descriptors are not transferred to the global memory of the
GPUdevice directly from a database, but they are stored in binary files, which enables
faster transfer, and they are sorted by their lengths in order to reduce thread idle time
once they are processed. Moreover, secondary structure descriptors of query protein
structures (in both phases) and residue types (in the second phase) are encoded as
query profiles—appropriate matrices of all possible scores. During the computations
performed on the GPU device, the query profile and substitution matrix (needed in
the second phase) are located in the texture memory. The texture memory is cached
on the chip of the graphics card and provides a higher effective bandwidth, reducing
the number of requests made to off-chip global memory. Streaming is also applied
in GPU-CASSERT in order to alternate kernel launches and memory copies, result-
ing in further acceleration. Finally, kernel codes are optimized to avoid introducing
branching via conditional statements.

3.6 Summary

Protein 3D structure similarity searching still needs efficient methods and new imple-
mentations in order to generate results in a reasonable time. This has been prevalent
taking into account exponentially growing numbers of protein structures in macro-
molecular repositories. It seems that at the current stage of development of computer
science, GPU devices provide an excellent alternative to very expensive computer
infrastructures, as they allow large increases in speed over CPU-based implemen-
tations for the same computational methods. Moreover, taking into account that the
number of processing cores and the amount of memory in modern GPU devices are
constantly growing, the computational capabilities of GPU devices are also growing
at the same time. Although, implementing computational methods requires some

3.6 Summary 77

additional effort by the user, including the need to get familiar with the completely
newCUDA architecture and programmingmodel, and to refactor the code of existing
procedures into GPU kernels, in return we can achieve much faster processing. This
is very important because, for many processes such as 3D protein structure similarity
searching, reducing computational complexity is a very difficult, if not impossible,
task. GPU-based implementations like that presented in the chapter do not reduce
the complexity, but they can speed up the process by implementing massive paral-
lelization, thus reducing the overall time required for process execution.

For the latest source codes of the GPU-CASSERT, please visit the project web
site: http://zti.polsl.pl/dmrozek/science/gpucassert/cassert.htm

For further reading on GPU-based implementations of other algorithms for bioin-
formatics I would like to recommend the book entitled Bioinformatics: High Perfor-
mance Parallel Computer Architectures by Bertil Schmidt [45]. In the next chapter,
we will see how searching for 3D protein structure similarities against huge macro-
molecular repositories can be accelerated by using Cloud computing.

References

1. Bellman, R.: On the theory of dynamic programming. Proc. Natl. Acad. Sci. USA 38(8),
716–719 (1952)

2. Berman, H., et al.: The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000)
3. Brown, N.P., Orengo, C.A., Taylor, W.R.: A protein structure comparison methodology. Com-

put. Chem. 20, 359–380 (1996)
4. Brożek, M.: Protein structure similarity searching with the use of CUDA. MSc thesis, super-

vised by Mrozek D., Silesian University of Technology, Gliwice, Poland (2012)
5. Buckner, J., Wilson, J., Seligman, M., Athey, B., Watson, S., Meng, F.: The gputools package

enbales GPU computing in R. Bioinformatics 26, 134–135 (2010)
6. Burkowski, F.: Structural Bioinformatics: An Algorithmic Approach, 1st edn. Chapman and

Hall/CRC, Boca Raton (2008)
7. Carugo, O.: Recent progress in measuring structural similarity between proteins. Curr. Protein

Pept. Sci. 8(3), 219–41 (2007)
8. Carugo, O., Pongor, S.: Recent progress in protein 3D structure comparison. Curr. Protein Pept.

Sci. 3(4), 441–449 (2002)
9. Can, T., Wang, Y.: CTSS: A robust and efficient method for protein structure alignment based

on local geometrical and biological features. In: Proceedings of the 2003 IEEE Bioinformatics
Conference (CSB 2003), pp. 169–179 (2003)

10. Coutsias, E.A., Seok, C., Dill, K.A.: Using quaternions to calculate RMSD. J. Comput. Chem.
25(15), 1849–1857 (2004)

11. Daniluk, P., Lesyng, B.: A novel method to compare protein structures using local descriptors.
BMC Bioinform. 12, 344 (2011)

12. Friedrichs,M.S., Eastman, P., Vaidynathan, V., Houston,M., Legrand, S., Beberg, A.L., Ensign,
D.L., Bruns, C.M., Pande, V.S.: Accelerating molecular dynamic simulation on graphics
processing units. J. Comput. Chem. 30(6), 864–872 (2009)

13. Gibrat, J., Madej, T., Bryant, S.: Surprising similarities in structure comparison. Curr. Opin.
Struct. Biol. 6(3), 377–385 (1996)

14. Godzik, A.: The structural alignment between two proteins: is there a unique answer? Protein
Sci. 5(7), 1325–1338 (1996)

http://zti.polsl.pl/dmrozek/science/gpucassert/cassert.htm

78 3 Parallel CUDA-Based Protein 3D Structure Similarity Searching

15. Gu, J., Bourne, P.E.: Structural Bioinformatics (Methods of Biochemical Analysis), 2nd edn.
Wiley-Blackwell, Hoboken, NJ (2009)

16. Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks. Proc. Natl.
Acad. Sci. USA 89(22), 10915–10919 (1992)

17. Holm, L., Sander, C.: Protein structure comparison by alignment of distance matrices. J. Mol.
Biol. 233(1), 123–138 (1993)

18. Holm, L., Kaariainen, S., Rosenstrom, P., Schenkel, A.: Searching protein structure databases
with DaliLite v. 3. Bioinformatics 24, 2780–2781 (2008)

19. Horn, B.K.P.: Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc.
Am. A 4(4), 629–642 (1987)

20. Jamroz, M., Kolinski, A.: ClusCo: clustering and comparison of protein models. BMC Bioin-
form. 14, 62 (2013)

21. Kabsch, W.: A solution for the best rotation to relate two sets of vectors. Acta Cryst. A 32(5),
922–923 (1976)

22. Kabsch, W.: A discussion of the solution for the best rotation to relate two sets of vectors. Acta
Cryst. A34, 827–828 (1978)

23. Lesk, A.M.: Introduction to Protein Science: Architecture, Function, and Genomics, 2nd edn.
Oxford University Press, USA (2010)

24. Liu, Y., Maskell, D., Schmidt, B.: CUDASW++: optimizing Smith-Waterman sequence data-
base searches for CUDA-enabled graphics processing units. BMC Res. Notes 2, 73 (2009)

25. Liu, Y., Maskell, D., Schmidt, B.: CUDASW++2.0: enhanced Smith-Waterman protein data-
base search on CUDA-enabled GPUs based on SIMT and virtualized SIMD abstractions. BMC
Res. Notes 3, 93 (2010)

26. Liu, Y., Wirawan, A., Schmidt, B.: CUDASW++ 3.0: accelerating Smith-Waterman protein
database search by coupling CPU and GPU SIMD instructions. BMC Bioinform. 14, 117
(2013)

27. Małysiak-Mrozek, B., Momot, A., Mrozek, D., Hera, Ł., Kozielski, S., Momot, M.: Scalable
system for protein structure similarity searching. Lect. Notes Comput. Sci. 6923, 271–280
(2011)

28. Manavski, S.A., Valle, G.: CUDA compatible GPU cards as efficient hardware accelerators for
Smith-Waterman sequence alignment. BMC Bioinform. 9, 1–9 (2008)

29. Minami, S., Sawada, K., Chikenji, G.: MICAN : a protein structure alignment algorithm that
can handle multiple-chains, inverse alignments, Ca only models, alternative alignments, and
Non-sequential alignments. BMC Bioinform. 14, 24 (2013)

30. Momot, A., Małysiak-Mrozek, B., Kozielski, S., Mrozek, D., Hera, Ł., Górczyńska-Kosiorz,
S., Momot,M.: Improving performance of protein structure similarity searching by distributing
computations in hierarchical multi-agent system. Lect Notes Artif Int 6421, 320–329 (2010)

31. Mosca, R., Brannetti, B., Schneider, T.R.: Alignment of protein structures in the presence of
domain motions. BMC Bioinform. 9, 352 (2008)

32. Mrozek, D., Małysiak-Mrozek, B.: An improved method for protein similarity searching by
alignment of fuzzy energy signatures. Int. J. Comput. Intell. Syst. 4(1), 75–88 (2011)

33. Mrozek, D., Małysiak-Mrozek, B.: CASSERT: A two-phase alignment algorithm for matching
3D structures of proteins. In: Kwiecień A., Gaj P., Stera P. (eds.) CN 2013, CCIS, vol. 370, pp.
334–343 (2013)

34. Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C.: SCOP: A structural classification of
proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536–540
(1995)

35. Nvidia, CUDA C Programming Guide (Accessed on Aug 1, 2013) http://docs.nvidia.com/
cuda/cuda-c-programming-guide/index.html

36. Ortiz, A.R., Strauss, C.E., Olmea, O.:MAMMOTH (matchingmolecularmodels obtained from
theory): an automated method for model comparison. Protein Sci. 11(11), 2606–2621 (2002)

37. Pang, B., Zhao, N., Becchi, M., Korkin, D., Shyu, C.-R.: Accelerating large-scale protein
structure alignments with graphics processing units. BMC Res. Notes 5, 116 (2012)

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

References 79

38. Pascual-Garca, A., Abia, D., Ortiz, A.R., Bastolla, U.: Cross-over between discrete and con-
tinuous protein structure space: insights into automatic classification and networks of protein
structures. PLoS Comput. Biol. 5(3), e1000331 (2009)

39. Pawłowski, R., Małysiak-Mrozek, B., Kozielski, S., Mrozek, D.: Fast and accurate similarity
searching of biopolymer sequences with GPU and CUDA. Algorithms and Architectures for
Parallel Processing, Lect Notes Comput Sci. 7016, 230–243 (2011)

40. Roberts, E., Stone, J.E., Sepúlveda, L., Hwu W.M.W., Luthey-Schulten, Z.: Long time-scale
simulations of in vivo diffusion using GPU hardware. In: IPDPS 09 Proceedings of the 2009
IEEE International Symposium on Parallel and Distributed Processing, pp. 1–8 (2009)

41. Rognes, T., Seeberg, E.: Six-fold speed-up of Smith-waterman sequence database searches
using parallel processing on common microprocessors. Bioinformatics 16, 699–706 (2000)

42. Sam, V., Tai, C.H., Garnier, J., Gibrat, J.F., Lee, B., Munson, P.J.: Towards an automatic
classification of protein structural domains based on structural similarity. BMC Bioinform. 9,
74 (2008)

43. Sanders, J., Kandrot, E.: CUDA by Example: An Introduction to General-Purpose GPU Pro-
gramming, 1st edn. Addison-Wesley Professional, Pearson Education, Inc., Boston,MA (2010)

44. Schatz, M.C., Trapnell, C., Delcher, A.L., Varshney, A.: High-throughput sequence alignment
using graphics processing units. BMC Bioinform. 8, 474 (2007)

45. Schmidt, B.: Bioinformatics: High Performance Parallel Computer Architectures (Embedded
Multi-Core Systems), 1st edn. CRC Press, Boca Raton, FL (2010)

46. Shapiro, J., Brutlag, D.: FoldMiner and LOCK2: protein structure comparison and motif dis-
covery on the web. Nucleic Acids Res. 32, 536–41 (2004)

47. Shindyalov, I., Bourne, P.: Protein structure alignment by incremental combinatorial extension
(CE) of the optimal path. Protein Eng. 11(9), 739–747 (1998)

48. Stanek, D., Mrozek, D., Małysiak-Mrozek, B.: MViewer: Visualization of protein molecular
structures stored in the PDB, mmCIF and PDBML data formats. In: Kwiecień A., Gaj P., Stera
P. (eds.) CN 2013, CCIS, vol. 370, pp. 323–333 (2013)

49. Stivala, A.D., Stuckey, P.J., Wirth, A.I.: Fast and accurate protein substructure searching with
simulated annealing and GPUs. BMC Bioinform. 11, 446 (2010)

50. Striemer, G.M., Akoglu, A.: Sequence alignment with GPU: performance and design chal-
lenges. In: IPDPS, IEEE International Symposium on Parallel and Distributed Processing, pp
1–10 (2009)

51. Suchard, M.A., Rambaut, A.: Many-core algorithms for statistical phylogenetics. Bioinformat-
ics 25(11), 1370–1376 (2009)

52. Ye, Y., Godzik, A.: Flexible structure alignment by chaining aligned fragment pairs allowing
twists. Bioinformatics 19(2), 246–255 (2003)

53. Yuan, C., Chen, H., Kihara, D.: Effective inter-residue contact definitions for accurate protein
fold recognition. BMC Bioinform. 13, 292 (2012)

54. Zemla, A.: LGA—a method for finding 3D similarities in protein structures. Nucleic Acids
Res. 31(13), 3370–3374 (2003)

55. Zhang, Y., Skolnick, J.: TM-align: a protein structure alignment algorithm based on the TM-
score. Nucleic Acids Res. 33(7), 2302–2309 (2005)

56. Zhu, J., Weng, Z.: FAST: a novel protein structure alignment algorithm. Proteins 58, 618–627
(2005)

Chapter 4
Cloud Computing for 3D Protein
Structure Alignment

Frankly, it is hard to predict what new capabilities the cloud
may enable. The cloud has a trajectory that is hard to plot and a
scope that reaches into so many aspects of our daily life that
innovation can occur across a broad range.

Barrie Sosinsky, 2011

Abstract Cloud computing provides huge amount of computational power that can
be provisioned on a pay-as-you-go basis. In this chapter, we will see the cloud-
based system for 3D protein structure alignment. The system was developed for the
Microsoft Azure cloud and reached good, almost linearly proportional acceleration
when scaled out onto many computational units. In this chapter, we will see that the
alignment process can be successfully scaled out on cloud platforms.

Keywords Proteins · 3D protein structure · Tertiary structure · Similarity search-
ing · Structure matching · Structure comparison · Structure alignment · Superposi-
tion · Cloud computing · Parallel computing · SaaS
4.1 Introduction

Popular methods for 3D protein structure similarity searching, like CE [14] and
FATCAT [18], generate high quality structural alignments, but are still very time-
consuming. As a consequence, the similarity searching against large repositories of
structural data requires increased computational resources that are not available for
everyone. Cloud computing provides huge amounts of computational power that can
be provisioned on a pay-as-you-go basis. Cloud computing emerged as a result of
requirements for the public availability of computing power, new technologies for
data processing and the need of their global standardization, becoming a mecha-
nism allowing to control the development of hardware and software resources by
introducing the idea of virtualization. Cloud computing is a model that allows a

D. Mrozek, High-Performance Computational Solutions in Protein Bioinformatics, 81
SpringerBriefs in Computer Science, DOI: 10.1007/978-3-319-06971-5_4,
© The Author(s) 2014

82 4 Cloud Computing for 3D Protein Structure Alignment

convenient, on-demand network access to a shared pool of configurable comput-
ing resources (e.g., networks, servers, storage, applications, and services) that can be
rapidly provisioned and releasedwithminimalmanagement effort or service provider
interaction [10]. In practice, cloud computing allows to run applications and services
on a distributed network using virtualized system and its resources, abstracting at
the same time from the implementation details of the system itself.

The use of cloud platforms can be particularly beneficial for companies and insti-
tutions that need to quickly gain access to a computer system which has a higher
than average computing power. In this case, the use of cloud computing services can
be more cost- effective and faster in implementation than using the owned resources
(servers and computing clusters) or buying new ones. For this reason, cloud com-
puting is widely used in business and according to the Forbes [9] the market value
of such services will significantly increase in the coming years.

4.1.1 Cloud Computing in Bioinformatics and Life Sciences

The concept of cloud computing is also becoming increasingly popular in scientific
applications for which theoretically infinite resources of the cloud allow to solve the
computationally intensive problems. Also in the domain of bioinformatics, there are
many dedicated tools that are cloud-ready and several that have been created with
the aim of working in the cloud. Beneath we will see examples of some of the tools
and systems.

CloVR is a desktop application for automated sequence analysis that can uti-
lize cloud computing resources. CloVR is implemented as a single portable vir-
tual machine (VM) that provides several automated analysis pipelines for microbial
genomics, including 16S, whole genome and metagenome sequence analysis [1].
Cloud-based CloVR was developed for Amazon EC2 and automatically provisions
additional VM instances, if the computational process requires this. Hydra [8] is
an example of the cloud-ready tool that uses Hadoop and MapReduce in the iden-
tification of peptide sequences from spectra in the mass spectrometry. CloudBurst
[13] is a parallel read-mapping algorithm optimized for mapping next-generation
sequence data to the human genome and other reference genomes, for use in a
variety of biological analyses including SNP discovery, genotyping, and personal
genomics. CloudBurst uses Hadoop and MapReduce while parallelizing execution
using multiple compute nodes. Cloud-PLBS [3] implements the SMAP software for
3D ligand binding site comparison and similarity searching of a structural proteome
on the Hadoop framework using MapReduce paradigm. Cloud-PLBS parallelizes
the SMAP tool on a virtual cloud computing platform to handle the vast amount
of experimental data on protein-ligand binding site pairs [3]. Cloud BioLinux [7]
is a publicly accessible Virtual Machine (VM) that enables scientists to quickly
provision on-demand infrastructures for high-performance bioinformatics comput-
ing using cloud platforms. Users have instant access to a range of preconfigured
command line and graphical software applications, including a full-featured desktop

4.1 Introduction 83

interface, documentation, and over 135 bioinformatics packages for applications
including sequence alignment, clustering, assembly, display, editing, and phylogeny
[7]. In the area of protein structure similarity searching, it is worth noting the work
[4] by Che-Lun Hung and Yaw-Ling Lin and the PH2 system [5]. Authors of the first
paper present the method for protein structure alignment and their own refinement
algorithm that are implemented in Hadoop and are deployed on a virtualized com-
puting environment. The PH2 system allows to store PDB files in a replicated way
on the Hadoop Distributed File System and then allows to formulate SQL queries
concerning 3D protein structures.

Cloud-based solutions for bioinformatics and life sciences usually relate to prob-
lems that require increased computational resources. As we know from the previous
chapter, protein 3D structure similarity searching is one of the computationally com-
plex and time-consuming processes. This motivates scientific efforts to develop scal-
able platforms that allow completing the taskmuch faster. Cloud computing provides
such a kind of scalable, high-performance computational platform.

4.1.2 Cloud Deployment and Service Models

Before we start describing a scalable, cloud-based solution for protein 3D structure
similarity searching we need some background that will help us to position the
solution in the cloud architecture. Developers of applications working in the cloud
usually adopt one of the deployment models and develop the application to operate
in one of the service models. In this chapter, we will take a look and explain types
of deployment models and service models that can be adopted.

Deployment models decide where the infrastructure of the cloud will be located
and managed, and who will use the cloud-based solution. We can distinguish here
four widely accepted types [10]:

• Public cloud—the infrastructure of the cloud is available for public use or a large
industry group and is owned by an organization selling cloud services;

• Private cloud—the cloud infrastructure is for the exclusive use of a single orga-
nization comprising multiple consumers (e.g., the organizational units); it does
not matter whether it is a cloud managed by the organization, and it is located
in its office; key factors for establishing private clouds seem to be: legal con-
straints, security, reliability, and lower costs for large organizations, and dedicated
solutions;

• Community cloud—the cloud infrastructure is made available for the exclusive
use of the consumer community from organizations that share common goals or
are subjected to common legal restrictions;

• Hybrid cloud—the cloud infrastructure is based on a combination of two or more
types of the above cloud infrastructures; if needed, allows for the use of public cloud
resources to provide potential increased demand for resources (cloud bursting).

84 4 Cloud Computing for 3D Protein Structure Alignment

Fig. 4.1 Cloud services
defining types of components
that will be delivered to the
consumer

Servicemodels define types of services that can be accessed on a cloud computing
platform. Among many others, three types of service are universally accepted. They
are usually presented in the form of stack as in Fig. 4.1.

The basis of the stack of services provided in clouds (Fig. 4.1) is the Infrastructure-
as-a-Service (IaaS) layer. IaaS provides basic computing resources in a virtualized
form, including: processing power, RAM, storage space, and appropriate bandwidth
for transferring data over the network, making it possible to deploy and run any
application. The IaaS service provider is responsible for the cloud infrastructure and
its management.

Platform-as-a-Service (PaaS) allows to create custom applications based on a
variety of services delivered by the cloud provider. As an addition to IaaS, the PaaS
provides operating systems, applications, development platforms, transactions, and
control structures. The cloud provider manages the infrastructure, operating systems,
and provided tools.

Software-as-a-Service (SaaS) provides services and applications with their user
interfaces that are available on an on-demand basis. The consumer is providedwith an
application running in the cloud infrastructure. The consumer does not take care of the
infrastructure, operating systems, and other components underlying the application.
Its only responsibility is an appropriate interactionwith the user interface and entering
appropriate data into the application. The user can also change the configuration of
the application and customize the user interface, if possible.

4.1.3 Microsoft Azure

Microsoft Azure is Microsoft’s application platform for the public cloud. Microsoft
Azure provides services in the Platform-as-a-Service (PaaS) model and
Infrastructure-as-a-Service (IaaS) model, while capabilities of the Software-as-a-
Service (SaaS) model are offered by Microsoft Online Services.

In Fig. 4.2, we can see how a user benefits from the application deployed to the
Microsoft Azure cloud. The architecture consists of the following elements [17]:

4.1 Introduction 85

Fig. 4.2 Application deployed to Microsoft Azure which serves as a virtualized infrastructure,
platform for developers, and gateway for hosting applications

• Application—the application that is made available to the community of users in
the cloud, usually accessed by its web-based interface, Web service, or mobile
interface.

• Compute—refers to compute capabilities of the Microsoft Azure platform provid-
ing separate services for particular needs:

– Cloud Services—represent an application that is designed to run in the cloud
service and XML configuration files that define how the cloud service should
run; the application is defined in terms of component roles that implement the
logic of the application; configuration files define the roles and resources for
an application; the following roles can be used to implement the logic of the
application:
· Web role—is a virtual machine instance used for providing a Web-based
front-end for the cloud service;

· Worker role—is a virtual machine instance used for generalized development
that performs background processing and scalable computations, accepts and
responds to requests, and performs long running or intermittent tasks;

– Virtual Machines—represent instances of virtual machines with preinstalled
operating systems (Windows Server or Linux);

86 4 Cloud Computing for 3D Protein Structure Alignment

Table 4.1 Available sizes of Microsoft Azure virtual machines (VM) based on [16]

VM/server Number of CPU core Memory (GB) Disk Space for
type CPU cores speed (GHz) Local Storage (GB)

Extra Small Shared core 1.0 0.768 19
Small 1 1.6 1.75 224
Medium 2 1.6 3.5 489
Large 4 1.6 7 999
Extra Large 8 1.6 14 2039

– Web Sites—represent websites that are created for business needs;
– Mobile Services—represent highly functional mobile applications developed
using Microsoft Azure;

• Data Services—provide the ability to store,modify, and report on data inMicrosoft
Azure; the following components of Data Services are provided:

– BLOBs—allow to store unstructured text or binary data (video, audio, and
images);

– Tables—can store large amounts of unstructured nonrelational (NoSQL) data;
– SQLDatabase—formerly SQLAzure, allow to store large amounts of relational
data;

– and others (SQL Data Sync, SQL Reporting, HDInsight).

• Networking—provide general connectivity and routing at the TCP/IP and DNS
level;

• App Services—provide multiple services related to security, performance, work-
flow management, and finally, messaging including Storage Queues and Ser-
vice Bus providing efficient communication between application tiers running
in Microsoft Azure.

• Fabric—entire compute, storage (e.g., hard drives), and network infrastructure,
usually implemented as virtualized clusters; constitutes a resource pool that con-
sists of one of more servers (called scale units).

Microsoft Azure platform allows to create five basic classes of virtual machines
with different parameters and computational power (number of cores, CPU/core
speed, amount ofmemory, efficiency of I/O channel). Table4.1 shows a list of features
for available computing units.

4.2 Cloud4Psi for 3D Protein Structure Alignment

One of the few systems in the world that utilizes cloud computing architecture to
perform 3D protein structure similarity searching is Cloud4Psi (Fig. 4.3). The system
can be scaled out (horizontal scaling) and scaled up (vertical scaling) in theMicrosoft

4.2 Cloud4Psi for 3D Protein Structure Alignment 87

Fig. 4.3 Cloud4Psi web site. For the latest information on the Cloud4Psi, please visit the project
home page: http://zti.polsl.pl/dmrozek/science/cloud4psi.htm

Azure public cloud. Scaling up allows for the expansion of computational resources
like increasing the number of processor cores, adding more memory, or moving
the workload to the computation unit possessing better performance parameters.
Horizontal scaling or scaling out, is achieved by increasing the number of the same
units and appropriate allocation of tasks among these units. Microsoft Azure allows
to combine both types of scaling. It is worth noting that in case of Cloud4Psi, vertical
scalability required designing and implementation of the application code in such a
way that it utilizes many processing cores available after scaling the system up. For
the horizontal scalability, the Cloud4Psi code had to be properly designed in order to
allow the division of tasks between computation units and operate with restrictions
on sharing resources (mainly memory).

It is worth mentioning that a part of the work was carried out in the cooperation
with Kłapciński [6], my associate in this project, and is continued by me and my
research group under the Microsoft Azure for Research Award program sponsored
by Microsoft Research. The project is entitled Cloud4Psi: Cloud Computing in the
Service of 3D Protein Structure Similarity Searching.

4.2.1 Use Case: Interaction with Cloud4Psi

Users may interact with the Cloud4Psi system on two levels. They may generate
requests for the similarity searching or they may configure Cloud4Psi, e.g., when
they want to scale up or scale out the system (Fig. 4.4). Execution of the similarity
searching and displaying its results remains the basic scenario implemented by the

http://zti.polsl.pl/dmrozek/science/cloud4psi.htm

88 4 Cloud Computing for 3D Protein Structure Alignment

Fig. 4.4 Interaction of the userwith theCloud4Psi system.Typical use cases for similarity searching
and scaling the system

Cloud4Psi. The process includes entering through a dedicatedwebsite a query protein
structure, either by providing the PDB ID code with or without the chain identifier, or
by uploading user’s structure from a local hard drive to the Cloud4Psi storage system.
Users may also choose one of the available algorithms for the similarity searching
(jCE, jFATCAT rigid, jFATCAT flexible) and define parameters of the process, if
they do not want to use default values.

A special token number is generated for the user for each search submission.
The token number can be used in order to get partial or full results of the submitted
search after some time. Users do not have to follow changes on the website, since the

4.2 Cloud4Psi for 3D Protein Structure Alignment 89

similarity searching can be a long running process. They can return to the website at
any convenient moment and check, if the process has already been completed.

The configuration and scaling of the Cloud4Psi are mainly reserved for advanced
users of the system and can be performed outside of the Cloud4Psi itself, e.g., in
Microsoft Azure management console. Cloud4Psi can be scaled up by raising the
capabilities of compute units (according to Tab. 4.1) or scaled out by adding more
searching instances.

4.2.2 Architecture and Model of the Cloud4Psi

As we know from the Sect. 4.1.3, any application that runs in the Microsoft Azure
cloud is composed of a set of roles performing some tasks. Breakdown of the roles
depends on process that is implemented and delivered by the cloud-based application.
Cloud4Psi consists of several types of roles and storage modules responsible for
gathering and exchanging data between computing roles.

The set of roles RC4Ψ working in the Cloud4Psi system is defined as follows:

RC4Ψ = {rW } ∪ {rM } ∪ RS, (4.1)

where rW is the Web role responsible for the interaction with Cloud4Psi users, rM

is the Manager role distributing requests received from the Web role and preparing
the workload, and RS is the set of Searcher roles performing embarrassingly parallel
structural alignments.

TheWeb role provides Graphical User Interface (GUI) through a friendly website
and consists of additional logical layer for even handling. Through theWeb role users
can initiate the similarity search or receive the results of the process already initiated
or completed. Logical layer is responsible for converting parameters received from
the user to a format that can be transmitted to the Manager role through the Input
queue (Fig. 4.5). TheWeb role has an access to the Storage Tables that provide results
of the similarity searches for displaying purposes. It also has an access to the virtual
hard disk storing PDB files, when the user decides to send its own PDB file to be
compared by the Cloud4Psi.

Manager role is one of the Worker roles. It distributes requests received from
the Web role, passes parameters, arranges the scope of the similarity searching, and
manages associated computational load between Searcher roles. Manager is also
responsible for the preparation of the read-only, virtual hard disk, which will be used
by Searcher roles.

Searcher roles, which are also Worker roles, bear the computational load associ-
ated with the process of protein comparison and alignment. The set of Searcher roles
RS is defined as follows:

RS = {rSi |i = 1, ..., n} (4.2)

90 4 Cloud Computing for 3D Protein Structure Alignment

Fig. 4.5 Architecture of the Cloud4Psi—aMicrosoft Azure cloud-based solution for protein struc-
ture similarity searching: Web role provides the front-end for users of the system, Manager role
mediates the distribution of the searching process, which is executed by Searcher roles. Tasks that
should be completed are transferred through Input and Output queues. Roles have an access to
various storage resources, including Storage BLOB and Storage Tables

where rSi is a single Searcher role, and n is the number of Searchers working in the
system.

Each Searcher role rSi performs batch comparisons of the given protein structure
with subsets of proteins from the repository PDB . This role type can be scaled out
and scaled up during the similarity searching process (vertical and horizontal scaling
of computational system).When scaling out, users of the Cloud4Psi change the value
of n in formula 4.2. When scaling up, users change the size of the Searcher role:

si ze(rSi) ∈ {X S, S, M, L , X L}, (4.3)

where XS denotes extra small size, S—small, M—medium, L—large, XL—extra
large. Sizes of the Searcher roles are the same as those described in Table 4.1 and
are consistent with parameters of the provided computation units.

The following assumption regarding Searcher roles is valid in the Cloud4Psi:

∈rSi ,rSj ∈RS ,i, j∈1,...,n,i ∧= j si ze(rSi) = si ze(rSj). (4.4)

4.2 Cloud4Psi for 3D Protein Structure Alignment 91

The number of instances n, on which the Searcher role can run, depends only on
the user’s choice and the range of services and resources that are provided by the
Microsoft company as the owner of theMicrosoft Azure cloud. Searcher roles receive
from the Manager role messages with the information on the scope of the main tasks
that should be performed by the particular Searcher, the name of the comparison
algorithm that should be used, and a list of PDB files to compare from a virtual hard
drive. The list of protein structures (PDB files) is called a package. Finally, Searcher
roles are responsible for entering results to a table in the Storage Table service.

Packages that are sent to Searcher roles consist of lists of structures from the main
repository PDB of PDB files:

PDB =
m⋃

i=1

pi , (4.5)

where pi is the i-th packageof protein structures, andm is the number of packages that
should be processed by all Searcher roles.Packages satisfy the following relationship:

∈1∃i, j∃m i ∧= j =→ pi ∩ p j = ⇒. (4.6)

The m depends on the repository size and the size of a package:

m =
⌈

si ze(PDB)

si ze(pi)

⌉
. (4.7)

The size of repository may include all protein structures that are available in the
Protein Data Bank [2] or can be restricted just to chosen structures. The size of the
package pi must be chosen experimentally.

The whole computing architecture of the Cloud4Psi system for protein structure
similarity searching is shown in Fig. 4.5. The system consists of three types of
roles mentioned in the model and additional modules responsible for storing and
exchanging data. These are the following:

• Table (Storage Table service), which stores the results of the similarity searching,
time stamps of the key moments of the application run (needed when studying
performance of the system), and technical parameters used globally by all roles.

• A pageable BLOB (Storage BLOBs service) that contains the virtual disk (VHD).
The disk is mounted by the Web role in the full mode, if the user chooses to
upload its own protein PDB file as a query structure, or in the read-only mode as
the current image of the PDB repository for Searcher roles performing parallel,
distributed similarity searches.

• Input queue, which collects similarity searching requests from the Web role and
provides these requests to the Manager role, where they are distributed among the
instances of the Searcher role.

• Output queue, which stores messages with the information on what part of the
PDB repository should be processed by the Searcher role that receives particular
message and comparison parameters.

92 4 Cloud Computing for 3D Protein Structure Alignment

4.2.3 Algorithms for Protein Structure Similarity Searching

Cloud4Psi allows searching for protein structure similarities by means of two
algorithms—FATCAT [18] and CE [14]. Actually, it uses new, enhanced imple-
mentations of these algorithms, called jFATCAT and jCE, published in [12]. Both
algorithms have a very well-established position among researchers and are pub-
licly available through the Protein Data Bank website for those, who want to search
for structural neighbors. Moreover, both algorithms are used for precalculated 3D-
structure comparisons for the whole PDB that are updated on a weekly basis [11].
FATCAT and CE work on the basis of matching protein structures using Aligned
Fragment Pairs (AFPs) representing parts of protein structures that fit to each other.
However, FATCAT eliminates drawbacks of many existing methods that treat pro-
teins as rigid bodies, not flexible structures. The research conducted by the authors
of the FATCAT has shown that rigid representation causes that a lot of similarities,
even very strong, are omitted. On the other hand, FATCAT allows to enter twists in
protein structures while matching their fragments providing better alignments in a
number of cases. One of the cases is shown in Fig. 4.6. It shows how two protein
structures are aligned using the CE algorithm and the FATCAT algorithm.

In Fig. 4.6a we can see structures of proteins [PDB ID: 2SPC.A] and [PDB ID:
1AJ3.A] and their alignment generated by the CE algorithm, which treats structures
as rigid bodies. Colors point out parts of the structures that were aligned. Both
structures are highly homologous,which is also reflected in their sequence alignment.
However, a different orientation of the rest of compared chains causes that these parts
are not regarded as structurally similar. This applies not only to the CE algorithm,
but also other algorithms treating proteins as rigid bodies. FATCAT is able to handle
such deformations and various orientations by entering gaps and twists (rigid body
movements). Appropriate penalty system is used in order to limit the number of
these operations. In Fig. 4.6b we can see the structural alignment of the same two
structures after entering gaps and twists. As a result, FATCAT finds new regions
reflecting structural similarity.

4.2.4 Implementation of Similarity Searching in Azure Cloud

Now let us go deeper into the implementation details of the system. Cloud4Psi allows
users to execute the similarity searching through a dedicated website. The website is
provided by the Web role. A user inputs a query protein structure, either by PDB ID
or by uploading user’s protein structure from the local hard drive, and chooses one of
the algorithms for similarity searching (jCE, jFATCAT rigid, or jFATCAT flexible).
Additionally, the user can specify parameters of the chosen algorithm. When the
user starts the search process, the Web role behaves according to the pseudocode
of the Algorithm 1. It generates a token number for the search request (line 2). The
user may return to the website after sometime with this token number, and check

4.2 Cloud4Psi for 3D Protein Structure Alignment 93

Fig. 4.6 Superposition of proteins [PDB ID: 2SPC.A] and [PDB ID: 1AJ3.A] after structural
alignments generated by the CE algorithm (a) and the FATCAT algorithm (b). Parts of the structures
that were structurally aligned are marked by using various colors. In the case of the FATCAT (b),
the structure [PDB ID: 2SPC.A] is transformed by entering a twist, which gives better alignment

whether the search process has already finished. If the user chose to upload his own
structure as the query protein, the Web role mounts the virtual hard drive in the full
mode, uploads the structure to the hard drive, and encodes the locator to the structure
in the search request message (lines 3-6). If the user chose to search similarities by
providing PDB ID code of the query protein structure, theWeb role encodes the code
in the search request message (lines 7-8). Then, the Web role generates the search
request message that is sent to the Input queue (line 10). The format of the input
message is presented in Listing 4.1.

Algorithm 1 Web role: Search request processing algorithm
1: for each search request do
2: Return token number
3: if user uploads protein structure then
4: Mount virtual hard drive (VHD) in the full mode
5: Upload user’s query protein structure
6: Encode the locator of user’s protein in the search request message
7: else
8: Encode PDB ID code of the query protein in the search request message
9: end if
10: Enqueue the search request in the Input queue
11: end for

94 4 Cloud Computing for 3D Protein Structure Alignment

1 CloudQueueMessage s e a r chReque s t = new CloudQueueMessage (
2 guid . ToS t r i ng () + " | "
3 + p a r t _ s i z e + " | "
4 + s t ruc t_num + " | "
5 + pdb_id + " | "
6 + upload_name + " | "
7 + messageTime + " | "
8 + a l go r i t hm + " | "
9 + byChain . Checked . ToS t r i ng ()) ;

10 inputQueue . AddMessage (s e a r chReque s t) ;

Listing 4.1 Format of the input message for search request (based on [6])

Input and Output queues in the Cloud4Psi use text messages. Particular com-
ponents of the text messages are separated using the | symbol. The input message
consists of eight component parts:

• a randomly generated token number (guid), which is returned to the user,
• the number of proteins in the package that should be compared by each instance
of the Searcher role in a single iteration (part_size),

• the number of proteins from the repository that will be used in the whole compar-
ison process (struct_num, used for performance tests),

• the pdb_id identifier of the user’s query protein to quickly locate it in the repository,
• the locator of the query protein structure that was uploaded from the user’s com-
puter (upload_name),

• a marker defining the time of dispatch of the search request (messageTime, used
for time statistics),

• encoded name of the algorithm used for similarity searching (algorithm), and
finally,

• the information whether the comparison is performed by using whole protein
structures or just between selected chains (ByChain).

Some of the components (e.g., guid) are used later while accessing Storage Tables
service to identify the specific outcome of the search job.

Manager Worker realizes the pseudocode of Algorithm 2. The role listens if there
are any search requests in the Input queue (line 2). Incoming requests are immediately
captured by the Manager Worker role, which divides the whole range of repository
molecules into packages (lines 3-5). Packages contain a small number of protein
structures that should be compared with user’s query protein by a single Searcher
role.Descriptors of successive packages are sent byManagerworker role asmessages
to the Output queue where they wait for being processed (lines 6–9). The format of
the message that is sent to the Output queue is shown in Listing 4.2.

4.2 Cloud4Psi for 3D Protein Structure Alignment 95

Algorithm 2 Manager role: Search request processing and package generation
algorithm
1: while true do
2: Check messages in the Input queue
3: if exists a message then
4: Retrieve the message and extract parameters
5: Divide repository PDB into smaller packages according to the defined package size
6: for each package pi ∀ PDB do
7: Encode package metadata and other parameters in the output message
8: Enqueue the output message in the Output queue
9: end for
10: end if
11: end while

1 CloudQueueMessage packageDes c r i p t o r = new CloudQueueMessage (
2 token + " | "
3 + p a r t _ s i z e + " | "
4 + s t ruc t_num + " | "
5 + pdb_id + " | "
6 + upload_name + " | "
7 + s t a r t _ p o i n t + " | "
8 + messageTime + " | "
9 + snap sho tUr i + " | "

10 + a l go r i t hm + " | "
11 + byChain
12) ;
13 outputQueue . AddMessage (p a ckageDes c r i p t o r) ;

Listing 4.2 Format of a message containing package descriptor that is sent to the Output queue
(based on [6])

Sample message from the Output queue is presented below:

4aa284b0-d1aa-42bc-9f1d-4cfcf98b2641|10|100000|1bsn.A|True|20|
3/10/2014 8:53:55 AM|
http://prot.blob.core.windows.net/drives/pdb.vhd?snapshot=...|
1|True

Most of the information stored in the message comes from the search request
message and is just forwarded to Searcher worker roles. Additionally, the package
descriptor message consists of the URL address of the mounted read-only, virtual
hard drive image containing PDB repository with protein structures (snapshotUri).
PDB identifiers of structures from the repository are placed in the file array of the
size struct_num. Searcher worker roles process packages containing the number of
structures determined by the part_size parameter starting from the start_point. The
start_point defines an offset in the PDB repository for each Searcher worker role
(Fig. 4.7). In Fig. 4.7 each square can be interpreted as a part of the whole PDB

repository (a package), which description was sent to the Output queue and will be
retrieved by a single instance of the Searcherworker role. For each package descriptor
that is generated by the Manager worker role the start_point is incremented by the
value of the package size (part_size).

96 4 Cloud Computing for 3D Protein Structure Alignment

Fig. 4.7 Division of the PDB repository based on the information in a sample message: repository
of the size struct_num = 100,000, package size part_size = 10, start_point = 20 for one of the
Searcher roles that will retrieve the message from the Output queue (based on [6])

Each SearcherWorker role processes the package by comparing the query protein
structure to structures which identifiers are contained in the package (Algorithm 3).
Identifiers of the query protein structure and candidate structures are passed in the
package descriptor message, as well as the name of comparison algorithm (mapped
to integer) that should be used (line 4).

Algorithm 3 Searcher role: Package processing algorithm
1: while true do
2: Check messages in the Output queue
3: if exists a message then
4: Retrieve the message and extract parameters
5: Get query protein structure SQ from virtual hard drive
6: for each database structure SD ∈ pi do
7: Get the candidate database structure SD from PDB repository on virtual hard drive
8: Compare structures SQ , SD with the use of selected algorithm
9: Collect comparison results in a dedicated array
10: end for
11: Save collected results in the Storage Table
12: end if
13: end while

If the Searcher worker role operates on the compute unit possessing many cores,
all cores of the compute unit are used (the task is parallelized inside the Searcher
role). Candidate protein structures described by a package descriptor message are
taken from the virtual, read-only hard drive located in the Storage Drive service
of the Azure cloud (line 6-7). After comparing all structures in the package (lines
8-9), outcomes of the comparison, i.e., PDB identifiers of structures and similarity
measures, are sent to the table of results available through the Azure Storage Tables
service (line 11).

4.2 Cloud4Psi for 3D Protein Structure Alignment 97

Fig. 4.8 Retrieving similarity
searching results from the
Cloud4Psi

Instances of the Searcher worker role work in a loop. After processing a package
the role returns to listening and capturing messages from the Output queue (lines
1-4). Successive packages are processed until there are no more messages in the
queue.

Web role allows users to check results of the similarity searching through appro-
priate web form. The Web role asks the user to provide the token number that was
generated during the execution of the process (Fig. 4.8). Results that are assigned to
the given token number are then retrieved from the Storage Tables service and are
displayed to the user.

These results include identifiers of protein structures (sorted by a chosen similarity
measure) and similarity measures specific for the similarity algorithm, e.g., Z-score,
RMSD, alignment length, P-value, TM-score, and others. The user may also display
detailed structural alignment report for a pair of query protein structure and selected
database structure returned by the Cloud4Psi. Sample detailed structural alignment
report is shown in Fig. 4.9.

98 4 Cloud Computing for 3D Protein Structure Alignment

Fig. 4.9 Detailed report showing structural alignment of sample protein structures [PDB ID:
1BSN.A] and [PDB ID: 1EWC.A]. Parts of chains marked using dark green and light green colors
reflect regions of structures that correspond to each other. A vertical line between residues reflects
structural equivalence and identical residues, a colon means structural equivalence and similar
residues, and a dot means structural equivalence, but not similar residues

4.3 Efficiency of the Cloud4Psi

In order to assess the performance of the presented architecture, the Cloud4Psi has
undergone a series of tests. During these tests the system was mainly scaled hor-
izontally. In particular, we have examined the efficiency of the similarity searches
depending on the number of instances of the Searcher role. During all tests, the Web
role and the Manager role were running on computational units of the Small size,
and sizes of the computational units for the Searcher role were variable in different
experiments. However, horizontal scaling with the use of Searchers of the Small size

4.3 Efficiency of the Cloud4Psi 99

1 2 4 8 10 16 20 30

0

10

20

30

Searcher roles

n-
fo
ld

sp
ee
du

p
FATCAT flexible CE

Fig. 4.10 Acceleration of the similarity searching as a function of the number of Searcher roles
for CE and FATCAT algorithms

turned out to be more elastic and easier in deployment. Scaling out can be performed
from theMicrosoftAzuremanagement consolewithout republishing the system from
the development environment. For this reason, we will see results for this type of
scaling. Tests were conducted for various protein structures. The results were aver-
aged. Similarity searching was carried out with the use of both algorithms, jCE and
jFATCAT (flexible), against the PDB repository containing one thousand different
structures from the Protein Data Bank. Package size was experimentally set to 10
protein structures (si ze(pi) = 10), which guarantees reasonable load balancing and
flexibility in assigning packages to Searcher roles.

In Fig. 4.10, we can observe acceleration of the similarity searching as a function
of the number of Searcher roles for both algorithms. We can notice that employing
two instances of the Searcher role speeds up the process almost twice.

Adding more Searcher roles further accelerates the process. However, the dynam-
ics of the acceleration slowly decreases. Finally, by increasing the number of Searcher
roles from 1 to 30, we gained the average n-fold speedup at the level of 26.24 for the
jCE algorithm, and 24.84 for the jFATCAT algorithm.

Although, based on the execution time measurements we have noticed that the
jCE algorithm is 25–40 % faster than jFATCAT (both variants of the jFATCAT have
similar execution times), we can see that the acceleration ratios are similar for both
algorithms. This indicates that the scalability of the Cloud4Psi does not depend on
the algorithm, but it depends on the assumed architecture and system components. In
otherwords, there are someother factors influencing the dynamics of the acceleration.
Among these factors we can distinguish the communication between roles through
the queueing system, necessity of retrieving query protein structure from repository

100 4 Cloud Computing for 3D Protein Structure Alignment

located in the virtual hard drive and the need to store partial results of the similarity
searching for each processed package in the Storage Table.

4.4 Discussion

Cloud4Psi represents a novel architectural approach in building cloud-based systems
for protein structure similarity searching and bioinformatics by implementing dedi-
cated role-based and queue-based model. Most solutions developed so far are mainly
based on preconfigured virtual machines. Their images can be setup in a cloud, if
a user wants to scale out the computational process. However, these solutions does
not provide full features of the SaaS layer.

Cloud4Psi is a fully SaaS solution. It requires the user gets familiar just with the
web-based Graphical User Interface (GUI), and everything else is hidden under the
GUI. From the viewpoint of the maintenance of the system, the role-based model
applied in the Cloud4Psi provides higher portability (inside the same cloud provider)
and significantly higher flexibility in deployment of the Cloud4Psi on various oper-
ating systems.

An interesting alternative for such a processing problems provide systems that
are built based on the Hadoop platform, like the one developed by Che-Lun Hung
and Yaw-Ling Lin and reported in [4]. This system, however, represents a different
approach to the parallel implementation of the similarity searching process, which
is based on the MapReduce paradigm. Cloud4Psi uses its own dedicated scheduling
architecture with various types of roles and queues. Using queues has several advan-
tages. Since queues provide asynchronous messaging model, users of the Cloud4Psi
need not be online at the same time. Queues reliably store requests as messages
until the Cloud4Psi is ready to process them. Cloud4Psi can be adjusted and scaled
out according to the current needs. As the dept of the request queue grows, more
computing resources can be provisioned. Therefore, such an approach allows to save
money taking into account the amount of infrastructure required to service the appli-
cation load. Finally, queue-based approach allows load balancing—as the number
of requests in a queue increases, more Searcher roles can be added to read from the
queue.

4.5 Summary

Cloud allows for immediate and temporary lease of publically available computing
infrastructure, according to current needs and without having to purchase an expen-
sive equipment. This gives the possibility to quickly enter the market, make the
product available to users, and scale it on demand with the increasing requirements.

Cloud4Psi benefits from the idea of cloud computing by utilizing computation
units to scale the process of 3D protein structure similarity searching—the process

4.5 Summary 101

that is time-consuming and very important from the perspective of structural bioin-
formatics, comparative genomics, and computational biology. In this chapter, we
could observe that scaling the process in the cloud improves the efficiency of the
search process without reducing the computational complexity of used alignment
methods.

For further reading on cloud computing I would like to recommend the book
entitled Cloud Computing Bible by Sosinsky [15]. For readers that are interested in
various applications of Hadoop framework and MapReduce programming model in
bioinformatics I recommend the fresh paper of Zou et al. [19]. In Chap.5, we will
briefly summarize the technologies used to build the solutions presented throughout
the book.

References

1. Angiuoli, S.V., Matalka, M., Gussman, A., Galens, K., et al.: CloVR: A virtual machine for
automated and portable sequence analysis from the desktop using cloud computing. BMC
Bioinformatics 12, 356 (2011)

2. Berman, H., et al.: The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000)
3. Hung,C-L.,Hua,G-J.: CloudComputing for Protein-LigandBindingSiteComparison.Biomed

Res Int. 170356 (2013)
4. Hung, C.-L., Lin, Y.-L.: Implementation of a parallel protein structure alignment service on

cloud. Int. J. Genomics 439681, 1–8 (2013)
5. Hazelhurst, S.: PH2: an hadoop-based framework for mining structural properties from the

PDB database. In: Proceedings of the 2010 Annual Research Conference of the South African
Institute of Computer Scientists and Information Technologists, pp. 104–112 (2010)

6. Kłapciński, A.: Scaling the process of protein structure similarity searching in cloud com-
puting. MSc thesis, supervised by Mrozek D., Institute of Informatics, Silesian University of
Technology, Gliwice, Poland (2013)

7. Krampis, K., Booth, T., Chapman, B., Tiwari, B., et al.: Cloud BioLinux: pre-configured and
on-demand bioinformatics computing for the genomics community. BMC Bioinform. 13, 42
(2012)

8. Lewis, S., Csordas, A., Killcoyne, S., Hermjakob, H., et al.: Hydra: a scalable proteomic search
engine which utilizes the Hadoop distributed computing framework. BMC Bioinform. 13, 324
(2012)

9. McKendrick, J.: Cloud Computing Market Hot, But How Hot? Estimates are All Over
the Map. Forbes, http://www.forbes.com/sites/joemckendrick/2012/02/13/cloud-computing-
market-hot-but-how-hot-estimates-are-all-over-the-map/ (2012). Accessed 25 Nov 2013

10. Mell, P., Grance, T.: The NIST Definition of Cloud Computing. Special Publication 800–145.
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf (2011). Accessed 25 Nov
2013

11. Prlić, A., Bliven, S., Rose, P.W., Bluhm, W.F., Bizon, C., Godzik, A., Bourne, P.E.: Pre-
calculated protein structure alignments at the RCSB PDB website. Bioinformatics 26, 2983–
2985 (2010)

12. Prlić, A., Yates, A., Bliven, S.E., et al.: BioJava: an open-source framework for bioinformatics
in 2012. Bioinformatics 28, 2693–2695 (2012)

13. Schatz, M.C.: CloudBurst: highly sensitive read mapping with MapReduce. Bioinformatics
25(11), 1363–1369 (2009)

14. Shindyalov, I., Bourne, P.: Protein structure alignment by incremental combinatorial extension
(CE) of the optimal path. Protein Eng. 11(9), 739–747 (1998)

http://dx.doi.org/10.1007/978-3-319-06971-5
http://www.forbes.com/sites/joemckendrick/2012/02/13/cloud-computing-market-hot-but-how-hot-estimates-are-all-over-the-map/
http://www.forbes.com/sites/joemckendrick/2012/02/13/cloud-computing-market-hot-but-how-hot-estimates-are-all-over-the-map/
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

102 4 Cloud Computing for 3D Protein Structure Alignment

15. Sosinsky, B.: Cloud Computing Bible, 1st edn. Wiley, New York (2011)
16. Microsoft Azure Cloud Services Specification: Virtual Machine and Cloud Service Sizes

for Microsoft Azure. http://msdn.microsoft.com/en-us/library/windowsazure/dn197896.aspx
(2013). Accessed 25 Nov 2013

17. Microsoft Azure Specification. http://msdn.microsoft.com/en-us/library/windowsazure/
dd163896.aspx (2013). Accessed 25 Nov 2013

18. Ye, Y., Godzik, A.: Flexible structure alignment by chaining aligned fragment pairs allowing
twists. Bioinformatics 19(2), 246–255 (2003)

19. Zou, Q., Li, X.B., Jiang, W.R., Lin, Z.Y., Li, G.L., Chen, K.: Survey of MapReduce frame
operation in bioinformatics. Brief Bioinform. 1–11 (2013)

http://msdn.microsoft.com/en-us/library/windowsazure/dn197896.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/dd163896.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/dd163896.aspx

Chapter 5
General Discussion and Concluding Remarks

At its essence, the field of bioinformatics is about comparisons.

Jonathan Pevsner, 2009 [1]

Abstract In this chapter, I will try to summarize what we talked about through all
four chapters. The chapter summarizes various types of parallelisms that were used
while comparing proteins based on different features of their structures. I also give
some advantages and drawbacks of the presented high-performance computational
solutions for protein comparison, alignment, matching, and similarity searching.

5.1 General Discussion

Numerous solutions for protein similarity searching prove that it is one of the impor-
tant tasks performed in the domain of protein bioinformatics. The process can be
carried out due to various reasons, like protein identification, protein function iden-
tification, phylogeny reconstruction, and others. It can be also supportive for protein
structuremodeling. The computational complexity of a plethora ofmethods that were
developed for protein similarity searching, protein alignment, and protein structure
matching implies the necessity of using advanced techniques and computational
architectures to complete these tasks in a reasonable time. In this book, we could see
some of the techniques and architectures that benefit from the recent achievements
in the field of computing and parallelism.

It is worth noting that techniques andmethods presented in the successive chapters
of this book are based on various types of parallelism. The search engine for the PSS-
SQL language uses multithreading during the calculation of the similarity matrix.
The matrix is divided into areas, these areas are assigned to multiple threads, and the
calculation of the whole matrix is parallelized on multicore CPU. Multiple threads
calculate one similarity matrix. The calculation of areas is dependent on the cal-
culation of other areas in the matrix, which requires a synchronization of threads

D. Mrozek, High-Performance Computational Solutions in Protein Bioinformatics, 103
SpringerBriefs in Computer Science, DOI: 10.1007/978-3-319-06971-5_5,
© The Author(s) 2014

104 5 General Discussion and Concluding Remarks

and slows down the calculation process. However, upon omitting disadvantages, this
solution is faster than a single-core implementation and portable to any PC computer,
since it adapts to the number of cores possessed by the user.

On the other hand, the GPU-CASSERT makes use of many-core GPU devices
and multiple threads for finding structural similarities between the given protein and
proteins from the database. In this solution, regardless of the phase of the matching
algorithm, the similaritymatrix for a pair of compared protein structures is calculated
by a single thread. Multiple threads, working in parallel, calculate multiple similarity
matrices for multiple database proteins. Threads are completely independent. This
allows to avoid costly synchronizations, increases performance of the solution, but
this also requires a lot of macromolecular data to be transferred to the GPU device at
the same time, which implies the use of a low-bandwidth, off-chip global memory.
Similarly to the PSS-SQL search engine, the GPU-CASSERT also divides each
similarity matrix into areas of the fixed size. However, it does so because the number
of registers per thread is limited and GPU-CASSERT tries to minimize the number
of read/write transactions to the memory structures (especially global memory) of
the GPU device. GPU-CASSERT requires dedicated GPU devices with the CUDA
compute capability, which is not available on everyworkstation. However, it provides
much better efficiency than its CPU-based counterpart.

Finally, Cloud4Psi utilizes many instances of virtual machines that serve as com-
pute units. Each Searcher role, as a compute unit, works independently of every other
Searcher role.While looking for protein similarities, Searchers execute in parallel the
same logic of protein structure comparison, alignment and superposition for different
3D protein structures from the data repository. Actually, the Cloud4Psi is a represen-
tative of the parametric sweep application and the entire process is embarrassingly
parallel or delightfully parallel. The Manager role passes different initial parameters
to the Searchers working on each compute node through the queueing system. This
lets each Searcher apply the same logic to different macromolecular data. To avoid
excessive exchange of messages, each Searcher performs calculations for a group
of proteins from the repository, one by one. Many Searchers work concurrently,
processing separate groups of protein structures. The number of Searchers depends
on the amount of available cloud resources. At the moment, we are working on the
more efficient version of the Cloud4Psi that will join two types of parallelism, i.e.,
independent computations for a group of proteins from the repository (parametric
sweep) and multithreaded, independent calculations for proteins inside each group
performed on many-core CPUs. In such a way, the Cloud4Psi could be scaled out
by adding more compute units and efficiently scaled up by using compute units of
higher compute capabilities. Of these three solutions, Cloud4Psi requires the compu-
tational resources that are not available to everyone. However, it gives the possibility
of unlimited scaling out.

5.2 Concluding Remarks 105

Fig. 5.1 Beautiful structure of the human topoisomerase I/DNA complex [PDB ID: 1A36] [3]
responsible for relaxing and untangling DNA strands in the nucleus. Visualized using RasMol
[2]—representation modes: (left) atomic, (middle) ribbons (secondary structures), (right) spacefill

5.2 Concluding Remarks

Beautiful structures of proteins, like the one presented in Fig. 5.1, are definitely worth
creating efficient methods for their exploration and analysis, with the aim of mining
the knowledge that will improve human life in further perspective.While writing this
book, I tried to pass through various representation levels of protein structures and
showmethods suitable for the particular level. In the successive chapters of the book,
I described methods that were developed either by myself or as a part of projects that
I was involved in. Certainly, there are other solutions for the presented problems,
which I referenced in particular chapters, but I hope that the solutions presented in
the book will turn out to be interesting and helpful for scientists, researchers, and
software developers working in the field of protein bioinformatics.

Supplementary materials are available from home pages of a particular project:

• PSS-SQL project home page:
http://zti.polsl.pl/dmrozek/science/pss-sql.htm

• GPU-CASSERT project home page:
http://zti.polsl.pl/dmrozek/science/gpucassert/cassert.htm

• Cloud4Psi project home page:
http://zti.polsl.pl/dmrozek/science/cloud4psi.htm

http://zti.polsl.pl/dmrozek/science/pss-sql.htm
http://zti.polsl.pl/dmrozek/science/gpucassert/cassert.htm
http://zti.polsl.pl/dmrozek/science/cloud4psi.htm

106 5 General Discussion and Concluding Remarks

References

1. Pevsner, J.: Bioinformatics and Functional Genomics, 2nd edn.Wiley-Blackwell, Boston (2009)
2. Sayle, R.: RasMol, Molecular graphics visualization tool. Biomolecular Structures Group,

GlaxoWelcomeResearch&Development, Stevenage. http://www.umass.edu/microbio/rasmol/
(1998). Accessed 5 Feb 2013

3. Stewart, L., Redinbo, M.R., Qiu, X., Hol, W.G., Champoux, J.J.: A model for the mechanism
of human topoisomerase I. Science 279(5356), 1534–1541 (1998)

http://www.umass.edu/microbio/rasmol/

Index

Symbols
3D protein structure, 2

A
AFP, 50, 92
Aligned fragment pairs, 50, 92
Alpha helices, 6, 7
Amino acid chain, 4
Amino acid sequence, 4
Amino acids, 2
Atoms, 2

B
Backbone, 10
Backtracking, 32, 60
Beta strands, 6, 7
Block index, 61
Bond angles, 14
Bond lengths, 3, 13
Bonded interactions, 18
Bonds, 3

C
Cartesian coordinates, 3
Cloud computing, 81
Cloud deployment models, 83
Cloud service models, 84
Clustered index, 30
Coalesced access, 62, 76
Community cloud, 83
Compute Unified Device Architecture, 51
Conformational energy, 17
Constant memory, 51
Contact patterns, 50

Coulomb potential, 18
Critical section, 35
CUDA, 51, 61, 104
CUDA blocks, 51
CUDA grid, 51
CUDA streams, 65

D
Database management system, 27, 36
Declarative query language, 26
Delightfully parallel process, 104
Dihedral angles, 14
Disulfide bridges, 10, 11
Dynamic programming, 56, 75

E
Electrostatic potential, 18
Embarrassingly parallel process, 104
Energy minimization, 13
Enzymes, 2

F
Fold recognition, 8
FOR XML clause, 40
Force fields, 17
Functional groups, 9

G
Gap penalty, 32, 57
General purpose graphics processing units,

51
Genetic code, 4
Global memory, 51, 60, 63, 76, 104

D. Mrozek, High-Performance Computational Solutions in Protein Bioinformatics, 107
SpringerBriefs in Computer Science, DOI: 10.1007/978-3-319-06971-5,
© The Author(s) 2014

108 Index

GPGPU, 51
GPU, 51, 60, 104
GPU registers, 51
Graphics processing units, 51

H
High-resolution alignment, 56
Homology modeling, 8
Horizontal scaling, 86
Hybrid cloud, 83

I
IaaS, 84
Infrastructure-as-a-Service, 84
Inter-residue distances, 50
Interatomic distances, 14

K
Kernel, 51, 66

L
Local alignment, 27
Loops, 6, 7
Low resolution alignment, 55, 56, 75

M
Macromolecules, 2
Microsoft Azure, 84, 85
Microsoft Azure virtual machine size, 86
Microsoft SQL Server, 27, 36
Molecular dynamics, 17
Molecular mechanics, 17
Molecular residue descriptors, 54, 62, 68
Multiprocessor, 52
Multithreading, 103
Mutual-exclusion lock, 35

N
Nonbonded interactions, 18

O
Object-oriented database, 27
OODB, 27
Oracle, 27

P
PaaS, 84

Page-locked memory, 65
Parallel alignments, 69
Parametric sweep, 104
Peptide bond, 4, 14
Platform-as-a-Service, 84
Polypeptide sequence, 4
Potential energy, 17
Primary structure, 4
Private cloud, 83
Protein conformation, 2
Protein folding, 8
Protein sequence, 4
Protein similarity searching, 49
Protein spatial structure, 2, 4
Protein structure matching, 55, 92
Protein synthesis, 4
Proteins, 1
PSS-SQL, 36, 38–40
Public cloud, 83

Q
Qualification threshold, 71
Quaternary structure, 11
Quaternions, 59
Query pattern, 37, 38
Query profile, 65
Queues, 86, 91, 93, 104

R
Ramachandran plot, 16
Reduced chains of secondary structures, 54,

62, 64
Relational databases, 26
Relative coordinates, 13
RMSD, 59
Root mean square deviation, 59

S
SaaS, 84
Scalar processor cores, 51, 52
Scaling out, 86
Scaling up, 86
Secondary structure, 6
Secondary structure elements, 28, 50, 62
Secondary structure types, 29
SELECT statement, 26, 38, 40
Semaphore, 34
Service Bus, 86
Shape signatures, 50
Shared memory, 51
SIMD, 52

Index 109

Similarity matrix, 33, 56
Similarity measure, 63
SIMT, 52
Single instruction, multiple data, 52
Single instruction, multiple thread, 52
Singular Value Decomposition, 59
Software-as-a-Service, 84
SQL, 26, 36, 38, 39
SSEs, 28
Sterical collisions, 16
Storage BLOB, 86, 91
Storage Tables, 86, 91
Streaming multiprocessor, 51
Structural alignment, 89, 92, 104
Structure comparison, 104
Superposition, 59, 64, 104
Synchronization, 36, 103, 104

T
Tertiary structure, 8, 9
Texture memory, 51
Thread index, 61

Threads, 33, 34, 51, 52, 61, 103, 104
Torsion angles, 14, 16
Transact-SQL, 27
Twists, 92
Two-phase alignment algorithm, 56

V
Valence angles, 14
Van der Waals potential, 18
Vertical scaling, 86
Virtualization, 81, 104

W
Warp, 52, 61
Wavefront, 34
Web role, 85, 89
Worker role, 85, 89

X
XML, 40

	Foreword by Jack Dongarra
	Foreword by Albert Y. Zomaya
	Preface
	Acknowledgments
	Contents
	Acronyms
	1 Formal Model of 3D Protein Structures for Functional Genomics, Comparative Bioinformatics, and Molecular Modeling
	1.1 Introduction
	1.2 General Definition of Protein Spatial Structure
	1.3 A Reference to Representation Levels
	1.3.1 Primary Structure
	1.3.2 Secondary Structure
	1.3.3 Tertiary Structure
	1.3.4 Quaternary Structure

	1.4 Relative Coordinates of Protein Structures
	1.5 Energy Properties of Protein Structures
	1.6 Summary
	References

	2 Multithreaded PSS-SQL for Searching Databases of Secondary Structures
	2.1 Introduction
	2.2 Storing and Processing Secondary Structures in a Relational Database
	2.2.1 Data Preparation and Storing
	2.2.2 Indexing of Secondary Structures
	2.2.3 Alignment Algorithm
	2.2.4 Multithreaded Implementation

	2.3 SQL as the Interface Between User and the Database
	2.3.1 Pattern Representation in PSS-SQL Queries
	2.3.2 Sample Queries in PSS-SQL

	2.4 Efficiency of the PSS-SQL
	2.5 Discussion
	2.6 Summary
	References

	3 Parallel CUDA-Based Protein 3D Structure Similarity Searching
	3.1 Introduction
	3.1.1 What Makes the Problem
	3.1.2 CUDA Architecture and Construction of GPU Devices
	3.1.3 CUDA-Enabled GPUs in Processing Biological Data

	3.2 CASSERT for Protein Structures Similarity Searching
	3.2.1 General Course of the Matching Method
	3.2.2 First Phase: Low-Resolution Alignment
	3.2.3 Second Phase: High-Resolution Alignment
	3.2.4 Third Phase: Structural Superposition and Alignment Visualization

	3.3 GPU-Based Implementation of the CASSERT
	3.3.1 Data Preparation
	3.3.2 Implementation of Two-Phase Structural Alignment in a GPU
	3.3.3 First Phase of Structural Alignment in the GPU
	3.3.4 Second Phase of Structural Alignment in the GPU

	3.4 GPU-CASSERT Efficiency Tests
	3.5 Discussion
	3.6 Summary
	References

	4 Cloud Computing for 3D Protein Structure Alignment
	4.1 Introduction
	4.1.1 Cloud Computing in Bioinformatics and Life Sciences
	4.1.2 Cloud Deployment and Service Models
	4.1.3 Microsoft Azure

	4.2 Cloud4Psi for 3D Protein Structure Alignment
	4.2.1 Use Case: Interaction with Cloud4Psi
	4.2.2 Architecture and Model of the Cloud4Psi
	4.2.3 Algorithms for Protein Structure Similarity Searching
	4.2.4 Implementation of Similarity Searching in Azure Cloud

	4.3 Efficiency of the Cloud4Psi
	4.4 Discussion
	4.5 Summary
	References

	5 General Discussion and Concluding Remarks
	5.1 General Discussion
	5.2 Concluding Remarks
	References

	Index

