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PREFACE 

Computational chemistry is a very diverse field spanning from the development and application of 
linear free energy relationships (e.g. QSAR, QSPR), to electronic structure calculations, molecular 
dynamics simulations, and to solving coupled differential equations (e.g. drug metabolism). The 
focus of Frontiers in Computational Chemistry is to present material on molecular modeling 
techniques used in drug discovery and the drug development process. Topics falling under this 
umbrella include computer aided molecular design, drug discovery and development, lead 
generation, lead optimization, database management, computer and molecular graphics, and the 
development of new computational methods or efficient algorithms for the simulation of chemical 
phenomena including analyses of biological activity. In this volume, we have collected eight 
different perspectives in the application of computational methods towards drug design. 

In chapter 1 “Computational Strategies to Incorporate GPCR Complexity in Drug Design” the 
authors review various computational approaches to G protein-coupled receptors (GPCRs). They 
review the use of GPCR databases to extract starting information about the structure and function 
of these systems. The authors also review different strategies currently being probe the molecular 
mechanisms of drug action as well as the development of new drugs. 

The topic of chapter 2 “Knowledge-Based Drug Repurposing: A Rational Approach Towards the 
Identification of Novel Medical Applications of Known Drugs” is of current interest in the 
pharmaceutical industry. As we learn more about the biochemical pathways and the interactions of 
compounds with proteins of these pathways, one can gain an appreciation of how current and 
previous drugs can be used for other medical uses. This chapter discusses the use of 
cheminformatics and bioinformatics in identifying new insights about known drugs. 

Chapter 3, “Tuning the Solvation Term in the MM-PBSA/GBSA Binding Affinity Predictions” 
focuses on the development and application of a computational tool. A widely used method, 
Molecular Mechanics Poisson-Boltzmann (Generalized Born) Surface Area (MM-PBSA, MM-
GBSA), is discussed in terms of applying the method to calculate accurate binding affinities. The 
authors point out that in order to obtain good, reliable results the MM-PBSA or MM-GBSA 
methods need to be tuned for a particular system. In particular, they focus on interior dielectric 
constant as well as the PB and GB solvers. 

A very active area of experimental and computational research is protein-protein interactions that 
is the topic of Chapter 4, “Recent Advances in the Discovery and Development of Protein-Protein 
Interaction Modulators by Virtual Screening”. In particular, the application of virtual screening 
methods to find compounds that modulate protein-protein interactions. This is a very challenging 
task since protein interfaces are flat, large, and lack distinct features. The authors provide a review 
of the use of virtual screening in protein-protein interactions as its role in drug discovery. 

Across the scientific field, we come across the term “big data.” In particular, that data generated 
from genomic projects is overwhelming. In Chapter 5 “Computational Design of Biological 
Systems: From Systems to Synthetic Biology” the authors describe the development and use of 
computational methods on large biological data sets to potentially engineer circuits. This systems 



biology approach to understanding biological function is being used to develop synthetic 
biological systems. Such developments have potential uses in biotechnology and in the 
development of strategies to treat various diseases such as cancer. 

Biological systems are complex systems to study. In Chapter 6, “Considering the Medium when 
Studying Biologically Active Molecules: Motivation, Options and Challenges” we are reminded 
that when studying biological systems not to forget the environment surrounding the system. Most 
of the time, the environment is left out due to its complexity; however, one must keep in mind that 
the environment may play a significant role in biological activity. The authors review some insight 
into how to appropriately include the environment into the study of a particular biological system.  

As computational power, hardware and software, continue to increase so do the systems, both 
temporally and spatially. One approach to address the increase in systems is presented in Chapter 
7 “New frontiers of coarse-grained approach to protein folding.” Coarse-graining involves the 
reduction in the number of particles of the system by representing a small group of particles, e.g. 
an amino side-chain by a single particle. This reduction in the number of particles to represent a 
biological system has the potential to allow for greater exploration of the free energy landscape as 
well as simulation increased timescales. The authors review the use of coarse-graining in the study 
of protein folding. 

The last chapter “Computational chemistry strategies-tackling function and inhibition of 
pharmaceutically relevant targets” reviews the various computational methods used to identify 
pharmaceutically relevant targets. The authors illustrate the application of various tools from first 
principles to empirical methods in the discovery and development of new compounds that 
potentially lead or become the next drug. They appropriately point out that it is through the 
combination of experiment and computations that lead to significant advancement in molecular 
medicine. 

Zaheer Ul-Haq  

Panjwani Center for Molecular Medicine & Drug Research 
International Center for Chemical & Biological Sciences 

University of Karachi 
Pakistan 

& 

Jeffry D. Madura 

Department of Chemistry & Biochemistry 
Center for Computational Sciences 

Duquesne University, Pittsburgh 
USA 

Prefaceviii



List of Contributors 

Adam K. Sieradzan Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-952 
Gdańsk, Poland and Department of Physics and Astronomy and Science 
for Life Laboratory, Uppsala University, P.O. Box 803, S-75108 
Uppsala, Sweden 

Adam Liwo Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-952 
Gdańsk, Poland 

Agnieszka A. Kaczor University of Eastern Finland, School of Pharmacy, Department of 
Pharmaceutical Chemistry, Kuopio, Finland and Department of 
Synthesis and Chemical Technology of Pharmaceutical Substances, 
Faculty of Pharmacy with Division for Medical Analytics, Medical 
University of Lublin, Lublin, Poland 

Alan Talevi Medicinal Chemistry, Department of Biological Sciences, Faculty 
of Exact Sciences, National University of La Plata, Buenos Aires, 
Argentina 

Alessandro Contini Dipartimento di Scienze Farmaceutiche - Sezione di Chimica Generale 
e Organica “Alessandro Marchesini”, Università degli Studi di Milano, 
Via Venezian, 21 20133 Milano, Italy 

Antti Niemi Department of Physics and Astronomy and Science for Life Laboratory, 
Uppsala University, P.O. Box 803, S-75108 Uppsala, Sweden and 
Laboratoire de Mathematiques et Physique Theorique CNRS UMR 
6083, Fédération Denis Poisson, Université de Tours, Parc de 
Grandmont, F37200 Tours, France and Department of Physics, Beijing 
Institute of Technology, Haidian District, Beijing 100081, People’s 
Republic of China 

Carolina L. Bellera Medicinal Chemistry, Department of Biological Sciences, Faculty of 
Exact Sciences, National University of La Plata, Buenos Aires, 
Argentina 

Chung-Hang Leung State Key Laboratory of Quality Research in Chinese Medicine, 
Institute of Chinese Medical Sciences, University of Macau, Macao, 
China 

Daniel Shiu-Hin Chan Department of Chemistry, Hong Kong Baptist University, Kowloon 
Tong, Hong Kong, China 

Dik-Lung Ma Department of Chemistry, Hong Kong Baptist University, Kowloon 
Tong, Hong Kong, China 

Eduardo A. Castro Institute of Physicochemical Theoretical and Applied Research 
(INIFTA), National Council of Scientific and Technical Research 
(CONICET) CCT La Plata, Buenos Aires, Argentina 

Irene Maffucci Dipartimento di Scienze Farmaceutiche - Sezione di Chimica Generale 
e Organica “Alessandro Marchesini”, Università degli Studi di Milano, 



Via Venezian, 21 20133 Milano, Italy 

Jana Selent Research Programme on Biomedical Informatics (GRIB), Department 
of Experimental and Health Sciences, Universitat Pompeu Fabra, IMIM 
(Hospital del Mar Medical Research Institute), Barcelona, Spain  

Li-Juan Liu State Key Laboratory of Quality Research in Chinese Medicine, 
Institute of Chinese Medical Sciences, University of Macau, Macao, 
China 

Liliana Mammino Department of Chemistry, University of Venda, South Africa 

Luis E. Bruno-Blanch Medicinal Chemistry, Department of Biological Sciences, Faculty of 
Exact Sciences, National University of La Plata, Buenos Aires, 
Argentina 

Marco De Vivo Drug Discovery and Development, Italian Institute of Technology, 
Genoa, Italy 

María L. Sbaraglini Medicinal Chemistry, Department of Biological Sciences, Faculty of 
Exact Sciences, National University of La Plata, Buenos Aires, 
Argentina 

Maria Marti-Solano Research Programme on Biomedical Informatics (GRIB), Department 
of Experimental and Health Sciences, Universitat Pompeu Fabra, IMIM 
(Hospital del Mar Medical Research Institute), Barcelona, Spain 

Matteo Dal Peraro Institute of Bioengineering, School of Life Sciences, 
ÉcolePolytechniqueFédérale de Lausanne (EPFL), Lausanne, 
Switzerland and Swiss Institute of Bioinformatics (SIB), Lausanne, 
Switzerland 

Mauricio E. Di Ianni Medicinal Chemistry, Department of Biological Sciences, Faculty of 
Exact Sciences, National University of La Plata, Buenos Aires, 
Argentina 

Michele Cascella Department of Chemistry and Centre for Theoretical and Computational 
Chemistry (CTCC), University of Oslo, Oslo, Norway;  

Milsee Mol National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune 
University Campus, Pune 411007, India 

Modi Wang Department of Chemistry, Hong Kong Baptist University, Kowloon 
Tong, Hong Kong, China 

Mwadham M. Kabanda Department of Chemistry, North-West University (Mafikeng Campus), 
South Africa 

Rafik Karaman Bioorganic Chemistry Department, Faculty of Pharmacy Al-Quds 
University, P.O. Box 20002, Jerusalem, Palestine 

Ramon Guixà-González Research Programme on Biomedical Informatics (GRIB), Department 
of Experimental and Health Sciences, Universitat Pompeu Fabra, IMIM 
(Hospital del Mar Medical Research Institute), Barcelona, Spain  

List of Contributorsx



Shailza Singh National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune 
University Campus, Pune 411007, India 

Sheng Lin Department of Chemistry, Hong Kong Baptist University, Kowloon 
Tong, Hong Kong, China 

Xubiao Peng Department of Physics and Astronomy and Science for Life Laboratory, 
Uppsala University, P.O. Box 803, S-75108 Uppsala, Sweden 

 

List of Contributors xi



 Frontiers in Computational Chemistry, Vol. 1, 2015, 3-43 3 

CHAPTER 1 

Computational Strategies to Incorporate GPCR Complexity in 
Drug Design 

Maria Marti-Solano1, Agnieszka A. Kaczor2,3,*, Ramon Guixà-González1 and 
Jana Selent1,* 

1Research Programme on Biomedical Informatics (GRIB), Department of 
Experimental and Health Sciences, Universitat Pompeu Fabra, IMIM (Hospital 
del Mar Medical Research Institute), Barcelona, Spain; 2University of Eastern 
Finland, School of Pharmacy, Department of Pharmaceutical Chemistry, Kuopio, 
Finland and 3Department of Synthesis and Chemical Technology of Pharmaceutical 
Substances, Faculty of Pharmacy with Division for Medical Analytics, Medical 
University of Lublin, Lublin, Poland 

Abstract: G protein-coupled receptors (GPCRs) represent the most important family of 
drug targets to date. However, state-of-the-art experimental procedures, able to 
characterize in deep both GPCR modulation in health and disease and the molecular 
mechanisms of drug action at these receptors, have provided a more nuanced picture 
than previously expected. Several aspects of GPCR function, which are currently being 
characterized, clarify some regulatory processes regarding these receptors and, at the 
same time, introduce novel levels of complexity which should be taken into 
consideration for rational drug design. In this scenario, computational approaches can 
help in several ways rationalize the increasing amount of data on GPCRs and their 
ligands. On the one hand, a set of databases devoted to these receptors provide excellent 
starting points for data mining. On the other, exploitation of the ever-increasing ligand 
and structure-based information by novel computational techniques can help addressing 
emerging questions in the GPCR field. Some of these questions comprise the refined 
modulation of GPCR signaling states by biased agonists, the exploitation of GPCR 
oligomers as drug targets, the analysis of polypharmacology in GPCR ligands, the 
development of strategies for receptor deorphanization or the prediction of off-target 
interactions of known drugs targeting these receptors. In this chapter, we will cover 
some of these strategies for knowledge-based rational design for GPCRs and will 
discuss the main hurdles which they may need to overcome to yield novel, safer and 
more efficacious drugs possessing polished mechanisms of action. 

*Corresponding author Jana Selent: Research Programme on Biomedical Informatics (GRIB), Department 
of Experimental and Health Sciences, Universitat Pompeu Fabra, IMIM (Hospital del Mar Medical Research 
Institute), Dr. Aiguader 88, E-08003 Barcelona (Spain) / University of Eastern Finland, School of Pharmacy, 
Department of Pharmaceutical Chemistry, Yliopistoranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland; 
Tel/Fax: +39 933 160 648/+34 933 160 550; E-mail: jana.selent@upf.edu 
Agnieszka A. Kaczor: Medical University of Lublin, Faculty of Pharmacy with Division for Medical 
Analytics, Department of Synthesis and Chemical Technology of Pharmaceutical Substances, 4A Chodzki 
St., 20093 Lublin, Poland; Tel: +48 81448 7270; Fax: +48 81448 7272; E-mail: agnieszkakaczor@umlub.pl 

Zaheer Ul-Haq and Jeffry D. Madura (Eds). Copyright © 2015 Bentham Science Publishers Ltd.  
Published by Elsevier Inc. All rights reserved. 10.1016/B978-1-60805-865-5.50001-0
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Keywords: Allosteric modulation, biased agonism, chemogenomics, drug design, 
G protein-coupled receptors, homology modeling, ligand promiscuity, molecular 
dynamics, oligomerization, virtual screening,  

1. INTRODUCTION 

G protein-coupled receptors (GPCRs) are transmembrane proteins responsible for 
the transmission of signals to the intracellular milieu upon detection of a wide 
variety of extracellular stimuli. About a thousand human genes code for this type 
of receptors [1], which are implicated in most physiological processes involving 
communication between cells or detection of exogenous signals such as light, 
odorants or flavors. Due to their importance in cell physiology, these receptors 
have historically received special attention in drug discovery, even before they 
were thoroughly characterized. Indeed, GPCRs are considered the most important 
drug targets to date [2]. 

All GPCRs are characterized by a set of common structural features: they have an 
extracellular N-terminal domain and an intracellular C-terminal domain, 
connected by seven helices which cross the plasma membrane. Classification 
according to phylogenetic criteria yields the following five GPCR families: 
Glutamate, Rhodopsin, Adhesion, Frizzled/Taste2 and Secretin [3]. The 
Rhodopsin family (also termed class A) has been the most exploited one in drug 
discovery and it is estimated that drugs targeting this family of receptors represent 
approximately a 25% of marketed small molecules [4]. Structural information on 
GPCR topology has dramatically increased during the past years, in part thanks to 
the development of original crystallographic strategies [5]. In this sense, 
crystallization of the ternary complex formed by the active β2-adrenergic receptor 
in complex with an agonist and coupled to a G protein, represented a major 
advance for the understanding of the structural basis of GPCR functioning [6] 
(Fig. 1). Besides that, several other representatives of class A GPCRs have been 
crystallized in complex with ligands covering a wide range of activities, thus 
providing detailed insight into the nature of specific ligand-receptor interactions 
[7]. Finally, recent crystallization of the Smoothened [8] and Corticotropin 
Releasing Factor [9] receptors has shed light into structural receptor diversity 
beyond the class A GPCR family. This structural information is helping in the 
understanding of GPCR functioning and, at the same time, contributing to unravel 
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single receptor could couple to more than one G protein type and, besides that, 
that GPCRs could trigger G protein-independent pathways, stimulated a more 
nuanced characterization of GPCR ligands. This characterization led researchers 
to realize that there are ligands, which would later be named biased agonists, 
capable of preferentially activating one receptor-associated pathway over another. 
This has been related to the existence of multiple receptor states, with different 
propensities to couple to G proteins or other signaling partners, and which can be 
differentially stabilized by biased compounds. This complex receptor modulation, 
which has been termed functional selectivity [10], has opened a new avenue for 
the interrogation of specific GPCR-activated pathways and their impact on health 
and disease, as well as for the subsequent detection of pathway-selective drugs 
with a refined mechanism of action [11]. In this way, characterization of the 
importance of particular pathways associated with a given receptor can provide 
insight into the optimal functional selectivity profile for the treatment of a 
particular disease. This is the case for niacin [12], a compound which binds to the 
GPR109A receptor and, by lowering cAMP levels through stimulation of Gαi/Gαo 
proteins, reduces the production of triglycerides and LDL. However, niacin can 
also lead to dermatological side effects mediated by β-arrestin signaling, such as 
skin itching and flushing, which limit its clinical use. For this reason, the 
development of a biased agonist capable of binding to the GPR109A receptor, and 
specifically stimulating G protein-mediated pathways, could lead to a safer 
alternative treatment which could still preserve the therapeutic effects of niacin. 

In addition, accumulation of experimental evidence from cross-linking 
experiments and radioligand binding determinations reporting negative and 
positive cooperativity, suggested the possibility that GPCRs may be capable of 
oligomerization [13]. In the past years, both homo- and hetero-dimerization have 
been described for an increasing amount of these receptors and, in some cases, 
these associations have been related to particular functional outcomes [14]. For 
this reason, GPCR oligomers have also been described as potential drug targets 
which, due to their restricted tissue distribution, could provide a new source of 
drug specificity. Despite the increasing amount of described functional 
interactions between dimers, the development of drugs with the ability to target 
receptor oligomers is still very challenging. Therefore, a deeper characterization 
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of the basis of receptor dimerization and of its impact on signaling, together with 
the development of original treatment strategies, will be necessary for the 
pharmacological exploitation of this phenomenon [15]. 

The current nature of ligand screening campaigns, which incorporate functional 
readouts as well as binding affinity data, has facilitated the detection of an additional 
class of GPCR ligands [16]. Such ligands possess the ability to modulate GPCR 
function by binding to receptor regions away from the orthosteric binding site. 
Allosteric modulators usually bind to receptor areas with a low degree of 
conservation between GPCR subtypes. This binding specificity could also be the 
basis for the design of more selective drugs. Additionally, the fact that allosteric 
modulators can function together with ligands interacting at the orthosteric binding 
site, makes drugs exploiting this phenomenon especially useful when treatment can 
be achieved by enhancing an endogenous signal. As an example, Cinacalcet is a 
positive allosteric modulator of the CaS calcium-sensing receptor. This drug, which 
is currently commercialized for the treatment of hyperparathyroidism, potentiates 
activation of the CaS receptor, a class C GPCR. In particular, Cinacalcet interacts 
with the receptor at the level of the transmembrane helix bundle and, by promoting 
receptor activation upon calcium binding to the orthosteric binding site, inhibits 
parathyroid hormone secretion [17]. 

Finally, in depth characterization of GPCR ligands, has revealed that known drugs 
targeting GPCRs often present a high degree of promiscuity [18]. The ability of 
GPCR drugs to bind to more than one receptor subtype at low concentrations was 
first envisaged as a drawback for GPCR drug discovery. However, nowadays, the 
efficacy of certain drugs targeting GPCRs is considered to be mediated by their 
capacity to regulate several targets at the same time – for instance, in the case of 
drugs related to the treatment of CNS diseases [19]. In the case of antipsychotic 
drugs, for instance, searching for drugs with selectivity for a specific GPCR 
subtype did not yield more efficacious drugs than the existing first and second 
generation treatments, which present promiscuous binding profiles for a variety of 
receptor families. At present, efforts are devoted to the identification of targets 
responsible for therapeutic efficacy and to the search of drugs capable of 
preserving affinity for these targets and, at the same time, avoiding targets 
mediating side effects. 
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2. IUPHAR-DB (http://iuphar-db.org/): it provides peer-reviewed data on 
pharmacological, functional and pathophysiological information on 
GPCRs. Information in this database covers different features including 
structural information on ligands and their affinity and efficacy data, 
detailed information on the capability of GPCRs to couple to different 
intracellular mediators, data on tissue distribution and receptor 
physiological functions, and genetic information on receptor variants. 

3. GPCR SARfari (https://www.ebi.ac.uk/chembl/sarfari/gpcrsarfari/): 
this database, which is integrated in ChEMBL, provides information 
on GPCR sequence and structure and contains screening information 
for a large set of structurally-characterized compounds (at present 
>140000). Notably, queries in this database allow discriminating 
natural ligands, clinical candidates and FDA approved GPCR drugs 
together with their trade names and chemical structures. 

4. GPCR-OKB (http://data.gpcr-okb.org/gpcr-okb/): information in this 
database covers computational and experimental evidence on GPCR 
oligomerization. In particular, it allows assessing the potential of a 
given receptor to oligomerize by analyzing publications using 
different characterization methods. Besides, it provides information on 
the cases in which physiologically relevant effects of oligomerization 
have been reported and on the proposed structural details of receptor-
receptor interactions. 

5. GPCRSD (http://zhanglab.ccmb.med.umich.edu/GPCRSD/): this 
resource provides up to date information on experimentally-solved 
GPCR crystal structures along with their PDB codes and related 
citations and together with information on the ligands they are bound to. 

The amount and variety of data presented in these repositories represent an 
excellent starting point for the development of computational models to extract 
relevant information on GPCR modulation and functioning. In fact, in silico 
approaches have been historically used to analyze this type of receptors. 
Originally, the absence of crystal structure information led to the development of 
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ligand-based techniques dealing with the prediction of GPCR binding affinities 
and efficacies. Then, crystallization of rhodopsin first, and of several other class A 
GPCRs later, made possible the application of structure-based techniques for the 
selection of new GPCR ligands either by using the crystal structures themselves 
or by the construction of homology models. Nowadays, the wealth of GPCR 
experimental data allows for the construction of complex models addressing 
issues such as polypharmacology. Besides, from a structural perspective, the 
amount of crystallographic, mutagenesis and biophysical data available, together 
with the constant increase of computational power, allows building models and 
performing simulations for the analysis of GPCR conformational space, which 
can, for instance, incorporate information on the effects of biased agonists or 
oligomeric interaction partners. In this book chapter, we will cover some of these 
computational techniques and will analyze the potential they hold for rationalizing 
the increasing amount of evidence on novel GPCR regulation mechanisms, as 
well as for discovering new drugs exploiting this GPCR complex modulation. 

2. LIGAND-BASED APPROACHES TO EXPLORE GPCR COMPLEXITY 

Historically, the difficulty to model GPCR structures due the absence of available 
templates made ligand-based approaches the method of choice to rationalize 
receptor binding determinants. These approaches mainly relied on the analysis of 
structure-activity relationships (SAR) of previously characterized ligands [20]. 
Output from this SAR analysis allowed generating pharmacophore models (see 
Fig. 3), which would serve as the basis for ligand-based virtual screening or, 
alternatively, it could serve to derive quantitative SAR (QSAR) relationships from 
the 2D or 3D description of compounds. This description could later be used to 
generate linear models with the potential to predict the behavior of previously 
uncharacterized compounds. An interesting example of the use of QSAR for the 
rationalization of ligand behavior can be found in the study of long-acting dual 
dopaminergic D2/β2-adrenoceptor agonists [21]. Using a 3D-QSAR approach 
based on the calculation of molecular interaction fields with the GRID software, 
Austin et al. were able to determine that both compound lipophilicity and basicity 
at the level of their secondary amine were key for their effect duration. Lessons 
learned in this study have been associated to the development of long-acting β2-
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ligands tend to show promiscuous binding affinity behaviors, these molecules 
have also received an especial attention from the chemogenomics field [24]. In the 
case of drug promiscuity, this approach intends to predict relationships between 
the chemical structures of ligands and the receptors they are able to target [25]. In 
this context, several strategies have been explored including approaches solely 
based on ligand structure and others which incorporate some level of binding 
pocket representation [26]. 

Recently, in an interesting approach, Lin and coworkers developed a 
pharmacological organization of GPCRs based on the similarity between their 
ligands [27]. In their work, they compare this classification to others based on 
receptor sequence similarity at the level of the GPCR binding pocket [28]. 
Analysis of the resulting dendrogram allowed the authors to select high similarity 
ligands targeting receptors with low sequence conservation, which presented 
polypharmacology upon experimental characterization. For instance, they 
identified previously undescribed ligand associations between opioid and 
serotoninergic receptors or between receptors with molecularly diverse 
endogenous ligands such as neuropeptide and cannabinoid receptors. However, 
probably one of the most interesting outcomes of this study relates to the capacity 
of this characterization to expand to non-GPCR targets. Due to the sequence 
independence of the method, it turns possible to select ligands known to bind to 
other target classes, which present a high degree of similarity to GPCR binders. 
Using this approach, some compounds were identified that bind both GPCRs and 
other protein classes such as kinases, phospholipases or hydrolases. 

Prediction of complex GPCR ligand pharmacology was also used by Besnard et al. to 
obtain compounds with particular polypharmacological profiles [29]. In this case, the 
authors used an automated, adaptive design approach to evolve the chemical structure 
of the acetylcholinesterase inhibitor Donepezil. Their first goal was to improve 
activity of this drug, indicated for Alzheimer disease, for the dopaminergic D2 
receptor and, at the same time, to increase its likelihood of crossing the blood-brain 
barrier. After applying their models, eight drug-like novel analogues were 
synthesized and tested, and all of them showed substantial D2 receptor affinities. 
After testing the most potent compound, it was both observed that it possessed blood 
brain barrier penetration and that it presented a polypharmacological profile. Analysis 
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of the receptors targeted by this newly identified ligand revealed that it showed 
affinity for α1-adrenergic receptors. Due to the fact that these receptors were 
considered potential anti-targets, the adaptive models were again used to evolve the 
eight new compounds towards a polypharmacological profile with improved 
selectivity over these anti-targets. According to the authors, their approaches could be 
extended to other drug–target classes, provided that enough ligand structure–activity 
data is available to create useful models. 

Incorporation of different levels of receptor structural detail to ligand definitions 
has also been the basis for the analysis and detection of GPCR ligands with non-
traditional mechanisms of action. As an example, Gloriam et al. mapped the 
binding sequence motifs of three known privileged structures targeting Family A 
GPCRs and analyzed the sequence of the class C GPRC6A receptor to select 
ligands acting as allosteric antagonists at this receptor [30]. In a different study, 
Nijmeijer et al. used FLAP (Fingerprints for Ligands and Proteins) 3D-QSAR to 
describe ligand and receptor features responsible for β-arrestin biased signaling at 
the human histaminergic H4 receptor [31]. These examples highlight the 
importance that new GPCR structural information has on our understanding of 
ligand-mediated GPCR functioning. However, analysis of the chemogenomics 
approaches presented so far, also shows that combining information on the 
structures of compounds and their binding preferences can improve our 
understanding on the basis of GPCR modulation. 

3. STRUCTURE-BASED METHODS FOR THE STUDY OF GPCRs 

The last decade has been marked by a rapid growth in experimentally solved 
structures of GPCRs with more than 100 structures available to-date covering 19 
different GPCR types (http://zhanglab.ccmb.med.umich.edu/GPCRSD/). These 
structures have provided an unprecedented level of insight into the basis of ligand-
receptor interaction and also into the structural basis of receptor activation and 
coupling (please refer to reference [7] for a comprehensive review). However, given 
the amount of GPCRs encoded in the human genome (approximately a thousand 
[1]), computational modeling is still a highly relevant tool for exploring functional 
complexity and selective targeting for the majority of GPCRs, which have not yet 
been crystallized. The potential of computational modeling, but also its limitations, 
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has been systematically assessed in three community-wide GPCR Dock 
competitions (2008, 2010 and 2013, http://gpcr.scripps.edu). These evaluations 
show, in detail, to what extent the GPCR modeler community is able to predict 
ligand-receptor interactions combining available structural information and state-of-
the-art modeling protocols (homology modeling and docking). This assessments are 
a highly informative evaluation of the contribution that modeling can have on 
rational drug design, as successful construction of an accurate ligand-GPCR 
complex is of high value for optimizing lead structures in terms of binding affinity, 
efficacy and safety. 

3.1. Homology Modeling 

Homology modeling refers to the construction of an all-atom model of the target 
receptor using its sequence and experimentally-derived high-resolution data of a 
phylogenetically-close receptor (template). Particular modeling care has to be taken 
for regions which potentially interact with ligands such as large parts of the 
transmembrane (TM) domain and the extracellular loop 2 (ECL2). The modeling 
assessments DOCK 2008 [32], 2010 [33] and 2013 [34] have demonstrated that 
GPCR modeling strongly depends on the available template (Table 1): thus the 
higher the sequence identity between target structure and template, the better the 
structural prediction. In particular, this holds true for the TM regions comprising the 
seven helical domains of high structural conservation within the GPCR family. Thus, 
sequence identities greater than 40% resulted in homology models with excellent 
TM RMSDs < 2 Å as observed for the class A GPCRs, like the dopamine D3 
receptor (D3R) and the serotoninergic receptors 5-HT1B and 5-HT2B (5-HT1BR and 5-
HT2BR) (Table 1 (a)). Greater structural deviations of the predicted model to the 
experimental structure (TM RMSDs > 2 Å) were obtained for sequence identities 
lower than 30% between target receptor and template. Among them, one of the 
biggest challenges was found in the prediction of the human smoothened homolog 
receptor (SMO) - a class frizzled (class F) GPCR with a TM sequence identity as 
low as 14% to available templates in the modeling assessment DOCK 2013 [34]. 
Low sequence identity bears the risk of alignment inaccuracies between target 
sequence and available structural templates: even inaccuracies as small as one-
residue shift in a single TM helix result in a dislocation of residues and impairment 
of important interhelical and ligand-receptor contacts. 
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In contrast to the TM domains, extracellular loop regions such as the ECL2 are far 
more challenging receptor sections to model. The same loop sequence of the same 
receptor can exist in different conformational states depending on the ligand type 
bound to it and therefore the loop has to be modeled in the presence of the ligand. 
The difficulties of modeling the ECL2 in comparison to the structurally better 
conserved TM region are reflected in the three modeling assessments 2008 [32], 
2010 [33] and 2013 [34]: none of the predicted complexes reached an ECL2 
RMSD < 2Å (Table 1 (b)). Clearly, more sophisticated modeling techniques [35] 
have to be applied to produce better predictions of such flexible receptor regions, 
which, due to their diversity between receptor sub-classes, represent interesting 
targets for selective allosteric modulators. 

3.2. Docking: Predicting Ligand-Receptor Interaction 

The recent advances in GPCR crystallization and homology modeling also condition 
the accurate prediction of ligand-receptor interactions by docking. The main 
objectives of docking in drug discovery campaigns are (i) to identify the ligand 
binding pocket, (ii) to dock promising structures into this binding pocket and (iii) to 
predict ligand contacts with surrounding key residues of the target receptor. 

The definition of the binding pocket and thus ligand placement is easier for 
aminergic receptors (such as, D3R, 5-HT1BR or 5-HT2BR). The binding pocket is 
characterized by a highly conserved Asp3.32 in TM3 [36] that typically interacts 
with a positively charged nitrogen of the ligand by electrostatic interactions. In 
addition, a hydrophobic pocket between TM3 and TM6 accommodates 
hydrophobic ligand fragments. Such structural knowledge facilitates the definition 
of the binding pocket for aminergic receptors (D3, 5-HT1B or 5-HT2B) when 
compared to non-aminergic receptors (A2A, CXCR4 and SMO) (see pocket 
RMSD, Table 1(b)). Moreover, this structural information is enormously 
supportive to accurately place the ligand during the docking procedure. This is 
impressively demonstrated in the modeling assessments for the best submitted 
complexes of the aminergic receptors 5-HT1B, 5-HT2B and D3 [37] which showed 
a ligand RMSD ≤ 1.51 Å (Table 1 (b)). Such a predictive potential is ideal for 
structure-based drug discovery programs. However, it seems to be limited to 
aminergic GPCRs. Thus, non-aminergic receptors are often characterized by 
larger and less defined binding pockets. This widens the amount of possible 
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solutions when placing the ligand in the binding pocket making the prediction of 
correct ligand poses extremely difficult. In fact, this is reflected by the large 
ligand RMSDs (from 4.42 to 8.88 Å) obtained for the best complexes of the 
chemokine receptor CXCR4 and the smoothened receptor (SMO) (Table 1 (b)). 
Besides the definition of the binding pocket, another key issue that contributes to 
easiness of docking is the size of the ligand. Large ligands such as peptides (e.g. 
CVX15) have numerous rotatable bonds. This is the source of a vast amount of 
possible conformations and makes it exceptionally challenging to identify the 
biologically active one. Hence, no submitted model of the CXCR4-CVX15 
complex in the DOCK 2010 achieved a ligand RMSD below 8 Å to the target 
structure (Table 1 (b)) [33]. 

Table 1: Target receptors and complexes in the modeling assessment DOCK 2008, 2010 and 2013 

(a) Homology Model3 (b) Receptor - Ligand Complex4 

Target 
Receptor1 

Class Template2 TM 
Sequence 
Identity 

TM 
RMSD

Ligand in 
Target 

Complex 

TM 
RMSD

ECL2
RMSD

Pocket 
RMSD 

Ligand 
RMSD 

Rank5

SMO (2013) F M3R 14% 2,78 LY-2940681 5,3 14,34 13,85 4,42 3 

SMO (2013) F M3R 14% 2,78 SANT-1 3,9 11,27 5,61 4,31 5 

CXCR4 
(2010) 

A β1AR 25% 2,05 IT1t 2,21 7,42 3,04 4,88 5 

CXCR4 
(2010) 

A β1AR 25% 2,05 CVX15 2,88 8,19 4,11 8,88 5 

A2A (2008) A β2AR 36% 2,00 ZM241385 2,5 3,8 3,4 2,7 2 

5-HT2B 
(2013) 

A β1AR 41% 1,52 ERG 2,21 5,67 2,69 1,05 3 

D3 (2010) A β1AR 43% 1,26 Eticlopride 1,38 2,87 1,5 0,96 3 

5-HT1B 
(2013) 

A β1AR 48% 1,52 ERG 1,82 4,34 1,41 1,51 2 

1 in parentheses year of the modeling competition 
2 best available template 
3 best submitted homology model 
4 best submitted receptor-ligand complex 
5 modeler group`s rank for the best model (max. 5 models per target complex were submitted) 

Another level of complexity in modeling GPCRs is added by the fact that these 
receptors exist in different activation states. The first two modeling assessments 
(2008 and 2010) had only considered inactive structures in the blind prediction 
[32, 33]. Structurally, the binding pocket of the inactive state is wider when 
compared to the one of the active receptor [38-40]. Cross-docking experiments of 
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inverse agonists into active crystal structures or agonists into inactive crystal 
structures highlight the importance of selecting a template with a correct 
activation state (inactive/active) for accurate predictions of orthosteric ligand 
binding [38]. 

Even more challenging for GPCR modeling is the finding that there are nuanced 
conformational states between classically defined active and inactive GPCR 
structures – namely, conformational states linked to different propensities for G 
protein or β-arrestin signaling. Wang et al. captured such conformational 
differences by crystallizing the complexes of two serotonin receptors with 
ergotamine [41], a compound used for the treatment of acute migraine attacks. 
Interestingly, the 5-HT1B receptor is capable to signal through both G protein and 
β-arrestin pathways when interacting with ergotamine. Conversely, the 5-HT2B 
receptor is biased towards β-arrestin signaling when interacting with this drug 
[42]. These complexes represented a new challenge in the last edition DOCK2013 
[34]. Encouragingly, most submitted models reproduced accurately the activation 
state of the 5-HT1BR, which adopts a classical active state in TM5-6 and TM7 
region. In contrast, the ergotamine/5-HT2B complex adopts a so far unseen 
conformational state with an active TM7 rotation and a TM6 rotation that is more 
consistent with an inactive state. Unfortunately, none of the submitted models to 
the DOCK2013 competition has captured this important structural feature. As 
biased agonism is gaining increasing relevance for drug development, modeling 
efforts have to be devoted to improve the performance of predictions of biased 
ligand-GPCR complexes. 

To summarize, the three assessments of the current state of GPCR modeling 
(2008, 2010 and 2013) clearly demonstrate that the increasing amount of 
experimental data facilitates the prediction of ligand binding to a receptor target 
reaching atomic resolution, provided that a closely-related template is available. 

3.3. Taking Advantage of New Structural Information for the Discovery of 
New GPCR Ligands by Virtual Screening 

Virtual screening is nowadays a standard tool in drug discovery used to identify 
new compounds targeting a protein of interest [43]. Computational screening 
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techniques have gained acceptance due to the fact that, compared to high-
throughput screening approaches, they are able to reduce both time and cost by 
limiting the number of compounds which have to be experimentally tested [44]. 

There are two main strategies for in silico screening: ligand-based and structure-
based virtual screening. This second approach can be applied when the 3D 
structure of a drug target is available from experimental studies (for instance, 
from X-ray crystallography) or accessible by molecular modeling (homology 
modeling). When a 3D structure of the target is available, high-throughput 
docking is the method of choice [45]. During this process, each of the screened 
compounds is docked in several possible conformations using a combination of 
shape matching and predictions both of favorable hydrogen bonding and of 
charge-charge interactions [46]. Ligand-based virtual screening, conversely, is 
used when no reliable structural information of the target can be obtained. 
Nowadays, this strategy is less and less common for class A GPCRs due to the 
increasing availability of receptor crystal structures. However, this approach is 
still used for other GPCR families where structural information is still scarce. 

In the case of structure-based virtual screening, this technique performs naturally 
best when it makes use of the X-ray structure of a molecular target. Thus, 
published crystal structures of GPCRs are commonly used in virtual screening. 
Furthermore, homology models of closely-related receptors have also been proven 
to be suitable for structure-based virtual screening [47]. Interestingly, docking and 
screening results against new GPCR structures resulted in considerably better hit 
rates than those of soluble proteins [48]. This high success rate may be a 
consequence of the fact that compound databases, such as ZINC [49], contain a 
disproportionate number of molecules that resemble GPCR ligands. Furthermore, 
the well-buried GPCR orthosteric sites can almost entirely sequester or 
complement a small organic molecule, allowing it to be recognized with high 
ligand efficiency while, in the case of soluble proteins, binding sites are more 
heterogeneous and their surface is often larger, flatter and less buried with respect 
to the solvent [48]. 

Another option when applying virtual screening is to screen for compound 
fragments. Fragment-based virtual screening considers binding of small chemical 
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From these tested compounds, 6 were active with binding affinities below 4 µM, 
with the best molecule binding with a Ki of 9 nM. They also found that 5 of these 
molecules were inverse agonists, which is consistent with a carazolol-bound 
starting conformation. Furthermore, another interesting outcome of this study 
came as the predicted binding mode of the highest affinity hit was confirmed by 
X-ray studies. This degree of structural prediction shows that GPCR structure-
based virtual screening may not only result in new ligands but also provide 
suitable starting points for the more challenging structure-based hit optimization 

[45]. Recently, a large library virtual screen against an activated β2 adrenergic 
receptor structure resulted in the detection of GPCR binding compounds with a 
preferential retrieval of agonists over inverse agonists [53]. This study 
complements the previous virtual screening exercises against inverse agonist-
bound GPCR structures which tended to yield inverse agonists. Thanks to their 
results, the authors conclude that the docking hits resulting from virtual screening 
campaigns are deeply related to the functional state of the conformation of the 
GPCR target. In the same line, and before the crystal structure of an activated β2 
adrenergic receptor was available, Schneider et al. [54] demonstrated that an 
homology model of this receptor based on the opsin crystal structure was better at 
retrieving active compounds in virtual screening experiments than the crystal 
structure of the inactivated form of the β2 adrenergic receptor. 

In another interesting approach, Kolaczkowski et al. [55] recently assessed how 
modifying receptor templates by induced fit docking could impact posterior 
virtual screening. In their study, they modeled dopaminergic D1 and D2 receptors. 
After constructing homology models of these receptors, they modified them by 
ligand-steered binding site optimization. According to the authors, these modified 
receptors performed better in the subsequent virtual screening experiments than 
typical homology models. In fact, they observed that the most important aspect 
determining success in virtual screening had to do with the ligand used in the 
induced fit docking. This ligand choice was, in fact, more determinant than the 
choice of crystal structure used to build the D1 and D2 receptor homology models 
(in this case, the β2 adrenergic and the dopaminergic D3 receptors). 

Another example of the application of a GPCR X-ray structure in virtual 
screening used the purinergic adenosine A2A receptor. Antagonists of these 
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receptors may be used to treat a wide range of conditions including Parkinson 
disease, inflammation, cancer, ischemia reperfusion injury, sickle cell disease, 
diabetic nephropathy, infectious diseases or CNS disorders [56]. After the 
publication of the crystal structure of the adenosine A2A receptor in complex with 
an antagonist, Katritch et al. [57] performed molecular docking and virtual 
screening of more than 4 million commercially available drug-like and lead-like 
compounds. After virtual screening, the highest 56 ranking compounds were 
tested in vitro. Of the tested compounds, 23 presented affinities under 10 µM, 11 
of those with sub-µM affinities and two compounds with affinities under 60 nM. 
Moreover, these hits were characterized by their chemical diversity, as they 
belonged to at least 9 different chemical scaffolds and were characterized by very 
high ligand efficiency. For this reason, the authors conclude that their screening 
strategy could represent a starting point for the search of drug discovery leads. 
Furthermore, and as expected given the fact that the initial crystal structure was a 
complex featuring an antagonist, 11 out of 14 compounds tested in a functional 
assay were able to effectively block more than 75% cAMP generation at a 
concentration of 10 nM, which strongly supports their antagonistic activity. 

Using an original strategy to find new ligands for the CXC chemokine receptor 7 
(CXCR7), a potential drug target for cancer chemotherapy, Yoshikawa and co-
workers [58] took advantage of their experience in the prediction of the ligand 
binding pocket of CXCR4 in GPCR Dock 2010. Using their method, they 
modeled the CXCR7 receptor structure using the CXCR4 receptor as a general 
template, but also incorporating information from other crystallized class A 
GPCR structures in order to cover a higher conformational space, and performed 
virtual screening of around 800000 commercially available drug-like compounds. 
From this screening experiment, 626 candidate compounds were selected, 21 of 
which presented IC50 values of 1.29-11.4 μM upon experimental characterization. 
In another approach, centered likewise in the evaluation of which X-ray structural 
information may be more suitable for modeling and virtual screening, Pala et al. 
[59] evaluated a set of MT2 melatonin receptor models. Besides considering 
different structural templates for homology modeling, the authors also analyzed 
the impact of allowing for binding pocket readjustments by applying induced fit 
techniques. To do so, they used known MT2 melatonin receptor ligands in which 
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mutagenesis information on binding structural determinants was known. 
According to their results, the importance both of the template choice and model 
structural refinement for screening results was confirmed. In another interesting 
example, and in order to perform virtual screening at the GPR17 receptor, a 
GPCR responding to both uracil nucleotides and cysteinyl-leukotrienes which has 
been proposed as a target for neurodegenerative diseases, Eberini et al. [60] 

created a structural model of this receptor built as a chimera of four homology 
templates. In this way, the authors modeled GPR17 loops from different 
crystallized receptors according to their higher degree of homology to the receptor 
of interest, and then performed a high-throughput virtual screening exploration. 
To do so, they screened more than 130,000 lead-like compounds from which they 
were capable of identifying 4 full agonists, with a better potency than their 
reference ligand. 

Virtual screening has not only been explored to identify orthosteric ligands of 
GPCRs but also to find allosteric modulators. As we have previously mentioned, 
due to the fact that allosteric modulators act by modifying physiological activation 
of receptors, these compounds can provide improved selectivity and safety, a 
ceiling effect preventing overdosage, high receptor selectivity, or even activation 
pathway selectivity along with maintenance of spatial and temporal determinants 
of GPCR signaling [61]. Allosteric drugs can thus help in the problem of drug 
dependence, overdose risk and other adverse effects of orthosteric drugs. 
However, structure-based virtual screening for allosteric GPCR ligands has been 
hampered by the lack of structural data for allosteric binding sites [62]. Despite 
this difficulty, some groups have successfully applied virtual screening to search 
for new GPCR allosteric modulators. Lane et al. [63] for instance, used two 
models of the dopaminergic D3 receptor in its apo form and in complex with 
dopamine to screen a library of 4.1 million compounds. The top 150 compounds 
for each of the two receptor models were selected for further re-docking and 
assessment. After selecting chemically diverse scaffolds and discarding ligands 
with a high similarity to already described D3 ligands, the authors selected 25 
compounds per receptor model and purchased them from chemical vendors. 
Interestingly, the compounds derived from the model in complex with dopamine 
proved to have very attractive profiles in D3, but also in D2 dopaminergic 
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receptors, by behaving as non-competitive negative allosteric modulators at these 
receptors. 

In summary, the increasing number of GPCR crystal structures and more and 
more accurate homology models enable successful structure-based virtual 
screening as exemplified above. Yet, structure-based identification of novel 
ligands for GPCRs with low homology to the currently available GPCR crystal 
structures (e.g., class B and class C GPCR allosteric ligands) is still a challenging 
task and, at this point, ligand-based virtual screening may be a useful alternative. 

3.5. Successful Optimization of Lead Structures 

Despite the increasing amount of structural data for GPCR targets with atomic 
resolution, lead optimization has been rarely reported in the literature. 
Nevertheless, a few reported studies indicate that GPCR models can be efficiently 
applied in lead optimization obtaining compounds with improved affinity or 
physicochemical parameters (reviewed in [64]). 

For example, one very recent study by Andrews et al. demonstrates the successful 
optimization of affinities and selectivity of antagonists at the adenosine A2A 
receptor versus the A1 receptor while preserving a balanced, drug-like profile 
[65]. In a first step, GRID maps using different molecular probes (e.g. sp3 carbon, 
sp2 carbon, NH or C=O) were constructed in order to obtain a comparison of both 
receptors with respect to their shape, size and electrostatics. In a second step, 
inspection of the GRID maps as well as of the size of the binding pocket 
suggested the addition of a small lipophilic substituent into the 1,2,4-triazine 
antagonist series for obtaining higher affinity and selectivity at the A2A versus the 
A1 receptor. Remarkably, the success of this strategy was later demonstrated in 
experimental binding studies and stresses the potential of lead optimization using 
structure-based approaches. 

3.6. A Dynamic View on Different Receptor Conformational States 

All the aforementioned structure-based techniques tend to look at receptor-ligand 
interactions from a static point of view. However, we are nowadays aware that 
GPCRs are inherently flexible and that understanding drug action on these receptors 
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requires considering their ability to explore different conformational states. In this 
sense, a new view has originated, which understands these receptors as flexible 
structures capable of transitioning between multiple conformational states with 
different capabilities to couple to signaling partners [66] (Fig. 5). This change of 
paradigm raised awareness on the importance of characterizing these different 
conformational states. Besides being necessary to understand the structural basis of 
GPCR function, description of these receptor states could be the basis for developing 
ligands capable of stabilizing particular receptor conformations associated to a 
precise signaling outcome (biased agonists). In this scenario, molecular dynamics 
have proven to be an informative method to interrogate receptor conformation and to 
analyze the impact of ligand binding on receptor structural stabilization. 

Ligand-mediated receptor stabilization has been the focus of several MD simulation 
studies trying to correlate receptor signaling levels to ligand-induced receptor states. 
Lee et al., for instance analyzed the dynamic behavior of both adenosine and 
UK432097 at the A2A adenosine receptor starting from their crystal structures [67]. 
In their simulations, they observed that UK432097 was capable of forming a wider 
hydrogen bond network with the receptor than the natural agonist adenosine. 
UK432097 also showed a higher degree of stability in the receptor binding pocket. 
The authors relate this higher amount of interaction of UK432097, which possesses a 
higher potency than adenosine, to the stabilization of a decreased number of receptor 
conformations characterized by a high G protein activation capacity. Studies like this 
one are however scarce due to the fact that receptor crystal structures in complex 
with differently behaving ligands are unfortunately not available. Therefore, several 
methods to explore conformational changes related to receptor association with 
particular ligands have been developed. One of such methods is the ligand-induced 
transmembrane rotational conformational changes (LITiCon) method created by 
Bhattacharya and coworkers [68]. In order to sample receptor conformational space, 
the LITiCon method generates a set of conformations by systematically rotating 
transmembrane helices in the vicinity of the ligand. Out of all these conformations 
the ones with the lowest ligand-binding energy and higher degree of ligand-receptor 
interactions are selected. This method was applied for the first time to analyze β2-
adrenergic receptor conformations in complex with compounds with activities 
covering from the full agonist to the inverse agonist spectrum. These ligands proved 
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3.7. Monitoring the Receptor Activation Process 

At present, there exists the conviction that understanding the process by which 
receptors activate and inactivate can yield information of special value for the 
rational design of GPCR drugs. However, simulating these transitions is still a 
challenge due to the computational cost of simulating large conformational 
changes and also to the relative scarcity of crystal structures of receptors in 
different activation states. In an effort to overcome the difficulty to analyze 
receptor activation by classical MD, which has been until now computationally 
unamenable due to the fact that, according to experimental evidence, this process 
may require milliseconds to take place [70], different groups have explored 
original solutions to understand this process. 

One of these approaches consisted in the use of a Monte Carlo algorithm by 
Bhattacharya et al. to derive ligand-dependent β2-adrenergic receptor activation 
pathways from previously-generated LITiCon poses [71]. Some ligand-receptor 
complexes derived from these activation pathways were used in a subsequent 
study to perform all-atom MD [72]. In the case of rhodopsin, crystallization of its 
active state allowed Provasi et al. to perform biased MD simulations which 
pointed to the existence of at least four metastable states between its 
photoactivated state and its opsin-like conformation [73]. The subsequent 
crystallization of the β2-adrenergic receptor in complex with a G protein-mimetic 
nanobody was also used as the basis to analyze the process of receptor activation. 
In this case, Nygaard et al. performed an unbiased MD study of unprecedented 
computational magnitude [74]. In order to analyze receptor activation, they 
evaluated in detail the opposite process: conversion from an active conformation 
to an inactive one. Their simulations pointed to the singular conclusion that 
receptor activation may begin in the receptor region implicated in G protein 
binding. In this way, agonists would be responsible for stabilizing receptor states 
possessing an activated G protein binding site but would not be able to lock the 
receptor in its active state by themselves. In a different approach, Miao et al. 
applied accelerated molecular dynamics to study the process of receptor activation 
at the muscarinic M2 receptor [75]. Using this simulation technique, they 
compared the receptor in complex with the antagonist 3-qui-nuclidinyl-benzilate, 
present in the crystal structure, to the receptor in its apo form. Observation of 
these two systems confirms the inability of the receptor in complex with an 
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antagonist to activate and also the ability of the unbound receptor to transition to 
the active state upon application of dual-boost accelerated MD. According to 
these simulations, receptor activation is associated to the formation of a hydrogen 
bond between residues Tyr2065.58 and Tyr4407.53 in the G protein binding site and 
to an outward tilt of the cytoplasmic end of TM6 (associated to the disruption of 
the TM3/6 ionic lock). Besides, by analyzing community networks across the 
receptor structure, the authors observed that, at an intracellular level, the strength 
of the overall network between helices in the active apo receptor is significantly 
weaker when compared to the inactive and intermediate states. In particular, TM6 
becomes loosely connected to TM3, TM5, and TM7, which probably allows for 
its tilting and adoption of an active conformation. 

Finally, Kohlhoff and coworkers [76] recently made use of Google’s Exacycle 
cloud-computing platform to perform tens of thousands of independent 
simulations of the β2-adrenergic receptor. To do so, they started their simulations 
using inactive and active receptor crystal structures in their apo form and in 
complex with a partial inverse agonist and a full agonist. In order to characterize 
the transition between active and inactive receptor states, the authors built 3,000-
state Markov State Models (MSM), using clustering along four structural metrics 
representing structural activation and inactivation features, and mapped out the 
transitions between all states. Using these models, they were able to generate 150 
μs activation trajectories, which highlight the ability of the agonist (BI-167107) to 
strengthen correlations between extracellular and intracellular residue groups to 
stabilize active states. In contrast, these correlations become disconnected in the 
presence of an inverse agonist (carazolol) and appear indiscriminate in the case of 
the apo receptor. They also observe that docking to MSM states can facilitate the 
detection of receptor ligands acting both as agonists and antagonists, as well as 
expand ligand chemical space, an observation which could be especially an 
advantage in virtual screening approaches. 

Albeit limited, at present, there exists some information on the structural basis of 
G protein coupling to different receptors. In this sense, crystallization first of 
opsin in complex with the C terminus of the transducin Gα subunit, and later of 
the β-adrenergic receptor in complex with Gs, have opened new opportunities for 
the study of GPCR / G protein structural crosstalk. Goetz et al., for example, 
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studied how G protein binding to the β-adrenergic receptor was affected by 
binding of either the inverse agonist carazolol or the agonist isoprenaline at the 
orthosteric binding site [77]. In this case, they took the C terminus of the 
transducin Gα subunit as a template and used it as a surrogate of the Gs protein. 
According to their results, the presence of the Gα fragment was able to induce an 
enlargement of the agonist binding pocket. Besides, presence of carazolol in the 
receptor binding pocket seemed to destabilize G protein binding, a phenomenon 
which was not observable in the complex with isoprenaline. Subsequently, the 
publication of the structure of the β2-adrenergic receptor in complex with Gs led 
Feng et al. [78] to analyze the stability of this complex. According to their results, 
removal of the nanobody which had been used for the crystallization of this 
receptor, led to a structural reorganization which started at the agonist binding 
pocket and was transmitted to the G protein coupling region of the receptor to 
finally reach the G protein alpha subunit. More recently, Kling and coworkers 
used the crystallized structure of the ternary complex, together with a homology 
model of the dopaminergic D2 receptor in complex with the Gαi subunit, to 
perform MD simulations [79]. Their analysis, which also included free energy 
calculations after computational alanine-scanning mutagenesis of the receptor / G 
protein interface, identified distinct hot-spots important for receptor / G protein 
selectivity. Interestingly, they observed that hydrophobic interactions could be 
crucial for coupling of the β2-adrenergic receptor in complex with Gs, while 
dopaminergic D2 receptor coupling to Gi could be mainly determined by ionic 
interactions between basic amino acids of receptor and negatively charged amino 
acids of this G protein subtype. 

3.8. Analyzing Ligand-GPCR Binding Paths 

Another interesting phenomenon of GPCR modulation whose study is becoming 
increasingly available computationally has to do with ligand binding. Understanding 
this process is especially attractive from a drug design perspective as it can help 
rationalize determinants of ligand kinetics and binding, as well as help pinpoint 
possible receptor hotspots capable of binding allosteric modulators. Dror and 
coworkers have also analyzed this process using their unbiased molecular dynamics 
simulation techniques [80]. In particular, they analyzed binding of three antagonists - 
propranolol, alprenolol and dihydroalprenolol - and the agonist isoproterenol to the 
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β2-adrenergic receptor. Interestingly, their simulations detected a receptor vestibular 
region - located between the extracellular loops 2 and 3 and the helices 5, 6 and 7 – 
which was visited by all the compounds tested. The authors postulate that this 
intermediate region could correspond to the binding site of some allosteric 
modulators such as gallamine, which would exert their effects by blocking the 
entrance and exit of ligands targeting the orthosteric binding pocket. A similar 
approach was later used to study the process of tiotropium binding to the muscarinic 
M2 and M3 receptors [81]. In this study, tiotropium was also capable of binding an 
intermediate vestibule region which could help rationalizing the experimental 
observation that some orthosteric ligands can also act as allosteric modulators of 
muscarinic receptors. Another interesting conclusion arising from these simulations 
was that the different rate of dissociation of this drug at the M2 and M3 receptors 
could help explaining clinically important ‘kinetic selectivity’ of thiotropium for M3 
receptors despite similar equilibrium binding affinities at the two types of receptors. 
In a very recent publication, Dror et al. also used MD simulations to clarify the 
structural determinants of allosterism at muscarinic M2 receptors [82]. They 
performed unbiased simulations that allowed characterizing the binding pathways of 
both positive and negative allosteric modulators. Their results, which were further 
validated by mutagenesis studies, suggest a common mechanism of binding for the 
structurally divergent allosteric modulators. These compounds would be capable of 
establishing cation-π interactions with two pairs of tyrosine residues which would 
form two ‘binding centers’ in the extracellular vestibule of the receptor. On the other 
hand, the authors also assessed the interplay between orthosteric and allosteric 
binding in these receptors. To do so, they simulated systems including negative and 
positive allosteric modulators together with the orthosteric antagonist N-
methylscopolamine. Using this setup they identified two major drivers of allosteric 
modulation: i) the electrostatic repulsion between allosteric and orthosteric ligands, 
which depended both on their charges and on charge spatial proximity and ii) the 
stabilization of open or closed allosteric and orthosteric binding pockets by positive 
and negative allosteric modulators respectively. 

Finally, some MD simulations have specifically focused on the capacity of ions to 
function as allosteric modulators of receptor structure. As an example, Selent and 
coworkers [83] investigated how allosteric binding of sodium ions to the 
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dopaminergic D2 receptor could impact receptor structure. According to their 
results, binding of sodium ions into a deep allosteric site near Asp2.50 could be 
responsible for locking the rotamer toggle switch W6.48 on TM6 in a distinct 
conformational state. Notably, the existence of this sodium binding site was later 
observed in the high resolution crystal structure of the human A2A adenosine 
receptor [84]. In the same line, this time starting from the structure of the A2A 

adenosine receptor, Gutiérrez-de-Terán et al. recently analyzed the allosteric 
effects of sodium and the allosteric small molecule amiloride in receptor 
activation [85]. In this study, the authors took advantage of the availability of 
crystal structures of the receptor in complex with both agonists and antagonists. 
According to their simulations, which they complemented with binding and 
thermostability assays, they suggest that, when either a sodium ion or amiloride 
binds to the allosteric pocket of the A2A adenosine receptor, they are capable of 
stabilizing an inactive conformation which hampers agonist binding. 

As we have seen, molecular dynamics simulations can yield revealing information 
on receptor stability and on the mechanisms by which different modulators can 
modify the equilibrium between different receptor populations. The rapidly 
increasing computational resources together with new crystal structure 
information on GPCRs will surely allow getting a deeper understanding on the 
basis of receptor transitions and help guide the design of ligands stabilizing 
particular conformational states. 

3.9. Studying Higher Order Receptor Complexes to Search for New GPCR 
Modulators 

In the past years, the characterization of GPCRs forming dimers or higher-order 
oligomers has challenged the classical view in which these receptors were 
believed to function as monomeric units. As a result, during the last decade, the 
organization of GPCRs in cell membranes has been a matter of intense study. On 
the one hand, while certain class A GPCRs can effectively function as monomers 
[86], these proteins still have the ability to exist as higher-order complexes. For 
instance, a monomeric unit of rhodopsin, the first purified GPCR, is sufficient to 
fully activate transducin [87], its cognate G protein. And yet, atomic force 
microscopy experiments have demonstrated that rhodopsin molecules organize as 



Computational Strategies to Incorporate GPCR Frontiers in Computational Chemistry, Vol. 1   31 

 

dense arrays of dimers in native disc membranes [88]. On the other hand, the 
quaternary structure of GPCRs does not display the same level of stability across 
different families. Thus, whereas most class C GPCRs form dimers, stably linked 
by a covalent disulphide bridge [89], class A GPCRs can engage in both stable 
and transient interactions [90-92]. Although the biological significance of these 
findings still needs a deeper characterization, modulating the stability of GPCR 
dimers or oligomers may become soon subject to the development of new drugs. 

In order to better characterize receptor-receptor interactions and to detect 
compounds capable of modulating them, several computational approaches are 
helping to guide and complement available pharmacological evidence. In the past 
years, the recent resolution of different crystal structures of GPCR homodimers 
[93, 94] and homooligomers [95, 96] has helped in the difficult task of modeling 
GPCR complexes. These crystal structures are revealing new data on potential 
dimerization interfaces, which further enrich the computational modeling 
techniques used to study GPCR dimers and oligomers. These techniques can be 
generally divided in sequence- and structure-based methods (see [97] for a 
complete and well-organized review on this topic). In the common scenario where 
structural data is lacking, sequence-based techniques exploit the vast amount of 
information contained on protein sequences to predict residues and/or domains 
involved in putative dimerization interfaces. Due to the advent of new GPCR 
crystal structures during the last years, structure-based methods are being 
intensely used instead to unravel new features of GPCR dimerization. In this 
respect, some GPCR crystal structures deposited in the Protein Data Bank (PDB) 
have provided the first hints on GPCR dimerization modes. This has allowed 
advancing receptor-receptor docking, as most protein-protein docking methods 
involve an initial searching step followed by sampling and refinement phases to, 
respectively, disregard decoy poses and filter out non-desired dimers. In the past 
years, protein-protein docking studies have considered the interfaces present in 
the new crystal structures of GPCR dimers to select relevant interfaces for dimers 
of related receptors [97]. Furthermore, the improvement of traditional docking 
algorithms in an effort to reflect, for example, the membrane environment 
surrounding GPCRs, has converted docking into one of the structure-based 
methods of choice to study GPCR dimers. In this line, a collection of docking 
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servers offer nowadays an overall automation to predict new receptor interfaces 
by protein-protein docking methods. Several studies have already taken advantage 
of these tools to characterize different GPCR dimers (reviewed in [97]). 

Protein-protein docking methods can only yield a static representation of the 
receptor dimerization phenomenon. In contrast, other techniques, such as MD, 
attempt to study the dynamic nature of this process. In a recent example, 
Rodríguez et al. analyzed the dynamics of the CXCR4 taking advantage of the 
crystallization of the inactive state of its homodimer [98]. In their work, the 
authors analyze the impact of binding of a co-crystallized small molecule, the 
antagonist IT1t, and of the cyclic peptide CVX15. Comparison of ligand effects 
on binding site stability reveals that, in contrast to the peptidic ligand, IT1t 
produces a negligible effect at the binding pocket level. Hence, the conformation 
resulting from the simulation of the apo form of the dimer could be appropriate 
for evaluating the binding of small organic molecules exploring the same binding 
site region. 

However, in the cases in which the dimeric interface has not been 
crystallographically determined, prediction of relevant dimerization interfaces is 
still a challenge which can be explored by MD simulations. In this case, the 
complexity needed to represent systems including several receptors in 
biologically-relevant conditions, and the necessary length of simulations studying 
GPCR association, have forced computational scientists to search for alternatives 
to all-atom molecular representations in MD simulations. Thus, coarse-grained 
MD simulations are nowadays the preferred tool to study GPCR oligomerization 
as these simulations are in the range of 2-3 times faster than all-atom MD [99] 
(Fig. 6). In this way, the use of such methods could serve as a first approximation 
to detect relevant receptor-receptor interfaces for the development of ligands 
exploiting dimerization. As an example, Filizola’s group has elegantly exploited a 
combination of biased, non-biased, all-atom and coarse-grained simulations 
techniques to study the interface of different GPCRs. Whereas Provasi et al. [100] 
predicted dimer association constants by studying the lifetime of δ-opioid receptor 
homodimers by umbrella sampling coarse-grained simulations, Johnston et al. 
[101] later worked on two different arrangements of the same dimer by coarse-
grained well-tempered metadynamics. Recently, Johnston et al. [102] compared 
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of the complex or, alternatively, on the stabilization or disruption of the receptor-
receptor interface. In parallel, the rational design of ligands consisting of two 
pharmacophoric entities (bivalent ligands), which are able to bind both protomers 
of the complex at the same time, is also an active research field. This ‘dual-mode’ 
strategy enables a selective targeting of GPCR heteromers by assembling two  
 

 

Figure 7: Examples of GPCR bivalent ligands. The figure, reprinted with permission from [109], 
shows an example of hetero- (A) and homobivalent ligands (B) targeting the A2A-D2 heteromer 
and D2-D2 homomers, respectively. 

different pharmacophores within the same molecule or even of GPCR homomers 
by simply using the same pharmacophore twice. For example, homobivalent 
ligands consisting on identical pharmacophores (e.g. 1,4-disubstituted aromatic 
piperidines or piperazines) can be used to target D2 receptor homomers [106]. In 
contrast, heterobivalent ligands comprised of one D2 agonist (e.g. a PPHT 
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derivative) and one A2A antagonist (e.g. a xanthine derivative) have been designed 
to target the A2A-D2 heteromer as a potential therapy in Parkinson’s disease [107]. 
The design of these ligands involves the tethering of both pharmacophoric entities 
by a spacer that is able to provide both a particular length and enough 
conformational flexibility to allow the accommodation of the ligand in both 
binding pockets (Fig. 7) [108]. The major drawback of this type of ligands comes 
from their high molecular weight and hydrophobicity, provided by the long alkyl 
spacers needed to bridge the receptor-receptor interface. As a result, poor 
absorption properties frequently hamper the druggability of bivalent ligands and, 
at present, they are generally used as chemical tools to study dimer behavior. 

All in all, computational techniques for modeling GPCR dimer- and 
oligomerization have undergone an important development over the last decade. 
From more classical sequence-based approaches to the evolving field of MD 
simulations, computer modeling holds promise for guiding the rational design of 
new molecular probes, and also of new drug candidates targeting GPCR dimers 
and oligomers. 

4. COMPUTATIONAL GPCR DRUG DISCOVERY: CHALLENGES AND 
CONCLUSIONS 

As we have seen along this chapter, GPCRs are not only the most important 
known drug targets, but they also constitute an open area of research to obtain 
new solutions for unmet medical needs. This continuing importance of GPCRs as 
drug targets can be seen in the analysis of recent approvals by the Food and Drug 
Administration. In this sense, between 2010 and 2012, almost 20% of new 
approved drugs targeted these receptors [110]. 

The increasing amount of public data on GPCRs, their ligands and their binding 
partners has opened new opportunities for in silico approaches capable of using 
this information to gain a deeper understanding on these receptors. In this sense, 
for instance, information on ligand binding affinities for different GPCRs can be 
used in chemogenomics approaches capable of selecting new compounds for 
receptor deorphanization. In parallel, the increasing amount of experimentally-
determined structural information, together with recent advances in computational 
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power and simulation software, allow obtaining more accurate models for virtual 
screening, as well as gaining a dynamic view on unknown receptor 
conformational states and their modulation by different interaction partners 
(ligands, signal transducers or GPCRs). In addition, new information on activity 
outcomes induced by particular ligands has created the possibility to study the 
basis of biased agonism, and also to design compounds capable of interrogating 
the importance of particular pathways in health and disease from a systems 
pharmacology perspective. 

From our viewpoint, new knowledge on GPCR functioning, despite adding new 
layers of complexity with regard to drug action at this type of targets, will finally 
help obtaining safer and more effective therapies exploiting phenomena such as 
drug promiscuity, biased agonism, allosteric modulation or receptor 
oligomerization. 
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Abstract: Drug repurposing/reprofiling has attracted considerable attention during the 
last decade. The object of such approach is to discover second or further medical uses of 
known chemicals, i. e. targeting existing, withdrawn or abandoned drugs, or yet to be 
pursued clinical candidates to new disease areas. Recently (2011-2012), the US and UK 
governments launched public-private joint initiatives towards finding new uses of 
previously shelved compounds (drug rescue). While in the past repurposing emerged 
from serendipitous findings and/or from rational exploitation of drug side-effects (e.g. 
sildenafil, aspirin), the current tendency in the drug development field focuses on 
knowledge-based drug repurposing, particularly, computer-aided repositioning 
approaches. The present chapter reviews different cheminformatic and bioinformatic 
applications, as well as high-throughput literature analysis, oriented to the discovery of 
new medical uses of known drugs. Applications of such strategies to the discovery of 
innovative medications for neglected or rare diseases are discussed. Finally, we also 
review publicly available resources (e.g. chemical libraries) valuable for reprofiling. 

Keywords: Bioinformatics, cheminformatics, drug reprofiling, drug repurposing, 
indication expansion, indication switching, literature-based drug repositioning, 
neglected diseases, network-based drug repositioning. 

INTRODUCTION 

Drug repositioning (also known as drug repurposing or drug reprofiling or  
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indication expansion or indication switching) refers to finding new therapeutic 
uses for already existing drugs including marketed, discontinued and shelved 
drugs, and yet-to-be-pursued clinical candidates (recently, the research on new 
indications for abandoned drugs has been described as drug rescue). There are 
many explanations for the growing attention to drug repositioning within the 
international drug development community over the last few years (which 
includes public programs launched by national health authorities in developed 
countries such as the US and UK) [1-6]. Drug repositioning is intrinsically linked 
to off-label use, that is, the prescription of a drug by a physician (based upon 
emerging science or clinical evidence) for indications (or in doses or through 
routes) not yet evaluated and approved by the health authorities [7]. Off-label use 
frequently implies the use of a given drug within the medical community for an 
unapproved therapeutic indication, and it is a very frequent practice in certain 
branches of Medicine (e.g. Psychiatry and Pediatric practices); drug repositioning, 
especially when sponsored by a pharmaceutical company, aims to the approval of 
a second medical use (or a medical use different from the originally intended in 
the case of abandoned and investigational drugs). 

Repositioned drugs represent unique translational opportunities, including 
substantially higher probability of success to market than de novo drugs and a 
reduced development timeline to potentially 3-12 years [8, 9]. Repurposed 
candidates have (at least) survived preclinical toxicological testing; they have 
proved tolerable safety and possess adequate, already characterized 
pharmacokinetic profiles. When the repurposed drug has already been used in 
clinical practice, manufacturing and stability issues have already been solved; 
what is more, off-patent repurposed drugs may provide relatively inexpensive 
solutions for new problems [10]. Successful drug repurposing stories have 
probably contributed to the interest in indication expansion. E.g. sildenafil was 
originally investigated for the treatment of hypertension and ischemic heart 
disease but acquired blockbuster status as a treatment for erectile dysfunction. 
Aspirin itself has expanded its therapeutic indications and it is at present widely 
used to prevent heart attacks and strokes in patients with existing cardiovascular 
disease. More examples are presented in Table 1. 
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Table 1: Examples of successful repurposing 

Drug Original Indication New Indication 

Aspirin Inflammation, pain Antiplatelet 

Amphotericin B Fungal infections Leishmaniasis 

Bromocriptine 
Parkinson’s disease, 

hyperprolactinaemia and 
galactorrhoea 

Diabetes mellitus 

Bupropion Depression Smoking cessation 

Celecoxib 
Osteoarthritis and adult rheumatoid 

arthritis 
Familial adenomatous polyposis, 

colon and breast cancer 

Chlorpromazine Anti-emetic/antihistamine Non-sedating tranquilizer 

Duloxetine Major depressive disorder Stress urinary incontinence 

Eflornithine Anti-infective 
Reduction of unwanted facial hair in 

women 

Finasteride Benign Prostatic Hyperplasia Hair loss 

Fluoxetine Depression Premenstrual dysphoria 

Galantamine Polio, paralysis and anesthesia Alzheimer’s disease 

Gemcitabine Viral infections Cancer 

Methotrexate Cancer Psoriasis, rheumatoid arthritis 

Minoxidil Hypertension Hair loss 

Paclitaxel 
Cancer chemotherapeutic 

agent 

Prevention of 
restenosis of coronary 

stents 

Phentolamine Hypertension Impaired night vision 

Raloxifene Breast and prostate cancer Osteoporosis 

Ropinirole Hypertension 
Parkinson’s disease and idiopathic 

restless leg syndrome 

Sildenafil Angina Erectile dysfunction 

Tadalafil 
Inflammation and cardiovascular 

disease 
Male erectile dysfunction 

Tofisopam Anxiety-related conditions Irritable bowel syndrome 

Topiramate Epilepsy Obesity 

Warfarin Thrombosis prevention 
Secondary prophylaxis 
following myocardial 

infarction 

Zidovudine Cancer HIV/AIDS 

Second uses have frequently been found through serendipitous observations 
(typically, intelligent exploitation of drug side-effects). Lately, however, rational, 
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knowledge-based repositioning strategies have been explored, including 
cheminformatic- and bioinformatic-based approaches [11-17] and high-
throughput literature analysis [18, 19]. Repositioning has been signaled as a 
particularly useful strategy for the discovery of new treatments for orphan, rare 
and neglected diseases [20-22], which often offer limited potential revenue to 
pharmaceutical companies and are addressed by private-public joint efforts, the 
academic sector and non-profit organizations. Throughout this chapter we will 
review recent trends in the field of computer-aided drug repositioning. We will 
also discuss the particular application of this strategy in the search of new 
therapeutic solutions for neglected and rare diseases. Finally, we will present a 
selection of publicly available in silico resources that might be of help to assist 
drug repositioning initiatives. 

BIOINFORMATICS AND DRUG REPURPOSING 

Computer-aided drug repositioning relies on two general principles [12]: a) drugs 
which share biologically relevant molecular features may interact with the same 
molecular target/s (drug-centric approach) and; b) health disorders linked to the 
same or similar dysregulated or dysfunctional proteins may be treated with the 
same drugs (disease-centric approach). Computational methods might be useful to 
reveal hidden drug-protein or protein-protein relationships. The first approach will 
be covered separately in the Cheminformatics and drug repurposing section of 
this chapter. High-throughput literature analysis constitutes a third, distinctive 
approach that will also be discussed. 

Bioinformatics deals with the challenge of finding structural similarities and 
functional connections between gene and gene products, and, more recently, 
similarities and inverse similarities between genome-wide expression patterns 
linked to disease and drug-effect signatures. 

Genome-wide gene expression profiling offers a snapshot of globally measured 
transcript levels in a given cell, tissue or organism at a specific point of time 
under a certain experimental condition [23]. The Broad Institute Connectivity 
Map is a publicly available resource meant to connect disease and small 
molecules through gene-profiles [24]. This database was the first to compile gene-
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expression profiles derived from the treatment of human cells cultured with a 
large number of perturbagens (drugs and other bioactive compounds). Originally, 
164 perturbagens were considered. Currently that number has been expanded to 
more than 1300 FDA-approved molecules and it has been announced that the 
Connectivity Map will soon contain around 4000 drug-effect signatures. Query 
expression signatures can be compared to the stored ones through pattern-
matching algorithms: those at the top and bottom of the resulting similarity rank 
are considered related to the query state by common and opposite expression 
changes, respectively. How can this resource be used to repurpose drugs? If a 
signature corresponding to a given disease state is used as query, those drugs 
whose signatures show an inverse similarity to the query are, hypothetically, a 
potential therapy to restore physiological state. Alternatively, if a drug-effect is 
used as query, then all those drug-effect stored signatures similar to the query 
represent drugs with similar effects (Fig. 1). Although not related to drug 
reprofiling, it is interest to note that direct similarity (positive correlation)  
 

 

Figure 1: A general scheme showing how comparison of drug-effect and disease signatures can be 
used to select potential therapeutics. Reproduced under permission of Elsevier from Ku, X. A. et 
al. Applications of the Connectivity Map in drug discovery and development. Drug. Discov. 
Today. 2012, 17(23-24). 1289-1298. 
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between a given drug-effect signature and a disease signature suggests that the 
considered perturbagen might exacerbate or induce the disease, thus being 
contraindicated for those patients suffering such condition (or predisposed to it). 
In addition, drug-effect signatures provide clues on drug mechanisms of action. 

One of the seminal applications of the Connectivity Map to drug repurposing was 

developed by Sirota et al. [25, 26]. These authors produced a large-scale 

integration of disease signatures with Connectivity Map drug-effect signatures, 

building a compendium of predicted disease-drug associations. In this way, 

instead of examining single drug-disease or drug-target pairs or even the potential 

effect of a large number of drugs on a single target or disease, they considered all 

the possible drug-disease connections that could be derived from the existing 

expression data. The method provided significant drug-disease relationships for 

53 out of 100 tested conditions. Each of the 164 tested drugs was linked to at least 

one of the tested conditions. For validation purposes, the therapeutic potential of 

topiramate (an approved antiepileptic and anti-obesity agent) on inflammatory 

bowel disease and the effect of cimetidine (an inhibitor of gastric acid secretion) 

on lung adenocarcinoma were verified through in vitro and/or in vivo models, 

with positive results. It was later observed that the associations of cimetidine with 

cancer and topiramate with inflammatory bowel disease had previously been 

reported in literature [27]. Nevertheless, many other discoveries have been 

reported using a similar approach. For instance, Claerhout et al. used the top 500 

up regulated and the top 500 down regulated genes from microarray data from 65 

gastric cancer patients as query signature in the Connectivity Map, finding that 

vorinostat (a histone deacetylase inhibitor) was a potential candidate to target 

gastric cancer; the prediction was later validated in gastric cancer cell lines [28]. 

More recently, the Connectivity Map has been used in combination with Support 

Vector Machines to optimize drug repurposing for the treatment of hepatocellular 

carcinoma [29]. Further discussion on some other examples is presented in 

reference [23]. In the same line are the recent contributions from Sanseau et al. 

and Wang et al. [30-32] focusing on disease traits of genetic origin (medical 

genetics-based drug repositioning). Using the catalog of published Genome-wide 

Association Studies (GWAS) from the US National Human Genome Research 
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Institute, Sanseau et al. built a list of genes with single nucleotide polymorphisms 

linked to disease traits [30]. After removing non-replicated data from the list, they 

analyzed the druggability and biopharmability of the listed genes. 21% of the 

genes were considered druggable, while 49% were regarded as biopharmable. 

15.6% (155) of the listed genes were already associated to launched drugs or 

ongoing drug projects: 97 matches and 123 mismatches were found between the 

GWAS traits and the known or pursued therapeutic indication of the drugs. Those 

123 mismatches correspond to drug repositioning opportunities. A similar 

approach was later applied by Wang et al. [31, 32], though these authors preferred 

the OMIM database over GWAS, since OMIM provides more detailed pathogenic 

information that can help deciding on drug directionality (whether a agonist or 

antagonist is more adequate to treat a given trait). 

A different but very interesting approximation in the field of bioinformatic-based 
drug repurposing emerges from the very recent work of Haupt et al. [33]. These 
authors demonstrated a connection between ligand promiscuity (a valuable 
property for drug reprofiling purposes) and global structure similarity and binding 
site similarity. In order to find the correlation between ligand promiscuity and 
binding site similarity, 164 ligands co-crystallized with three or more non-
redundant targets were extracted from the Protein Data Bank. These ligands were 
present in 712 non-redundant protein targets (redundancy was defined by 95% 
sequence identity). All pairs of binding sites for all promiscuous drugs were 
aligned with the sequence-order-independent profile-profile alignment algorithm 
implemented in SMAP [34]. Only those sites with consistent binding mode of the 
ligand (i.e. whenever the predicted binding site similarity translated into a similar 
ligand binding mode) were then kept for subsequent analysis, finding a correlation 
of r=0.76 between the global structure similarity and the degree of promiscuity 
(drug target count) and a correlation of r=0.81 between the square root of the 
number of similar binding sites and the degree of promiscuity. These findings 
suggest that one may use the binding site similarity and the global structure 
similarity as criteria to guide drug repositioning initiatives. Bioinformatics 
approaches to establish protein-protein connections are briefly discussed in the 
section covering network-based approaches. 
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CHEMINFORMATIC-BASED DRUG REPOSITIONING 

Cheminformatic-based drug repositioning can be regarded as a very particular 
type of virtual screening campaign in which the screened library or database only 
includes approved, discontinued, abandoned and/or investigational drugs. The 
methods used in cheminformatic-based drug repositioning are thus classified in 
the same way that for general virtual screening approaches [35]: target-based 
approaches (prominently, molecular docking) and ligand-based approaches 
(which roughly include pharmacophore-based, descriptor-based and similarity-
based techniques). Lately, parallel and serial combinations of the previously 
mentioned approximations have been extensively applied [36]. Remarkably, since 
drug repositioning focuses on an extremely small subset of the known, vast and 
growing universe of drug-like small molecules, the use of virtual screening for 
repositioning purposes is particularly efficient, a point that should be taken into 
consideration especially when target-based approaches are included in the 
screening protocol. Availability of public repositories of approved, discontinued, 
abandoned and/or investigational drugs such as DrugBank has smoothed the way 
for the development of cheminformatic-based drug repositioning campaigns. 

Target-based approaches generally involve three stages [37]: i) generation of the 
molecular model of the target; ii) pre-treatment and conformational sampling of 
the ligands and; iii) score assignment reflecting the binding energy of the ligand-
target complex. Since both proteins and ligands usually possess certain degree of 
flexibility, a mutual induction of conformational changes favoring the binding 
event frequently occurs. Multiple approaches have been explored to account for 
ligand and target flexibility. Methods to tackle the ligand flexibility issue include 
ligand incremental construction, generation of multiple conformers previous to 
docking and stochastic methodologies. Treatment of protein flexibility includes 
using multiple rigid receptor conformations, either computed probable 
conformations or conformations obtained from experimental (x-ray or RMN) 
structures. Regarding force-field scoring functions, since originally scoring 
functions tended to neglect the entropic contribution to binding and the water-
mediated ligand-binding, considerable effort is being invested in improving the 
performance of scoring algorithms, e.g. including additional terms to better 
estimate the solvation effect or the entropy-related change in free energy during 
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binding, and combinations of the output from several scoring functions 
(consensus scoring). 

Drug repositioning by molecular docking can be operated via a single target 
approach which aims to identify potential interactions between the drug 
candidates and a particular target of interest, or inverse docking might otherwise 
be used to investigate the binding of an existing drug against a panel of known 
therapeutic targets [37]. Dakshanamurthy et al. have developed a 
proteochemometric method to map the drug-target interaction space and predict 
new uses for FDA-approved and investigational drugs [38]. They combined 
shape, topology and chemical signatures (including docking score and functional 
contact points of the ligand) to predict potential drug-target interactions between 
3,671 drugs and 2,335 human proteins. This application uncovered that the 
antiparasitic mebendazole can inhibit VEGFR2 kinase activity and angiogenesis 
at doses comparable with the ones used to elicit its known effects on hookworms. 
They also predicted that the anti-inflammatory drug agent celecoxib binds to 
cadherin-22, an adhesion molecule relevant in rheumatoid arthritis and poor 
prognosis malignancies. Regarding the single target approach, Lejal et al. recently 
reported the antiviral effect of the anti-inflammatory naproxen against Influenza A 
virus [39]. This unknown effect was discovered through application of molecular 
docking and molecular dynamics simulations on a Sigma-Aldrich catalogue, using 
the nucleoprotein as molecular target. 

Regarding ligand-based approaches, systematic comparisons indicate that, while 
relatively simpler and efficient approaches (e.g. similarity methods based on 2D 
fingerprints) tend to present good enrichment factors with low computational 
demand, more elaborated conformation-dependent approaches such as 
superposition to pharmacophoric hypotheses (which requires conformational 
analysis of both the reference molecules and the database structures) generally 
show better scaffold hopping [40, 41]. The prominent role of ensemble learning 
has been highlighted in the essential article on prospective virtual screening 
applications from Ripphausen et al. [42]. By systematically exploring a variety of 
targets, Holliday et al. have demonstrated that the active enrichment increases 
when using different reference molecules and different fingerprinting schemes in 
similarity-based virtual screening campaigns [43]. 
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Recently, Wu et al. developed the very attractive idea that two therapeutic 
indications would be correlated if they share the same or similar drugs (and thus, a 
network indicating which therapeutic categories have similar drugs would be a 
valuable framework to systematic drug repositioning). To test their hypothesis, 
they conceived the indication similarity ensemble approach (iSEA) [44]. Briefly, 
1,574 pairs of drug-anatomic therapeutic chemical classes were collected from 
DrugBank. 1,151 FDA-approved drugs were used to train the network, while 54 
experimental or withdrawn drugs involved in 65 drug-anatomic therapeutic 
chemical classes were used for validation purposes. For each drug pair involved in 
two anatomic therapeutic chemical classes under comparison, Tanimoto scores 
were computed using three different fingerprinting schemes that were 
subsequently averaged. Afterwards, an Evaluating score was computed simply by 
summing all the average similarity scores for all the possible pairs for the two 
classes being compared, which was later transformed into a Z score to assess 
statistical significance. Previous work related to iSEA can be found in the reports 
from Keiser et al. [45, 46] 

LITERATURE-BASED DRUG REPOSITIONING 

The process of generating novel hypotheses by bridging seemingly unrelated 
scientific facts (or detecting indirect associations between them) is known as 
literature-based discovery (LBD). LBD is based on the hypothesis that two 
islands of knowledge or concepts A and C might be related to each other if they 
share a link to an intermediate concept B [47] (and in fact, the bigger the number 
of shared concepts between A and C, the more probable the relationship between 
them). This model is commonly known as Swanson’s ABC model after its 
postulation and first fruitful applications by Swanson during the 1980s and 
afterwards [48, 49]. The first successful application of the ABC model uncovered 
the therapeutic potential of oil fish for the treatment of Raynaud’s syndrome, 
following the previously reported observations that a) Raynaud’s syndrome is 
linked to increased blood-viscosity and; b) fish oil reduces blood viscosity. This 
prediction was inferred through the use of the semi-automated method 
Arrowsmith, which used a “closed” framework in which the user provides the 
hypothesis (Fig. 2) [50]. The rapid increase in the volume of the biomedical 
literature spawns a combinatorial explosion in the number of implicit connections 
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between entities described in it; the possibility of such connections to remain 
hidden/unnoticed is substantially increased by the progressively more disjointed 
nature of knowledge as a consequence of specialization [51]; is no longer possible 
for a researcher to keep up to date with all the relevant literature manually, even 
on specialized topics [50]. Therefore, the development of automated, high 
throughput methods for information retrieval and information extraction is 
becoming progressively essential to researchers; in the context of drug 
repositioning, an open discovery approach (finding a relationship/hypothesis 
starting from a disease A and arriving to a drug C, or vice versa) (Fig. 2) seems to 
be the best approach to find second medical uses [52]. 

Co-occurrence methods are the simplest approaches to link biomedical terms of 
interest. Implicit connections between terms that do not co-occur are discovered 
by finding a third linking term that occurs directly with each of them. This 
approach is, though, prone to generating false positives (given the large number of 
possible combinations of bridging terms and potential discoveries) and it does not 
provide information on the nature of the predicted relationship [47, 51, 53]. 
Recent research indicates that co-occurrence approaches can be outperformed by 
Natural Language Processing-based methods, e.g. semantic analysis. For instance, 
Predication-based Semantic Indexing represents concepts and relationships 
between them as vectors in the hyperdimensional space, and inference takes place 
as a function of the geometry of such space, providing scalable search and 
efficient inference [51]. Wilkowski et al. have recently used SemRep [54] to 
extract semantic predications from MEDLINE and built large graphs (predication 
graphs) of interconnected nodes which are then analyzed through graph-theoretic 
constructs to find chains of relationships that might guide the research process 
[55]. To create the graph the user specifies a seed concept to extract predications 
from the SemRep predication database. Concepts in the resulting graph are ranked 
according to degree centrality to select a new seed concept and expand the 
growing graph with additional predications. Path analysis is also applied to reveal 
potentially interesting associations (e.g. longest paths tend to reveal rare 
associations). Cameron et al. expanded Wilkowski’s approach by considering not 
only associations between concepts but also relevant/expressive subgraphs and 
background knowledge [53]. The idea of exploiting topological motifs analysis to 
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reveal hidden relationships has recently been applied through the Typed Network 
Motif Comparison Algorithm developed by Choi et al. [56]. 

There are several recent applications of literature-based drug repositioning. Li et 
al. combined text mining with molecular interaction network mining to search for 
potential new treatments for Alzheimer disease [57]. They retrieved 49 proteins 
related to Alzheimer from OMIM, and they expanded such list using quality-
ranked protein interaction data. Finally, these authors analyzed PubMed abstracts 
using the resulting 560 Alzheimer disease-relevant proteins as queries, retrieving 
more than 220,000 related abstracts outside the explicit context of Alzheimer and 
examining drug terms appearing in them. As a result, diltiazem and quinidine 
were proposed as potential therapies for Alzheimer. 

 

Figure 2: ABC principle of hidden relationships in literature. Closed discovery may be helpful to 
support previously formulated hypothesis; open discovery is valuable for hypotheses generation 
and thus for drug repositioning campaigns. 

Some years back Fritjers et al. developed an ABC-based literature mining tool 
named CoPub [58]. Using this tool they found interconnections between gene, 
drugs and diseases. Later, they validated CoPub by finding known and unknown 
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relationships between biomedical concepts [19]. An R-scaled score ranging from 
1-100, describing the strength of a co-citation between two biological items given 
their individual frequencies of occurrence, was used to assess the significance of a 
co-occurrence. A high R-scaled score indicates that if two biological concepts 
occur in literature they are often published together, whereas a low R-scaled score 
indicates that two biological concepts often occur separately in literature [59]. 
Using this approach the authors predicted the antiproliferative effect of two drugs, 
damnacanthal and dephostatin; the predictions were later corroborated through in 
vitro assays. Noteworthy, the authors computed the time lag between the average 
publication date of A-B and B-C intermediates, and compared this date with the 
date of first appearance of A and C in the literature. They estimated the average 
lag time in 6.5 years, which indicates to which extent discoveries can be 
accelerated when this type of relatively simple literature-mining hypothesis 
generation tools are employed. 

NETWORK-BASED DRUG REPOSITIONING 

There are many good reasons to resort to large-scale data integration approaches 
that allow system view on drugs actions to develop drug repositioning campaigns. 
First, as it has already been pointed-out in the previous section, scientific 
information is nowadays produced at an unprecedented rate. Manually exploring 
available literature to find valuable connections is no longer feasible, and 
computational approaches are needed to digest and bridge such vast amount of 
data [60]. Elucidating a drug’s mechanisms of action is still very time and labor 
expensive (in fact, new mechanisms are continuously being discovered for drugs 
that have been clinically used for decades) and on the other hand experimental 
binding data are incomplete. However, available experimental data on drug-
protein interactions may be sufficient to fill the experimental gap by applying 
computational tools complementarily to high throughput approaches. Integrating 
multi-dimensional information (chemical, pharmacological and genomic spaces) 
may help to compensate for intrinsic limitations of isolated approximations/single 
kinds of information. For instance, cheminformatic structure-based approaches 
tend to focus on a limited number of proteins such as those with interacting drugs 
and solved three dimensional structures; structurally similar drugs may bind 
proteins with no obvious sequence or structural similarity, while structurally 
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dissimilar drugs may bind the same protein (the activity cliff issue); in phenotypic 
effect-based approaches, drugs affecting different targets in the same pathway or 
biological process may trigger similar responses, while in some cases it may be 
difficult to distinguish target gene products from downstream regulated genes [61, 
62]. Zhao and Li developed three regression models relating “closeness” (on the 
basis of a protein-protein interaction network derived from the Human Protein 
Reference Database [63]) to therapeutic similarity, chemical similarity and 
“multiple” similarity combining the previous two similarities. Remarkably, 
combining therapeutic and chemical similarities provided the best results in terms 
of drug-target interactions recognition, leading to outstanding areas under the 
ROC curve of 0.988 and 0.935 for the training and test sets [61]. Finally, a 
remarkable paradigm shift has lately taken place in the drug discovery field. Two 
decades ago, the prevailing paradigm proposed the development of exquisitely 
selective ligands acting on a single target (the one drug, one target paradigm). 
Selectivity and potency were thus essential aspects to decide whether a drug 
candidate would progress into further development phases. Such reductionist 
approach was founded on two notions: a) highly specific drugs would avoid off-
target side-effects, thus leading to safer therapeutics and; b) at least some diseases 
could be adequately treated using a single target intervention. However, recent 
discoveries have challenged the earlier paradigm in favor of a more holistic 
approach in line with the philosophy of systems biology. Most of the approved 
drugs were discovered using “black-box” phenotypic screens and interact with 
more than one target [64, 65]. Multi-target drugs usually affect their targets only 
partially, that is, they present low affinity interactions with many of their targets 
[65]. Contrary to previous beliefs, low-affinity multifunctional drugs may 
represent and advantage: weak links may stabilize the systems, buffering changes 
after system perturbations. At last, due to redundant functions and compensatory 
mechanisms phenotypes are robust, i.e. resilient to perturbation [66]. Under this 
novel perspective, disease can be regarded as a breakdown of the robustness of 
normal physiological systems and the re-establishment of also robust (and 
potentially progressive) disease states [64]. The previous discussion explains why 
multi-target drugs are being pursued today and also sets the logic ground for drug 
repositioning. However, it should be underlined that selectively non-selective 
drugs and promiscuous drugs are not exactly equivalent concepts in a drug 
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repositioning scenario: while a certain, convenient degree of promiscuity may be 
desirable, an excess would certainly represent serious safety issues [67, 68]. 
Network-based approaches focused on drug repositioning may prove helpful to 
select candidates with an adequate degree of polypharmacology depending on the 
pursued new indication. 

So what are exactly networks? Networks deal with complexity by simplifying 
complex systems: concepts or entities are represented as nodes while relationships 
between nodes are depicted as edges [69]. In such representation -naturally 
connected to Graph Theory- functional and dynamic features of the elements 
depicted as nodes are often (though not always) lost and emphasis is given to the 
connectivity between the nodes, i.e. the topological architecture of the net. Such 
connectivity is established through known relationships or through predicted 
associations (e.g. chemical similarity, protein similarity, similar expression-
profiles, literature-inferred connections, etc). Put in other words, all the 
approaches overviewed in the last three sections of the chapter are combined 
holistically and new connections are established by studying the topology (and, 
more recently, the semantics) of the network. What topological aspects of the 
network are relevant largely depends on what is being pursued by the researcher. 
We have mentioned in the Literature-based drug repositioning section that highly 
connected concepts are usually useful as intermediate seeds to reveal hidden 
connections. If we are seeking for drug targets of interest, the hubs (highly 
connected nodes) frequently correspond to essential proteins whose modulation 
deeply impacts the system function. Thus, moderately connected nodes might be 
of more interest as potential new drug targets. A similar statement may be true 
when searching for new drugs: a drug node of very high degree may represent a 
promiscuous agent linked to safety issues, while a moderately connected drug 
might be the selectively non-selective “master key” being sought. 

The current trend in network-based drug repositioning points toward the 
integration of very heterogeneous types of data and it also studies the introduction 
of semantic edges. E.g. Chen et al. developed a semantic network including a 
variety of physical and abstract node types: compounds, proteins, side effects, 
diseases, pathways, tissues, gene ontology terms, and others [70]. Semantic linked 
data encodes explicit meaning of nodes and edges, allowing traversing from node 
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to node through specific kinds of relationships. The authors connected more than 
290,000 nodes through more than 720,000 edges. Every node and edge was 
semantically annotated using a previously developed ontology [71]. Such 
annotation allowed the definition of path patterns (paths of nodes and edges that 
share the same semantics) and the study of path patterns that are particularly 
valuable to identify relevant links. They also developed the Semantic Link 
Association Prediction model, which computes an association score from the 
topology and semantics of the neighborhood. It was demonstrated that this model 
can identify known drug-target pairs and even indirect drug-target associations 
such as the change of gene expression level (a type of association undetectable 
through cheminformatic and non-semantic approaches). The authors claimed that 
the association scores of a drug against a set of targets constitute a biological 
signature (which reminds us of the opportunely discussed gene-expression 
signatures; in this case, however, the signature allows a wider spectrum of 
relationships besides gene-expression regulation). Although any path between two 
nodes may support the relation between them, the degree of the contribution 
depends on the path distance and the weight of the involved edges (e.g. a gene 
ontology molecular function term is considered less informative that a binding 
term). The area under the ROC curve for the model was 0.92. The authors 
remarked that their model is capable of clustering biologically similar drugs even 
if they are not chemically similar. 

Another very interesting weighting scheme was presented by Lee et al. in their 
tripartite (drug-protein-disease) knowledge platform PharmDB [72]. These 
authors measured the importance of a predicted relationship between two nodes 
through an algorithm that combines the share node count and the share node 
weight. This share node weight is computed, in turn, as the product of the weights 
of links bridging the considered nodes. While the weight of directly connected 
pairs is considered 1, the weight of unconnected pairs is assigned from the 
connection probability, that is, the fraction of directly connected pairs among the 
total number of pairs having the given shared nodes count (Fig. 3). According to 
ROC curves analysis, the inclusion of such share node weight term in the 
algorithm clearly empowers the identification of relationships compared to the 
bare share node count criteria. 
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Figure 3: Scheme of the shared neighborhood scoring algorithm proposed by Lee et al. 
Reproduced by Creative Commons License from Lee, H. S. et al. Rational drug repositioning 
guided by an integrated pharmacological network of protein, disease and drug. BMC Syst Biol, 
2012, 6(80). 

An example of how a network approach can be used to reposition drugs has 
recently been presented in the 2012 report from Talevi et al. on the anticonvulsant 
effect of non-nutritive sweeteners [73]. A previously reported descriptor-based 
QSAR model [74] predicted that a number of artificial sweeteners (cyclamate, 
acesulfame, saccharin) might have anticonvulsant effect in the Maximal 
Electroshock Seizure (MES) test. Subsequent bibliographic revision showed that 
one of them, saccharin, had already been evaluated in MES test in 1979 with 
positive results [75]. The predictions of the model were later validated 
experimentally, and both acesulfame and cyclamate showed anticonvulsant 
effects. The results made us wonder whether a link could exist between the sweet 
taste receptor and any known molecular target of antiepileptic drugs. 
Bibliographic search indicated that a family of proteins named T1R is the major 
mediator of the sweet and umami responses in mammals [76, 77]. In humans, 
sweet sensation is elicited by a heterodimer formed by T1R2 and T1R3, while 
umami flavor is detected by the combination of T1R1 and T1R3. Noteworthy, one 
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COMPUTER AIDED DRUG REPURPOSING FOR RARE/ORPHAN AND 
NEGLECTED DISEASES 

Tropical diseases such as Chagas disease, African sleeping sickness, 
leishmaniasis, lymphatic filariasis, dengue and schistosomiasis are still among the 
main causes of mortality and morbidity in the world. They belong to a group of 
diseases collectively known as neglected (tropical) diseases. Although there is 
little consensus on what constitutes a neglected disease, is it generally accepted 
that they disproportionally affect people in the developing world and that there 
exists a need of improved diagnosis and/or treatment products [84]. Even though 
according to the World Health Organization (WHO) neglected tropical diseases 
affect more than 750 million people throughout the world, only 21 (1.3%) out of 
1556 medications registered between 1975 and 2004 were specifically developed 
for these conditions, which reflects market flaws and failure of public policies 
[85]. 

On the other hand, the expression rare diseases denotes a group of health 
conditions which affect relatively small patient populations. In the US, for 
example, a disease is considered rare if it affects less than 200,000 people, or it 
affects more than 200,000 people in the US but is not expected to recover the cost 
of development and marketing (Orphan Drug Act and implementing regulations). 
Though very different in nature, rare and neglected diseases share the reluctance 
within the private pharmaceutical sector to invest in R&D of new treatments, 
owing to the perceived limited commercial revenue. Thus, the public sector, the 
academy and non-profit organizations play a prominent role in the development of 
new solutions to these diseases [84, 86, 87]. In fact, the G-Finder study reveals 
that around 90% of the funding for R&D on neglected diseases comes from the 
public sector and non-profit organizations [84]. 

Recently, the use of drug repurposing as a key strategy within academia and 
public research institutes has been extensively discussed [87-89]. Public 
institutions, including public research laboratories and universities, have 
contributed to the development of nearly 90% of new indications for previously 
approved drugs [88]. Interestingly, the possibility of repurposing drugs without 
commercialization (by direct incorporation of the research output to the clinical 
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practice after examination of the data by regulatory authorities) has been 
suggested as an option unique to academic discoveries [87]. The importance of 
computer-aided drug repositioning in the developing countries, where most of the 
limited R&D investment comes from the government and where the private sector 
seems reluctant to invest in R&D has also been underlined [35]. 

The previous discussion explains why drug repositioning constitutes a key 
strategy in the field of drug discovery and development for orphan diseases, 
where there is an obvious need of collaborative public-private partnerships [20, 
22, 90, 91]. Several initiatives such as WHO Special Programme for Research and 
Training in Tropical Disease, the Medicines for Malaria Venture, the Global 
Alliance for TB Drug Development, Drugs for Neglected Diseases and the Open 
Source Drug Discovery initiative have recognized drug repositioning as an 
attractive option to provide low-cost access to medications in developing 
countries [92]. The potential of computer-aided drug repurposing focused on 
neglected/rare diseases has recently been reinforced by the ongoing 
replication/transference of the Open Source model (which proposes collective 
knowledge production and dissemination) within the drug discovery field [93-95]. 
This model facilitates the entry of firms/players from emerging markets/countries. 
Open Source initiatives promote the exchange of chemical and biological data, 
chemical libraries, software and computational resources; in the field of neglected 
diseases, resources related to the Open Source philosophy include, among many 
others, the open access publication PloS Neglected Tropical Diseases, the 
ChEMBL - Neglected Tropical Disease (ChEMBL - NTD) archive (an open 
repository for primary screening and medicinal chemistry data directed at 
neglected diseases, which to the moment compiles contributions from 
GlaxoSmithKline, Novartis, the Drugs for Neglected Diseases Initiative - DNDi, 
St. Jude Children’s Research Hospital and the University of California) and the 
Indian Open Source Drug Discovery initiative (OSDD, a global platform for 
collaborative research on tropical diseases such as malaria, tuberculosis and 
leishmaniasis). 

There exist several examples of drug repositioning focused on neglected and rare 
diseases (see Tables 2 and 3, respectively). 
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Table 2: Examples of repositioned drugs for neglected tropical diseases currently in development 

Drug Original use New Use Refs. 

Amiodarone Anti-arrhythmic Chagas disease [96, 97] 

Bromocriptine Parkinson’s disease Chagas disease [97] 

Tamoxifen Antiestrogen Leishmania amazonensis [98] 

Amphotericin B  Fungal infections  Leishmaniasis [99] 

Ivermectin  Antiparasitic (river blindness) Malaria [100] 

Eflornitine Anticancer African sleeping sickness [101] 

Astemizole Antihistamine Malaria [102] 

Cycloserine Infections caused by Giardia Tuberculosis [103] 

Table 3: Examples of currently approved repositioned drugs for rare diseases 

Drug Original use New Use 

Azathioprine Rheumatoid arthritis Renal transplant 

Colchicine Gout Mediterranean fever 

Cyclosporine Rheumatoid arthritis. Psoriasis Transplant rejection 

Everolimus Renal cancer Renal transplant 

Histrelin Prostate cancer Precocious puberty 

Infliximab Ulcerative colitis. Psoriasis Crohn’s disease 

Interferon alfa Hepatitis B and C Various cancers 
Source: Food & Drug Administration 

There are many examples of computer-assisted indication expansion campaigns 

focused on neglected and rare diseases. Florez et al. [104] developed a protein-

protein interaction (PPI) network for the pathogenic trypanosomatid Leishmania 

major and identified 142 potential drug targets after homology filtering with the 

human proteome. In addition to selecting important proteins from PPI networks 

and analyzing metabolic pathways that link metabolites and reactions on a system 

level, this network can also shed light on disease mechanisms and assist drug 

target discovery. The topological analysis of the network of proteins has allowed 

the identification of a set of candidate proteins that may be both (1) essential for 

parasite survival and (2) without human orthologs, thus being potentially 

attractive and safe drug targets (Fig. 5). 
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Figure 5: Cytoscape Network for the Leishmania major interactome. The nodes highlighted in red 
are predicted essential nodes without human orthologs. Reproduced under Creative Commons 
License from Florez, A. F.; Park, D.; Bhak, J. et al. Protein network prediction and topological 
analysis in Leishmania major as a tool for drug target selection. BMC Bioinformatics, 2010, 11, 
484-492. 

Raman et al. [105] proposed a drug target identification pipeline, namely 
targetTB, to predict and refine drug targets for the tuberculosis bacteria, 
combining important proteins/genes from both the interactome and the reactome 
of Mycobacterium tuberculosis. Potential drug targets candidates can be inferred 
from similar known drug targets. To this purpose, known drug-target relationships 
and drug similarity and target similarity measures are required. Once a compound 
has been identified as a ligand for a given target, the related targets and 
compounds can be predicted using algorithms for similarity comparison. Potential 
off targets can be identified via similarities of their ligand-binding pockets. Using 
such an approach, it was determined that the enoyl-acyl carrier protein reductase 
of M. tuberculosis has a similar structure to that of rat Catechol-o-
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methyltransferase, the molecular target of the Parkinson’s disease drug 
entacapone. This compound was found to inhibit both the activity of enoyl-acyl 
carrier protein reductase and the growth of the pathogen [106]. 

Bellera et al. [97] have recently developed and implemented a virtual screening 
campaign on the DrugBank repository (see Valuable publicly available resources for 
in silico repositioning campaigns section) to find new antichagasic drug candidates 
acting through reversible inhibition of cruzipain (Cz). The authors generated a 
conformation-independent computational model (discriminant function) based on 
Dragon 4.0 molecular descriptors and capable of identifying novel inhibitors of Cz. 
The 2D classification model was developed from a 163-compound dataset which 
includes both Cz inhibitors and non-inhibitors. 54 approved drugs (the 
straightforward candidates for repositioning purposes) belonging to the model’s 
applicability domain were selected from DrugBank 3.0 database. Four candidates 
were experimentally tested in enzymatic and inhibitory assays. Among them, 
amiodarone (approved as antiarrhythmic) and bromocriptine (traditionally used 
against Parkinson and more recently repurposed for the treatment of diabetes) 
showed a weak but dose-dependent inhibition on Cz activity with clear effects on T. 
cruzi proliferation and morphology. The same authors obtained a second model (this 
time using Dragon 6.0) and applied it once again in the screening of DrugBank, 
finding that levothyroxine inhibits Cz in a dose-dependent manner [107]. It is worth 
noting, however, that the IC50s of the drug candidates selected in these campaigns 
are far from the steady-state plasma levels obtained when administering the drugs for 
their original indications. What is more: levothyroxine is contraindicated in cardiac 
patients, and Chagas patients frequently develop cardiac symptoms. Thus, although 
the findings are valuable to validate the predictive ability of the models, the results 
are far from being ideal for reprofiling ends. 

The results of these examples illustrate the possibilities of computer-aided drug 
repositioning in the search of novel medications for neglected diseases. 

VALUABLE PUBLICLY AVAILABLE RESOURCES FOR IN SILICO 
REPOSITIONING CAMPAIGNS 

There is a wide spectrum of computational resources that may result helpful in 
drug repurposing campaigns. We will briefly discuss some of them, although the 
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reader should remember that the following list is far from being comprehensive. 
Some other resources have been compiled by Loging et al. [15]. The reader 
should also take into account that the information compiled by these resources is 
being continuously expanded; therefore, the figures discussed have no hope of 
being updated. 

BindingDB [108] is a publicly accessible database presently containing above 1 
million binding data for 6,589 protein targets including isoforms and mutational 
variants, and more that 400,000 small molecule ligands. The data are extracted 
from the scientific literature; the collection focuses on proteins that are drug-
targets or candidate drug-targets and for which structural data are present in the 
Protein Data Bank. The BindingDB website supports a range of query types, 
including searches by chemical structure, substructure and similarity; protein 
sequence; ligand and protein names; affinity ranges and; molecular weight. Data 
sets generated by BindingDB queries can be downloaded in the form of annotated 
SDF files for further analysis, or used as the basis for virtual screening of a 
compound database uploaded by the user. The data in BindingDB are linked both 
to structural data in the PDB via PDB IDs and chemical and sequence searches, 
and to the literature in PubMed via PubMed IDs. Interestingly, it provides protein-
ligand validation sets (cogeneric series with at least one associated protein-ligand 
co-crystal structure). Although structural data are available for the protein targets 
included in BindingDB, the resource collects data for many ligands that are not 
represented in the PDB. It continuously curates a set of publications not covered 
by other public databases. 

BioLiP is a semi-manually curated database of biologically relevant ligand-
protein interactions [109]. Most binding sites prediction tools use the protein 
structures from the Protein Data Bank (PDB) as templates. However, not all 
ligands present in the PDB are biologically relevant, as small molecules are often 
used as additives to solve the protein structures. To facilitate template-based 
ligand-protein docking, virtual screening and protein function annotations, a 
hierarchical procedure was developed for assessing the biological relevance of the 
ligands present in the PDB structures. The entries in BioLiP contain annotations 
on ligand-binding residues, ligand-binding affinity and catalytic sites. Moreover, a 
new consensus-based algorithm (COACH) has been developed to predict ligand 
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binding sites from protein sequence or 3D structure. The BioLiP database is 
updated weekly and the current release contains 204,223 high quality ligand-
protein interactions, involving 50,621 proteins from the PDB. The ligand 
distribution in BioLiP database is shown in Fig. 6. 

 

Figure 6: Distribution of ligands in BioLiP. ‘Regular’ represents the common small-molecule 
ligands except for the DNA/RNA, peptide, k-mer and metal ligands. Reproduced under Creative 
Commons License from Yang, J.; Roy, A.; Zhang, Y. BioLiP: a semi-manually curated database for 
biologically relevant ligand-protein interactions. Nucleic Acids Res., 2013, 41(Database issue), 
D1096-D1103. 

The Connectivity Map comprises a large public catalogue of gene-expression 
data from cultured human cells perturbed with many chemicals and genetic 
reagents, along with pattern-matching tools to detect similarities among them 
[24]. The Gene Set Enrichment Analysis (GSEA) approach is a non parametric, 
rank-based pattern-based strategy applied for identifying small molecules with 
similar effects. GSEA starts with a ‘‘query signature’’ and assesses its similarity 
to each of the reference expression profiles in the data set. A query signature is 
any list of genes whose expression is correlated with a state of interest. Examples 
could include genes correlated with a subtype of disease (e.g. drug-resistant 
versus drug-sensitive leukemia) or regulated by a biological process of interest 
(e.g. experimental activation of a signaling pathway). Each gene in the query 
signature carries a sign, indicating whether it is up-regulated or down-regulated. 
The reference gene-expression profiles in the Connectivity Map data set are also 
represented in a nonparametric fashion. Each profile is compared to its 
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corresponding vehicle-treated control. The genes on the array are rank-ordered 
according to their differential expression relative to the control; each treatment 
instance thus gives rise to a rank-ordered list of ~22,000 genes [24, 110]. 

Drugbank is a drug-focused database currently containing more than 6,000 
entries, among them 1,424 FDA-approved small molecules, 132 biotechnological 
drugs and 5,210 experimental drugs. More than 4,000 non-redundant protein 
sequences (e.g. drug targets, enzymes and transporters) are linked to those entries. 
It thus combines detailed drug information (chemical, pharmacological and 
pharmaceutical data) with comprehensive drug target info [111]. 

The NCGC Pharmaceutical Collection is a comprehensive, non-redundant and 
freely available electronic resource compiling FDA-approved drugs, plus drug 
listings from the UK National Health Service Information Authority, Health 
Canada’s Drug Products Database, the European Medicines Agency and the 
Japanese Pharmacopeia [112]. Veterinary products listed in the Green Book (the 
FDA-approved animal drug list) and drugs previously approved for human use but 
subsequently withdrawn from the market are also included. A physical collection 
of small molecules suitable for high-throughput screening is available through 
collaborations. The collection has been conceived for drug repurposing with a 
focus on rare and neglected diseases. 

Ondex is an integrated platform currently linking 120,000 concepts through 
570,000 relations. Many types of data (multiple concept classes and relation 
types) can be brought together in the same graph, allowing nodes and edges to be 
annotated with semantically rich metadata. 15 concept classes (e.g. compound, 
drug, disease, protein, target, pathway) and 29 relation types (e.g. family 
relationships predicted with Pfam, sequence similarities computed through Blast, 
molecular similarities annotated between compounds, semantic similarity to score 
protein-protein interactions) are allowed. It includes sequence analysis, text 
mining and graph analysis tools [113]. 

Open Source Drug Discovery (OSDD) is a Council of Scientific and Industrial 
Research (CSIR) Team India consortium that provides a global (though Indian-
centric) platform for collaborative discovery work of novel therapies for neglected 
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tropical diseases (originally, it focused on tuberculosis). OSDD utilizes several 
websites including a publicly available information website (www.osdd.net), 
online collaboration forums (Sysborg, http://sysborg2.osdd.net, and many others 
for general, non-task related discussions) and a publicly-available web portal 
(http://crdd.osdd.net) that provide access to a huge set of computer tools valuable 
for target identification, virtual screening and drug design (including many of the 
ones previously discussed in this section) [114]. It also includes open-access 
biological, chemical and document repositories. Possible contributions include 
sharing experimental data, submitting well-characterized, pure potential active 
compounds, providing computing time/bandwidth, providing access to 
laboratories, and others [115]. There are some points that should be underlined 
regarding OSDD. OSDD License terms and conditions of use specify that OSDD 
owns all contents posted to Sysborg. Therefore, OSDD content is not of public 
domain. What is more, all improvements based upon data within Sysborg must be 
contributed back to OSDD under a worldwide royalty-free non-exclusive license. 
OSDD owned data may not be used by other entities without entering into a 
contract with OSDD. It is, therefore, a proprietary knowledge repository and the 
License can be considered viral. Patented inventions of OSDD are meant to 
ensure that drugs are licensed non-exclusively as generic drugs; patented data 
submitted to OSDD are used by the on-line collaboration system to track 
individual contributions and assure attribution (micro-attribution). It has been 
discussed that the viral clauses in the License agreement assure that subsequent 
innovation following on the existing patents remain openly accessible. Finally, it 
has been criticized that the decision-making processes are not entirely transparent. 
A more detailed discussion on these issues can be found in refs [114, 116]. 

PharmGKB is a pharmacogenomics knowledge resource encompassing clinical 
information on potentially clinically useful gene-drug associations and genotype-
phenotype relationships. It annotates genetic variants and gene-drug-disease 
relationships and summarizes important pharmacogenomic genes and associations 
between genetic variants and drugs, and drug pathways [117]. 

PPI networks represent another domain of genome-wide data for disease-centric 
repositioning studies. Integration of the numerous available PPI databases that are 
experimentally generated and manually curated might enhance the accuracy of a 
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PPI network. PrePPI is a database that combines predicted and experimentally 
determined protein-protein interactions (PPIs) using a Bayesian framework [118]. 
Probabilities of being correct are assigned to predicted interactions. These 
probabilities are derived from calculated likelihood ratios (LRs) by combining 
structural, functional, evolutionary and expression information, with the most 
important contribution coming from structure. Experimentally determined 
interactions are compiled from a set of public databases that manually collect PPIs 
from the literature and are also assigned LRs. A final probability is then computed 
for every interaction by combining the LRs for both predicted and experimentally 
determined interactions. The present version of PrePPI contains 2 million PPIs 
with a probability above 0.1. Among them 60,000 PPIs for yeast and 370,000 
PPIs for human are considered of high confidence (probability> 0.5). The PrePPI 
database differs from others on the following four novel features: (i) PrePPI 
provides structural information for many more interactions than has previously 
been possible using structure-enabled approaches and databases [119-121]; (ii) the 
predicted PPIs in PrePPI are obtained by combining structural and non-structural 
information merged through a Bayesian algorithm (iii) the PrePPI database 
contains integrative information of PPIs from major PPI databases and provides a 
measure of the confidence level of these interactions; and (iv) the PrePPI database 
assigns a single probability for each interaction using a Bayesian framework that 
combines quantitative results based on computational predictions with evidence 
contained in publicly available databases. 

Stitch is a searchable database which integrates information about drug-protein 
interactions derived from: a) repositories of experimental information; b) 
manually curated sources of drug targets (e.g. Matador) and; c) manually curated 
pathway databases [122]. Additionally, interaction information is predicted 
through literature mining through co-occurrence and Natural Language 
Processing. Currently, the number of chemicals covered by Stitch surpasses 
300,000, while the number of proteins goes beyond 2.6 million. Interestingly, a 
confidence score is assigned to each interaction reflecting its level of significance. 

SuperTarget is a database containing information on more than 330,000 drug-
target relationships. It provides tools for 2D drug screening and sequence 
comparison of molecular targets. It presently includes more than 6,200 targets and 
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195,000 chemical compounds [123]. A subset of more extensively annotated and 
manually curated drugs is provided separately in the Matador database, which 
includes both direct (binding) and indirect interactions between proteins and 
chemicals (e.g. binging a drug metabolite instead of the parent compound and 
drug-induced changes in gene expression). Whether only direct or both direct and 
indirect interactions are considered is left to the user to decide [123, 124]. 

The SWEETLEAD database is a recently launched, highly curated and publicly 
available database compiling chemical structures of globally approved drugs 
(drugs approved in the USA, India, China, Australia, Brazil, the EMA, the WHO 
Essential Medicines List, and those listed in the NGCG Pharmaceutical Collection 
have been included), as well as chemical isolated from traditional medicinal herbs 
and other regulated chemicals. In other words, all the natural candidates for drug 
repurposing campaigns are compiled there. It currently holds more than 4,400 
chemical entities [125]. 

The Therapeutic Target Database (TTD) is a drug database that provides 

information on known therapeutic proteins and nucleic acid targets, the targeted 

disease, pathway information and the corresponding approved, clinical trial and 

investigative drugs directed at those targets. Two relevant features of the last 

version are the compilation of 2D and 3D QSAR models directed at different 

targets and chemical families, and the inclusion of the structure and potency of 

more than 3,600 multi-target agents [126]. It currently includes 2,025 targets and 

17,816 drugs. 

CONCLUSION 

Drug repositioning has lately led to an explosion of activity in the public and 

private sectors (usually prompting public-private or academy-industry joint 

collaborations). From the numerous applications and resources overviewed 

throughout this chapter, a clear trend emerges showing a remarkable shift from 

serendipitous drug repositioning to knowledge-based systematic approaches that 

often involve computer methods. Summarizing, we have described three basic 

approaches to computer assisted repositioning campaigns, namely bioinformatic, 
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cheminformatic and literature-based approximations. These approaches might be 

(and are being) combined in integrative, network-based approximations. Among 

these, multipartite networks (which contain a wide diversity of concept types/node 

types) including semantic associations between their nodes seem to be, in our 

opinion, the most complete and promising methodologies so far. The impressive 

and exponentially growing volume of information that shall be analyzed to 

comprehensively envision and understand drug-protein interactions and drug 

effects on phenotype, and to test the subsequent emerging hypothesis on novel 

therapies, explains why collaborative efforts are needed to fully develop the 

potential of indication expansion. Is no surprising, thus, that a diversity of 

publicly available resources valuable to repositioning ends has been developed, 

and that efforts to transfer the open source model to the field of drug discovery are 

being performed. Computer-aided drug repositioning poses an excellent 

alternative for the development of new therapies for orphan and neglected 

diseases, which is frequently driven by limited public funding and government 

incentives. After the computer-generated hypotheses are experimentally validated, 

it can also provide an interesting framework to guide off-label prescriptions. 

Although exceeding the scope of the chapter, it should be noted that intellectual 

property considerations are critical to drug repurposing [127]. 
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Abstract: Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) and 
Molecular Mechanics Generalized Born Surface Area (MM-GBSA) are widely used 
methods for the prediction of binding free energies in drug design/discovery. Indeed, 
their computational efficiency makes them applicable also within virtual screening 
protocols. Thus, in order to be useful for drug design/discovery purposes, MM-PBSA 
and MM-GBSA binding energy predictions have to correlate well with experimental 
activities. Nowadays the global effort to find a way to improve the predictivity of MM-
PBSA/GBSA calculations is also focused on the solvation term by using various 
approaches. This chapter reports on the application of MM-PBSA/GBSA methods 
within the process of drug discovery and, in particular, on strategies that can be applied 
to improve the correlation between MM-PBSA/GBSA predicted binding affinities and 
experimental pharmacological activities by acting on the way the solvent is treated in 
such calculations. Indeed, in PB and GB models, the solvent is described as a 
continuous medium with a fixed dielectric constant (i.e. ε = 80 for water), while a low 
internal dielectric constant is assigned to the solute (generally εin = 1 or 2 for proteins). 
However, the default approach could in some cases lead to a weak correlation between 
predicted binding free energies and experimental data. The aim of this chapter is to 
present and exemplify the ways to improve the prediction of ligand binding affinity by 
acting on the solvation term. Different methods are observed in the literature, e.g. 
tuning the εin value depending on the features of the binding site, including a selection 
of explicit water molecules in order to better describe the solute-solvent interactions, 
tuning the grid size in PB calculations and/or using different PB solvers, or modifying 
the non-polar term of the solvation free energy. The pros and cons of the above 
mentioned methods will be critically discussed in order to help the reader in choosing 
the most performing protocol in terms of both calculation time and prediction quality, 
depending on the molecular system under evaluation. 
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INTRODUCTION 

Nowadays, the accurate prediction of binding energies is one of the most 
attractive goals in drug design [1-3]. Many computational methods developed for 
this purpose are based on Molecular Dynamics (MD) simulations, which provide 
a statistically meaningful conformational ensemble for thermodynamic 
calculations [4, 5]. The MD based approaches can be divided into pathway or end-
point approaches [6]. The former methods require the interconversion of the 
system from the initial state to the final state through finite or infinitesimal 
alchemical changes of the system energy function. The most common pathway 
methods are the Free Energy Perturbation (FEP) [7] and the Thermodynamic 
Integration (TI) [1], which are very rigorous, but computationally expensive. 
Furthermore, their application for drug design/discovery purposes can often be 
non-trivial. 

Computational costs can be reduced by considering only the end-point states 
during the binding energy prediction. One of the most popular end-point methods 
is Molecular Mechanics Poisson-Boltzmann/Generalized Born Surface Area 
(MM-PBSA/GBSA) [4, 8], which represents a good trade-off between calculation 
efficiency and accuracy in binding energy calculations [9, 10]. Thus, MM-
PBSA/GBSA methods are getting more and more used in this field and their 
application within virtual screening protocols has also been reported [11, 12]. 

In MM-PBSA and MM-GBSA, the free energy of a ligand (L) binding to a 
protein (R) in order to create the complex (RL) is calculated by eq. (1): 

ΔGbind = GRL - GR - GL (1) 

Each term is considered as the sum of a gas-phase energy (EMM), a solvation free 
energy (Gsolv), and an entropy term (TS) as reported in eq. (2). 

G = EMM + Gsolv − TS (2) 

Thus, the binding free energy is computed by eq. (3): 

ΔGbind = ΔEMM + (ΔGsolv,RL - ΔGsolv,R - ΔGsolv,L) - TΔS (3) 
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ΔEMM is approximated by the molecular mechanics energies of the complex and it 
is determined from the MD force field, which contains terms for bond, angle and 
torsion energies and for van der Waals and electrostatic interactions [13]. 

The entropy change can be divided into translational, rotational and vibrational 
terms; the first two of these are calculated with a standard statistical-mechanical 
expression, while the latter is generally calculated with normal mode or quasi-
harmonic analyses and it is estimated with a rigid-rotor harmonic oscillator 
approximation [14]. 

The solvation energy is one of the most relevant terms, since the solvent is 
strongly involved in ligand-receptor and protein-protein interactions, stabilization 
of protein tertiary structure, and consequently, protein function. Thus, an accurate 
treatment of the solvation term is fundamental when computing binding free 
energies [15]. 

Accordingly to eq. (4), in MM-PBSA/GBSA the solvation term is decomposed 
into a polar and an apolar term. 

ΔGsolv = ΔGpol,solv + ΔGnonpol,solv (4) 

ΔGnonpol,solv is commonly considered to be proportional to the solvent accessible 
surface area (SASA) [4, 16], although it can be estimated by different approaches 
which will be discussed later in the chapter. 

ΔGpol,solv is calculated by solving, for each state, the linearized Poisson-Boltzmann 
(PB) equation [17] or the Generalized Born (GB) equation [18, 19], an 
approximation of the PB equation. Thus, ΔGpol,solv represents the contribution of 
charge and electrostatic interactions between the solute and the solvent to ΔGsolv. 

Both PB and GB methods assume that the solvent can be macroscopically 
described as a continuous dielectric medium [20]. Thus, the physical system for 
calculating the polar contribution to the solvation free energy of a molecule can be 
simplified to a distribution of charges in a solvent-inaccessible low dielectric 
cavity surrounded by a homogeneous high dielectric medium. Commonly, the 
charge distribution coincides with the partial charges located at the atomic centers 
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and the molecular surface can be considered as the dielectric boundary. The 
external dielectric constant is specific for the considered solvent (i.e. ε = 80, for 
water), while the internal dielectric constant should be set to reproduce the solute 
dielectric constant and is thus set to a value close to that of vacuum, although this 
choice is quite debated [21]. 

The solvation free energy for a molecule X can be calculated by eq. (5) [22]: 

( )( ) = 	 ∑ , ∈ ( ) (5) 

Where qi and qj are the atomic charges and  represents the solution of PB 
equation eq. (6) [23]: 

∇ ( )∇ψ( ) = 	−4 ( ) − 4 ∑ ( ) 	 ∙ 	 ( )
 (6) 

where ( ) represents the position dependence,	∇ψ is the gradient of the 
electrostatic potential, ρ is the solute charge distribution,  is the bulk charge 
density of ion  and λ is the accessibility of position ( )	to the ions in solution; 
kB and T are the Boltzmann constant and absolute temperature, respectively. 

The classic solvers need to solve eq. (6) twice, once in vacuum and once in the 
solvent environment, accordingly to eq. (7): ∆ , = 	 −	  (7) 

Since the numerical solution of the PB equation is computationally expensive and 
parameters have to be accurately tuned, many approaches have been developed 
for its approximation with a minor loss in accuracy. Among all of them, the most 
popular is based on the GB formalism [24]. 

Within the GB model, the gij term is calculated by eq. (8): 

= − 1 +	 − /
 (8) 



86   Frontiers in Computational Chemistry, Vol. 1 Maffucci and Contini 

Where A and n are constants (4 and 2, respectively, in the original formulation 

[19]) ε is the solvent dielectric constant and rij is the distance between atoms i 

and j. 

In the GB method, if εin is not equal to 1, the term in the first brackets becomes −	  [24]. Moreover, it is necessary to include the distance from each atom 

to the dielectric boundary (αi, αj), that is the generalized Born radius. 

In theory, the Born radius for a certain atom can be calculated from the PB 

equation by assigning a unit charge to the atom itself, while keeping the rest of 

the molecule uncharged, but present so that it can be used to define the 

dielectric boundary [21]. Nevertheless, the Born radii can also be calculated by 

applying the so-called Coulomb field approximation (CFA) [24], which 

assumes that the dielectric displacement follows a Coulombic form and doesn’t 

depend on the external dielectric. Thanks to the CFA, the GB method is able to 

reproduce quite well the results obtained by the PB model, but at a fraction of 

its computational cost. 

In principle, in order to solve eq. (3), separate MD trajectories would be needed 

for the complex, the unbounded receptor and the ligand. However, an advantage 

of the MM-PBSA/GBSA method is given by the possibility to estimate the 

binding free energy of a given ligand from a single trajectory, the one obtained for 

the complex. The average of the interaction energies between the receptor and the 

ligand is then obtained by analyzing a pre-established number of snapshots for the 

complex, receptor and ligand, all taken from the trajectory of the solvated 

complex. As reported by Page and Bates [25], who applied MM-PBSA/GBSA for 

the prediction of binding free energies of six protein kinase inhibitors, and by 

Gohlke and Case [26], who studied the performance of MM-PBSA/GBSA on the 

H-Ras/C-Raf1 complexes, the use of single trajectories reduces both the required 

computational effort and the uncertainties typical of a multiple trajectory 

approach. However, it should be noted that separated MD simulations for the 
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ligand, receptor and complex should be preferred in those cases where the 

receptor undergoes to relevant conformational changes after ligand binding [25]. 

Although MM-PBSA/GBSA is considered a reliable and efficient method for the 
estimate of binding free energies, it also presents some weaknesses that should be 
taken in account. In particular, a source of error can be represented by the entropy 
contribution, which is often neglected when relative binding free energies of 
similar molecules are computed. Furthermore, the quality of results strictly 
depends on how accurately the whole conformational space is sampled, as well as 
on parameters used for the description of the molecular system, such as the force 
field, the internal dielectric constant and the set of atomic radii [13]. 

Moreover, MM-PBSA shows some limits in the estimation of binding free 

energies of highly polar or charged molecules, since the uncertainty in the 

calculation of the solvation free energy is proportional to the polarity of the 

considered molecules [27]. Those limits are particularly relevant for buried 

ligands, because of the inhomogeneity of the interior of biomacromolecules [28] 

which might not always be correctly represented by a unique internal dielectric 

constant. 

In addition, the implicit solvation model cannot describe the explicit solute-
solvent interactions that might contribute to the binding free energy [29], such as 
those observed when a water molecules bridges the interaction between the ligand 
and the receptor [30]. 

As it will be explained later, the accuracy and/or the predictivity of MM-
PBSA/GBSA methods can be improved by using some expedients, most of them 
acting on the solvation term. Indeed, in the present chapter, we will describe some 
of the approaches, reported so far in the literature, aiming to ameliorate the 
treatment of both the polar and non-polar term of the solvation free energy. Each 
method herein discussed is summarized in Table 1, where references about its 
original application are also reported. For each method, specific applications will 
be discussed. 
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Table 1: Summary of methods described in this chapter and corresponding references 

   References 

Methods affecting PB calculations 

 Choice of different PB solvers [21] 

 Tuning the grid mesh [31] 

Methods affecting GB calculations 

 Choice of different GB models [32] 

Methods affecting either PB and GB calculations 

 Tuning the internal dielectric constant εin [28, 33-39] 

 Inclusion of crystallographic waters [3, 40-43] 

 Inclusion of specific water molecules selected from MD trajectory 
analysis (H-bonds, B factors) 

[30, 40, 43] 

 Inclusion of hydration shells comprising a fixed number of water 
molecules 

[44, 45] 

 Chimera methods  [34, 46, 47] 

Methods affecting the non-electrostatic contribution  

 CD [48, 49] 

 PCM [48, 49] 

 LIE (β)[50] [34] 

1. TUNING THE PARAMETERS SPECIFIC TO MM-PBSA 

1.1. The PB Solver 

As previously described, in MM-PBSA the polar term of solvated free energy is 
estimated by solving the PB equation, commonly with a finite difference method. 

This calculation can be made using different solvers, some of them available as 
“stand alone” packages (e.g. DelPhi [51], Adaptive Poisson Boltzmann Solver 
(APBS) [52, 53] and ZAP [54]), while other are available as built modules in MD 
simulations software (e.g. CHARMM PBEQ [55], and Amber pbsa [56]). 

Most solvers use the Finite Difference Poisson-Boltzmann (FDPB) method [57, 
58], which implies that charges and dielectric constants are discretized over a 
grid. The system is defined as a molecular surface (MS) and mapped onto a three 
dimensional grid with a user-defined density, which is used to obtain the finite 
difference solutions of the PB equation. Accuracy and precision of the FDPB 
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method depend on the quality of the MS mapping over the grid as well as on the 
grid density. 

Traditional PB solvers compute the electrostatic free energies by calculating the 
product of the electrical potential and charge at each grid point where a real 
charge has been mapped. This implies two FDPB calculations: in the first, half of 
the sum of the product of the charge at each grid point by the corresponding grid 
potential is calculated for the molecule in solution, generally a medium having a 
large ε (e.g. ε = 80, for water). In the second, the same calculation is done in 
vacuum, or in a medium having the same ε as the solute. The two results are than 
combined to obtain the reaction field energies. This method uses the potential at 
charged points, where it is infinitely large, and consequently inaccuracies are 
introduced in the calculation of solvation energies. Modern solvers are generally 
able to provide higher accuracy in comparable or even better computation time. 
For example, DelPhi uses an algorithm based on induced charges, the Scaled 
Solvation Energy method [51]. This approach relies on the fact that reaction field 
effects due to a dielectric boundary can be properly reproduced by an appropriate 
distribution of induced polarization charges placed at the dielectric boundary, 
which, in FDPB, are obtained through the numerical solution of the Gauss’s law. 
The reaction field energy is then obtained by solving the Coulomb’s law between 
induced polarization charges and real charges, just as in vacuum. Therefore, only 
one PB run is needed instead of two and this could lead to an appreciable saving 
in computation time. Moreover, within this method, the potential used for 
deriving induced charges is positioned at the MS, where there aren’t fixed 
charges, so the calculation is also more accurate [51]. 

Other commonly used PB equation solver are APBS [52] and ZAP [54]. The 
former is a multigrid FDPB solver and performs the calculation by using initially 
a coarser grid and then a finer one for the refinement. ZAP is a very fast PB 
solver, although it is less accurate since it uses a Gaussian-based molecular 
volume method to build MSs. 

The choice of a particular solver might then influence both the quality of results 
and the speed of calculations. Feig and coworkers [21] compared commonly used 
PB solvers (CHARMM PBEQ [55], MEAD [59], DelPhi [51], APBS [52-53], 
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Impact PBF [60, 61], REBEL [62] and ZAP [54]), although without exhaustively 
considering parameters such as the grid size and the time needed to reach 
convergence. Results obtained with CHARMM PBEQ were used as a reference. 
The authors observed that the FDPB solvers such as CHARMM PBEQ, MEAD, 
DelPhi and APBS were equivalent in term of accuracy (0.2% relative error), 
although this equivalence was obtained by using different grid resolutions. 
Indeed, DelPhi and APBS calculations were conducted with a grid spacing of 0.4 
or 0.5 Å, while PBEQ and MEAD calculations required a grid spacing of 0.25 Å 
to perform as the former two software, at the expenses of computation time. 

1.2. Acting on the Grid Resolution and on the MS 

When predicting binding free energies by MM-PBSA calculations, the grid 
density might be critical: properly setting the grid resolution in order to gain the 
best ratio between speed and accuracy might not be trivial. Harris et al. [31] 
reported on how the grid resolution can affect the accuracy of the prediction of the 
electrostatic term (ΔΔGel) and the time required to reach convergence. 

A grid spacing of 0.5 Å, commonly used as the default setting in many PB 
solvers, can lead to unacceptably large errors in the estimate of ΔΔGel. Indeed, 
while with a grid spacing of 0.5 Å the electrostatic contribution of each 
component of the complex is consistent with the experimental data [63], ΔΔGel are 
much more influenced by errors due to their typically smaller magnitudes. 

The authors observed that, by using van der Waals and Solvent Exposed (SE) 
surfaces, the average error in the estimate of ΔΔGel can exceed 30 kcal/mol with a 
grid spacing of 0.5 Å and up to 100 kcal/mol with a grid spacing of 1.0 Å. 

Nevertheless, a universally accepted grid spacing cannot be defined, because it 
strictly depends on the system under investigation. For instance, in some of the 
reported examples [31] the use of a grid spacing of 0.3 Å did not allow the PB 
calculations of achieving convergence. In those cases, the authors attempted the 
use of a Gaussian surface, which does not present crevices, edges and cusps, as 
the MS for PB calculations. Calculations readily converged, but the use of this 
kind of MS still need to be thoroughly validated [31]. 
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2. TUNING THE PARAMETERS SPECIFIC TO MM-GBSA 

In MM-GBSA calculations, the polar contribution to the solvation free energy is 
calculated by using the GB formalism, an efficient approximation of the PB 
equation (see eqs. (6) and (8)). 

Save for the salt concentration and the external and internal dielectric constants, 
which are common parameters among PB and GB, the latter model is somehow 
less customizable. The main, and often not easy, choice the user needs to do while 
approaching GB calculations regards the kind of GB model to be used. Available 
models generally differ on the set of atomic radii (usually based on the Born 
atomic radii) and on the algorithm used to generate the MS. The choice of the GB 
model might severely affect the accuracy of results and their agreement with MM-
PBSA calculations [64]. 

At the moment, the most used GB models are GB-HCT [65], GB-OBC(I) and 
GB-OBC(II) [66], GB-Neck [67] and GB-Neck2 [32]. 

GB-HCT and GB-OBC use the van der Waals surface for the definition of the 
solute-solvent boundary. The GB-OBC (I) and (II) models introduce tunable 
empirical parameters for scaling up buried atoms radii, which are underestimated 
in GB-HCT. Nevertheless, GB-OBC models are now considered obsolete, while 
GB-HCT, which corresponds to the standard pairwise generalized Born model 
(i.e. igb = 1, in the sander and pmemd modules of the Amber package), is still 
used for calculations involving nucleic acids in combination with the default set 
of atomic radii (bondi) [68]. 

The GB-Neck implementation includes a correction term to better describe the 
MS, however it shows no improvement in solvation energy accuracy [67] and 
sometimes it tends to destabilize the native protein structures, because of 
intramolecular hydrogen bonds and implicit solvent interactions are not properly 
balanced [69, 70]. 

Recently, the GB-Neck2 model has been introduced for MM-GBSA analysis of 
protein systems and it was shown to be able to lead to a significant improvement 
compared to GB-OBC(II) or GB-Neck models [32]. Indeed, it reproduced well the 
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PB solvation energies for many protein systems; moreover, it was able to 
overcome the secondary structure and salt bridge biases observed in GB-HCT and 
GB-OBC models. Concerning the Amber implementation of the GB-Neck2 model 
(i.e. igb = 8), the developers suggest to use the mbondi2 [66] or mbondi3 [32] 
intrinsic Born radii set, depending on the objectives of the analysis. In the 
mbondi3 set, modifications were introduced to the carboxylate oxygen radii and 
to arginine hydrogens at the guanidine nitrogen atoms, and its use is particularly 
recommended to get rid of the salt bridge bias typical of the GB model [32]. It 
should also be noted that all the above mentioned models are based on the CFA 
approximation, which has been shown to overestimate the effective radii [71], 
although GB-Neck2 was designed to empirically overcome this overestimation. 

3. MM-PBSA VS MM-GBSA 

One of the main needs in the field of drug design/discovery is represented by 
reliable, simple and as fast as possible computational approaches able to predict 
free energy of binding. However, speed and accuracy are rarely combined in a 
computational protocol, so the choice between the fastest, but approximate, GB 
and the most accurate, but computationally demanding, PB may not be trivial. 

Many works comparing results obtained with the two methods have been 

published [2, 21, 33-34, 72, 73] and in several cases it has been observed that the 

choice between PB and GB may depend on the specific goal of the researcher. 

Feig et al. [21] compared several GB and PB protocols applied to five differently 

populated test sets, noticing that the requirements of accuracy and speed are the 

critical factors for this choice. For instance, GB is preferred for scoring large sets 

of ligands, e.g. the binding conformations obtained by previous docking 

experiments. Otherwise, if higher levels of accuracy are desired, especially when 

absolute energies are going to be predicted, PB can be the first choice. However, 

the superior accuracy of PB versus GB in reproducing the experimental results is 

quite controversial. Indeed, Feig and coworkers reported that the GB-OBC(II) 

implementation was able to reduce to 1% the errors in the calculation of solvation 

free energies [21]. 
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Furthermore, Wang and coworkers [73] correlated the computed binding free 
energies, obtained by MD simulations in explicit solvent followed by MM-PBSA 
and MM-GBSA analyses of eleven proteins bounded to fourteen small molecules, 
with the experimental free energy of binding obtained by isothermal titration 
calorimetry (ITC). The authors observed that, although MM-PBSA has 
reproduced better the experimental absolute free energies, MM-GBSA leaded to a 
higher correlation with ITC experiments, with a Pearson’s correlation coefficient 
of 0.75 against 0.37 obtained by MM-PBSA. Moreover, they noticed that MM-
PBSA was more sensitive than MM-GBSA to the conformation used during the 
analysis, while MM-GBSA performed well using random snapshots taken from 
the MD simulation. Indeed, by filtering the MD trajectory with scoring functions 
favoring the native-like poses, MM-PBSA showed the correct rank [73]. 

The same conclusions were stated in another recent work [72] where the HIV 
protease in complex with six inhibitors was used as a test set for MD based MM-
PBSA/GBSA calculations. The authors observed that both MM-PB and GBSA 
analyses generally overestimated binding free energies; however, MM-GBSA 
results showed a better correlation with the experiments, whichever method was 
used to derive atomic partial charges during the system setup. 

Hou et al. [33, 39] confirmed these results in a study about the accuracy of 
binding free energy predictions by MD, where the performance of MM-
PBSA/GBSA was evaluated on fifty-nine ligands interacting with six different 
proteins (α-thrombin, penicillopepsin, neuraminidase, avidin, cytochrome C 
peroxidase and P450cam). In this case also, the MM-PBSA predicted absolute 
binding free energies were closer to experimental value than those obtained by 
MM-GBSA, but this latter method showed better performances in predicting 
relative binding affinities for most systems. In particular, MM-GBSA led to better 
correlation with experiments for α-thrombin, penicillopepsin and neuraminidase; 
comparable results between the two methods were obtained for avidin, while for 
cytochrome C peroxidase and P450cam better correlations were observed by 
using MM-PBSA. Probably, for the latter two systems, the lowest performance of 
MM-GBSA was due to the absence of optimized GB parameters for the iron ions 
in the binding sites. 
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In a recent study, where the effect of explicit solvation shells around the ligands 
was evaluated, we also observed for MM-GBSA a better correlation between the 
predicted binding affinities and the experimental data in topoisomerase, α-
thrombin and avidin systems [44]. Better correlation was instead obtained by 
MM-PBSA for penicillopepsin, although positive binding affinities were 
predicted. 

Genheden and Ryde [34] used avidin, with seven ligands, and fXa protein, with 
nine inhibitors, to compare binding affinity predictions obtained by several 
methods based on end-point MD simulations. In this case, the comparison 
between MM-GBSA and MM-PBSA showed diverging results for avidin and fXa 
systems. In particular, MM-PBSA gave a better correlation with the experimental 
data for the avidin complexes, while MM-GBSA leaded to a better correlation and 
lower standard errors for fXa. However, it should be noticed that the MD 
protocols for the simulations on the two systems were slightly different, so the 
results might not be safely compared due to the aforementioned dependence of the 
PB method on the sampling of conformations [73]. 

The strict influence of MD simulation protocols on the quality of MM-PBSA 
binding free energy predictions was also observed by Srivastava and Sastry [2], 
who studied the inhibition of HIV protease by fourteen selected ligands. The 
authors submitted each complex to a 10 ns run of MD simulation and ΔGbind were 
computed by MM-PBSA/GBSA at different time intervals, spanning from 0-1 to 
0-10 ns. The results were then correlated with the experimental IC50 and the 
authors observed for both methods an excellent correlation between the predicted 
and the experimental binding free energies or biological activities. By analyzing 
the results both qualitatively and quantitatively, they noticed that MM-GBSA 
computed energies had a constant number of incorrect trends during the whole 
MD simulation and the Pearson correlation coefficient (r2) reached its maximum 
(about 0.86) after only 3 ns, then it remained constant. On the other hand, MM-
PBSA showed a number of incorrect trends that decreased from 3 to 0 when rising 
the MD simulation time; the quantitative correlation became meaningful only 
after 9 ns of simulation and reached its maximum at 10 ns (r2 = 0.91). This 
behavior probably depends from the accuracy of the electrostatic contribution 
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estimations, which raises with simulation time for the PB method, while it 
remains constant in GB. 

In conclusion, MM-PBSA might lead to a better accuracy, but a large MD 
simulation time is needed to reach convergence. On the other hand, MM-GBSA 
should be preferred for quicker calculations on large data sets. To make a 
comparison with the shooting sports, PB and GB could be represented as a rifle 
and a shotgun, respectively. While the former, in the hands of a skilled shooter, 
might perform better, with the latter is generally easier to hit the target. 

4. TUNING PARAMETERS COMMON TO PB AND GB 

4.1. Tuning the Internal Dielectric Constant εin 

The most common user-modifiable parameters that are present in both PB and GB 
models are the ionic strength and the external and internal dielectric constants. 
Among these, the internal dielectric constant (εin) is particularly critical in 
computing the polar term of the solvation energy and, as consequence, in the 
binding free energy predictions. 

The external dielectric constant (εext) represents a well-defined property and 
depends only by the solvent used for the simulation (εext = 80 for water); 
conversely, εin is not well defined since complex molecules seldom are uniform 
electrostatic media. Actually, in MM-PBSA/GBSA calculations εin does not 
represent a real physical constant, but a parameter which depends on the used 
method [74]. A value of εin = 1 is usually assigned by default [4], but the choice of 
the solute dielectric constant is object of debate and many works have been 
published discussing on the dependency of the performance of the binding free 
energy predictions from εin [33-37, 39]. 

The treatment of εin is controversial, especially when ranking the ligand-receptor 
binding free energies, because it was observed that the use of εin = 1 can lead to an 
overestimation of the ligand-receptor electrostatic interactions [35, 75-77]. 

In literature, two approaches for the modification of εin have been described: one 
is based on a systematic scanning of εin from 1 to 25 [33-34, 37, 39], while the 
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other implies the use of a variable εin, depending on the physicochemical 
properties of the interacting residues [35-36]. 

This latter approach was tested by Ravindranathan and coworkers on six 

pharmaceutically relevant targets [35], namely CDK2, fXa, p38_u, PDE10A, 

human carbonic anhydrase and a second p38 chemical series (p38_pp), in 

complex with several ligands. They assigned five different εin values (1, 2, 4, 8 

and 20) to each polar or ionizable residue (Ser, Thr, Asn, Gln, His, Lys, Arg, Asp, 

Glu) and to all the other residues, which were considered altogether. Then, for 

each system the best set of dielectric constants, evaluated in terms of r2 and 

predictive index (PI), was selected and discussed. However, this approach leaded 

to minimal improvements in r2 and PI values in comparison with the standard 

electrostatic treatment. This was especially observed for those systems with 

binding sites prevalently made by non-polar residues, such as PDE10A and 

p38_pp, where the ligand-receptor electrostatic interactions are not appreciably 

large. 

A similar approach was used to rank the inhibitory activity against HIV-1 gp41 

fusion peptide of mutants of the virus inhibitory peptide (VIRIP) [36] having 

known IC50s. The authors initially assigned εin = 2 to the wild type VIRIP-gp41 

complex, and a variable εin to the mutated complexes. Those latter were assigned 

by treating each mutated peptide accordingly to the following rule: εin = 2 was 

assigned to the non-polar residues, εin = 3 to the polar residues and εin = 4 to the 

charged residues, accordingly to a previously reported protocol [38]. Final εins 

used in MM-PBSA analyses, ranging from 2 to 6, were then obtained by 

averaging the contributions of each residue. With this approach the authors 

obtained an improvement in the correlation between the experimental activities 

and the MM-PBSA binding energies of about 30%, if compared to the standard 

approach were εin was set to 2 for all complexes. It should be noted that the best 

results were obtained by analyzing the MD trajectories performed with weak 

restraints on the backbone atoms. Moreover, although the use of multiple internal 

dielectric constants leaded to a clear separation between strong and weak ligands, 

it also produced quite large standard deviations. 
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From the studies described above, it appears that setting εin on the bases of the 
different dielectric constants assigned to each different residue can be non-trivial 
and computationally quite expensive, in face of a generally modest improvement 
in correlation between theoretical and experimental data. 

An easier approach, although less rigorous, can be the simple increase of the εin 
value in order to scale down the overestimated electrostatic interactions [28], 
however a universal dielectric constant suitable for every protein has not been 
found so far [33-34, 37]. Indeed, the choice of εin is strictly system-dependent and 
the binding site need to be accurately investigated to gather the most appropriate 
εin [33]. Hou et al. evaluated the correlation between the predicted and the 
experimental binding free energies, in terms of Spearman correlation coefficient 
(rs), of six systems (α-thrombin, avidin, cytochrome C peroxidase, neuraminidase, 
P450cam and penicillopepsin) to which εin = 1, 2 and 4 was assigned in both PB 
and GB calculations. For the neuraminidase and α-thrombin systems, 
characterized by highly charged binding sites and consequent ability to form ion-
ion interactions with negatively charged ligands [78], the best correlation for PB 
calculations was obtained by using εin = 4 (rs = 0.68 and 0.81, respectively). 
Similar results, although slightly better, were obtained by using the GB-HCT 
model with εin = 4 (rs = 0.78 and 0.90, respectively, for GB), even if for α-
thrombin good results were also obtained for εin = 2 (rs = 0.88 and 0.91 for GB-
HCT and GB-OBC models, respectively). Coherent results were obtained for α-
thrombin by Yang and coworkers [37] who correlated with experiments the MM-
PBSA/GBSA binding free energies computed for twenty-eight ligands by setting 
εin = 1 and εin = 4. In this case also, the best correlation was obtained for εin = 4  
(r2 = 0.74 and 0.73 for PB and GB calculations, respectively). 

Conversely, for penicillopepsin, where only one charged residue, able to interact 
with ligands, is present in the active site, the best correlation in PB calculations 
was obtained with εin = 2 (rs = 0.41), while GB-OBC provided comparable results 
for εin = 2 and 4 (rs = 0.73 and 0.73, respectively) [33]. For avidin, which does not 
have charged residue in the binding pocket, the optimal εin value was 1 for both 
PB and GB models (rs = 0.92 and 0.93 for PB and GB-OBC models, 
respectively). Coherent results were reported by Genheden and Ryde [34] who 
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noticed, for the same system, a decrease in the r2 value from 0.60 to 0.13 when 
setting εin to 1, 2, 4, 10 and 25 in MM-GBSA calculations. 

Thus, the reported works underscore that the choice of the optimum εin strictly 
depends on the features of both the binding site and the ligand. Moreover, it has 
been suggested that this approach can be safely applied only for calculations of 
relative binding energies of ligands having a similar total charge, because in this 
way the limits of continuum solvation might be reduced due to the cancellation of 
errors [79, 80]. It should also be taken in account that the reported method might 
be useful to improve the correlation between the predicted and the experimental 
binding energies, an important objective in drug design or discovery [37], but 
might not be similarly effective for the prediction of absolute binding energies. 

Although better predictions were sometimes obtained by setting εin > 1, this does 

not mean that a more accurate description of the solute-solvent interactions is also 

obtained. Indeed, the effect of increasing εin is that the contribution of the non-

bonded electrostatic energy term, proportional to 1/εin, and the total electrostatic 

term, proportional to 1/εin
2 are reduced. As a result, the estimated free energy is 

dominated by the non-polar and entropy terms [73]. 

4.2. Inclusion of Explicit Solvent Molecules 

It is well known that water molecules play a relevant role in ligand-receptor and 

protein-protein interactions, since they can take part in stable water-mediated 

hydrogen bonds or stabilize the complex by creating transient hydrogen bonds 

bridging the ligand and the receptor [45, 81-84]. 

Therefore, water is usually explicitly included in the MD simulations and its 
effects on the binding free energy estimate have been deeply studied [3, 30, 40-
44, 73]. 

In the MM-PBSA/GBSA calculations, water molecules are usually stripped 
before the analysis, however this could lead to erroneous results for those systems 
where water is known to mediate hydrogen bonds between the ligand and the 
receptor. 
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Thus, in these cases, some explicit water molecules should be included in the 
calculation in order to take into account those solvent effects not adequately 
managed by an implicit solvation model. 

In theory, this approach appears an obvious expedient, but in practice its 
application is non-trivial and, in some cases, useless or even detrimental [3, 43]. 
However, many examples in which the explicit consideration of water molecules 
in the MM-PBSA/GBSA calculations led to an improvement in the binding 
energy predictions, in particular by increasing the correlation between the 
computed and the experimental binding free energies, have been reported [30, 40-
42, 44-45]. 

When one wants to consider the inclusion of an explicit water residue, the most 
critical question is how the selection of the solvent residues to be considered in 
the MM-PBSA/GBSA calculation should be made. The most intuitive approach is 
to include those molecules which are known from crystallography to bridge the 
receptor with one or more ligands [3, 41-43]. 

Otherwise, it is possible to consider a certain number of water molecules selected 

from a MD simulation conducted with explicit solvent. In this case, the selection 

could be made on the basis of a water occupancy analysis of the trajectory [30, 

40]. Another possibility is to choose those solvent residues which are placed 

within an established distance from the ligand [3]. It has also been reported that 

the inclusion of a pre-determined number of water molecules (generally a number 

from 20 to 70), which are frame by frame the closest to the ligand during the 

whole simulation time can lead to an improvement of correlation between the 

predicted and the experimental binding affinities [44]. 

When explicit water molecules are going to be considered in the MM-
PBSA/GBSA calculations, it can be advisable to include them in the receptor 
mask, otherwise higher standard deviations could be obtained without improving 
the binding free energy estimation. For instance, Treesuwan and Hannongbua [40] 
compared the performance of two different approaches, one consisting in the 
calculation of a term for the contribution of water alone, the other including the 
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water effect in the receptor term. They observed that the binding energies 
obtained with this latter approach were more reliable and led to lower residuals. 

The pros and cons of considering explicit water molecules in the binding free 
energy predictions will be discussed in details in the following paragraphs, where 
specific examples for each of the above mentioned strategies are discussed. 

4.2.1. Inclusion of Crystallographic Water Molecules 

As previously mentioned, one of the most common approaches is the selection of 
these water molecules which are found to mediate ligand-receptor interactions in 
crystallographic structures. 

For example, Nurisso and coworkers [41] reported how the inclusion of a 
crystallographic water molecule affected the ranking of three isomeric 
disaccharides in binding the Pseudomonas aeruginosa Lectin I (PA-IL) protein. 
Indeed, the crystallographic structures showed that one water molecule, bridging 
ligand and receptor, was conserved in the binding site of the three complexes; 
therefore, it was retained during the preparation of the structures to be subjected 
to the MD simulation. MM-PBSA analyses were then performed either by 
including this residue in the receptor mask or not. The authors observed that, only 
by including the bridging water molecule, the experimental ranking was respected 
and the contribution of each monosaccharide was correctly determined. Moreover, 
when analyzing the single contributions to the binding free energy, it was 
observed how the electrostatic interactions played the most relevant role in 
determining the binding affinity, coherently with the experimental results. 

Furthermore, other authors achieved a correct ranking of the experimental binding 
poses of eight protein-ligand complexes only by both including structural bridging 
waters during ensemble-averaged MM-PBSA analyses and using the polarized 
protein specific charge model (PPC) [42]. 

Also, in a study on the comparison of nevirapine affinity for the wild type and a 
mutant type HIV-1 reverse transcriptase, it was observed that the inclusion of a 
bridging crystallographic water improved the estimation of the binding free 
energies [40]. 
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It is important to underline that, in the examples mentioned above, selected water 
residues remained stable during the whole simulation time. This behavior is not 
obvious as structural water can be replaced by another one even in a crystal 
structure where each water residue is identified as a mean electron density which 
might also result from a fast switching between neighboring waters, even if H-
bounded [40, 44, 85]. 

The inclusion of a water molecule, selected from a crystal structure, in MM-
PBSA/GBSA calculations in some cases resulted detrimental on the correlation 
between computed and experimental binding free energies [3, 43], an effect 
attributed by Checa et al. to an incomplete treatment of the interactions between 
the solvent and the solute [43]. Indeed, while using MM-PBSA to compute the 
binding energies of trypsin complexes with seven similar flavonoids [43], they 
observed that the inclusion of four crystallographic water molecules in the 
calculations worsened the correlation between the computed and the experimental 
activities; a correlation comparable to that obtained by using the default solvent 
model was instead observed when including a cap of 530 water molecules 
surrounding the active site. Although better correlations were not observed, the 
authors suggested that the water cap might properly balance the solute-solvent 
interactions in MM-PBSA calculations. 

Greenidge and coworkers assessed the performance of MM-GBSA on a dataset of 
855 complexes taken from the Protein Data Bank [3]. Although water-mediated 
H-bonds between ligand and receptor were observed in several examples, the 
inclusion of all the crystallographic waters within 3.5 Å from the ligand leaded to 
any improvement in correlation between the predicted and the experimental 
binding energies, if compared with implicit solvation only. 

4.2.2. Inclusion of Water Molecules Identified from MD Trajectory Analysis 

Relevant water molecules to be considered in MM-PBSA/GBSA binding energy 
predictions can also be selected by a careful analysis of the solvated MD 
trajectories. Different methods can be used to identify the critical water 
molecules, thus affecting the efficacy and/or the computational cost of the 
approach. 
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Commonly, the selection can be made by post-processing the MD trajectories 
through H-bond analysis [40], B-factor analysis [30], water density or water 
occupancy analyses [86], or by selecting those water molecules which are the 
closest to the ligand or to other relevant residues during the whole simulation [44-
45]. 

Unlike the bare inclusion of a few crystallographic water molecules, in most cases 
this approach showed to benefit the correlation between computed binding free 
energies and experimental data. 

For instance, Wallnoefer and coworkers [30] used MM-PBSA/GBSA for the 
prediction of binding free energies of six ligands in complex with factor Xa and 
noted that the binding affinities were severely affected by the presence of some 
relevant water molecules. Indeed, by including any explicit water an inverse 
correlation was obtained by both PB (rs = − 0.76) and GB (rs = − 0.48) methods. 
On the other hand, a direct correlation between predicted and experimental 
binding energies (rs = 0.85 and 0.93 for PB and GB methods, respectively) was 
obtained by including a single crystallographic water only for those systems 
where binding energies were overestimated. Finally, the MD trajectories were 
submitted to B-factor analysis and those waters showing a B-factor for the oxygen 
atom below 100 (about 20 residues) were explicitly included in the MM-
PBSA/GBSA calculations. This approach provided a further improvement in 
correlation, leading to rs = 0.93 and 0.97 for PB and GB methods, respectively. 

It should be noted that a not negligible benefit of this approach consists in its 
generalizability and reproducibility. Relevant water residues can be indeed 
selected also for those complexes not available as X-ray structures. Moreover, the 
choice is less affected by subjectivity, being indeed based on selecting those 
residues which pass a given numerical threshold. 

The selection of a certain number of solvent residues that are frame by frame the 
closest to an established position (i.e. the ligand or a protein-protein interaction 
surface) during the whole simulation has been also successful [44-45]. 

This method was initially applied by Wong and coworkers [45] while studying the 
binding affinity of the wild type and two mutant T-cell receptors (TCR) in 
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complex with the staphylococcal enterotoxin 3 (SEC3). In a first instance, MM-
PBSA calculations were performed by excluding explicit water molecules. 
Predicted binding affinities were correctly ranked, but their uncertainties 
overlapped, thus reducing the statistical significance of results. Therefore, the 
authors decided to include some explicit water molecules during the analysis, 
since the key role of the solvent in the TCR-SEC3 system had been previously 
shown [87]. Two different approaches had been followed: in one case, the 200 
water molecules closest to the protein-protein interaction interface were included 
in the calculation, in the other one only two interfacial solvent residues were 
considered. The first approach was not able to correctly rank the binding affinities 
and the absolute values and statistical errors were far too high, possibly because 
of the larger contribution of the electrostatic and van der Waals interactions due to 
the explicit solvation [45]. From our experience, the incapacity of the method to 
yield a correct energetic trend could also depend on the excessively high number 
of explicit water molecules considered. Indeed, it is known that extended protein-
protein interface are often rich in hydrophobic residues [88, 89], thus the inclusion 
of a large number of water molecules should not be useful and can introduce 
background noises probably responsible of the erroneous ranking in binding 
affinities [44]. This hypothesis is supported by the excellent results obtained by 
the inclusion of only two explicit water molecules, selected among those closest 
to hydrophilic TCR residues Asn54 and Glu56 and the SEC3 residue Phe206 
which, in the crystal structure [87], presents its carbonyl group pointing toward 
the protein-protein interaction interface. Indeed, in the crystal structure, two 
interfacial water residues were found to interact with these three protein residues. 
By applying this approach, the authors obtained the correct energetic ranking with 
a statistical significance. 

Starting from the above findings, we decided to systematically investigate the effect 
of the inclusion, as a part of the receptor, of explicit water shells populated by a 
defined number of water molecules (Nwat) which were selected to be the closest to 
the ligand atoms during an MD simulation [44]. This approach is easily applicable 
by processing an MD trajectory by the ptraj software included in the Amber Tool 
package [56] using the “closest” keyword. We initially evaluated this protocol on the 
complexes between DNA-topoisomerase I and nine recently published [90] 
camptothecin derivatives. MM-PBSA/GBSA analyses conducted by only using 
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implicit solvation yielded an incorrect ranking of the ligand binding affinities and no 
correlation between predicted and experimental activities (r2 = 0.19 and 0.02 for GB 
and PB methods, respectively). No better results were obtained by including in the 
calculation the two crystallographic water molecules which were known to bridge 
hydrogen bonds between topoisomerase and its ligand topotecan [91]. Indeed, we 
noticed that during the MD simulation the selected waters were frequently replaced 
by neighboring ones. In this way, the water mediated bridge observed in the crystal 
structure was always maintained in the MD simulation, but it was originated by a 
cluster of fast-switching water molecules. This was also confirmed by a water 
density analysis, which showed that several areas with high water density were 
present around the ligand (Fig. 1 A). We thus investigated the effect of the explicit 
water shells by systematically varying Nwat from 10 to 50, in order to find the 
condition able to maximize the correlation with experimental data (Table 2). This 
was obtained for Nwat = 20 (r2 = 0.87 and 0.51 for GB and PB methods, 
respectively), while higher Nwat values slightly reduced the correlation, probably due 
to the background noises caused by the unnecessary water residues, coherently with 
the results obtained by Wong [45]. 

In order to assess the performance of this approach, we tested it on three other 
ligand-receptor complexes previously used for benchmarking MM-PBSA/GBSA 
calculations: α-thrombin, avidin and penicillopepsin [33]. 

Table 2: Correlations between the Experimental −log10(IC50) (Topoisomerase) or ΔGbind (α-
Thrombin, Penicillopepsin, and Avidin) and MM-GBSA Binding Energies Obtained for Nwat = 0-
70. Adapted with permission from J. Chem. Theory and Comput. 2013, 9 (6), 2706-2717. 
Copyright 2013American Chemical Society 

  Topoisomerase  -thrombin Penicillopepsin  Avidin 

Nwat=0 0.19 0.67 0.46 0.72 

Nwat=10 0.45 0.58 0.56 0.83 

Nwat=20 0.87 0.61 0.60 0.84 

Nwat=30 0.79 0.69 0.69 0.84 

Nwat=40 0.75 0.76 0.73 0.85 

Nwat=50 0.72 0.80 0.77 0.85 

Nwat=60 NC 0.82 0.78 0.85 

Nwat=70 NC 0.83 0.79 0.85 
NC = not calculated 
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The behavior of the penicillopepsin complexes was instead similar to that 
observed for topoisomerase, as water was shown to play a relevant role in the 
ligand-receptor interaction (Fig. 1C). By only using implicit solvation, a low 
correlation was obtained between the predicted and the experimental binding 
energies (r2 = 0.46), but an improvement up to an r2 = 0.69 was obtained for Nwat 
= 30 and a plateau was reached between Nwat = 60 and 70 (r2 = 0.78 and 0.79, 
respectively). 

In conclusion, this method, as well as the use of B-factors [30], appears to be 
applicable to different kind of ligand-receptor complexes without the need of an 
accurate analysis of the binding site features and seems to be of easier application 
and less affected by subjectivity if compared to the tuning of εin (see section 1.4.1). 
Even if the value of Nwat should be tuned for optimal performances, by setting Nwat = 
30 an improvement over implicit solvation only was always obtained in the above-
mentioned examples as well as in some other cases not yet published. However, it 
should be noted that an increase in the correlation between predicted binding 
affinities and the corresponding experimental data does not mean that a better 
prediction of absolute binding free energies can also be obtained. 

4.3 “Chimera” Methods 

The prediction of the binding free energy can also be achieved by applying 
methods obtained from the combination of MM-PBSA/GBSA with other 
approaches, which are used for the solution of one or more terms of eq. (3). 

Commonly, these alternative methods are employed for the modulation of the 
solvation free energy polar term [46, 47], but other “chimera” methods, which 
modify both the electrostatic and the non-electrostatic contributions have been 
proposed and tested [34]. 

These approaches aim to improve the accuracy in the estimation of the binding 
free energy at about the same computational cost of MM-PBSA/GBSA, by 
working around some weaknesses of the original method. 

One of this weaknesses can be considered the insufficient description of the 
solute-solvent interaction due to the default implicit solvation model [47]. 
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To overcome this limitation, Freedman et al. developed a new approach called 
Molecular Mechanics Poisson Boltzmann/Linear Response Approximation 
Surface Area (MM-PB/LRA-SA) [47]. This method computes the ΔGsolv upon 
binding for the receptor with the PB or GBSA approaches, while the contribution 
of the ligand is obtained by using the LRA-SA approach (eq. 9): 

ΔGsolv = [Gsol,R(complex) - Gsol,R(free)]
PB/GB-SA + [Gsol,L(complex) - Gsol,L(free)]

LRA-SA  (9) 

The LRA assumes that a free energy change can be approximately considered to 
be in a linear dependence to the ligand charge [34]. The LRA method calculates 
the solvation free energy as a function of the solute-solvent radial distribution 
functions, which are determined as the factors multiplying the ideal solvent 
density to give the real density for each one of the solvent atoms, as a function of 
its distance from an established solute atom. These functions have to be 
determined at the two end-points in order to calculate the ligand solvation free 
energy. 

As a result, the MM-PB/LRA-SA approach should be able to determine the 
electrostatic and the attractive van der Waals terms for the ligand as a function of 
the interactions between the solute and the solvent, evaluated during an explicit 
solvent MD simulation. In the meanwhile, interactions with the bulk water are 
discarded beyond a fixed radius from each one of the solute atom. 

The authors tested the MM-PB/LRA-SA method on an RNA aptamer bounded to 
theophylline and four of its derivatives. The results were then compared with the 
experiments and with those obtained by the standard MM-PB and GBSA 
methods. While the latter methods were not able to correctly rank the ligands 
binding free energies, with the MM-PB/LRA-SA approach all but one binding 
affinities were ranked coherently with the experimental data. 

However, the computational cost of this approach is about twice that of MM-
PBSA, because two separate MD simulations are required for each complex: one 
with the unmodified force field and one with a modified force field where the 
Coulomb and the attractive van der Waals interactions between the ligand and the 
solvent atoms are zeroed. Moreover, two MD simulations are also necessary for 
the solvated ligand [47]. 
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A combination of the PB and LRA approaches, obtained by replacing the 

Langevin dipole solvation model in the PDLD/s-LRA/ method [92] by PB or 

GB, for the calculation of the polar term of solvation free energy was also applied 

by Genheden and Ryde on the avidin and fXa systems [34]. Nevertheless, 

although such an approach should be theoretically more rigorous than both GB 

and PB, the latter methods provided better results, in terms of correlation between 

the predicted and the experimental binding free energies, at a fraction of the 

computational cost, because the LRA approximation requires two additional 

simulations, the free ligand and the complex with zeroed receptor charges. 

Taken together, the above reported examples confirm that, although it is obvious that 

the less approximated methods are more computationally demanding, there is no 

guarantee that their application in the prediction of the free energies of binding 

actually lead to a better correlation between the calculated and the experimental data. 

5. ACTING ON THE NON-POLAR SOLVATION TERM 

The tuning of the calculation methods for polar solvation free energy has been 

deeply studied, but some examples have also been reported on the methods 

aiming to improve the non-polar solvation term (ΔGnonpolsolv). 

Commonly, ΔGnonpolsolv is considered to be linearly proportional to the solvent-

accessible surface area (SASA) (eq. 10): 

ΔGSASA
nonpolsolv = γSASASASA + bSASA (10) 

where the surface tension coefficient γSASA is the contribution to the ΔGSASA
nonpolsolv 

per unit of surface area and bSASA can be obtained from a linear regression analysis 

of the solvation free energies of a set of small apolar molecules in water [93-95]. 

However, this model showed a quite low accuracy in correlating the solvation free 

energies computed with the SA model and those computed with an explicit 

solvent model [26, 46, 96, 97]. 
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Thus, different models have been developed in order to improve the accuracy of 

the estimation of ΔGnonpolsolv. One of the most applied approaches is the cavity-

dispersion (CD) model [98], which relies on the observation that ΔGnonpolsolv is the 

result of two different contributes: a repulsive (ΔGrep) and an attractive free 

energy (ΔGatt), modeled and computed separately (eq. 11): 

ΔGCD
nonpolsolv = ΔGrep + ΔGatt (11) 

ΔGrep is the solvation free energy raising from the repulsive interactions between 

the solute and the solvent and from the formation of the solute cavity, while ΔGatt 

corresponds to the free energy for the formation of the attractive solute-solvent 

interactions and for the reorganization of the bulk solvent. 

The repulsive contribution was found to well correlate with the SASA, 

independently from the kind of MS (SA or SE) [98, 99]. The attractive term can 

be considered as equal to the van der Waals attractive interaction potential energy 

between the solute and the solvent [100]. 

A different approach has been attempted by using the polarized continuum model 

(PCM) which, in addition, implies the inclusion of a term for the exchange 

repulsion (eq. 12): 

ΔGPCM
nonpolsolv = ΔGcavity + ΔGrep + ΔGatt (12) 

The ΔGcavity term is obtained by the expressions of the radius of each atom to the 

power of 0 to 3, which consists in the consideration of an area and a volume term 

[50]. 

SASA, CD and PCM approaches have been compared in two studies by 

Genheden et al., who considered TI as a reference [48-49]. The first study focused 

on the prediction of the free energy of binding of benzene to the T4 lysozyme 

Leu99Ala mutant, for which the TI results were concordant with the experiments. 

The predicted free energy value was decomposed accordingly to the MM-GBSA 
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formalism, with ΔGnonpol = ΔGvdW
free − ΔGvdW

bound. As regards to the MM-GBSA 

and CD approaches, ΔGsolv was computed by using the GB method and the 

ΔGnonpolsolv by using the SASA and CD methods, respectively. For the PCM based 

approach, the whole solvation free energy was computed by PCM. In a first 

instance, the SASA approach gave the most accurate estimation of ΔGnonpolsolv. 

However, the failure of the other two approaches was attributed to the assumption 

that the binding site in the free protein is filled with water, although this is in 

contrast with the calculations and the experiments showing that the cavity is 

empty at the free state [101]. The same assumption is made by the SASA method, 

but SASA terms are smaller and so they did not lead to an incorrect estimation of 

the apolar term. This misbehavior has been worked around by filling the cavity of 

the free protein with a non-interacting ligand and consequently the results of the 

CD and PCM approaches were decidedly improved, with the latter providing the 

best estimation of each term. 

It should be noticed that PCM uses a van der Waals surface for the estimation of 

ΔGcavity; this kind of MS generates crevices and cavities inside the proteins, which 

are too small for being occupied by the solvent molecules. In addition, it leads to 

an incorrect trend in the protein surface area change after the ligand binding [48]. 

The authors applied SASA, CD and PCM methods to some proteins whose 

binding sites were variably accessible to the solvent: galectin-3, which binds its 

galactoside ligand on the surface, trypsin, which binds 2-aminobenzimidazole in a 

cleft partly exposed to the solvent, avidin and ferritin, which bind a biotin 

analogue and phenol, respectively, in a buried and an hidden cavity [49]. 

The results from the calculations made on these latter complexes confirmed those 

obtained for the benzene-T4 lysozyme mutant complex [48]. However, the 

improvement in accuracy of the ΔGnonpolsolv estimation, obtained with the inclusion 

of a dummy ligand in the binding cavity of the free protein, was considered to be 

fortuitous, because it did not considered water molecules to be displaced by the 

ligand. 
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As regards to galectin-3 and trypsin, the authors obtained poor results in any case, 

with errors of 22-73 kJ/mol for the ΔGnonpolsolv estimate. The authors observed that 

ΔGnonpolsolv obtained by TI was somehow between the values obtained by 

considering the cavity filled with continuum water and those obtained by 

including a dummy ligand. Thus, a combined method which worked well for any 

complex, save for trypsin, was developed. Within this approach (eq. 13), the 

cavity term was derived by performing the calculation with the binding site filled 

with a non-interacting ligand (method P0), while the dispersion and repulsion 

terms were obtained from the calculations with the cavity filled by a continuum 

solvent (P method) [49]: 

ΔGnp
bound = ξGnp

bound(P) + (1 - ξ) Gnp
bound(P0) (13) 

where ξ is related to the solvent exposure (SE) of the bounded ligand. 

As it can be noticed, the treatment of the apolar term of the solvation energy is 

controversial. Indeed, the commonly used SASA approach can be considered 

accurate only for those proteins with buried binding sites, while the combined 

method developed by Genheden and coworkers is preferable for the cavities 

which are more exposed to the solvent. Nevertheless, the use of P0 approach also 

results in a change of the polar term, because of the binding site being filled with 

a non-interacting ligand instead of the solvent molecules. 

Moreover, although it is fundamental to know the hydration state of the binding 

cavity, unexpected results might be obtained: for example, the ferritin crystal 

structure shows four water molecules in the free binding site, but the results 

obtained by using the P0 approach are decidedly better than those obtained with 

the standard P approach. 

Furthermore, it has to be observed that all the evaluated continuum solvation 

method failed in predicting the ΔGnonpolsolv term for the solvent-exposed binding 

sites, such as galectin-3, because in these cases the water molecules have not 

bulk-like properties [49]. 



112   Frontiers in Computational Chemistry, Vol. 1 Maffucci and Contini 

Another interesting approach, alternative to SASA, had been also reported by 

Genheden and Ryde [34], who took the non-electrostatic part from the LIE 

method (eq. 14): 

∆ = 	 〈 ( )〉 −	〈 ( )〉  (14) 

where β is 0.18 and ( ) are the van der Waals interaction energies between 

the ligand and the surroundings (receptor + solvent) in the simulation of the 

complex (RL) and the free ligand (L). 

The authors tested this method (referred as MM-PB/GB-β) on avidin in complex 

with seven biotin-like ligands and on fXa binding nine derivatives of 3-

amidinobenzyl-1H-indol-2-carboxamide. They observed that, for the latter 

system, standard MM-PBSA/GBSA gave the best results in term of correlation 

between the predicted and the experimental binding free energies, while MM-

PB/GB-β leaded to the highest correlation for the avidin complexes, with MM-

PB-β being the most precise method [34]. 

CONCLUDING REMARKS 

When applying the MM-PBSA/GBSA methods for the binding energy predictions, 

several parameters, affecting either the quality of the prediction or the computation 

time, should be properly set to obtain the maximum performance. This task is 

anything but easy; however, specific examples on how one or the other parameter is 

able to affect the method reliability have been reported in the literature in the last 

few years. The majority of them are related to the calculation of the electrostatic 

contribution to the solvation free energy, although some studies on the optimization 

of the non-electrostatic contribution were also reported. 

The principal aim of this chapter has been to describe such examples, collected in 

specific paragraphs accordingly to the parameter being investigated, in order to 

make the reader aware about the pros and the cons of each strategy. 
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It has to be underscored that the effectiveness of each of the methods herein 
described strictly depends on the scope of the analysis. Therefore, the choice of 
the approach should be carefully evaluated and validated, if possible, by a 
comparison with the experimental data. 
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Abstract: The expanding knowledge of the critical roles played by protein-protein 
interactions in cell proliferation, differentiation and apoptosis has highlighted protein-
protein interfaces as promising therapeutic targets for the treatment of various human 
diseases. However, targeting protein-protein interfaces is considered a particularly 
challenging task as protein interfaces are usually large and featureless, and lack well-
defined cavities or binding contacts for small molecule recognition. Furthermore, the 
flexibility of protein-protein interfaces may lead to the formation of transient binding 
pockets that may be absent in the static structure of the free protein target or the protein-
protein complex. Despite these inherent challenges, virtual screening has recently 
emerged as a powerful technique complementing traditional high-throughput screening 
technologies in identifying new protein-protein interaction modulators. The rapid virtual 
screening of chemical libraries could weed out non-binding candidates in silico, thereby 
greatly reducing the operational costs associated with chemical synthesis and in vitro 
screening. This review aims to provide an introductory framework for the use of virtual 
screening in drug discovery and serves to highlight successful examples of the 
identification of novel protein-protein interaction modulators by virtual screening 
techniques. 

Keywords: Computer-aided drug discovery, drug development, molecular 
docking, protein-protein interactions, virtual screening. 

INTRODUCTION 

Historically, medicinal chemists have primarily focused on the discovery and  
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development of small molecule inhibitors targeting the active sites of enzymes or 
protein receptors, which are usually small, well-defined and solvent-shielded [1, 
2]. Validated therapeutic proteins such as cell surface receptors and protein 
kinases have received the lion’s share of attention over the past few decades [3]. 
These therapeutic targets have been estimated to represent over 80% of all current 
drug targets, with the remaining fraction largely divided between protein ion 
channels and protein transporters [4]. 

Recently, however, targeting protein-protein interfaces (PPI) to inhibit cellular 
signalling and functions has attracted increasing attention due to the roles of 
protein-protein interactions in controlling cellular proliferation, differentiation and 
apoptosis. Remarkably, it has been estimated that the human genome may be able 
to produce up to 100,000 proteins that are involved with up to 650,000 protein-
protein interactions, and that only about 10% of all protein-protein interactions 
have been resolved to the present time [5]. Consequently, the discovery and 
development of protein-protein interaction modulators (PPIMs) has tremendous 
potential for the treatment of human diseases [6-8]. 

The three main classes of PPIMs are peptides, therapeutic antibodies and small 
molecules. These chemical entities exert their biological functions by acting on 
the protein-protein interface either through stabilizing the protein-protein complex 
or by disrupting the interaction between the two proteins. However, while 
peptides and therapeutic antibodies generally enjoy high affinities and 
specificities for their cognate targets, they possess intrinsic drawbacks that may 
limit their further development as potential protein-protein interaction modulating 
drugs. For example, antibodies and peptides are generally expensive to produce 
and may exhibit limited oral bioavailability, cell permeability and metabolic 
stability [9-11]. This has stimulated the discovery and development of small 
molecule PPIMs as potential candidates for the treatment of human diseases. 
Besides therapeutic applications, small molecules able to target particular protein-
protein interfaces selectively also represent valuable tools for the study of protein-
protein interaction networks [12, 13]. 

Protein-protein interactions are targets of a number of bioactive natural products 
[14]. For instance, the anti-hypertensive natural product forskolin was found to 
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stabilize the subdomains of adenylyl cyclase (AC) dimer, thus facilitating the 
formation of an active AC complex that can catalyze the production of cyclic 
AMP (cAMP), which is an important secondary signaling messenger [15]. Other 
PPIMs bind to the protein in an allosteric fashion either to increase or decrease the 
binding affinity of the protein surface with other protein partners. This is best 
illustrated by the taxane agents paclitaxel (Taxol), a diterpenoid isolated from the 
bark of the Pacific yew tree (Taxus brevifolia) [16], and its semisynthetic 
derivative docetaxel (Taxotere), that have been approved as anti-mitotic agents for 
the treatment of a number of cancers [17, 18]. Taxol and Taxotere bind to the β-
subunit of the tubulin heterodimer and stabilize the interaction between the 
heterodimers, thereby facilitating the polymerization of tubulin into a long 
microtubule [19]. As microtubules normally undergo depolymerization during cell 
growth, stabilization of microtubules by these small molecules acts to impose 
cell-cycle arrest and apoptosis. 

Although several well-known natural products have been determined to exert their 
therapeutic effects via targeting protein-protein interfaces, the identification of 
new small molecules as PPIMs is still an immature science. Traditional methods 
to identify small molecule PPIMs include biophysical and/or biochemical assays 
such as enzyme-linked immunosorbent assay (ELISA), nuclear magnetic 
resonance (NMR) spectroscopy, surface plasmon resonance (SPR) spectroscopy 
and X-ray crystallography [19-23]. However, some of these techniques are too 
costly and/or time-consuming to adapt to a high-throughput screening (HTS) 
format. Virtual screening has recently emerged as a powerful technique in drug 
discovery complementing traditional HTS technologies [24-27]. Virtual screening 
can be broadly defined as the use of computational analysis of a database of 
chemical structures to identify potential “hits” against a specific pharmacological 
target. The rapid virtual screening of chemical libraries could eliminate inactive 
chemical structures in silico, thereby dramatically reducing the costs associated 
with chemical synthesis and/or biological testing [28]. Consequently, the hit rates 
of computer-identified molecules in in vitro assays are often much higher 
compared to conventional HTS without preliminary virtual screening. 

This chapter is dedicated to introducing the use of virtual screening techniques to 
identify novel PPIMs as potential agents for the treatment of human diseases. We 
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will first highlight the challenges and difficulties involved with discovering small 
molecules as PPIMs. We will then briefly describe different in silico approaches 
used in virtual screening, as well as discuss special strategies that are specific for 
PPIM discovery. Due to the breadth of this field, we will focus especially on 
structure-based virtual screening by molecular docking. Finally, we will highlight 
interesting examples of the discovery of PPIMs since 2008 using the structure-
based approach, which is particularly useful for discovery of PPIMs. Interested 
readers are referred to several excellent review articles that comprehensively 
summarize the progress of small molecule modulators of protein-protein 
interfaces up to 2008 [6, 7]. 

CHALLENGES IN TARGETING PROTEIN-PROTEIN INTERFACES 

The characteristics of protein-protein interfaces have been studied extensively 
over the years. Typically, proteins can interact with themselves to form a 
homodimer, or they can interact with a structurally distinct protein to form a 
heterodimer [29, 30]. Targeting protein-protein interfaces is considered a 
particularly challenging task as they usually comprise large areas (~1,500-
3,000Å2) [31] compared to protein-small-molecule binding sites (~300-1,000Å2) 
[32], as well as their amorphous nature that lacks well-defined cavities for 
recognition by small molecules [33]. Many protein-protein interfaces are 
composed of several small binding pockets that are dispersed throughout the 
protein structure, which can make the rational design of small molecules targeting 
protein-protein interfaces significantly more difficult than for enzyme or protein 
receptor active sites. Furthermore, existing collections of low-molecular weight 
compounds specifically designed for traditional “druggable” targets such as G-
protein coupled receptors and protein kinases may not be well suited for targeting 
the relatively large binding pockets of protein-protein interactions. 

Another problem associated with some protein-protein targets is their inherent 
flexibility [34]. The movement of side chains and perturbation of loops under the 
dynamic equilibrium or influence of small molecule modulators may affect the 
conformation of the protein surface, leading to the formation of “transient” 
binding pockets that may be absent in the static structure of the free protein target 
or the protein-protein complex. Taken together, these factors make the discovery 
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of small molecule PPIMs generally more difficult than for traditional molecules 
targeting enzyme or protein receptors. 

In spite of the large surface area of the protein-protein interaction surface, however, 
it has been shown that a small subset of amino acid residues of the protein-protein 
interface contributes significantly to the binding affinity of small molecules [35]. 
These amino acid residues or “hotspots” tend to be clustered together at the centre of 
protein-protein interfaces and are surrounded by other amino acids that contribute 
significantly less to binding and probably serve as “gatekeepers” to prevent the 
entrance of the bulk solvent [36]. In recent years, a number of in silico methods, 
web-servers and databases have been developed to analyze the geometry, energetics 
and chemical nature of protein-protein interfaces [37-39]. For example, in silico 
models or tools such as iPred [40], PIER [41], KFC2 [42], HotPoint [43, 44], 
HSPred [45] and APIS [46] are able to predict the binding pocket or hotspot residues 
within the protein-protein interface. Some databases, such as MINT 
(http://mint.bio.uniroma2.it/mint) and DOMINE (http://domine.utdallas.edu/cgi-
bin/Domine), collate information on experimentally verified protein-protein 
interaction interfaces and are available for public access. A survey of the available 
tools and web servers for analysis of protein-protein interactions and interfaces has 
been compiled by Nussinov and co-workers [38]. 

WHAT IS VIRTUAL SCREENING? 

Virtual screening can be defined as the use of computational techniques in the 
early phase of drug discovery research [28]. These techniques have gained 
increasing attention as powerful and valuable tools complementing traditional 
HTS techniques for the discovery of novel bioactive compounds [47-62]. 
Regardless of which computational algorithms and scoring tools are used, the 
ultimate goal of a virtual screening campaign is to identify bioactive chemical 
entities against a particular biomolecular target, while simultaneously eliminating 
the majority of non-binding molecules from a chemical database of compounds. 
The resulting, smaller set of hit compounds can then be synthesized or purchased 
for biological testing. This integrated, multi-disciplinary approach allows the 
researcher to explore the interactions between the biomolecular target and a large 
number of chemical compounds in a systematic and time-effective manner, and 
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can dramatically enhance the hit rate while lowering the experimental cost for the 
biological testing in a drug discovery project. Virtual screening strategies used in 
drug discovery can be broadly classified into ligand-based or structure-based 
approaches, as described below. 

Ligand-Based Virtual Screening 

In ligand-based virtual screening, prior knowledge of the three-dimensional (3D) 
structure of the biomolecular target is not required. Within the realm of ligand-
based screening techniques, pharmacophore modeling has been a popular strategy 
used in drug discovery, as described in comprehensive reviews articles [63-66]. In 
ligand-based pharmacophore screening, the most important common structural 
features relevant for a given biological activity are extracted from a “training set” 
of molecules possessing a similar mechanism of action and experimentally 
determined affinities [67]. Thus, a pharmacophore is a virtual chemical entity 
containing an ensemble of steric and electronic features that are believed to be 
necessary (although not sufficient) for activity against the biomolecular target. 
The pharmacophores can be generated by the following steps: (i) ligand 
conformational flexibility is sampled and the most favorable conformations of 
each compound in the training set are retained and (ii) the compounds are aligned 
to derive the common structural and/or electronic features of the training set in 
order to produce the pharmacophore model. Computational software used for 
pharmacophore generation include HypoGen (Accelrys Inc. [68]), HipHop [69], 
PHASE [70] and DISCO [71]. 

The quality of pharmacophore models depends greatly on the size of the training 
set and their chemical diversity. Multiple pharmacophore models can be subjected 
to cost analysis and scoring, which aim to rank and validate the statistical 
significance of the hypothesized models. The best pharmacophore model can then 
be used to screen chemical libraries in silico in order to identify ligands that 
possess the necessary chemical and/or electronic features in the appropriate 
spatial arrangement for biological activity. 

Besides pharmacophore modeling, other ligand-based screening approaches 
include data mining or machine learning methods (such as support vector 
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machine, Bayesian, and decision tree strategies), in which classification rules are 
developed based on a training set of active and inactive compounds [72-75], and 
similarity searching methods, where compound similarity is analysed using 
molecular property descriptors or “fingerprints” [76-78]. Ligand-based screening 
techniques are considered to be relatively less computationally demanding as the 
affinity calculations are based upon the geometric matching of the ligand atoms 
and groups to the chemical or structural features of the virtual template [79]. 
However, one drawback of ligand-based virtual screening is that it cannot used for 
novel or “orphan” pharmacological targets for which the required agonists or 
antagonists have yet not been identified. For the in silico discovery of PPIMs, the 
structure-based virtual screening approach may be more useful because very few, 
if any, known small molecule ligands are available for most proteinprotein 
complexes. 

Structure-Based Virtual Screening 

If an experimentally-determined 3D structure of the target has been obtained from 
either X-ray crystallography or NMR spectroscopy, structure-based techniques 
can be utilized in order to study the interactions between the candidate 
compounds and the biomolecule [80, 81]. Two popular approaches employed in 
structure-based virtual screening are structure-based pharmacophore modeling 
and molecular docking. 

In structure-based pharmacophore modeling, the structure of the target is analysed 
to pick out features of the binding site that are important for ligand binding 
affinity and selectivity. A structure of the biomolecular target complexed with a 
ligand is preferable since specific features of the ligand-biomolecule interaction 
can be readily identified. These features can be classified into interactions such as 
hydrogen bonding, charge transfer, and lipophilic interactions. Some programs, 
such as LIGANDSCOUT [82], can perform calculations on the relevant 
interactions between the ligand and the biomolecule and automatically generate a 
pharmacophore model. 

In molecular docking, chemical compounds from the virtual library are docked 
into the binding pocket of the biomolecular target, and their affinity for the target 
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is evaluated computationally. This process typically involves the examination of 
the binding interactions of the compounds with the target, followed by a score 
assignment reflecting the predicted binding energy of the ligand-target complex. 
Although structure-based strategies are often considered to be more computer-
intensive and time-consuming compared to ligand-based screening methods, they 
do offer several distinct advantages. Firstly, the binding mode of the compound 
with the target can be predicted, allowing the important features of the ligand-
target interaction to be identified. Secondly, structure-based methods can uncover 
bioactive compounds with entirely different chemical scaffolds from reported 
ligands (although it should be emphasized that ligand-based pharmacophore 
searching or 2D/3D similarity methods can also accomplish “scaffold hopping” 
[83-87]). Finally, these methods can discover ligands for novel biomolecular 
targets for which no existing inhibitors are available. The following sections 
discuss chemical library construction and pre-treatment procedures with an 
emphasis on structure-based molecular docking. 

CHEMICAL LIBRARIES FOR VIRTUAL SCREENING 

The choice of the chemical library to be used is of crucial importance in every 
structure-based virtual screening campaign. The result of any high-throughput 
(virtual) screening exercise is ultimately predicated upon the quality of the 
compound collection itself. Poorly designed libraries lacking sufficient diversity may 
result in few hits. Virtual compound libraries are readily available from both 
commercial and non-commercial sources on the internet, or they may be generated 
using computational software. Popular compound libraries include those containing 
marketed drugs [88, 89], or databases of natural products and natural product-like 
compounds. Furthermore, certain filters can be applied to remove compounds that 
are unlikely to progress beyond preliminary drug development. For example, some 
compounds in the virtual library may not have satisfactory ADME (absorption, 
distribution, metabolism and elimination) properties and toxicological profiles to be 
developed as potential drugs. These compounds could be filtered out from the virtual 
library prior to screening on the basis of selective criteria (such as molecular weight, 
logP, logD, and number of hydrogen bond donors or acceptors) [90-92]. These in 
silico ADME and toxicological prediction methods have proven to be useful in 
certain screening campaigns [93, 94]. Hetényi et al. have recently suggested that 
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filters of molecular weight and lipophilicity may be limited as predictors of general 
drug-likeness [95]. Interestingly, the filters showed increased performance in 
specific cases (e.g. central nervous system diseases), indicating that specific disease-
focused libraries may be more effective for virtual screening campaigns in the 
future. 

PRE-TREATMENT OF BIOMOLECULE AND LIGAND 

In structure-based virtual screening by molecular docking, both the biomolecular 

target and the library of ligands are generally subjected to a pre-treatment procedure 

in order to improve reliability of the screening results. The inadequate pre-treatment 

of the ligand library can result in the inaccurate prediction of binding poses and 

biased score assignments. The atomic coordinates and bond types should be assigned 

to the ligands appropriately. Furthermore, other factors such as the protonation state 

and the presence of tautomers and stereoisomers may dramatically affect the 

interaction between the biomolecular target and ligand [96]. Ligand minimization is 

performed to identify a stable 3D conformation of the small molecule before 

docking is carried out. These procedures can be performed by commercially 

available software such as CORINA (Molecular Networks GmbH) [97] and the 

ligand preparation tools implemented in most docking suites, such as ICM-pro 

(Molsoft) [98], GLIDE (Schrodinger Inc.) [99], AutoDock [100, 101], FlexX [102] 

or ChemAxon (http://www.dockingserver.com). 

For the biomolecular target, a 3D molecular model of target is first constructed 

from available structural data obtained from high-resolution NMR spectroscopy 

or X-ray crystallography [103], or by homology modelling from related validated 

structures [104]. Such structural information can be accessed freely from the 

Protein Data Bank (PDB) [105], if available. Data obtained from X-ray diffraction 

is generally considered to be most reliable for use in a virtual screening campaign. 

An X-ray co-crystal structure of a biomolecular target complexed with an 

inhibitor or ligand (holostructure) is considered advantageous compared to the 

target without a ligand (apostructure) as the optimal interactions between the 

biomolecular target and the small molecules can be more easily identified. 
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In molecular docking, a prior knowledge of critical ligand-target interactions can 
also help identify false positives that arise during screening. Furthermore, the 
search area for docking can be restricted to the region around the bound ligand, 
which both avoids the unnecessary wastage of computational resources and 
lowers the chance of identifying non-specific molecules that bind outside the 
binding site. Finally, more accurate docking calculations can be performed since 
the target is in its active or induced conformation, thus improving the quality of 
the docking results. 

After a suitable molecular structure is chosen for docking, the hydrogen atoms are 
added to the structure in order to predict the hydrogen bonding interactions between 
the ligand and target. The tautomeric state of the amino acid residues such as histidine 
should also be taken into account. Finally, a standard molecular simulation algorithm 
should be applied to minimize the energy of the whole biomolecule. If only the 
apostructure is available, computational algorithms such as ICM PocketFinder 
(Molsoft) and Pocket Finder (http://www.modelling.leeds.ac.uk/pocketfinder/) can be 
used to identify likely binding pockets for docking. However, it should be noted that 
the larger the size of the chosen docking site, the longer the time required to perform a 
single docking experiment, which could reduce the overall efficiency of a large scale 
virtual screening campaign. 

VIRTUAL SCREENING BY MOLECULAR DOCKING 

The overall workflow of structure-based virtual screening by molecular docking is 
depicted in Fig. 1. In the first stage of the screening process, the docking 
algorithm generates a number of conformations of each of the ligands that are 
sequentially inserted into the defined binding pocket of the biomolecular target. 
Most algorithms incorporate ligand flexibility so that the binding pose of the 
ligand can be correctly predicted. Three main methods are commonly employed 
to tackle the issue of ligand flexibility, namely (i) ligand incremental construction, 
(ii) generation of multiple conformers (rotamer library) before docking and (iii) 
stochastic methods. 

In ligand incremental construction, a fragment of the ligand (the “anchor”) is first 
docked into the binding site. The best conformation of the anchor is then 
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conformations are allowed to perform random crossovers and mutations in order 

to produce another set of different conformations. The “fittest” conformations, 

which possess the lowest binding energies with the target, are accepted and used 

to produce a new generation of conformations. This cycle is iteratively repeated a 

number of times until the local energy minimum of the target-ligand complex has 

been reached. 

Algorithms are also available that aim to model receptor flexibility in order to 

increase the success rate of a docking campaign. The first is the use of multiple 

receptor conformations (MRC) of the biomolecule obtained from different X-ray 

or NMR structures, or generated from molecular dynamics simulations in silico 

[109]. The compounds in the virtual library are screened against different 

conformations of the receptors, and the highest-scoring ligand poses from each 

receptor-ligand complex are combined. Another method to tackle this problem is 

to use a “soft docking” approach, which tolerates some degree of steric clashes 

between the ligand and the biomolecules [110]. Finally, some modern docking 

algorithms are able to explicitly model receptor flexibility, but this is usually 

constrained to the ligand binding domain as the explicit inclusion of receptor 

flexibility for the whole protein in the docking calculations would be too 

computationally demanding [111]. 

After generating the binding poses of each compound in the database, scoring 

must be performed to rank or score each binding pose to determine the relative 

binding affinity of the ligand against the target, and to discriminate the active 

compounds from the decoys (inactive compounds). Scoring functions are 

generally classified into force field-based, empirical-based and knowledge-based 

scoring functions [47, 112]. Scoring functions are subjected to continual 

improvement and there exist no general rules that specify which scoring functions 

should be used under certain circumstances. It should be noted that scoring 

functions currently constitute a weak link in structure-based virtual screening, as 

their inability to predict binding energy values accurately places a major 

limitation on the quality of the docking results. One strategy used to tackle this 
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issue is to utilise multiple scoring algorithms (consensus scoring) to provide a 

more reliable estimation of ligand binding affinity [113]. Furthermore, post-

docking analysis can be performed via visual inspection or topological filters in 

order to remove binding poses that contain significant steric and/or electrostatic 

clashes. 

STRATEGIES FOR PPIM DISCOVERY 

To tackle the unique challenges presented by protein-protein interaction 

interfaces, researchers have explored adjustments to the general virtual screening 

strategies described above. Several groups have attempted to characterise the 

nature of the protein-protein interface and the PPIM chemical space, the results of 

which could potentially yield chemical libraries enriched with fragments or sub-

substructures with greater propensity to modulate protein-protein interactions 

[114]. Here, we highlight some recent contributions that could be useful for the 

application of virtual screening techniques in PPIM discovery. 

Several years ago, Morelli, Roche and co-workers presented the 2P2I database 

(http://2p2idb.cnrs-mrs.fr), which aimed to analyse protein-protein and protein-

inhibitor interfaces in terms of geometrical parameters, atom and residue 

properties, buried accessible surface area and other biophysical parameters [115]. 

At the time of the study, the 2P2I database was comprised of 17 protein-protein 

complexes from 14 families, in addition to 56 small molecule inhibitors bound to 

their cognate targets. Their analysis generated several interesting conclusions. For 

example, it was observed that protein partners with known PPI inhibitors did not 

undergo major conformational changes upon heterodimeric complex formation, 

implying that these types of complexes are easier to target. Additionally, PPIs 

with known inhibitors displayed more hydrogen bonds, fewer salt bridges and 

fewer charged residues at the interface compared to typical heterodimers. In a 

later work, the group analysed the structural features of PPIM in the 2P2I 

database [116]. A statistical analysis of 39 PPI inhibitors suggested a “rule of 

four” framework for small molecule PPI inhibitors, where molecular weight > 

400, ALogP > 4, number of rings > 4 and number of hydrogen bond acceptors > 
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4. Interestingly, these criteria are in direct contradiction with Lipinski’s classic 

rule of five (MW < 500, logP < 5, H-bond donors < 5, H-bond acceptors > 10 

[117]) for small molecule drugs, suggesting that traditional drug-likeness screens 

may fall critically short when utilised for PPIM screening. 

The group of Sperandio utilised machine-learning methods to design focused 

chemical libraries enriched in PPI modulators [118]. The study was performed 

using a chemically diversified learning data set of 66 validated drug-like PPI 

inhibitors and 557 non-PPI small molecule inhibitors. Their analysis yielded 

descriptor-based decision trees that managed to positively discriminate PPI 

inhibitors by using only two molecular descriptors, RDF070m and Ui, which 

describe a specific molecular shape and the presence of 15-17 multiple bonds in 

the compound, respectively. A computer package (PPI-HitProfiler) developed to 

implement these criteria showed robust performance when applied to two 

commercial compound collections screened against 11 distinct PPI systems, with 

70-81% of true PPI inhibitors identified and 42-52% of putative non-PPI 

inhibitors discarded. 

In a recent work, Fry and co-workers have analysed the important binding 

determinants of the Nutlins, which are a distinct class of PPI inhibitors that bind 

to the protein MDM2 and block its interaction with p53 [119]. In their study, 

RG7112, the first member of the Nutlin family to enter clinical trials [120], was 

systematically constructed into smaller fragments, and the ability of the fragments 

to bind to MDM2 was analysed using surface plasmon resonance spectroscopy 

(SPR), NMR, and X-ray crystallography [121]. Interestingly, the smallest 

fragment capable of binding to MDM2 had a molecular weight of 305 Da, which 

is a value that is located at the upper end of the molecular weight range of typical 

fragments. This study supported the use of fragment-based techniques for PPIM 

discovery, and suggested that the fragment-based (virtual) screening of protein-

protein systems may be benefited by a bias towards fragments with higher 

molecular weight. 
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The principles of binding hotspots have been extended into the concept of “hot 

regions”, which are clusters of hotspots at PPI interfaces [36]. For hub proteins, 

which are proteins that bind to multiple protein partners, such hot regions are a 

characteristic signature for their protein-protein interfaces, with each hot region 

on the hub protein potentially binding to a different partner protein [122]. 

Building on this idea, Keskin and co-workers have established HotRegion as a 

database of predicted hot spot clusters [123]. The study of hot regions may reveal 

cooperative effects in the contributions of individual hotspots towards the overall 

stability of the PPI. 

A few PPIMs bind to transient pockets on the protein-protein interface that are 

absent in either the free protein partners or the heterodimeric complex [124]. 

Gohlke and co-workers devised the first computational method that was able to 

simultaneously address the energetics and plasticity of PPIM binding at the 

protein interface, and to identify the determinants of ligand binding, hot spots and 

transient pockets in a protein [125]. In their study, conformation ensembles of the 

IL-2-IL-2Rα protein-protein complex were generated using molecular dynamics 

(MD) and constrained geometric (FRODA) simulations, and hot spot and transient 

pockets were identified using energetic or geometric criteria. Compounds were 

docked to the transient pockets, followed by structure selection based on hotspot 

prediction, RSMD clustering and intermolecular docking energies. This 

eventually yielded a library enriched in IL-2 PPI inhibitors over decoy 

compounds. Significantly, this study demonstrated that in silico techniques could 

be used to discover transient binding pockets at protein-protein interfaces even 

when the structure of the ligand-protein complex is not available. Recently, this 

method was also used to identify the first small-molecule protein-protein 

interaction inhibitors of RUNX1/ETO tetramerization [126]. 

CASE STUDIES 

Over the last decade, a number of small molecules that target protein-protein 

interfaces have been reported, as described in comprehensive review articles [14, 

93, 127]. Using both conventional screening and virtual screening techniques, 
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inhibitors of the Bcl-xL-BH3 protein-protein interaction [128-130], the p53-

MDM2 interaction [131, 132], the BIR3 domain of XIAP [133, 134] and the IL-2 

alpha receptor-IL-2 interaction [135, 136] have been discovered. In this section, 

we highlight interesting examples of the application of structure-based virtual 

screening for the discovery of biologically validated PPIMs since 2008. To 

emphasize the versatility of this technique, interesting examples will be chosen 

from a variety of protein-protein interactions, such as the linear protein binding 

domains of transcription factors, or protein-protein homodimeric or heterodimeric 

interactions. 

MODULATORS OF THE TUMOR NECROSIS FACTOR ALPHA (TNF-Α) 
INTERACTION 

The tumor necrosis factor-α (TNF-α) trimer is an important human cytokine that 

is involved in the inflammatory response through regulation of diverse signaling 

pathways. Aberration in the cellular levels of TNF-α has been implicated in a 

variety of inflammatory disorders [137]. The clinically-proven biopharmaceutical 

infliximab targets TNF-α trimerization and is routinely used to treat inflammatory 

disorders such as rheumatoid arthritis, psoriatic arthritis, and Crohn’s disease. 

However, the use of TNF-α antibodies such as infliximab can elicit an 

autoimmune anti-antibody response or weaken the body’s immune system to 

opportunistic infections. In 2010, our group applied structure-based, high-

throughput virtual screening (HTVS) methods to identify small-molecule 

inhibitors of TNF-α from a database containing over 20,000 natural products or 

natural product-like compounds [138]. An X-ray co-crystal structure of the TNF-α 

dimer bound by the small-molecule inhibitor SPD304 (PDB: 2AZ5) was chosen 

for the construction of the molecular model [139]. The X-ray structure was 

thoroughly examined and was energy minimized using the ICM-pro docking 

suite, and the search area for docking was restricted to the binding cavity that was 

occupied by SPD304. The compounds from the natural product and natural 

product-like database were then docked against a grid representation of the 

receptor using the ICM method and assigned an ICM score reflecting the quality 

of their binding to the receptor pocket. The high scoring structures were visually 
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inspected and twelve of these compounds were experimentally tested for TNF-α 

inhibition using an ELISA. Two chemically distinct compounds, the pyrazole-

linked quinuclidine 1 and the indolo-[2,3-α]quinolizidine 2, were identified as the 

top candidates against the TNF-α protein-protein interaction (Fig. 2a). 

(a)  

(b)  

Figure 2: (a) Chemical structures of the pyrazole-linked quinuclidine 1 and the indolo-[2,3-α]quinolizidine 2. 
(b) Low-energy binding conformations of 1 (left) and 2 (right) generated by molecular docking. Hydrogen 
bonds are depicted as dotted lines. Reproduced from Ref. [139]. 
In in vitro assays, these two compounds were able to disrupt the TNFR1-TNF 
interaction in an ELISA and down-regulate TNF-α-driven gene expression in 
human cells. Significantly, compound 2 (IC50 = 10 µM) was slightly more potent 
in ELISA compared to SPD304 (IC50 = 22.4 µM), which was the most potent 
direct TNF-α inhibitor reported to date, and displayed comparable potency to 
SPD304 in the cell-based luciferase reporter assay. Molecular modeling analysis 
revealed that compounds 1 and 2 are large and flat enough to interact with the 
residues from both subunits of the TNF-α dimer, thereby occupying and blocking 
the binding site for the third TNF-α subunit (Fig. 2b). Notably, the lack of salt 
bridges or hydrogen bonding networks in our models of 1 and 2 with TNF-α was 
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consistent with the previous finding that the interaction between SPD304 and 
TNF-α was primarily hydrophobic and shape-driven [140]. This study highlighted 
the application of structure-based molecular docking to discover natural product-
like inhibitors of the TNF-α protein-protein interaction. 

(a)  

(b)  

Figure 3: (a) Chemical structures of the TNF-α PPI inhibitors: darifenacin 3 (overactive bladder 
syndrome) and ezetimibe 4 (hypercholesterolemia). (b) Low-energy binding conformations of 3 
(left) and 4 (right) generated by molecular docking. Hydrogen bonds are depicted as dotted lines. 
Reproduced from Ref. [141]. 

Later, we utilized an in silico drug repositioning strategy with the aim of 
discovering existing drugs as TNF-α protein-protein interaction inhibitors. In this 
approach, over 3,000 compounds from a database of US FDA-approved drugs 
were docked against the TNF-α molecular model using the ICM method as 
described above [141]. Two of the hit compounds (darifenacin 3 and ezetimibe 4, 
Fig. 3a) from the FDA database were subsequently demonstrated to disrupt the 
TNF-α-TNF-α receptor interaction in vitro and down-regulate TNF-α-driven gene 
expression in human cells. Darifenacin 3 (trade name: Enablex) is currently used 
in the treatment of overactive bladder (OAB) syndrome by targeting the M3 
muscarinic acetylcholine receptor, while ezetimibe 4 (trade name: Zedia) is a 
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potent inhibitor of cholesterol absorption in the intestines and is used for the 
treatment of hypercholesterolemia. Like the natural product-like inhibitors 
described above, compounds 3 and 4 were predicted to interact with both subunits 
of the TNF-α dimer largely through hydrophobic interactions, leading to the 
inhibition of TNF-α trimerization (Fig. 3b). 

MODULATORS OF PROTEIN-PROTEIN INTERACTIONS OF THE 
TOLL-LIKE RECEPTOR (TLR) SIGNALLING PATHWAY 

Toll-like receptors (TLRs) are type I transmembrane proteins that recognize 
pathogen-derived macromolecules and play a key role in the innate immune 
system [142-144]. Pathogen-derived macromolecules, which are broadly shared 
by pathogens but are distinguishable from host molecules, are collectively known 
as pathogen-associated molecular patterns (PAMPs) [145]. The dimerization of 
TLR leads to activation of the transcription factor nuclear factor-κB (NF-κB) and 
interferon regulatory factors (IRFs), which in turn leads to the production of pro-
inflammatory cytokines and type I interferons. Thus, dysregulation of TLR 
activity has been associated with the development of inflammatory diseases [146]. 

In 2010, Yin and co-workers applied a novel in silico screening methodology that 
included molecular mechanics (MM)/implicit solvent methods to identify 
inhibitors of the TLR4/MD-2 protein-protein interaction [147]. Toll-like receptor 
4 (TLR4) is a membrane-spanning immune receptor that functions in a complex 
with its accessory protein myeloid differentiation factor 2 (MD-2) [148]. TLR4 
detects lipopolysaccharide (LPS), which is a TLR4 agonist and a component of 
gram-negative bacterial cell walls [127]. TLR4 signaling has been implicated in 
numerous disease states including acute sepsis and neuropathic pain [149]. 
Consequently, the TLR4/MD-2 interaction is an attractive therapeutic target as it 
is essential for TLR4 signaling [150]. 

Traditional molecular dynamic (MD) stimulations can model the interaction 
between proteins and small molecules in a fully flexible manner, allowing the 
relaxation of the binding site residues and the incorporation of explicit water 
molecules that are generally excluded from most algorithms [151]. However, 
these techniques are too computationally expensive for application in high-
throughput virtual screening. In order to improve the accuracy of the screening 
process while preserving the computational calculation time within reasonable 
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limits, Yin and colleagues used the molecular docking algorithm GLIDE to 
generate the binding poses of the screened ligands and MD simulations to score 
the ligand poses with QUANTUM [152]. The screened compounds were further 
clustered to ensure that a large variety of chemical compounds were included. The 
hits were subsequently profiled against around 500 representative human proteins 
to filter out non-selective binders in silico. Compounds 5 and 6 were identified to 
target TLR4 and MD-2, respectively (Fig. 4a). These small molecule inhibitors 
were able to disrupt TLR4 signaling in mouse macrophage cells with complete 
inhibition at 2 µM of compound 5 or 200 nM of compound 6, presumably due to 
the inhibition of the TLR4/MD-2 protein-protein interaction. Compound 6 was 
further demonstrated to selectively target TLR4 signaling without affecting the 
signaling of other TLRs. The molecular models of 5/TLR4 and 6/MD-2 reveal a 
high degree of shape complementarity between the small molecules and the 
protein binding pockets (Fig. 4b). 

(a)  

(b)  

Figure 4: (a) Chemical structures of the TLR4 antagonist 5 and MD2 antagonist and 6. (b) 
Molecular models of the 5/TLR4 (left) and 6/MD-2 (right) complexes generated by molecular 
docking. Reproduced from Ref. [152]. 
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MODULATORS OF STAT3 DIMER INTERACTIONS 

The STAT3 dimer is a key transcription factor through which receptors of 
multiple cytokines and growth factors exert their effects. The phosphorylation of 
STAT3 at the tyrosine 705 residue in the SH2 domain induces the formation of 
STAT3 homodimers or STAT3-STAT1 heterodimers. These protein complexes 
subsequently translocate into the nucleus and activate target genes through 
binding to specific DNA-response elements. STAT3 is constitutively activated in 
many types of cancer and has been linked to tumor progression through enhancing 
angiogenesis, metastasis, growth and survival of cancer cells [153]. In 2010, Asai 
and co-workers identified a new series of STAT3 inhibitors [154] using a docking 
and consensus scoring approach implemented in CONSENSUS-DOCK [155], a 
customized version of the DOCK4 program [156]. The X-ray structure of the 
DNA-bound STAT3 homodimer (PDB: 1BG1) [157] was processed by removal 
of the DNA and the docking site was restricted to the SH2 domain of the dimer. 
Approximately 360,000 small molecules were docked to the SH2 domain of 
STAT3 and 136 compounds were selected for subsequent in vitro screening based 
on the consensus docking scores and from visual inspection. From a preliminary 
luciferase reporter assay, STX-0119 7 was identified as a potential STAT3 
inhibitor with 99% inhibition of STAT3-driven luciferase activity at 100 µM  
(Fig. 5a). A fluorescence resonance energy transfer (FRET) assay indicated that 
STX-0119 7 was able to inhibit STAT3 dimerization in cells by 62% at a 
concentration of 50 µM. The molecular model of STX-0119 7 bound to the SH2 
domain of STAT3 revealed that the 2-phenyl ring of the small molecule was 
inserted into a hydrophobic cleft where it comes into contact with the phospho-
tyrosine binding site (Fig. 5b). The complex was further stabilized by a hydrogen 
bonding interaction between the amide group of 7 and the backbone carbonyl 
group of Ser636, and a hydrophobic interaction between the furan ring of 7 with 
the indole moiety of Trp623. 

Subsequently, Li and co-workers employed a multiple ligand simultaneous 
docking (MLSD) approach to identify a small molecule inhibitor of STAT3 
dimerization [158]. An X-ray structure of the STAT3 SH2 domain (PDB: 1BG1) 
features three characteristic sub-binding pockets involving the “hotspot” residues  
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(a)  

(b)  

Figure 5: (a) Chemical structure of the STAT3 dimerization inhibitor STX-0119 7. (b) Molecular 
model of compound 7 with the STAT3-SH2 domain. Reproduced from Ref. [157]. 

Tyr705 and Leu706, as well as a side pocket composed of Ile597, Leu607, Thr622 
and Ile634. As the binding affinity of small molecules to the STAT3 SH2 domain 
primarily depends upon their ability to interact with the basic Tyr705 and 
hydrophobic Leu706 residues within the SH2 domain, the authors first 
constructed a fragment library based upon reported small molecule inhibitors of 
the STAT3 SH2 domain. The fragments were then filtered using a similarity 
search of chemically or structurally similar entities from a drug scaffold database 
in order to weed out any fragments with undesirable ADMET properties. The 
fragment library was then further classified into polar and non-polar fragments 
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with potential affinity for the Tyr705 or Leu706 residues within the binding site. 
In the second stage of the screening, three drug fragments from the library, 
including one polar fragment and two non-polar fragments, were simultaneously 
docked against a pre-treated model of the STAT3 SH2 binding pocket and a 
docking score was assigned to each fragment. Finally, the high-scoring fragments 
were linked together to generate fifteen virtual templates using various chemical 
linkers such as amide, amine, ether or alkene groups. The virtual templates were  
 

(a)  

(b)  

Figure 6: (a) Chemical structures of the STAT3 dimerization inhibitor celecoxib 8, originally 
developed as an NSAID. (b) Molecular model of 8 bound to the SH2 domain of STAT3. 
Reproduced from Ref. [158]. 
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then used as pharmacophores for screening an FDA-approved drug database. 
Thirteen of the fifteen pharmacophore models identified celecoxib 8 as a top hit 
for STAT3 inhibition (Fig. 6a). In vitro experiments demonstrated that celecoxib 
8 could down-regulate STAT3 phosphorylation in a dose-dependent manner, 
selectively antagonize interleukin-6 (IL-6)-induced STAT3 phosphorylation, and 
inhibit cancer cell growth with micromolar potency. Celecoxib 8 (trade name: 
Celebrex) is a non-steroidal anti-inflammatory drug (NSAID) and a selective 
COX-2 inhibitor that is mainly used for the treatment of various conditions such 
as rheumatoid arthritis, acute pain, and colorectal polyps. In the molecular model 
of celecoxib 8 bound to the STAT3-SH2 domain, the phenylsulfonamide group of 
8 was bound to the pTyr705 site, while the non-polar phenylmethyl moiety of 8 
occupied the side pocket formed from Ile597, Leu607, Thr622, and Ile634 (Fig. 
6b). This study demonstrated that a virtual screening strategy combining 
privileged drug fragments, MLSD, and drug repositioning, can be an effective 
approach to identifying inhibitors of the STAT3 protein-protein interaction. 

MODULATORS OF THE IFNΑ-IFN RECEPTOR INTERACTION 

Type I interferons are proinflammatory cytokines that are released in response to 
viral infection and help coordinate the first line of defense against the pathogens 
[159]. All type I interferons bind to the IFN receptor (IFNAR) to initiate the 
positive feedback loop leading to elevated IFN levels [160]. Recent research has 
suggested that chronically activated plasmacytoid dendritic cells, which are the 
main producers of type I IFN [161], produce IFN in response to the activation of 
toll-like receptors and may be implicated in the development of systemic lupus 
erythematosus. 

Recently, Schneider and co-workers utilized an integrated approach involving 
pharmacophore screening and molecular docking to identify compound 9 as a 
potential inhibitor of the IFN-IFNAR interaction [162]. The NMR solution structure 
of human IFN-α was taken from the PDB (PDB: 1ITF, model 16) and the potential 
small molecule binding pocket was extracted using their in-house tool PocketPicker 
[163]. A total of 19 candidate pockets were identified and 3 of them were located 
within the interacting site of the IFN-α-IFN receptor ectodomain. Further analysis 
using iPred, which is a tool for surface “hot spot” residue identification based on a 
knowledge-based scoring function adapted from the field of protein folding and 



Protein-Protein Interaction Modulators Frontiers in Computational Chemistry, Vol. 1   145 

small molecule docking [40], revealed six hotspot residues, four (Phe27, Leu30, 
Lys31 and Arg149) of which surrounded a small pocket with an area of 155 Å2. 
Subsequently, a structure-based pharmacophore model was generated using the 
VirtualLigand software [164], and over 500,000 commercially available compounds 
were screened against the pharmacophore. The 100 top-ranking compounds from the 
pharmacophore search were visually inspected and six compounds were chosen for 
further molecular docking analysis using GOLD docking software [165]. These 
compounds all displayed favorable binding to the target, and compound 9 emerged 
as the highest-ranking compound (Fig. 7a, b). In vitro assays demonstrated that 
compound 9 could inhibit IFN-α responses induced by modified Vaccinia virus 
Ankara (MVA) in Flt3-L-differentiated pDC cultures (BM-pDCs) with IC50 values 
of 2-8 µM. The binding of 9 to IFN-α was further investigated using saturation-
transfer difference (STD) NMR spectroscopy, which confirmed that compound 9 
bound directly to IFN-α as observed by saturation transfer of the NMR signal in the 
aromatic range of the spectrum. This study highlighted the application of hotspot 
prediction techniques for the structure-based pharmacophore screening of PPIMs 
targeting the FN-α-IFNAR interaction. 

(a)  

(b)  

Figure 7: (a) Chemical structure of IFN-α-IFNAR interaction inhibitor 9. (b) Molecular overlay of 
the docking pose of compound 9 within the IFN-α binding pocket. Reproduced from Ref. [165]. 
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FUTURE PERSEPECTIVES 

Towards the future, we envision that the character and properties of protein-
protein interfaces would continue to be clarified, and the mode of action of PPIMs 
to be further elucidated. PPIMs have been discovered for all of the major protein 
folding topologies, such as α-helix, β-strand and mixed α/β-type PPI domains 
[116], and it might be suggested that the different types of topological scaffolds 
would demand distinct structural requirements in the PPI ligands. Based on 
analysis of the P2PI database, it has also been suggested that PPI interfaces could 
be divided into two major classes depending on the degree of structural regularity 
at the interface [115]. Additionally, while most examples described above have 
described orthosteric inhibition (where the PPIMs bind at the protein-protein 
interface), the allosteric inhibition of PPIs has been less explored and deserves 
further attention [166, 167]. 

As more PPIMs are discovered, we envisage that ligand-based screening 
strategies may be able to make a significant contribution. Presently, the use of 
ligand-based techniques such as similarity searching or ligand-based 
pharmacophore modeling is restricted by the very few small-molecule ligands that 
are known for each PPI target. Increasing knowledge on the structural features of 
such ligands would also aid in the generation of libraries specialised for PPIM 
discovery. At the same time, improved structural biological understanding and 
computational algorithms would allow programs to accurately model the binding 
interface of PPIs and to better evaluate the structural features important for ligand 
interaction, such as hotspots (or hot regions) and transient binding pockets. 

CONCLUDING REMARKS 

Virtual screening has established itself as a powerful technique that complements 
traditional high-throughput experimental screening technologies in early phase 
drug discovery research. Efficient in silico methodologies, in conjunction with 
experimental validation, can play a significant role in accelerating the drug 
discovery process by filtering out non-active compounds without excessive 
economic or temporal investment. 
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Although protein-protein interactions have been historically considered as 
challenging targets in pharmaceutical research, studies in recent years have 
provided rationale for modulating these so-called undruggable targets. For 
example, the identification of critical hot spots can provide certain hints for the 
design of low-molecular weight PPIMs that are able to selectively disrupt the 
protein-protein interaction without having to cover the entire protein-protein 
interface. Moreover, we anticipate that the further discovery and elucidation of 
new protein-protein interactions involved with human diseases will provide fertile 
fields of investigation for the identification of PPIMs from both old and new 
regions of the chemical space. 

In this chapter, we have described the rationale and challenges involved with 
targeting protein-protein interfaces with small molecules. We have also 
introduced the basic principles and techniques in the field of computer-assisted 
drug discovery that can be used for the discovery of novel PPIMs. In particular, 
the application of structure-based virtual screening techniques for the 
identification of novel protein-protein interaction modulators deserves further 
attention as most protein-protein interfaces lack sufficient ligands to allow for 
ligand-based screening strategies. In addition, we have highlighted several 
interesting cases of the discovery of PPIMs that target different protein-protein 
interactions. We envisage that continual refinements in the understanding of 
protein-protein interfaces and an improved knowledge of the chemical entities 
that are privileged at such surfaces should eventually lead to a significant 
breakthrough in this young and exciting field of study. 
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Abstract: Today biology is overwhelmed with ‘big data’, amassed from genomic projects 
carried out in various laboratories around the world using efficient high throughput 
technologies. Biologists are co-opting mathematical and computational techniques 
developed to address these data and derive meaningful interpretations. These developments 
have led to new disciplines: systems and synthetic biology. To explore these two evolving 
branches of biology one needs to be familiar with technologies such as genomics, 
bioinformatics and proteomics, mathematical and computational modeling techniques that 
help predict the dynamic behavior of the biological system, ruling out the trial-and-error 
methods of traditional genetic engineering. Systems and synthetic biology have developed 
hand-in-hand towards building artificial biological devices using engineered biological 
units as basic building blocks. Systems biology is an integrated approach for studying the 
dynamic and complex behaviors of biological components, which may be difficult to 
interpret and predict from properties of individual constituents making up the biological 
systems. While, synthetic biology aims to engineer biologically inspired devices, such as 
cellular regulatory circuits that do not exist in nature but are designed using well 
characterized genes, proteins and other biological components in appropriate combinations 
to perform a desired function. This is analogous to an electronic circuit board design that is 
fabricated using well characterized electrical components such as resistors, capacitors and 
so on. The in silico abstractions and predictions should be tightly linked to experimentation 
to be proved in vitro and in vivo systems for their successful applications in biotechnology. 
This chapter focuses on mathematical approaches and computational tools available to 
engineer biological regulatory circuits and how they can be implemented as next generation 
therapeutics in infectious disease. 
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INTRODUCTION 

Time and again human life has been intimidated by nature’s bountiful mode of 
evolution and adaptation in organisms that cause serious health complications to 
him and his cattle. Disease outbreaks caused by unknown agents have been 
abundant resulting in loss of precious lives and with known agents; resistance to 
the already proven drugs is an emerging threat. There is an urgent need to initiate 
next-gen alternative approaches to deal with the scenario. So, can we learn from 
nature? Can we use nature’s engineering tool kit to safeguard us? Can we develop 
solutions that may be the next generation therapeutics? 

With thoughtful thinking to understand the design principles of nature engineering, 
the day is not far away where humans can re-engineer a pathogen to combat a 
diseased condition. To this end the onus goes to the technological advances in the 
last 10 years in biological research that has imparted biology the potential to 
contribute to real-world problems confronting the world. This has been largely 
possible due to the integration and collaboration with allied disciplines like 
mathematics, computation, physics and engineering within biology which is 
evolving as a “New Age Biology” (Fig. 1). Today, this integrated new biology may 
find its application to one of the major societal needs i.e. the improvement in human 
health care and management. The merger of allied disciplines was a result of 
simultaneous but independent developments as outlined below. 

SEQUENCING TO BIOINFORMATICS TO COMPUTATIONAL 
BIOLOGY 

The elucidation of DNA double helix by Watson and Crick in the year 1953 sowed 
the seeds of a new revolution in deciphering the hidden myths about biology. Since 
then, many researchers have worked together to seek answers to questions related to 
how genetic information is encoded for protein formation (Gamow, 1956), the 
factors governing structural properties of protein molecules (Cohen, 1957; Anfinsen, 
1973), evolution of genes and proteins (Ingram, 1961), molecular homology 
(Florkin, 1962), structural constraints of polypeptide chains (Ramachandran, 1963), 
origins of genetic code (Crick, 1968), gene regulation (Britten and Davidson, 1969)  
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and so on. Somewhere around the same time, computation was developed to 
understand biological macromolecules better, complimented with the experimental 
data that gave an insight into their functional and interaction aspects. Very soon 
genetic code was understood to be universal in all living forms and therefore the 
genetic evolution of life based on phylogenetic tree construction (Fitch and 
Margoliash, 1967) and molecular evolution (Kimura, 1968) aligned with properties 
of protein sequence alignment (Cantor, 1968) was investigated [1]. 

 

Figure 1: New age biology: An integrated approach. 

Sanger (1977) pioneered the task of sequencing short stretches of DNA, which 
was extended to the whole genome using the Next Generation Sequencing and 
Microarray technologies. As the number of organisms being studied based on 
their genetic sequence variation grew, there were technological advances that 
made collecting gene expression data from the same organism under different 
conditions and at different time periods possible, giving the way to “the omics  
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A BRIEF INSIGHT TO MATHEMATICAL MODELING AND 
SIMULATIONS [2, 3] 

What is mathematical modeling?: A model is a representation of a process in a 
system to describe a phenomenon that cannot be observed directly. A biological 
process can be depicted with drawings or sketches, as well as described with 
mathematical formulas. Drawings and sketches are static in nature, which does 
not provide time evolution of the system and therefore are difficult to use for 
predicting the dynamics of the system. To understand the behavior over time, 
mathematical formulations are used for modeling, which is common in chemistry 
and physics. With the availability of enormous amounts of data, mathematical 
modeling is fitting into the realms of biology. Mathematical models in biology 
can be built based on observations from the real world that can be measured 
empirically. These observations are analyzed to describe the behavior of the 
system and an attempt is made to explain why a behavior occurred and allowed 
for predictions of the future behavior that are unmeasured or unseen. These 
predictions are validated by another set of experiments; which can also suggest 
reasons if the model is inadequate guiding an improvement in the empirical data 
collection. Thus mathematical modeling is an iterative process that helps to 
predict and validate real world biological phenomena. 

Principles of Mathematical Modeling: The principles of mathematical modeling are 
philosophical in nature as it asks questions about the intentions and purposes of 
mathematical modeling. These questions may be the ones that are shown in (Fig. 4). 

The questions posed are not a basis for building a good mathematical model; 
however they could help in problem formulation. For any model building initiative, 
it is important to have a clear picture and understanding as to why the model is being 
built. For an example if an engineer is supposed to estimate the power that could be 
generated by a dam to be built, then the model formulated would consider its height 
and flow rate of the river water as an essential parameter, and not its thickness or 
other physical characteristics (e.g. materials, foundations etc.), which could be 
important if the model to be built was to design the actual dam. Thus, defining the 
task is the first essential step in model building. Next, the engineer should know  
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Michaelis-Menten equation, which is relevant to an enzyme-catalyzed reaction. The 
reaction parameters are then validated through wet lab experimentation, which help 
improve the model. Through this iterative process the models can be improved, 
corrected, and validated. 

Every mathematical model should qualify the following characteristics: 

a. Dimensional Homogeneity and Consistency: Every equation that is 
used in the model must be dimensionally homogeneous or consistent 
i.e. physical dimensions that relates a quantity to fundamental physical 
quantities and units should be numerical expressions of a quantity’s 
dimensions expressed in terms of a given physical standard. 

b. Abstraction and Scaling: Abstraction is an approach to choose the 
level of details that needs to be included or excluded from the model. 
The details incorporated should answer the fundamental questions 
posed on the model. For example, a linear elastic spring can be used to 
model more than just the relation between forces, relative extension of 
a simple coiled spring and also to model the static and dynamic 
behavior of a tall building, which may be used to analyze the response 
of the building to an earthquake. The details within the parameters in 
the model should be such that the behavior of the elastic spring 
answers the proposed questions. Similarly, in biology a mathematical 
model of a metabolic network can predict choke point enzymes, effect 
of an inhibitor on the pathway, its relation to gene expression and so 
on. Parameter details should be such that the metabolic network can 
predict the desired behavior. Simultaneously, a model should be fitted 
to the right scale of abstraction. For example, the spring can be at, a 
micro scale to model atomic bonds or a macro scale to model a 
building. Similarly, in biology if one wants to capture protein 
expression in response to hormone signaling, the time scale would be 
in minutes. On the other hand a model describing activation of a TF 
due to the same hormone signaling the time scale would be in pico or 
micro seconds. Therefore the right scale for a model would be in 
relation to the “reality” one needs to capture. 
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c. Conservation and Balance Principles: A mathematical model should 
indicate that some property of an object or system is being conserved. 
For example, model of a population of an animal colony, individual 
animals should be balanced across a defined boundary. For such an 
instance conservation principles are applied to assess the effect of 
maintaining or conserving levels of important physical properties. The 
mathematics of balance and conservation laws is straight forward. 

For example: The Michaelis-Menten [4] equation is a well-known equation in 
biochemistry that relates the rate of the enzymatic reaction to the concentration of 
the substrate available. The dynamics of the enzyme catalyzed reaction can be 
understood by considering the reaction given below whereby the substrate and 
enzyme come together to form the enzyme-substrate complex. The enzyme-
substrate complex is then able to react to form the product. After the product is 
formed, it is released to yield the free enzyme again which is able to further react 
with more substrate. (k1, k2 and k3 are the rate constants in the reaction). 

E + S ↔ ES → E + P 

The change in concentration of each of the components in the reaction can be 
derived by using differential equations (1, 2, 3, 4) as given below: 	[ ] = 	− 1	[ ][ ] + 2	[ ] (1) 

	[ ] = 	+	 1	[ ][ ] − 	 2	[ ] − 3[ ] (2) 

	[ ] = 	+	 3	[ ] (3) 

	[ ] = 	−	 1	[ ][ ] + 	 2	[ ] + 3[ ] (4) 

This derivation is based upon the law of mass conservation that says 

dx

dt
	= [concentration	of	x	produced	in	the	reaction]- 
[concentration	of	x	consumed	in	the	reaction] 

k2 

k3 k1 
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Where ‘x’ is any species in the reaction system 

d. Constructing Linear Models: Linearity is one of the most 
important concepts in mathematical modeling. Models of devices 
or systems are said to be linear when their basic equations—
whether algebraic, differential, or integral—are such that the 
magnitude of their behavior or response produced is directly 
proportional to the excitation or input that drives them. This is 
important in biology as biological systems are inherently nonlinear 
and for making prediction about biology the approximations 
should be linearized. Engineers linearize a system to predict the 
response of a system to a complicated input by decomposing or 
breaking down that input into a set of simpler inputs that produce 
known system responses or behaviors. 

Lastly, it is most important to remember that mathematical models are 
representations or descriptions of reality. Thus, if the behavior predicted by the 
models does not reflect what one sees or measures in the real world then the 
models needs to be fixed. As rightly said. 

Essentially, All Models are Wrong, but some are Useful. – George E. P. Box 
(1987) 

Some methods used to model biological systems are listed in Table 1. 

Table 1: Some methods used in modeling a biological system [5] 

Method Description 

ODEs* Series of reaction-rate equations solved using numerical methods 
Produces graphs or tables of reagent production and consumption 

Stochastic differential 
equations 

Series of reaction rate equations solved using ‘master equation’ and random 
number generator 
Handled using Gillespie algorithm 

S-system formalism or 
power law equations 

Uses Taylor approximation to simplify non-linear ODEs 
Enables steady-state DEs to be transformed to easily solved linear equations 

PDE§ or molecular 
dynamics 

Expresses spatial and temporal dependence through partial derivatives 
Solved using numerical methods\ 
Produces numeric output of concentrations and x,y,z coordinates 

 



168   Frontiers in Computational Chemistry, Vol. 1 Mol and Singh 

 

Table 1: contd… 

Petri nets Uses a weighted firing process to activate events from multiple connections 
that are used as inputs 
Mimics telephone switchboard or power-grid load handling 

Pi calculus A language for concurrent computational processes 
Pairs of processes interact by sending and receiving 
synchronized messages 

*Ordinary Differential Equations, § Partial Differential Equations 

Representation of biochemical interactions using ODEs are shown in Table 2. 

Table 2: Representation of biochemical interactions using ODEs, where k1 and k2 are the forward 
and reverse rate constants of the reactions [5] 

Reaction Reaction Type System of ODEs 

A → B Monomolecular 
conversion 

[ ] = − 1 [ ], [ ] = 1 [ ]  
A ↔ B Reversible conversion [ ] = − 1 [ ] + 2 [ ] [ ] = − 2 [ ] + 1 [ ]  
A + B ↔ C + D Bimolecular reversible 

conversion 
[ ] = − 1 [ ][ ] + 2 [ ][ ] 	[ ] = 	− 1	[ ][ ] + 2	[ ][ ] 	[ ] = 	 1	[ ][ ] − 2	[ ][ ] [ ] = 1 [ ][ ] − 2 [ ][ ]  

A + B → C Production [ ] = − 1 [ ][ ] 	[ ] = 	− 1	[ ][ ] 	+ 2	[ ][ ] 	[ ] = 	 1	[ ][ ] − 2	[ ][ ] [ ] = 1 [ ][ ] − 2 [ ][ ]  
A →B + C Degradation [ ] = − 1 [ ] 	[ ] = 	 1	[ ] [ ] = 1 [ ]  

What is Simulation? 

Simulation is the imitation of some act or a system. To simulate physical systems 
one needs to build a mathematical model governed by kinetic laws. Powerful high 



Co

 

th
al
sm
pl
ce
re
al
pr
F
of
si
co
m

Fi
(b

omputational D

hroughput te
lso shed ligh
mall molecu
lay crucial r
ellular proc
esulted in co
lmost impo
roved useful
ig. 5a provi
ften used in
imulation ou
oncentration

modeling and

igure 5: (a) Ty
b) Deterministi

Design of Biologi

echnologies 
ht on a gene
ules. These m
roles respon
esses. A hi

omplexity of
ssible. Com
l for underst
ides a basic
n systems a
utput of an

n of differen
d simulations

(a) 

(b) 
ypes of Model
ic Simulation O

ical Systems

have given
eral idea of i
make up the
nse to extern
igh degree
f the system

mputer simu
tanding the t
c overview o
and synthet

n enzyme ca
nt componen
s the reader i

s and Simulati
Output of an En

Frontier

us an exten
nteractions a
metabolic a

nal/internal
of cross-tal

m which mak
ulations of 
topology and
of different
tic biology.
atalysed rea

nts in the sy
is encourage

ions Commonl
nzyme Catalyz

ers in Computati

nsive parts-li
among gene

and gene regu
stimuli that
lk between

kes predictin
such physic
d dynamics
models and
Fig. 5b sh

action, pred
ystem for de
ed to read [4

ly Used to Des
zed Reaction. 

ional Chemistry

ist of a cell 
es, proteins, 
gulatory path

ultimately 
these pathw

ng biological
cal interacti
of such netw

d simulation
hows a dete

dicting the c
tailed inform

4]. 

 

 
scribe Biologic

y, Vol. 1   169 

and have 
RNA and 

hways that 
guide the 
ways has 
l behavior 
ions have 
works [6]. 

ns that are 
erministic 
change in 
mation on 

cal Systems; 



170   Frontiers in Computational Chemistry, Vol. 1 Mol and Singh 

 

What is Systems and Synthetic Biology? 

Systems Biology 

As stated earlier, high throughput technologies have given us the parts-list (proteins, 
genes, transcription factors etc.) of what biology is composed of. A system is not just 
an assembly of single gene or protein, but thousands of them and therefore studying 
them in isolation using the reductionist approach does not describe the dynamics in 
biology. A dynamic description and to decode the inherent complexity (due to large 
numbers of functionally diverse and multifunctional, sets of elements that interact 
selectively and nonlinearly to produce a complex behaviors) one needs to understand 
the interaction of these parts at the systems level. For example, the p53 tumor 
suppressor is activated, inhibited and degraded by modifications, such as 
phosphorylation, dephosphorylation and proteolytic degradation. The targets of p53 
are selected based on its modification state and cannot function in isolation. Such 
systems level (i.e. a top down approach) understanding will give us insights into 
what are the interaction, how different interaction patterns emerge and how can we 
control them. We can also seek answers to questions such as: What are the reaction 
parameters of the interactions in a metabolic or a signaling pathway? How are these 
pathways regulated? Which genes are involved in the regulation? How can we 
stabilize parameters against noise and external fluctuations? How do the interactions 
change when a malfunction/perturbation (disease) occurs in the system? Is there a 
possibility of a hidden interaction? What are the design principles and possible 
interaction patterns, and how can we modify them to improve system performance? 

A system-level understanding of a biological system can be discerned by 
considering four key properties [7]: 

a. System Structures: The mechanism of interaction in the network 
such as the gene interaction, protein-protein interaction and 
biochemical pathway and how these interactions modulate the 
physical properties of intracellular and multicellular structures, 
constitute the system structure. 

b. System Dynamics: Metabolic analysis, sensitivity analysis, dynamic 
analysis methods such as phase portrait and bifurcation analysis help 
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understand the system behavior over time under various conditions. 
Bifurcation analysis traces time-varying change(s) at a particular state of 
the system in a multidimensional space where each dimension represents 
a particular concentration of the biochemical factor involved. 

c. System Control: A mechanism of modulation that help minimize 
malfunction of a potential therapeutic target for disease treatment can be 
understood by systematically introducing control elements in the system. 

d. System Design: Biological systems can be constructed and modified 
to a desired property based on definite design principles. 

A systems level understanding of the interaction network with its emergent properties 
in a diseased condition can help drug target prediction. These targets can be tested to 
predict different target positions, treatment strengths, target combinations or temporal 
combination scenarios. There are some examples among signaling pathway models 
like the study of the ErbB network using sensitivity analysis which identified ErbB3 as 
a key node in response to ligands [8]. Sahin et al., [9] have combined computer 
simulations and experimental testing to reverse engineer a protein interaction network 
to define a potential therapeutic strategy for de novo trastuzumab resistant breast 
cancer. They combined ERBB2 and EGFR signal in conjunction with G1/s transition 
(cell cycle) and identified that c-MYC as a novel target in treatment of trastuzumab-
resistant breast cancer. 

Similarly, drug toxicity could be assessed by modeling organ specific metabolic 
stress responses. Drug distribution and metabolism could be modeled through 
multi-organ, multi-tissue pharmacokinetic (PK) methods, and drug dosing 
regimens could be determined by modeling responses to different drug 
concentrations or different dose frequencies [5]. 

For systems and computational biology to be applied to therapeutics and 
diagnosis, some standards should be developed in areas of cell and molecular 
biology by defining how data should be gathered, how they should be modeled, 
and how results should be further described. 

New tools and data formats have been developed during the last few years, which 
have tremendously streamlined the way data are handled and represented for better 
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application to biological understanding. In the following section, examples of tools 
currently assisting the research development in systems biology are discussed. 

Computational Tools to Assist Systems Biology 

System biology models are described with standard formats like the Systems 
Biology Markup Language (SBML), the Cell Markup Language (CellML), the 
Biological Pathway Exchange (BioPAX) format, and The Proteomics Standards 
Initiative—Molecular Interaction exchange format (PSI-MI). Currently the Systems 
Biology community widely uses the SBML format. It has a large user base that has 
created over 180 software systems that can create, modify, simulate and analyze 
information using SBML as a base for exchanging information [10]. 

Many curated DBs can serve as data sources for model building, which have 
summarized experimental results performed by the scientific community. Some of 
the common DBs have been listed in Table 3. 

Table 3: Examples of databases with experimental data sets [5] 

Class Database 

Protein-Protein 
Interactions 

BIND Biomolecular Interaction Network DB 

DIP Database of Interacting Proteins 

MINT Molecular Interaction DB 

Metabolic Pathways EcoCyc Encyclopedia of E. coli Genes and Metabolism 

KEGG Kyoto Encyclopedia of Genes and Genomes 

BRENDA Braunschweig Enzyme Database 

Reactome Reactome Knowledge Base 

Signaling Pathways SigPath Signalling Pathway Information System 

STKE Signal Transduction Knowledge Environment 

Genetic Interaction 
Networks  

BIND Biomolecular Interaction Network Database  

GeneNet Genetic Networks 

Protein information UNI-PROT Universal Protein Knowledge Base 

SGD Saccharomyces cerveiace Genome Database 

Once a systems biologist has used the data from the above mentioned databases to 
model a biological phenomenon, the results of simulation and [11] model analysis 
can also be supplied to databases such as the BioModels database, a repository for 
curated SBML models. It is an international effort to: 
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 define standards for model curation 

 define vocabularies for annotating models with connections to biological 
data resources 

 provide a free, centralized publicly-accessible database of annotated 
computational models in SBML and other structured formats 

Before a model is accepted to the database, it is checked manually for proper 
numerical simulation results and curation. The components of the models are 
annotated with terms from controlled vocabularies and link to other relevant data 
resources. This allows the users to search accurately for the models they need. 

Specialized and general-purpose modelling tools (Table 4) are available to enable 
one to perform tasks, such as: 

 Model definition and building in the form of set of equations or 
mathematical expressions, or graphical representation 

 Model analysis, including calculation of steady states and sensitivities, 
stability, parameter scans, etc. 

 Parameter estimation from available data 

 Model simulation 

 Output of results (graphical and textual form) 

Table 4: Tools for mathematical modeling in systems biology 

Tools Description 

XPP-AUT [12] Analysis and simulation for mathematical model of various types; 
bifurcation analysis 

Cell Designer [13] Graphical representation of biochemical networks; implementation and 
simulation of ODE models 

Cell Net Analyzer [14] Analysis of regulatory networks based on network 
topology; network visualization 

COPASI [15] Implementation, simulation and analysis of biochemical models in ODE 
format. Enables also stochastic simulations  
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biologist would require promoters, ribosome binding sites, protein coding regions 
and terminators that are well characterized DNA-based synthetic or natural building 
blocks. These parts are available in the repository of synthetic parts ‘MIT Registry of 
Standard Biological Parts’ (http://partsregistry.org/)’. This repository also contains 
information relevant about their structures and functions. Other parts, such as spacers 
or stem-loop RNAs that can be used to fine-tune gene regulation are also part of the 
repository [21]. During the last decade, researchers have taken an advantage of the 
comprehensive catalogue of biomolecular parts and the latest molecular biology 
techniques to move from devices, such as simple transgene switches in single cells to 
designer networks that program cell-cell communications that respond to specific 
input signals [22]. These devices are being used in in vivo disease models to gauge 
their application in therapeutics and diagnostics, and are rapidly evolving in the 
direction of clinical trials. 

Computational Tools to Assist Synthetic Biology 

As for any modern engineering design, computational tools are indispensable. The 
process of synthetic circuit design employs mathematical modeling. In silico 
predictions of the circuit can help understand the undesired behavior of the circuit, 
and also aid in redesign by providing alternative design approaches. Like for 
systems biology, mathematical models can be built in synthetic biology 
considering the kinetic laws that govern transcription, translation, promoter 
affinity and binding to generate ODEs, which can be solved to predict the circuit 
behavior. Examples of tools that are used for circuit design in synthetic biology 
are listed in Table 5. 

Table 5: Computational tools to aid synthetic biology 

Tools Description 
Bio JADE [23] Specify a system abstractly, tune it, simulate its behavior using a variety of 

simulators 
Gene Designer [24] Graphically rich molecular view to display, annotate and edit synthetic constructs. 

Customizable database to quickly store, manage, and track genetic element, genes 
and constructs. 

Ro Ver Ge Ne [25] Tool for the analysis of genetic regulatory networks under parameter uncertainty 
UNA Fold [26] Collection of programs that simulate folding, hybridization, and melting pathways 

for one or two single-stranded nucleic acid 
sequences 

Tinker Cell [27]  Combines visual interface with programming API (Python, Octave, C, Ruby) and 
simulates the system 
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Table 5: contd…. 

Pro Mot [28] Provides capabilities for the development of dynamic models based on differential-
algebraic equations, and their simulation and further analysis. 

Geno CAD [29] Open-source computer-assisted-design, it also includes a large database of annotated 
genetic parts 

Many of these tools share a standardized format for input/output files such as the 

System Biology Markup Language (SBML), XML-based format for the exchange 

of mathematical models in biology. This provides a concise representation of the 

chemical reactions in biological system that can be translated into systems of 

ordinary differential equations [30]. 

BIOINSPIRED SYNTHETIC DEVICES AND THEIR MODELING 
INSIGHTS 

The payoff for systems biology research is not merely abstract mathematical 

understanding that gives a quantitative description, but the empowerment to 

design new and improved biological functions via ‘synthetic biology’ to better 

unveil the complexities of the system [31]. Hence, systems and synthetic biology 

go hand-in-hand towards developing novel circuitry for better understanding and 

applications in biology. The basic principles of arsenal of circuits available that 

are genetically encoded with highly complex functionality are further discussed. 

Toggle Switch [32] 

A toggle switch is composed of two repressors and two constitutive promoters 

which are in juxtaposition to each other such that each promoter is inhibited by 

the repressor that is transcribed by the opposing promoter (Fig. 7) i.e. repressor 1 

binds to promoter 1 that lies upstream of repressor 2 and repressor 2 binds to 

promoter 2 that lies upstream of repressor 1. The repression on the promoters by 

the repressor protein is removed by addition of an inducer such as IPTG 

(isopropylthio-β-galactoside). Green fluorescent protein gene was used as the 

reporter of gene expression (read out), placed downstream of repressor 1. The 

toggle switch designed by Gardner requires fewest genes and cis-regulatory 

elements to achieve robust bistable behavior. 
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α2 is the effective rate of synthesis of repressor 2, (α describes the net process of 
gene expression i.e. effect of RNA polymerase binding, open-complex formation, 
transcript elongation, transcript termination, repressor binding, ribosome binding 
and polypeptide elongation). 

β is the cooperativity of repression of promoter 2, and 

γ is the cooperativity of repression of promoter 1. 

(Described cooperativity can arise from the multimerization of the repressor 
proteins and the cooperative binding of repressor multimers to multiple operator 
sites in the promoter). 

The first term in the equation describes the cooperative repression of 
constitutively transcribed promoters, whereas the second term describes the 
degradation of the repressor. Equations 1a and 1b are modified to explain the 
effect of inducer on the repressors, where K is the dissociation constant and η is 
the cooperative binding constant for the inducer. 

Further geometric structure analysis of equation 1a and 1b (Fig. 8a) reveals the 
origin of the bistability: The nullclines (du/dt = 0 and dv/dt = 0) intersect at three 
points, producing one unstable and two stable steady states. Three key features of the 
system become apparent from Fig. 5 that: a. the nullclines intersect three times 
because of their sigmoidal shape, which arises for β, γ > 1. Thus, the bistability of 
the system depends on the cooperative repression of transcription. b. The rates of 
synthesis of the two repressors if not balanced the nullclines will intersect only once, 
producing a single stable steady state. c. The structure of the toggle network creates 
two basins of attraction; state 1 and state 2. It was also shown that as the rates of 
repressor synthesis are increased, the size of the bistable region increases. 
Furthermore, the slopes of the bifurcation lines, for large α1 and α2, are determined 
by β and γ (Fig. 8b and c). Thus, to obtain bistability at least one of the inhibitors 
must repress expression with cooperativity greater than one. Moreover, higher-order 
cooperativity will increase the robustness of the system, allowing weaker promoters 
to achieve bistability and producing a broader bistable region. 
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The mathematical model used a deterministic, continuous approximation, where 
three repressor-protein concentrations, pi, and their corresponding mRNA 
concentrations, mi were treated as continuous dynamical variables; where i is lacI, 
tetR or cI. Each of these six molecular entities participate in transcription, 
translation and degradation reactions which results in the formulation of six 
coupled first-order differential equations (7 and 8) that determine the kinetics of 
the system. =	−	 	 +	 	 +	  (7) 

=	−	 	( −	 ) (8) 

where: 

α0 is the number of protein copies per cell produced from a given promoter type 
during continuous growth in the presence of saturating amounts of repressor 
(owing to the “leakiness” of the promoter) 

α + α0 is the number of protein copies per cell produced from a given promoter 
type during continuous growth in the absence of saturating amounts of repressor 

b denotes the ratio of the protein decay rate to the mRNA decay rate 

n is a Hill coefficient 

time t is rescaled in units of the mRNA lifetime 

protein concentrations are written in units of KM i.e. the number of repressors 
necessary to half-maximally repress a promoter 

mRNA concentrations are rescaled by their translation efficiency to the average 
number of proteins produced per mRNA molecule. 

Brusselator 

A brusselator is a theoretical (Fig. 11), minimal mathematical model that explains 
the oscillating behavior in an autocatalytic reaction system (where species in the 
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reaction system can also act as a catalyst of the reaction), explained by Prigogine 
and Lefever in 1968 [35]. The word is a morpheme of Brussel and oscillator and 
was named by their colleague Tyson from the Free University of Brussel. 

It is explained by the following set of chemical reactions (considering it as an 
open system): 

A → X 

B + X → Y + C 

2X + Y → 3X 

X → D 

where: 

X and Y are the autocatalytic species 

Reacting species are A and B, which are present in large excess 

C and D are produced in the reaction and simultaneously being removed from the 
system 

The presence of an autocatalytic species in the system results in periodic 
oscillations, which is analysed using the Hoff bifurcation. 

The basic mathematical expression in terms of X and Y would be as follows 
(equations 9 and 10) = − ( + 1) +  (9) = −  (10) 

The brusellator model was modified by Tyson [37] to study mitosis and this 
modified model was used by Toner et al., (2013) [38] to show the effect of 
“bursty” protein production on downstream pathways. They investigated the 
effect of burstiness in protein expression and import on downstream pathways. 
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Burrill et al., (2012) [44] have applied this memory circuit to track cell fate during 
cell differentiation in a mammalian sub population on global stimulation. 
Endogenous stimuli, including hypoxia and DNA damage were used for the 
activation of the device as these stimuli produces heterogeneous responses at the 
single-cell level. As hypoxia and DNA damage are the benchmarks of tumor 
development, this circuit could help delineate the fate and responses in tumor cells 
in their microenvironment. During hypoxia the HIF-1 transcription factor can 
activate or silence target genes as well as increase genomic instability by 
bypassing the DNA repair checkpoints. The synthetic, HIF-1-activated memory 
device detects and tracks the subpopulations within the heterogeneous tumor 
microenvironment which helps in determining their specific contributions toward 
tumor development and metastasis. Similarly, it is known that DNA damage 
produces an array of physiologic responses at the single-cell level. When the 
synthetic memory device was linked to native DNA damage pathways it helped in 
identifying how DNA damage responses are transmitted to subsequent 
generations and what could be the impact on long-term cellular behavior. Tumor 
suppressor p53 is activated in response to DNA damage and a memory device 
triggered by differential levels of p53-induced repair factor, such as 
ribonucleotide reductase (p53R2) has helped the isolation and tracking of progeny 
whose ancestors underwent a repair response thus revealing cell’s history of DNA 
damage. Such endogenous stimuli activated memory circuits can be used to 
analyze epigenetic responsive elements that decides the future of a subpopulation 
of cells which may help in garnering deeper insight into cell development in 
different environmental conditions. 

Riboswitches and Aptamers 

Riboswitches are structures found in mRNA that regulate gene expression in 
bacteria on binding to a small ligand. The small ligand molecule binds to a region 
called the aptamer that brings about a conformational change (Fig. 14) such that a 
repressing conformation cause a premature termination of transcription or 
inhibition of translation initiation. Riboswitches regulate metabolic pathways, 
including the biosynthesis of vitamins (e.g. riboflavin, thiamin and cobalamin) 
and the metabolism of methionine, lysine and purines [45]. 
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KM is the single parameter that accounts for summed up rate constants of 
termination and extension 

And likewise, rate constants have been assigned for each mechanism considered 
for model building, exploring how each rate constant contributes to the riboswitch 
performance. 

MEDICAL APPLICATIONS AND NEXT GENERATION 
THERAPEUTICS 

Medical applications of systems and synthetic biology driven devices are 
particularly difficult because incorporating a new technology at the clinical level 
requires that the device successfully pass all the critical phases of clinical trials, 
which in itself can be a long and laborious process. Thereafter, the device should 
meet the stringent government policies for certifications. Nevertheless, these 
devices have shown promises as possible next generation therapeutics 
(therapeutics that are far more superior than the current available therapeutics). In 
particular, these developments are relevant to the challenges associated with the 
detection, surveillance, and responses to emerging infectious diseases. It is 
important to divert attention to infectious disease because of the rising evidence of 
antibiotic resistance that is making the treatment of these diseases increasingly 
difficult. With every report of development of antibiotic resistance in pathogens, 
new antibiotics are being discovered and moved to the clinics. With each new 
antibiotic the chances of undesired and significant perturbations in the human 
microbiome have become relevant to the destruction of the normal flora. 
Therefore selective targeting of pathogens becomes important. Discussed here are 
the most impressive steps that systems and synthetic biology have taken towards 
improving human health by rationally re-engineering biological systems via the 
introduction of bio-devices with selectivity. 

A synthetic genetic system was developed by Saeidi et al., (2011) [47]. This 
system comprises the quorum sensing machinery (Fig. 15), which when activated, 
activates the kill and lysing devices enabling the chassis organism Escherichia 
coli to sense and kill pathogenic Pseudomonas aeruginosa by producing and 
releasing pyocin. They also demonstrated this in vitro by showing a 99% 
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reduction in the viable cells. They also showed that the engineered E. coli 
inhibited the formation of P. aeruginosa biofilm by close to 90%, leading to much 
sparser and thinner biofilm matrices. These results suggest that a novel synthetic 
biology-driven antimicrobial strategy may be applied to fighting P. aeruginosa 
and other infectious pathogens. 

 

Figure 15: Upon activation of luxR promoter by LasR-3OC12HSL complex, initiates the production 
of E7 lysis protein and S5 pyocin within E. coli chassis. At the threshold concentration E7 lyses the 
chassis, releasing the accumulated S5 killing P. aeruginosa. (Adapted from Saeidi et al., (2011)). 

As another example, Lu et al., (2007) [48] had engineered a bacteriophage that 
expresses a biofilm-degrading enzyme, which can degrade the bacterial 
extracellular polymeric biofilm matrix. This is relevant to clinically important 
bacterial infection during which formation of biofilm is crucial for pathogenesis 
and is difficult to eradicate due to resistance to antimicrobial treatments and 
removal by the host’s immune system. They showed that the efficacy of biofilm 
removal by this two-pronged enzymatic bacteriophage strategy (Fig. 16) is 
significantly greater than that of non-enzymatic bacteriophage treatment. This 
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response and also to initiate cell–cell communication, resulting in synchronized 
response in the immune cell population for disease resolving effect in 
leishmaniasis. 

CONCLUDING REMARKS 

Systems and synthetic biology together have certainly reduced the time span for 
identifying a drug target and designing strategies to deal with such targets. But 
what remains to be seen is how quickly these two approaches can be translated 
into the clinics. This requires the development of reliable strategies that help 
realize higher order networks with predictable behavior. These may be achieved 
by improving the design cycle. Most circuits are implemented in bacterial or yeast 
systems. However, the next step is to begin applying these approaches to 
mammalian systems in to address human diseases. Therefore, a synchronized 
effort should be strengthened to extend synthetic biology circuit construction 
strategies, which will prove crucial for the development of next generation 
therapeutics. 
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ABBREVIATIONS 

API = Application Programming Interface 

CAD = Computer Assisted Design 

CD = Cluster Determinant 

CellML = Cell Markup Language 
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COPASI = COmplex PAthway Simulator 

CVs = Controlled Vocabularies 

DBs = Databases 

DE = Differential Equation 

EGFR = Epidermal Growth Factor Receptor 

GFP = Green Fluorescent Protein 

HA = Heme Agglutinin 

IPCS = Inositol PhosphorylCeramide Synthase 

IPTG = Isopropylthio-β-Galactoside 

MAP = Mitogen Activated Protein 

NGS = Next Generation Sequencing 

ODEs = Ordinary Differential Equations 

PDEs = Partial Differential Equations 

PK = Pharmacokinetics 

ProMot = Process Modeling Tool 

PSIMI = Proteomics Standard Initiatives Molecular Interaction 

RBS = Ribosome Binding Site 

RoVerGeNe = Robust Verification of Gene Networks 

SB = Simbiology 

SBML = Systems Biology Markup Language 
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SELEX = Systematic Evolution of Ligands by Exponential Enrichment 

TFs = Transcription Factors 

TNF = Tumor Necrosis Factor 

UNAFold = Unified Nucleic Acid Folding 
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CHAPTER 6 

Considering the Medium when Studying Biologically Active 
Molecules: Motivation, Options and Challenges 
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Abstract: The computational study of biologically active molecules plays important 
roles in drug development, as it provides information on molecular properties which, in 
turn, determine the biological activities of compounds. Within a living organism, 
molecules are within a medium and, therefore, their activity is exerted in a medium. 
Because of this, knowing how the presence of a medium influences the properties of a 
given molecule is important for drug development. This chapter aims at providing a 
comprehensive overview of the aspects relevant to the computational study of 
biologically active compounds in a medium. It outlines the main models currently 
utilised to take into account solute-solvent interactions and the solvent effects on the 
molecular properties of the solute, considering also the information abilities and 
limitations of each model and the challenges for further research. It discusses relevant 
criteria for the selection of the preferable solvents to consider in the study of a given 
molecule. Information, analyses and discussions are extensively supported by the 
consideration of examples from literature and from the authors’ direct experience. 

Keywords: Acylphloroglucinols, Biologically active molecules, Discrete models, 
Drug design, Polarisable continuum model, Solute-solvent interactions, Solvent 
effects. 

INTRODUCTION 

Biologically active substances are substances which can stimulate a response from a 
living organism, when introduced into it. When this response results in gradual 
decrease of the effects of a disease until the disease is treated, the biologically active 
compound is called drug. The main objectives of drug research concern the 
development of: 
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 New drugs for the treatment of diseases for which no effective drugs 
have yet been identified; 

 Improved drugs to replace drugs in current clinical use. The 
“improvement” may involve more potent activity enabling dosage-
reduction, or the decrease of unwanted side effects [1, 2]; 

 New drugs to replace drugs in current clinical use, for which the 
pathogen has developed resistance. This problem is presently 
particularly serious for malaria, tuberculosis and cancer [1-3]. 

The development of effective drugs for the treatment of diseases has been one of 
the major objectives of chemistry since its very birth, when it was emerging from 
alchemy. Early investigators involved in the transition – like Paracelsus – 
considered drug development the major mission of chemistry, and iatrochemistry 
(what would now be called medicinal chemistry) was one of the first forms of 
chemistry entering European universities in the XVII and XVIII centuries. The 
progress of chemical knowledge through centuries has enabled parallel continuous 
progress in the discovery and design of new drugs. In recent decades, 
computational chemistry has brought new perspectives into drug design, thanks to 
its ability to provide information about molecular properties and about the 
relationships between the properties of molecules and their biological activities. 

The properties of a substance depend on the properties of its molecules. The more 
we know about the properties of its molecules, the more we can understand about 
the properties of a given substance. Furthermore, the knowledge of the properties 
of a sufficiently representative number of different molecules of a given class of 
compounds enables reliable predictions of several properties of other not-yet-
synthesised molecules of the same class. All these aspects play important roles in 
drug design. The extent of attained information is the key factor both for 
understanding the action of already known drugs and for predicting possible 
actions of new drugs. 

The biological activity may be related to the finest details of a molecule’s 
properties [4] and, therefore, the computational study of biologically active 
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molecules aims at obtaining information on as many details as possible. Part of 
this information (including electronic and geometric descriptors) is utilised in the 
search for Quantitative Structure Activity Relationships (QSAR). QSAR aims at 
relating molecular properties to biological activity. The molecular properties are 
expressed through descriptors such as geometry parameters, frontier orbitals 
energy gaps, dipole moments, and other measurable quantities. The values of the 
descriptors that have proved more relevant for the biological activity of a given 
molecule or class of molecules are introduced into a regression equation, whose 
other term is the value of the measured activity. 

The conformer responsible for the biological activity is not always the lowest-
energy conformer of a given molecule; it may be another conformer that is 
sufficiently populated. Therefore, it is important to find information about all the 
conformers with sufficiently low relative energy. Selecting a cautious threshold 
(such as “relative energy  3.5 kcal/mol”) ensures that no conformer that may be 
involved in the biological activity is overlooked. 

Biological activities may involve a variety of mechanisms: inhibition of the active 
site of an enzyme vital for the pathogen; intercalation with the DNA of the pathogen, 
or of sick cells like cancer cells, preventing their reproduction; inhibition of pre-
existing ion channels or formation of new membrane pores that disrupt cellular ion-
balance in the membrane plasma of pathogens; and others. The knowledge of the 
mechanism through which existing drugs act is useful in the design of new drugs. 

A molecule’s biological activity is exerted within a living organism and, therefore, it 
is exerted in a medium. When a molecule dissolves in a medium, interactions 
between the molecule (solute) and the medium (solvent) are established. These 
interactions may influence the properties of the molecule with respect to when it is 
isolated (gas phase or in vacuo) and, therefore, they may also influence its biological 
activity. Because of this, it is important to study a biologically active molecule in 
media that may provide sufficiently good approximations for the medium in which it 
exerts its activity within a living organism. 

The medium is the major component of living organisms (for instance, water 
constitutes about 70% of the human body). It is crucial for the “chemistry” within 
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the organism both directly, by actively participating in biological processes, and 
indirectly, by stabilizing biologically active conformations of macromolecules 
(e.g., proteins and nucleic acids). Studying the interactions between biomolecules 
and the medium in a living system is thus relevant for a better understanding of 
biological processes [5-10], through the elucidation of the role of the solvent in 
these processes. Such studies involve both extensive experimental investigation 
and the utilisation of theoretical and computational methods [11]. Given the size 
of biomolecules such as proteins and nucleic acids, the computational modelling 
of their interactions with the medium may initially investigate the interactions 
with that medium of the molecules that are “building blocks” of the bigger 
structure (e.g., pyrimidine as the parent compound of the pyrimidinic bases in 
nucleic acids [12]), or it may select suitable portions of the bigger structures, such 
as representative segments of DNA, or the region of the active site of an enzyme. 

In the study of drugs and in drug design, it is important to investigate how solute-
solvent interactions influence the properties of the biologically active molecule 
considered [11, 13], to elucidate the properties that the molecule will have in the 
conditions in which it exerts its action. This chapter aims at providing a 
comprehensive overview of the aspects pertinent to the study of biologically 
active molecules in a medium. After a presentation of the models currently in use 
for the study of solute-solvent interactions and a brief outline of their description 
abilities, the chapter focuses on the features more closely related to the study of 
biologically active molecules. Since biologically active molecule act in a 
fundamentally liquid medium, the solutions considered are liquid solutions. 

SOLUTE-SOLVENT INTERACTIONS AND THEIR EFFECTS 

Main Features of the Dissolution Process 

The dissolution process is the process by which the molecules of a substance 
(called solute) disperse within another substance (called solvent) to give a 
homogeneous mixture (called solution), in which each solute molecule is 
completed surrounded by solvent molecules. A substance usually does not 
dissolve in all types of solvent. Each substance preferably dissolves in some 
solvents and not in others (often according to the empirical rule that like dissolves 
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like, i.e., polar substances preferably dissolve in polar solvents and non-polar 
substances in non-polar solvents). 

The dissolution process is determined by the nature and strength of the 
intermolecular forces in the pure solute (solute-solute interactions), in the pure 
solvent (solvent-solvent interactions) and between the solute and the solvent 
(solute-solvent interactions, which are established when the solution is formed). 
The solute-solute interactions and some of the solvent-solvent interactions must 
be broken for solute-solvent interactions to be established. The breaking of the 
solute-solute interactions and solvent-solvent interactions requires energy, 
whereas the establishing of the solute-solvent attractive interactions releases 
energy. A solute A dissolves in a solvent B if the A-B solute-solvent attractive 
interactions are strong enough to overcome the A-A solute-solute and B-B 
solvent-solvent attractive interactions. The overall changes in thermodynamic 
quantities comprise the contributions of these three components of the dissolution 
process. For instance, the overall enthalpy change (Hsoln) accompanying the 
dissolution process is the sum of the enthalpy change accompanying the 
separation of the solute molecules from each other (HA-A), the enthalpy change 
accompanying the separation of the solvent molecules from each other in the 
places where the solute molecules insert themselves (HB-B), and the enthalpy 
change accompanying the establishing of the solute-solvent interactions (HA-B): 

Hsoln = HA-A + HB-B + HA-B (1) 

The outcome of the dissolution process is governed by both the enthalpy changes 
and the entropy changes involved. Therefore, it is more convenient to consider the 
Gibbs free energy function (G), which incorporates both functions: 

G = H – TS (2) 

where H is the enthalpy, T is the absolute temperature and S is the entropy. The 
Gibbs free energy change (G) accompanying the process must be negative for 
net dissolution to take place (consistently with the G < 0 condition for a process 
to be spontaneous). The surrounding of a solute molecule by solvent molecules is 
called solvation. Therefore, the G accompanying the dissolution process is 
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called free energy of solvation (Gsolv). When water is the solvent, the term 
hydration is often used in place of solvation. 

Similarly to any mixing process, the dissolution process implies an entropy 
increase. A major contribution to the entropy change is due to the local changes in 
the solvent as a result of the insertion of the solute molecules [14]. 

Main Types of Interactions Between Solute Molecules and Solvent Molecules 

A solvated solute molecule is surrounded by many solvent molecules. The solvent 
molecules closer to it (one could say, “in direct contact” with it) constitute the 
first solvation layer (or first solvation shell). The solvent molecules surrounding 
the first solvation layer constitute a second solvation layer, in turn surrounded by 
many other layers of solvent molecules. Actually, the solvation layer concept 
becomes rapidly fuzzy for solvent molecules further away from the solute than the 
first or, maximum, the second layer, because of the dynamic situation inherent in 
a liquid. In a liquid, molecules move continuously, sliding over each other. The 
molecules constituting a solvation layer are not the same over a significantly long 
period of time. They interchange continuously and rapidly. This dynamic nature is 
one of the greatest challenges for the development of satisfactory models of the 
liquid state in general, or of liquid solutions. 

The type and strength of the interactions between a solute molecule and the 
solvent molecules depend on the nature of the solute molecule and on the nature 
of the solvent molecules. It is possible to view the effect of the solvent on the 
solute molecule without considering individual solvent molecules, but considering 
an overall effect called the bulk solvent effect. An important component of the 
bulk effect of the solvent on the solute molecule is the solute polarisation on 
dissolution. It is simpler to analyse it with reference to the isolated solute 
molecules (gas phase). When a solute molecule moves from the gas phase (with 
dielectric constant 1) into a solution (where the dielectric constant of the solvent is 
higher than 1), the geometry and charge distribution of the solute molecule relax 
to allow greater charge separation within the molecule itself and better 
interactions with the solvent molecules [14]. The outcome is a distortion of the 
geometry of the solute molecule with respect to the optimal gas-phase geometry, 
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implying an increase in the internal energy of the solute. In turn, the solute 
polarises the surrounding solvent, raising its free energy. These two factors 
(increase in the internal energy of the solute and in the free energy of the solvent) 
partially cancel the free energy lowering resulting from more favourable 
interactions of the polarised solvent and polarised solute. The relaxation of the 
geometry of the solute molecule proceeds as long as further polarisation favours 
better solute-solvent interactions; it does not proceed further when the favourable 
consequences are overcome by the intrasolute and intrasolvent costs of the 
geometry distortion [14]. The extent of the solute polarisation depends on the 
solvent dielectric constant and is greater when the dielectric constant is higher. By 
affecting the geometry of the solute molecule, the solute polarisation may also 
affect its electronic and magnetic properties. 

Other effects – besides the solute polarisation – are closely related to the 
interactions with the solvent molecules in direct contact with the solute molecules 
(the first solvation layer). The generation of a fresh solvent surface around the 
solute molecule when this inserts itself into the solvent requires free energy; it is 
called cavitation energy and is one of the non-electrostatic components of Gsolv. 
The insertion of the solute molecule into the solvent brings local structural 
changes in the portion of solvent surrounding the solute [14]; the extent of these 
changes depends on the types of solute-solvent interactions and is greater when 
the interactions are stronger, like in the case of solute-solvent hydrogen bonds (H-
bonds). The interactions at the solute-solvent interface include also attractive 
dispersion forces between the solute molecule and the surrounding solvent 
molecules [14]. 

When both the solute molecule and the solvent molecules have H-bond donor or 
acceptor sites, solute-solvent intermolecular H-bonds constitute the strongest 
solute-solvent interactions. H-bonds are directional, as they involve specific atoms 
in each of the interacting molecules. (Fig. 1) shows an example considering water 
solution. When the solvent molecules can also H-bond to each other, the 
formation of solute-solvent H-bonds brings important changes in the solvent-
solvent H-bonding pattern [14], above all in the first solvation layer (Fig. 2). Fig. 
3 compares the case of a solvent (acetonitrile) in which solvent-solvent H-bonds 
are not possible and the case of water, in which they are possible. (Fig. 4) shows 
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the general structure of acylphloroglucinols – a class of compounds largely 
utilised for illustrative examples in this chapter because of the presence of several 
H-bond donors and acceptor sites in their molecules. 

Effects of the Solvent on the Properties of a Solute Molecule 

Solute-solvent interactions may significantly change the properties of the solute 
molecule, such as geometry parameters (bond lengths, bond angles and torsion 
angles) of the equilibrium geometry of the molecule’s individual conformers, 
conformational preferences (relative energies of the conformers [16]), charge 
distribution [17], dipole moment [18], vibrational frequencies [19], electronic 
transition energies [20-22], NMR constants [18], chemical reactivity [23-25], and 
others. By depending on the solute-solvent interactions, the extent of properties-
changes with respect to the gas phase depends on the nature of the solvent and on 
the nature of the solute. Tables 1-4 provide illustrative examples for a selected 
acylphloroglucinol molecule (Fig. 5) in three solvents - chloroform ( = 4.90), 
acetonitrile ( = 36.64) and water ( = 78.39) - considering the following effects: 
changes in the conformers’ relative energy [26]; changes in the geometry 
parameters of the intramolecular hydrogen bond (IHB) between by the sp2 O atom 
of the acyl chain and a neighbouring OH [27]; changes in the (harmonic) 
vibrational frequency for the stretching of the O-H bonds [27]; and changes in the 
Mulliken atomic charges on the O atoms engaged in the IHBs [26]. 

  

Figure 1: Intermolecular hydrogen bonds between a low-energy conformer of the caespitate 
molecule and water molecules.  
Caespitate is an acylphloroglucinol (Fig. 4) with an ester function in the side chain in meta to the acyl 
chain. The solute-solvent H-bonds are denoted by blue dotted segments (left). The image on the right 
shows a “space filling” model of the same complex. The overall interaction energy between the central 
molecule and the water molecules is -28.180 kcal/mol (from RHF/6-31G(d,p) calculations). 
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Figure 2: Adduct of a low energy conformer of the caespitate molecule with 13 water molecules 
[15]. 
The figure shows the same conformer as in (Fig. 1), and the solute-water H-bonds are the same as 
in (Fig. 1). Differently from (Fig. 1), this adduct includes water molecules bridging the water 
molecules directly H-bonded to the solute molecule, thus showing how the presence of solute-
solvent H-bonds influences the water-water H-bonding patterns in the vicinity of the solute 
molecule. In the image on the left, the solute-water intermolecular H-bonds are denoted by blue 
dotted segments and the water-water intermolecular H-bonds by red dotted segments. The image 
on the right shows a “space filling” model of the same complex, to better highlight the “contact” 
between water molecules and the donor or acceptor sites in the solute molecule, and between one 
water molecule and another. The overall interaction energy between the solute molecule and the 
water molecules is -38.231 kcal/mol (from RHF/6-31G(d,p) calculations). 

  

(a) (b) 

Figure 3: Adducts of phloroglucinol with acetonitrile molecules (a) and with water molecules (b). 
[16]. 
In case (a), only solute-solvent H-bonds are possible. In case (b), both solute-solvent H-bonds and 
solvent-solvent H-bonds are possible, which brings the water molecules bridging those directly H-
bonded to the solute molecule into the first solvation layer. Solute-solvent H-bonds are denoted by 
blue dotted segments and solvent-solvent H-bonds by red dotted segments. 
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Figure 4: General structure of acylphloroglucinols. 
The structure shows the atom numbering utilised in this chapter (e.g., Tables 3, 4), which is 
consistent with the one utilised in works on acylphloroglucinols [26-28]. It also highlights the H-
bonding abilities of acylphloroglucinols with solvent molecules. In the interactions with water 
molecules, O8, O10, O12 and O14 may act as H-bond acceptors and H15, H16 and H17 may each 
bond to the O atom of a water molecule. In the interaction with acetonitrile molecules, H15, H16 
and H17 may each bond to the N atom of an acetonitrile molecule. 

The property of the solvent that is more generally taken into account as a source 
of bulk effects on the solute molecules is its ability to polarise the solute 
molecule. This is often discussed in terms of solvent polarity. However, the 
solvent effect appears to be related to the solvent dielectric constant more than to 
its dipole moment. This is clearly evident when the polarities and the dielectric 
constants of two or more solvents do not have parallel trends. For instance, the 
acetonitrile molecule has a dipole moment of 3.9 D (4.6 D in the liquid), whereas 
the dipole moment of water is 1.85 D (2.6 D in the liquid). The dielectric constant 
of acetonitrile ( = 36.64) is less than half that of water ( = 78.39). The effect of 
acetonitrile on solute molecules is intermediate between that of chloroform (a 
non-polar solvent with  = 4.90) and that of water – actually somewhat closer to 
that of chloroform; this is consistent with the dielectric constant of acetonitrile 
being intermediate between that of chloroform and that of water. 

Intramolecular electrostatic effects may play relevant roles in determining some 
conformational features of a molecule in the gas phase. If the same molecule is 
dissolved in a solvent with high dielectric constant, the strength of the intramolecular 
electrostatic forces may decrease, and this influences conformational preferences 
[29]. For organic compounds, the effect of a non-polar solvent on conformers’ 
relative energies and conformational preferences may be minimal, whereas a polar 
solvent may have greater effects by modifying the strength of the electrostatic forces 
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within the solute molecule. However, as long as stronger solute-solvent interactions 
such as H-bonding or other donor-acceptor interactions are not present, the solvent 
effect is often reasonably well related to the dielectric constant of the solvent [29]. 

The gaps between the relative energies of the conformers usually decrease in 
solution with respect to in vacuo, and the decrease is greater as the solvent dielectric 
constant increases (as illustrated by the values in Table 4). This phenomenon 
influences the range of conformers which may be considered as possible 
responsibles for the biological activity, as the selected threshold (like the previously-
mentioned 3.5 kcal/mol) applies also to the situation in solution; thus, e.g., a 
conformer whose relative energy is above the threshold in vacuo, but below the 
threshold in some solvent mimicking one of the media in a living organism, needs to 
be taken into account. 

 
d-r-1           0.000 

 
s-w-1       0.366    

 
d-w-1         0.852   

 
s-r-1        3.859    

 
s-w-1-u      4.453 

 
d-w-1-u      4.596   

 
d-r-1-u      4.914 

  
s-r-1-u       5.504   

 
w-1-y      12.000   

 
r-1-y        13.841 

Figure 5: Conformers of the acylphloroglucinol molecule considered in Tables 1-4. 
The conformers are denoted with the same acronyms utilised in [15, 26, 27] to keep track of 
relevant geometry features, and are arranged in order of increasing relative energy, whose values 
(kcal/mol, from HF/6-31G(d,p) calculations) are reported under each image. The compound is 
denoted as D in [15, 26, 27]. 
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The possibility of stronger and directional interactions such as solute-solvent H-
bonds implies greater effects on the solute. The type of effect depends on the types 
of solute-solvent H-bonds that can be established, on whether the solvent molecules 
may H-bond to each other or not (Fig. 3), and on the presence (Figs. 1, 2) or absence 
(Fig. 3) of IHBs in the solute molecule in the gas phase. When the solute molecule 
contains IHBs in the gas phase, there may be a competition between intramolecular 
and intermolecular (solute-solvent) H-bonding for each of the relevant sites in the 
solute molecule. The main possible outcomes are the following: 

 The IHB is sufficiently strong not to break in solution. If the structure 
of the molecular system is sufficiently rigid to prevent stable 
geometries with different orientations of the groups forming the IHBs, 
the area in the vicinity of the IHB may behave as prevalently 
hydrophobic (Fig. 6, [15, 16, 26, 30]). 

 The IHB does not break in solution, but the atoms forming it engage 
also in intermolecular H-bonds with the solvent, resulting in 
cooperative H-bonds (Fig. 7, [31-34]), often with some modifications 
in the geometry of the IHB. 

 The IHB breaks in solution, and its donor and acceptor atoms engage in 
intermolecular H-bonds with the solvent molecules (Fig. 8, [15, 28, 35, 
36]). 

What happens for each solute depends on the characteristics of the solute 
molecule and can be determined both experimentally and through theoretical 
modelling. The study of acylphloroglucinols (Fig. 4) in water solution offers 
illustrative examples of various effects [15, 26, 28, 33, 35, 36]. Considering water 
solution is particularly interesting because water is the solvent more abundantly 
present in living organisms, and because it is capable of being both H-bond donor 
and H-bond acceptor. The results for acylphloroglucinols showed that: 

 The IHB between the sp2 O of the acyl chain and an ortho OH (termed 
first IHB) does not break in water solution, and the region in its 
vicinity behaves as hydrophobic. The IHB permanence is likely 
related both to the greater strength of an H-bond involving an sp2 O 
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and to geometry constrains for which the sp2 O and the ortho OH 
cannot move sufficiently far apart from each other for their mutual 
interaction to vanish. 

 The IHB involving a phenol OH and some donor or acceptor in a 
substituent chain (second IHB, [28]) often breaks in water solution to 
favour the formation of intermolecular H-bonds with water molecules 
(Fig. 8). 

 The conformers’ relative energies change significantly in water 
solution. For example, a certain conformer A having both the first and 
the second IHB may be more stable in vacuo than a conformer B 
without the second IHB; however, in water solution, conformer A 
may have higher relative energy than conformer B, because conformer 
B is able to form more intermolecular H-bonds with water molecules 
than conformer A (Fig. 9). 

Table 1: Relative energies of the conformers of the acylphloroglucinol molecule shown in (Fig. 
5), in different media. HF/6-31G(d,p) results, with PCM full reoptimization in solution [26] 

Conformer Relative energy (kcal/mol) 

In vacuo In chloroform In acetonitrile In water 

 d-r-1 0.000 0.534 1.152 2.225 

 s-w-1 0.366 0.787 1.321 2.562 

 d-w-1 0.852 0.000 0.000 0.000 

 d-r-2 1.386 1.775 2.356 3.432 

 s-w-2 1.79 2.082 2.568 3.877 

 d-w-2 2.263 1.257 1.208 1.259 

 s-r-1 3.859 3.867 4.326 5.584 

 s-w-1-u 4.453 4.577 4.831 -a 

 d-w-1-u 4.596 4.356 5.384 4.393 

 d-r-1-u 4.914 6.047 6.946 6.704 

 s-r-1-u 5.504 5.939 -a 6.901 

 w-1-y 12.000 9.275 8.394 6.334 

 r-1-y 13.841 11.351 10.760 8.616 
a Conformer not obtained from PCM optimization in the given solution. 



210   Frontiers in Computational Chemistry, Vol. 1 Mammino et al. 

Table 2: Parameters of the intramolecular hydrogen bond between the sp2 O of the acyl chain and 
a neighbouring OH in the conformers of the acylphloroglucinol molecule shown in Fig. 5, in 
different media. HF/6-31G(d,p) results, with PCM full reoptimization in solution [27] 
The dihedral angle of O14 with the plane of the benzene ring is also included, to provide a 
complete description of the geometry aspects related to the IHB considered. 

Conformer Medium Intramolecular H-bond Parameters a O14 with 
the plane 

HO 
(Å) 

OO 
(Å) 

OĤO  

 d-r  in vacuo 1.666 2.517 145.8 0.035 

 in chloroform  1.660 2.515 146.5 0.010 

 in acetonitrile 1.658 2.515 146.7 0.013 

 in water 1.657 2.514 146.7 0.062 

 d-w  in vacuo 1.682 2.527 145.0 0.013 

 in chloroform  1.676 2.526 145.7 0.055 

 in acetonitrile 1.673 2.525 146.0 0.033 

 in water 1.674 2.525 145.9 0.428 

 s-r  in vacuo 1.698 2.534 143.9 0.708 

 in chloroform  1.689 2.530 144.7 0.900 

 in acetonitrile 1.685 2.529 144.9 1.385 

 in water 1.692 2.532 144.4 4.517 

 s-w  in vacuo 1.696 2.533 143.9 0.001 

 in chloroform  1.688 2.530 144.7 0.006 

 in acetonitrile 1.686 2.530 144.9 0.021 

 in water 1.689 2.530 144.5 0.007 

 d-r-u  in vacuo 1.667 2.514 145.4 0.000 

 in chloroform  1.657 2.509 146.0 0.054 

 in acetonitrile 1.652 2.506 146.4 0.002 

 in water 1.696 2.541 145.1 15.698 

 d-w-u  in vacuo 1.687 2.555 144.5 0.004 

 in chloroform  1.701 2.542 144.7 13.345 

 in acetonitrile 1.669 2.517 145.7 0.008 

 in water 1.711 2.550 144.4 15.419 

 s-r-u  in vacuo 1.729 2.554 142.8 15.070 

 in chloroform  1.724 2.554 143.4 16.206 

 in acetonitrile 1.685 2.529 144.9 1.410 

 in water 1.729 2.558 143.1 15.968 
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Table 2: contd… 

 s-w-u  in vacuo 1.725 2.526 142.8 13.535 

 in chloroform  1.721 2.552 143.4 15.157 

 in acetonitrile 1.718 2.551 143.7 15.040 
a The phenol atoms engaged are O8 and H15 (Fig. 4) for conformers whose name starts with d, and O12 and H16 for 
conformers whose name starts with s. 

Table 3: Calculated (harmonic) vibrational frequencies (, cm-1) of the stretching of the OH bonds 
in the conformers of the acylphloroglucinol molecule shown in Fig. 5. and relevant changes when the 
H atom is engaged in an intramolecular hydrogen bond. HF/6-31G(d,p) results, with PCM full 
reoptimization in solution [27] 
The frequency values have been scaled by 0.903, which is the scaling factor corresponding to HF/6-
31G(d,p) calculations [37]. 
For the cases where the H atom is engaged in an IHB, the following quantities are reported: decrease 
in the given solvent with respect to in vacuo (, cm-1); percent decrease in the given solvent with 
respect to in vacuo (%); red shift (RS, cm-1), calculated in the conventional way (frequency of a free 
OH minus frequency of the OH engaged in the IHB); and percent red shift (%RS, cm-1). 
The values of  and % are reported to highlight the low effect of the solvent on the frequencies of 
the OH engaged in the IHB. The values of RS and %RS are referred to the frequency of O9H15; 
they are reported to highlight how their consideration might lead to overestimation of the solvent 
effect on the frequency of the OH engaged in the IHB, due to the considerable change in the 
frequency of the reference (the free OH). 
The media are denoted with the following acronyms: vac (vacuum), chlrf (chloroform), actn 
(acetonitrile) and aq (water). The atom numbering is shown in (Fig. 4). 

Conformer and 
medium  

O8H15 O12H17 O10H16 

  % RS %RS   % RS %RS  

 d-r            

 vac 3442   352 9.3 3780     3794 

 chlrf  3435  7 0.20 334 8.9 3721     3769 

 actn 3431 11 0.32 325 8.7 3692     3756 

 aq 3418 24 0.70 230 6.3 3498     3648 

 d-w            

 vac 3476   315 8.3 3784     3791 

 chlrf  3463 13 0.37 268 7.2 3723     3731 

 actn 3456 20 0.58 244 6.6 3693     3700 

 aq 3447 29 0.83  57 1.6 3497     3504 

 s-r            

 vac 3813     3504   313 8.2 3817 

 chlrf  3782     3485 19 0.54 299 7.9 3784 

 actn 3768     3477 27 0.77 289 7.7 3766 

 aq 3635     3475 29 0.83 152 4.2 3627 

 s-w            
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Table 3: contd… 

 vac 3798     3490   293 7.7 3783 

 chlrf  3775     3476 14 0.40 248 6.7 3724 

 actn 3763     3470 20 0.57 221 6.0 3691 

 aq 3674     3461 29 0.83  38 1.1 3499 

Table 4: Calculated Mulliken charges (atomic units) on the O atoms forming the intramolecular 
hydrogen bond between the sp2 O of the acyl chain and a neighbouring OH, in the conformers of 
the acylphloroglucinol molecule shown in (Fig. 5). HF/6-31G(d,p) results, with PCM full 
reoptimization in solution [27] 

Conformer Charge on O14 Charge on the phenol O a 

vac chlrf actn aq vac chlrf actn aq 

 d-r-1 -0.652 -0.668 -0.674 -0.689 -0.675 -0.682 -0.685 -0.693 

 d-w-1 -0.648 -0.665 -0.672 -0.688 -0.665 -0.676 -0.680 -0.690 

 s-r-1 -0.645 -0.662 -0.669 -0.683 -0.663 -0.677 -0.682 -0.692 

 s-w-1 -0.648 -0.665 -0.671 -0.686 -0.665 -0.677 -0.681 -0.691 

 d-r-1-u -0.648 -0.660 -0.665 -0.673 -0.675 -0.681 -0.683 -0.690 

 d-w-1-u -0.643 -0.651 -0.663 -0.672 -0.665 -0.674 -0.679 -0.687 

 s-r-1-u -0.633 -0.648 -0.669 -0.670 -0.661 -0.674 -0.682 -0.690 

 w-1-y b -0.512 -0.542 -0.553 -0.576 -0.667 -0.675 -0.679 -0.698 

 r-1-y b -0.509 -0.540 -0.552 -0.576 -0.665 -0.675 -0.677 -0.704 
a The phenol O is O8 (Fig. 4) for conformers whose name starts with d, and O12 for conformers whose name starts with s. 
b These conformers do not have any IHB. They are included as reference, to compare with the charges in the cases when 
the O atoms are engaged in the IHB. 

  

Figure 6: Adduct with explicit water molecules of the lowest energy conformer of the carboxylic 
acid of phloroglucinol. HF/6-31G(d,p) results [30]. 
In this case, the rigidity of the structure and the strength of the IHB limit the possibility of the 
groups forming the IHBs to move away from each other enough to make a situation without the 
IHBs, or with weakened IHBs, stable. Thus, the IHBs in the solute molecule remain in water 
solution and the areas in their vicinity have a prevalently hydrophobic character. 



Biologically Active Molecules Frontiers in Computational Chemistry, Vol. 1   213 

  

(a) (b) 

  

 
Figure 7: Simultaneous presence of intramolecular hydrogen bonds and solute-solvent 
intermolecular hydrogen bonds in the case of 1,2-dihydroxybenzene (a) and 1,2,4,5-
tetrahydroxybenzenes (b) in water solution. HF/6-31G(d,p) results [33]. 
In this case, the IHBs are not very strong. The rigidity of the structure does not favour their 
breaking. The atoms forming them engage also in intermolecular H-bonds with the solvent 
molecules. In the ball-and-stick models, intramolecular H-bonds are represented by red dotted 
segments and intermolecular H-bonds by blue dotted segments. The space-filling models highlight 
the “contacts” between the solute molecule and the solvent molecules and, therefore, also the 
cooperativity of intramolecular and intermolecular H-bonds. 
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(a) (b) 

Figure 8: Breaking, in water solution, of the second intramolecular hydrogen bond in the second 
lowest-energy conformer of caespitate. HF/6-31G(d,p) results [35]. 
The IHB engaging H15 and the carbonyl O of the ester function in the chain attached at C3 
(second IHB) is weaker than the IHB engaging O14 (first IHB). It is present in the gas phase (a), 
but calculations of adducts with explicit water molecules (b) show that it breaks in water solution, 
and its donor and acceptor atoms form intermolecular H-bonds with water molecules. 

   

(a) (b) 

Figure 9: Different conformational preferences in non-polar and polar media for the Z isomer of 
the caespitate molecule [36]. 
Conformer (a), with two IHBs, is the lowest-energy conformer in vacuo, chloroform and acetonitrile, 
whereas conformer (b), in which H16 and the sp2 O in the ester function of the side chain are available 
for intermolecular H-bonds with water molecules, is the lowest-energy conformer in water. The 
relative energy values (kcal/mol, HF/6-31G(d,p) result with full reoptimization for PCM calculations 
in solution) for conformer (a) are 0.000 in vacuo, chloroform and acetonitrile and 2.237 in water; for 
conformer (b), they are 5.523/vacuum, 3.257/chloroform, 2.15/acetonitrile and 0.000/water. 
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MODELS FOR THE STUDY OF SOLUTE-SOLVENT INTERACTIONS 

Various models have been developed for the description of bulk and specific solvent 

effects on the properties of a solute molecule. They differ by the modelling of the 

physical interactions during the solvation process, the representation of the solute 

molecule, and the modelling of the interactions between the solute and the solvent 

molecules [38-47]. They can be divided into two broad categories: 

 Implicit solvation models, such as continuum solvation models, in 
which the solvent properties are described in terms of average values 
(bulk solvent effects); 

 Discrete/explicit solvation models, in which a limited number of 
solvent molecules are included explicitly (as individual molecules) in 
the study. 

The selection of a model for the study of the solvation process of a given 

molecule depends on a reasonable compromise between computational costs and 

accuracy in the estimation of the properties of interest. Implicit solvation models 

are computationally faster and can utilise quantum mechanical calculations for the 

dissolved solute, with a perturbation formalism to take into account the effects of 

the solvent. Explicit solvation models can provide better information on several 

aspects, including the outcomes of the competition between intermolecular and 

intramolecular H-bonding. However, the explicit presence of solvent molecules 

increases the total number of atoms in the overall system considered, thus 

increasing computational costs, which, in turn, limits the number of solvent 

molecules that can be included in a quantum mechanical calculation. This implies 

a discrepancy between the model, with a limited number of explicit solvent 

molecules, and the reality in solution, where the solute molecule is surrounded by 

a high number of solvent molecules. (The solvent is usually present in much 

larger amount than the solute; for instance, in a 0.1 M solution of glucose in water 

(18 g glucose dissolved in enough water to give 1 litre solution), there are roughly 

555 water molecules for each glucose molecule). 
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Continuum Solvent Models 

Continuum solvent models are the most common implicit solvation models. The 
solvent is viewed as a polarizable dielectric continuum characterised by its 
dielectric constant . The solute molecule is considered to be embedded in a 
cavity in this continuum solvent and is represented by the charge distribution (r) 
on the surface of this cavity [40-42]. The charge distribution of the solute 
polarises the dielectric continuum (the solvent) around the cavity, generating a 
dipole in the medium. This produces a reaction-field potential in the continuum 
solvent which, in turn, polarises the solute charge distribution leading to some 
changes with respect to the 0(r) distribution of the solute in the gaseous state, 
with consequent modifications of the energy and properties of the solute molecule 
[40-42]. 

The reaction field may be incorporated into ab initio methods which utilise 
quantum mechanics, leading to methods that are commonly referred to as self-
consistent-reaction field (SCRF) methods. In these methods, the effects of solute-
solvent interactions are considered as a perturbation with respect to the situation 
of the solute in vacuo. A perturbation operator, Vint(ρM), is added to the 
Hamiltonian, Ĥ0

M, of the non-perturbed solute M in vacuo, and the Schrödinger 
equation for the molecule in solution has the form 

[Ĥ 
0

 M + Vint (ρM )] ψ = E' ψ (3) 

where ψ is the wavefunction of the solute molecule in solution and E' is its 
energy. The wavefunction may be used to interpret and predict solvation effects 
on the solute observables, while the energy E' is used to evaluate the changes in 
Gibbs’s free energy (G), enthalpy (H) and entropy (S) accompanying the 
dissolution process. The free energy of solvation (Gsolv) is defined as the change 
in the free energy of a solute upon going from the gas phase to the solution phase 
[38]. Within the theoretical framework of a continuum model, Gsolv is estimated 
as a sum of different contributions, each arising from specific types of solute-
solvent interactions: an electrostatic contribution Gel and a non-electrostatic 
contribution Gnon-el comprising all the non-electrostatic types of interactions: 

Gsolv = Gel + Gnon-el (4) 
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The electrostatic contribution Gel is generally the leading component of Gsolv in a 
polar medium and in situations where ionic species are involved. It is related to 
the dependence of the electrostatic potential on the charge density and the 
dielectric constant, described by the classic electrostatic Poisson equation: 


 )(4

)(2 r
r 

 (5) 

It is obtained by taking into account the Hartree-Fock solution of the Schrödinger 
equation in solution (eqn. 3) and the corresponding equation in vacuo. 

The non-electrostatic contribution is the sum of three contributions [42, 48, 49]: 

 a cavitation contribution, Gcav, that is the reversible work needed to 
modify the distribution of the pure solvent in order to create a cavity 
within which the solute molecule M accommodates itself; 

 a repulsion contribution, Grep, that describes the Pauli repulsion 
between M and the solvent molecules within the framework of a 
continuous distribution which takes into account the existence of the 
cavity; 

 a dispersion contribution, Gdis, that is the contribution due to 
dispersion interactions between the solute molecule and the solvent. 

Therefore, Gnon-el can be written as: 

Gnon-el = Gcav + Grep + Gdis (6) 

The values of the contributions to Gsolv enable an analysis of the relative 
importance of the different types of solute-solvent interactions in determining the 
solvation free energy [42]. 

Popular approaches based on the continuum model include [42]: 

 The apparent surface charge (ASC) methods, in which the 
polarisation of the medium outside the cavity – generated by the 
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charge distribution inside the cavity – is modelled by a system of 
apparent surface charges spread on the surface of the cavity. 

 The multipole expansion methods, in which the electrostatic 
component of Gsolv is determined from the individual Born solvation 
of each atom, corrected for the perturbing effect of the other atoms in 
the solute molecule [50]. These methods are also referred to as 
Generalized Born model methods. Examples are the series of SMx 
methods developed by the Cramer and Truhlar group [11, 51-53]. 

 The direct field methods, including the finite elements and finite 
difference methods, in which the reaction field operator dependent on 
the solute charge distribution is replaced by an operator based only on 
individual solute particles [54, 55]. 

The polarizable continuum model (PCM) is an important example of ASC 
approach. The cavity has a physical meaning, as it excludes the solvent while 
including the largest possible part of the solute charge distribution. The cavity 
surface is divided into a large number of small surface elements (called tesserae), 
and an apparent charge (point charge) is associated with each tessera. Since the 
solvent is treated as a homogeneous isotropic dielectric, the value of the dielectric 
constant is 1 inside the cavity and  outside it. 

The cavity is most commonly defined by means of a set of intersecting spheres 
with radii equal to the van der Waals radii of the atoms in the solute molecule [49, 
56-61]; the exposed surface of the spheres constitutes the van der Waals surface 
(outlined in red in Fig. 10-a). This surface presents regions (close to the spheres’ 
intersections) that are not accessible by solvent molecules. These regions are 
smoothed by considering a probe sphere with size roughly approximating the size 
of a solvent molecule, rolling in contact with the solute molecule. The surface 
traced by the inward-facing surface of the probe sphere is called molecular 
surface and is the cavity surface (outlined in red in Fig. 10-b).; it is formed by the 
contact surface (the part of the van der Waals surface that can come into direct 
contact with the probe sphere) and the re-entrant surface (the inward-facing part 
of the probe sphere when the sphere is in contact with more than one atom). The 
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volume from which the probe sphere is excluded when it rolls around the van der 
Waals surface is called solvent excluded surface (SES, [58-63]). The surface 
traced by the centre of the probe sphere as it rolls over the solute molecule is the 
solvent-accessible surface (SAS, [58-62]), and its size depends markedly on the 
solvent molecules’ size (Fig. 11). 

 

modelling of the solute molecule smoothing of the intersections 

(a) (b) 

Figure 10: Definition of the cavity surface in the PCM method. 
The figure shows the approach to the modelling of the surface of a solute molecule in contact with 
the solvent, to define the surface of the cavity in which the solvent is embedded. The solute 
molecule (a) is represented considering its atoms as intersecting spheres, with radii equal to their 
van der Waals radii. The surface thus obtained – the van der Waals surface, represented by the 
thick red line in (a) – has sharp intersections between spheres, whose depths cannot be accessed by 
the solvent molecules. These sharp intersections are smoothed (b) by considering the extent to 
which solvent molecules (represented by the blue spheres) can come in contact with the atoms of 
the solute molecule for each intersection. The surface thus obtained – represented by the thick red 
line in (b) – can be regarded as the surface of the cavity representing the solute molecule. The 
shape of this surface depends on the size of the solvent molecules. 
The blue spheres in (b) are bigger than the spheres representing the atoms of the solute molecule to 
recall that a solvent molecule is bigger than the individual atoms of the solute molecule. It is also 
important to note that, while the spheres representing the atoms of the solute molecules are 
intersecting because this corresponds to how the solute molecule is modelled, the intersection of 
the two blue spheres in (b) does not represent an intersection of solvent molecules (which would 
not have a physical meaning), but simply different positions that a solvent molecule can take while 
“rolling” on the surface of the solute molecule. 
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(a) (b) (c) (d) 

Figure 11: Solvent accessible surface and solvent molecular size. 
The figure shows the 1-butanol molecule in the gas phase (a), and its solvent accessible surface for 
different solvent-molecule sizes. The solvent accessible surface is obtained by rolling a probe 
sphere representing the solvent molecule (like the blue sphere in Fig. 10-b) on the surface of the 
intersecting spheres representing the atoms of the solute molecule and considering the surface 
traced by the centre of the probe sphere. In the images, the radius of the probe sphere is 
respectively 1.4 Å (a), 3.0 Å (b) and 5.0 Å (c). As the size of the solvent molecule increases, its 
centre is further away from the solute molecule; in particular, the solvent molecule approaches the 
intersections of the spheres representing the atoms of the solute molecule (Fig. 10) less and less 
deeply, and the shape of the solvent accessible surface (cavity surface) becomes increasingly 
smooth. 

The PCM model was first developed at the University of Pisa [64, 65] and 
continuously refined afterwards [66-101]. Extensive reviews of the evolution of the 
model and the expansion of its applications from its earlier origins to the current 
state of the art are presented in [41, 42]. It has served as “parent model” of various 
modified versions differing from each other by the electrostatic expressions 
describing the ASC density [42, 99]; they include the integral equation formalism 
PCM (IEP-PCM, [74, 75, 100], the surface and volume polarization for electrostatics 
(SVPE, [102, 103]), the surface and simulation for volume polarization for 
electrostatics (SS(V)PE, [104]), and the conductor-like screening model (COSMO, 
[105, 106]. The IEF-PCM approach is formulated so as to take into account both 
isotropic systems (like solutions) and anisotropic systems (like liquid crystals), as 
well as liquid systems having real charges in the bulk of the medium (as is the case, 
e.g., for ionic solutions). The COSMO approach involves the change in the dielectric 
constant of the medium from the specific finite value , characteristic of each 
solvent, to  = , which corresponds to a conductor [42]. The apparent surface 
charge is then determined by the local value of the electrostatic potential instead of 
the normal component of its gradient [42], and finally scaled by a function of  to 
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make it consistent with the fact that the  of the medium is finite. Since its early 
stages, the PCM model has been applied also to the study of issues concerning 
biological systems [66, 68, 69]. An early example is the study of the energetics of 
the wrapping of DNA around a histone octamer (nucleosome), where the 
nucleosome and the DNA molecule wrapping around it are viewed as the solute, the 
cavity surface is built around it and the solvent is regarded as a continuum 
containing point-like monovalent ions [68]. 

Discrete Models 

In discrete models, solvent molecules are considered individually, i.e., the model 
considers a solute molecule surrounded by a certain number of solvent molecules. 
Increasing the number of solvent molecules around the solute molecule 
corresponds to mimicking a higher number of solvation layers and leads to more 
detailed information about solvent effects [48, 107]. The higher the number of 
solvent molecules around the solute molecule, the better the model can mimic the 
effects of bulk solvation. 

The most rigorous way to evaluate the solvent effects on the molecular properties 
of the solute utilises full quantum mechanical (QM) calculations on the overall 
system and considers different arrangements of the solvent molecules around the 
solute molecule. The solute molecule and the solvent molecules surrounding it are 
treated as a supermolecular structure (adduct). The Schrödinger equation is solved 
for this supermolecular structure, providing information on its most favourable 
geometrical arrangements (the most favourable geometrical arrangements of the 
solvent molecules around the solute molecule). The effect of the solvent on the 
solute geometry is easily recognized by comparing the geometry parameters of the 
solute molecule in vacuo and in the adduct. However, this approach requires huge 
computational efforts and may become unaffordable as the number of explicit 
solvent molecules increases [108]. The fast increase in the computational time of 
QM calculations as the number of solvent molecules increases permits the 
inclusion of only a small number of solvent molecules in the adduct. 

When an explicit treatment of the solvent requires that many (hundreds or even 
thousands) solvent molecules are included around the solute molecule, suitable 
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approaches are offered by the "linear scaling" ab initio Density Functional Theory 
(DFT) methods. These methods have the advantage that their computational and 
memory requirements scale linearly with the number of atoms (N) in the system 
[109] (whereas, in the standard methods, computational and memory requirements 
scale with the cube of the number of atoms). Other apt approaches are the ab 
initio molecular dynamics methods [110−115], which combine a density 
functional description of electronic structure and finite temperature dynamics, 
thus being suitable for the study of various chemical processes in the presence of 
explicit solvent molecules [113]. In practice, however, the treatment of systems 
with large number of explicit solvent molecules is mostly done at lower levels of 
theory such as molecular mechanics (MM, [116-118]). In the initial MM versions, 
electrons are not considered explicitly and atoms are viewed as classical particles 
interacting through atomic forces determined by a set of parametrized interaction 
functions (force field), including bonded interactions (chemical bonds), non-
bonded van der Waals interactions, and electrostatic interactions based on net 
atomic charges (i.e., fixed point charge approaches). More recent MM 
developments attempt to go beyond the fixed point charge approaches; for 
instance, the polarizable molecular mechanics force fields incorporate multipole 
electrostatics [119−121]. 

QM/MM Models 

Lower levels of theory such as MM provide no information on electronic effects 
and other properties that can only be obtained using higher levels of theory. On 
the other hand, a full QM treatment of a supermolecular structure with a high 
number of solvent molecules becomes unaffordable, above all for medium-size or 
larger solute molecules. A combination of the two approaches (QM and MM) may 
offer a reasonable and realistic compromise. In this combination, known as 
QM/MM, the solute molecule is treated with a QM approach (either ab initio or 
semi-empirical) while the solvent molecules are treated with an MM approach 
[122]. Typically, the MM treatment of the solvent molecules replaces their actual 
electronic distributions (which determine the solute-solvent potential) with partial 
point charges on the atomic sites, thus accounting only for their electrostatic 
influence on the solute. In this way, the solute alone is considered polarized, while 
the polarization of the solvent is neglected. 
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Continuum models too involve different treatments for the solute and the solvent 
– a QM treatment for the solute, while the solvent is represented by a continuum 
dielectric medium, so that the overall approach is of a QM/continuum type. 
However, unlike in the QM/MM approach, the solvent in the continuum 
approaches is also polarizable and its effect on the solute is represented by the 
reaction potential part of the Hamiltonian [122-124]). 

In both standard QM/MM and QM/continuum models, an effective Schrödinger 
equation for the solvated system is written as 

eff
H


  =  0 envH H   = E   (7) 

where Ĥ0 is the hamiltonian of the solute system in the absence of the solvent, the Ĥenv 
operator accounts for the effect of the coupling between the solute and the solvent, and 
 is the solute wavefunction. The form of Ĥenv is different for the two model types: 

Ĥenv = 
/                  QM/MM

                                   QM/Continuum

QM MM MM

cont

H H

V





 (8) 

The addition of Ĥenv to the solute hamiltonian modifies the solute wavefunction. 
The QM/MM hamiltonian can be written as a sum of the hamiltonian (Ĥel) for the 
electrostatic interaction between the QM system and the point charges in the MM 
part of the system and the hamiltonian (Ĥpol) accounting for molecular 
polarisabilities at selected points in the solvent molecules (polarization interaction 
between the induced dipole moments and the electric field from the QM system): 

ĤQM/MM = Ĥel + Ĥpol (9) 

with  

Ĥel = ( ) ( )m m m
m

q r V r


   

where ( )mV r


 is the electrostatic potential operator for the solute electrons and 
nuclei at the MM charges qm. 
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Molecular Dynamics Models 

The situation in a liquid solution is continuously changing with time. A solute 
molecule is surrounded by solvent molecules, but they are not always the same 
solvent molecules: they interchange rapidly. This happens even when the solute-
solvent interactions are comparatively strong, like in the case of solute-solvent H-
bonds. 

Molecular dynamics attempts to take into account the time-changing character of 
liquid solutions. Like in the QM/MM approach, the solute is treated quantum 
mechanically and, therefore, its chemical properties are well defined. The discrete 
representation of the solvent molecules is realised through sampling of the 
degrees of freedom of the solvent, usually using Monte Carlo (MC) or molecular 
dynamics (MD) techniques to generate a large number of possible configurations 
of solvent molecules. In a typical study, several QM/MD calculations for the 
solute’s properties are performed and the final description of the solute properties 
is an average of all the possible outcomes [122, 125]. Because of the large number 
of possible configurations to be calculated, the solute is often treated at a semi-
empirical QM level. Although quite demanding from a computational point of 
view, MD simulations provide a reasonable description of weak solute-solvent 
specific interactions which cannot be represented by a single configuration 
obtained from a QM geometry optimisation [125]. 

Combinations of explicit and implicit solvation methods consider a certain 
number of explicit solvent molecules around the solute molecule, and the 
resulting system is then considered to interact with a continuum solvent. These 
methods may utilise only QM approaches, as in the cluster-continuum model 
described in the next section, or hybrid QM/MD approaches. Hybrid QM/MD 
explicit/implicit solvation methods [126-130] enable the inclusion of explicit 
solvent molecules for a higher number of solvation layers around the solute 
molecule. The electron density of the solute and of few solvent molecules close to 
it is described by a localised basis set, whereas the rest of the solvent molecules 
are described using an MM force field, whose charge distribution adds an 
electrostatic embedding to the QM Hamiltonian. The interactions of both the QM 
and the MM parts with the bulk (continuum) solvent are treated by a mean field 
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approach that includes an exact treatment of the electrostatic reaction field [98] 
and an effective representation of short-range (dispersion and repulsion) 
interactions, derived in such a way as to minimize edge effects on the solvent 
density and average energy [127]. 

Limitations of the Models 

Both continuum models and discrete models have limitations. The main limitation 
of continuum models is their inability to fully take into account specific 
directional solute-solvent interactions such as H-bonding, exchange repulsions 
and the unique dielectric characteristics of the first solvation shell [44]. Since the 
solvent is treated as an isotropic continuum dielectric medium, whose effect on 
the solute is represented by a perturbation term in the molecular hamiltonian, 
important interactions such as H-bonding, or phenomena like possible charge-
transfers between solute and solvent, are not completely described by the average 
nature of the continuum averaged reaction potential field [43, 131, 132]. While 
the electrostatic component of H-bonding may partially be included in the 
dielectric polarisation terms (so that computational results often show an implicit 
partial consideration of the effects of H-bonding [133]), the short-range 
directional components of H-bonding are not taken into account in a uniform-
dielectric model [14]. The computational outcomes of the implicit partial 
consideration of H-bonding suggests the possibility of developing options that 
might enhance it (e.g., by suitable adaptations in the design of the cavity surface 
[133]). Other properties that are not completely described by continuum models 
include the solute’s absorption energies and nuclear magnetic shielding 
properties. Moreover, a rigorous identification of the charge distribution and of 
physically meaningful size and shape of the solute cavity may not be attainable 
for some solutes [18]. 

The limitations of continuum models with respect to specific/directional solute-
solvent interactions may be overcome by a combination of discrete and continuum 
approaches, in what is sometimes called the cluster-continuum model. The model 
considers adducts comprising the solute molecule and the solvent molecules 
directly interacting with it [16, 43, 133-135]. This selection is justified by the fact 
that interactions such as H-bonding, or other donor-acceptor interactions, are 
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established between the solute molecule and the solvent molecules that come into 
“direct contact” with it. When the donor/acceptor sites in the solute molecule are 
sufficiently close to each other and the solvent molecules are capable of H-
bonding to each other (as is the case of water), the adduct should preferably 
comprise also the solvent molecules bridging those directly bonded to the solute 
molecule, as they increase the adduct stability (Fig. 2). The supermolecular 
structure of the adduct is first calculated in the gas phase (usually quantum-
mechanically) and is subsequently considered a “solute” in a cavity embedded in 
a continuum solvent, to incorporate long-range interactions due to the solvent 
dielectric properties (Fig. 12). 

  

(a) (b) 

Figure 12: The combination of discrete and continuum approach (cluster-continuum model). 
The figure considers the case of the lowest energy conformer of phloroglucinol in water [16] as an 
illustrative example. Fig. (a) illustrates the model for the PCM study of the conformer: the 
molecule is embedded in a cavity surrounded by a continuum of liquid water. Fig. (b) considers 
the most stable adduct of phloroglucinol with water molecules as the solute embedded in a cavity 
surrounded by a continuum of liquid water. Given the spacing of the OH groups in the 
phloroglucinol molecule, the most stable adduct comprises the water molecules directed H-bonded 
to the phenol OH and those bridging them. 

The main drawback of discrete models is their inability to take into account thermal 
motions in the solution and their effects [66]. The solute-solvent supermolecular 
structure is treated as a rigid structure. This description is more apt for systems with 
highly directional and comparatively strong intermolecular interactions between the 
explicit solvent molecules and the solute molecule (such as solute-solvent H-bonds). 
Although, even in this case, the solvent molecules directly H-bonded to the solute 
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molecule interchange rapidly with other solvent molecules, the geometry of the 
cluster obtained on optimisation is likely to correspond to a time-averaged (or 
frequently occurring) arrangement of solvent molecules around the solute molecule. 
Discrete models are less apt to describe situations in which the interactions between 
the solute molecule and the explicit solvent molecules are intrinsically weak or non-
directional. On the other hand, studies of adducts with explicit molecules of non-
polar solvents have been conducted and contribute to the understanding of the effects 
of short-range weak interactions [136, 137]. Another major drawback of discrete 
models stems from the limitations to the adduct size determined by the fast increase 
in computational time as the number of solvent molecules increases. 

The main drawbacks of QM/MM approaches relate to the fact that the force fields 
utilised are generated from fully classical force fields. While this is generally 
suitable for the description of solvent–solvent interactions, it fails for those 
interactions whose description requires explicit consideration of electrons or other 
typically quantum mechanical features. For instance, it is not easy to model the 
van der Waals interactions between the solute and the solvent molecules [108] or 
to determine reliable force field parameters for an adequate description of the 
whole range of intermolecular H-bonds [122]. 

The main limitation for the study of clusters with MD simulations is that, as the 
size of the cluster increases, the accuracy of the QM level describing the solute 
has to be reduced. Moreover, an increase in the cluster size also implies that the 
statistical representativity of the solvent becomes more difficult because of the 
rapid increase in the number of possible configurations of solvent molecules. 

STUDYING A BIOLOGICALLY ACTIVE MOLECULE IN SOLUTION 

Major issues for the study of a biologically active molecule in solution are the 
selection of the solvents to be considered, the selection of the solvation model and 
the selection of the computational method. They are given specific attention in 
separate sections. 

The Selection of the Most Suitable Solvents 

The effects of the solvent on the characteristics of the solute molecule are 
dominantly determined by the polarity of the solvent molecules, the types of 
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interactions that they can establish with the solute molecule, and the dielectric 
constant of the solvent as a bulk medium. The same solute molecule will 
experience different properties-modifications in different solvents. When studying 
a biologically active molecule, it is important to consider the medium/media in 
which that molecule may be preferably present within a living organism. 

Water is the medium present in the highest proportion in living organisms, and it 
is a polar solvent with high dielectric constant. The lipid phase constitutes a non-
polar medium. Membranes may have intermediate or particular situations. 
Although, within the organism, each of these media is more complex than a 
specific pure solvent, it is possible to select solvents that can aptly mimic the 
medium in which a given compound will preferably exert its biological activity in 
the organism. If partition coefficients, or other criteria, show a probability that 
that compound distributes (although not evenly) in more than one medium, it 
becomes important to study it in solvents mimicking different media. An apt 
selection would include water, a non-polar solvent and a solvent with intermediate 
characteristics. If it is sure that a given biologically active molecule prefers only 
one type of medium, and its presence in the other types is negligible, then the 
study may be limited to the solvent mimicking that medium. However, a study in 
water solution is always recommendable because of its dominant abundance in 
living organisms. 

Non-aqueous solvents often play significant roles in the solvation of solute 
molecules in biological systems or in biotechnology applications [138]. Besides 
modelling a non-polar medium through non-polar solvents, it is interesting to 
consider other aspects typical of the complexity of biological systems, such as the 
interface between polar and non-polar media and the simultaneous presence, in 
the same medium, of aqueous and non-aqueous solvents mixed together. The most 
interesting aspect to investigate for aqueous and non-aqueous solvent mixtures is 
the preferential solvation at the solute-solvent interface. This depends on the 
characteristics of the solute molecule (e.g., whether it is mostly hydrophilic, or 
mostly hydrophobic, or has regions that interact preferably with water and regions 
that tend to be hydrophobic) and on the nature of the other solvent (co-solvent) 
mixed with water. The role of water may be altered partially or completely, 
depending on the type of co-solvent. For instance, a non-aqueous medium with 
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amphiphilic character may prefer to interact with the hydrophobic sites or with the 
polar sites of the solute; in the latter case, it would compete with the water 
molecules and in some cases might replace some water molecules [139, 140]. 

The solvent selection may conveniently include also the solvent utilised in the 
experimental determination of the biological activity of a compound, to know its 
conformational preferences and other molecular properties in the conditions under 
which the activity was determined. For instance, ethanol is often utilised for in 
vitro tests of antiradical activities with 2,2-diphenyl-1-picrylhydrazyl (DPPH); if 
the antiradical activity of a newly discovered compound has been determined in 
this way, it is important to include ethanol among the solvents selected for the 
investigation of that compound in solution [141]. 

The solvent selection depends also on the nature of the objects of a given study. If 
only one molecule is concerned, the selection will consider the types of media in 
which that molecule may be preferably present and the medium used in the 
experimental determination of its activity. For instance, on modelling the 
antioxidant activity of hyperjovinol A through donor-acceptor maps [141], three 
solvents were selected: water, because it is always included, as explained 
previously; ethanol, because the antioxidant activity is determined in ethanol; and 
pentylethanoate, because it simulates the lipid shell of cell membranes. When a 
study concerns a large number of molecules of the same class, with different types 
of biological activity, the correspondence with the solvent used in the 
experimental determination of the activity, or with the medium in which the 
molecule may preferably be present in a living organism, may not be possible for 
all the molecules considered, or even for most of them. Then, the solvent selection 
will respond to criteria suitable for the whole class, rather than for a specific 
molecule. These include the importance of covering the polarity-range and 
dielectric constants of the media present in a living organism and the importance 
of taking into account the characteristics common to all the molecules of the given 
class. For instance, in a study of acylphloroglucinols involving more than 120 
different molecules [15, 26-28], water, acetonitrile and chloroform were selected. 
Their different characteristics enable them to mimic different media: water is the 
most abundant and most polar medium in the organisms, chloroform mimics non-
polar media and acetonitrile constitutes a good model for cell membranes. 
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Furthermore, acylphloroglucinols (Fig. 4) have several sites capable of forming 
H-bonds and, therefore, it is important to include solvents with different H-
bonding abilities. The three solvents selected respond to this criterion, as: 

 Water can be both H-bond donor and H-bond acceptor, and water 
molecules are also capable of forming H-bonds with each other. 

 Acetonitrile can only be H-bond acceptor, and acetonitrile molecules 
are not capable of forming H-bonds with each other. 

 Chloroform is not capable of forming H-bonds. 

The selection enabled informative comparisons of solvent effects on 
acylphloroglucinols’ conformational preferences and on various molecular 
properties, resulting in the identification of trends enabling reasonable predictions 
for other acylphloroglucinol molecules. 

The Selection of the Calculation Method 

The computational study of any molecule starts in the gas phase. The 
computational method – in terms of level of theory and basis set – is therefore 
selected for the calculations in vacuo. The selection aims at attaining optimal 
balance between results accuracy (which would require higher levels of theory 
and larger basis sets) and computational costs (which increase for higher levels of 
theory and for larger basis sets). The “optimal balance” depends largely on the 
size of the molecule/s under investigation. While the highest levels of theory and 
large basis sets are affordable for small molecules, reasonable compromises 
between results accuracy and computational costs become necessary for medium-
size or larger molecules. When the highest levels of theory are not affordable, it 
becomes important to test more than one method, to verify whether there might be 
significant aspects that one or the other method does not reveal sufficiently. If the 
study concerns a high number of molecules of the same class, the testing of 
different methods may be limited to a representative subset of molecules. Several 
studies test Hartree-Fock (HF, [142, 143]), Density Functional Theory (DFT, 
[144, 145]) and Møller-Plesset Perturbation Theory (e.g., MP2, [146, 147]) 
calculations. The results are checked against experimental information, if 
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available. When experimental values are not available, Møller-Plesset 
Perturbation Theory results constitute a suitable benchmark to assess the 
performance of the other two methods. Although DFT takes into account part of 
the electron correlation, whereas HF includes only the limited amount of electron 
correlation due to the Pauli exclusion principle, several instances have been 
reported [148-153] in which HF highlights features that do not appear in the DFT 
results. The comparison of the results of different calculation methods helps 
ensure that no relevant aspect fails to be recognised. 

Calculations in solution are performed on in-vacuo-optimised geometries. They 
require the selection of the most suitable model for the evaluation of the solvent 
effects. Since “continuum solvation models are the ideal conceptual framework to 
describe solvent effects within the QM approach” [101], it is convenient to start 
with PCM calculations. Depending on the nature of the solute and on the 
objectives of the study, the use of PCM methods may be complemented by other 
methods capable of giving the additional desired information. 

PCM calculations utilise in-vacuo-optimised geometries as their inputs. 
Therefore, they must be performed at the same level of theory and with the same 
basis set with which those geometries were obtained, for the comparison between 
the results in vacuo and the results in solution to be meaningful. PCM calculations 
may be performed with full geometry re-optimization in solution, or as single 
point (SP) calculations. Full re-optimization is the ideal option, as it shows the 
effects of the solvent on the molecular geometry and provides better-quality 
description of the solvation phenomenon [154], including the evaluation of the 
related thermodynamic quantities. It is also the necessary option if one wants to 
calculate properties that need to be computed on an equilibrium geometry, such as 
vibrational frequencies (then, frequencies are calculated on the geometry re-
optimised in solution), or if one expects major geometry changes induced by the 
solvent. However, PCM re-optimisation calculations are computationally 
demanding, posing affordability problems for medium-size or larger molecules. 
When no dramatic geometry changes are expected in solution with respect to in 
vacuo, SP PCM calculations can be viewed as an affordable option. They usually 
provide reasonable estimation of energetics aspects and enable reasonable 
identification of trends. 
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Chemical considerations offer reliable guidance to evaluate when SP PCM 
calculations are likely to be sufficiently informative. Solute-solvent interactions 
are generally much weaker than intramolecular forces (with exceptions such as 
the case of acids, for which solute-solvent interactions are strong enough to 
dissociate the solute molecule into ions). Therefore, for molecules that do not 
undergo dissociation in a given solvent (as is the large majority of biologically 
active molecules), it is reasonable to expect that the geometry of the solute 
molecule does not undergo important changes on going from the gas phase to 
solution. Then, SP PCM calculations can be utilised to determine the influence of 
the solvent on the relative energies and other molecular properties (e.g., dipole 
moments) and to estimate important quantities of the solution process, such as the 
bulk solvent effect (Gsolv) and its Gel and Gnon-el components. 

It is also convenient to verify the reliability of SP PCM calculations for a given 
molecular system or a given class of compounds by performing full re-
optimisation PCM calculations on the lowest energy conformers of the given 
molecule, or on selected smaller molecules of the given class. For instance, in the 
study of acylphloroglucinols [25-28], both full re-optimization and SP PCM 
calculations were performed for all the conformers of a considerable number of 
molecules (preferably selecting the smaller ones) in all the three solvents 
considered. The number of calculations with full re-optimisation was sufficiently 
high to enable a reliable estimation of the performance of SP PCM calculations by 
comparing their results with the full re-optimisation ones. The comparisons 
showed a good degree of consistency for individual values and close similarities 
of the identifiable trends. Table 5 compares the results for selected molecules, 
whose structures are shown in Fig. 13. 

On the other hand, given the importance of geometry aspects for a molecule’s 
biological activity [4], it is advisable – whenever affordable – to perform full re-
optimisation PCM calculations for the conformers that might be involved in the 
activity. This is particularly important when the biologically active molecule 
contains IHBs, because of their frequent roles in the biological activity 
mechanisms [155, 156]. For instance, at least one comparatively strong IHB is 
present in all acylphloroglucinol molecules; therefore, in the study of this class of 
compounds [25, 26, 35], it was opted to perform full re-optimisation PCM 
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calculations for all the conformers with relative energy below the 3.5 kcal/mol 
threshold, to investigate the solvent influence on the characteristics of the IHB. 

Adducts with Explicit Solvent Molecules 

In non-polar solvents, the solvent effect on the energies of organic compounds is 
often reasonably well related to the solvent dielectric constant and may have 
minimal influence on the conformers’ relative energies; therefore, PCM 
calculations can provide all the information that is relevant to understand the 
solvent effect. However, when comparatively strong and directional solute-
solvent interactions are possible, a better understanding of the situation in solution 
is obtained by utilising also other approaches in addition to PCM calculations. A 
combination of discrete and continuum solvation models like the one illustrated in 
(Fig. 12) offers a compromise capable of providing valuable information at 
reasonable computational costs. 

The main features in the study of an adduct are the arrangement of the solvent 
molecules around the solute molecule, the solute-solvent distances in the sites of 
directional interactions (e.g., the length of solute-solvent H-bonds) and the 
interaction energy between the solute molecule and the solvent molecules. In its 
general form, the interaction energy (Eadduct) is given [157] by the difference 
between the energy of the adduct (Eadduct) and the energies of its constituting units, 
i.e., the energy of the isolated solute molecule (Esolute-(isolated)) and the energy of the 
n solvent molecules surrounding it (Esolvent-molecules): 

Eadduct = Eadduct - Esolute-(isolated) - Esolvent-molecules (10) 

The evaluation of Esolvent-molecules depends on the presence or absence of 
interactions between the solvent molecules. If these interactions are negligible, 
Esolvent-molecules can be approximated by the sum of the energies of the n separated 
solvent molecules 

Esolvent-molecules = n Esolvent-(isolated) (11) 

where Esolvent-(isolated) is the energy of an isolated solvent molecule. If the 
interactions between solvent molecules are not negligible, it is necessary to 
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consider their contribution to the energy of the adduct. For instance, in the case of 
an adduct of a certain solute with n interacting explicit water molecules (water 
molecules bonded by water-water H-bond, as in the examples shown in Fig. 2), 
the contribution of the water-water interactions (Eaq-aq) is estimated as the 
difference between the energy of the interacting water molecules (Eaq-(interacting)) 
and the total energy of n isolated water molecules (n Eaq-(isolated)): 

Eaq-aq = Eaq-(interacting) – n Eaq-(isolated) (12) 

where Eaq-(isolated) is the energy of an isolated water molecule. Eaq-(interacting) is 
evaluated through a single point calculation (at the same level of theory as the 
adduct calculation) of a system consisting of the n interacting water molecules 
arranged exactly as in the adduct, but without the solute molecule (Fig. 14). Then, 
the interaction energy (Eadduct) between the solute molecule and the water 
molecules in the adduct is estimated as: 

Eadduct = Eadduct – (Esolute-(isolated) + n Eaq-(isolated)) - Eaq-aq (13) 

Comparison of equations (12) and (13) leads to 

Eadduct = Eadduct – Esolute-(isolated) – Eaq-(interacting) (14) 

Both Eadduct and Eaq-(interacting) should be corrected for basis set superposition error, 
BSSE [160], usually done with the counterpoise method [158]. Eadduct can be 
viewed as a good approximation to the total solute-solvent interaction energy in 
the adduct, resulting from the competition between the intermolecular solute-
water and water-water interactions, including intermolecular H-bonds (when the 
solute molecule can form them), and electrostatic, exchange-repulsion, dispersion 
and polarization (induction) contributions. 

The selection of the number of solvent molecules apt to provide a sufficiently 
informative description depends on the characteristics of both the solute molecule 
and the solvent molecules. In the case of water, the ability of water molecules to 
H-bond to each other plays important roles. The study of solutes as different as 
polyhydroxybenzenes [31], acylphloroglucinols [26-28] or alkaloids [158] shows 
that the presence of additional water molecules bridging those directly H-bonded 
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to the solute molecule has a stabilising effect. For instance, the interaction energy 
between the solute molecule and the solvent molecules in the adduct shown in 
Fig. (2) is 10.051 kcal/mol stronger than for the adduct in Fig. (1). The two 
adducts have the same number of water molecules attached to the same sites of 
the solute molecule, but these water molecules are bridged by other water 
molecules in the adduct in Fig. (2) and not in the adduct in Fig. (1). Similarly, in 
the case of phloroglucinol, the interaction energy for the adduct with 6 water 
molecules directly attached to the OH groups of the phloroglucinol molecule (Fig. 
15-a) is 25.737 kcal/mol and the interaction energy for the adduct with additional 
water molecules bridging those directly attached to the OH of phloroglucinol (Fig. 
15-b) is 39.804 kcal/mol. 

The case of acylphloroglucinols (Fig. 4) is particularly apt to illustrate the relevant 
aspects that can be investigated by calculating adducts with explicit water 
molecules, because their molecules contain several H-bond donor or acceptor sites 
and at least one IHB. The issues that were investigated [15] can be summarised as 
follows: 

 The strength of the interaction of each site of the solute molecule with 
a water molecule. This is investigated by considering adducts with one 
water molecule, attached in turn to different sites of the solute 
molecule. An illustrative example is shown in (Fig. 16). 

 The definition of first solvation layer that is more suitable for the 
given class of compounds. The distribution and spacing of the H-bond 
donor/acceptor sites in the acylphloroglucinol molecules enable 
arrangements of water molecules in which the ones directly H-bonded 
to the solute molecule are bridged by one water molecule (by two in 
the vicinity of the first IHB, to remain sufficiently far away from the 
IHB). Therefore, in the case of acylphloroglucinols, it is convenient to 
consider that the “first solvation layer” concept is better approximated 
by ensembles of water molecules like the one shown in (Fig. 2) rather 
than by ensembles of water molecules like the one shown in (Fig. 1). 
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 The best arrangement/s of water molecules around each conformer of 
a given molecule. This is identified by considering different 
geometrical arrangements of water molecules. Illustrative examples 
are shown in (Figs. 17 and 18). 

 The identification of preferences in the arrangement of water 
molecules around specific parts of the solute molecule. For instance, 
the best arrangement of water molecules around each phenol OH is 
the one enabling a square of O atoms (a known tendency with phenol 
OH [159]); and the best arrangement of water molecules around the 
first IHB in acylphloroglucinols corresponds to a pentagon of O atoms 
(Figs. 17 and 18). 

 The effect of structural features on the arrangement of water 
molecules around the solute molecule. For instance, when there is no 
substituent at C3 (atom numbering shown in Fig. (4), the arrangement 
of water molecules around the solute molecule is continuous, whereas 
the presence of a methyl or a bigger substituent at C3 introduces an 
interruption in this continuity (Fig. 18). The presence of additional H-
bond donor/acceptor sites in a substituent chain influences the 
distribution of water molecules around the solute molecule (as shown 
in (Fig. 2) for the case of caespitate). 

 The outcome of the competition between IHBs and intermolecular 
solute-solvent H-bonds. For instance, the study of adducts of 
caespitate shows that the first IHB does not break in water solution 
(Figs. 1, 2), whereas the second IHB (involving a phenol OH and one 
of the O of the ester function at the end of the prenyl chain at C3) is 
broken in favour of intermolecular solute-water H-bonds. 

 The importance of a good, chemically-based initial guess of a 
reasonable arrangement of water molecules around the solute 
molecule. Water molecules tend to cluster together, and computational 
algorithms account for it. This may lead to a shift of water molecules 
on optimization, moving away from the site to which they were 
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attached (or placed) in the input, to H-bond to other water molecules. 
An illustrative example is shown in (Fig. 19). Experience has shown 
that this occurs more rarely if the arrangement of water molecules in 
the inputs takes into adequate account aspects like the appropriate 
directionality of all the solute-water H-bonds. 

The information on the preferred arrangement of the water molecules around the 
solute molecule, or the strength with which each site of the solute molecule can 
bind a water molecule, may be relevant when trying to understand the mechanism 
of action of a given biologically active molecule within a living organism. 

Compound AA 

 d-r              0.000   d-w         1.391  d-r-u         4.481 d-w-u       4.800  w-x           13.117  r-x            13.305

Compound A 

 d-r               0.000   d-w               1.016  s-w               1.139  s-r               3.695  d-w-u             4.430

 

s-w-u               4.520 d-r-u              4.522  s-r-u              5.352  w-x               14.474  r-x               15.800 
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Compound BB 

d-r 0.000 d-w 1.519  d-r-u 4.665 d-w-u 5.109 w-y 13.140 r-y 13.239 

Compound B 

 d-r 0.000  s-w 0.380  d-w 0.880  s-r 3.857  w-y 12.970  r-y 14.690 

Figure 13: Geometries of the conformers of the molecules considered in Table 5. 
For each structure, the acronyms denoting the conformers are reported under each image on the 
left, and the relative energies (kcal/mol, from HF/6-31G(d,p) calculations) on the right. 

Table 5: Comparison of the solvent effect (Gsolv) and its electrostatic (Gel) and non-electrostatic 
(Gnon-el) components for representative acylphloroglucinols in the HF/6-31G(d,p) results from full-
optimization and single point PCM calculations [15]. 
All the values are in kcal/mol. The molecules considered have R = H and R = H (AA), R = H and 
R = CH3 (A), R = CH3 and R = H (BB) and R = CH3 and R = CH3 (B). The geometries of their 
conformers are shown in Fig. 13. 

Molecule Conformer Results from Full Optimisation 
PCM Calculations 

Results from Single Point 
PCM Calculations 

Gsolv Gel Gnon-el Gsolv Gel Gnon-el 

AA  d-r -14.70 -16.65 1.95 -13.80 -15.72 1.91 

 d-w -15.95 -17.90 1.95 -15.00 -16.92 1.92 

 d-r-u -14.88 -16.86 1.98 -13.90 -15.84 1.94 

 d-w-u -15.23 -17.22 1.98 -14.20 -16.15 1.95 

 r-x -22.91 -24.97 2.06 -21.54 -23.55 2.01 

 w-x -23.08 -25.15 2.06 -21.30 -23.41 4.02 

A  d-r -11.63 -13.92 2.29 -13.78 -16.03 2.25 
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Table 5: contd… 

  d-w -14.76 -17.04 2.28 -10.71 -12.97 2.26 

 s-w -11.74 -14.02 2.27 -10.78 -13.03 2.25 

 s-r -12.05 -14.33 2.28 -13.04 -15.32 2.28 

 d-w-u -14.08 -16.39 2.31 -12.65 -14.90 2.25 

 s-w-u -13.67 -15.94 2.27 -10.98 -13.23 2.26 

 d-r-u -11.91 -14.23 2.32 -10.88 -13.16 2.28 

 s-r-u -12.27 -14.56 2.28 -11.13 -13.38 2.26 

 w-y -19.84 -22.22 2.38 -18.43 -20.77 2.34 

 r-x -18.88 -21.25 2.38 -17.71 -20.06 2.35 

BB  d-r -14.03 -16.05 2.02 -13.11 -15.10 1.99 

 d-w -15.42 -17.43 2.02 -14.43 -16.43 1.99 

 d-r-u -14.20 -16.40 2.21 -11.70 -13.84 2.14 

 d-w-u -14.69 -16.90 2.21 -11.94 -14.08 2.14 

 w-y -20.66 -23.80 3.14 -19.39 -22.52 3.13 

 r-y -20.77 -23.91 3.14 -19.44 -22.61 3.16 

B  d-r -10.93 -13.29 2.35 -13.06 -15.39 2.32 

 s-w -11.01 -13.36 2.35 -10.02 -12.34 2.32 

 d-w -14.01 -16.36 2.35 -10.06 -12.38 2.33 

 s-r -11.48 -13.85 2.37 -10.41 -12.77 2.35 

 w-y -18.23 -21.85 3.62 -16.40 -19.95 3.55 

 r-y -16.76 -20.50 3.74 -15.36 -19.06 3.70 

  

Figure 14: Water molecules in the adduct shown in (Fig. 2), after removing the solute molecule. 
This adduct, constituted only by the water molecules present in the original adduct, is utilised to 
calculate Eaq (interacting) (eqn. 12). 
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16.410  25.737 27.918 37.999 39.804 

(a) (b) 

Figure 15: Adducts of the lowest-energy conformer of phloroglucinol with only the water 
molecules directly attached to the solute molecule (a) and with other water molecules bridging 
them (b) [16]. 
The interaction energy between the phloroglucinol molecule and the water molecules (kcal/mol, 
from HF/6-31G(d,p) calculations and corrected for BSSE) is shown under each image. 

8.028 7.709 7.126  4.027 6.980 6.744 

(a)  (b) (c) (d) (e) (f) 

Figure 16: Effects of the nature of the H-bond donor or acceptor site in the solute molecule on the 
characteristics of the acylphloroglucinol-water intermolecular interaction [15]. 
The figure considers the simplest acylphloroglucinol – the aldehyde of phloroglucinol (structure 
AA in Fig. 13) – as an illustrative example. The interaction energy of each adducts (kcal/mol, from 
HF/6-31G(d,p) calculations, corrected for BSSE) is reported under the corresponding image. Their 
comparison corresponds to a comparison of the strength of the solute-water H-bond. 
Adducts (a), (b), (c) and (d) refer to the lowest energy conformers of the solute molecule (in which 
the first IHB is present), considering the interaction of a water molecule with H17 (a), H16 
oriented “to the left” (b), H16 oriented “to the right” (c), and O14 (d; the atom numbering is 
shown in Fig. 4). Adducts (e) and (f) refer to the higher energy conformers of the solute molecule 
(in which the first IHB is absent), considering the interaction of a water molecule with H15 and 
with O8 and O14 simultaneously. 

CHALLENGES FOR THE WAY FORWARD 

The awareness of the importance of considering solvent effects when studying 
biologically active molecules is continuously increasing. The main challenges 
concern a general aspect – the description of solvent effects – and an aspect 
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typical of the study of the action of biologically active molecules – the description 
of solvation and desolvation processes. 

 A  B  AA   BB 

Figure 17: Effect of the nature of R, and of the presence or absence of a substituent at C3, on the 
arrangement of water molecules around an acylphloroglucinol molecule. HF/6-31G(d,p) results [15]. 
The images are denoted with the symbols used for the corresponding acylphloroglucinol 
molecules (Fig. 13). Molecules A and AA have R = H, molecules B and BB have R = CH3; the 
presence of R  H in B and BB interrupts the continuity of water molecules in the region around 
the acyl chain. Molecules A and B have R = CH3 (mimicking any R substituent that might be 
present at C3); molecules AA and BB have R = H; the presence of a substituent at C3 interrupts 
the continuity of water molecules in the region around C3. 

35.220 34.567  53.422 50.252 32.368 32.970 48.428 47.872 

(a)  (b) (c)  (d)  (e)  (f)  (g)  (h) 

Compound A Compound B 

Figure 18: Combined effects of the nature of the acyl chain and of the conformers’ geometries on 
the arrangement of water molecules around an acylphloroglucinol molecule. [15]. 
The figure considers adducts of the conformers of compounds A and B in Fig. 13. They both have 
a methyl group at C3, and differ by the acyl group (CHO in A, COCH3 in B). The interaction 
energy of each adduct (kcal/mol, from HF/6-31G(d,p) calculations, corrected for BSSE) is 
reported under the corresponding image. 
Adducts (a), (b), (e) and (f) refer to lowest energy conformers of the two compounds (conformers 
in which the first IHB is present); the conformers differ by the orientation of H16 (to the left in (a) 
and (e), to the right in (b) and (f)). Adducts (c), (d), (g) and (h) refer to higher energy conformers 
of the solute molecule (in which the first IHB is absent); the conformers differ by the orientation 
of H16 (to the left in (c) and (g), to the right in (d) and (h)). The presence of the methyl at C3 
causes an “interruption” in the continuity of water molecules directly bonded to the solute 
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molecule. The presence of the methyl in the acyl chain in B causes another interruption in this 
continuity for the conformers with the first IHB (e and f), whereas the continuity is possible for the 
conformers without the first IHB (g and h), as the off-plane orientation of O14 makes it available 
for H-bonds enabling a continuous arrangement of water molecules. 

  

input (guess geometry) output (optimised geometry) 

Figure 19: Illustration of how PCM optimization may take into account the tendency of water 
molecules to cluster together. 

Challenges for the Description of Solute-Solvent Interactions 

The challenges for the description of solute-solvent interactions are related to the 
nature of liquids as systems without a regular structure (e.g., without periodicity in 
the arrangement of molecules) and continuously changing with time, as the 
molecules move within the system. In liquid solutions, the solvent molecules 
surrounding a solute molecule interchange continuously. The information obtainable 
from continuum solvation models like PCM concerns thermodynamic quantities 
such Gsolv and its components. The preferred arrangements of solvent molecules 
around a solute molecule (solute-solvent configurations), identified through the 
study of adducts with explicit solvent molecules, can be viewed as somehow time-
averaged, because the actual arrangement is neither rigid nor constant through time. 
Adducts are more informative when the solute-solvent interactions are strong and 
directional (e.g., solute-solvent H-bonds), and less close to what might be the actual 
situation when the solute-solvent interactions are weaker and non-directional. 
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Quantum mechanical (electronic structure) calculations provide the best 
descriptions of molecular systems. However, they allow the consideration of 
either a continuum solvent or a limited number of solvent molecules. When it is 
important to consider a large number of solvent molecules explicitly, one has to 
resort to less powerful levels of theory. 

None of the existing models is capable of taking into account all the aspects that 
would be interesting for a complete understanding of what happens to a certain 
molecule in a certain medium. The combination of more than one approach 
enables the obtainment of relevant information from different perspectives; 
however, the information does not yet provide a complete picture. Meeting this 
challenge entails increasing the descriptive power of the models for the 
dissolution process and the solvent effects. 

Challenges for the Description of Solvation-Desolvation Phenomena 

The interaction of the drug molecule with a receptor’s active site implies 
desolvation of the part of the molecule that gets into the active site and of the 
active site itself. Thus, desolvation phenomena play fundamental roles in the 
interaction between a drug and the receptor and may be viewed as part of the 
recognition between them [69, 160, 161]. The desolvation extent depends largely 
on the characteristics of the active site in the receptor [69]. The active site has 
different shapes, depending on the receptor itself: a shallow indentation, a deep 
pocket, and a variety of intermediate shapes. As long as the drug molecule and the 
receptor are not interacting, the drug molecule is completely solvated (surrounded 
by solvent molecules). The active site of the receptor is “filled” by solvent 
molecules and its surface interacts with them (it is solvated). When the drug 
molecule comes sufficiently close to the active site for short range interactions 
between them (charge transfers, attractions, repulsions, H-bonding, etc) to be 
activated, the drug molecule ends up binding to the active site. For the drug 
molecule to attach itself to the active site, the solvent molecules surrounding the 
active site and the solvent molecules surrounding the part of the drug molecule 
that binds to the active site get “squeezed out”. The deeper the active site pocket, 
the larger the portion of the drug molecule which enters into it; then, a large 
portion of its surface gets desolvated, and this may also modify the solvation 
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pattern around the part of the molecule which does not enter the pocket. If the 
pocket is completely inserted into the receptor, the drug molecule gets completely 
desolvated. 

Desolvation phenomena condition the binding affinity of a ligand for its receptor, 
expressed in terms of the free energy change Gbinding. Its value depends on the 
interaction free energy of the two molecules relative to their free energies in 
solution [162, 163]: 

Gbinding = Ginteraction - Gsolv,ligand - Gsolv,receptor (15) 

where Ginteraction is the interaction free energy of the ligand-receptor complex, 
Gsolv,ligand is the free energy of the ligand desolvation and Gsolv,receptor is the free 
energy for barring the solvent from the receptor site. The main difficulty relates to 
the fact that the right hand side of this equation involves a small difference of 
large terms, which extensively affects the accuracy of the calculated difference. 

Desolvation in the contact region between the ligand and the active site is often 
complete. However, in some cases, one or more solvent molecules remain bonded 
to the drug molecule and play a role in its interaction with the active site of the 
receptor. The occurrence of this permanence may be determined experimentally 
and through calculations. The use of more than one calculation method may be 
advisable to ensure that such occurrence does not remain undetected. For instance, 
in a case reported in [148], the permanence of a water molecule attached to the 
solute molecule when the solute had already entered the active site was 
highlighted by HF calculations and by experimental determinations, but not by 
DFT calculations. 

Considering solvation and desolvation phenomena is important for all forms of 
drug design [164-172], including drug-design techniques based on geometry-
complementarity, such as docking. In these studies, potentially active molecules 
are designed so that they fit the structurally-known active site of a relevant 
receptor [162, 172]. What will actually happen between the designed molecule 
and the active site of that receptor within a living organism is largely conditioned 
by its interactions with the molecules of the medium in which it dissolves (and, 
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therefore, also by its solvation characteristics). These interactions may determine 
aspects such as whether the expectedly active molecule reaches its biological 
target within the organism. If it reaches the intended site of the receptor, 
desolvation phenomena become relevant in the establishing of the molecule-
receptor interactions. Difficulties in incorporating the modelling of solvation-
desolvation phenomena may be at least partially responsible for the lower-than-
expectation success of docking techniques. An in-vacuo-only study risks to miss 
determining aspects of the actual modes in which the biological activity is 
exerted, even if the geometrical mutual “fitting” of a designed molecule and its 
receptor may appear ideal in vacuo (“when the energy of the solvated state is not 
considered. the ligands that are selected often bear high formal charge or are 
larger than expected” [173]). Although some modelling approaches have been 
successful in accounting for desolvation phenomena in the interaction between a 
ligand and the active site [173, 174], their complete description is still a challenge 
[164-171, 175]. 

CONCLUSION 

Computational approaches can provide a wealth of information in the design of 
new drugs, including the possibility of modelling a molecule’s ability for a certain 
activity, or predicting whether a new structure may have enhanced activity 
(which, in turn, enables a pre-selection for the more costly experimental studies, 
so that they are performed only on potentially promising structures). The fact that 
the activity of a drug is exerted in a medium within a living organism requires that 
the computational study of a biologically active molecule considers also its 
properties in solution, selecting the solvents that more closely mimic the media 
within which that molecule is more likely to be present in a living organism. 
Similarly, studies of the interaction between a drug and the active site of its 
receptor need to consider solvent-related phenomena, such as the desolvation of 
the drug molecule and the receptor’s active site. Improving the descriptive 
abilities of the models for solute-solvent interactions and for solvation-desolvation 
phenomena is a major challenge to improve the predictive abilities of 
computational studies about the fate of a drug molecule, once introduced into a 
living organism. 
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CHAPTER 7 

A Novel Coarse-Grained Description of Protein Structure and 
Folding by UNRES Force Field and Discrete Nonlinear 
Schrödinger Equation 
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Abstract: The UNited RESidue (UNRES) force field has been developed for over two 
decades. This force field has been derived carefully as a potential of mean force of the 
system studied, which is further expressed in terms of the Kubo cluster-cumulant functions. 
New terms in the energy function to improve loop structures have been introduced recently. 
On the other hand, new concept was developed, in which wave-analysis physics is applied 
to the protein folding problem. At present, the energy function is based on the Landau 
Hamiltonian, the minima of which are stable conformations of protein fragments; these 
minima are obtained as kink solutions of the Discrete Nonlinear Schrödinger Equation. The 
parameters of the Hamiltonian have been obtained by statistical analysis of known protein 
structures. The unique feature of this approach is that the curvature description is sufficient 
for protein folding without any long-distance interactions other than the excluded-volume 
interactions. The combination of those two methodologies - molecular dynamics with the 
use of physics-base UNRES force field and the kink approach have been applied to study 
the flexibility and movement of the kinks as well as their formation and disappearance in 
the folding process. 
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INTRODUCTION 

Over the last two decades there has been a huge progress in the protein structure 
prediction field [1-3]. The most successful method, which is applied routinely 
nowadays, is homology modeling. The huge advantage of this method is high 
accuracy [3-5] and considerably low time required to achieve a meaningful result. 
However, when the template is not available for homology modeling the accuracy 
is questionable [6]. The homology modeling methods are constantly developed. 
Introduction of four body interactions in homology modeling [7] is one of the 
examples. Despite high accuracy obtained in the last Community Wide 
Experiment on the Critical Assessment of Techniques for Protein Structure 
Prediction (CASP10) the homology modeling reached plateau. Moreover, not 
only single static structure is currently required but also the protein flexibility 
plays an important role in its activity [8]. 

The molecular dynamics [9](MD) and Monte Carlo [10] (MC) simulations are 
alternative methods to homology modeling that do not require the template for 
getting high accuracy [11-13]. Both methods give valuable insight into crucial 
movements of the proteins. Usually the MC and MD are used with all-atom force 
fields. The use of all-atom level of description requires great computational effort. 
Nevertheless there has been a tremendous advance in the computational 
techniques. One of the examples is implementation of all-atom molecular 
dynamics (MD) programs on graphical processor units (GPUs) [18]. Another 
example is use of world-distributed computing (the FOLDING@HOME project) 
[14]. Moreover, very efficient load-balanced parallel codes such as GROMACS 
[15], NAMD [16], or DESMOND [17] have been introduced. Finally dedicated 
machines [19] have been constructed. However, even for very small (50 amino-
acid residue) systems and with the use of special purpose computers, time scales 
are restricted to 200 - 500μs [13]. 

The alternative for all-atom force fields are coarse-grained ones. In coarse grained 
models groups of atoms are united into one interacting center (Fig. 1). 

By coarse-graining, the number of degrees of freedom is reduced as well as fast 
movements, high frequency movements connected with all-atom structure, are 
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ROSETTA force field [35] a lot of emphasis has been put into improving the 
energy function with respect to unfolded state [36], which is important for 
obtaining the correct folding pathway. Moreover, the side-chain rotamer library 
has been improved [36]. In the OPEP force field [37], where backbone is in all-
atom representation and side-chains are coarse-grained, new energy function for 
side-chain side-chain interactions has been introduced improving the resolution of 
the force field [38-40]. 

UNRES FORCE FIELD 

The United RESidue (UNRES) force field [24] is a coarse grained force field in 
which the polypeptide chain is represented by a sequence of Cα atoms with side-
chains (SC) attached to the Cα atoms (Fig. 2). 

 

Figure 2: The UNRES model of polypeptide chains. The interaction sites are peptide-group 
centers (p) represented as dark grey circles, and side-chain centers (SC) represented as light grey 
ellipsoids. The side chains are attached to the corresponding α-carbon atoms with different Cα…SC 
bond lengths, dSC. The α-carbon atoms are represented by small open circles and are not an 
interacting site. The geometry of the chain can be described either by virtual-bond lengths, 
backbone virtual-bond angles θi, i=1,2,…,n-2, backbone virtual-bond-dihedral angles γi, 
i=1,2,…,n-3, and the angles αi and βi i=2,…,n-1 that describe the location of a side chain with 
respect to the coordinate frame defined by Cα

i-1, C
α

i, and Cα
i, C

α
i+1, or in terms of the virtual-bond 

vectors dCi (from Cα
i to Cα

i+1), i=1,2,…,n-1 and dXi (from Cα
i to SCi), i=2,…,n-1, represented by 

thick lines, where n is the number of residues. 
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The peptide groups are located half-way between two consecutive Cα atoms and 
are represented by spheres (Fig. 2). The side-chains are represented by spheroids 
with the axis of revolution along the Cα…SC virtual bond (Fig. 2). The geometry 
of the backbone is defined either by the sequence of vectors dCi, i=1,2,...,n or the 
internal coordinates: virtual-bond valence angles (θ) between three consecutive Cα 
atoms and virtual-bond torsional angles (γ) between four consecutive Cα atoms. 
The location of a side-chain with respect to the backbone is defined either by the 
dX virtual-bond vector [41] or by the angle α between the center of the side-chain 
and Cα plane and the angle β describing the rotation of the Cα… SC axis about the 
bisector of the virtual-bond angle θ (Fig. 3). 

 

Figure 3: Local coordinate for rotameric potentials of side-chains [42]. θi is virtual valence angle 
between three consecutive Cα atoms. The x axis is on the bisection of the angle θi. The y is 
perpendicular to x in the direction of Cα

i+1 and is on the Cα
i-1, Cα

i, Cα
i+1 plane. The z axis is 

orthogonal to x and y axis and create right handed coordinate system. The α is a conjugate angle to 
α'. The α' angle is the angle between the side-chain vector (SC) and the x axis. The β angle is the 
revolution angle around x axis. 

“In the UNRES force field, the effective energy function is defined as the restricted 
free energy (RFE) or the potential of mean force (PMF) of the chain constrained to a 
given coarse-grained conformation along with the surrounding solvent [43-45].” 
This effective energy function, including the new terms that improve loop 
representation introduced in our earlier work [12], is expressed by eq 1. 
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 (1) 

“where the U's are energy terms, θi is the backbone virtual-bond angle, γi is the 
backbone virtual-bond-dihedral angle, αi and βi are the angles defining the 
location of the center of the united side chain of residue I (Fig. 2), and di is the 
length of the ith virtual bond, which is either a Cα…Cα virtual bond or Cα… SC 
virtual bond.” Each energy term is multiplied by an appropriate weight, wx, and 
the terms corresponding to the Kubo cumulant-cluster expansion [46] “factors of 
order higher than 1 are additionally multiplied by the respective temperature 
factors which were introduced in our work [47] and which reflect the dependence 
of the first generalized-cumulant term in those factors on temperature, as 
discussed in refs [47] and [48].” The factors fn are defined by eq 2. 

1 1
0 0

ln[exp(1) exp( 1)]
( )

ln{exp[( / ) ] exp[ ( / ) ]}n n n
f T

T T T T 

 


 
 (2) 

where T0=300K. 

“The term USCiSCj represents the mean free energy of the hydrophobic 
(hydrophilic) interactions between the side chains, which implicitly contains the 
contributions from the interactions of the side chain with the solvent. The term 
USCipj denotes the excluded-volume potential of the side-chain - peptide-group 
interactions. The peptide-group interaction potential is split into two parts: the 
Lennard-Jones interaction energy between peptide-group centers (UVDW

pipj) and 
the average electrostatic energy between peptide-group dipoles (Uel

pipj); the 
second of these terms accounts for the tendency to form backbone hydrogen 



A Novel Coarse-Grained Description of Protein Frontiers in Computational Chemistry, Vol. 1   263 

 

bonds between peptide groups pi and pj. The terms Utor, Utord, Ub, Urot and Ubond 
describe the local properties of the backbone and are the virtual-bond-dihedral 
angle torsional terms, virtual-bond dihedral angle double-torsional terms, virtual-
bond angle bending terms, side-chain rotamer, and virtual-bond-deformation 
terms. The terms U(m)

corr represent correlation or multibody contributions from the 
coupling between backbone-local and backbone-electrostatic interactions (dipole 
moment alignment), and the terms U(m)

turn are correlation contributions involving 
m consecutive peptide groups; they are, therefore, termed turn contributions. The 
multibody terms are indispensable for reproduction of regular α-helical and β-
sheet structures [43, 44, 49]. The USC-corr terms are newly introduced side-chain 
backbone correlation potentials; they are expressed as Fourier series in the 
SC…Cα…Cα…Cα (τ(1)), Cα…Cα…Cα…SC (τ(2)), and SC…Cα…Cα…SC (τ(3)) virtual-
bond-dihedral angles [12].” 

There are two types of force field weights set which are frequently used in the 
UNRES force field. The energy-term weights of the first set were determined [47] 
by force-field calibration to reproduce the structure and folding thermodynamics 
of the GA (protein G-related albumin-binding) module (an α protein; PDB code: 
1GAB) [50], while the energy-term weights were determined [51] by global 
search of optimal force-field parameters to reproduce the structure and folding 
thermodynamics of the tryptophan cage (PDB code: 1L2Y)[52] and the 
tryptophan zipper 2 (PDB code: 1LE1)[53]. 

Derivation of Potentials of Mean Force 

As mentioned in the previous section the energy components are expressed as 
potentials of mean force (PMF). In the UNRES force field three different 
methodologies to derive PMF are used. The side-chain - side-chain interaction 
potentials have been determined recently [54-56] by all-atom molecular dynamics 
in water of the model system. Earlier [57] these potentials were determined from 
PDB statistics by applying the inversion of the Boltzmann law, according to 
which the dimensionless potentials of mean force were calculated from eq (3): 

,max ,( ) ln( ) ln( )XY i XY XY if N N    (3) 
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where NXY,i is the number of counts of type for residue types X and Y in the ith 
bin for variable (τ), and NXY,max is the largest number of counts over all bins, for a 
given type of variable (τ) and given types of residues. 

The torsional [56], the double torsional potentials [58], the valence bending 

potentials [57], the bond stretching potentials [22, 41, 42] and the side-chain 

rotation potentials [41,42] were determined by Boltzmann integration over the 

potential-energy surfaces of model systems calculated with the ab initio method 

of molecular quantum mechanics at the MP2 (Møller-Plesset) theory level or with 

use of semi-empirical calculation with use of the AM1 method of the model 

system. The respective integrals corresponded to the terms of the Kubo cluster-

cumulant expansion [46] of the total potential of mean force of polypeptide chains 

(for more details of deriving potentials see [32]). As an example, the equation for 

derivation of the torsional potentials is given below: 
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 (4) 

“where ex and ey are the energy surfaces for the terminally-blocked residues of 

type X and Y respectively, H* is the energy Hessian computed over all variables 

except for the angles λi and λj (the terms with detH* account for the harmonic-

entropy contribution to the PMF), where β=1/RT where R is the universal gas 

constant and T is the absolute temperature. The angles λi and λj are the variable 

which are the averaged out degrees of freedom for the equation 4.” 

The USC-corr and correlation potentials [44] were derived from statistical analysis 

of structures of the known proteins obtained from Protein Data Bank [12], by 

applying the Boltzmann inversion method (equation 3). 



A Novel Coarse-Grained Description of Protein Frontiers in Computational Chemistry, Vol. 1   265 

 

After obtaining the potentials the analytical function is fitted to obtained PMF. 

For the torsional, double torsional, valence bending potentials the Fourier 

expansion series is used [58,59]. For the side-chain rotation potential the multiple 

Gaussian-like function is fitted [41,42], for other potentials the more complicated 

functions are used [55,56]. 

Simulations with Use of the UNRES Force Field 

The UNRES force field is routinely used in three variants: conformational space 
annealing [60], molecular dynamics [61] and replica exchange [62]. 

Conformational Space Annealing 

The Conformational Space Annealing (CSA) method is an algorithm for 

searching local minimum in multidimensional space [62-65]. “It combines the 

buildup and genetic algorithm. As in the genetic algorithm, it is started with a 

random population of conformations whose energies are then minimized. These 

local minima constitute the “bank” (n groups).” The typical size of the bank for 

UNRES CSA runs is 50-100 conformations. “At the beginning, conformations in 

the bank are distributed randomly i.e., minimized from random conformations in 

the conformational space of local minima.” Conformations in the bank are kept as 

diverse as possible, in terms of the difference between their virtual-bond dihedral 

angles γ. A newly generated conformation replaces the highest-energy 

conformation of the bank if it is more diverse from each of the conformations of 

the bank than the selected cut-off. If the newly-generated conformation is similar 

to one existing in the bank, it replaces it if its energy is lower. The cut-off is 

shrunk during the progress of the procedure, which results in gradual focusing of 

the search in the low-energy region(s). “Schematically, each conformation in the 

bank is considered as a representative of a group of local minima within a certain 

distance of each other in the conformational space.” 

Molecular Dynamics 

In molecular dynamics, Newton's equations of motion are solved numerically to 
determine the time evolution of a system. The Newton equations are shown (eq. 5): 
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( ) [ ( )]ma t F U x t  
 

 (5) 

where m is a mass of interacting center, a


 is a center’s acceleration, U is a 
potentials energy (determined by coordinates of centers of interaction x), t is a 
time and 


is a derivative operator. 

In the UNRES model, the equations of motion are more complicated because the 
variables are the Cα…Cα and the Cα…SC virtual-bond vectors and not centers of 
interactions - peptide group (p) or side-chain (SC). This is due to the fact that Cα 

atoms are not the centers of interaction whereas the peptide groups are located in 
between two consecutive Cα atoms. Equations of motion are expressed as non-
diagonal, conformation independent matrix of inertia. For the full description of 
equation of motion and their derivation see the [51]. 

Due to practical reasons the numerical version of equation of motion is used. In 
the UNRES force field the Verlet algorithm [9,61] is used. The simplified version 
of this algorithm is described with the equations (eq 6): 
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 (6) 

where δt is a time step,  v


 is a velocity vector of a center of interaction, x


 is a 
position vector of center of interaction. For the full version of the Verlet algorithm 
in the UNRES force field see the [61]. 

Replica Exchange 

The replica exchange molecular dynamics (REMD) method [66,67] is a sampling 
improving method. This idea is based on running parallel molecular dynamics 
simulations, each at a different temperature, and allow to exchange temperatures 
between trajectories every pre-assigned number of steps (Fig. 4). 
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Figure 4: The schematic illustration of replica exchange molecular dynamics method. The four 
trajectories marked by four different colors are in four different temperatures T1,T2,T3,T4. 

In UNRES force field the exchange between replicas is usually every 10000 or 
20000 time steps. The criterion of acceptance of exchange is modified Metropolis 
criterion [47,62,68] (eq 7): 

( ) min[1;exp{ [ ( , ) ( , )] [ ( , ) ( , )]j j j i j i j i j i i ip x U X U X U X U X             (7) 

where p(x) is probability of exchange of temperature between i-th and j-th replica, 
U is effective energy of given conformation in given temperature (as mentioned 
before the U is potential of mean force and is temperature dependent), β=1/RT, R 
is universal gas constant, T is absolute temperature. 

Examples of Application of the UNRES Force Field 

The UNRES force field has been applied with success to study kinetics and 
folding pathways for various systems [69-72]. The UNRES force field has high 
predictive power for the overall fold of the protein and the domain packing. In the 
10th Community Wide Experiment on the Critical Assessment of Techniques for 
Protein Structure Prediction (CASP10) UNRES force field as the best force field 
predicted domain packing of target T0663 [73]. 

Apart from the prediction of the protein folding the UNRES force field can be 
applied to study the protein association process [72,74,75]. The UNRES force field 
has a high predictive power for the alignment of monomers in oligomers (Fig. 5). 

The UNRES force field has been applied also for large molecular systems. The 
molecular studies of the chaperon closing and opening [76] or studies of the PDZ 
binding to the BAR domain of PICK1[77] give insight into functional mechanism 
at atomic level. 
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Figure 5: The comparison between the native structure (A) of ββα tetramer (PDB code:1SN9) 
with the representative structure of the dominant cluster (B). Both native and simulated reveal a 
pseudo C4s symmetry. 

KINK DESCRIPTION IN PROTEINS 

Kink Model and Energy Function 

80,000 structures have been determined and deposited in the Protein Data Bank 
(PDB) [78] but only 1393 unique folds have been identified by SCOP [79]. Even 
fewer topologies (1282) have been identified by CATH classification [80]. This 
leads to straightforward conclusion that many proteins share the same fold and 
bear structural similarities. 

The study of string-like objects and their properties, both continuous and discrete, is 
similarly pivotal to several apparently disparate sub-fields of physics. Examples 
include polymers [81], Kirchoff-type elastic rods [82], vortexes in fluid dynamics 
[83], turbulence [84], superconductors [85], super-fluids [86], cosmic [87] and 
fundamental [88] strings in high energy physics, and numerous other applications. 
Based on the limited number of protein folds the theory of continuous curves in three 
dimensional space [89] should be of high applicability to protein-folding problem. 

The further analysis has shown that only few region are occupied in θ, γ space (Fig. 
6). Moreover, the loop formation is connected with “circulating path” (Fig. 6B). 
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where E is energy, θ is the angle between three consecutive Cα atoms, γ is 
torsional angle between four consecutive Cα atoms (see Fig. 2), N is number of 
residues in kink, b, c, d, e, m, q are fitted parameters to reflect the regular and loop 
(kink) structure behavior. For the full derivation of equation 8 see the [91]. 

A single kink describes two regular structures (α-helix or β-sheet) with a loop (or 
other unorganized fragment) in-between. The graphical interpretation of the kink 
connected with structural changes is shown in the (Fig. 7). 

In the kink the system undergoes the gauge inversion after the kink transition: 

i i

k k for all k i

  

 

 

  
 (9) 

Figure 7: Top: Schematic sketches of the profiles of angles θ (left) and γ (right) along the chain. 
Bottom: The solutions of the generalized DNLS equation are the modular building blocks of 
folded proteins. They correspond to super-secondary structures such as right-handed-α-helix-loop-
right-handed-α-helix (strand-loop-strand). Reprinted with permission from Krokhotin, A.; Liwo, 
A.; Maisuradze, G. G.; Niemi, A. J.; Scheraga, H. A. The Journal of Chemical Physics 2014, 140, 
025101. Copyright 2014, AIP Publishing LLC. 
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It must be noted that the current model only uses Cα trace (Fig. 6) and the position of 
the side-chain is not taken into account in Hamiltonian explicitly. Nevertheless, the 
statistical analysis results of the side-chain positions [92] with respect to backbone 
gives the possibility that side-chain position will be taken into account in this model. 

APPLICATIONS OF THE KINK MODEL 

Currently the parameters, b, c, d, e, m, q in the equation 8 are optimized to 
minimize the root-mean-square division (RMSD) of the structure corresponding 
to energy minimum [28]. Despite the similarity with Gō model [27] and the need 
for reparametrization for each system separately, the number of parameters used is 
significantly smaller then in case of Gō model. For 33 residue chicken villin 
headpiece (PDB code: 1YFR) the 14 parameters are sufficient for obtaining the 
structure with 0.51 Å RMSD from the native structure (Fig. 8). 

 

Figure 8: The superposition of the villin headpiece (PDB code: 1YFR) native structure (red) with 
the simulated structure (blue). 

Apart from high precision in structure reproduction, the kink model can be 
applied to determining the folding pathway [93]. The simulated annealing with 
Monte Carlo was applied to determine the key steps in unfolding and re-folding 
process. With kink model the first step of folding for villin headpiece is formation 
of C-terminal helix followed by formation of the middle helix. After the formation 
of the two helices the next step in folding pathway is formation of loop structures 
with the final stabilization of the helices after obtaining the proper topology (Fig. 
9). Therefore the diffusion-collision [94,95] seem to fit the obtained data. 
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Beyond the Single Protein 

Despite the fact that, currently the parameters are fitted to the experimental 
structure [28,96], the kink description seem to be universal feature of the proteins. 
Due to the fact that the kink is very sensitive to experimental noises the universal 
analysis was done only on the protein with resolution of 2.0Å and better [98]. The 
statistical analysis of 3.027 proteins leading to the analysis of 193.640 loop 
fragments was performed. The clustering with use of single-link clustering 
method [99] with RMSD cutoff at 0.5 Å level revealed occurrence of only 200 
loop clusters [98]. This proves that the kink description has a universal character 
and at least 92% of deposited protein structures can be described by kinks [98]. 

The interesting conclusion emerging from analysis of the kink description [98] was 
the occurrence of the kink in the DNA-binding protein which was not similar with 
any other [96]. That kink was describing the loop fragment binding to DNA. This 
suggest that the kink description may also be used for a structure-activity studies. 

COMPARISON OF THE MODELS 

Before the application of those two methodologies is shown the differences and 
similarities of those two model have to be presented. Both models are coarse-
grain models which use the Cα trace to define the geometry of the protein. The 
kink model is deprived of the side-chain but statistical analysis has been done to 
determine the behavior of the side-chains in the regular and loop parts of the 
protein. The UNRES force field Hamiltonian in contrast to the kink description 
Hamiltonian does not require reparametrization for every protein separately. Very 
important difference is the accuracy of the model. In case of the UNRES force 
field a protein with RMSD within 4Å can be treated as the one with the native 
structure, whereas in case of the kink description the RMSD has to be at the 
experimental level. As the simulations in further part of this section will be 
conducted with the use of the UNRES force field and only the analysis will be 
done with the kink model the criterion of 4Å will be valid. 

ENERGY CHANGES IN KINK FORMATION 

As mentioned before, the UNRES force field is a powerful tool for the molecular 
dynamics simulation of peptides and proteins. The recent improvement of the 
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The changes of η angles (angles describing the twist of consecutive side-chains 
with respect to backbone) during the kink formation are shown in the Fig. 13. 
Where the angle η is defined by: 

, 1 1sgn[ ( )]arccos( )i i i i i i it t t u v      (10) 

where the ti is the unit length vector pointing from Cα
i to C α

i+1 the ui vector is 
orthogonalized, unit vector pointing from Cα

i to SCi (si), the vi vector is 
orthogonalized unit vector pointing from C α

i+1 to SCi+1 (si). The ui and vi are 
given by the equations: 
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 (11) 

As can be seen from the plot the η values change from value 1 (corresponding to 
the α-helical structure) to value η corresponding to the loop structure or the 
unstructured parts of the protein. 

The changes in γ, θ and η angles made a kink formation analysis quantitative and 
able for distinction. 

Kink Disappearance 

When the temperature is too low the protein cannot pass through the NPB (Fig. 
14). 

It goes through conformational changes and finally leading to disappearance of 
the kink. These mechanism may be similar to process which proteins undergo 
during cold denaturation. In the low temperature the energetic penalty associated 
with exposing the hydrophobic side-chains is lowering [105], therefore the 
formation of the most stable secondary structure becomes the structure 
determining factor. As can be seen in the Fig. 15 the kink disappeared and the 
loop fragment merged into one α-helix. 
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Figure 14: The changes of θ angle (A) and γ angle (B) in a function of a time and a residue 
number, when the protein cannot pass NPB. With the red ellipse the kink disappearance is marked. 

 

Figure 15: The structure of the simulated protein (PDB code: 1GAB) after the disappearance of 
the kink. One of the loop fragments merged into helix. 

 

Figure 16: The changes of θ angle (A) and γ angle (B) in a function of time and residue number, 
when the kink movement undergoes simple transition without second soliton interaction. With the 
red ellipse the kink movement is marked. 
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Kink Movement 

When the temperature is high enough at least two mechanisms of the kink 
movement can be identified. Both mechanisms despite having different transition 
state lead to the same final (native) structure. 

The first one (Fig. 16) is the simple kink movement toward the native 
conformation, in which energy changes of the kink movement are connected with 
NPB (Fig. 17). 

 

Figure 17: The energy changes (kcal/mol) throughout the simulation (snapshots) of G-related 
albumin-binding protein. Red color represents the energy at a given time, green color is the 
grouped energy by the minimizied standard deviation criterion, blue color represents the average 
RMSD of the clustered structures. 

As can be seen from the Fig. 17 the two transition occur. Nevertheless, the first 
transition (around 800) does not lead to any dramatic changes in the RMSD to native 
structure. The second transition around 1300 is also connected with the similar as in 
case of the kink creation barrier of 7kcal/mol (compare with Fig. 10). The second 
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transition is connected with the drop of average RMSD from ~5Å to ~3Å. It means 
that the structure in the second transition goes from partially folded state to native 
structure. The interesting observation is that initial and the final energy of the kink 
fragment remains almost the same. On the other hand the total potential energy of 
the whole protein (Fig. 18) changes with the kink movement process. 

As can be seen from the Fig. 18 there is a great energy benefit connected with 
kink movement (~17 kcal/mol). Such a huge gap between those two states (before 
and after kink movements) come from the long range interactions and not the 
local energy of the loop (kink center). Another interesting observation comes 
from the difference of the transition state potential energy. In case of the kink 
movement NPB for local energy is ~7kcal/mol, however for the whole protein this 
barrier is much lower and is equal to ~3kcal/mol. This indicates that the collective 
motion has a lower energy barrier then the local atom movements. 

 

Figure 18: The potential energy changes of the whole protein in the kink movement process. The 
red line is the energy of a given snapshot, green dashed lines indicates the average potential energy 
after the kink transition, the blue dashed line indicates the average potential energy before the 
transition, the black dashed line indicates the average potential energy during the kink transition. 



A Novel Coarse-Grained Description of Protein Frontiers in Computational Chemistry, Vol. 1   281 

 

Apart from the mechanism described above the second mechanism can be 
distinguished (Fig. 19). The second mechanism involve the interaction between two 
kinks.  

  

Figure 19: The changes of θ angle (A) and γ angle (B) in a function of time and residue number, 
when the kink movement undergoes transition with second soliton interaction. With the red ellipse 
the kink movement is marked. 

As can be noticed from Figs. 16 and 19 both of the lead to the same final θ and γ 
profile. However, in the first case (Fig. 16) the profile resembles shifting toward 
final positioning whereas the second one is much more complicated. In the second 
one a kink widening in the 30-37 residue region can be noticed with at the same 
time kink shortening in the 22-24 residue region. As the both mechanism occurred 
at the same temperature this indicate that more than one kink movement 
mechanism is possible. This also lead to the conclusion that the problem of 
multiple folding pathway [106-108] is much more common phenomenon than 
expected. 

CONCLUDING REMARKS 

In this chapter, two very distinct approaches to study the protein structure and 
folding have been presented. The first is the physics-based coarse-grained force 
field UNRES, which has high applicability for determining the loop structure and 
overall fold of the protein but lacks in high resolution details. The second method 
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is application of discrete nonlinear Schrödinger equation to the kink description of 
the proteins. This method is able to fold protein with sub-atomic resolution which 
is comparable with the experimental accuracy. The downside of the latter method 
is quite tedious process of parameters fitting and requirement for experimental 
structure. In this chapter the combination of the two techniques has been shown. 
The UNRES force field was used for simulating the system whereas the kink 
description was used for the analysis for the elementary process occurring during 
the protein folding. The initial results from combining those two methodologies 
are promising, giving solution to the problem of when the loop fragments are 
formed, their shift and their disappearance leading a step closer to understanding 
the complicated process of the protein folding. 
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Abstract: Computational methods relying on first principles are fundamental for dissecting 
basic physicochemical properties of biological systems and unveiling mechanistic details 
that are often silent to experiments. The tireless improvement of theoretical schemes for 
molecular modelling and simulations, coupled to the increasing computational power of 
novel architectures and integrated with available experimental inputs, allows today 
exploring the functioning of biological systems with unprecedented accuracy. Indeed, 
molecular simulations at both the quantum mechanics and molecular mechanics levels are 
nowadays able to dissect with high confidence the structural and dynamical features of 
large systems in native-like conditions, up to the point that their mode of action can be 
modulated in a controlled fashion. These computational chemistry strategies are 
particularly appealing when applied to pharmaceutically relevant targets. In this chapter, we 
will present recent successes of computational investigations applied to a broad variety of 
biochemical systems that are promising or validated targets for drug discovery. In 
particular, we will show how molecular modelling at the quantum mechanics level is key 
for revealing the mechanistic details of catalysis in bacterial and viral metallo-enzymes. We 
will continue by discussing how accurate molecular mechanics-based free energy 
calculations can provide a new quantitative description of the function of systems of 
relevance for multidrug resistance in bacteria. In the final part of the chapter, we will show 
examples where computational and medicinal chemistry is fully integrated with structural 
and biochemical data to study function and inhibition of target enzymes implicated in 
cancer and other inflammatory-related diseases. The final goal of these studies is to develop 
new molecular entities potentially endowed with a desired pharmacological activity. This 
chapter will therefore define the contribution of emerging approaches and recent advances 
in the field of computational chemistry for translating the atomic-level understanding of 
complex biological phenomena into useful information to progress in molecular medicine. 
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1. INTRODUCTION 

Computational methods are nowadays essential in all aspects related to the design 
and optimization of a new drug [1]. This is because computational modelling 
offers the unique ability to characterize, at the atomic level, the specific function 
of the biochemical target, as well as key drug/target interactions. In fact, the 
fundamental paradigm of drug efficacy is that the drug generates its beneficial 
effect through its tight binding to the target(s). In this way, the drug acts by 
modulating, through inhibition or stimulation, the target function, ultimately 
causing the desired pharmacological effect. Therefore, the computational 
investigation of function and inhibition mechanisms of the biochemical target, as 
well as a meticulous characterization of the main interactions between the target 
and its ligands such as endogenous substrates or new small molecules, can be of 
great help in guiding the rational design and optimization of new drugs with 
improved efficacy and/or diminished side effects [2, 3]. 

Common computational approaches for drug design employ molecular mechanics 
(MM), which treats atoms and their interaction according to Newtonian physics. 
These methods include docking and virtual screening approaches, which are 
regularly applied to gain precious information on ligand binding affinity, thus 
helping in the selection of active compounds to initiate drug discovery efforts. 
However, the crucial contribution of computation along the challenging process of 
drug discovery has been recently reinforced by the concrete possibility to apply 
high-level computation in a time-affordable manner, given the rapid development 
of faster computer architectures and better algorithms. In this regard, molecular 
dynamics (MD), which usually relies on MM to define the evolution over time of 
a molecular system, is today consistently used to investigate (bio)chemical events 
that once were computationally prohibitive, such as the binding of a small 
molecule to its targets, which requires extended simulation times that nowadays 
easily reach the microseconds timescale [4-6]. Finally, due both to the 
extraordinary increase of computational power and the development and 
implementation of more efficient algorithms for wave function calculations, 
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quantum mechanics (QM) is also today routinely applied for the characterization 
of the structure, dynamics, reactivity and energetics of biomolecules [3, 7-14]. 

In addition, the QM and MM methods can be fruitfully combined to maximize their 
effectiveness, generating the so-called QM/MM approach, which is particularly 
suitable to investigate chemical reactions happening in large model systems such as 
enzymes [9, 15-20]. QM/MM computations allow treating only the reactive portion 
of the system, i.e., the catalytic site, at the QM level, while all the remaining of the 
system is described at the MM level (Fig. 1) [21]. Indeed, QM/MM is routinely used 
nowadays for the characterization of the (free) energy landscape of enzymatic 
reaction mechanisms, the description of charge transfer events often detected in large 
biological systems, for molecular docking and drug design [22, 23] or, as a last 
example of a long list of possible applications, the investigation of the function of 
metal ions in proteins (metalloproteins) [3, 24-28]. The Nobel prize for Chemistry 
given in 1998 to W. Kohn for the development of Density Functional Theory and to 
J. A. Pople for the implementation of Quantum Chemistry methods, and the most 
recent Nobel prize 2013 for the seminal contributions of Karplus, Levitt and Warshel 
for the development of multi-scale models for complex chemical systems remark the 
highest consideration that these techniques have reached in the Chemistry 
community. Importantly, last year’s Nobel Prize in chemistry has specifically 
honoured the impact and relevance of the QM/MM approach, which was firstly 
introduced by the pioneering works of Martin Karplus (Harvard), Michael Levitt 
(Stanford), and Arieh Warshel (USC) [21, 29, 30]. Methods such as MD, QM and 
QM/MM calculations can now be considered additional effective tools in the vast 
computational armamentarium for drug design [1]. 

Given these premises, in this chapter we will review some of our own recent 
research studies in the field of computational simulations of biological systems of 
pharmaceutical relevance, covering a broad variety of therapeutic areas, from viral 
and bacterial infection to cancer and other inflammatory-related diseases. In 
particular, we will start with recent successes of first-principles-based QM/MM 
simulations of metalloenzymes, focusing on the structural and functional role of the 
metal ions for catalysis in bacterial beta-lactamases [25, 31-34] and in the viral 
metalloenzyme ribonuclease H [35, 36]. We will continue with examples where MD 
was integrated with structural and biochemical data to address the mechanisms of 
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employed to adequately balance the competing need for accuracy and speed of the 
calculations. Two of the most common and well-established computational 
modelling approaches are based on quantum mechanics (QM) and molecular 
mechanics (MM), which can combine in QM/MM schemes able to provide 
accuracy in treating the chemistry of the system and extending the investigation to 
large complexes. The study of drug-target interactions is further complicated by 
the fact that those key interactions occur in a complex environment, where 
temperature and solvent effects play a crucial role. Therefore, the use of enhanced 
sampling methods and simplified Coarse-Grained multi-scale models allowing for 
more efficient exploration of the conformational space for sizable systems is 
becoming more and more a common practice. 

2.1. Wave-Function Based Methods 

Methods based on direct solution of the Schrödinger wave-function are 
considered the most accurate [41, 42] because they can provide the best physical 
description of the system. 

The Hartree-Fock [43] (HF) method is based on solving the electronic problem 
using an iterative Self Consistent Field (SCF) approach. The electronic wave 
function is written as a single Slater determinant of single-electron orbital 
functions. Therefore, HF methods lead to a mean-field solution where electron-
electron correlation is not considered. Despite its appeal, the HF-SCF method is 
not accurate enough to be used for accurate quantitative predictions. Over the last 
decades, several approaches, usually indicated as post-Hartree-Fock methods, 
have been developed to include electron correlation in the multi-electron wave 
function. These methods include introduction of perturbation terms in the Fock 
operator (Møller-Plesset perturbation theory [42-44]), or, more accurately, 
expansion of the multi-electron wave-function over a linear combination of Slater 
determinants, such as in Multi-Configurational Self Consistent Field (MC-SCF) 
[45, 46], Configuration Interaction (CI) [43], Coupled Cluster theory (CC) 
[42]and Complete active space SCF (CAS-SCF) [45, 46]. Both MC-SCF and 
CAS-SCF are considered the reference methods for the study of processes 
involving multiple electron states. Accurate quantum-mechanical methods are 
crucial in biological studies where multi-reference states or non local-electronic 
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properties must be taken into account. For example, this is the case for photo-
chemical and photo-physical properties for which these techniques are essential 
for their correct description [47]. Studies on vision processes initiated by 
rhodopsin light absorption (i.e., [48-51], and on investigations into DNA induced-
light damage processes (i.e., [52]) provide excellent examples. 

2.2. Density Functional Theory 

Density functional theory (DFT) [53] is an alternative formulation of quantum 
mechanics where the solution of the fundamental problem addressed the particle 
density, so, a direct physical observable, and not the many-body wave function. To 
date, the commonly operative implementation of density functional theory follows 
the Kohn-Sham [54] approach, where the many-body problem given by a density of 
interacting electrons in a static nuclear electrostatic potential is mapped into that of a 
density of ideal non-interacting electrons. Within this formulation the major task 
within KS-DFT is the modelling of exchange and correlation interactions, for which 
an explicit analytical formula is not known. The quality of the exchange-correlation 
functional affects heavily the quality of the prediction by DFT calculations. Since 
Becke’s proposition [55] of a gradient-corrected exchange functional (GGA), where 
both the density function and its gradient are taken into account, the reliability of the 
GGA DFT has been sensibly improved by developing correlation functionals with 
parameters acquired by fitting experimental data or created to reproduce basic 
physical properties. A significant improvement in DFT performances was achieved 
after Becke’s consideration that local exchange correlation functionals could be 
hybridized with fractional components of HF-like exchange terms [55]. More 
recently, inclusion of explicit kinetic energy operators in the exchange and 
correlation functional yield as proposed by Tao, Perdew, Staroverov and Scuseria 
(TPSS) [56], led to a new generation of functionals called meta-GGA. Studies on 
biomolecular systems profit from DFT calculations more than from, in principle, 
more accurate post-HF approaches thanks to their considerably lower computational 
cost. Nonetheless, the choice of the correct functional for a specific system or 
properties may pose major issues to an inexperienced user. It is therefore crucial to 
rely on the large number of publications constantly assessing the performances of the 
various functionals (i.e., [57, 58]), as a valuable tool for the correct use of DFT 
calculations. 
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One of the most important issues in DFT-based calculations is associated to its 
intrinsic difficulty in treating dispersion forces [59-61]. These are particularly 
important in biological systems, where steric packing of hydrophobic residues 
contributes significantly to the global stability of folded structures. In the past 
decade, several protocols aimed at including dispersion interactions in DFT 
calculations have been successfully proposed. These go from inclusion of 
parameterized two-body R-6 long-range terms derived empirically [62-65] or by 
atomic polarizability computed from the in situ atomic electron density [66], or 
from the instantaneous dipole moment of the exchange hole [67-70], to 
dispersion-corrected atom centred potentials fitted on high-level calculations [71-
77], to highly parameterized meta-hybrid-GGA xc-functionals calibrated to 
reproduce properties of dispersion-dominated molecular sets [78-81]. Several test 
cases show that inclusion of dispersion interactions can change the qualitative 
picture of molecular structures and complexes [82, 83]; therefore, the use of any 
of the methods available today in the most commonly accessible codes is highly 
recommended. 

2.3. Molecular Mechanics Approaches 

Despite the most recent advances in quantum mechanical calculations for large 
systems, the dimensionality of biological macromolecules is computationally still 
too demanding. Therefore, in the past decades, simplified Molecular Mechanics 
(MM) approaches based on parameterized Hamiltonians have been developed. 
Within these approaches, the total energy of a molecular system is defined as the 
sum of different contributions mimicking the molecular binding action of the 
electronic cloud. The MM Hamiltonian [41, 45, 46] is usually composed by bonded 
terms describing stretching, bending, and torsional vibrational modes, and non-
bonded interactions describing exchange repulsion, dispersion and electrostatic 
forces (Equation 1). Both stretching and bending contributions are usually expressed 
by simple harmonic potentials. The torsional contribution is described by a periodic 
function to account for multiple conformational minima. Dispersion and electrostatic 
interactions are taken into account through, respectively, a two-body 6-12 Lennard-
Jones potential [41] and a Coulomb potentials. In the MM force field, the 
experimental frequencies of specific sets of molecules are fitted to reproduce ab 
initio energies. The equilibrium bond lengths and angles ( ) and the spring eqeqr ,
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constants ( ) are therefore calibrated to reproduce those data. That is, and 
are derived from Monte Carlo simulations, [41, 45, 46] and the atomic point 

charges ( ) are calculated during fitting procedures, like in the RESP procedure 
[84], from ab initio calculations. 

= ( − ) + ϑ( − )
+ 2 1 + cos	( − ) + −
+ 4  

(1)

Established MM Force Fields [85] are defined on the basis of the specific 
analytical form of the potential energy function, and on the basis of the specific 
values of several parameters defining it. To date, most common force fields like 
OPLS [86], AMBER [87], GROMOS [88] and CHARMM [89] are broadly used 
to study biomolecular systems. Apart from the potentials developed for biological 
macromolecules, computational drug design and drug discovery studies profit 
from both the Generalized AMBER Force Field(GAFF) [90] and CHARMM 
General Force Field (CgFF) [91] developed for small organic compounds. The 
relatively cheap computational cost of MM potentials allows, for example for fast 
screening of large libraries of chemical compounds or the investigation of the 
enzymatic activation [92, 93]. Moreover, MM potentials, when coupled to 
enhanced-simulation techniques can be efficiently employed for lead optimization  
[94]. 

2.4. Hybrid Quantum Mechanics / Molecular Mechanics Methods 

MM approaches are useful for the investigation of structural features of very large 
systems and for non-covalent binding of ligands to receptors. On the contrary, 
they cannot address reactive processes as those taking place at enzymatic active 
sites, unless a specific parameterization of the reaction under study is performed. 
Detailed mechanistic studies of any enzymatic processes thus strictly require the 
use of quantum-mechanical methods. 

kkr , ijA

ijB

ji qq ,
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Nowadays, the most efficient approach to overcoming such limitations is the 
combination of Quantum Mechanics (usually DFT-based methods) with force-
field-based molecular mechanics (MM) in the so-called Quantum 
Mechanics/Molecular Mechanics (QM/MM) scheme. The system is partitioned 
into two or more regions treated with different levels of theory (Fig. 1). Originally 
proposed in 1976 by Warshel and Levitt  [21], many different QM/MM 
implementations have flourished in the last two decades, being successfully 
employed in both biological and material science fields  [2, 16-18, 24, 25, 27]. In 
the QM/MM formalism, the chemically relevant part of the system is described at 
the quantum level of theory, while the remaining portion is treated at the less 
expensive MM level. Several QM/MM implementations are nowadays available 
in QM codes. Common hybrid QM/MM schemes are the ONIOM [95] included in 
the GAUSSIAN suite of programs [96], or the hybrid Hamiltonian approaches 
included in CPMD [97, 98] and CP2K [99]. MM codes also feature interfaces to 
(or embed) QM algorithms (often semi-empirical), as is the case with AMBER  
[100, 101] or CHARMM [102]. When performing a hybrid QM/MM calculation, 
the most difficult step is constituted by the choice of the QM region, which is per 
se ill defined. In fact, definition of the region where the explicit electronic 
structure must be taken into account cannot be determined a priori, rather it must 
be carefully controlled case per case [103-107]. QM/MM approaches have been 
successfully applied to several drug design studies [3, 108-110] and enzyme 
reaction mechanisms [3, 18, 111-114]. More recently, hybrid approaches have 
been integrated into computational protocols devised for docking  [115-117] and 
computing the binding affinity of drugs [116, 118, 119], thus providing a useful 
tool for in silico screening of lead candidates [1, 15, 120]. 

2.5. Conformational Sampling 

On a general basis, it is important to notice that MD trajectories are intrinsically 
unstable, and therefore, the single events explored by MD are not, per se, 
reproducible. In fact, the relevance of MD simulations relies on the possibility of 
linking microscopic time-averages along trajectories to thermodynamically 
equilibrated ensemble averages (ergodic hypothesis). Nonetheless, such 
eventuality is limited by the efficiency by which MD simulations can explore the 
conformational space. 
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In fact, this hypothesis fails in case of slow diffusive processes, for which feasible 
sampling times are intrinsically shorter than the characteristic times, or for 
activated processes, for which the probability to observe a transition event 
between the conformational space regions describing reactant and products is very 
low. In these cases, free molecular dynamics may be not fully reliable and anyway 
not lead to an exhaustive description of the phenomena of interest, unless proper 
enhanced sampling techniques are combined to standard MD protocols. 

Biochemical phenomena follow variational paths over the corresponding Free 
Energy Surface (FES); therefore, its determination is a crucial step for 
computational studies of their mechanisms. In most cases biochemical events 
require substantial activation energy even when the process is catalysed by a co-
factor, an external stimulus or by the action of an enzyme. This implies that such 
phenomena cannot be observed by merely performing a (even very long) plain 
MD run. Over the years, several enhanced sampling strategies have been 
developed to compute free energy differences between reactant and product states 
as well as free energy changes occurring along any (bio) chemical process. Some 
of these procedures profit from a priori definition of one or more reaction 
coordinates projecting the 6N phase space to a less complex dimensionality that is 
presumed to be representative of the process in question. Among these methods, 
we mention steered and targeted molecular dynamics [121, 122], the blue moon 
ensemble [123], umbrella sampling [124-126] and replica exchange molecular 
dynamics [127] as successful examples. More recent techniques like 
conformational flooding [128] and metadynamics (MMD) [129-132] aim at 
overcoming preliminary knowledge of the reaction coordinate components, 
allowing an unbiased investigation of the FES. The use of enhanced sampling 
methods coupled to QM/MM simulations was successful in the investigation of 
the reaction mechanism of potential drug target enzymes [25, 27, 31, 34, 35, 39, 
92, 112, 133-140]. 

The free energy of binding can be estimated by different methods. Here we briefly 
sketch the MM/PBSA protocol [141-144], used in one of the examples presented 
below. The free energy of binding of a ligand to a protein Gbinding is split as: 

Gbinding= Gvacuo + Gs
Complex - Gs

Ligand - Gs
Protein 
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where Gvacuo is the free energy of binding in vacuo, and Gs
Complex, 

Gs
LigandGs

Protein are the solvation energies of the protein/ligand complex, the free 
ligand and the free protein, respectively. The solvation energies are computed by 
solving the linearized Poisson-Boltzmann equation using different dielectric 
constants to reproduce the solvent and in vacuo conditions [145]. Gvacuo is 
computed by estimating the enthalpic and entropic contributions separately. The 
enthalpic contribution is given by the interaction energy between the two fragments, 
while the entropy change can be computed estimating the variation of the vibrational 
partition function either by normal mode analysis or by quasi-harmonic 
approximation. Details and limits of such approach are deeply discussed in the 
literature [146-150]. 

2.6. Coarse Grained and Multi-Scale Simulations 

Computational structural studies dealing with biological processes must address 
macromolecular systems that can have significantly different sizes and can be 
functional in a very broad spectrum of time scales [151, 152]. The recent 
advances in atomistic simulations sallow reaching limits in the millisecond time 
scale and or the million of atoms, if sufficient dedicated computational resources 
are available [4, 153]. Nonetheless, on one hand, these limits can still be far from 
characteristic times/sizes describing large macromolecular complexes involved in 
cellular processes; even more, accessible boundaries for routine calculations on 
molecular systems are still orders of magnitude inferior to these limits. 

Time/size scale issues can be tackled by implementation of coarse-grained (CG) 
models, which are becoming more and more popular in the literature [154-162]. 
Given their increasing impact in the field, we give here a brief introduction, even 
though they were not directly used in the examples presented below. Different CG 
schemes make use of either topological or force-field like Hamiltonians based on 
bead models, and which can have specific or general applicability. Successful 
studies where CG models are applied to study different biological problems can 
be routinely read in the dedicated literature [163-168]. While the first CG force 
fields aimed at describing simple hydrophobic-hydrophilicdiphase systems (i.e.,  
[160]), nowadays it is possible to find several models able to describe also protein 
and protein/membrane [169, 170]. 
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Concerning proteins, CG models are still lacking reliable transferability, which, in 
turn, limits their use, for example, whenever large conformational changes occur in 
the system. Atomistic resolution may still be crucial for quantitative investigation on 
phenomena like molecular recognition (for example, for a quantitative estimate of 
the MIC of drugs on a target protein). In recent times multi-scale modelling (MSM) 
techniques aiming at coupling all-atom descriptors to simplified models have 
become more and more popular [158, 159, 163, 171-179]. Implementation of hybrid 
schemes (AA/CG), where only a portion of the system is treated at the atomistic-
detailed level appeared in the literature for both proteins and protein-DNA 
complexes [161, 162, 180, 181]. Multi-scale approaches comprise parallel schemes 
[176, 182, 183], adaptive resolution protocols [172, 173, 178], and different 
approaches for multidimensional Hamiltonians, where different portions of the 
system are treated at different levels of resolution at the same time [161, 177, 181]. 

Electrostatics is a crucial ingredient to reproduce intermolecular interactions at the 

CG level. Two of us have recently proposed a topological scheme to reproduce 

quantitatively the all-atom electrostatic potential from minimal structural CG 

information [184]. The proposed model reconstructs the orientation of the 

backbone dipoles using their statistical orientation in protein structures available 

in the Protein Data Bank. The protocol requires the position of the -carbons of a 

protein, and the angles formed by three connected carbons as the only 

structural information. The computational costs to reconstruct the dipole 

orientations are negligible (scaling N). The protocol can be easily and efficiently 

implemented in a MD algorithm [185]. Moreover, long-range interactions 

produced within such a scheme are intrinsically anisotropic, making it particularly 

appealing to improve CG simulations on conformational changes and secondary 

structure assembly [185]. Extension of the model to incorporate electrostatic 

interactions from side-chains can also be efficiently implemented, significantly 

improving the quality of protein-protein interaction studies [186]. 

3. ENZYMATIC CATALYSIS 

Here, we report some representative QM/MM studies of pharmaceutically 
relevant enzymes, mainly from our own research. We aim to show how QM-
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based methods can help understanding the structural and energetics features of the 
enzymatic reactions  [24, 25]. In particular, we focus on enzymes that use metal 
ions to efficiently perform catalysis (metalloenzymes), for which QM based 
methods are preferable due to the difficulties in reproducing metal coordination 
by classical parameterised potentials. 

The role of metal ions in biochemistry is fundamental in maintaining structural 
stability and sustain conformational changes, and proper functionality during 
enzymatic catalysis. Metalloenzymes are in fact widespread proteins, ubiquitous 
in all life kingdoms and involved in various biosynthetic processes [187]. In here, 
we will first review the QM/MM investigation of the ribonuclease H (RNase H) 
catalytic function  [134]. This enzyme catalyses nucleotidyl transfer reactions in 
the presence of two Mg2+ ions contained in the catalytic site, while representing a 
target for antiviral drugs  [188-190]. Then, we will report on the phosphatase 
activity in soluble epoxide hydrolase (sEH), which is a promising target for 
hypertension and acute respiratory syndrome treatment  [35, 135]. This enzyme 
carries out the phosphatase activity in its N-terminal lobe, using a single Mg2+ ion 
in the catalytic site. We will also briefly report on a recent computational 
investigation of topoisomerase II (topoII)  [35, 135], which requires two Mg ions 
in the catalytic site to control the DNA topology in cells. This is a further example 
centred on an Mg-dependent enzyme that is a validated target for clinical 
antibiotics (e.g., quinolones) and anticancer agents (e.g., anthracyclines) [191]. As 
a final example, we will report on computational simulations on the metallo (Zn) 
β-lactamases, which are important targets for the discovery of new resistant 
antibiotics [31-34]. In this case, as well, we will see the difference of one vs. two 
ions for catalysis. 

3.1. Ribonuclease H 

Ribonuclease H (RNase H) is member of the nucleotidyl-transferase (NT) 
superfamily. RNase H cleaves the phosphodiester bond in the backbone of the 
RNA strand in RNA·DNA hybrids  [192, 193]. For proper function, RNase H 
accommodates two metal ions in the catalytic site, which counterbalance the large 
negative charge on the backbone of substrate RNA and DNA strands  [188]. 
These catalytic ions have a key role in maintaining the structural integrity of the 
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H  [134]. In particular, this study unravelled the nature of the enzymatic 
mechanism (concerted one-step or stepwise, with formation of a stable 
phosphorane intermediate), the energetics and formation mechanism of the 
nucleophilic hydroxide ion, and finally the role of the two metal cofactors in 
aiding the catalysis. Toward this end, two different reagent states have been 
considered in studying the enzymatic reaction (Fig. 3). Namely, in one case the 
nucleophilic species was a water molecule (PWAT), while in the other, a 
hydroxide ion (POH-) was the reactive nucleophile. The CP QM/MM 
simulations showed that POH- had the lowest free energy barrier (~10.5 kcal 
mol-1). However, PWAT was a competitive mechanism (free energy barrier of 
~16 kcal mol-1) if dehydration energy was also considered (~3 kcal mol-1). 
Importantly, these free energy values are qualitatively in agreement with the 
kinetic data for substrate analogs for HIV-1 RNase H activity, which 
corroborates these mechanistic details [197]. 

To summarize this computational investigation on RNase H, both POH- and PWAT 
show an in-line SN2-like nucleophilic attack on the scissile phosphorus (Fig. 3). 
This generates an associative mechanism with phosphorane-like transition states  
[198]. Importantly, PWAT includes a meta-stable pentavalent phosphorane 
intermediate, which was observed so far only in the debated β-
phosphoglucomutase crystal. Interestingly, the presence of such an intermediate 
has also been suggested by the recent study of Elsässer et al.,  [199], which used 
high level QM/MM calculations to investigate the RNase A catalysis. Also, Rosta 
et al have found similar results in a more recent investigation of the reaction 
mechanism of RNase H, using a different flavor of the QM/MM approach, which 
implies the DFT/B3LYP level of theory for the QM part  [200, 201]. Taken 
together, these QM/MM studies overall confirm the finding of ref. [134], both in 
terms of possible mechanisms and the associated free energy. Finally, another 
essential aspect of the reaction mechanism is that the two Mg2+ ions act in a 
cooperative fashion. They operate simultaneously to catalyse both nucleophile 
formation and leaving group stabilization. Thus, both POH- and PWAT show a 
phosphorane-like transition state where the associative character of the transition 
state (TS) is supported by the two ions that get closer to each other in the TS 
geometry [134]. 
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Figure 3: “UPPER SCHEME: Structural evolution of the reaction. Selected snapshots taken for 
the QM/MM dynamics of the two investigated pathways for RNase H catalysis (only QM atoms 
are shown explicitly, the rest of the system is shown in thinner lines). (Top) OH- pathway: the 
nucleophilic group is one hydroxide ion, R. The phosphorane-like TS is shown in the middle. 
Then, inversion of the phosphate stereo configuration and formation of the 5′-phosphate and 3′-
hydroxy function of the RNA strand are shown in P. (Bottom) WAT pathway: the nucleophilic 
group is a water molecule, R. The nucleophilic attack leads to TS1, where a proton shuttle (PT1) 
involves 3 water molecules that bridge the scissile phosphate and WAT (red labels). The 
protonation of the scissile phosphate stabilizes the phosphorane group, causing the formation of 
the meta-stable intermediate INT (black label). Then, TS2 (blue label) leads to the final product P, 
in which the cleavage of the RNA strand is definitely completed, and the protonation of the 3′-
hydroxy function of the RNA strand takes place (PT2). LOWER GRAPH: Free energy profiles of 
the two investigated pathways for RNase H catalysis (bottom)” (Adapted from ref. [134]).  
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3.2. Phosphatase Activity in Soluble Epoxide Hydrolase 

Initially, the observed catalytic activity of soluble epoxide hydrolase (sEH), 
namely the hydrolysis of epoxy fatty acids, occurs in the large C-terminal domain, 
while the novel metal (Mg2+)-dependent phosphatase activity of sEH has been 
discovered in the smaller N-terminal domain. This novel metal (Mg2+)-dependent 
phosphatase activity of the dual-domain protein she opened a new branch of fatty 
acid metabolism and providing a new site for drug discovery  [202-204]. 

Based on crystallographic data  [205-207], a two-step reaction has been proposed 
for the two phosphoryl transfers in the sEH phosphatase activity. The first step is 
the nucleophilic attack of Asp9 on the phosphate group of the phosphoester 
substrate, with protonation of the leaving group through either Asp11 or an 
intervening water molecule. Secondly, a water molecule closes the catalytic cycle 
hydrolysis via a nucleophilic attack at the scissile phosphorus atom of the 
phosphoenzyme intermediate (Fig. 4). These reactions have been clarified by two 
CP QM/MM computational studies [35, 135] that provided a first-principles-
based interpretation of the experimental findings, providing great detail for the 
two necessary steps (Step 1 and Step 2, Fig. 4). 

Perhaps, the most interesting detail revealed by these studies is how the Mg2+ ion 
helps the reaction efficiency. In particular, these studies explain the crucial role of 
metal-substrate connecting water-bridges (WBs) for efficient transfer of the 
protons necessary for nucleophile formation (water deprotonation) and leaving 
group stabilization during the two phosphoryl transfers that constitute the catalytic 
cycle. Indeed, both steps show an in-line nucleophilic substitution with a rather 
dissociative character, especially marked in Step 2. A planar metaphosphate-like 
transition state that nicely resembles crystal structures of TS analogues is 
detected, while no evidence of a phospharane species in the TS regions is 
observed. The computed free-energy barriers were in fair agreement with 
experimental data, indicating Step1 (~19 kcal mol-1) as the rate-determining step 
of the catalytic cycle (Fig. 5). The most important contribution to enhancing 
catalytic efficiency is made by the nucleophile and leaving group stabilization via 
WB-mediated proton shuttles, mostly induced by the electrostatic effects of the 
metal ion. 
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3.3. One vs. Two Metal Ions for Enzymatic Phosphoryl Transfers 

The comparison of the QM/MM results on sEH (one Mg2+ cation) and those on 
RNase H (two Mg2+cations) for the metal dependence in phosphoryl transfer 
reactions is quite instructive. In fact, based on these QM/MM studies of 
metalloenzymes [28, 35, 134, 135], different mechanisms (associative vs. 
dissociative) for phosphoryl-transfers seem to be induced according to the 
metal(s) geometry and stoichiometry during catalysis. During sEH catalysis, the 
metaphosphate group that is transferred is stabilized by its apical coordination to 
the only Mg2+ ion present in the catalytic site. Instead, in the RNase H enzymatic 
reaction, the two Mg2+ stabilize the attacking and leaving groups, while the 
metaphosphate group is in between the two ions, showing a phosphorane-like TS. 
Therefore, this comparison supports the hypothesis, reported for the first time in 
ref.  [134], that two ions can more easily facilitate the formation of a meta-stable 
intermediate, as in the case of RNase H. 

A second aspect of paramount importance in both the phosphatase activity of she  
[35, 135] and the endonuclease activity of RNase H is the key role of water 
molecules in solvating the metal centre. These waters facilitate the migration of 
protons involved in the phosphoryl transfer reaction, in both sEH and RNase H. 
This mechanism is vital to appreciating the catalytic strategy used by the enzyme 
to create better attacking and leaving groups. It shows the critical role played by 
water molecules in enzymatic mechanisms (e.g., phosphoryl transfers). 

A recent investigation of the metalloenzyme topoisomerase II (topoII) [208] 
further highlights the functional role of two metal ions for phosphodiester bond 
cleavage. In fact, recent X-ray structures of topoII have shown that two Mg2+ ions 
are likely placed in the catalytic site  [209]. Here, the DNA strand is cleaved and 
re-joined to allow DNA topology control. Hybrid Born-Oppenheimer QM/MM 
MD simulations have been used to reconstruct a catalytically competent state, 
where the two ions spontaneously relax into a two-metal-ion architecture, as that 
in RNase H  [134]. This position of the two Mg ions seems therefore similar to 
several other two-metal-ion phosphodiesterases, suggesting that topoII likely 
cleaves the substrate DNA with a mechanism that might be analogous to RNase 
H. 
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Regardless the specific enzymatic mechanism, these examples are used herein to 
highlight how computational methods can shed new lights on the functional role 
of metals in enzymes. How the two metal ions behave along the reaction 
coordinate of the enzymatic reaction is indeed a very fascinating aspect of 
quantum enzymology. This exciting field of research is still in its infancy, and 
much remains to be clarified on the role of metals for catalysis. One question, 
among many of interest, is how different stoichiometry and physicochemical 
features of metal ions can lead to either inhibition or acceleration of catalysis. In 
this regard, in the next decades we foresee a prominent role of computational 
methods integrated to experimental data to address key aspects of enzymatic 
catalysis. 

4. ANTIBIOTIC RESISTANCE 

As briefly introduced in the previous paragraph on metallo--lactamases, the 
systematic and widespread use of antibiotic drugs has a relatively short history in 
medicine, as it dates to the first campaigns of intense use of penicillin and 
cephalosporin in the first decades of the past century. Since then, it soon became 
clear that pathogens were able to rapidly evolve mechanisms of resistance against 
antibiotics. In fact, the first strain of Staphylococcus aureus resistant to penicillin 
appeared only few years after broad use of penicillin began [214]. 

The intense use and, at times, misuse of antibiotics has lead to the evolution of 
bacterial strains that are now resistant to a broad spectrum of drugs. Severe health 
threatening strains are today known for both Gram+ and Gram- pathogens. A 
prototypic case is provided by methicillin resistant S. aureus (MRSA), which is 
resistant not only to methicillin, but also to several other classes of drugs, like to 
aminoglycosides, macrolides, tetracycline, chloramphenicol, and lincosamides 
[214]. 

Cases of induced cross-resistance by interfering bacterial strains were also 
reported [214], as is the case of vancomicine resistant Enterococcus (VRE) and 
MRSA, which lead to strains of S. aureus resistant to vancomicine. Pan-drug 
resistant bacterial lines have emerged in Pseudomonas aeruginosa and 
Acinetobacter baumanii [215]. Regrettably, since the eighties, the evolution of 
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multidrug resistance (MDR) in bacteria has been accompanied by a continuous 
decrease in the approval rate of new antibiotics, in particular against Gram- 
bacteria [216, 217]. 

4.1. Antibiotic Recognition in MexB - a RND Multidrug Efflux Pump from 
Pseudomonas Aeruginosa 

MDR is a global phenotype that can be attributed to multiple molecular origins. 
Among several other factors, expression of multidrug efflux pumps plays a key 
role in MDR. Evolutionary pressure has lead to the selection of bacteria mutating 
the native physiological exporters into efflux machineries able to extrude very 
different substrates from the cell. 

Multidrug transporters are active against a wide range of chemically unrelated 
molecules, although there is a slightly preference for relatively lipophilic, planar 
molecules of molecular weight less than ≈800 Da [218]. Substrates are also 
usually, but not exclusively, weakly cationic [218]. 

Multidrug efflux pumps have been identified in all five active molecular 
transporter super families, and therefore, the MDR phenotype must have evolved 
independently several times [219]. For a detailed analysis of these families, please 
refer to the several reviews available in the literature (i.e., [220-222]). 

The complex dynamics associated with the efflux mechanisms poses a major 
complication in understanding drug-recognition and transport. Computational 
models based on MD simulations can therefore provide useful complementary 
information integrating experimental knowledge. For a general assessment on MD 
studies applied to efflux pump, please refer to ref. [223]. 

Most Gram- bacteria are intrinsically resistant to a large variety of lipophilic 
antibiotics [224]. This property is attributed to expression of efflux pumps of the 
Resistance-nodulation division (RND) superfamily, as first demonstrated by 
experiment on inactivation of the prototypic AcrAB/TolC RND efflux pump in E. coli 
[220]. 

RND efflux systems are large macromolecular complexes that extend through 
both the inner and outer membranes of Gram- bacteria. They are able to capture 
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and extrude substrates from the periplasmic region between the two membranes, 
using electrochemical gradients at the inner membrane as the driving force. RND 
macromolecular complexes are formed by an inner membrane protein 
complex(IM) that binds to an outer membrane channel, This last belonging to the 
outer membrane factor family (OMF) [225]. A periplasmic membrane fusion 
protein (MFP) is required to stabilize the complex and make it functional [226]. 
So far, the single components for only two RND multidrug efflux complexes have 
been structurally determined. They are: i) the AcrB/AcrA/TolC complex form E. 
coli [227-229], and ii) the MexB/MexA/OprM complex from P. aeruginosa [230-
235]. 

The IM and MFP proteins of these two systems are close homologous, with 
percentages of identity between their sequences of 69% (IM) and 57% (MFP). On 
the contrary TolC and OprM share only 19% sequence identity, even though the 
overall fold is conserved. 

Despite the larger structural and biochemical information available for the E. coli 
system, the pump from P. aeruginosa has more interest for medical/pharmaceutical 
research because of the significantly more severe pathogenic impact of the bacterium 
[236]. From the pharmacological point of view, the IM complex is the most 
important component of RND pumps (Fig. 8). In fact, drug recognition, binding, and 
active extrusion occur in this unit. The crystal structure of MexB (3.0 Å resolution) 
[235] reports an obligate homo-trimer assembly. Each unit has a transmembrane 
domain composed by 12 helices, and a large periplasmic domain. The periplasmic 
domain can be further divided into four subdomains building the pore domain, and 
two more subdomains, which constitute the docking region for the OMF. The three 
monomers are in close contact with each other both in the transmembrane and in the 
periplasmic region. Moreover, Each periplasmic subunit contains a long -hairpin 
that protrudes into one other neighbouring subunit. The transmembrane region 
contains well-conserved tritrable amino acids, which are necessary for the proper 
function of the protein, most probably mediating proton translocation [237]. 

MexB shares the same overall fold of its close homologue AcrB, therefore, it is 
assumed that the general mechanism of substrate extrusion postulated for AcrB is 
conserved also in MexB [238-240]. 
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In 2013, Nakashima et al., solved the structure of MexB in complex with a 
pyridopyrimidine derivative [233], reporting the first structural insights for 
MexB/inhibitor interactions (Fig. 8). Authors also crystallised the free MexB, 
finding a structure largely similar to that of Sennhauser et al., [235]. The binding 
geometry of the same pyridopyrimidine derivative to AcrB was also resolved, and 
showed relevant variations in the conformation of the ligand. These findings 
could highlight the presence of subtle differences in the mechanisms of drug 
binding and translocation between the two pumps. 

MexB. MexB and AcrB share two crucial regions first identified in AcrB as affinity 
sites of substrates. There regions are described in the literature as i) distal binding 
pocket (DP), a phenylalanine-rich pocket [238, 241], and ii) proximal binding pocket 
(PP) [241, 242], which is located toward the protein opening toward the periplasm. 

In a recent computational work, Collu et al., provided for the first time structural 
information on binding of antibiotics to MexB in these two regions [37] (Fig. 8). 
Identification of binding modes in both DP and PP for meropenem and imipenem in 
MexB occurred by repeated flexible docking calculations using the ATTRACT 
software  [243]. In order to reduce the computational costs, and to avoid excessive 
false-positive outcomes, the docking protocol was applied to the truncated periplasmic 
domain of MexB only. The best poses obtained by docking were used as starting 
configurations for all-atom molecular dynamics (MD) simulations for the four 
complexes containing the two antibiotics in the two pockets. The truncated complexes 
were solvated with roughly 45,000 water molecules for a total of 160,000 atoms per 
system. 50 ns long MD simulations for each antibiotic/MexB complex were 
performed using the ff99SB AMBER force field [90, 244]. 

Combining MD simulations with MM/PBSA calculations [141, 143, 144], it 
results that meropenem preferentially binds to DP (binding free energy = -8.1 kcal 
mol-1) than to PP. On the contrary, imipenem has only poor affinity for both the 
two pockets (0.6 kcal mol−1 and 0.4 kcal mol−1, respectively). This finding agrees 
with experimental data reporting a 4 to 8-fold increase in the minimum inhibitory 
concentration (MIC) of meropenem upon overexpression of MexB in P. 
aeruginosa whereas the MIC for imipenem is unaffected [245-249]. 
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The qualitatively different behaviour of the two antibiotics can be rationalised in 
terms of dehydration properties upon binding to DP. In fact, both meropenem and 
imipenem are progressively dehydrated passing from the bulk to the PP to the DP. 
Analysis of the interactions with the solvent revealed that only imipenem formed 
artificially long-lifetime interactions with water molecules in DP. In particular, a 
significant fraction of hydrating waters (~38%) had average residence times of 
more than 1 ns, while, in the bulk, all hydrating waters exchange with 
characteristic times lower than 50 ps. 

Moreover, the position of imipenem in DP recalls that of doxorubicin in mutated 
AcrB F610A [250]. In this particular mutant, doxorubicin, a good substrate for 
wild type AcrB, is instead very poorly transported [251], as also found by 
independent MD studies by Ruggerone and co-workers [250]. In contrast to 
imipenem, meropenem localizes in a region of DP in proximity of the external 
channel, thus assuming a favourable conformation for extrusion. 

Data discussed here were acquired in the T monomer of MexB, the one supposedly 
tightly binding the substrate. The docking protocol used for this study did not 
capture relevant binding geometries of either imipenem or meropenem in the 
monomer in the L conformation. In fact, the L monomer of MexB appears in the 
crystal structure to be characterized by a closed PP, thus, not allowing binding of 
substrates in the absensce of a local conformational modification [235]. The 
analogous PP in the L monomer of AcrB is instead capable of binding chemically 
different substrates [241, 242]. So large differences between the AcrB and MexB 
asymmetric structures occurring in the L monomer only were unexpected before 
crystallization of MexB. The most recent structure of MexB confirms this peculiar 
difference between the two proteins. This may be an indication of the presence of 
subtle differences in the early recognition process. Further studies on the structure of 
MexB may shed light on this very intriguing issue. 

4.2. Novel Antimicrobial Peptide Dendrimer Selectively Targeting Bacterial 
Membranes 

Bacterial antibiotic resistance, especially in Gram- pathogens like P. aeruginosa, 
is nowadays life-threatening for several individuals, especially for people affected 
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bilayer (model of the eukaryotic membrane), or ii) of an asymmetric LPS on top 
of a 1,2-dipalmytoyl-3-phosphatydyl-ethanolamine (DPPE) layer as a model of 
the PA outer membrane. Force field parameters and thermally equilibrated 
coordinates for the two membrane systems were taken from previously published 
works [250, 262]. 

bH1 invariably approached the membrane surfaces in a relatively short time (~10 
ns), showing an intrinsic tendency to adhere to the membrane surface. In this 
phase, most dendrimer-membrane contacts involve the eight positively charged 
ammonium groups at the termini of the dendrimer branches. In bH1/POPC, the 
only interaction observed was between the denrimer amino-terminal group and 
the lipid phosphates, no evolution of the system was observed within the 
subsequent 0.5 s of MD. 

The structure of LPS in the outer membrane of PA is characterized by a multi-
layered assembly, where regions formed by hydrophilic saccharides alternate with 
regions characterized by high concentration of negatively-charged phosphate 
groups, stabilised by the presence of partially hydrated alkaline or alkaline-earth 
counter-ions [263]. Different from the bH1/POPC model, the bH1/LPS system 
showed a fast evolution dynamics. After an initial metastable phase at the 
water/surface interface, where the positively charged Leu2Dap terminal dendron 
and the two solvent-exposed 0--D-glucose sugars of LPS interact with each 
other, (Fig. 10, panel E), MD simulations report penetration into LPS of a first 
Leu2Dap end by transient formation of a hydrogen bond with 6--D-glucose. 
After initial insertion, the first branch moves through deeper layers of sugars until 
it stabilizes at a distance of roughly 18 Å from the water-LPS interface. In this 
region LPS the three anionic phosphate groups of phosphorylated 2-(2-
hydroxyethyl)-6-deoxy-D-manno-heptose anchor the cationic amino termini of 
the inserting dendron branch (Fig. 10, panel H). 

The rest of the 0.5 s-long MD simulations reported no further penetration of this 
first dendrimer branch. Meanwhile, the other dendrons of bH1 progressively 
inserted into LPS, always following a similar interaction pattern as for the first 
Leu2Dap dendron. Penetration of each of the four terminal Leu2Dap dendrons 
from the outer to the inner region of LPS occurs in a characteristic time of 100 ns 
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The required conformational change is correlated to the asymmetry of the Leu2 

Dap dendron. In fact, the β-branch is longer by one -CH2- group and thus, it has 
higher flexibility than the -branch. During MD, this longer branch is always the 
first to penetrate the LPS membrane, followed by Dap and the shorter -branch. 
Therefore, MD simulations suggest that early penetration of bH1 into LPS is 
favoured to some extent by larger conformational flexibility of the penetrating 
units. In turn, the branching residue must be able to allow multiple conformations 
and local coiling in order to optimize the competing interactions between the 
aqueous and membrane phases, so to facilitate the early steps of the penetration. 

The simulated model for the LPS membrane has two highly negatively charged 
layers in its structure. Within the simulated time, bH1 migrated toward the first of 
these charged regions, situated at ~18 Å from the LPS surface. Penetration to the 
second layer, which sits approximately 8 Å deeper might occur at longer 
timescales. In a parallel experiment, bH1 was exposed to 5(6)-carboxyflourescein 
(CF) loaded large unilamellar vesicles composed of phosphatidylglycerol as head 
groups. bH1 induced CF release at low concentration (1-30 g/mL), implying an 
action of disruption of the membrane. On the contrary, unilamellar vesicles with 
phosphatidylcholine head groups released CF only after treatment with bH1 at 
concentrations at least as high as 200 g/mL, showing that bH1 only weakly 
interacts with Zwitterionic head-groups [38], thus stressing the relevance of 
electrostatic complementarity for the action of bH1. 

The presented work is a case example of how MD simulation can be helpful in 
dissecting the molecular origin of complex phenomena like selective membrane 
recognition and disruption. MD runs showed that not only electrostatic, but also 
local flexibility is required to optimize antimicrobial potency of this kind of 
systems. In fact, subtle changes in amino acid sequences may be deleterious for 
the activity, even though the total charge of the dendrimer is unaffected. The 
presented simulations aimed at identifying the origin of molecular selectivity for 
membranes, and did not address the fate of the membrane upon dendrimer 
binding. In fact, the simulation time was relatively short, and the end of them LPS 
bilayer was still well organized and practically unaffected by the presence of the 
dendrimer. Studies on the antimicrobial function of bH1 require exploration at 
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longer timescales, also including possible aggregation of multiple bH1 units into 
LPS. 

5. MD AND QM-MM METHODS FOR DRUG DESIGN: THE CASE OF 
THE ENZYME FAAH 

As discussed in the previous paragraphs, the activity of one or more enzymes can 
be related to the development of a disease and therefore be targeted by drug 
discovery programs. In fact, most small-molecule drugs produce their beneficial 
pharmacological effects through the modulation of a targeted enzyme function. In 
this context, computational methods are often used to explain in detail how 
selected inhibitors are able to modulate the enzyme function of interest, which can 
be potentially crucial in designing more effective drugs. 

Here, we report on recent computational investigations of a promising enzyme 
target for drug discovery, namely the fatty acid amide hydrolase (FAAH). FAAH 
is a key enzyme involved in the endocannabinoid metabolism, which is 
fundamental for human health and crucial in the regulation of pathophysiological 
processes such as pain and inflammation  [264]. FAAH is an intracellular serine 
hydrolase that acts with a specific mechanism of hydrolytic degradation of 
endocannabinoids. Therefore, inhibition of the enzyme FAAH increases the level 
of endogenous cannabinoids  [265], which is considered a promising strategy to 
treat an ever-increasing number of pathologies, spanning from pain to 
inflammatory-related diseases such as cancer [266]. 

Over the last decades, a wealth of structural data on FAAH allowed a detailed 
understanding of the structural features of the enzyme catalytic site  [267, 268]. 
Briefly, FAAH binding site includes a catalytic triad (Ser241-Ser217-Lys142) that 
performs the hydrolysis of the endocannabinoid substrate, while an oxyanion hole 
(Gly239-Gly240-Ser241) stabilizes the substrate for catalysis. Structural, kinetic 
and computational studies on FAAH catalysis have suggested a catalytic 
mechanism that involves a complex multi-event reaction sequence that leads the 
endocannabinoid substrate to hydrolysis and release, closing the overall catalytic 
cycle  [269]. Then, additional structural data have elucidated the mechanism of 
inhibition of FAAH by potent enzyme inhibitors. In this respect, of particular 
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relevance was the co-crystallization in FAAH of some potent covalent inhibitors, 
which have been shown to block the FAAH activity through the formation of a 
covalent bond with the nucleophilic Ser241  [270]. 

Most of these covalent inhibitors of FAAH are potent electrophilic compounds 
characterized by the presence of an activated carbonyl group. These include 
trifluoromethylketones, α-keto amides, α-keto esters and α-ketoheterocycles, such as 
OL-135  [271, 272]. Nevertheless, most of these compounds have low target 
selectivity and efficacy in vivo. Later, a class of FAAH covalent inhibitors with a 
promising drug-like profile was designed based on an N-cyclohexylcarbamic acid O-
aryl ester template, including URB597, a highly potent FAAH inhibitor both in vitro 
(IC50 = 4.6 nM) and in vivo (ED50 = 0.15 mg/kg, in rat). Interestingly, QM/MM 
calculations were used to describe, at the atomic level, the reaction between FAAH 
and some of these carbamic acid aryl ester inhibitors [27]. The carbamoylation of the 
active nucleophile Ser241 by compounds of this class, including the reference 
compound URB597, suggested a selected reactive orientation of the inhibitor, which 
was later confirmed by the crystallographic resolution of the FAAH-URB597 
carbamoylated structure [270]. Importantly, this represents a significant example of 
how QM/MM-based modelling can contribute to the rational explanation of 
mechanism of action of potent enzyme inhibitors [273]. 

The ability of FAAH to cleave amides and esters at similar rates suggested, however, 
that not only carbamates but also ureas could act as good carbamoylating agents. 
Indeed, Pfizer and Cravatt’s lab recently discovered a novel class of potent FAAH 
inhibitors that are based on cyclic piperidine and piperazine aryl ureas, which are 
cleaved by Ser241 forming a covalent enzyme-inhibitor adduct. The presence of the 
piperidine or piperazine moiety of these compounds was indeed hypothesised to 
favour the covalent interaction of the inhibitor with Ser241. The distortion of the 
urea functionality at the FAAH active site seems prompted by the flexibility of 
piperidine- and piperazine-based compounds, with consequent formation of a 
covalent bond between the inhibitor and Ser241. 

To investigate this functional hypothesis, Palermo et al., [39] performed an 
extensive computational analysis centred on piperidine-based PF750 and 
piperazine-based JNJ1661010 inhibitors, which are two lead compounds used to 
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atomic-level interactions between a ligand (which could be either the endogenous 
substrate or a small molecule inhibitor), and its target protein. Examples spanned 
from quantum enzymology, where quantum mechanics was used to decipher 
specific metal-aided enzymatic mechanisms and related free energy balances in 
bacterial and viral metalloenzymes, to extensive molecular dynamics simulations 
of protein/drug interactions in multidrug efflux pumps, bacterial membranes and 
in the endocannabinoid-degrading enzyme FAAH. Given the vast applicability of 
these techniques, our list of examples is far from being exhaustive. Several other 
examples can be found in the literature (see for example  [2, 3, 7, 10, 17, 18, 24-
26, 108, 112]) and the interested reader is encouraged to delve into other reviews 
and books that might focus on the application of molecular modelling to 
pharmacologically relevant targets that concern the specific therapeutic area of 
interest. 

A detailed comprehension of how the target protein works, and the individuation 
of key ligand-target interactions are key to more practical applications in 
structure-based drug design, ultimately helping the challenging process of drug 
discovery. Given the continuous progression of computer power and the 
improvement of algorithms for computations, molecular modelling will certainly 
spread its applications to more and more challenging questions and model 
systems. For example, the direct integration of molecular modelling with the 
increasingly broad range of experimental data (what is commonly called 
integrative modelling) has recently shown the potential to enhance our 
mechanistic understanding of biological  [274]. Within this context, molecular 
simulations have reached nowadays a level of predictivity such that they can be 
used straightforwardly in parallel and/or in integration with the experiment, 
providing valuable synergic information within what can be called an “integrative 
dynamic modelling” framework [275]. For example, combination of MD studies 
and biochemical data led recently to the identification of a previously unknown 
enzymatic function for cellular-retinaldehyde-binding-protein CRALBP, a crucial 
retinoid transporter, whose missense mutations are associated to severe autosomal 
degenerative diseases of the retina  [276, 277]. Moreover, the combination of low-
resolution spatial data and MD simulations has been the key to have additional 
insights into macromolecular assembly, such as in the case of the Yersinia 
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enterocolitica injectisome [278, 279], the pore-forming toxin aerolysin [275, 280], 
and the bacterial PhoP/PhoQ two-component regulatory system  [281]. Extensive 
multi-scale simulations of these challenging model systems were able to identify 
new mechanisms of function, signing a first step in the direction of devising 
possible inhibition strategies. 

The challenge is now to bridge the understanding of these fundamental 
mechanisms regulating relevant pathophysiological processes with the discovery 
of new drugs. It our view, computational insights on ligand-receptor interactions, 
and protein function will more and more impact the rational design of better 
inhibitors, as a promising starting point for drug discovery efforts. 
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