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Preface 

Switching fabrics first appeared in telephone exchanges, where there 
was a need to interconnect many pairs of telephones installed in the 
network. Due to the large number of connected subscribers and inter-
exchange links, switching fabrics in telephone exchanges have to serve 
a great number of input and output ports. Because of the scale, large 
switching fabrics were constructed from smaller ones. The way of 
building switching fabrics from elements of smaller capacity and different 
characteristics of switching fabrics topologies has been for a long time 
a rich area of theoretical research. The seminal work is due to C. Clos 
[23], who first considered multistage strict-sense nonblocking switching 
networks, and V. E. Benes [9], who first introduced the mathemati
cal theory of switching networks. From that time, many research was 
conducted in this field. Switching fabrics found its application not only 
in telecommunication, starting from telephone exchanges through ATM 
switches and IP routers to optical cross-connect systems and optical 
packet switches, but also in other areas of knowledge like computation 
and control. Theory of switching fabrics becomes also a part of applied 
mathematics. Results of studies carried out by researchers from these 
area were published in numerous papers and some books. 

This book is intended for people interested in the switching the
ory, and especially combinatorial characteristics of switching networks. 
It contains a considerable amount of already known results. Some of 
them are presented in more detailed form, other are only mentioned. 
The book contains many original results accrued by the author during 
his work at Poznan University of Technology on combinatorial properties 
of switching fabrics. The contents of the book is partially taken from 
the author's lecture notes given at Poznan University of Technology for 
post-graduate and doctoral students. I hope this book will be useful 
to not only post-graduate and PhD students but also to engineers and 
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switching fabrics designers who want to gain knowledge on switching 
theory and especially on combinatorial properties of switching fabrics. 

WOJCIECH K A B A C I N S K I 

BRANAOWO, 2004 
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Chapter 1 

I N T R O D U C T I O N 

1.1 What Is Switching? 

Telecommunication networks are designed to convey information 
between users. This information is provided by the user through 
appropriate terminal unit (telephone set, PC, for example). When two 
users want to exchange information, their terminals are to be connected 
by a transmission system. When there are more than two users con
nected to the network who want to exchange information, transmission 
systems are to be provided between each pair of them. The example 
of the network with six telephone users is shown in Fig. 1.1. In this 
approach N{N — l)/2 links are needed when N users are to be connected. 
This is not practical since links are rarely used by users, and for large 
number of users such realization is infeasible. Therefore, switching nodes 
were introduced in telecommunication networks (see Fig. 1.2). A switch
ing node provides, on request, connecting path between a pair of users. 
Users are connected to the node by one transmission system, which is 
called a subscriber loop in case of the telephone network. Depending 
on the way information is conveyed in a telecommunication network, 
this connecting path may be provided for the duration of a connection 
(circuit switching), or only when information is really transmitted (packet 
switching). 

Practical telecommunication networks contain many switching nodes, 
usually connected between themselves in the hierarchical order. One 
example is the telephone network with local exchanges and different 
classes of transit exchanges, as is shown in Fig. 1.3. Another example 
is the Internet network with many core and edge routers used to convey 
IP packets between users (see Fig. 1.4). 
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Figure 1.1. The example of the 
telephone network with six telephone 
subscribers 

m m 
Figure 1.2. The example of the 
telephone network with six telephone 
subscribers and a switching node 

Local 
txchange 

9J/ J^m U^ ^ 
I ^ Local i Local j - i ^ ' I 
I jgchangel ^change! ^hangep 

Figure 1.3. The telephone network 
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Figure 1.4- The Internet network 

Telecommunication networks are only one example where switching 
fabrics are used. Another area is computer industry, where switch
ing fabrics are implemented for instance in processor/memory intercon
nects for vector supercomputers, multicomputers and distributed shared-
memory multiprocessors, clusters of personal computers or workstations, 
local, metropolitan or wide area networks (LANs, MANs, WANs) [39]. 
Switching fabrics are also used in other areas, for example in Viterbi 
decoders [3]. 

Different names are used for devices which perform switching func
tions. In telephone exchanges this part of exchange which performs 
switching was called a switching network. In multiprocessor systems 
the term an interconnection network or a multistage interconnection 
network (MIN) was used. When the speed rates of switched signals 
became greater and new transferring modes were introduced in the 
network (ATM networks, IP networks) the term a switching fabric or 
a switch fabric was introduced. In this book the term a switching fabric 
will be mostly used. 
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1,2 Evolution of Switching Technologies 
The first switching technology implemented in telecommunication 

networks was manual switching. It was used in both telegraph and tele
phone networks. The first telephone exchange was installed in 1878, only 
two years after A. G. Bell invented the telephone. Telephone connec
tions were set up by an operator on a manual switchboard by plugging 
a patch cord into respective jacks. 

The next switching technology was electromechanical switching. 
Two kinds of electromechanical switching systems were installed in the 
telephone network. The first one was a step-by-step system invented 
by A. B. Strawger and implemented in the telephone network in 1892. 
This switching system was build from elements called Strawger switches. 
The other system is called the crossbar switching system. The first such 
system was installed in 1938. The crossbar switch used horizontal and 
vertical bars to select the contact. Such implementation of a switch 
is still used in switching, but the technology used has changed from 
electromechanical to electronic and photonic. 

Invention of the vacuum tube and later the transistor started the 
electronic era not only in telecommunication industry. Binary devices 
in logic circuits, like gates and flip-flops, were used in different parts 
of switching systems for controlling and also for switching. First, elec
tronic switching systems used analog electronic gates to switch analog 
signals from inputs to outputs. Implementation of digital transmission of 
voice signals in PCM systems made analog switching inconvenient, since 
digital signals had to be converted into analog form for switching, and 
then they had to be back digitized for transmission to the next switching 
exchange. Integrated circuits and electronic memories enabled to move 
from analog switching to digital switching. The first digital switching sys
tem was installed in 1976. Digital switching allowed substantial growth 
on the size of electronic switching systems. This switching technology 
is currently used in switching systems, not only in telephone exchanges 
but also in packet switches (IP routers) and digital cross-connect systems 
used in transport networks based on SDH/SONET systems. 

Optical fibers introduced in transmission systems offer a huge trans
mission bandwidth unavailable for copper cables. Transmission bit rates 
of 2.5, 10 and 40 Gbps are now available and soon rates of 160 Gbps 
will be available commercially. Electronic switching cannot be used at 
such high rates, so incoming signals have to be not only converted from 
optical to electrical form but also have to be demultiplexed to lower 
bit rates. To omit this inconvenient and expensive signal conversion 
and demultiplexing, switching systems based on the optical technology 
have been elaborated in research laboratories and industry. Optical 
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Transfer 
Modes 

Switching 
Techinques 

STM 

Circuit switching 
Multirate circuit switching 
Fast circuit switching 

PTM 

Packet switching 
Frame switching 
Frame relaying 

ATM 

ATM switching 

Table 1.1. Transfer modes and switching techniques 

switching^ called also photonic switching^ enables optical signals to be 
switched directly from inputs to outputs without conversion to electronic 
form. Optical switching technology is used in optical cross-connect sys
tems installed in emerging automated switched optical transport net
works (AOTN). Much research is also carried out to implement optical 
switching in switching nodes using packet and ATM switching. 

1.3 Transfer Modes and Switching 
The term transfer mode is used by ITU-T to describe a technique 

which is used in a telecommunication network, covering aspects related 
to transmission, multiplexing, and switching [33]. Three main trans
fer modes are called Synchronous Transfer Mode (STM), Packet Trans
fer Mode (PTM), and Asynchronous Transfer Mode (ATM). Different 
switching techniques are connected with these transfer modes. They are 
summarized in Table 1.1 and will be described in following sections. 

1.3.1 Synchronous Transfer Mode 
In STM transmission bandwidth is organized into periodic frames. 

Each frame consists of certain number of bits grouped into time slots, 
each of the same number of bits. The general architecture of the STM 
frame is shown in Fig. 1.5. The first time slot, denoted by TSO, usually 
contains synchronization pattern, which enables determination of the 
beginning of each frame at the receiver. Remaining time slots of each 
frame are used for conveying data. 

Two types of STM systems are used in telecommunication networks. 
Duration of the frame is 125 /is, since 8 kHz sampling frequency was 
normalized for PCM systems used for voice circuits. Two formats of 
PCM systems are used worldwide. One format uses frames composed 
of 24 time slots (used in North America), the other uses 32 8-bit time 
slots (Europe). The latter system, called also PCM 30/32 or El, uses 
TSO for synchronization (called also synchronization channel), one time 
slot (usually TS16) for signalhng (signalhng channel), and the remaining 
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Direction of transmission 

Empty User 2 User 1 Synchronization 
time slots 

Figure 1.5. Synchronous Transfer Mode 

time slots (called also data channels) are used for conveying user data. 
Another frame is STM-1 frame used in SDH systems. Both, El and 
STM-l systems, are further multiplexed and form so cold digital hierar
chies, called Plesiochronous Digital Hierarchy (PDH) and Synchronous 
Digital Hierarchy (SDH), respectively. 

Circuit switching technique is used in STM mode. In circuit switching 
time slots are assigned to users on the call-by-call basis. When a time 
slot is not assigned, it is free but it is always present in the frame. 
Assigned time slots carries only user information. Source and destination 
addresses are determined by the number of time slot which is assigned 
to the connection during a call set-up phase. In other words, the time 
slot number is a label which is used to route data in this time slot, since 
each connection always use the same time slot in the frame during the 
complete duration of the connection. 

Circuit switching provides a fixed bit rate for transmission. For in
stance, in El system this rate is 64 kbps (8 bits per frame, 8000 frames 
per second). Multirate circuit switching was proposed to overcome the 
inflexibility of this single bit rate when services with different bit rate 
requirements were introduced. In multirate circuit switching, called also 
multi-channel or multi-slot switching^ one connection may occupy more 
than one channel of basic bit rate. This type of switching is used in 
N-ISDN (Narrowband Integrated Services Digital Networks) for 
example, for videotelephony. 

Another inconvenience in circuit switching is that occupied channels 
cannot be used by other connections when no information is being sent 
by users. To use channels more efficiently, fast circuit switching has 
been proposed [133]. In fast circuit switching information on the re
quired bandwidth, destination, and label identifying the connection are 
assigned during the connection set-up phase, but channels are allocated 
dynamically only when information is being sent from the source to the 
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Direction of transmission 

_ Jaffi i 4̂  H H 

H - Header 
User 2 User1 

Figure 1.6. Packet Transfer Mode 

destination. This approach, however, has not found practical implemen
tation in the telecommunication network. 

1.3.2 Packet Transfer Mode 
In PTM user data are transferred by structured sequences of bits 

called packets. Each packet, apart from user data, also contains addi
tional information which is used inside the network for routing, error 
control, flow control, etc. This information is placed at the front of 
packets and is called a header (some additional bits, like error correct
ing codes, are located at the end of packets). Packets have a variable 
length and may be transmitted at any time, provided that no other 
packet is transmitted in a transmission link. The concept of PTM is 
shown in Fig. 1.6. Unlike in STM mode, a new packet may appear on 
the link at any time, and when there is no information to send, no packet 
is transmitted in a link. 

Packet switching technique is used with PTM. Different types of 
telecommunication networks were based on PTM, starting from tele
graph network which may be considered as a packet switching network. 
Other networks like X.25 and its alternative solutions (i.e., frame relay
ing and frame switching) or Internet also use PTM. 

1.3.3 Asynchronous Transfer Mode 
Asynchronous Transfer Mode combines features of STM and PTM. 

In ATM data are transferred in fixed length packets called cells. 
Similarly, as in STM mode, cells are transmitted synchronously one 
after another, and a time for transmitting one cell is called a time 
slot. When no information is to be sent an empty cell is transmitted. 
However, transmitted cells are not structured into frames, like in STM 
mode. Users can insert data into any empty cell, so cells transmitted 
from a user may appear at any time when new cell (time slot) is started, 
similarly as in PTM, and time slot number cannot be in this mode used 
as the label (address information). Therefore, each cell contains a header 
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Direction of transmission 

Figure 1.7. Asynchronous Transfer Mode 

with a label, which is used to direct a cell to a destination user. A label is 
assigned to the connection at the connection set-up phase and is released 
after the connection is terminated. When no information is to be sent 
when a connection is set up, empty cells are sent. This approach enables 
the use of transmission bandwidth more efficiently than in STM, where 
time slots occupied by connections cannot be used by other connection 
even if no data is being transmitted. The concept of ATM is shown in 
Fig. 1.7. 

1,4 Architectures of Switching Nodes 
1.4.1 General Switch Architecture 

The general architecture of a switching node is presented in Fig. 1.8. 
It contains N input modules, N output modules, a switching fabric, 
a control unit, and a management unit. Each input link is connected to 
one input module. Functions realized in the input module depends on 
the transmission method used in the link. In general, it converts line 
signals to signals suitable for processing and transmitting in the switch
ing node. It also synchronizes frames, extracts signalling information 
and passes it to the control unit, and prepares signals for transmission 
through the switching fabric. The switching fabric transfers input sig
nals to requested output modules through connecting paths, which are 
set up for this purpose. At the output module, signals received from 
the switching fabric are prepared for further transmission through the 
output link. This includes framing, insertion of signalling information 
if required, and transcoding signals to the line code and form appro
priate for the output link. The control unit processes connections, sets 
up connecting paths through the switching fabric, processes signalling 
information, handles errors in call processing, and performs traffic rout
ing and management functions. The management unit manages the 
configuration of the switching node, performs testing, billing and secu
rity management. Some other units, not shown in Fig. 1.8, like main 
distribution frame and powering, are also parts of the switching node. 
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Figure 1.8. The general switching node architecture 

We will now describe architectures and functions of switching nodes in 
several telecommunication networks, and give also some other examples 
where switching fabrics are used. 

1.4.2 Telephone Exchange 
Telephone subscribers used to be connected to the telephone exchange 

through subscriber line interface circuits (SLIC) placed in remote units 
called concentrators. Concentrators were connected to the main 
exchange by means of the set of El links. This type of links was also used 
for connections with other exchanges. Switching fabrics used mainly cir
cuit switching with time-division multiplexing TDM (called also TDM 
switching). The principle of TDM switching is shown in Fig. 1.9. The 
switching of a time slot from incoming link to outgoing link is con
trolled by a translation table, which contains the relation between the 
slot number of an incoming link and the associated slot number in an 
outgoing link [33]. For instance time slot TSl of input link 1 will al
ways be switched to TS3 of output link 1. This relation is established 
during connection set-up phase and is maintained until the connection 
is terminated. The contents of the translation table is modified when a 
connection is set up or released. In the switching fabric switching can be 
done in switching elements which performs this function only in space 
(i.e., they move a time slot form one input link to the same time slot of 
any output link), time (a time slot form the input link is switched to any 
time slot of the output link), or in a combination of both. The switch
ing fabric of Fig. 1.9 performs the switching function in both domains. 
The same approach is used in mobile switching centers (MSC) of GSM 
networks. 

Currently, subscribers are more often connected to the remote sub
scribers modules which are connected to a main exchange by means of 
access networks. 
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Figure 1.9. TDM switching - principle of operation 

1.4.3 ATM Switches 
Functions of the input and output modules of ATM switch, called 

input and output port controllers, respectively, are shown in Fig. 1.10. 
Input and output port controllers may be fabricated on one circuit board 
called the line interface card. Input line is connected to the physical in
terface which converts incoming bit stream from line code to binary code 
(optical to electronic conversion is also performed when optical fiber is 
used), synchronizes bits and frames (when cells are transmitted in the 
frame, for instance SDH/SONET or El), end process information in the 
header of the frame. Extracted cells are passed to the cell synchroniza
tion units, which delimits cells' boundaries, checks correctness of received 
cells, discards cells with errors in header and empty cells, and passes 
remaining cells to the cell processing unit. In the cell processing unit 
cells are prepared for transmission through the switching fabric. 
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Figure 1.10. ATM switch 

The destination output port for each cell is determined using routing 
information table and an internal header is added. Depending on the 
switch organization buffers may be also placed in input module to over
come output contention problems. 

At the output port controller, cells from the switching fabric are 
passed to the cell processing unit, which removes internal header and 
inserts new header with the label assigned to the cell on the outgoing 
link. In HEC unit header error check code is calculated and inserted in 
the respective field of cell's header, and empty cells are generated if nec
essary. Then cells are put into frames (if framed transmission is used) 
and converted to the signal appropriate for transmission in the output 
link. Output buffers are also located at the port controller. 

The principle of ATM switch operation is shown in Fig. 1.11 [18, 33]. 
Each cell is directed to the requested output according to the label lo
cated in its header. This label contains VCI {virtual channel identifier) 
and VPI [virtual path identifier). The label has a local meaning, is as
signed during connection set-up, and is placed in the routing information 
table together with output port number and the new label which is to be 
used in the output link. The example of such routing table is also shown 
in Fig. 1.11. In each time slot, destination ports for cells from each input 
port are taken from the routing table, routes through the switching fab
ric are determined, connecting paths are set up (in case the switching 
fabric is self-routing, connecting paths are determined in the switch
ing fabric switch-by-switch from the output port address placed in the 
header at the cell processing unit of the input port controller), and cells 
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Figure 1.11. ATM switching - principle of operation 

are transferred to output ports. In ATM switching it may happen that 
in a given time slot, two or more cells should be directed to the same 
output port. This phenomenon is called output port contention and is 
solved by buffering cells. Buffers may be placed in different units of the 
switch, for instance at inputs, at outputs, or inside the switching fabric. 

1.4.4 IP Routers 
IP routers can be categorized depending on their size into low-end 

routers, middle-size routers, and high-end routers [18]. The first two 
classes performs switching functions in software. Line cards are con
nected to the central processing unit through a shared bus. Processing 
units can be also placed on line cards for packet forwarding, in order to 
reduce the central processing unit load. The capacity of the processing 
unit and central bus speed limits the capacity of such types of routers. 
In high-end routers of large capacity a switching fabric is used to switch 
packets between inputs and outputs. The general architecture of such a 
router is shown in Fig. 1.12 [16, 18]. Ingress line card contains phys
ical interface and packet processor. The physical interface performs 
optical-to-electrical and serial to parallel conversions. It also synchro
nizes incoming bits, processes frame overhead and delineates packets. 
Packets are then processed by the packet processor, which performs ta
ble lookup and packet classification. The packet processor also performs 
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Figure 1.12. High-end IP router 

various control functions like traffic access control, bufTer management, 
and packet scheduling. All these functions may be implemented in more 
than one unit. Most switching fabrics use synchronized packet switch
ing, i.e., variable length input packets are segmented into fixed length 
packets for transferring through the switching fabric. This function is 
also realized in the packet processor. 

After switching, fixed length packets are again processed by packet 
processor at the egress line card. They are reassembled to original vari
able length packets, buffered and scheduled for transmission. At the 
physical interface packets are placed in appropriate frame (SDH/ 
SONET), frame header is generated, and then the bit stream is con
verted from parallel to serial and from electrical to optical form. 

Fixed length packets are called cells, but they do not have the same 
length as ATM cells. The principle of switching is the same as for ATM 
switching. 

1.4.5 Cross-connect Systems 
Cross-connect systems are switching nodes used in transport net

works. When transport networks is based on SDH/SONET systems 
and switching is made in electronic form, the switching nodes are called 
digital cross-connect systems (DXCs) and digital add/drop multiplexers 
(ADMs). The principle of switching in these systems is similar to TDM 
switching. Currently optical transmission is used in transport networks 
and DXCs are being replaced with optical cross-connect systems (OXCs) 
and optical ADMs (OADMs). The optical transport network is shown 
in Fig. 1.13. It provides connecting paths between users (telephone ex
changes, IP routers). This connecting path is also called the lightpath, 
and it uses one optical channel (one wavelength) in an optical fiber. The 
optical transport network may use ring or mesh topology. OADMs are 
placed on the network edge, and provide access to the optical transport 
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Figure 1.13. An Optical Transport Network 

network. OADMs are also useful in building simple optical networks 
with small numbers of nodes and wavelengths. 

Different architectures of OADMs were proposed in literature and im
plemented in practice [142]. Some of them use optical switching fabric 
to switch wavelengths. Two examples of such architectures are shown 
in Fig. 1.14. In the first example simple 2 x 2 switching elements are 
used. After wavelength demultiplexing each wavelength passes through 
the switching element and depending on the state of this element the 
wavelength is either switched through or dropped. When the wavelength 
is dropped, the same wavelength is also added through the switch. After 
switching, wavelengths are back multiplexed to the output fiber. The 
same function can be realized using the switching fabric of greater ca
pacity, as is shown in Fig. 1.14b. 

Several architectures were also considered for OXCs. One of these ar
chitectures with several switching fabrics, each for switching signals on 
different wavelengths, is shown in Fig. 1.15. Wavelengths from each in
put fiber are firstly demultiplexed and then each wavelength is switched 
by the different switching fabric. Each switching fabric switches only the 
same wavelength. After switching, wavelengths are back multiplexed to 
optical fiber. Instead of n switching fabrics (when n wavelengths are 
multiplexed in one optical fiber), one switching fabric of greater capacity 
can be used. Optical wavelength converters may be also used at outputs 
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or inputs of the switching fabric to convert incoming or outgoing signals 
from one wavelength to another. 

OXCs uses mostly circuit switching technique, however, optical packet 
switching and optical burst packet switching are considered for use in 
core routers [176, 131, 171]. Optical packet switching, however, will 
require faster optical switching elements and optical buffers. 

1.4.6 Switching in Multiprocessor Systems 
The growing need for fast computing and the limited speed of proces

sors lead to the proposition of the new architecture of computer systems. 
Parallel computers were designed to increase processing power. Such a 
computer contains multiple processors connected to memory and other 
input/output devices. Processors cooperate to solve a large problem and 
memory components are distributed among processors. In such archi
tecture, some kind of communication subsystem is required to connect 
processors with memories and other peripherals. It may be done using 
system buses, but when the number of processors and devices connected 
to the bus increases, then the bus becomes the communication bot
tleneck that degrades the performance of the system. The number of 
devices connected to the bus is also limited by electrical load character-
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istics. Another solution is to use switching fabric in which connections 
between processors and memory components will be done on request. 
Such a multiprocessor system is shown in Fig. 1.16. Communications 
between devices connected to the switching fabric is realized by means of 
messages. The switching may use circuit switching technique, where cir
cuit connection is established between devices before a message is sent. 
Another option is packet switching of fixed length packets. Different 
variations of switching packets in the switching fabrics where proposed, 
like virtual-cut through switching^ wormhole switching or mad postman 
switching [39]. Their purpose is to reduce the latency and increase the 
performance of the switching fabric. For instance, in virtual-cut through 
switching the decision were the packet is to be directed is made up when 
the packet header with routing information is received (the whole packet 
does not need to be in the node when this decision is made up). In worm-
hole switching fixed length packets are further divided into so called fiits, 
where flit is the unit of message flow control. 

1.4.7 Switching in Storage Area Networks 
A Storage Area Network (SAN) is a network whose primary purpose 

is the transfer of data between computer systems and storage elements. 
A SAN consists of a communication infrastructure, which provides phys
ical connections, and a management layer, which organizes the connec-
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tions, storage elements, and computer systems so that data transfer is 
secure and robust [157]. A SAN allows any-to-any connections across 
the network using network elements such as routers, gateways, hubs, 
and switches. These networks are built by enterprises having medium 
to large data centers. They eliminate the traditional dedicated connec
tion between a server and DAS (direct access storage). Servers have no 
longer their own storage devices but are connected by a switch to vari
ous types of peripheral and storage devices. This architecture is shown 
in Fig. 1.17. Different standards were developed for this purpose by 
companies, like ESCON (enterprise serial connection). Fiber Channel, 
or HIPPI (high performance parallel interface). First SAN operated 
within a building or campus, but today SANs operate over a wider area 
like metropolitan or even long-haul networks and operate at bit rates 
ranging from 200 Mbps to 1 Gbps. This architecture spread over a 
wider area is shown in Fig. 1.18. 

The channel set up through a SAN makes that applications see storage 
devices attached to the SAN as if they are locally attached storage [47]. 
A SAN supports direct, high speed transfers between servers and storage 
devices in the following ways: server to storage, server to server, and 
storage to storage [158]. Switches used in SANs are usually divided 
into two types, depending on their port number: directors and fabric 
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switches. Directors are usually devices of greater capacity, with 100 or 
more ports, and they're really designed to run in the core of the data 
center. The important features of directors are their high availability and 
high scalability. Fabric switches have lower port counts than directors, 
and their main design point is cost. Fabric switches are used in smaller 
SANs, in small or medium-sized enterprises, or at the edge of the data 
center. 

1.5 The Contents of the Book 
Many architectures of switching fabrics were proposed in the litera

ture. Description of all these architectures, their principles of operation 
and characteristics, are far beyond the scope of one book. When de
signing a switching fabric, many designing criteria should be considered. 
Some of these criteria are common to all switching fabrics, other depends 
on the technology used or switching fabric's application. 

One measure which is used to compare the switching fabric is their 
cost. This cost depends on the number of required switches, but other 
factors like packaging, ease of fabrication and control should also be 
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taken into account. Scalability, expandability, and reliability are also 
important characteristics which are considered when designing switch
ing fabrics. An important characteristic in photonic switching is losses 
introduced by connecting paths and difference between maximal and 
minimal losses of different connecting paths. This difference is often 
expressed in the difference between the maximum and minimum num
ber of switching elements in the optical path of different input terminal 
and output terminal pairs. When switch fabric is integrated on a single 
substrate, waveguides connecting switching elements may intersect be
tween themselves. The number of such waveguide crossovers is also the 
measure considered in the switch fabric design and should be minimized 
since they introduce additional power losses and crosstalk. In packet 
switching a switching fabric should provide bounded delay and small 
cell or packet loss probability while achieving a maximum throughput 
close to 100%. The switching fabric should also provide a correct packet 
sequence at the output ports. 

This book covers only several switching fabric architectures and con
centrates on their combinatorial properties. Properties like rearrange-
bility or nonblockingness are connected with control algorithms used for 
finding a connecting path through a switching fabric. Some control al
gorithms used in architectures discussed in this book are also described. 
Only few books, to the author's knowledge, were devoted entirely to 
mathematical theory of switching fabrics. The first book, published in 
1965, is written by V. E. Benes [9]. Other books covering this subject 
were written by F.K. Hwang [56], A. Pat tavina [138], and S.-Y. R. Li 
[99], and were published in 1998, 1998 and 2001, respectively. Some other 
books contains collections of papers concerning combinatorial properties 
of different switching fabrics [37, 38]. 

In this book some known results concerning nonblockingness and re-
arrangeability of switching fabrics are surveyed, but it also contains new 
results published recently in scientific journals and conference proceed
ings. Many of these results were obtained by the author during his own 
research studies and when supervising PhD students. 

The organization of the book is as follows. In Chapter 2 the main 
terminology used in the switching theory and some classifications of 
switching fabrics are introduced. This classification is done using differ
ent criteria. Many other criteria, not covered in this Chapter, may be 
also proposed and considered, but those used in this Chapter introduce 
the main terminology which is later on used in this book. Connection 
types and connection models are also introduced. Graph representations 
of switching fabrics and connections sets are described at the end of this 
Chapter. 
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Chapter 3 is devoted to architectures and control of single path and 
standard path switching fabrics. First the crossbar architecture is de
scribed. Then triangular switches composed of crosspoints and 2 x 2 
switching elements are discussed. Control algorithms for these architec
tures are also given. Tree-type and one-stage switching fabrics are con
sidered next. Finally, banyan-type switching fabrics are discussed. The 
architecture, its control and graph representation are presented. Some 
examples of practical implementations of switching fabrics considered in 
this Chapter are given at the end. 

In Chapter 4 two-stage switching fabrics are covered. Short remarks 
about two-stage two-sided switching fabrics are first given. The main 
part of this Chapter is devoted to one-sided two-stage switching fab
rics composed of triangular switches. Space-division, time-division and 
multirate switching fabrics are considered. For each of them strict-sense 
nonblocking, wide-sense nonblocking, and rearrangeable conditions are 
discussed. 

Organization of Chapter 5 is similar to Chapter 3, but two-sided three-
stage switching fabrics are considered. First, different path searching 
algorithms are introduced for both unicast and multicast connections. 
Then strict-sense and wide-sense nonblocking conditions are discussed. 
Rearrangeability of these switching fabrics is covered next and several 
rearranging algorithms are presented. Finally repackable switching fab
rics are examined. The Chapter ends with some remarks about practical 
implementations of three-stage switching fabrics. 

Chapter 6 focuses on vertically rephcated baseline switching fabrics, 
extended baseline switching fabrics, and vertically replicated baseline 
switching fabrics. The general architecture of these switching fabrics and 
basic terminology used in this chapter is introduced at the beginning, 
followed by the description of several control algorithms for unicast and 
multicast connections. Then combinatorial properties of these switching 
fabrics under differen switching and connection models are considered. 



Chapter 2 

CLASSIFICATION AND TAXONOMY 

2.1 Switching Elements and Switching Fabrics 
In this chapter we introduce some basic terminology which will be 

used later on in this book. In general, a switching function means to 
make connections between a given set of terminals. The simplest element 
which can realize this function is called a crosspoint. It connects one 
input with one output and is usually placed in the crossing point of lines 
representing an input and an output. A crosspoint is represented by a 
circle, as shown in Fig. 2.1a. It can be in one of two states: on or off. 
When the crosspoint is in the on state, the signal is transmitted from the 
input to the output (Fig. 2.1c). In the off state the signal is not passed to 
the output. Different elements can be used as crosspoints, for example 
electronic gates, semiconductor optical amphfiers or micromirrors [65, 
177, 142, 110, 136]. 

a) 

input 

crosspoint 
b) c) 

X 
^ 

output 

Figure 2.1. A crosspoint; a) symbol, b) off state, c) on state 
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Another basic element which can realize the switching function is 
called a basic switching element (BSE). Unlike the crosspoint, BSE can 
connect more inputs and outputs. A directional coupler is one example 
of the BSE [48, 65]. It has two inputs and two outputs and it can be also 
in one of two states called cross and bar. In the cross state input 1 is 
connected with output 2 and input 2 is connected with output 1. In the 
bar state inputs 1 and 2 are connected with outputs 1 and 2, respectively 
(see Fig. 2.2). Directional couplers are used in optical switching, but 
there are also BSEs with two inputs and two outputs used in electronic 
ATM or IP switching. Some BSEs may have only one input and several 
outputs, one output and several inputs, or several inputs and outputs 
[41, 69, 168, 49, 21]. 

Crosspoints or BSEs are used to construct switching devices of greater 
capacities called switches. A switch with n inputs and m outputs is de
noted by n X 777. switch. A switch has the limited capacity and is produced 
as an integrated circuit or is implemented on one printed board. Exam
ples of 4 X 4 switches composed of crosspoints and 2 x 2 BSEs are shown 
in Fig. 2.3a and b, respectively. These switches are also often referred to 
as switching matrices or crossbars, since they use a crossbar architecture 
(this architecture will be discussed in more details in chapter 3.2). 
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A capacity of switches expressed in the number of inputs and outputs 
is hmited due to technological constraints (limited number of elements 
which can be placed on a chip or printed board, limited number of 
pins, etc.). When a switching device of greater capacity is needed more 
switches are to be connected between themselves. Such a device is called 
a switching fabric, A switching fabric with Ni input terminals and Â2 
output terminals has a capacity of Ni x Â2 • Input and output terminals 
are also referred to as inlets and outlets, respectively. An example of 9 x 9 
switching fabric composed of 3 x 4, 3 x 3, and 4 x 3 switches is shown 
in Fig. 2.4. Inputs of 3 x 4 switches constitutes input terminals of the 
switching fabric while outputs of 4 x 3 switches forms output terminals 
of the switching fabric. Other inputs and outputs are connected between 
themselves one to one by means of interstage links. 

It should be noted that sometimes the terminology used in the litera
ture can be found rather fuzzy. For instance 2 x 2 BSE may be a switch 
which is used to construct a switching fabric of greater capacity. This 
switching fabric may be implemented in a printed board, and more such 
printed boards may be connected between themselves to form another 
switching fabric. When it is necessary, in the former case we will refer 
to the term a switch fabric. However, architectures considered in this 
book may be used either as a switch fabric or a switching fabric. 
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2.2 Classification of Switching Fabrics 
Switching fabrics can be classified into different categories, depending 

on the criteria being used. Some of these criteria and corresponding 
classes of switching fabrics are given in Table 2.1. Some of them were 
already discussed in chapter 1 while others will be discussed in this and 
the following sections in more details. 

Technology used. Depending on the technology used nowadays switch
ing fabrics can be divided into two major classes: electronic switching 
fabrics and photonic switching fabrics (called also optical switching fab
rics). These and earlier technologies used in switching were already 
discussed in section 1.2 of chapter 1. 

Relationships between input and output terminals sets. Using 
this criterion switching fabrics can be categorized into two categories: 
two-sided switching fabrics and one-sided switching fabrics. In two-sided 
switching fabrics sets of the input and the output terminals are disjoint. 
A connection is always set up from input terminals to output terminals. 
An example of 4 x 4 two-sided switching fabric is shown in Fig. 2.5a. 
In many practical applications any terminal may request a connection 
to any other terminal, i.e., any terminal could be either an input termi
nal or an output terminal. Such switching fabrics are called one-sided 
switching fabrics (also referred to as folded switching fabrics). They can 
be obtained in two ways. The first approach, considered by Clos [23], 
is to use so-called triangular switches. An example of 4 x 4 one-sided 
switching fabric composed of triangular switches is shown in Fig. 2.5b. 
In this switching fabric connections between terminals belonging to the 
same first stage switch (for example between terminals 0 and 1) are set 
up inside this switch (switch 1 of stage 1), without using other switches. 
In the second approach, a one-sided switching fabric is obtained from a 
two-sided one by looping input and output terminals having the same 
numbers. A one-sided switching fabric obtained in this way from that 
presented in Fig. 2.5a is shown in Fig. 2.5c. A mixed switching fabric 
may be also constructed. Such mixed architecture contains Â i input 
terminals, Â2 output terminals, and Â s terminals, each of which may 
be either an input or an output terminal. 
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Criterium 
Technology used 

Relationships between inlets 
and outlets sets 

Number of stages 

Signal transmission directions 

Number of inputs and outputs 

Separation of data paths 

Number of paths between 
input and output terminals 
pair 
Number of links between 
switches in successive stages 
Output accessibility 

Combinatorial properties 

Number of input and output 
terminals which take part 
in a connection 

Bandwidth occupied 
by a connection 

Switching fabrics classes 
- electromechanical switching fabrics 
- electronic switching fabrics 
- photonic switching fabrics 
- one-sided switching fabrics 
- two-sided (folded) switching fabrics 
- mixed switching fabrics 
- single-stage (one-stage) switching fabrics 
- multistage switching fabrics 

(two-stage, three-stage, ...) 
- unidirectional switching fabrics 
- bidirectional switching fabrics 
- switching fabrics with compression 
- switching fabrics with expansion 
- switching fabrics with traffic distribution 
- space-division switching fabrics 
- time-division switching fabrics 
- wavelength-division switching fabrics 
- code-division switching fabrics 
- single-path switching fabrics 
- multi-path switching fabrics 

- fully connected switching fabrics 
- partially connected switching fabrics 
- fully accessible switching fabrics 
- not fully accessible switching fabrics 
- strict-sense nonblocking switching fabrics 
- wide-sense nonblocking switching fabrics 
- rearrangeable switching fabrics 
- repackable switching fabrics 
- blocking switching fabrics 
- unicast (point-to-point) switching fabrics 
- multicast switching fabrics 
- broadcast switching fabrics 
- multiconnection switching fabrics 
- single-rate switching fabrics 
- multi-rate switching fabrics 
- multi-channel switching fabrics 

Table 2.1. Criteria and classes of switching fabrics 

N u m b e r of s tages . The capacity of a single switching element is 

limited due to the technological constraints. Therefore, many such ele

ments are used to construct a switching fabric of greater capacity. The 

switches are usually arranged in stages. Outputs of switches in stage z, 

l ^ i ^ s — l^sis the number of stages, are connected to inputs of 
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Figure 2.5. Examples of a two-sided switching fabric (a), a one-sided switching fabric 
composed of triangular switches (b) and with loops (c) 

switches in stage z + 1 by means of interstage links. Inputs of switches 
in stage 1 constitute switching fabric's input terminals, while outputs of 
switches in stage s constitute its output terminals. Depending on the 
number of stages the respective switching fabric is called a two-stage, 
a three-stage, or a multistage switching fabric in general. The switching 
fabric of Fig. 2.5a is a three-stage switching fabric, while the switching 
fabric of Fig. 2.5b is a two-stage switching fabric. 
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Figure 2,6, Two-sided 2N x 2N one-stage switching fabric 

In case s = 1 we speak about a one-stage switching fabric. If it is 
composed of more than one switch, inputs and outputs of these switches 
are connected in parallel. The examples of two-sided 2n x 2n one-stage 
switching fabric composed of n x n switches is shown in Fig. 2.6. It is 
composed of four n x n switches. Inputs of switches 1 and 2 (3 and 4) 
are connected in parallel, while outputs of switches 1 and 3 (2 and 4) 
are connected between themselves in the similar way. 

Signal transmission directions. Depending on the technology used 
a switching fabric may be able to send signals only form input to out
put terminals, or in both directions. We refer to these switching fabrics 
as unidirectional or bidirectional switching fabrics^ respectively. For in
stance in switches based on directional couplers or MEMS switches using 
mirrors, light signals can be sent in either direction (Fig. 2.7a). Digi
tal switches based on digital gates and memories can transport signals 
only in one direction. However, in many practical applications, bidi
rectional transmission is required. In unidirectional switching fabrics 
two-way communication can be ensured using two approaches. In one 
approach two unidirectional switching fabrics are used, each for one di
rection. Such switching fabrics are referred to as four-wire switching 
fabrics (Fig. 2.7b). In another approach two independent connections, 
each for one direction, are established in a common switching fabric, 
as it is shown in Fig. 2.7c. Such switching fabrics are called two-wire 
switching fabrics. 

Number of input and output terminals. In general, a two-sided 
switching fabric may have Ni input terminals and Â2 output terminals. 
When Ni > N2 Si switching fabric is called a switching fabric with con-
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Figure 2.7. Two-way communication in two-sided bidirectional (a), unidirectional 
four-wire (b) and unidirectional two-wire (c) switching fabrics 

centration or simply a concentrator. For Â2 > ^ i we say about a switch
ing fabric with expansion (or an expander). Finally, when Ni = N2 Si 
switching fabric is called a distribution switching fabric or a distributor. 
In the case of one-sided switching fabrics we say only about terminals 
and there is no such relation between the number of input and output 
terminals. 

Number of paths between input and output terminals. To con
nect two terminals between themselves a connecting path (or simply a 
path) is set up through a switching fabric. This path consists of an input 
terminal, requested output terminal, respective switches and interstage 
links. In general, a switching fabric may provide more than one connect
ing path for a given pair of input and output terminals. We say that 
this is a multi-path switching fabric. When there is only one path pro
vided, the switching fabric is a single-path switching fabric. Switching 
fabrics presented in Fig. 2.5 are multi-path switching fabrics. Examples 
of one-sided and two-sided single-path switching fabrics are shown in 
Fig. 2.8. 

Separation of data paths. Different multiplexing methods are used 
in networks to use available resources efficiently. In the simplest ap
proach, signals from different users are sent using separate links. This 
approach is called space-division multiplexing (SDM). But links may be 
also shared in time, where data from different users are sent in different 
time intervals called time slots, or in wavelengths (or frequency), when 
data are sent through the same fiber using different wavelengths. The 
former case is used in time-division multiplexing systems (TDM) like 
PCM or SONET/SDH systems, why the later case is called wavelength-
division multiplexing (WDM). Code-division multiplexing (CDM) is also 
used in the network, where data from different users are multiplexed in 
the same link using orthogonal codes. 
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Figure 2.8. Single-path two-sided (a) and one-sided (b) switching fabrics 
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Figure 2.9. Space-division switching fabrics with SDM (a), TDM (b), and WDM (c) 
transmission 

Similarly, connecting paths provided by a switching fabric can be sep
arated in different domains. In space-division switching fabrics connect
ing paths are set up between the switching fabric's terminals. Whole 
data from any input terminal is transferred to a connected output ter
minal, as shown in Fig. 2.9a. These data may be time or wavelength 
multiplexed as shown in Figures 2.9b and c, respectively. The second 
case is also called a fiber switching^ where a switching fabric switches all 
the wavelength of an incoming fiber to an outgoing fiber. 

In time-division switching fabrics any time slot of an input TDM link 
can be connected to any time slot of an output TDM link. A switch re
alizing this function is called a time switch. An example of time-division 
switching in a time switch with one input and one output, each carrying 
four time slots, is shown in Fig. 2.10a. In practical implementations a 
switching fabric switches more links and can connect any time slot of 
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Figure 2.10. Time-division switching (a) and time-space-division switching (b) 
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Figure 2.11. Wavelength-division switching fabrics with (a) and without (b) wave
length conversion and a waveband-division switching fabric (c) 

any input terminal to any time slot in any output terminal, i.e., they 
can operate in time and space domains (Fig. 2.10b), however they are 
also called time-division switching fabrics. 

When input links are WDM links it is often needed that any wave
length from any input fiber will be switched on any wavelength on 
any output fiber. This type of switching is called wavelength-division 
switching and respective switching fabrics are called wavelength-division 
switching fabrics (Fig. 2.11a). In this type of switching a wavelength 
conversion may be necessary to ensure full connectivity between wave
length in input and output terminals. This happens when two wave
lengths of the same length in two input terminals are to be connected 
to the same output terminal. In this case one of these wavelengths 
is to be switched to another wavelength (Fig. 2.11b). In wavelength-
division switching another approach is also possible, in which a set of 
wavelength (called a waveband) on an incoming fiber is switched to an 
outgoing fiber. This type of switching is called waveband switching. An 
example is shown in Fig. 2.11c, where wavelength Ai and A2 are in one 
waveband, and A3 and A4 are in the second waveband. 
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In code-division switching a switching fabric switches an individual 
code from input terminal to a code on output terminal. 

Number of links between switches in successive stages. De
pending on the number of links between switches in successive stages 
switching fabrics can be categorized into two categories: partially con
nected switching fabrics and fully connected switching fabrics. In par
tially connected switching fabrics each switch in stage i is connected to 
some but not all switches in stage z + 1. When each switch of stage 
i is connected to every switch in stage i + 1, we say that a switching 
fabric is fully connected. Additionally, when two switches are connected 
by V links we say that the switching fabric is i;-dilated. When v = 1 
a switching fabric is 1-dilated. Switching fabrics presented in Fig. 2.5 
are fully connected 1-dilated switching fabrics, while that presented in 
Fig. 2.8 are partially connected 1-dilated switching fabrics. Examples of 
2-dilated fully connected and partially connected switching fabrics are 
shown in Fig. 2.12a and b, respectively. In the rest of this book we will 
assume that a switching fabric is 1-dilated if it is not clearly stated. 

Output accessibility. If in a switching fabric each output terminal 
can be reached from each output terminal we say that it is a fully ac-
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Figure 2.13. An example of not fully accessible switching fabric 

cessible switching fabric. When from some input terminals it is not 
possible to set up a connecting path to any of the output terminals at 
all we say tha t this switching fabric is not fully accessible. Switching 
fabrics presented in Fig. 2.12 are fully accessible. An example of not 
fully accessible switching fabric is presented in Fig. 2.13. In this switch
ing fabric, for instance, it is not possible to set up a connection between 
input terminal 1 and output terminal 7. 

B l o c k i n g s t a t e s . A switching fabric provides a connecting path be
tween terminals. At a given time many connecting paths may be set up 
concurrently in a switching fabric, and they use different switches and 
crosspoints. We say that a switching fabric is in a certain state. We can 
also say that the state is a setting of switches. If in the given state it is 
not possible to connect an idle input terminal to an idle output terminal, 
but there are other states in which this connection is possible, than this 
state is called a blocking state. An example of the blocking state in the 
three-stage 4 x 4 switching fabric is shown in Fig. 2.14. Connections 
from input terminal 3 to output terminal 0 and from input terminal 0 
to output terminal 3 are shown in bold lines. The connection between 
input terminal 1 and output terminal 1 is blocked, since it cannot be 
set up through either of the second stage switches. However, it would 
be possible to set up this connection, when, for instance, the connection 
between input terminal 3 and output terminal 0 had been set up through 
the first center stage switch. 

Depending of the occurrence of blocking states, switching fabrics can 
be categorized into two main categories: blocking and nonblocking switch
ing fabrics. In a blocking switching fabric the blocking states cannot be 
omitted, i.e., some combinations of connections cannot be realized. In 
a nonblocking switching fabric every combination of connections can be 
established. In other words, any permutation between input terminals 
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Figure 2.14- A blocking state in the switching fabric 

and output terminals can be realized, and we say about combinatorial 
properties of switching fabrics. Nonblocking switching fabrics can be 
further divided into four classes: strict-sense nonblocking, wide-sense 
nonblocking, rearrangeably nonblocking, and repackably nonblocking. 

• Strict-sense nonblocking switching fabrics (SNB). A switching fabric 
is strict-sense nonblocking if it can always connect each idle input 
terminal to an arbitrary idle output terminal independent of its cur
rent state and no matter how connecting paths were selected for the 
existing connections. 

• Wide-sense nonblocking switching fabrics (WNB). A switching fabric 
is wide-sense nonblocking if it can also connect each idle input ter
minal to an arbitrary idle output terminal independent of its current 
state provided that some given path selection algorithm was used for 
setting up connections. 

• Rearrangeably nonblocking switching fabrics (RNB) or rearrangcable 
switching fabrics, A switching fabric is rearrangeable if it can also 
connected a pair of idle input and output terminals, however, it may 
be necessary to move existing connections to alternate connecting 
paths. 

• Repackably nonblocking switching fabrics (PNB) or repackable switch
ing fabrics. A switching fabric is repackable if blocking states can 
be omitted by re-routing some of existing connecting paths using a 
repacking algorithm but in contrast to rearrangeable switching fab
rics, they are executed after one of existing calls is terminated. 

In some architectures of multi-path switching fabrics, only one path, 
from all paths between a given input and output terminals pair, is per
mitted to route a given connection, in order to save other paths for other 
connections. This path is called a standard path. If a switching fabric 
provides such standard paths for each input-output terminals pair and 
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these paths are disjoint for connections which may be set up in any state 
of the switching fabric, than such switching fabric is called a standard 
path switching fabric. This class of switching fabrics may be consid
ered as WNB switching fabrics in which control algorithm use always 
a standard path allowed for a given connection. 

Many other criteria may be used to classify switching fabrics. Some of 
them are based on connection types realized in switching fabrics. They 
will be the subject of the next section. 

2.3 Connection Types 
Up till know we referred to the connection as a call between one input 

terminal and one output terminal. In general, more input and output 
terminals may take part in a connection. We also assumed, that all 
connections require the same transmission capacity. This is also not 
always true. Number of terminals in a connection and a transmission 
bandwidth required by a connection are used to categorized connections 
into different classes which will be now discussed. 

2.3.1 Connection Set-up Models 
Connection set-up models refer to the time connections may arrive to 

a switching system. We can speak about 

• one-by-one connection model, also called one-at-a-time connection 
model, and 

• simultaneous connection model. 

In the one-by-one connection model requests arrive to the system one-by-
one. In this model there is only one connection being set up at a time 
in a switching fabric. This model is applied for instance in telephone 
exchanges. 

In the simultaneous connection model requests arrive to the system 
simultaneously. In this model a set of compatible connections is being set 
up at the same time. The set of compatible connections means that one 
input terminal requests a connection with exactly one output terminal, 
and one output terminal is requested by exactly one input terminal. 
Such set of calls is also called a permutation or a maximal assignment 
if there is a request in each input terminal, and it is usually written as: 

U=( 0 1 2 . . . N-1 \ 
V7r(0) 7r(l) 7r(2) ..• ir {N - 1) J ' ^^'^^ 

This means that input terminal 0 is to be connected to output terminal 
7r(0), input terminal 1 is to be connected to output terminal 7r(l), etc. 



Classification and Taxonomy 35 

Analogically, inverse permutation 11"^ denotes tha t output terminal 0 
is to be connected to input terminal 7r~^(0), output terminal 1 is to be 
connected to input terminal 7r~^(l), and so forth. The simultaneous con
nection model is applied for instance in multiprocessor systems, where 
a set of microprocessors may request simultaneously access to the set 
of memories, or in synchronous packet switches, in which conflict free 
packets from selected input terminals are to be transferred in the same 
time slot to requested output terminals. 

2.3.2 Unicast, Multicast, and Broadcast 
Connections 

In future communication networks, apart from point-to-point connec
tions, many services, for instance video-conference, video-distribution, 
multi-party communications, etc., will require connections between more 
than two users [107, 97, 50]. This can be realized by setting up separate 
connections for each pair of users, however, this results in increasing the 
volume of da ta sent in the network and the bandwidth used in transmis
sion links. To reduce this volume of data connections are split inside the 
network. The multicast communication is desirable also in IP networks 
to support group communication, since it not only saves bandwidth, but 
also reduces host or server processing load [109]. Therefore, it is also 
expected tha t a switching fabric will be able of setting up connections 
between greater number of terminals. Depending on the number of input 
and output terminals used in a connection, connections can be divided 
into following classes: 

• Unicast connections, A unicast connection, called also a point-to-
point connection is a connection between one input terminal and one 
output terminal. 

• Multicast connections. A multicast connection, called also a point-
to-multipoint connection, is a connection between one input terminal 
and a set of output terminals, where the cardinality of this set is 
greater than 1. 

• Broadcast connections, A broadcast connection is the special case of 
a mulitcast connection, in which one input terminal is to be connected 
to all output terminals. 

• Multiconnections, A multiconnection is a connection between a set 
of input terminals and a set of output terminals, the cardinality of 
these sets is greater than 1, and all input-output pairs of these sets 
are connected between themselves. 
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• Multipoint-to-point connections, A multipoint-to-point connection is 
a connection between more than one input terminals and one output 
terminal. 

The respective classification can be also used for switching fabrics, de
pending on the type of connections which can be set up. In practical so
lutions only unicast, multicast or broadcast connections are considered. 
In multicast and broadcast switching fabrics multicast or broadcast con
nections can be set up. Data from an input terminal are copied inside 
the switching fabric and sent to the appropriate number of connected 
output terminals. 

Different types of connections result in the combinatorial properties 
of switching fabrics. Switching fabrics which are nonblocking for unicast 
connections usually become blocking when multicast connections may 
be also set up. In this book only combinatorial properties of switching 
fabrics with unicast, multicast, and broadcast connections will be con
sidered. Some results for switching fabrics with multiconnections were 
considered in [53, 51, 61]. 

2.3.3 Single-rate and Multirate Connections 
Connections may occupy different bandwidths in transmission links. 

In the first switching fabrics connections for telephone calls were pro
vided and such connection occupied the whole bandwidth available in 
a transmission link. The development of time-division switching fab
rics enables to share the transmission capacity among a large number of 
voice circuits. Each connection occupied one time slot of a TDM system 
and of a time-division switching fabric. The idea of integrating different 
services which require transmission of audio, data, image, and video in 
one telecommunication network changes requirements for switching fab
rics. As different media demand for a broad range of bandwidths, each 
connection is associated with its demanded rate of bandwidth. These bit 
rates may change from a few kb/s up to 600 Mb/s in case of broadband 
services (videophone, high-speed data transmission, HDTV). Therefore, 
the future exchanges will have to be capable of switching connections 
with different bit rates. Two approaches were proposed to realize such 
connections in the network. One approach was based on synchronous 
TDM systems and connections could occupy different number of time 
slots. An alternative approach was derived from packet switching and 
is called Asynchronous Transfer Mode or ATM [116]. In this approach 
each connection is identified by a virtual channel identifier. This iden
tifier is placed in the header of each cell. Virtual channels may occupy 
different bandwidths in a transmission link. 
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Depending on the bandwidth required, connections can be divided 
into the following classes. 

• Single-rate connections. Each connection occupies the same band
width in a link. It may be the whole link as in the space-division 
switching or one time slot as in the time-division switching. 

• Multi-slot connections. Connections may occupy a different number 
of time slots in one TDM link. These connections are also referred 
to as multi-channel connections. 

• Multirate connections. Connections may occupy different bandwidths 
of a link. 

Multirate connections can be further divided into discrete and continu
ous bandwidth cases [22, 104]. 

• Discrete bandwidth. In the discrete bandwidth case it is assumed 
that there is a finite number of distinct rates and the smallest rate 
divides all other rates. 

• Continuous bandwidth. In the continuous bandwidth case connec
tions may occupy any fraction of a link's transmission capacity. 

The multi-slot connections are often considered as the discrete band
width case but it is true only if these connections can occupy any time 
slots in TDM links. This is not always true. Models where multi-slot 
connections can occupy only consecutive time slots were also considered 
[11, 143, 156]. Multi-slot switching fabrics were firstly considered by 
Niestegge [120]. The model for multirate switching fabrics was proposed 
by Melen and Turner [114]. These models will be later described in this 
chapter and will be further used in this book. Some researchers consid
ered also multirate switching fabrics under the /c-rate connection model, 
where k is an integer and it specifies the number of distinct connection 
rates. In the 1-rate model {k = 1) every request has the same rate u. 
When uj = 1 this model corresponds to space-division switching. When 
uj = 1 / / , the model corresponds to time-division switching with links 
carrying / time slots each. 

2.4 Control Algorithms 
When a new connection is to be set up, the controller has to find 

a connecting path in a switching fabric, check whether it is available (i.e., 
some elements are not occupied by other connections), issue respective 
control signals to change state of switching elements or crosspoints, and 
update the current state of a switching fabric. These tasks are performed 
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Figure 2.15. Classification of control algorithms in multi-path switching fabrics 

by control algorithms mainly. The state of a switching fabric is usually 
stored in a table containing information about all connecting paths al
ready set up. When any one of existing paths is to be disconnected, 
information about it is deleted from the table and the path in question 
is removed by resetting the switching fabric configuration appropriately 
Apart from switches and crosspoints, there may be also a need to con
trol some additional elements, for instance optical amplifiers in photonic 
switching fabrics. 

The control algorithm used for finding a path depends on connection 
type such as unicast, multicast or broadcast. Numerous control algo
rithms have been proposed for diflE'erent connection types and kinds of 
switching fabrics. These algorithms, the topology of the switching fabric, 
and the type of connection are usually related. Therefore, algorithms 
designed for one topology usually cannot be used in other topologies. 
However, they can be used in switching fabrics made in different tech
nologies, so the same algorithm may be used for a switching fabric of 
a given topology regardless of whether it is fabricated using electronic 
or photonic technology. Special requirements (like crosstalk reduction) 
may result in elaborating more sophisticated algorithms, which are not 
necessary when another technology is used [111, 165]. 

Control algorithms in multi-path switching fabrics can be divided into 
three major groups (Fig. 2.15). Path searching algorithms are used for 
finding a connecting path through a switching fabric for one connection 
at a time. Depending on combinatorial properties of a switch fabric, the 
given algorithm may always lead to success (i.e., a connecting path will 
always be found), or not. Another group of control algorithms is called 
rearrangement algorithms. These algorithms can be used when a path 
searching algorithm fails. Their task is to find connecting paths which 
can be re-routed to unblock a new connection. Some of them are de-
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signed to find a connecting path for one connection at a time, others are 
designed to find connecting paths for all new connections simultaneously. 
In call repacking some connecting paths are also re-routed in a switch 
fabric but in contrast to rearrangements, they are executed after one of 
existing connections is terminated. The role of repacking algorithms is to 
"pack" existing calls more efficiently, and thereby prevent switch fabrics 
from being in a blocking state when a new connection arrives. The intro
duced classification is true for both unicast and multicast connections; 
however, respective algorithms will be different. 

2.5 Notation, Terminology, and Models 
2.5.1 Switching Fabrics and Connections 

The general notation concerning switching fabrics and connections, 
which will be used in the rest of this book, will be given here. More spe
cific notation will be introduced as they arise. In an asymmetrical two-
sided switching fabric input terminals will be numbered 0 , 1 , . . . , Â i — 1, 
and output terminals will be numbered 0,1,...,A^2 — 1, from top to 
bottom. In a symmetrical two-sided switching fabric number of input 
(output) terminals will be denoted by N^ N = Ni = N2. In a one-sided 
switching fabric terminals will be also numbered 0 , 1 , . . . ,A/̂  — 1, from 
top to bottom. Stages in a multistage switching fabric will be numbered 
from left to right starting with 1. Switches in each stage will be num
bered from top to bottom also starting from 1. Switch i of the first 
stage will be denoted by li and switch j of the last stage in a two-sided 
switching fabric will be denoted by Oj. 

A unicast connection between input terminal x and output terminal 
y (or terminals x and y in a one-sided switching fabric) will be denoted 
by {x,y). When x is an input of li and y is an output of Oj, and it 
is sufficient to describe connection (x, y) using only symbols of outer 
stage switches, than this connection will be denoted by {Ii^Oj), When 
any terminal of switch Ii is connected with any terminal of switch Ij 
in a one-sided switching fabric, than this connection will be denoted by 

A multicast connection from input terminal x to output terminals 
2/o,?/i,...,yfc will be denoted by (x,Y), where Y = {yo,?/i, • • • ,yfc}, 0 ^ 
X < A/'i — 1, 0 ^ 2/0, j / i , . . . ,?//c ^ Â2 — 1- This (x, Y) is a point-to-point 
connection if and only if |Y| = 1, it is a multicast connection when 
1 < |Y| < iV2 — 1, and it is a broadcast connection when |Y| == Â2 — I5 
where |Y| is the cardinality of set Y. For instance, connections (0, {0}), 
(4, {2}) and (16, {6}) are point-to-point connections, while (31, {3, 7}) is 
a multicast connection. 
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Multicast connection (x^Y) is also referred to as q -̂cast connection, 
where q = |Y|. The number of output terminals which may take part 
in a g-cast connection may be limited by qi and q2^ ̂  ^ Qi ^ Q ^ Q2 ^ 
Â2 5 where qi denotes the minimum number of output terminals and q2 
represents the maximum number of output terminals which can take 
part in a Q'-cast connection. 

Multicast connections can be also divided depending on whether addi
tional output terminals can be added to an existing multicast connection 
or not [56]. When a new output terminal may be added to an exist
ing connection a connection is called the open-end multicast connection. 
When such addition is not permitted we refer to it as the closed-end 
multicast connection, 

2.5.2 Multi-slot Switching Model 

A switching fabric which has to switch connections at varying speed 
can be designed either for the highest or the lowest speed connections. 
In the first case the low-speed connections use the same bandwidth as 
the highest ones and, therefore, it is not economical for the network 
which carries many low speed connections. In the second case high
speed connections are connected by using more than one time slot. The 
connection which occupies s slots is called an 5-slot connection. These 
s slots may be switched independently or in parallel [120]. In the first 
case slots in an 5-slot connection are switched independently. They may 
be transferred through different multiplexed links and different switches, 
and therefore, they may encounter different propagation delays and they 
may appear at the output link out of sequence. When 5-slot connection 
is set in parallel, all slots belonging to this connection are assigned to 
the same interstage links and switches in a multistage switching fabric. 
In this case it is easier to preserve a time-slot order. Some methods, 
in which this problem has been solved, are reported in the literature 
[11, 143, 156]. The idea of independent and parallel switching of 2-slot 
connection in the three-stage switching fabric is shown in Fig. 2.16. In 
Fig. 2.16a the 2-slot connections is set up independently, i.e., 2 slots are 
transferred through different interstage links and different second stage 
switches (slots are marked in dashed lines). In the second case, these 
slots use the same second stage switch and the same interstage links 
(Fig. 2.16b). 

Another important problem in multi-slot switching is how idle slots 
are assigned to a new connection. These slots may be assigned using 
following assignment algorithms: [8, 89, 156]: 
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Figure 2.16. Independent (a) and parallel (b) switching of the 2-slot connection 

• Fixed assignment. Only a fixed group of s adjacent time slots can be 
assigned to the 5-slot connection. 

• Floating assignment. Any s slots contiguous to each other can be 
assigned to the 5-slot connection. 

• Periodic assignment. This assignment permits only equal interval 
assignment, i.e., there are equal intervals between time slots which 
are assigned to the 5-slot connection. 

• Flexible assignment. This assignment imposes only that all slots must 
still be within the same interstage link, and the channel order must 
still be preserved, but the selected channels no longer need to be 
contiguous. This assignment is also called a random assignment, 

The example of these different assignments is shown in Fig. 2.17. In 
the fixed assignment approach slots in a time-division multiplexed link 
are grouped and only groups are assigned to the 5-slot call. For instance 
slots 1-6, 7-12, 13-15 and 17-19, 20-25, and 26-31 may be reserved for 
6-slot connections in the 32 PCM link. In the example of Fig. 2.17a two 
6-slot connections use slots 1-6 and 20-25. In the fioating assignment 
a multi-slot connection has also to use slots contiguous to each other, 
but the first slot used by this connection may by any slot of the link. 
The two connections considered in the example (Fig. 2.17b) uses slots 
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a) fixed 

1 ̂H1111111111111111111111111 
b) floating 
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c) periodic 

d) flexible 

M n 
6-slot connection 1 

6-slot connection 2 

Figure 2.17. Fixed (a), floating (b), periodic (c) and random (d) assignment of time 
slots for two 6-slot connections in the 32 PCM link 

3-8 and 10-15. Periodic and random assignments for these two 6-slot 
connections are shown in Fig. 2.17c and Fig. 2.17d, respectively. 

If a new 5-slot connection is to be set up through the switching fab
ric, the interstage link, which is accessible for this connection has to 
be found, and then s time slots should be assigned. A space-division 
switching network is strictly nonblocking if it is always possible to set 
up a connecting path between its free terminals independently of the 
already existing connections and the path search algorithm [9, 23]. In 
the multi-slot switching case we will call the switching network strictly 
nonblocking if it is possible to set up a new call independently of the 
path search algorithm and the time-slot assignment. The switching net-
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work, which is nonblocking when the special pa th search algorithm or 
time slot assignment are used, is called nonblocking in the wide sense. 

In the rest of this book the following notation will be used. The 
5-slot connection between input terminal x and output terminal y (or 
terminals x and y in a one-sided switching fabric) will be denoted by 
(x, y, s). When it will be sufficient to denote only switches, not terminals, 
between which connection is to be set up, then this s-slot connection will 
be denoted by (/^, Oj , 5), where Ii is the first stage switch to which input 
terminal x is connected to, and Oj is the last stage switch to which 
output terminal y is connected to (in the case of one-sided switching 
fabrics notation (li^Ij^s) will be used, where Ij is the first stage switch 
with terminal y). 

Let us assume that in an input terminal (an output terminal) there 
are k connections which use 5i, 5 2 , . . . , 5^ slots, respectively. Let as also 
assume tha t the capacity of the input terminal is / i and the capacity of 
the output terminal is /2 (i.e., there are / i slots in each of input links and 
/2 slots in each of output links). We have Yli=i ^i ^ / i iYli=i ^i ^ h)-
Similarly, if I connections using ^i , 5 2 , . . . , 5/ slots are set up through one 
interstage link of capacity /o, following condition is true: J2i=i ^i ^ fo-
In an input terminal (an output terminal) carrying k connections, a 
new 5-slot connection can be added if and only if Y^^^i Si ^ fi — s 
iJ2i=i ^i ^ f2 — s)' An interstage hnk carrying already / connections 
can be used by the 5-slot connections if and only if Yli=i ^i ^ fo — s. 
A new 5-slot connection will be called compatible with the link if there 
are s free slots in this link which fulfill the assignment algorithm used. 
For instance in the case of floating assignment a new 5-slot connection 
is compatible with the link if there are s consecutive free slots in it. A 
new s-slot connection may be compatible with an input terminal (an 
output terminal) only if not more than fi — s (/2 — s) slots are occupied. 
Similarly, in an interstage link not more than fo — s slots may be used. 
New connection {x^y^s) will be called compatible with the state of a 
switching fabric^ if it is compatible with input terminal x and output 
terminal y. New connection (/^, O^, s) will be called compatible with the 
state of a switching fabric, if it is compatible with at least one input of 
switch Ii and with at least one output of switch Oj. If a new connection 
is not compatible with an interstage link, then this link will be called 
inaccessible by the connection. If a new connection is compatible with 
the state of a switching fabric, than switches in inner stages are to be 
found to route this connection. The inner stage switch will be called 
accessible by connection ( /^ ,0j ,5) if one of its inputs and one of its 
outputs which might be used by the connection are accessible by this 
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connection. When there is no such pair of input and output, the switch 
is inaccessible by the connection. 

2.5.3 Multirate Switching Model 
In multi-path multirate multistage switching fabrics cells may be 

routed from an input terminal to any output terminal through differ
ent paths. Depending on the routing decision time switching fabrics 
may be divided into to classes: connection based and [33]. In the cell 
based switching fabrics the routing decision is taken cell by cell. This 
means that different paths through the switching fabric can be taken by 
different cells of the same virtual connection, and cells can arrive out 
of sequence. In the connection based switching fabrics, the path of a 
virtual connection is determined once for the duration of the connec
tion, and all cells of this connection will always follow the same path 
through the switching fabric. It means that full cell sequence integrity is 
guaranteed. In this connection oriented approach a weight is assigned to 
a connection, which represent the required bandwidth [116, 114]. This 
weight may correspond to maximum, minimum, average bandwidth used 
by the connection. The concept known as equivalent bandwidth or effec
tive bandwidth my be also applied [10]. In this concept an appropriate 
effective bandwidth is assigned to each connection and each connection 
is treated as if it required this effective bandwidth throughout the active 
period of the connection. The effective bandwidth of the connection is 
usually some value between its average rate and its peak rate. A given 
set of connections can be admitted, provided that the sum of the effec
tive bandwidths is less than or equal to the total available bandwidth 
of the connection path. Usually, the weight represents normalized band
width required by the connection. The total normalized bandwidth of 
the input (output) link is called the link capacity, d^nd is equal to (5 
(/3 ^ 1). Interstage links have capacity equal to 1. For instance, if the 
bandwidth of the inter-stage links is 620 Mb/s and the bit rate of the 
input (output) terminal is 155 Mb/s, then the normalized bandwidth is 
1 and 0.25, respectively. 

In the rest of this book following notation will be used in case of multi-
rate connections. A new connection of weight uo between input terminal 
X and output terminal y will be denoted by {x, y, u). Notation (/^, OJ^UJ) 

will be used to denote a connection of weight cj between the first stage 
switch li and the last stage switch Oj if the numbers of input and output 
terminals are not important. In general, 0 ^ a; ^ min{/5i;/32} ^ 1, since 
it has to be accommodated in one of the input (output) terminals, /?i 
and /?2 denote the normalized capacity an input terminal and an output 
terminal, respectively. 
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Let us assume that in an input terminal (an output terminal) there 

are k connections of weights cj i ,a;2, . . . ,0;^. We have J2i=i^i ^ Pi 

(12^=1^1 ^ P'2)' If through an interstage link / connections of weights 

cji, a;25 • • • 5^z, are already set up, then we have J2i=i <̂ i ^ 1- In an input 

(output) terminal already carrying k connections, a new connection of 

weight LJ can be set up, if and only if J2i=i ^i ^ Pi ~ ^ C^i=i ^i ^ 
P2 — cj). If these conditions are not true, the input (output) terminal is 
inaccessible by a new connection of weight u. Similarly, an interstage 
link already carrying I connections is accessible by a new connection 
of weight Lu if and only if J2i=i^i ^ 1 — ^ . Otherwise, this hnk is 
inaccessible by the new connection. A new connection is compatible with 
the state of a link, if this link is accessible for this connection. A new 
connection (/^, OJ.UJ) is compatible with the state of the switching fabric, 
if it is compatible with one of the inputs of switch /^, and with one of the 
outputs of switch Oj. Let us assume that the new connection (/^, OJ^UJ) 

is to be set up, and this connection is compatible with the state of the 
switching fabric. To set up this connection, switches in inner stages 
accessible by this connection are to be found. An inner stage switch is 
accessible by connection {li.Oj^u)^ if one of its inputs and one of its 
outputs which might be used by the connection are accessible by this 
connection. Otherwise this switch is inaccessible by this connection. 

Usually, the weights of all connections belong to a closed interval 
[6,5], where 0 ^ b ^ B ^ 1, As already stated earlier, two cases are 
defined: discrete bandwidth and continuous bandwidth [22]. The formal 
definitions are as follows. 

D E F I N I T I O N 2.1 Connection {x^y^u) is the discrete bandwidth connec
tion if u belongs to a given finite set {61,62? • • • ? &fc}; ^^here 61 is a divisor 
of bi, z = 2 , . . . , /c. In this case b = bi and B = max{6^ : z = 1, 2 , . . . , k}. 

D E F I N I T I O N 2.2 Connection {x^y^uj), is the continuous bandwidth con
nection ifuj belongs to a closed interval [6, B], where O^b^B^p^l. 

A multicast connection of weight uj from input terminal x to the set 
Y of output terminals will be denoted by (x, Y,a;). 

2.5.4 Graph Representation 
Graphs are generally used as models for describing issues deriving 

from different and independent fields of knowledge. When we are in
terested in finding the interdependence between a given number of ele
ments in a set we can apply modeling by graphs. Switching fabrics and 
connections can also be modeled using graph representation. Such rep-
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resentation enables, for instance, the use of graph algorithms for path 
searching or performance evaluation of a switching fabric. A graph con
sists of nodes (called also vertices) and lines joining pairs of nodes called 
edges. A set of nodes is usually denoted by V, a set of edges by E, and 
a graph is denoted by ^ (V,E) or simply by Q, 

The number of nodes of Q is called the order of Q, Two nodes joined 
by an edge are said to be adjacent^ and this edge is said to be incident 
to these nodes. Two edges of Q incident to the same node are called 
adjacent edges. When two nodes are joined by two or more edges, then 
these edges are called multiple edges. A graph containing multiple edges 
is called a multigraph. The degree of a node^ denoted by d^, in a graph 
Q is the number of edges of Q incident with this node. 

The maximum degree of all nodes in Q is called the degree of the 
graph Q, When all nodes in Q have degree n, a graph is called n-
regular, A path in a graph ^(V, E) from node s to node t is a sequence 
of nodes < t̂ 05'̂ i?'̂ 25 - - ."^k > such diS s = VQ, t = v^^ {vi-i^vi) G E. The 
number of edges k of the path is called the length of the path, A graph 
is connected if every node can be reached from any other node, i.e., if 
there is a pa th between any two nodes. A path containing at least two 
edges forms a cycle in a graph if VQ = Vk- When a cycle traverses every 
edge of the graph exactly once, the cycle is called an Euler cycle. The 
problem of finding an Euler cycle in a graph is commonly seen in the 
form of puzzles where you are to draw a given figure without lifting your 
pencil from the paper, starting and ending at given points. A graph Q 
has an Euler cycle if and only if it is connected and all its nodes are of 
even degree. 

An edge coloring of Q is an assignment of colors to the edges of Q so 
that adjacent edges are colored with different colors. When all edges in 
Q can be colored using n colors, the graph Q is said to be n-colorable, 
A spanning subgraph of ^ is a graph Ti^ which contains all nodes and 
a set of edges of Q. Sometimes it is useful to assign a weight to edges, 
the weight is between 0 and 1. Such graph is called a weighted graph, 
A weighted graph may be also edge-colored. The requirement is now 
that , for all nodes, all edges incident to a given node and colored with 
the same color will have the total weight not greater than 1. 

When nodes of graph Q can be divided into two disjoint subset in such 
a way that each edge joins a node of the first set to a node of the second 
set, than such graph is called a bipartite graph. When a bipartite graph 
has multiple edges it is called a bipartite multigraph, A perfect matching 
in ^ is a set of edges of Q no two of which are adjacent and which include 
every node in Q, An example of Q and three different perfect matchings 
are shown in Fig. 2.18. 



Classification and Taxonomy 47 

Figure 2.18. A bipartite graph (a) and perfect matchings (b), (c), and (d) 

There are different approaches to represent a switching fabric as a 
graph. In one approach switches correspond to nodes and interstage 
links correspond to edges. An example of 6 x 6 switching fabric is shown 
in Fig. 2.19a and its graph representation is shown in Fig. 2.19b. Nodes 
may also represent inputs and outputs of a switch and edges may cor
respond to crosspoint in the switch. A switch is then represented by 
a bipartite graph as it is shown in Fig. 2.20. Switch fabric may be 
also represented in this way. Such representation of the switching fab
ric presented in Fig. 2.19a is shown in Fig. 2.21. In this approach in
put and output terminals correspond to the nodes of the first and last 
stage switches, respectively. In both approaches the graph representing 
a switching fabric is the bipartite graph since nodes of even numbered 
stages from the first set of nodes and nodes of odd numbered stages 
forms the second set of nodes. To determine some properties of switch
ing fabrics (for instance blocking probability) it is only important to 
know possible paths between any pair of first and last stage switches. A 
graph representing such paths is called a channel graph. The channel 
graph for the switching fabric of Fig. 2.19a is shown in Fig. 2.22. When 
a switching fabric is i;-dilated the respective graph is than a multigraph. 

Graphs can be also used to represent connections in switching fabrics. 
A maximal assignment can be represented by a bipartite multigraph, 
in which the first set of nodes corresponds to the first stage switches, 
while the second set of nodes represents the last stage switches. Each 
connection is represented by an edge joining respective nodes. Such 
graph representing a maximal assignment has vi nodes in the first set 
and T2 nodes in the second set, where vi and r2 are the numbers of 
switches in the first and last stages, respectively. The degree of this 
graph is max{ni; 712}, where ni is the number of inputs of the first stage 
switches and 712 is the number of outputs of the last stage switches. Let 
the following maximal assignment be realized in the switching fabric of 
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Figure 2.19a. An example of 6 x 6 switching fabric 

Figure 2.19b. The graph representation - nodes correspond to switches 

Figure 2.20. The 4 x 5 switch and its graph representation 

Fig. 2.19a: 

n = 
0 1 2 3 4 5 
3 5 0 2 1 4 

(2.2) 

The bipartite graph representation of this assignment is shown in 
Fig. 2.23. The same approach may be used in case of multirate con
nections, however, this time respective weights are assigned to edges. 
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Figure 2.21. The graph representation - nodes correspond to hnks 

Figure 2.22. The channel graph of the switching fabric of Fig. 2.19b 

Figure 2.23. The graph representation of permutation (2.2) 



Chapter 3 

SINGLE-PATH AND STANDARD PATH 
SWITCHING FABRICS 

3.1 Introduction 
Structures and control algorithms of some single-path and standard 

path switching fabrics will be considered in this chapter. In a single-path 
switching fabric there is only one connecting path between any input 
terminal-output terminals pair. When a switching fabric is also strict-
sense or wide-sense nonblocking, a control algorithm has only to change 
the states of appropriate switching elements in order to set up a connect
ing path. For switching fabrics of low capacity a control algorithm may 
use a state table with all possible states. When a new connection arrives, 
a control algorithm reads out how to set up switching elements directly 
from this table. The state table may contain information on how to set 
up each switching element separately, or how a group of these elements 
may be controlled together by one signal, depending on the switch fab
ric architecture. In the latter case, the number of control signals is less 
than the number of switching elements. The state of switching elements 
and control signals may be also deduced directly from input and output 
addresses. 

3.2 Crossbar Switches 
The crossbar architecture is often used to construct electronic and 

photonic switches. It may be composed either of crosspoints or 2 x 2 
BSEs. In general, in this topology we have a matrix with rows and 
columns, and crosspoints (or BSEs) placed at intersections of rows and 
columns, as was shown in Fig. 2.3. Therefore, the crossbar switch is 
also called the switching matrix or the matrix switch. Usually, crossbar 
switches are considered as strictly nonblocking switches. However, this 
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Figure 3.1a. The 4 x 4 crossbar switch with logical gates as crosspoints 
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Figure 3.1c. The state, matrix for 
4 x 4 crossbar switch with multicast 
connections 

property depends on the technology used. When, for instance, logical 
gates are used as crosspoints, signals are transferred from inputs to out
puts depending on the control signals at the other inputs of these gates. 
There is only one possibility to transfer signal from any input to any 
output and only one gate can be used to switch a signal. So the switch 
is strictly nonblocking. In other realizations more than one path is pos
sible, which will be described later on. The example of a 4 x 4 switch 
composed of logical gates is shown in Fig. 3.1a. Each gate is controlled 
by a control signal ĉ ^̂ . When input x is to be connected with output 
y control signal Cx^y should be set to logical 1. Each gate has to be 
controlled separately, i.e., none of the control signals can control more 
than one gate. The state of control signals, which also determines the 
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Figure 3.2. The 4 x 4 crossbar switch with micromirrors 

state of the switch, may be arranged in state matrix C, in which each 
row corresponds to one input, each column corresponds to one output, 
and an entry Cx^y corresponds to the state of respective control signal. 
In case of unicast connections, each column and each row has to contain 
only one logical 1, i.e., only one gate can be opened in each row and each 
column. An example of the state matrix C for connections (0, 0), (1,2), 
(2,1), and (3,3) is shown in Fig. 3.1b. Such implementation enables 
also to realize multicast connections. The example of the state matrix 
for connections (0, {0,1}) and (2, {2, 3}) is shown in Fig. 3.1c. 

In photonic switches micromirrors are often used as crosspoints [110, 
177]. When the mirror is in the down position, the light beam is passing 
over and does not change its direction. When the mirror is in up posi
tion, the light beam is reflected and changes its direction to the output. 
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Figure 3.3. The 4 x 4 crossbar switch with BSEs 

The example is shown in Fig. 3.2. The state of mirrors can be again 
represented in the state matrix, in which logical 1 denotes, for instance, 
the up position and logical 0 denotes the down position. In Fig. 3.2 state 
of mirrors correspond to the state matrix presented in Fig. 3.1b. This 
switch does not enable the realization of multicast connections. 

Other implementations of crossbar switches use 2 x 2 BSEs (see Fig. 
2.3b). They are used in both electronic and photonic switching. In 
this implementation in fact there are more connecting paths between 
any input-output pair. For instance, when connection (0, 3) is set up 
as it is shown in Fig. 3.3 by dashed line, it is not possible to set up 
connection (3,1) or (3,2). The nonblocking operation is ensured when 
all BSEs are initially in cross state and for connecting input x with 
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output y the state of switch x-y is changed to the bar state. Therefore, 
crossbar switches with such implementation are considered as wide-sense 
nonblocking. This switch may be also treated as the standard path 
switch, since there are several connecting path between any arbitrary 
pair of input and output, in general; however, only one path (called the 
standard path) is always used to connect this input-output pair in order 
to preserve some switch fabric characteristics like nonblockingness. The 
state of the switch can be again stored in the state matrix C, in which 
logical 1 corresponds to the bar state of respective switching element, 
and 0 to the cross state. 

In the crossbar switch composed of 2 x 2 BSEs three BSEs can be 
omitted, and the whole architecture will be still nonblocking in the wide 
sense. Let us consider a 3 x 3 switch in which three switches above 
diagonal are omitted. All possible permutations which can be realized in 
this switch are shown in Fig. 3.4a. It can be seen tha t each connection use 
always the same route in the switch. For instance to set up connection 
(0,2) the state of the upper BSE in the middle column has to be changed 
from cross to bar, regardless of the other connections. The way BSEs 
should be controlled are given in Fig. 3.4b, where x-y near the BSE 
denotes that the state of this BSE is to changed when connection {x^ y) 
is to be set up. All BSEs are controlled by one connection (one signal) 
except the upper BSE in the middle column, which is controlled by 
two connections, (0,2) and (1,1), but they are not in conflict between 
themselves and with other connections. In this case either of signals (or 
both) changes the state of this BSE. 

In general, two top BSEs of the last column and one top BSE of the 
one before the last column are not necessary in the crossbar switch. This 
architecture will be called the reduced crossbar switch. The difference 
from the crossbar switch is that at the initial state, when all switches 
are in cross state, we have connections (1, n — 1) and (0, n — 2) set up in 
this state. The 4 x 4 reduced crossbar switch is shown in Fig. 3.5. 

3.3 Triangular Switches 

Triangular switches were proposed by Clos [23] as one-sided switches. 
The structure of such switch is presented in Fig. 3.6. It has n terminals 
and is composed of (n^ — ^ ) / 2 crosspoints. One crosspoint is always 
used to connect two terminals. If we want to connect terminals x and 
y^ X < y^ we should set crosspoint at row x and column y, as shown 
in Fig 3.6 by the filled circle, li x > y the connection is (y^x) since in 
such switch when there is connection (?/, x) then there is also connection 
{x^y). The state of crosspoints may by controlled similarly as in the 



56 NONBLOCKING SWITCHING FABRICS 

¥ 
0 1 2 

^ 
0 1 2 

V 
0 1 2 

^ 
0 1 2 

0-

' ^ 
0 1 2 

^ 
0 1 2 

Figure 3.4a. Realization of all permutations in the 3 x 3 reduced crossbar switch 
with BSEs 



Single-path and Standard Path Switching Fabrics 

0-0 
Inputs 

0— 

1-0 

2-0 

Outputs 0 1 

0-2 
1-1 

2-1 2-2 

57 

Figure 3.4b. Switch control in 3 x 3 triangular switch 

tQ 
Lo 

n 
U 

1 
1 

o 
z 

"> 
o 

Outputs ( 

0-0 

1-

2-

3-

3 

0 

0 

0 

0-1 

1-

2-

3-

1 

1 

1 

r 

0-3 
1-2 

2--

3-: 

? 

2 

2 

2-3 

3-

3 

3 

Figure 3.5. The 4 x 4 reduced crossbar switch with BSEs 

crossbar switch by state matrix C but only cells above the diagonal are 
used. 

Crossbar switch needs n^ crossponts or BSEs. The triangular topol
ogy may be also used in case of two-sided switches composed of 2 x 2 
elements, to reduce the required number of these elements [85, 134]. The 
general architecture of such switch is shown in Fig. 3.7 (for simpler fur
ther description the input and output numbering is changed). It contains 
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Figure 3.6. Triangular one-sided switch with n terminals 

{n? — n)/2 BSEs. This switch is neither strictly nor wide-sense nonblock-
ing. However, all possible assignments between inputs and outputs can 
be realized in this switch [85]. 

THEOREM 3.1 Triangular switch presented in Fig. 3.7 is rearrangeable 
nonblocking. 

Proof. We will use induction to prove this theorem. It is clear, that 
this switch realize all possible assignments for n = 2, since it is a 2 x 2 
switching element. Let assume (n — 1) x (n — 1) switch is rearrangeable 
nonblocking. The switch of capacity n x n can be obtained by adding 
one column of n — 1 switches as it is shown in Fig. 3.8. Output n — 1 
can be connected to any input using respective switch in this column. 
Let assume that permutation U is to be realized in which 7r(:i:) = n — 1: 

n -
0 1 

7r(0) 7 r ( l ) 

X 

TT (x) 

n — 1 
TT ( n — 1) 

(3.1) 

To connect input x with output n — 1 BSE x-{n — 1) is to be set to the 
bar state (normally all BSEs are in the cross state). We have to leave all 
BSEs k-{n — l ) , 0 ^ / c ^ x — 1 unchange. Through these BSEs inputs 0 
to a: — 1 are connected to the same numbered inputs of (n — 1) x (n — 1) 
switch. By changing BSEs {x + l)-(n — 1) to (n — 2)"(n — 1) also to 
the bar state, inputs rr + 1 to n — 1 will be connected to inputs from x 
to n — 2 of (n — 1) X (n — 1) switch, respectively (see Fig. 3.8). Now 
in (n — 1) X (n — 1) switch the permutation of n — 1 elements is to be 
realized and since by induction assumption this switch is rearrangeable 
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Figure 3.7. The general architecture of n x n triangular switch 

nonblocking then any permutation can be realized in this switch. This 
means tha t also switch n x n is rearrangeable. D 

The proof of the above theorem gives also the algorithm which can be 
used for simultaneous setting of any assignment. 

A L G O R I T H M 3.1 Permutation triangular 

S t e p 1 Connect not connected output y with the highest number to 
respective input x by changing the state of BSE x-y to bar. 

S t e p 2 Change the state of BSEs k-y^ x < k < n, 

Step 3 Reduce by one input numbers greater than x. 

S t e p 4 Repeat steps 1 to 3 until all outputs are connected. 
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Outputs n-1 

Figure 3.8. Recursive construction of n x n triangular switch and path set up for 
one output 

Let the following permutation is to be set up in 8 x 8 triangular switch: 

n = f O ^ 2 3 4 5 6 7 \ 
^̂  1 ^ 1 4 7 5 2 6 3 0 ^ - ^'^•'^' 

This switch with connections is shown in Fig. 3.9. First output 7 will 
be connected to input 2. Therefore BSE 2-7 is changed to the bar state, 
and also BSEs from 3-7 to 6-7 are changed to this state. Since input 2 is 
connected we remove connection (2, 7) from permutation 11 and reduce 
by one input numbers from 3 to 7. The new permutation is 

n 
0 1 2 3 4 5 6 
1 4 5 2 6 3 0 

(3.3) 

where mark denotes inputs whose numbering is reduced by one. Now 
the next not connected output with the biggest number is output 6 and it 
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Outputs 7 

Figure 3.9. The example of connections in 8 x 8 triangular switch 

is to be connected with input 4 (originally 5). Thus BSE 4-6 is changed 
to bar state and the state of BSE 5-6 is also changed. Now numbers of 
inputs greater than 4 are reduced by one so the remaining connections 
are represented by permutation 

n = 
0 1 2' 3' 4" 5 
1 4 5 2 3 0 

(3.4) 

where marks and denote input numbers which were changed after 
connecting input 7 and 6, respectively. The final set up of BSEs is 
shown in Fig. 3.9. 

3.4 Tree-type Switching Fabrics 
The general structure of n x n switch of tree architecture is shown in 

Fig. 3.10. It consists of n 1 x n splitters and n n x 1 combiners. Output 
y of splitter a;, 0 ^ x, ?/ ^ n — 1, is connected to input x of combiner y. 
Any 1 X n (n X 1) switch can be used as the splitter (combiner). Splitters 
and combiners can be also fabricated from 1 x 2 (2 x 1) or 2 x 2 BSEs. 
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A7x1 
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: 1 — 0-1 

Figure 3.10. The 
structured switch 

n X n tree- Figure 3.11. The 1 x 8 sphtter com
posed of 2 X 2 BSEs 

The 1 x 8 splitter composed of 2 x 2 BSEs is shown in Fig. 3.11. In each 
2 x 2 BSE only one input is used, the other one is left unused. BSEs 
are arrange in log2 n stages. The combiner is the mirror image of the 
splitter. 

In the tree architecture there is only one path between any input-
output pair. Connection is set up by changing states of appropriate BSEs 
in respective splitter and combiner. Since splitters and combiners are 
controlled, they are called active splitters and active combiners, and the 
whole tree architecture is referred to as active splitters/active combiners 
(AS/AC). Two other approaches can be used in tree type structure. In 
the first one signals from each input are broadcasted to all outputs of 
splitters, so each combiner receives data from all inputs and it selects one 
of them. In this approach only combiners are controlled. Such structure 
is called passive sphtters/active combiners (PS/AC). The next approach 
uses active splitters and passive combiners (AS/PC). 

In the tree-structured switches, switching elements placed in one stage 
of active splitters or active combiners can be controlled by one control 
signal. Let cross and bar states of 2 x 2 switches be controlled by signals 
0 and 1, respectively. Let a new connection (x,y) is to be set up, and 
let x^_ i , . . . , xo and Vn-i, • • • ? ?/o be binary representations of x and y, 
respectively. The stages of switching elements in active splitter x are 
controlled by signals Vn-i, - -- ^Uo, while the stages in active combiner y 
- by xo, . . . Xn-i' The example of 4 x 4 switch with connection (1,2) 
is shown in Fig. 3.12. Control signals of splitter 1 and combiner 2 are 
shown as arrows. 
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Figure 3.12. Path setup in a tree architecture 

3.5 One-stage Switching Fabrics 
The 2n x 2n one-stage switching fabric composed of four nxn switches 

is shown in Fig. 2.6. In general, a switching fabric of capacity kn x kn 
may be constructed. The one-stage switching fabric of such capacity 
is shown in Fig. 3.13. Switches are grouped into k groups, each group 
contains k switches. Inputs of switches in each group are connected in 
parallel. Outputs of switches with the same numbers in each group are 
also connected in parallel. Such switching fabric contains k^ switches. 

The one-stage switching fabric has a single path between any input-
output terminals pair (we assume that crossbar switches are used). If 
any input terminal in group z, 1 ^ z ^ /c, is to be connected with 
arbitrary output terminal in group j , 1 ^ j ^ k, the connecting path is 
set up through switch j of group z. 
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Figure 3.13. The one-stage fcn x /en switching fabric composed of n x n switches 

An alternate way of drawing the one-stage switching fabric is shown 
in Fig. 3.14. It has kn x kn capacity, and it may be seen as a multi
stage switching fabric. One may consider switches 1,1; 2,1; ... A;,l as 
switches of stage 1, but outputs of these switches are not connected to 
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Figure 3.14- The alternate way of drawing of /en x kn one-stage switching fabric 

inputs of switches 1,2; 2,2; ... fc,2, but they constitute the switching 
fabric^s output terminals. The connecting path considered earlier is set 
up through the switch denoted by z, j . 

3.6 Banyan-type Switching Fabrics 
3.6.1 Structures 

Banyan-type switching fabrics were proposed for using in computer 
networks, but they now also attract attention in high-speed electronic 
and photonic switching fabrics of high-performance and high-capacity 
routers and optical cross-connect systems. In general the switching fab
ric of capacity N x N is constructed from d x d switches arranged in 
n = log^ Â  stages. They are also referred to as log^ N or cJ-nary switch
ing fabrics. An example of 3-nary switching fabric is sown in Fig. 3.15. 
When d = 2 the switching fabric is called binary. There are several 
structures of binary networks, namely: banyan, baseline, omega, n-cube. 
They differ in the way of interconnecting switches in adjacent stages and 
input (or output) terminals to the switches of the first (last) stage [138]. 
Examples of 16 x 16 banyan, baseline, and omega switching fabrics are 
shown in Fig. 3.16a, 3.16b, and 3.16c, respectively. The reverse versions 
of these topologies, obtained as the mirror image of the network itself, are 
also known. All these topologies are equivalent, i.e., one can be obtained 
from another by reordering switches in stages without changing the way 
switches were interconnected between themselves. For instance, 8 x 8 
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banyan"^ (i.e., reverse banyan) switching fabric can be obtained from 
banyan one by exchanging switches 2 and 3 in all stages. When switches 
2 and 3 are exchanged in only the first stage, the baseline switching 
fabric is obtained. These examples are shown in Fig. 3.17. The equiv
alence of banyan-type switching fabrics was considered in some papers 
[2, 137, 170]. 

Figure 3.15. 27 x 27 3-nary switching fabric 

In the rest of this book we will use terms banyan-type and log^iV 
switching fabrics interchangeably, and we will mainly refer to the base
line topology. This topology may by also constructed recursively. An 
N X N switching fabric is constructed by taking two copies of N/2 x N/2 
switching fabrics and adding one stage of N/2 2 x 2 switching elements. 
Outputs of each 2 x 2 switching element are connected one-to-one to 
N/2 X N/2 switching fabrics, as shown in Fig. 3.18. 

In switching fabrics considered above, two switches of adjacent stages 
were interconnected by means of one interstage link. In general, there 
may be more than one such link. If there are v such links, we obtain 
the i;-dilated switching fabric. Its general architecture is shown in Fig. 
3.19. The N X N switching fabric contains d^"^ switches in each of n 
stages. Switches of the first stage have the capacity oi d x dv, switches 
of the nth stage are of capacity dv x d, and switches in the remaining 
stages have dv inputs and dv outputs. 
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Figure 3.16a. The 16 x 16 banyan 
switching fabric 

Figure 3.16b. The 16 x 16 baseline 
switching fabric 

Figure 3.16c. The 16 x 16 omega switching fabric 

b) c) 

JTb 

:|Tp 

Y\ 21—12 [: 

_ ] 4 f 1 4 |_ 

Figure 3.17. Equivalence of 8x8 banyan (a), banyan ^ (b) and baseline (c) switching 
fabrics 
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Figure 3.18. Recursive construction oi N x N baseline switching fabric 

Figure 3.19. A 7;-dilated 8 x 8 baseline switching fabric 
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3.6.2 Properties and Control 
Let input terminals in the log2 Â  switching fabric be numbered from 

0 to Â  — 1, from top to bottom; let stages be numbered from 1 to n, 
n = log2 N from left to right; and let switches in each stage be numbered 
from 1 to N/2^ from top to bottom. Banyan type binary networks have 
following properties: 

• From each input terminal there is exactly one connecting path to 
each output terminal. 

• Buddy property: If switch / at stage i is connected to two different 
switches J and K at stage i + l , then these two switches are connected 
also to the switch L at stage z, L ^ 1. 

• Constrained reachability property: If a switch at stage i can reach 
2^ switches at stage i + j , then these switches are also reachable by 
exactly 2^ — 1 other switches at stage i. 

• Self-routing: It is sufficient to know input and output terminals to 
be connected to determine the route in the switching fabric. 

One interesting property of log2 N switching fabrics is their self-routing 
capability. The self-routing of connections was proposed in [90] for the 
omega switching fabric. It means that the only knowledge needed to 
route a connection from an input terminal to any output terminal is to 
know the numbers of these terminals. This property is used, for instance, 
to route packets in the switching fabric. Each packet has a label added 
in front of it and one bit of this label is used to control one switching 
element. The way this 2 x 2 switching element is controlled is shown in 
Fig. 3.20. The upper on lower outputs are numbered by 0 and 1, respec
tively. If a packet from any input is to be directed to the upper output, 
the first bit is 0, and it is set to 1, when the packet should be sent to 
the lower output. When the switching fabric has more stages, one bit is 
used to control the switch in one stage. Let ?/^_i,?/^_2,.-. ,2/1,2/0 be a 
binary representation of output terminal y. We have log2 Â  stages in the 
switching fabric and the same number of bits in this binary representa
tion. Each bit is used to control one switch. This binary representation 
is added at the front of the packet with the most significant bit first 
transmitted. The example of self-routing is shown in Fig. 3.21. In this 
figure the packet from input terminal 0 is to be sent to output terminal 8 
(1000 in binary) and packet from input terminal 15 is directed to output 
terminal 5 (0101). Stages from 1 to 4 are controlled by bits ys to ?/o, 
respectively. Labels 1000 and 0101 are added to respective packets with 
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0 

1 

1 

0 

Figure 3.20. Self-routing capability of the 2 x 2 switching element 

Figure 3.21. Self-routing in the 16 x 16 switching fabric 

most significant bits at the first position. Routs are shown in bold lines 
and control bits are shown in appropriate switches. 

Banyan-type switching fabrics have blocking states, i.e., not all pos
sible assignments can be reahzed. The example of the conflict between 
two connecting paths is shown in Fig. 3.22. In this figure, connections 
(1,1) and (3, 3) try to use the same interstage link between first switches 
of stages 2 and 3. Connections (12,15) and (14,14) are also in conflict 
since they have to use the same interstage hnks between last switches in 
stages 2, 3, and 4. 
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1 2 3 
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Figure 3.22. A conflict between two connections in 16 baseline switching fabric 

3.6.3 Graph Representation 
The bipartite graph representation of banyan-type switching fabrics 

was proposed in [92, 91, 95]. In this representation an edge (or Hnk) 
corresponds to a switching element (crosspoint) and a node represents 
an input or an output of the 2x2 switching element. The bipartite graph 
representation of such switching element is shown in Fig. 3.23. The graph 
representation of log2 16 switching fabric contains n + 1 stages of nodes, 
numbered 0,1, 2 , . . . , n from left to right, respectively. The nodes in stage 
0 correspond to input terminals and the nodes in stage n correspond to 
output terminals. These nodes are numbered 0 , 1 , . . . , A/' — 1 from top 
to bottom, respectively. Such representation of the switching fabric of 
Fig. 3.22 is shown in Fig. 3.24. 

Connection (x, y) is represented by the connecting path from node x in 
stage 0 to node y in stage n. Connecting paths representing connections 
(1,1), (3,3), (12,15), and (14,14) are shown in Fig. 3.24 in dashed lines. 
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0 — — 0 0«<——^•O 

1 — — 1 i«^:_:^i 

Figure 3.23. A graph representation of 2 x 2 switching element 

Figure 3.24- A graph representation of 16 x 16 basehne switching fabric 

When two connecting paths representing two connections intersect in at 
least one node of the bipartite graph, then one of these connections is 
blocked. For instance connections (1,1) and (3,3) intersect in node 0 
of stage 2, so only one of them can be set up in the switching fabric at 
the same time. Similarly, connections (12,15) and (14,14) intersect in 
nodes 16 of stages 2 and 3. 

In the bipartite graph representing the log2 Â  switching fabric, stage 
1 and stage log2 N — 1 are called the first shell. Similarly stage 2 and 
stage log2 N — 2 are called the second shell, and so forth. Stage i will be 
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called the left part of shell z, while stage log2 N — i will be called the right 
part of shell i. The total number of shells in the log2 Â  switching fabric 
is equal to the center shell number, which is equal to l/2(log2 A'̂  — 1) or 
1/2 log2 A ,̂ when log2 N is odd or even, respectively. The center shell of 
the log2 N fabric consists of stages l/2(log2 A'' — 1) and l/2(log2 Â  + 1) 
when log2 N is odd, and it consists of stage 1/2 log2 N when log2 N is 
even. The structure of the log2 Â  switching fabric is symmetrical with 
respect to the center shell. It should be noted tha t a shell usually consists 
of two stages. The only exception is the center shell of a log2 Â  switching 
fabric, when log2 Â^ is even; this center shell consists of only one stage. 
The shells in log2 16 switching fabric (n is even) are marked in Fig. 3.24. 
The bipartite graph representation with shells marked on it for log2 32 
switching fabric (n is odd) is shown in Fig. 3.25. 

Let us consider a connecting path representing connection (x^y). This 
path contains node x of stage 0, node y of stage n, and nodes in stages 
1 trough n — 1. In nodes x and y path (x^y) cannot intersect with any 
other path. In stage 1 the considered path may intersects with one path 
from one node in stage 0. In stage 2 this path may intersects with the 
additional paths from two nodes in stage 0. In general, the considered 
path may intersects in a node of stage j , 1 ^ j ^ n — 1, with 2^~^ 
additional paths from 2^~^ nodes in stage 0. 

D E F I N I T I O N 3.2 Let SIj be the set of these input terminals (excluding 
input terminal x and all Sli^s, where i < j) whose paths can intersect 
with path (x^y) in a node of stage j . Input terminals belonging to set 
SIj will be called accessible from stage j . 

D E F I N I T I O N 3.3 Let SO j be the set of those output terminals (excluding 
output terminal y and all SO^fg, where i > j) whose paths can intersect 
with path (x^y) in a node of stage j . Output terminals belonging to set 
SOj will be called accessible from stage j . 

We have | § % | = 2^'"^ and | §0^ | = 2^--^'-\ where |X| denotes the 
cardinality of set X. For example, let us consider path (0,0) in the graph 
of Fig. 3.24, and j = 3. In this case ISE3I = 2^ = 4, SI3 = {4, 5,6, 7} and 
ISOal = 2^-^-1 = 1, S03 = {1}. 

For any connecting path we can construct the graph of intersecting 
paths. This graph has the same structure for any connecting path in 
the switching fabric. The topology of these graphs for switching fabrics 
with different number of stages differ, depending on n being odd or even. 
Graphs of intersecting paths in switching fabrics with n even and odd 
are shown in Fig. 3.26a and Fig. 3.26b for n = 4 and n = 5, respectively. 
The maximum number of paths meet in the node of stage n / 2 for n even, 
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Figure 3.26. 
fabrics 

Graph of intersecting paths in log2 16 (a) and log2 32 (b) switching 

and stages (n — l) /2 and (n + l) /2 for n odd [91, 92]. This number of 

paths is equal to 2L^-J . 
Let Xn-iXn-2 • • • ^1^0 and yn-iyn-2 • • • yiVo be binary representations 

of input X and output t/, respectively. Input and output terminals are 
divided into following sets: 

DEFINITION 3.4 The Î  denotes the set of input terminals x with the 
same values on hits Xn-iXn-2 • • •^1^1; where i is binary represented by 
^ n — l ^ n — 2 . . . ^ 1 21 I • 

DEFINITION 3.5 The Oj denotes the set of output terminals y with the 
same values on bits yn-iyn-2 • • -̂ /i n i where j is binary represented by 
yn-iyn-2'"y\ny 

When input terminals in Î  are to be connected with output terminals 
in Oj, all paths for these connections are in conflict and their graph is a 
graph of intersecting paths. We will denote this graph by Q (I^, Oj). The 
connection between an arbitrary input in Î  and an arbitrary output in 
Oj will be denoted by (Ê , Oj), When n is even, all paths in Q (li.Oj) use 

21 

node j • 2 2 + z in stage | . When n is odd, all paths in Q (li, Oj) use the 
same nodes in stages ^ ^ and ^ ^ . However, in this case, these nodes 
may be also used by paths in other graphs. Let h- denotes a set of inputs 
complementary to Ii in such a way, that i is represented by binary digits 
Xn-i .. .^1 n i+iO, while i is represented by Xn-i .. .xi n i ,-^1. The same 
is true for CK and Oj. For instance I5 is complementary to I4, z = 4 and 
i = 5. Graphs Q (Ê , Oj) and Q{li,0^) use the same node j • 2~2~ + i in 
stage ^ ^ , while Q{h,Oj) and Q{h,Qh) use the same node j • 2^~ + i 
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Figure 3,27. Graphs 0(Io,Oo), ^ ( I i , 
baseline switching fabric 

h), 6( l2 ,Oi) , and 6(13,02) in the 16 x 16 

(or jf-2 2 + 2 - f i ) . Similarly, connection paths in graphs Qili^ Oj) and 

Q(Jq, Qj) go through the same node j • 2 ^ + | in stage ^ ^ (j • 2 V - + | 

for graphs ^(I i ,Oy) and ^ ( % , 0 - ) ) . 
An example for 16 x 16 baseline switching fabric is shown in Fig. 3.27. 

We have \ = Q^ = {0 ,1 ,2 ,3} , Ei .=. Oi = {4 ,5 ,6 ,7} , I2 = O2 = 
{8,9 ,10,11}, and E3 = O3 = {12,13,14,15}. In this example Q (IQ, OQ) 
use node 0 in stage 2, Q (li.O'i) - node 13, ^ ( l 2 ? O i ) - node 6, and 
^ (I3,02) - node 11, respectively. When inputs in Ê  are to be connected 
with outputs in different sets Oj and Ok^ k ^ j ^ respective paths will go 
through different nodes in stage n / 2 . 

The similar example in case of 32 x 32 baseline switching fabric is 
shown in Fig. 3.28. In this example, ^(Eo,Oo) uses nodes 0 and 0 in 
stages 2 and 3, respectively, ^ ( E i , 0 7 ) - nodes 25 and 28, ^(E2,03) --
nodes 10 and 13, Q (la, O2) - nodes 11 and 9, ^ (E4, Oi) - nodes 4 and 6, 
^ (E5, Oe) - nodes 29 and 26, ^ (Ee, O5) - nodes 22 and 23, and Q (E7,04) 
- nodes 23 and 19. Node 0 in stage 2 is used by 6 (EQ, OQ) and Q (EQ, Oi ) . 
Similarly, node 1 of this stage is used by ^(Ei ,Oo) and ^ ( E i , O i ) . In 
stage 3, for instance, node 4 is used by Q (EQ, O I ) and ^ (Ei, Oi ) . 
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3.7 Implementations 
Switching fabrics considered in this chapter have many practical im

plementations. Crossbar switches are implemented in deferent tech
nologies and for different applications. This architecture is used to 
design integrated switches for packet switching (ATM, IP) and opti
cal switching. In case of packet switches different solutions was pro
posed to overcome the head of line blocking (HOL) problem and improve 
the limited throughput of input buffered switches. Therefore, crossbar 
switches with greater internal speed of operation were proposed and de
veloped [86, 123, 172]. Another approach uses multiple crossbar switches 
connected in parallel [119], and implemented in cross-connect systems 
[6, 100]. The drawback of this solution is that an additional mechanism 
is needed to preserve the cell sequence. Another solution of multiple 
crossbar implementation with no speedup and which preserves cell se
quence was described in [127, 130]. Crosspoint buffering is also one of 
solutions for improving the throughput of packet switches. Implemen
tation of the crossbar switch with crosspoint buffering was reported in 
some papers [125, 126, 128]. 

Crossbar architecture is also often used in optical switches design and 
implemented in different technologies. Many papers report such designs 
[59]. Recently a 4 x 4 crossbar switch implementation in InGaAsP-InP 
technology was described [34]. This switch supports 10 Gbit/s line speed 
and power losses less than 1 dB. Crosstalk is lower than -60 dB. Switches 
based on MEMS technology was also reported in many papers. This 
technology enables large optical switches with low losses and crosstalk 
to be built. For instance switch with 1296 ports, up to 6 dB insertion loss 
and worst case crosstalk not greater than -38 dB was reported in [144]. 
This switch was implemented in prototype switching fabric with 2.07 
Petabit/s capacity, 1.6 Tbit/s capacity of each port carrying 40 DWDM 
channels, 40 Gbit/s each. Another experimental switch was reported in 
[98]. 

The implementation of triangular switch using MEMS technology was 
described in [147]. The 4 x 4 switch is shown in Fig. 3.29. In this imple
mentation both sides of mirrors are covered with the reflective material, 
so when a mirror is in up position two beams, from the top and left side, 
are reflected. In the example shown in Fig. 3.29 following permutation 
is set up: 

" = ( 2 3 0 ? ) ' ^'-'^ 
and respective connections are shown in different lines, while mirrors in 
the up position are drawn in bold lines. 
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Figure 3.29. Implementation of the 4 x 4 triangular switch in MEMS technology 

The tree-type 8x8 switch architecture fabricated in MEMS technology 
was presented in [42]. Implementation of tree-structured 1 x 8 switch in 
InGaAsP-InP technology was described in [145]. The same technology 
was used then to fabricate 8 x 8 switch [169]. 

Implementation of banyan-type switching fabric composed of direc
tional couplers and fabricated using lithium niobate technology was re
ported in [117]. The switching fabric is composed of two types switches. 
One switch is the 1 x 8 tree-structured switch (two such switches were 
implemented in one integrated circuit) and the other is 16 x 16 basehne 
switch. The whole switching fabric is shown in Fig. 3.30. It contains 7 
baseline switches; therefore one output of each 1 x 8 switch is left un
used. This architecture will be discussed in Chapter 6. Another switch 
of capacity 32 x 32 and banyan architecture fabricated in lithium nio
bate technology was reported in [124]. Implementation of 1024 x 1024 
switching systems using three-dimensional layout of banyan-type switch
ing fabric was described in [179]. Recently a 4 x 4 switch was reported, 
which supports the speed of up to 160 Gbit/s at each input/output 
port [178]. This switch uses 2 x 2 switching elements arrange in banyan-
type architecture and was implemented using SFQ (single flux quantum) 
technology. 

Other architectures of switching fabrics were also considered and fab
ricated in different technologies [13, 135, 148]. 
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Figure 3.30. 
topologies 

Implementation of the 16 x 16 switching fabric using baseline and tree 



Chapter 4 

TWO-STAGE SWITCHING FABRICS 

4.1 Two-sided Switching Fabrics 
The general architecture of the space-division ^'-dilated two-sided two-

stage switching fabric is shown in Fig. 4.1. It consists of vi switches of 
capacity rii x r2V at the first stage and r2 switches of capacity viv x 122 
at the second stage. The switching fabric is fully accessible, but the 
performance of this switch is very low for ^̂  = 1 due to the high blocking 
probability. Only one connection can be set up from any input of switch 
/i, 1 ^ z ^ r i , to any output of switch Oj, 1 ^ ji ^ r2. The lower 
blocking probability can be obtained by increasing v. For strict-sense 
nonblocking operation of this switching fabric the following condition 
should be fulfilled: 

THEOREM 4.1 The space-division v-dilated two-sided two-stage 
switching fabric is strict-sense nonblocking if and only if: 

V = min{ni; 722}. (4.1) 

This condition is obvious, since not more than min{ni;n2} connec
tions can be set up between any pair of the first and the second stage 
switches. However, the number of crosspoints required in the switches 
is V times greater than in 1-dilated switching fabric. For the symmetri
cal switching fabric with ui = n2 = n and ri = r2 = r the number of 
crosspoints is two times higher than in the crossbar switch of the same 
capacity [138]. Therefore, two-sided two-stage switching fabrics did not 
receive more attention between researches and engineers. 

Considerations given above are true not only for space-division switch
ing fabrics, but also for time-division and mult irate switching fabrics. 
Also, time-division two-stage switching fabrics composed of time and 
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Figure 4-1- The structure of t;-dilated two-sided two-stage switching fabric 

space division switches were used in some practical implementations [25], 
[159]; however, the nonblocking two-stage switching fabric makes also no 
practical sense, since its capacity is no greater than the capacity of a sin
gle time and space switch. If each input link carries / i channels and each 
output link carries /2 channels, than the two-stage switching fabric will 
be strict-sense nonblocking if vfo = min{ni/ i ; 722/2}, where /o denotes 
the number of channels in each of interstage links [62]. 

4.2 One-sided Switching Fabrics 
4.2.1 Space-division Switching 
4.2.1.1 Switching Fabric's Architecture 

The general architecture of the space-division t^-dilated one-sided two-
stage switching fabric composed of triangular switches is shown in Fig. 
4.2. It includes r switches with n-\-mv terminals at the first stage and m 
switches with rv terminals at the second stage. In each of the first stage 
switches n terminals constitute the switching fabric terminals and mv 
terminals are used to connect these first stage switches with the second 
stage switches. Each of the second stage switches has the capacity of rv 
terminals. Numbers n, m, r, and v determines the architecture of this 
switching fabric and it will be denoted by Tsoi'^^'^^'^j'^)' 

4.2.1.2 Path Searching Algorithms 

When a new call arrives at the switching fabric, a connection is to 
be set up between the two terminals requested. Let terminals of this 
switching fabric be numbered form 0 to N — 1^ N = nr; let the first stage 
switches be numbered from 1 to r; and let the second stage switches be 
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Figure 4-2. The structure of the i;-dilated one-sided two-stage switching fabric com
posed of triangular switches 

numbered from 1 to m. The first stage switch i will be denoted by li and 
the second stage switch k will be denoted by M^. Let (li.Ij) denotes a 
new connection request from any terminal of switch li to any terminal 
of switch / j , 1 ^ z, j ^ r. The connecting path consists of the terminal 
in switch Ĵ , switch 7̂ , interstage link from switch li to the second stage 
switch Mfc, 1 ^ k ^ m, switch M^, interstage link from switch Mk to 
switch Ij, switch / j , and terminal of the first stage switch Ij. 

To set up the new connection the second stage switch M^ with free 
links to switches li and Ij is to be found. This switch Mk is called 
free or available for the new connection. The following path searching 
algorithms can be used for finding an available second stage switch: 

ALGORITHM 4.1 Random 

Check second stage switches randomly and set up the connection through 
the first available switch. 
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ALGORITHM 4.2 Sequential 

Check second stage switches sequentially starting form the second stage 
switch Mfc, 1 ^ /c ^ m and choose the first available switch. 

ALGORITHM 4.3 Minimum index 

The same as sequential, but k = 1, 

ALGORITHM 4.4 Quasi-random 

The same as sequential, but A: = / + 1 , where M/ denotes the switch used 
to route the last request (fc = 1 for / = m). This algorithm is also called 
cyclic dynamic or round-robin). 

ALGORITHM 4.5 Cyclic static 

The same as Quasi-random, but k = l^ where Mi denotes the switch 
used to route the last request (fc = 1 for / = m). 

ALGORITHM 4.6 Save the unused 

Do not route a new connection through any empty second stage switch 
unless there is no choice. 

ALGORITHM 4.7 Packing 

Route a new connection through the busiest but available second stage 
switch. 

In all these algorithms when all second stage switches were checked 
and the switch for the new connection was not found, the connection 
is blocked. 

4,2.1.3 Strict-sense Nonblocking Conditions 

The conditions for strict-sense nonblocking operation oiTsoi^^ ^5 ^51) 
under unicast connections are given by the following theorem [23, 70, 
141]. 

THEOREM 4.2 Ts'£)(n,m,r, 1) is nonblocking in the strict sense if and 
only if: 

m ^ 2 n - l , f o r r > 3 ; (4.2) 
3n 
Y 

m ^ n^ for r = 2. (4.4) 

m > for r - 3; (4.3) 
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Figure 4-3. The worst state of the one-sided switching fabric composed of triangular 
switches with r > 3 

Proof. Sufficiency can be proved by showing the worst state in the 
switching fabric. 
Case 1: r > 3. In switch /^, 1 ^ z ^ r there may be at most n — 
1 connections to terminals in switch 7 ,̂ 1 ^ j ^ r, 2 7̂  j . These 
connections will occupy n — 1 second stage switches. Similarly, to switch 
lyj^ l^w^rwy^jj^i there may be at most n — 1 connections to 
terminals in the first stage switch I^^ l ^ z ^ r . z ^ w ^ j ^ i . These 
connections may occupy another set of n — 1 second stage switches. In 
the worst case these sets of switches are disjoint and one more switch is 
needed to set up connection (li^I^). Thus, at least ?7i = (n — 1) + (n — 
1) + 1 == 2n — 1 switches are needed in the second stage. This state is 
shown in Fig. 4.3. 
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Figure 4-4- The worst state of the one-sided switching fabric composed of triangular 
switches with r = 3 

Case 2: r = 3. We may have the following state: 

• j connections between switches / i and I2 through j second stage 
switches; 

• k connections between switches / i and Is through k second stage 
switches; 

• / connections between switches I2 and Is through I second stage 
switches. 

This state is acceptable if j + /c ^ n, A: + / ^ n, and j -{-1 ^ n. Thus we 
have: 2j + 2/c + 2/ ^ 3n, j -\- k + l ^ 3n/2. When 3n/2 is not an integer, 
the result is rounded to the nearest integer less than 3n/2. This state is 
shown in Fig. 4.4. For simplicity the first stage switches are drawn as 
squares. 

Case 3: r = 2. We have n links between the first stage and the second 
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stage switches, and through these n links all n terminals of switch / i 
can be connected with all n terminals of switch /2. 

Necessity can be proved by showing the blocking state when less sec
ond stage switches are used than the number given by Theorem 4.2. We 
will consider only the case when r > 3. Set of events for r ^ 3 can 
be derived by analogy. Let assume that m = 2n — 2 and the second 
stage switches are chosen cyclicly starting from the switch used for set
ting up the previous connection (algorithm cyclic static). Let us also 
assume that there is not any connection in the switching fabric at the 
beginning, and path searching for the first connection will start from the 
second stage switch 1. The following set of events lead to the blocking 
state: 

S t e p 1 Set up n connections ( / i , /2 ) . These connections will occupy 
switches from Mi to M^. 

S t e p 2 Set up connection (73,74). This connection will be set up 
through switch M^. 

S t e p 3 Set up n — 2 connections (73,74). These connections will be set 
up through switches from Mn+i to M2n-2-

S t e p 4 Disconnect connection (7i,72) which was set up through switch 
Mn. 

At the end of step 4 there are n — 1 connections (7i, 72) set up through 
switches from Mi to Mn-i and n — 1 connections {I^^IA) which uses 
switches from Mn to M2n-2- In this state connection (7i,73) is blocked 
and one more switch is the second stage is needed. D 

4.2 .1 .4 W i d e - s e n s e Nonblock ing Condi t ions 

One-sided two-stage space-division switching fabrics composed of tri
angular switches nonblocking in the wide-sense were not considered in 
the literature. However, similar results as for two-sided three stage 
switching fabrics can be derived (see chapter 5.1.4). It is easy to show 
that when the quasi-random algorithm is used the switching fabric re
quires the number of second stage switches given by Theorem 4.2. For se
quential and minimum index strategies following theorem can be proved. 

T H E O R E M 4.3 Ts'£)(n,m,r, 1) is wide-sense nonblocking under sequen
tial routing and minimum index routing for r ^ 4: if and only if: m ^ 
2 n - 1 . 

Proof. We will consider only the minimum index algorithm, since for 
sequential routing the procedure for constructing the set of connections 
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and disconnections is similar, and it only needs renumbering of the sec
ond stage switches. It is sufficient to show the necessary condition for 
r = 4L because the set of events leading to the occupancy of 2n — 1 second 
stage switches can be the same if r > 4. This set of events is as follows. 

Step 1 Set up two connections (/i,/2) through the switches Mi and 
M2. Disconnect connection (/15/2) from switch Mi and set up con
nection (/a, 74). This connection will use switch Mi. The state of the 
switching fabric is: 

connection 
( / 3 , / 4 ) 

{hj2) 

the second stage switch 
M l 

M 2 

Step 2 Set up two connections (/15/3) through the second stage 
switches M3 and M4. Disconnect connection (/i,/3) realized through 
switch M3 and set up connection (725/4). This connection will use 
switch M3. Disconnect connection (/15/2) from switch M2 and set 
up connection (Ii^Is) through this switch. Disconnect (73,74) from 
switch Ml and set up (h^Ii) through this switch. The state of the 
switching fabric is changed to: 

Assume that after step i 

connection 
( / 2 , / 4 ) 

( / l , / 3 ) 

{h,h) 
{h,h) 

the second stage switch 

tep i — 1 following 

connection 
{h,h) 
ili,h) 
{hjA) 
{h,h) 

{h.h) 
{h,h) 

M l 

M 2 

M 3 

M 4 

state is in the 

the second stage switch 
M l 

M 2 

Ms 
M 4 

M2i-3 

M2i-2 

Step i Set up two connections {h^h) through the second stage switches 
M3 and M4. Disconnect connection (7i,72) from switch M2i-i and 
set up connection (73,74). This connection will use switch M2i_i. 
Then do: 
Disconnect (7i, 73) from M2i-2 ctnd set up (7i, 72) through this switch. 
Disconnect (72,74) from M2i-^3 and set up (73,74) through this switch. 
Disconnect (7i, 73) from M2i~4 and set up (7i, 72) through this switch. 
Disconnect (72,74) from M2i_5 and set up (73,74) through this switch. 
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Disconnect {h.Is) from M4 and set up [h^h) through this switch. 
Disconnect (h.h) from M3 and set up (h^h) through this switch. 
Disconnect ( / i , /3) from M2 and set up (h.h) through this switch. 
Disconnect (h^h) from Mi and set up (/3,/4) through this switch. 
The state of the switching fabric is changed to: 

mnection 
( / 3 , / 4 ) 

ih,h) 
{h,h) 
(luh) 

ihj4) 
ih,l2) 
( / 3 , / 4 ) 

ih,l2) 

the second stage switch 
Ml 
M2 
Ms 
Mi 

M2i-3 

M2i-2 
M2i-1 

M2i 

During execution of step i no more than z + 1 connections were set up 
in any of the first stage switches. Step i can be executed until i = n — 1. 
After step n — 1 we have n — 1 connections ( / i , 12) and n — 1 connections 
(̂ 35 ^4) (or (hjls) and (/2,14)5 depending on n being odd or even) which 
are set up through 2n — 2 different second stage switches. Connection 
{IIJIA) has to be set up through switch M2n-i' D 

The example of obtaining the state given in the proof of Theorem 4.3 
in the Ts'£)(4, 7,4,1) is given in Table 4.1. Connections which are in the 
switching fabric at the end of each step are marked by asterisk. At the 
end of step 3 second stage switches from Mi to MQ are inaccessible by 
connection ( / i , /4) and switch M7 is to be used. 

For packing strategy the question is which switch should be used from 
several equally loaded switches? When the switch recently used to set 
up the previous connection is used, the following theorem holds. 

T H E O R E M 4.4 Ts'2)(n,m,r, 1) is wide-sense nonblocking for r ^ 5 and 
under packing routing algorithm with recently used switch preferences in 
case more switches are equally loaded, if and only if: m ^ 2n — 1. 

Proof. The condition m ^ 2n — 1 guarantees wide-sense nonblocking 
condition since it is also a strict-sense nonblocking condition. We prove 
now the necessary condition for r = 5 (this condition is then obviously 
true also for r > 5) by giving a sequence of events leading to the occu
pancy of 2n — 1 second stage switches. 

S t e p 1 Set up n — 1 connections (/i , 12). These connections will occupy 
switches from Mi to M^- i -
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Step action connection the second stage switch 
1 connect 

connect 
disconnect 

connect 
2 connect 

connect 
disconnect 

connect 
disconnect 

connect 
disconnect 

connect 
3 connect 

connect 
disconnect 

connect 
disconnect 

connect 
disconnect 

connect 
disconnect 

connect 
disconnect 

connect 

{hj2) 

ih,hr 
{h,h) 
ih,l4)* 
{h,h) 
ih,hr 
(luh) 
{h,hr 
(luh) 
(luh)* 
{h,h) 
{h,hr 
{h,h) 
ih,hr 
ih,l2) 

{h,l4)* 
(luh) 
ih,l2)* 
{l2,h) 

(h^ur 
ih,h) 
ih,i2r 
{l2,h) 

( / 3 , / 4 ) * 

Ml 
Ms 
Ml 
Ml 
Ma 
M4 
M3 
M3 
M2 
M2 
Ml 
Ml 
Ms 
Me 
M5 
Ms 
M4 
M4 
M3 
M3 
M2 
M2 
Ml 
Ml 

Table 4-1- The state in TSD{4:^ 7,4,1) with minimum index routing algorithm 

Step 2 Repeat n — 1 times steps 2.1 - 2.5. 

Step 2.1 Set up connection (/2,/3). This connection will have to 
occupy switch Mn+i-i 

Step 2.2 Set up connection (Ii^I^). Since each of all not empty 
second stage switches carries 1 connection, this connection will 
be set up through switch Mn+i-i^ 

Step 2.3 Disconnect connection (725/3). 

Step 2.4 Set up connection (/3,/4). Again, each of all not empty 
second stage switches carries 1 connection, this connection will 
be set up through switch Mn+i-i-

Step 2.5 Disconnect connection (/i,/5). 

After these steps we have n — 1 connections {h^h) and n— 1 connections 
{h,h) which are set up through 2n — 2 different second stage switches. 



Two-stage Switching Fabrics 91 

Connection (/ i , /s) will have to occupy the second stage switch M2n-i • Q 

4.2.1 .5 Rearrangeable Switching Fabrics 

Rearrangeable one-sided switching fabrics composed of triangular 
switches were considered by Bassalygo, Grushko, and Neiman [7]. They 
proved following theorem: 

T H E O R E M 4.5 T5'i:)(n,m,r, 1) is rearrangeable nonblocking for r ^ 3 
if and only if: 

' 3n 
m > (4.5) 

Proof. The necessity can be proved by giving the set of connections 
similar to tha t in proof of Theorem 4.2 for r = 3. We may have [(n + 
1)/2J connections (/ i , 12), n — [(n + 1)/2J connections ( / i , /3 ) , and n — 
[(n + 1)/2J connections (725/3), which will occupy [3n/2j second stage 
switches and no rearrangements can be done to reduce this number of 
required switches. 

Sufficiency can be proved using connection matrix H^. , which will 
be described in more detail in section 5.1.6.2 of chapter 5. Similarly 
as for two-sided three-stage switching fabrics, this matrix can be de
composed into n elementary permutation matrices E^. However, in the 
case of one-sided switching fabrics composed of triangular switches, con
nections corresponding to two matrices E^ requires three second stage 
switches. Therefore, [3n/2j switches are sufficient to route all possible 
permutations. D 

4.2.2 Time-division Switching 
4.2 .2 .1 Swi tch ing Fabric's Arch i tec ture 

The general architecture of the time-division i;-dilated one-sided two-
stage switching fabric composed of triangular switches is shown in Fig. 
4.5. It differs from the space-division switching fabric shown in Fig. 4.2 
in interstage links and terminals which are now TDM links. The first 
stage contains r switches with n + vnv terminals, n of these terminals 
carry f\ time slots each, and mv terminals carry /o time slots. Terminals 
with / i time slots constitute the switching fabric's terminals. The other 
terminals are used to connect the first stage switches with the second 
stage switches. The second stage contains m switches, each of them 
having rv terminals with /o time slots. This switching fabric architecture 
will be denoted by TTZ)(n , / i ,m,r , 1;,/o). 
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fo 

Figure 4-5. One-sided two-stage time-division switching fabric composed of triangu
lar switches 

Connections may be set up between any time slot of any terminal to 
another time slot of any terminal. When these time slots are in terminals 
of different first stage switches, the second stage switch is to be selected. 
Path searching algorithms are similar to those used in space-division 
switching fabrics, but apart from the second stage switch, time slots in 
two interstage links are to be chosen. In the set of v links between the 
first and the second stage switches, a time slot for the new connection 
may be selected 
- randomly, 
- sequentially, 
- quasi-randomly, 
- using the time slot recently released, 
- using the time slot which is the longest time free, 
- in the most loaded link in the set, 
- using the most unloaded link in the set. 

When a new connection is an 5-slot connection, s slots may be se
lected using fixed, floating, or flexible assignment, which were described 
in section 2.5.2 of chapter 2. These s slots are to be selected in one 
TDM link. When a new connection requires all time slots in one TDM 
link, any connection which use one time slot will make the TDM link 
inaccessible by this new connection. As will be shown later, switching 
fabrics with 5-slot connections for which s may vary in range from 1 to / i 
will require a high number of the second stage switches for nonblocking 
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operation. Therefore, another routing strategy was proposed for using 
in such connections [120]: 

• Functional division of second stage switches: Second stage switches 
are divided into two subsets of rui and m2 switches, mi + m2 = m, 
The set of rui switches is used to route connections with s ^ L/0/2J5 
and the set of 7712 switches is used to route connections with s > 

L/0/2J. 

In each of these sets connection may be set up using one of earher de
scribed algorithms for switch selection and for time-slot assignment. 

4.2.2 .2 Str ic t - sense Nonblock ing Condi t ions 

Strict-sense nonblocking conditions of T r £ ) ( n , / i , m , r, ?;,/o) for uni-
cast 1-slot connections where considered by Jajszczyk [63]. 
the following theorem. 

He proved 

T H E O R E M 4.6 T T D ( n , / i , m , r , t ; , / o ) is nonblocking in the strict sense 
for 1-slot connections if and only if: 

m > 2 

m ^ 

m > 

n / i - 1 

L ^ /o J 
3 n / i - 2 

L 2i;/o 

n / i - 1 
L ^/o J 

+ 1, 

+ 1, 

+ 1, 

for r > 3; (4.6) 

for r = 3 and n / i > vfo] (4.7) 

for r = 2, (4.8) 

Proof. When r > 3 there may be not more than n / i — 1 connections 
in each of switches Ii and Ij^ i ^ j^ and there is no connection (li^Ij), 
Connections from each of these switches will use all time slots in sets of v 
links connected to at most [ (n / i — l)/vfo\ second stage switches. In the 
worst scenario connections from li and Ij are set up through disjoint 
sets of the second stage switches and one more switch is needed for 
connection (/^, Ij). The necessity can be proved by analogy to the space 
division case (Theorem 4.2). For r = 3 the set of connections which may 
block connection (li.Ij)^ i ^ j^ is also similar to the space-division case 
with r = 3. We may have ki connections (li^Ij), k2 connections {Ii^Ii), 
and /ca connections (Ij^Ii), Numbers fci, /c2, and /cs must fulfil following 
conditions: 

ki -\- k2 = nfi — 1 (one time slot free in /^), 
^1 + ^3 — ̂ / i — 1 (one time slot free in / j ) , 
^2 + ^3 ^ ^ / i (switch // has nfi time slots). 
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We have not more than /ci + A:2 + ^3 ^ (3n/i — 2)/2 connections and they 
will occupy at most [ki + A:2 + k^)/vfQ switches. When (3n/i — 2)/2vfo 
is an integer one more switch is needed for connection (/^, /j), otherwise 
L(3^/i — 2)/2vfo\ switches will be inaccessible by this connection and 
the additional switch will be partially occupied but still accessible by 
(/i, Ij). For r = 2 the worst case is when all time slots of terminals in / i 
are to be connected with time slots of terminals in I2 and through one 
second stage switch vfo connections (/15/2) can be set up. D 

m 

m 

m 

^ 2 

^ 

^ 

V 

3n-2 
2v 

7 2 - 1 

V 

COROLLARY 4.7 The Tsoi'f^^'f^^'^^^'^) ^^ nonblocking in the strict sense 
if and only if: 

n — 1 I 

+ 1, f o r r > 3 ; (4.9) 

+ 1, for r = 3 and n > v] (4.10) 

+ 1, for r=:2 . (4.11) 

Proof. Set fi = fo = lm inequalities (4.6), (4.7), and (4.8). D 

Conditions under which TToi"^^ /15 ^5 5̂ ^^ /o) is strict-sense nonblock
ing for 5-slot connections where considered in [71, 72]: 

THEOREM 4.8 TT£)(n,/i,m,r,t;,/o) is nonblocking in the strict sense 
for s-slot connections^ 1 ^ s ^ 5max ^ / i ; /̂ ^^^ only if: 

m ^ 2 max 
nj 

V 
-

1 — 

/o 

_ s _ 

s 

-

m ^ max 
1 ^ 5 ^ 5 m a x 

m ^ max 
1^5^5niax 

3n/i — 2s 

2v 
fo 
s 

+ 1, f o r r ^ 4 ; (4.12) 

+ 1, forr = 3; (4.13) 

nf 

V 

1 — 

fo 
_ s _ 

s 
+ 1, f o r r - 2 . (4.14) 

Proof. Case 1^ r ^ A. Necessity will be proved by giving the set of 
events which results in occupancy of all of the second stage switches 
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given by inequality (4.12). The path for a new 5-slot connection will 
be set up using s consecutive free slots (floating assignment). If the 
new connection is from the same first stage switch from which the last 
connection was set up, searching will start from the time slot next to 
the last used. If the last used time slot is the last time slot in the link, 
searching will start from the next link. This may be the next link in the 
set of V links to the same second stage switch or the first link to the next 
second stage switch. When the new 5-slot connection is from another 
first stage switch, searching will start from the second stage switch next 
to tha t recently used for previous connection. We will also assume that 
if connection (li.Ij^s) is set up through switch M i , then connection 
(Ij.Ii^s) for the second direction of connection is also set up through 
this switch. Let as assume that equation (4.12) reaches maximum for 
s = si. 

S t e p 1 Set up connection {li^Ij^ {si — 1)), i 7̂  j , and then set up con
nection (lijlj^ 1). Disconnect connection {h.Ij^ {si — 1)). 

S t e p 2 Repeat events from step 1 [/o/^ij times. If /o © ^i = 5i — 1^ 
set up one additional connection ( / i , / j , (^i — 1)). After step 2 in the 
link to the second stage switch [/o/^^ij time slots will be occupied 
by 1-slot connections, and there will be exactly 5i — 1 free time slots 
between occupied time slots. 

S t e p 3 Set up connection (7^, Ij, {si — 1)). This connection will use the 
next link to the same second stage switch, if t̂  > 1, or link to the 
next second stage switch, iiv = l. If /o © 5i = 5i — 1, disconnect the 
additional connection (/^, / j , (^i — 1)) and set up connection (/^, / j , 1). 
Disconnect connection {li^Ij^ {si — 1)). 

Step 4 Repeat events from step 3 [/o/^ij times. If /o © 5i = 5i — 1 set 
up one additional connection [h^Ij^ {si — 1)). 

S t e p 5 Repeat events from steps 3 and 4 up until all links to [ (n / i — 
•^i)/('^L/o/'5iJ)J second stage switches will be occupied. 

Step 6 Set up connection (I^^I^^ {si — 1)), w ^ z^ z ^ j , w ^ i^ and 
then set up connection {lyj^I^^ 1). Disconnect connection {1^,1^^ {si — 

S t e p 7 Repeat events from step 6 [/o/^ij times. If /o © si = si — 1 set 
up one additional connection (7^,/;^, (si — 1)). 

^x ® y denotes the rest from dividing x by y 
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Step 8 Set up connection (/^, Iz^{si — 1)). If /o 0 5i = 5i — 1, discon
nect the additional connection {I^^Iz-, {si — 1)) and set up connection 
{lyj.Iz, 1). Disconnect connection (I^^Iz^ {si — 1)). 

Step 9 Repeat events from step 8 [fo/si\ times, li fo® si = si — l set 
up one additional connection {I^^I^^ {si — 1)). 

Step 10 Repeat events from steps 8 and 9 up until all links to [(n/i — 
'^i)/('^L/o/'^iJ)J second stage switches will be occupied. 

There are 2[(n/i —si)/{v[fo/si\)\ second stage switches inaccessible by 
the connection (li^Iw^si) and one more second stage switch is needed. 

Sufficiency will be proved by showing the worst state of the switching 
fabric. Assume that (li^Ij^s)^ i ^ j^ is compatible with the state of 
the switching fabric. There may be at most n / i — s 1-slot connections 
from terminals of switch J ,̂ and these connections may occupy links to 
the second stage switches in such a way that there are no more than 
5 — 1 consecutive free time slots. Such links are inaccessible by the 
new connection if fixed or floating assignment is used. These connec
tions will occupy [(n/i — s)/{v\^fQ/s\)\ second stage switches. The same 
number of the second stage switches may be occupied by n / i — s 1-slot 
connections from terminals of switch Ij, If these sets of switches are 
disjoint one more switch is required by connection (li.Ij^s). Thus, at 
least 2 [(n/i — s)/{v lfo/s\)\ + 1 second stage switches are needed, and 
this number must be maximized through all possible 5. 

Case 2, r = 3, Necessity. We will start to search the path for the new 
connection from the time slot next to the time slot used by the previous 
connection set up in the switch with the new request. Let's assume 
that equation 4.13 reaches maximum for s = si. Events resulting in 
occupancy of [(3n/i — 2s)/{2v [fo/s\)\ + 1 second stage switches is: 

Step 1 Repeat [n/i /2j times the set of events: set up connection 
(/i,/2,(5i — 1)), connect ( / i , /2 , l ) , and disconnect {h.hjisi — 1)). 
Then, if/o©eSi = 5i —1, set up two additional connections (/i, /2 5 (^^i" 
1)) and disconnect them (this additional connection has to be set up 
also in the next steps). 

Step 2 Repeat [(n/i —2si)/2\ times the set of events: connect (/2, /s , 
(si — 1)), connect (/2,/3,l), and disconnect (/2,/3,(5i — 1)). 

Step 3 Repeat si times the set of events: connect (/3,/i,(5i — 1)), 
connect (/3,/i, 1), and disconnect (/3, / i , (si — 1)). 

Step 4 Repeat f(n/i — 25i)/2] times the set of events: connect (Is, / i , 
(^i — 1)), connect ( /3 , / i , l ) , and disconnect (/3,/i ,(si — 1)). 
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We have now [ n / i / 2 j connections (/ i , I2, 1), [ n / i / 2 j connections 
(/2, I3, 1), and [ (n / i — 2si ) /2] connections ( / 3 , / i , l ) . These connec
tions are set up in such a way that there are at most Si — 1 free time 
slots between them, and they occupy [mi\ second stage switches, where 

mi = 

nfi -2si 
+ 2 

n / i 

3 n / i - 2si 

fo 
51 

2v 

(4.15) 

when mi is an integer, or [mij + 1 switches, when mi in not an integer. 
Connection ( / i , /3 ,5 i ) requires one more switch in the second stage if 
mi is an integer. When mi in not an integer, this connection can be set 
up through one of [mij + 1 switches. In both cases [mi j + 1 switches 
are needed. 

Sufficiency. Let assume that connection (/^, Ij,s) is to be set up, i y^ j . 
Let ki denote the number of existing connections (/^, / j , 1); let /c2 denote 
the number of existing connections {Ii^Ii^l)^i ^ I] and let /ca denote the 
number of existing connections {Ij^Iu 1)? J ¥" -̂ This state is acceptable 
if 

ki + k2 = nfi -
ki + ks = nfi -
k2 + ks ^ nfi, 

5, since there are s free time slots in li 
s, since there are s free time slots in / J' 

since there are only nfi time slots in / s . 

After solving these three equations we obtain ki = \{nfi — 2s)/2] and 
ks = k2 = [ n / i ) / 2 j . In interstage links [fo/s\ time slots are occupied 
and these links are inaccessible for the new 5-slot connection. In the 
second stage mi switches are inaccessible if mi is an integer, or [mij + 1 
switches, if mi is not an integer (mi = {ki + k2-i-ks)/(v[fo/s\)). Finally 
we obtain: 

mi = 

[nfi - 2s 
2 

V 

+ 2 

fo 
s _ 

nfi 1 
2 J 3 n / i — 25 

2v k 
s 

(4.16) 

Taking into account that mi must be maximized through all s we get 
equation (4.13). 

Case 5, r = 2. Necessity can be proved by setting up connection 
( / i , /2 , (5 i — 1), connection ( / i , / 2 , l ) and disconnecting ( / i , /2 , (5 i — 1) 
and taking into account the case when /o©5i = 5i — 1. In the worst case 
we may have nfi — s connections ( / i , / 2 ,1 ) . So, [{nfi — s)/{v [/o/<5j)J 
second stage switches are inaccessible by connection ( / i , /2 ,5 ) and one 
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more second stage switch is needed. D 

It can be seen that for / i = /o = ;̂ = 5 = 1, we obtain conditions for 
space-division switching fabrics given in Theorem 4.2. If only 5 — 1, we 
obtain the results for 1-slot connections given in Theorem 4.6. 

4.2.2.3 Wide-sense Nonblocking Conditions 

For Tri:)(n,/i,m, r, i;,/o) with 1-slot connections similar conclusions 
may be derived as for space-division switching fabrics, i.e., all currently 
known algorithms will not result in the reduction of the second stage 
switches required. More promising results can be obtained when 5-slot 
connections are realized in switching fabrics. The reduction in the num
ber of second stage switches may be obtained either using more efficient 
time slot assignment, or using other algorithms for selecting switches 
for connections. Firstly we will give nonblocking conditions for switch
ing fabrics with random assignment, which were earlier considered by 
Niestegge [120]. 

THEOREM 4.9 IrD(n, / i , m, r, t;, /o) is nonblocking in the wide sense for 
s-slot connections, 1 ^ s ^ 5max ^ / i ; under flexible assignment if and 
only if: 

m ^ 2 

m ^ 

m ^ 

nfi - Sr 

V (/o - ^max + 1) 
oUJi — ^Sjnax 

\_2v{f{) - 5inax + 1)J 

^ / l '̂ max 

L^(/0 - 5max + 1)J 

+ 1, f o r r ^ 4 ; (4.17) 

+ 1, forr = 3; (4.18) 

+ 1, forr = 2. (4.19) 

Proof. Case 1^ r ^ A, Similarly as in previous theorems, necessity 
will be proved by giving the set of events which results in occupancy of 
all of the second stage switches given by inequality (4.17). If the new 
connection is from the same first stage switch the last connection was set 
up, selection of s slots for the new s-slot connection will start from the 
first time slot in the link recently selected for the previous connection. 
If there are not s slot free in this link the next link from the first stage 
switch will be checked. When the new s-slot connection is from another 
first stage switch, searching will start from the second stage switch next 
to that recently used for previous connection. 

Step 1 Set up /o — Smax + 1 connections (/^, / j , 1), z 7̂  j . 

Step 2 Set up connection {h.Ij, (smax — !))• 
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S t e p 3 Set up connection {li^Ij^ 1), disconnect {li^Ij^ (^max — 1))? ^^d 
set up /o — 5max councctions {li^Ij, 1). 

Step 4 Repeat connections and disconnections from steps 2 and 3 up 
until V (/o - 5max + 1) [{nfi - Sme.x)/{v (/o " ^max + 1))J conucctions 
{li, Ij,l) will be set up in 7 .̂ These connections will make 
li^fi ~ '5max)/('^ (/o — "̂ max + 1))J sccoud stagc switchcs inacccssiblc 
by the connection (liJw.s^s,^), 

S t e p 5 Set up /o —^max + l connections {1^,1^, l)^w^z,z^j,w^i, 

S t e p 6 Set up connection {1^,1^, {smsix — !))• 

S t e p 7 Set up connection {1^,1^^ 1), disconnect (/^, J :̂, (^max — I))? ^^^ 
set up /o — 5max counectious {I^^Iz^ 1). 

S t e p 8 Repeat connections and disconnections from steps 6 and 7 up 
un t i l V (/o - 5niax + 1) [{nfl - 5max)/(^ (/o " ^max + l ) ) J COnUCCtionS 

(7^5 7^5!) will be set up in I^. These connections will make next 
L(^/i "~ «5max)/('̂  (/o — «5max + 1))J sccoud stagc switchcs inacccssiblc 
by the connection (7^,7;2 5 5max)-

There are 2 [ (n / i — 5max)/('^ (/o — •̂ max + 1))J second stage switches in
accessible by the connection (7 ,̂7-^ ,̂ 5max) ^nd one more second stage 
switch is needed. 

Sufficiency will be proved by showing the worst state of the switching 
fabric. Assume that (7^, 7j, s)^ i j^ j is compatible with the state of the 
switching fabric. There may be at most n / i — s 1-slot connections from 
terminals of switch 7 ,̂ and these connections may occupy links to the sec
ond stage switches in such a way that not more than s — 1 time slots are 
free. Such links are inaccessible by the new connection. These connec
tions will occupy [{nfl — s)/{v (/o — ^ + 1))J second stage switches. The 
same number of the second stage switches may be occupied by n / i — s 
1-slot connections from terminals of switch Ij. If these sets of switches 
are disjoint, one more switch is required by connection (li^Ij^s). Thus, 
at least 2 [ (n / i — s)/{v {fo — s -{- 1))\ second stage switches are needed. 
This number must be maximized through all possible s and it reaches 
maximum for s = 5max-

Remaining cases can be proved by analogy to the proof of case 1 of 
this Theorem and cases 2 and 3 of Theorem 4.8. D 

For fi — f^ = f and -u = 1, we obtain the results given by Niestegge 
[120]. Theorem 4.9 includes also the known results for space-division 
switching and for time-division switching with 1-slot connections. 
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T H E O R E M 4.10 TToin, fi,m,r,v, fo) is nonhlocking in the wide sense 
for s-slot connections, 1 ^ s ^ Smax ^ fi, under the algorithm with 
functional division of second stage switches if and only if: 

m ^ mi + m2, (4.20) 

where 

mi ^ 2 

m2 ^ 2 

nfi - k 
2 

mi ^ 

m2 ^ 

mi ^ 

m2 ^ 

n — 1 

3 n / i 

2 
+ 1 

+ 1 and 

+ 1, for r ^ 4; (4.21) 

2 

2i; ( / o -

3 n - 2 

/o 
2 

+ 1 

+ 1 and 

2v 
+ 1, for r = 3; (4.22) 

nfi 
fo 
2 

n — 1 

2 

+ 1, 

+ 1 

+ 1 and 

for r = 2; (4.23) 

777̂1 denotes the number of second stage switches which serve s-slot con-
nections, for which I ^ s ^ L/o/2j; andm2 denotes the number of second 
stage switches used for serving s-slot connections^ for which [/o/2j < 

Proof. For mi set ^max = L/o/2j in inequalities (4.17), (4.18), and 
(4.19). When s > [/o/2j only one connection can be set up in one link, 
so it corresponds to space-division switching, i.e., for 7712 inequalities 
(4.9), (4.10), and (4.11) holds. D 

It is clear tha t the algorithm with functional division of second stage 
switches may reduce the number of switches only if ^max > L/o/2j. 
However, it must be checked if in this case the algorithm will result in 
switch savings. For instance TTZ:)(8, 32,m, r, 1,32) switching fabric will 
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require m ^ 44 switches when the algorithm with functional division 
is used, rui — 29 switches for connections with 5 ^ 16 and m2 = 15 
switches for connections with s > 16. However, when s îax for instance 
is limited to 21, is is sufficient to have m = 39 switches in the second 
stage for algorithm with flexible assignment of time slots. 

4.2.2.4 Rearrangeable Switching Fabrics 

Rearrangeable TTD(^? /i? ^5 5̂ '̂ j /o) switching fabrics were considered 
by Jajszczyk [63] who proved conditions under which such switching 
fabrics with l~slot connections are rearrangeable for vfo even: 

THEOREM 4.11 TToi"^^ /i? ^? ?̂ ^^ /o) "^^th Uslot connections is rearrange
able for vfo even if and only if: 

m>2 
nfi 

L ^/o 
+ 1. (4.24) 

It should be noted that when v = fo = fi = 1 then vfo is not even and 
this theorem not include the space-division case. An example of the state 
of TTD(2 , 2,2, 4,1, 2) is shown in Fig 4.6a. In this state two connections 
(Ji, 12) are set up through switch Mi. These connections are numbered 1 
and 2, and these numbers are placed in time slots. Other two connections 
(J35/4) are set up through switch M2 (these connections are indexed by 
numbers 3 and 4). In this state connection (/15/3) is blocked, but the 
state can be rearranged to the state in which one connection (/i,/2) is 
moved form switch Mi to switch switch M2, and one connection (I^.h) 
is moved from switch M2 to switch Mi. Connection (h^h) may be 
now set up through any of switches Mi and M2. The state after these 
rearrangements is shown in Fig. 4.6b. 

4.2.3 Multirate Switching 
4.2.3.1 Switching Fabric Architecture 

An architecture of the one-sided two-stage multirate switching fab
ric is shown in Fig. 4.7. Similarly as in the space-division and time-
division switching fabrics, it consists of r switches in the first stage, and 
m switches in the second stage. Each first stage switch is connected with 
each of the second stage switches by means of v bidirectional links. In 
each of the first stage switches n links constitute the the switching fab
ric's terminals. The first stage switches have n + mv terminals, and the 
second stage switches — rv terminals. The interstage links have the nor
malized bandwidth equal to 1. The bandwidth of the terminal is equal to 
P {P ^ 1). This switching fabric will be denoted by TMRiji^P^T^m.v). 
Connections may be set up between any terminal's pair. When these 
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Figure 4'6a, The state of 
T T D ( 2 , 2 , 2 , 4 , 1 , 2 ) in which ( / i j a ) is 
blocked 

Figure 4'6b. The state of 
rTD(2, 2, 2 ,4 ,1 , 2) after rearrange
ments 

Figure J^.l. 
switches 

One-sided two-stage multirate switching fabric composed of triangular 

terminals are in different first stage switches, the second stage switch is 
to be selected. Path searchiijg algorithms are similar to those used in 
space-division switching fabrics. In multirate switching, similarly as in 
time-division switching, the routing strategy with functional division of 
second stage switches may be used. In this strategy, vn\ second stage 
switches are reserved for connections with weights less than or equal to 
0.5 (i.e., h ^ ijj ^ 0.5) and m2 second stage switches are reserved for 
connections of weights greater than 0.5 (i.e., 0.5 < u ^ B). 
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4.2.3.2 Strict-sense Nonblocking Conditions 

First the discrete bandwidth case will be considered. Only switching 
fabrics with r > 3 will be considered. Conditions for r ^ 3 may be 
derived by analogy to space-division and time-division switching fabrics. 

THEOREM 4.12 TMni^i^ (3^ m, r, v) with r > 3 is nonblocking in the strict 
sense in the discrete bandwidth case for multirate connections of weight 
ujyO<b^(jU^B^(3^1y if and only if: 

m>2 

( n - l ) 

V 
1 -

+ ^ 

B + b 
~h _ 

-B 
~b~_ 

+ 1. (4.25) 

Proof. Necessity. The following algorithm will be used to set up a new 
connection. If the new connection of weight cj arrives in the same first 
stage switch as the previous connection, the path searching will start 
from the link used by the previous connection. If the new connection 
arrives in another first stage switch, the path searching will start from 
the first link to the second stage switch next to the switch used by the 
previous connection. 

Step 1 Set up [{1 — B -\- b)/b\ connections (/^, Ij^b)^ i ^ j . 

Step 2 Set up connection {h.Ij^ {B — b)). 

Step 3 Set up connection (li^Ij^b)^ disconnect {h^Ij^ {B — b)), and set 
up [(1 — B)/b\ connections {Ii^Ij^b), 

Step 4 Repeat connections and disconnections from steps 2 and 3 up 
until 
H ( l - 5 + h)/h\ L[(n - 1) [(3/h\ + W - B)/h\]/[v L(l - 5 + h)/h\]\ 
connections (/^,Ij^b) will be set up in /^. These connections will make 
L[(n - 1) [/3/6J + W - B)/b\]/lv L(l - 5 + b)/b\]\ second stage 
switches inaccessible by the connection {Ii^I^^B), 

Step 5 Set up [(1 - 5 + 6)/6J {I^Jz^b), w ^ z, z j^ j , w j^ i, 

Step 6 Set up connection {I^^I^., {B — b)). 

Step 7 Set up connection {I^.Iz^b)^ disconnect {I^^Iz,{B — 6)), and 
set up [(1 — B)/b\ connections (I^.I^^b). 

Step 8 Repeat connections and disconnections from steps 6 and 7 up 
until 
v[{l-B + b)/b\ [[{n - 1) [(3/b\ + [{(3 - B)/b\]/lv 1(1 - B ^ b)/b\]\ 
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connections (I^^I^^b) will be set up in / ^ . These connections will 
make next [[(n - 1) [(3/b\ + [{(3 - B)/b\]/[v [(1 - ^ + b)/b\]\ second 
stage switches inaccessible by the connection {Ii^Iy^.B), 

In the second stage, 2 [[(n - 1) \_(5/b\ + [(/? - B)/b\]/[v [(1 - ^ + b)/b\]\ 
switches are inaccessible by the connection {Ii,I^,B)^ and one more sec
ond stage switch is needed. 

Sufficiency. Assume that the new connection is {li^Ij^cu), In switch 
li at most [P/b\ connections of weight b can be set up in each of n — 
1 terminals, and [(/? — B)/b\ such connections may be set up in the 
remaining terminal. The total number of connections is (n — 1) [P/b\ + 
[(/? — B)/b\, It should be noted, that one connection of weight bk and 
bk/b connections of weight b between the same switches are equivalent 
when the state of the switching fabric is considered {bk/b is an integer 
in the discrete bandwidth case). The interstage link will be inaccessible 
by the new connection of weight uj if the sum of connections' weights 
already realized through this link is greater than 1 — u. Thus at least 
[{1 — u)/b\ + 1 = [(1 — a; + b)/b\ connections of weight b are to be set 
up through this link. These connections may occupy [(n — 1) [P/b\ + 
KP — uj)/b\]/[v[{l — UJ -{- b)/b\] second stage switches in such way that 
these switches will be inaccessible by the new connection of weight to 
from switch /^. Similar configuration of connections may occupy next 
[{n - l)[P/b\ + [{p - uj)/b\]/lv[{l - UJ + b)/b\] second stage switches, 
which will be inaccessible by the new connection of weight UJ from switch 
Ij. In the worst case these sets of switches are disjoint and one more 
switch is needed for connection (li^Ij^uj), All together we should have 
at least 

m>2 
(n -

_ 

- i ) 

?; 

\(3 

L ^ . + 
P — UJ 

b 
l-u-hb 

b \ _ 

+ 1 (4.26) 

second stage switches. Equation (4.26) should be maximized through all 
possible values of a;, and this maximum is obtained for UJ = B, D 

Nonblocking conditions of the TMR{JI,(3,^X1,r^v) in the continuous 
bandwidth case were considered in [75]. We will consider now only the 
switching fabrics with r > 3. Nonblocking conditions for r ^ 3 can be 
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derived by analogy. The functions defined below are used in this case: 

P{i;j) = lini 
e->0 [ j + £j 

i I 

(4.27) 

if 4 is not an integer or 
3 ^ 

= 0 

1 if 4 is an integer and^ > 0 

i f j = 0 

Ri{i;j) = limii-ij + e) 

( i-j-P{rJ) iovP{i;j)^0 
and i — j • P {i\j) > h 

0 forP(z ; j )7^0 
and i - j • P{i\j) ^ h 

i iorP{i-j) = 0 

(4.28) 

R2{i-J)= { 

f 
lim 

1 e^O 

0 

.Riii-J). 
= 

j 

[Ri{rJ)\ 
ior Ri {i\j) ^ h 

iorRi(i-j) <b 

, (4.29) 

R3{rJ)-l ^ 
for j ^0 

for j = 0 
(4.30) 

and 

R5 (i) = 

i for z > 6 

0 for i < 6 
(4.31) 

THEOREM 4.13 TMR{n,P,m,r,v) is nonblocking in the strict sense for 
the continuous bandwidth case, and r > 3 if 

m>2 
S{B) 

+ 1, (4.32) 
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where 

in - 1) 

( n - 1 ) 

_ 6 j 

_6_ 

5 

+ 
(3-B 

h 

S{B) = { 
( n - l ) P ( / 3 ; l - 5 ) , 

{n-l)P{(5-l-B) + 
+ [ i ?3 (n - l ; a ) J + 
+ P ( a ( 5 ) ; l - 5 ) 

NONBLOCKING SWITCHING FABRICS 

for 5 6 ( 1 - 6 , ^1; 

for Be [I- 26, i ] 

and \ <h < \\ 

for all other B 
and i^i (/3; 1 - B) < 6; 

for all other B and 
b^Ri{P]l-B) < 26; 

(4.33) 

(n - 1) P (/?; 1 - 5 ) + for all other 5 
P [{n - 1) i?i {(3-1 - 5 ) and Ri (/3; 1 - 5 ) ^ 26; 
+ P 5 ( ^ - 5 ) ; i - 5 l , 

aiB) = [n-l-a [R3 (n - 1; a)\] Ri (/3; 1 - J5) + P5 (/? - ^ ) , (4.34) 

a = R2((5- 1 - B ) + 1, (4.35) 

Proof. Sufficiency. Suppose we want to add a new connection 
{Ii,Ij,uj), 0<b^uj^B^P^l. Any interstage link from switch 
li will be inaccessible to the new connection of weight u;, if the sum of 
connection weights already set up through this link is greater than l — u. 
In the worst case this sum should be as small as possible, say 1 — a; + £, 
where e is close to but greater than 0. However, when 1 — a; < 6, it 
is only possible, in the worst case, to set up a connection of weight 6 
through this link. When 1 —a; ^ 5 it is not possible that one connection 
will occupy weight 1 — cu -\- e. In this case we have to set up at least 
two connections. When 1 — a; < 26, the total weight which makes the 
interstage link inaccessible to the connection of weight cu is equal to 26. 
Otherwise, it is always possible to set up one or more connections with 
the total weight 1 — u + e. There are three cases: 

1 1 - a; < 6, 

2 6 ^ 1 - a)< 26 and 1 - cj ^ B, 

3 1 - a; ^ 26 or 6 ^ 1 - u; < 26 and 1 - a; < 5 . 
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Case 1, 1 — uj < b. If this condition is fulfilled, the interstage link is 
inaccessible to the new connection if it carries one connection of weight 
b. In the worst case each connection with this weight from switch U 
may be set up through a separate interstage link. In one terminal there 
may be at most lP/b\ connections of weight b. If P/b is not an integer, 
there is some free bandwidth in this terminal, but it is less than b and it 
cannot be used by the next connection. There are n — 1 such terminals. 
In terminal n there is a free bandwidth of weight P — uj. Since 1 — a; < 6 
and /? ^ 1, then (5 — uj < b. In this terminal we cannot set up a 
connection of weight 6. In switch Ii there may be at most (n — l)[/5/6J 
connections of weight 6, and they will occupy a set of [(n — ^)[_P/b\/v\ 
second stage switches in such way that they will be inaccessible to the 
connection of weight uj. Similarly, in switch Ij there may be at most 
(n — 1) L/5/6J connections of weight 6, and they will also occupy a set 
of \_{n — ^)^P/b\/v\ second stage switches. In the worst case these sets 
are disjoint and one more switch in the second stage is needed to set up 
connection (7^,Ij^u). So if 1 — a; < 6 

second stage switches are needed, where 

S {u) = {n-l) 

+ 1 (4.36) 

(4.37) 

Case 2^ b ^ 1 — u < 2b and 1 — uj^B. If these conditions are fulfilled, 
the interstage link is inaccessible to the new connection of weight cj, if 
it carries connections of the total weight greater than 1 — cu. Since 
1 — cj ^ 5 , it is not possible to set up one connection of such weight. 
So, at least two connections have to be set up in one link. Because 
1 — (x; < 26, the interstage link will be inaccessible to the new connection 
of weight (x;, if it carries two connections of weight 6. Similarly as in 
case 1, we may have (n — l)lP/b\ connections of weight 6 in n — 1 
terminals of switch /^, and [(/? — uj)/b\ connections of such a weight in 
the last terminal of this switch. These connections may occupy a set of 
at most [[(n—1) [P/b\ + l{(3—uj)/b\]/2v\ second stage switches, and these 
switches are inaccessible to the new connection. Similarly in switch Ij 
there may be at most (n — 1) [P/b\ + [{f3 — uj)/b\ connections of weight 6, 
and these connections will occupy next [[(n — 1) [(3/b\ + [{P — ^)/b\]/2v\ 
second stage switches. These switches will also be inaccessible to the 
new connection. In the worst case these sets are disjoint and one more 
switch in the second stage is needed to set up connection (/^,/j ,a;). So, 
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lib ^1 — uj <2h and 1 — a; ^ 5 , we can write that 

S{uj) 
m>2 + 1 (4.38) 

middle stage switches are needed, where 

/3-u 
( n - 1 ) + 

(4.39) 

Case 5, 1—a; ^ 26 or 6 ^ l—u < 26 and l — co < B, If these conditions 
are fulfilled, the interstage link is inaccessible to the new connection of 
weight a;, if it carries connections of the total weight greater than 1 — cj. 
If 1 — cj < 5 , only one connection of such weight may be set up. In the 
other case, at least two connections of total weight greater than 1 — a; 
must be set up in the interstage link. In each terminal [/?/(! — ^)J 
connections of weight greater than 1 — u may be set up if /?/(! — uj) is 
not an integer, or [/?/(! — a;)J — 1 such connections if /?/(!— a;) is an 
integer greater than 0. The maximum number of connections of weight 
1—ô  + ^ j ^ - ^ O , that can be set up in one terminal is represented by 
function P(/?; l—u). So, at most (n — 1)P{(3; 1 — uj) connections of such 
weight may be set up in switch /^. There is still free bandwidth of weight 
/? — a; in terminal n, but since (3 — u ^ 1 — a;, it cannot be used by a 
connection of weight greater than 1 — a;. 

In each of the n — 1 terminals there is free bandwidth, and its weight 
is represented by function Ri{p;l —cu) = P — {1 — uj)P{P] 1 — u). When 
Ri{/3; 1 — cj) < 6, this bandwidth cannot be used by the next connection. 
This means that in switch li we may have at most (n — 1)P(/3;1—a;) 
connections of weight greater than 1 — cj, and these connections may 
occupy [(n — l)P(/3; 1 — ^)/y\ second stage switches such that they will 
be inaccessible to the connection of weight u in switch /^. This means 
that, in switch li we have S {cu) = {n ~ 1)P{(5] 1 — a;), connections of 
weight greater than l—u, and these connections occupy \^S{UJ)/V\ second 
stage switches. 

When 6 ^ i?i(/?; 1 — a;) < 26, the remaining bandwidth in each link 
can be used by the next connection. Several such connections of weight 
Ri{(5] l—uj) in one interstage link may lead to the state, in which this link 
will be inaccessible to the new connection (the minimum number of these 
connections is denoted by a). The next interstage link will be inaccessible 
to the new connection, if it carries a = R2{P] 1 — cj) + 1 connections of 
weight Ri{P] 1 — a;). This means, that the next [Rs{n — 1; a)\ interstage 
links from switch li will be inaccessible to the new connection. In switch 
/^, we have now n — l—a[R^{n—l] a)\ terminals with available bandwidth 
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of weight Ri(P] 1 — a;), and one link with available bandwidth of weight 
R^{(3 — Lj) (Function R^{i) indicates whether the bandwidth quantity i 
is less than b or not, so it determines whether this bandwidth can be 
used by a connection or not). Connections of such weights may occupy 
a bandwidth of weight a {uj) = [n — 1 — a [R^ (n — 1; a)J] Ri {f3] 1 — a;) + 
i?5 (/? — (jj) in an interstage link. If a{uj) is greater than 1 — a;, then this 
interstage link will also be inaccessible to the new connection in switch 
li. Whether this interstage link is accessible or not, can be calculated by 
function P{a{uj); l — u). Therefore, we may have ^(a;) = (n —1)P(/?; 1 — 
uj) + [i?3(n — 1; a)J + P{a{uj)] 1 — a;) interstage links in switch 7 ,̂ which 
are inaccessible to the new connection of weight LU. These links will fully 
occupy [S{uj)/v\ second stage switches. 

For Ri{(3] l—u) ^ 26 this remaining bandwidth may be divided among 
more than one connections. However, these connections may occupy no 
more than P([ (n —l)i?i(/?; l—u)+R^{l—uj)]] l—uj) interstage links. This 
means tha t S{u) = {n- l)P(/5; 1 - a;) + P([(n - l)Ri(/?; 1 - a;) + ^5(1 -
a;)]; 1 — a;) interstage links may be inaccessible to the new connection of 
weight UJ and they will fully occupy \_S{uj)/v\ second stage switches. 

In switch Ij^ similarly as for switch /^, we may have S{UJ) interstage 
links inaccessible to the new connection, which will occupy [_S{<JJ)/V\ 

second stage switches, where 

r ( n - l ) P ( / ? ; l - a ; ) , 

S{uj) = I 

for Ri iP; l-u) <b; 

{n-l)P (/?; 1 - a;) + [Rs (n - 1; a)\ + 
+ P {a {uj)-l-u), for b^Ri{P;l-u)) < 26; (4.40) 

{n-l)P{l3;l-uj) + P [(n - 1) Ri (/?; 1 - a;) + 
+i?5 (/? - a;); 1 - u], for Ri {/3; I - UJ) ^ 26; 

and one more second stage switch is needed for connection {Ii,Ij,u)). 
Considering equations (4.36), (4.37), (4.38), (4.39) and (4.40) of all 

three cases and taking into account that these values must be maximized 
through all UJ we obtain following condition: 

m ^ 2 max 
S{uj) 

+ 1, (4.41) 
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S(uj) = I 

( n - : 

(n-1) 

0[ 
/5 

.6 . 

/3 
6 

+ 

? 

6 

{n-l)P{l3;l-uj 

5 

), for 
i?i(/?; 

for case 1; 

for case 2; 

case 3 and 
l-uj) <h] 

(4.42) 

( n - l ) P ( / ? ; l - a ; ) + 
+ [ i ?3 (n - l ; a ) J + 
+ P ( a ( a ; ) ; l - a ; ) , 

( n - l ) P ( / ? ; l - - a ; ) + 
P [ ( n - l ) P i ( / ? ; l - a ; ) 
+ P 5 ( / 3 - ^ ) ; l - ^ ] , 

for case 3 and 
b^Ri{(5]l-uj)< 26; 

for case 3 and 
Pi (/?; l-u)^ 26; 

and the maximum value is reached for a; = P . 
For cases 1 and 2 it is possible to show that the given conditions are 

not only sufficient but also necessary. Necessary conditions for these 
cases will be proved by showing a set of events leading to the occupancy 
of the number of the second stage switches given by inequality (4.32). 
The following path searching algorithm will be used. If the new con
nection will appear in the same first stage switch as the last connection 
set up, the path searching will start from the link through which the 
last connection was set up. When the new connection will appear in the 
other first stage switch, the path searching will start from the link to 
the second stage switch next to the last occupied. Let us assume that 
the new connection is ( /^, /^,P). 

Case 1, B e ( 1 - 6 , 1 ] . 

Step 1 Set up connection {Ii^Ij^h)^ ^^ h 

Step 2 Set up connection {li^Ij^l — 6), set up connection (li^Ij^b)^ 
disconnect connection {h.Ij^ 1 — 6). 

Step 3 Repeat Step 2 until v\{n — 1)^13/h\/v\ connections {Ii^Ij^h) are 
set up. These connections will occupy [(n— l)L/^/6j/t'J second stage 
switches. 

Step 4 Repeat Steps 1-3 for connections between switches ly^ and I^^ 
w ^ z, w ^ i^ z ^ j . These connections will occupy the next 
[(n — l)\^(5/h\/v\ second stage switches. 
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We have 2[(n — '^)lP/b\/v\ second stage switches occupied and these 
switches are inaccessible to connection (li^I^^B). This connection will 
occupy the next middle stage switch. 

Case 2, B e{l- 26,1/2] and 1/4 < 6 < 1/2. 

S t e p 1 Set up two connection (li^Ij^b), i ^ j^ 

S t e p 2 Set up connection {li^Ij^l — 2&), set up connection (li^Ij^b)^ 
disconnect connection {Ii.Ij, 1 — 26) and set up the next connection 

S t e p 3 Repeat Step 2 until 2v[[{n-l)[(5/b\ + W-B)/h\/2v\ connec
tions (li^Ij^b) are set up. These connections will occupy 
[[{n - l)Wb\ + [(/? - B)/b\/2v\ second stage switches. 

S t e p 4 Repeat Steps 1-3 for connections between switches I^ and Iz^ 
w ^ z^ w y^ i^ z ^ j . These connections will occupy the next 
[[{n - l)lP/b\ + HP - B)/b\/2v\ second stage switches. 

We have 2[[(n - l)lP/b\ + [(/? - B)/b\]/2v\ second stage switches oc
cupied and inaccessible to connection {Ii^I^^B), This connection will 
occupy the next middle stage switch. 

In case 3 the necessity can be proved only when Ri{f3; 1 — uj) < b^ 
since this bandwidth cannot be used by the next connections in termi
nals. The set of events will be very similar to those in cases 1 and 2. 
For b ^ Ri{l3;l — u) < 26 and Ri{p] 1 — co) ^ 2b the conditions given in 
this theorem constitutes only the upper bounds. D 

4.2 .3 .3 W i d e - s e n s e Nonblock ing Condi t ions 

Wide-sense nonblocking conditions may be considered when a path 
searching algorithm based on functional division of the second stage 
switches is used. 

T H E O R E M 4.14 TMR{Ti,(3,m^r^v) withr > 3 is nonblocking in the wide 
sense for discrete bandwidth case, and under the routing strategy with 
functional division of second stage switches if and only if: m ^ 1711+1712, 
where 

rui — 2 
(n -

_ 

- i ) 

V 

p 
_b_ + 

(3 - 0 . 5 

b 
1 0.5 + 6 
L b \ _ 

+ 1 (4.43) 
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denotes the number of second stage switches which serves connections of 
weights uj ^ 0.5, and 

n — 1 
7712 = 2 + 1 (4.44) 

denotes the number of second stage switches which serves connections of 
weights UJ > 0.5. 

Proof. Proof of this Theorem is similar to the proof of Theorem 4.10. D 

THEOREM 4.15 TMR{Ti,f3,m,r,v) withr > 3 is nonblocking in the wide 
sense for continuous bandwidth case, and under the algorithm with func
tional division of second stage switches if: m ^ 77ii + 7712, where 

5(0.5) 

(n - l ) 

77li ^ 2 

P-O.b 

5(0.5) 

(72-l)P(/3;0.5), 

(77 - 1) P (/?; 0.5) + 
+ [P3(77-l ;a)J + 
+ P (a (0.5); 0.5), 

+ 1 , (4.45) 

for 6 > 0.25; 

for 6 < 0.25 and 
Pi(/?;0.5) < 6 ; 

for b < 0.25 and (4-46) 
6 < P i (/3; 0.5) <26; 

(77 - 1) P (/?; 1 - 0.5) + for 6 < 0.25 and 
+ P [(77 - 1) Pi {(3- 0.5) + Pi {(3; 0.5) ^ 26; 

I +P5( /? -0 .5 ) ;0 .5 ] , 

denotes the number of second stage switches which serves connections of 
weights to ^ 0.5, and 

7 7 — 1 
7712 = 2 + 1 (4.47) 

denotes the number of second stage switches which serves connections of 
weights u > 0.5. 

Proof. Proof of this Theorem is also similar to the proof of Theorem 
4.10. D 



Two-stage Switching Fabrics 113 

Figure 4-8. The one-sided three-stage switching fabric - structure 1 

4.3 One-sided Switching Fabrics 
With More Than Two Stages 

Switching networks of greater number of stages may be obtained by 
replacing second stage switches in the nonblocking network with two-
stage nonblocking networks of the capacity equal to the second stage 
switches of the main network. In this way one-sided switching networks 
with three, four, and more stages can be built. The structure of such 
constructed one-sided three-stage switching fabric, called structure 1, is 
shown in Fig. 4.8. In this switching fabric mi second stage switches 
of r5'£)(ni,mi,ri, 1) are replaced with T5'£)(n2,m2,r2,1). The capacity 
of this switching fabric is N = viUi^ ri = r2n2. When ri > 3 and 
r2 > 3, this switching fabric is strict-sense nonblocking if and only if 
rui ^ 2ni — 1, and m2 ^ 2n2 — 1. 

Other structures of one-sided three-stage switching fabric, called struc
ture 2 and structure 3, are shown in Fig. 4.9 and Fig. 4.10, respec
tively. Structure 2 is obtained by replacing the first stage switches of 
^ S D C ^ I J ^ I J ^ I , 1) with T5i)(n2,m2,r2,1). In structure 3 another ap
proach is used in connecting the second and the third stage switches 
between themselves. These three structures are isomorphic, i.e., one 
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Figure 4-9. The one-sided three-stage switching fabric - structure 2 

can be obtained from the other by renumbering the switches in stages. 
Respective theorems and functions which renumber the switches were 
given by Jajszczyk [64]. 

Structures considered above refers to space-division switching fabrics, 
but they are of course true also in time-division switching and multirate 
switching. 



Two-stage Switching Fabrics 115 

Figure 4-10. The one-sided three-stage switching fabric - structure 3 



Chapter 5 

T H R E E - S T A G E S W I T C H I N G FABRICS 

5.1 Space-division Switching 
5.1.1 Switching Fabric Architecture 

The most popular architecture of two-sided three-stage switching fab
ric is the Clos switching fabric proposed by C. Clos [23]. The general 
architecture of the space-division switching fabric is shown in Fig. 5.1. 
It consists of r i switches in the first stage (called the first stage or in
put switches), r2 switches in the third stage (called the third stage or 
output switches), and m switches in the second stage (called also the 
central or the middle stage switches). Each input switch has ui inputs 
and mv outputs. Switches in the third stage are of capacity mv x n2, 
and each of the second stage switches has the capacity of vvi x vr2^ 
This switching fabric is fully connected, i.e., each switch of the previous 
stage is connected with each switch of the next stage. Switches in the 
first, the second and the third stages are numbered from 1 to r i , from 
1 to m, and from 1 to r2, respectively. The capacity of this switching 
fabric is iVi x Â 2? where A î = n i r i , Â 2 = ^2^2- ^^ the Clos switching 
fabric switches in adjacent stages are connected by means of one link 
{v = 1), A t^-dilated three-stage switching fabric will be denoted by 
C's'i:)(ni,ri,m, n2,r2 5t'). This switching fabric is also referred to as the 
asymmetrical three-stage Clos switching fabric. When n\=n2 — n and 
n = r2 — r the switching fabric is denoted by C5i5(n,r, m,i;) and is 
called symmetrical. 

Switching fabrics with greater number of stages can be constructed 
using three-stage switching fabric as a basic construction. Clos proposed 
construction of the five-stage switching fabric by replacing each middle 
stage switch of the three-stage switching fabric by another three-stage 
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Figure 5.1. A two-sided space-division three-stage switching fabric 
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Figure 5.2. The two-sided space-division five-stage switching fabric 

switching fabric. The example of five-stage switching fabric is shown 
in Fig. 5.2. This approach can be further used to construct switching 
fabrics with an odd number of stages. It should be noted that when 
switching fabrics on each hierarchical level has certain combinatorial 
properties, than the whole switching fabric also has these properties. 
For instance, when switching fabrics in all hierarchical levels are strict-
sense nonblocking, than the whole switching fabric is also nonblocking. 
Therefore, in this chapter only three-stage switching fabrics will be con
sidered. 
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5.1.2 Path Searching Algorithms 
When a new call arrives at the switching fabric, a connection is to be 

set up between an input and an output terminals. Let {x,y) be a new 
connection from input terminal x of the first stage switch li to output 
terminal y of the third stage switch Oj^0^x^Ni — 1^0^y^N2 — l, 
1 ^ 2 ^ r i , and 1 ^ j ^ r2. The connecting path consists of input 
terminal x, switch 7 ,̂ inter-stage link from switch li to the center stage 
switch Mjt, switch M^, inter-stage link from switch M^ to switch Oj , 
switch Ojj and output terminal y. Since switches are nonblocking, often 
it is sufficient to say that the connection is to be set up between switches 
li and Oj. Such connection will be denoted by (li^Oj). 

To set up the new connection the center stage switch M^ with free 
links to switches li and Oj is to be found. This switch M^ is called free or 
available for the new connection. Several path searching algorithms were 
considered so far for finding an available center stage switch. Below, a 
general description of these algorithms will be given, while the Packing 
algorithm, also called the Benes algorithm, will be described in more 
detail. 

A L G O R I T H M 5.1 Random (RAN) 

Check center stage switches randomly and set up the connection through 
the first available switch. 

A L G O R I T H M 5.2 Sequential (SEQ) 

Check center stage switches sequentially starting form the center stage 
switch Mfc, 1 ^ /c ^ m and choose the first available switch. 

A L G O R I T H M 5.3 Minimum index (MINIX) 

This algorithm is the same as sequential, but k = \, 

A L G O R I T H M 5.4 Quasi-random (Q-RAN) 

This algorithm is the same as sequential, but /c = / + 1, where Mi denotes 
the switch used to route the last request (A: = 1 for Z = m) . The Q-RAN 
is also called cyclic dynamic (CD) or round-robin (RR). 

A L G O R I T H M 5.5 Cyclic static (CS) 

This algorithm is the same as Q-RAN, but /c == ,̂ i.e., we start to check 
center stage switches from the the switch used to route the last request. 
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ALGORITHM 5.6 Save the unused (STU) 

Do not route a new connection through any empty center stage switch 
unless there is no choice. 

ALGORITHM 5.7 Packing (PACK) 

Route a new connection through the busiest but available center stage 
switch. 

Step 1 Sort center stage switches in vector L according to the number 
of connections set up through these switches 

Step 2 Take the first switch from L. Denote it by Mk 

Step 3 Check if links from Ii to Mk and from Mk to Oj are accessible 
for connection {Ii^Oj). 

Step 4 If these links are accessible then set up the connection through 
switch Mk and algorithm ends. Otherwise go to step 5. 

Step 5 Repeat steps 3 and 4 for next switches in L until all center stage 
switches are checked. 

Step 6 If all center stage switches are checked and connection is not 
set up, report a blocking state. 

In all these algorithms when all center stage switches were checked 
and the switch for the new connection was not found, the connection is 
blocked. In recursively constructed multi-stage switching fabrics these 
algorithms are used for each three-stage switching fabric on respective 
hierarchical level. 

Different routing strategies may be used in three-stage switching fab
rics to set up multicast connections. These strategies depend on the ca
pabilities of switches used for constructing the three-stage switching fab
ric. For instance, to reduce the cost of switches in some stages switches 
with no fan-out capability may be used. Some possible strategies are: 

• Any-split strategy: connecting path to output terminals may be spread 
in any number of switches and in any stage. In this strategy switches 
in all sections have fan-out capability. 

• No-split restriction strategy: connecting path to output terminals of 
the same third stage switch is spread only in this switch, i.e., it must 
use only one connecting path to connect output terminals on the 
same third stage switch. In this strategy switches in all sections have 
fan-out capability. 
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• 1-split restriction strategy: Connecting path cannot be spread to 
more than one output of the first stage switches. In this strategy 
switches in the first stage may have no fan-out capabihty. 

• 2-split restriction strategy: Connecting path cannot be spread to 
more than one output of the second stage switches. In this strat
egy switches in the second stage may have no fan-out capabihty. 

• S'split restriction strategy: Connecting path cannot be spread to 
more than one outputs of the third stage switches. In this strategy 
switches in the third stage may have no fan-out capabihty. 

• p-limited no-split restriction strategy: connecting path to output ter
minals of the same third stage switch is spread only in this switch 
and the connection path can use at most p middle stage switches. 

An example of a multicast connection set up using these strategies is 
shown in Figs. S.Sa, 5.3b, 5.3c, 5.3d, and 5.3e. In the case of any-split 
strategy (Fig. 5.3a) connection is spread in switches of all stages. It 
can be seen in switch 1 of the third stage, two inputs are used by this 
connection and one of this input is spread to two outputs of this switch. 
When no-split strategy is used only one input of each third stage switches 
is used by the connection and it is spread to all requested outputs of these 
switches. The connecting path set up using 1-split strategy is shown in 
Fig. 5.3b. As can be seen connection is not spread in switch 1 of stage 
1, i.e., in this switch only one input and one output is used by the 
connection. Connecting path when 2-split and 3-split strategies were 
used are shown in Figs. 5.3c and 5.3d, respectively. Finally, p-limited 
no-split strategy when p == 2 is shown in Fig. 5.3e. 

Additionally, when the switching fabric is i;-dilated, two approaches 
may be used to set up multicast connections, depending on the number 
of links used by a multicast connection in a set of v links [108]: 

• Duplication routing: two or more inputs of the same switch may be 
used by the same multicast connection. 

• Non-duplication routing: each multicast connection uses at most one 
input of each switch. 

Four examples of duplication routing are shown in Figs. 5.4a, 5.4b, 5.4c, 
and 5.4d. In the first example (Fig. 5.4a) the multicast connection uses 
two inputs of switch 2 in the second and in the third stage. In the 
example of Fig. 5.4b, the multicast connection uses two inputs of switch 
3 in the middle stage. The third example (Fig. 5.4c) shows multicast 
connection which uses two inputs of switch 3 in the third stage. Finally, 
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Figure 5.3a. Any-split strategy 

Figure 5.3b. 1-split restriction strategy 
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Figure 5.3c. 2-split restriction strategy 

Figure 5.3d. 3-split restriction strategy 
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Figure 5.3e. 2-limited no-split restriction strategy 

the multicast connection presented in Fig. 5.4d also uses duplication 
routing but no-split strategy is preserved, i.e., it is only one connecting 
path to output terminals at the same third stage switch. The same 
multicast connections set up using non-duplication routing are shown 
in Figs. 5.5a, 5.5b, 5.5c, and 5.5d, respectively. The connection shown 
in Fig. 5.4d is set up using 2-split restriction strategy with duplication 
routing since two links are used between switches 1 of stages 1 and 2. 

5.1.3 Strict-sense Nonblocking Conditions 
5.1,3.1 Un icas t Connec t ions 

The sufficient conditions under which CSD(^i ? ^i ? ^ 5 ^̂ 2? ^2? 1) is 
strictly nonblocking were given by C. Clos [23]. He did not prove the 
necessity, which was later given by other authors [113]. The conditions 
are given in the following theorem: 

T H E O R E M 5.1 Cs 'D(n i , r i ,m ,n2 , r2 ,1 ) is nonblocking in the strict sense 
if and only if 

m ^ min{n i + ^2 - I ; n i r i ; n 2 r 2 } (5.1) 

Proof. Sufficiency can be proved by showing the worst state in the 
switching fabric. In the first stage switch li there may be at most n i — 1 
connections to outputs in r2 — 1 switches of the third stage (others than 
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Figure 5.4a. Duplication routing - example 1 

Figure 5.4b. Duplication routing - example 2 
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Figure 5.4c. Duplication routing - example 3 

Figure B.^-d. Duplication routing - example 4 
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Figure 5.5a. Non-duplication routing - example 1 

Figure 5.5b. Non-duplication routing - example 2 
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Figure 5.5c. Non-duplication routing - example 3 

Figure 5.5d. Non-duplication routing - example 4 
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switch Oj), but no more than (r2 — l)n2 such connections can be set up. 
These connections will occupy a = minjn i — 1, (r2 — 1)^2} middle stage 
switches. Similarly, to the third stage switch Oj there may be n2 — 1 
connections from the first stages switches (others than switch /^), but no 
more than (ri — l ) n i such connections can be set up. These connections 
may occupy another set of 6 = min{n2 — 1,(^1 — l ) n i } middle stage 
switches. In the worst case these sets of switches are disjoint and one 
more switch is needed to set up the connection (7^,0^). This state is 
shown in Fig. 5.6. We have: 

m ^ min {m - 1; (r2 - 1) 712} + min {n2 - 1; {n - 1) n i } + 1. (5.2) 

When n i — 1 and n2 — 1 are minima we have 

m ^ mi = ni + n2 — 1. (5.3) 

When n i — 1 and (ri — l ) n i are minima we have 

m ^ 7712 = Til — 1 -\- {vi — 1) ni + 1 = nivi, (5.4) 

When (r2 — 1)^2 and 712 — I are minima we have 

m^ ms = {r2- I)n2 + n2 - l + l = n2r2. (5.5) 

It should be noted, tha t both (r2 — 1) n2 and (ri — 1) n i cannot be min
ima at the same time so finally we obtain: 

m ^ min {mi; 7712; ms} = min{ni + 722 — 1; ^iTii; r2722} . (5.6) 

Necessity can be proved by showing the set of events leading to the 
blocking state when less switches are used in the middle stage. Since 
the network is strict-sense nonblocking it should be nonblocking for any 
algorithm used. Let us assume that the quasi-random algorithm is used, 
there is not any connection in the switching fabric at the beginning, and 
path searching for the first connection will start from the center stage 
switch M l . The following set of events lead to the blocking state: 

S t e p 1 Set up a = min {711 — 1; (7̂ 2 — 1) 712} connections from switch / i 
to switches Oj , 2 ^ j ^ r2. These connections will occupy switches 
Ml to Ma. 

S t e p 2 Set up 6 == min {712 — 1; (ri — 1) 721} connections from switches 
/^, 2 ^ z ^ r i to switch Oi . These connections will occupy switches 
numbered form Ma+i to Ma+b-

S t e p 3 Connection ( / i ,O i ) is blocked and one more switch is needed. 

D 
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0 -

ni-2 — I 
ni-1 — 

min{n2-1; (ri-1)ni} ^ \ 

min{ni-1; (r2-1)n2} 

— 0 

y — ^2-2 

^ 2 - 1 

Figure 5.6. The worst state of CSD (^i, ^i, m, n2, r2,1) 

5.1.3.2 Mul t i cas t Connec t ions 

Multicast Clos switching fabrics were considered by many authors, 
however most of the results deal with the wide-sense nonblocking condi
tions, since it is easier to propose efficient routing strategies which leads 
to fewer middle stage switches required. The first result for strictly 
and rearrangeable nonblocking three stage Clos networks were given by 
Masson and Jordan [112]. However, they assume that a multicast con
nection to outputs of the same third stage switch will be only set up 
in this switch (no-split strategy). Therefore, their results are in fact 
wide-sense nonblocking conditions. Strict-sense nonblocking conditions 
for multicast connections have rather theoretical value, since wide-sense 
nonblocking conditions for different routing strategies were given, and 
wide-sense nonblocking switching fabrics are less costly than strict-sense 
nonblocking ones. We will give here without proofs main results given 
in the literature. Also blocking characteristics of Clos switching fabric 
with multicast connections were considered in some papers [174], [155]. 

Switching fabrics with closed-end g-cast connections, 1 ^ q ^ q2 where 
considered by Hwang and Liew. They proved following theorem [57, 56]: 
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T H E O R E M 5.2 C5£)(ni, r i , m, n2, r2,1) is nonblocking in the strict sense 
for q2-connections if and only if 

m ^ min {(iVi - 1) ^2 + 1; (ni - 1) ^2 + n2] N2} . (5.7) 

This result was generalized by Listanti and Veltri to i;-dilated switching 
fabric [108]. 

T H E O R E M 5.3 Cs'£)(ni, r i , m\ n2, r2, v) is nonblocking in the strict sense 
for q2-connections if and only if 

m > 

+ 

min{(n i - l )92;(r2 - 1)^2} 

V 

min{n2 - 1; (ri - l ) n i ^ 2 } 

+ (5.8) 

+ 1. 

They also showed that this theorem is true for both open-end and closed-
end connections. 

Strict-sense nonblocking conditions were also generalized to switching 
fabrics with g-cast connections, where I ^ qi ^ q ^ q2 ^ N2 by Giaco-
mazzi and Trecordi [45], who gave sufficient conditions. Necessary and 
sufficient conditions were given by Pattavina and Tesei [139]: 

T H E O R E M 5.4 C5£)(ni, r i , m, n2, r2,1) is nonblocking in the strict sense 
for q-connectionsy where 1 ^ qi ^ q ^ q2 ^ ^2 if and only if 

m ^ min {(ni - 1) ^2 + ^2; (^1 - 1) ĝ2 + 1; 

N2 
N2-qi + 1; 

Qi J 
- I U 2 + U . (5.9) 

In above theorems it was assumed that switches in all stages have 
fan-out capability. If this is not true, i.e., switches in one stage have no 
fan-out capability, nonblocking conditions are different. However, when 
switches in stage z, 1 ^ z ^ 3 have no fan-out capability, it corresponds to 
z-split routing strategy and may be considered as wide sense nonblocking 
conditions. 

5.1.4 Wide-sense Nonblocking Conditions 
5.1.4.1 Unicas t Connec t ions 

Wide-sense nonblocking conditions are always associated with a par
ticular algorithm or a class of algorithms used to route a new connection. 
Several authors give different lower bounds for C5'/:)(n,r, m, 1) which 
show that no algorithms given in 5.1.2 leads to the savings in the num
ber of the center stage switches. Up until now, the only result is due to 
Benes [9], who proved the following theorem: 
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THEOREM 5.5 (^^/^(njm, 2,1) is nonhlocking in the wide sense when 
save the unused or packing algorithm is used if: 

m >. 
3n 
Y (5.10) 

Proof [56]. It is sufficient to prove this theorem for save the unused 
algorithm, since packing algorithm also saves the unused center stage 
switches when it is unnecessary. Let the switching fabric is at state 
5, and let § denote a set of center stage switches carrying at least one 
connection in this state. We may only have four types of connections, 
namely: (/i ,Oi), (/i ,02), (/2,0i), and (/2,02). Let § ,̂ 1 < z ^ 6 
denote sets of center stage switches carrying following connections: 
Si carries connections (/i ,Oi), 
§2 carries connections {1x^02)-^ 
53 carries connections (/2,0i), 
54 carries connections (/2 5 02)5 
55 carries connections (/i,Oi) and (/25O2), 
Se carries connections (/i,02) and (/2,0i). 
We shall show by induction that following inequalities holds: 

Eis^ ^ 
3n 
T (5.11) 

IS1I + IS4I + IS5I ^ n , (5.12) 

|S2| + |S3| + | S 6 | ^ n , (5.13) 

when starting from the empty state. The first inequality means that 
at most [3n/2j middle stage switches are occupied in state S. The 
second (third) inequality means that if there are connections (/i, 0\) and 
(^2, O2) ((/i, O2) and (/2, Oi)), then they will be paired in middle stage 
switches. In other words, we can say that if there are two connections 
(A5O1) and (/25O2) ((^1,02) and {l2,0\)), they will be set up through 
the same middle stage switch. It is obvious, that these inequalities are 
true in empty state. Let S change to S' by adding or removing one 
connection. Inequalities (5.11), (5.12), and (5.13) should be true for S' 
if they are true for 5. When one of existing connections is disconnected, 
it is obvious that these inequalities are true. Assume now, that the 
new connection is (/2,02). It can be set up only through one of empty 
middle stage switches or one of switches in Si. When Si is not empty, 
one of its switches is to be used. Thus the selected switch will now 
carry connections (/i ,Oi) and (/2,02), so it is moved to S5. We have 
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|§ ; | = |§i| - 1 and \%\ = IS5I + 1, so inequalities (5.11), (5.12), and 
(5.13) are still true. When §1 is empty we have: 

|§3| + IS4I + IS5I + |§6| ^ n - 1, (5.14) 

since at most n — 1 connections could be already set up from I2, 

|S2| + |S4l + |S5| + l S 6 | ^ n - l , (5.15) 

since at most n — 1 connections could be already set up to switch O2, 
and from the induction hypothesis (5.13) we have 

|§2| + | § 3 | ^ n . (5.16) 

After adding (5.14), (5.15), and (5.16) we obtain 

6 

2 ^ | § i | ^ 3 n - 2 , (5.17) 

or 
3n - 1, (5.18) 

This means that in 5^ obtained from S by adding connection (/2,02) 
inequality (5.11) is still true and this connection will be routed through 
an empty switch in the middle stage. Inequalities (5.12) and (5.13) also 
holds because 

|S; | + IS4I + l^sl = 1 + l^il + IS4I + IS5I - 1 + IS4I + IS5I ^ n, (5.19) 

since switches in S4 and S5 carries connections form switch I2. 
Similar considerations can be done when other type of connection is to 
be added. D 

The Csni'^^ 2, [3n/2j) is not practical, since the number of crosspoints 
is always greater than in the crossbar switch of the same capacity. In 
1979 Melas and Milewski showed that for sequential routing the mini
mum number of the center stage switches is the same as for the strict 
sense nonblocking case [113]. 

THEOREM 5.6 C5jr)(n,r, m, 1) is wide-sense nonblocking under sequen
tial routing and minimum index routing for r ^ 2 if and only if: m ^ 
2 n - 1 . 

Proof. Similarly as in Theorem 4.3 we will consider only the minimum 
index algorithm. It is sufficient to show the necessary condition for r = 2. 
The set of events: 
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Step 1 Set up two connections (/i, Oi) through switches Mi and M2. 
Disconnect connection (/i, Oi) realized through switch Mi and set 
up connection (/2, O2). This connection will use switch Mi. The 
state of the switching fabric is: 

connection 
( /2 ,02 ) 
( / l , O l ) 

the second stage switch 
M l 

M 2 

Step 2 Set up two connections (/i, O2) through middle stage switches 
M3 and M4. Disconnect connection (/i, O2) realized through switch 
M3 and set up connection (M2, / i ) . This connection will use switch 
M3. Disconnect connection (/i, Oi) from switch M2 and set up 
connection (/i, O2) through this switch. Disconnect (72, O2) from 
switch Ml and set up (/2, Oi) through this switch. The state of the 
switching fabric is changed to: 

connection the second stage switch 
( / 2 , 0 i ) M l 

( / l , 0 2 ) M2 
( / 2 , 0 l ) M3 

( / l , 0 2 ) M4 

Assume that after step i — 1 following state is in the switching fabric: 

connection 
( / 2 , 0 i ) 

( / l , 0 2 ) 
( / 2 , 0 l ) 

( / l , 0 2 ) 

( / 2 , 0 : ) 

a i , 0 2 ) 

the second stage switch 
M l 

M 2 

Ms 
M 4 

M2i-3 

M2i-2 

s tep i Set up two connections (/i,(9i) through middle stage switches 
M2i_i and M2i. Disconnect connection (/i ,Oi) from switch M2i-i 
and set up connection (/2, O2). This connection will use switch M2i~\. 
Then do: 
Disconnect (/i ,02) from M2i-2 and set up (/i ,Oi) through M2i-2-
Disconnect (/2,0i) from M2i-3 and set up (/2,02) through M2i-3. 
Disconnect (/i,02) from M2i-4 and set up (/i ,Oi) through M2i_4. 
Disconnect (/2,0i) from M2i-5 and set up {12,02) through M2i-^. 

Disconnect (/i ,02) from M4 and set up (/i ,Oi) through M4. 
Disconnect (72,01) from M3 and set up (/25O2) through M3. 
Disconnect (7i,02) from M2 and set up (/i ,Oi) through M2. 
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Disconnect (h.Oi) from Mi and set up (/25O2) through Mi. 
The state of the switching fabric is changed to: 

connection 
( / 2 ,02 ) 
( / l , O l ) 
ih,02) 
{h,Ol) 

(12,02) 
ih,Ol) 
(12,02) 
(h,Ol) 

the second stage swi 
M l 

M2 

M3 

MA 

M2i-3 
M2i-2 
M2i-1 

M2i 

During execution of step i no more than i + 1 connections were set up in 
any of the outer stage switches. Step i can be executed until i = n — 1. 
After step n — 1 we have n — 1 connections (/i, Oi) and n — 1 connec
tions (/25O2) (or (/i,02) and {h'^Oi)^ depending on n being odd or 
even) which are set up through 2n — 2 different second stage switches. 
Connection (/i, O2) has to be set up through the switch 2n — 1. D 

In the same paper Melas and Milewski proved that for save the unused 
routing CSD^^-^ 5̂ ^51) with r ^ 2 requires 2n — 1 middle stage switches 
to be nonblocking if n ^ 2^~^ and 2n — 2 switches if 2^~^ < n ^ 2^. 
They also showed that if r > 2 and the packing routing which always 
uses the most heavily loaded middle stage switch CSD{^^ ?̂ ^51) ^Iso re
quire 2n — 1 switches in the middle stage when 2^~^ < n ^ 2^. The proof 
starts from the initial state in which there are n connections (/i, Oi), 
n connections (/2 5 O2) , . . . , n connections (/^, Or)- This state is called 
the state, n-uniform [56]. Du, Fishburn, Gao, and Hwang [35, 56] ex
tended this result for a class of algorithms for which the switch fabric 
can reached the n-uniform state. They showed, that if for any algo
rithm C5'jr)(n,r, m, 1) enters the n-uniform state, then it is wide-sense 
nonblocking under this algorithm only if m ^ 2n — [n/2^~^]. The wide-
sense nonblocking conditions for Cs'i:)(n,r, m, 1) where also considered 
by Yang and Wang [175]. They proved that at least [n (2 — l/F2r-i)J 
middle stage switches are necessary under packing strategy, where F2r-i 
is the Fibonacci number. 

For packing strategy more precise rules are needed to determine which 
out of several equally loaded center stage switches should be used. When 
the switch recently used to set up the previous connection is used, the 
following theorem holds. 

THEOREM 5.7 Cs'j9(n,r, m, 1) is wide-sense nonblocking under packing 
strategy for r ^ 3 if and only if m ^ 2n — 1, 
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Proof. It is sufficient to prove the "only i f part for r = 3. For 
such switching fabric it is possible to show that there is a sequence of 
connections and disconnections which lead to the blocking state when 
m — 2n — 2, Following events fulfill this condition. 

Step 1 Set up n connections ( / i ,O i ) . These connections will occupy 
switches Mi do M^. 

S t e p 2 Set up connection ( /2,02). This connection will occupy switch 

Mn 

S t e p 3 Disconnect connection (/i , Oi) which was set up through switch 

S t e p 4 Repeat steps 4.1 - 4.5 n — 1 times. 

S t e p 4.1 Set up connection (/15O2). This connection will have to 
occupy switch Mn+i^ 

S t e p 4.2 Set up connection (73,03). Since all center stage switches 
have occupancy equal to 1, this connection will be set up through 
switch Mn+i. 

S t e p 4 .3 Disconnect connection ( J i , 02 ) . 

S t e p 4.4 Set up connection ( /2,02). Since all center stage switches 
have occupancy equal to 1, this connection will be set up through 
switch Mn+i' 

S t e p 4.5 Disconnect connection (73,03). 

After these steps we have n — 1 connections ( / i , O i ) set up through 
n — 1 switches and n — 1 connection (12,02) set up through other n — 1 
switches. Connection ( / i , 02 ) is blocked and will have to occupy the 
center stage switch numbered M2n-i . 

/ 2n — 2 \ 
For r ^ (n — 1) f ) "̂  •'•' Tsai, Wang, and Hwang showed 

that no algorithm exists which leads to the reduction in the number of 
required center stage switches [160, 161]. 

5.1.4.2 Mul t i cas t Connect ions 

Wide-sense nonblocking conditions for C S ' D ( ' ^ 1 5 ^ 1 5 ^ ? ' ^ 2 5'̂ 2 5 1) where 
derived in some papers depending of different strategies used for set
ting up multicast connections. The first sufficient condition where given 
by Masson and Jordan [112]. They consider the switching fabric as 
strict-sense nonblocking, however, they assumed the no-split restricted 
strategy in their considerations. Necessary and sufficient conditions were 
given by Hwang and Liaw [56, 57]: 
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T H E O R E M 5.8 05^(711,ri,m,722,r2,1) is wide-sense nonblocking for 
open-end and closed-end q-cast connections, 1 ^ q ^ q2 ^ N2 under 
no-split restriction strategy if and only if: 

m ^ minjA^i + {m - l)(r2 - 1); (ni - l)(r2 - 1) + 712; 

Ni + (711 - l){q2 - 1); (ni - 1)^2 + 722; iV2} . (5.20) 

The conditions for switching fabrics under the 1-spht restriction strat
egy may be derived from conditions for multiconnection switching fabrics 
considered by Hwang and Jajszczyk [51]. Strategy 2 for multiconnections 
set up of the cited paper correspond to the 1-spht restriction strategy 
for multicast connections. We can therefore write: 

T H E O R E M 5.9 05^(711,ri,771,n2,r2,1) is wide-sense nonblocking for 
open-end and closed-end q-cast connections, I ^ q ^ q2 ^ N2 under 
1-split restriction strategy if and only if: 

m ^ max {min{7ii — 1 + / (712 — 1) + 1; 7iiri; 

n 2 ( r 2 - 0 + ^ ( ^ 2 - 1 ) + ! } } . (5.21) 

Nonblocking conditions of (75£)(ni,ri ,7n,n2,r2 51) under 2-split and 
3-split restriction strategies were given by Hwang [56]: 

T H E O R E M 5.10 C5£)(7Zi,ri,7^,722,^2? 1) is wide-sense nonblocking for 
open-end and closed-end q-cast connections, 1 ^ q ^ q2 ^ N2 under 
2-split restriction strategy if and only if: 

m ^ min {(A^i - 1)^2 + min{g2; ^2}; A 2̂; 

(ni - l)q2 + 712 - 1 + min{^2; ^2}} • (5.22) 

T H E O R E M 5.11 C5jr:)(7ii,ri,77i5 7i2,r2 51) is wide-sense nonblocking for 
closed-end q-cast connections, I ^ q ^ q2 ^ N2 under 3-split restriction 
strategy if and only if: 

m ^ min {Niq2; {ui - 1)^2 + ^2; N2] } . (5.23) 

The p-limited no-split restriction strategy was proposed by Yang and 
Masson [173]. They proved the following theorem: 

T H E O R E M 5.12 Cs'i:)(7ii,ri,7n,n2,r2,1) is wide-sense nonblocking for 
closed-end q-cast connections, 1 ^ q ^ q2 ^ T2 under p-limited no-split 
restriction strategy if: 

771 ^ (711 - l)p + (n2 - l)ql^''^ (5.24) 
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Another upper bound for C5£)(ni, r i , m, n2, r2,1) with multicast con
nections under p-limited no-split restriction strategy was considered in 
[28, 26]. Let us assume that the new g-cast connection (x,Y), 1 ^ 
^ ^ 92 ^ ^̂2? is to be added. Since p-limited no-split restriction strat
egy is considered, i.e., connecting paths to outputs of the same third 
stage switch is spread only in this switch, we may assume that Y = 
{yi,?/2,... ,?/g}, yy, e Oj^.l ^ w <, q, jy, ^ jz for z y^ w, where Ô -̂  
denotes the set of outputs of switch Oj^. For space division switching, in 
any switch Oj^ n2 — 1 outputs may be already occupied and they will use 
at most n2 — 1 inputs of this switch, connected to middle stage switches. 
Similarly, at switch li containing input terminal x ui — 1 inputs may be 
already occupied. 

The state matrix C will be used to represent the state of links between 
m2 middle stage switches and q output stage switches. The matrix C 
is of size g x n2. Each row represents one of q third stage switches and 
each column represents one of n2 outputs of these switches. The matrix 
is defined as follows: 

DEFINITION 5.13 

C = 
fc, if a connection to output a of Oj is set 

^i.a ~ { ^P through switch M^, 1 ^ /c ^ 777.2; 
0, if there is no such connection. 

(5.25) 

The state matrix C has following properties: 

1 It contains only m2 different numbers (since 1 ^ /c ^ 777.2); 

2 Any row of the matrix C has to contain no more than 77.2 different 
numbers since there is only one link between the given output stage 
switch and any of the middle stage switches. 

An example of matrix C for the switching fabric with 77.2 = 4, g' = 3, 
and p = 2, is presented in Fig. 5.7. Element cî o = 1 means that the 
connection to output 0 of switch Oi is set up through switch Mi. 

Since outputs of the third stage switches which take part in a multicast 
connection are not important, let (/i, Y) denote a new multicast connec
tion, where Y = {2/1,2/25 • • • ^Vq}^ Vj ^ Oj^ i.e., any input terminal in li 
is to be connected with one terminal in each of switches Oi, O2 , . . . , O^. 
This connection is to be set up through no more than p middle stage 
switches. In each of q switches 722 — 1 connections are already set up. 
Without loss of generality we can assume that these connections occupy 
first 77.2 — 1 outputs of each switch. In this case different numbers of 
middle stage switches are placed in each row of the first 77.2 — 1 columns 
of matrix C (see Fig. 5.7). To set the new connection we have to choose 
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q= 

n2= 

1 
2 
3 

0 
1 
1 
2 

1 
2 
3 
3 

2 
3 
4 
4 

3 
0 
0 

ol 

Figure 5.7. 
p = 2 

An example of matrix C for the switching fabric with n2 = 4, g = 3, and 

p different numbers from m2 and placed them in the last column of 
the state matrix. For instance, if in the example of Fig. 5.7 m2 = 4 
and p = 2, we cannot set up a connection to switches Oi, O2, and O3 
through any two of m2 switches. One more switch is needed in the mid
dle stage to set up this connection. When it is not possible to find p out 
of m2 numbers such that they could be placed in the state matrix, then 
it is the blocking state of the switching fabric (or state matrix C). It 
is obvious, that if we have p numbers chosen, and one row of matrix C 
contains all these p numbers, then the matrix is in the blocking state for 
these p numbers. 

DEFINITION 5.14 Let Sj be the set of subsets where each subset contains 
p numbers from all numbers placed in row j of the matrix C. 

THEOREM 5.15 / / |J Sj contains all possible combinations p from 

7X12, then the state matrix is in the blocking state. 

Proof. Let us assume that we have /ci, /c2,..., /Cp numbers, 1 ^ kyj ^ m2, 
1 ^w ^p, li IJ Sj contains all possible combinations it means that it 

1^3 ^q 
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contains also combination fci, /c2 , . . . , fcp. Therefore numbers fci, A:2,..., Âp 
are placed in one of the rows of matrix C, and any of these numbers can
not be placed in this row. So matrix C is in the blocking state. D 

The maximum number of m2 for which state matrix C can be in the 
blocking state is determine by the following theorem: 

T H E O R E M 5.16 State matrix C can he in a blocking state if: 

m 2 < m a x { ( ^ ) < ? x ( " ^ ^ " l ) } , (5.26) 

where z is an integer. 

' n2 - 1 
Proof. Since \Sj\ ^ [ ' 1, then U s, < « x | " y l ) . I t 

means that in matrix C no more than q x \ I different combi-
V ^ / 

nations p from z can be realized. If I I > a x f ) then we 

\P J V P J 
can find such combination of p numbers which is not realized in matrix 
C. According to Theorem 5.15 state matrix C can be in the blocking 
state for any z for which 

The maximum integer z for which (5.27) is true constitutes the maxi
mum number of middle stage switches for which state matrix C can be 
in the blocking state. D 

The upper bound for non-blocking operation of CSD (^i 5 ^ i , ^̂ 5 ̂ 2? ^2? 1) 
is given by the following theorem: 

T H E O R E M 5.17 Cs '£) (n i , r i ,m,n2, r2 ,1) is wide-sense nonblocking for 
closed-end q-cast connections^ 1 ^ 5 ^ 92 ^ ^2 under p-limited no-split 
restriction strategy if 

m^ max < min {min{Ai; 5 i } + min{A2; ^ 2 } + 1} f , 

(5.28) 



Three-stage Switching Fabrics 141 

where 

Ai = p X (m - 1), 

Bi = ( r 2 - : p ) x n 2 , 

B2 = p X (ri - 1) X n i . 

Proof. Let us assume that we want to set up a new multicast con
nection (/z,Y), Y = {Oi,(925. . . jO j} , j ^ q2' In switch /^ n i — 1 
connections may be set up and these connections may occupy at most 
Ai = px (ni — 1) middle stage switches, provided, tha t in the remaining 
third stage switches there are enough outputs to accept these connec
tions (the discussed state is shown in Fig. 5.8). In the third stage we 
have r2 — p such switches, each of them can accept n2 connections. It 
means tha t not more than Bi = (r2 — p) x n2 middle stage switches 
are needed. So no more than mi = inin{Ai]Bi} switches will be in
accessible for the new connection. On the other hand in each out of 
j third stage switches we may already have at most n2 — 1 connec
tions set up. These connections, according to Theorem 5.16 may occupy 

Ao = max < f I ^ ? X f l > middle stage switches in such a 
^ \\P J \ P J) 

way tha t through any set of p switches out of A2 it is not possible to set 
up the new connection. However, similarly as in the first stage switch, 
connections to n2 — 1 outputs of j third stage switches can be set up if 
there are enough inputs in the first stage switches except switch /^. So no 
more than (ri — 1) x n i connections can be set up in the remaining first 
stage switches and they will occupy not more than B2 = p x (ri — 1) x ni 
middle stage switches. So we have 1712 = min{^2; ^ 2 } - Î ^ the worst case 
these sets of mi and m2 switches are disjoint and one more switch is 
needed to set up the new connection. So m ^ mi + m2 + 1. In the 
switching fabric a multicast connection may be set up to j different 
third stage switches, 1 ^ j ^ 92 ^ ^2- For given j , the number p is to be 
found, 1 ^ p ^ j / , for which the smallest number of center stage switches 
will be engaged by the connection. Therefore, this number m must be 
maximized through all j and minimized through all p, D 

For ^2 = 1 we have the space-division switching fabric with point-to-
point connections. In this case Ai = ni — 1^ Bi = n2(r2 —1), ^2 = '̂ 2 —1? 
and B2 = 'n.i(ri —1), so m ^ min{ni —1; n2(r2 —l)} + min{n2 — 1 ; ^ i ( r i — 
1)} + 1 and we obtain conditions given in Theorem 5.1. 

Comparison of the required number of center stage switches for dif
ferent routing strategies is given in Table 5.1. In this table it is assumed 
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\- n2-2 
I — A?2-1 

n2-2 
J — ^ 2 - 1 

Figure 5.8. The worst scenario for CsD{Tii,ri^m^n2^r2,l) with multicast connec
tions and p-limited no-spHt restriction strategy 

that q2 = N2 for SNB and z-split restricted strategy and 2̂ = 2̂ for 
no-split restriction and p-limited strategies (it is justified since connec
tions to the same outputs of any third stage switch are spread in this 
switch). Two values for p-limited strategy are given, column p-limited 
1 contains values calculated according to Theorem 5.12, while values 
in column p-limited 2 were calculated using Theorem 5.17. It can be 
seen that p-limited strategy requires the lowest number of center stage 
switches and the best upper bound is given in Theorem 5.17. Strate
gies 2-split restriction and 3-split restriction requires the same number 
of switches as the strict-sense nonblocking switching fabric of the same 
capacity. Similarly, switching fabrics with 1-split restriction and no-split 
restriction strategies require the same number of center stage switches. 

The number of center stage switches versus n and r in CsDi"^-, 5̂ ^51) 
for upper bounds determined by Theorems 5.12 and 5.17 are plotted in 
Figures 5.9 and 5.10, respectively. It can be seen that Theorem 5.17 
gives better upper bounds than the previous one. This is also true for 
asymmetrical switching fabrics. For instance for Cs'x)(4,4,m,4, 64,1) 
and q2 = 64 the first upper bound gives following results: p = 3 and 
m ^ 22. According to Theorem 5.17 we have m ^ min{3; 252} + 
mm{60; 12} + 1 = 16 and this value is obtained for p = 1 and j — 20. 
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r=8 

r=16 

r=32 

n=4 
8 
16 
32 

n=4: 
8 
16 
32 

n=4 
8 
16 
32 

hNB 
32 
64 
128 
256 
64 
128 
256 
512 
128 
256 
512 
1024 

1-split 
25 
57 
121 
249 
49 
113 
241 
497 
97 
225 
481 
993 

2-split 
32 
64 
128 
256 
64 
128 
256 
512 
128 
256 
512 
1024 

3-split 
32 
64 
128 
256 
64 
128 
256 
512 
128 
256 
512 
1024 

no-split 
25 
57 
121 
249 
49 
113 
241 
497 
97 
225 
481 
993 

p-limited 1 
15 
34 
73 
150 
17 
39 
83 
172 
19 
44 
93 
192 

p-limited 2 
14 
30 
63 
131 
15 
38 
79 
163 
16 
41 
91 
184 

Table 5.1. Number of center stage switches in CsD{n, r, m, 1) under different routing 
strategies 

200 

10 12 14 16 18 20 22 

Number of outer stage switches r 

Figure 5.9. Number of center stage switches versus r in CSD (n, r, m, 1) with p-hmited 
no-spUt restriction strategy 

In this case A2 — 60 and ^2 == 12. It means that 60 numbers are needed 
to block the state matrix C. So at least 60 connections should be set up 
in the remaining first stage switches. But there are 3 such switches and 
only 12 connections that could be set up in these switches [B2 = 12). 
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200 
• p-limited 1; r=8 0 p-limited 2; r=8 

"p-limited 1; r=16 D p-limited 2; r=16 

• p-limited 1; r=32 A p-limited 2; r=32 

12 14 16 18 20 22 24 

Number of inputs/output terminals n 

Figure 5.10. Number of center stage switches versus n in CsD{n^r,m^l) with 
p-Umited no-split restriction strategy 

5.1.5 Rearrangeable Switching Fabrics 
5.1.5.1 Unicast Connections 

The condition under which the symmetrical three-stage two-sided 
space-division switching fabric is rearrangeable was given by Slepian 
[151] and was later formally proved by Duguid [40]. The respective the
orem is known as Slepian-Duguid theorem. 

THEOREM 5.18 CSD{'^^^^'^^ 1) ^^ rearrangeable if and only if m ^ n. 

Proof. Necessity is obvious, since we have at least n switches in the 
center stage to set up connections from n inputs in any of the first stage 
switches. Sufficiency can be proved using Hall's theorem on distinct rep
resentatives [46]. We will show that every maximal assignment between 
input and output terminals can be realized by a state of the switching 
fabric. The maximal assignment is equivalent to a permutation 

n -
0 1 2 

7r(0) 7r(l) 7r(2) 
A ^ - 1 

7 r ( i V - l ) 
(5.29) 

For the first stage switch /^, 1 ^ z ^ r, we assign the set A ,̂ which con
tains the number of the third stages switches to which input terminals 
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incoming to the switch li are to be connected. The sum of any k sets 
Ap^, Ap2 5 • •. 5 Ap^ is the set of the numbers of which third stage switches 
Pi,P25 • • • ?Pfc should be connected. If this set contains fewer than k el
ements, then k first stage switches would be connected to fewer than k 
third stage switches. Hence, by connecting inputs of k first stage switches 
to output terminals, less than kn connections would be established. This 
contradicts the assumption that each input terminal is to be connected 
to one output terminal, and vice versa. Therefore the sum of k sets A^ 
does not contain fewer than k different elements and, by Hall's theorem 
concerning distinct representatives of subsets, for any permutation H it 
is always possible to choose r input terminals incoming to different first 
stage switches, such that these terminals are to be connected to output 
terminals outgoing from different third stage switches. Such subassign-
ment can always by realized using one center stage switch. Applying the 
same procedure for the rest of the network n — 1 times, we can realize 
every maximal assignment using n middle stage switches. D 

In the case of asymmetrical switching fabric the respective theorem is 
as follows: 

T H E O R E M 5.19 C5£) (n i , r i ,m,n2 , r2 ,1 ) is rearrangeable if and only if 
m ^ max{n i , n2} . 

Proof. A maximal assignment can be represented by a bipartite graph 
of maximum degree d ^ max{ni ,n2} . Such a graph can be colored us
ing d colors and connections colored with the same color can always be 
realized using one center stage switch. D 

5.1.5-2 Mul t i cas t Connec t ions 

Rearrangeable Cs'i:)(ni, r i , m, n2, r2,1) with multicast connections were 
first considered by Masson and Jordan [112]. They gave the conditions 
under which this switching fabric is rearrangeable under no-split restric
tion and 2-split restriction strategy. The latter case was strengthened 
by Hwang [52, 56] in the following theorem: 

T H E O R E M 5.20 The Cs '£) (n i , r i ,m,n2, r2 ,1) is rearrangeable for q-cast 
connections^ I ^ q ^ q2 ^ N2 under 2-split restriction strategy if and 
only if: 

m ^ max{min{nig2; ^2^2}; min{n2; n i r i } } . (5.30) 

The case when 1-split restriction and no-split restriction strategies 
are used was considered by Kirkpatrick, Klawe, and Peppenger [88]. Re
cently Jajszczyk considered Cs'i:)(n,r, m, 1) with multicast connections 
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under 1-split and 3-split restriction strategy. It means that connections 
are spread out only in switches of the center stage. This approach may 
be practical in large-scale cross-connects systems [66]. The assumed 
restrictions result in that each multicast connection is restricted to be 
connected to only one output terminal in each switch of the third stage, 
but this is not a real constraint for some cross-connect applications. The 
respective theorem is as follows: 

THEOREM 5.21 C5i:)(n,r, m, 1) is rearrangeable for q-cast connections, 
1 ^ ^ ^ 2̂ ^ ^ under 1-split and S-split restriction strategy if and only 
if: 

"" n 
m > 2n — 

92 
(5.31) 

Different strategies which may be used for setting up multicast con
nections result in a different number of middle stage switches required 
for wide-sense nonblocking and rearrangeable nonblocking operation. 
Let us compare the (7s'i:)(n5r, m, 1) wide-sense and rearrangeable non-
blocking broadcast switching fabrics [27]. For 2-split restriction strat
egy rearrangeable conditions are given in Theorem 5.20 and for 1-split 
restriction strategy wide-sense nonblocking conditions are given in The
orem 5.9. When more than one output port of the same output switch 
take part in the connection, then these outputs are connected by fan-out 
connection in the output switch, i.e., q2 = r. From (5.30) we obtain that 
Csoi^.'f^j'^^ 1) is rearrangeable for r-cast connections if 

m ^ nr. (5.32) 

From (5.21) we obtain that CSD{^^ r, m, 1) is nonblocking for r-cast con
nections under 1-split restriction strategy if 

m ^ max {min \n-\-ln — I: nr: nr — I ^- 1}} . (5.33) 

For any /, 1 ^ / ^ r, rn ^ nr — / + 1 so we obtain 

m > max {min{n + ln — hnr — I -\- 1}} . (5.34) 

A comparison between formula (5.32) and (5.34) leads to the conclu
sion that wide-sense nonblocking C5j;:)(n,r, m, 1) under 1-split strategy 
contains always less switches in the middle stage then the rearrangeable 
switching fabric of the same capacity and under 2-split restricted strat
egy. This difference is equal to r — 1. It is worth mention that from (5.34) 
for r = 2 we obtain m ^ 2n — 1. It means, that CsDi'f^, 2, 2n — 1,1) is 
strict-sense nonblocking for point-to-point connections and wide-sense 

file:///n-/-ln
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r=8 

r=16 

r=32 

n=4 
8 
16 
32 

n=4 
8 
16 
32 

n=4 
8 
16 
32 

WNB 
1-split 
~25 
57 
121 
249 
49 
113 
241 
497 
97 
225 
481 
993 

WNB 
p-limited 2 

l4 
30 
63 
131 
15 
38 
79 
163 
16 
41 
91 

RNB 
2-split 
32 
64 
128 
256 
64 
128 
256 
512 
128 
256 
512 
1024 

RNB 
1 and 3-split 

7 
15 
30 
60 
7 
15 
31 
62 
7 
15 
31 
63 

Table 5.2, 
strategies 

Comparison of WNB and RNB C5D(n,r, m, 1) under different routing 

nonblocking for broadcast connections when l~spht restriction strategy 
is used. In Table 5.2 number of middle stage switches for rearrangeable 
nonblocking switching fabrics under 2-split restricted and 1-split and 
3-split restricted strategies and wide sense nonblocking switching fabrics 
with 1-split and p-limited no-split strategies are compared. 

5.1.6 Rearrangeable Algorithms 
5.1.6.1 Single Connections 

When the path searching algorithm fails, the new connection is blocked. 
To unblock it, a rearrangement algorithm is to be used. Slepian [151] and 
Paull [140] proposed several rearrangement algorithms. All of them use 
Paull's matrix M of size r x r for representing the state of the switching 
fabric. The Paull's matrix is also called a state matrix. Each row (col
umn) in M corresponds to one first stage (third stage) switch. An entry 
M[z;j] = A means that the connection (li^Oj) is set up through the 
center stage switch MA- It should be noted that there can be more con
necting paths (but not more than n) between given switches li and Oj, 
so an entry M[z; j] may contain more than one center stage switch. The 
example of CSD{^^ 4, 4,1) switching fabric and its state matrix are shown 
in Figs. 5.11a and 5.11b, respectively. In this switching fabric the follow
ing connections are set up: (0,0) (i.e., (/i ,Oi)), (4,8) ((12,03)), (12,4) 
((74,02)), through switch Mi, connections (1,1) ((A5O1)) and (5,9) 
((/2,03)), through switch M2, (10,6) ((13,02)) and (14,14) ((14,04)) 
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n 1 
u ^ ^ 

1 1 1 

— 

Figure 5.11a. A state of Cs£)(4,4,4,1) - an example 

1 2 3 4 

1 1,2 

3,4 

1 

1.2 

3,4 

Figure 5.lib. The state matrix of C5i:>(4,4,4,1) 

through switch M3, and (11,7) ((13,02)) and (15,15) ((14,04)) through 
switch M4. The Paull's matrix has the following properties: 

1 In each row there can be no more than n different elements, since 
each first stage switch has n inputs and only one link to every center 
stage switch. 

2 In each column there can be no more than n different elements, since 
each third stage switch has n outputs and only one link from every 
center stage switch. 
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Let us assume that connection (/^, Oj) is blocked. The input data for 
the algorithm are input switch /^, output switch Oj , and Paull 's matrix 
M representing the current state of the switching fabric. The algorithm 
is as follows [140]: 

A L G O R I T H M 5.8 Paull 

S t e p 1 Find the switch number not present in column j] denote it by 
A, 

S t e p 2 Find the switch number not present in row i; denote it by 5 . 

S t e p 3 Set up (li.Oj) through MA, i.e., M[i;j] := A; zi := i; ji := j . 

S t e p 4 In row ii find such column / that M [ z i ; / ] = A; if there is such 
j \ then replace M[i i ; j^] = A with M[zi; j^] = B, set ji := / and go 
to step 5, otherwise the call is unblocked and the algorithm ends. 

S t e p 5 In column ji find such row i^ that M[i^; j i ] = B; if there is such 
i'^ then replace M[2^; j i ] = B with M.[i^]ji] = A, set zi := i^ and go 
to step 4, otherwise the call is unblocked and the algorithm ends. 

First we have to determine which switches will be used for rearrange
ments. We can choose only center stage switches which have the free link 
to switch Oj or from switch !{, There is no center stage switch with free 
links to both Ii and Oj , since the connection (li^Oj) is blocked. In the 
first step we find switch MA which has the free link to switch Oj. Switch 
MB found in the second step has the free link from switch /^. We have 
chosen two switches, MA and M ^ , which will be used to rearrange the 
state of the switch fabric. Now we take randomly one of these switches 
to set up the new connection, say this is the center stage switch MA (step 
3). The example of Paull's matrix is given in Fig. 5.12a. Connection 
(li^Oj) is blocked (it is assumed that z = 1 and j = I) and connections 
set up through switches MA and MB are shown. Connection (li^Oj) is 
set up through switch MA ( M [ 1 ; 1] := A in Fig. 5.12b). Switch MA is 
the switch which was not present in j , but it was already present in z. 
So we have now A present two times in z. Variables zi and oi represent 
the currently considered row and column, respectively. At the beginning 
these two variables have values z and j . In step 4 we look for such col
umn / in row zi = 1 that M [ l , / ] = A, In the matrix of Fig. 5.12a, A is 
in column 4 of row zi = 1, so we replace M[ l ,4 ] = A with M[ l ,4 ] = B 
and set ji = / = 4 (i.e., move {Ii^.Ojf) from MA to M ^ , and set f 
as the currently considered column). After this replacement we have to 
check if B is present in another row of column 4, so we go to step 5. In 
the matrix of Fig. 5.12a, switch B is in row ẑ  = 2 of column ji = 4. So 
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the new value of zi is now 2, we replace M[2,4] = B with M[2,4] = A 
and we have to check if there is another column in row 2 containing A, 
Therefore we go back to step 4 (remember that after update we have 
now ii = 2 and j i = 3). The chain of rearrangements in the matrix is: 
M[1;1] :=A, n : - l , i i - l ; 
/ = 4, M[l,4] 
i' = 2, M[2,4] 
/ - 2 , M[2,2] 
i' = 8, M[8,2] 
/ - 5 , M[8,5] 
i' = 4, M[4,5] 
/ = 7, M[4,7] 
2' = 7, M[7,7l 
/ = 6, M[7,6] 
i' = 6, M[6,6] 
/ = 8, M[6,8] 
i' = 5, M[5,8] 

:= B, h 
:= A, h : 
••= B, i i 

:= A, ii : 
:= B, ji 
•= A, ii : 

:= B, ji 
:= A, ii : 
:= B, ji 
:= A, ii : 
:= B, ji 
:= A, ii : 

:=4; 
= 2; 
:=2; 
= 8; 
:=5 ; 
- 4 ; 
:=7; 
= 7; 
:=6; 
= 6; 
:=8 ; 
= 5; 

In row 2i = 5 switch M^ is not present so the algorithm ends. The 
state matrix after rearrangements is shown in Fig. 5.12b. The algorithm 
always ends with success, i.e., in step 4 or 5 there will be no considered 
switch in respective row or column. In the state matrix of Fig. 5.12a 
the algorithm ends on position ii = b and ji = 8 . There is no another 
entry A in row 5. And when we look on the state matrix we can see 
that there is no such column where this switch could be. It cannot be 
in column i = 1, since in step 2 we chose A because it was not present 
in this column. It cannot also be in other columns (i.e., 2 to 8) since 
it is already present in other rows of these columns, and according to 
state matrix properties, each symbol can be present in each column and 
in each row only once. More formal proof can be found in [140]. 

In the algorithm Paull switches MA and MB were chosen for re
arrangements randomly, and switch MA was chosen for the new con
nection also randomly. Paull proposed different modifications, which 
resulted in a lower number of rearrangements needed to unblock the 
new call. For instance, we can set up the new call through switch MB 
(not MA) or we can check all possible switches and finally use switches, 
which results in the lowest number of rearrangements [140]. If in the 
considered matrix we will use switch MB for the new connection, the 
chain of rearrangements is: 
M[1 ;1 ] :=B, i i : = l , j i : = l ; 
i' = 3, M[3,l] —A, ii : = 3 ; 
/ = 3, M [ 3 , 3 ] : = B , j i : = 3 ; 
so only 2 connections are to be rearranged instead of 12. It was proved 
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6 

7 

8 

151 

if 

B 

A 

B 

A 

A 

B 

B 

A 

B 

A 

A 

B 

B 

A 

Figure 5.12a. The Paull's matrix before rearrangements 

A 

B 

B 

A 

A 

B 

A 

A 

B 

A 

B 

B 

A 

A 

B 

Figure 5.12b. The Paull's matrix after rearrangements 

that using the Paull algorithm not more than 2r — 3 rearrangements 
would be needed. When modified algorithms are used, the number of 
rearrangements needed is reduced to r — 1 [9]. 
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1 2 3 4 

3,2 

3,4 

1 

1,2 

1 

3,4 

Figure 5.13. The state matrix of C 5 D ( 4 , 4 , 4,1) after rearrangements for connection 
(1,4) 

In the switching matrix of Fig. 5.11b, connection (/i ,04) is blocked 
since in row 1 we have already numbers 1 and 2, while numbers 3 and 
4 are in column 4. Numbers 1 and 2 are not in column 4, so we choose 
A = 1. In row 1 we have two numbers, 3 and 4, which are available; we 
choose any of them, let say B = 3, We now set up the new call through 
switch Ml (M[l; 4] := 1 - step 3) and look for column / containing 1 in 
row 1. We have M[l; 1] = 1, so / = 1 and we replace M[l; 1] = 1 with 
M[l; 1] = 3 (step 4). In the next step we check if there is another row 
with 3 in column 1. Since there is no such row, the algorithm is ended 
and the new connection is established with one rearrangement. The 
matrix after this rearrangement is shown in Fig. 5.13, while the state of 
the switching fabric is shown in Fig. 5.14. The new connection (3,12) 
(i.e., (/i,(94)) is shown in dashed line and the rearranged connection 
(0,0) is shown in dotted lines. 

The Paull algorithm can be also used in switching fabrics composed 
of more than three stages, obtained by recursively replacing center stage 
switches with other three-stage fabrics. The example of a five-stage 
27 X 27 switch fabric, obtained from Cs'i:)(3,9,3,1) by replacing the 
center stage 9 x 9 switches with C S D ( 3 , 3 , 3 , 1), is shown in Fig. 5.15. 
Connections are shown in bold fines. PaulPs matrices for this switch
ing fabric are given in Fig. 5.16a. Entries in matrix M represent the 
three-stage switching fabric (1, 2 or 3) used for respective connections. 
Matrices Mi , M2 and M3 correspond to states of three-stage switch
ing fabrics 1, 2, and 3, respectively. In this switching fabric connection 
(25,3) (i.e., (/9,0i)) is blocked, since we cannot put any of numbers 1, 
2 or 3 in position (/9,0i) of matrix M. We use the Paull algorithm to 
rearrange the state of the switching fabric. Connection (Ig.Oi) is set 
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1 1 

153 

Figure 5.14- A state of C S D ( 4 , 4 , 4 , 1) after rearrangements 

up through the center three-stage switching fabric M3 and connection 
(Ig.Og) is moved to the switching fabric M2 (see matrix M after this 
rearrangement in Fig. 5.16b). Now we have to set up these two connec
tions ((/9,0i) and (/gjOg)) in the center switching fabrics. Connection 
{h^Oi) is blocked in the center switching fabric M3, while connection 
(/g^Og) is blocked in the center switching fabric M2 (see M2 and M3 
in Fig. 5.16a). We can now use the Paull algorithm for M2 and M3. 
All the matrices after rearrangements are shown in Fig. 5.16b and con
nections are shown in Fig. 5.17 (the new connection is shown in dashed 
line, and rearranged calls are shown in doted lines). 

5.1.6.2 Simultaneous Connections 

In simultaneous connections we have a set of compatible connections 
and we have to choose the center stage switch for each call. Several 
approaches and algorithms were proposed to do this simultaneously. 

Matrix Decompositions. In algorithms based on matrix decompo-
(n) 

sition a maximal assignment is represented in the matrix H^ ^ with r 
rows and r columns. Rows and columns correspond to the first and the 
third stage switches, respectively, and the matrix is defined as follows: 
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Figure 5.15. The state of the five-stage 27 x 27 switch fabric before rearrangements 

DEFINITION 5.22 

k, if there are k connections (/^, Oj); 

0, if there is no such connection. 
(5.35) 

An entry hij = k means that the number of connections between switches 
li and Oj is equal to /c, i.e., that a maximal assignment contains k con
nections (li.Oj). When /c = 0, there is no such connection. Since each 
first stage switch has n inputs, we have n connections from this switch in 
a maximal assignment. Therefore, when we add all elements in any row, 
we obtain n. The same is true for any column, since each third stage 
switch has n outputs. These properties of matrix H^^^ can be denoted 
by equations: 

^ H [ z ; j ] - n and ^ H [ z ; j ] = n . 
3 = 1 

(5.36) 
i=l 

Consider now a matrix for which the sum of any row or column is 
unity. It is often called an elementary permutation matrix, and is de-
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Mc 

M; 
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1 2 3 

2,3 

1 3 

M 

Figure 5.16a. Paull's matrices before rearrangements 
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Mc 
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2 

1,3 

2,3 

1 2 

Figure 5.16b. Paull's matrices after rearrangements 
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Figure 5.17. The state of the five-stage 27 x 27 switch fabric after rearrangements 

noted by E^xr- Neiman [118] has shown that the control of the re-
arrangeable switch fabric can be interpreted as a procedure of finding 
a set of E^xr matrices which can be subtracted, one at a time, from 

in) 

some given H^ , and connections corresponding to each of these E^xr 
matrices can be set up through one center stage switch. We say also 

in) 

that matrix H^ is decomposed into n matrices E^xr- Let us consider 
C'5i:)(4,4,4,1) and the permutation 

n = 
0 
1 

1 2 3 
15 8 12 

4 5 6 7 8 9 10 
13 3 9 2 11 6 14 

11 
5 

12 
10 

13 14 15 
4 0 7 

(5.37) 
We have one connection (/i,Oi) (i.e., connection (0,1)), one connec
tion (/i ,03) ((2,8)), and two connections {h.O^) ((1,15) and (3,12)). 
Therefore, hi^i = /iî a — 1 and /iî 4 = 2. There is no connection between 

switches / i and O2, so hi^2 == 0. Matrix H^ is shown in Fig. 5.18a. 
This matrix can be decomposed to four elementary permutations matri
ces El , E2, E3, and E4. These matrices are shown in Fig. 5.18b, while 
connecting paths in CSD{^AA) ^^^ shown in Fig. 5.19. Several algo-
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Figure 5.18a. Simultaneous connections in C 5 D ( 4 , 4,4,1) - matrix H 
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Figure 5.18b. Simultaneous connections in C S D ( 4 , 4 , 4 , 1), - matrices E 

rithms have been proposed for decomposing matrix H^ into matrices 
E^xr- The main drawbacks are time complexity and number of itera
tions. Neiman proposed an algorithm with the time complexity 0{r^m?) 
[118]. Some modifications in this algorithm, which resulted in fewer it
erations, were proposed in [162], [60], [12]. Another algorithm with time 
complexity 0{nr^) was proposed in [96]. Parallel algorithms as well as 
algorithms which realize only some of all possible permutations were also 
considered [54]. More efficient algorithms use graph coloring. 
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i;3.N''/3^;^v 

Figure 5.19. Simultaneous connections in CSD{^, 4,4,1) - a state of the switch fabric 

Matching and Graph Coloring Algorithms. Algorithms for find
ing perfect matchings in bipartite multigraph and graph coloring can be 
used to route connections in the switching fabric. In this approach a 
maximal assignment is represented by a bipartite multigraph ^(V, E). 
Such a graph representing a maximal assignment in CsDi"^^"^^"^^ 1) has 
2r nodes (r nodes in each set), N = nr edges, degree n, and is n-
colorable, or we can find n perfect matchings. Connections correspond
ing to one perfect matching, or corresponding to edges colored with the 
same color, can be realized using one center stage switch. A bipar
tite multigraph Q for connections considered in Fig. 5.19 is shown in 
Fig. 5.20. In switch / i we have one connection to switch Oi, one con
nection to switch O3, and two connections to switch O4. Therefore, node 
1 on the left hand side is joined by one edge to node 1 and to node 3, and 
by two edges to node 4 on the right hand side. The graph Q has 2r = 8 
nodes and A'̂  — 16 edges. Its degree is equal to 4 and it is 4-regular since 
each node in one set is joined to nodes in another set by exactly four 
edges. Perfect matchings in Q and Q colored with three colors are shown 
in Figs. 5.21 and 5.22, respectively. It is clear that calls corresponding 
to edges in each perfect matching or colored with the same color can be 
set up through one center stage switch. 

An efficient algorithm for finding a perfect matching in bipartite graphs 
was proposed in [4]. The algorithm use the property saying that any 2k-
regular multigraph 7i can be split into two /c-regular spanning subgraphs 
Til and 7̂ 2- A perfect matching is a 1-regular spanning subgraph. To 
obtain a perfect matching of graph H by splitting it t times, it should 
be 2^-regular. Therefore, the bipartite multigraph representing maximal 
assignment must be first converted to a 2*-regular bipartite multigraph. 
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Figure 5.20. The bipartite multigraph representations of connections for 
C 5 D ( 4 , 4 , 4 , 1 ) 

Figure 5.21. Perfect matchings in the bipartite multigraph of Fig. 5.20 

Figure 5.22. Coloring of the bipartite multigraph of Fig. 5.20 

This conversion is done by replacing each edge in Q with a — \2^/n\ 
multiple edges, and by adding /3 = 2^ — na copies of edges in an ar
bitrary perfect matching P, where t is the nearest integer satisfying 
2̂  ^ N{= nr)^ i.e., t = \log2{rn)^. The edges of V and their copies are 
called bad edges. The algorithm is as follows. 

ALGORITHM 5.9 Perfect Matching 

Input: Maximal assignment 11; Q; n; r; 
Output: Perfect matching 7Ŷ +̂ ; 

Step 1 Calculate parameters: t = \log2{2rn/2)'], a = [2^/nJ, and P = 
2^ - na, 
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Step 2 Create an arbitrary perfect matching V in Q, This V does not 
necessarily consist of edges of Q. 

Step 3 Create the graph Hi by replacing each edge in Q with a multiple 
edges and by adding P copies of each edge in V (called bad edges). 
Graph Tii is 2^-regular. 

Step 4 Starting from 5 = 1 to ^ do: split graph 7i^ into 7f J"*"̂  and 7^2^^ 
edge disjoint 2*~^-regular spanning subgraphs in the following way: 

• put [o:/2'̂ J copies of each edge to Tî "̂ ,̂ and |_ô /2'̂ J copies to 
7-̂ 2^̂ ; remove these edges from H^; 

• put [P/2^} copies of each bad edge to 7Ŷ "̂ ,̂ and [P/2^] copies 
to 7^2^^; remove these edges from H^; 

• find an Euler cycle in each connected component of the remaining 
subgraph of H^^ move odd numbered edges to H^'^^ and even 
numbered edges to 7^2^^. Choose a subgraph with the lower 
number of bad edges as the graph H^^^. 

Step 5 Graph H^'^^ is a perfect matching. 

The total running time of this algorithm is 0{Nt) = 0{N log N), The 
use of the algorithm is presented in the following example. Let us con
sider the graph presented in Fig. 5.23a. In step 1 the parameters of the 
algorithm are calculated. Parameter t is equal to 4 (ceiling of log2 16), 
and it means that the algorithm will perform step 4 four times. In steps 
2 and 3 two additional graphs are created. Graph V is presented in 
Fig. 5.23b5 while 7Y ,̂ created from Q and V^ is shown in Fig. 5.23c. 
Since P = 0 graph 7i^ do not contain any copies of edges of V, Each 
edge in H^ is multiplied a = A times. So the graph is still a regular 
graph but of degree 2* = 16. The first execution of step 4 results in 
two subgraphs presented in Fig. 5.23d. They were obtained by placing 
[a/2j = 2 copies of each edge in Hi and 7̂ 2- Since all edges are placed 
in new graph, there is no need to look for an Euler cycle in this step. 
Both graphs are identical, so any of them can be taken as H^, Graph 
H^ is again divided into Hf and 7l̂ 2 shown in Fig. 5.23e, and since both 
are identical, any of them can be taken as H^, At this step [a/2^\ = 0 
so we do not move any edges graphs Hf and 7̂ 2 and in the remaining 
graph which is graph H^ in this case, we have to find an Euler cycle (see 
for instance [146]). This cycle can be for instance: l - - > 5 ^ 3 — > 7 - ^ 
3 - > 6 - > 2 ^ 5 - ^ l - ^ 6 ^ 4 - > 7 - > 4 ^ 8 - ^ 2 ^ 8 - - > l , where nodes 
on the left side of the graph are numbered 1, 2, 3, 4 from top to bottom, 
and nodes on the right side are numbered 5, 6, 7, 8 from bottom to top. 
Graphs Hf and 7-̂ 2 are shown in Fig. 5.23f. Graph Hf was taken as 
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Figure 5.23a. Input graph Q Figure 5.23b. Arbitrary perfect 
matching V 

Figure 5.23c. Graph Hi Figure 5.23d. Graphs Hi and Hi 

Figure 5.23e. Graphs Hj and Til Figure 5.23f. Graphs Hi and Hi 

graph H'^. This graph was divided into Hf and H2 (see Fig. 5.23g, and 
an Euler cycle was 1 ^ 5 - ^ 2 ^ 8 — > 4 ^ ' 7 ^ 3 — > 6 - ^ l . Both graphs 
are perfect matchings and any of them can be taken as final graph, so 
finally H*'^^ — H^ is returned by the algorithm as its result. 

Figure 5.23g. Graphs Hi and Hj 



162 NONBLOCKING SWITCHING FABRICS 

Figure 5.24- The 16 x 16 Benes switching fabric 

Connection routing in three-stage switching fabrics may be also mod
eled as a network-flow problem. This approach for the space-division 
switching fabric with multicast connections was considered by Varma 
and Chalasani [167]. 

The Looping Algori thm. The looping algorithm was originally pro
posed to route simultaneous connections in switching fabrics composed 
of 2 X 2 switches [132]. It was later extended to switching fabrics with 
2̂  X 2̂  switches [5]. When the switching fabric is composed of 2 x 2 
switches, two inputs (outputs) of the same first (last) stage switch are 
called dual. The dual of input x (output y) is denoted by ~ x (~ ?/). The 
N X N Benes switching fabric contains 2n — 1 stages of 2 x 2 switches, 
where n = log2 N. The 16 x 16 switching fabric is shown in Fig. 5.24. It 
can be also constructed recursively by using two N/2 x N/2 switching 
fabrics (called the upper and the lower switching fabric, respectively), 
and adding outer stages, each of N/2 switches, as it is shown in Fig. 
5.25. 

Let Xn-iXn-2 . . . :î o be a binary representation of an input terminal 
x^ The ~ :r is represented in binary form by Xn-iXn-2 - • • ^ 5 where XQ is 
complementation of XQ. For instance 0 and 1 or 2 and 3 are duals. We use 
two tables: MI[A^; 2] and MO[A^; 2]. An entry MI[x; I] = y denotes that 
input terminal x is to be connected to output terminal y. Analogically, 
M.O[y; 1] = X, The second column of these matrices contains Os or Is, 
where MI[x;2] = MO[?/;2] = 0 means that connection (x;y) is to be 
set up through the upper switching fabric, and MI[x; 2] = MO[y; 2] = 1 
means that the lower switching fabric is used. Another entry, for instance 
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N/2 X N/2 
switching 

fabric 

N/2 X N/2 
switching 

fabric 

A//2 

Figure 5.25. Recursive construction of the Benes switching fabric 

MI[x; 2] = MO[y; 2] = 2, denotes that this connection is not set up yet. 
The algorithm is as follows: 

ALGORITHM 5.10 Looping 

Input : Maximal assignment 11; 
Outpu t : Matrices MI[7V; 2] and MO[A^; 2]; 

Step 1 Set matrices MI and MO: for x = 0 to AT — 1 (i.e., for all input 
and output terminals) MI[x; 1] := 7r(x) (input terminal x is to be 
connected to 7r(x)); MI[x; 2] := 2 (input terminal x is not connected 
yet); MO[x;l] := 7r~^(x) (output terminal x is to be connected to 
7r~^{x)); MO[x;2] := 2 (output terminal x is not connected yet). 

Step 2 Find a not connected input terminal x and set XQ :-
input terminals are connected the algorithm is ended. 

If all 

Step 3 Connect XQ to 7r(a;o) through the upper switch fabric: 
MI[xo; 2] := 0; MO[7r(xo); 2] := 0. 
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Step 4 Find ~ 7r(xo). 

Step 5 Find an input terminal xi, ~ 7T{XO) is to be connected to: xi :— 
7r~^(~ 7r(xo)). 

Step 6 Connect xi to '^ 7r(xo) through the lower switch fabric: M O [ ^ 
7r(xo);2] : - 1 ; MI[xi; 2] : - 1 ; 

Step 7 Find ^ xi; if connected go to step 2; otherwise, set XQ =^ xi 
and go to step 3. 

Let's assume that permutation (5.37) is to be realized in 16 x 16 Benes 
switching fabric. Matrices MI and MO obtained in step 1 of the looping 
algorithm are shown in Fig. 5.26a. In step 2 input terminal 0 is chosen 
as the first not connected input terminal. It is connected with output 
terminal 1 through the upper subnetwork (MI[0; 2] = 0). Since 7r(0) = 1 
than MO[l; 2] is also set to 0. The dual of 1 is 0 and output terminal 0 is 
to be connected with input terminal 14, since 7r~^(0) = 14. Connection 
(14,0) is set up through lower subnetwork - MI[14;2] = MO[0;2] = 1. 
The rest run of this loop is shown in Fig. 5.26b. It ends on input 
terminal 1. The dual of this input terminal is input terminal 0 which 
is already connected. Therefore, we start the next loop from the first 
not connected input terminal, i.e., from input terminal 2. The run of 
this loop is shown in Fig. 5.26c. This loop ends at input terminal 3 
(the dual for input terminal 2) and after this loop all input terminals 
are connected. So the looping algorithm ends. After this run of the 
algorithm all outer stage switches are set up and it is determined which 
connections are to be set up through upper and lower subnetworks. This 
set up is shown in Fig. 5.26d. Now the looping algorithm is again used to 
set up switches in the upper and the lower switch fabrics in the similar 
way. 

5.1.7 Repackable Switching Fabrics 
Call repacking enables to increase the loading of the most used center 

stage switches, leaving the less loaded switches free to carry new connec
tions that would otherwise have been blocked. The idea of call repacking 
as well as first call repacking algorithms have been proposed by Ackroyd 
[1]. In repackable switching fabrics, in contrast to rearrangeable ones, 
rearrangement of existing connections is realized each time a connection 
is terminated. Ackroyd has shown that using connection repacking the 
traffic performance of a switching fabric is improved. He proposed the 
following algorithms: 
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Figure 5.26a. Matrices M I and M O 
for permutation (5.37) 

Figure 5.26b. Matrices M I and M O 
after the first loop 

Figure 5.26c. Matrices M I and M O after the second loop 

ALGORITHM 5.11 Acroyd-single 

When the new connection is to be set up use Minimum Index algorithm; 
When connection (Ii^Oj) reahzed through switch M^, 1 ^ A; < m is 
terminated than: 
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Figure 5.26d. Connections in 16 x 16 Benes switching fabric after first run of looping 
algorithm 

S t e p 1 Search in turn, starting from switch M ^ to switch M^+i, for a 
connection that can be moved to switch M^. 

S t e p 2 If such connection exists, say in switch M^^, move it to switch 

A L G O R I T H M 5.12 Acroyd-multiple 

If, after using Acroyd-single algorithm, call repacking was realized from 
switch Mfc ,̂ ki < m, set k = ki and repeat algorithm Acroyd-single. 

Jajszczyk and Jekel gave the required number of middle stage switches 
to obtain nonblocking operation of the CSD{'^^ ?̂ ^ 5 1 ) [67]. They proved 
the following theorem: 

T H E O R E M 5.23 When C5'/)(n,r, m, 1) is controlled in such a way that 
each overweight state is nonpermanent, then it is nonblocking if and only 

/̂ 
n 

m > 2n — 
r - 1 

(5.38) 

where a nonpermanent state is a state which is immediately replaced by 
another state, and an overweight state is a state in which there exists 
a connecting path which can be moved to another more heavily loaded 
center stage switch. 
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Proof. Let the new connection be (li^Oj); let Mi be the set of center 
stage switches through which connections (Ix^Oj) are realized, 1 ^ x ^ 
r, X 7̂  z; let M2 be the set of center stage switches through which 
connections {Ii,Oy),l ^ y ^ v] and let Mi n M2 = 0. Without lost 
of generality it may be assumed that the new connection (li^Oj) is set 
up through switch in M2, and M2 contains switches with higher indexes 
while Ml contains switches with lower indexes. Since the switching fabric 
is repackable, the obtained state is not an overweight one, i.e., it is not 
possible to re-switch any connection from any switch in M2 to any switch 
in M l . We have |Mi | ^ n and IM2I ^ n, since switches li and Oj can 
have at most n connections each. We have also IM2I ^ a max 1(7^,0^)1, 

where |(/^,Oy)| denotes the number of connections {Ii^Oy) and e is the 

number of different Oy. So IM2I ^ min < n; a max \{Ii^Oy)\ >. Since it 

is not possible to move any of the connections from M2 to Mi , there 
are some connections (/;^,0y), z ^ i realized through switches in Mi . 
It means tha t in switch Oy we have max 1(7^,0^)1 connections from 

switches in M2, so not more than n — max |(7^,0^)1 connections may 

come from switches in Mi , i.e., |Mi | ^ n — max [(7^,0^)1. The total 

number of switches required is 

m ^ n — max \(Ii^Oy)\ + min <n;a max |(7^, O y ) | > . (5. 39) 

We have to maximize this number through all max |(7^, Oy)|, and a, and 

this maximum is obtained for (see [67] for details) 

n 
m = 2n — 

r — 1 

The sequence of events which results in the occupancy of this number 
of center stage switches is also given in the cited paper. D 

For r > nwe have m ^ 2n —1, i.e., the required number of center stage 
switches is the same as for strict sense nonblocking switching fabrics. 

5.2 Time-division Switching 
5.2.1 Switching Fabrics Composed of Digital 

Switches 
Three-stage, time-division switching networks, composed of digital 

matrices, were proposed by Charransol et al. [19]. A structure of asym-
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f2 

Figure 5.27. A time-division two-sided i;-dilated three-stage switching fabric 

metrical time-division two-sided t;-dilated three-stage switching fabric is 
shown in Fig. 5.27. It contains ri switches in the first stage, m switches 
in the second stage, and r2 switches in the third stage. Switches in 
adjacent stages are connected between themselves by means of v links. 
Each input stage switch has rii input links and vm output links, while 
each output stage switch has mv input links and n2 output links. Cen
ter stage switches has a capacity of ri?; x r2V links. Input links in first 
stage switches and output links in third stage switches carry / i time 
slots each, while each interstage links carries /o time slots. This switch
ing fabric will be denoted by CTi:)(^i5^i5/i5^5^25^25/25'^5/o)- When 
fi = f2 = f^ f^i = ^2 = '^ and Ti = r2 = r the switching fabric is 
symmetrical and will be denoted by CTDC^, r, / , m, t̂ , /Q). Combinator
ial properties of such switching fabrics were first considered by Jajszczyk 
[62] in the case of unicast connections. Several other papers deal with 
the performance evaluation of switching networks with multi-slot con
nections [68, 121, 152, 153]. 

5.2.2 Path Searching Algorithms 
For 1-slot connections algorithms RAN (5.1), SEQ (5.2), MINIX (5.3), 

Q-RAN (5.4), CS (5.5), STU (5.6), and PACK (5.7) can be easily mod
ified. Other algorithms which may be used to route connections are: 

ALGORITHM 5.13 Link packing (PACK-L) 

If the connection {Ii^Oj) is to be set up search for outgoing link from 
switch li according to the load of these links, starting from the most 
loaded link. If the accessible link lead to switch M^ and Mk has also 
accessible link to Oj, route the connection through M/.. 
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A L G O R I T H M 5.14 Link unpacking (UNPACK-L) 

169 

If the connection (li.Oj) is to be set up, search for outgoing link from 
switch li according to the load of these links, starting from the least 
loaded link. If the accessible link leads to switch M^ and M^ has also 
accessible link to Oj , route the connection through M^. 

In algorithm PACK-L, the most loaded link from switch li may not 
necessary lead to the most loaded center stage switch. Algorithm 
UNPACK-L results in that connections from switch li are more equally 
spread between all links from this switch. In the case of multi-slot con
nections, we should count the number of time slots occupied by connec
tions instead of the number of connections to determine the load carried 
by switches or hnks when PACK, PACK-L, or UNPACK-L algorithm 
are to be used. In case of path searching for multi-slot connections in 
two-sided three-stage switching fabrics routing strategy based on func
tional division of center stage switches can be used, similarly as it was 
described in the case of one-sided two-stage switching fabrics composed 
of triangular switches. 

5.2.3 Strict-sense Nonblocking Conditions 
Nonblocking conditions for 1-slot connections will be considered first. 

T H E O R E M 5.24 CTZ:)(^15^15/15^5^25^25/25^^5/0) ^^ nonblocking in the 
strict sense for 1-slot connections if and only if: 

m > min 
nifi - 1 

vfo 

Tiuifi - 1 

+ 

+ 1; 

^2/2 - 1 

^2^2/2 - 1 

vfQ 

+ 1; 

+ 1 (5.40) 

Proof. Sufficiency can be proved by showing the worst state in the 
switching fabric. In this state n i / i — 1 input channels of the first stage 
switch li may be connected to output channels of r2 — 1 third stage 
switches (others than switch Oj), but no more than (r2 — 1)^2/2 such 
connections can be set up. These connections will occupy all channels 
of interstage links to [ m i n { n i / i — 1; (r2 — 1) n2/2}/'^/oJ middle stage 
switches. Similarly, to the third stage switch Oj there may be 77.2/2 — 1 
connections from the first stages switches (others than switch /^), but no 
more than (ri —l)n i / i such connections can be set up. These connections 
may occupy another set of [min {722/2 — 1; (T Î — 1) TT^I/IJ/I^/OJ middle 
stage switches. In the worst case these sets of switches are disjoint and 
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one more switch is needed to set up the connection (li^Oj). We have: 

m > 

+ 

min {ni/ i - 1; (r2 - 1) 712/2} 

min {712/2 - l ; (r i - l ) n i / i } 

+ 

+ 1. (5.41) 

After similar considerations as in the proof of Theorem 5.1 we get in
equality 5.40. 

Necessity can be proved easily by presenting the switching fabric with 
lower number of middle stage switches, in which the new call is blocked. 
D 

In the case of symmetrical switching fabric we obtain conditions given 
earlier in [62]: 

COROLLARY 5.25 CTD{T^^ ^J /? ̂ 5 '̂ j /o) 'i^^ nonblocking in the strict sense 
for I'Slot connections if and only if: 

m>2 
nf-1 

+ 1 (5.42) 

Proof. Set / i = /2 = / , ni = 7T-2 = n, and ri = r2 = r in equation 
(5.41). Taking into account that nf — 1 < rnf — n / for r ^ 2 we obtain 
(5.42). D 

COROLLARY 5.26 Csoi'^i'^i'^i'^) 'is nonblocking in the strict sense if 
and only if: 

' n-1 
m ^ 2 + 1 

Proof. Set / = /o = 1 in inequahty 5.42. 

(5.43) 

D 

COROLLARY 5.27 Cs'/)(ni,ri,m,n2,r2 5î ) is strict-sense nonblocking 
if and only if: 

m ^ min 
ni — 1 

+ 
riUi — 1 

+ 1; 

n2 - 1 
V 

r2n2 - 1 
V 

+ 1; 

+ 1 

Proof. Set fi = f2 = fo = lm inequahty (5.40). 

(5.44) 

D 
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Let us now consider the switching fabric presented in Fig. 5.27 when 
5-slot connections can be set up. 

T H E O R E M 5.28 CTi:)(^i,ri,/i ,W5^25^25/2, '^5/0) is nonblocking in the 
strict senke for s-slot connections, 1 ^ s ^ ^max ^ / i ; if ^^^ only if: 

m ^ max 
l ^ S ^ 5 m a x 

min < 
nifi -

V 
/o 
5 

S 
+ ^2/2 - s 

1 r in ] 

V 
-

. / i -

/o 

_ s _ 

- s 

-

+ 1; 
^2^2/2 -

V 
/o 

_ s _ 

- s 

J 

+ 1; 

(5.45) 

P r o o f : Let us consider the "worst" state of the switching fabric pre
sented in Fig. 5.27. Let us also assume, that the 5-slot connection is to 
occupy s adjacent slots, 1 ^ 5 ^ «5max? i-^-, the fixed or floating time-
slot assignment is used. In the "worst" state nifi — s input channels of 
the first stage switch li and 77.2/2 — 5 output channels of the third stage 
switch Oj are occupied, and there is not any connection between these 
switches. However, no more than (r2 — 1)77.2/2 time slots are available 
in the third stage switches others than Oj , and similarly, there are no 
more than (ri — 1)77.1/1 time slots available in the first stage switches 
others than /^. The occupied time slots of these outer stage switches are 
assigned only to the 1-slot connections. The time slots are occupied in 
such way that there are exactly s — 1 free time slots between two suc
cessively occupied time slots, as shown in Fig. 2.17a. The link, whose 
time slots are occupied in the way described above, is inaccessible to 
the new s-slot connection if a fixed or floating time-slot assignment is 
used. In this link [min {771/1 — s; (r2 — 1) 77.2/2}/'^ L/o/'^JJ middle stage 
switches inaccessible by the new 5-slot connection. Similarly, a set of 
[min {77.2/2 — s] (7̂ 1 — 1)77.1/1}/^; [/0/5JJ middle stage switches may be 
inaccessible by the new 5-slot connection. In the worst case these sets 
middle stage switches are disjoint. If the 5-slot connection is to be real
ized between switches li and Oj an additional switch in the middle stage 



172 

is needed, so 
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m ^ 
min {ni/i - s; (r2 - 1) 722/2} 

/o 
s 

+ 

+ 
min {712/2 - s ; ( r i - l)7Zi/i} 

fo 
s 

+ 1. (5.46) 

When any of the values {nifi - s)/v [fo/s\, in2f2 - s)/v [fo/s\, 
[{r2 - 1) ^2/2] /v [fo/s\, [(ri - 1) ni / i] /i; [/0/5J is not an integer the 
additional middle stage switch may be partially occupied, but it still 
will be accessible for the new 5-slot connection. To realize any s-slot 
connection, the number of middle stage switches must be equal to the 
maximum value of m for 1 ^ 5 ^ ^ l̂ax- D 

Since both space-division and time-division switching are the spe
cial cases of the multi-slot switching, the theorems for the multi-slot 
switching should include these known results. For s = 1 (i.e., time-
division switching), we obtain conditions given in Theorem 5.24. For 
fi=f2 = fo = y = s = l (i.e., space-division switching), we obtain 
conditions given in Theorem 5.1. 

Strict-sense nonblocking time-division switching fabrics with multi
cast connections where not considered in the literature. Some results 
can be obtained from conditions derived for switching fabrics with mul-
tirate discrete bandwidth connections, however, in this case it is assumed 
that flexible time-slots assignment is used for 5-slot connections. 

5.2.4 Wide-sense Nonblocking Condit ions 
In case of 1-slot connections, the only result for wide-sense nonblock

ing conditions is derived by Fishburn et al. [43] for switching fabrics 
with r — 2: 

THEOREM 5.29 CTJD(^5 2 , / , m , 1,/) is nonblocking in the wide sense 
for 1-slot connections under STU if 

m > 
3n 

T 
(5.47) 

They also proved the necessary conditions for r = 3. In other cases 
there is no algorithm currently known under which the switching fabric 
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will require less switches in the middle stage. In case of 5-slot connec
tions, the number of middle stage switches be reduced by using other 
time slot assignment algorithms. First the switching fabric with flexible 
assignment will be considered. 

THEOREM 5.30 CTD{'^I^'^I^ fi^'^^'^2^^2^ 12^"^^ fo) is nonblocking in the 
wide sense for s-slot connections, 1 ^ s ^ 5max ^ ^^{fi] f2}? under 
flexible assignment if and only if: 

m ^ min 
nifi 

L^(/0 - ^max 

L^(/0 - 5max + 1) . 

+ 
^ 2 / 2 - s, 

+ 1)J L^(/0-5max 
, , ^2^2/2 - 5max 

+ 1; 

LW/o + i ) j 

+ i ) j 

+ 1 !> . (5.48) 

Proof. Proof is very similar to the proof of Theorem 5.28, but now 
[[min {ni/ i - 5; (r2 - 1) ^2/2}] /v (/o - 5max + 1)J middle stage switches 
are inaccessible by the new 5-slot connection from the first stage switch, 
and [[min {722/2 - 5; (ri - 1) ni/i}] /v (/o - 5niax + 1)J switches are in
accessible from the third stage switch. This number must be maximized 
through all 5, and it reaches maximum for s = Smax- D 

It should be noted that for / i = /2 = /o = t' = 5 = 1 or when only 
5 = 1 we obtain the strict-sense nonblocking conditions for space-division 
switching (Theorem 5.1) or for time-division switching (Theorem 5.24), 
respectively. This is because we consider the special time slot assignment 
algorithm but we do not put any restriction on the way in which the 
second-stage switches are chosen. Since in both space-division switching 
and time-division switching, the time slot assignment is not considered, 
the result given in Theorem 5.30 should include these known results. 

Let us now consider the switching fabric with f = fQ = fi = f2 = Smax 
in which the routing strategy with functional division is used. In this 
strategy, middle stage switches are divided into two groups. One group, 
containing rui switches, will be used for setting up s-slot connections, 
for which s ^ [//2J. Connections using s > [//2j slots will be set up 
through one of switches in the other group, which contains 7712 switches. 

THEOREM 5.31 CTi:)(^i5^i5/5^5^25^25/?'^5/) is nonblocking in the 
wide sense for s-slot connections, 1 ^ s ^ f, under flexible assignment 



174 NONBLOCKING SWITCHING FABRICS 

and functional division strategy if and only if: m ^ rui + 7712; where 

mi — mm 

ni, 

K 
f-

71 
2 

1/ 
[2. 

+ 1 )l 
+ 

n2 

K 
/ -

71 
2 

1/ 
L 2 . 

+ 1 )l + 1; 

rinif -

K 7" 
2 

/ 
_2_ 

+ 1 1. 
+ 1; 

r2n2f -

K 7" 
2 

/ 
_2 . 

+ 1 I . 

\ 

+ 1 > 

) 

(5.49) 

denotes the number of middle stage switches which serves s-slot connec
tions for which 1 ^ s ^ LZ/^J; ^^^ 

m2 = mm 
ni — 1 

+ 
riUi — 1 

+ 1; 

n2 - 1 

r2n2 - 1 

V 

+ 1; 

+ 1 (5.50) 

denotes the number of middle stage switches used for serving s-slot con
nections for which [ / /2 j < s ^ f. 

Proof. For mi set 5max = LZ/^J in equation 5.48. When s > [/J only 
one connection can be set up in one hnk, so it corresponds to the case 
when f = s = 1. When we put these values in equation (5.48), we obtain 
(5.50). D 

5.2.5 Rearrangeable Switching Fabrics 
Rearrangeable time-division switching fabrics for unicast 1-slot con

nections were considered by Jajszczyk [63, 64]. The conditions in the 
symmetrical case are given by the following theorem. 

T H E O R E M 5.32 C T D ( ^ 5 ^5/5 ^5^^5/0) is rearrangeable if and only if 

nf-l 
m ^ 

L ^/o J 
+ 1 (5.51) 

Proof. The proof is very similar to the proof of theorem 5.18. The 
difference is that in one center stage switch vf{) subassignments can be 
realized. D 
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T H E O R E M 5.33 CTi:)(^i5^15/15^5^25^25/25^^5/0) ^̂^ rearrangeable if 
and only if 

m ^ 
max {711/1,712/2} - 1 + 1. (5.52) 

vfo 

Proof. The proof is very similar to the proof of theorem 5.19. How
ever, the bipartite graph representing the maximum assignment is now 
of maximum degree d ^ max{7ii/i , 712/2)5 ^^d in one center stage switch 
connections colored with the same vfo colors can always be realized. D 

Strict-sense, wide-sense, and rearrangeable nonblocking two-sided 
time-division switching fabrics require different numbers of second stage 
switches. The comparison for fi = fo = 32 and different n, Smax5 ^nd 
V is given in Table 5.3. It is obvious, that the lowest number of second 
stage switches is required in rearrangeable nonblocking switching fab
rics. In case of 1-slot connections strict-sense conditions and wide-sense 
nonblocking conditions when flexible assignment is used are equal. For 
1 < s ^ 5niax ^ud 5max = fi = fo the lowcst number of switches is 
obtained for wide-sense nonblocking switching fabrics with functional 
division of second stage switches. The number of required switches m as 
a function of 5max for 5max = / i == /o = 32 and different n is plotted in 
Fig. 5.28. For ^max = fi = fo wide-sense nonblocking switching fabrics 
with flexible assignment and strict-sense nonblocking switching fabrics 
require the same number of the second stage switches. 
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SNB 
5max ̂ ^ 

W N B flexible 

^max ̂ ^ 

W N B functional 
5max ^ 

RNB 
Smax ̂ ^ 

n = 

1 
2 
6 
16 
32 

1 
2 
6 
16 
32 

32 

1 

8 

15 
31 
101 
241 
449 

15 
17 
19 
29 
449 

44 

8 

v = 1 
16 

31 
63 
203 
497 
961 

31 
33 
37 
59 
961 

60 

16 

24 

47 
95 
305 
753 
1473 

47 
49 
57 
89 
1473 

76 

24 

32 

63 
127 
407 
1009 
1985 

63 
65 
75 
119 
1985 

92 

32 

8 

7 
15 
51 
121 
225 

7 
9 
9 
15 
225 

22 

4 

v = 2 
16 

15 
31 
101 
249 
481 

15 
17 
19 
29 
481 

30 

8 

24 

23 
47 
153 
377 
737 

23 
23 
29 
45 
737 

38 

12 

32 

31 
63 
203 
505 
993 

31 
31 
37 
59 
993 

46 

16 

Table 5.3. Number of second stage switches in nonblocking CTD(^ ,?^ , 32,m,i^, 32) 
switching fabrics; SNB - strict-sense nonblocking, WNB - wide-sense nonblocking, 
RNB - rearrangeable nonblocking 
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Figure 5.28. Number of second stage switches versus 5max; / i — /o — 32 
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5.2.6 Repackable switching fabrics 
Repackable time-division switching fabrics were considered by Ohta 

[122]. The following notation will be used to describe the repacking 
algorithm. Let LMkih^Oj) denote the number of connections {li^Oj) 
set up through switch M^; let Mj^^^(Ii,Oj) denote the center stage 
switch for which L'^^{Ii,Oj) = m^y:LM^{IUOJ)] and let M^'^'ili.Oj) 

denote the center stage switch for which L^^{Ii, Oj) = minLMki^i^ Oj)-

The control is as follows. 

ALGORITHM 5.15 RepackingTD 

Step 1 If (li^Oj) is a new connection, set this connection through Mk 
for which LM,(/i ,0,) = L^^^(/„0,). 

Step 2 If (li.Oj) is terminated and it is routed through Mfc then if 
LMki^i-) Oj) = Uj^'^{Ii^ Oj) before this disconnection do nothing, else 
rearrange another connection (li^Oj) from switch Mj^^^(Ii^Oj) to 

THEOREM 5.34 CTi:)(n,r,/, m,t',/o) is repackable under algorithm 
RepackingTD if and only if: 

vfo> 
nf — r 

m 
+ r. (5.53) 

From the above theorem it can be seen that nonblocking conditions 
depend on r. For r > vfo the conditions given in Theorem 5.34 cannot be 
fulfilled. For lower r repacking will result in lower number of center stage 
switches. The comparison of strict-sense nonblocking and repackable 
switching fabrics for / = /o = 32, i; = 1, n = 8, and n = 16 is given in 
Fig. 5.29. 
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100 

B 50 

? 40 

B 30 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 
The number of outer stage switches r 

Figure 5.29. Number of center stage switches versus r for SNB and RPNB switching 
fabrics with f = f^ = 32 and v = 1 
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5.3 Mult irate Switching 
5.3.1 Multirate Switching Fabrics 

An architecture of the two-sided three-stage switching fabric in the 
multirate environment is shown in Fig. 5.30. Similarly as in the space-
division and time-division switching fabrics, it consists of vi switches 
in the first stage, r2 switches in the third stage, and m switches in 
the second stage. Each pair of switches in adjacent stages is connected 
between themselves by means of v bidirectional links. Each of the first 
stage switches has rii input of capacity (3i {Pi ^ 1), and mv outputs of 
capacity 1. Switches in the third stage each have mv inputs of capacity 1 
and 712 outputs of capacity P2 {P2 ^ !)• Middle stage switches are of size 
Tiv X r2V^ each link of capacity 1. This switching fabric will be denoted 
by CMi?(ni,ri,/?i,m,n2,r2,^2,'^). When m = n2 = n, n = r2 = r, 
and Pi = P2 = P the switching fabric is called symmetrical and will be 
denoted by CMRi"^^ 5̂ /?? ^5 '^)-

If a new connection {x^y^uj) is to be set up through the switching 
fabric, a control algorithm has to find a middle stage switch which is ac
cessible for this connection. This switch must have available bandwidth 
of at least u in one of its v inputs connected to the first stage switch 
containing input terminal x^ and available bandwidth of the same weight 
in one of its v outputs to the third stage switch with output terminal y. 
In order to preserve the cell order, we will assume that a connection is 
routed through a single link to one second stage switch. 

Algorithms RAN, SEQ, MINIX, Q-RAN, CS, STU, and PACK pro
posed for space-division switching may be used after simple modifica
tions. In the case of PACK algorithm it should be noted that the 

V. 1 

Figure 5.30. A multirate two-sided t'-dilated three-stage switching fabric 
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switch load should be now calculated as the total bandwidth used by 
connections set up through the considered center stage switch. Algo
rithm PACK-L and UNPACK-L proposed for time-division switching 
can also be used. Routing strategy with functional division of center 
stage switches can be used as well in these switching fabrics [101]. In 
this routing strategy, similarly as in the time-division switching, m i cen
ter stage switches are reserved for connections with weights less than or 
equal to 0.5 (i.e., b ^ uj ^ 0.5) and 1712 center stage switches are reserved 
for connections of weights greater than 0.5 (i.e., 0.5 < uj ^ B), This 
approach may be applied for both discrete bandwidth and continuous 
bandwidth cases. The routing strategy with functional division of mid
dle stage switches can be further modified in the way proposed by Gao 
and Hwang [44]. In this modified algorithm (called also quota scheme) 
connections are divided into three groups: light, medium, and heavy. 
A connection of weight cj is a heavy connection i fc j > l / ( p + l ) , a 
medium connection i f l / ( p + l ) ^ uj > l / ( p + 2), and a light connection 
if l / ( p + 1) ^ cj, where p = [1/B\. The set of middle stage switches 
is divided into three subsets of m i , m2, and ma switches. Each of mi 
switches is reserved for carrying up to /i of light and medium connec
tions and as many heavy connections as possible. Each of 1712 switches 
is reserved for carrying up to I2 light connections and as many medium 
connections as possible. 

5.3.2 Strict-sense Nonblocking 
The first upper bound of nonblocking conditions in the case of con

tinuous bandwidth was proposed by Melen and Turner [114]. This up
per bound was later improved by Chung and Ross [22]. Asymmetrical 
switch configurations were considered in [24]. More generalized three-
stage Clos switching fabrics were considered by Liotopoulos and Cha-
lasani [104]. The results derived in those papers were limited to 6 = 0 
or JB G (1 — 6,/?]. Both sufficient and necessary non-blocking condi
tions for any B and 6 > 0 were proved in [74] and [73] in the case 
of symmetrical and asymmetrical three-stage Clos switching networks, 
respectively. In some papers blocking probability at the connection level 
was also considered [101, 154, 166]. 

First strict sense nonblocking conditions in the discrete bandwidth 
case will be considered. 
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THEOREM 5.35 CMR{ni,ri,(3i,m,n2,r2,(32,v) is strict-sense nonblock-
ing for discrete bandwidth case if and only if: 

m ^ 

+ 

minjAi {ni,(5i,B);Bi (r2,n2,/?2)} 
vCi (B) 

mm{Ai {n2,(32,B)]Bi (ri,ni,/?i)} 
vCi (B) 

+ 

where 

+ 

and 

Ai{n,(3,B) = {n-l) 

Bi (r, n, P) = {r — l)n 

p-B 

+ 1, (5.54) 

(5.55) 

(5.56) 

(5.57) 

Proof. Necessary conditions can be proved by showing the blocking 
state in the switching fabric with less value of m than that given by 
(5.54). The following path searching algorithm will be used. If a new 
connection of weight u arrives at the same first stage switch as the last 
connection set up, we start to search a path from the interstage link 
through which the last connection was set up. When a new connection 
appears in another first stage switch, we start to search a path from the 
middle stage switch next to the last engaged. Let connection (7^,0^,5 
is to be set up. In inequality (5.54): 

• Ai (ni,/3i,5) represents the maximum number of connections with 
weight 6, that can constitute a state of first stage switch /^, compat
ible with a connection of weight B (see also Fig. 5.31); 

• ^1 (^25/^25^) represents the maximum number of connections with 
weight 6, that can constitute a state of third stage switch Oj, com
patible with a connection of weight B (see also Fig. 5.31); 

• Bi (r2,n2,/32) represents the maximum number of connections with 
weight 6, that can fit in all third stage switches but switch OJ; 

• Bi (ri,ni,/?i) represents the maximum number of connections with 
weight 6, that can fit in all third stage switches but switch 7̂ ; 

• Ci{B) represents the maximum number of connections with weight 
6, that can make an interstage link inaccessible by a connection of 
weight B, 
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A^{nv,fiv,B) < r m - D B^{n2\(h\B) 

B^(n^^,fi^]B) 
D r m >A^{n2]J32]B) 

n Connection of weight b 

• Connection of weight S 

Figure 5.31. Worst case scenario for connection placement in switches U and Oj in 
the strictly non-blocking mode. 

The following set of events leads to the occupancy of all middle stage 
switches given by inequality (5.54). 

Step 1 Set up [{1 — B -^ b)/b\ connections (/^, Ok, &), where k ^ j , 

Step 2 Set up connection (/^, Ok, 7), where 7 = 1 —6[(1 —J5+6)/6J < B, 

Step 3 Set up connection (/^, Ok, 6), disconnect (7 ,̂ Ok, 7), and then 
set up [(1 — J5 + h)/h\-l connections (7̂ , Ok, b). 

Step 4 Repeat connections and disconnections from Steps 2 and 3 
up until the number of connections (7 ,̂ Ok, b) is equal to 
vCi (B) [min{Ai (n i ,A ,B) ;5 i ( r2 ,n2 ,^2)} /^Ci (B)J . 
The number of middle stage switches occupied by these connections 
is equal to mi = [mm{Ai{ni,Pi,B) ]Bi{r2,n2, l32)}/vCi {B)\ , and 
these switches will be inaccessible to the new connection of weight B 
from switch 7̂ . 

Step 5 Repeat Steps 1 to 4 for connections [Ik, Oj^b)^ k ^ i. The next 
7712 = [mm{Ai{n2,(52,B)]Bi{ri,ni,(5i)}/vCi{B)\ middle stage 
switches will be occupied by these connections, and these switches 
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will be inaccessible to the new connection of weight B to the third 
stage switch Oj. 

In the above switching fabric, m i + m 2 middle stage switches are occupied 
and the new connection (/^, Oj , B) will occupy the second stage switch 
numbered mi + m2 + l . It should be noted that the weight B is available 
in one of the input links of switch 7 ,̂ as well as in one of the output links 
of switch Oj. 

Sufficiency will be proved by showing the worst state in the switching 
network. In order to maximize the utilization of all links and minimize 
capacity fragmentation of the switch, we consider tha t only connections 
of weight b are already set up in the switching fabric. Suppose we want 
to add the new connection (li^Oj^u)^ 0 < b ^ cu ^ B, In switch li we 
may have at most [Pi/b] connections of weight b in each of n i — 1 input 
links, and [{Pi — uj)/b\ such connections in the remaining link. So we 
may have at most (ni — 1) \_Pi/b\ + [_{Pi — uj)/b\ = Ai (n i , /?i,a;) connec
tions of weight b in switch /^. However, in all the third stage switches, 
except switch Oj , it is possible to set up no more than (r2 — 1) n2 [P2/b\ 
= Bi (r2,712 J P2) connections of weight 6. Thus the total number of con
nections is min{Ai (ni , /? i ,a ; ) ; 5 i (r2,n2,/?2)}• 

The interstage link is inaccessible by a new connection if Ci (uj) = 
[(1 — a;) /6J + 1 = [(1 — a; + b) /b\ connections of weight b are already 
set up through this link. So the connections from switch li can occupy 
[min{yli {ni,Pi,u) ;Bi (r2,n2,/?2)}/'^C'l (< )̂J middle stage switches. 

Similar considerations for the third stage switch Oj show that no 
more than [min {Ai {712^ P2^ ^) ] Bi{ri^ rii, Pi)} /vCi {uj)\ middle stage 
switches will be inaccessible by the connection (7^, Oj , a;), where 
Ai{n2,P2.uj) = in2-l)[P2/b\ + L(/?2 - cj)/6J, and 5 i ( r i , n i , A ) = 
(ri — 1) ni [Pi/b\. In the worst case these sets of middle stage switches 
are disjoint and one more switch is needed for the connection (7^, Oj , ( J ) , 
so 

m ^ 

+ 

minjyl i (ni.pi.uj) ]Bi (r2,n2,/^2)} 

vCi {uj) 

min {Ai (n2, /^2, ^ ) ; ^ 1 ( n , ni.pi)} 

vCi (uj) 

+ 

Ai (ni,/?i,a;) = (ni - 1) 

Ai (n2,/?2,^) = {ri2 - 1) 

Bi ( r i ,n i , / ? i ) = (ri - l)ni 

/51 

L ^ J 
p?. 

[ b \ 

+ 

+ 

P^-
[ b 

P?.-

[ h 

u 

(jj 

Pi 
b 

+ 1, (5.58) 

(5.59) 

(5.60) 

(5.61) 
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and 

Bi{r'2,n2,(52) = (r2 - 1) n2 

Ci (a;) = 

^ 
6 

(5.62) 

(5.63) 

The function (5.58) must be maximized through all a;, and it reaches 
maximum for a; = B. Applying uj = B m inequality (5.58), we obtain 
formula (5.54). IH 

The nonblocking conditions in the discrete bandwidth case when 1/6 
is an integer and [5 = v = 1 were given in [22]. The case with (3 < 1 
was considered in [104]. In the case of symmetrical multirate switching 
fabrics we obtain: 

COROLLARY 5.36 CMRin,r,P,m,v) is strict-sense nonblocking for 
discrete bandwidth case if and only if: 

m>2 
in - 1) 

V 
1 -

+ 

5 4 
b 

P_ 

-b 

-B 
'b~ _ 

+ 1. (5.64) 

Proof. Put ni = n2 = n, ri = r2 = r, and (3i = P2 = P ^^ equation 
(5.54). Since for r ^ 2 we have Ai{n,P,B) < Bi(n,P,B), we obtain 
inequahty (5.64). D 

When we replace /?i, /?2) b, and B with / i , /2, 1, and Smax, respectively, 
and we denote the interstage link capacity by /o in inequality (5.64), we 
obtain wide-sense nonblocking conditions for switching fabrics with s-
slot connections under flexible assignment algorithm given in inequality 
(5.48). 

Let us now consider CMR{ni.,ri,Pi,m,n2,r2,(32jV) in the continuous 
bandwidth case. Since input and output terminals have different capac
ities, weight Lu is limited hyO<b^u;^B^ m.m{(3i; (32} ^ 1- We will 
use functions (4.27), (4.28), (4.29), (4.30), and (4.31) defined in section 
4.2.3.2. 

THEOREM 5.37 CMR{'ni,ri,l3i,m,n2,r2,132, v) is strict-sense nonblock
ing for continuous bandwidth case if and only if: 

min {A2 {nu(3uB); B2 (r2, n2, /?2, B)} 
m ^ (5.65) 

+ 
min {A2 (n2, /32, B); B2 (ri, ni , ^1 ,5)} 

+ 1, 
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where: 

A2{n,l3,B) = 

( n - 1 ) 

( n - 1 ) 

_b_ 

/5 + 
p-B 

b 

{n-l)Pi(3;l-B) 

in-l)P{p-l-B) + 
+ [Rs{n-l;a{p,B))\-{-
-\-P{a{(3,B)-l-B) 

{n-l)P{(5-l-B) + 
+P[{n-l)Ri{(5-l-B) + 
+ Rr,{l3-B)-l-B] 

for J5 G (1 - 6, /?] 

for 5 G (1 - 26, ^] 
and I < ^ < ^ 

for all other B 
and i?i {(5\l-B)<b 

for all other 5 and 
b^Ri{(3]l-B)< 26 

for all other B 
and i?i (/3; 1 - 5 ) ^ 26 

185 

(5.66) 

B2{r,n,l5,B) = (5.67) 

(r — 1) n 

(r — 1) n 

(r - 1) nP (/?; 1 - 5 ) 

{r-l)nP{(3-l-B) + 
+P {{r - 1) nRi {P;l - B) ;1 - B) 

for 5 G (1 - 6, /?j 

for 5 G (1 - 26, i ] 
and I < 6 < ^ 

for all other B 
and Ri {(3]l-B)<b 

for all other B and 
6 ^ i?i (/3; 1 - 5 ) 

a (/?, 5 ) = i?2 (/?; 1 - 5 ) + 1 (5.68) 



186 NONBLOCKING SWITCHING FABRICS 

a{f3,B) = [{n-l)-a{P,B)[Rs{n-l;a{p,B))\]Ri{(3;l-B) + 

+i?5 (/? - B) (5.69) 

Proof. Sufficient conditions will be proved by showing the worst case 
in the switching fabric. Suppose we want to add the new connection 
(/^, Oj , cj), 0 < b ^ UJ ^ B. Any interstage link from switch 
li will be inaccessible to the new connection of weight cj, if the sum of 
connection weights already set up through this link is greater than 1 — a;. 
In the worst case this sum of weights should be as small as possible, say 
1 — cj + 5, where e is close to but greater than 0. We have three cases: 

1 1- UJ < b, 

2 b ^ 1 - UJ < 2b diiid 1 - u ^ B, 

3 other values of 1 — a;. 

Case 1: 1 — UJ < b. The interstage link is inaccessible to the new con
nection, if it carries one connection of weight 6. In the worst case, each 
connection with this weight from switch li may be set up through a 
separate interstage link. At one input link there may be at most lPi/b\ 
connections of weight 6. There are n i — 1 such input links of switch /^. 
In the last input link of this switch there is a free bandwidth of weight 
Pi — UJ, Since 1 — a; < 6 and /?i ^ 1, then (5i — uj < b. At this link 
we cannot set up a connection of weight 6. In the first stage switch li 
there may be ^2(^1?/^i?^) = (^1 — 1)LA/^J connections of weight b set 
up, and these connections may occupy \_A2{ni^(5i^uj)/v\ middle stage 
switches. However, in all third stage switches, except switch Oj , it is 
possible to set up no more than B2{r2,712^^2^^) = (^2 — 1)^2 [P/b\ con
nections of weight 6, so no more than [^2(^2? ^25/^25^)/'^] middle stage 
switches will be occupied. 
Case 2: b ^ 1 — UJ < 2b and 1 — UJ ^ J5. The interstage link is inac
cessible to the new connection of weight a;, if it carries connections of a 
total weight greater than 1 — UJ. Since 1 — UJ ̂  5 , there is no possible 
way to set up a connection of such weight. But because 1 — u; < 26, 
the interstage link will be inaccessible by the new connection of weight 
a;, if it carries two connections of weight 6. Similarly as in case 1, we 
may have (ni — l)[Pi/b\ connections of weight 6 at n i — 1 input links 
of switch /^, and [(/?i — uj)/b\ connections of such weight at the last 
input link of this switch. At the input finks of switch li there may be 
(ni — 1) lPi/b\ + [(/?i —uj)/b\ connections of weight 6, and these connec
tions wifi make A2{ni,pi,uj) = [(ni - l)[pi/b\ + [{pi -uj)/b\]/2 links 
outgoing from switch I^ inaccessible by the new connection. Therefore, 
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[A2{ni^/3i^uj)/v\ middle stage switches will be inaccessible, provided 
that all these connections can be accepted in some third stage switches, 
other than switch Oj. Since in these third stage switches it is possible 
to set up at most (r2 — l)n2 L/̂ 2/M connections of weight 6, no more 
than [52(r2,n2,y52,a;)/i;J middle stage switches will be occupied, where 
52(r2,n2,/52,a;) = [(r2 - l)n2 L/^2/6j]/2. 
Case 3: 1 - u ^ 2b or b ^ 1 - u < 2b dnid 1 - u ^ B. If 1 - u < B 
only one connection of such a weight may be set up. In the other case, 
at least two connections of total weight greater than 1 — uj must be set 
up in an interstage link. In one input link we can have no more than 
lim [/3i/{l — u + s)\ connections of total weight greater than 1 — a;, so 

this number of connections is given by function P(/3; 1 — a;). So, at most 
(ni — l)P{Pi] 1 — uj) connections of such weight may be set up in the 
first stage switch li. There is still free bandwidth of weight j3i—u in the 
last input link, but it cannot be used by a connection of weight greater 
than 1 — UJ {Pi — UJ ^ 1 — u). In each of the rii — 1 input links there 
is free bandwidth of weight pi — P {Pi; 1 — a;) (1 — a;) = Ri {pi] 1 — a;), 
but when Ri{Pi;l—u) < b this bandwidth cannot be used by the 
next connection. This means that , in switch li we have A2{ni,Pi^uj) 
= {ui — I) P {Pi; 1 — UJ) connections of weight greater than 1 — u;, and 
these connections occupy [A2{ni^Pi^uj)/v\ middle stage switches. 

When b ^ Ri{Pi;l—uj) < 26, the remaining bandwidth in each 
link can be used by the next connection. Several such connections of 
weight Ri {Pi;l — UJ) in one interstage link may lead to a state, in which 
this link will be inaccessible to the new connection (the minimum num
ber of these connections is denoted by a{Pi,uj). The next interstage 
link will be inaccessible by the new connection, if it carries a{Pi^uj) 
= R2 {Pi; 1 — UJ) -{- 1 connections of weight Ri{Pi;l — UJ). This means, 
that the next [i?3(ni — 1; a (/?i,a;)J interstage links from switch li will 
be inaccessible to the new connection. In switch /^, we now have ui — 
1 ~ a {Pi^uj) [i?3(ni — 1; a {Pi,uj)\ input links with available bandwidth 
Ri {Pi; I — a;), and one link with available bandwidth of R^{Pi—uj) (func
tion i?5(7) indicates whether the bandwidth quantity 7 is less than b or 
not, so it determines whether this bandwidth can be used by a connection 
or not) . Connections of such weights may occupy a bandwidth of weight 
a {pi.uj) - [(m - 1) - a {Puuj) [Rs (m ~l;a {Puuj))}] Ri {pi; 1 - UJ) + 
R5 {Pi — ^) in an interstage link. If a {Pi^uj) is greater than 1 — a;, then 
this interstage link will also be inaccessible to the new connection from 
switch li. Whether this interstage hnk is accessible or not, can be cal
culated by function P{a {Pi.uj) ;1 — UJ). The state of switch li for this 
case is shown in Fig. 5.32. In this state, we may have ^2(^15/^15^) = 
(ni - l)P{pi; l-uj)+ [R3{ni - 1; a {Pi,uj)\ + P{a {Pi,u) ;l-uj) inter-



188 NONBLOCKING SWITCHING FABRICS 

P{j3v^-a)) connections <(V 

Bandwidth of weight a{fi^,a) 

(A7i-1)P(A;1-^) 

LR3(A7i-1;a(/3i.^))_ 

D Connection of weight 1 - ^ + £ 
M Connection of weight Ri(/3i;1-^) 

M3 Bandwidth of weight Rs{P^-cci) 
^M Connection of weight co 

Figure 5.32. The state of switch U in case b ^ Ri {f3i] 1 — cu) < 2b 

stage links from switch /^, which are inaccessible by the new connection 
of weight UJ. These links will fully occupy lA2{ni^Pi^Lj)/v\ middle stage 
switches. 

For Ri (/3i;l — cj) > 26 this remaining bandwidth may be divided 
among more than one connection. However, these connections may oc
cupy no more than P{[{ni - l)Ri (/?i; 1 - cj) + R^ (1 - a;)]; 1 - cu) in
terstage links. This means that A2{ni,l3i^uj) = (ni — l)P(/?i; 1 — oj) -}-
P{[{'^1 ~ 1)-Ri (/^i; 1 — a;) + i?5 (1 — a;)]; 1 — a;) interstage links may be 
inaccessible by the new connection of weight u and they will occupy 
[A2{ni^Pi,u)/v\ middle stage switches. 

Similarly, as in cases 1 and 2, all connections in switch /^, have to 
be accepted by all third stage switches except switch Oj. The num
ber of connections of weight greater than 1 — cj, which can be ac
cepted is given by: B2 (r2,n2,/S2,^) = (̂ 2 - l)^2f'(/32; 1 - C J ) + P{{r2 -
1)^2^1 (/52; 1 — a;); 1 — u;). These connections will occupy no more than 
IB2 {T2^n2^l32^oo) /v\ middle stage switches. 

Combining these cases together, we can write that in the middle 
stage [min{A2 (^i5^i5^); ^2 (̂ 2?'̂ 25/?2 5^)}/'^J switches will be inac
cessible to the new connection of weight cj, where A2 (ni,ri ,a;), and 
B2 (^2,'^25/52,^) are given by equations (5.66) and (5.67), respectively. 

On the other hand, any interstage link to switch Oj will be inaccessible 
by a new connection of weight a;, if the sum of connection weights already 
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set up through this link is greater than 1 — a;. Similar considerations, as 
for switch /^, show that [A2 (n2,r2,(x;) /v\ middle stage switches will be 
inaccessible to the new connection of weight uj. However, in switch Oj, 
we cannot set up more connections than can be accepted in all first stage 
switches except switch 1̂ . Hence, no more than [^2 (ri,ni,/?i,a;)/^'J 
middle stage switches can be occupied. This implies that another set of 
[min {A2 (n2, r2, a;); ^2 (ri, ni, /?i, (j)} /v\ middle stage switches is inac
cessible to the new connection, where A2 (n2, r2, a;), and B2 (ri, ni , ^ 1 , a;) 
are given by equations (5.66) and (5.67), respectively. To set up the 
connection (/^, Oj^ cj), one more switch is needed in the middle stage. 
Therefore, we have: 

m > 

+ 

mm{A2 {ni,Pi,u); B2 {r2,n2,(32,uj)} 
V 

mm{A2 (n2,/?2,^) ;52 (ri,ni,/?i,a;)} 

+ (5.70) 

+ 1. 

The function (5.70) must be maximized through all a;, and it reaches 
maximum for u = B, Applying u = B in (5.70), we obtain formula 
(5.65). D 

It should be noted that in cases 1 and 2 and also in case 3 when 
Ri{/3; 1 — B) < b Theorem 5.37 provides necessary conditions as well. 
Such conditions can be proved by showing a set of events leading to 
the occupancy of the number of middle stage switches given by (5.65). 
This set of events can be constructed in a similar way, as in the proof of 
Theorem 5.35. 

Multirate switching networks are more generalized case of 
space-division and multi-channel switching. Theorems 5.35 and 5.37 
should then include already known results. Let us consider the 
CMR{^i^^iA^'^^'f^2^T2,l,v) with 6 = 5 = 1. For the continuous band
width case we have 1 G (0,1], which is case 1. We obtain A2(ni, 1, 1) = 
ni - 1, 52(r2,n2, 1, 1) = (r2 - l)n2, ^2(^12, 1, 1) = n2 - 1, and 
^2(^15^15 I5 1) = (̂ 1 — 1)^1- Putting this values in equation (5.65) we 
will finally get Corollary 5.27. More general architecture of three-stage 
multirate switching fabrics with different number of links and of differ
ent capacities in each of input and output stage switches as well as the 
different number of interstage links between switches was considered in 
[77]. 
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5.3.3 Wide-sense Nonblocking Conditions 
5.3.3.1 Unicast Connections 

For unicast connections the number of center stage switches required 
can be reduced by using the routing strategy with functional division. 

THEOREM 5.38 CMi?(^i,/^i5^i5W;^2)/^2)^2)'i^) 'is wide-sense nonblock
ing for continuous bandwidth case, when the algorithm with the func
tional division is used, if: m ^ mi + m2 , where 

mi ^ 
min {A2 (ni,/3i, 0.5); B2 (rs, n2, /?2,0.5)} 

+ (5.71) 

+ 
min {A2 (n2, /32, 0.5); B2 ( n , ni , /?i, 0.5)} 

+ 1, 

is the group of switches used for connections with b ^ u ^ 0.5; and A2, 
B2J are defined in Theorem 5.37, and 

m2 ^ min ni 
+ 

riui — 1 
+ 1; 

n2 - 1 
V 

r2n2 - 1 
V 

+ 1; 

+ 1 (5.72) 

is the group of switches used for connections with a; > 0.5. 

Proof: Formula (5.71) is obtained by letting B = 0.5 in (5.65), and 
(5.72) is derived from (5.65) by assuming b > 0.5. D 

In the similar way, the theorem for the discrete bandwidth case can 
be proved. 

It should be noted that the routing strategy with a functional decom
position of middle stage switches results in a reduction of the required 
switching elements for some values of B and /?. For instance, in the 
discrete bandwidth case, WSN symmetrical networks require less mid
dle stage switches than SNB, ior B = [5 ^ 0.75. In the continuous 
bandwidth case, this reduction also depends on b and n. 

Hwang and Gao [44] proved the wide-sense nonblocking conditions 
when quota scheme routing strategy is used with li — I2 = 0: 

THEOREM 5.39 CMni"^) 5̂ P^ ^51) ^^ wide-sense nonblocking for contin
uous bandwidth case, when the modified algorithm with the functional 
division is used, if: 

^ ' r^^r 2{p+l){Bp + B+p-l)n 
m > mm{5.75n, -^ 2 }, (5.73) 
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where numbers of mi and 7712 are given by: 

( / 2 ( p + l ) ( i ? p + g - l ) n \ . 
(mi,7712) = < V P^ ' y ' ^ - / . (5 74) 

[ (2n - 1,0.75n), for B ^ 23/32. 

The condition given in Theorem 5.38 provides a little improvement 
in comparison to those given by Theorem 5.39. For example, for n = 8, 
P=l, B — 0.9 and 6 = 0.1 (continuous bandwidth case), according to 
Theorem 5.39 5.75n = 46 switches are sufficient, while from Theorem 
5.38 it can be calculated that only 44 switches are sufficient. 

Some wide-sense nonblocking conditions for A:-rate connections model 
were considered in the literature. The 2-rate model was considered by 
Tsai, Wang, and Hwang [161, 160], who showed: 

THEOREM 5.40 CM/JC^ ,^ , / ^?^? 1) is nonblocking in the wide sense for 
B-rate connection model with two rates B and b satisfying condition B + 
b > 1 if: 

. f I 1 
m ^ mm ; n ^ + 2 n - 3 . (5.75) 

Gao and Hwang [44] considered also wide-sense nonblocking conditions 
for 2-rate and 3-rate connection models under modified algorithm with 
functional division of middle stage switches. Some other results for 
switching fabrics with ^-rate connections can be also found in [43, 102]. 

5.3.3.2 Multicast Connections 

Respective theorems for CMi?(^i5^i?A5 ^5 ^2,^25/^25'̂ ) may be de
rived from Cs'D(ni,ri,m,n2 5r2 5i;) and using approach presented for 
strict-sense nonblocking CMi?(^i5^i,/?i,^5^25^25/?25'^)- Switching fab
rics with multirate multicast connections under p-limited no-split routing 
strategy were considered by Zegura [180] and Chan, Chan and Yeung 
[14, 15]. They derived sufficient conditions using modified algorithm 
proposed by Yang and Masson [173] for space-division switching fabrics 
and applying Chung and Ross [22] approach for multirate connections. 
This upper bound was later improved by Danilewicz and Kabacihski 
[28]. The new upper bound for p-limited no-split algorithm is given by 
the following theorem: 

THEOREM 5.41 CMi?(^i,n5 A,^5^25^25/^2?^) is wide-sense nonblock
ing for continuous bandwidth case and q-cast connections, 1 ^ q ^ q2 ^ 
r2 under p-limited no-split restriction strategy if: 

m ^ max < min {minlAs; B3} + min{744; ^4} + 1} > , 
Kj^g2 tKp^min{j;fc(T;n2;B)} J 

(5.76) 
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where 

As 

^ 3 

AA 

BA 

= px A2{ni;l3;B), 

= B2{{r2-p+l);n2;(5;B), 

_a.{(;)<,><(-^(»f-) 
= pxB2{{ri-iy,ni;P-B), 

A2{n]P;B) and B2{r;n;P;B) are given by equations (5.66) and (5.67), 
respectively. 

Proof. The proof is based on the proofs of Theorems 5.17 and 5.37. In 
multirate environment each column of state matrix C (see def. 5.25) rep
resents a connection (or a set of connections) which blocks the interstage 
link. The number of m2 center stage switches may be derived similarly 
as in Theorem 5.17, but the number of columns in matrix C (i.e., the 
number of connections which may block interstage links) is equal to 

.. = _ { ( ; ) < . x ( ^ ^ ( » f - ) ) } , (5..) 
where function A2 is defined by equation (5.66). This number of con
nections cannot be greater than the number of connections which can 
be accepted by first stage switches, which is given by ^4 = p x .02((ri — 
l ) ; n i ; / ? ; 5 ) . Similarly, at the first stage switch there may be at most 
^ 2 ( ^ 1 ; /?; B) connections, each may blocks links to p center stage switches. 
Thus ^ 3 = p X A2{ni]l3] B) switches will be inaccessible by the new con
nection (x, Y, 5 ) , provided that all these connections can be accepted in 
r2 — p third stage switches (we may have up to B2{r2 — p + 1; ^2; /3; B) 
such connections). D 

Similarly as in the space-division switching case, the upper bound 
given by Theorem 5.41 requires less center stage switches than those 
given in [14, 15]. The comparison of m for 5 = 0 . 7 5 and different r and 
n is given in Table 5.4. In this table results for different h obtained 
according to Theorem 5.41 are denoted by p-limited 1, while results 
obtained in the cited paper are in columns denoted by p-limited 2. It 
can be seen that for small values of h results in both cases are very similar. 
For greater h less switches are needed for p-limited 1 estimation. This 
relation can be also seen from curves presented in Fig. 5.33, where m 
versus B is plotted in CMi?(8,8, l , m , 1) for 6=0.3, 0.1, and 0.01. In the 
case of p-limited 2, m is not dependent on h and reaches infinity when 
B is equal to 1. In Theorem 5.41 m depends on h. When JB = 1 m is 
102, 338, 3380 for h equal to 0.3, 0.1, and 0.01, respectively. 
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n= 

r=A 
8 
16 
32 
r= 

n=4 
8 
16 

P-
6=0.01 
144 
174 
199 
223 

6=0.01 
62 
145 
310 

10 
limited 1 
6=0.1 
132 
160 
183 
204 

10 
6=0.1 
57 
135 
284 

6=0.3 
108 
131 
150 
167 

6=0.3 
47 
109 
232 

p-lim. 2 

145 
175 
201 
225 

63 
146 
311 

V-
6=0.01 
304 
367 
420 
470 

6=0.01 
69 
161 
343 

20 
limited 1 
6=0.1 
280 
338 
387 
433 

20 
6=0.1 
63 
149 
315 

6=0.3 
228 
276 
315 
352 

6=0.3 
52 
121 
258 

p-lim. 2 

305 
368 
422 
472 

71 
163 
345 

Table 5.4- Number of center stage switches in WSNB multirate switching fabrics 
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•p-limited 1 

•p-limited2b=0.3 
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•p-limited 2 b=0.01 

Figure 5.33. The number of center stage switches versus B in CMR{S^ 8,1, m, 1) 

Kim and Du [87] considered multirate multicast switching fabrics un
der p-limited no-split restriction and quota scheme routing strategy. 
They proved the following theorem. 
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T H E O R E M 5.42 CMR{n, r, /?, m, 1) is wide-sense nonblocking for contin
uous bandwidth case and q-cast connections, 1 ^ ^ ^ ^2 ^ ^2 under 
p-limited no-split restriction strategy and quota scheme if: 

( (^<k+i){Bk+B+k-i) ^ . ^ (p + rVp), /or 5 < 2 3 / 3 2 ; 

^ > W i . / . \ '^'^'" 1/ (5.78) 
I ( i ^ + n - l ) min (p + r ^P ) , /o r B ^ 23/32; 

where k = [1/B\. 

This condition is better then that proposed in [14, 15], however, condi
tion given in Theorem 5.41 gives better bound for greater b. For instance 
for n = r = 8 and /? = 5 = 1, we obtain m = 749 for any 6, while from 
Theorem 5.41 we have m = 102 and 338 for b = 0.3 and 0.1, respectively. 

5.3.4 Rearrangeable Switching Fabrics 
Rearrangeable nonblocking multirate switching fabrics were first con

sidered by Melen and Turner [114]. They also proposed the control 
algorithm based on graph coloring. 

T H E O R E M 5.43 CMR{'^J ?̂ P^ ^51) '^^ rearrangeable nonblocking for con
tinuous bandwidth case if: 

m ^ Pn-B 
l - B 

(5.79) 

Proof. In the proof the control algorithm will be given to realize a set 
of requests in the switching fabric. The control algorithm use bipartite 
graph representation of connection requests, but now the edges of the 
bipartite graph are assigned weights representing the bandwidth used 
by each of the connections. The graph is to be colored with different 
colors, but at this case edges incident to the same vertex are allowed to 
have the same color, provided that the total weight of the edges incident 
to the same vertex and colored with the same color does not exceed the 
capacity of interstage links. Melen and Turner proposed to convert this 
weighted graph coloring problem to an ordinary graph coloring problem 
by splitting each vertex into subsets of vertices. Each subset contains 
k = \\Q.i\/rri\ sub-vertices, where il^ denotes a set of connections in 
switch li. The weights of edges adjacent to the vertex representing Ii 
are ordered in descending order and m heaviest edges are assigned to 
one sub-vertex, the next m heaviest edges are assigned to the second 
sub-vertex, and so forth. The resulting graph is of order m and is m-
colorable. The sum of weight of edges colored with the same color is less 
than B -\- {n — B)/m. Connections represented by this edges can be set 
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up through the same center stage switch if 1 ^ 5 + (/3n — B)/m^ i.e., 
m^ \{f3n-B)/{l-B)'\. D 

The example of how connections are set up in CMi?(3, 3,0.5, 2,1) is 
shown in Fig 5.34a, b, and c. The set of connections is given in Fig
ure 5.34a. At switch / i we have 7 connections which are divided into 
[7/2] = 4 subsets, each subset is represented by one node in the bipar
tite graph. The same is done for connections in switches I2 and I3 as well 
as for switches Oi , O2, and O3. The bipartite graph is of order 2 and 
is 2-colorable. This graph is shown in Fig. 5.34b. One color is marked 
by dashed line and the second one is denoted by solid line. Connections 
in the switching fabric are shown in Fig. 5.34c, where connections de
noted by dashed line in the bipartite graph are set up through switch 1 
of the second stage (this switch is also marked by dashed line). Weight 
of connections carried by each interstage link are also given. As can be 
seen from the figure, none of the interstage links has occupancy greater 
than 1 (i.e., the capacity of the link). The most loaded link is the link 
between switch Mi and Oi , whose occupancy is equal to 1. 

Du, et al. [36] proposed to use the routing strategy with functional 
division of center stage switches also in rearrangeable switching fabrics. 
They proved: 

T H E O R E M 5.44 CMi?(^5^5/??^51) is rearrangeable nonblocking for con
tinuous bandwidth case if: 

m ^ 3 n - 1, (5.80) 

where n switches are reserved for routing connections with u > 1/2^ and 
the remaining 2n— 1 switches are reserved for connections with LO ^ 1/2. 

In the same paper author considered also the switching fabric with quota 
scheme routing and showed that the required number of center stage 
switches can be further reduced. Liotopoulos [105] consider multirate 
rearrangeable switching fabrics with split-connection routing, i.e., when 
one multirate connection can be routed through more than one center 
stage switch. He also proposed the algorithm based on solving the net
work flow problem. 

Rearrangeable switching fabrics with discrete bandwidth model are 
also considered in the literature. Chung and Ross [22] conjectured, 
that three-stage switching fabric with 2n — 1 center stage switches is 
rearrangeable. Some cases for /c-rate switching fabrics where considered 
in [102, 103]. Kim and Du [87] gave also conditions for rearrangeability of 
three-stage switching fabrics with p-limited no-split routing strategy for 
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Figure 5.340- Set of connections in CMR{SJ 0.5, 3, 2,1) with B = 0.5 
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Figure 5.34b. Connection graph 

discrete bandwidth case, when the weight of a multicast connection be
longs to the set {pi,P2, • • • ,Ph}, where 1 ^ pi > 1/2 ^ P2 > - ' > Ph > 0 
and Pi is the integer multiplicity of p^_i, 3 ^ i ^ h, 
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Figure 5.34c. Connections set-up in C M K ( 3 , 0.5,3, 2,1) switching fabric 

5.3.5 Repackable Switching Fabrics 
Repackable time-division switching fabrics proposed by Ohta were ex

tended to multirate case by Liotopoulos and Chalasani [106]. By analogy 
to the time-division switching, let LukihiOj) denote the total band
width occupied by all connections (/j, Oj) set up through switch Mk\ let 
M^^^{Ii,Oj) denote the center stage switch for which U^^{Ii,Oj) ^ 
maxLMp{Ii: Oj); and let M™ '̂̂ (/̂ , Oj) denote the center stage switch for 

which L^^{Ii,Oj) = minLMp{Ii,Oj). Denote also by A a weight which 

satisfies following conditions: 

2B ^ A < min 
1-B 1-B 

(5.81) 
r2 - 1 n - 1 

The control algorithm can be written as follows. 

ALGORITHM 5.16 RepackingMR 

Step 1 If {Ii,Oj,Lu) is a new connection, set this connection through 
Mk for which LM,{Ii,Oj) = L^lik.Oj). 

Step 2 If {Ii,Oj,u) is terminated and it is routed through M^ then if 
there is such switch Mp that LM^ {li, Oj)-u < U^'^{Ii, Oj) - A then 
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rearrange another connection {Ii^Oj^^) (it may be one connection 
or a set of connections of total weight 7), 7 G [ct̂ , A] from switch 

T H E O R E M 5.45 CMi?(^i5^15/^5^,^25^2,Z^, 1) '^^ repackable under algo
rithm RepackingMR if and only if: 

m > max 
(5ni - (r2 - 1)A - h 

1 - (r2 - 1)A - B 

(5n2 - (ri - 1)A - h 

1 - ( n - 1)A - B 
. (5.82) 

In this case the algorithm ensures that connections between switches Ii 
and Oj are divided approximately equally among center stage switches. 
It is because before disconnecting (li^Oj^u) from switch M^ the condi
tion LMkih^Oj) — u < Ufl'^{Ii,Oj) — A is fulfilled, and after discon
nection the difference in occupancy of M^ and Mp will be greater than 
A, connections from more loaded switch will be moved to less loaded 
switch. 

5.4 Practical Implementations of Clos Networks 
When Clos proposed in his paper [23] the three-stage switching fab

ric architecture, which is now called the Clos switching fabric many 
researchers considered it as purely theoretical work. At tha t time imple
mentation of nonblocking switching fabrics of great capacity was costly 
and impractical. Practical systems were design using blocking switching 
fabrics composed of smaller number of switches. However, when elec
tronic technology became matured and integrated circuits where avail
able on the market, construction of nonblocking switching fabrics be
came more economical and in some applications nonblocking switching 
fabrics are essential. Now three-stage switching fabrics are widely used 
in switching systems of various kinds. Time-division switching fabrics of 
this structure are used in telephone exchanges and digital cross-connect 
systems. When telecommunication network started to migrate towards 
ATM technology, many considered such architecture as old and out of 
date. However, when small ATM switches and later on also IP switches 
were implemented in the network, it become clear tha t high capacity 
switches for core network cannot be implemented in one integrated cir
cuit due to the technological constrains and number of pins. Therefore, 
Clos architecture were taken again into consideration. The same is also 
true in case of optical switches and optical cross-connect systems which 
are being introduced in optical transport networks. The attractive fea
ture of the Clos switching fabric is also that it can be easily expanded 
by adding switches in outer stages, up till full capacity of the switching 
fabric is reached. 
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Implementation of the Clos switching fabric was reported in numerous 
papers. We will show here only some examples of such implementations; 
this architecture is useful for many applications and in different switching 
technologies. 

One example of using multi-stage Clos architecture is the ATLANTA 
switch architecture described in [18, 20]. In this architecture switches 
in the output stages contain buffers to resolve cells output contention, 
while the center stage switches are bufferless crossbars. This enables 
preservation of cells sequence integrity even if cells are routed individ
ually through the switching fabric. The switching fabric supports also 
multicast connections. 

One problem in implementing large-capacity switching fabric is inter
connection. When a switch used for constructing the switching fabric 
is implemented in a printed circuit board, a large number of intercon
nections is required to connect different such boards. An interesting ap
proach to overcome this interconnection problem was proposed in [129]. 
In this approach optical WDM links with dynamic bandwidth sharing 
are used for the interconnection between switches. 

Three-stage switching fabrics are also considered for optical packet 
switching. Recently the packet switch architecture called PetaStar was 
proposed [17]. It uses three-stage photonic bufferless switching fabric. 
Packet buffering is implemented electronically at the input and output 
port controllers. 



Chapter 6 

REPLICATED BASELINE 
SWITCHING FABRICS 

6.1 Switching Fabric Topologies 
6.1.1 Vertically Replicated Baseline Switching 

Fabrics 
In section 3.6 banyan-type switching fabrics were considered. The ma

jor drawback of these switching fabrics is their blocking characteristics. 
To obtain nonblocking switching fabrics two methods have been pro
posed: horizontal cascading (HC) and vertical stacking (VS) [84, 92, 95]. 
These methods are shown in Fig. 6.1. In the HC method output ter
minals of one switching fabric are connected one-to-one to respective 
input terminals of the next switching fabric. Input terminals of the first 
switching fabric are also input terminals of the whole switching fabric, 
and the output terminals of the last switching fabric constitute also out
put terminals of the whole switching fabric. An example of horizontally 
cascaded 16 x 16 baseline and 16 x 16 baseline"-^ are shown in Fig. 6.2. 
The HC method results in greater number of stages between each input-
output terminal pair. More stages in a switching fabric causes greater 
signal attenuation in the case of photonic switching, or greater delay in 
buffered packet switches. 

In the VS method p copies of log2 N switching fabrics are connected in 
parallel. Each copy is called a plane. Each input terminal of the switch
ing fabric is connected by 1 x p splitters to respective inputs of each 
plane. Outputs of each plane are connected by means oi p x 1 combin
ers to output terminals. Vertically stacked switching fabrics are called 
multi-log2 Â  or log2(A ,̂ 0,p) switching fabrics. The log2(8,0,3) switch
ing fabric is shown in Fig. 6.3 as an example. Input and output terminals 
of the log2(iV, 0,p) switching fabric are numbered 0 , 1 , . . . , iV — 1, from 
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a) 
/V-1 
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_0 

A/-1 logaA/ log2A/ \0g2N 

Figure 6.1. Horizontal cascading (a) and vertical stacking (b) methods 

Figure 6.2. Horizontally cascaded 16 x 16 baseline and baseline ^ switching fabrics 

top to bottom, respectively, and stages in each plane are respectively 
numbered 1, 2 , . . . n, from left to right. Planes are numbered from 1 to 
p. The bipartite graph considered in section 3.6 will be used to represent 
each plane of the log2(A ,̂ 0,p) switching fabric. 

6.1.2 Extended Baseline and Vertically 
Replicated Extended Baseline Switching 
Fabrics 

An extended banyan-type switching fabric is obtained by adding m 
extra stages, l ^ m ^ n — l , t o a banyan-type switching fabric. Different 
interconnection patterns may be used to interconnect these additional 
stages. They may used the same interconnection patterns as first m 
stages of the main switching fabric, last m stages, or mirror images of 
these stages, as it is shown for example in Figures 6.4a, 6.4b, 6.4c, and 

file:///0g2N
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plane 3 

plane 2 

plane 1 

hba=™ 

Figure 6.3. The log2(8,0,3) switching fabric 

Figure G.^CL- Extended basehne switching fabric with two additional stages which 
uses the same interconnection pattern as first two stages 

6.4d , respectively, for the 16 x 16 baseline switching fabric. The topology 
with m extra stages being mirror image of the first m stages is referred 
to as the \og2{N,m^ 1) switching fabric, and this topology will be later 
considered in this chapter. Similarly as in log2(Ar, 0,1) switching fabric, 
input terminals are numbered 0 , 1 , . . . , Â  — 1, from top to bottom, and 
stages are numbered 1 , 2 , . . . , n + m, from left to right. 

The bipartite graph will be also used as representation of the 
log2(A^, 772,1) switching fabric. This graph contains n + TTI + 1 stages 
of nodes numbered 0 , 1 , . . . , n + m, from left to right. Nodes in stages 1 
and n + m — 1 constitutes the first shell; nodes in stages 2 and n + m — 2 
forms the second shell. In general, stages i and n -\~ m — i are collec-
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Figure 6.4b. Extended baseline switching fabric with two additional stages which 
uses the same interconnection pattern as last two stages 

Figure 6.4c. Extended baseline switching fabric with two additional stages which 
uses the mirror image of interconnection pattern in first two stages 

tively called shell z, stage i is called the left part of the shell and stage 
n + m — 2 is called the right part of the shell. When n + m is odd, there 
are (n + m — l ) /2 = [(n + m)/2j shells, each containing two stages. For 
n + m even, we have [(n + m)/2] — 1 shells with two stages, and one 
center shell which contains nodes of only one stage numbered (n + m)/2. 
The bipartite graph representation of the log2(16, 2,1) switching fabric 
and its shells are shown in Fig. 6.5. All possible connecting paths be
tween input terminal 0 and output terminal 0 are shown in bold lines. 
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Figure G.^d. Extended baseline switching fabric with two additional stages which 
uses the mirror image of interconnection pattern in last two stages 

In general, there are 2 ^ possible connecting paths for any input-output 
terminal pairs. The channel graph of the log2(A^5m51) switching fabric 
is shown in Fig. 6.6. The number of paths passing through nodes in 
different stages in not identical, as can be seen in the channel graph. 
The connecting path between input terminal x and output terminal y 
can use one of two nodes in stages 1 and n + m — 1, four nodes in stages 
2 and n + TTI — 2, and so forth. However, in stage i^ m ^ i ^ n only 
one of 2 ^ nodes can be used by the connection. Let us use the following 
notation: 

D E F I N I T I O N 6.1 Let NP^ denotes a set of connecting paths which can go 
through the nodes of shell i. The cardinality ofNFi is given by 

for 1 ^ i < m 

for m ^ i ^ 
n-\- m (6.1) 

The |NP^| denotes the number of paths passing through each stage of 
shell i. Sets SÊ  and §0^- (Def. 3.2 and 3.3) defined for log2(A^,0,l) 
switching fabrics have to be rewritten in case of log2 {N^ TTI, 1) switching 
fabrics in the following way: 

D E F I N I T I O N 6.2 Let Sf^ be the set of these input terminals (excluding 
input terminal x and all Slf^; where 1 ^ i < j , 1 ^ j ^ n) whose paths 
can intersect with path (x, y) in a node of stage j . For n < j ^ n + m—l 
there are no additional paths which can intersect with path (x^y) but 
from a node of stage j all input terminals are available. Input terminals 



206 NONBLOCKING SWITCHING FABRICS 

Figure 6.5. The bipartite graph representation of the log2(16, 2,1) switching fabric 

0 1 2 3 m A7 n+m-Z n+m-2 n+m-^ 
- i t • - • ^ -^ 4 

n+m 

Figure 6.6. The channel graph of the log2(A'', m, 1) switching fabric 
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belonging to set Sfp will be called accessible from stage j . The cardinality 
of SVp is given by 

1 ^ 1 \ 2^ for n<j ^m + n-1 ' ^ ' 

DEFINITION 6.3 LetSOJ^ be the set of those output terminals (excluding 
output terminal y and all SO^^ where j<i^m-\-n — l^m^j^ 
TTh-j- n — 1) whose paths can intersect with path {x^ y) in a node of stage 
j . For 1 ^ j < m there are no additional paths which can intersect with 
path {x^y) but from a node of stage j all output terminals are available, 
Output terminals belonging to set §OJ^ will be called accessible from stage 

j . The cardinality o /SO^ is given by 

1^̂ -̂ I - \ 2- for 1 < j ^ m • ^̂ -"̂ ^ 

Vertically replicated extended banyan-type switching fabrics are ob
tained by vertically stacking p copies of log2(A ,̂ m, 1) switching fabrics, 
and are denoted by log2(iV, m,^). When the switching fabric is com
posed, in general, of d x d switches respective topologies are denoted by 
log^(iV,0,l) , log^(iV,0,p), log^(iV,m,l), and \ogd{N,m,p). 

6.2 Control Algorithms 
When a new connection is to be set up, a plane is to be chosen to 

realize the appropriate connecting path. When in one plane there is 
more than one connecting path possible, one of these paths has also to 
be selected. Algorithms which can be used here are similar to those con
sidered for three-stage switching fabrics. The difference is that instead 
of looking for a middle stage switch we look for a plane. Respective 
algorithms can be defined as follows: 

ALGORITHM 6.1 Random (RAN) 
Check planes randomly and set up the connection through the first avail
able plane. 

ALGORITHM 6.2 Sequential (SEQ) 
Check planes sequentially starting form plane z, 1 ^ z ^ p and choose 
the first available plane. 

ALGORITHM 6.3 Minimum index (MINIX) 
This algorithm is the same as sequential, but i = 1. 

ALGORITHM 6.4 Quasi-random (Q-RAN) 
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This algorithm is the same as sequential, but /c = / + l , 2 = P + l, where 
P denotes the plane used to route the last request (z = 1 for P = p). 

A L G O R I T H M 6.5 Cyclic static (CS) 
This algorithm is the same as Q-RAN, but i = P^ i.e., we start to check 
planes from the the plane used to route the last request. 

A L G O R I T H M 6.6 Save the unused (STU) 
Do not route a new connection through any empty plane unless there is 
no choice. 

A L G O R I T H M 6.7 Packing (PACK) 
Route a new connection through the busiest but available plane. 

When all planes have been checked and no plane was found, the con
nection is blocked. These algorithms may be used for both unicast and 
multicast connections. For multicast connections, paths belonging to the 
given multicast connection can be set up using different routing strate
gies. In one strategy all paths of a multicast connection have to be set 
up through the same plane. In another strategy each path of a multicast 
connection can be set up independently of other paths of this connection. 
A multicast connection can be also set up using strategies based on the 
concept called a blocking window [163, 164]. The blocking window is 
defined as follows. 

D E F I N I T I O N 6.4 Let a set of output terminals O = { 0 , 1 , . . . , A/̂  - 1} he 
divided into N/ K subsets BWi = {K xi,K xi-\-l,... ,K xi + {K-1)}, 
where K = 2\ i = 0,1,..,, (N/K) -1 andl ^ t ^ n . Each subset BWi 
is called the blocking window. 

Examples of blocking windows in the log2(32,0,l) switching fabric 
are shown in Fig. 6.7. For instance, when t = 3, output terminals are 
divided into four blocking windows, each of which contains eight output 
terminals: B W Q = {0, 1, 2, 3, 4, 5, 6, 7, 8}, BWi = {9, 10, 11, 12, 13, 
14, 15}, BW2 = {16, 17, 18, 19, 20, 21, ,22, 23}, and BW3 = {24, 25, 
26, 27, 28, 29, 30, 32}. For t = n there is only one blocking window 
containing all output terminals of the switching network. An example 
of multicast connection (0, {1,4,12,18, 30}) is also shown in Fig. 6.7. 
For t — 3 output terminals 1 and 4 belong to the same blocking window 
and other output terminals of this connection are in different blocking 
windows. 

Blocking windows will be used in the control algorithm for setting 
up multicast connections. Let (x, Y) be a new connection. The set of 
outputs Y can be divided into subsets Y^, Y^ = {y : y G BWi,2 = 
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t=3 t=4 

>BWi 

> BWi 

>BW2 

XBWS 

BW2 

>BW4 

Figure 6.7. Blocking windows in log2(32,0,1) 

0 , 1 , . . . , (N/K) — 1}. Connections (a;, Y^) are called subconnections of 
connection {x,Y). For instance, connection (0, {1,4,12,18,30}) con
sidered earlier can be divided into subconnections (0,{1,4}), (0,{12}), 
(0,{18}), and (0, {30}) if t = 3 or subconnections (0, {1,4,12}) and 
(0,{18,30}) if ^ = 4. Each of subonnections {x,Yi) is to be set up 
through one plane of the log2(A'̂ , 0,j9) switching fabric. It should be 
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noted that if a new connection is a point-to-point connection, then it 
has one subconnection. The blocking window control algorithm can be 
described as follows [32]. 

ALGORITHM 6.8 Blocking window control algorithm 

Step 1 Divide a new connection (x,Y) into subconnections (a:,Y^). 
Choose one of the subconnections. 

Step 2 Choose an arbitrary plane of already occupied planes (i.e., one 
plane through which at least one other connection is already set up). 
If this plane is available for the subconnection, set up this subconnec
tion through this plane. If not, check other already occupied planes. 

Step 3 If all already occupied planes are not available for the subcon
nection, set it up through a free plane. 

Step 4 Choose the next subconnection and go to Step 2. Repeat steps 
2 - 4 up until all subconnections of connection (x^Y) are set up. 

In this algorithm the save the unused algorithm is used to setting up 
subconnections. However, any of earlier given algorithm can be used for 
subconnections. 

Let us consider the switching fabric of Fig. 6.7, and let t = 3. In 
this network connections (4, {15}) and (14, {19}) (marked by dashed 
lines) are already set up through the first plane. The new connec
tion (0, {1, 4,12,18, 30}) will be divided into subconnections (0, {1, 4}), 
(0,{12}), (0,{18}), and (0, {30}) (Step 1). We choose the first subcon
nection (0, {1,4}) and check if it can be set up through the first plane. 
Since connections (4, {15}) and (14, {19}) do not block the subconnec
tion considered, it can be set up through the first plane. The second 
subconnection (0,{12}) cannot be set up through the first plane since 
it is blocked by connection (4, {15}). We have to choose the next plane 
for this subconnection. Similarly, subconnection (0,{18}) cannot be set 
up through the first plane (connection (14, {19})), but it can be added 
to connection (0, {12}) in the second plane, since both belong to the 
same multicast connection. Finally, subconnection (0, {30}) can be set 
up either through the first or the second plane. 

In switching fabrics with extra stages more routes can be used in one 
plane. Thus connecting paths to output terminals in the same blocking 
window may follow different routes. Therefore, in \og2{N^m^p) switch
ing fabrics we may consider two possible routing strategies in the block
ing window control algorithm: 

• Duplication routing: A multicast connection may use two or more 
nodes in each of stages up to n + m — t. 
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Figure 6.8a. Duplication routing in log2(16,2,1) switching fabric 

• Non-duplication routing: A multicast connection may use only one 
node in each of stages up to n + m — t. 

Examples of duphcation and non-duplication routing in log2(16, 2,1) 
switching fabric are shown in Figures 6.8a and 6.8b, respectively. It is 
assumed, that t = 2 and connection (0, {1, 2, 3, 4}) is to be set up. In 
duplication routing the connection uses two nodes in stages from 1 to 
n + m — t = A, In non-duplication routing only one node is used by this 
connection in each of stages from 1 to 4. Further on it is assumed, that 
non-duplication routing is used in switching fabrics. 

6.3 Space-division Switching 
6.3.1 Strict-sense Nonblocking Conditions 
6.3-1.1 Unicast Connections 

In \og2{N, 0,p) and log2(A ,̂ m,p) switching fabrics the question is how 
many planes are to be connected in parallel to ensure nonblocking oper
ation. In the case of space-division switching fabrics and point-to-point 
connections, the number of copies needed was given in [84, 92, 150] for 
log2{N,0^p) and log2(A^,m,p) switching fabrics, respectively. 
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Figure 6,8b, Non-duplication routing in log2(16, 2,1) switching fabric 

T H E O R E M 6.5 The log2{N^0^p) switching fabric is nonblocking in the 
strict sense if and only if: 

P^ 

- 2 2 — 1 for n even, 
2 

n+l 
2 2 — 1 for n odd. 

(6.4) 

Proof. Sufficiency. Let consider the new connection {x,y). At the node 
of stage i, 1 ^ i ^ L^/2J, the connecting path of this connection may
be blocked by connecting paths from nodes in SEf. On the other hand, 
the connecting path may be also blocked in the node of stage n — z by 
connecting paths to nodes in S0„_^. For n odd a set of pi planes may 
be inaccessible to the new connection because of connecting path from 
SL, where 

Ln/2J Ln/2J 

= ^ 2 ^ - i = 2 L t J - l , (6.5) 
i = l z=l 
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and another set of p2 planes may be blocked because of connections to 
SO^_^5 where 

Ln/2J [n/2} 

P2^Y1 l^^--l = E 2'"' = 2Lt-J - 1. (6.6) 
i=l z=l 

In the worst case these sets of planes are disjoint and one more plane is 
needed for the new connection, thus 

P ^ P i + P 2 + l = 2 (2LtJ - 1 ^ + 1 = 2 " ^ - 1 . (6.7) 

When n is even connections from nodes in SII^/2 is to be connected with 
nodes in SO^/2 ^o block connection {x^y). Therefore, stage n / 2 must be 
counted only once, so we have: 

Ln/2J [n/2\ 

Pi=Yl l̂ ^̂ l = E 2'"' = 2LtJ - 1, (6.8) 
i=l i=l 

[n /2 j - l ln/2]-l 

P2= Y. \^^n-i\= E 2-i = 2LtJ - i - l , (6.9) 

and 

V >Pi-^P2 + l = (2LtJ - l ) + (2Lf J - i - l ) + l = 

= ^ 2 t - l . (6.10) 

Necessity can be proved by showing for any path searching algorithm a 
set of events leading to the occupancy of all planes. It is very easy to 
find an example of such set for quasi-random algorithm. D 

T H E O R E M 6.6 The log2(A^, m,p) switching fabric is nonblocking in the 
strict sense if and only if: 

P^ { 

m + 3 - 2 2 ^ — 1 for n + m even, 
(6.11) 

n-m + 1 
m + 2 2 —1 for n + m odd. 

Proof. The proof is similar to Theorem 6.5, but at stage i connections 
must block NP^ paths in each of planes. Thus, for n + m odd we have 

L(n+m)/2j m ^ i - l [{n+m)/2\ ^.__^ 

^^ ~ ^ INPJ ^ ^ ~W "̂  ^ " 2 ^ 

m n-m-l 
= y + 2 ^ - 1 , (6.12) 
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^^ ^ Wn-i\ Z ^ 2̂  "̂  ^ 2"̂  
Z = l Z = : l Z = 7 T l + l 

771 n-m-1 

= y + 2 - 2 - - l , (6.13) 

and 

P ^ P l + P 2 + l = 2 (^- + 2 2 - i j + 2—2— - 1 + 1 = 

= m + 2 - ^ - ^ - 1 . (6.14) 

For n-\- m even pi is the same as for n + m odd, 

L(n+m)/2j-l m i_i i{n+m)/2\-l ._^ 

^2 2 ^ |NP„_i| Z ^ 2̂  Z ^ 2"̂  

777/ n — m 1 , . 

= - + 2 - ^ - 1 - 1 , (6.15) 
and 

= m + 3 - 2 ' ^ - ^ - 1 . (6.16) 

These conditions are also necessary. Again the set of events for quasi-
random routing is very easy to find. D 

Hwang generalized these results to \og^{N^m^p) switching fabrics [55] 

THEOREM 6.7 The log^{N^m^p) switching fabric is nonblocking in the 
strict sense if and only if: 

\ji^ + ((i + 1) • d~^ ^ — 1 for 71 + 777. even, 

^^^~ ^ + 2d 2 — 1 for 77/ + 771 odd. 

The number of planes needed in the strict-sense nonblocking 
log2{N^m^p) switching fabric depends on 772 and n. Comparison of p 
versus 772 and n is given in Table 6.1. It can be seen that when m is 
growing for given n^ the required number of planes is getting smaller till 
some value of m^ and then it does not change. For the minimum value 
of 777/, for which the number of planes reaches minimum, the switching 
fabric requires also the minimum number of 2 x 2 switches. The number 
of switches, including 2 x 2 switches in splitters and combiners at the 
input and output of the switching fabric, is compared in Table 6.2. 
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Table 6.1. The number of planes as a function of n and m in strict-sense nonblocking 
log2(iV5 7n,p) switching fabrics with unicast connections 
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Table 6.2. The number of 2 x 2 switches as a function of n and m in strict-sense 
nonblocking \og2{N,m,p) switching fabrics with unicast connections 

6.3.1.2 Mul t i cas t Connect ions 

Strict-sense nonblocking multicast \og2[N, 0,p) switching fabrics were 
first considered by Danilewicz and Kabacinski [26, 32]. They derived 
appropriate conditions from wide-sense nonblocking switching fabrics by 
finding a maximum number of planes for the blocking window algorithm 
with different window sizes. It turns out that the maximum number of 
planes is needed when a multicast connection is to be routed through 
one plane. 

T H E O R E M 6.8 The log2(A/ ,̂ 0,p) switching fabric is nonblocking in the 
strict sense if and only if: 

p ^ — . (6.18) 
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Figure 6.9a. Planes 1 to 4 are blocked to connection (0, {0,4, 8,12}) 

Proof. Sufficiency. Let connection (x, Y) be set up, where |Y| = |SI^_i|. 
This connection may be blocked by point-to-point connections from in
put terminals in SI^, 1 ^ i ^ n — 1, and one more plane is needed for 
the new connection. We have: 

n—1 n—1 

P^Y. Î ^̂ l + 1 - XI 2' + 1 = 2̂ "̂ - (6.19) 
i=l i = l 

Necessity. The set of events leading to the occupancy of all planes given 
by equation (6.18) can be easily constructed using quasi-random algo
rithm. D 

An example of the worst state in the log2(16, 0, 8) switching fabric is 
shown in Fig. 6.9a and 6.9b. The new connection is (0, {0, 4, 8,12}). In 
the first plane this connection is blocked by connection (4,1). Connec
tions (5, 5), (6, 9), and (7,13) make planes 2, 3 and 4 unavailable by the 
new connection, respectively (Fig. 6.9a). Connections (2,2), (3,10), and 
(1, 6) block the new connection in planes 5, 6 and 7 (Fig. 6.9b), so plane 
8 is needed to set connection (0,(0,4,8,12}) (marked in bold lines in 
both Figures). 
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Figure 6,9b, Planes 5 to 7 are blocked to connection (0, {0,4, 8,12}) 

6.3.2 Wide-sense Nonblocking Conditions 
The wide-sense nonblocking conditions for log2 (A ,̂ 0,^) switching fab

rics in case of unicast connections were considered in [78]. They con
clude, that non of the algorithms given in section 6.2 results in lower 
number of planes required for nonblocking operation. More researches 
were done about wide-sense nonblocking operation of these switching 
fabrics for multicast connections. Nonblocking multicast log2(A ,̂ 0,^) 
switching fabrics were first considered by Tscha and Lee [163], but re
sult given in the cited paper constituted the lower bound of nonblocking 
operation. This result was improved in [164]. They used the blocking 
window algorithm, where the blocking window contained 2L̂ /̂ -l outputs. 
A more general approach with different blocking window sizes was con
sidered in papers [32, 29] and the thesis [26]. Before we move to the 
theorem terms maximum blocking configuration and maximum multi
cast connection have to be defined, since they will be used later on in 
proofs. 

DEFINITION 6.9 MMC{y,n-j) = {{xk^Vk) : f̂c e Sln-Liog^/cj-i; V. Vk 

denotes a set of nodes in connecting path {x^y), 1 ^ k ^ 2^"^. 
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In this definition MBC (^, n — j) denotes a maximum blocking con
figuration at stage n — j for output y. This MBC (?/, n — j) is a set of 
all possible connecting paths {xk^yk) which may block connecting path 
(x, y) in nodes of stages from n— 1 to n — j . In stage n — 1 this connec
tion may be blocked by connections to SO^_i. Similarly, in stage n — 2 
connections to SO^_2 may block the considered connection. Finally, in 
stage n — j , jf ^ L'̂ /̂ J connections to SO^_j will also block connection 
{x^y). In the worst case these connections may be set up through dif
ferent planes. Thus, MBC {y,n- j) may occupy J ^ ^ j / 2^"^"^ = 2-̂ ' - 1 
planes, and these planes will be inaccessible by connection (x^y). In the 
example of Fig. 6.10 the MBC (0,3) = {(8,1), (4,2), (6, 3)}. 

DEFINITION 6.10 MMC{x,i,fi,t) is a connection {x,Y), where x e 
Sli, |Y| = fi ^ 2 - ^ - S Y = {yj : y^ G BW,-,0 ^ j ^ 2^-'-^ - l } , and 
forO^j ^ 2 ^ - ^ - 1 lYnBW^'l ^ 1. 

The MMC{x^i^ fi^t) denotes a multicast connection, in which each 
output terminal in this connection belongs to the different blocking win
dow accessible from the node of stage z, l ^ z ^ n — t — 1. This node has 
|SI^| = 2^~^ accessible input terminals. Output terminals which can be 
reached from this node may belong to up to 2^~*~^ blocking windows. 
Connection {:r, Y), where |Y| = fi ^ 2^~^~^ and each element of Y be
longs to a different blocking window reachable from stage z, may be set 
up through different planes. Connection MMC (31,1, 4, 2) is also shown 
in Fig. 6.10 in doted lines. 

Nonblocking conditions for log2(A/', 0,p) will be now given for different 
sizes of blocking windows. Firstly the case with 1 ^ i ^ L^/2j will be 
considered. 

Nonblocking Conditions for 1 ^ t ^ L^/2J • These conditions were 
given in [32] 

THEOREM 6.11 The \og2{N^0^p) switching fabric is wide-sense non-
blocking for 1 ^ t ^ L^/2j provided that blocking window algorithm 
is used if and only if: 

n [t X 2^-*-^ + 2^-2t-i^ f^j, l^t< 

n 

P^ { 

t X 2 n~t-l + 1, 

for t = 

for t = 

2J 

n 
2. 

and 

when n is odd, 

when n is even. 

(6.20) 

Proof. Let the new connection {x,y) be added in the switching fabric. 
It may be a point-to-point connection or a subconnection of the mul-
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ticast connection. This connection may be blocked by connections in 
MBC (?/, n — t)^ which may occupy pi planes, where 

n—1 n—1 

Pi = \MBC{y,n-t)\= ^ |SO,| = Y. 2^-^-1 = 2 ^ - 1 , (6.21) 
i=n—t i=n—t 

and these connections will engage all output terminals of the blocking 
window containing output terminal y. On the other hand, for each input 
terminal x^ in Sli, 1 ^ z ^ t, we can set up MMC{xk,i,2''-^-' - l , i ) , 
since from 2^~^~^ blocking windows which can be reached from the 
node of stage i, one blocking window is totally seized by connections 
in MBC (y,n — t). Since each blocking window contains 2̂  output ter
minals, we can set up these connections until all output terminals in one 
blocking window will be occupied. When t < [n/2j or when t = [n/2\ 
and n is odd we may have X^̂ x̂ |SI^| = 2̂  — 1 such M.A4C connections, 
which will occupy up to 2* — 1 output terminals in blocking windows ac
cessible from nodes of stages from 1 to t. It means that we may also con
sider one A4MC from an input terminal in SE^+i, but only if t < [n/2\ 
(for t = [n/2j we have t + 1 = n — t and the node in stage t + 1 cannot 
be considered since it was already considered in MMC(y^n — t)). Each 
connection to the output terminals in different blocking windows may be 
set up through separate planes, so another p2 plane may be inaccessible 
to the new connection, where 

i=l 

t 

= Yl [2 '" ' (2"" '" ' - 1)] + (2"-2*-i - 1) = 

t 

= Y. (2"""*"^ - 2^"^) + (2"-2*-i - 1) 
i=l 

= i . 2"-*-i - 2* + 2''-2*-^ (6.22) 

when t < [n/2j , or 

P2 - 5^(|si.i-/o = E[2'"M2""'-'-i)] = 

= t • 2""-^-^ - 2 ^ + 1, (6.23) 

when t = [n/2j 
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For t = [n /2 j and n even we have n — t = t. It means that output 
terminals of set SO^_t belong to the same blocking window as output y 
and Sit cannot be considered in calculating p2- In this case we have: 

t-i t-i 

= ^ {'2''-^'^ - 2'-^) = {t - 1) ' 2""-^-^ - 2^-^ + h (6.24) 
i=l 

In the worst case sets of pi and p2 planes are disjoint and one more 
plane is needed for setting up the new connection. For t < [ n / 2 j , 
after adding (6.21), (6.22), and 1, we obtain appropriate condition in 
inequality (6.20). For t = [n/2\ and n odd we have: 

P ^ Pi+P2 + l = 

= (2* - 1) + t • 2' '"*-^ - 2 ^ + 1 + 1 

= t - 2 ^ - ^ - ^ + 1. (6.25) 

If in inequality (6.20) for n odd we put t = [n/2\ we obtain inequality 
6.25. This means that inequality (6.20) is also true for t = [n /2j and n 
odd. For t = [n /2j and n even we have: 

P > Pi+P2 + ^ = 

= (2^ - 1) + (t - 1) X 2^-^-^ - 2^-^ + 1 + 1 

= ( i - 1 ) X 2 ^ - ^ - ^ + 2^-^ + 1, 

p ^ t x 2 ^ - ^ - ^ - 2 ^ - ^ - ^ + 2^-^ + 1, (6.26) 

and after taking into account that for t = [n/2\ and n even we have 
n — t = t^ we obtain condition given in inequality (6.20) for n even. Ne
cessity can be proved by showing the set of events leading to occupancy 
of p planes, where p is given by (6.20). Construction of this set of events 
may differ depending on t and n. Example of such set of event can be 
found in [32]. D 

For n even and t = n/2 Theorem 6.11 gives the same result as in [164]: 

p> - X 2"^-2-1 + 1 = X 22 -1 _|_ ^ ^g_27) 

and for n odd and t = [n/2j we have: 

p ^ I ^ I X 2--Lf J-i + 2"-4tJ-i ^\n\ 2LtJ ^ 1. (6.28) 
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Non-blocking conditions for [n/2j < t ^ n. Before we move to 
the case when [n/2j + 1 ^ t ^ n, we will define a subblocking window, 
which is a subset of a blocking window [32]. 

DEFINITION 6.12 Let a blocking window BW^ be divided into K/2^'^/^^ 
K 

subsets SBWjt, K = 2^, k = 0,1,..., ^—r- - 1, Ln/2j -\-1 ^ t ^ n, 
and SBWfc = {K - i + 2^""/^^ -k, K 'i + 2L /̂2J - k + 1, K i + 2^""'^^ • 
/c + 2, . . . , if • z + 2L /̂2J • (/c + 1) - l } . Each subset SBWfc is called a 
subblocking window. 

THEOREM 6.13 The log2(A/^,0,p) switching fabric is wide-sense non-
blocking for [n/2j + 1 ^ t ^ n provided that blocking window algorithm 
is used if and only if: 

p ^ 2̂  + (n - t - 2) X 2^-^-^ - 2^^-^-^ + 1. (6.29) 

Proof. Sufficiency. Let a new connection {x^ Y) is to be set up, where Y 
belongs to one blocking window, and let t = [n/2\ + j . In the blocking 

2* 
window there are —i—TTT = 2^ subblocking windows §BW. 

2Ln/2j ^ 
Even n: Connections in MBC{yo,t - j ) , yo G SBWQ, and yo ^ ^ may 
occupy 

t-j-i 

p\ = J2 ^' = 2̂ "̂ ' - 1 (6.30) 
i=0 

planes. All output terminals in SBWQ and all input terminals accessible 
from stage [n/2j are busy, since for even n we have |§0|_^/2j | = |SI|_^/2j |. 
Connections to output terminals in SBWi my occupy next p^ planes, 
where 

t-j-2 t-j-2 

pi = E 2 ^ + E 2' = 
i=0 iz=zn—t~l 

= (2^-i-i _ 1) + (2^-i-i _ 1) _ (2^-^-1 _ 1) == 

= 2 ^ - ^ - 2 ^ - ^ - ^ - ! . (6.31) 

When yi G SBWi and yi G Y, than these planes will be inaccessible by 
(x,Y). In SBWi we have still 2^~^~^ free output terminals. In stages 
numbered from 1 to n —t —1 we have Y17=i~^ 2^~^ = 2^~^~^ —1 accessible 
input terminals. It means that there will be possible to set up in each 
of these stages MMC for all accessible input terminals. When j = 1 
all output terminals in the blocking window are already assigned. For 
j > 1 next SBW may be considered. 
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Connections in pj and pf occupy 2 • 2'-"'/^-'"^ = 2""*"^^ input termi
nals of SII[n/2j+i) so we have still 2 • 2'-'̂ /̂ -l~^ input terminals free. We 
may construct two MBC: MBC (2/2, [n/2j + 1) and MBC {ys, [n/2\ + 1), 
2/2, ?/3 € Y, 2/2,̂ 3 e SBW2 and these connections will use 

t-j-2 

P1^2X Y^ 2' = 2 X (2*--̂ -̂  - 1) = 2*"-̂ ' - 2 (6.32) 

planes. All outputs in SBW2 are now used and we have still free outputs 
in SEW3. So we may consider the next MBC in stage [n/2j + 2. 

Let stage t — x, 1 ^ x ^ j — 2 is considered. In this stage we have 
|§Ii_^| = 2*-^-i and |SOi_^| = 2"-*+^-^ Connections in MBCs of 
previous stages will occupy 2*~^~^ inputs accessible from stage t — x 
so we have still 2*~^~^ — 2*"^~^ = 3 • 2*~^~^ free inputs. These inputs 
may be used for constructing MBCs in stage t — x. We may construct 

^ ' ^ ,^ , ^ 3 • 22*-''-2^-2 - 3 • 22^~2'=-2 such MBCs. Each MBC in 
2n—t+x—l 
stage t — X will occupy J27~o^^~^ 2* = 2^"^+^ — 1 output terminals in 
SBW and one output terminal in Y. In one SBW we may construct 
2Ln/2j 

—-^ = 2-̂ "^ {t = [n/2j + 1) MBCs. So MBCs in stage t - x will 

occupy output terminals in next —r^ = 3-2-^~^"^ SBWs. These 

SBWs are numbered from 3 • 2-^-^-2 to 3 • 2-^-^"i - 1. In this way next 

p{-^+2 ^ 3 ̂  22-^-2x-2 ^ (2*-2i+^ - 1) = 3 X (2*-^-2 - 22^-2^-2) (6.33) 

planes will be inaccessible by connection {x,Y). 
Finally, in stage t number of SBWs which can be occupied by MBCs 

is 3 • 2-̂ '"2, however, in this case we have only 2̂ ' - 3 • 2^'^ = 2^'-^ SBWs 
with free outputs. So, the MBCs in stage t will occupy 

t-2j-l 

p{+^ = 2^-2 X 2̂ ' X Yl 2̂  = 2^-2 X (2*- '̂ - 2^) (6.34) 
i=0 

planes, and all outputs in the blocking window are assigned except 
2n-t-i outputs in SBWi. 

Through the nodes of stage i , l ^ i ^ n — t — lwe may now construct 
\SIi\ different M.M.Cs and these connections may occupy 

n-t-l 

P2^ Yl 2'"^ X S"""*"̂  = (n-t-l) X 2"-*-i. (6.35) 
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t= 
n=2 

3 

4 

5 

6 

7 
8 
9 
10 
11 
12 

1 
2 

3 

6 

12 

24 

2 
2 

3 

4 

9 

18 

48 36 

96 72 

192 U4 

3 

4 
6 

|l3| 

25 
50 

[ 100 

384 288 200 

768 576 400 

1536 1152 800 

4 5 6 7 

8 

12 16 

15 24 32 

20 
33 

29 48 64 

35 57 96 

65 48 65 113 

130 81 

260 161 [ 

520 322 

79 
112 
193 

125 
141 
175 

8 

128 
192 
225 

245 

265 

9 

256 
384 

449 

485 

10 

512 

768 

897 

11 

1024 

1536 

Table 6.3. The number of planes as a function of n and t in log2(A/', 0,p) switching 
fabrics 

In the worst case these sets are disjoint and one more plane is needed 
for connection (a:, Y), so in general we can write: 

i -2 

p^p\+pi+p\ + ̂ p{ ^+^+pi+Vp2 + i. (6.36) 
x=Q 

After putting equations (6.30) - (6.35) to inequality (6.36) and taking 
into account special cases for j = I and j ' = 2 we will obtain equation 
(6.29). 

For n odd construction of the worst case scenario is similar to that 
for n even. However, in this case, output terminals in two SBWs will be 
occupied by two MBC (?/, [n/2j + 1), so 2 -p} planes can be inaccessible 
for the new connection. Also for n odd we have n = 2 • [n/2j + 1. The 
total number of planes is in this case also given by (6.29). 

Necessity can be proved by showing the set of events leading to occu
pancy of p planes, where p is given by (6.29). D 

From Theorems 6.11 and 6.13 we can derive the value of t, for which 
p is minimum. For 1 ^ t ^ L^/2j the minimum number of planes is 
obtained for t = [n/2\^ since (6.20) is growing when t is getting smaller. 
For n = 3 and [n/2j ^ t ^ n the value of p is the same for t = L^/2J ^nd 
t = [n/2j + 1. For n odd and n > 3 lower number of planes is needed 
for t = [n/2j + 1. When n is even lower number of planes is needed for 
t = [n/2\ + 1 and n ^ 10. The number of planes for different n and t 
are given in Table 6.3. 
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Similar conditions for log2(A^, m,p) switching fabrics was derived by 
Danilewicz and Kabacihski [30, 31]. These conditions were later im
proved by Hwang and Lin [58], who have shown that for m > 2 different 
worst case scenario can be encountered at stages from n — 1 to n — t. 
For 1 ^ t ^ L^/2J the theorem is as follows: 

T H E O R E M 6.14 The \og2{N^m,p) switching fabric is wide-sense non-
blocking for 1 ^ t ^ L^/2J provided that blocking window algorithm is 
used if and only if: 

[t • 2"^"^"^ + 2^~2^~^ - 2"^J + 1, 
for m = 1 and 1 ^ t < [ | J , 

for m = 1, t = [^J and n odd, 
for m = 2 and t ^ 2, 

and for 2 < m ^ t; 
[t. 2^-^-iJ + 1, 

for m = 1, t = [ | J and n even; 
p^ { [t- 2^-^-1 + 2^-2*-^ - 2-(*+^)J + 1, 

for m ^ 2 and t = 1, 
and for m > 2 and t = 2; 

[2^-2 _!_ t. 2^-^-1 _ I + 2^-2^-1 - 2-(^+i)J + 1, 

for m > 2 and 2 < t < m; 
1̂ 2̂ -2 _̂  ̂  . 2^-^-1 - ^ - 2^""^ + 2^"^^-^ - 2 " ^ + i j + 1, 

for m > 2 and 2 < m ^ t, 

(6.37) 

Proof. In stage n —z, 1 ^ z ^ t, the new connection {x, y) can be blocked 
by connections to output terminals in |S0^_^| and these connections may 
occupy pi planes, where 

r t_ 
2 ' 

Pi= { m 

2 

2t-2 

for m ^ 2 and t ^ m 
or m > 2 and t ^ 2; 

+ 2^ -^ - 1, for m ^ 2 and i > m; 

for m > 2 and t > 2. 

(6.38) 

In stage z, 1 ^ z ^ t, this connection can be blocked by multicast con
nections from input terminals in |SI^| to output terminals in accessible 
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blocking windows, i.e., 

1 ^ . 2 " - * - ! - - , f o r m ^ t; 

(6.39) 

t. 2^^-*-! - — - 2*-^ + 1, for m < t 
planes may be unavailable for the connection. Finally, if stage t-\-l can 
be considered, one more multicast connection can be set up from any 
input terminal in |SI/;+i|- This means that next 

( 2"-2*-i - 2-(*+^), for i ^ m - 1 and 2t < n + m - 1, 
P3 = < 2^-2t- i_2-m^ f o r m - 1 < t and 2 t < n + m - l , 

[ 0, for 2i ^ n + m - 1 
(6.40) 

planes may be unavailable by the connection {x,y). When all these sets 
of planes are disjoint, the number of planes required is given by 

P^ IPI+P2+P3\ + 1- (6.41) 

After putting (6.38), (6.39), and (6.40) in (6.41) we obtain (6.37). D 

When [n/2\ < t ^ \{m + n)/2], the respective theorem is as follows: 

THEOREM 6.15 The log2{N,m,p) switching fabric is wide-sense 
nonblocking for [n/2\ < t ^ \{m + n)/2] provided that blocking 
window algorithm is used if and only if: 

( [2*-"^+ (m + n - t - 2 ) •2^-*-iJ+1, 
for 771 ^ 2 and t > m; 

P> { 
[2*-2 + t • 2"-*-i - I + 2"-2*-i - 2-(*+i)J + 1, ,g ^2) 

for m > 2 and 2 <t <m\ ^ ' ' 

|̂ 2*-2 + t • 2"-*-i - T - 2*""" + 2''~2*~i - 2~'^ + i j , 
for m > 2 and 2 < m ^ t. 

Proof. The proof is very similar the the proof of the previous theorem. 
In this case pi is also given by equation (6.38), while p2, and ps are given 
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by [30]: 

(m + n - t - 1 ) - 2 ^ - ^ - 1 

{m + n-t-2)' 2^-^-2 

m + n — t — 1 

for t ^ n — 1 and 2t ^ n -\- m — 1; 

m 

for t < n — 1 and 2t ^ n -\- m — 1] 
P2= \ 

t'2 n-t-l 

t'2 n-t-l 

2' 

m 

for t ^ m and 2t < n + m — 1; 

\t—m + 1, 
for t > m and 2t < n + m — 1; 

P3 

0, for 2t ^ n + m - 1; 
2n-2t-i _ 2-(t+i) for 2^ < n + m - 1 

' and t <m — 1\ 
^n-2t-i _ 2-m for 2t < n + m - 1 

' and m — l<t<n — 1] 
2-t _ 2t-m-n+i for 2i < n + m - 1 

' and n—l<t^n + m — 2. 

227 

(6.43) 

(6.44) 

D 

6.3.3 Rearrangeable Conditions 
Rearrangeable log2(A/', 0,p) switching fabrics for unicast connections 

were considered by Lea [92]. In the proof of the next theorem matrix 

H^ ) c = 2'-'̂ /̂ -l, r = 2'̂ "'/'̂ ,̂ will be used to represent the maximal 
assignment in log2(A ,̂ 0,p) switching fabric which is defined as follows: 

DEFINITION 6.16 

Hî ) = l^ij — 

/c, if there exist k connections {x^ y) 
were x ^li and y G Oj 

0, if there is no such connection 
(6.45) 

From the above definition we know that matrix Hr contains r = 2^'^^^'^ 
rows and columns. Row i represents set Ê , column j corresponds to 
set Qj (see Def. 3.4 and 3.5), and entry hi^j represents the number 
of connections between input terminals in Ê  and output terminals in 
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Oj. This matrix 'Rr is similar to the matrix defined for three-stage 
switching fabrics (see Def. 5.36), but instead of first and third stage 
switches sets li and Oj are used. This matrix has following properties: 

r r 

^ / z , , , = X^/i,,,=:c = 2LtJ, (6.46) 
1=1 i - i 

since there are 2^ /̂̂ -! input and output terminals in each li and Oj, 
respectively. 

THEOREM 6.17 The log2(A ,̂ 0,p) switching fabric is rearrangeable 
nonblocking for unicast connections if and only if: 

p ^ 2 L t J . (6.47) 

Proof. Necessity. When we consider a graph of intersecting paths in 
one plane shown in Fig. 3.26, we can conclude, that at most 2̂ /̂̂ -̂̂  paths 
meet in one node of this graph. Each path has to be set up through 
different plane, so at least 2^ /̂̂ ^ planes are needed. 
Sufficiency. Assume that a maximum assignment is to be realized in the 
switching fabric. Connections in this assignment can be represented in 
the form of matrix Hr ? which can be decomposed into 2l-̂ /̂ J elemen
tary permutation matrices E^xr- A set of connections corresponding to 
one matrix E^xr can be set up in one plane without conflict. D 

Rearrangeable log2(A ,̂ m,p) switching fabrics were considered by Lea 
and Shyy [95]. 

THEOREM 6.18 The log2{N^m^p) switching fabric is rearrangeable 
nonblocking for unicast connections if and only if: 

P 
I Ti — m I 

^ 2L^^J. (6.48) 

Proof. There are 2^ connecting paths in each plane. One plane can be 
decomposed into 2^ subplanes with a single path between any input-
output pair of any subplane. Each suplane has 2^"^ inputs. A maximal 
assignment can be divided into 2^ subassignments such that no conflict 
will occur in stages from 1 to m and from n + 1 to n + m. This can 
be done using for instance the looping algorithm described in section 
5.1.6.2. Each subassignment needs 2L(^~^)/̂ -l subplanes according to 
Theorem 6.17. Since there are 2^ subassignments and 2^ subplanes 
in one plane, then p ^ 2L(^"'̂ )/̂ -l planes is sufficient. This number 
of planes is also necessary since there are maximal assignments which 
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cannot be reahzed in log2(A/', m,p) switching fabric with p < 2L(^~^)/^-l, 
for example identity assignment: 

D 

An example of the log2(16, 2,1) switching fabric is shown in Fig. 6.11. 
Since m = 2, this switching fabric has 2^ = 4 connecting paths between 
any input-output terminals pair. It is decomposed into four subplanes, 
each subplane has 2^~^ — 4 inputs. Rearrangeable condition requires 
two planes. Let consider the identity assignment. Connections (0,0), 
(1,1), (2,2), and (3,3), for instance, may be set up through subplanes 
1, 2, 3, and 4 of one plane, respectively. Any two of these connections 
cannot be set up in one subplane. Connections (4,4), (5,5), (6,6), and 
(7,7) will have to use another plane. 

The above results were extended to log2d{N^m^p) switching fabrics 
in [149]. 

THEOREM 6.19 The log^(Ar, m,p) switching fabric is rearrangeable 
nonblocking for unicast connections if and only if: 

P^i^'^r ' \ (6.50) 

where n = \0g2d N. 

The number of planes in rearangeable nonblocking log2(A ,̂ m,p) 
switching fabrics as a function of n and m is compared in Table 6.4. 
It can be seen, that the lowest number of planes is needed for m = n — 1, 
and this number of planes is equal to 1. The log2(A/̂ , n — 1,1) switching 
fabric is the Benes switching fabric composed of 2 x 2 switches. The 
minimum number of 2 x 2 switches is also obtain for m = n — 1. 

6.3.4 Rearranging Algorithms 
For one-at-a-time connection model the Paull algorithm can be used. 

In this algorithm input terminals are divided into sets I ,̂ 1 ^ z ^ 2^^/^^, 
and output terminals are grouped into sets Oj, 1 ^ j ^ 2^^/^-!. The state 
of the switching fabric can be presented in the form of state matrix S of 
size r xr^r = 21^^/^'; rows correspond to sets Î ; columns correspond to 
sets Oj-; and the matrix is defined as follows: 

file:///0g2d
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Subplane 1 

Figure 6.11. Decomposition of the log2(16, 2,1) switching fabric 

m= 
n=2 

3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

0 
2 
2 
4 
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1 
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8 
8 
16 
16 
32 
32 

2 

1 
2 
2 
4 
4 
8 
8 
16 
16 
32 

3 

1 
2 
2 
4 
4 
8 
8 
16 
16 

4 

1 
2 
2 
4 
4 
8 
8 
16 

5 

1 
2 
2 
4 
4 
8 
8 

6 

1 
2 
2 
4 
4 
8 

7 

1 
2 
2 
4 
4 

8 

1 
2 
2 
4 

9 

1 
2 
2 

10 

1 
2 

11 

1 

Table 6.4- The number of planes as a function of n and m in rearrangeable non-
blocking \og2{N^m^p) switching fabrics with unicast connections 
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D E F I N I T I O N 6.20 

S = 
/c, if there exist connection {x^y) s e t u p 

s^j = ^ through plane /c, were x G Î  and y G Oj 
0, if there is no such connection 

(6.51) 

In each cell there may be more than one entry, since more than one con
nection can be set up between input-output terminal pairs of the same 
li and Oj. Since \Ii\ = \Oj\ = 2^^/^^, the number of entries in each row 
and each column should be not greater than this number. In the Paull 
algorithm any entry representing a plane may appear in one column or 
one row only once, similar to Clos switching fabrics (see section 5.1.6.1). 
This assumption is not always necessary and sometimes leads to unnec
essary rearrangements. For example, let consider log2(16,0,4) switching 
fabric with connections (0,0), (1,1), (2,2), (4,4), (5,5), and (6,6). The 
bipartite graph of this switching fabric is shown in Fig. 6.12a, and the 
state matrix is given in Fig. 6.12b. In this Figure, connections set up 
through plane 1 (i.e., connection (0,0)), plane 2 (connections (1,1) and 
(4,4)), plane 3 (connections (2,2) and (5,5)), and plane 4 (connection 
(6,6)) are shown in bold lines. Let connection (3,7) be set up, 3 6 Ei, 
7 G O2. When we look at the state matrix we conclude tha t this connec
tion is blocked, since planes 1,2, and 3 are in row 1, and planes 2, 3, and 
4 are in column 2. We can unblock this new connection by re-switching 
connection (0, 0) from plane 1 to plane 4, and plane 1 becomes available 
for connection (3,7). But in fact connection (3,7) may be also set up 
through plane 1 or 2 without moving connection (0,0). The algorithm 
which does not do such unnecessary rearrangements was proposed in 
[83]. 

In rearrangeable log2(A/', 0,p) switching fabrics with simultaneous con
nections model, an assignment can be set up using any of matrix decom
position or graph coloring algorithms. Another approach to setting up 
simultaneous connections was recently proposed in [79]. In this approach 
connections of an assignment are routed one-by-one using sequential 
routing. The algorithm can be described as follows: 

A L G O R I T H M 6.9 Sequential assignment routing 

S t e p 1 Take the first not connected input, starting from input 0. 

S t e p 2 Set up the connection for this input through the first available 
plane, starting from plane 1. 

S t e p 3 Repeat steps 1 and 2 until all inputs are connected. 
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Plane 1 

NONBLOCKING SWITCHING FABRICS 

Plane 2 

Figure 6.12a. Examples of connections in log2(16,0,4) switching fabric 

THEOREM 6.21 The log2 (N.O^p) switching fabric with n even, routes 
all possible permutations when algorithm 6.9 is used if and only if 

p^22, (6.52) 

Proof. Let the permutation H is to be set up and this permutation con
tains at least one set of connections represented by Q (E^,Oj). Without 
lost of generality, we can assume, that this is Q (EOJOQ). It is clear that 
each connection in this configuration will require a separate plane. Input 
terminal 0 will be connected with output terminal 7r(0) through plane 1. 
Input terminal 1 will be connected with output terminal 7r(l) through 
plane 2, etc. Finally, input terminal 2^/^ — 1 will be connected with out-
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1 2 3 4 

1 

233 

1.2,3 

2,3,4 

Figure 6.12b. Examples of connections in log2 (16, 0,4) switching fabric - state matrix 

put terminal 7r(2^/2 - 1) through plane 2 ^ / ^ 7r(z) G OQ, 0 ^ z ^ 2^/^ - 1 . 
These connections will not be in conflict with any other connection in 
n . It is also clear that if there is another such set of connections in H, 
it will use the same 2^/^ planes. So at least 2^/^ planes are needed. 

Sufficiency will be proved by showing tha t there is no other configura
tion of connections in 11 which will require more planes. Let us consider 
connections realized between Ê  and O j . All paths from input termi
nals in li to output terminals in Oj go through the node in stage n / 2 . 
Assume now, tha t some input terminals in Ê  are to be connected with 
output terminals in O^, A: 7̂  j . Say there is one such connection, and 
it uses the same node, say in stage (n/2) — 1 as some other connections 
represented by Q (E ,̂ Oj) , and the same node in stage (n/2) + 1 as some 
other connections represented by ^ (E/, Ofc). Connections represented by 
Q (E ,̂ Oj) and G (E/, Ofc) use different nodes in stage n / 2 , so they are not 
in conflict in this stage. When z < /, connections from input terminals 
in Ê  to output terminals in Oj will be set up through planes numbered 
from 1 to 2^/^ — 1, and the connection from one input terminal in Ê  
to one output terminal in Ok will also be set up through one of these 
2^/2 _ I planes, since it goes through the different node in stage n / 2 and 
connections from input terminals in E/ are not set up yet. When z > /, 
connections from input terminals in E/ are already set up. Therefore, 
connection (E^,Ofc) may be in conflict with connections from 2^/^~^ — 1 
input terminals in Ê  and 2^^/^)*"^ — 1 planes will be unavailable since 
paths from 2^^/^)"^ input terminals meet in the node of stage (n/2) — 1 
(one of these paths is the path from the considered input terminal which 
is to be connected). This connection may be also in conflict with con
nections to 2^^/^)"^ — 1 output terminals in O^ and other 2^^/^)"-^ — 1 
planes will be unavailable. If these sets of planes are disjoint we have 
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2 . (^2^n/2)-i -I) = 2^/2 - 2 planes unavailable for connection (Ei,Ofe), 
but 2 planes are still available and one of them will be used. Similarly, 
in Oj we have now one output terminal free and say the connection to 
this output terminal is to be set up from input terminal mlh^h ^ i. By 
analogy, we may have 2^/^ — 2 planes unavailable for connection (I/ ,̂ Oj), 
but 2 planes are still available. 

We have assumed, that in Ii one input terminal was connected to one 
output terminal in O t̂, while other input terminals in this set were con
nected to output terminals in Oj. Similar arguments show that when 
there are more than one connection (1^,0^) and they use the same nodes 
in stages lower than (n/2) — 1 and higher than (n/2) + 1, the number 
of planes needed to successfully route all connections in 11 are even less 
than 2^/^. So all together not more than 2^/^ planes are needed to re
alize all possible permutations when connections are set up using the 
sequential assignment routing algorithm. D 

Algorithm 6.9 can be also used to route maximal assignment in the 
log2 {N^ 0,p) switching fabric with n odd, however, such switching fabric 
requires more planes than the rearrangeable nonblocking one [79]. 

THEOREM 6.22 The log2 (iV, 0,p) with n odd, routes all possible permu
tations when Algorithm 6.9 is used if and only if: 

/ 2 ' ^ forn = 3 
p ^ < n-i , . (6.53) 

[ 1 . 2 5 - 2 ^ - forn^b 

Proof. Similarly as in Theorem 6.21, let us consider connections rep
resented by Q (E^,Oj). It is clear that such configuration needs 2*^̂ "̂ /̂̂  
planes, and all paths go through nodes in stages (n— l) /2 and (n+ l) /2. 
Let us now assume that some input terminals in li are to be connected 
with output terminals in Oj and Ofe, /c 7̂  j . For n = 3 it is easy to all 
possible classes of path configurations with conflicts. These classes are 
shown in Fig. 6.13. As can be seen from this Figure, connecting paths in 
each of these classes can be set up using two planes. Connections set up 
through plane 1 are marked in dashed lines, while connections routed 
through plane 2 - in bold lines. So, for log2(8,0,p) switching fabric, 
p = 2^^"^)/^ planes are sufficient to set up all possible permutations. 

When n is odd and n ^ 5, all paths in Q (Ê , Oj) and ^(I^, 0->) use the 
same node in stage (n — l)/2, while path in Q (Ê , Oj) and Q (E-̂ , Oj) use 
the same node in stage (n + l)/2. Let assume that there are 2^^"-^)/̂  — c 
connections (Ei,Oj) and c connections (E^,0^). Say these c connections 
are set up through planes numbered from 1 to c, and connections (Ê , Oj) 
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# """•—•""" • ^̂ ^N^̂ ^—»""" • 

Figure 6.13. State classes for log2 (8,0,p) switching fabric 

are set up through 2^^"-^)/̂  — c planes numbered from c + 1 to 2^^"^^/^, 
since all these connections go through the same node in stage (n — l)/2. 
Connections to c outputs in Oj are not set up yet, and say these out
puts will be used by connections (I^, Oj). They will go through the same 
node in stage (n+ l ) / 2 as connections (I^, Oj). Since connections (I^, Oj) 
occupy planes numbered from c + 1 to 2^^"^)/^, only planes numbered 
from 1 to c can be used by (I^, Oj). In I^ there may be c other connec
tions, say (I^jOfe), k ^ j^ k ^ j^ and these connections may use planes 
numbered from 1 to c (if these (I^, Ofc) are to be set up earlier than 
(I^.Oj)). In the worst case, connections (I^, Ofc) and (h,Oj) go through 
the same node in stage (n — 3)/2, but they use different nodes in stage 
(n — l) /2 . Therefore, for c connections (I^, Oj) planes numbered from 
1 to c will be not accessible in the node of stage (n — l) /2, and planes 
numbered from c+1 to 2^^"^^/^ will be not accessible in the node of stage 
(n + l ) /2 . So these connections will require additional planes numbered 
from 2^^-^)/^ + 1 to 2^^-^)/^ + c. We have c connections (%,Ofc) and c 
connections (I^, Oj) which go through the same node in stage (n — 3)/2. 
Since 2^^"^)/^ input terminals are accessible from the node in this stage, 
we have 2c ^ 2^""-^^^. The maximum number of additional planes is 
obtained when c = 2^^"^^/^, and the total number of planes for n ^ 5 is 

n—1 n —5 n —5 n—1 

p ^ 2-^ + 2 ^ = 5 • 2 " ^ = 1.25 • 2^2-. (6.54) 

D 

6.4 Multirate Switching 
6.4.1 Switching Fabrics 

In multirate connections the model described earlier and bipartite 
graph representation of the switching fabric can be used. The difference 
in multirate log2(A'̂ , m,p) switching fabrics is only in that each of input 
and output terminals has the capacity equal to /3, and each of interstage 
links has the capacity of 1. In bipartite graph representation these ca
pacities are assign to respective nodes. Each node in stages 0 and n~\-Tn 
has the capacity of /3, while in remaining stages each node has the ca-
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pacity equal to 1. More connections can use the same connecting path 
and the same nodes, provided that the sum of their weights is lower 
than its capacity. Some architectures hke extended delta and Cantor 
switching fabrics were considered earlier in [114, 115] and [22]. Multi-
rate \og^{N^m^p) switching fabrics were considered in [93, 94], where 
necessary and sufficient conditions were given for discrete bandwidth 
case when 1/6 is an integer, and sufficient condition, as well as necessary 
condition for S G (1 — 6,/?] for continuous bandwidth case was proved. 
Better upper bounds, which in some cases are also lower bounds, were 
given in [81, 82]. Multirate multicast switching fabrics were considered 
in [80]. In the next section these main results will be described. 

6.4.2 Strict-sense Nonblocking 
6.4.2.1 Unicast Connections 

In the case of discrete bandwidth case the strict-sense nonblocking 
conditions for the log2 (N^O^p) switching fabric are as follows: 

THEOREM 6.23 The log2{N^0^p) switching fabric is strict-sense 
nonblocking for the discrete bandwidth case if and only if: 

p^2 
\LI 

|_ 

0 
_h_ + 

P- B 
b 

1-B + b 

[ b \ 

+ 1, (6.55a) 

for n odd, and 

p ^ 2 

+ 

Li 

_ 

P 
_h_ + 

P- B 
b 

l-B + h 

I b _ 

1-B + + 

+ 

Ls + L^ 

1-B + b 
+ 1, (6.55b) 

for n even, where 

Li = 

n - l 

. ^ - 1 
1, for n odd, 

2 s'"^ — 1, for n even, 
(6.55c) 

Lo = 22 S - i (6.55d) 
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L3 = Li + 
(3-B 

Li 
0 

_b\ + 
P- B 1 

[ b J 
l-B + b 

1 - 5 + 6 
(6.55e) 

and 

LA = Lo \ — 
p 

_b_ 
-

L2 _b_ 
1-B + b 

. b . 

1 - 5 + 6 
(6.55f) 

Proof. Sufficiency. Let connection {x,y,u) is to be set up. The con
necting path will be inaccessible by this connection if any node on this 
path carries connections of total weight greater than 1 — u). In the dis
crete bandwidth case we should have at least [(1 — a; + 6)/6J connections 
of weight b to block any node in connection path. At each of input 
terminals other than x we may have up to [/?/6J connections of such 
weight. Additionally, [{j3 — uj)/b\ connections of weight b may be set up 
at input terminal x. For n even in nodes of stages from 1 to (n/2) — 1 we 

can set up Yli=i \^M [P/b\ connections of weight 6, and [(/? — 00)/b\ 
such connections at input terminal x. These connections may occupy 

Pi 

( n / 2 ) - l 

i=l 
+ 

P-UJ 

l - c c ; + 6 

Li\ 

^ 

P 
. 6 . 

+ P-
b 

1 1 - a ; + 6 
b 

• UJ 

« 

(6.56) 

planes in such way, tha t they will be inaccessible by the new connection. 
At input terminals in SI^ there may still be a free bandwidth available 
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for L3 connections of weight 6, 

L3 = Li + 
(5-uj 

Li 
0 

.b\ + 
P- - UJ 1 

[ b J 
\l-uj-\-b 

l-LU-\-b 
(6.57) 

but, since L3 < [(1 — cj + 6)/6J, these connections cannot block the 
additional plane. By analogy, in nodes of stages from (n/2) + 1 to n — 1 

we can set up Yli=i l^^n-fl IP/^l connections of weight b to output 
terminals in SO„_j, and [(/? — uj)/b\ such connections to output terminal 
y. These connections will make 

P2 = 

( n / 2 ) - l 

|so,_,| + 
P-u 

1-LU + b 

Li 
0 

j \ + 
(3- - u 1 

[ b J 
1 1 - a ; + 6 
L b . 

(6.58) 

planes inaccessible by the new connection. At output terminals in SO„_j 
there may be also a free bandwidth which can be used by L3 of weight 6. 
Additionally, in the node of stage n/2, we may have a set of connections 
from input terminals in SE /̂2 to output terminals in §0„/2, and since 
1̂ 2̂ /21 = |S^n/2l5 these connections may occupy 

P3 = 

|SIn/2| 

1 — UJ -

_ b~ 

P\ 
.b\ 
f 6 = 

L2 

1 - c 
_b_ 

b 

b 
(6.59) 

planes. At input terminals in SI„/2 and output terminals in SO„/2 there 
may be the remaining bandwidth which can be used by L4 connections 
of weight 6, where 

LA = Lo \ — 
p 

_b_ 
-

L2 

1-L 

P 
_b_ 

b 

b 
l - u + b 

(6.60) 

file:///l-uj-/-b
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We can set up L3 connections of weight b from input terminals in Sli 
to output terminals in SOj, 1 ^ i < n/2 and L4 connections of weight 
6 from input terminals in SI„/2 to output terminals in SO^/2. When 
Ls -\- L4 > [(1 — a; + b)/b\ these connections may occupy next 

P4 = 
L3 + L, 

l - u + b 
(6.61) 

planes. In the worst case these sets of planes are disjoint and one more 
plane is needed for the new connection (x^y^uj). Thus, for n even, we 
have 

P > P i + P 2 + P 3 + P 4 + 1 , 

P > 2 

\LI\ 

_ 

.6. 
+ P-

b 
\l-uj + b 

b 

- LU 

J 

+ 
L2 

l-ou + b + 

+ 

LS^LA 

1-uj + b 
+ 1. (6.62) 

Inequahty (6.62) must be maximized through all LU, and this maximum 
is reached for uj = B. Put t ing u = B in (6.62) we obtain (6.55b). 

When n is odd the proof is similar, but we count sections from 1 to 
(n — l ) / 2 in both cases (pi and ^2), and there is no p^ since all stages 
are already taken into account. Similarly, the remaining connections of 
weight b cannot block any additional plane. So we have: 

Pi 

(n- l ) /2 

i = l 
+ 

P-UJ 

1-u + b 

Li 

_ 

15 
_b_ + 

P - • u 

b 
1 l-u-^b 

V b J 

(6.63) 
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P2 = 

(n- l ) /2 
E ISO,-
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P-UJ 
+ 

1-uj + b 

u 
(3 

.b\ + 
f3-- UJ 1 

[ b J 
\l-uj + b 

L b . 

(6.64) 

and 

p^Pi+P2 + l = '^ 
ki 

0 
h + 

/5- - UJ 

b 

_ 

ll-u+b 

L b J 

+ 1. (6.65) 

Putting UJ = B m (6.65) we obtain (6.55). 
Following the same pattern analysis, it is possible to construct the set 

of events showing that when less number of planes is used, the consid
ered switching fabric is blocking. D 

Let us consider the log2(16,0,p) switching fabric with /? = 0.8, 6 = 0.2 
and B = 0.6. The new connection is (0,0,0.6). At input terminal 
0 we may set up one connection of weight 0.2 (the same is true for 
output terminal 0). In each of the remaining input (output) terminals, 
four connections of weight 0.2 can be set up. Connections from input 
terminals 0 and 1 (SIi = {I}), will occupy plane 1 (pi = 1) as shown in 
Fig. 6.14. These are connections numbered 1, 2 and 3. At input terminal 
1 it is still possible to set up 2 connections of weight h (L3 = 2). Similarly, 
connections to output terminals 0 and 1 (SO3 = {1}) will occupy plane 
2 (p2 — !)• Connections numbered from 7 to 12 from input terminals in 
(SE2 = {2,3}) to output terminals in ( SO2 = {2,3}) will occupy planes 
3 and 4 (p3 — 2). We have still free bandwidth in these terminals for 
L4 = 2 connections. So these L3 and L4 connections may occupy the 
next plane (p4 = 1). One more plane is needed for connection (0, 0, 0.6). 

Strictly nonblocking conditions for log2 (Â ,̂ 0,p) switching fabric with 
continuous bandwidth connections are given by the following theorem. 
Functions (4.27), (4.28), (4.29), (4.30), and (4.31) defined in section 
4.2.3.2 are used in this theorem. 
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Figure 6.14- The worst state in the log2(16,0,p) switching fabric 

THEOREM 6.24 The log2{N,0,p) switching fabric is strict-sense 
nonblocking for the continuous bandwidth case, if: 

p> < 

2Li 
h + 1, 

2Li 
_b_ 

+ L2 
_b_ 

for n odd, 

+ 1, for n even, 

(6.66a) 
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V^ { 

Li + 

2 

(3-B 
b 

+ 1, forn odd, 

Li /3 
b f 

j3-B 
b 

2 

J 

+ for n even, 

+ 
L2 

+ 1, 

P ^ S 

when B e {l - 26, | ] and | < 6 < i ; 

f 2LiF (/?; 1 - B) + 1, for n odd, 
^ ^ \ 2LiP (/?; 1 - 5 ) + L2P (/?; 1 - 5 ) + 1, for n even, 

/or a// other B and Ri (/?; 1 — B) < b; 

2 [LiP (^; 1-B) + iRs (Li; a(/3; 5))J + 
+P {ai (Li; /?; 5 ) + i?5(^ - 5 ) ; 1 - 5)] + 1, 

for n odd, 
2 [LiP ip- 1-B) + [Rs [Li-a {(3; B))} + 
+P {ai (Li; ^; B) + Rs{p - B)-l - B)] + 
+L2P (^; 1 - B) + LP3 (1̂ 2; a (/?; B))\ + 
+ P ( a i ( L 2 ; / ? ; P ) ; l - P ) + 
P (Pi {ai (Li; /?; P) + PsC/? - P) ; 1 - P ) + 
+ P i ( a i ( L 2 ; / ? ; P ) ; i - P ) ; i - P ) + i, 

for n even, 

/or a// other B and 6 ^ P i (/?; 1 — P) < 26; and 

f 2 [ L i P ( ^ ; l - P ) + 
P (^2 (Li; /3; P) + P5(/3 - P); 1 - P)] + 1, 

for n odd, 
2 [ L i P ( / ? ; l - P ) + 

p ^ < ( P(a2(Pi ; / ? ;P) + P 5 ( / ? - P ) ; l - P ) l + 
+ (L2P (/?; 1 - P) + P (a2 (P2; P;B);1- P)) 
+ P (Pi (^2 (Pi; ^; P) + P5(/3 - P); 1 - P) + 
+ P i (^2 (P2; /?; P ) ; 1 - P ) ; 1 - P) + 1, 

for n even, 

(6.66b) 

(6.66c) 

(6.66d) 

(6.66e) 
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for all other B and Ri (/?; 1 — B) ^ 2b; where 

n - l 
2 2 — 1̂  for n odd, 

22""^ — 1, for n even, 
Li = i n_^ / ^ ' (6.66f) 

L2 = 2^-\ (6.66g) 

a (/3; J5) = i?2 (/?; 1 - 5 ) + 1, (6.66h) 

a i ( L ; / 5 ; 5 ) = [ L - a ( / 3 ; 5 ) L i ? 3 ( I ^ ; a ( / ? ; 5 ) ) J ] i ? i ( / ? ; l - 5 ^ (6.66i) 

a 2 ( L ; / ? ; 5 ) = M i ( / ? ; l - 5 ) . (6.66J) 

Proof. Sufficient conditions will be proved by showing the worst state 
in the switching fabric. Suppose we want to add the new connection 
(x^y^u)^ 0 < b ^ u ^ B ^ P ^ l . Any path from input terminal 
X will be inaccessible for the new connection of weight u if there is a 
node on the connecting path, which already carries connections of the 
total weight greater than 1 — a;. In the worst case this sum of weights 
should be as small as possible, say 1 — u + e^ where e is close to but 
greater than 0. However, when 1 — a; < 6 a path is inaccessible if a 
connections of weight b is set up through at least one of its nodes. When 
1 — a; ^ 5 , it is not possible that one connection will occupy a weight 
1 — uj-he. In this case we have to set up at least two connections. When 
1 — cj < 26, the total weight in the path will be equal to 2b. In other 
cases it is always possible to set up one or more connections with a total 
weight 1 — cj + e. Similarly as in the two-stage one-sided and three-stage 
two-sided switching fabrics we have three cases: 

1 1 - uj <b, 

2 6 ^ 1 - a; < 26 and 1 - u; ^ JB, 

3 other values of 1 — a;. 

First, the case with n even will be considered. 
Case 1: 1 — uj < b. In this case, a plane is inaccessible for the new 
connection of weight ou if there is a node on the connecting path, which 
already carries a connection of weight 6. In the worst case, each of 
such connections can be set up through different planes. At one input 
terminal [P/b] connections of weight b can be set up. If (3/b is not 
an integer, there is some free bandwidth at this input terminal, but its 
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weight is less than h and it cannot be used by the next connection. In 
the node of stage z, 1 ^ i < [n/2j, the connecting path of connection 
(x, ?/, bj) may be blocked by connecting path from input terminals in SI^. 
Similarly, in the node of stage n — i, this connection may be blocked by 
connecting paths to output terminals in SO„_i. We have: 

and 

(n/2)- l 

(n/2)- l 

P2= Y. 1̂ ^̂  

= ( 2 t - i - l ) 

= (2?-^ - 1 

= Li 

= Li 

(6.67) 

(6.68) 

All bandwidth at these input and output terminals is used an no other 
connection of weight h can be set up. In the node of stage n/2 connection 
from input terminals in §1^/2 ^o output terminals in SO„/2 will occupy 

P3 = p\/2\ T _6. 
= 2 2 ~ i 

. 6 . 
= L2 

_b_ 
(6.69) 

In the worst case, one more plane is needed for setting up connection 
{x, y, uj). So, for 1 — cj < 6, we obtain: 

P ^ Pi + P2 + P3 + 1 = 2Li + L, + 1. (6.70) 

Case 2: 6 ^ 1 — a ;<26 and 1 — u^B. In this case plane is inaccessible 
for a new connection of weight cj, if two connections of weight 6 already 
intersect in one node. Similarly as in the previous case, we may have 
[/?/6J connections of weight h at each input terminal other than a;, and 
[/? — a;/6J connections of this weight at input terminal x. So all together 

we may have X]i=i \^^i\ L/̂ /̂ J + L(/̂  ~ <^)/^J connections, and two 
connections make a node inaccessible for the new connection {x,y,uj). 
Thus, 

Pi = 

(n/2)-l 

8=1 
+ 

P-u 

Li 
0 

_b_ 
+ 

2 

P-UJ 

b 
(6.71) 
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P2 = 

(n/2)-l 

E |so„_,| + 
(3-uj 

b 

Li 
_6_ 

+ 

2 
6 

(6.72) 

If the number of connections of weight b is odd, there is a possibility to 
set up one more connection, but it would not block any plane. In the 
node of stage n/2 next 

P3 = 

|§In/2 | _b_ 
2 

= 

n 1 

2 2 - 1 
(3 

_b_ 

2 = 

L2 

( 

P 
_b_ 

2 
(6.73) 

planes may be blocked, and since the number of connections of weight 
6, which can be set up from these input terminals is always even, no 
bandwudth for any next connection is left. Therefore, we finally get: 

P^2 
L i 

_b_ 
+ 

p-u 
b 

2 
_ . 

+ 
L2 

P 
. 6 . 

2 

J 

+ 1. (6.74) 

Case 3: other values of l—u. For other values of 1—a;, a plane is inacces
sible for the new connection (x, y^ uo) if there is a node on its connecting 
path which already carries connections of total weight greater than 1 —a;. 
For l — uj<B only one connection of such weight may be set up. In the 
other case, at least two connections are to be set up, and their weights 
should be greater than 1 — cj. At each of input or output terminals we 
may set up P{(3] 1 — uo) such connections. Each of sets SÊ  (SO^_^) re-

suits in Y.tJ?~^ ISEil P{P-A- ^) {Y:tJ?~^ |SO,_,| P{p-A- u)) such 
connections. There is still a free bandwidth of weight /? — a; at input ter
minal X and at output terminal ?/, but since P—u ^ 1—a;, then we cannot 
set up a connection of weight greater than 1—cj at these terminals. There 
is still a free bandwidth of weight Ri{/3] l—ou) in each of input and output 
terminals except x and y. It may be used by next connections, provided 
that Ri{(3] 1 — a;) ^ 6. If 6 ^ i?i(/?; 1 — a;) < 2&, several connections of 
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such weight, which passes through one node may make the plane inacces
sible by the new connection. The minimum number of these connections 

is denoted by a(/?;a;). Therefore, next LRs (X^^^^i |§I^|; a (/?;a;) j 

planes will be inaccessible by the new connection. In nodes accessible 

form stages 1 to (n/2) — 1 we may still have free bandwidth of weight 

a i (L i ; / ? ; a ; ) = [L i -a ( / ? ; c^ )L i?3( I^ i ; a ( / ? ; a ; ) ) J ] i ? i (^ (6.75) 

and free bandwidth of weight R^{(3 — uj) at input terminal x. The same 
is true for output terminals in SO^_^ and y. When this weight is greater 
than 1 —a;, it may block P (a i (Li;/3;a;) -\- R^{(5 — uj)]l — uo) planes. We 
have now only Ri ( a i (I/i; /?; uj) + R^{(3 — uo)]l — UJ) bandwidth left, and 
if it is greater than h it may be used by next connections but they will 
not block the plane since this bandwidth is not greater than 1 — uj. If 
Ri{P; 1 — u) ^ 2b the total weight of free bandwidth at input terminals 
in Sli is equal to 

a2iLi;(3;u) = LiRi{P;l-u), (6.76) 

and connections using this bandwidth and free bandwidth of weight 
R^{j3 — u) at input terminal x may occupy not more than 
P (^2 (Li; P; uj) + Rs {P — Lu) ;1 — u) additional planes. The weight of 
remaining bandwidth is now Ri (0̂ 2 {Li;P;UJ) + R^ (P — UJ) ;1 — UJ). 
Again, the same is true for output terminals in SO^_^ and y. So, for 
other 1 — a; we obtain, 

r LiP{(3;l-u), 

Pl=P2= < 

for Ri {I3; 1 - uj) < b; 

(6.77) 

LiP (/?; l-uj)-\-, for b ^ Ri{P;l - UJ) < 26; 
^lRs{Li-a{f3;ij))\ + 
+P {ai {Li;p; u) + R^iP - u)-,1 - u), 

LiP {(5-1 - a;) + for Ri (/?; I - u) ^ 26; 

[ -^P{a2{Li;(5-uj) + Rr,{(3-u)-l-uj). 

By analogy to the above considerations and from Theorem 6.23 we obtain 

{ L2P iP] l-uj), for Ri (P; 1 - to) < b; 

P3 

L2P{p;l-uj)lRs{L2;a{P;ij))\ + 
+ P (tti (L2; ^; cj); 1 - w) , for 6 ^ Ri (/3; 1 - a;) < 26; (6.78) 

L2P (/?; 1 - a;) + P (a2 (^^2; /?; uj) ]! - u), 
for Ri (/?; l-Lj)^ 26; 
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At input terminals in SI^/2 there may be a free bandwidth of weight 
Ri {ai {L2]P]uj); 1 - a ; ) or Ri (^2 {L2](3]uj); 1 - a ; ) , depending on 
Ri (/?; 1 — Lj) being greater or less than 26. In combination with the re
maining bandwidth from input terminals accessible from nodes in stages 
from 1 to (n/2) — 1 we may have additionally 

PA = P{Ri{ai{Li;p;uj) + R5{P-u;);l-uj) 

+i?i (a i {L2;p;uj);l-uj);l-uj) (6.79) 

planes occupied when b ^ Ri{P;l — cu) < 26, or 

P4 = P{Ri{a2{Li;p;uj) + R5{P-u);l-uj) 
+Ri {a2 {L2;p; c^); 1 - a;); 1 » u) (6.80) 

planes occupied when Ri (/?; I — u) ^ 26. The total number of planes is 
in this case is determined by inequality 

P^ [pi+P2+P3+ Pi\ + 1. (6.81) 

The number of planes p must be maximized through all uj and it reaches 
maximum at a; = 5 , then putting B in respective formulae we obtain 
conditions given in Theorem 6.24 for n even. For n odd equations for 
Pi and p2 can be derived by analogy, and in this case ps and P4 are not 
considered. D 

It should be noted, that for cases 1 and 2 the sufficient conditions given 
by theorem 6.24 are also necessary. The same is true for case 3 when 
Ri{P; 1 — u) < 26. These conditions can be proved by showing the set 
of events leading to the occupancy of the required number of planes. 

We will now show some of examples for switching fabrics with different 
6, B, and p. First, let us consider the log2(32,0,p) switching fabric with 
P = 1, and let connection weights be between 6 = 0.2 and B = 0.9. 
Since B G (0.8; 1], nonblocking conditions are determined by case 1 and 
we have p ^ 31. The worst state of this switching fabric is shown in 
Fig. 6.15. In each input or output terminal in Sli or SO^_^ we can set 
up five connections of weight 6. Each of such connections makes a plane 
inaccessible for the connection ( 0 , 0 , 5 ) . We have pi — P2 — 15 and one 
more plane is needed for connection (0,0,0.9). 

Let us assume now that in this switching fabric connection weights 
are limited by 6 = 0.2 and B = 0.8. Since B ^ (0.8; 1], nonblocking 
conditions a determined by case 3. According to Theorem 6.24: p ^ 
25. The worst case in the switching fabric is shown in Fig. 6.16. The 
plane will be inaccessible for the connection of weight 0.8 if there is 
a node on the connecting path, which already carries a connection of 
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Figure 6.15. The worst state in log2(32,0, 31) with p = l^b^0.2 and B = 0.9 

weight 0.2+ (0.2+ denotes a connection of weight 0.2 + £ , 5 ^ 0 ) . Four 
such connections can be set up in one input terminal (P(l;0.2) = 4), 
and there is a free bandwidth of weight less than 0.2 (i?i(l;0.2) == 0) 
and it cannot be used by any other connection at this input terminal. 
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Figure 6.16. The worst state in log2(32,0, 25) with /3 = 1, 6 = 0.2 and B = 0.8 

At both input terminal x and output terminal y, it is possible to set up 
a connection of weight 0.2, but the plane will be still accessible for the 
connection of weight 0.8. 
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Let us now consider the log2(16,0,p) switching fabric with j3 = 1^ 
and let connection weights be between 6 = 0.1 and B = 0.6. Since 
B ^ (0.9; 1], nonblocking conditions are determined by case 3. Let the 
new connection is (0,0,0.6). This connection will be blocked in any 
plane when one of the nodes on connecting path is already used by a 
connection of weight 0.4"^. At each input terminal we can set up two 
connections of such weight (P( l ;0 .4) = 2). We can consider now only 

SIi = {1}, and since Yli=i ISÎ I = Li = 1 than these connections will 
occupy two planes (planes 1 and 2). The same is true for SO3 = {1}, 
i.e., connections to output terminal 1 will also occupy two planes (planes 
3 and 4). At input terminal 1 we have now free bandwidth available of 
weight i? i ( l ; 0.4) = 0.2 and it can be used by the next connection (only 
one since in fact it is less than 26). We need 3 such connections to 
block a plane (a( l ; 0.6) = 3), since there is only one input terminal with 
available bandwidth of weight i? i ( l ; 0.4), it will not block the next plane 
([i?3(l;3)J = 0). We now have a i ( l ; l ; 0 . 6 ) = 0.2, R^{QA) = 0.4 and 
P ( a i ( l ; 1; 0.6) + Rs{OA); 0.4) — 1. So one more plane may be occupied, 
and it is plane 5. Such connections to output terminals 0 and 1 may also 
occupy the same number of planes (plane 6). We have pi = P2 = 3, and 
i ? i ( a i ( l ; 1; 0.6) + i?5(0.4); 0.4) = 0.2. At input terminals in Sh = {2,3} 
four connections of weight 0.4"^ can be set up to output terminals in 
SO2 = {2,3}. At each input terminal in SE2 we have free bandwidth of 
weight i? i ( l ; 0.4) = 0.2, so two connections of such weigh can be set up, 
but three such connections are needed to block a plane, since a ( l ; 0.6) = 
3 and we have [i?3(2;3)J = 0). Now we have a i ( 2 ; l ; 0 . 6 ) = 2 • 0.2 = 
0.4, P ( a i (2 ; l ; 0 . 6 ) ; 0 .4 ) = 0, ps = 4 (planes from 7 to 10 occupied), 
and P i ( a i ( 2 ; l ; 0 . 6 ) ; 0 . 4 ) = 0 . 4 . Since P i ( a i ( l ; 1; 0.6) + ^5(0.4); 0.4) + 
P i ( a i ( 2 ; 1; 0.6); 0.4) = 0.6 and P(0.6; 0.4) = 1, we have P4 = I and one 
more plane is inaccessible by the new connections. So all together 11 
planes are busy and one more plane is needed for the new connection. 
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Figure 6.17. The worst state in log2(16,0,12) with /3 = 1, 6 = 0.1 and B = 0.6 
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6.4.2.2 Multicast Connections 

Strict-sense nonblocking conditions for multirate broadcast connec
tions can be derived using arguments similar to those given in Theorems 
6.23 and 6.24 for discrete and continuous bandwidth cases, respectively, 
and Theorem 6.8 for space-division switching. These conditions will re
sult in the large number of planes, therefore they are not practical. More 
practical approach is to use wide-sense nonblocking switching fabrics. 

6.4.3 Wide-sense Nonblocking Conditions 
Wide-sense nonblocking \og2{N^m^p) switching fabrics with unicast 

connections can be obtained using the routing strategy based on func
tional divisions of planes. In this algorithm one set of planes is used for 
connections of weights less than or equal to 0.5, and another set of planes 
is used for connections of weights greater than 0.5. In the case of connec
tions with weights greater than 0.5, only one connection can be set up 
in one link, and it correspond to the space-division case. The required 
number of planes is therefore given by Theorem 6.5. For connections 
with smaller weights, the required number of planes can be obtained by 
putting B = 0.5 in conditions given by Theorem 6.23 or 6.24, depending 
on whether discrete or continuous bandwidth case is considered. 

In the case of multirate multicast connections, similarly as in the 
space-division switching fabrics, the control algorithms based on block
ing windows can be used for vertically replicated banyan-type and ex
tended banyan-type switching fabrics. The first attempt to derive such 
conditions was made by Kabacihski and Wichary [80]. They consider 
some cases for continuous bandwidth case, however, the general results 
for both discrete and continuous bandwidth are still open problems. 
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matrix decomposition, 153 
minimum index, 84, 87, 90, 119, 168, 179, 

207 
packing, 84, 89, 120, 135, 168, 179, 208 
path searching, 38, 46, 83, 87, 102, 110, 

119, 129, 147, 181, 213 
path selection, 33 
path setup, 63 
Paull, 149, 152, 229 
perfect matching, 159 
periodic assignment, 41-42 
permutation triangular, 59 
quasi-random, 84, 87, 119, 129, 168, 179, 

207, 213 
random, 83, 119, 168, 179, 207 
random assignment, 41-42 
rearrangement, 38, 147 
repacking, 38-39, 164 
repackingMR, 197 
repackingTD, 177 
round-robin, 84, 119 
save the unused, 84, 120, 135, 168, 179, 

208 
sequential, 84, 87, 119, 133, 168, 179, 207 
sequential assignment routing, 231 

Assignment, 58, 70 
ATM - Asynchronous Transfer Mode, 7, 36 

Bar state, 22 
Basic switching element, 22 
Binary representation, 62, 69, 75 
Blocking state, 32-33 
Blocking window, 208 
Buddy property, 69 
BSE - basic switching element, 22 
BSE, 23 

Call repacking, 39 
Cell, 7 
Combinatorial properties, 33, 36, 118, 168 
Combiner, 61-62, 201 

active, 62 
passive, 62 

Connecting path, 1, 28, 33, 37, 39, 51, 63, 
69-71, 73, 83, 119, 205, 210, 235 

Connection, 34-36 
blocked, 84 
broadcast, 35-36, 38 
compatible, 43, 45 
graph representation, 47 
heavy, 180 
light, 180 
matrix, 91 
medium, 180 

Connection 
model 

fc-rate, 37 
continuous bandwidth, 37, 184 
discrete bandwidth, 37, 180 
one-at-a-time, 34, 38, 229 
one-by-one, 34 
simultaneous, 34, 38, 153, 231 

multi-channel, 37 
multi-slot, 37, 41, 169 
multicast, 35-36, 38-40, 45, 54, 120-121, 

136, 141, 145, 172, 208, 215 
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closed-end, 40 
open-end, 40 

multiconnection, 35 
multiconnections, 36 
multipoint-to-point, 36 
multirate, 37, 235 
point-to-point, 35 
routing, 69 
5-slot, 40, 43, 92 
self-routing, 69 
single-rate, 37 
unicast, 35-36, 38--39, 84 
virtual, 44 
weight, 44 

Constrained reachability property, 69 
Continuous bandwidth, 45 
Control 

bit, 70 
signal, 52, 62 

Cross-connect system, 13 
digital, 13 
optical, 65 

Crossbar, 22, 51-54, 57, 63 
reduced crossbar, 57 

Crosspoint, 21 
state, 21 
symbol, 21 

Directional coupler, 22, 27, 79 
Discrete bandwidth, 45 

Dual, 162 

Effective bandwidth, 44 
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Equivalent bandwidth, 44 

Fan-out capability, 131 
Frame, 5 
Frame relaying, 7 

Graph, 45 
adjacent edge, 46 
algorithms, 46 
bipartite, 46-47, 72, 203 
bipartite multigraph, 46-47 
channel, 47, 205-206 
connected, 46 
degree, 46 
edge, 46 
edge coloring, 46 
Euler cycle, 46 
incident edge, 46 
multigraph, 46-47 
multiple edges, 46 
n-colorable, 46 
n-regular, 46 
node, 46 
order, 46 
path, 46 

path length, 46 
perfect matching, 46-47 
representation, 46, 194, 206 
spanning subgraph, 46 
vertex, 46 
weighted, 46 

Identity assignment, 229 
Input, 23 
Input terminal, 22-24, 26 

accessible, 73, 207 
inaccessible, 45 

Input 
dual, 162 

Interconnection network, 3 
Intersecting paths, 73, 75 
Interstage link, 26, 28, 40, 42, 168 
Link 
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capacity, 44 
inaccessible, 43, 45, 181 

Maximal assignment, 34, 47, 144, 154, 227 
graph representation, 47, 49, 158 
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Multiplexing 

code-division, 28 
space-division, 28 
time-division, 28 
wavelength-division, 28 

Multistage interconnection network, 3 

Output, 23 
Output terminal, 22-24, 26 

accessible, 73, 207 
inaccessible, 45 

Output 
dual, 162 

Paull's matrix, 147-148, 151-152 
Perfect matching, 158 
Permutation, 34 
Plane, 201 
Plesiochronous Digital Hierarchy (PDH), 6 
PTM - Packet Ti^ansfer Mode, 7 

Router, 65 
core, 1 
edge, 1 
high-end, 12-13 
IP, 12 
low-end, 12 
middle-size, 12 

Routing strategy, 93, 120, 143 
p-limited no-split, 137, 140, 191 
p-limited no-split restriction, 121, 147 
1-split, 121-122, 137 
1-split restriction, 121, 145-147 
2-Umited, 124 
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3-split, 121, 123 
3-split restriction, 121, 146-147 
any-split, 120-122 
duplication routing, 121, 124-126, 210 
no-split restriction, 120, 136, 145 
non-duplication routing, 121, 124, 
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quota scheme, 180, 190 
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173, 180, 190, 252 
Routing self-routing, 69 

Self-routing, 69 
Shell, 72, 203 

center, 73, 204 
left part, 73, 204 
right part, 73, 204 

Splitter, 61-62, 201 
active, 62 
passive, 62 

Stage, 25 
Standard path, 33 
State 
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bar, 22, 62 
blocking, 70, 87, 129, 139-140, 181 
cross, 22, 62 
matrix, 52-55, 138-139, 147-148, 150, 

152, 192, 229, 233 
n-uniform, 135 
table, 51 

Subblocking window, 222 
Subconnection, 209 
Switch, 22-23 
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ATM, 10 
crossbar, 78, 81 
electronic, 51 
fabric, 3, 23 
graph representation, 72 
inaccessible, 44-45, 171, 182-183 
input, 22, 117 
matrix, 51 
output, 22, 117 
photonic, 51 
time switch, 29 
triangular, 24, 55, 59-61, 78-79, 82, 85, 
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Switching 

analog, 4 
ATM, 12, 22 
circuit, 1, 6 
code-division switching, 31 
digital, 4 
electromechanical, 4 
electronic, 4 

fabric, 3, 22-23, 25 
asymmetrical, 168 
banyan-type, 66, 70-71, 79 
banyan, 65-67 
banyan"^, 67 
baseline, 65, 67-68, 71, 74, 76, 80, 201 
bidirectional, 27-28 
binary, 65 
blocking, 32 
broadcast, 36 
Banyan-type, 65 
Beneg, 166 
cell based, 44 
connection based, 44 
Clos, 117, 198 
d-nary, 65 
distribution switching fabric, 28 
electronic, 24, 65 
extended banyan-type, 202-205 
five-stage, 118 
folded, 24 
four-wire, 27-28 
fully accessible, 32, 81 
fully connected, 31 
graph representation, 47, 71-73 
inverse baseline, 201 
log2 16, 73 
log2 A ,̂ 69, 72 
log^iV,65 
log2 N, 69 
logd AT, 66 
multi-path, 33, 38 
multi-path switching fabric, 28 
multi-stage, 120 
multicast, 36, 130 
multiconnection, 137 
multirate, 101-102, 179 
multirate multistage, 44 
multistage, 26, 39-40 
nonblocking, 32 
n-cube, 65 
not fully accessible, 32 
omega, 65, 67, 69 
one-sided, 24, 39, 82, 85 
one-sided three-stage, 113-115 
one-stage, 27, 63-64 
partially connected, 31 
photonic, 24, 65 
rearrangeable, 33, 58-59, 91, 101, 

144-145, 174, 194, 227 
repackable, 33, 164, 177, 197 
reverse banyan, 66 
single-path, 51 
single-path switching fabric, 28-29 
space-division switching fabric, 29 
standard path, 34, 51, 55 
state, 32, 147 
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symmetrical, 81, 144, 168 
three-stage asymmetrical, 117 
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time-division, 29, 36, 167-168 
tree-type, 61-63, 79-80 
two-sided, 24 
two-sided symmetrical, 39 
two-stage, 81, 92 
two-wire, 27-28 
unidirectional, 27-28 
vertically stacked, 201 
'^-dilated, 31, 47, 66, 68 
wavelength-division, 30 
wide-sense nonblocking, 33, 51 
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with expansion, 28 

fast circuit, 6 
frame, 7 
IP, 22, 78 
manual, 4 
matrix, 22, 51 
multi-channel, 6 
multi-slot, 6, 40 
multirate circuit, 6 

network, 3 
node, 1, 8 
optical, 5, 22, 24, 78 
packet, 1, 7 
photonic, 5 
space-division, 37 
time-division, 10, 9, 37 
time-division switching, 29 
waveband switching, 30 
wavelength-division switching, 30 

Storage Area Network (SAN), 16 
STM - Synchronous Transfer Mode, 5 
Synchronous Digital Hierarchy (SDH), 6 

Telecommunication network, 1 
Telephone exchange, 9 
Terminal, 24 
Time slot, 5, 7, 42 
Transfer mode, 5 

asynchronous (ATM), 5, 7 
packet (PTM), 5, 7 
synchronous (STM), 5 

Translation table, 9 
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