
New Trends in
Software Process

Modeling

Series on Software Engineering A
and Knowledge Engineering

New Trends in
Software Process

IVIodeling

SERIES ON SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING

Series Editor-in-Chief
S K CHANG (University of Pittsburgh, USA)

Vol. 1 Knowledge-Based Software Development for Real-Time Distributed Systems
Jeffrey J.-P. Tsai and Thomas J. Weigert (Univ. Illinois at Chicago)

Vol. 2 Advances in Software Engineering and Knowledge Engineering
edited by Vincenzo Ambriola (Univ. Pisa) and Genoveffa Tortora (Univ. Salerno)

Vol. 3 The Impact of CASE Technology on Software Processes
edited by Daniel E. Cooke (Univ. Texas)

Vol. 4 Software Engineering and Knowledge Engineering: Trends for the Next Decade
edited by W. D. Hurley (Univ. Pittsburgh)

Vol. 5 Intelligent Image Database Systems
edited by S. K. Chang (Univ. Pittsburgh), E. Jungert (Swedish Defence Res.
Establishment) and G. Tortora (Univ. Salerno)

Vol. 6 Object-Oriented Software: Design and Maintenance
edited by Luiz F. Capretz and Miriam A. M. Capretz (Univ. Aizu, Japan)

Vol. 7 Software Visualisation
edited by P. Eades (Univ. Newcastle) and K. Zhang (Macquarie Univ.)

Vol. 8 Image Databases and Multi-Media Search
edited by Arnold W. M. Smeulders (Univ. Amsterdam) and
Ramesh Jain (Univ. California)

Vol. 9 Advances in Distributed Multimedia Systems
edited by S. K. Chang, T. F. Znati (Univ. Pittsburgh) and
S. T. Vuong (Univ. British Columbia)

Vol. 10 Hybrid Parallel Execution Model for Logic-Based Specification Languages
Jeffrey J.-P. Tsai and Bing Li (Univ. Illinois at Chicago)

Vol. 11 Graph Drawing and Applications for Software and Knowledge Engineers
Kozo Sugiyama (Japan Adv. Inst. Science and Technology)

Vol. 12 Lecture Notes on Empirical Software Engineering
edited by N. Juristo and A. M. Moreno (Universidad Politecrica de Madrid,
Spain)

Vol. 13 Data Structures and Algorithms
edited by S. K. Chang (Univ. Pittsburgh, USA)

Vol. 14 Acquisition of Software Engineering Knowledge
SWEEP: An Automatic Programming System Based on Genetic Programming
and Cultural Algorithms
edited by George S. Cowan and Robert G. Reynolds (Wayne State Univ.)

Vol. 15 Image: E-Leaming, Understanding, Information Retrieval and Medical
Proceedings of the First International Workshop
edited by S. Vitulano (Universita di Cagliari, Italy)

Vol. 16 Machine Learning Applications in Software Engineering
edited by Du Zhang (California State Univ.,) and
Jeffrey J. P. Tsai (Univ. Illinois at Chicago)

Vol. 17 Multimedia Databases and Image Communication
Proceedings of the Workshop on MDIC 2004
edited by A. F. Abate, M. Nappi and M. Sebillo (Universita di Salerno)

Vol. 18 New Trends in Software Process Modelling
edited by Silvia T. Acuha (Universidad Autonoma de Madrid, Spain) and
Maria I. Sanchez-Segura (Universidad Carlos III de Madrid, Spain)

Series on Software Engineering
and Knowledge Engineering

editors

Silvia T. Acuna
Universidad Autonoma de Madrid, Spain

Maria I. Sanchez-Segura
Universidad Carlos III de Madrid, Spain

New Trends in
Software Process

Modeling
•

a
El

m
a

a
•

a
0

• n •= "

a T c

c c D „ Q t

a

El
a

IT = D •

a •

Y|? World Scientific
N E W J E R S E Y • L O N D O N • S I N G A P O R E • BEIJING • S H A N G H A I • HONG KONG • TA IPEI • C H E N N A I

Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601

UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Series on Software Engineering and Knowledge Engineering Vol. 18
NEW TRENDS IN SOFTWARE PROCESS MODELING

Copyright © 2006 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.

ISBN 981-256-619-8

Printed in Singapore by World Scientific Printers (S) Pte Ltd

PREFACE

Silvia T. Acuna and Maria I. Sanchez-Segura

Departamento de Ingenieria Informdtica, Escuela Politecnica Superior,
Universidad Autonoma de Madrid

Avenida Tomdsy Valiente 11, 28049 Madrid, Spain
E-mail: silvia.acunna@uam.es

Departamento de Informdtica, Universidad Carlos III de Madrid
Avenida de la Universidad 30, 28911 Leganes, Madrid, Spain

E-mail: misanche@inf.uc3m.es

The software engineering discipline emerged in the 1960s as a
consequence of the need to formalize the way software systems were
developed. Since then a lot of research and development effort has gone
into improving what have come to be termed software process models.
The software process is a set of activities undertaken to manage, develop
and maintain software systems, including the techniques to perform the
tasks, the actors who execute the activities, their roles, constraints and
the artifacts produced. Software process models are an abstraction of the
software process which provides some useful information or insight for
understanding, decision making and for enacting the actual process.
Research in the 1990s was concerned with a variety of: not only
prescriptive but also predictive and understanding-oriented4 models. This
was the consequence of a deeper understanding of the software process
and the widening of the concerns of researchers who wished to
investigate the impact of various organizational, social and economic
factors on the software process.

One of the justifications for researching the software process is the
view that the quality of the process has an impact on the quality of the

V

mailto:silvia.acunna@uam.es
mailto:misanche@inf.uc3m.es

vi Silvia T. Acuna, Maria I. Sdnchez-Segura

software, and that process improvement positively influences the
organization's performance. There are at least two reasons for building,
evaluating and using process models1:

1. To achieve better ways of defining and guiding development,
maintenance and evolution processes.

2. To achieve better ways of improving processes at the level of
individual activities and the process as a whole.

Ever since the earliest days of software process research, the above
two motivations have been at the heart of investigation carried out in this
area3. There has, therefore, been significant progress in the above two
directions, and hence they are not the focus of this book.

Software process modeling has recently been dealing increasingly
with new challenges raised by the tests that the software industry has to
stand such as, for example, the need to produce applications at Internet-
time, pressures for budget cuts and customers who are demanding more
complex software that is easier to use. This book is intended to help in
the dissemination and understanding of new software process model
trends. The new trends covered in this book are related to:

Processes for open source software
Software process simulation for process improvement,
management and decision-support
Peopleware2, that is, the importance of people in the software
process.

In other words, this book is intended to help readers understand the
new software process models that are being developed to successfully
manage new software development trends.

This book is structured as follows. The opening chapter explains an
experience of implementing a process model for open source software.
This is followed by three chapters (chapters 2, 3 and 4) that present the
concept of the system dynamics approach to software processes
improvement. Chapter 5 focuses on the new concept of people-oriented
processes and what tools are available to support the enactment of these
processes. Finally, chapter 6 recalls experience from describing the
process model called E3 and the software system that supports this
process model.

New Trends in Software Process Modeling VI1

The discovery and building of process models for addressing new
software development trends is known to be a long and costly process.
Even so technological progress and the changing demands of today's
society mean that the discovery and construction of new process models
are always hot topics of research. One such new software development
trend is the development of open source software. As such projects are a
recent phenomena, the process models describing this type of
development are not well known. The purpose of chapter 1 then is to
present a set of techniques for discovering, modeling, analyzing and
simulating software development processes carried out in large open
source software development projects based on public information
accessible over the Web. Additionally, as an example of their
applicability, the results of applying the defined techniques to a project
with the above-mentioned characteristics, called NetBeans, are
presented.

Simulation and dynamic modeling have been widely used as process
improvement tools in industry. In recent years, this trend has also spread
to the field of software process improvement. Hence, chapters 2, 3 and 4
focus on the description of work related to the use of simulation and
dynamic modeling techniques in software processes.

Chapter 2 presents a process framework that combines traditional
techniques with process modeling and simulation techniques that support
a qualitative and quantitative evaluation of the development process.
This evaluation can be used to improve the software process, and is also
a decision-making aid. The use of this framework can help software
organizations achieve a higher process capability following to SEI's
CMM (Capability Maturity Model)5.

Chapter 3 includes a survey of the main process simulation
applications since the 1990s. Additionally, this chapter describes IMMoS
(Integrated Measurement Modeling and Simulation)6, a method for
developing goal-oriented dynamic simulation models. By way of an
illustration of the applicability of the IMMoS model, several cases of
software process simulation models that were developed to support
learning and decision making in software organizations within the
automobile manufacturing industry are described.

viii Silvia T. Acuna, Maria I. Sdnchez-Segura

Chapter 4 presents an approach based on high level modeling for
software projects. This approach separates the description of a particular
project from the knowledge embedded in a software project model. The
aim is to make useful complex system dynamics-based models that are
built and adapted not only by experts but also by practitioners. Along
these lines, this chapter describes a modeling and simulation process for
system dynamics that allows the development of domain models and
their specialization for particular problems.

Chapter 5 addresses software development by means of people-
oriented process models. These models have turned out to be very
beneficial because they improve the quality of the interaction between
people and processes. The chapter is divided into three parts focusing on
the capture, visualization and use of the information by the people
involved in the software development process. With respect to
information capture, this chapter describes different knowledge process
types and discusses the application of the GQM (Goal Question Metric)
paradigm for data collection and/or to measure the particular process for
which the data are captured. As regards the part of the process model
related to the visualization of the information needed by each developer
involved in a particular process, the generation of documents, role-based
workspaces and control centers for software development are discussed.
The use of the captured information is another important issue and is
illustrated by discussing aspects concerning the management of previous
experiences to assure that each experience can improve future
development processes.

Chapter 6 provides input for readers interested in learning about the
evolution of process models. This chapter examines the evolution of an
existing process model (E3) and the software system that supports this
model, called the E3 system. E3 is a process model conceived to provide
help for process/project managers, who construct and maintain models,
and for practitioners, who use software process models. The chapter is a
post-mortem analysis of the decisions that led to the E3 system
requirements definition and gives insight into what principles any
process model should follow if it is to remain useful years after being
initially conceived.

New Trends in Software Process Modeling ix

Acknowledgments

We would like to thank all the authors of the submitted chapters whose
research has made this edited book possible. Particular thanks are due to
Rachel Elliott who assembled the material and ensured that the
presentation was consistent. We are especially grateful to Natalia Juristo
and Juan F. Ramil for comments about the preface. We are also deeply
indebted to Jens Heidrich, Chris Jensen, Claudia Maria Lima Werner,
Jiirgen Munch, Marcio De Oliveira Barros, Rodion M. Podorozhny,
Isabel Ramos, Giinther Ruhe, Mercedes Ruiz and Guilherme Horta
Travassos for helping us to improve the chapters of this book.

References

1. Acuna, S.T. and N. Juristo. Software Process Modeling, International Series
in Software Engineering, Vol. 10, Springer, NY, 2005.

2. DeMarco, T. and T. Lister. Peopleware: Productive Projects and Teams,
2nd ed. Dorset House, NY, 1999.

3. Derniame, J.C., B.A. Kaba and D. Wastell (Eds.). Software Process:
Principles, Methodology and Technology, Lecture Notes in Computer
Science 1500, Springer, Berlin, 1999.

4. Kellner, M.I., R.J. Madachy and D.M. Raffo. Software Process Simulation
Modeling: Why? What? How?, Journal of Systems and Software, 46, 2-3,
91-105, 1999.

5. Paulk, M.C., B. Curtis, M.B. Chrissis and C.V. Weber. The Capability
Maturity Model for Software, Version 1.1, IEEE Software, 10, 4, 18-27,
1993.

6. Pfahl, D. and G. Ruhe. IMMoS: A Methodology for Integrated
Measurement, Modeling, and Simulation, Software Process Improvement
and Practice, 7, 189-210, 2002.

This page is intentionally left blank

CONTENTS

Preface vii

Discovering, Modeling, and Re-enacting Open Source Software 1
Development Processes: A Case Study

Chris Jensen, Walt Scacchi

Software Process Dynamics: Modeling, Simulation and 21
Improvement

Mercedes Ruiz, Isabel Ramos, Miguel Toro

Software Process Simulation with System Dynamics — A Tool for 57
Learning and Decision Support

Dietmar Pfahl, Giinther Ruhe, Karl Lebsanft,
Michael Stupperich

High Level Software Project Modeling with System Dynamics 91
Mdrcio De Oliveira Barros, Claudia Maria Lima Werner,
Guilherme Horta Travassos

People-Oriented Capture, Display, and Use of Process Information 121
Jens Heidrich, Jiirgen Munch, William Riddle,
Dieter Rombach

Requirements and Validation of the E3 Process Modeling System 181
Letizia Jaccheri

Index 203

XI

Chapter 1

DISCOVERING, MODELING, AND RE-ENACTING OPEN
SOURCE SOFTWARE DEVELOPMENT PROCESSES: A CASE

STUDY

Chris Jensen and Walt Scacchi

Institute for Software Research
Donald Bren School of Information and Computer Science

University of California, Irvine
Irvine, CA USA 92697-3425

Email: fcjensen, wscacchij@ics.uci.edu

Software process discovery has historically been a labor and time
intensive task, either done through exhaustive empirical studies or in an
automated fashion using techniques such as logging and analysis of
command shell operations. While empirical studies have been fruitful,
data collection has proven to be tedious and time consuming. Existing
automated approaches have very detailed, low level but not rich results.
We are interested in process discovery in large, globally distributed
organizations such as the NetBeans open source software development
community, which currently engages over twenty thousand developers
distributed over several continents working collaboratively, sometimes
across several stages of the software lifecycle in parallel. This presents
a challenge for those who want to join the community and participate
in, as well as for those who want to understand these processes. This
chapter discusses our efforts to discover selected open source processes
in the NetBeans community. We employ a number of data gathering
techniques ranging from ethnographic to semi-structured to formal,
computational models, which were fed back to the community for
further evaluation. Along the way, we discuss collecting, analyzing, and
modeling the data, as well as lessons learned from our experiences.

1

mailto:wscacchij@ics.uci.edu

2 C. Jensen, W. Scacchi

1. Introduction

The Peopleware vision is an attempt to provide insight into the social
qualities of project management that may lead to project success or
failure. In a similar sense, open source software development (OSSD)
has been effective in providing online social workscapes that have
become the focus of attention in industry and research conferences alike.
However, in order to understand and participate in these processes,
people new to these processes must first discover what they are and how
they operate. The goal of our work is to develop new techniques for
discovering, modeling, analyzing, and simulating software development
processes based on information, artifacts, events, and contexts that can be
observed through public information sources on the Web. Our problem
domain examines processes in large, globally dispersed OSSD projects,
such as those associated with the Mozilla Web browser, Apache Web
server , and Java-based integrated development environments for
creating Web applications like NetBeans2 and Eclipse3. The challenge
we face is similar to what prospective developers and corporate sponsors
who want to join a given OSSD project face, and thus our efforts should
yield practical results.

Process models are prescriptive if they state what activities should be
done or proscriptive if they describe what activities could be done. With
process discovery, our task is to create descriptive models by determining
what activities have been done. OSSD projects, however, do not typically
employ or provide explicit process model prescriptions, proscriptions,
descriptions, or schemes other than what may be implicit in the use of
certain OSSD tools for version control and source code compilation. In
contrast, we seek to demonstrate the feasibility of automating the
discovery of software process workflows in projects like NetBeans by
computer-assisted search and analysis of the project's content, structure,
update and usage patterns associated with their Web information spaces.
These spaces include process enactment information such as informal
task prescriptions, community and information structure and work roles,
project and product development histories, electronic messages and
communications patterns among project participants4' 5' 6. Similarly,
events that denote updates to these sources are also publicly accessible,

Discovering, Modeling, and Re-enacting OSSD Processes: A Case Study 3

and thus suitable for analysis. Though traditional ethnographic
approaches to software process discovery7 net a wealth of information
with which to model, simulate, and analyze OSSD processes, they are
time and labor-intensive. As a result, they do not scale well to the study
of multiple OSSD development projects of diverse types in a timely
manner. Subsequently, this suggests the need for a more automated
approach that can facilitate process discovery.

In our approach, we examine three types of information in the course
of discovering and modeling OSSD processes. First are the kinds of
OSSD artifacts (source code files, messages posted on public discussion
forums, Web pages, etc.). Second are the artifact update events (version
release announcements, Web page updates, message postings, etc.). Third
are work contexts (roadmap for software version releases, Web site
architecture, communications systems used for email, forums, instant
messaging, etc.) that can be detected, observed, or extracted across the
Web. Though such an approach clearly cannot observe the entire range of
software development processes underway in an OSSD project (nor do
we seek to observe or collect data on private communications), it does
draw attention to what can be publicly observed, modeled, or re-enacted
at a distance.

Our approach relies on use of a process meta-model to provide a
reference model that associates these data with software processes and
process models8. Whereas the meta-model describes the attributes of
process events and how they may be arranged (i.e. the language of the
process), the reference model describes types and known instances of
those attributes. As such, we have been investigating what kinds of
processing capabilities and tools can be applied to support the automated
discovery and modeling of selected software processes (e.g., for daily
software build and periodic release) that are common among many
OSSD projects. The capabilities and tools include those for Internet-
based event notification, Web-based data mining and knowledge
discovery, and previous results from process discovery studies. However,
in this study, we focus on identifying the foundations for discovering,
modeling, and re-enacting OSSD processes that can be found in a large,
global OSSD project using a variety of techniques and tools.

4 C. Jensen, W. Scacchi

2. Related Work

Process event notification systems have been used in many contexts,
including process discovery and analysis9' 10. However, of the systems
promising automated event notification, many require process performers
to obtain, install, and use event monitoring applications on their own
machines to detect when events occur. While yielding mildly fruitful
results, this approach is undesirable for several reasons, including the
need to install and integrate remote data collection mechanisms with
local software development tools.

Prior work in process event notification has also been focused on
information collected from command shell histories, applying inference
techniques to construct process model fragments from event patterns11.
They advise that rather than seeking to discover the entire development
process, to instead focus on creating partial process specifications that
may overlap with one another. This also reflects variability in software
process enactment across iterations. This imparts additional
inconvenience on the user and relies on her/his willingness to use the
particular tools that monitor and analyze command shell events. By
doing so, the number of process performers for whom data is collected
may be reduced well below the number of participants in the project due
to privacy concerns and the hassles of becoming involved. While closed
source software engineering organizations may mediate this challenge by
leveraging company policies, OSSD projects lack the ability to enforce
or the interest to adopt such event capture technology.

Recently, there have been a number of developments focused on
mining software repositories12' B. While these have yielded interesting
insights into patterns of software development in OSSD communities,
most of the work has focused on low-level social network analysis of
artifacts and agents of software development rather than processes of
software development.

Lastly, while process research has yielded many alternative views of
software process models, none has yet been proven decisive or clearly
superior. Nonetheless, contemporary research in software process
technology, such as Lil Jil process programming language14' 15 and the
PML process modeling and enactment language16, argues for analytical,

Discovering, Modeling, and Re-enacting OSSD Processes: A Case Study 5

visual, navigational and enactable representations of software processes.
Subsequently, we find it fruitful to convey our findings about software
processes, and the contexts in which they occur, using a mix of both
informal and formal representations of these kinds. Thus, we employ this
practice here.

3. Problem Domain

We are interested in discovering, modeling, and simulating re-enactment
of software development processes in large, Web-based OSSD projects.
Such projects are often globally distributed efforts sometimes involving
hundreds or thousands of developers collaborating on products
constituting thousands to millions of source lines of code without
meeting face-to-face, and often without performing modern methods for
software engineering5. Past approaches have shown process discovery to
be difficult, yielding limited results. However, the discovery methods we
use are not random probes in the dark. Instead, we capitalize on
contextual aids offered by the domain and captured in the process
reference model. Some of these include:

• Web pages, including project status reports and task assignments
• Asynchronous communications among project participants posted in

threaded email discussion lists
• Transcripts of synchronous communication via Internet chat
• Software problem/bug and issue reports
• Testing scripts and results
• Community newsletters
• Web accessible software product source code directories
• Software system builds (executable binaries) and distribution

packages
• OSS development tools in use in an OSSD project
• OSS development resources, including other software development

artifacts.

Each OSSD project has locally established methods of interaction
and communication, whether explicit or implicit5'6. These collaboration
modes yield a high amount of empirically observable process evidence,

6 C. Jensen, W. Scacchi

as well as a large degree of unrelated data. However, information spaces
are also dynamic. New artifacts are added, while existing ones are
updated, removed, renamed and relocated, else left to become outdated.
Artifact or object contents change, and project Web sites get restructured.
In order to capture the history of process evolution, these changes need
to be made persistent and shared with new OSSD project members. While
code repositories and project email discussion archives have achieved
widespread use, it is less common for other artifacts, such as instant
messaging and chat transcripts, to be archived in a publicly available
venue. Nonetheless, when discovering a process in progress, changes can
de detected through comparison of artifacts at different time slices during
the development lifecycle. At times, the detail of the changes is
beneficial, and at other times, simply knowing what has changed and
when is all that is important to determining the order (or control flow
sequence) of process events or activity. To be successful, tools for
process discovery must be able to efficiently access, collect, and analyze
the data across the project Web space. Such data includes public
email/mailing list message boards, Web page updates, notifications of
software builds/releases, and software bug archives in terms of changes
to the OSS information space5'6.

How the project organizes its information space may indicate what
types of artifacts they generate. For example, a project Web page
containing a public file directory named "x-test-results" can be examined
to determine whether there is evidence that some sort of testing
(including references to test cases and test results) has been conducted.
Furthermore, timestamps associated with file, object, or Web page
updates provide a sense of recent activity and information sharing.
Similarly, when new branches in the Web site are added, we may be able
to detect changes in the process or discover previously unknown
activities. Elsewhere, the types of artifacts available on the site can
provide insight into the project development process. Further
investigation may excavate a file named "qa-functional-full" under the
"x-test-results" directory, indicating that that functional testing has been
performed on the entire system. Likewise, given a graphic image file (a
Web-compatible image map) and its name or location within the site

Discovering, Modeling, and Re-enacting OSSD Processes: A Case Study 7

structure, we may be able to determine that an image named
"roadmap2003" may show the progression that the project has made
through the year of 2003, as well as future development milestones. This
process "footprint" tells us that the some informal planning has been
done. In some cases, artifacts containing explicit process fragments have
been discovered, which may then be validated against the discovered
process to determine whether the project is enacting the process as
described. Whereas structure and content can tell us what types of
activities have been performed, monitoring interaction patterns can tell
us how often they are performed and what activities the project views as
more essential to development and which are peripheral.

4. Field Site and Process Description

To demonstrate the viability of our process discovery approach, we
describe how we apply it through a case study. For this task, we examine
a selected process in the NetBeans2 OSSD project. The NetBeans project
started in 1996 as a student project before being picked up and
subsequently made an OSSD project by Sun Microsystems. The
NetBeans project community is now an effort combining dozens of
organizations (4 distributing releases, 42 writing extensions, and 21
building tools based on the NetBeans platform)' and boasts of over one
hundred thousand developers around the globe2. The scale of the project
thus necessitates developers to transparently coordinate their efforts and
results in a manner that can be accessed and persist on the community
Web site. As demonstrated in the previous section, this coordination
evidence forms the basis from which processes may be identified and
observed.

The requirements assertion and release process was chosen for study
because its activities have short duration, are frequently enacted, and
have a propensity for available evidence that could potentially be
extracted using automated technologies. The process was discovered,
modeled informally and formally, then prototyped for analysis and re-

' http://www.netbeans.org/about/third-party.html, as of October 2004
2 http://www.netbeans.Org/community/news/index.html#494, as of October 2004

http://www.netbeans.org/about/third-party.html
http://www.netbeans.Org/community/news/index.html%23494

8 C. Jensen, W. Scacchi

enactment. The next two sections describe the methods we use to
discover, model, and re-enact the requirements and release process found
in the NetBeans OSSD project. Along the way, we present descriptions
of the process under study using informal, semi-structured, and formal
models, and the formal models are then further analyzed through a
process enactment simulator we use for process re-enactment. Process
re-enactment in turn allows us to further validate our models, as well as
serve to refine and improve the discovered processes as feedback to the
OSSD project in the study on possible process improvement
opportunities.

5. Process Discovery and Modeling

The discovery and modeling approach used in this case study consisted
of defining the process meta-model and reference model for the selected
process, as described above. Next, we gathered data from the community
Web, indexing it according to the reference model with an off-the-shelf
search engine and correlating it based on its structure, content, and
update context (usage data being unavailable for this project). Our
experience has shown that it is best to view process discovery and
modeling as a progressive activity. That is, we utilize several models at
different levels of abstraction that become progressively more formal.
The first of these depicts activity scenarios that reflect the correlation of
tools, resources, and agents in the performance of development activities
(i.e. instances of the attributes of the process meta-model). These are then
refined into a flow graph illustrating more concretely, the order in which
the activity scenarios are performed and lastly, a formal, computational
process model. Moreover, progressive discovery can reduce collection of
unrelated "noisy" process data by using coarsely grained data to direct
the focus of discovery of more finely grained data.

As our results stem from empirical observations of publicly available
artifacts of the NetBeans community Web, they face certain threats to
validity. Cook et al.17 demonstrated the validity of using the kinds of
observations described above in terms of constructing process models, as
well as showing internal and external consistency. Unlike Cook and
Wolf, we apply a priori knowledge of software development to

Discovering, Modeling, and Re-enacting OSSD Processes: A Case Study 9

discovering processes. Instead of randomly probing the information
space, we use the reference model to help locate and identify possible
indicators that a given activity has occurred. This reference model was
devised through a review of several open source communities (NetBeans,
Mozilla, and Apache, among others). However, it must be updated to
reflect the evolution of the types (and names) of tools, activities, roles,
and resources in OSSD, in particular those of the particular community
subject to process discovery to maintain the validity of our methodology.
The full results of our case study may be found in18. Subsequent
discovery of our study by the community and our discussions with
prominent community members that followed verified our results and
provided additional insight. This feedback allows both process modelers
and process participants opportunities for mutual improvement of
methods and the outputs they produce (i.e. process modeling techniques
and process models, as well as software development processes and
software products). The discussion of our process discovery and
modeling methods and results follows next.

The discovery of processes within a specific OSSD project begins
with a cursory examination of the project Web space in order to ascertain
what types of information are available and where that information might
be located within the project Web. The information gathered here is used
to configure the OSSD process reference model19. This framework
provides a mapping between the tool, resource, activity, and role names
discovered in the community Web with a classification scheme of known
tools, resources, activities, and roles used in open source communities.
This step is essential to permit association of terms such as "CVS" with
source versioning systems, which have certain implications in the
context of development processes. The project site map provided not
only a breakdown of project Web pages within each section, but also a
timestamp of the latest update. This timestamp provides empirical
evidence gathered from project content that reflects the process as it is
currently enacted, rather than what it has evolved from.

Guided by our framework, searching the "about" sub-section of the
project Web site provided information on the NetBeans technologies
under development, as well as the project structure (e.g., developer roles,

10 C. Jensen, W. Scacchi

key development tasks, designated file-sharing repositories, and file
directories) and the nature of its open source status. This project structure
is a basis for understanding current development practices. However, it
also details ways for outsiders to become involved in development and
the community at large5. The modes of contribution can be used to
construct an initial set of activity scenarios, which can be described as
use cases for project or process participation.

Though best known as a tenet of the unified modeling language
(UML), use cases can serve as a notation to model scenarios of activities
performed by actors in some role20'7. The site map also shows a page
dedicated to project governance hyperlinked three layers deep within the
site. This page exposes the primary member types, their roles and
responsibilities, which suggest additional use cases. Unlike those found
through the modes of contribution, the project roles span the breadth of
the process, though at a higher level of abstraction. Each use case can
encode a process fragment. In collecting use cases, we can extract out
concrete actions that can then be assembled into a process description to
be modeled, simulated, and enacted.

When aggregated, these use cases can be coalesced into an informal
model of a process and its context rendered as a rich interactive
hypermedia, a semi-structured extension of Monk and Howard's2' rich
picture modeling construct. The rich hypermedia shown in Figure 1
identifies developer roles, tools, concerns, and artifacts of development
and their interaction, which are hyperlinked (indicated as underlined
phrases) to corresponding use cases and object/role descriptions (see
Figure 2). Such an informal computational model can be useful for
newcomers to the community looking to become involved in
development and offers an overview of the process and its context in the
project, while abstracting away the detail of its activities. The use cases
also help identify the requirements for enacting or re-enacting the process
as a basis for validating, adapting, or improving the process.

http://www.netbeans.org/community/contribute, as of June 2004

http://www.netbeans.org/community/contribute

Discovering, Modeling, and Re-enacting OSSD Processes: A Case Study 11

#.V/w

Lull-: to filf tVe C.Kf: Liufc to Tools

Figure 1. A hyperlmked rich hypermedia of the NetBeans requirements and release
process18

IgftW

' ' - •%. - V , -f_

6 Testf Builds

• The QA team tes ts tlue latest rightly builds
every Friday

• QA team executes a set of manual tests on
the builds as well as s ome sanity checks

• Test results are categorized as
- Bug Types

• User Coratrairs:
- The tests deperd an the manial tests

specification
• System Cotatraiis:

- Not al bugs may be identified

Figure 2. A hyperlink selection within a rich hypermedia presentation that reveals a
corresponding use case

12 C. Jensen, W. Scacchi

A critical challenge in reconstructing process fragments from a
process enactment instance is in knowing whether or not the evidence at
hand is related, unrelated, or anomalous. The frequency of association
and the relevance of artifacts carrying the association may strengthen the
reliability of associations constructed in this fashion. If text extraction
tools are used to discover elements of process fragments, they must also
note the context in which they are located to determine this relevance.
One way to do this is using the physical structure of the community Web
site (i.e. its directory structure), as well as the logical structure of the
referencing/referenced artifacts (the site's information architecture). In
the NetBeans quality assurance (Q-Build) testing example, we can relate
the "defects by priority" graph on the defect summary page4 to the defect
priority results from the Q-Build verification. Likewise, the defect tallies
and locations correlate to the error summaries in the automated testing
(XTest) results5. By looking at the filename and creation dates of the
defect graphs, we know which sets of results are charted and how often
they are generated. This, in turn, identifies the length of the defect chart
generation process, and how often it is executed. The granularity of
process discovered can be tuned by adjusting the search depth and the
degree of inference to apply to the data gathered. An informal visual
representation of the artifacts that flow through the requirements and
release process is shown in Figure 3.

These process fragments can now be assembled into a formal PML
description of the selected processes16. Constructing such a process
model is facilitated and guided by use of an explicit process meta-
model8. Using the PML grammar and software process meta-model, we
created an ontology for process description with the Protege-2000
modeling tool22.

The PML model builds from the use cases depicted in the rich
hypermedia, then distills from them a set of actions or sub-processes that
comprise the process with its corresponding actor roles, tools, and
resources and the flow sequence in which they occur. A sample result of
this appears in Figure 4.

4 http://qa.netbeans.org/bugzilla/graphs/summary.html as of March 2004
5 http://www.netbeans.org/download/xtest-results/index.html as or March 2004

http://qa.netbeans.org/bugzilla/graphs/summary.html
http://www.netbeans.org/download/xtest-results/index.html

Discovering, Modeling, and Re-enacting OSSD Processes: A Case Study 13

Board member Release Manager Module maintainer

Figure 3. NetBeans Requirements and Release process flow graph

6. Process Re-enactment for Deployment, Validation, and
Improvement

Since their success relies heavily on broad, open-ended participation,
OSSD projects often have informal descriptions of ways members can
participate, as well as offering prescriptions for community building5.
Although automatically recognizing and modeling process enactment
guidelines or policies from such prescriptions may seem a holy grail of
sorts for process discovery, there is no assurance that they accurately
reflect the process as it is enacted. However, taken with the discovered
process, such prescriptions begin to make it possible to perform basic
process validation and conformance analysis by reconciling developer
roles, affected artifacts, and tools being used within and across modeled
processes or process fragments23.

14 C. Jensen, W. Scacchi

1. sequence Test {
2. action Execute automatic test scripts {
3. requires { Test scripts, release binaries }
4. provides { Test results }
5. tool { Automated test suite (xtest, others) }
6. agent { Sun ONE Studio QA team }

v. }
8. action Execute manual test scripts {
9. requires { Release binaries }
10. provides { Test results }
11. tool { NetBeans IDE }
12. agent { users, developers, Sun ONE Studio QA team,

Sun ONE Studio developers }
13. }
14. iteration Update Issuezilla {
15. action Report issues to Issuezilla {
16. requires { Test results }
17. provides { Issuezilla entry }
18. tool { Web browser }
19. agent { users, developers, Sun ONE Studio QA

team, Sun ONE Studio developers }
20. }
21. action Update standing issue status {
22. requires { Standing issue from Issuezilla, test

results }
23 . provides { Updated Issuezilla issue repository }
24. tool { Web browser }
25. agent { users, developers, Sun ONE Studio QA

team, Sun ONE Studio developers }
26. }
27. }
28. action Post bug stats {
29. requires { Test results }
30. provides { Bug status report, test result report }
31. tool { Web editor, JFreeChart }
32 . agent { Release manager }
33 . }
34. \

Figure 4. A PML description of the testing sequence of the NetBeans release process

Discovering, Modeling, and Re-enacting OSSD Processes: A Case Study 15

As hinted earlier, because OSSD projects are open to contributions
from afar, it also becomes possible to contribute explicit models of
discovered processes back to the project under study so that project
participants can openly review, independently validate, refine, adapt or
otherwise improve their own software processes. Accordingly, we have
contributed our process models and analyses of the NetBeans
requirements and release process in the form of a public report advertised
on the NetBeans.org Web site6.

Process re-enactment allows us to simulate or prototype process
enactments by navigationally traversing a semantic hypertext
representation of the process16' 24. These re-enactment prototypes are
automatically derived from a compilation of their corresponding PML
process model16. One step in the process modeled for NetBeans appears
in Figure 5.

ReportlssuesTolssueziila
S!*1B: NOMt

ftsfjet! K*wt> 1<atijAy •

Figure 5. An action step in the re-enactment of the NetBeans requirements and release
process

* See http://www.netbeans.org/community/articles/UCI_papers.html, as of October 2004

http://NetBeans.org
http://www.netbeans.org/community/articles/UCI_papers.html

16 C. Jensen, W. Scacchi

In exercising repeated process re-enactment walkthroughs, we have
been able to detect process fragments that may be unduly lengthy, which
may serve as good candidates for streamlining and process redesign24.
Process re-enactment also allows us, as well as participants in the global
NetBeans project, to better see the effects of their duplicated work. As
an example, we have four agent types that test code. Users may carry out
beta testing from a black box perspective, whereas developers,
contributors, and SUN Microsystems QA experts may perform more in-
depth white-box testing and analysis. In the case of developers and
contributors, they will not merely submit a bug report or unsuccessful
testing result to the IssueZilla issue tracking system,7 but may also take
responsibility for resolving it.

However, is it really necessary to have so many people doing such
similar work? While, in this case, the benefits of having more eyes on
the problem may justify the costs of involvement (which is voluntary,
anyway), in other cases, it may be less clear.

We are also able to detect where cycles or particular activities may
be problematic for participants, and thus where process redesign may be
of practical value24. Process re-enactments can also be treated as process
prototypes in order to interactively analyze whether or how altering a
process may lead to potential pitfalls that can be discovered before being
deployed. Over the course of constructing and executing our prototype
we discovered some concrete reasons for why there are few volunteers
for the release manager position. The role has an exceptional amount of
tedious administrative tasks. However, as these tasks are critical to the
success of the project it might be more effective to distribute these tasks
to others.

Between scheduling the release, coordinating module stabilization,
and carrying out the build process, the release manager has a hand in
almost every part of the requirements and release process. This is a good
indication that downstream activities may also uncover a way to better
distribute the tasks and lighten her/his load.

The self-selective nature of OSSD project participation has many
impacts on the development process in use. If any member does not want

7 See http://www.netbeans.org/kb/articles/issuezilla.html, as of March 2004

http://www.netbeans.org/kb/articles/issuezilla.html

Discovering, Modeling, and Re-enacting OSSD Processes: A Case Study 17

to follow a given process, the enforcement of the process is contingent on
the tolerance of her/his peers in the matter, which is rarely the case in
corporate development processes. If the project proves intolerant of the
alternative process, developers are free to simply not participate in the
project's development efforts and perform an independent software
release build.

7. Conclusion

Our desire is to obtain and model process execution data and event
streams by monitoring the Web information spaces of open source
software development projects. By examining changes to the information
space and artifacts within it, we can observe, derive, or otherwise
discover process activities. In turn, we reconstitute and abstract process
instances into PML16, which provides us with a formal description of an
enactable, low-fidelity model of the process in question. Such a formal
process model can be analyzed, simulated, redesigned, and refined for
reuse and redistribution. But this progress still begs the question of how
to more fully automate the discovery and modeling of processes found in
large, global scale OSSD projects.

Our experience with process discovery in the NetBeans project, and
its requirements and release process, suggests that a bottom-up strategy
for process discovery, together with a top-down process meta-model
acting as a reference model, can serve as a suitable framework for
process discovery, modeling and re-enactment. As demonstrated in the
testing activity example, action sequences are constructed much like a
jigsaw puzzle. We compile pieces of evidence to find ways to fit them
together in order to make claims about process enactment events,
artifacts, or circumstances that may not be obvious from the individual
pieces. We find that these pieces may be unearthed in ways that can be
executed by software tools that are guided by human assistance25.

The approach to discovery, modeling, and re-enactment described in
this chapter relies on a variety of informal and formal process
representations. We constructed use cases and rich hypermedia pictures
as informal process descriptions, flow graphs as informal but semi-
structured process representations which we transformed into a formal

18 C. Jensen, W. Scacchi

process representation language guided by a process meta-model and
support tools. These informal representations together with a process
meta-model then provide a basis for constructing formal process
descriptions. Thus demonstration of a more automated process discovery,
modeling, and re-enactment environment that integrates these capabilities
and mechanisms into a more streamlined and more automated
environment is the next step in this research. We anticipate that such an
environment will yield additional venues for tool assistance in process
data collection and analysis.

Finally, it is important to recognize that large OSSD projects are
diverse in the form and practice of their software development processes.
Our long-term goal in this research is to determine how to best support a
more fully automated approach to process discovery, modeling and re-
enactment. Our study provides a case study of a real-world process in a
complex global OSSD project to demonstrate the feasibility of such an
approach. Subsequently, questions remain as to which OSSD processes
are most amenable to such an approach, and which are likely to be of
high value to the host project or other similar projects. Furthermore, we
need to establish whether all or only some OSSD projects are more/less
amenable to such discovery and modeling given the richness/paucity of
their project information space and diversity of artifacts. As government
agencies, academic institutions and industrial firms all begin to consider
or invest resources into the development of large OSS systems, then they
will seek to find what the best OSSD processes are, or what OSSD
practices to follow. Thus discovery and explicit modeling of OSSD
processes in forms that can be shared, reviewed, modified, re-enacted,
and redistributed appears to be an important topic for further
investigation, and this study represents a step in this direction.

Acknowledgements

The research described in this report is supported by grants from the
National Science Foundation #0083075, #0205679, #0205724, and
#0350754. No endorsement implied. Mark Ackerman at the University
of Michigan Ann Arbor; Les Gasser at the University of Illinois, Urbana-
Champaign; John Noll at Santa Clara University; Margaret Elliott and

Discovering, Modeling, and Re-enacting OSSD Processes: A Case Study 19

others at the UCI Institute for Software Research are collaborators on the
research described in this paper.

References

1. Mockus, A., Fielding, R. and Herbsleb, J. 2002. Two Case Studies in Open Source
Software Development: Apache and Mozilla, ACM Trans. Software Engineering
and Methodology, 11(3), 309-346.

2. NetBeans Open Source Project, 2003. http://www.netbeans.org
3. Eclipse Web Site, 2003. http://www.eclipse.org
4. Elliott, M. and Scacchi, W. 2004. Free Software Development: Cooperation and

Conflict in A Virtual Organizational Culture, in S. Koch (ed.), Free/Open Source
Software Development, Idea Publishing.

5. Scacchi, W. 2002. Understanding the Requirements for Developing Open Source
Software Systems, IEE Proceedings—Software, 149(1), 25-39.

6. Scacchi, W. 2004. Free/Open Source Software Development Practices in the Game
Community, IEEE Software, 21(1), 59-67, Jan-Feb. 2004.

7. Viller, S. and Sommerville, I. 2000. Ethnographically Informed Analysis for
Software Engineers, Intern. J. Human-Computer Interaction, 53, 169-196.

8. Mi, P. and Scacchi, W. 1996. A Meta-Model for Formulating Knowledge-Based
Models of Software Development, Decision Support Systems, 17(4), 313-330.

9. Cook, J. and Wolf, A.L. 1998. Discovering Models of Software Processes from
Event-Based Data, ACM Trans. Software Engineering and Methodology, 7(3), 215-
249.

10. Wolf, A.L. and Rosenblum, D.S. 1993. A Study in Software Process Data Capture
and Analysis, Proc. Second Intern. Conf. on the Software Process, 115-124, IEEE
Computer Society.

11. Garg, P.K. and Bhansali, S. 1992. Process programming by hindsight, Proc. 141h

Intern. Conf. Software Engineering, 280-293.
12. Sandusky, R., Gasser, L., and Ripoche, G. 2004. Bug Report Networks: Varieties,

Strategies, and Impacts in a F/OSS Development Community, Proc. MSR '04
Workshop, Edinburgh, Scotland, May 2004.

13. Lopez-Fernandez, L., Robles, G., Gonzalez-Barahona, J. 2004. Applying Social
Network Analysis to the Information in CVS Repositories, Proc. MSR'04
Workshop, Edinburgh, Scotland, May 2004.

14. Cass, A.G., Lerner, B., McCall, E., Osterweil, L. and Wise, A. 2000. Little
JIL/Juliette: A process definition language and interpreter, Proc. 22nd Intern. Conf.
Software Engineering, 754-757, Limerick, Ireland, June.

15. Osterweil, L. 2003. Modeling Processes to Effectively Reason about their
Properties, Proc. ProSim'03 Workshop, Portland, OR, May 2003.

http://www.netbeans.org
http://www.eclipse.org

20 C. Jensen, W. Scacchi

16. Noll, J. and Scacchi, W. 2001. Specifying Process Oriented Hypertext for
Organizational Computing, Journal of Network and Computer Applications, 24 39-
61.

17. Cook, J., Votta, L. and Wolf, A.L. 1998. Cost-Effective Analysis of In-Place
Software Processes, IEEE Transactions on Software Engineering, 24(8), 650-663.

18. Oza, M., Nistor, E., Hu, S. Jensen, C. and Scacchi, W. 2002. A First Look at the
Netbeans Requirements and Release Process.
http://www.ics.uci.edu/cjensen/papers/FirstLookNetBeans/

19. Jensen, C. and Scacchi, W. 2003. Applying a Reference Framework to Open Source
Software Process Discovery, Proc. Is' Workshop on Open Source in an Industrial
Context, OOPSLA-OSIC03, Anaheim, CA, October 2003.

20. Fowler, M. and Scott, K. 2000. UML Distilled: A Brief Guide to the Standard
Object Modeling Language. Second Ed. Addison Wesley: Reading, MA.

21. Monk, A. and Howard, S. 1998. The Rich Picture: A Tool for Reasoning about
Work Context. Interactions, 21-30, March-April 1998.

22. Noy, N.F., Sintek, M., Decker, S., Crubezy, M., Fergerson, R.W. and Musen, M.A.
2001. Creating Semantic Web Contents with Protege-2000, IEEE Intelligent
Systems, 16(2), 60-71.

23. Podorozhny, R.M., Perry, D.E. and Osterweil, L. 2003. Artifact-based Functional
Comparison of Software Processes, Proc. ProSim '03 Workshop, Portland, OR, May
2003.

24. Scacchi, W. 2000. Understanding Software Process Redesign using Modeling,
Analysis, and Simulation, Software Process—Improvement and Practice, 5(2/3),
183-195.

25. Jensen, C. and Scacchi, W. 2004. Data Mining for Software Process Discovery in
Open Source Software Development Communities, submitted for publication.

http://www.ics.uci.edu/cjensen/papers/FirstLookNetBeans/

Chapter 2

SOFTWARE PROCESS DYNAMICS: MODELING,
SIMULATION AND IMPROVEMENT

Mercedes Ruiz^, Isabel Ramos*, Miguel Toro*

Department of Computer Languages and Systems
Escuela Superior de Ingenieria

C/ Chile, 1. 11003- Cadiz (Spain)
1Escuela Tecnica Superior de Ingenieria Informdtica.

Avda. Reina Mercedes, s/n. 41013 - Seville (Spain)
E-mail: mercedes.ruiz@uca.es

{Isabel, ramos, miguel. toroj @lsi. us. es

The aim of this chapter is to introduce the reader to the dynamics of the
software process, the ways to represent and formalize it, and how it can
be integrated with other techniques to facilitate, among other things,
process improvement. In order to achieve this goal, different
approaches of software process modeling and simulation will be
introduced, analyzing their pros and cons. Then, continuous modeling
will be used as the modeling approach to build software process models
that work in the qualitative and quantitative fields, assessing the
decision-making process and the software process improvement arena.
The integration of this approach with current process assessment
models (such as CMM), static and algorithmic models (such as
traditional models used in the estimation process) and the design of a
metrics collection program which is triggered by the actual process of
model building will also be described in the chapter.

1. Introduction

Worldwide, the demand for highly complex software has significantly
increased in such a way that software has replaced hardware as having
the principal responsibility for much of the functionality provided by

21

mailto:mercedes.ruiz@uca.es

22 M. Ruiz, I. Ramos, M. Toro

current systems. The rapid pace at which this software is required, the
problems related to cost and schedule overruns and customer perception
of low product quality have changed the focus of attention towards the
maturity of software development practices. Over the last few decades,
the software industry has received significant help from CASE tools,
new programming languages and approaches, and more advanced and
complex machines.

However, it is widely accepted that the potential benefits of better
technology cannot be translated into more successful projects if the
processes are not well defined, established, and executed. Proper
processes are essential for an organization to consistently deliver high
quality products with high productivity.

Dynamic modeling and simulation have been intensively used as
process improvement tools in the manufacturing area. Currently, interest
in software process modeling and simulation as an approach for
analyzing complex businesses and solving policy questions is increasing
among researchers and practitioners. However, simulation is only
effective if both the model and the data used to drive it accurately reflect
the real world. As a consequence, it can be said that the construction of a
dynamic model for the actual software process provides clear guidelines
on what to collect.

Many frameworks are now available for software processes, the
Capability Maturity Model (CMM)1 and ISO 90012 being among the
most influential and widely used. Although ISO 9001 is a standard, and
has been interpreted for a software organization in ISO 9000-33, it has
been written from the customer and external auditor's perspective. On
the other hand, CMM is not a binary certification process, but a
framework that categorizes the software process at five levels of maturity
and provides roadmaps to evaluate the software process of an
organization, as well as planning software process improvements. One of
the common features that all these frameworks possess is that they
strongly recommend the application of statistical control and measure
guides to define, implement and evaluate the effects of different process
improvements. Within these frameworks, the availability of data is
considered of special importance for building the knowledge required to
define and improve the software process.

Software Process Dynamics: Modeling, Simulation and Improvement 23

The aim of this paper is to present a combination of traditional
techniques with software process modeling and simulation to build a
framework for supporting a qualitative and quantitative assessment for
software process improvement and decision making. The purpose of this
dynamic framework is to help organizations to achieve a higher software
development process capability according to CMM. The dynamic models
built within this framework provide the capability of gaining insight over
the whole life cycle at different levels of abstraction.

The level of abstraction used in a particular organization will depend
on its maturity level. For instance, in a level 1 organization the simulator
can establish a baseline according to traditional estimation models from
an initial estimate of the size of the project. With this baseline, the
software manager can analyze the results obtained by simulating
different process improvements and study the outcomes of an over- or
underestimate of cost or schedule. During the simulation metric data is
saved. This data conforms to the SEI core measures4 recommendation
and is mainly related to cost, schedule and quality.

The structure of the chapter is as follows. Section 2 describes in
detail the software process modeling and simulation approach. It includes
the benefits derived from this application, the formalisms used to build
software process models and a process model building methodology. In
section 3, a combination of hierarchical dynamic modeling and some
traditional techniques of the software engineering is proposed. The
conceptual ideas underlying this combination with the aim of building an
integrated dynamic framework for software process improvement are
presented. Sections 4, 5 and 6 describe the details concerning the
structure of the framework, the modular architecture and some aspects of
the implementation. An example of usage is presented in section 7.
Finally, section 8 summarizes the chapter and describes the most recent
applications of the software process dynamic modeling and simulation
approach.

2. Software Process Simulation

Simulation can be applied in many critical areas in support of software
engineering. It enables one to address issues before these issues become

24 M. Ruiz, I. Ramos, M. Toro

problems. Simulation is more than just a technique, as it forces one to
think in global terms about system behavior and about the fact that
systems are more than the sum of their components5. A simulation model
is a computational model that represents an abstraction or a simplified
representation of a complex dynamic system. The main benefit of
simulation models is the possibility of experimenting with different
management decisions. Thus, it becomes possible to analyze the effect of
those decisions on systems where the cost or risks of experimentation
make it unfeasible.

Another important factor is that simulation provides insights into
complex process behavior that cannot be analyzed by means of stochastic
models. Like many processes, software processes can contain multiple
feedback loops, such as those associated with the correction of defects.
Delays resulting from these defects may range from minutes to years.
The resulting complexity makes it almost impossible for mental analysis
to predict the consequences. According to Kellner, Madachy and Raffo6,
the most frequent sources of complexity in real software processes are:

Uncertainty. Some real processes are characterized by a high degree
of uncertainty. Simulation models make it possible to deal with this
uncertainty as they can represent it flexibly by means of parameters
and functions.
Dynamic behavior. Some processes may have a time-dependent
behavior. There is no doubt that the behavior of some software
process variables varies as the time cycle progresses. With a
simulation model it is possible to represent and formalize the
structures and causal relationships that dictate the dynamic behavior
of the system.
Feedback. In some systems, the result of a decision made at a given
time can affect their behavior. In software projects, for example, the
decision to reduce the effort assigned to quality assurance activities
has different effects on the progress of these projects.

Thus, the common objectives of simulation models are to supply
mechanisms to experiment, predict, learn and answer questions, such as
"What if. . .?"

Software Process Dynamics: Modeling, Simulation and Improvement 25

A software process simulation model can be focused on certain
aspects of the software process or the organization. It is important to bear
in mind that a simulation model constitutes an abstraction of the real
system, and so it represents only the parts of the system that were
intended to be modeled. Furthermore, currently available modeling tools,
such as ithink7, POWER-SIM8, and Vensim9, help to represent the
software development process as a system of differential equations. This
is a remarkable characteristic as it makes it possible to formalize and
develop a scientific basis for software process modeling and
improvement.

During the last decade, software process simulation has been used to
address a wide variety of management problems. Some of these
problems are related to strategic management, technology adoption,
understanding, training and learning, and risk management, among
others. Noticeable applications of this approach to software process
modeling can be found in Kellner, Madachy and Raffo6, Prosim 200410

andProsim2005n.

2.1. Software process modeling for simulation

There are different approaches for building simulation models of the
software process. In practice, the modeling approach inevitably has some
influence on what it should be modeling. Hence, there is no preferred
approach for modeling the software process in every situation, but the
best approach is always the one that is considered to be the most suitable
for a particular case.

There are two broad types of simulation modeling: continuous
simulation and discrete-event simulation. The distinction is based on
whether the state can change continuously or at discrete points in time.
However, even though events are discrete, time and state domains may
be continuous. There are three main paradigms that can be used for
discrete-event simulation modeling: event-scheduling, activity-scanning
and process-interaction. Although state-transition diagrams (e.g., finite-
state automata or Markov chains) can be used for software process
simulation modeling, they are less common because the state spaces
involved are typically very large. Examples of discrete-event simulation

26 M. Ruiz, I. Ramos, M. Toro

applied to model and simulate the software process can be found in
Raffo12, Kellner13 and Hansen14.

A continuous simulation model represents the interactions between
key process factors, as a set of differential equations, where time is
increased step by step. Frequently, the metaphor of a system of
interconnected tanks filled with fluid is used to exemplify the ideas
underlying this kind of modeling approach.

On the other hand, discrete modeling is based on the metaphor of a
queuing network where time advances when a discrete event occurs.
When this happens, an associated action takes place, which, mostly,
implies placing a new event in the queue. Time is always advanced to the
next event, so it can be difficult to integrate continually changing
variables.

Since the purpose of this study is to model and visualize process
mechanisms, continuous modeling has been used. This technique also
allows systems thinking and it is considered to be better than the
discrete-event model at showing qualitative relationships15. Examples of
continuous simulation applied to model and simulate the software
process can be found in Abdel-Hamid16, Pfhal and Lebsant17, Burke18,
and Wernick and Hall19.

2.2. Continuous modeling and simulation of the software process

System dynamics is a methodology for studying and analyzing complex
feedback systems such as software organizations. Feedback is the key
differentiating factor of dynamic systems. It refers to the situation in
which A affects B and B affects A, through a chain of causes and effects.
It is not possible to study the link between A and B and, independently,
the link between B and A to predict the behavior of the system. There are
a significant number of software process features that follow this
feedback pattern. For instance, known patterns, such as Brook's Law20

("Adding manpower to a late project makes it later") or Parkinson's
Law21 ("Work expands to fit the time available"), can be described by
continuous modeling.

Software Process Dynamics: Modeling, Simulation and Improvement 27

System dynamics links structure (feedback loops) to behavior over
time and helps to explain why what is happening is happening. The field
was initially developed from the work of Jay W. Forrester22.

To better understand and represent the system structures that cause
the patterns of behavior observed in the software process, two kinds of
diagrams are used: causal-loop diagrams and stock-and-flow diagrams.

2.2.1. Causal-Loop Diagrams

Causal-loop diagrams present relationships that are difficult to describe
verbally because natural language presents interrelations in linear cause-
and-effect chains, whereas a diagram shows that there are circular chains
of cause-and-effect in the actual system23. Figure 1 shows an example of
a causal-loop diagram for a very simplified model of software process
dynamics. In this diagram, the short descriptive phrases represent the
elements that make up the system described, and the arrows represent the
causal influences between these elements. This diagram includes
elements and arrows or links that help to connect these elements, but also
includes a sign (either + or -) on each link. These signs have the
following meaning23:

A causal link from one element A to another element B is positive if
either (a) A adds to B or (b) a change in A produces a change in B in
the same direction.
A causal link from one element A to another element B is negative if
either (a) A subtracts from B or (b) a change in A produces a change
in B in the opposite direction.

In addition to the signs of each link, a complete loop is also given a
sign. The sign of a particular loop is determined by counting the number
of minus signs on all the links that make up the loop. Specifically,

A feedback loop is called positive, indicated by (+), if it contains an
even number of negative causal links.
A feedback is called negative, indicated by (-), if it contains an odd
number of negative causal links.

28 M. Ruiz, I. Ramos, M. Toro

Thus, the sign of a loop is the algebraic product of the signs of its
links. The diagram shown in Figure 1 is composed of four feedback
loops: two positive and two negative. A brief description of the pattern
modeled follows.

First feedback loop. Estimations of cost and time for the project can
be derived from the initial estimations. With these estimations the
required manpower is acquired by performing hiring activities. As the
project runs, information about the real progress is obtained.
Comparisons of the values obtained with those originally estimated may
lead to a change in some of the estimations and, possibly, a modification
of the hiring policy.

Second feedback loop. This loop illustrates the effects caused by the
schedule pressure on the quality of the software product. If the perceived
completion time is greater than the planned time to complete, the project
has schedule pressure. To combat this, the project manager may decide
either to hire more personnel or have overtime worked. However,
permanent overtime may further exhaust personnel, contributing to an
increase in the number of errors in the project. This rise in the number of
committed errors requires a bigger effort in terms of error detection and
rework activities, which holds back progress.

Third feedback loop. The growth in the level of human resources
appears to contribute to a growth of productivity. However, it is also
important to note that the productivity of the new personnel is
significantly less than that of the expert personnel. Hence, some effort of
the expert personnel is commonly invested in the training of the newly-
hired personnel. These training activities, together with the
communication overheads derived from the Book's Law, contribute to a
decrease in the net productivity of the working team.

Fourth feedback loop. This loop illustrates the effect of creative
pressure. When the personnel know that the project is behind schedule,
they tend to be more efficient. This is normally reflected in a reduction of
idle time.

Software Process Dynamics: Modeling, Simulation and Improvement 29

Initial estimates

Schedule pressure

Training and
communication

overheads

Productivity

Fig. 1. Simple causal-loop diagram of the software process dynamics.

2.2.2. Stock-and-Flow Diagrams

Figure 2 illustrates the main components of stock-and-flow diagrams.
This notation consists of three different types of elements: stock, flows
and information. These three elements provide a general way of
graphically representing any process. Furthermore, this graphical
notation can be used as a basis for developing a quantitative model that
can be used to study the characteristics of the process. As with a causal-
loop diagram, the stock-and-flow diagram shows relationships among
variables that have the potential to change over time. To understand and
build stock-and-flow diagrams, it is necessary to understand the
difference between stocks and flows. Distinguishing between stocks and
flows is sometimes difficult. As a starting point, stocks can be thought of
as physical entities that can accumulate and move around. The term stock
also has an identical meaning to the term state variable from the systems
engineering analysis. The term flow refers to the movement of something
from one stock to another.

30 M. Ruiz, I. Ramos, M. Toro

Stock Accumulation - State of the system

o
Flow

Flow - Growth or depletion of stocks

Variable Auxiliary variables

o Cloud - Boundary of the system

Fig. 2. Main elements of stock-and-flow diagrams.

Figure 3 shows a stock-and-flow diagram for the first feedback loop
of the causal diagram shown in Figure 1. The variables are Pending
tasks, Accomplished tasks, Personnel, hiring rate and development rate.
The first three are stock or level variables, whereas the last two are flow
variables. The number of tasks to be developed is determined from an
initial estimate of the size of the project. These pending tasks become
accomplished tasks depending on the development rate that is
determined by the productivity of the personnel allocated to the
development of the tasks under simulation.

The stock-and-flow diagram has a precise mathematical meaning.
Stocks accumulate (integrate) their inflows less their outflows. The rate
of change of a stock is the total inflow minus the total outflow. Thus a
stock and flow map corresponds to a system of integral or differential
equations that formalize the model. Mathematical description of a system
requires only the stocks and their rates of change. However, it is often
helpful to define intermediate or auxiliary variables. Auxiliaries consist
of functions of stocks and constants. The set of equations must then be
solved applying mechanisms for solving differential equations or by
simulation. Simulation packages are often used to solve these sets of

Software Process Dynamics: Modeling, Simulation and Improvement 31

equations, since it soon becomes unfeasible to solve such equations by
hand as the number of stocks and flows or the complexity of the
equations increases.

development rate

Accomplished
tasks

Fig. 3. Simple stock-and-flow diagram.

The equations derived from the stock-and-flow diagram follow:

Pending tasks(t) = INITIAL SIZE ESTIMATES - J„ development rate(t) dt (1)

Accomplished tasks(t) = J0' development rate(t) dt (2)

Personnel(t) = J0' hiring rate(t) dt

development rate(t) =

hiring rate(t) = (required personnel(t) - Personnel©)/HIRING DELAY

0 , 6 ^ v v ~ (3)
'Personnel(t) * Productivity(t), if Accomplished tasks(t) < INITIAL SIZE ESTIMATES

0, otherwise (4)

(5)

Figure 4 shows the time evolution of the main variables of this
illustrative model after solving the equations by simulation.

32 M. Ruiz, I. Ramos, M. Toro

2,000

400
400

1,500

300
300

1,000

200

500
100
100

0

0

0

LOC
Rason

LOOMMh

IXC
Pereon

LOOMrth

LOC

LOClVbnth

LOC
Person

LOOMrth

LOC

Person

LOOrvbrth
/

/ _^-

Accomplished and Raiding Tasks,

\ ;
^ \

y^ /

/ ' •
l/TT

/) '

\ |
\ |

Rasormel and Development Rate

\

^
\

1 ^ - ^

i. — — - — . . . „ _ _

Accomplished tasks

10 12 14 16 18 20 22

Tine (Mirth)

Personnel Person

development rate L O G M r t h

Fig. 4. Time evolution of the main variables of the stock-and-flow diagram.

Nevertheless, as Sweeny and Sterman24 stated, building a model is
not about spending considerable time on the basics of stocks and flows,
time delays, and feedback, but developing intuition rather than
mathematics.

2.3. Process model building methodology

According to Martinez and Richardson , the system dynamics model
building process involves seven key activities, as shown in Figure 5. The
most important ones are: (1) problem identification and definition, (2)
system conceptualization, (3) model formulation, (4) model testing and
evaluation, and (5) understandings of the model.

Software Process Dynamics: Modeling, Simulation and Improvement 33

Model Use,
Implementation and

Dissemination

Undertandings of the
problem and the system-

Understandings of
the Model

Problem Identification
and Definition

Model Testing and
Evaluation Design of Learning

Strategy/Infrastructure

Model
Formulation""

System
— Conceptualization

Fig. 5. Steps of process model building methodology.

In problem identification and definition, there is a group of
practitioners who consistently prefer to model the case at hand, as
opposed to another group who thinks that the best way is to model the
class to which the system belongs.

In system conceptualization, the best practice is considered to be to
start with major stock variables. Practitioners can choose to iterate using
a causal-loop diagram approach or a stock-and-flow approach to
conceptualization.

In model formulation, there are two major approaches. The first
relates to the issue of starting small and continuously simulating,
preferably always having a running model. The second refers to

34 M. Ruiz, I. Ramos, M. Toro

formulating in big chunks and is not concerned about continuously
having running prototypes.

Model testing and evaluation consists of three main activities that
determine the correctness of the model26. These activities are divided into
two categories: activities focused on verifying the model structure and
activities that verify the model behavior. Table l27 summarizes these
activities.

Finally, understandings of the model is centered on the knowledge
that can be gained from use of the model.

3. Dynamic Integrated Framework for Software Process
Improvement: Conceptual Approach

Using simulation for process improvement in conjunction with CMM is
not a new idea. As a matter of fact, Christie5 suggests that CMM is an
excellent incremental framework to gain experience through process
simulation. Nevertheless, there are no dynamic frameworks capable of
helping to achieve higher process maturity. One of the main features of
the Dynamic Integrated Framework for Software Process Improvement
(DIFSPI) is that this help is provided throughout the development of the
whole dynamic framework and not only by using the associated final
tool. The reason for this is that the benefits that can be gained from the
utilization of dynamic models within an organization are directly related
to the knowledge and the empirical information that the organization has
about its processes. Figure 6 illustrates this idea. It shows the existing
causal relationships between the maturity level of the organization, the
utilization of dynamic models and the benefits obtained.

The positive feedback loop comes to illustrate the causal relationship
that reinforces the collection of metrics within the organization. The
metrics collected will be used to calibrate and initialize the dynamic
models.

Lower maturity organizations are characterized by the absence of
metrics programs and historical databases. In this case, it is necessary to
begin by identifying the general processes and what information has to
be collected about them. The questions of what to collect, how often and

Software Process Dynamics: Modeling, Simulation and Improvement 35

how accurately have to be answered at this time. The design process of
dynamic models helps to find an answer to these questions.

Table 1. Main model testing and evaluation activities .

Verification

Validation

Evaluation

Structure

Behavior

Structure

Behavior

Structure

Behavior

Dimensional consistency

Behavior with extreme values

Problem adequacy

Parameter sensitivity

Structure sensitivity

Reality check

Parameter correctness

Scenario replication

Extreme condition simulations

Non-conventional input

simulations

Statistical tests

Size

Complexity

Granularity

Intuitive behavior generation

Knowledge generation

When developing a dynamic model, one needs to know: a) what it is
intended to model, b) the scope of the model, and c) what behaviors need
to be analyzed.

Once the model has been developed, it needs to be initialized with a
set of initial conditions in order to execute the runs and obtain the

36 M. Ruiz, I. Ramos, M. Toro

simulated behaviors. These initial conditions customize the model to the
project and to the organization to be simulated and they are effectively
implemented by a set of initial parameters.

It is precisely these parameters that govern the evolution of the model
runs that answer the above question of what data to collect: the data
required to initialize and validate the model will be the main components
of the metrics collection program. Once the components of the metrics
collection program have been derived, it can be implemented within the
organization. This process will lead to the formation of a historical
database. The data gathered can then be used to simulate and empirically
validate the dynamic model. When the dynamic model has been
validated, the results of its runs can be used to generate a database. This
database can be used to perform process improvement analyses. An
increase in the complexity of the actions for analysis will lead directly to
an increase in the complexity of the dynamic model required and,
therefore, to a new metrics collection program for the new simulation
modules.

The bottom half of Figure 6 illustrates the effects derived from the
utilization of dynamic models in the context of process improvement.
Using dynamic models that have been designed and calibrated according
to an organization's data has three important benefits. Firstly, the data
from the simulation runs can be used to predict the evolution of the
project. The graphical representations of these data show the evolution of
the project from a set of initial conditions that have been established by
the initialization parameters. By analyzing these graphs, organizations
with a low level of maturity can obtain useful qualitative knowledge
about the evolution of the project. As the maturity level of the
organization increases, the knowledge about its processes is also higher
and the simulation runs can be used as real quantitative estimates. These
estimates help to predict the future evolution of the project with an
accuracy that is closely related to the uncertainty of the initial
parameters. Secondly, it becomes possible to define and experiment with
different process improvements by analyzing the different simulation
runs. This capability helps in the decision-making process, as only the
improvements that yielded the best results will be implemented.
Moreover, it is noteworthy that these experiments are performed at no

Software Process Dynamics: Modeling, Simulation and Improvement 37

cost or risk to the organization, as they use the simulation of scenarios.
Thirdly, the simulation model can also be used to predict the cost of the
project; this cost can be referred to the overall cost, or to a hierarchical
decomposition of the total cost, like, for instance, the cost of quality or
rework activities. These three benefits are the main factors that lead to
the achievement of a higher maturity level within an organization
according to CMM.

Metrics

Prediction of evolution „ V Estimation of cost
Process improvement

Maturity level -

Fig. 6. Causal relationships concerning the utilization of dynamic models.

4. Framework Structure and Module Architecture

Project management is composed of activities that are closely
interrelated in the sense that any action taken in one particular area will
possibly affect other areas. For instance, a time delay will always affect
the cost of the project, but it may or may not affect the morale of the
development team or the quality of the product. The interactions among
the different areas of project management are so strong that sometimes
the throughput of one of them can only be achieved by reducing the
throughput of another. A clear example of this behavior can be found in
the common practice of reducing the quality, or the number of

38 M. Ruiz, I. Ramos, M. Toro

requirements to be implemented in a version of the product with the aim
of meeting the cost estimates or time deadlines.

Dynamic models are an aid for understanding the integrated nature of
project management, as they describe it by means of different processes,
structures, and key interrelationships.

In the framework proposed here, project management is considered as
a set of dynamic interrelated processes. Projects are composed of
processes. Each process is composed of a series of activities designed to
achieve an objective1. From a general point of view, it could be said that
projects are composed of processes that fall into one of the following
categories:

Management process. This category includes all processes related to
the description, organization, and control of the project.
Engineering process. All processes related to the software product
specification and development activities fall into this category.

Engineering processes begin to be executed from an initial plan
performed by the project management processes. Using the information
gathered about the progress of this second group of processes, project
management processes determine the modifications that need to be made
to the plan in order to achieve the project objectives. The proposed
DIFSPI follows this same classification and is structured to account for
project management and engineering processes. At both levels, the
utilization of dynamic models to simulate real processes and to define
and develop a historical database will be the main feature.

4.1. Engineering processes in the DIFSPI

At this level the dynamic models simulate the life cycle of the software
product. In low maturity organizations, the amount of information
required to begin running simulations is relatively small and mainly
focused on the initial estimations, that is, the estimated size of the project
and the initial size of the working team. The best dynamic model is
simulated depending on the paradigm followed to develop the software
product and the maturity level of the organization. The main paradigms

Software Process Dynamics: Modeling, Simulation and Improvement 39

that can be currently simulated within the framework are the traditional
waterfall and COTS paradigms. Depending on the chosen paradigm,
different dynamic modules will be joined in order to create a final and
fully operational dynamic model. Once the simulation has been run, it
provides data that are saved in a database. This initial data contains the
results of the simulation together with a set of initial estimations
resulting from the computation of the static models. These initial
estimations establish the baseline for the project, and the simulated data
obtained represent the dynamic evolution of the project variables
throughout the whole life cycle. Apart from storing the initial baseline
and the simulated data, the database contains a third component. This
third component contains the results of applying some other techniques
during the simulation of the project, which are oriented towards gaining
insight into the process under simulation. These techniques, which have
been integrated with the dynamic modules, are described in section 5.

As mentioned before, the process of modeling the software process
requires a good knowledge of the software process itself, and triggers a
metrics collection program that can then be used to initialize the
parameters of the model and increment the level of visibility the model
has of the process. All that has been simulated so far must be put into
practice.

After determining the initial estimates and running the simulations to
establish the initial baseline, it is possible to run different scenarios in
order to find out what effects different initial values have on the project
estimates. This reflects, of course, the level of uncertainty that low
maturity organizations have at the initial stages of a project. When the
real project begins, the metrics collection program may be applied to
gather real information about the process. This real data is also saved in
the database, enabling the development of a historical database. As this
data becomes available, it is possible to perform analysis and calibrate
the functions and parameters of the dynamic modules so that their
accuracy can be improved. Improving the accuracy of the dynamic
modules may require an improvement in the knowledge we have of the
software process and, this way, the loop is closed.

The dynamic models of this level of DIFSPI should follow the levels
of visibility and knowledge of the engineering processes that

40 M. Ruiz, I. Ramos, M. Toro

organizations have at each maturity level. Obviously the dynamic model
used in level 1 organizations will not be as complex as the models
capable of simulating the engineering processes of, for instance, level 4
organizations.

4.2. Management processes in the DIFSPI

The control modules model and simulate all the activities that determine
the progress of the project, and make the corrective decisions that are
required to meet the project objectives. These modules are highly
important in the design of the process improvements.

Within the framework, management processes are divided into two
main categories:

Planning. It groups the processes devoted to the design of the initial
plan and the required modifications when the progress reports
indicate the appearance of problems. The models of this group
integrate traditional together with dynamic estimation and planning
techniques.
Control. This group includes all the models designed for monitoring
and tracking activities. These models will also have the
responsibility of determining the corrective actions to the project
plan. Therefore, the simulation of process improvements will be of
enormous importance.

Figure 7 shows the utilization of DIFSPI at this level. As mentioned
earlier, the initial baseline for the project is established using the static
models built within the framework. The dynamic modules that model the
planning activities performed in the organization not only have
differential equations to model these activities, but also the equations of
the traditional static estimation models. To gain useful information from
these static models, the very same knowledge about the software process
is needed at this point as is required to use these models.

Software Process Dynamics: Modeling, Simulation and Improvement 41

4.3. Module architecture

The approach followed to construct the dynamic models is based on two
fundamental principles:

The principle of extensibility of dynamic models. According to this
principle, different dynamic modules are joined to an initial and basic
dynamic model. This initial model models the fundamental behavior of a
software project. Each one of the dynamic modules models each one of
the key process areas that conforms the step to the next level of maturity.
These modules can be either "enabled" or "disabled" according to the
objectives of the project manager or the members of the Software
Engineering Improvement Group (SEIG).

The principle of aggregation/decomposition of tasks according to the
level of abstraction required for the model. Two levels of
aggregation/decomposition are used:

Horizontal aggregation/decomposition according to which
different sequential tasks are aggregated into a unique task with a
unique schedule.

• Vertical aggregation/decomposition according to which different
and individual, but interrelated and parallel tasks are considered
as a unique task with a unique schedule too.

The definition of the right level of aggregation and/or decomposition
for the tasks mainly affects the modeling of the engineering activities and
principally depends on the maturity level of the process to be simulated.

To define the initial dynamic model, the common feedback loops
among the software projects must be taken into account. The objective of
this approach is to achieve a generic model avoiding the modeling of
specific behaviors of concrete organizations, which could limit the
flexibility of DIFSPI. Data from historical databases described in the
available literature can be used to initialize the functions and parameters
of the initial model28. Figure 7 shows the main structure of the initial
model. Four dynamic modules are joined together to develop an
operational model that provides the set of final differential equations to
generically simulate the software process in low maturity organizations.

42 M. Ruiz, I. Ramos, M. Toro

By replicating some of the equations of the initial model it is possible
to model the progress to higher maturity levels. The initial model can be
used to simulate software projects developed in organizations
progressing to level 2.

Generally speaking, the software product development process can
be considered as follows. The number of tasks to be developed is
determined from an initial estimate of the size of the project. These
pending tasks become accomplished tasks according to the development
rate. During this process, errors can be committed. Thus, in accordance
with the desired quality objective for the project, the quality rate and the
rework rate are determined. These two rates govern the number of tasks
that are revised.

ra
t

m
en

t

« ̂ •a
a

eq
ui

r

ti
m

e

•r.

•s F
Tt

\ ' ^

Jroject finished

'
Control
Module

kv

Plan
Module

,

3

2
"2

Productivity

Quality

a.

i '

.

as
ks

•8
•c is

g

1

L

Required development rate

A ccomplishet

'
Development

Module

Required personnel

project fraction

Personnel

1 i
r

Human Resource
Module

Fig. 7. Submodules architecture of the initial model.

To model the progress to level 3, the model will make use of a
horizontal decomposition, creating as many substructures as phases or
activities are present in the task breakdown structure of the project
(analysis, design, code and test, in the waterfall paradigm). According to
this approach, each time a complete model or some part of it is
replicated, it will be necessary to define the new fixing mechanisms
(dynamic modules) for the new structures. These mechanisms effectively
implement the above-mentioned principle of aggregation/decomposition.

Software Process Dynamics: Modeling, Simulation and Improvement 43

The replication of structures also provides the possibility of replicating
the modules related to the project management processes. This
replication is especially useful for high maturity level organizations,
which will be able to establish process improvement practices for each
particular activity of the life cycle.

Having described the approach to the elaboration of the dynamic
models, this section gives a description of the hierarchical structure of
the framework presented in this paper.

Figure 8 illustrates this hierarchy. The dynamic model for level 1
organizations progressing to level 2 is composed of four main dynamic
modules, each of them devoted to modeling and simulating each of the
four main subsystems of the software process: planning, human resource
management, control, and development activities. These four subsystems
form an initial dynamic model. This initial model is intended to be used
in level 1 organizations progressing to level 2.

CMMl-2 CMM2-3

Requirement
Management

Outsourcing
Management

CMMl-2
ill

Personnel
Experience

Quality
Assurance

CMM3-4 CMM4-5

. CMM2-3

,, CMM 7 - 1 —,

»
» CMM 7 - % —1

4
' (-MM 2 - 3

Quantitative
Management

15 CMM3-4

bni
Quality

Management

Fig. 8. Hierarchical structure of the dynamic integrated framework.

44 M. Ruiz, I. Ramos, M. Toro

To get a dynamic model to model and simulate the software process
of level 2 organizations, new dynamic modules are added to the initial
model.

Outsourcing management. With this module, it is possible to analyze
the influence of outsourcing over the life cycle of the project.

Personnel experience. Although this is not a key process area of
CMM level 2, the human resource management module of the initial
model has been enhanced so that it can reflect the influence of the
experience factor on the progress and the cost of the project.

Quality assurance. The necessary structures to model and analyze
the cost and state of the quality assurance activities are implemented in
this module.

Requirement management. This module helps to determine the
impact of requirements variability on software development projects.

The next step towards the following level of maturity does imply an
important structural change. This change is determined by the special
emphasis on the engineering activities that the CMM suggests as of level
3. While the CMM recommends the development of good planning and
management practices in the initial levels of maturity, the engineering
process acquires key importance at level 3. The principle of model
replication is used to reflect this idea. Thus, to model level 3
organizations progressing to level 4, the model developed for the
previous level is replicated as many times as the number of generic
phases there are in the work breakdown structure of the project. For the
purpose of this study, the four main characteristic phases of a traditional
life cycle were considered (analysis, design, code and test). To simulate
each phase, a complete dynamic model is used. Each of these dynamic
models can be used, separately, to simulate the whole project in
organizations with the previous level of maturity. To get all these models
working together to simulate a higher maturity organization, coupling
structures need to be defined. These coupling structures must allow inter­
module communication as well as serving as support structures for the
sharing of information.

The last model of the hierarchy is made from the model developed
for the previous level, plus the modules required to model and simulate
the new key process areas. In this case, the new modules are focused on

Software Process Dynamics: Modeling, Simulation and Improvement 45

the specific aspects of the key processes of quantitative management and
software quality management.

5. Integrated Techniques

As mentioned before, our aim was to develop a working environment
where the simulation of different scenarios can be used to generate the
simulated database where managers can experiment with different
process improvements and activities focused on the implementation of
metrics programs and value analysis. The following techniques and
methods are currently successfully implemented in DIFSPI:

Traditional estimation techniques. Traditional algorithmic estimation
models have been implemented within this framework with the aim of
providing an initial baseline for software projects carried out in low
maturity level organizations 29'30.

SEI Core Measures. Recent studies and experiences highlight the
benefits of the application of these four core measures to the software life
cycle. The main aspects of the product and process (quality, time, size
and cost) are monitored and tracked to facilitate project success and
higher maturity achievement. Within this framework these four measures
constitute the basics for both the dynamic models and the graphical
representation of process performance4.

Metrel Rules. Given the dynamical nature of the proposed DIFSPI,
we consider it could be useful to integrate a taxonomy of software
metrics derived from the needs of users, developers, and management.
Of all the potential advantages of using this system of metrics, we would
like to point out the dynamic performance of these metrics, that is, how
their accuracy, precision, and utility changes throughout a project, the
life of a product or the strategic plan of an organization. In DIFSPI
Metrel rules have been used as an efficient method for depicting on one
graph the information needed for management, staff, and customers to
view or predict process performance results. We consider that Metrel
rules are particularly important in the field of software process modeling
as their application provides a formal procedure for the expansion and
transformation of models. By employing simple mechanisms like
derivatives or integration (over time, phases or even projects), a

46 M. Ruiz, I. Ramos, M. Tow

mathematical model for one level can be transformed into another for
another level, providing a simple but powerful extension for the analysis
processes31.

CoSQ. The basis for the Cost of Software Quality (CoSQ) is the
accounting of two kinds of costs: costs that are due to a lack of quality
and costs that are due to the achievement of quality. We think that CoSQ
can help not only to justify quality initiatives, but also have a number of
other benefits. Of these benefits, we would like to point out that CoSQ
provides the basics for measuring and comparing the cost effectiveness
of the quality improvements undertaken by an organization32'33.

Earned value analysis. Earned value analysis has been chosen as the
method for performance measurement as it integrates scope, cost, and
schedule measures to help managers assess process performance. The
three main values and the derived efficiency indexes are used in
combination to provide measures of whether or not work is being
accomplished as planned. Furthermore, the earned value analysis is used
to evaluate the performance of different software process improvements
within DIFSPI34 .

Statistical process control. Current software process models (CMM,
SPICE, etc.) strongly recommend the application of statistical control. In
the framework, Statistical Process Control (SPC) is used to obtain run
charts and control charts with the aim of helping software managers to
find an answer to questions such as "How do I know if my software
development process is under control?" SPC is also used to test the
capability of the process. For this purpose, SPC and earned value
techniques can be merged as Lipke and Jennin35 suggest.

Data mining. Data mining processes can be used to get useful
information from the volume of data generated by model simulation.
Genetic algorithms are fed with the databases resulting from simulations,
and then executed to obtain management rules to guide the process of
maturity improvement36. Machine learning algorithms based on decision
trees such as C4.537, decision lists such as COGITO38, and association
rules have been used in combination with other algorithms that
transform the simulation outputs into a labeled database. In this labeled
database, each record stores information about one simulated scenario
(parameters and outputs) and a label that helps to classify the success of

Software Process Dynamics: Modeling, Simulation and Improvement 47

the simulated project in terms of time, cost, and quality. After running
the machine learning algorithms, a set of management rules is obtained.
These rules can be expressed graphically or using natural language. The
information they offer is what the best range for the parameters that the
algorithm has determined to be the most influential on the success of the
project should be to meet the objectives of the project. These objectives,
regarding the three key factors of time, cost, and quality together with the
labeled databases, constitute the input of the algorithm.

6. Implementation of the Framework

The conceptual ideas presented above were firstly implemented using
VemSim which was used to develop and analyze the different dynamic
models. However, there are some drawbacks to using this tool. This
simulation environment provides a crude way of modularization, there is
no easy way to both overlay objects for abstraction and generate a
generic sub-model so that it can be instantiated multiple times without
duplicating effort, and hence there is no scoping mechanism, all the
elements are global to each other. Like traditional programming
languages, a mechanism to allow data encapsulation and modularity is
essential for handling complexity in large and complex models.
Therefore, the complete framework has been re-engineered using UML
and Java™ technology. The purpose of this process was to develop a
library of classes, each of which represents a simple dynamic module.
When using this tool, a suitable dynamic model is built from the required
objects. This way, the abstraction aspect and standardization of the
interface of these defined modules may be taken to the point that project
managers could transparently "plug-in" the modules regarding the
software process improvement they would like to analyze. This approach
involves putting special effort into the interfacing mechanism of these
different modules when they are plugged together.

7. Example of Usage

This section contains an example of how the use of this framework can
help organizations in the field of software process improvement. More

48 M. Ruiz, I. Ramos, M. Toro

precisely, the following example studies one of the key process areas of
CMM level 2: influence of the outsourcing activities on software
projects. Table 2 shows the initial data for the project.

Table 2. Initial estimates for the project.

Size

Number of newly hired engineers

Number of expert engineers

Estimated time

Number of outsourced tasks

Loss of effort due to outsourcing (%)

Project reduction (%)

20 KLDC

3 engineers

5 engineers

35 months

150 tasks

15%

5%

Given this initial situation, two different scenarios are simulated.
Both of them have the same initial data except for outsourcing activities:
one of the projects does not have any outsourcing activities, while the
other one does and is driven by the data shown in Table 2. The results
obtained from the simulation runs are shown in the following
subsections.

7.1.1. Accomplished Tasks

Figure 9 shows the evolution of tasks accomplishment in the project.
First of all, it can be observed that the development rates in both projects
are of a similar shape. Secondly, the project with outsourcing ends before
the project without outsourcing. This may be due to the fact that the
organization with outsourcing is carrying out a project that is smaller in
size than the project of the organization that is not outsourcing. The
vertical dotted line shows when the project with outsourcing is
completed.

Software Process Dynamics: Modeling, Simulation and Improvement 49

Accomplished tasks

400 I I ' ! I I I I

300 i 1 1

200 1 | 1 - =

100

0 7 14 21 28 35 42
Time (Months)

Accomplished tasks - Without Outsourcing

Accomplished tasks - With Outsourcing

Fig. 9. Evolution of the variable Accomplished tasks.

7.1.2. Effort

Figure 10 shows the evolution of the daily effort consumed in the project
activities. Notice that the effort values, and therefore cost, for the project
with outsourcing are greater than the values for the project without
outsourcing.

These higher costs are justified by the effort that needs to be
allocated to some activities that are not present in the second project.
When a project has outsourcing, some effort has to be allocated to
mainly formal communication activities with the members of the
outsourced team. This effort allocation leads to the growth of the final
costs, a feature that has been illustrated by the simulation outputs.

49

Tasks
Tasks

50 M. Ruiz, I. Ramos, M. Torn

Effort

/
/
/
\

/ 1

" 1
1

\
\

\ \
j

\
0 7 14 21 28 35 42 49

Time (Months)

Daily effort - Without Outsourcing Engineer/Month

Daily effort - With Outsourcing Engineer/Month

Fig. 10. Evolution of the variable Daily effort.

7.1.3. Quality

Finally, Figures 11 and 12 illustrate the aspects concerning the quality of
the product under development. The initial quality objective for both
projects is set as the number of tasks that need to be demonstrated, tested
and corrected. This percentage is 90% for both projects. Figure 11 shows
that this percentage is maintained for most of the duration of the
lifecycle. However, when the final phase of each project is close, the
percentage of tested tasks diminishes considerably. Nevertheless, the
project with outsourcing achieves a higher level of final quality. The
explanation for this result can be found in Figure 12. Figure 12 shows the
evolution of the error detection rate. It can be observed that the project
with outsourcing has a much higher error detection rate than the project
without outsourcing. This behavior may be due to the fact that in the
project with outsourcing, part of the quality assurance activities is
performed by the outsourced team. Hence, the volume of tasks that need

Software Process Dynamics: Modeling, Simulation and Improvement 51

to be tested, demonstrated and corrected within the organization is
significantly lower, and this makes it possible to achieve higher values in
the error detection and correction rates. The increment in these rates
translates into a higher quality of the final product.

Quality

i I 1 I i 1 I I I

.9

.8

.7

.6

0 7 14 21 28 35 42 49
Time (Months)

Quality - Without Outsourcing —— Dimensionless
Quality-With Outsourcing Dimensionless

Fig. 11. Evolution of the variable Quality.

8. Conclusions and Outlook

This chapter has focused on software process modeling and simulation
together with other traditional techniques to help organizations improve
their maturity level according to CMM. There is an important factor that
plays a decisive role in the achievement of this improvement. This factor
is the knowledge that the organization has of its processes. It is in this
field where the modeling and simulation approach can offer important
advantages. The first one lies in the actual model building process. A
model is a mathematical abstraction of a real system. To effectively build
a simulation model, it is necessary to define what it is intended to model,
define its scope and identify the rules that govern its behavior. These

52 M. Ruiz, I. Ramos, M. Toro

three activities share a common requirement: knowledge about the real
system. Without knowledge, there is no information and, therefore,
models. According to CMM, without knowledge, it is not possible to
define the software process and therefore, to improve the maturity level.
Therefore, as far as process maturity level is concerned, knowledge and
process improvement go hand in hand.

Error Detection Rate

1

1
I 0 7 14 21 28 35 42 49

Time (Months)

Error Detection Rate - Without Outsourcing Task/Month
Error Detection Rate-With Outsourcing Task/Month

Fig. 12. Evolution of the variable Error detection rate.

On the other hand, simulation has always been considered as a
powerful tool in the decision-making area. In this chapter, simulation has
been proposed not only as a tool to help in the decision-making process,
but as a factor that helps to design and evaluate process improvements. It
also promotes simulation modeling and modular model building as an
approach to automatically trigger the set of metrics that need to be
collected, since each new dynamic module developed requires its own
set of initial parameters. These initial parameters required to initialize
each dynamic module should form part of the metrics collection program
carried out within the organization. In addition, this new data is not only

Software Process Dynamics: Modeling, Simulation and Improvement 53

used in the simulation runs, but also to increase the level of knowledge
that the organization has of its processes.

As an example of how to integrate traditional software engineering
methods with software process simulation modeling, a dynamic
integrated framework for software process improvement has been
introduced. This framework can build dynamic software process models
by means of model abstraction, module construction and reuse. These
models can then be used to design and evaluate software process
improvements such as analyzing the impact of the size of the technical
staff on the main four variables (time, cost, quality, and overall
workforce) at a level 1 organization40 or evaluating the impact of
carrying out formal inspection activities in level 3 organizations41.

Currently, the software process modeling and simulation community
is working on the application of this technique to the latest aspects of the
software engineering field, such as updating the framework to work
according to the CMMi42. Some remarkable applications are: web-based
open software development , open source software evolution , extreme
programming45 and COTS-based development46.

Acknowledgments
This work was supported by the Interministerial Commission of Science
and Technology, (CICYT, Spain) through grant TIN 2004-06689-C03-
03.

References

1. M.C. Paulk, B. Curtis, M.B. Chrissis and Weber, C.V. Capability Maturity Model
for Software, Version 1.1, Software Engineering Institute, Technical Report
CMU/SEI-93-TR-24. Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA. February 1993.

2. International Standard Organization. ISO 9001. Quality Systems - Model for
Quality Assurance in Design/Development, Production, Installation, and Services,
1987.

3. International Standard Organization. ISO 9000-3. Guidelines for the Application of
ISO9001 to the Development, Supply, and Maintenance of Software, 1991.

4. A. Carleton, R.E. Park, W.B. Goethert, W.A. Florae, E.K. Bailey and Pfleeger, S.L.
Software Measurement for DoD Systems: Recommendations for Initial Core

54 M. Ruiz, I. Ramos, M. Toro

Measures. Technical Report CMU/SEI-92-TR-19. Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA. 1992.

5. A.M. Christie. Simulation - An Enabling Technology in Software Engineering.
http://www.sei.cmu.edu/publications/articles/christie-aprl999/christie-aprl999html

6. M.C. Kellner, R.J. Madachy and Raffo, D.M. Software Process Simulation
Modeling. Why? What? How? Journal of Systems and Software, 46 (1999) 91-105.

7. High Performance Systems, Inc. 45 Lyme Road. Hannover, NH, 03755.
http://www.hps-inc.com/edu/stella/stella.htm

8. PowerSim Corporation. 1175 Hendon Parkway, Suite 600, Hendon, VA, 20170.
http://www.powersim.com/default_home.asp

9. Ventana Systems, Inc. 60 Jacob Gates Road, Harvard, MA 01451.
http://www.vensim.com

10. Proceedings of the 5th International Workshop on Software Process Simulation and
Modeling. ProSim 2004. May 24- 25, 2004. Edinburgh, Scotland UK.

11. Proceedings of the 6th International Workshop on Software Process Simulation and
Modeling. ProSim 2005. May 14-15, 2005. Saint Louis, MO, USA.

12. D.M. Raffo. Modeling Software Processes Quantitatively and Assessing the Impact
of Potential Process Changes on Process Performance. Ph.D. Dissertation.
Graduate School of Industrial Administration, Carnegie Mellon University,
Pittsburgh, MA. 1996.

13. M. Kellner. Software Process Modelling Support for Management Planning and
Control. Proceedings of the First International Conference on the Software Process.
Redondo Beach, California. IEEE Computer Society Press, Los Alamitos, CA
(1991)8-28.

14. G.A. Hansen. Simulating Software Development Processes. IEEE Computer,
January 1996, 73-77.

15. P.M. Senge. The Fifth Discipline. Currency, 1st. Edition, 1994.
16. T. Abdel-Hamid and Madnick, S. Software Project Dynamics: an Integrated

Approach. Prentice-Hall, 1991.
17. D. Pfhal and Lebsant, K. Integration of System Dynamics Modelling with

Descriptive Process Modelling and Goal-Oriented Measurement. Journal of
Systems and Software, 46 (1999), 135-150.

18. S. Burke. Radical Improvements Require Radical Actions: Simulating a High
Maturity Organization. Technical Report CMU/SEI-96-TR-025, ESC-TR-96-024.
Software Engineering Institute, Carnegie Mellon University Pittsburgh, PA, 1996.

19. P. Wernick, and Hall, T. Simulating Global Software Evolution Processes by
Combining Simple Models: An Initial Study. Software Process: Improvement and
Practice, 7(2002)113-126.

20. F.P. Brooks, Jr. The Mythical Man-Month. Essays on Software Engineering. 20th.
Anniversary Edition. Addison Wesley - Pearson Education, 1995.

21. C. N. Parkinson. Parkinson's Law: The Pursuit of Progress, London, John Murray
1958.

http://www.sei.cmu.edu/publications/articles/christie-aprl999/christie-aprl999html
http://www.hps-inc.com/edu/stella/stella.htm
http://www.powersim.com/default_home.asp
http://www.vensim.com

Software Process Dynamics: Modeling, Simulation and Improvement 55

22. J.W. Forrester. Industrial Dynamics. Walthan, MA: Pegasus Communications,
1961.

23. C.W. Kirkwood. System Dynamics Methods: A Quick Introduction. Technical
Report. College of Business, Arizona State University, Tempe, 1998.

24. L.B. Sweeny and J.D. Sterman. Bathtub Dynamics: Initial Results of a Systems
Thinking Inventory. System Dynamics Review 16 (4): 249-286.

25. I.J. Martinez and Richardson, G.P. Best Practices in System Dynamics Modeling.
Proceedings of the 19th International Conference of the System Dynamics Society.
Atlanta, GA USA, 2001.

26. J.W. Forrester and Senge, P.M. Tests for Building Confidence in System Dynamics
Models In Legasto, A.A. Jr., Forrester, J.W. and Lyneis, T.M. (eds.). System
Dynamics. New York Elsevier North-Holland, 1980, 209- 228.

27. J.D. Tvedt. An Extensible Model for Evaluating the Impact of Process
Improvements on Software Development Cycle Time, Ph.D. Dissertation, Arizona
State University, 1996.

28. L.H. Putnam and Meyers, W. Measures for Excellence: reliable software, on time,
within budget. Prentice Hall, 1991.

29. B. Boehm. Software Engineering Economics. Prentice Hall, Inc., 1981.
30. B. Boehm, E. Horowitz, R.J. Madachy, D. Reifer, B.K. Clark, B. Steece, A.W.

Brown, S. Chulani and Abts, C. Software Cost Estimation with COCOMO II.
Prentice Hall, Inc., 2000.

31. T.L. Woodings. A Taxonomy of Software Metrics. Software Process Improvement
Network (SPIN), 1995.

32. S.T. Knox. Modeling the Cost of Software Quality Digital Technical Journal, Vol, 5,
No. 4 (fall 1993), 9-16.

33. D. Houston and Keats, JB. Cost of Software Quality: a Means of Promoting
Software Process Improvement. Quality Engineering, 10(3), 563-573, 1998.

34. Q.W. Fleming and Koppleman, J.M. Earned Value Project Management, 2"
Edition. Newton Square, Project Management Institute, 1999.

35. W. Lipke and Jennin, M. Software Project Planning, Statistics and Earned Value.
Crosstalk, December 2000.

36. I. Ramos, J.C Riquelme and Aroba, J. Improvement in the Decision Making in
Software Projects. Miranda, P., B. Sharp, A. Pakstas, and J. Gilipe (eds.)
Proceedings of the 3 rd International Conference on Enterprise Information Systems
(ICEIS 2001) (on CD-ROM).

37. J.R. Quinlan. C4.5: Programs for machine learning. Morgan Kauffman, 1993.
38. J.C. Riquelme, J.S. Aguilar and M. Toro M. Discovering Hierarchical Decision

Rules with Evolutive Algorithms in Supervised Learning. International Journal of
Computer, Systems and Signals 1(1): 73-84, 2000.

39. R. Agrawal. Mining quantitative association rules in large relational tables, ACM
SIGMOD Record, v.25 n.2, 1-12, June 1996.

56 M. Ruiz, I. Ramos, M. Toro

40. M. Ruiz, I. Ramos and Toro, M.A. Dynamic Integrated Framework for Software
Process Improvement. Software Quality Journal (10): 181-194, 2002.

41. M. Ruiz, I. Ramos and Toro, M. Integrating Dynamic Models for CMM-Based
Software Process Improvement. Oivo, ML, and S. Komi-Sirvio (eds.) Proceedings of
the 4th International Conference PROFES 2002. LNCS 2559. Rovaniemi (Finland),
63-77.

42. M.B. Chrissis, M. Konrad and Shrum, S. CMMi: Guidelines for Integration and
Product Improvement. SEI Series in Software Engineering. Addison-Wesley, 2003.

43. C. Jensen and Scacchi, W. Process Modeling Across the Web Information
Infrastructure. Proceedings of the 5th International Workshop on Software Process
Simulation ands Modeling. ProSim 2004. May 24- 25, 2004, 40-49. Edinburgh,
Scotland UK.

44. N. Smith, A. Capilupi and Ramil, J.F. Qualitative Analysis and Simulation of Open
Source Software Evolution. Proceedings of the 5th International Workshop on
Software Process Simulation ands Modeling. ProSim 2004. May 24- 25, 2004, 103-
112. Edinburgh, Scotland UK.

45. A. Cau, G. Concas, M. Melis and Turnu, I. Evaluate XP Effectiveness Using
Simulation Modeling. H. Baumeister, M. Marchesi and M.Holcome (eds.).
Proceedings of the Extreme Programming and Agile Processes in Software
Engineering. XP 2005. LNCS 3556. June 18-23, 2005, 48-56. Sheffield, UK.

46. M. Ruiz, I. Ramos and Toro, M. Using Dynamic Modeling and Simulation to
Improve the COTS Software Process. In F. Bomarious and H. lida (eds.): PROFES
2004, LNCS 3009, 568-581, 2004.

Chapter 3

SOFTWARE PROCESS SIMULATION WITH SYSTEM
DYNAMICS — A TOOL FOR LEARNING AND DECISION

SUPPORT

Dietmar Pfahl1, Gunther Ruhe2, Karl Lebsanft3, Michael Stupperich4

Fraunhofer Institute for Experimental Software Engineering (IESE)
Sauerwiesen 6, D-67661 Kaiserslautern, Germany

E-mail: pfahl@iese.fraunhofer.de

^University of Calgary
2500 University Drive NW, Calgary, Alberta, Canada T2N1N4

E-mail: ruhe@ucalgary.ca

3Siemens AG, Dept. CTSE 3,
Otto-Hahn-Ring 6, D-81730 Munchen, Germany

E-mail: Karl.Lebsanft@siemens. com

4DaimlerChrysler AG, Research and Technology,
P.O.Box 2360, D-89013 Ulm, Germany

E-mail: Michael.Stupperich@daimlerchrysler.com

The chapter provides an overview of some issues in learning and
decision support within the scope of software process management.
More specifically, the existing work done in the field of software
process simulation is presented, and the application of software process
simulation models for the purpose of management learning and
decision support is motivated and described. Examples of simulation
modeling applications in the automotive industry are reported to
illustrate how process simulation can become a useful management tool
for the exploration and selection of alternatives during project planning,
project performance, and process improvement. The chapter concludes
with a discussion of limitations and risks, and proposes future work that
needs to be done in order to increase acceptance and dissemination of
software process simulation in the software industry.

57

mailto:pfahl@iese.fraunhofer.de
mailto:ruhe@ucalgary.ca
mailto:Michael.Stupperich@daimlerchrysler.com

58 D. Pfahl, G. Ruhe, K. Lebsanft, M. Stupperich

1. Learning and Decision Support in the Context of Software
Process Management

Software development is a highly dynamic field that heavily relies on the
experience of experts when it comes to learning, applying, evaluating,
disseminating and improving its methods, tools, and techniques. The
experience factory has proven to be a successful approach to
organization-wide, systematic improvement in software organizations.7 It
helps software organizations institutionalize their collective learning by
establishing a separate organizational element that supports reuse of
project experience by developing, updating, and delivering experience
packages. The experience factory concepts lay the managerial and
structural foundations for organizational learning and are the key to
making individual competence development sustained.5 The main idea of
experience-based learning and improvement is to accumulate, structure,
organize, and provide any useful piece of information being reused in
forthcoming problem situations. Reuse of know-how is essentially
supported by the case-based reasoning methodology.4 However, software
development and evolution typically is large in size, of huge complexity,
with a large set of dynamically changing problem parameters. In this
situation, reuse of experience alone is a useful, but insufficient approach
to enable proactive decision analysis.25 Diversity of project and problem
situations on the one hand, and costs and availability of knowledge and
information organized in a non-trivial experience (or case) base on the
other hand, are further arguments to qualify decision-making. In addition
to retrieving static knowledge, decisions are supported by aggregating,
structuring, computing and interpreting existing units of knowledge and
information.

The idea of offering decision support (DS) always arises when
decisions have to be made in complex, uncertain and/or dynamic
environments. The process of software development and evolution is an
ambitious undertaking. In software process management, many decisions
have to be made concerning processes, products, tools, methods and
techniques. From a decision-making perspective, all these questions are
confronted by different objectives and constraints, a huge number of
variables under dynamically changing requirements, processes, actors,

Software Process Simulation with SD - A Tool for Learning and Decision Support 59

stakeholders, tools and techniques. Very often, this is combined with
incomplete, fuzzy or inconsistent information about all the involved
artifacts, as well as with difficulties regarding the decision space and
environment.

Typically, a real DS system is focused on a relatively narrow problem
domain. There are three kinds of existing research contributions to
Software Engineering Decision Support (SEDS). Firstly, research that
explicitly mentions an effort to provide decision support in a focused
area of the software life cycle. Examples include decision support for
reliability planning23, inspection process management13, multi-project
management12, or software release planning24. Secondly, research that
contributes to decision support, although not explicitly stated as such.
Basically, most results from empirical software engineering, software
measurement, and software process simulation can be seen to belong to
this category. Thirdly, there is an increasing effort to develop intelligent
decision support systems in many other fields such as health care,
transportation, finance or defense. On recent developments in this field,
we refer to a paper by Shim et al.28

What are the expectations and requirements for systems offering
SEDS? We define a set of "idealized" requirements on support systems
that combine the intellectual resources of individuals and organizations
with the capabilities of the computer to improve decision-making
effectiveness, efficiency and transparency.25 Depending on the actual
problem topic and the usage scenario of the DS system (on-line versus
off-line support, individual versus group-based decision support, routine
versus tactical versus strategic support), different aspects will become
more important than others.

• (Al) Knowledge, model and experience management of the
existing body of knowledge in the problem area (in the respective
organization).

• (A2) Integration into existing organizational information systems
(e.g., ERP systems).

60 D. Pfahl, G. Ruhe, K. Lebsanft, M. Stupperich

• (A3) Process orientation of decision support, i.e., consider the
process of how decisions are made, and how they impact development
and business processes.

• (A4) Process modeling and simulation component to plan, describe,
monitor, control and simulate ("what-if" analysis) the underlying
processes and to track changes in their parameters and dependencies.

• (A5) Negotiation component to evolutionarily find and understand
compromises.

• (A6) Presentation and explanation component to present and
explain generated knowledge and alternative solutions in various
customized ways to increase transparency.

• (A7) Analysis and decision component consisting of a portfolio of
methods and techniques to evaluate and prioritize generated solution
alternatives and to find trade-offs between the conflicting objectives
and stakeholder interests.

• (A8) Intelligence component to support knowledge retrieval,
knowledge discovery and approximate reasoning.

• (A9) Group facilities to support electronic communication,
scheduling, document sharing, and access to expert opinions.

The principal architecture of a SEDS system is shown in Figure l-l.25

Real-world decisions on planning, development or evolution processes in
software engineering are made by humans. All support is provided via a
graphical user interface. Experts and their human intelligence are
integrated via group support facilities. The intelligence of the support is
based on a comprehensive model, knowledge and experience. The more
reliable and valid the models are, the more likely we are to get good
support. The accompanying suite of components interacts with the
model, knowledge and experience base. The suite encompasses tools for
modeling, simulation, as well as decision analysis. Furthermore,
intelligent components for reasoning, retrieval and navigation are added
to increase efficiency and effectiveness of the support.

Software Process Simulation with SD - A Tool for Learning and Decision Support 61

Fig. 1-1. Principal Architecture of a Software Engineering Decision Support System

In the remainder of this chapter, we mainly focus on aspect (A4) -
"Process modeling and simulation component" - and explain in more
detail how the process simulation component of a SEDS system can be
developed and applied to support learning and decision-making.

2. Process Simulation as a Tool for Learning and Decision Support

Several authors have stressed the potential of simulation as an analysis,
learning, and decision-support tool for software managers.3'9'1018'31

Typically, process simulation in the context of management learning and
decision-support focuses on planning and controlling (re-planning)
projects, analyzing past project behavior (post-mortem), exploring causes

62 D. Pfahl, G. Ruhe, K. Lebsanft, M. Stupperich

for failure and potential for improvement, explaining complex or
interesting dynamic behavior to others (incl. training), and analyzing
risks (by adding probability and cost).

Abdel-Hamid and Madnick were the first to apply simulation
modeling to analyze and improve software development.1 The authors'
goal was to develop a comprehensive model of the dynamics of software
development that enhances the understanding of, provides insight into,
and makes predictions about the process by which software development
is managed. Their original model comprised:

• typical project variables, such as workforce level, budget, scheduled
completion date, number of errors produced, and number of errors
detected;

• managerial-related functions, e.g. staffing, planning, and controlling;
• production-related functions, e.g. design, development, verification,

and rework;
• human-related functions, e.g. productivity, motivation, error rate,

whose values are affected by the project's perceived status (schedule
pressure) and the penalty-reward structure of the organization.

During the 1990s many new applications of process simulation in
software engineering, not only restricted to software project
management, were published. For example, based on an exhaustive
literature survey, covering the 1991-2001 period, the following
application domains of process simulation in software engineering have
been identified16: software project management, concurrent software
engineering, software requirements engineering, software process
improvement, software verification and validation, software reliability
management, software maintenance, software evolution, software
outsourcing, and software engineering training.

In an attempt to systematize the variety of applications of process
simulation in the field of software engineering, Kellner et al. suggested a
two-dimensional taxonomy that allows for classification according to
purpose and scope.22 The purpose dimension distinguishes the categories
"strategic management", "planning", "control and operational
management", "process improvement and technology adoption",

Software Process Simulation with SD - A Tool for Learning and Decision Support 63

"understanding", and "training and learning". The scope dimension
distinguishes the following categories:

• a portion of the life cycle, e.g., design phase, code inspection, some or
all of testing, requirements management;

• a development project, i.e., single product development life cycle;
• multiple, concurrent projects, e.g., across a department or division;
• long-term product evolution, i.e., multiple, successive releases of a

single product;
• long-term organization, e.g., strategic organizational considerations

spanning successive releases of multiple products over a substantial
time period.

Extending the above-mentioned survey16, Table 2-1 shows the
distribution of software process simulation applications using Kellner's
taxonomy. In total, more than 250 papers related to the topic of software
process simulation published between 1987 and 2004 were identified and
further analyzed. Sources were the following journals and conference or
workshop proceedings: ACM Communications, IEEE Transactions on
Software Engineering, Information and Software Technology, Software
Process Improvement and Practice, Software Quality Journal, The
Journal of Systems and Software, proceedings of SEKE, ICSE, ProSim,
and PROFES. Table 2-1 classifies 81 papers presenting simulation
models and related applications. Note that a paper could be classified
more than once. For example, when the model's scope was
"development project" and its intended usage was multi-purpose, say for
planning, controlling, and improving, it was classified three times. Most
of the simulation modeling projects while focusing on complete
development projects or portions of it aimed at planning, improvement
and technology adoption, and understanding.

3. Guidance for System Dynamics Process Simulation Modeling

As an initial input to those who wish to learn more about the
development of process simulation models, we introduce IMMoS

64 D. Pfahl, G. Ruhe, K. Lebsanft, M. Stupperich

(Integrated Measurement, Modeling and Simulation), a method for goal-
oriented development of System Dynamics (SD) simulation models.

Table 2-1. Classification of process simulation applications

Scope

Purpose
Strategic
management
Planning
Control and
operational
management
Process
improvement
and technology
adoption
Understanding
Training and
learning

Portion
of

life cycle

4
2

6

6

Develop­
ment

project
6

20
6

18

16
11

Multiple,
concurrent

projects
2

3
2

1

3

Long-term
product

evolution
2

1

1

3

Long-term
organization

6

2

2
1

SD is a very comprehensive and powerful simulation modeling
paradigm. SD models are able to capture both static and dynamic aspects
of reality. In addition, they provide two fully consistent representation
layers: a qualitative graphical representation layer, the so-called flow
graph, and a quantitative representation layer consisting of a set of well-
defined mathematical equations. The graphical representation layer is
useful for model building and human understanding of model contents,
while the mathematical representation layer is useful for running
simulations and conducting experiments with the model in a virtual
laboratory setting. The basic ingredients of flow graphs are shown in
Figure 3-1.

SD model equations are separated into two groups: level equations
and rate equations. Level equations describe the state of the system. They
accumulate (or integrate) the results of action in the systems, an action
being always materialized by flows in transit. The derivative of a level,
or equivalently the rapidity at which it is changing, depends on its input
and output flows. The rates are what change the values of levels. Their
equations state how the available information is used in order to generate

Software Process Simulation with SD - A Tool for Learning and Decision Support 65

actions. Finally, constants are used to parameterize SD models, while
auxiliary variables are used to improve the readability of model
equations by storing intermediate calculation results.

O source or sink outside
the model boundary

— ^ flow of quantities

°— ^ - information link

Fig. 3-1. Schematic conventions of flow graphs

Although several authors, starting with the seminal work done by
Forrester11, have published phase models and process descriptions', there
is no detailed guidance in the form of a process model that defines entry
and exit criteria for each SD modeling activity, enforces precise problem
definition, helps to identify stakeholders based on an associated role
model, defines the product flow based on an associated product model,
provides templates and checklists, and offers hints on when and how to
reuse information from other software modeling activities.

In order to resolve these shortcomings, and thus improve the
efficiency and effectiveness of SD model development in the software
engineering context, a comprehensive methodology for Integrated
Measurement, Modeling, and Simulation (IMMoS) was developed.'9 The
IMMoS methodology consists of four components:

• CI (Process Guidance) provides a model of the SD development life
cycle with associated role model, product model, and process model.

• C2 (Goal Definition) provides a SD modeling goal definition
taxonomy specifying five dimensions (role, scope, purpose, dynamic
focus, and environment) that capture the problem definition in the
early stage of SD model development.

• C3 (Model Integration) describes how static software engineering
models like process models (descriptive and prescriptive) and
quantitative models (e.g., cost, quality and resource models) are
integrated with SD models.

o- :>. level

auxiliary Q

constant

' A summary of these proposals can be found in the doctoral thesis by Pfahl.16

66 D. Pfahl, G. Ruhe, K. Lebsanft, M. Stupperich

• C4 (Method Integration) describes how SD model development relates
to process modeling and goal-oriented measurement following the
Goal/Question/Metric (GQM) paradigm.8 Particular focus is put on the
integration of SD model development with GQM, enhancing the
established GQM method towards "Dynamic GQM".20

In the following, we briefly present component CI (Process
Guidance). Process guidance is facilitated through a set of models that
support the SD model developer: Role Model, Phase Model, Product
Model, and Process Model.

3.1. IMMoS Role Model

The IMMoS Role Model defines the minimal set of roles that are
typically involved in SD simulation modeling projects: Customer (C),
User (U), Developer (D), Software Engineering Subject Matter Expert
(E), Facilitator (F), and Moderator (M).

Role C (Customer) represents the sponsor of the SD modeling
project. For the SD modeling project to be successful it is important that
C knows about the cost and benefit of developing and using SD models.
This includes a basic understanding of typical application areas of SD
models. C is responsible for the identification of potential SD model
users, and of providing the human resources (i.e., Software Engineering
Subject Matter Experts) for the SD model development and maintenance
task.

Role U (User), i.e., the future user of the SD model in the software
organization, is responsible for providing the necessary information for
SD modeling goal definition. In addition, U participates in all phases of
the SD modeling life cycle, particularly during verification and
validation activities, and during the definition of the SD model user
interface (when desired). During SD model application, U triggers
enhancements of the existing model, e.g., re-calibration of the model
parameters due to changes in the real world.

Role D (Developer) is responsible for technically sound SD model
development. In order to fulfill this task, the following skills are needed:

Software Process Simulation with SD - A Tool for Learning and Decision Support 67

• Sufficient theoretical and practical knowledge about the SD modeling
approach gained through training, relevant literature, and, ideally,
active participation in previous SD modeling projects.

• Sufficient knowledge about at least one SD modeling tool.
• Sufficient communication skills and ability to apply knowledge

elicitation, moderation, and presentation techniques.
• Sufficient knowledge about measurement (i.e., GQM) and process

modeling.
• Basic knowledge about the organizational and technical characteristics

of the environment in which the SD simulation modeling project takes
place is useful.

Role E (Software Engineering Subject Matter Expert) is responsible
for providing the relevant SE information needed for SD model building.
This includes managerial and technological information about how
software is developed (processes, methods, techniques, tools, plans,
measurement data, etc.) in the organization

Role F (Facilitator) helps with establishing contacts, and planning and
arranging meetings. The responsibility of F is strictly limited to technical
support during a SD modeling project. This role is often taken over by
the same person that assumes role C, U, or even D - if the person
assuming D is familiar with the customer organization.

Role M (Moderator) is responsible for preparing and leading
workshops and meetings of D with three or more subject matter experts
(cf. role E).

3.2. IMMoS Phase and Product Models

The IMMoS Phase Model structures the SD modeling life cycle into four
phases. Phase 0 prepares the actual model building activities, while
phases 1 to 3 represent the (iterative) life cycle that SD models typically
follow.

Phase 0 (Pre-Study) focuses on the definition of prospective SD
model users, identification of software engineering subject matter experts
that can be approached by the SD model developer during the modeling
activities, and the specification of the SD modeling goal. If no SD model
user can be identified or no precise SD modeling goal definition can be
achieved, the modeling activity should be stopped. The following

68 D. Pfahl, G. Ruhe, K. Lebsanft, M. Stupperich

artifacts are produced during phase 0: Agreement, Customer Sheet,
Management Briefing Materials, Management Briefing Minutes, Goal
Definition, Project Plan, Project Log file, and Development Contract.

In phase 1 (Initial Model Development), an initial SD model is
developed that is able to reproduce the reference mode. The reference
mode is an explicit description of the (problematic) dynamic behavior of
one or more system parameters observed in reality. It acts as a catalyst in
the transition from general speculation about a problem to an initial
model, and it captures the dynamics of the tackled problem, i.e., behavior
patterns and related time horizon. The following artifacts are produced
during phase 1: Technical Briefing Materials, Technical Briefing
Minutes, Development Workshop Minutes, Dynamic Hypotheses
Definition (consisting of Reference Mode and Base Mechanisms),
Causal Diagram, Verification Report 1, Initial SD Model (consisting of
Initial Flow Graph, Initial SD Model Equations, Initial SD Model User
Interface), Verification Report 2, and Validation Report 1.

In phase 2 (Model Enhancement), the initial SD model is enhanced
such that it can be used for problem solving. It might be the case that the
SD model user is only interested in a singular problem solution, e.g.,
when the goal is to evaluate alternative improvement suggestions. In this
case, the modeling activities would stop at the end of phase 2. The
following artifact is produced during phase 2: Enhanced SD Model
(consisting of Enhanced Flow Graph, Enhanced SD Model Equations,
Enhanced SD Model User Interface, and Enhanced Causal Diagram).

In phase 3 (Model Application) the enhanced SD model is applied to
serve its specified purpose. If needed, the artifacts produced in phase 2
are enhanced and maintained in order to cope with a changing reality.

Detailed descriptions of the individual SD modeling artifacts can be
found in more specific publications by Pfahl and Ruhe.16'19

3.3. IMMoS Process Model

The IMMoS Process Model provides a control-flow oriented description
of the sequence of activities that should be followed in a SD model
development project.

Phase 0 (Pre-Study) comprises the following seven activities: First
contact, Characterization, Management briefing, Identification of model

Software Process Simulation with SD - A Tool for Learning and Decision Support 69

users, Problem definition, Technical feasibility check, and Planning and
contract.

Phase 1 (Initial Model Development) also comprises seven activities:
Technical briefing, Definition of dynamic hypotheses, Definition of the
causal diagram, Review of the causal diagram (Verification 1),
Implementation of the initial SD model, Review of the initial SD model
(Verification 2), and Test of the initial SD model (Validation 1).

Phase 2 (Model Enhancement) comprises two activities:
Enhancement of the initial SD model, and Test of the enhanced SD
model (Validation 2).

Finally, phase 3 (Model Application) comprises only one activity:
Application and maintenance of the SD model.

Each activity is characterized through a set of attributes, such as
involved roles, entry/exit criteria and input/output products. As an
example, the activity 0.5 (Problem Definition) is shown in Table 3-1. A
list of all SD modeling activities can be found in a focused paper by
Pfahl and Ruhe19, while a complete description of the IMMoS Process
Model has been published by Pfahl16.

4. Applications in the Automotive Industry

In the form of examples, we present two simulation models that were
developed with IMMoS in the following sections. The case studies
represent applications of software process simulation models that were
developed to support learning and decision-making within software
organizations linked to the automotive industry.

The first model, RESIM (Requirements Simulator), was developed
jointly with Siemens Corporate Technology. The aim of the RESIM
project was to provide support for analyzing the potential effectiveness
of improvement suggestions proposed in the context of a software
process assessment in Siemens' automotive business unit. Using the
IMMoS Goal Definition Template, the simulation modeling goal can be
summarized as shown in Table 4-1.

70 D. Pfahl, G. Ruhe, K. Lebsanft, M. Stupperich

Table 3-1. Example SD modeling activity description

ID
Name
Role

Input

Output
Entry
condition
Exit
condition
Description

Methods /
Techniques
Guidelines

Materials /
Tools

Activity 0.5
Problem definition
C (optional), D, U:
- C: Checks whether Goal Definition is in line with business goals.
- D: Supports U during problem definition.
- U: Responsible for problem identification and definition.
Customer Sheet
If available: process models and measurement-based quantitative models.
Goal Definition, Project Logfile
U has been identified (cf. Activity 0.4)

Goal Definition exists in written form or SD modeling project has been
cancelled.
- Identification of a problem that - if solved - would help U with

his/her daily work.
- Formal documentation of the problem definition (SDM Goal

Definition).
- Notes should be taken of all relevant information that could be used

to define the dynamic hypothesis in Phase 1, e.g., first assumptions
about cause-effect relationships, suggestions of potential problem
solutions, relevant existing models, subject matter experts, etc. This
kind of information is recorded in the Project Logfile.

Knowledge elicitation techniques: Interview (semi-structured or
unstructured) and focused discussion (goal-related)
- The problem definition should be well-focused and be stated in

concrete terms. The Goal Definition Template should be used.
- In order to be suitable for SD analysis, the problem has to deal with

phenomena that show dynamic behavior.
- In order to be suitable for SD analysis, the system that is going to be

investigated for problem solution, has to be viewed as a feedback (or
closed) loop system. This assumption implies that a change in the
system structure - and not an alteration of the inputs - is in the focus
of interest of the problem solution.

Goal Definition Template

The second model, PL-SIM (Process Leadership Simulator), was
developed jointly with DaimlerChrysler Research. The aim of the PL-
SIM project was to support the strategic software improvement planning
in one of DaimlerChrysler's car divisions. The PL-SIM model provided
first insights into selecting and evaluating proposed elements of strategic
software process improvement programs. Using the IMMoS Goal

Software Process Simulation with SD - A Tool for Learning and Decision Support 71

Definition Template, the simulation modeling goal can be summarized as
shown in Table 4-2.

Table 4-1. Goal definition template for simulation model RESIM

Role

Scope

Dynamic Focus

Purpose

Environment

Process Consultant (Assessor)

Single Project

Impact of software requirements volatility on software
development productivity

Understanding

Siemens Automotive (Micro Controllers)

Both simulation models, RESIM and PL-SIM, provided evidence for
the effectiveness and efficiency of IMMoS, and for the suitability of SD
models to serve as specialized components of SEDS systems. In
particular with regards to efficiency, using IMMoS significantly saved
simulation modeling effort and shortened model development time.16

Table 4-2. Goal definition template for simulation model PL-SIM

Role

Scope

Dynamic Focus

Purpose

Environment

Software Engineering Process Group

Software Organization

Impact of improvement measures on process leadership

Understanding

DaimlerChrysler Automotive

The following two sections describe in more detail how RESIM and
PL-SIM were applied for learning and decision support in two different
software organizations linked to the automotive industry.

4.1. Simulation in Support of Software Process Assessment

The SD model RESIM was developed jointly by Fraunhofer IESE and
Siemens Corporate Technology (Siemens CT). The purpose of this
simulation model was a) to demonstrate the impact of unstable software

72 D. Pfahl, G. Ruhe, K. Lebsanft, M. Stupperich

requirements on project duration and effort, and b) to analyze how much
effort should be invested in stabilizing software requirements in order to
achieve optimal cost effectiveness.

The starting point for developing RESIM was a CMM-compatible
software process assessment14'30, which Siemens CT had conducted
within a Siemens Business Unit (Siemens BU). Usually, the main result
of a software process assessment is a list of suggested changes to the
software processes. In this case, the assessors' observations indicated
that the software development activities were strongly affected by
software requirement volatility. Moreover, due to the type of products
developed by Siemens BU, i.e. products consisting of hardware (e.g.
micro-controllers) and embedded software, the definition of software
requirements was under direct control of systems engineering, and thus
the software department did not hold full responsibility. During the
assessment, the assessors observed that many system requirements that
had already been addressed by software development were changed by
the customer, or replaced by new requirements defined by systems
engineering late in the project. In addition, there were many cases where
system requirements that originally had been passed to software
development eventually were realized by hardware, and vice versa.
Based on these observations, the assessors expected that improvement
suggestions that exclusively focused on software development processes
(e.g., introduction of software design or code inspections) would not help
stabilize software requirements. Since the software department that had
ordered the process assessment primarily requested improvement
suggestions that could be implemented under their responsibility, there
was a need to find means that helped convince decision makers that first
systems engineering had to be improved before improvements in
software development could become effective. Hence the decision was
made to develop a simulation model, i.e. RESIM, which could help
clarify the situation and investigate the cost-effectiveness of
improvements in systems engineering with regards to software
development.

Following the IMMoS approach, the model building process was
highly iterative. Thirteen increments were needed to come up with a base
model that was able to capture the software development behavior mode

Software Process Simulation with SD - A Tool for Learning and Decision Support 73

of interest, and which contained all relevant factors governing observed
project behavior. After two additional iterations, the simulation model
was ready to be used for its defined purpose.

Besides the definition of the model boundaries and model granularity,
the most important design decisions were related a) to the typically
observed behavior patterns ("reference mode") of development projects
at Siemens BU which the model was to be able to reproduce through
simulation, and b) to the assumptions about the most significant cause-
effect relationships ("base mechanisms") governing the observed project
dynamics.

The reference mode represents the dynamics of product evolution and
requirement generation. The software product is developed in three
successive periods of approximately the same length. One increment is
developed during each period. Each product increment implements
certain types of requirements.

At the beginning of each increment development period, there is a
known fixed set of requirements to start with. During the development of
an increment, new requirements are received from the customer.
Typically, the number of new requirements exhibits a ceiling effect.

To build the SD model it was necessary to identify the most
important causal relationships that are believed to generate the typical
project behavior. The starting point for this modeling step was the
assumption that the stability of software (SW) requirements definition is
a measure of systems engineering (SE) quality, and that systems
engineering quality can be increased if effort is invested in related
improvement actions. Based on the insights that the Siemens CT experts
gained during process assessment, the following base mechanisms were
identified:

• The more effort is spent on SE improvement, the better the quality of
SE is: [SE effort + ^ SE quality +]

• The better the quality of SE is, the higher the stability of the SW
requirements is: [SE quality + -> stability of SW requirements +]

74 D. Pfahl, G. Ruhe, K. Lebsanft, M. Stupperich

• The higher the stability of SW requirements is, the smaller the number
of implemented SW requirements that have to be replaced or modified
is: [stability of SW requirements + -> replacement of implemented
SW requirements -]

• The more requirements that have already been implemented are
replaced by new requirements, the larger the total number of
requirements to be implemented, and thus the time needed to complete
the project is: [replacement of implemented SW requirements + ->
total number of SW requirements to implement + -> SW project
duration +]

• The more (excess) time is needed to complete the project, the bigger
time pressure is: [SW project duration + -^ time pressure +]

• The bigger the time pressure is, the more (additional) manpower will
be allocated to the project: [time pressure + -^ manpower +]

• The more (additional) manpower is allocated, the bigger the average
development productivity will be: [manpower + -> development rate
(per time unit) +]

• The more requirements that have already been implemented are
replaced by new requirements, the more iterations (so-called I-cycles)
have to be conducted: [replacement of implemented SW requirements
+ -> number of I-cycles +]

• The more I-cycles are conducted, the smaller the average development
productivity of the related increment is: [number of I-cycles + ->
development rate (per time unit) -]

To better understand the key dynamics of the system to be modeled,
the individual causal relationships can be linked together in a causal
diagram (cf. Figure 4-1).

Software Process Simulation with SD - A Tool for Learning and Decision Support 75

SE effort
+ stability

— * ofSW —
requirements

total number of
SW requirements

to be implemented

+ /
SW project

duration
G>

time pressure

replacement of
implemented SW

requirements

number of I-cycles
(customer reviews)

development rate
(per time unit)

S

manpower

Fig. 4-1. Causal diagram

The causal diagram clearly shows that an increase of SE effort would
reduce SW project duration for two reasons. Firstly, it would reduce the
overall number of SW requirements that is implemented (also counting
replacements or modifications of already implemented requirements).
Secondly, it would reduce the number of iterations (I-cycles), and thus
increase the average development rate (per time unit). Conversely, a lack
of SE effort would increase SW project duration, which - in order to
keep the project deadline - could only be compensated by adding
manpower. This compensation mechanism is controlled through a
negative feedback loop.

The simulation model was implemented in a modular way. The main
module represents software development with its interface to systems
engineering from which the software requirements are received. Four
additional modules describe certain aspects of software development in
more detail, namely: workforce allocation and adjustment, effort and cost
calculations, generation of new software requirements, and co-ordination
of incremental software development. Figure 4-2 shows how the five
modules are interrelated. In addition, the figure indicates that module 3
(effort and cost calculation) processes the variables that are needed for

76 D. Pfahl, G. Ruhe, K. Lebsanft, M. Stupperich

solving the issue under consideration, i.e. the effort allocated for systems
engineering activities (input or policy variable), and the cumulated total
effort resulting from all software and systems engineering activities
actually conducted (output or result variable).

Module 1:
software development

Module 2:
workforce allocation

and adjustment

effort for
systems engineering

Module 4:
new requirements

generation

(policy variable)

\ \ /
Module 3:

effort and cost
calculation

Module 5:
co-ordination
of increments

total SW and SE
effort (cost)

•
(result variable)

Fig. 4-2. Modular structure of the SD model with interfaces

Model validation was mainly based on plausibility checks conducted
by Siemens CT experts. The most important necessary condition for
model validity, i.e. the ability to reproduce the reference mode, was
fulfilled.

Figure 4-3 presents the simulated patterns of SW product growth
(implemented stable requirements -> variable: SW_product) and growth
of SW requirements that actually are contained in the final SW product
(stable requirements -^ variable: actual_all_SW_requirements), as
generated by the SD model for the baseline situation.

Software Process Simulation with SD - A Tool for Learning and Decision Support 11

SW requirements (run: baseline)

4,000

3,600

3,200

2,800

400

0

I I !

Stable requirements
actual_all_SW_requirements)

Implemented stable
requirements
(SW_product)

c
Z

\
m* *

i ^

f I * - " * -

* • • "

\

em

_

v
V
' \ ,

f~
_

- -

— •

. - » • 4

•

f

i i i

Stable and reolaced
r

| / d

f

/ <

equirements
all_SW_requirements)

« « » <» a» »»>,

1

«*>»

Replaced requirements
SW_replace_requ)

_ — "

BHB**

• —

™™ *

—

10 20 30 40 50 70 80 90 100 110 120 130 140 150 160 170 181

Fig. 4

Increment 1 Increment 2 Increment 3

•3. Reproduction of the reference mode
Time (Weeks)

Simulation showed that the number of replaced requirements
(variable: SW_replace_requ) and thus the total number of stable and
replaced requirements (variable: all_SW_requirements) can vary largely
as a consequence of variation in effort invested to improve systems
engineering.

Ultimately, the question that had to be answered with the help of the
simulation model was: "How much effort should be invested in systems
engineering in order to improve (software) requirements analysis and
thus minimize the overall software development cost?" To answer this
question, an equivalent mathematical minimization problem was
formulated:

total .effort = x + 2_\ y(t)~ ->mm
t=i

with:
t: elapsed time (weeks)
T: project termination (weeks)
x: effort for systems engineering (person weeks)
y: weekly effort consumption for software development (person

weeks / week)

78 D. Pfahl, G. Ruhe, K. Lebsanft, M. Stupperich

The solution to this problem was found by varying the policy variable
x, i.e., effort allocated for systems engineering activities, and by using
the built-in optimization function of the simulation tool2. It turned out
that an increase of the systems engineering effort share from 1.7% of the
total effort (baseline situation) to 9.1% of the total effort (optimal
situation) would reduce the overall cost for systems engineering and
software development by more than 20%. This effect is mainly due to the
stabilization of requirements, which is expressed in terms of the actual
average requirements replacement per week. In the optimal case, on
average only 0.08% of the currently known (and already implemented)
requirements were replaced per week, adding up to a total of 29 replaced
out of 1000 initially planned requirements during project performance.

Based on the simulations it was possible to demonstrate that software
requirements volatility is extremely effort consuming for the software
development organization and that investments in systems engineering in
order to stabilize requirements definition would pay off well. The results
of the model experiments have provided a twofold advantage. Firstly, a
deeper understanding of the procedures for capturing and changing
requirements grew up in the assessment team while discussing real life
and its representation in the model. Secondly, the quantitative evaluation
of the present situation and of the effect of possible changes was
convincing for the Siemens BU. The model results helped a lot to
broaden the view of the requirements process within software
development and to start an improvement program across all the roles
and organizations participating in this process.

Even if the simulation model has to be viewed as being qualitative
due to the lack of precise quantitative data to which the model can be
calibrated, having such a simulation model at hand makes it easier to
visualize the critical project behavior and to discuss the assumptions
about the cause-effect relationships that are supposed to be responsible
for the generated behavior. In that sense, experts at Siemens CT felt that
building the SD model was a useful exercise, and that similar models can
help them in future process improvement projects with Siemens business

Here, as in all other examples presented in this chapter, the System Dynamics
simulation modeling tool Vensim was used.29

Software Process Simulation with SD - A Tool for Learning and Decision Support 79

units. More details on the project can be found in an article by Pfahl and
Lebsanft.17

4.2. Simulation in Support of Strategic SPI

SD model PL-SIM was developed jointly by Fraunhofer IESE and
DaimlerChrysler Research and Technology. Within DaimlerChrysler
(embedded) software development plays an important role due to the
increasing amount of software in cars. In order to constantly improve the
development of software, various activities have been initiated like
experience-based process improvement27 or the GQM method for goal-
oriented measurement26.

The specific goal of developing the SD model PL-SIM was to support
DaimlerChrysler Research and Technology in conducting a study that
aimed at exploring the level of process leadership (PL) achievable by one
of DaimlerChrysler's car divisions (in the following abbreviated as
DC/CarDiv) within the next five years by applying certain improvement
measures. Mastering PL requires:

• The ability to manage complex projects with several suppliers and
various customers;

• High process maturity throughout the complete (embedded) software
life-cycle - including maintenance;

• Tool support of all related development processes - as formal as
necessary, as flexible as possible.

Ultimately, PL is expected to yield higher product quality and help
reduce warranty and fair-dealing costs.

The simulation model PL-SIM was developed in order to focus
discussions and provide a quantitative basis for analyses. The underlying
principles of the simulation model, and its structure and calibration are
based on the input received from DaimlerChrysler Research and
Technology and experts from DC/CarDiv. A crucial issue in the scope of
the study was the identification and determination of factors and
measures that have an impact on the level of PL.

80 D. Pfahl, G. Ruhe, K. Lebsanft, M. Stupperich

Following the IMMoS approach, the simulation model was developed
in several iterations, yielding three major model versions with more than
a dozen intermediate variants.

The principles and assumptions behind the simulation model can be
expressed in the form of cause-effect mechanisms. The integration of
these cause-effect mechanisms results in a cause-effect structure that is
believed to generate the dynamics of PL change over time. The cause-
effect structure of the simulation model is presented in Figure 4-4.

Other
Factors

n • D e c a y
U Ratp

|y • Labour Rate

Measures

Cost
Effectiveness

Fig. 4-4. Causal diagram

The cause-effect structure reflects the following fundamental
principles behind the simulation model.
• Principle PI: The actually achieved level of PL depends on the level

of control over the influence factors, which in turn depend on average
yearly decay (Decay Rate) and measures to maintain or improve their
current level of control (Measures).
o [(Other) Factor(s) + -> PL +]
o [Decay Rate + -> (Other) Factor(s) -]
o [Measures + -> (Other) Factor(s) +]

• Principle P2: There is a mutual dependency between influence
factors. As a consequence, a change of one factor (Factor n) will
induce changes of the other factors (Other Factors).

Software Process Simulation with SD - A Tool for Learning and Decision Support 81

o [Factor i + -> Factor j +/- depending on the type of correlation]
• Principle P3: The speed with which measures become effective is

subject to delay (Delay). Delay, in turn, depends on the level of PL
since it is easier (and thus faster) to implement measures when process
leadership is high.
o [Delay + -> Measures -]
o [P L + ^ Delay-]

• Principle P4: In order to estimate the cost effectiveness of measures
taken to maintain or improve control of influence factors on PL (Cost
Effectiveness), one can compare the change of PL induced by these
measures with their cost (Cost). The cost of measures depends on the
labor rate (Labor Rate) and amount of effort needed to perform the
measures. The effort needed to perform a measure depends on the
duration of the measure and the intensity with which it is conducted
(not shown in the causal diagram).
o [PL + -> Cost Effectiveness +]
o [Cost + -> Cost Effectiveness -]
o [Labor Rate + -> Cost +]
o [Measures + -> Cost +]

• Principle P5: Because it is generally difficult to define commonly
accepted absolute scales for PL, influence factors and improvement
measures, only relative quantities defined on the interval [0, 1] are
used in the model.3

The modeling approach was top-down, starting by identifying the
most important factors believed to have an impact on PL, then
identifying measures by which the current level of the impact factors
could be improved, and eventually assessing quantitatively the starting
values of PL, impact factors, and measures, as well as assessing the
quantitative relationships between each of these. A more comprehensive
description of the underlying modeling assumptions and experiments run
with the simulation model can be found in a paper by Pfahl et al.

3 Strictly speaking, Principle P5 does not directly relate to the model structure.
However, due to its importance as a fundamental guideline throughout the
simulation modelling process, it was considered as having the same importance
as a principle.

82 D. Pfahl, G. Ruhe, K. Lebsanft, M. Stupperich

In the case of DC/CarDiv, there are six factors. One of them is
organization-related, two are process-related, another two are product-
related, and the last one is people-related:

• Factor OWN: Ownership (of products, processes, and human
resources)

• Factor DEV: SW Development Process - applies to both DC/CarDiv
and its sub-contractors

• Factor MNT: SW Maintenance Process - applies to both DC/CarDiv
and its sub-contractors

• Factor FEA: Product Characteristics (Features) - customer view on
the product

• Factor STR: Product Structure - development and maintenance view
on the product

• Factor HRE: Human Resources

The matrix of mutual influence between factors was estimated to be
as presented in Table 4-3. The matrix should be read as follows: a
relative change of factor DEV by X % causes a relative change of factor
OWN by 2*X % (cf. matrix cell defined by second row and third
column).

Table 4-3. Mutual impact between factors that have an influence on PL

(column has impact on
row)
Ownership
SW Development Process
SW Maintenance Process
Product Characteristics
Product Structure
Human Resources

OWN

-
0
0
0
0
0

DEV

2
-
1
1
1
2

MNT

0
0.5
-
0.5
0.5
1

FEA

1
1
0.5
-
0
2

STR

1
1
0.5
0
-
2

HRE

1
0
0
0
0
-

A specific list of relevant measures associated with the factors in the
model was defined. The total number of measures adds up to 17. Figure
4-5 shows how many measures are associated with each factor.

Software Process Simulation with SD -A Tool for Learning and Decision Support 83

p | "Ownership"-OWN

P 2 "SW Development Process" - DEV

"SW Maintenance Process" - MNT

p 4 "Product Characteristics" - FEA

"Product Structure" - STR

p Q "Human Resources" - HRE

Fig. 4-5. Tree of impact factors and associated measures

As an example, Table 4-4 lists two measures related to factor FEA
that are considered to be of relevance and to have improvement potential,
i.e., SPP (establish strategic project planning) and PD (establish product
documentation). Both SPP and PD measurement values are in [0, 1].
Only three distinct values can be assumed: 0, 0.5, and 1. The
corresponding measurement rules are shown in column 3 of Table 4-4.
Finally, column 4 gives some hints on possible data sources.

Several scenarios were simulated with the model. Scenarios help to
analyze the impact of applying improvement actions (measures)
associated with certain factors influencing PL.

84 D. Pfahl, G. Ruhe, K. Lebsanft, M. Stupperich

Table 4-4. Example set of measures related to factor "Product Characteristics (FEA)"

Factor

Product
Characteristics -
FEA

Measure

M4.1: Establish
strategic product
planning (SPP)

M4.2: Establish
product
documentation
(PD)

Possible measurement values

Value range: [0, 1]
0 = no or insufficient SPP
0.5 = SPP exists
1 = SPP exists and regular
benchmarks are conducted
Value range: [0, 1]
0 = no or insufficient PD in
place
0.5 = initial PD in place
1 = comprehensive PD in place

Possible data
sources
Competitor
benchmark,
customer
satisfaction survey

Available/existing
customer and
service
documentation

For example, the scenario presented below illustrates how the
activation of a set of improvement actions associated with three impact
factors over certain time periods with specific intensity influences the
evolution of PL. Figure 4-6 indicates that measures M2.5 of factor DEV,
measures M4.1 and M4.2 of factor FEA (cf. SPP and PD in Table 4-4),
and measure M6.1 of factor HRE are activated at time t = 40, 30, and 50
weeks after the start of the simulation, for a time period of 200, 70, 95,
and 100 weeks, respectively. In this case, each of the improvement
actions is conducted in a way that its impact on the level of factor control
is maximal. For example, in the cases of measures SPP, this means that a
strategic product planning has been established and is benchmarked
regularly.

The impact of the measures on process leadership PL (via alteration
of FEA) is shown in Figure 4-7. Run4 represents the baseline, i.e., when
no improvement actions are taken at all. Run3f-4 represents the behavior
of the value of PL if measures M2.5, M4.1, M4.2, and M6.1 are activated
as described above. It can be seen that PL can recover from decrease
induced by decay of its impacting factors. In other words, the activated
measures related to factors DEV, FEA, and HRE are able to compensate
the continuing decay of factors OWN, MNT, and STR, areas in which no
improvement activities are conducted. At around time t = 95 weeks PL
starts to decrease again because the self-reinforcing decay becomes
stronger, and because measures stop being activated.

Software Process Simulation with SD - A Tool for Learning and Decision Support 85

OWN

MNT

STR

M4.1
M4.2

0 [weel

Fig. 4-6. Activation of measures related to factors DEV, FEA, and HRE

0.8

0.6

0.4

0.2

0

\ ,-' --..
\ \

M2.5

| M6.1

M4.1 ^ \
M4.2

PL

x > x

""-._

---,
""""-— _

0 40 80 120 160 200 240 280 320 360 400
Time (Week)

PL : run3f-4m -
PL : Run4

Fig. 4-7. Impact of measures M2.6, M4.1, M4.2, and M6.1 on PL (Process Leadership)

The impact of the activated measures on the individual factors is
shown in Figure 4-8. Not surprisingly, a strong reaction is induced on
factors DEV, FEA, and HRE. In addition, due to the mutual (positive and
negative) correlation between factors (cf. Table 4-3), some reaction is
also induced on factors OWN, MNT, and STR.

86 D. Pfahl, G. Ruhe, K. Lebsanft, M. Stupperich

0 40 80 120 160 200 240
Time (Week)

OWN : run3f-4m -

O W N : R u n 4

DEV : run3f-4m -
DEV : Run4

60 200 240 280 320 360 400
Time (Week)

0 40 SO 120 160 200 240
Time (Week)

320 360 400

MNT:run3f-4m
M N T : R u n 4 —

20 160 200 240 280 320 360 400
Time (Week)

0 40 80 120 160 200 240
Time (Week)

STR : run3f-4m
STR : Run4 —

320 360 400 0 40 80 120 160 200 240 280 320 360 400

Time (Week)

Fig. 4-8. Impact of measures on factors OWN, DEV, MNT, FEA, STR, and HRE

The simulation modeling project was generally judged as successful
by experts within DaimlerChrysler, but it also had some limitations.
While the simulation modeling exercise helped build well-grounded
consensus regarding the appropriateness of the selected impact factors,
their mutual interrelation, and the quantitative adequacy of their starting
values, the degree of uncertainty about the completeness of the set of
identified measures and the lack of information on how to define related
measurement rules and collect data was too large to run quantitatively
reliable simulations. Therefore, the main value of the model was seen as
its function as a tool for management learning that can be used to

Software Process Simulation with SD - A Tool for Learning and Decision Support 87

generate hypotheses about the impact and long-term effects of
improvement measures within strategic SPI programs.

Apart from its specific value for DaimlerChrysler, other organizations
may (re-)use the generic simulation model as an easily adaptable
framework that helps explore and assess their own strategic SPI
programs. The current generic simulation model can easily be adapted by
replacing the strategic improvement objective, i.e. PL, the set of related
influence factors, and the sets of associated improvement actions
(measures) with organization-specific instantiations.

5. Conclusion

Although the number of software process simulation applications is
constantly growing and the efficiency of one important class of
simulation modeling approaches, System Dynamics, has been improved
by introducing the IMMoS method, there seems to be a persisting
problem in industry with regard to accepting that software process
simulation models can become a trusted component of SEDS systems
and an effective tool for learning. Based on our research and experience
in the field, we believe there are two main reasons behind the reluctance
to use process simulation models in the software industry. First, process
simulation modelers tend to develop their models from scratch. Taking
into account the typical size and complexity of a software process
simulation model, this is in most cases, i.e., under the given constraints,
still too difficult and thus time and effort consuming. Second, there are
often too high expectations with regard to required model validity.
Inappropriate requirements with regard to model validity, however, in
most cases increase development time and effort.

We are currently working on resolving the first issue.6 The tendency
to develop simulation models each time from scratch is mainly due to the
lack of practical guidance for planning and performing comprehensive
reuse of process simulation modeling artifacts (or parts of them). In order
to facilitate reuse and speed up the development process, we have started
to investigate possibilities for exploiting the principles of (process)
design patterns15 and agile software development2.

88 D. Pfahl, G. Ruhe, K. Lebsanft, M. Stupperich

Regarding the second issue, future research has to focus on methods
to specify validity requirements for process simulation models that are
appropriate for their intended application. For example, complex
simulation models that are expected to generate accurate point estimates
require a high degree of predictive validity. However, models that are
mainly used as a tool for learning or thinking typically only require an
appropriate degree of behavioral validity, i.e., it is sufficient that
simulation runs reflect the typical dynamic behavior of key model
parameters, and the typical changes of certain behavior patterns in
response to alterations of simulation inputs.

If we take a more general view and go beyond the discussion of the
current state-of-the-art in software process simulation modeling
methodology, our experience with applying software process simulation
for management learning and decision-support, as illustrated through the
examples in section 4, has shown promising results which has reinforced
our belief that they will play a prominent role in future SEDS systems
and tools for management learning.

References

1. Abdel-Hamid, T. K., Madnick, S. E.: Software Projects Dynamics - an Integrated
Approach. Prentice-Hall (1991).

2. Abrahamsson, P., Warsta, J., Siponen, M. T., Ronkainen, J.: New Directions on
Agile Methods: A Comparative Analysis. In: Proceedings of the 25th International
Conference on Software Engineering, IEEE, Portland, Oregon, USA (2003), 244-
254.

3. Acuna, S. T., de Antonio, A., Ferre, X., Lopez, M., Mate, L.: The Software Process:
Modelling, Evaluation and Improvement. In: Handbook of Software Engineering
and Knowledge Engineering (S. K. Chang, ed.), Volume 1, World Scientific
Publishing (2001), 193-237.

4. Althoff, K.-D.: Case-Based Reasoning. In: Handbook of Software Engineering and
Knowledge Engineering (S. K. Chang, ed.), Volume 1, World Scientific Publishing
(2001), 549-588.

5. Althoff, K.-D., Pfahl, D.: Making Software Engineering Competence Development
Sustained through Systematic Experience Management. In: Managing Software
Engineering Knowledge (A. Aurum, R. Jeffery, C. Wohlin and M. Handzic, eds.),
Berlin: Springer (2003), 269-294.

Software Process Simulation with SD - A Tool for Learning and Decision Support 89

6. Angkasaputra, N., Pfahl, D.: Making Software Process Simulation Modeling Agile
and Pattern-based. In: Proceedings of the 5th International Workshop on Software
Process Simulation Modeling, ProSim 2004, Edinburgh, Scotland (2004), 222-227.

7. Basili, V., Caldiera, G., Rombach, D.: Experience Factory. In: Encyclopedia of
Software Engineering (J. Marciniak, ed.), Volume 1, John Wiley & Sons (2001),
511-519.

8. Basili, V., Caldiera, G., Rombach, D., Van Solingen, R.: Goal Question Metric
Paradigm. In: Encyclopedia of Software Engineering (J. Marciniak, ed.), Volume 1,
John Wiley & Sons, (2001), 578-583.

9. Christie, A.M.: Simulation: An Enabling Technology in Software Engineering. In:
CROSSTALK- The Journal of Defense Software Engineering (1999), 2-7.

10. Curtis, B., Kellner, M. I., Over, J.: Process Modeling. In: Communications of the
^CA/35 (1992), 9, 75-90.

11. Forrester, J.W.: Industrial Dynamics. Productivity Press, Cambridge (1961).
12. Lee, B., Miller, J.: Multi-Project Management in Software Engineering Using

Simulation Modeling. In: Software Quality Journal 12 (2004), 59-82.
13. Miller, J., Macdonald, F., Ferguson, J.: ASSISTing Management Decisions in the

Software Inspection Process. In: Information Technology and Management 3
(2002), 67-83.

14. Mehner, T., Messer, T., Paul, P., Paulisch, F., Schless, P., Volker, A.: Siemens
Process Assessment and Improvement Approaches: Experiences and Benefits. In:
Proceedings of the 22nd Computer Software and Applications Conference
(COMPSAC), Vienna (1998).

15. Munch, J.: Pattern-based Creation of Software Development Plans. PhD Theses in
Experimental Software Engineering, Vol. 10 (2001), Fraunhofer IRB, Stuttgart,
Germany.

16. Pfahl, D.: An Integrated Approach to Simulation-Based Learning in Support of
Strategic and Project Management in Software Organisations. PhD Theses in
Experimental Software Engineering, Vol. 8 (2001), Fraunhofer IRB, Stuttgart,
Germany.

17. Pfahl, D., Lebsanft, K.: Using Simulation to Analyse the Impact of Software
Requirement Volatility on Project Performance. In: Information and Software
Technology 42 (2000), 14, 1001-1008.

18. Pfahl, D., Ruhe, G.: System Dynamics as an Enabling Technology for Learning in
Software Organisations. In: Proceedings of 13th International Conference on
Software Engineering and Knowledge Engineering, SEKE 2001. Skokie:
Knowledge Systems Institute (2001), 355-362.

19. Pfahl, D., Ruhe, G.: IMMoS - A Methodology for Integrated Measurement,
Modelling, and Simulation. In: Software Process and Improvement 1 (2002), 189-
210.

90 D. Pfahl, G. Ruhe, K. Lebsanft, M. Stupperich

20. Pfahl, D., Ruhe, G.: System Dynamics and Goal-Oriented Measurement: A Hybrid
Approach. In: Handbook of Software Engineering and Knowledge Engineering (S.
K. Chang, ed.), Vol. 3, Skokie: Knowledge Systems Institute (to appear).

21. Pfahl, D., Stupperich, M., Krivobokova, T.: PL-SIM: A Simulation Model for
Studying Strategic SPI in the Automotive Industry. In: Proceedings of the 5th
International Workshop on Software Process Simulation Modeling, ProSim 2004,
Edinburgh, Scotland (2004), 149-158.

22. Kellner M. I., Madachy, R. J., Raffo, D. M.: Software process simulation modeling:
Why? What? How?. In: Journal of Systems and Software 46 (1999), 91-105.

23. Rus, I., Collofello, J. S.: A Decision Support System for Software Reliability
Engineering Strategy Selection. In: Proceedings of the 23rd Annual International
Computer Software and Applications, COMPSAC 99, Scottsdale, AZ, October
1999,376-381.

24. Ruhe, G., Ngo-The, A.: Hybrid Intelligence in Software Release Planning. In:
International Journal on Intelligent Hybrid Systems, Vol 1 (2004), 99-110.

25. Ruhe, G.: Software Engineering Decision Support - A New Paradigm for Learning
Software Organizations. In: Advances in Learning Software Organization. Lecture
Notes In Computer Science Vol. 2640, Springer (2003), 104-115.

26. van Solingen, R., Berghout, E.: The Goal/Question/Metric method: A practical
guide for quality improvement of software development. McGraw-Hill Publishers
(1999).

27. Schneider, K.: Experience-Based Process Improvement. In: Proceedings of 7th
European Conference on Software Quality. Helsinki, Finland (2002).

28. Shim, J. P., et al.: Past, present, and future of decision support technology. In:
Decision Support Systems 33 (2002), 111-126.

29. Ventana Simulation Environment (Vensim®) - Reference Manual, Version 5.0b,
Ventana Systems, Inc. (2002).

30. Volker, A.: Software Process Assessments at Siemens as a Basis for Process
Improvement in Industry. In: Proceedings of the ISCN, Dublin, Ireland (1994).

31. Waeselinck, H., Pfahl, D.: System Dynamics Applied to the Modelling of Software
Projects. In: Software Concepts and Tools 15 (1994), 4, 162-176.

Chapter 4

HIGH LEVEL SOFTWARE PROJECT MODELING WITH
SYSTEM DYNAMICS

Marcio De Oliveira Barros1'2, Claudia Maria Lima Werner2, Guilherme Horta
Travassos2

1DIA / UNIRIO - Applied Informatics Department
Av.Pasteur 458, Terreo - Rio de Janeiro ~RJ- CEP .22290-240

E-mail: marcio.barros@uniriotec.br
2 COPPE / UFRJ- System Engineering and Computer Science Department

PO Box: 68511 - CEP 21942-970 - Rio de Janeiro - RJ
E-mail: werner@cos.ufrj.br, ght@cos.ufrj.br

System dynamics based software project models are becoming increasingly
more complex due to continuing research on the field. Current models
usually convey several hundreds or even thousands of equations. This
amount of formal knowledge is hard to maintain and adapt for
circumstances other than those for which it was originally developed. So, it
is common that only experts build and adapt system dynamics project
models. In this chapter, we present an approach based on high level
modeling for software projects, which separates the description of a
particular project from the knowledge embedded in a software project
model.

1. The Need for High Level Modeling

Software project models based on system dynamics1' 2' 3' 4' 5 convey
representations for agents and artifacts that participate in a software
development effort. Traditionally, mathematical equations describing
system dynamics constructors (stocks, rates, processes, and flows) are
used to represent such models6. Although these constructors are flexible,
they are also fine-grained, and, as system dynamics models grow, they

91

mailto:marcio.barros@uniriotec.br
mailto:werner@cos.ufrj.br
mailto:ght@cos.ufrj.br

92 M. De Oliveira Barros, C. M. Lima Werner, G. H. Travassos

become hard to understand. Software project elements, such as
developers, activities, and artifacts, are not easily identified in a maze of
constructors. Their representation is usually spread across several
equations, thus forcing modelers to analyze the whole model to
determine the precise group of equations that describe the behavior of an
element and its relationships to others.

Each software project model embeds generic and reusable knowledge
about the software project domain. However, there is no clear separation
between domain knowledge and the characteristics related to a particular
project in traditional system dynamics models: both are distributed
across the model equations. This characteristic limits our ability to reuse
domain knowledge, leading to some limitations in the traditional
modeling approach. They include (1) inhibiting the creation of large
reusable models, since the relationships among elements in large models
are difficult to understand and observe from equations; and (2) reducing
economy of scale, which is obtained when each new model developed
for a specific domain requires less effort than the previous models
developed for the same domain. Since model reuse is inhibited, modelers
spend some effort reacquiring potentially reusable domain knowledge for
each new model developed for a domain.

System dynamics models also tend to describe uniformly all elements
pertaining to the same category in the modeling domain by using average
values to describe such elements. For instance, it is very common to
assume that all experienced developers have the same productivity and
generate the same amount of errors per thousand lines of code1.
Generally, this simplification is due to system dynamics' inherent
inability to describe element properties, since these should be
independent model variables, requiring too many equations to be
specified.

Finally, system dynamics models usually blend known facts about the
elements within a model with uncertain assumptions about their
behavior. In decision support models, known facts may represent the
expected model behavior if no action is taken, while each assumption
may represent how the model reacts when a particular decision (and the
actions triggered by this decision) is taken. In software project models,
for instance, an assumption may represent how coding activities are

High Level Software Project Modeling with System Dynamics 93

affected when inspections are accomplished during the development
process. By partitioning a model into known facts and assumptions, a
modeler can analyze the model behavior in alternative situations,
according to distinct combinations of such assumptions.

While we need models that are simple to understand, we also want
models that can represent the details of their interacting elements.
However, as we add details to system dynamics models they usually
require more equations, thus leading to difficulties in understanding and
maintenance. So, we perceive the need for techniques to enhance the
development of such complex models. If domain knowledge can be
clearly separated from the particular problem information, every model
developed for that domain can be reused. By reusing domain information
created and organized by previous models, the cost of developing new
models within a domain can be reduced. If conditional or uncertain
behavior can be separated from expected behavior, we can analyze a
model according to different sets of assumptions. Moreover, if a modeler
builds a scenario model describing an uncertain behavior associated to a
domain (instead of a specific model), the model can be reused in the
analysis of several distinct models developed for the domain.

In this chapter, we present a software project modeling approach that
handles model complexity by raising the abstraction level of modeling
constructors. Several models are developed applying the proposed
approach. Many of these models are built by software project modeling
experts: they use traditional system dynamics constructors to describe
high-level concepts of the problem domain (such as activities,
developers, and artifacts) and embed their knowledge about such
elements. Project managers use the former concepts to build models to
represent their specific projects. Since not every project manager is a
modeling expert (or can usually afford the time required to build project
models), their models are built upon the high level constructors
developed by the experts. Equations (elements of the solution domain
and embedded in the high level concepts by the experts) are required for
model simulation and analysis, but they are not best suited for model
description, since they represent concepts far from the problem domain.
So, the model built by the project manager is expressed in a language

94 M. De Oliveira Barros, C. M. Lima Werner, G. H. Travassos

that is closer to the manager perspective, being further translated to
mathematical representation.

Our approach is composed of a system dynamics metamodel,
scenario models, and a translation process, which is guided by a
modeling process. The metamodel is the language that allows the
description of categories of elements that collaborate within a problem
domain and the relationships among them. Scenario models represent
extensions to the domain model, which record knowledge about theories,
events, practices, and strategies that cannot be presumed true for every
project, but which can hold in specific situations. The translation process
compiles the metamodel and scenario model representation into system
dynamics constructors, which can be further used for simulation and
model evaluation. Model behavior is expressed using extended system
dynamics constructors, which are separately described for each element
category within the domain.

This chapter is organized in 7 sections. The first one comprises this
introduction to the need for high-level modeling. The next section
presents some concepts that will be used throughout the chapter. In
section 3, we present the modeling process that drives the application of
the system dynamics metamodel. In section 4, we present an application
of the modeling process. In section 5, we present the simulation process
that uses the artifacts produced by the modeling process. In section 6, we
present an application of the simulation process. Finally, in section 7 we
discuss the application of the system dynamics metamodel and scenario
models, presenting our final considerations and conclusions.

2. Definitions

Before presenting the system dynamics metamodel and scenario models,
we have to define some terms that will be used throughout the following
sections. Some of this terminology comes from a subset of the object-
oriented software development theory7. However, such terms need to be
adapted to the system dynamics context.

A class represents a set of elements that can be described by the same
properties and exhibit similar behavior. For instance, a class may

High Level Software Project Modeling with System Dynamics 95

describe the whole group of software developers, while each particular
developer is an instance of the class.

A class defines the properties that describe its instances. A property
represents relevant information about a class. Each instance assumes an
independent value for each property defined in the class, according to the
characteristics of the element represented by the instance.

A class also defines the behavior of its instances. The behavior of a
class is a mathematical formulation of its responses to changes in other
instances or in the environment. Such behavior can depend on class
properties, allowing distinct class instances to react differently based on
their particular characteristics or state. System dynamics constructors
describe class behavior.

Class instances can have relationships to other class instances. A
relationship represents a structural connection between two or more
class instances. Such relationships can occur among instances of
different classes or instances of the same class. The latter is also called
an auto-relationship. A role represents the part that an instance
undertakes in a relationship. It denotes the responsibilities and expected
instance behavior.

A domain model contains classes for the elements that participate in
a problem domain, describing their properties, behavior, and the potential
relationships among their instances. The domain model does not describe
a model for a specific problem, but a knowledge area where modeling
can be applied. It is a generic domain description, which should be
specialized in every attempt to model a problem within the domain.

A scenario model extends a domain model by providing new
behavior and properties for one or more classes defined within the
domain. A scenario model is composed of connections and constraints.

A connection is an association between a scenario model and a class
within a domain model. The connection allows the scenario to be enacted
upon instances of the class in a specific model for the domain.

The enactment of a scenario model upon an instance is an activation.
An activation implies that the equations defined within the scenario
model are included in the behavior of that particular instance of a class,
thus modifying its original behavior.

96 M. De Oliveira Barros, C. M. Lima Werner, G. H. Travassos

A constraint is an activation restriction that an instance and its
associated instances have to attend in order to be connected to the
scenario. The restriction states that the instance itself or its associated
instances must have a particular scenario connection enacted upon them.
This restriction allows a scenario to use or modify the behavior provided
by a second scenario, preventing a modeler from enacting its connections
upon an instance that is not connected to the second scenario.

3. The Modeling Process

We propose a four-step modeling process. First, an expert in a given
domain (such as the software development process domain) builds a
domain model. This model cannot be simulated, since it does not specify
how many instances of each class exist in the model, nor does it specify
any value for their properties. This step is called domain modeling. This
is the most expensive step in the modeling process, since properties and
behavior equations must be specified for each domain class. However, an
investment in developing a high quality domain model may payoff in the
future, when knowledge expressed in this model can be reused, reducing
development time for modeling specific software projects.

The creation of a model based on a domain model is the second step
in the modeling process. At this time, a modeler specifies how many
instances of each class defined for the domain exist in the model of
interest. The modeler also specifies the values for instance properties and
describes how these instances are related to each other, according to the
domain model relationships among classes. This step is called model
instantiation. The resulting model only conveys information about its
instances: it does not present any system dynamics constructor. So, the
high-level representation helps model development and understanding.

At the third step, the model that indicates the relevant instances of the
domain model classes (built in step 2) is translated to system dynamics
equations. This step is called model compilation. The resulting model
uses only standard system dynamics constructors, while the input model
is described in the high level representation. While the high level model
is supposed to be easier to develop, it is the constructor-based
representation that allows simulation and behavior analysis.

High Level Software Project Modeling with System Dynamics 97

The first three steps of the modeling process resemble a cascading
pattern, where each activity is executed after its preceding activity's
conclusion. The fourth activity does not take part in this linear execution
pattern. Instead, the scenario model development activity is executed
when there is an opportunity to build a scenario model. In the software
development context, this opportunity arises when an experienced
manager decides to represent some knowledge about a software project
in a form that can be reused and applied by other managers while
analyzing their specific models. A scenario model can only be developed
after the conclusion of the domain modeling activity, when a domain
model is available. The scenario modeler studies the domain model and
any other available scenario models to determine which equations should
be affected by the new scenario model to provide the desired behavior.
The scenario model is written and stored in a corporate repository, from
where it can be retrieved later.

We expect a particular problem within the domain (e.g., a particular
software project) to be easier to model applying this modeling process
than using pure system dynamics constructors, since modelers will use
domain concepts described by the domain-specific language (the domain
model) to build their models. Similar approaches have been used in other
areas, such as domain model description languages8.

4. An Application of the Modeling Process

In this section, we show an application of the modeling process presented
in section 3 to create a model for a small software project. The project is
described in Figure 1, which shows developers participating in software
development activities. The lines connecting activities and developers
represent the relationships among these elements.

o John o Jimmy
I 7 Experience=l I 7 Experienced.8

Design
Duration=IO days

Code
Duration=5 days

Figure 1. Small software process example

98 M. De Oliveira Barros, C. M. Lima Werner, G. H. Travassos

In Figure 1, two developers, namely John and Jimmy, design and
code a software module. Developers have experience, shown as a rate in
the unit interval, which influences their work quality. Activities have an
estimated duration. This specifies how many days of work it is expected
to take an average developer to complete these activities.

The following sections discuss how a domain model can represent
such a problem domain, how a specific model represents the project
itself, and how this model can be compiled into the traditional system
dynamics representation for simulation. Although scenario modeling was
described as part of the modeling process (fourth activity), we will leave
the discussion regarding scenario models to the sections that describe the
simulation process.

4.1. Domain Modeling

To exemplify the development of a domain model for the software
project domain, consider that the relevant classes within the domain are
just activities and developers. Table 1 presents a simplified model for the
software project domain using the concepts defined in section 2 and a
language to represent such concepts.

The MODEL keyword introduces the domain model, namely
SoftwareProject. It contains two classes, each one declared by using the
CLASS keyword. Classes are declared within the domain model context,
delimited by angled brackets. Each class contains its own context, where
properties and behavior are declared.

The PROPERTY keyword specifies a property for a class. Default
property values are defined next to the property name. For instance, the
domain model defines the Experience property for the Developer class.
This property describes a developer's ability to accomplish activities.
When developing a particular model for the domain (step two), the
modeler must determine how many developers are needed and specify
each developer's experience level. Otherwise, for those instances in
which experience level is not defined, the default value will be assumed.
If precision is not required, an average value can be defined as the
default value for a property, and instances where the property is not
specified will assume this value. The Activity class conveys a single

High Level Software Project Modeling with System Dynamics 99

property, Duration, which specifies how long it takes for an average
developer to do the activity.

Table 1. A simple domain model for the software project knowledge area

MODEL SoftwareProject

{
CLASS Developer

{
PROPERTY Experience 1;
PROC Productivity Experience;
PROC ErrorGenRate 1;

CLASS Activity

{
PROPERTY Duration 0;

PROC Prod Team.Productivity;
STOCK TimeToConclude duration;
RATE (TimeToConclude) Work if(DependOk, -Prod * Min

(TimeToConclude/Prod, 1)/DT, 0) ,-
PROC DependOk GROUPSUN (Precedence, TimeToConclude) < 0.001;

STOCK Executing 0 ;
RATE (Executing) RTExecuting if (AND(Executing < 0.001,

DependOk), 1, 0);

PROC InErrors GROUPSUM(Precedence, Errors);
RATE (Errors) ErrorsTransmit if (RTExecuting>0.001, InErrors

/ DT, 0);

STOCK Errors 0 ,-
PROC ErrorsInTask 10 * Team.ErrorGenRate;
RATE (Errors) ErrorsCommited -ErrorsInTask * (Work /

Duration);

RELATION Team Activity, Developer (MyActivities);
MULTIRELATION Precedence Activity, Activity (NextActivities)

A relationship between two or more instances allows one instance
behavior equation to access and even modify another instance behavior
(for instance, a rate equation in a class behavior can affect stocks defined
in other classes). During model compilation, model equations referencing
such relationships are adjusted to the configuration of instances and

100 M. De Oliveira Barros, C. M. Lima Werner, G. H. Travassos

connections presented in the model. The domain model allows two types
of relationships among classes:

• Single relationships (also known as 1:1 associations): one instance of
a source class is associated to a single instance of a target class;

• Multi-relationships (also known as 1:N associations): one instance of
a source class is associated to several instances of a target class.

Consider that, after observing the model behavior, a manager decides
to try different staff allocations to project activities. Profound changes
would have to be made to the model written without using the domain
model for each staff allocation analysis, since the relationships between
developers and activities are hard-coded within system dynamics
equations. By using the proposed modeling process and notation, the
modeler would just have to change these relationships, which are clearly
stated for each model instance.

The RELATION keyword represents a single relationship, such as
Team, which denotes that an activity is executed by a single developer.
The MULTIRELATION keyword represents a multiple relationship,
such as Precedence, which represents the activities that must be
concluded before another activity can start.

Relationships are unidirectional by default, that is, only the source
instance has access to the target behavior. For instance, according to the
Team relationship, only the Activity class instance has access to the
information about its developers. Relationships can be set to bi­
directional by specifying a role for the target instance. The target
instance can manipulate the behavior of its source instance through this
role name. The role is specified within parenthesis next to the target class
name. The Team relationship is single and unidirectional. The
Precedence relationship is a multiple, bi-directional auto-relationship,
since it links instances of the same class. The Next Activities role is
specified for the target class, as required by bi-directional relationships.

Behavior equations at domain model level are distributed among
several classes, each class containing its specific behavior. The
Developer class has very simple behavior. It only defines two processes:
one to store its Experience property value, and a second to state the

High Level Software Project Modeling with System Dynamics 101

developer's error generation rate as a unitary value. The first process
allows other instances to consult the property value, since the property
itself can only be accessed by its instance.

The Activity class contains most of the behavioral equations presented
in the domain model. The TimeToConclude stock describes the time
required for an activity to be accomplished, being depleted by the Work
rate as the simulation advances. Observe that the stock name, presented
in the rate within parenthesis after the RATE keyword, associates the
rate to the stock. Rates are always supposed to raise their associated
stock level in the domain model. Rate equations must generate negative
numbers (as happens in the Work rate) to allow stock depletion.

For the purpose of this example, an activity can only be executed
when all preceding activities have been concluded. So, the Work rate
depends on the DependOk process, which determines if the preceding
activities of an activity are already concluded, based on the Precedence
relationship. This process uses the GROUPSUM operator, which sums
the values of a selected property for every instance associated to the
current instance through a specific relationship. In the DependOk
process, the operator sums the TimeToConclude stock level for every
activity that must be executed before the current one. The DependOk
process verifies if the operation result is near to zero, determining
whether the activities have already been accomplished.

The next two equations {Executing and RTExecuting) are used to
create a variable that contains zero most of the time, but raises to one in
the simulation step that marks an activity start. This variable is used by
the Errors Transmit rate, which triggers the transmission of errors
produced in preceding activities to the current one, thus raising the
Errors stock. In the example, we assume that all errors that exist in the
artifacts produced by preceding activities will be reproduced in the
artifact produced by the current activity. The Errors stock represents the
number of errors produced by an activity. It starts with zero errors, being
affected by the ErrorsTransmit and ErrosCommited rates. The second
rate adds new errors to the artifact produced by the activity, according to
the assigned developer error generation rate. For the sake of simplicity,
we assume that an average developer generates 10 errors per task.

102 M. De Oliveira Barros, C. M. Lima Werner, G. H. Travassos

4.2. Model Instantiation

Table 2 presents a model for the software project presented in Figure 1.
Note that the model is not built upon equations or a traditional system
dynamics constructor. Instead, it uses the classes declared in the domain
model, creating instances for these classes, and specifying their property
values and relationships to other instances.

The DEFINE keyword introduces the project model, followed by the
model name (MyProcess) and by the domain model to which it is related
(SoftwareProject). Class instances are represented within the model
context, delimited by angled brackets.

Table 2, Specific model for the software project domain

DEFINE MyProcess SoftwareProject

{
John = NEW Developer

SET Experience = 1;

Jimmy = NEW Developer
SET Experience = 0.8;

Designing = NEW Activity
SET duration = 10;
LINK Team John;

Coding = NEW Activity
SET duration = 5;
LINK Team Jimmy;
LINK Precedence Designing;

};

The developers (John and Jimmy) are the first instances presented
within the model. The NEW keyword creates a class instance identified
by the name presented after the keyword. The newly created instance is
associated to the identifier on the left side of the equal operator. Next,
class instances are presented for the artifacts and the activities within the
software project.

The SET keyword specifies a property value for a specific instance.
John's experience is supposed to be 1, while Jimmy's experience is
supposed to be 0.8. This feature allows modelers to precisely account for

High Level Software Project Modeling with System Dynamics 103

the relevant differences between instances of the same class, which
requires several equations in the traditional system dynamics models. If
property values are not specified for an instance, the default value
defined in the domain model is used.

The model also presents the occurrences of the Precedence and Team
relationships. Only the activities specify relationships, since they are
always referenced as source classes. The LINK keyword determines
which class instances are associated in each relationship. For instance,
the Coding activity is dependent on the Designing activity and is
developed by Jimmy.

4.3. Model Compilation to System Dynamics Constructors

The techniques presented in the previous sections are an aid for
constructing larger and detailed models, but they would be rendered
useless if these models could not be simulated. Class-based
representation must be translated to system dynamics constructors to
provide simulation capability, which can be analyzed in a conventional
simulator. We have developed a compiler, named Hector9, which
translates the high-level description presented in the preceding sections
to traditional system dynamics constructors. Table 3 presents an extract
of the compiled version of the model presented in section 4.2. Lines are
numbered to support further discussion in the remainder of this section.

The compiled model only conveys system dynamics constructors,
which are represented using the ILLIUM tool modeling language10. This
language allows the definition of stocks, rates, and processes. Every
constructor has a unique name, used to identify it in the model, and an
expression, which is evaluated in every simulation step. Rates are also
associated to two stocks, which represent the origin and the target of its
flow. Universal providers7, represented by the SOURCE keyword, or
universal sinkers, represented by the SINK keyword, can replace such
stocks.

To avoid confusion we will refer to the class-based representation as
model, while the system dynamics-constructors based version will be

; Universal providers and sinkers represent the limits of a model, usually depicted as
clouds in stock-and-flow diagrams.

104 M. De Oliveira Barros, C. M. Lima Werner, G. H. Travassos

referred to as compiled model. The extract of the compiled model
presented in Table 3 conveys two blocks, describing one instance of the
Developer class and one instance of the Activity class.

Table 3. Extract from the traditional system dynamics model generated from the model
presented in section 4.2

01 # Code for object "Jimmy"

02 PROC Jimmy_Experience 0.800000;

03 PROC Jimmy_Productivity Jimmy_Experience;

04 PROC Jimmy_ErrorGenRate 1.000000;

05 # Code for object "Coding"

06 PROC Coding_Duration 5.000000;

07 PROC Coding_Prod Jimmy^Productivity;

08 STOCK Coding_TimeToConclude Coding_duration;

09 RATE (SOURCE, Coding_TimeToConclude) Coding_Work IF

(Coding_DependOk, -Coding_Prod * MIN (Coding_TimeToConclude /

Coding_Prod, 1.000000) / DT, 0.000000);

10 PROC Coding_DependOk (DesigningJTimeToConclude) < 0.001000;

11 STOCK Coding_Executing 0.000000;

12 RATE (SOURCE, CodingJExecuting) Coding_RTExecuting IF (AND

(Coding_Executing < 0.001000, Coding_DependOk), 1.000000, 0.000000);

13 PROC Coding_InErrors (Designing__Errors);

14 RATE (SOURCE, Coding_Errors) Coding_ErrorsTransmit IF

(Coding_RTExecuting > 0.001000, CodingJnErrors / DT, 0.000000);

15 STOCK Coding_Errors 0.000000;

16 PROC Coding_ErrorsInTask 10.000000 * Jimmy_ErrorGenRate;

17 RATE (SOURCE, Coding_Errors) Coding_ErrorsCommited -

Coding_ErrorsInTask * (Coding_Work / Coding_Duration);

Consider the equations generated for the Jimmy instance of the
Developer class. Line 01 only contains a compiler-generated comment.
The equations from line 02 to 04 convey the declaration of a property

High Level Software Project Modeling with System Dynamics 105

and two behavior constructors. The first equation declares the Experience
property for the Jimmy instance. Since every class instance may have
different property values, every property must be represented by an
independent equation. Several equations are required to represent the
whole set of instances, capturing their particular properties. This leads to
larger models that would be error-prone if modelers decide to write the
equations directly. By using the domain model and the system dynamics
metamodel approach, modelers are allowed to define different values for
each instance properties and instance behavior is automatically adjusted
to these values during the model compilation step.

Properties are declared as processes in the compiled model. They are
initialized with the value specified for them in the model or by their
default value, as stated in the domain model. Notice that the name of the
process representing the property in the compiled model is composed of
the instance name followed by the property name. Both names, separated
by an underlining sign, make up a unique identifier, which serves as a
name for the process within the compiled model. This allows the
declaration of several instances with distinct property values, since each
instance is required to have a unique name in the instance-based model.

The second and third equations represent the behavior equations
defined in the Developer class, which are specialized for the Jimmy
instance. References to properties in the behavior equations are linked to
the processes that represent such properties in the current instance. The
instance name is also used as a prefix to the behavior constructor name in
the compiled model. Behavior descriptions are repeated for every
instance in the compiled model.

The model generated for the Coding instance of the Activity class is
more interesting. Line 05 contains a compiler-generated comment. The
first equation generated for this instance declares the Duration property
(line 06). As in the Jimmy instance's generated code, a process is used to
represent the property and its value.

The next equation (line 07) presents a behavior equation that is
parameterized by a relationship. It represents the Prod process, which is
defined in the domain model as the productivity of the developer
associated to the current activity through the Team relationship. Since
Jimmy plays this role in the current model (see the LINK keyword in the

106 M. De Oliveira Barros, C. M. Lima Werner, G. H. Travassos

activity declaration), its productivity equation is used in the Prod
process. The compiler resolves relationship dependences by exchanging
the relationship name for the instance names that play the role described
in the relationship. In line 07, the compiler exchanges the relationship
name as declared in the metamodel {Team) for the name of the developer
that is associated with the activity in the instance-based model {Jimmy).

The following equation (line 08) conveys the TimeToConclude stock
for the Coding activity, which represents the number of days required to
conclude this activity. This stock is depleted by the Work rate (line 09).
This rate checks the DependOk process (line 10) to determine whether its
precedent activities are concluded. The process uses the GROUPSUM
operator, which is compiled to a list of arithmetic sums whose operands
are the instances participating in the relationship selected for the
operator. The DependOk behavior description within the Activity class
uses the Precedence relationship. In the Coding activity, which is
preceded by a single activity {Designing), the GROUPSUM operator is
compiled as a reference to a behavior equation of the Designing instance.
In the Designing activity the GROUPSUM operator is compiled to zero,
since there is no precedent activity (therefore, resulting in no operand for
arithmetic sums).

The DependOk behavior within the Coding instance uses a stock
declared by other instance (in this case, the Designing activity). This is
accomplished through model relationships, which allow an instance to
consult or modify other instances' behavior. The compiling process
perceives such access to externally defined behavior through the
relationship name. So, it puts the name of the instance being manipulated
in front of the name of the accessed behavior.

Further equations represent activity execution time (lines 11 and 12),
error transmission from precedent activities (lines 13 and 14), and errors
generated while the activity is executed (lines 15 to 17). These equations
were compiled using the same strategies as described earlier in this
section.

High Level Software Project Modeling with System Dynamics 107

5. The Simulation Process

The artifacts developed by an execution of the modeling process are used
during the simulation process. This process is executed to support
decision making for a specific software project. It allows an analyst, who
is usually a project manager, to observe the behavior of a software
project according to specific situations.

The simulation process starts after the compilation of the specific
model that describes a software project (third activity of the modeling
process). The compiled model is executed in a simulator and the analyst
can observe its behavior, which is described in reports and graphical
plots. This model acts as a baseline, containing known facts about a
software project without any uncertain assumptions. The baseline model
behavior shows what is expected to happen during project development
if the project is not affected by uncertain events (for instance, sick
developers, unmotivated team, problems in the working environment,
higher error generation rates, higher requirements volatility, lack of
support from senior management, and so on).

However, no software project can be isolated from every kind of
uncertain events, and the analyst must study how the project reacts to the
occurrence of such events. Scenario models represent uncertain events,
so the analyst can retrieve these models from the corporate repository. If
models for the specific uncertain events under interest are not available,
the analyst can either build such models (by applying the fourth activity
of the modeling process) or abort the analysis of these events, focusing
on events that were previously documented as scenario models.

After retrieving or building scenario models, the analyst performs an
iterative process where these models are integrated into the specific
model developed for the software project of interest. Each combined
model is simulated to evaluate how the assumptions documented in the
scenario models affect the baseline model behavior. The scenario model
integration process does not require manual changes to the software
project model equations, thus reducing the chances of errors being
introduced in the model. Also, since scenarios are described as separate
models, they tend to be easier to reuse than groups of equations manually
extracted from a model.

108 M. De Oliveira Barros, C. M. Lima Werner, G. H. Travassos

In decision support models, the results provided by the simulation
executed before scenario model integration represent the expected model
behavior if the underlying process is unaffected by external decisions.
The simulations done after scenario integration show the expected model
behavior when each particular decision (represented by a scenario
model) is taken.

6. An Application of the Simulation Process

In this section, we show an application of the simulation process based
on the models developed in section 4. The small software project
introduced in that section will be further used to support our discussions.

6.1. Scenario Models

Scenario models extend domain models by providing new behavior and
characterization for one or more domain classes. A scenario model is
composed of connections and constraints. A connection associates the
scenario to a domain class, so that the scenario can be enacted on
instances of the class in a specific model for the domain. A constraint
declares restrictions that the connected instances and its associated
instances have to meet in order to be connected to the scenario.

Table 4 presents a scenario model for the software project domain.
This scenario describes the behavior of an overworking developer, that
is, a developer that works more than eight hours per day. Its equations
were adapted from Abdel-Hamid and Madnick1, according to the
heuristic first presented by DeMarco11 that states that overworking
developers work more (they present higher productivity), but not better
(they present higher error generation rates). The Overworking scenario
has a single connection and no constraints.

A connection extends the behavior and characterization of a domain
model class by adding new properties and new behavior equations to the
class. These properties and behavior equations are intended to be
relevant to the model only if the assumption described by the scenario is
relevant to the modeler. Thus, the number of hours that each developer
works per day must only be specified if the analyst wants to measure the
impact of overworking upon the project model. If this scenario is not

High Level Software Project Modeling with System Dynamics 109

relevant to the analyst, the scenario model is not considered, and its
properties and behavior equations are not taken into account during the
model simulation. The TheDeveloper connection allows the Overworking
scenario to be connected to the Developer class in the SoftwareProject
domain. This connection declares a single property (WorkHours), which
indicates how many hours a developer works per day, and three behavior
equations, represented by the processes and stocks in the scenario model.

Table 4. A scenario model for the software project domain

SCENARIO Overworking projectModel

{
CONNECTION TheDeveloper Developer

{
PROPERTY WorkHours 8; # 8 to 12 hours

STOCK DailyWorkHours WorkHours;
PROC WHModifier 1 + (DailyWorkHours - 8) / (12 - 8);

PROC SEModifier LOOKUP (SchErrorsTable, WHModifier-1, 0, 1);
TABLE SchErrorsTable 0.9, 0.94, 1, 1.05, 1.14, 1.24, 1.36, 1.5;

AFFECT Productivity Productivity * WHModifier;
AFFECT ErrorGenRate ErrorGenRate * SEModifier;

} ;
} ;

Connections also declare behavior redefinition clauses, which allow
the scenario to change the equations of rates and processes defined for its
associated class in the domain model. The Overworking scenario has two
behavior redefinition clauses, represented by the AFFECT keyword. The
first redefinition clause indicates the raise in productivity due to
overworking, while the second redefinition clause indicates the expected
effects of overworking upon developers' error generation rate. The
original equations that describe developer's productivity and error
generation rate are overridden by scenario definitions. For instance, the
Overworking scenario redefines the Productivity equation in the
developer class by multiplying its original value by a factor that depends
on the number of hours that the developer works per day.

110 M. De Oliveira Barros, C. M. Lima Werner, G. H. Travassos

6.2. Scenario Activation

A scenario is not a self-contained model. It is a complementary model
that adjusts the behavior of previously developed models. It can be
activated upon specific models developed for the same domain to which
the scenario was created. When a scenario is activated upon a model, its
connections must be enacted upon class instances declared within the
specific model. The effects of enacting a connection upon an instance are
similar to declaring the properties and behavior equations that are
defined in the connection directly in the domain model class. However, if
such properties and behavior equations were declared in the domain
model, they would apply for every instance of the class in every specific
model developed for the domain. Scenario connections can be enacted
upon specific class instances, modifying the behavior of those particular
instances. The remaining instances in the model present only their
original class behavior and properties, without the effects provided by
the scenario. Table 5 shows an Overworking scenario activation upon
developer's instances in the model shown in Table 2.

Table 5. Scenario model activation upon a model for the software project domain

DEFINE MyProcess ProcessModel

{
John = NEW Developer

SET Experience = 1;
SET WorkHours = 12;

Jimmy = NEW Developer
SET Experience = 0.8;
SET WorkHours = 8;

ACTIVATE Overworking
CONNECT TheDeveloper Jimmy;

ACTIVATE Overworking
CONNECT TheDeveloper John;

} ;

Properties defined by a scenario connection are added to the list of
properties that describe the class instance upon which the connection was
enacted. As in the domain model, these properties have a default value,

High Level Software Project Modeling with System Dynamics 111

which can be redefined by particular instances in a model. Notice that the
instance that represents the developer named John redefines the value of
the WorkHours property in Table 5. Connection equations assume the
new property value for the instance, adjusting scenario behavior for this
value. If no scenario connections were enacted upon the instance, the
initialization of the WorkHours property would result in an error, since
the property was not defined for the class in the domain model.

The Overworking scenario and the SoftwareProject domain model
illustrate the major advantage of using scenario models, that is,
separating the hypothesis concerning a theory (represented in the
scenario model) from the known facts represented in a specific model.
Consider that a modeler wants to evaluate the number of errors over time
in the example project in two distinct situations: without overworking
and considering the effects of overworking upon the project behavior. To
evaluate the first situation, the modeler uses the model for the
SoftwareProject domain shown in Table 2. The number of errors in the
project over time in this model is shown in the left-hand graph in Figure
2. Next, to evaluate the overworking behavior, the modeler activates the
Overworking scenario upon the developers, as presented in Table 4. This
model shows the resulting behavior in the right-hand graph in Figure 2
(all other variables were unchanged).

Errors Without Overworking

Time (days)

40

35

a 30"
i5 25^
° 20
1 15

1 10
zz.

5
0

Errors With Overworking

/ ^ ~

T - c o i f } r ^ o > * — (o t r j f — o>

Time(days)

Figure 2. Model behavior with (right) and without (left) scenarios

The diamond indicates the number of errors by the end of the
Designing activity, which was executed by developer John working
twelve hours per day. Notice that the activity is concluded faster (day 6
versus day 12) when the Overworking scenario is taken into account, due

112 M. De Oliveira Barros, C. M. Lima Werner, G. H. Travassos

to a higher productivity rate. However, the number of errors also
increases in the analysis with the Overworking scenario: 25 errors by the
end of the Designing activity against only 19 errors without
overworking. Moreover, since error detection and correction are not
included in the example project, it is concluded sooner, though with
lower quality, when overworking is considered (12 days versus 17 days).

Thus, scenarios allow a modeler to perform behavior analysis upon a
model without direct intervention in its equations or control parameters.
Scenarios act as "plug-&-simulate" extensions to a domain model,
providing different behavior for classes that can be plugged and
analyzed, according to the modeler's needs. These analyses can be rather
difficult using the textual model representation for scenarios and models
presented in the preceding examples. In this context, graphical tools to
support the system dynamics metamodel, scenario creation and
integration can be built to allow a user to graphically build a model and
activate scenarios upon it. Currently, the Hector metamodel compiler
manages scenario activations when transforming a specific model to
traditional system dynamics equations9.

6.3. Constrained Scenarios

Scenarios may depend on other scenarios to represent their behavior.
Suppose we have a scenario that represents developers' exhaustion due
to overworking during the development of a project. The scenario
presented in Table 6 represents this effect. Its equations were adapted
from Abdel-Hamid and Madnick1.
Whereas the Overworking scenario presented in Section 6.1 focused on
the error generation behavior occurring when developers work more than
their regular working hours per day, the Exhaustion scenario (Table 6)
states that developers become tired as they overwork. If the overworking
period lasts too long, developers are so exhausted that they refuse to
overwork during a "resting" period. While resting, developers work only
eight hours per day, despite pressure to overwork.

Within the Exhaustion scenario, the Resting stock remains zero as
long as developers are not exhausted enough to start a resting period. If
this stock assumes a non-zero value, it forces the DailyWorkHours stock

High Level Software Project Modeling with System Dynamics 113

that was presented in the Overworking scenario to represent a workday
of eight hours. Thus, scenarios that do not present behavior redefinition
(AFFECT) clauses can affect the behavior of their associated classes by
adding rates to stocks previously defined for the classes.

Table 6. A constrained scenario model for the software project domain

SCENARIO Exhaustion ProjectModel

{
CONNECTION TheDeveloper Developer
{
STOCK Exhaustion 0;
PROC MaxExhaustion 50;
PROC IsResting OR(Resting=l, Groupsum(MyActivities, Work)=0)
PROC ExhaustionPass Max(-Exhaustion/DT, -MaxExhaustion/20.0);
RATE (Exhaustion) ExRT if(IsResting, ExhaustionPass,

EXModifier);

PROC EXModifier LOOKUP (ExaustionTable, DedicationFactor, 0,
1.5) ;

PROC DedicationFactor 1 - (1 - Dedication) / 0.4;
PROC Dedication 0.6 + (WHModifier - 1) * (1.2 - 0.6);
TABLE ExaustionTable 0.0, 0.2, 0.4, 0.6, 0.8, 1.15, 1.3, 1.6,

1.9, 2.2, 2.5;

STOCK Resting 0;
RATE (Resting) RestingRatel IF (InitResting, 1 / DT, 0);
RATE (Resting) RestingRate2 IF (QuitResting, -1 / DT, 0) ,-
RATE (DailyWorkHours) DWHRate IF (Resting = 1 , (8 -

DailyWorkHours) / DT, 0) ,-

PROC InitResting AND(Resting = 0, Exhaustion > MaxExhaustion);
PROC QuitResting AND(Resting = 1, Exhaustion < 0.1);

};

CONSTRAINT TheDeveloper, Overworking.TheDeveloper;

} ;

However, since the class has not defined the DailyWorkHours stock
by itself (it was declared by a scenario), the Exhaustion scenario can only
be activated upon instances of the Developer class over which the
Overworking scenario was previously activated (otherwise, the
referenced stock would not be available).

The constraint in the scenario warrants the establishment of this
connection. It states that instances affected by the TheDeveloper
connection in the Exhaustion scenario must also be affected by the

114 M. De Oliveira Barros, C. M. Lima Werner, G. H. Travassos

TheDeveloper connection of the Overworking scenario. If the last
connection is not enacted upon the instance, the metamodel compiler
issues an error and does not generate the compiled model.

Constraints are not restricted to class instances upon which a scenario
connection is enacted. Other instances, linked to the connected instances
by class relationships, can also be affected by constraints. To allow
associated instances evaluation by a constraint, a dot operator and a
relationship identifier should follow the TheDeveloper connection on the
left-hand side of the comma that divides the constraint declaration. All
class instances associated to the connected instance through this
relationship should comply with the scenario connection presented by the
right-hand side of the comma.

Scenarios are supposed to be small: they should concentrate on the
behavior equations that describe a particular problem or opportunity. The
power of scenarios is their integration with specific models, and
constraints play an important role by stating and verifying the
dependencies among scenarios.

6.4. Scenario Activation Ordering

Scenario activation ordering is relevant since several scenarios can
redefine the same equation for a class instance in a specific model, and
due to operator precedence rules within an equation. If several scenario
connections are enacted upon the same class instance, their behavior
redefinition clauses affect the original domain class equations according
to the scenario activation order.

Consider the hypothetical scenarios presented in Table 7. The first
scenario represents a reduction in the error generation rate due, for
instance, to learning a new development technique with which a lower
number of errors are generated during project development. The scenario
indicates that the error generation rate is reduced by a constant factor.
The second scenario represents rises in the error generation rates due to,
for instance, schedule pressure and a close project conclusion date. The
scenario indicates that the error generation rate grows by a multiplying
factor. Both scenarios affect a developer's ErrorGenRate process, but the
combined effect of enacting their connections upon the same class

High Level Software Project Modeling with System Dynamics 115

instance depends on the order in which they were activated upon the
model.

Table 7. Scenarios that affect a developer's error generation rate

SCENARIO ReducesErrGen ProjectModel

{
CONNECTION TheDeveloper Developer

{
PROC LearningFactor 0.1;
AFFECT ErrorGenRate ErrorGenRate - LearningRate;

};
};

SCENARIO RaisesErrGen ProjectModel

{
CONNECTION TheDeveloper Developer

{
PROC PressureFactor 0.2;
AFFECT ErrorGenRate ErrorGenRate * (1 + PressureFactor);

} ;
} ;

Consider that both connections in the ReducesErrGen and
RaisesErrGen scenarios were enacted upon the same class instance. The
resulting ErrorGenRate equation, reduced by the first scenario then
amplified by the second scenario, would be described as:

ErrorGenRate = (ErrorGenRate - LearningFactor) * (1 + PressureFactor)

However, if the scenario activation ordering changes, enacting the
RaisesErrGen connection before the ReducesErrGen connection upon
the same instance, the ErrorGenRate equation would be changed to:

ErrorGenRate = (ErrorGenRate * (1 + PressureFactor)) - LearningFactor

In the second activation order, the schedule pressure effects are
perceived prior to the new development technique effects. Depending on
property values (learning and pressure factor), these two equations would
show distinct behavior in a specific model. Thus, scenario ordering must
be considered when connections from several scenarios are enacted upon
the same class instance.

Scenario activation ordering is defined per class instance in a specific
model. Since the modeler must indicate which scenarios are activated for

116 M. De Oliveira Barros, C. M. Lima Werner, G. H. Travassos

every model instance, the order in which these activations are listed in
the model will be preserved when activation ordering is involved.

7. Final Considerations and Outlook

This chapter described a modeling and a simulation process for system
dynamics that allows the development of domain models and their
specialization for particular problems. A domain model describes the
classes of elements within the domain, detailing their properties,
behavior, and relationships. The model represents a particular problem,
describing the instances of each class that participates in the problem and
defining their property values and associated instances. The model is
built using a language closer to the domain concepts, while the domain
model uses system dynamics constructors. We believe that, since the
model construction language is closer to the user knowledge, it helps
model development.

After describing the system dynamics metamodel, we have presented
scenario models, an extension to the previous metamodel that allows the
separation of uncertain assumptions from facts expressed in a model.
Uncertain assumptions are described in separate models, namely scenario
models, which can be activated upon a specific model. Such activation
adjusts the original model equations to the formulations that describe the
scenario, allowing a modeler to evaluate the impact of the scenario upon
the model behavior. Scenarios allow modelers to extend the behavior of a
model without direct and error-prone intervention in its equations.

We believe that a major advantage of the meta-modeling approach is
the simplified process for creating specific project models, given a
domain model. A strong limitation is that domain model development
still depends solely on basic system dynamics constructors. While the
distribution of equations among domain classes may help a modeler to
concentrate on the behavior of one class at a time, it brings with it some
difficulties regarding communication among classes and the public
interface of stocks, rates, and processes that one class offers to the
remaining system. Similar problems also apply to scenario models,
whose construction demands knowledge of the domain model and the
internal behavior of its classes.

High Level Software Project Modeling with System Dynamics 117

Currently, we have a library of approximately twelve scenario models
developed for the software project domain. These scenarios include
theories regarding developers' productivity and error generation rates
due to their experience, developers' productivity due to learning the
application domain, effects of overworking and exhaustion upon
developers, communication overhead, error propagation across the
activities within a work breakdown structure, bad fixes, among others.
We expect to create more scenario models for the software project
management domain and use the proposed techniques as a training tool.

We have built a compiler that translates the metamodel representation
and scenario model activations to traditional system dynamics
constructors in order to allow model simulation. This tool is available,
along with some scenario model examples and an extensive software
project model, at the project website2.

We have also conducted experimental studies12 that yielded some
positive results about the usefulness of scenario models in supporting
decision making for software project managers. However, these studies
also indicate that managers have difficulties in interpreting simulation
results, so mechanisms to enhance the presentation of such results are
needed. The outlook for this work includes the development of graphical
tools to support the creation and evolution of specific models and
scenario models. Such tools would be useful as a simulation
environment, where a modeler could select scenarios and easily activate
them upon a specific model developed for a domain.

Some limitations of the traditional system dynamics modeling
paradigm can still be found in the metamodel representation. A strong
limitation is related to system structure: though system dynamics models
provide dynamic behavior, they rely on static relationships among the
elements within a problem domain. Thus, model structure does not
usually evolve over time. We are working on the concept of events,
which would allow an analyst to influence model structure during a
simulation run. Events would allow, for instance, an analyst to change
the developer assigned to an activity without the need to rerun preceding
simulation steps. We believe that this capability will bring simulation

2 http://www.uniriotec.br/ -marcio.barros/systemdynamics.html

http://www.uniriotec.br/

118 M. De Oliveira Barros, C. M. Lima Werner, G. H. Travassos

closer to real-world situations, where managers decide on-the-fly to
change the relationships within project environments (model structure).

We have used scenario models within a scenario-based project
management paradigm13, which proposes that a manager should plan and
document the expected behavior of a software project as a system
dynamics model. Since project behavior can be affected by unexpected
events, management actions and strategies, the manager should test its
sensitivity to combinations of such elements, evaluating the impact of
these risks and whether they can challenge project success. Project
management scenario models support decision-making by providing a
library of known behavior models for management strategies and
theories about developer's behavior that the manager can integrate into
the baseline model describing the project to be developed. Scenario
models can also describe optional process activities (such as inspections,
specific configuration management techniques, formal reviews, and so
on) that can be included in the project process to improve specific
aspects (reliability, reworking reduction, artifact availability, among
others).

In an industrial setting, where the scenario-based project management
paradigm can be used to manage real software projects, senior managers
should develop scenario models expressing experiences that they have
collected by participating in several projects. These scenarios would
allow less experienced managers to share senior managers' knowledge.
In an academic setting, scenarios developed by experts and according to
research presented in the technical literature could support training
activities: students should use scenario integration and simulation to
evaluate the impact of their decisions upon project behavior (such as
cost, schedule, quality, and so on). Such an experiential environment
may save students from repeating the same errors that they have already
learnt from the simulator in real, industrial projects.

Acknowledgements

The authors would like to thank CNPq and CAPES for their financial
investment in this work.

High Level Software Project Modeling with System Dynamics 119

References

1. Abdel-Hamid, T., Madnick, S.E. 1991. Software Project Dynamics: an Integrated
Approach, Prentice-Hall Software Series, Englewood Cliffs, New Jersey.

2. Tvedt JD. 1996. An Extensible Model for Evaluating the Impact of Process
Improvements on Software Development Cycle Time, D.Sc. Dissertation, Arizona
State University, Temple, AZ.

3. Lin, C.Y., Abdel-Hamid, T., Sherif, J.S. 1997. "Software-Engineering Process
Simulation Model (SEPS)", Journal of Systems and Software, Vol. 38, Issue 3,
September, pp. 263-277, Elsevier.

4. Madachy, R.J., Tarbet, D. 2000. "Case studies in software process modeling with
system dynamics", Software Process: Improvement and Practice, Vol. 5, Issues 2-3,
pp. 133-146.

5. Rai, V.K., Mahanty, B. 2001. "Dynamics of Schedule Pressure in Software Projects" ,
IN: The Proceedings of the 20th International Conference of the System Dynamics
Society, Palermo, Italy.

6. Forrester, J.W. 1961. Industrial Dynamics, Cambridge, MA: The M.I.T. Press.
7. Booch, G., Rumbaugh, J. Jacobson I., 1999. The Unified Modeling Language User

Guide, Object Technology Series, Addison Wesley Longman, Inc, Reading, MA.
8. Neighbors, J. 1981. "Software Construction Using Components", Ph.D. Thesis,

University of California, Irvine, USA.
9. Barros, M.O. 2001. HECTOR - Metamodel Compiler to System Dynamics, available

at URL http://www.cos.ufrj.br/~marcio/Hector.html (last accessed in 10/01/2003).
10. Barros, M.O. 2001. ILLIUM - System Dynamics Simulator, ILLIUM tool homepage

at URL http://www.cos.ufrj.br/~marcio/Illium.html (last accessed in 10/01/2003).
11.De Marco T. 1982. Controlling Software Projects, Yourdon Press, Inc., New York.
12.Barros MO, Werner CML, Travassos GH. 2004. "System Dynamics Extension

Modules for Software Process Modeling", ProSim'03, 2003 Workshop on Software
Process Modeling, Portland, OR, USA.

13.Barros MO, Werner CML, Travassos GH. 2004. "Supporting Risk Analysis on
Software Projects", The Journal of Systems and Software, Vol. 70, Issues 1-2,
February, pp. 21-35, Elsevier.

http://www.cos.ufrj.br/~marcio/Hector.html
http://www.cos.ufrj.br/~marcio/Illium.html

This page is intentionally left blank

Chapter 5

PEOPLE-ORIENTED CAPTURE, DISPLAY, AND USE OF
PROCESS INFORMATION

Jens Heidrich, Jurgen Munch, William Riddle, Dieter Rombach

Fraunhofer Institute for Experimental Software Engineering
Sauerwiesen 6, 67661 Kaiserslautern, Germany

E-mail: {heidrich, muench, riddle, rombach)'@iese.fraunhofer.de

Project success demands that process performers have accurate, up-to-
date information about the activities they should perform, any con­
straints upon activity performance, and guidance about how to effec­
tively and efficiently perform their activities. The goal of this chapter is
to describe support for people-oriented capture, display, and use of
process information that experience has shown is highly beneficial. The
chapter reviews several state-of-the-art approaches for supporting peo­
ple-oriented process performance, illustrates challenges of providing
this support, and presents experience from practice. We describe differ­
ent kinds of process knowledge and discuss a method for collecting one
kind of process knowledge - measurement data - in a goal-oriented
way. We present different ways to display process information in order
to satisfy information needs of people involved in a software develop­
ment project, including the generation of process documentation, role-
based workspaces, and control centers for software development. Fur­
thermore, we illustrate how process information can be used to support
process performance through the use of not only workspaces and con­
trol centers but also process enactment and experience management.
The approaches presented in this chapter can be seen as a contribution
towards supporting people-oriented software development.

1 Introduction

Well-designed, accurately-performed processes are critical to the suc­

cessful conduct of an organization's projects. This is particularly true

121

http://fraunhofer.de

122 J. Heidrich, J. Munch, W. Riddle, D. Rombach

when developing large systems by carrying out many, highly interde­
pendent, activities. Some activities are quite simple but others, such as
project planning, coordination, cooperation, control, and improvement,
may be quite complex. Some activities may be "algorithmic" (defined by
concrete procedures) and some may be "creative" (stochastically unde­
termined). Some may be performed by teams of developers; others may
be enacted by machines. All activities must contribute to meeting the
project goals which will vary across projects.

As a result, the processes must be designed for effective, efficient,
and accurate performance in a wide variety of contexts. Three particu­
larly difficult challenges are:

• The conduct of development processes cannot be completely auto­
mated because performance is largely human-based and, therefore,
has to deal with non-deterministic behavior of human process per­
formers. This often causes problems such as non-predictable devia­
tions or confusion regarding roles and responsibilities.

• Contexts characterize a project's environment and consist of organ­
izational, technical, and personal characteristics that influence the
project's processes and their performance. The relationship of the
context and the processes is often quite hard to understand, especially
for the development of large-scale, complex systems. This makes it
difficult for process performers to obtain the necessary or appropriate
information and assess the impacts of different contexts.

• The contexts vary between projects and even within projects. Because
development activities are context-dependent, the processes need to
be adapted to different contexts and this adaptation is often quite dif­
ficult. In addition, the processes may need to be adapted "on the fly"
during project performance. Rapid context switches often lead to un­
necessary rework when context switches are insufficiently supported.

The development of large and complex systems that may include
hundreds of hardware and software components is quite complex because
of these challenges. Other complexities occur in small, team-based de­
velopment projects. Many problems are related to the fact that software
development is largely human-based. People need help in meeting these
challenges. This includes customizing process information to specific

People-oriented Capture, Display, and Use of Process Information 123

needs for different contexts. Necessary process support includes im­
proved communication, detailed reasoning about process features, guid­
ing people when performing processes, improving both processes them­
selves and their results, and automating process steps to gain determinis­
tic process behavior1'2. People-oriented process support requires manag­
ing large and complex processes contexts by reducing the cognitive load,
supporting long-living processes by providing mechanisms for context
switching, and supporting collaboration by applying team-based and
multi-disciplinary approaches.

The goal of this chapter is to describe support for people-oriented
capture, display and use of process information that experience has
shown is highly beneficial. The chapter reviews several state-of-the-art
approaches for supporting people-oriented process performance, illus­
trates the challenges of providing this support, and presents experience
from practice. Most of the approaches and examples stem from the soft­
ware engineering domain; i.e., the processes are "software development
processes". However, much of the material in this chapter can be applied
to "development processes" from other domains (such as development
processes for mechanical systems) or other - business-oriented - process
domains within an organization, such as marketing and sales processes.

1.1 General Concepts

People-oriented process support requires mechanisms supporting the in­
terface between processes and people; this is, in essence, the focus of this
chapter. The concepts of role and agent are fundamental to discussing
these mechanisms and are therefore explained in this sub-section.

A role definition indicates the role's purpose with respect to the proc­
ess. In essence, role definitions define the parts that people play as they
participate in carrying out the process. Role definitions are analogous to
the part definitions found in a script for a theatrical production. An im­
portant aspect is that the role definition is specific to the process. If role
definitions in different process descriptions have the same name, then
this is incidental. The purpose, scope, and nature of the role are solely as
specified in its definition for the specific process.

124 J. Heidrich, J. Munch, W. Riddle, D. Rombach

Just as people play the parts in a theatrical production, people play
roles in process performance. To specify that a person is playing a role,
we say the person occupies the role. Further, we do not talk in terms of
specific people (Bob, Michele, or Pete), but rather talk in terms of agents.

The net effect is that there are two levels of abstraction reflecting two
very useful separations of concern. The role vs. agent abstraction allows
the separation of a concern for what a person must do when participating
in a particular process from a concern for what the person must be able to
do as an employee who may be assigned to participate in various proc­
esses. This separation of concern is highlighted by noting the difference
between a role definition, which is process specific, and a job descrip­
tion, which is position specific and usually fairly neutral about the spe­
cific processes the employee will be assigned to.

The agent vs. person abstraction allows a separation of concern for a
general spectrum of qualifications, abilities, and experiences — as typi­
cally indicated in a job description — from a person's specific qualifica­
tions, abilities, and experiences. This abstraction has two important side-
effects. First, it allows a group of people to share a particular position.
An example is a System Adminis t ra tor position which is often
filled by assigning a group of people who each work part-time in this
position. The other side-effect is that it becomes possible to think of fill­
ing a particular position with a tool, effectively automating the position.
An example is a Request F i l t e r agent that filters incoming requests
into several different "bins," a capability that is necessary for a variety of
processes and may quite often be automated.

A role definition must treat three different aspects of the role as part
of a process:

• Responsibilities: the role's obligations and permissions with respect
to the process; for example c r e a t e f i n a n c i a l r epor t , a s su re
p r o j e c t success , and can access employee records .

• Activities: the role's participation in activities, perhaps accompanied
by time sequencing information; for example, ga the r the r e ­
quirements and develop the design.

People-oriented Capture, Display, and Use of Process Information 125

• Abilities: skill and experience requirements for agents who occupy

the role; for example, t r a i n e d in us ing Word and f ami l i a r
with the Delphi approach to brainstorming3 .

These three aspects of a role correspond to three different approaches
to supporting people during process performance. All three approaches
allow agents to find and focus on an activity they must carry out; the
three approaches vary with respect to the view presented to the agent as a
starting point. In a responsibility-based approach the agent starts with a
view that emphasizes its responsibilities. In an activity-based approach,
however, the starting point reflects a collection of inter-related activities
and the agent selects one of the activities that the role participates in. Fi­
nally, in an ability-based approach, agents start with a view indicating the
capabilities needed to successfully occupy a role and the agent may se­
lect an activity that requires a specific capability. In this paper, we focus
on responsibility and activity-based approaches.

People-oriented process support needs to consider the human charac­
teristics of individuals and teams. These characteristics comprise motiva­
tion (i.e., the stimulus a person has about achieving some result), satis­
faction (i.e., the fulfillment of a need or the source or means of enjoy­
ment), skills (i.e., knowledge and training), and experience (i.e., practical
knowledge and experience resulting from observing or participating in a
particular activity).

Process support should be customized to human characteristics and it
should recognize that it can influence these characteristics. The motiva­
tion of a highly experienced developer, for example, could be decreased
by prescribing finely detailed approaches to carrying out activities. The
skills of an inexperienced developer could be amplified by providing de­
tailed guidance for an activity.

Human characteristics may have a major influence on the results of a
development project. The following empirical findings and hypotheses

a These statements could appear in a job description to specify criteria for evalu­
ating potential employees. Here, they are being used to specify the criteria for
some agent assigned to the role. These are analogous uses, but the first concerns
an agent's general skills and experience whereas the second concerns the skills
and experience needed for a specific process.

126 J. Heidrich, J. Miinch, W. Riddle, D. Rombach

(discussed in "A Handbook of Software and Systems Engineering") are
related to skill, motivation, and satisfaction and can be applied for de­
signing people-oriented process support. According to Kupfmuller's law,
humans receive most information visually. It is important to consider that
not all senses are involved equally during the reception of process infor­
mation. The predominance of the visual system could be exploited for
displaying process information via pictures, graphs, or signs. Krause's
law states that multimodal information is easier to remember than single-
mode information. Including multimedia capabilities in process support
could utilize this finding. Miller's law, defined by the psychologist
George Miller, says that short-term memory is limited to 7 +/- 2 chunks
of information. This indicates how much the complexity of processes and
contexts needs to be reduced for displaying them adequately to process
performers. Many other empirical findings should be considered when
developing people-oriented process support, for example: human needs
and desires are strictly prioritized (Maslow-Herzberg's law); motivation
requires integration and participation (McGregor's hypothesis); and
group behavior depends on the level of attention (Hawthorn effect).

These empirical findings and hypotheses should be carefully consid­
ered when providing people-oriented process support because adherence
or non-adherence to them is a major determiner of success or failure.

1.2 Contents

The chapter is organized into three parts regarding capturing process in­
formation, its display, and its use. Section 2 addresses the collection of
different kinds of process knowledge and discusses the Goal Question
Metric (GQM) paradigm as a goal-oriented method for collecting proc­
ess-related measurement data. Section 3 deals with the different ways
process information may be displayed in order to satisfy process per­
former information needs. In the section, we discuss the generation of
process documentation, role-based workspaces, and control centers for
software development. Section 4 illustrates how process information can
be used during process performance. In the section, we discuss the im­
portance of not only workspaces and control centers but also process en­
actment support. In the section, we also discuss experience management

People-oriented Capture, Display, and Use of Process Information 111

issues; that is, various ways in which process information can be used to
improve future process performance. In each section, we discuss related
work and future trends as appropriate. Finally, section 5 gives a brief
summary of the material in this chapter.

Fig. 1 gives an overview of the sections in terms of their relationship
to a simple development process and its major roles.

g 2.1 Collecting Process
b Knowledge
1 2.2 Collecting
u Measurement Data

3.1 Documentation
> Generation for Roles
~i 3.2 Role-based
l/j Workspaces
3 3.3 Software Project

Control Centers

4.1 Using Role-based
Workspaces

4.2 Using Software Project
Control Centers

Hj 4.3 Process Enactment
£0 Support

4.4 Experience
Management

Fig. 1. Section Focus with respect to a Simple Development Model (not address­
ing all Planning and Enactment Issues).

2 Capturing Process Information

Access to information about a process is critical to its effective, efficient
and accurate performance. This information comes from many sources:
process designers, process performers, customers and other stakeholders
concerned with the outcome, and corporate executives interested in the
degree to which the processes support achieving the organization's busi­
ness objectives. Once collected, the information is typically organized

Process Goals and Characteristics

Process Planning

8 8
Process Engineer Process Auditor

/ Process Documentation \

Documentation
Engineer

Project Management

Execution

rz:-*o—•-.
Quality Assurance

Project Manager

Experience Base

8
8

Developer

QA Manager

8

128 J. Heidrich, J. Munch, W. Riddle, D. Rombach

into process handbooks, with different handbooks rendering the informa­
tion as needed for particular roles (for example, a Developer Hand­
book and a Process Auditor Handbook).

In this section, we the first define various kinds of process informa­
tion. After briefly discussing the collection of these kinds of process
knowledge, we then address the collection of measurement data (one
kind of process knowledge) in more detail.

2.1 Collecting Process Knowledge

There are many different, but inter-related, kinds of process-related in­
formation:

• Process Assets: templates, checklists, examples, best-practice descrip­
tions, policy documents, standards definitions, lessons-learned, etc.,
useful during process performance.

• Process Definition: information about a specific process including:
the activities to be performed, the roles that agents occupy when per­
forming the activities, the artifacts used and produced during activity
performance, the conditions that reflect progress, and the assets perti­
nent to the process.

• Process Status: information useful for controlling or tracing process
performance in terms of activity sequencing, role/agent assignments,
the degree of artifact completion, the usage of assets, etc.

• Process Measurement Data: information characterizing a particular
performance of a process in terms of the expended effort, perform­
ance of the personnel, resource utilization, etc.

• Project-specific Data: information created during a process perform­
ance including: specific documents created and worked on during the
project, records of group meetings, white papers discussing various
design options, lessons learned, etc.

In the following sections we discuss the collection of each of these
kinds of process knowledge.

People-oriented Capture, Display, and Use of Process Information 129

2.1.1 Process Assets

Process assets may be collected from several sources. Standardization
efforts not only define the standard but also provide example templates
and checklists as well as examples of good (and bad) uses of these assets.
Definitions of Process Maturity Frameworks, for example the CMM5, are
also often the source of templates, checklists, and examples of good or
bad artifacts. Framework-oriented sets of assets are also commercially
available (for example from pragma6 and the FAA7).

Corporate-wide process definition groups are normally responsible
for developing assets supporting the organization's processes. This pri­
marily includes templates, examples and checklists. It also includes the
definition of best practices as they should be practiced within the organi­
zation.

These process definition groups are also frequently responsible for
assuring that the organization's process assets are influenced by the ex­
perience gained during project performance. This includes collecting new
templates, checklists, examples, etc. It also includes collecting lessons
learned. Finally, it includes updating existing assets to reflect experience
in using them.

Many organizations have devoted considerable effort to collecting
their assets, and making them readily available, in a corporate-wide
Process Asset Library (PAL). A PAL organizes the assets according to
various cataloguing dimensions. These dimensions reflect the assets'
general characteristics (their general types, the application programs
needed to use them, reactions stemming from their use, their pertinence
to various types of projects, etc.). An asset's pertinence to specific proc­
esses may also be used as a cataloguing dimension. In the following,
however, we indicate that process definitions may provide better, role-
specific as well as process-specific, "doorways" into a PAL.

2.1.2 Process Definition

Information about a process may be collected in several ways. Typical
alternatives are observing real projects, describing intended activities,
studying the literature and industry reports, and interviewing people in-

130 J. Heidrich, J. Munch, W. Riddle, D. Rombach

volved in a project. These approaches to gathering process knowledge
are varied and may be combined in many ways. All of the various ways
result, however, in one of two distinctly different kinds of process defini­
tions: descriptive process models and prescriptive process models.

Descriptive process models describe processes as they take place in
real projects, i.e., descriptive process models are the result of observa­
tion. Descriptive models describe how a particular software system was
developed, are specific to the actual process used to develop the system,
and may be generalized only through systematic comparative analysis8.
They can be used for analysis purposes and are often the basis for under­
standing and improving existing practices. Descriptive process models
can be used as a baseline for improvement programs and they can be a
basis for identifying strength and weaknesses. Descriptive process mod­
eling is a good means for obtaining a process description that accurately
describes the real process. This helps gain a deeper understanding of the
process, a prerequisite for effective process measurement and assess­
ment.

For conducting descriptive modeling, Becker, Hamann, and Verlage9

propose a two-phase procedure consisting of eight steps. The set-up
phase comprises the configuration of the process modeling approach.
The steps in this phase are performed relatively infrequently. The execu­
tion phase concerns a particular use of the process. All steps in the exe­
cution phase should be performed for each inspection of a particular use.
An enumeration of the phases and steps is:

• Phase I: "Set-up"

o Step 1: State objectives and scope.

o Step 2: Select or develop a process modeling schema.

o Step 3: Select (a set of) process modeling formalisms.

o Step 4: Select or tailor tools.

• Phase II: "Execution"

o Step 5: Elicit process knowledge.

o Step 6: Create model.

o Step 7: Analyze the process model.

People-oriented Capture, Display, and Use of Process Information 131

o Step 8: Analyze the process.

One approach to descriptive modeling, regardless of how it is con­
ducted, is multi-view modeling (MVM)10. In this approach, the underly­
ing idea is to reduce process description complexity by eliciting role-
oriented process information (e.g., from the point of view of a Tes te r or
a Requirements Analyst) because people are unable to look at com­
plex processes as a whole and usually focus on information relevant only
to their roles. Because roles collaborate, there is typically an overlap of
process information in different role-oriented views. Experience has
shown that different people occupying different roles in a project often
have a varying understanding of the overall process. MVM permits in­
formation from different role-oriented views to be integrated to develop a
consistent, comprehensive descriptive process model.

MVM supports the elicitation of role-oriented process models, the
analysis of similarities and differences between these models, the analy­
sis of consistency between different models, and finally the integration of
various views into a comprehensive process model. Benefits of this ap­
proach are: it considers the perspective and experience of individual per­
sons or teams, it supports role-oriented modularization of complex proc­
ess models, it supports the identification of inconsistencies and ineffi­
ciencies between role-specific process views, and it allows the reuse of
role-specific views.

In contrast to a descriptive process model, a prescriptive process
model defines guidelines, frameworks and details for a new approach to
carrying out the process (Scacchi8). It specifies how activities should be
performed, and in what order. It also establishes conditions that can be
used to guide or track process performance; this is discussed in the very
next section. Finally, it establishes contexts in which process performers
may effectively, efficiently and accurately satisfy the responsibilities for
the roles that they occupy; this is discussed in section 3.2.

2.1.3 Process Status

Process status information characterizes the state of process performance.
The fundamental notion is process element state: a measurable attribute
of some process element. For example, an artifact's state might be

132 J. Heidrich, J. Munch, W. Riddle, D. Rombach

draf ted , approved, or r e j ec t ed . As another example, the state of an
activity might be suspended, a c t i v e , or completed. A statement
about a process state that can be used to control the process or character­
ize progress is called a condition: a Boolean expression referring to the
states of process elements. An example condition is Design Document
approved and Coding Standards i d e n t i f i e d . The validity of a
condition changes over time as a result of events: actions that establish
new states for process elements (or perhaps merely re-establish their ex­
isting states). An example event is design review f i n i s h e s which
might establish the state of a Design Document as either approved or
r e j e c t e d and thereby affect the validity of conditions defined with re­
spect to the state of the Design Document.

Status information may be collected by the techniques identified in
previous sections (for example, by interviewing process performers). The
most important purpose is to collect information about the possible states
for process elements (for example, the possible states for a F inanc ia l
Report artifact). This is often simplified by identifying states for types
of process elements, for example, by indicating that all artifacts may
have the states draf ted , approved, or r e j ec t ed . Another purpose of
status information collection is to identify the conditions needed to assess
progress and activity pre- and post-conditions useful for controlling
process performance. A third purpose is to identify the events that
change process element states and affect the validity of conditions; the
events are normally strongly tied to points in the definition of an activity
at which the events occur.

Once collected and used as part of a prescriptive process definition,
status information may guide the collection of data about the actual
status at various points during process performance in order to check that
the actual performance matches the intended performance. Collection of
actual status information during process performance requires instrumen­
tation of the performance-time support system. Amadeus" is an example
of a system providing this instrumentation; it uses scripts to control data
collection and these scripts can be developed using the status information
in a prescriptive process description.

The status information in a prescriptive process definition may be
used to control, rather than merely track, process performance. This use

People-oriented Capture, Display, and Use of Process Information 133

of status information to support process enactment is discussed is section

4.3.

2.1.4 Process Measurement Data

Process measurement data are collected during process performance and
characterize special aspects of the process, related products, and re­
sources, especially quality-related aspects. Example quality-related as­
pects include: the effort in person-hours a certain developer spent on a
certain part of the process, the performance in lines of code per hour of
the coding personnel, or tool usage in hours. Process measurement data
provides quantitative information about process performance to comple­
ment the qualitative status information.

While project status information is collected in order to track or con­
trol the state of the overall project, measurement data are usually col­
lected in order to control certain quality aspects. A project manager
would basically be interested in the former and a quality assurance man­
ager in the latter. Therefore, status information and measurement data
provide qualitatively different, but complementary, views of process per­
formance.

To control a software development project, it is crucial to know what
measurement data have to be collected relative to defined measurement
goals of the project. We address this issue in more detail in section 2.2.

2.1.5 Project-specific Data

Project-specific data are created by carrying out the process. For exam­
ple, performing a Create Design task will create a Design Docu­
ment that is a specific instance of the Design Document artifact speci­
fied in the process description. Project-specific data are collected during
process performance as the agents occupying the process' various roles
create and modify the specific artifacts produced during process per­
formance.

Project-specific data provide a concrete record of the effects of a
process performance, complementing the status information and meas­
urement data characterizing how these effects were obtained. Most im-

134 J. Heidrich, J. Munch, W. Riddle, D. Rombach

portantly, this includes the intended results of the process. It also in­
cludes other documents such as records of project meetings and white
papers discussing various design options.

2.2 Collecting Measurement Data

Measurement data are needed to analyze quality aspects of a project, the
software development process used by the project, the products it pro­
duces, and the resources it uses12. Examples of measurement data are: the
effort of the process Create Requirements in person-hours, the com­
plexity of the product Requirements Document in function points, or
the cost conformance of the project Bui ld ing Automation System
in US dollars above or below the planned costs.

But how can we decide what to measure and how to interpret the col­
lected measurement data? Basically, we may distinguish two types of
measurement approaches. The first one starts with measurable observa­
tions and relates them to measurement objectives and goals. We call this
approach bottom-up because it starts with concrete measures and ends up
with abstract measurement goals. The second type starts with the defini­
tion of a measurement goal and derives concrete measures from it. We
call this approach top-down because every measure is derived and inter­
preted in the context of a specific goal. Starting with a measurement goal
eases the development of adequate, consistent, and complete measure­
ment plans.

One top-down approach is the Goal Question Metric (GQM) para­
digm developed by Victor Basili and David Weiss13. Its main idea is to
define a measurement goal and systematically derive questions and fi­
nally metrics. The approach can be applied to software processes, prod­
ucts, and resources and gives guidance on how to derive metrics in a
goal-oriented way.

Before describing this approach in more detail, it is important to de­
fine some basic concepts:

• A software entity is a specific process, product, or resource pertaining
to a software development project for which measurement data are

People-oriented Capture, Display, and Use of Process Information 135

being collected. For example, Create Requirements, Create
Design, Coding, and Tes t ing are process entities.

• An attribute is a characteristic of a specific entity. For example, the
length of the product Code is a product-related attribute.

• A metric is a (numerical or enumerated) scale that characterizes an
attribute of a specific entity. For example, the length of product Code
can be measured as lines of code (including or excluding comments).

• Measurement is the process of assigning certain values (defined by
the metrics) to attributes of software entities.

• Measurement data is the set of concrete data for all metrics measured
during the performance of a software development project.

Some metrics can be measured directly, whereas others have to be
computed from other metrics. We call the first direct and the latter indi­
rect metrics. For example, the indirect metric simple design com­
p l e x i t y for an object-oriented system may be computed from the direct
metrics number of c l a s s e s and the number of r e l a t i o n s h i p s
among c l a s s e s .

2.2.1 Definition of GQM Plans

The first step in setting up a measurement plan using the GQM paradigm
is to define all of the goals for a measurement program. Each GQM goal
definition consists of five different components14:

• The object defines the central node for measurement, namely the ob­
ject we want to analyze. For example, a certain process, product, or
resource, or even the overall project may be a legal measurement ob­
ject.

• The purpose describes the intention we have in setting up a measure­
ment plan. For example, we want to characterize, improve, control,
predict, or simply analyze the measurement object.

• The quality focus defines the characteristics of the analyzed object we
are interested in. For example, reliability, usability, security, safety,
scalability, performance, efficiency, or maintainability of the meas­
urement object.

136 J. Heidrich, J. Munch, W. Riddle, D. Rombach

• The viewpoint describes the perspective from which a quality aspect
is analyzed. For example, a developer, the project manager, the qual­
ity assurance manager, or the customer. This component is especially
important to supporting people-oriented measurement; it helps in
identifying the different groups of people interested in the collected
measurement data and in avoiding needless data collection.

• The context defines the environment where measurement takes place.
Usually, measurement data highly depend upon the context they are
collected in, and the results that are obtained are not transferable to
different environments. For example, effort data originating from a
development project for embedded systems is probably not transfer­
able to web-based application development.

An example of a measurement goal definition is: Analyze the inspec­
tion process for the purpose of improving with respect to efficiency from
the viewpoint of the quality assurance manager in the context of com­
pany A 's implementing the automation system BAS 2004.

The second step in setting up a GQM-based measurement plan is to
derive questions for each measurement goal. Answering these questions
should support assessing the measurement goal. We distinguish between
two types of questions: Questions regarding the quality focus of the
measurement goal and questions regarding variation factors, i.e., factors
that influence the values of the quality focus measurements. The latter
type of question can further be divided into questions regarding proc­
esses (for example, process conformance, domain understanding, and so
on) and questions regarding products (for example, logical and physical
attributes of products such as size and complexity, development costs,
and changes). Questions illustrating a quality focus are:

• How many defects are in the requirements document?

• What is the distribution of the defects with respect to a set of defect
classes?

• How many defects were found when inspecting the requirements
document?

• How much does it cost to fix all the defects found in the requirement
document?

People-oriented Capture, Display, and Use of Process Information 137

On the other hand, questions that influence the quality focus meas­
urements and therefore address variation factors are:

• Process-related: How experienced are the developers? What kind of
inspection technique is used?

• Product-related: What is the complexity of the requirements docu­
ment?

If a question is too complex to be answered directly, we may refine it
to a set of simpler, more specific, questions. For example, we can refine
the question regarding requirements document complexity to the follow­
ing three, very specific, questions: How many functional, non-functional,
and inverse requirements and design decisions are listed? How many use
cases are included? The composition of the answers to the more specific
questions leads to answering the original, complex, question.

After defining all of the measurement goal-related questions (and re­
fining them), we are able to derive some metrics that help in answering
the questions. This is the third step of the GQM approach. We can define
more than one metric for a single GQM question. For example, regarding
the question concerning developer experience, we can measure the num­
ber of years employed for each developer, the general degree of experi­
ence (e.g., high, medium, low), or the developer's experience with a
certain requirements analysis tool. As mentioned, each metric has values
along a certain scale and the scale indicates which values may be com­
bined, and in which ways, to get valid results. For example, we may add
the rework effort for every developer of the requirements document (be­
cause the values are on a rational scale), while values of the general de­
gree of developer experience may not be added (because they belong to
an ordinal scale and the result of adding high and low is not defined by
the scale).

An important question is, "How can we find a set of relevant meas­
urement goals and derive questions and metrics?" An enhancement of
GQM uses abstraction sheets15 to identify components of measurement
goals and to analyze the quality focus and its variation factors in more
detail. In essence, an abstraction sheet summarizes a GQM plan. An ex­
ample is shown in Fig. 2.

138 J. Heidrich, J. Munch, W. Riddle, D. Rombach

Object Purpose

Requirements
Inspection Characterize
Process

Quality Focus

Quality Focus

Efficiency

Viewpoint

Quality
Assurance
Manager

Context

company A's building
automation system

BAS 2004

Variation Factors

QF1: Number of included defects
QF2: Distribution according to defect

classes
QF3: Percentage found during

inspection process
QF4: Total rework effort in hours

VF1: Experience of developers
VF2: Inspection type

Baseline Hypotheses Impact of Variation Factors

QF1: 100
QF2: 40% omission, 30% ambiguous

information, 20% incorrect fact,
10% miscellaneous

QF3: 20%
QF4: 1000 h

VF1 high
=> QF1 low
=> QF4 low

VF2 perspective-based
=> QF3 high

Fig. 2. Sample of a GQM Abstraction Sheet.

As shown in the figure, an abstraction sheet consists of five different
sections. The first section (at the top of the example sheet) gives an over­
view of all the components of the measurement goal. The second section
identifies direct metrics related to the quality focus. Not all metrics de­
fined in a GQM plan are represented on abstraction sheets, only the most
important ones. The third section identifies variation factors; that is, met­
rics that influence the values of quality focus metrics. (These two sec­
tions appear in the center of the example sheet.) The fourth section de­
fines predicted values for the metrics defined in the quality focus section;
that is, it identifies expected values hypothesized before collecting the
real measurement data. These data can be used to control the measured
quality aspects of the project during project execution. The fifth section
indicates the expected impact of variation factors for the metrics identi­
fied in the quality focus section. (These two sections appear at the bot­
tom of the example sheet.) An abstraction sheet is usually constructed

People-oriented Capture, Display, and Use of Process Information 139

during structured interview sessions with all of the measurement pro­
gram's stakeholders. The GQM viewpoint helps in identifying the inter­
ests of different project (and organization) roles and in inter-relating dif­
ferent measurement needs.

2.2.2 Application of Measurement Plans

After defining the measurement plan (e.g., a GQM plan), the next step is
to select techniques and methods for collecting the measurement data.
This includes assigning persons responsible for data collection and vali­
dation. The tasks that are necessary to perform data collection are called
data collection procedures. Van Solingen and Berghout12 suggest that at
least the following questions must be addressed when setting up data col­
lection procedures:

• Which person should collect which metric?

• When should a person collect a metric?

• How can measurement data be collected efficiently and effectively?

• To whom should the collected data be delivered?

We can distinguish between data collected automatically by a tool,
such as lines of code or design complexity, and data that have to be col­
lected from people, such as effort in person-hours for a certain process.
Experience has shown that, in general, the most valuable information is
that collected from people rather than by tool-based analysis.

Data can be collected from people through manual (paper-based)
forms or electronically (e.g., via web-based forms, e-mail, or spreadsheet
forms). The greatest advantage of an electronic data collection system is
that the collected data may be used for project control purposes (if inter­
pretation and analysis of the raw measurement data can be automated).

Data can be collected when special events occur (such as when a pro­
ject milestone is reached, at the end of major activities, or upon comple­
tion of important products) or continuously at periodic time points (e.g.,
every day or once a week). The best collection strategy to use for a met­
ric depends on several factors, such as the collection approach (automatic
versus manual data collection), the metric being measured, and the peo­
ple entering the measurement data.

140 J. Heidrich, J. Mimch, W. Riddle, D. Rombach

3 Displaying Process Information

The information needs of the people involved in a software development
project varies according to the roles they occupy. A Pro jec t Manager,
for example, needs different process information than a Developer. The
former will be interested in the state of the overall project (e.g., a list of
all uncompleted tasks), while the latter is most interested in process in­
formation regarding specific development activities (e.g., how a certain
activity has to be performed). The goal of this section is to illustrate a
variety of ways process information can be presented and how different
project roles may benefit from different presentations. First, we describe
the generation of process documentation in order to support different
project roles. Secondly, we discuss role-based workspaces displaying
process information in an organized, role-specific, manner. Finally, we
describe control centers for software development as a systematic way
for interpreting and visualizing measurement data.

3.1 Documentation Generation for Roles

Process documentation is generally thought of as information that helps
process performers do the "right thing" at the "right time." As such it
defines the work that should be done, dependencies among work pack­
ages assigned by the project manager, the responsibilities of the various
roles, the conditions that control the sequencing of the work, the condi­
tions that can be used to track progress, etc. Process documentation is
most usually organized according to a logical decomposition of the work
that must be done with chapters for major phases, sections for major ac­
tivities within each phase, and sub-sections for specific tasks.

Process documentation content and organization reflect task-related
questions posed by project members, agents who are assigned to a pro­
ject and responsible for carrying out the process. Typical questions are:
What do I have to do to perform a task? Which tasks am I responsible
for? How can I determine whether or not I have successfully completed a
task? Where can I find a particular template?

Across all the roles in a process there will be many questions of many
different kinds. For each kind of question, there will be one or more

People-oriented Capture, Display, and Use of Process Information 141

views that help in answering questions of this kind. For example, an ac­
tivity decomposition view helps in asking questions about the inter-
dependencies among activities and an artifact lifecycle view helps in an­
swering questions about artifact state sequences.b

The information needed to answer some role's questions is typically
documented in handbooks. The use of handbooks for software develop­
ment processes has been recognized widely as beneficial in order to per­
form systematic, traceable projects. Nevertheless, software developers
generally face problems in using the handbooks typically provided for
software development processes. The reasons for these problems include:

• The handbooks are lengthy, perhaps hundreds of pages, and often not
very well structured, thus complicating information retrieval.

• The handbooks are frequently out-of-date. Because new versions are
difficult and time-consuming to produce, they are infrequently devel­
oped.

• Formal notations may be used to achieve high degrees of precision;
graphical representations may used to increase the understandability
of descriptions using these notations. Process descriptions are, how­
ever, usually informal. Among other things, this makes it hard to cus­
tomize the processes to match the characteristics and needs of a spe­
cific project.

• The dynamic behavior of the process is not well-specified, again be­
cause the descriptions are informal. Ambiguity is common, and dif­
ferent agents have different understandings of the behavior.

• The consistency, clarity, and completeness of informal software proc­
ess descriptions cannot be easily ensured. Costly, lengthy reviews are
therefore needed to assure consistent, clear, and complete handbooks.
These reviews are frequently not done.

Even more problematic is that one handbook cannot conveniently
meet the needs of all the roles having questions about the process and its

b In paper-based documentation, one view is, of necessity, used in the body of
the documentation and other views are provided in appendices. In web-based
documentation, all of the various views may be provided as "top-level door­
ways" into the process information.

142 J. Heidrich, J. Munch, W. Riddle, D. Rombach

performance. Many handbooks are needed, each oriented towards some
role's domain of questions. This severely complicates the maintenance of
an organization's process descriptions because changes and additions
have to be accurately and consistently made to a possibly large number
of handbooks.

The notion of Electronic Process Guides (EPGs)16 was developed to
address these problems. The general purpose of an EPG is to guide soft­
ware developers in doing their tasks by providing fast access to the in­
formation they need (e.g., to activity and artifact descriptions, to assets
such as checklists, etc.). As implied by its name, an EPG provides on­
line, internet/intranet descriptions of the process. However, rather than
merely being electronically provided versions of paper-based handbooks,
EPGs are extensively hyper-linked to facilitate navigation through the
information about the process. Moreover, EPGs are automatically gener­
ated from information captured, non-redundantly, in a process model.
Because they are automatically generated, the maintenance of a consis­
tent set of handbooks is much easier and less error prone - any change to
the information in the process model is automatically reflected in all the
handbooks (once they are regenerated). This makes it much more feasi­
ble to provide a set of handbooks with each essentially filtering the in­
formation and rendering it in a way most meaningful to some role's
questions. Finally, the process model may be formal, rather than infor­
mal, and this introduces a rigor that not only precludes common errors
(such as using two different names for a process element) but also en­
ables checking the consistency and completeness of both the dynamics
and the specification of the process. As a result, EPGs provide up-to-
date, accurate, consistent and complete information about a process
packaged into the different forms needed to support the different roles in
a process. Experience has shown that this considerably enhances the effi­
ciency and effectiveness of process performers.

To explain EPGs further, and indicate their value, we describe two
tool suites which have been developed to provide an EPG capability. The
first is the SPEARMINT®/EPG tool suite developed at the Fraunhofer
Institute for Experimental Software Engineering (IESE)17. The second is
the Process Management Capability (PMC) tool suite developed at
TeraQuest Metrics (TQ)18. Both were designed to provide support for

People-oriented Capture, Display, and Use of Process Information 143

managing large process models and the automated generation of online
documentation of process handbooks from these process models. They
share many common characteristics, but differ in terms of some of the
capabilities they provide. In the following, we first describe their com­
mon characteristics and then their key differences.

In both cases, the primary objectives were to: (1) support the devel­
opment of a process model, (2) eliminate common errors, (3) support
analysis of the completeness and consistency of both the process and its
descriptions, and (4) support the generation of a handbook providing
process performance guidance. The tool suites took similar approaches to
meeting these primary objectives:

• A well-defined, Entity-Relationship-Attribute style, process modeling
technique is used to capture process information. The process model
reflects the elementary "information chunks" pertinent to many dif­
ferent question domains (for example, an information chunk that
identifies all the roles participating in a task).

• A well-defined data-storage format is used to capture, non-
redundantly, the basic "elemental facts" of which information chunks
may be composed. For example, the fact that a specific role partici­
pates in a specific task would be stored as a single, elemental, fact al­
though it may appear in many different information chunks.

• An editing tool allows a process engineer to capture and maintain the
information about a process by establishing and modifying the ele­
mental facts. The editor allows the process engineer to change a set of
inter-related facts about the process in a well-coordinated way. The
editor may also enforce process modeling rules, for example, the rule:
every t a sk must have a t l e a s t one p a r t i c i p a t i n g ro l e . Fi­
nally, the editor allows some degree of customization of a process
model through the definition of additional process-element attributes.

• A publishing tool supports the generation of a set of web pages which
constitute a process handbook.

• A viewing tool supports the generation of reports (most often also in
the form of web pages) supporting a process engineer's work. This

144 J. Heidrich, J. Munch, W. Riddle, D. Rombach

includes, for example, reports concerning inconsistencies and incom­
pleteness.

The differences follow from the fact that the SPEARMINT®/EPG
tool suite is focused on the process engineer's need to easily model and
analyze a process during its development whereas the PMC tool suite is
focused on the process engineer's need to customize an EPG's look-and-
feel to the needs and desires of a particular organization. As a result, in
the SPEARMINT®/EPG tool suite:

• The editing tool uses a graphical notation for describing processes. It
distinguishes the following types of process elements: activities, arti­
facts, roles, and tools. The notation allows graphically denoting rela­
tionships among the process elements as well as the attributes defin­
ing the elements' measurable characteristics.

• The viewing tool supports a wide variety of software development
and process engineering views. These were defined specifically to
support distributed process planning by providing the appropriate rep­
resentations for reviews.

In the PMC tool suite, however:

• The process model (and editing tool) may be customized to an or­
ganization's specific process architecture, i.e., the notions used to de­
scribe the organization's processes. The tool suite is based on the
Collaborative Process Enactment (COPE)19 generic process architec­
ture which defines process entity categories (activities, roles, artifacts,
conditions and assets) as well as some basic attributes and relation­
ships. It may be customized to reflect an organization's process entity
types, their attributes and their relationships.

• The publishing tool is controlled by templates for the various kinds of
web pages that appear in a generated handbook. Each template de­
scribes the format for the page and identifies the elementary facts that
need to be retrieved to generate an instance of the page. A template
also describes the computation needed to infer information — for ex­
ample, information about the flow of artifacts among tasks — from
the elementary facts. Multiple sets of templates could be used to gen-

People-oriented Capture, Display, and Use of Process Information 145

erate multiple handbooks differing either in their look-and-feel or in
their role orientation.

Taken together, the two tool suites have been used to create web-
based documentation for more than two dozen processes (examples are
discussed in several papers20'21'22'23; additional examples may be found
at http://www.iese.flig.de/vincent/examples). Most of these have been
software development processes; a few have concerned an organization's
business processes. The experience gained in preparing these EPGs has
indicated that both the modeling/analysis enhancements provided by
SPEARMINT®/EPG and the EPG-customization enhancements provided
by PMC are necessary (and, as a result, the two tool suites are currently
being integrated). The experience has also demonstrated the benefits of
the EPG approach to process documentation: processes may be devel­
oped more rapidly; common errors may be precluded; consistency and
completeness may be more extensively and accurately verified; and the
time/effort required to maintain and deploy accurate, up-to-date process
descriptions is reduced.

Two additional, potential advantages have been noted but not yet
fully realized in either tool suite. First, process models are an appropriate
means for storing software development knowledge. In general, reusing
experience is a key to systematic and disciplined software engineering.
Although there are some successful approaches to software product reuse
(e.g., class libraries), all kinds of software-related experience, especially
process-related experience, should be reused. Process models can be used
to capture process-related experience, and this experience can be stored
using various structures for an experience repository (e.g., type hierar­
chies, clusters of domain specific assets). Second, an EPG-based ap­
proach to process development allows several kinds of (automated)
analyses, which may be performed before the project starts, during proc­
ess performance and in a post-mortem fashion after project termination.
Process models can, for example, be analyzed statically (e.g., to check
for consistency) or dynamically (e.g., to check the flow of artifacts across
their interface). The latter is important during the modeling of the inter­
faces of distributed processes.

http://www.iese.flig.de/vincent/examples

146 J. Heidrich, J. Munch, W. Riddle, D. Rombach

3.2 Role-based Workspaces

Process handbooks, whether they are created by hand or by using an
EPG-based approach, certainly provide the ability for an agent to effec­
tively, efficiently and accurately occupy an assigned role. The major rea­
son is that they contain the information that agents need to answer ques­
tions they have before starting to work on, or while working on, their
assigned tasks.0

Agents also need the ability to focus their attention on the information
pertinent to a specific task or a specific question. Locating and organiz­
ing the needed information can be extremely difficult no matter how well
a role-specific process handbook is designed. In this sub-section, we in­
troduce an approach for focusing on the information pertinent to a spe­
cific task. The aim of this is to effectively support project members.
When focusing on supporting project managers, a different approach is
needed. We discuss this different approach in more detail in section 3.3,
when talking about project control.

3.2.1 Role-based Workspace Purpose

We define a role-based workspace to be a working environment support­
ing an agent occupying a role during process performance. A workspace
has three major intents. One is to provide access to the documents, tools
and assets the agent needs to perform tasks. The second is to help the
agent assure that his/her work is satisfactory. The third is to facilitate
collaboration with other agents occupying other roles. The first two are
discussed in the remainder of this section. The third is discussed in sec­
tion 4.1.

c Up to this point in the chapter, we have talked in terms of processes being
composed of activities. To discuss role-based workspaces, however, we use the
notion of tasks. Tasks differ from activities in that: an activity is composed of
tasks, a task is an assignable work package, and a task is (almost always) as­
signed to one role with the role having responsibility of assuring that the task is
successfully carried out. We make this distinction because role-based work­
spaces are intended to help agents complete their assigned tasks in the context of
activities carried out by some group of agents (i.e., some team).

People-oriented Capture, Display, and Use of Process Information 147

A workspace is analogous to a desk in a physical working environ­
ment. On or in the desk will be the documents the agents are working on,
the tools they use in doing and checking their work, devices for commu­
nicating with other agents, and items that help the agents organize their
work. More specifically, a workspace corresponds to a desk dedicated to
one of the agent's assignments, and an agent would have several desks,
one for each of his/her assignments.

This indicates a primary benefit of workspaces: the elimination of
context-switching overhead. To switch contexts — to switch from work­
ing on one assignment to working on another — the agent moves from
one desk to another; and when turning attention to an assignment, the
agent finds the desk associated with this assignment the same as when
he/she last left it. Further, because the desk is assignment-specific rather
than agent-specific, much of the overhead associated with delegating or
re-assigning work may be eliminated.

To better support today's rapidly growing information-intensive
workforce, many of the items on/in a desk are typically moved to a com­
puter. Workspaces can be viewed as an attempt to move as many items
as possible (as well as reasonable) off the desk and into the computer.
The resulting benefit is again a reduction of overhead effort. Providing
electronic access, and allowing automated support, eliminates many as­
signment-specific overhead activities (for example, searching through a
pile or file of documents) and greatly simplifies others (for example,
finding the tools needed to work on a document).

148 J. Heidrich, J. Munch, W. Riddle, D. Rombach

3.2.2 Role-based Workspace Organization

A role-based workspace may be either specific or generic. Both focus on
a particular project and a specific role for that project. A specific work­
space additionally focuses on a specific task (or small subset of highly
coupled tasks) that agents must carry out when occupying the role. Ge­
neric workspaces, on the other hand, reflect information pertinent to all
the tasks in a project that are pertinent to the role.d

An agent accesses a specific workspace by selecting a task (or a
strongly coupled subset of tasks). This creates a more narrowly scoped
workspace reflecting just this task (or subset of tasks). The agent uses
this specific workspace to carry out the work needed to perform the
task(s).

An agent opens a generic workspace by first selecting a project to
work on and then selecting a role within that project to occupy. The pro­
jects that the agent may select are constrained by the allocation of the
agent to projects. The roles that may be selected reflect not only resource
allocation decisions by the project's manager but also any role-
occupancy constraints specified in the role's definition. As an example of
the latter, an agent may not open a generic workspace that requires
knowledge of a specific analysis tool if the agent's description does not
indicate that the agent has this knowledge.

When a workspace is opened, information relevant to the specific
agent, the chosen role and the chosen project is assembled and displayed
in an organized way. The displayed workspace reflects all the aspects of
the process relevant to the role. The contents and organization of the ge-

d Workspaces provide access to task-, role- and project-specific information.
When working on a task, an agent additionally needs access to relevant personal
and corporate-wide information. Relevant personal information includes the
agent's schedule and to-be-done list, information that is typically stored in an
agent's PDA. Relevant corporate-wide information includes: contact informa­
tion for other personnel, information about training courses for various tools and
techniques, and the identification of personnel who have volunteered to mentor
with respect to various tasks or tools. Here, we assume that access to this infor­
mation is provided outside of a workspace (for example, in an organization's
corporate-wide knowledge base).

People-oriented Capture, Display, and Use of Process Information 149

neric workspace reflect information about the agent's abilities, skills and
preferences.

3.2.3 Specific Workspaces

Specific workspaces provide the basic, fundamental support for working
on assignments. In the simplest situation, only one agent is working on
the task. Frequently, however, two-or-three agents may collaboratively
work on the task. In this section, we discuss the simplest, single-agent,
situation. The more complex, multi-agent, situation is discussed in sec­
tion 4.1.

Fig. 3 depicts an example of a specific, single-agent workspace.

3 tc . ;';.<. '•:•.:• *intsi
Fife gdft View Fjgvontes Toais Hefe

31 Ma
institut
ixper'imentetles
Software Engineering

^UWW

Role-based Workspace
Role: Designer

Task Design Module

Sub-process NameJDescription Status

Design System Design Module: Develop the design for a system enabled
module.

Guidance. Module designs should be rigorously defined so that it is easier to
validate them against requirements and verily them during formal inspections.

TooJf*)- Desion Modeler

Artifact Name and) Description produced by used by

Module Design: Document describing the QM^MliM'Mt:, .V'Mft'.ftiSs^
module's design. Vtaifv Desim Pr&semMfciieiiaS

• do_c • artifact

Asset Name and Description supported Tasks supported Artifacts
Design Template: Template, reflecting &M?>&LMV&M§ MVAM&XH'&gH
design standards and policies, for a
module's design.

• dpx • artifact

Fig. 3. Example of a Specific Role-based Workspace.

This example illustrates the basic items that constitute a specific
workspace:

150 J. Heidrich, J. Munch, W. Riddle, D. Rombach

• Task Descriptions: Descriptions of the steps involved in carrying out
the task as well as inter-dependencies among the steps. This provides
the agent with the basic information about what has to be done when
carrying out the task.

• Advice: Guidance concerning how to carry out the task successfully,
including lessons learned and the experiences of agents who previ­
ously occupied the role. This allows the agent to benefit from previ­
ous experience in carrying out the task.

• Artifacts: Descriptions of the artifacts that the role works on when
carrying out the task as well as links to the actual artifacts needed
when or resulting from performing the task. This information allows
the agent to understand the task, and review the result of performing
it, in terms of its effect on the artifacts used and produced during task
performance.

• Tools: Descriptions of the tools the agent needs in performing the
task as well as links to the tools' documentation and the tools them­
selves. This information allows the agent to efficiently access the
tools and consult tool documentation. It can also guide the agent in
choosing among a collection of alternative tools.

• Assets: Descriptions of relevant templates, checklists, etc., as well as
links by which to download copies of these assets or view policy,
guideline, standards and reference documents. This information pro­
vides the agent with a task-specific "doorway" into the usually very
large collection of assets the organization has accumulated over time.

3.2.4 Generic Workspaces

A specific workspace provides the basic support an agent needs to ra­
tionally carry out a specific task. A generic workspace, on the other hand,
is role-specific but does not pertain to any specific task. It reflects infor­
mation about the role in general and the full complement of tasks in
which the role participates. Its major intent is to help agents occupying
the role to properly achieve the role's purpose in a process and properly
function as a member of the project team performing the process.

People-oriented Capture, Display, and Use of Process Information 151

Fig. 4 and Fig. 5 illustrate a generic workspace. These figures show
that, to assist agents, a generic workspace includes information about:

• Responsibilities: Descriptions of the role's overall obligations and
permissions with, where possible, links to the tasks, artifacts, and
other process elements pertinent to meeting the obligations within the
constraints levied by the permissions. This helps the agent understand
and focus on his/her responsibilities.

• Task List: A list of the tasks for which the role is responsible. As new
tasks are assigned they are added to this list. The list provides the role
with a continuously up-to-date agenda for his/her work.

• Process Documentation: A structured collection of links into relevant
parts of the process handbook. This allows the agent to efficiently
consult the process description as needed in the course of his/her
work.

LKSSaCiTS^lX;

Jliil

Institut
Rxpenmentelles
Software fngineermij^ 'ESE Homepage)

\J/hP£Hf

Role-based Workspace

Role: Designer
Process: System Development

Responsibilities
• Develop, verify and update designs for system modules.
• Suggest changes to the design-related parts of the System Development process.

Sub-process
view Conduct Postmortem
hide Design System

Name/Description

Design Module: Develop the design for a
system module.

Guidance: view Joo)(s): view

Validate Design: Verily the module's design
with respect to the system requirements.
Initiate Review. Request a Walk-through
Review of the module's design.
Prepare Review Materia?. Prepare material
required for a Walk-through Review.
Present Material. Present the module's
design and respond to questions posed by
the reviewers.

Guidance, view

Status

DONE

enabled

err a hied

Fig. 4. Example of a Generic Role-based Workspace (Responsibilities and a
selection of assigned Tasks).

152 J. Heidrich, J. Munch, W. Riddle, D. Rombach

This information not only helps agents plan and track their work, but
also helps them better understand the constraints upon their work and the
rationale for this work as part of the overall process being performed.

ISeneric H8<*fc S j « t e i » B w h ^ I i H i i i B i l S ^ B g i l ^ M

File £drt View Favorites Tools (Help

j "~^" ~-~ "-"••- l^~ rKSt'iicrwdtftidt nubbirrrLiie niumj-u
design and respond to questions po
the reviewers

Guidance:

A

Artifacts
NamefDescription

Agenda: Walk-through Review meeting
agenda.

• do_c • artifact

Module Design: Document describing the
module's design.

• do_c • artifact

Review Questions: List of questions to be
addressed during a Review meeting,

• dfic • artifact

A

Assets
NameiDescription

Design Template: Template, reflecting
design standards and policies, for a
module's design.

• cloc • artifact

Design Modeler. Tool useful in developing
a module's design.

• doc

Review Meeting Request Form: Form to
submit when requesting a Review.

• dac • artifact

©2004Fraunhofe<-lESE
last modif ied 29.05.2004

view

produced by

Piepare AQ&rt-'Ja

Besitgf} Motfixi®
Verify Design

Prepare Review
Material

supported Tasks

D&siqri Module

Desim Module

initiate Review

For suggestions an

"

21^>.;'t ! ; '- UnJxf

sed by

used by

Present Material

Vwty Dt'SK^n
Ptv$<LW£Ma*m<i$

Present Material

supported Artifacts

Moeftz/e Desiotf

M o * / e &esi<m

1 comments, please contact
m.3Jtei@i6j:e.frjurph<:>f*r.de

Fig. 5. Example of a Generic Role-based Workspace (Artifacts and Assets re­
lated to viewed Tasks).

3.3 Software Project Control Centers

The complexity of software development projects is continuously in­
creasing. This results from the ever-increasing complexity of functional
as well as non-functional software requirements (e.g., reliability or time
constraints for safety critical systems). The more complex the require­
ments are, the more people are usually involved in meeting them, which

People-oriented Capture, Display, and Use of Process Information 153

only further increases the complexity of controlling and coordinating the
project. This, in turn, makes it even harder to develop the system accord­
ing to the plan (i.e., matching time and budget constraints). Coordination
issues are usually addressed by Computer Supported Cooperative Work
(CSCW) systems which ease communication among project members
and support document sharing. CSCW support is further discussed in
section 4.1. The focus in this section is on support for controlling a pro­
ject.

Project control issues are very hard to handle. Many software devel­
opment organizations still lack support for obtaining intellectual control
over their software development projects and for determining the per­
formance of their development processes and the quality of the produced
products. Systematic support for detecting and reacting to critical project
states in order to achieve planned goals is usually missing24.

One way to support effective control of software development pro­
jects is the use of basic engineering principles25'26, with particular atten­
tion to the monitoring and analysis of actual product and process states,
the comparison of actual with planned states, and the initiation of any
necessary corrective actions during project execution. Effectively apply­
ing these principles requires experience-based project planning27; that is,
the capture of experience from previous projects (such as activities,
measurement plans, and baselines), and the use of explicitly defined
models reflecting this experience, in order to plan a project. Furthermore,
it requires the collection, interpretation, and presentation of measurement
data according to a measurement plan; that is, the establishment of meas­
urement-based feedback mechanisms in order to provide stakeholders
with up-to-date information about the project state. Moreover, it requires
experience packaging after project completion so that future projects are
influenced by the experience gained in previously-performed projects.

In the aeronautical domain, air traffic control systems are used to en­
sure the safe operation of commercial and private aircraft. Air traffic
controllers use these systems to coordinate the safe and efficient move­
ment of air traffic (e.g., to make certain that planes stay a safe distance
apart or to minimize delays). The system collects and visualizes all criti­
cal data (e.g., the distance between two planes, the planned arrival and
departure times) in order to support decisions by air traffic controllers.

*

154 J. Heidrich, J. Munch, W. Riddle, D. Rombach

Software project control requires an analogous approach that is tailored
to the specifics of the process being used (for example, its non-
deterministic, concurrent, and distributed nature).

A Software Project Control Center (SPCC)24 is a control system for
software development which collects all relevant data to project control,
interprets and analyzes the data according to the project's control needs,
visualizes the data for different project roles, and suggests corrective ac­
tions in the case of plan deviations. An SPCC could also support packag­
ing of data (e.g., as predictive models) for future use and contribute to an
improvement cycle spanning a series of projects.

Before discussing existing SPCC approaches, we first discuss the no­
tion of "controlling a project". Controlling a project means ensuring the
satisfaction of project objectives by monitoring and measuring progress
regularly in order to identify variances from plan during project execu­
tion so that corrective action can be taken when necessary28. Planning is
the basis for project control and defines expectations which can be
checked during project execution. The gathered experience can be pack­
aged for future projects after project completion in order to support or­
ganization-wide improvement cycles. All corrective actions needed to
bring a project back to plan - that is, all steering activities - are explicitly
included in the notion of "controlling a project".

A Software Project Control Center is a means for interpretation and
visualization of measurement data during process performance and there­
fore supports controlling a project. An SPCC has a logical architecture
that clearly defines interfaces to its environment, especially to all project
members relying on SPCC information, and a set of underlying tech­
niques and methods that support controlling a project.

From a more technical perspective, an SPCC utilizes data from the
current project (e.g., the project's goals, characteristics, baselines, and
measurement data) and experiences from previous projects (e.g., infor­
mation captured in quality, product, and process models) and produces a
visualization of measurement data by using the incorporated techniques
and methods to interpret the data. An SPCC is a general approach to pro­
ject control and is not necessarily tool-supported. But in order to success­
fully, efficiently carry out control activities such as monitoring defect
profiles, detecting abnormal effort deviations, cost estimation, and root-

People-oriented Capture, Display, and Use of Process Information 155

cause analyses of plan deviations, a certain amount of tool support is
necessary and inevitable.

In the following we highlight two SPCC approaches addressing dif­
ferent objectives. The first deals with integrated approaches; that is,
SPCC approaches that are tightly integrated into the project's perform­
ance and act as a focal point for all project issues and organizational im­
provement efforts. The second deals with goal-oriented data processing
and visualization; that is, presenting data regarding different project
needs and supporting different project stakeholders.

3.3.1 Integrated Controlling Approaches

Integrated SPCC approaches are tightly integrated into every project's
performance and are actively used to gain experience for future projects.
Such approaches are normally used by organizations to improve the ma­
turity of their software processes and practices and establish organiza­
tion-wide standards.

One example is NASA's Software Management Environment
(SME)29'30, which was developed by the Software Engineering Labora­
tory (SEL)31'32 at the NASA Goddard Space Flight Center (GSFC). The
main aim of this SPCC is to support the manager of a software develop­
ment project by providing access to three information sources: (1) The
SEL Database holding information from previous projects; that is, sub­
jective and objective process and product data, plans, and tool usages. (2)
The SEL Research Results database holding different models (such as
growth or effort models) and relationships between certain parame­
ters/attributes (described with quality models). Primarily, this informa­
tion may be used to predict and assess attributes. (3) The SEL Manage­
ment Experience database holding information about project manage­
ment experiences in the form of rules within an expert system. The rules
help inexperienced managers analyze data and guide re-planning activi­
ties. For example, this database includes lists of errors and appropriate
corrective actions.

All this information is input for an SME, which uses it to perform
management-oriented analyses fostering well-founded decision-making.
Experience gained during project execution may lead to changes of the

156 J. Heidrich, J. Munch, W. Riddle, D. Rombach

information. This feedback mechanism enables the SME to work with
up-to-date information.

3.3.2 Goal-oriented Data Visualization

A Goal-oriented SPCC approach (G-SPCC) is a state-of-the-art frame­
work for project control developed at the University of Kaiserslautern
and the Fraunhofer Institute for Experimental Software Engineering
(IESE)33'34. The aim of this approach is to present the collected data in a
goal-oriented way in order to optimize a measurement program and ef­
fectively detect plan deviations.

The purpose of the G-SPCC approach is to support agents occupying
roles. Project control is driven by different role-oriented needs. We de­
fine control needs as a set of role-dependent requirements for obtaining
project control. A project manager needs different kinds of data, data of
different granularity, or different data presentation modes than a quality
assurance manager or a developer. For example, a manager is interested
in an overview of the project effort in order to compare it to previously
defined baselines, while a developer is interested in the effort she/he
spent on a certain activity. As another example, a quality assurance man­
ager is interested in the efficiency of a certain inspection technique,
while the project manager is primarily interested in a list of defects and
how many defects have to be fixed in order to release a product to the
next project phase. In general, control-oriented information needs differ
between more management-oriented project roles (such as a project man­
ager or a quality assurance manager) and more technically oriented roles
(such as a tester or a programmer). The first group is more interested in
charts presenting an overview of the overall project, while the second is
more interested in activities within the project. However, it is important
to note that control-oriented information needs may vary, significantly,
within these groups.

Fig. 6 gives an overview of the G-SPCC architecture. It shows that
measurement data is collected during project performance and inter­
preted with respect to the goals and characteristics of the project as well
as project plan information (e.g., baselines, number of project members,
and developer skills) and control needs (e.g., the kind of control tech-

People-oriented Capture, Display, and Use of Process Information 157

nique that should be applied, and tolerance ranges). The outputs of this
interpretation (performed by SPCC functions) are displayed by a set of
SPCC views, each providing role-specific insights into the process (e.g.,
insights suitable for project managers, quality assurance personnel, or the
development group). The SPCC interpretation and visualization process
is supported by an experience base in order to reflect data from previous
projects and store experience gathered after project completion.

Q Q Q
Q U O
Project Quality Development

Management Assurance Group

Measurement Data

Fig. 6. The G-SPCC Architecture to Support Different Project Roles.

The G-SPCC approach is based on the Quality Improvement Para­
digm (QIP)35 and consists of the following steps:

• First, project stakeholder control needs are characterized in order to
set up a measurement program able to provide a basis for satisfying
all needs.

• Then, measurement goals are defined and metrics are derived deter­
mining what kind of data to collect. The GQM paradigm is used to
derive these metrics and create a set of data collection sheets that are
assigned to certain process steps. The process is modeled using
SPEARMINT®/EPG (described in section 3.1).

• Next, a Visualization Catena (VC) is defined to provide online feed­
back on the basis of the collected data. The VC includes a set of con-

158 J. Heidrich, J. Munch, W. Riddle, D. Rombach

trol techniques and methods corresponding to the measurement goals.
For example, a suitable Tolerance Range Checking technique may be
included to detect baseline deviations. A VC also includes a set of
views to visualize project data.

• Once the VC is specified, a set of role-oriented views are defined to
support control of the project. As measurement data are collected, the
VC analyzes and visualizes them accordingly. For example, an SPCC
function detects baseline deviations and a corresponding view dis­
plays them.

• Once a deviation is detected, its root cause must be determined and
the VC adapted accordingly. A baseline deviation, for example, can
lead to new or adapted measurement goals and baselines. In this case,
new VC components are defined for an existing VC or existing com­
ponents are changed or removed.

• After project completion, the resulting VC may be used to improve
future VCs, software development processes, and baselines. For ex­
ample, views of the generalized effort progression can be used to im­
prove the baselining of future projects or process efficiency views
may be used to enhance the definition of process steps.

The benefits of the G-SPCC approach include: (1) improvement of
quality assurance and project control by providing a set of custom-made
views of measurement data, (2) support of project management through
early detection of plan deviations and proactive intervention, (3) support
of distributed software development by establishing a single point of
control, (4) enhanced understanding of software processes, and im­
provement of these processes, via measurement-based feedback, and (5)
preventing information overload through custom-made views with dif­
ferent levels of abstraction.

4 Using Process Information

The purpose of this section is to illustrate how displayed process infor­
mation may be used to support process performers in doing their work.
First, the usage of role-based workspaces (introduced in section 3.2) is
discussed, including their customization and personalization as well as

People-oriented Capture, Display, and Use of Process Information 159

coordination and collaboration issues. Second, some sample control
techniques based on a Software Project Control Center (introduced in
section 3.3) are discussed. Subsequent to this, two sections briefly ad­
dress more advanced concepts, namely the improvement-oriented or­
ganization of experience (including process information) and support for
process enactment (that is, providing more proactive support for enacting
a defined process).

4.1 Using Role-based Workspaces

Previously, we discussed role-based workspaces as a way to collect and
organize the information pertinent to an agent when occupying a role and
performing some task. In this section, we first discuss the tailoring of
role-based workspaces to meet the needs and capabilities of specific role
occupants. We then discuss the various ways in which role-based work­
spaces may provide significant support for coordination and collabora­
tion, helping an agent perform more effectively, efficiently and accu­
rately as a member of a project team.

4.1.1 Customization

Different agents will have different capabilities stemming from their dif­
fering levels of education, training and experience. Effective role-based
support requires that role-based workspaces may be customized to match
a role's specific capabilities. Customization involves:

• Varying the content: Inexperienced, novice agents need more support
than experienced, expert ones. For example, guidance might be in­
cluded in a novice's role-based workspace but not included in a role-
based workspace for an expert. Also included in a novice's, but not
an expert's, workspace might be: detailed rather than synoptic de­
scriptions of the tasks; explanations of required skills; an indication
of the factors affecting successful task completion; as well as other
information.

• Providing access to available support: Novices will also benefit from
being able to easily access support for their work. This could include

160 J. Heidrich, J. Miinch, W. Riddle, D. Rombach

an indication of professional development courses related to a role's
required skills. It could also include an identification of role-related
mentors accompanied by their contact information.

• Varying the display of information: Agents will vary with respect to
their basic approach to solving problems. An often-noted, and very
major, difference is that between graphically-oriented problem-
solvers versus textually-oriented ones. This implies that different
modes should be available for displaying process-related information.
For example, an activity decomposition structure might be displayed
as hierarchically indented text or graphically as a tree.

• Varying the organization of information: Another often noted, and
also major, difference among agents is whether they approach prob­
lem-solving in a bottom-up (inductive) or top-down (deductive) man­
ner. This also implies that different information-display modes should
be available. For example, drop-down lists might be available to al­
low the agent to navigate through the information in a top-down (de­
ductive) manner.

Obviously, information about an agent's capabilities is needed in or­
der to provide customized role-based workspaces. Much of this informa­
tion can come from providing agent profiles identifying expected collec­
tions of capabilities and having the agent identify the most appropriate
profile when establishing a role-based workspace. Alternatively, the pro­
gram which establishes a role-based workspace could hold a pre­
programmed dialog with the agent to obtain information affecting the
workspace's content, organization, and rendition.

4.1.2 Personalization

Agent capability differences will also lead to different patterns of role-
based workspace usage. In addition, agents will accumulate - over time -
their personal arsenal of resources they have found useful in carrying out
their work. Finally, agents will gather observations and advice about how
to effectively, efficiently, and accurately carry out the work.

Therefore, effective role-based support requires that agents be able to
personalize their role-based workspaces. Personalization involves:

People-oriented Capture, Display, and Use of Process Information 161

• Re-defining the content: It is impossible to predict all the ways in
which role-based workspaces should be customized to meet individ­
ual agent needs. It should be possible for agents to delete information
from and add information to the workspace.

• Re-organizing the display: It is also impossible to predict all the ways
individual agents will want to position the information displayed in a
workspace. It should be possible for agents to combine, split and re­
position the information within the role-based workspace's display.

• Adding assets: Agents will, over time, accumulate many personal as­
sets they have found valuable in performing their work. It should be
possible for agents to add these assets to their workspaces.

• Annotating the displayed information: In analogy to writing marginal
notes in a paper-based process handbook, it should be possible for
agents to add notes to pieces of information in their workspaces.

Supporting personalization along these lines requires a variety of
workspace support capabilities. Many of these capabilities imply the in­
clusion of a variety of ways to display information on desktops and
within windows; providing these capabilities depends on the capabilities
provided by the support system's underlying operating-system contexts
(e.g., MS 2000 vs. MS 2003). Others concern the manipulation of infor­
mation provided by web page displays. Regardless of how they may be
achieved, the capabilities include:

• Tracking of desktop and window contents and organization accompa­
nied by reconstitution of the configuration when the desktop or win­
dow is re-opened.

• Drag-and-drop manipulation of information displayed on a desktop
and within windows (for example, repositioning text or other ele­
ments within the display).

• Drag-and-drop manipulation of information displayed within web
page displays (for example, repositioning the items in some graphic
included in a web page).

• Annotations of documents and web-pages (for example, providing
text input boxes within a web page).

162 J. Heidrich, J. Munch, W. Riddle, D. Rombach

• Dynamic changes to information display modes (for example, chang­
ing from a drop-down list to a tiled set of windows).

All of the cited example capabilities are provided by current, state-of-
the-practice technology. In fact, current technology might support even
more extensive capabilities and even more effective workspace personal­
ization. Empirical studies of the possibilities, and their importance, is
needed to determine what can be provided and its value.

4.1.3 Coordination

A major benefit of role-based workspaces is that they can support the
coordination of work either by an agent over time or among a group of
agents carrying out inter-related tasks. By coordination we mean the ef­
fective, efficient, accurate performance of tasks in an orderly fashion as
affected by inter-task constraints. We discuss this benefit in this section.

A very simple case of coordination concerns the ability of an agent to
easily switch among the various roles he/she may occupy. An agent may
have several generic and specific workspaces, perhaps from different
projects, open at some point in time. However, only one specific work­
space and its relevant generic workspace will be active. This helps agents
work on assignments in a well-focused way. It also helps them rapidly
and efficiently switch among their various assignments. Current operat­
ing-system contexts fully support this context switching.

More significant is the support role-based workspaces can provide for
organizing and guiding an agent's work within the context of a process.
A particularly useful, yet quite simple, situation is helping the agent fo­
cus only on those tasks that he/she may work on. As indicated previ­
ously, the generic workspace includes a list of the tasks the role is re­
sponsible for or participates in. This list may indicate which tasks are
enabled — may be worked on — and which tasks are blocked — may
not be worked on because some pre-condition is not satisfied. This al­
lows the agent to quickly focus his/her attention. (Fig. 3 provides an ex­
ample of displaying information about the enabled status of tasks.)

Additional support along these lines may focus on other aspects of
carrying out the tasks. This support relates to the status of the tasks and
can include:

People-oriented Capture, Display, and Use of Process Information 163

• Condition Checkers: These are tools the agent may use to check the
completeness, correctness and accuracy of his/her work. Process de­
scriptions will often identify, usually in the terms of the status of arti­
facts, conditions that must be achieved, for example, that a Design
activity must result in a we l l -o rgan ized Design artifact. To the
extent that the Design being wel l -o rgan ized can be checked by
analyzing the Design, the agent can receive assistance in checking
this condition.

• Events: Often, conditions may not be checked in an automated way.
For example, the condition that a Design document is c o r r e c t is
usually checked by a combination of desk-checking and design re­
views. To support task enabling and blocking, the fact that the De­
s ign document is c o r r e c t needs to be recorded. A role-based
workspace should provide the ability to record the satisfaction of
conditions so that this information may be used to coordinate the
agent's future work.

• Task Dependencies: It is often the case that the tasks being performed
by one agent are enabled by the work completed by other agents -
this is, in fact, the most usual situation. Therefore events, in general,
lead to the enabling of tasks in a workspace. This leads to changes in
the enabled/blocked status of the tasks in some other workspace. Ac­
tive "announcement" of status changes - for example, by some visual
or aural signal such as those typically used to announce "you have
mail" - will help the agent keep up with changes to his/her work.

In summary, one major purpose of coordination capabilities is to al­
low agents to assess the completeness and accuracy of their work.

Another major purpose is to coordinate work across several tasks be­
ing carried out by several agents. This requires capabilities that allow
agents to signal each other about the status of their work. This could lead
to quite extensive coordination support. For example, if a task is blocked,
the agent might use the Process Documentation items in a generic work­
space to track back through pre-condition/post-conditions to locate
predecessor tasks and then use a Task Status Query to get information
about the source of the blockage. If necessary, the agent may then inter­
act with other agents (using capabilities discussed in the following sec-

164 J. Heidrich, J. Munch, W. Riddle, D. Rombach

tion) to collaboratively understand and solve problems inhibiting pro­
gress. This allows the agents to collectively work in a very focused way,
making their collective work more effective and efficient.

There is an additional possibility for supporting cross-agent coordina­
tion. In the task list, additional information may be displayed about en­
abled tasks to indicate tasks for which the satisfaction of one or more
pre-conditions has been re-established since the agent previously com­
pleted the task. This flags tasks the agent might have to re-do because
some process element, probably an artifact, has been changed. The agent
may open specific workspaces for these flagged tasks, use task depend­
ency information in the workspaces or process handbooks to understand
what has changed, and carry out the task again as needed.

4.1.4 Collaboration

Inter-agent coordination support is particularly valuable when the agents
are geographically distributed. Event-based enabling of items on task
lists provides significant coordination support in this case. But much
more is needed - the agents additionally need support for the collabora­
tion that, were they geographically co-located, would be accomplished
by organized or informal face-to-face meetings and discussions of their
work and any problems which arise.

Two possibilities arise when considering collaboration within a group
of geographically separated agents. One case - synchronous collabora­
tion - occurs when the agents can all work at the same time. In the other
case - asynchronous collaboration - the agents must for some reason
(availability, time zone differences, etc.) work at different times. We dis­
cuss the use of role-based workspaces to support synchronous and asyn­
chronous collaboration in the remainder of this section.

One of the major goals of work in the field of Computer Supported
Cooperative Work (CSCW) has been to support geographically distrib­
uted teams working synchronously. (For a general introduction to CSCW
work, see the overview by Grundin et al.36.) CSCW work suggests that
this support includes at least the following basic capabilities:

• Agenda: A meeting agenda provides both a plan for a specific real­
time meeting and a place to record decisions and action items.

People-oriented Capture, Display, and Use of Process Information 165

• Audio: Support for communication by voice.

• Shared Windows: Display of information at multiple various worksta­
tions with changes made by the "owner" of the displayed information
propagated to the displays.

• Shared Whiteboard: A window displayed on all the workstations that
all participants can modify using drawing/text capabilities they would
typically use in writing on a whiteboard in a meeting room.

• Real-time Chat: Broadcasted and directed, person-to-person, trans­
mission of commentary to allow participants to record their thoughts
and share them with others.

Additional capabilities may be included to support specific needs. For
example, a video image capture/display capability might be added to al­
low broadcasting of a (physical) whiteboard in one of the agents' offices.

These basic capabilities could be added to a specific workspace to
support synchronous collaboration. CSCW work to date, however, pro­
vides a much simpler solution. This work has led to many distributed
meeting systems, several of which are commercially available. Because
these focused and integrative solutions exist, generic workspaces do not
have to be extended to provide the capabilities. Rather, they may be used
in tandem with these other solutions.

Representative commercial products are Microsoft's NetMeeting1

and Teamware's Pl@za3*. Another example is the eWorkshop system
developed at the Fraunhofer Institute at the University of Maryland39.
These distributed meeting systems may be used to provide the needed
agenda, audio, shared whiteboard and real-time chat support. An exam­
ple collaboration support window, resulting from using the eWorkshop
system, is shown in Fig. 7.

Collaboration across tasks additionally requires substantial support
for coordinating the mutual influences and constraints among the tasks as
specified in the process definition. For example, the process description
might indicate the flow of artifacts among tasks by indicating how the
tasks produce and consume the documents. As another example, the
process definition might specify, or at least imply, precedence relations
among the tasks.

166 J. Heidrich, J. Munch, W. Riddle, D. Rombach

Collaboration across tasks may be supported by the following basic
capabilities:

• Asynchronous Communication: Mail-style interactions among the
agents.

• Shared Document Spaces: A shared file structure that all of the agents
can access and modify.

• Threaded Discussions: A means to raise questions about, add support
to, and refute comments about some issue as well as spawn new is­
sues.

Pre- 8£K - ** ** R ^ i h H*2, „ S i
meeting \ *!*»*«)«•

Info. NOISES

Agenda
Display *»

Window

Chat
Log
Link

Input Panel

Fig. 7. Example of CSCW Support for Role-based Workspaces.

E-mail is the normal approach to supporting asynchronous communi­
cation. An example system developed to provide shared document spaces
is the Basic Support for Collaborative Work (BSCW) system40. Threaded
discussions about documents are also supported by BCSW. Support for
threaded discussions in general has affected the support provided by
most currently available commercial systems. CSCW work has led to
systems — Teamware's Pl@za is, again, an example — that integrate

People-oriented Capture, Display, and Use of Process Information 167

support for asynchronous communication, shared document spaces, and
threaded discussions into systems that support distributed meetings.

4.2 Using Software Project Control Centers

Section 3.3 introduced Software Project Control Centers (SPCCs) as a
primary means to support project control and discussed how to provide a
role-oriented visualization for gathered measurement data. The focus of
this section is on how an SPCC may be utilized by a specific project role;
that is, what kind of concrete support can be provided. Before we give
examples of this support, we first address the basic purpose of project
control; i.e., we address the purposes of an SPCC application.

The following discussion uses concepts adapted from the Software
Management Environment (SME) approach29:

• Monitoring^ refers to observing a project's state and progress by ob­
serving attributes, or combinations of attributes, of the project's proc­
esses, products, and resources.

• Comparison uses archived data from completed projects or nominal
performance guidelines to judge the progress and health of the current
project.

• Analysis focuses on (1) examining the monitoring results, and (2) ap­
plying information about a project's context to identify the probable
causes of deviations from the nominal performance guidelines.

• Assessment analyzes, with weighting, information about the project to
form a judgment of project, product, and process quality.

• Prediction extrapolates information about attributes of a project's
processes, products, and resources from the current project status to
assess the future project behavior. In general, prediction always re­
quires some kind of mathematical model. Fenton and Pfleeger41 de­
fine prediction as identifying relationships between various process
and product factors and using these relationships to predict relevant
external attributes of products and processes.

e In the SME approach this is called observation.

168 J. Heidrich, J. Munch, W. Riddle, D. Rombach

Module A Module B Module C Module D Total

Planned Value (PV)
Earned Value (EV)
Actual Cost (AC)
Schedule Variance = EV - PV
Cost Variance = EV - AC

20
20
18
0
2

40
30
32

-10
-2

30
10
17

-20
-7

10
0
0

-10
0

100
60
57

-40
-7

Table 1. Earned Value Sample for Module Costs in Thousand US Dollars.

• Planning defines baselines or a nominal value for certain measures.
In addition, it focuses on assessing (alternative) planning decisions
and their effects. This is the basis for further dynamic re-planning
during the execution of the project.

• Guidance proposes a number of courses of action according to a spe­
cific situation or an identified problem. Based on these proposals, a
manager might be able to initiate corrective actions and take steps to
improve or enhance the development process. A developer, on the
other hand, might use guidance as assistance for harmonizing his/her
own performance with respect to the overall process and given pro­
ject goals.

The core of an SPCC is the set of integrated project-control tech­
niques and methods. These methods usually cover different purposes,
such as monitoring project attributes, comparing attributes to baselines,
or predicting the course of an attribute. The most advanced support in­
cludes assessing the overall state of the project and guiding a project par­
ticipant through corrective actions if a project differs from its plan. As­
sessing a project's overall state may be achieved by Earned Value Ap­
proaches42, which identify important key factors for assessing the overall
project state. Project participant guidance may be achieved by buildmg
upon experience from previous projects.

4.2.1 Assigning Overall Project State

The Earned-Value Approach is a management technique used to assess
the current state of a project. It was first defined at the end of 19th century
when engineers decided to determine cost efficiency by comparing the

People-oriented Capture, Display, and Use of Process Information 169

actual cost (AC) of work performed with the earned value (EV) and the
planned value (PV).

Table 1 illustrates the basics of this approach: It concerns the control
of the costs (measured in thousand US dollars) of creating four software
modules, A to D. For each module, we have planned values derived dur­
ing the planning phase and the actual costs determined by data collection
procedures. As work is performed, the earned value of this work is
measured on the same basis as for the planned values. Several techniques
may be used to compute the earned value for a certain work package;
these are beyond the scope of this chapter. However, to provide a simple
example: if a work package is complete, its earned value is equal to the
planned value, whereas, if a work package has not started yet, its earned
value is zero. For example, in Table 1, module A is complete, work on
module D has not yet started, and one-third of module C's planned value
has already been achieved.

When controlling a project, project managers are interested in the
schedule variance (that is, the earned value minus the planned value) and
the cost variance (that is, the earned value minus the actual cost). In the
example shown in Table 1, and with respect to the point in the project
reflected in the table, work for 40,000 US dollars remains to be done, but
7,000 US dollars have been expended without any recognition of its
value. A simplistic conclusion is that the project plan has been violated.
An earned-value conclusion, however, would compare the actual cost
with the planned values and not indicate a plan violation.

4.2.2 Experience-based Approach

The first technique we address in this context is the Sprint I approach43'
44'45, built upon clustering algorithms to dynamically adapt the prediction
of key project attributes during project execution. Sprint I is not a pure
approach to project control according to our definition because it predicts
project attributes before the project starts and, therefore, covers planning
as well as performance concerns. However, the Sprint I approach pro­
vides an example of how a project manager might use experience from
previous projects in order to control an on-going project. The prerequisite
for a successful application of Sprint I is that a software development

170 J. Heidrich, J. Munch, W. Riddle, D. Rombach

organization has performed a number of similar projects and measured at
least one key attribute (e.g., effort per development phase) for each of
these projects. Additionally, there is the requirement that the context for
each of these projects (i.e., the boundary conditions such as organiza­
tional, personal and technical constraints) has been characterized.

Briefly, the technique is as follows: First, context-specific measure­
ment data from former projects is analyzed in order to identify clusters.
Based on the context of the project to be controlled, the technique selects
a suitable cluster and uses the cluster curve (the mean of all curves within
a cluster) for predicting the attributes to be controlled. During the per­
formance of the project, the prediction is modified based on actual pro­
ject data. This leads to an empirically based prediction and, as a result, to
flexibility for project and context changes.

The second experience-based approach to applying SPCCs was de­
veloped in the context of NASA's SME. It capitalizes on experience
gained in previously-performed projects. Doerflinger and Basili46 de­
scribe the use of dynamic variables as a means to monitor software de­
velopment and provide guidance in case of plan deviations. The core no­
tion is to assume underlying relationships that are invariant across similar
projects. These relationships are used to predict the behavior of projects
with similar characteristics. A baseline for a certain project attribute
(such as the effort in person-hours) is derived from measurement data for
one or more completed projects within the same context. The baseline is
used to determine whether the project is in trouble or not. If the current
values of a variable fall outside a tolerance range (i.e., a predetermined
tolerable variation from the baseline), the project manager is alerted and
has to determine the possible reasons for the failure. A number of tables
list possible reasons for deviations above or below the tolerance range for
each measured project attribute. If a particular reason appears more often
than some other reason, the former is assumed to be more probable than
the latter.

4.3 Process Enactment Support

So far, we have focused on enabling, facilitating the work of agents in
carrying out their assigned tasks. The capabilities we have discussed

People-oriented Capture, Display, and Use of Process Information 171

serve to present information about what should happen, what has hap­
pened and the status of a project in qualitative (status related) and quanti­
tative (measurement based) terms. Agents interpret this information to
focus on the tasks they need to do, understand how they can carry out
these tasks, and gain access to supportive resources.

More proactive support is possible. With this proactive support, there
is some control over focusing the agents' attention, directing his/her
work, and promoting the use of specific resources. In general terms, with
proactive support: (1) an automated system makes decisions rather than
allowing the agents to make decisions, and (2) the automated system im­
plements some of the actions that the agent might carry out.

A simple form of proactive support is workflow management. In this
case, the flow of artifacts, as defined in the process handbook, is used to
actively focus the attention of agents on enabled tasks and actively man­
age the flow of the actual artifacts as agents complete their tasks. An­
other, more extensive, form of proactive support is enactment support. In
this case, the status of, and measurements about, all process elements,
not just artifacts, is used to focus agent attention and manage the process
performance.

Numerous workflow management and enactment support systems
have been developed and they have focused on many software develop­
ment process issues. The majority of them have been designed to support
the performance of a project by tracking states and actively guiding de­
velopers based on this state information. Examples range from flexible
workflow management systems, to object-oriented database systems, to
distributed, open environments. The systems developed to date have
been decidedly immature because of the complexity of the goal. Never­
theless, some success stories do exist, such as LEU47 from LION GmbH,
Germany, and ProcessWEAVER48 from Cap Gemini, France.

4.4 Experience Management

This section discusses the ways in which experience from former pro­
jects may be reused for planning and controlling new projects. Basically,
we can distinguish among organization-wide experience (such as general
effort baselines for a certain project type, lessons learned from former

172 J. Heidrich, J. Munch, W. Riddle, D. Rombach

projects, process models, product models, etc.) and project-specific ex­
perience (such as project plan information, instances of models, sched­
ules, specific effort distributions, etc.). We define an experience base to
be a repository of both organization-wide and project-specific experience
described with respect to context-specificity and significance, for exam­
ple, the experience pertains to a specific context (e.g., valid for all pro­
jects of a certain domain) and is stated with respect to a certain signifi­
cance (e.g., a model has been successfully applied in five projects).

One approach to providing an experience base is an Experience Fac­
tory35' 49. This approach is based on the Quality Improvement Paradigm
(QIP) approach to evolutionary process improvement. The QIP approach
comprises the following basic steps: (1) Characterize, (2) Set Goals, (3)
Choose Process, (4) Execute, (5) Analyze, and (6) Package. Each of the
six steps can be interpreted in both a project-specific and organization-
wide manner:

• The steps can be characterized as follows for a specific software de­
velopment project. (1) Characterize the project environment; that is,
determine the project type and elements to be reused from an experi­
ence base. (2) Set quantifiable goals; that is, define quality goals and
select corresponding models, specify hypotheses, and identify influ­
encing factors for the hypotheses. (3) Choose the right process and
define a project plan; that is, specify how the defined goals should be
achieved. (4) Execute the project according to the previously defined
plan; that is, perform the planned development activities, manage the
project, and collect measurement data. (5) Analyze project results;
that is, compare hypotheses with real data and identify deviations and
their reasons. (6) Package project experience; that is, capture project
information in the project-specific experience base and update the or­
ganization-wide experience base (e.g., add a new effort baseline for a
specific project context, update the significance of an existing model,
or correct relevant models).

• The steps can be interpreted as follows for the whole organization: (1)
Characterize the organization and identify trends. (2) Define general
improvement goals and corresponding quantifiable hypotheses. (3)
Choose pilot projects for validating the goals and hypotheses. (4)

People-oriented Capture, Display, and Use of Process Information 173

Execute the pilot projects, collecting data regarding the goals and hy­
potheses. (5) Analyze the results and, in particular, validate the hy­
potheses. (6) Package project experience in the form of reusable ex­
perience elements and update/refine the existing experience base.

Fig. 8 illustrates the packaging step following project completion and
focused on reusing and updating an effort model. The experience base, at
the top of the figure, indicates the original state before packaging experi­
ence from a specific project, P. Model Ml has been used to forecast the
effort distribution for this project. Model Ml is valid for projects of con­
text CI and has already been applied in S former projects. During analy­
sis and packaging, the project results may lead to three different cases:

• Case 1: Model Ml was correct for project P; that is, the real effort
distribution of project P was consistent with the distribution of model
Ml. In this case, the significance of model Ml is increased by one;
that is, Ml has now been successfully applied in S + 1 projects.

Experience Base

| Model M1
I Context C1
' Significance S

The model was
correct

Experience Base

^ | Model M1
J I Context C1
^^* Significance S+1

The model was
incorrect

The assumed project
context was incorrect

Experience Base

| Model M2
Context C1

' Significance 1

Experience Base

Ĥ Model M1
y Context C1
— J Significance S

~h Model M2
' I Context C2
—z* Significance 1

Fig. 8. Example for Packaging Project Experience.

Case 2: Model Ml was incorrect for project P; that is, the real effort
distribution of project P differed significantly from the effort distribu­
tion of model Ml (and no abnormal circumstances were recognized
for project P). In this case, the original model has to be changed in

174 J. Heidrich, J. Munch, W. Riddle, D. Rombach

order to reflect the new project experience. Model Ml is replaced by
model M2 for context CI and the significance of M2 is set to one, be­
cause M2 has been applied in only project.

• Case 3: The assumed context for project P was wrong; that is, a cer­
tain environment was expected (e.g., developer experience = high),
but an analysis has shown that this original assumption was incorrect
(e.g., the real developer experience = low). Therefore, the project
context is actually a new context, C2. In this case, a new model M2 is
added for context C2 with significance one and the original model is
left unchanged for context CI.

5 Summary

This chapter describes how to capture, display, and use process informa­
tion to support people performing a process. In addition, it provides
many examples of specific capabilities that have proven valuable in prac­
tice.

First of all, we identified the needs for supporting people-oriented
software development, discussed the relationships among roles, agents,
and human process performers, and identified a variety of human charac­
teristics and their influence on software engineering.

Then we provided an overview of different kinds of process informa­
tion and how to collect this information prior to, during, and following
process performance. We discussed the value of general, qualitative,
status information about a process. In addition, we described one way to
provide methodical, goal-oriented, support for collecting quantitative
measurement data.

After that, we discussed a variety of gradually more significant ways
in which people may be supported in carrying out their assigned tasks:
• First, we described simple support provided by process handbooks

describing an agents' responsibilities, the activities they perform, the
artifacts used and produced by the activities, resources supporting ac­
tivity performance, and the conditions that reflect progress.

• After this, we discussed more extensive support provided by creating
role-based workspaces that collect together all the information an

People-oriented Capture, Display, and Use of Process Information 175

agent needs to access when carrying out a task or a set of inter-related
tasks.

• Then we discussed even more extensive support that can be provided
when the information displayed to agents not only reflects the process
definition but also reflects, qualitatively and quantitatively, what has
happened during process performance.
Subsequently, we presented extensions to this basic support which fa­

cilitates coordination and collaboration among agents cooperatively car­
rying out their tasks.

Finally, we discussed the opportunity to use the status information
and measurement data to actively, automatically control process per­
formance. In addition, we addressed how to use status information and
measurement data not only to proactively support process performance
(through enactment support) but also manage the experience gained dur­
ing project performance.

Acknowledgments

Proof-of-concept work on specific and generic role-based workspaces
was done by Mirjam Krementz50. The early work on EPGs was, in addi­
tion to the authors of the cited reference16, influenced by Alan Christie,
Denis Avrilionis and Anthony Earl. The PMC process documentation
generation capability was, in addition to the authors of the cited refer­
ence18, influenced by Dave Barstow, Bill Cohagan, Michael Mahan, Don
Oxley and Dick Phillips. The following people participated in the devel­
opment of SPEARMINT®/EPG: Danilo Assmann, Ulrike Becker-
Kornstaedt, Fabio Bella, Dirk Hamann, Ralf Kempkens, Holger Neu,
Alexis Ocampo, Peter Rosch, Louise Scott, Martin Soto, Martin Verlage,
Richard Webby, and Jorg Zettel. The following students contributed to
the implementation of SPEARMINT®/EPG: Martin Denn, Ralf
Hettesheimer, Thomas Kiesgen, Dietmar Klein, Arne Konnecker, Dirk
Ludwig, Sascha Schwarz, Slavomir Sobanja, Martin Vogt, and Christian
Voigtlander.

176 J. Heidrich, J. Munch, W. Riddle, D. Rombach

References

1. B. Curtis, M.I. Kellner, and J. Over. Process modeling. Communications of the
ACM, 35(9), pp. 75-90(1992).

2. H.D. Rombach and M. Verlage. Directions in software process research. In
Marvin V. Zelkowitz, editor, Advances in Computers, vol. 41, pp. 1-63. Aca­
demic Press (1995).

3. A. Endres and D. Rombach. A Handbook of Software and Systems Engineering
- Empirical Observations, Laws, and Theories. Pearson Education Limited,
Addison Wesley (2003).

4. IEEE 1058.1 —Software Project Management Plans. IEEE Computer Society
Press, Los Alamitos, California (1987).

5. M. Paulk, B. Curtis, M. Chrissis, and C. Weber. Capability Maturity Model for
Software (VI. 1) (CMU/SEI-93-TR-024, ADA 263403). Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA (1993).

6. Pragma Systems Corporation, Reston, Virginia 20190, USA.
\http://www.pragmasystems. com]

7. Integrated Process Asset Library, Federal Aviation Administration (FAA),
Washington, D.C., USA. [http://www.faa.gov/ipg/pimat/ipal]

8. W. Scacchi. Process Models in Software Engineering. In: J. Marciniak (ed.),
Encyclopedia of Software Engineering, 2nd Edition, Wiley (2001).

9. U. Becker, D. Hamann, and M. Verlage. Descriptive Modeling of Software
Processes. In Proceedings of the Third Conference on Software Process Im­
provement (SPI '97), Barcelona, Spain (1997).

10. M. Verlage. About views for modeling software processes in a role-specific
manner. In Proceedings of the second international software architecture work­
shop (ISAW-2) and international workshop on multiple perspectives in soft­
ware development (Viewpoints '96) on SIGSOFT '96 workshops, San Fran­
cisco, California, United States, pp. 280-284 (1996).

11. R.W. Selby. Amadeus Measurement-Driven Analysis and Feedback System. In
Proceedings of the DARPA Software Technology Conference, Los Angeles,
CA (1992).

12. R. van Solingen and E. Berghout. The Goal/Question/Metric Method - A Prac­
tical Guide for Quality Improvement of Software Development. McGraw-Hill
International (UK) (1999).

13. V.R. Basili, D.M. Weiss. A Methodology for Collecting Valid Software Engi­
neering Data. In IEEE Transactions on Software Engineering, Vol. SE-10, No.
6, pp. 728-738(1984).

14. V.R. Basili, G. Caldiera, and H.D. Rombach. Goal Question Metric Paradigm.
In: "Encyclopedia of Software Engineering", Volume 1, edited by John J. Mar­
ciniak, John Wiley & Sons, pp. 528-532 (1994).

http://www.pragmasystems
http://www.faa.gov/ipg/pimat/ipal

People-oriented Capture, Display, and Use of Process Information 111

15. L.C. Briand, CM. Differding, and H.D. Rombach. Practical guidelines for
measurement-based process improvement. Software Process: Improvement and
Practice, 2 (4) (1997).

16. M. Kellner, U. Becker-Kornstaedt, W. Riddle, J. Tomal, M. Verlage. Process
Guides: Effective Guidance for Process Participants. Proceedings of the Fifth
International Conference on the Software Process: Computer Supported Organ­
izational Work, Chicago, Illinois, pp. 11-25 (1998).

17. U. Becker-Kornstaedt, J. Miinch, H. Neu, A. Ocampo, and J. Zettel. SPEAR­
MINT9 6. User Manual. Fraunhofer Institute for Experimental Software Engi­
neering, Report 031.02/E, Kaiserslautern (2003).

18. W. Riddle and H. Schneider. Coping with Process Agility. Tutorial at 2002
Software Engineering Process Group Conference (SEPG 2002), Phoenix, Ari­
zona (2002).

19. W. Riddle. Coping with Process Specification. In Proceedings of Integrated
Design and Process Technology (IDPT-2003) Conference, Austin, Texas
(2003).

20. S. Miller and W. Riddle. Experience Defining the Performance Management
Key Process Area of the People CMM... and the Link to Business Strategy. In
Proceedings of 2002 Software Engineering Process Group Conference (SEPG
2000), Seattle, Washington, (2000).

21. A. Ocampo, D. Boggio, J. Miinch, G. Palladino. Towards a Reference Process
for Wireless Internet Services. IEEE Transactions on Software Engineering,
Special Issue on Wireless Internet Software Engineering, 29 (12), pp. 1122-
1134(2003).

22. F. Bella, J. Miinch, A. Ocampo. Capturing Experience from Wireless Internet
Services Development. In Proceedings of the International Conference on Ap­
plications and Emerging Trends in Software Engineering Practice (STEP
2003), Workshop on "Where's the evidence? The role of empirical practices in
Software Engineering", Amsterdam, The Netherlands, pp. 33-39 (2003).

23. J. Zettel, F. Maurer, J. Munch, L. Wong. LIPE: A Lightweight Process for E-
Business Startup Companies Based on Extreme Programming. Lecture Notes in
Computer Science 2188, (Frank Bomarius and Seija Komi-Sirvio, eds.),
Springer-Verlag, pp. 255-270 (2001).

24. J. Miinch and J. Heidrich. Software Project Control Centers: Concepts and Ap­
proaches. Journal of Systems and Software, 70 (1), pp. 3-19 (2003).

25. W.W. Gibbs. Software's Chronic Crisis. Scientific American, pp. 86-95 (1994).
26. M. Shaw. Prospects for an Engineering Discipline of Software. IEEE Software

7(6), pp. 15-24(1990).
27. H.D. Rombach and M. Verlage. Directions in Software Process Research. Ad­

vances in Computers 41, pp. 1-63 (1995).

178 J. Heidrich, J. Munch, W. Riddle, D. Rombach

28. Project Management Institute. A Guide to the Project Management Body of
Knowledge (PMBOK® Guide) 2000 Edition. Project Management Institute.
Four Campus Boulevard, Newtown Square, PA 19073-3299 USA (2000).

29. R. Hendrick, D. Kistler, and J. Valett. Software Management Environment
(SME)— Concepts and Architecture (Revision 1); NASA Goddard Space Flight
Center Code 551, Software Engineering Laboratory Series Report SEL-89-103.
Greenbelt, MD, USA (1992).

30. R. Hendrick, D. Kistler, and J. Valett. Software Management Environment
(SME)—Components and Algorithms; NASA Goddard Space Flight Center,
Software Engineering Laboratory Series Report SEL-94-001, Greenbelt, MD,
USA (1994).

31. L. Landis, F. McGarry, S. Waligora, R. Pajerski, M. Stark, R. Kester, T.
McDermott, and J. Miller. Managers Handbook for Software Development—
Revision 1; NASA Goddard Space Flight Center Code 552, Software
Engineering Laboratory Series Report SEL-84-101, Greenbelt, MD, USA
(1990).

32. F. McGarry, R. Pajerski, G. Page, S. Waligora, V.R. Basili, and M.V.
Zelkowitz. An Overview of the Software Engineering Laboratory; Software
Engineering Laboratory Series Report SEL-94-005, Greenbelt, MD, USA
(1994).

33. J. Heidrich and M. Soto. Using Measurement Data for Project Control. In
Proceedings of the Second International Symposium on Empirical Software
Engineering (Vol. II), Rome, pp. 9-10 (2003).

34. J. Heidrich. Effective Data Interpretation and Presentation in Software Pro­
jects. Technical Report 05/2003, Sonderforschungsbereich 501, University of
Kaiserslautern (2003).

35. V.R. Basili, G. Caldiera, and H.D. Rombach. The Experience Factory. Ency­
clopedia of Software Engineering 1, pp. 469-476 (1994).

36. J. Grundin, S. Poltrock, and J. Patterson. CSCW Overview. Special Presentation
at ACM Conference on Computer-Supported Cooperative Work (CSCW'96),
Boston, USA (1996).

37. NetMeeting, Microsoft Corporation, Redmond, Washington 98052-6399 USA.
[http://www. microsoft, com/windows/netmeeting]

38. Teamware Pl@za, Teamware Group Oy, Helsinki, Finland, [http://www.team-
ware. net/Resource.phx/twplaza/index. htx]

39. V. Basili et al. Building an Experience Base for Software Engineering: A report
on the first CeBASE e Workshop. In Proceedings of the 3rd International Con­
ference on Product Focused Software Process Improvement (PROFES 2001),
pp. 110-125, Kaiserslautern, Germany (2001).

40. W. Appelt. WWW Based Collaboration with the BSCW System. In Proceedings
of SOFSEM'99, Springer Lecture Notes in Computer Science 1725, Milovy,
Czech Republic, pp. 66-78 (1999). [http://bscw.fit.fraunhofer.de]

http://www
http://www.team-
http://bscw.fit.fraunhofer.de

People-oriented Capture, Display, and Use of Process Information 179

41. N.E. Fenton and S.L. Pfleeger. Software Metrics. A Rigorous and Practical
Approach. International Thomson Computer: 2nd edition, London, UK (1996).

42. ACQWeb. Earned Value Management, [http://www.acq.osd.mil/pm]
43. J. Miinch, J. Heidrich, and A. Daskowska. A Practical Way to Use Clustering

and Context Knowledge for Software Project Planning. In Proceedings of the
15th International Conference on Software Engineering and Knowledge
Engineering (SEKE 2003), pp. 377-384, San Francisco, USA (2003).

44. J. Miinch and J. Heidrich. Using Cluster Curves to Control Software Develop­
ment Projects. In Proceedings of the First International Symposium on
Empirical Software Engineering (Vol. II), Nara, pp. 13-14 (2002).

45. J. Miinch and J. Heidrich. Context-driven Software Project Estimation. In
Proceedings of the Second International Symposium on Empirical Software
Engineering (Vol. II), Rome, pp. 15-16 (2003).

46. C.W. Doerflinger and V.R. Basili. Monitoring Software Development Through
Dynamic Variables. In Proceedings of IEEE Conference on Computer Software
and Applications (COMPSACj, pp. 434-445 (1983).

47. G. Dinkhoff, V. Gruhn, A. Saalmann, M. Zielonka. Business Process Modeling
in the Workflow Management Environment LEU. In Proceedings of the 13th
International Conference on the Entity-Relationship Approach (Lecture Notes
in Computer Science, Vol. 881, pp. 46-63). Berlin, Heidelberg, New York:
Springer (1994).

48. Christer Fernstrom. Process WEAVER: Adding process support to UNLX. In
Proceedings of the Second International Conference on the Software Process:
Continuous Software Process Improvement, Berlin, Germany, pp. 12-26
(1993).

49. R. Basili. Quantitative Evaluation of Software Engineering Methodology. Pro­
ceedings of the First Pan Pacific Computer Conference, Melbourne, Australia
(1985).

50. M. Krementz. Personal Workspaces for Electronic Process Guide (EPG) Us­
ers. Project Thesis, Fraunhofer Institute for Experimental Software Engineer­
ing, Kaiserslautern, Germany (1999).

http://www.acq.osd.mil/pm

This page is intentionally left blank

Chapter 6

R E Q U I R E M E N T S A N D V A L I D A T I O N O F T H E E 3 P R O C E S S
M O D E L I N G S Y S T E M

Letizia Jaccheri

Department of Computer and Information Science
Norwegian University of Science and Technology (NTNU)

Sera S<elands vei 7-9 7491 Trondheim, Norway
email: letizia@idi.ntnu.no

In the framework of the general goals of this book, which are to
discuss the state of the art of software process topics and provide prac­
titioners with a practical view of the developed methods, I use my own
experience as a process modeling researcher over the last fifteen years to
make my own contribution to the goals. I will address the following ques­
tions. How have process modeling researchers elicited requirements for
software process modeling systems? First, to what extent have users been
involved in the definition of these requirements? Second, how has IT evo­
lution contributed to this requirements definition? Lastly, how has gen­
eral software engineering knowledge influenced this definition? E3 (En­
vironment for Experimenting and Evolving Software Process Models) is
a process modeling system conceived to provide help for process/project
managers, who construct and maintain models, and for practitioners,
who use software process models. The initial requirements of the E3
system have been derived from a literature survey, lessons learned by
working with other PM systems, and use of general-purpose technology
for process modeling purposes. E3 has been designed and implemented
twice. The first version of the E3 system was validated by a case study
and the results of this validation resulted in the requirements for the
second version of the system. The second version of the E3 system has
been validated by empirical investigations in industrial and academic set­
tings. The answers to the research questions given in this chapter have
not to be regarded as an attempt to provide a general state of the art of
software process topics or a complete view of the field for practitioners.
Rather, they have to be considered as a set of lessons learnt about the
development and validation of one of the process modeling systems that
have been developed in recent years.

181

mailto:letizia@idi.ntnu.no

182 L. Jaccheri

1. Introduction

The E3 a project started in 1992. E3 offers a process modeling language
and a supporting system for model construction, change, and inspection.
A functioning prototype is available at 12. In this work, Ib look back and I
try to reconstruct the research process that led to requirements definition,
design, implementation, and validation of the system. The goal of this paper
is to give an answer to one main research question.

How have process modeling researchers elicited requirements for software
process modeling systems?

I investigate this question trying to explain the why dimension of soft­
ware process modeling and to say something, looking at the past, about the
future of process modeling systems. I further decompose the main question
into three.

• RQ1: How much user involvement was there in the definition of
these requirements?

• RQ2: How has IT evolution contributed to this requirements defi­
nition?

• RQ3: How has general software engineering knowledge influenced
this definition?

When I think of E3, I first remember all the students and colleagues who
have been involved in the project. And my memories are brightened or dark­
ened by the joy of mutual understanding, the disappointment at discovering
the wrong choices, a longing for the old times, the energy of starting a re­
search project with almost no funding. I still experience sadness and anger
for the times we were not understood by reviewers and funders. I remem­
ber curiosity, frustration, and the feeling of finally learning something new.
And again I sense happiness and satisfaction at getting papers published
at international conferences and journals and our work accepted by organi­
zations. To organize my recall in a scientific way and not be overwhelmed
by emotions, I use two sources of information: the E3 system and the arti­
cles which we have written about the system over the years. The research
method which I use in this work is a critical review of our own work. On
the other hand, the research methods, which have been exploited during

a E 3 : Environment for Experimenting and Evolving software processes, read E cube.
Here, the form I is used when the text refers to the reconstruction of requirements. The

form we is used when the text refers to choices made and activities done in the general
context of the E3 project.

Requirements and validation of the E3 process modeling system 183

the life of the E3 project encompass both engineering and empirical based
research methods and will be among the topics of this paper. This paper
is structured as follows. Section 2 can be read in two ways. The fragments
per se provide a snapshot of the story of the E3 project. The comments
(or analysis) of each fragment gives a reflection about the fragment in the
light of the three research questions. Section 3 provides a summary of the
features of the E3 system version 2 as is available at 12. Section 4 pro­
vides further discussion of the relationships between requirements and the
research questions in this paper. Section 5 concludes the paper by giving
indications for further work.

2. On the nature of the E3 requirements

Here, I choose some fragments from the papers published about E3 to
reconstruct the story about how the system was conceived and validated. I
choose those fragments that give insight into the research questions of this
work.

• RQ1: How much user involvement was there in the definition of
these requirements?

• RQ2: How has IT evolution contributed to this requirements def­
inition?

• RQ3: How has general software engineering knowledge influ­
enced this definition?

By users, in this chapter, I mean all actors who have something to do
with a process model. This definition of user encompasses both process
designers, process owners, and process performers.

The research methods were either empirical (when we performed some
kind of empirical investigation), engineering based (when we reported about
software design issues), or theory based (when we made choices made as to
software engineering theories).

Section 2 2 is further divided into three. Section 2.1 is about the first
activity in the E3 project, when we used Coad and Yourdon 0 0 analysis
methods and languages for software process modelling. Section 2.2 and
section 2.3 are about the first and the second versions of the system and
their validation.

This section can be regarded as a kind of post mortem6 analysis of the
E3 project. Next section 4 provides a further analysis of the fragments in
the E3 context.

184 L. Jaccheri

2.1. Use of existing OO analysis methods and languages
for process modeling

Fragment 1:

The PM community has produced many PM systems 21 1 8 5 3 that use
and experiment with various process modeling paradigms. The experience
with using these systems is still limited in modeling both processes that are
standardized by organizations, e.g. ISO, DoD and processes that are adopted
by large software factories. • • • The principal goal of E3 is to get hands-on
experience with using an object-oriented paradigm on real-world software
processes. We will put emphasis on experiments with modeling software
processes, rather than the goal of finding a new PM paradigm or language.
(From 15)

The process is based on literature survey and knowledge about other
PM systems. Fragment 1 introduces an issue about the nature of the mod­
eled processes. Processes standardized by organizations, like ISO and DoD,
are written process descriptions, which are not always consistent with the
actual processes. At the same time, large organizations usually have writ­
ten process descriptions. What is not written here is what other research
projects had not modeled, like for example, processes in small organizations,
which are not necessarily formalized by quality manuals or standardized. In
this way, this fragment is about the influence that real users (organizations
and standards) have had on the E3 research process. In fragment 1 there
are references to five papers 21 l 8 5 3.

This is not only a literature review but also of a living research network
that was active in the late 80s and early 90s in the PM field. That network
was mainly European and initiated the European Workshop of Software
Process Technology and the European Promoter project. I had been work­
ing on both the EPOS 14 and Oikos 1 project and had knowledge of the
design choices and features of the two environments. From this perspective,
this text fragment binds the E3 research process to software engineering
community knowledge.

Fragment 1 is about experimentation. Given that related research
projects have devoted a lot of efforts to the development of new languages
and execution engines, the initial choice was not to spend resources on the
implementation of yet another process modeling language. On the contrary,
we decided to reuse existing technology for experimentation. The other sys­
tems had been validated against standards and organization processes. We

Requirements and validation of the E3 process modeling system 185

did not declare which kind of processes we wanted to address. Experimen­
tation opened up interaction with users. The experimentation choice was
dictated by the trends in software engineering knowledge at the time (early
1990s).

Fragment 2:

The E3 process modeling framework will offer graphical data-model to de­
sign process models as sub-models of activities, software products, tools, de­
velopment organizations and resources. In addition a process model should
capture constraints like temporal aspects, control flow among activities and
product, and sequencing among activities, resource allocation, connections
to tools, responsibility, and communication. (From 16)

Fragment 2 is about the nature of process models. The decisions of
choosing activities, software products, tools, development organizations and
resources as building blocks of a process model and constraints like tem­
poral aspects, control flow among activities and product, and sequencing
among activities, resource allocation, connections to tools, responsibility,
and communication derived from related software engineering theories.

Fragment 3:

We will experiment with an object relation model 20 that will allow us to
structure models through aggregation and relations. Objects, types, and re­
lations must be explicitly represented and persistent. Relations will be used
to express constraints, also at the type level. We want to exploit relations as
much as possible to make our process models more declarative and to make
explicit the dependency among the different components. (From 16)

Fragment 3 is about the decision to exploite object orientation. The
choice was influenced by both software engineering theories and the avail­
ability of 0 0 technology on the market.

Fragment 4:

We exploit as much as possible existing technology, commercially available
software packages. We foresee the integration of a DBMS offering both ob­
ject relation datamodel and concurrent transactions, C+ + for activities
programming, and a user interface system. There is already a number of
C++ based frameworks and libraries available for user interface construc­
tion, inter-process communication, persistency, and database management.
(From 16)

186 L. Jaccheri

Fragment 4 is about the IT to be used for the development of a PM sys­
tem. Fragment 4 implicitly makes choices about the software architecture.
The architecture will rely on a DBMS with concurrent transactions. It is
not specified if concurrency will be allowed among modelers or among per­
formers. We declared that we wanted to use C + + for activity programming.
This sentence means that we were planning to provide execution support,
and activities to be executed had to be programmed in C++. Here, we must
recall that other PMLs were based on programming languages at the same
abstraction level as C++. SPELL 14 was based on Prolog and Arcadia 21

was based on the Ada language.

Fragment 5:

A software process model will change over time The modeling framework
must also assist in the process of changing process models, and cope with
the effects of the changes. (From 16)

Fragment 5 opens up an important process modeling topic at the begin­
ning of the 1990s, namely process evolution. This research was supported
by theoretical work 18. Other PM systems, like EPOS 14 and Spade 4 had
paid considerable attention to evolution.

Fragment 6:

Our first experience in modeling a process with 00 techniques used the
Coad and Yourdon 00 analysis and design methods and supporting tools
to model the process of a department of the FIAT car manufacturer. (From
16)

Fragment 6 is a general declaration of intent about the process to be
followed and its relation to users (a department of the FIAT car manufac­
turer). Specific 0 0 techniques from software engineering will be exploited.
IT is mentioned, there is a reference to the intention of exploiting sup­
porting tools, but the specific tools are not mentioned here. We decided to
model the Iveco quality manual as for some practical reasons that manual
was available to us since we had some personal contacts at that organiza­
tion. We decided to use 0 0 theories. The rationale for this choice was that
thedy were the mainstream theories for software design and programming
at the time and that these theories were supported by available languages
and tools.

Fragment 6 is about the choice of the first validating users (a department
of the FIAT car manufacturer) and the kind of process to be modelled (a

Requirements and validation of the E3 process modeling system 187

quality manual). Moreover, there is a reference to the choice of exploiting
OO in general and Coad and Yourdon specifically.

Fragment 6 is in contrast with fragment 1. While in 1, we criticize the
choice of other PM research projects of modeling only quality manuals of
big organizations, here we choose to do the same. It is much easier to model
a process manual than eliciting the process of an organization as it is. The
latter activity requires a lot of insights in one organization and mutual trust
between the organization and the modeling team, which we did not have.

Fragment 7:

In order to provide a simulation tool for our experiments, we also developed
a prototype PSEE based on distributed OO programming techniques. The
experience with the PSEE was resisted by the organization management
that hardly perceived it as a real asset and considered it inapplicable on an
organization-wide scale. Based on this experience, we focused our research
on the elicitation of process models through object orientation. (From 16)

Fragment 7 is about an important choice in E3: the choice of not in­
cluding the execution (or enaction) requirement. The choice comes from
interaction with users.

Fragment 8:

This preliminary experience in using 00 design and analysis techniques
used on an as-is basis for process modeling demonstrated that it is possible
to model a software process at a high abstraction level by using pure OO
analysis techniques without delving into low-level details. Moreover, our ex­
perience also demonstrated the effectiveness of object orientation in eliciting
process models, since the models were used also as a means to communicate
information to the process users. (From 16)

Fragment 8 is about the validation of the first E3 experience. We were
able to communicate the OO models back to the users who owned the
process manuals, i.e., the quality manager and his group. This fragment
does not describe what users liked or did not like about the offered features.

Fragment 9:

Nevertheless, despite the encouraging results, OO design and analysis tech­
niques used on an as-is basis revealed some problems ... (From 16)

188 L. Jaccheri

Fragment 9 is an introduction to fragments 10 and 11.

Fragment 10:

Syntax and semantics are not defined formally, thus preventing automatic

analysis or simulation. (From 16)

Fragment 10 is about the drawbacks of applying 0 0 analysis methods

directly to PM. At the present time of writing there are 0 0 analysis meth­

ods with formally defined syntax and semantics. We regard fragment 10

as an IT issue. Since we did not have available languages (and supporting

tools) with formal syntax and semantics, we set this as a requirement for a

new language. Fragment 10 and all the fragments about language require­

ments and above all the choice of implementing the E3 PML are in contrast

with fragment 1. After declaring tha t E3 should not develop a new language

but rather invest effort in investigations, we decided to implement a new

language only after one modeling a t tempt with one modeling language and

tool. When I look back at tha t choice it seems to me tha t we did not reflect

enough on our initial choices and intentions or on this decision to implement

a n e w PML.

Fragment 11:

Process-dedicated syntax constructs are needed in order to enhance process

understanding. Although our experience showed that the techniques we em­

ployed increase process understanding, they also indicated that nontrivial

process models can consist of hundreds of classes and associations that ap­

pear to the user as a flat web of identical boxes and arrows. Hence, in order

to enhance understanding, process-specific constructs mapped on the process

components are needed, still using a graphical notation. (From 16)

Fragment 11 derives from general software engineering knowledge. The

idea is the same as tha t of predefined types in programming languages and

it is an instantiation of the reuse theory. In E3 we combined this idea with

tha t of assigning a special graphical syntax to the predefined classes and

associations.

Fragment 12:

The Iveco model encompasses 161 classes and 585 associations. Since it

does not make sense to present more than circa 10 classes in a single page,

one needs policies to section the model for presentation purposes. When

Requirements and validation of the E3 process modeling system 189

inspecting an 00 process model, the data and control flow perspective are
of primary importance. In our context, dataflow means that for a given task
class, one is interested in seeing which are the input and output classes, etc.
In addition to the classical data and control flow, for a given task, it is useful
to find out which are its responsible agents, and which tools it uses. (From
13)

Fragment 12 is about the view mechanisms which have been found useful
during the validation with users.

Fragment 13:

The Smalltalk simulation showed absence of trivial errors, e.g., deadlocks.
However, it cannot be regarded as a true simulation in which probabilistic
parameters are assigned to activities and resources as was suggested by the
process owners. Also, the manual translation from E3 PML to Smalltalk can
introduce errors. We have then abandoned this research path and we have
decided to focus on static analysis instead. Static analysis is more suitable
than dynamic simulation if the purpose of the models is understanding by
humans and not execution. This assumption is supported by the fact that
it was difficult for the users to understand and appreciate the Smalltalk
simulation. (From 13)

Fragment 13 is about the evaluation of the enaction feature and gives
reasons why we abandoned this research path as a consequence of user
interaction. Fragment 13 is consistent with fragment 7.

2.2. E3 version 1 and its validation

Fragment 14:

E3 PML enables class and association creation and definition. In the fol­
lowing, we will always refer to classes and associations and not to their
instances. This is because the goal of our work is to provide descriptions of
process manuals by means of process model templates. (From 2)

Fragment 14 is also about instantiation. Here, we declared that the goal
is to describe process manuals (and not real world processes as declared in
1), but not to provide enactment. This choice was inspired by related work.

Fragment 15:

190 L. Jaccheri

The E3 PML is an object-oriented language augmented with association
management. It offers a set of kernel classes and associations with process
modeling semantics. Kernel classes are organized in an inheritance hierar­
chy as described in the following. A class inherits all the attributes, com­
ments, and methods of its super-class, and all the associations defined for
its super-class. Inherited features can be re-defined in the sub-class. (From
2)

Fragment 15 is about the main characteristics of E3 PML version 1,
which is an object-oriented language augmented with association manage­
ment. This choice is driven by general software engineering knowledge.

Fragment 16:

Then, the tool offers four kinds of views, Inheritance, Task, Task Synchro­
nization, and User, that implement respectively the 00 (Inheritance view),
functional (Task View), structural (Task Synchronization View), and in­
formational (User View) perspectives (From 2)

The choice of adding different views comes from software engineering
theories and methods such as data flow diagrams and control flow diagrams.
For the first version of the E3 system, these views were conceived for both
change (or editing) and inspection.

Fragment 17:

The main weaknesses of E3vl (E3 version 1) revealed by this case study are:
lack of instance level facilities, lack of a flexible view mechanism, problems
in the execution support (From 16)

Fragment 17 is about validation of the first version of the E3 system in
the context of the Iveco case study. The modeling requirements came from
the users, i.e., the Iveco process owners and the students who modeled
the process. The requirements derived from this validation were that there
was the need to increase flexibility. The first version of the system enabled
its users to navigate in a model of starting tasks. For a given task, it was
possible to view its sibling tasks, its member tasks, and its related products,
tools, and roles. In addition, the user view could display other items and
their relationships in an unconstrained way. User Views were difficult to
manage and not easy to use as they lacked a theory model. Flexible views
needed to be defined. Also, the views provided by E3 p-draw vl are task-
oriented and do not enable the user to browse a model from a perspective

Requirements and validation of the ES process modeling system 191

that is different from the task view. For instance, it can be useful, for a
given product to see which tasks consume it, or produce it, etc. This also
applies to tools and roles.

Fragment 18:

E3 p-draw vl does not support the Instance level. While a template is an
abstract description for a set of models, a model is a description of a single
process, including time and resource binding. If a template has to be un­
derstood and used, it must be possible to generate (either automatically or
manually) instantiated models. (From 16)

From conversations with the users we found out that we were not able to
communicate to them the advantages of the Smalltalk simulation. The users
were looking for a representation of the resource and time plan. From these
interactions with our users, we derived this requirement about instantiated
models.

2.3. E3 version 2 and its validation

Fragment 19:

A related issue was represented by portability. Version 1.0 was developed in
C+ + under DEC Ultrix because of its reliance on the object-oriented DBMS
Object/DB we used as a model repository, and the Interviews library was
used for GUI programming. Nevertheless, it became clear that support for
PC boxes was highly desirable, due to their increasing pervasiveness. The
implementation of version 2.0 minimized portability concerns through the
adoption of the Java language 19. Java enabled portability on all platforms
supported, which presently include PCs as well as Unix boxes, and provided
a uniform API for GUI programming. (From 16)

Portability becomes an issue when moving E3 from a student context at
university to industrial settings 10. The Olivetti case study was performed
by master students who had not participated in the requirement definition
of the E3 system. These students interacted with a quality manager from
Olivetti and his group. However, the case study had been designed in a way
that the objective was more that of asserting the validity of the E3 features
than getting contructive feedback from users.

On the other hand, at university, the execution environment may coin­
cide with the development one. The portability discussion was crucial to

192 L. Jaccheri

the decision of adopting Java for the second implementation of E3. The
implementation of E3 version 2 started a few months after the release of
the language. Fragment 19 about the implementation language is about IT
and portability.

Fragment 20:

Moreover, the use of a true object-oriented language opened up interest­
ing developments as far as simulation is concerned. Currently, ESp-draw
elements are mapped onto Java classes and objects. E3 presently leaves
the behavior of methods unspecified. Specifying such behavior with the Java
language would lead to a nice integration of ESp-draw with subsystems pro­
viding dynamic analysis, simulation, or even enaction. (From 16)

Fragment 20 is also about IT and opens up the question of enactment.
Here it is interesting that the adoption of a new technology (Java) gave
us some extra possibilities and we reconsidered the possibility of offering
enactment.

Fragment 21:

In realistic process models like the one presented in the previous section,
the number of process entities (e.g., tasks and artifacts) to be described
tends to increase significantly. Consequently, developing a complete process
model is a daunting activity that can seldom proceed in a straightforward
top-down manner. In many situations, the only viable approach is to proceed
both bottom-up and top-down until a reasonable description of the process
is obtained. This requires flexible mechanisms to integrate multiple process
fragments, which are often independently developed by different modelers.
(From 10)

Fragment 21 is about the need to have modularization facilities. It comes
from user interaction with special reference to the case study performed at
Olivetti.

Fragment 22:

The rationale of introducing the check property presence and check property
absence operations is that textual information can sometimes be preferable
to graphic snapshots. For example, when E3 models have to be parsed and
processed by other automatic tools. (From 10)

Requirements and validation of the E3 process modeling system 193

Fragment 22 is about the query mechanism. It is dictated mainly by
compatibility issues with IT. This is also derived by the Olivetti case study.

Fragment 23:

The process modeling activities conducted during the past years have empha­
sized the importance of studying and understanding the associations among
the entities of a process. The Olivetti experience confirmed this hypothesis.
It is basically impossible to structure a process model statically in a way
that any viewpoint or navigation path is smoothly supported. (From 10)

Fragment 23 is about the validation of the association concept in the
Olivetti case study.

Fragment 24:

We report from an experiment in which we compared the E3 PML with
respect to the standard modeling language IDEFO for the purpose of model
construction. The experiment has been run as part of a process improvement
course in which forty students participated. Our hypothesis was that E3
will lead to less problems than IDEFO when constructing software process
models. (From 17)

Fragment 25:

As a conclusion from our data we are 90% sure that there will be less
modeling problems when using E3 PML (From 17)

Fragments 24 and 25 are about one formal experiment for evaluation of
E3v2 in academic settings. The experiment was run according to guidelines
like those formalised in 22. The hypothesis E3 will lead to less problems than
IDEFO when constructing software process models in the experiment con­
text (a process improvement course taken by forty students). The objects
of the experiments were E3 and IDEFO. The experiment was run at NTNU
in 1999. The choice of evaluating the E3 system by a formal experiment is
influenced by software engineering trends as the interest in formal experi­
mentation was increasing in those years. We chose to run the experiment
in a classroom setting as it would have been expensive to pay profession­
als to do the same modelling job as we asked the students to do. At the
same time, I was teaching a course about software process improvement in
which software process modelling was in fact a topic. As can be observed
from this fragment, or more generally from the whole paper, the goal of the

194 L. Jaccheri

validtaion was not tha t of extracting requirements or getting directions for

improvement.

Figure 1 shows an example of an E3 process model developed during

the experiment reported in 17 .

I . » . U . I I 1 , I . . M ^ ^ ^

ass:'jsai.. JU^I. j_jy_j Kjiu

preliminary Market
Requirement Specification

•
Market Requirement

Preliminary Implementation Implementation
Analysis \ Analysts

Technical Report

6

Fig. 1. An edit view displaying one of the five E3 models developed during the experi­
ment.

Fragment 26:

The problem was the overview. Even with a rather simple process like this

one it is difficult to maintain control. The fact that one has to model

both horizontal and vertical relationships in addition to document flow con­

tributes to this. (From 17)

In fragment 26 we report the two problems tha t students experienced

when working with E3. Nevertheless the experiment reported in 17 was

based on counting problems, here I interpret the reported problems.

Requirements and validation of the E3 process modeling system 195

This fragment is a negative validation of two E3 features: inspect by
views (which should allow the user to keep control of the process model)
and the kernel associations. The student here declares that it is difficult to
keep control of a simple process model. He adds that horizontal and vertical
relationships (we interpret these to be preorder and subtask) are difficult
to combine with data flow (input and output).

3. E3 (version 2) PML and system: a summary

Here, there is a summary of the E3 features as they are provided by the
existing implementation, that is, E3 version 2.

• E3 supports modeling of software development processes. Real-
world processes can be represented by at least three kinds of process
models:

— Instance: Captures the full details of a project. Hence, it in­
cludes the mapping between the entities of a model and those
of the real world. A model is, therefore, concerned with allo­
cation of resources and deadlines because they are essential
information for the project.

— Template: Captures the key aspects of one or more Quality
Manuals and Projects Manuals to describe the general issues
that can be reused in the description of other similar pro­
cesses, or to define a model which can provide guidance for
a class of processes. In a template there is no concern about
the mapping of model entities onto projects. A template can
be refined into a new and more accurate template. This is the
case for a Projects Manual being described as a refined and
extended version of the template describing the corresponding
Quality Manual.

— Meta-level: the level at which the building blocks of a template
are defined.

• E3 does not suppport process enaction.
• E3 supports reuse by inheritance, by instantiation from template

to instance level, and by module facilities. Once a module is cre­
ated, it encompasses the kernel, i.e. predefined classes and associ­
ations with the respective meta-classes.

• The kernel consists of object-oriented classes to describe tasks,
products, roles, and tools and associations among these elements,

196 L. Jaccheri

such as responsibility, preorder, aggregation, input, output, and
connections between tools and tasks. If other kinds of entities need
to be modeled, these must be created as specializations of the kernel
classes. The same applies for associations.

• To create and modify new model elements, one needs to operate
on edit views, which can be seen as workspaces.

• To inspect existing models, there are four kinds of derived views:
simple, simple recursive, composite, and composite recursive. Basi­
cally, simple views visualize associations among classes, while com­
posite views visualize aggregates together with the associations de­
fined within them. A simple view is defined for a class and visualizes
the class and all the association definitions the class participates
in, except for aggregation associations. Derived views can be cus­
tomized by hiding associations and classes. The user can specify
which kind of associations need to be hidden and whether or not
to visualize nodes connected by a currently invisible association.
Each view (both workspaces and derived views) can be saved on
persistent storage.

• Finally, base and derived views at the Template level provide an
automated instantiation feature. The invocation of this oper­
ation generates a new base view at the Instance level containing
an instance for every process element contained in the base view at
the defined level. Additional instances can be defined by the user.

• E3p-draw provides a query mechanism to support static analy­
sis of process models. The query mechanism will check the topol­
ogy of the model, as determined by the definition of associations.
For instance, it is possible to detect the presence of loops in an
aggregation tree. More generally, E3p-draw provides support for
checking whether or not a given property of association definition
holds. For instance, one can check whether all the tasks of a given
module have a responsible definition. Similarly, one can show tasks
that lack a responsible definition. A query can be performed in the
context of a whole module or of a view.

• E3p-draw is portable on all platforms which support Java.

4. Discussion

Table 1 shows the E3 requirements (rows) and the three dimentions given
by the three research questions (columns). In the cells there are references

Requirements and validation of the E3 process modeling system 197

to the fragments that give information about the relationships between
requirements and research questions.

Each cell tells a short story about the given E3 feature and its origin
(users, IT, or theories). When several fragments are associated with a cell,
these can be inconsistent. This is because they may have been written in
different periods and they may refer to different implementations of the
system. Inconsistencies can be observed among fragments of the same row.
I regard these inconsistencies as valuable as they tell about the system
evolution and its causes.

Requi rement
modeling
enaction
reuse by modularization
OO classes associations
inspection by views
modification by views
reuse by instantiation
analysis by queries
portability

RQ1
1, 6, 24, 25

7, 13, 17
21

8, 12, 23, 26
17,26

17
17, 18

RQ2
6

4,20

3, 4, (9, 10) 19

22
19

RQ3
1,2,6

3, (9,11), 15
16

5, 16
14

From the analysis performed in this section, we can generalize that when
we say something about RQ1 (How much user involvement was there in the
definition of these requirements?), we use fragments that have something
to do with empirical investigations.

For example, looking at the intersection between modelling and RQ1,
we find fragments 1, 6, 24, and 25. While 1 is about limitations in other PM
systems evaluations, 6 is about the validation settings of the first industrial
trial of the E3 system (at a department of FIAT) and Coad and Yourdon
OO analysis and design methods and supporting tools. Fragments 24 and
25 are about a formal experiment run in academic settings to evaluate E3
version 2.

Column RQ2 (in Table 1) is about How has IT evolution contributed to
these requirements definition?. If we read the fragments associated to this
column, they are in general about engineering and design choices. Fragment
6 appears both in column RQ1 and RQ2 as it declares both the industrial
validation context and the tools used for the trial. Fragment 4 is clearly

198 L. Jaccheri

about technology and its implication for enaction and object oriented mod­
elling.

Column RQ3 (table 1) is about How has general software engineer­
ing knowledge influenced this definition? And here we generally refer to
literature-based pieces of research. Fragment 1 is in both column RQ1 and
RQ3 as it is about validation of other PM systems as discussed in the
literature.

Another way to look at Table 1 is to read, for each requirement, asso­
ciated fragments in ascending order. For example, if one takes into consid­
eration requirement automated instantiation, fragment 14 says something
about the initial choice, dictated by related work, of not including the in­
stance level. Furthermore, fragments 17 and 18 tell about the validation of
the first version of the system, the lack of instance level facilities and the
rationale for introducing them.

The two requirements process modelling and 0 0 classes and associa­
tions are those for which there are most associated fragments. This is some­
what natural, since E3 was conceived as a process modelling system based
on 0 0 augmented with associations. One could argue that 0 0 classes and
associations are not a requirement but a design choice. Another discussion
topic is whether it is meaningful to assess these two requirements in their
entireness or if it would have been more valuable to decompose them into
smaller entities, like for example, to regard classes and associations as two
distinct entities to be evaluated.

5. Conclusions and further work

The E3 project started in 1992. The experiment reported in 17 was run in
1999. In this chapter I have provided a summary of the features of the E3
system, a short story (given by article fragments) of the process that has led
to the definition and implementation of E3, and a critical reflection about
the definition, implementation, and validation of the system reqirements.

Many requirements are common nowadays. At the time of writing, it
is common for software organizations to use electronic process guides sup­
ported by web-based intranet systems. On the other hand, requirements
like the use of meta-level facilities to reuse process model knowledge are
not commonly accepted.

This chapter is a contribution for those that want to learn about an
existing PM system. E3 is also available at 12 and can be easily installed
and tried.

Requirements and validation of the B3 process modeling system 199

The story of the E3 project can be used to plan future work with the

system. We can choose which of the three research questions we want to

address further. On the IT axis, one can look for which off-the-shelf com­

ponents (both commercial and open source) can be exploited to re-engineer

the system. On the software engineering axis, one can look at new theories,

for example, in the area of component-based software engineering, measure­

ment, and global software development. On the users dimension, there is a

trade-off between elicitation of new system requirements versus validation

of existing requirements.

This chapter makes clear tha t we have used a combination of research

methods, empirical engineering, and theory. In this way, this chapter is a

lesson learnt about experience with the different methods. As future work,

we want to continue exploiting empirical-based research methods for elicit­

ing requirements from users. At the same time, if we want to let our system

evolve, we must work as engineers to incorporate new technology into the

system. One idea is to make the E3 project into an open source project.

A c k n o w l e d g m e n t s

I thank all the students who have worked at the E3 project. Special

thanks and thoughts go to Silvano Gai, Mario Baldi, Patricia Lago, Gian-

pietro Picco, Alfonso Fuggetta, Alessandro Bonaudo, and Marco Torchiano.

Thanks to Reidar Conradi and Alf Inge Wang for comments and discussions

about this chapter.

References

1. Vincenzo Ambriola, Paolo Ciancarini, and Carlo Montangero. Software Pro­
cess Enactment in Oikos. In Proc. 4th ACM SIGSOFT Symposium on Soft­
ware Development Environments, Irvine, California, pages 183-192, 1990.

2. Mario Baldi and Letizia Jaccheri. An exercise in modeling a real software
process. In AICA Italian Annual Conference, 1995.

3. Sergio Bandinelli, Alfonso Fuggetta, and Carlo Ghezzi. Software Process as
Real-Time Systems: A Case Study Using High Level Petri Nets. In 9 , 1991.

4. Sergio Bandinelli, Alfonso Fuggetta, and Carlo Ghezzi. Software Process
Model Evolution in the SPADE Environment. IEEE Trans, on Software En­
gineering, pages 1128-1144, December 1993. (special issue on Process Model
Evolution).

5. Noureddine Belkhatir, Jacky Estublier, and Walcelio L. Melo. ADELE2 - An
Approach to Software Development Coordination. In 9 , pages 89-100, 1991.

6. Andreas Birk, Torgeir Dings0yr, and Tor Stalhane. Postmortem: Never leave
a project without it. IEEE Software, 19(3):43-45, 2002.

200 L. Jaccheri

7. Peter Coad and Edward Yourdon. Object-Oriented Analysis. Prentice Hall,
Englewood Cliffs, first edition, 1990.

8. Reidar Conradi, Espen Osjord, Per H. Westby, and Chunnian Liu. Initial
Software Process Management in EPOS. Software Engineering Journal (Spe­
cial Issue on Software process and its support), 6(5):275-284, September 1991.

9. Alfonso Fuggetta, Reidar Conradi, and Vincenzo Ambriola, editors. Proceed­
ings of the First European Workshop on Process Modeling (EWPM'91), CE-
FRIEL, Milano, Italy, 30-31 May, 1991. Italian Society of Computer Science
(AICA) Press.

10. Alfonso Fuggetta and Letizia Jaccheri. Dynamic partitioning of complex pro­
cess models. Information & Software Technology, 42(4):281-291, 2000.

11. Peter B. Henderson, editor. Proc. 3rd ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Development Environments
(Boston), 257 p., November 1988. In ACM SIGPLAN Notices 24(2), Feb.
1989.

12. Letizia Jaccheri. E3 project, web: http://www.idi.ntnu.no/~letizia/e3.html,
April 2004.

13. Letizia Jaccheri, Mario Baldi, and Monica Divitini. Evaluating the require­
ments for software process modeling languages and systems. In WORLD
MULTICONFERENCE SCI/ISAS'99, International Workshop on Process
support for Distributed Team-based Software Development (PDTSD'99), July
1999.

14. Letizia Jaccheri and Reidar Conradi. Techniques for Process Model Evolution
in EPOS. IEEE Trans, on Software Engineering, pages 1145-1156, December
1993. (special issue on Process Model Evolution).

15. Letizia Jaccheri and Silvano Gai. Initial Requirements for E : an Environ­
ment for Experimenting and Evolving Software Processes. In J.-C. Derni-
ame (ed.): Proc. EWSPT'92, Sept. 7-8, Trondheim, Norway, Springer Verlag
LNCS 635, pages 98-101, September 1992.

16. Letizia Jaccheri, Gian Pietro Picco, and Patricia Lago. Eliciting software pro­
cess models with the e3 language. ACM Transaction on Software Engineering
Methodology, 7(4):368-410, 1998.

17. Letizia Jaccheri and Tor Stalhane. Evaluation of the E3 Process modelling
language and tool for the purpose of model creation. In PROFES 2001, 3rd
International Conference on Product Focused Software Process Improvement,
Kaiserslautern, Germany, September 2001.

18. M. M. Lehman and L. A. Belady. Program Evolution — Processes of Software
Change. Academic Press, 538 p., 1985.

19. Sun Microsystems. The Java language: A white paper. Available at
http://www.java.sun.com, 1994.

20. Object Management Group. Object Management Architecture Guide,
September 1990.

21. Richard N. Taylor, Frank C. Belz, Lori A. Clarke, Leon Osterweil, Richard W.
Selby, Jack C. Wileden, Alexander L. Wolf, and Michael Young. Foundations
for the Arcadia Environment Architecture. In n , pages 1-13, November 1988.

22. Claes Wohlin, Per Runeson, Martin Host, Magnus C. Ohlsson, Bjorn Regnell,

http://www.idi.ntnu.no/~letizia/e3.html
http://www.java.sun.com

Requirements and validation of the ES process modeling system 201

and Anders Wesslen. Experimentation in software engineering: an introduc­

tion. Kluwer Academic Publishers , 2000.

This page is intentionally left blank

INDEX

A

Abstraction sheet 137, 138
Amadeus 132
Analysis 167
Assessment 167

B

BSCW 166

C

Case-based reasoning 58
Causal-loop 27, 29, 33
CMM 129
Collaboration... 123,146, 158, 164,

175
Collective learning 58
Comparison 167
Condition checkers 163
COPE 144
CSCW 153, 164

D

Decision-making 21, 36, 53
Decision support 57, 58, 59, 60,

61,71
Descriptive Process Modeling

130,131
Discovering processes 9
Documentation Generation 140

Domain model 95, 100
Domain classes 94, 98

Class behavior 95, 98, 99
Class instances 95, 102
Class properties 95, 98

Relationships 95, 100, 103
Auto-relationship 95
Multirelationships 100

Dynamic behavior 62, 68, 88
Dynamic model..22, 23, 34, 35, 36,

37,38,39,40,41,43,44,45,
46,48

E

Earned-value 168
Electronic Process Guide 142
Enactment Support.... 126, 171, 175
Enhanced SD Model 68
EPG 142,145,146,157
Estimation models 23, 40, 46
Experience factory 58
Experience-based learning 58

F

Feedback loops...24, 27, 28, 30, 34,
41

G

Generic Workspace 150
Goal Question Metric 126,134

204 Index

GQM 66, 67, 79, 126,134, 135,
139, 157

Guidance 149, 168

I

IMMoS.. 63, 65, 66, 67, 68, 69, 70,
71,72,80,87

IMMoS Process Model 69
Improvement 21, 22, 23, 25, 34,

36,39,40,41,43,45,47,48,
52, 53, 54

Initial SD model 68, 69

L

LEU 171

M

Maturity level.... 23, 34, 36, 37, 38,
40,41,42,43,46,52,53

Measurement 59, 66, 67, 128,
134, 135, 139

Measurement data 67, 121, 126,
128,133,134, 135, 140, 153,
156, 170, 172, 174

Measurement Plan... 135, 136, 139,
153

Measurement rules 86
Measurement values 83
Metric 135, 137, 139
Metrics.... 21, 34, 36, 39,45, 46, 53
Modeling 21, 22, 23, 25, 26, 39,

41,43,46,52,53,54,55,56,57
Modeling process 13
Monitoring 167
Multi-View Modeling 131
MVM 131

N

NetBeans 1,2, 7-17

O

Object-orientation 184-187
Open source software development

(OSSD) 1,2,17
OSSD processes 3, 18
OSSD processes modeling 3

P

PAL 129
Peopleware 2
Planning 127, 154, 168
Pl@za 165, 166
PL-SIM 70,71,79
PMC Tool Suite 144
Prediction 167
Prescriptive Process Modeling

130, 131, 132
Process Asset 128, 129
Process Definition 128, 129
Process Discovery 1-9, 17-18
Process Documentation.... 121, 126,

140,145,151,163
Process Handbook.... 143, 146, 151,

161,171
Process Information. 121, 122, 126,

127,140, 141, 158, 174
Process Knowledge... 121, 126,128
Process Modeling...5, 9, 21, 22, 23,

25, 46, 52, 54, 66, 67
Process Simulation...61, 62, 63, 69,

70,87
Process Status 128, 131
Process Views 188, 190
ProcessWEAVER 171

Index 205

QIP 157,172
Quality Improvement Paradigm

157,172

Reference mode 68, 73, 76, 77
Research method and research

questions 182
RESIM 69, 70, 71, 72
Role-based Workspace 146, 147

Scenario models 94, 107, 108
Scenario activation 95, 110,

114, 115
Scenario connection 95, 96,

110-111, 114
Scenario constraint... 95, 96, 112

SD 64, 67, 68, 69, 73, 76
SD development life cycle 65
SD model developer 66
SD model development.. 65, 66, 68
SD model equations 64
SD model user 68
SD model users 67
SD modeling 66
SD modeling activity 65
SD modeling approach 67
SD modeling artifacts 68
SD modeling goal 65, 66, 67
SD modeling life cycle 67
SD modeling project 66, 67
SD modeling tool 67
SD models 64, 65, 66, 67
SD simulation modeling 66, 67
SEDS 59, 60, 61, 71, 87, 88
SEL 155

Simulation 21,22, 23, 24, 25, 26,
30,31,34,35,36,37,38,39,
40,45, 47,48, 49, 50, 52, 53,
54

Simulation modeling 57, 62, 63,
64,71,86,87

Simulation modeling goal69, 70,
71

SME 155,167,170
Software Engineering Laboratory...

155
Software Entity 134
Software Management

Environment 155, 167
Software process 21, 22, 23, 24,

25,26,27,29,34,39,40,41,
43,44, 46, 47, 48, 52, 53, 54

Software process management....58
Software process simulation 57,

59,88
Software process simulation

applications 63
Software project..24, 41, 42, 46, 48
Software Project Control Center

152, 154, 158, 167
Software requirement volatility...72
SPCC 154, 155,156, 167
SPEARMINT®/EPG 142, 144
Specific Workspace 148
Sprint 1 169
System Dynamics (SD) 64
System dynamics 26, 27, 32, 91,

92,93
System dynamics metamodel.... 94,

100, 102, 105, 107
Domain modeling 96, 98
Hector tool 103
ILLIUMtool 103
Model compilation 96, 103
Model instantiation 96, 102
Scenario-based project

management 118

206 Index

V W

Validation 193 Whiteboard 165
Visualization Catena 157 Workflow Management 171

Workspace 121, 126, 140, 146,
147, 148, 158, 159, 174

ftware Process
m Modeling

Over the years, a variety of software process models
have been designed to structure, describe and
prescribe the software systems construction process.
More recently, software process modeling is
increasingly dealing with new challenges raised
by the tests that the software industry has to face.

I his book addresses these new trends in software
process modeling related to:

1. Processes for open source software;
2. Systems dynamics to model and simulate the

software process;
i. Peopleware: the importance of people in tin-

software development and by extension in
the software process.

One new software development trend is the
development of open source projects. As such
projects are .1 recent creation, the process model
governing this type " I developments is unfamiliar.
This book (Kills wiih process modeling for open
source software. It also deals with software process
simulation applied to the management of software
projects and improves the software development
process capability according to CMM (Capability
Maturity Model).

'orld Scientific

5995 he

9 "789812"566195"
www.worldscientific.com

http://www.worldscientific.com

	CONTENTS���������������
	Preface��������������
	Chapter 1 Discovering, Modeling, and Re-enacting Open Source Software Development Processes: A Case Study

	1. Introduction����������������������
	2. Related Work����������������������
	3. Problem Domain������������������������
	4. Field Site and Process Description��
	5. Process Discovery and Modeling��
	6. Process Re-enactment for Deployment, Validation, and Improvement
	7. Conclusion��������������������
	References�����������������

	Chapter 2 Software Process Dynamics: Modeling, Simulation and Improvement
	1. Introduction����������������������
	2. Software Process Simulation�������������������������������������
	3. Dynamic Integrated Framework for Software Process Improvement: Conceptual Approach��
	4. Framework Structure and Module Architecture���
	5. Integrated Techniques�������������������������������
	6. Implementation of the Framework���
	7. Example of Usage��������������������������
	8. Conclusions and Outlook���������������������������������
	References�����������������

	Chapter 3 Software Process Simulation with System Dynamics - A Tool for Learning and Decision Support��
	1. Learning and Decision Support in the Context of Software Process Management���
	2. Process Simulation as a Tool for Learning and Decision Support��
	3. Guidance for System Dynamics Process Simulation Modeling��
	4. Applications in the Automotive Industry���
	5. Conclusion��������������������
	References�����������������

	Chapter 4 High Level Software Project Modeling with System Dynamics��
	1. The Need for High Level Modeling��
	2. Definitions���������������������
	3. The Modeling Process������������������������������
	4. An Application of the Modeling Process��
	5. The Simulation Process��������������������������������
	6. An Application of the Simulation Process��
	7. Final Considerations and Outlook��
	References�����������������

	Chapter 5 People-Oriented Capture, Display, and Use of Process Information
	1 Introduction���������������������
	2 Capturing Process Information��������������������������������������
	3 Displaying Process Information���������������������������������������
	4 Using Process Information����������������������������������
	5 Summary����������������
	References�����������������

	Chapter 6 Requirements and Validation of the E3 Process Modeling System��
	1. Introduction����������������������
	2. On the nature of the E3 requirements��
	3. E3 (version 2) PML and system: a summary��
	4. Discussion��������������������
	5. Conclusions and further work��������������������������������������
	References�����������������

	Index������������

