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Abstract. Partially synthetic data comprise the units originally sur-
veyed with some collected values, such as sensitive values at high risk
of disclosure or values of key identifiers, replaced with multiple draws
from statistical models. Because the original records remain on the file,
intruders may be able to link those records to external databases, even
though values are synthesized. We illustrate how statistical agencies can
evaluate the risks of identification disclosures before releasing such data.
We compute risk measures when intruders know who is in the sample
and when the intruders do not know who is in the sample. We use clas-
sification and regression trees to synthesize data from the U.S. Current
Population Survey.
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1 Introduction

Several national statistical agencies disseminate multiply-imputed, partially syn-
thetic data to the public. These comprise the units originally surveyed with only
some collected values replaced with multiple imputations [1,2]. For example,
in the Survey of Consumer Finances, the U.S. Federal Reserve Board replaces
monetary values at high disclosure risk with multiple imputations, releasing a
mixture of imputed values and the not replaced, collected values [3]. The U.S.
Bureau of the Census protects data in the Survey of Income and Program Par-
ticipation [4] and in longitudinal business databases [5,6] by replacing all values
of sensitive variables with multiple imputations, leaving non-sensitive variables
at their actual values. They also have created synthesized origin-destination ma-
trices, i.e. where people live and work, available to the public as maps via the
web (On The Map, http://lehdmap.did.census.gov/). They plan to protect the
identities of people in group quarters (e.g., prisons, shelters) in the American
Communities Survey by replacing quasi-identifiers for records at high disclosure
risk with imputations. Partially synthetic, public use data are being developed
for the Longitudinal Business Database, the Longitudinal Employer-Household
Dynamics survey, and the American Communities Survey veterans and full sam-
ple data. Other examples of partially synthetic data are in [7,8,9,10].
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Because the original records remain on the file, intruders may be able to link
those records to external databases, even though values are synthesized. It is
prudent for agencies to assess the risks of such identification disclosures before
releasing the file. When they are too high, additional synthesis or some other
action is needed before release. In this article, we illustrate how to compute risks
of identification disclosure for partially synthetic data using a subset of the U. S.
Current Population Survey. We show how to incorporate intruders’ uncertainty
about which records are in the sample and how to assess different synthesis
strategies. We also illustrate an application of classification and regression tree
methodology for generating partially synthetic data.

2 Review of Partially Synthetic Data

The agency constructs partially synthetic datasets based on the s records in
the observed data, Dobs, in a two-part process. First, the agency selects the
values from the observed data that will be replaced with imputations. Second,
the agency imputes new values to replace those selected values. Let Yrep,i be all
the imputed (replaced) values in the ith synthetic dataset, and let Ynrep be all
unchanged (not replaced) values. The values in Ynrep are the same in all syn-
thetic datasets. Each synthetic dataset, Di, is then comprised of (Yrep,i, Ynrep).
Imputations are made independently for i = 1, . . . , m times to yield m different
synthetic datasets. These synthetic datasets are released to the public.

When using parametric imputation models, the Yrep,i should be generated
from the Bayesian posterior predictive distribution of (Yrep,i|Dobs), or some ap-
proximation to it such as the sequential regression imputation methods [11].
In this article, we generate the Yrep,i from a series of regression tree (CART)
models. These models are described in Section 4.1.

Inferences about some scalar estimand, say Q, are obtained by combining
results from the Di. Specifically, suppose that the data analyst estimates Q with
some point estimator q and estimates the variance of q with some estimator v.
For i = 1, . . . , m, let qi and vi be respectively the values of q and v in Di. It
is assumed that the analyst determines qi and vi as if Di was in fact a random
sample collected with the original sampling design. The following quantities are
needed for inferences for scalar Q:

q̄m =
m∑

i=1

qi/m (1)

bm =
m∑

i=1

(qi − q̄m)2/(m − 1) (2)

v̄m =
m∑

i=1

vi/m . (3)

The analyst then can use q̄m to estimate Q and

Tp = bm/m + v̄m (4)
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to estimate the variance of q̄m. When s is large, inferences for scalar Q can be
based on t-distributions with degrees of freedom νp = (m − 1)(1 + r−1

m )2, where
rm = (m−1bm/v̄m). Derivations of these methods are presented in [2]. Extensions
for multivariate Q are presented in [12].

3 Identification Disclosure Risk Measures for Partial
Synthesis

To evaluate disclosure risks, we compute probabilities of identification by fol-
lowing the approach in [13]. Related approaches for non-synthetic data are
in [14,15,16,17]. Roughly, in this approach we mimic the behavior of an ill-
intentioned user of the released data who possesses the true values of the
quasi-identifiers for selected target records (or even the entire population). The
intruder has a vector of information, t, on a particular target unit in the popu-
lation which may or may not correspond to a unit in the m partially synthetic
datasets, D = {D1, . . . , Dm}. Let t0 be the unique identifier (e.g., full name and
address of a survey respondent) of the target, and let dj0 be the (not released)
unique identifier for record j in D, where j = 1, . . . , s. Let M be any information
released about the simulation models.

The intruder’s goal is to match unit j in D to the target when dj0 = t0, and not
to match when dj0 �= t0 for any j ∈ D. Let J be a random variable that equals
j when dj0 = t0 for j ∈ D and equals s + 1 when dj0 = t0 for some j �∈ D. The
intruder thus seeks to calculate the Pr(J = j|t,D, M) for j = 1, . . . , s + 1. He
or she then would decide whether or not any of the identification probabilities
for j = 1, . . . , s are large enough to declare an identification. Let Yrep be all
original values of the variables that were synthesized. Because the intruder does
not know the actual values in Yrep, he or she should integrate over its possible
values when computing the match probabilities. Hence, for each record in D, we
compute

Pr(J = j|t,D, M) =
∫

Pr(J = j|t,D, Yrep, M)Pr(Yrep|t,D, M)dYrep . (5)

This construction suggests a Monte Carlo approach to estimating each Pr(J =
j|t,D, M). First, sample a value of Yrep from Pr(Yrep|t,D, M). Let Y new rep-
resent one set of simulated values. Second, compute Pr(J = j|t,D, Yrep =
Y new, M) using exact or, for continuous synthesized variables, distance-based
matching assuming Y new are collected values. This two-step process is iterated
R times, where ideally R is large, and (5) is estimated as the average of the resul-
tant R values of Pr(J = j|t,D, Yrep = Y new, M). When M has no information,
the intruder can treat the simulated values in each Yrep,i as plausible draws of
Yrep.

To illustrate, suppose that age, race, and sex are the only quasi-identifiers in
a survey of households. The agency releases m > 1 partially synthetic datasets
with all values of race and age synthesized and sex not changed. We suppose
that the agency does not release any information about the imputation model
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but does reveal which variables are synthesized. Suppose that an intruder seeks
to identify a white male aged 45, and he knows that this target is in the sample.
In each Di, the intruder would search for all records matching the target on
age, race, and sex. Let Nt,i be the number of matching records in Di, where
i = 1, . . . , m. When no one with all of those characteristics is in Di, set Nt,i

equal to the number of males in Dobs, i.e., match on all non-simulated quasi-
identifiers. For j = 1, . . . , s,

Pr(J = j|t,D, M) = (1/m)
∑

i

(1/Nt,i)(Y new
ij = t) , (6)

where (Y new
ij = t) = 1 when record j is among the Nt,i matches in Di and equals

zero otherwise. We note that Pr(J = s + 1|t,D, M) = 0 because the intruder
knows this target is in the sample.

Now suppose that the intruder does not know that this target is in the sample.
For j = 1, . . . , s, we have to replace Nt,i in (6) with Ft, the number of records in
the population that match the target on age, race, and sex. When the intruder
and the agency do not know Ft, it can be estimated using the approach in [17],
which assumes that the population counts follow an all-two-way-interactions log-
linear model. The agency can determine the estimated counts, F̂t, by fitting this
log-linear model with Dobs. Alternatively, since Dobs is in general not available
to intruders, the agency can fit a log-linear model with each Di, resulting in
the estimates F̂t,i for i = 1, . . . , m. We note that Pr(J = s + 1|t,D, M) =
1 −

∑s
j=1 Pr(J = j|t,D, M).

For some target records, the value of Nt,i might exceed Ft (or F̂t if it is used).
It should not exceed F̂t,i, since F̂t,i is required to be at least as large as Nt,i.
For such cases, we presume that the intruder sets Pr(J = s + 1|t,D, M) = 0
and picks one of the matching records at random. To account for this case, we
can re-write (6) for j = 1, . . . , s as

Pr(J = j|t,D, M) = (1/m)
∑

i

min (1/Ft, 1/Nt,i) (Y new
ij = t) . (7)

As suggested in [16], we quantify disclosure risks with summaries of the iden-
tification probabilities in (6) and (7). It is reasonable to assume that the intruder
selects as a match for t the record j with the highest value of Pr(J = j|t,D, M),
if a unique maximum exists. We consider three disclosure risk measures. To cal-
culate these measures, we need some further definitions. Let T = {t1, . . . , t|T|}
be the set of the intruder’s targets. Let cj be the number of records in the released
data with the highest match probability for the target tj ; let Ij = 1 if the true
match is among the cj units and Ij = 0 otherwise. Let Kj = 1 when cjIj = 1 and
Kj = 0 otherwise. The expected match risk is defined as

∑
j∈T (1/cj)Ij . When

Ij = 1 and cj > 1, the contribution of unit j to the expected match risk reflects
the intruder randomly guessing at the correct match from the cj candidates.
The true match risk equals

∑
j∈T Kj . Finally, we introduce the true match rate

equal to
∑

j∈T Kj/
∑

j∈T (cj = 1), which is the percentage of true matches for
the targets that have a unique match in D.
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Table 1. Description of variables used in the empirical studies

Variable Label Range

Sex X male, female
Race R white, black, American Indian, Asian
Marital status M 7 categories, coded 1–7
Highest attained education level E 16 categories, coded 31–46
Age (years) G 0 – 90
Child support payments ($) C 0, 1 – 23,917
Social security payments ($) S 0, 1 – 50,000
Household alimony payments ($) A 0, 1 – 54,008
Household property taxes ($) P 0, 1 – 99,997
Household income ($) I -21,011 – 768,742

4 Empirical Evaluation

We simulate partial synthesis for a subset of public release data from the March
2000 U.S. Current Population Survey. The data comprise ten variables measured
on N = 51, 016 heads of households. The variables, displayed in Table 1, were
selected and provided by statisticians at the U.S. Bureau of the Census. Similar
data are used in [18] to illustrate and evaluate releasing fully synthetic data.

Marginally, there are ample numbers of people in each sex, race, marital sta-
tus, and education category. Many cross-classifications have few people, espe-
cially those involving minorities with M �∈ {1, 7}. There are 521 records with
unique combinations of age, race, marital status, and sex. There are 284 com-
binations of the four variables that have only two records in the dataset. There
are 2064 empty cells in the four-way contingency table.

We treat the N records as a population and take a random sample of n =
10, 000 for Dobs. We consider age, race, marital status, and sex to be quasi-
identifiers that intruders may know precisely. Cross-classification of these four
variables in the sample yields 473 sample uniques, 241 duplicates and 2909 empty
cells in the four-way contingency table. Intruders might have access to other
variables on the file, such as property taxes. Thus, the computations in this
section serve to illustrate our suggested disclosure risk measures rather than to
evaluate the actual disclosure risks for this specific dataset (which is already in
the public domain).

We generate synthetic datasets for each of two scenarios: replace all values
of age, marital status, and race without changing sex; and, replace all values of
marital status and race without changing age and sex. The synthetic data are
generated using regression trees, as we now describe.

4.1 CART Synthesis Models

CART models are a flexible tool for estimating the conditional distribution of a
univariate outcome given multivariate predictors. Essentially, the CART model
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partitions the predictor space so that subsets of units formed by the partitions
have relatively homogeneous outcomes. The partitions are found by recursive
binary splits of the predictors. The series of splits can be effectively represented
by a tree structure, with leaves corresponding to the subsets of units.

CART models also can be used to generate partially synthetic data [19]. To
synthesize all values of age, marital status, and race, we proceed as follows. First,
using Dobs we fit the tree of age on all other variables except race and marital
status. Label this tree Y(G). We require a minimum of five records in each leaf of
the tree and do not prune it; see [19] for discussion of pruning and minimum leaf
size. Let LGw be the wth leaf in Y(G), and let Y LGw

(G) be the nLGw values of Y(G)

in leaf LGw. In each LGw in the tree, we generate a new set of values by drawing
from Y LGw

(G) using the Bayesian bootstrap [20]. These sampled values are the
replacement imputations for the nLGw units that belong to LGw. Repeating the
Bayesian bootstrap in each leaf of the age tree results in the ith set of synthetic
ages, Y(G)rep,i.

To avoid releasing only values of the observed ages in each leaf, we could
take an additional step suggested in [19]. In each leaf, we could estimate the
density of the bootstrapped values using a Gaussian kernel density estimator
with support over the smallest to the largest value of Y(G). Then, for each unit,
we would sample randomly from the estimated density in that unit’s leaf using
an inverse-cdf method. The sampled values rounded to the nearest integer would
be the Y(G)rep,i. We do not take this extra step here.

Imputations are next made for marital status. Using Dobs, we fit the tree,
Y(M), with all variables except race as predictors. To maintain consistency with
Y(G)rep,i, units’ leaves in Y(M) are located using Y(G)rep,i. Occasionally, some
units may have combinations of values that do not belong to one of the leaves of
Y(M). For these units, we search up the tree until we find a node that contains the
combination, then treat that node as if it were the unit’s leaf. Once each unit’s
leaf is located, values of Y(M)rep,i are generated using the Bayesian bootstrap.
Imputing races follows the same process: we fit the tree Y(R) using all variables as
predictors, place each unit in the leaves of Y(R) based on their synthesized values
of age and marital status, and sample new races using the Bayesian bootstrap.

The process is repeated independently m = 5 times. These m datasets would
be released to the public. All CART models are fit in S-Plus using the “tree”
function. It takes about five minutes to generate five synthetic datasets with all
three variables. The sequential order of imputation is G − M − R; see [19] for a
discussion of the ordering of the trees. The synthesis of only marital status and
race is similar except that the process begins with marital status. Although we
use the CART method only to generate categorical data, it is straightforward to
apply the method to generate continuous variables [19].

4.2 Data Utility

Evaluating disclosure risk is, of course, only part of the story. We could cre-
ate completely worthless data and have very low disclosure risks. Hence, it is
important to examine data usefulness when evaluating disclosure risks.
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Table 2. Point estimates and standard errors for observed data, synthetic data with
age not replaced, and synthetic data with age replaced

Observed Data True Age Synth. Age
Estimand qobs (SE) q̄5 (

√
Tp) q̄5 (

√
Tp)

Avg. education for married black females 39.5 (.21) 39.6 (.21) 39.7 (.20)
Coefficient in regression of

√
C on:

Intercept -94.5 (27) -94.5 (27) -95.3 (27)
Female 12.5 (5.4) 12.4 (5.4) 12.2 (5.4)
Non-white -1.72 (4.7) -0.34 (4.9) -0.53 (4.8)
Education 3.44 (0.6) 3.44 (.60) 3.46 (0.6)
Number of youths in house 1.33 (1.6) 1.34 (1.6) 1.37 (1.6)

Coefficient in regression of
√

S on:
Intercept 81.0 (4.5) 78.1 (4.6) 79.4 (4.9)
Female -11.1 (1.1) -11.1 (1.1) -10.6 (1.1)
Black -7.0 (1.6) -6.3 (1.9) -5.3 (1.8)
American Indian -8.2 (4.7) -8.9 (7.1) -10.8 (5.5)
Asian 0.1 (3.3) -3.1 (3.8) 2.3 (3.7)
Widowed 5.0 (1.2) 4.7 (1.2) 4.3 (1.2)
Divorced -3.0 (1.7) -0.3 (1.8) 0.3 (1.8)
Single -1.4 (2.1) 2.0 (2.1) 3.5 (2.2)
High school 3.6 (1.1) 3.8 (1.1) 3.8 (1.1)
Some college 5.2 (1.3) 5.1 (1.3) 5.7 (1.3)
College degree 8.3 (1.7) 8.3 (1.7) 8.1 (1.7)
Advanced degree 10.1 (2.1) 9.8 (2.2) 9.8 (2.2)
Age 0.22 (.06) 0.25 (.06) 0.23 (.07)

Coefficient in regression of log(I) on
Intercept 4.80 (.10) 4.78 (.10) 4.82 (.15)
Black -0.14 (.03) -0.16 (.03) -0.12 (.03)
American Indian -0.20 (.07) -0.21 (.09) -0.12 (.08)
Asian -0.01 (.05) 0.04 (.06) 0.01 (.05)
Female 0.02 (.02) 0.01 (.03) -0.002 (.03)
Married in armed forces -0.04 (.10) -0.30 (.15) -0.19 (.11)
Widowed -0.07 (.06) -0.17 (.07) -0.30 (.08)
Divorced -0.11 (.04) -0.14 (.05) -0.13 (.04)
Separated -0.28 (.09) -0.13 (.11) -0.24 (.10)
Single -0.15 (.04) -0.11 (.04) -0.12 (.04)
Education 0.113 (.003) 0.113 (.003) 0.114 (.003)
Household size > 1 0.54 (.03) 0.54 (.03) 0.52 (.03)
Females married in armed forces -0.49 (.14) -0.22 (.16) -0.39 (.14)
Widowed females -0.27 (.07) -0.15 (.07) -.07 (.08)
Divorced females -0.34 (.05) -0.31 (.06) -0.33 (.06)
Separated females -0.45 (.11) -0.48 (.13) -0.41 (.12)
Single females -0.35 (.05) -0.37 (.05) -0.33 (.05)
Age 0.043 (.003) 0.043 (.003) .041 (.003)
Age2 ×1000 -0.42 (.03) -0.42 (.03) -0.41 (.03)
Property tax ×10000 0.27 (.03) 0.29 (.03) 0.29 (.03)

Child support regression fit using records with C > 0. Social security regression fit
using records with S > 0 and G > 54. Income regression fit using records with I > 0.
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Table 2 provides some evidence of the usefulness of the five synthetic datasets.
It displays the point estimates and standard errors for several quantities based
on the observed and partially synthetic data. Synthetic estimates are computed
from the m = 5 datasets using the methods described in Section 2. The synthetic
data point estimates are generally within two standard errors of the observed
data point estimates. The biggest differences are for quantities associated with
small sub-groups, such as married in the armed forces. We believe that the results
in Table 2 are evidence of good quality, especially since the regressions involved
subsets of data, transformations of variables, and interaction effects. We note
that these results were obtained without any tuning other than to decide on the
minimum number of records for each leaf and the order of synthesis. We also
note that the results for synthesizing or not synthesizing age are similar.

4.3 Disclosure Risk

We consider four scenarios with different assumptions about the information
available to the intruder. Across all scenarios, we assume the intruder knows the
sex, age, race and marital status of some target records, for example from an
external database.

– Scenario I: the intruder knows the identifiers for 10,000 randomly specified
units in the population but does not know who is in the survey.

– Scenario II: the intruder knows the identifiers for 10,000 randomly specified
units in the population and knows who is in the survey.

– Scenario III: the intruder knows the identifiers for all N = 51, 016 units in
the population but does not know who is in the survey.

– Scenario IV: the intruder knows the identifiers for all N = 51, 016 units in
the population and knows who is in the survey.

For Scenarios I and II, 1,968 of the intruder’s target records are included in Dobs.
For Scenario I, we estimate each F̂t,i by fitting the all-two-way-interactions log-
linear model on each Di. An intruder might do this if he is unsure whether or
not his 10, 000 records are representative of the population. It is prudent for
the agency to assess the disclosure risk using estimated counts based on Dobs
as well. For Scenario III, the intruder presumably would use the known values
of Ft. For interest, we report the results for the first and third scenarios using
both estimated and true population counts.

For Scenarios I and III, we consider three intruder strategies. The first is
that the intruder matches to the released data no matter what the value of
Pr(J = s + 1|t,D, M). That is, the intruder ignores the chance that a record
is not in the sample. The second is that the intruder matches to the released
data only when Pr(J = s + 1|t,D, M) < γ, where 0 < γ < 1. The third is that
the intruder does not match whenever Pr(J = s + 1|t,D, M) is the maximum
probability for the target.

We compare the risks when only race and marital status are synthesized to
the risks when age, race, and marital status are synthesized.
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Table 3. Disclosure risks when only marital status and race are synthesized and in-
truder matches regardless of the value of Pr(J = s + 1|t, D, M)

Scen. I Scen. II Scen. III Scen. IV
Ft F̂t,i Ft F̂t,i

Expected match risk 72.3 71.6 74.7 367.8 361.1 365.1
True match risk 26 40 37 131 201 172
Number of single matches 1,942 3,445 593 9,769 17,555 2,905
True match rate (%) 1.34 1.16 6.24 1.34 1.14 5.92

Synthesis of Race and Marital Status Only. Table 3 displays the risk
measures when age is left unchanged and the intruder matches regardless of the
value of Pr(J = s + 1|t,D, M). In all scenarios, the great majority of declared
matches are incorrect, as evident by the low true match rates. True match rates
are highest when the intruder knows who is in the sample, as might be expected.
Given T, the expected match risk measures are very similar for an intruder with
response knowledge and an intruder not knowing who participated in the survey.
The true match risk measures are higher when using the F̂t,i instead of Ft. This
is because the number of matches with cj = 1 is higher when matching with F̂t,i
instead of Ft, as evident in the third row of the table.

Naturally, the numbers of expected and true matches increase when the in-
truder has information for the whole population rather than only for a sam-
ple. Quite simply, there are more targets to match. The expected and true risk
measures when only around 2000 records are in T ∩ Dobs are roughly 1/5 the
magnitudes when all 10000 records in D are in T ∩ Dobs.

The results in Table 3 presume that the intruder always considers the record
j with maximum Pr(J = j|t,D, M), where j = 1, . . . , s a match no matter
how small this maximum is. With this strategy, the number of true matches
is swamped by the number of false matches. For targets with J = s + 1 as
the maximum match probability, the intruder might not match if he deems
Pr(J = s + 1|t,D, M) to be too high, say exceeding a threshold γ. Large values
of γ result in a higher number of true and false matches. Small values of γ reduce
the chance of false matches but miss out on some true matches. Table 4 presents
the risk measures for Scenario I and III using γ = 0.5. As expected, there is a
reduction in both the number of true matches and the total number of single
matches. In fact, in Scenario I the intruder detects very few correct matches.
However, in both scenarios the true match rate increases from around 1% to at
least 8%.

The intruder also might choose not to match for targets with Pr(J = s +
1|t,D, M) ≥ Pr(J = j|t,D, M) for j = 1, . . . , s. Applying this strategy, the
intruder obtains 2 true matches (with a match rate of 50%) in Scenario I and 6
true matches (with a match rate of 20%) in Scenario III.

Synthesis of Age, Race, and Marital Status. The agency may decide that
the disclosure risks are too high when synthesizing only race and marital status.
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Table 4. Disclosure risks for Scenario I and III when only marital status and race are
synthesized and the intruder matches if Pr(J = s + 1|t, D, M) ≤ 0.5

Scen. I Scen. III
Ft F̂t,i Ft F̂t,i

Expected match risk 3 1 9.5 6
True match risk 3 1 9 6
Number of single matches 17 11 102 64
True match rate (%) 17.65 9.09 8.82 9.37

Table 5. Disclosure risks when age, marital status, and race are synthesized and in-
truder matches regardless of the value of Pr(J = s + 1|t, D, M)

Scen. I Scen. II Scen. III Scen. IV
Ft F̂t,i Ft F̂t,i

Expected match risk 3.5 3.0 4.2 14.0 14.7 16.0
True match risk 2 3 3 4 12 12
Number of single matches 2,651 6,879 1,252 13,641 34,972 6,359
True match rate (%) 0.075 0.044 0.240 0.029 0.034 0.189

Table 6. Disclosure risks for Scenario I and III when age, marital status, and race are
synthesized and the intruder matches if Pr(J = s + 1|t, D, M) ≤ 0.5

Scen. I Scen. III
Ft F̂t,i Ft F̂t,i

Expected match risk 0 0 0 0
True match risk 0 0 0 0
Number of single matches 6 6 48 41
True match rate (%) 0 0 0 0

Table 5 displays the results if age is also synthesized, assuming that the intruder
matches no matter what. The risks decrease significantly. The true match rate
drops well below 1% for all scenarios. Table 6 displays the risks when the intruder
matches only if Pr(J = s + 1|t,D, M) < 0.5. The intruder cannot detect any
correct matches.

Synthesizing age appears to reduce the disclosure risks substantially for this
dataset. Given the similarity in the data utility of the two approaches, we suspect
that many agencies would opt to synthesize age.

5 Concluding Remarks

The simulation results suggest several conclusions about disclosure risks in par-
tially synthetic data. These include:
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1. Knowing which targets are in the sample increases the true match rate com-
pared to not knowing which targets are in the sample, so that disclosure
risks increase.

2. Intruders who match to the synthetic data regardless of the value of Pr(J =
s + 1|t,D, M) can find more true matches at the expense of a higher false
match rate than intruders who would not match when Pr(J = s+1|t,D, M)
is large.

3. There are differences in the risk measures when using estimated population
counts versus true population counts. However, they tend to be small and
arguably not worth worrying about.

4. Synthesizing variables that are primary contributors to the disclosure risks,
in particular age, can reduce disclosure risks substantially.

In general, it is difficult for the agency to know what information is owned
by intruders. We recommend that the agency evaluate disclosure risks under
conservative but realistic assumptions of intruder knowledge. For example, to
begin, the agency can assume that intruders know exactly who is in the sample
and have correct values of all quasi-identifiers. The agency then can back off
these assumptions, for example assuming that intruders do not know who is in
the sample or that intruders do now know some quasi-identifiers. By computing
risk and utility under a variety of assumptions, the agency can decide if the
disclosure risks are adequately low for the proposed microdata release.
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