ABACUS, Vol. 41, No. 1, 2005
R. G. WALKER AND G. R. OLIVER

Accounting for Expenditure on Software
Development for Internal Use

The methods accepted by Australian, International, U.S. and U.K. Account-
ing Standards for the treatment of expenditure on software development
are inconsistent, and permissive. A host of methods for recording
capitalized software in terms of those standards is identified by reference
to an illustrative case study. It is questionable whether many in-house
developed software applications satisfy the professionally endorsed defini-
tion of ‘asset’. Moreover, even if accounting standards significantly reduce
the range of options for capitalizing expenditure on software development,
there would still be many values which could be assigned to capitalized
software. That suggests that those ‘measures’ are not reliable, so that it
would be inappropriate initially to recognize software expenditure as an
‘asset’. It is contended that expensing all outlays on software development
as they are incurred (accompanied by reporting that expenditure as a line
item in statements of financial performance, and expanded disclosures in
notes) is likely to provide a clearer and more useful report on business
operations than the alternative of capitalization, amortization and sub-
sequent assessments of whether or not recorded values should be adjusted
for ‘impairment’.

Key Words: Accounting; Capitalization; Enhancements; Expense; Intang-
ibles; Maintenance; Software development.

There are a variety of ways in which firms may incur costs on software. Many
organizations expend considerable sums on off-the-shelf or packaged software,
licence fees, maintenance and sponsored development. Some firms, particularly in
the financial services industry, adapt commercial packages to suit their own needs,
incurring considerable sums on preliminary analysis, programming and testing
before modifications are put into production. Some build their own applications.
Some develop application software for on-sale or licensing to other parties. This
article focuses on software development for internal use.

A major concern from an accounting perspective is the determination of what
software expenditure (if any) should be capitalized (i.e., treated as the purchase
of an asset), and what should be expensed? That judgment may have a material
effect on the content of financial reports to external stakeholders, particularly in
the determination of periodic profit. It also affects the information provided

R. G. WALKER (r.walker@econ.usyd.edu.au) is a Professor of Accounting and G. R. OLIVER a Lecturer
in Business Information Systems at The University of Sydney.

The authors wish to acknowledge the research assistance of Bernadette Carr, and the constructive
comments of referees and the editor.

66

ACCOUNTING FOR IN-HOUSE SOFTWARE EXPENDITURE

internally to boards and senior managers regarding the expenditure incurred
in providing a firm’s IT functions, and invested in new software development
projects. In recent years there has been a major shift in company ‘assets’ from
tangible to intangible (Aboody and Lev, 1998; Sullivan and Sullivan, 2000). Events
surrounding high profile firms which had previously reported high investments
in intangibles (e.g., Enron, Global Crossing, WorldCom) have focused attention
on the accounting treatments of so-called assets that are not saleable or otherwise
convertible into cash.

Preparers of financial statements may face incentives in the form of bonus
plans, performance-based remuneration or stock options to manipulate reported
profits to achieve targets or increase executive compensation (see, e.g., Healy,
1985; Holthausen et al., 1995; Healy and Wahlen, 1999). One key way to ‘manage
earnings’ or manipulate reported profits is to selectively capitalize expenditure
(such as on software development). For that reason alone, there is a case for clarity
in accounting rules governing the treatment of software expenditure.

Indeed, some indications about the significance of decisions to expense or
capitalize software are apparent from recent Australian annual reports or media
commentary:

e The telco Telstra Australia adopted the policy of recording direct costs as
software assets ‘where project success was regarded as probable’, and reported
$3,181 million in capitalized internal use software that was being amortized
over a ‘weighted average of 6 years for fiscal 2003 (2002: 5 years)’ (Telstra
Annual Report, 2003).

e The 2002 financial statements of the Commonwealth Government of Australia,
showed that $2.99 billion of capitalized software was valued at cost or replace-
ment cost, and was being amortized over periods as long as twenty-eight years
(Commonwealth Government of Australia, Consolidated Financial Statements
for the Year ended 30 June 2002).

e Australia’s four largest banks wrote-off more than $400 million of software
during 2002-3, while software capitalization reached $1.97 billion. Analysts
commented on a lack of ‘conservatism’, and suggested that amortization
rates affected ‘the quality of earnings’ (Australian Financial Review [AFR],
25 November 2003). Criticism was particularly directed at the National
Australia Bank, which reported $301 million in capitalized software and dis-
closed that it was amortizing information systems projects over three to ten
years (NAB Annual Report, 2003)—a period that media commentators
contrasted with ‘the usual timeframe of three to five years’ (AFR, 25 November
2003).

This article explores the options currently available to record software expendi-
ture in terms of conventional historical-cost based recording procedures (and in
the absence of accounting standards proscribing capitalization). It focuses on the
accounting treatments adopted by firms that develop software for their own use
or in servicing their clients (rather than for on-sale or licensing). Consideration is
given to whether in-house developed software could be regarded (or recognized)

67

ABACUS

as an ‘asset’ in terms of definitions and tests embodied in conceptual framework
documents, such as the Australian profession’s SAC 4 (AARF & AASB, 1995).
Notwithstanding the possibility that software development expenditure could be
regarded as an asset in terms of the profession’s current conceptual framework, it
is argued that the choice of what accounting treatment is appropriate should be
based on the decision-usefulness of the information produced by either capitalizing
or expensing outlays on software development for major users, such as managers,
directors and external stakeholders.

It is contended that expensing all expenditure on software development as it is
incurred, together with supplemental disclosures about expenditure on material
projects, is likely to provide a clearer and more useful report on business opera-
tions than the alternative of capitalizing elements of that expenditure, and then
amortizing that asset over subsequent periods. The latter accounting treatment
inevitably relies on a series of contestable assumptions so that the asset valuations
and cost data produced are incorrigible (i.e., impossible to verify or falsify; see
Thomas, 1974) and may distort reports of the profitability and financial position of
firms which are incurring major expenditure in this area, and may defy analysts’
attempts to unscramble the effect of a series of accounting choices.

ACCOUNTING TREATMENTS OF SOFTWARE EXPENDITURE

The term ‘software development’ is used here to refer to the processes of analysis,
design, programming, testing, implementation and ongoing modifications in order
to meet a stated business need. ‘Development is about extracting requirements
from the business and translating those into a solution” (White, 2001).

With few exceptions (e.g., Burns and Peterson, 1982; Paulsen, 1983; Gannon
and Parkinson, 1983; Berger, 1988; Aboody and Lev, 1998; AICPA, 1998, Dempsey,
1997), there has been little discussion in either the accounting or the information
systems literatures concerning the appropriate accounting treatment of expenditure
on in-house software development for internal use. Indeed, bodies responsible for
producing accounting standards have presented conflicting views on this subject.
Initially the U.S.A.’s Financial Accounting Standards Board in its Statement 2,
Accounting for Research and Development Costs (1974) made only passing reference
to software development costs, and concluded that costs incurred for internal use
should be expensed as incurred, while ‘intangibles purchased from others’ should
be capitalized and amortized. This was apparently reversed in an FASB Interpre-
tation 6 (1975) which indicated that software expenditure that constituted ‘the
acquisition, development or improvement of a process by an enterprise for use in
its selling or administrative activities’ should not be regarded as R&D, and as such
need not be immediately expensed. FASB Technical Bulletin 79-2, Computer
Software Costs (1979), reiterated that Statement 2 and Interpretation 6 did not
require that all expenditure on computer software be regarded as R&D (and
hence expensed), and suggested that capitalization decisions can only be made on
a case-by-case basis.

The lack of clear concise guidance was criticized by some U.S. practitioners:

68

ACCOUNTING FOR IN-HOUSE SOFTWARE EXPENDITURE

Because of the FASB’s position that the purpose (intent) and source (purchase or
develop) of the computer software should determine whether costs are capitalized or
expensed, software development companies are faced with two choices. They may follow
current accepted practice and expense most software development costs—reflecting
unfavorable short-term financial results—or circumvent the intent of the FASB through
creative financing arrangements. (Burns and Peterson, 1982, emphasis added)'

A decade later the FASB issued SFAS 86, Accounting for the Costs of Computer
Software to be Sold, Leased or Otherwise Marketed (1985a), which has been
described as ‘the only exception in the U.S. to the full expensing rule of R&D
(SFAS 2)’ (Aboody and Lev, 1998). The FASB appears to have responded to
an earlier statement by the Securities and Exchange Commission proposing a pro-
hibition on the capitalization of costs incurred in developing software for sale or
lease (SEC, 1983). However, while FASB Statement 86 only concerned expendi-
ture incurred by software developers, an appendix suggested that expensing of
costs on software development for internal use was ‘not improper’:

The Board concluded that . . . accounting for the costs of software used internally is not
currently a significant problem and, therefore, decided not to broaden the scope of this
project nor add a project on internal use software to its present agenda. The Board
recognized that the majority of companies expense all costs of developing software for
internal-use. And the Board was not persuaded that this current predominant practice is
improper. (para. 26)

While the FASB lent its support for ‘expensing’, it also supported a further review
of the topic by the AICPA’s accounting standards executive committee, which
issued an exposure draft in 1997, and a more formal ‘statement of position’ in
1998. Participants in that project evidently disagreed with the FASB’s suggestion
that the subject was not a ‘significant problem’. They observed:

Accounting practices for internal-use software are diverse as a remit of a lack of
authoritative guidance and escalating costs totalling billions of dollars annually. Some
entities expense all costs as incurred, some capitalize most costs and some capitalize
the costs of purchased internal-use software but expense costs of internally developed
internal-use software. None of these entities is necessarily violating any standards.
(Ameen and Noll, 1997)

The AICPA’s 1998 Statement of Position endorsed capitalization of some of
the costs incurred in software development (notably direct costs of materials and
services, payroll costs for employees for time spent directly on the project, and
interest costs incurred in the project). Capitalized software was to be amortized
over its estimated useful life in a ‘systematic and rational manner’, and the
‘impairment test’ in FASB Statement 121 (1995) was to be applied. Given that

While Burns and Peterson (1982) did not explain how ‘creative financing arrangements’ could
be used to capitalize software development costs, Gannon and Parkinson (1983) suggested that
‘R&D partnerships’ and ‘product financing arrangements’ were being used to circumvent U.S.
rules requiring expensing software developed in-house. Another possibility is as follows. Software
development is undertaken by a subsidiary, and the parent then purchases the software from the
subsidiary. Before year-end, the subsidiary is liquidated, so that no inter-company eliminations
would be required.

69

ABACUS

there is no external referent in the form of a market price for used software, such
allocations would be incorrigible.

The AICPA’s statement was consistent with statements by the International
Accounting Standards Committee in IAS 38, Intangible Assets (1998a), that
expenditure on internally developed computer software should be recognized as
an intangible asset, if ‘the cost of the asset can be measured reliably’. In contrast,
the U.K. accounting standard SSAP 13, Accounting for Research and Development
(1989) allows, but does not require, this treatment (assuming that software could
be regarded as an intangible asset within the meaning of the standard—discussed
below). Similarly, both Australian Accounting Standard AAS 13, Accounting for
Research and Development Costs (1983), and the identically titled AASB 1011
(1987) permit capitalization of expenditure on the development of a ‘new prod-
uct’, to the extent that such costs ‘are expected beyond reasonable doubt to be
recoverable’. The term ‘product’ was defined in AASB 1011 as including ‘product,
service, process or technique’ and as such could be (and has been) interpreted as
encompassing processes for the delivery of financial services (see Dempsey, 1997).

At this point, mention might be made of the inclusion of seemingly inconsistent
or contradictory statements within specific accounting standards. With the excep-
tion of the FASB’s SFAS 86 (1985a) dealing with software development for
sale, the AICPA (1998) statement on internally developed software, and other
interpretations issued by professional bodies regarding the need to expense Year
2K expenditure (e.g., FASB, 1996; AASB, 1997; ASB, 1998; IASB, 1998b) or the
introduction of the euro (IASB, 1998b), standard-setters have not produced rules
dealing explicitly and exclusively with software expenditure.” Rather, the topic has
usually only been addressed in passing in the course of discussions about whether
certain activities could or could not be regarded as R&D (or, in the IASB’s
case, giving rise to intangible assets). Extracts from accounting standards
referring to R&D activities concerned with services or processes are set forth in
Table 1. It will be noted that various standards propose inconsistent treatments
for items regarded as being encompassed by, or excluded from, the concept of
R&D.

One implication of the capitalization rules in Australian, U.K. and international
standards is that expenditure can be capitalized on the basis of expectations about
future net benefits (and all projects are undertaken on the basis of such expecta-
tions) up until the time that an entity is forced to recognize that future returns are
uncertain or the project was a failure. At that time, any asset previously recognized
at increasing amounts must then be written off in its entirety.

Accounting for outlays on software development must also consider modifications.
These may occur during the initial development, and the subsequent development
(post production). During development, modifications arise from rectifying defects
(von Mayrhauser, 1990), sometimes due to inadequate testing (Whitten, 1995), or

> While the U.K. ASB’s UITF Abstract 20 (1998) dealt primarily with modifications for Year 2K,
it also suggested that expenditure on modifications that enhanced service potential beyond that
originally assessed ‘would qualify for capitalization and depreciation’ (para. 4).

70

ACCOUNTING FOR IN-HOUSE SOFTWARE EXPENDITURE

TaBLE 1

REFERENCES TO TREATMENT OF EXPENDITURE ON IMPROVED SERVICES
OR PROCESSES IN R&D ACCOUNTING STANDARDS

Source Included Treatment if Excluded Treatment if
item included as item not
R&D R&D
U.S.A’s FAS Modification of the Expense Adaptation of an May
2 (1974) formulation or design of existing capability toa capitalize
a process particular requirement
or customer’s need as
part of a continuing
commercial activity
Australia’s Formulation and design =~ May capitalize Adaptation of an Expense
AAS 13 of possible new or existing capability to a
(1983)° improved process particular requirement
alternatives; evaluation or customer’s need as
of process alternatives part of a continuing
commercial activity
U.K.’s SSAP Design of services, May capitalize Periodic alteration to ~ Expense
13 (1989) processes or systems existing services or
involving new processes even though
technology or they may represent
substantially improving some improvement
those already produced
or installed
IASB’s IAS Research: the search for Expense n.a n.a
38 (1998a) alternatives processes,
systems or services; and
the formulation, design,
evaluation and final
selection of possible
alternatives for new or
improved processes,
systems or services
Development: the Must be
design, construction and capitalized if
testing of a chosen recognition

alternative for new or
improved processes,
systems or services

criteria are met

“ AASB 1011 (1987) used similar wording for inclusions, and identical wording for exclusions.

poor specification of requirements (Gibson, 1992). Once in production, further
changes may be required, though the timing of further developments may be
unpredictable (Sommerville, 2000). Changes in the software may also be sought as
management seek different forms of analyses or reports, or to integrate software
with other systems. These enhancements of functionality may be directed toward
maximizing customer satisfaction or minimizing effort and schedule time (Grady,
1992). (See Appendix for a glossary for explanations of selected software develop-
ment terminology.)

71

ABACUS

The foregoing indicates that there may be alternative methods for handling
software expenditure in financial reporting. These methods are now considered in
detail.

ALTERNATIVE METHODS FOR FINANCIAL REPORTING

The accompanying case study is a composite based on the authors’ observations
of around a dozen major IT projects associated with the provision of financial
services in around a dozen different organizations. Following the approach of
Drucker (1974), the facts are disguised to avoid identification of the firms
involved. The case describes a software development project which experienced
major difficulties, but which after considerable effort (and expense) may well
have been regarded as technically successful.

The case study is used to illustrate the potential of current accounting practices
to generate a wide range of financial data about software development projects,
so that published information may mislead shareholders and external stake-
holders (and possibly, managers and boards that rely on information presented
to them).

The overall set of processes undertaken in a software development project is
generally termed the ‘system development cycle’, and is described in terms of a
sequence of activities. However, in practice, activities may be interspersed or
repeated. For ease of presentation, Table 2 shows the activities in sequential order.

One key accounting issue concerns the starting point for tracing expenditure to
be capitalized—from the start of scoping studies, or from the start of a project, or
from when technological feasibility of the project was confirmed, or from when
commercial viability of the project was established. In the case study, costs might
have been capitalized up until the costing point (c3) shown in Table 2. Thereafter
additional capitalization might have occurred at costing points (d), (e), (f), (g) and
(h), with additional consideration of whether values were impaired at the end of
each reporting period.

A more conservative approach to the capitalization of software development
expenditure might seek to identify the costs incurred on new software that was
attributable to defective modules. Only the AICPA’s 1998 guidelines emphasize

CASE STUDY

INTERNAL SOFTWARE DEVELOPMENT

Finserv Limited operates in the financial services industry, providing services to
clients negotiated under period contracts. Finserv’s information systems
operations and software development are in-house activities. An in-house

(a) assessment found a poor fit between the existing system and identified stakeholder
demands for new information and concluded they could not be met from the
existing functionality. Hence Finserv decided to replace its existing in-house
financial services software.

72

ACCOUNTING FOR IN-HOUSE SOFTWARE EXPENDITURE

(b) In 2000 a scoping study was completed by an external consultant at a cost of
$500,000. The option of ‘buy a package and modify’ was considered optimal.
The board agreed a budget of $12 million for the project. This figure included
an initial licence fee of $1.5 million and $500,000 per annum maintenance fee,
both payable on signing the contract. A schedule of the project activities
accompanying the budget indicated that the new software would be in production
on 2 January 2002.

(c1) Software functionality modifications to meet the needs of the firm’s clients were
completed during 2001, in accordance with the project schedule, at a cost of $8.3
million. A range of programming defects were identified, and rectified prior to the

(d) software being put into production at no additional charge. Data conversion was
completed at the cost of $100,000. This comprised checking of transactions and
balances in the old system and uploading checked balances into the new system. A
number of urgent enhancements were authorized when it was recognized that the
new system required full transaction detail from legacy systems to allow correct

(c3) computations. This led to an additional, unbudgeted cost, including testing, of
$600,000. Although minor problems were identified as fixes requiring action, none
were ‘day 1’ problems. Despite the additional work, the new system was
commissioned as scheduled on 2 January 2002, and the project was then under
budget by $1 million.

(c2) Such were the extent of the modifications to the licensed software that $100,000
was paid to a technical documentation specialist contractor to prepare on-line
manuals for operators. This was unbudgeted.

After the first end-of-month run (January 2002), ‘day 2’ problems emerged.

(e) As a consequence, two transaction-specific modules were re-written and re-tested
before eventually being put into production on 30 May, at a cost of $1.5 million.
(f1) In addition, both modules required new computation and reporting subsystems

as well as additional (and expensive) output testing of the entire system
at an additional cost of $750,000. Some records which were in error remained
quarantined because the new programs failed to process them correctly.

(f2) Additional programming costing $500,000 was required to handle the exceptional
conditions required by the quarantined accounts. Although this work was
completed by the reporting deadline of 30 June, account balances were unable
to be reconciled by finance staff. At nights and weekends during July checks
were made of all records to ensure accuracy (cost $50,000) and each of the

(2) modules for valid computations (cost $50,000). This confirmed further
computation errors were still present in the re-written modules but also
revealed that some incorrect record balances had been transferred unchecked
to the new system.

On 30 June 2002 approval was given for Finserv to enter into a fixed price contract
for $4 million over two years to resolve outstanding enhancement requests.

(h) Finance staff calculated that $500,000 in staff time had been spent in reconciling
account balances. They estimated an additional $500,000 would be spent in
correcting errors now incorporated in individual record balances that had been
quarantined.

(1) In March 2003 the firm’s major clients required additional modifications to the
software to accommodate changes in legislation and to offer a wider range of
choices to the client’s customers. These modifications would necessitate total
rewriting of one module of the software, at a cost of $1 million. At the same time,
the software vendor indicated that it had commenced work on its new generation
finance suite that it expected would be released in around eighteen months, and
gave notice that the existing software package would no longer be supported after
two years.

73

ABACUS

the need to focus on modules or components of software—other standards are
silent in this issue. Indeed, other standards that permit some form of capitalization
of software are silent on precisely what sub-projects associated with the develop-
ment of internal-use software or with systems migrations and subsequent mainte-
nance could be capitalized. Standards also provide some conflicting guidance on
what categories of costs should be traced to those projects.

However, the figures listed up to costing point (¢) do not represent the values
which might be assigned to assets in the firm’s statement of financial position, or
indicate the full amount of expenses attributable to software development in the
year ended 30 June 2002. That is because elements of capitalized expenditure may
have been depreciated (or amortized) from different points of time during the
course of the software development. Starting points might have been 2 January
2002 (when the system was initially commissioned), or 30 May 2002 (when
modules were rewritten), or even 30 June 2002 (when most errors arising from the
migration were identified). If the system had been migrated with a parallel run of
the old system, up to (say) 30 June 2002, then the date on which the old system
was turned off could also be regarded as the starting date for amortization of the
new system. In conjunction with these accounting choices, depreciation on incre-
mental expenditure might also start from the date other re-worked modules were
put into production—a process which could stretch over several years.

Judgments would also have to be made about the economic life of the new soft-
ware. Some might argue that a three-year period was the maximum appropriate
for amortization of most software, given the pace of technological change. In fact
one authority has commented that the useful life of software is likely to be very
short (see, IAS 38, para. 81). Practitioners might link the amortization period to
the term of contracts that the firm had with its clients (say, five years). Other prac-
titioners might argue that the system was likely to be suitable for new clients and
that the economic life could extend for an even longer period. However, another
factor affecting such judgments could be the likely length of time that software
vendors would support the current version of their software, and the extent to
which new releases would be compatible with the customized modifications
undertaken in house.

An important part of internally developed software is the preparation of
documentation. This is usually made available to users online (Jenkins and Wallace,
2002). The cost of preparing the documentation and converting it to an online
format (e.g., HTML or XML) could be regarded as a project cost. However, such
manuals might also be regarded as part of the cost of training operators, and
both AICPA (1998) and IAS 38 (1998a) state that training costs should be
expensed.

Further issues concern the treatment of licence fees and maintenance contracts.
The firm in the case study bought rights to use a commercial package which it
then modified to suit its own needs. The up-front licence fee was a significant sum
($1.5 million) and conferred indefinite rights to use the commercial package. In
association with the licence, the firm was required to enter into a $500,000 per
annum maintenance contract.

74

SL

TABLE 2

CAPITALIZATION OPTIONS FOR INTERNAL SOFTWARE DEVELOPMENT

Panel A: During development

Ref Costing point Business benefit Cost Accounting options Relevant rules or guidelines; commentary
in system (per case study) (per case
development study)
lifecycle
(activity)
(a) Preliminary Confirmation No Capitalize costs, or AICPA SoP (1998) provides that ‘computer software
assessment existing systems incremental expense costs that are incurred in the preliminary project stage
inadequate cost should be expensed as incurred’
TAS 38 (1998a) provides that expenditure on the research
phase of an internal project should be recognised as an
expense when it is incurred. However definition of
‘research’ is ambiguous
AAS 13 (1983) and AASB 1011 (1987) allow expenditure
during preliminary project stages to be capitalized until
determinations made about recoverability
(b) Budget for $0.50 m Capitalize costs, or Capitalization of scoping studies that proceed to
project and (budgeted) expense implementation appears acceptable in terms of Australian

assessment of
projected return
on investment

standards AAS 13 (1983)/AASB 1011 (1987)

AICPA SoP (1998) permits capitalization after
preliminary project stage, provided project is formally
authorized and funding committed

TAS 38 (1998a) permits capitalization during development
stage, provided evidence of intention and capacity to
complete the project, existence of economic benefits, and
meets tests of asset recognition

SSAP 13 (1989) states that it is permissible to defer
development expenditure to the extent that its recovery
can reasonably regarded as assured

HYNLIANAIXH HYVMLAOS ASNOH-NI 4014 ONILNAODDV

9L

TABLE 2

(CONTINUED)

Panel A: During development

Ref Costing point Business benefit Cost Accounting options Relevant rules or guidelines; commentary

in system (per case study) (per case
development study)

lifecycle

(activity)

(c1) Required $8.40 m Capitalize costs, or AICPA SoP (1998) provides that internal or external
functionality ($1.6 m under expense (until costs incurred for upgrades and enhancements should be
completed; budget) technical feasibility capitalized in the application development stage
additional or commercial SSAP 13 (1989) permits capitalization once both technical
urgent viability feasibility and commercial viability established
enhancements established)
finalised Capitalize or AICPA SoP (1998) prescribes capitalization of interest

expense interest

Capitalize or
expense overheads

costs

AASB 1011 (1987) makes no specific reference to
interest, but allows capitalization of ‘costs that can be
attributed to R&D and identified with specific projects
TAS 23 (1994) allows capitalization of directly attributable
borrowing costs

FAS 2 (1974) states that R&D costs shall include a
reasonable allocation of indirect costs

However AICPA SoP (1998) states that general and
administrative costs and overhead costs should not be
capitalized as cost of internal-use software

TAS 38 (1998a) states that cost of intangible assets shall
include allocations of indirect costs that are necessary to
generate the asset and that can be allocated on a
reasonable and consistent basis

AAS 13 (1983) allows capitalization of costs that can be
directly attributed to R&D

snovav

LL

Panel A: During development

Ref Costing point Business benefit Cost Accounting options Relevant rules or guidelines; commentary

in system (per case study) (per case

development study)
lifecycle
(activity)
(c2) Systems analysis Operator $0.10 m (not Capitalize or AICPA SoP (1998) and 1AS 38 (1998a) prohibit
assistance in budget) expense (if capitalization of expenditure on ‘training’

capitalized, choice However, on-line manuals could be regarded as ‘software’
of amortization
method and period)

(c3) Development Readiness for $0.60 m ($1 m Capitalize or AICPA SoP (1998) states that guidance re capitalization/
(design; production under budget) expense expense should be applied to individual components or
programming; modules of software—suggesting costs of defective
testing) software should be expensed

(d) Migration (data Migrate to new $0.10 m Capitalize or AICPA SoP (1998) states that costs incurred in data
conversion from production (under expense conversion should be expensed, while costs to develop, or
old to new system budget). obtain, software that allows for access or conversion of
system) old data by new systems should be capitalized. Other

standards are silent on treatment of this expenditure

HYNLIANAIXH HYVMLAOS ASNOH-NI Y014 ONILNAODDV

8L

TABLE 2

(CONTINUED)

Panel B: During production

Ref Costing point in Business Cost Accounting options Relevant rules or guidelines

system benefit (per (per case
development case study) study)
lifecycle (activity)

(e) Defect fixes Operational $1.50 m Write-off costs of AICPA SoP (1998) states that guidance re capitalization/
stability with defective module, and expense should be applied to individual components or
routine capitalize costs of modules of software—suggesting costs of defective
transactions recoded module; or software should be expensed

expense TAS 38 (1998a) only allows capitalization of subsequent
expenditure if this will generate economic benefits in excess
of originally assessed standard of performance

(f1) Post-production Record $0.75 m Capitalize or expense AICPA SoP (1998) states that data conversion costs include

data quality checking and ‘purging or cleaning of existing data, reconciliation or
improvement computation balancing of the old data and the data in the new systems,
validation creation of new/additional data, and conversion of old data
to the new system’—and all are to be expensed
Other standards are silent on treatment of this expenditure

(f2) Manual $0.50 m Capitalize or expense AICPA SoP (1998) suggests that costs incurred in data
reconciliation conversion should be expensed
of records by Other standards are silent on treatment of this expenditure
finance staff

(£3) Record $0.05 m Capitalize or expense AICPA SoP (1998) suggests that costs incurred in data
validation conversion should be expensed

Other standards are silent on treatment of this expenditure

(2) Defect fixes Retest entire $0.05 m Capitalize, or expense AICPA SoP (1998) suggests that costs incurred in data

database conversion should be expensed
Other standards are silent on treatment of this expenditure

(h) Enhancements Outstanding $4.00 m Capitalize, or expense AICPA SoP (1998) states that expenditure on upgrades

change requests and enhancements should be capitalized if it is probable

to be delivered
over two-year
period

that those expenditures will result in additional functionality
IAS 38 (1998a) allows capitalization of expenditure that
will generate economic benefits in excess of originally
assessed standard of performance

Other standards are silent on treatment of this expenditure

snovav

6L

Panel C: End of reporting periods

Ref

Accounting options

Relevant rules or guidelines; commentary

®

Assess impaired value (recoverable
amount) by reference to present value
of projected cash flows—discounted
or undiscounted

From migration; end of parallel run,
production; over expected economic
life, life of contracts, etc.

Amortization method—to be chosen

AICPA (1998) and FAS 121 (1995) apply impairment test to undiscounted future
cash flows

IAS 38 (1998a) requires development costs to be capitalized where recognition
criteria are met

SSAP 13 (1989) requires capitalized expenditure to be written off to the extent to
which it is irrecoverable, on a project by project basis

AAS 13 (1983) and AASB 1011 (1987) require write-downs to the extent that
carrying value exceeds recoverable amount

AICPA (1998) applies to individual components or modules of software

AAS 13 (1983) and AASB 1011 (1987) state that amortization commences with
commercial production, and should match costs with related benefits

IAS 38 (1998a) states that amortization commences when asset is available for use
(and it is likely that useful life of software will be short)

Method should reflect the pattern in which the asset’s economic benefits are
consumed by the enterprise, but if that cannot be determined reliably, the straight
line method should be used

SSAP 13 (1989) requires amortization over period of expected use of system.
AICPA SoP (1998) states that straight line method should be used unless another
systematic and rational basis is more representative of software use

HYNLIANAIXH HYVMLAOS ASNOH-NI Y014 ONILNAODDV

ABACUS

The cost of the original licence fee might be expensed in the year it was
purchased, or when the software was first put into production; or the licence fees
could be capitalized and then amortized over the period of contracts with existing
clients, or other estimates of economic life. As for the treatment of expenditure
on maintenance, it has been suggested that maintenance consumes 40—80 per cent
of the software lifecycle costs (von Mayrhauser, 1990). Experience suggests that
the accounting treatments adopted by many firms treat ‘maintenance’ the same as
expenditure incurred on servicing machinery or buildings, that is as an expense
(and such an approach has been advocated in the accounting literature—see
Ameen and Noll, 1997). However, the terminology used in the IT industry is
ambiguous (see ‘Maintenance’ in the Appendix). While it is preferable to distin-
guish ‘maintenance’ from ‘enhancements’, many authors use ‘maintenance’ as an
umbrella term to refer to changes which retain or restore functionality, or provide
enhancements (see, e.g., Boddie, 1987; Marciniak and Reifer, 1990; Youll, 1990).
The term ‘maintenance’ is also used to refer to software changes made by a
vendor and supplied under licence renewal contract agreements. In this case the
changes may include both rectification of faults, and improvements. For example,
the vendor may be contractually obliged to provide business analysts and pro-
grammers onsite, working a specified number of hours per annum, to handle
modification requests from the client. These requests may relate to the rectificat-
ion of inefficient or incorrect code, but may also encompass minor or even major
enhancements—either during the development phase, or after software is put into
production. It is common for additional, unplanned development to occur after
the software is put into production.

If the licensee has elected to capitalize software development expenditure, then
a further option arises: Should the licensee expense all maintenance expenditure,
or capitalize that part of it which could be regarded as expenditure on enhance-
ments? While the AICPA has advocated the expensing of internal maintenance
expenditure and expenditure on external maintenance contracts that constitute
enhancements (AICPA, 1998, para. 26), that position only relates to enhancements
that were not pre-specified in maintenance contracts (implying that careful draft-
ing of those contracts could legitimise capitalization). Similarly, Australian and
International Accounting Standards on R&D or intangibles could be regarded as
supportive of the capitalization of a/l expenditure on enhancements, provided that
this expenditure was expected to be recoverable or to produce future economic
benefits (AASB 1011, para. 20; IAS 38, paras 53-4).

But that is before considering the application of the ‘recoverable amount test’
(RAT) which is now sometimes termed the ‘asset impairment test’ (AIT), whereby
consideration is given to whether asset balances at the end of the financial year
exceed the value of cash flows expected to be obtained from use and ultimate
resale of an asset. But the RAT or AIT test can be variously applied in this
situation. It could be applied to elements of internally developed software that
are used to provide specific services or financial products (a treatment advocated
by the AICPA, 1998) or it could be applied to the overall package. Moreover, it
could be argued that the RAT or AIT test should be applied to either the net cash

80

ACCOUNTING FOR IN-HOUSE SOFTWARE EXPENDITURE

flows directly attributable to servicing client contracts, or to the net cash flows after
deduction of some proportion of centralized expenditure. In principle, the RAT or
AIT test could be applied to either discounted or undiscounted projected cash flows
(though again, the AICPA 1998 guidelines propose use of undiscounted data).

To borrow from Chambers’ (1965) classic analysis of options for recording
inventories or calculating depreciation, there are in this simple example (2 x 4 x 3
X4X2X4X4X2x2x2x3%x2x2%x2x%x2x%x3x%x3)=10,616,832 possible treatments
within the context of the ‘written down historical cost’ approach to asset valuation
embodied in Australian accounting standards. Table 3 presents the detail.

In terms of the case study, the availability of these options could have a major
impact on reported operating results and financial position and hence on satisfy-
ing any comparability criteria either over time or between firms. For example, for
the reporting period ended 31 December 2001, reported software expenses could
have ranged from zero to $11.5 million; correspondingly, capitalized software
could have been recorded at between $11.5 million and zero.

An additional three options would be available if funds expended on software
expenditure were to be reimbursed. Firms operating in the financial services
industry may enter into contractual arrangements whereby clients meet the
costs of modifying software to accommodate legislation or rule changes. Based
on accounting precedents (and the invocation of notions of matching) such reim-
bursements could be regarded either as current year revenues, or as reserves to be
amortized against future years on the same basis as the corresponding expenditure
is being amortized, or as receipts to be offset against the sums of software devel-
opment costs being capitalized. Only the AICPA Statement of Position (1998) has
directly addressed this issue, advocating the last mentioned treatment. Australian
standard AASB 1011 suggests that ‘government or other grants’ should be deducted
from the carrying amount of capitalized software, though it is doubtful whether
reimbursements made in terms of contractual arrangements could properly be
described as ‘grants’. These three additional options would bring the revised total
number of possible accounting treatments (in terms of Australian accounting
standards) to no less a number than 31,850,496.

Readers might care to undertake their own calculations of the range of options
available in terms of U.K. and International Accounting Standards, based on the
summary presented in Table 2, but (as noted above) any such calculations depend
on how concepts such as ‘technological feasibility’, ‘commercial viability’ or
‘enhancements’ are interpreted. It is suggested that even the most conservative of
interpretations would still leave a very large number of options. Arguably the
AICPA’s Statement of Position (1998) provides the most detailed guidance for
the treatment of expenditure on different phases of the development of internal-
use software. It is considered that AICPA SoP (1998) unambiguously identifies a
specific treatment for seven of the seventeen accounting issues listed in Table 3,
reducing the number of options to an estimated 82,944.

To those who argue that a role of accounting regulation is to reduce the
number of alternative practices, the elimination of more than 31 million options
may seem to represent success. But if the most detailed accounting guidelines still

81

ABACUS

TABLE 3

OPTIONS IN TERMS OF AUSTRALIAN ACCOUNTING STANDARDS FOR THE
TREATMENT OF INTERNAL SOFTWARE DEVELOPMENT

Accounting issues Possible Commentary
treatments

Treatment of preliminary assessment 2 Capitalize, or expense

Starting point for tracing expenditure 4 From start of scoping studies; or from start of

to be capitalized project (subject to later review); or from when
technological feasibility established; or from
when commercial viability established (sufficient
for asset recognition)

Threshold for capitalizing 3 Suppose a choice of ‘low’, ‘medium’ and ‘high’

expenditure capitalization thresholds

Costs to be traced and capitalized 4 Direct costs only; or direct costs plus interest; or
direct costs plus allocation of overheads; or direct
costs plus interest plus allocation of overheads

Licence fees paid in advance 2 Capitalize or expense

Select starting date for amortization 4 When software successfully tested; when systems
migrated; or when system placed in production;
or when defects corrected so system ‘fit for use’

Identify ‘economic lives’ for 4 Could be arbitrary estimate of functional

amortization purposes economic life; or remaining life of existing
contracts with clients; or estimate of life that
system would be competitive; or remaining period
that underlying software will be supported by
vendor

Pattern of amortization 2 Straight line or alternative method

Handle original expenditure on 2 Retain capitalized value, or expense

defective modules

Treatment of costs incurred on data 2 Capitalize or expense

conversion

Subsequent expenditure on defective 3 Capitalize; or capitalize only if project still within

modules budget; or expense®

Expenditure on sub-systems, initial 2 Capitalize or expense

output testing

Treatment of expenditure on data 2 Capitalize (treat as cost of data conversion, and

reconciliations and correcting data in hence IT expense) or treat as expense of finance

quarantined accounts (finance staff) department

Treatment of expenditure on on-line 2 Expense if regarded as ‘training’; or capitalize if

manuals regarded as part of software cost

Treatment of expenditure to resolve 2 Capitalize, or expense

change requests

Treatment of expenditure on 3 Capitalize a proportion attributable to

modifications in subsequent years enhancements; capitalize proportion, subject to
materiality test; or expense

Treatment of expenditure on rule 3 Capitalize; capitalize after writing off written

changes

down balance of existing modules; or expense
current expenditure

¢ Arguably expenditure on re-writing defective modules would be expensed if the original expenditure
on those modules was still capitalized. It might also be argued that capitalization should be applied
to whatever component was the least cost. However for illustrative purposes, decisions about the
treatment of these two items are regarded as distinct.

82

ACCOUNTING FOR IN-HOUSE SOFTWARE EXPENDITURE

permit scores of treatments—Iet alone many thousands—then that suggests that
there are deficiencies in the drafting of those regulations (or in the conceptual
framework underpinning those accounting rules—discussed further below).

Note that the above figures relate to the treatment for a single project. Most
organizations would have more than a single software development project active
at any point in time. Different judgments may be made for each of these regarding
the starting or finishing dates of capitalization practices, and projected economic
lives—adding to the complexity faced by readers of financial statements in trying
to interpret the impact of accounting choices in this area.

Of all of these various alternatives, one treatment is the simplest to apply and
interpret: not regarding any expenditure on internal-use software as an asset, but
immediately recording every outlay on licences, software development, data check-
ing and ‘maintenance’ as an expense.

WHAT EXPENDITURE SHOULD BE CAPITALIZED OR EXPENSED?

The following discussion of the accounting treatment of software development is
confined to the circumstances of firms which build their own packages, or adapt
commercial packages, for their own use. It does not address the circumstances
of software development companies, whose accounting practices are likely to be
based on the rules contained in Australian or International Accounting Standards
for research and development; or on the U.S.A.’s SFAS 86 (1985a) which has proved
contentious because of its support for capitalization (see Aboody and Lev, 1998).

As already noted, accounting standards and authoritative statements reflect
differing views about what is the appropriate accounting treatment of expenditure
on internal-use software. In part, this reflects differing views about what principles
or key concepts underlie the practice of accounting.

One view (which was dominant until the late 1970s and reflected in academic
and professional literatures) was that accounting seeks to ‘match costs and reve-
nues’. On this basis, expenditure on software that was expected to produce future
benefits need not be regarded as an expense in the year in which it is incurred, but
could be allocated to those accounting periods in which economic benefits are
expected to be derived. In terms of this rationale (possibly expressed in its most
extreme form by Littleton, 1953, or by the AICPA, 1957), assets merely represent
costs which have yet to be allocated to future periods. The ‘matching’ rationale
has been invoked to support capitalization (Paulsen, 1983; AASB 1011, 1987,
SSAP 13, 1989) or to support immediate expensing (e.g., Gannon and Parkinson,
1983).

A second view (expressed most systematically by Chambers, 1966, and subse-
quently adopted in documents issued by the accounting profession and other
bodies [FASB, 1980, 1985b; ASRB, 1985; AARF, 1992]), is that income statements
and statements of financial position are articulated, so that the identification and
quantification of revenues and expenses is necessarily derived from successive
statements of financial position. Restated, any outlays which do not give rise to the
acquisition of assets (and which are not distributions to equity holders) are to be

83

ABACUS

treated as expenses. This ‘balance sheet viewpoint’ changes the focus of account-
ing practice from considering whether outlays are likely to give rise to future
benefits, to whether they have led to the acquisition of recognizable assets. It
replaces non-operational allusions to ‘matching costs and revenues’ with an
approach based on the identification and valuation of assets and liabilities. Much,
therefore, turns on the definition of asset, on associated criteria for asset recogni-
tion, and on the basis for asset valuation.

The accounting profession’s definitions and recognition criteria for assets
remain contentious.” The Australian accounting profession’s SAC 4 (1992) states
that ““assets” are future economic benefits controlled by the entity as result of
past transactions or other past events’, and specifies that ‘an asset should be
recognised in the statement of financial position when and only when: (a) it is prob-
able that the future economic benefits embodied in the asset will eventuate; and
(b) the asset possesses a cost or other value that can be measured reliably’ (paras 14,
38). The SAC 4 tests are similar to the definition and tests for asset recognition
adopted earlier by the U.S.A.’s FASB (FASB 1980, 1984, 1985b). Neither definition
attaches any significance to whether an entity has any legal right to supposed
economic benefits. Rather, the definitions emphasize the looser notion of control.
SAC 4 states: ‘ “control of an asset” means the capacity of the entity to benefit from
the asset in the pursuit of the entity’s objectives and to deny or regulate the access
of others to that benefit’ (para. 14). Further, the profession-sponsored definitions
do not have regard to whether or not an item is saleable—a matter which many
have argued as critical if financial information is to be relevant to a range of
judgments faced by potential users of published financial reports.

Against that background, one may consider whether expenditure on software
development can be regarded as an asset in terms of these definitions and associ-
ated tests.

The prevailing model of software possession is via a licence, as the majority of
software is purchased in a ready-to-run state (shrinkwrap). Software which is
custom developed for one user or organization (bespoke) usually entitles the
commissioning individual or organization to ownership. A third arrangement is
that the vendor owns the primary software, but licences it to a user firm, which
then develops a software application using it; the resulting software has no utility
unless used in association with the licensed package.

In the third option above, it is debateable whether the user could be said to
control the benefits expected to arise from use of the modified software. Initially,
the complexities of control arise from the combination of software development
source, funding and contractual arrangements.

Where in-house development is funded by the firm, full control exists if copy-
right is held by the end user organization. Some control exists where contractual
arrangements provide for rights to the software to revert to the customer after a

* Contributors to a forum on the conceptual framework in a recent issue of this journal reviewed

shortcomings in the design and application of the Australian profession’s Statements of Accounting
Concepts. See Abacus, October 2003.

84

ACCOUNTING FOR IN-HOUSE SOFTWARE EXPENDITURE

nominated period, often through a balloon payment. No control exists if there
is partial funding of the vendor by licensee. While it is common for the licensee
to negotiate contractual arrangements for software to be placed in escrow when
development is complete, the licensee typically cannot obtain control over that
software unless contractual conditions concerning business failure of the vendor
are met. Until that point the value of the software in escrow may be negligible.
After that point the value may still be zero, owing to delays in availability before
maintenance responsibility can be assumed, or the costs of undertaking mainte-
nance on inadequately documented source code.

Even where the licensee supposedly has legal rights to exclusive use of licensee-
funded modifications to licensed software, it is debateable whether the licensee
can be said to control use of that material because it can only be used in conjunc-
tion with the vendor’s software, which in turn is only available under a licence
(subject to termination clauses). Commercial realities often dictate that modifica-
tions made in these circumstances usually appear in the vendor’s next release of
that software. As the non-exclusive licensee, the sponsor of the functionality
requirements is in a position to benefit from the modifications, in its own business,
but may not be able to restrict access to those benefits vis a vis the licensor or
other licensees. Indeed, to avoid onerous future maintenance costs associated with
maintaining compatibility, the sponsor may negotiate with the vendor to absorb
them into the next edition of the base product. Given that decisions to incur
expenditure on enhancing IT systems would be undertaken in the optimistic
expectation that this expenditure will later produce future benefits, then (on one
reading of accounting literature) virtually all outlays on software modifications
could be regarded as giving rise to new assets. Since expenditure incurred in the
development of new systems can be identified or costed in one way or another,
some may claim that this would satisfy the accounting profession’s threshold
requirement for asset recognition that an item can be ‘reliably measured’. How-
ever, as has been noted previously (Walker and Jones, 2003) the availability of so
many options for calculating ‘cost” highlights the manner in which such accounting
references to the concept of reliability conflict with the use of that term in other
disciplines, whereby measures are regarded as reliable if they can be independ-
ently replicated by other observers (see, e.g., Nunnally, 1978, p. 191). Indeed, the
availability of such a wide range of alternative accounting treatments suggests that
many of the numbers that could potentially be reported may convey a misleading
impression of profitability and financial performance—they cannot all be right.

Since expenditure on software commonly does not confer rights which are sale-
able, the reporting of capitalized software as an asset does not convey relevant
information to present or potential investors who are interested in the security of
their investment in terms of net asset backing, or the risk of insolvency. Corre-
spondingly it does not convey information about the adequacy of security or
capacity to repay debt to lenders and creditors, or to employees concerned with
the capacity of a firm to meet employee entitlements.

Accordingly, it is argued that expenditure on software development should
not be recorded as an asset. Rather, such expenditure—be it on licence fees,

85

ABACUS

customization or maintenance contracts—should be fully expensed at the time it
is incurred. The only exception may be in relation to prepayments of maintenance
contracts where refunds might be payable on cancellation.

It might be argued that capitalization is acceptable, since full disclosure of
accounting policies would enable readers to make their own interpretations of
firm performance and financial position. Yet in terms of existing reporting arrange-
ments, analysts may not learn that a reporting entity had been overspending on a
troubled IT project (and capitalizing that expenditure) if a statement of account-
ing policies merely reported that ‘costs of software development are capitalized
until individual projects are completed and then the capitalized costs are amor-
tized over the project’s expected economic life’.

Even if statements of accounting policies identified what dollar values had been
capitalized, disclosure of those sums will not in itself indicate if those sums had
been spent efficiently or effectively.

It has been suggested that ‘software capitalization can be easily undone by
subtracting the periodic capitalization figure from reported earnings and the
capitalized software asset from total assets and equity’ (Aboody and Lev, 1998).
However, in some countries firms may report capitalized software in combination
with computer hardware or more generally as ‘plant and equipment’ (particularly
if a turnkey solution was purchased). Hence it may not be possible to identify
what software costs had been capitalized during a year, or what software costs had
been capitalized, in aggregate.

Moreover, given that firms may both capitalize new expenditure on software,
and write down elements of previously capitalized expenditure, it may not be pos-
sible to identify what costs had been capitalized in a particular period without
compiling and analysing information reported in various notes to the financial
statements for several periods (assuming they are readily available). In the sets of
national or international accounting standards or guidelines reviewed, a common
requirement was for disclosure of the amount of ‘development’ expenditure charged
against profits during a reporting period (FAS 2, 1974; SSAP 13, 1989—with
AASB 1011, 1987, requiring disclosure of those sums ‘before crediting any related
grants’). However, only U.S. standard FAS 2 requires direct disclosure of the total
R&D incurred in each period and of the amount capitalized in each period. SSAP
13 requires disclosure of movements in deferred expenditure during the year,
together with the amount of capitalized expenditure carried forward at the begin-
ning and end of the reporting period. AASB 1011 only requires disclosure of the
amount of deferred R&D costs at the end of the financial year, with accumulated
amortization charges being shown separately as a deduction. If comparative figures
were available, it would be possible to work out what had been capitalized during a
reporting period—provided published balance sheet data were not affected by write-
downs due to ‘impairment’. Both FAS 121 and AASB 1010 (1999) require disclosure
of amounts written off assets during the reporting period because of ‘impairment’
(or reductions in ‘recoverable amount’)—but that may be reported in separate notes.

Further difficulties would arise when endeavouring to extrapolate the impact of
these practices on future reported earnings. A common requirement in accounting

86

ACCOUNTING FOR IN-HOUSE SOFTWARE EXPENDITURE

standards is for disclosure of accounting policies, and both FAS 2 and AASB
1011 specifically require disclosure of the basis of amortization for R&D. However,
there is no requirement for that information to be disaggregated by project. The
exercise of attempting to assess the impact on future earnings of capitalization
practices would be challenging enough for firms engaged in single software devel-
opment projects, but would be more difficult when firms are engaged in multiple
projects, each with its own rationale for development.

It does not seem surprising that some analysts have opposed capitalization (see
Gannon and Parkinson, 1983), particularly since adoption of the full expensing
option would remove one method of ‘managing earnings’, and ensure some degree
of consistency in the way in which firms—particularly those in the financial ser-
vices industry, which are heavily involved in software development—calculate
and report their profits and financial position.

It might also be argued that present or potential investors (and other stake-
holders) may find information about the extent of investment in software develop-
ment of relevance when considering the prospective profitability of firms. There is
an expectation that applications will be scalable and flexible (van der Zee, 2002).
However, information about the timing and extent of expenditure on upgrading
or developing software could be provided in a more accessible form than from the
mix of disclosures required by contemporary accounting standards.

There is also a case for the disclosure of such expenditure as a line item in state-
ments of financial performance and statements of cash flows. Notes to the finan-
cial statements could detail the nature and purpose of this expenditure, and
describe the period over which that expenditure is expected to confer economic
benefits. In relation to major projects, notes could provide some indication of the
budgets and expected completion dates of that work.

It might be argued that more extensive disclosure about the nature and purpose
of developmental expenditure would compromise competitive advantage. How-
ever, staff mobility in specialized industries usually means that competitors have
a good idea what other firms are doing. Much information about major software
development projects is publicly available in computing technology trade magazines
and newsletters. Non-disclosure of information about material software develop-
ment projects would usually work to the disadvantage of external stakeholders
who are primarily reliant on published financial information.

It might also be argued that requiring expensing would have adverse economic
consequences on stakeholders in firms making those investments. Yet if software
projects are successful and produce significant economic benefits, that should soon
become evident, regardless of whether expenditure is capitalized or expensed—so
that any ‘good news’ should not be viewed as a surprise by stakeholders because
this forecast is precisely the reason why the development project ought to have
been authorized. On the other hand, the writing off of previously capitalized
expenditure on projects that later failed could be regarded as a surprise, since
prior audited financial statements would have represented that, on the balance of
probabilities, this expenditure would produce economic benefits. It is tempting to
observe that the adverse consequences on readers of financial statements from a

87

ABACUS

misclassification are likely to be greater if firms capitalize when they should have
expensed, rather than vice versa. But such an observation assumes that expenditure
on software might be properly regarded and recognized as an asset when (as argued
above) such an item does not meet the tests of ‘control’ and ‘reliable measurement’.

CONCLUDING COMMENTS

In summary, the recommended approach is: (a) the immediate expensing of
internally developed software; (b) reporting of this expense as a line item where
software expenditure is material; and (c) disclosing, in notes to the financial state-
ments, information about major software development projects.

Contemporary accounting standards require a series of subjective judgments
to be made about such matters as technological feasibility, commercial viability,
economic life, and whether modifications constitute enhancements or changes in
functionality. This leads to an extensive series of choices about accounting treat-
ments. The range of accounting options described in the hypothetical case study
illustrate the difficulties facing analysts seeking to understand and interpret pub-
lished data. These difficulties would be compounded when firms are engaged in
multiple projects spanning multiple accounting periods.

The immediate expensing of software development expenditure is likely to
ensure that the financial statements of firms engaged in those activities are more
comparable than if they could choose from a multitude of options. It is also likely
to make the financial statements more readily interpretable. This article has not
considered the adequacy of arrangements for internal reporting of individual IT
projects to senior management or boards, though it seems likely that the practice of
capitalizing software expenditure could affect the quality of information provided
to decision makers concerning project arrangements, and disguise shortcomings
in the productivity of IT departments. These concerns are to be addressed in a
subsequent article.

The abandonment of capitalization may mean that items previously identified
in a cash flow statement as expenditure from investing will now disappear. Accord-
ingly, in cases where such expenditure is material, there is a case for treating
expenditure on software development as a ‘line item’ in a statement of operating
performance, and for expanded disclosures in notes to the financial statements.
Such notes could detail the nature and purpose of this expenditure, and describe
the period over which that expenditure is expected to confer economic benefits.
In relation to major projects, notes could also provide some indication of the
budgets and expected completion dates of that work.

REFERENCES

Aboody, D., and B. Lev, ‘The Value-Relevance of Intangibles: The Case of Software Capitalization’,
Journal of Accounting Research (Supplement), Vol. 36, 1998.

Accounting Standards Board (U.K.), SSAP 13, Accounting for Research and Development, issued
1977, revised 1989, amended 1997, 1998.

88

ACCOUNTING FOR IN-HOUSE SOFTWARE EXPENDITURE

——, UITF Abstract 20, ‘Year 2000 Issues:—Accounting and Disclosure’, March 1998.

Accounting Standards Review Board (Australia), ASRB Release 100, Criteria for the Evaluation of
Accounting Standards, 1985.

Ameen, P. D., and D. J. Noll, ‘Internal-Use Computer Software: The Fixed Asset of the Information
Age’, Journal of Accountancy, March 1997.

American Institute of Certified Public Accountants (AICPA), Accounting Terminology Bulletin No.
4, Cost, Expense and Loss, 1957.

——, Statement of Position 98-1 (SoP 98-1), Accounting for the Costs of Computer Software Devel-
oped or Obtained for Internal Use, 1998.

Australian Accounting Research Foundation (AARF), Australian Accounting Standard AAS 13,
Accounting for Research and Development Costs, 1983.

——, Statement of Accounting Concepts 4, Definition and Recognition of the Elements of Financial
Statements, March 1992.

Australian Accounting Standards Board (AASB), AASB 1011, Accounting for Research and Develop-
ment Costs, 1987.

——, UIG 12, ‘Accounting for the Costs of Modifying Computer Software for the Year 2000°, 1997.
——, AASB 1010, Recoverable Amount of Non-Current Assets, 1999.

Berger, P., ‘Selecting Enterprise-Level Measures of IT Value’, in P. Berger, J. G. Kobielus and D. E.
Sutherland (eds), Measuring Business Value of Information Technologies: Useful, Innovative
Approaches for Management, International Centre for Information Technologies, ICIT Press,
1988.

Boddie, J., Crunch Mode: Building Effective Systems on a Tight Schedule, Prentice Hall, 1987.

Burns, G. W., and D. S. Peterson, ‘Accounting for Computer Software’, Journal of Accountancy, April
1982.

Buttrick, R., The Project Workout: A Toolkit for Reaping the Rewards From all Your Business
Projects, 2nd ed., Financial Times/Prentice Hall, 2000.

Chambers, R. J., ‘Financial Information and the Securities Market’, Abacus, September 1965.
——, Accounting, Evaluation and Economic Behavior, Prentice Hall, 1966.

Dempsey, G., ‘Reusability and Accounting for Software Development Costs’, Accountability and
Performance, Vol. 3, No. 2, 1997.

Drucker, P., Management: Tasks, Responsibilities, Practices, Harper and Row, 1974.

Financial Accounting Standards Board (FASB), Statement of Financial Accounting Standards No. 2,
Accounting for Research and Development Costs, October 1974.

——, FASB Interpretation No. 6, Applicability of FASB Statement No. 2 to Computer Software,
February 1975.

——, FASB Technical Bulletin 79-2, Computer Software Costs, December 1979.

——, Statement of Financial Accounting Concepts No. 3, Elements of Financial Statements of Business
Enterprises, 1980.

——, Statement of Financial Accounting Concepts No. 5, Recognition and Measurement in Financial
Statements of Business Enterprises, 1984.

——, Statement of Financial Accounting Standards No. 86, Accounting for the Costs of Computer
Software to be Sold, Leased or Otherwise Marketed, October 1985a.

——, Statement of Financial Accounting Concepts No. 6, Elements of Financial Statements, December
1985b.

——, Statement of Financial Accounting Standards No. 121, Accounting for the Impairment of Long-
Lived Assets and Long-Lived Assets to Be Disposed Of, 1995.

——, EITF Abstract 96-14, Accounting for Costs Associated with Modifying Computer Software for the
Year 2000, 1996.

Gannon, J. J., and D. Parkinson, ‘Software Development Costs Should Be Expensed’, Management
Accounting, November 1983.

89

ABACUS

Gibson, R., Managing Computer Projects: Avoiding the Pitfalls, Prentice Hall, 1992.

Grady, R. B., Practical Software Metrics for Project Management and Process Improvement, Prentice
Hall, 1992.

Healy, P., ‘The Effect of Bonus Schemes on Accounting Decisions’, Journal of Accounting and
Economics, April 1985.

Healy, P. M., and J. M. Wahlen, ‘A Review of the Earnings Management Literature and its Implica-
tions for Standard Setting’, Accounting Horizons, December 1999.

Holthausen, R., D. Larcker and R. Sloan, ‘Annual Bonus Schemes and the Manipulation of Earnings’,
Journal of Accounting and Economics, Vol. 19, 1995.

International Accounting Standards Board (IASB), IAS 23, Borrowing Costs, 1994.
——, IAS 38, Intangible Assets, 1998a.
——, SIC 6, Costs of Modifying Existing Software, 1998b.

Jenkins, G., and M. Wallace, IT Policies and Procedures: Tools and Techniques That Work, Prentice
Hall, 2002.

Jones, C., Estimating Software Costs, McGraw-Hill, 1998.
Littleton, A. C., Structure of Accounting Theory, American Accounting Association, 1953.

Marciniak, J. J., and D. J. Reifer, Software Acquisition Management: Managing the Acquisition of
Custom Software Systems, John Wiley, 1990.

Myers, G. 1., The Art of Testing, John Wiley, 1979.
Nunnally, J. C., Psychometric Theory, McGraw-Hill, 1978.

Paulsen, N. E., ‘Software Development Costs Should be Capitalized’, Management Accounting,
November 1983.

Public Sector Accounting Standards Board of the Australian Accounting Research Foundation,
and the Australian Accounting Standards Board, Statement of Accounting Concepts 4,
Definition and Recognition of the Elements of Financial Statements, March 1995.

Securities and Exchange Commission, Securities Act Release No. 6461, Accounting for Internal Costs
of Developing Computer Software for Sale or Lease to Others, SEC, 1983.

Sommerville, 1., Software Engineering, Addison-Wesley, 6th ed., 2000.

Sullivan, P. H., Jr., and P. H. Sullivan, Sr., ‘Valuing Intangibles Companies’, Journal of Intellectual
Capital, Vol. 1, No. 4, 2000.

Thomas, A. L., The Allocation Problem, Part II, American Accounting Association, 1974.

Van der Zee, H., Measuring the Value of Information Technology, 1dea Publishing, 2002.

von Mayrhauser, A., Software Engineering: Methods and Management, Academic Press, 1990.
Walker, R. G., and S. Jones, ‘Measurement: A Way Forward’, Abacus, October 2003.

White, T., Reinventing the IT Department, Butterworth-Heinemann, 2001.

Whitton, N., Managing Software Development Projects, John Wiley, 2nd ed., 1995.

Youll, D. P., Making Software Development Visible: Effective Project Control, John Wiley, 1990.

90

ACCOUNTING FOR IN-HOUSE SOFTWARE EXPENDITURE

APPENDIX

GLOSSARY

Day 1 issues
Day 2 issues

Defect
Enhancement

Maintenance

Migration

Milestone

Module

Production

Requirements

Schedule

Testing
Turnkey

Urgent or critical issues preventing software being put into production.

Problems with inputs, processing or outputs which either become apparent after
the software has been put into production or do not need attention until later dates
(e.g., preparation of half-yearly statements or end-of-year tax filings).

A deviation from specified requirements (Whitton, 1995).

A special class of adaptive maintenance associated with varying functionality (von
Mayrhauser, 1990).

Maintenance (following use of this term in the antitrust court order on IBM—see
Jones, 1998) is regarded as the repair of defects, also known as corrective
maintenance. Changes to the system environment may require adaptive
maintenance, while eliminating inefficiencies in existing functions may be termed
perfective maintenance (von Mayrhauser, 1990). Compare with Enhancement.
The transition from an existing system to a new system. It may include preparation
and roll-out of the new system where more than one department or site is involved
as well as the accurate and complete conversion of data from the existing system.
A significant event at which progress is measured. It may be either the completion
of a significant portion of work or achievement of a key element of the project
(Buttrick, 2000). Also see Schedule.

A complete set of instructions to execute a related set of tasks with a defined single
entry and exit point.

The software is in day-to-day use by end users.

A precise expression of what is required by a viable solution allowing the finished
software to be evaluated.

A timetable at two levels, summary and detail showing activities to be performed
(work packages), dates of check and review (milestones), time constraints and
interdependencies with other projects (Buttrick, 2000). In the detailed level it will
include resource and responsibility allocation.

Procedures and processes to discover errors (Myers, 1979).
Supply of both hardware and software under a contract.

91

