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The problem of calculation of the heat flux from a uniformly heated spherical particle in a diatomic gas is
considered with account for the energy-accommodation effect. The results of numerical calculations for the
analog of the BGK collision-integral model are presented.

A study of the process of heat transfer in the intermediate range of Knudsen numbers is of great theoretical
and practical interest. Its results are used, in particular, to determine the character of the gas–solid surface interaction
and to calculate accommodation coefficients. However, in theoretical analysis of this phenomenon, one takes into ac-
count only the translational motion of molecules, whereas the majority of experiments are conducted for molecular
gases, which requires account for the internal degrees of freedom [1]. The contribution of specific types of motion is
determined by the character of an energy spectrum. As is well known (see, e.g., [2]), the distance between the energy
levels of the rotational degrees of freedom is determined by the relation ²2 ⁄ 2J (J is the inertia moment of a molecule)
and is comparable to the thermal-motion energy kT only for lighter gases. Thus, for hydrogen molecules ²2 ⁄ (2Jk) =
85.4 K. For heavier molecules this quantity is substantially smaller, which makes it possible to neglect the discrete
character of the rotational-motion energy and to consider the rotational degrees of freedom in a classical approxima-
tion, whereas the vibrational degrees of freedom are excited at temperatures of the order of 103 K. Therefore, they can
be considered to be completely frozen.

Let us consider a spherical particle of radius R  heated uniformly to the temperature Ts and situated in a dia-
tomic gas in which the temperature T0, constant at infinity, is maintained. The temperature drop ∆Ts = Ts − T0 will be
considered to be rather small for the problem to be linearized.

We introduce a spherical coordinate system with the origin at the center of the particle. The state of the gas
surrounding the particle is described by the equation [3]
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where ϕ is the correction to the equilibrium distribution function
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J
kT0

 exp (− C
2
 − γ2) ;   C = V √m ⁄ 2kT0  ;   γ = ω √ J ⁄ 2kT0  ;

V and ω are the thermal velocities of the translational and rotational motion of the gas molecules, C  and γ are their
dimensionless values, I[ϕ] is the integral collision operator, and m is the molecular mass.

Taking into account the absence of reliable models for an intermolecular interaction potential, we confine our-
selves to the BGK (Bhatnagar–Gross–Krook) analog [4] of the collision-integral model [5]. Assuming the relaxation
times of the rotational and translational degrees of freedom to be equal, in conformity with [6] we have
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8m
 = 
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χ
 √kT0

2m
 characterizes the frequency of collisions between the molecules and is

determined by the degree of rarefaction of the gas and κ and χ are the coefficients of thermal conductivity and ther-
mal diffusivity.

As the boundary condition on the particle surface we take the law of diffuse reflection of the gas molecules
with the distribution function
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By virtue of the linearity of the problem, we write
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 τv + (γ2

 − 1) τω . (3)

The values of nref, τv = (Tv − T0)/T0, and τω = (Tω − T0)/T0 are determined by the requirement of the absence of the
mass motion of the gas

2π−3 ⁄ 2 ∫ Cr ϕ exp (− C
2
 − γ2) γdγd3

C = 0 (4)

and by the character of the energy accommodation [7]
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Here
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is the dimensionless value of the energy of translational and rotational motion that is brought by the molecules inci-
dent on the particle surface;
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and
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the energy carried away by the molecules reflected from the particle;
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the energy that would be carried away by the molecules if they were reflected at the temperature Ts.
From Eqs. (4)–(11) we find
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The heat flux is determined by the relation
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and can be represented in the form
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The dimensionless quantities Qv and Qω describe the transfer of the energy of the translational and rotational motion
of the gas molecules. And, by virtue of the conservation law, the quantity Q = Qv + Qω B const can be calculated at
any point, in particular, on the particle surface where
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Substitution of the relations obtained into conditions (5) yields
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By Qv
v and Qω

ω we mean the values of Qv and Qω on the particle surface calculated at τv = 1 and τω = 0, while by
Qv
ω and Qω

ω we mean these values calculated at τv = 0 and τω = 1.
The resulting heat flux is determined by the relation

Q = (Qv
v
 + Qω

v ) τv + (Qv
ω

 + Qω
ω) τω .

It is evident that in a free-molecular regime the influence of the particle on the molecular distribution function
in the gas volume can be neglected, while the function ϕ in the range of integration (12) and the integrals themselves
can be considered to be equal to zero. Correspondingly,
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Thus, at αω = 0, i.e., in the case where only the translational degrees of freedom of the gas molecules are excited
because of the reflection from the particle, the heat flux (in the limit under consideration) coincides with the value cal-
culated for the atomic gas, and when the accommodation of energy is total it turns out to be one and a half times
larger than this value.

In the case of a coarse particle, considering the distribution of the incident molecules to be coincident with
the Chapman–Enskog function
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 (Rν + Cr) Q ,

i.e., neglecting effects of the order of the Knudsen number Kn D (Rν)−1, we find

I0 = − I1
 ⁄ 2 = − I2 = − QRν ⁄ 7 .

Correspondingly,
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7

6Rν
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 .

Taking into account the fact that in the indicated approximation 
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we obtain
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which, with account for the determination, gives

q = κ 
R

r
2 ∆Ts

and in this sense coincides with the solution of the problem considered for the atomic gas.
To calculate the heat flux in the intermediate range of Knudsen numbers, we must solve Eq. (1).
Following [8], the solution sought is represented in the form

ϕ = ϕ1H1 + ϕ2H2 + ϕ3H3 , (13)

where
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H1 = H (− µ) ;   H3 = H  µ − √ 1 − R2 ⁄ r2    ;   H2 = 1 − H1 − H3 ;

µ = 
C⋅r
Cr

 ;   H (x) = 
 x  + x

2x

is the standard Heaviside function.
Substitution of Eq. (13) into determination (2) leads to a system of integral equations relative to Mi. Integra-

tion over γ is performed analytically. To do this, any velocity function of the gas molecules should be considered as
the vector

f = f
1
e1 + f

2
e2 ,   e1 = 1 ,   e2 = γ2

 − 1 .
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Then the integration can be represented in the form of the scalar product
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As a result, the problem is reduced to the system of two integral equations
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 exp (− C

2) dC ,   i = 1, 2 .

Fig. 1. Heat flux versus energy-accommodation coefficients at Rν = 0.1 (a),
Rν = 1 (b), and Rν = 10 (c).

TABLE 1. Values of the Dimensionless Flux of the Energy of Translational and Rotational Motion Calculated on the Particle
Surface in the Case Where Only the Translational (Qv

v and Qω
v ) or Rotational (Qv

ω and Qω
ω) Degrees of Freedom Are Excited

in Reflection of the Gas Molecules from the Particle Surface

Rν Qv
v Qv

ω = Qω
v Qω

ω Rν Qv
v Qv

ω = Qω
v Qω

ω

0.01 0.56318 –0.00053 0.28175 2 0.40539 –0.08156 0.23693 

0.1 0.55422 –0.00525 0.27879 5 0.31230 –0.12715 0.21369

0.2 0.54357 –0.01084 0.27548 10 0.25851 –0.15262 0.20120

0.5 0.51357 –0.02654 0.26648 100 0.19378 –0.18217 0.18736

1 0.46960 –0.04917 0.25408
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In accordance with [9], the solution of this system of equations was determined in the form of a cubic spline.
To control the accuracy, we used the conservation laws and the values calculated at the intermediate (between the in-
terpolation nodes) points.

The calculation results are given in Table 1.
Figure 1 presents the graphs of the heat flux versus the coefficients of accommodation of the energy of trans-

lational and rotational motion at Rν = 0.1, 1, and 10.
Of certain interest is to analyze the energy and temperature distribution by the translational and rotational de-

grees of freedom of the molecules on their separate excitation, i.e., at τv = 1 and τω = 0 as well as at τv = 0 and
τω = 1.
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 ϕ exp (− C

2
 − γ2) γdγd3

C ,

Fig. 2 Values of 
δT
T0

 
r
R

 (solid line), 
δTv

T0
 
r
R

 (dashed line), and 
δTω
T0

 
r
R

 (dash-dot

line) versus distance to the particle surface at τv = 1, τω = 0 (a) and τv = 0,

τω = 1 (b): 1–3) values of the indicated quantities at r = R for Rν = 0.1, 1,

and 10, respectively.

Fig. 3. Values of Q (solid line), Qv (dashed line), and Qω (dash-dot line) ver-
sus distance to the particle surface at τv = 1, τω = 0 (a), and τv = 0, τω = 1
(b).
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Figure 2 gives the values of the relative temperature drops, normalized to r/R, that are calculated for Rν =
0.1, 1, and 10, while Fig. 3 gives the values of Q, Qv, and Qω at the same parameters.

NOTATION

k, Boltzmann constant; ², Planck constant; r, distance from the center of the particle to the point considered;
T0 and n0, unperturbed values of the temperature and the concentration of the gas molecules at an infinite distance
from the particle; Ts, temperature of the particle surface; Tv and tω, temperature corresponding to the energy of trans-
lational and rotational motion of the gas molecules reflected from the particle surface; τs, τv, and τω, relative drops of
the indicated temperatures; fref and Φref, distribution function of the reflected molecules and correction to it; αv and
αω, accommodation coefficients of the energy of translational and rotational motion of the gas molecules; Ii, F, Ki,
Hi, Mi, Pi, ϕi, ∆v, ∆ω, and µ, auxiliary quantities; δ, drop of the local values of the thermodynamic parameters: δT =
T(r) − T0; T0, difference between the value of the corresponding parameter of the gas near the particle surface and at
an infinite distance from it: ∆Ts = Ts − T0. Subscripts: i, incident; ref, reflected; s, surface; i, ith quantity; r, radial pro-
jection of the vectors V and C; v, corresponds to the velocity; ω, corresponds to the angular velocity; 0, at an infinite
distance from the particle surface.
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