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Abstract Available experimental evidence suggests that
there are genetic differences in the abilities of trees to
compete for resources, in addition to non-genetic differences
due to micro-site variation. The use of indirect genetic
effects within the framework of linear mixed model
methodology has been proposed for estimating genetic
parameters and responses to selection in the presence of
genetic competition. In this context, an individual’s total
breeding value reflects the effects of its direct breeding
value on its own phenotype and its competitive breeding
value on the phenotype of its neighbours. The present study
used simulated data to investigate the relevance of account-
ing for competitive effects at the genetic and non-genetic
levels in terms of the estimation of (co)variance components
and selection response. Different experimental designs that
resulted in different genetic relatedness levels within a
neighbourhood and survival were other key issues examined.

Variances estimated for additive genetic and residual effects
tended to be biased under models that ignored genetic com-
petition. Models that fitted competition at the genetic level
only also resulted in biased (co)variance estimates for direct
additive, competitive additive and residual effects. The ability
to detect the correct model was reduced when relatedness
within a neighbourhood was very low and survival decreased.
Selection responses changed considerably between selecting
on breeding value estimates from a model ignoring genetic
competition and total breeding estimates using the correct
model. Our results suggest that considering a genetic basis
to competitive ability will be important to optimise selection
programmes for genetic improvement of tree species.
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Introduction

The ability to capture and use efficiently available resources
is essential for the growth or reproductive successes of
individual trees in forests (Binkley et al. 2004). Therefore,
considering the long-lived nature and long rotation periods
of forest trees, competition will be an important factor in the
development of forest stands. Plant species with high com-
petitive ability may evolve under conditions of low stress
with low disturbance (Grime 1977). Consequently, account-
ing for competition is particularly important for forest tree
breeding, as most species are recently domesticated and
founder genotypes obtained from low stress, natural envi-
ronments are likely to be competitive. In forest species,
there have been several studies showing significant effects
of inter-genotypic competition on stand (plot) productivity
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(von Euler et al. 1992; Foster et al. 1998), but little is known
about the quantitative genetics of tree competition. Several
methods have been proposed to adjust for the effects of
competition in forest genetic trials: examples include
distance-dependent competition indices (Tuskan and
McKinley 1984), use of angles of height difference
(Magnussen 1989) and iterative nearest neighbour procedures
(Magnussen 1994). However, these modelling approaches
consider that competition operates at the phenotypic level
but do not attempt to separate (and consequently confound)
contributions from genetic and non-genetic (i.e. residual)
competitive effects at the individual tree level.

Evolutionary theory and recent developments in quanti-
tative genetics indicate that competition may substantially
affect responses to selection, both in nature and in artificial
selection programmes (Muir 2005; Bijma et al. 2007a;
Bijma 2010a; Muir et al. 2010). Denison et al. (2003)
suggested that most of the improvement in yield potential
for the world’s major crops has arisen by reducing indivi-
dual plant competitiveness in favour of increasing plant
community performance. Griffing (1967, 1977) introduced
the concept of associative or indirect genetic effects (IGE) in
order to more formally examine the dynamics of individual-
versus community-level performance. In this sense, the
genetic influences on an individual’s phenotype are parti-
tioned into the direct effects of its genes and the indirect
effects of genes belonging to conspecifics with which the
individual interacts (see also Moore et al. 1997; Wolf et al.
1998). Muir (2005) implemented IGE within a linear mixed
model framework and, using forest tree breeding as an
example, indicated that individuals should be selected
on the basis of an index that combines genetic values
for direct and indirect (i.e. competitive) effects. Though
not verified with actual forestry data, the models, when
tested using data from Japanese quail, indicated that in
some circumstances a negative selection response might
result if selecting only on direct genetic effects. Thus,
artificial selection schemes in forest trees are probably
sub-optimal, as current selection and breeding strategies
for trait improvement most likely do not consider a
genetic basis to competitive ability.

Bijma and colleagues (Bijma et al. 2007a, b; Ellen et al.
2007; Bergsma et al. 2008; Bijma 2010b, c, 2011) examined
the use of IGE to model the contributions of an animal’s
associates. The IGE in this context are called social effects
and indicate a genetic basis to either cooperative or aggres-
sive behaviour to a subject animal. This research dealt with
the quantitative genetic theory accounting for interactions
among individuals and multi-level selection, explored the
statistical methodology for genetic parameter estimation and
examined the interrelationships between social effects, ani-
mal pen size and the relatedness of animals within pens. In
the context of competition in agronomic crop species,

Stringer (2006) and Stringer et al. (2011) refer to IGE fitted
within a linear mixed model framework as the “treatment
interference model”, considering variety effects as random.
Of particular interest was their modelling of competition at
the residual level, either in conjunction with the use of IGE,
when competition at the genetic level is present, or in
absence of it. In this sense, autoregressive models were
proposed and tested to account for competition as the
dominant source of variation or to jointly model both
competition and environmental trend. These analytical
approaches for modelling competition at the residual level
offer a guiding hand to plant and forest tree geneticists, more
so than approaches used in animal genetics. This is because
agricultural and forest field trials represent a continuum of
focal plant and neighbour relationships, whereas animals are
reared in discrete units such as pens or cages. Resende et al.
(2005) and Cappa and Cantet (2008) were the first to verify
the IGE model with actual forestry data from field trials.
However, Resende et al. (2005) did not account for missing
neighbours due to mortality and for the variable distance
between a focal tree and its neighbours in the different
spatial directions, features that were considered in the work
of Cappa and Cantet (2008) by incorporating intensity
of competition factors in the quantitative genetic model.
Nevertheless, Cappa and Cantet (2008) did not consider a
model for the residual covariance structure.

The present study brings together several aspects of
modelling competition from the studies cited above. How-
ever, previous forest genetic studies have not examined the
effects of different levels of relatedness and survival when
modelling competition at the genetic level, nor evaluated the
implications of trait genetic architecture on response to
selection when inter-tree competition is present. These
important issues can be effectively approached by using
simulated data. In this sense, we have used simulated data
to investigate the incorporation of IGE into a quantitative
genetic model to account for competition, with a particular
focus on forest genetic trials, and aiming to:

& Examine the effect on (co)variance component estimates
of accounting for competition at the genetic and/or non-
genetic levels.

& Explore the effect of different levels of genetic related-
ness within the neighbourhood of a focal tree and overall
survival on the ability to detect and estimate competition
effects at the genetic level.

& Determine the importance of accounting for competi-
tion in genetic evaluation, by assessing the impact on
the ranking of selection candidates and on expected
responses to selection, and considering different mag-
nitudes of competition (co)variance components, as
well as different levels of genetic relatedness within
a neighbourhood.
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Materials and methods

Quantitative genetic model and definition of neighbourhoods

Because our context is competition in forest genetic trials
and only additive effects of genes are considered, IGE will
henceforth be denoted as competitive additive effects. The
starting model we consider, which was first introduced by
Griffing (1967), is the decomposition of an individual tree’s
phenotype into its direct breeding value, the sum of the
competitive breeding values of its neighbours and a random,
non-systematic, environmental (residual) effect. Thus, the
model may be written as:

Pi ¼ DBV i þ
Xni
j 6¼i

CBV j þ Ei ð1Þ

where i denotes the focal individual, j one of its com-
petitors (with j01… ni), Pi is the phenotype of i, DBVi is
the direct breeding value of i, CBVj is the competitive
breeding value of j, and Ei denotes the residual compo-
nent of the ith phenotype which may also be partitioned
into direct and competitive residual terms. In forest ge-
netic trials, the competitors are the trees planted adjacent
to the focal tree, and thus it is assumed that competitive
additive effects of more distant neighbours do not affect
the phenotype of the focal tree. The number of first-order
competitors, ni, is conditional on the focal tree’s position-
ing within the planting grid, as well as factors such as
mortality and the presence or absence of buffer rows. The
grid is usually a regular shape indexed by row and
column numbers. Figure 1 shows two examples of a focal
tree, denoted by F, located within subsets of the regular
grid, at row and column numbers equal to R and C,
respectively. The focal tree in neighbourhood 1 has the

maximum possible number of eight neighbours. The focal
tree in neighbourhood 2 is an example of an edge tree
located on a boundary of the grid, with one of its neighbours
being dead; depending on whether a buffer row is present or
not, this focal tree has either seven or four neighbours.

Intensity of competition factors

Intensity of competition factors should be used to account
for the differential intensity of competitive effects that
neighbours exert over the phenotype of the ith focal
individual, as suggested by Cappa and Cantet (2008) and
Cantet and Cappa (2008). This differential intensity of
competition applies within a neighbourhood and across
neighbourhoods. Consider the case of neighbourhood 1 in
Fig. 1: if inter-column spacing is smaller than inter-row
spacing, then the intensity of competition exerted by N1

and N2 is greater than that exerted by N3 and N4. Next,
consider two different neighbourhoods in the same trial with
no buffer rows: one focal tree is an edge tree with only five
neighbours and the other is a non-edge tree with a full
complement of eight neighbours. In both of these cases,
the expectation is that competitors of the ith focal tree are
able to exert their competitive additive effect with greater
intensity in a neighbourhood with fewer co-neighbours.

Equation (1) incorporating intensity of competition
factors is represented as:

Pi ¼ DBV i þ
Xni
j 6¼i

fijCBV j þ Ei ð2Þ

where fij is the intensity factor exerted by neighbour j
over the ith focal individual. As shown by Cappa and
Cantet (2008), scaling the variance of competitive genetic
effects within the phenotypic variance of Pi, while accounting

Fig. 1 Examples of neighbourhoods: neighbourhood 1 has no trees
which are edge trees, and all neighbours have an alive status; neigh-
bourhood 2 is flush on a boundary of the trial (represented by the
dashed line), with buffer trees, denoted by the letter “B”, existing
beyond the boundary. A dead tree, represented by the letter “D”, is
found in neighbourhood 2. A focal tree, denoted by the letter “F”, is
situated at row 0 R and column 0 C. Under our coding system, a focal

tree has a maximum of eight neighbours. The coding we have adopted
is as follows: same row neighbours are denoted as N1 and N2; same
column neighbours are denoted as N3 and N4; and diagonal neighbours
are denoted as N5, N6, N7 and N8. The distance between N1 and F (or
between F and N2) is referred to as inter-column spacing, while the
distance between N3 and F (or between F and N4) is inter-row spacing
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for different neighbourhood sizes, can be achieved by using
intensity of competition factors under the following restric-
tion:

Xni
j¼1

f 2ij ¼ nR k f
2
Rk

þ nCk f
2
Ck

þ nDk f
2
Dk

¼ 1 ð3Þ

where nRk , nCk and nDk represent the number of row, column
and diagonal neighbours, respectively, and fRk , fCk and fDk are
the intensity of competition factors for row, column and
diagonal neighbours, computed for the kth neighbourhood.
Thus, Eq. (3) considers that neighbours positioned on a given
orientation relative to the focal individual have the same fij.
Cappa and Cantet (2008) demonstrated how fij can be com-
puted for equal inter-row and inter-column spacing, assuming
that the intensity of competition is related to the inverse of the
distance between i and j. We have extended this approach to
cases where inter-row spacing is not equal to inter-column
spacing, by introducing a parameter p, which is the ratio of
inter-row to inter-column spacing (for details on the derivation
of formulae, see Online Resource 1, Electronic supplementary
material).

Description of the data simulation

Data for two traits were simulated. One trait, which we
nominally call growth and has a moderate to low heritability
(i.e. in forest tree species, narrow-sense heritabilities for
stem growth traits range from 0.10 to 0.30, White et al.
2007), was subject to direct and competitive effects. Since
it was an objective to explore the effect of mortality within
the framework of modelling competition at the genetic
and non-genetic levels in forestry trials, it was necessary
to consider survival in the data simulation. Hence, the
second trait simulated was a binary survival trait. In this
case, phenotypes were assumed to have a direct genetic
component only, with moderate magnitudes for both
narrow-sense heritability and positive additive correlation
with the first trait (e.g. Chambers et al. 1996). The 80 and
100 % levels of survival were considered in the simulated
data.

The simulation started by generating genetic values for a
founder generation. The growth trait was assumed to have a
normal distribution with a direct additive variance (σ2

d) of 20.
The nine combinations of values shown in Table 1 for
competitive additive variance (σ2

c ) and correlation between
direct and competitive additive effects (rdc) were simulated
to represent cases with high, moderate and low ratios ofσ2

c to

σ2
d , and with small negative, moderate negative and large

negative magnitudes for rdc. The covariance between direct
and competitive additive effects (σdc) is expected to be
negative when competition is present at the genetic level

(e.g. Muir 2005), and thus the simulated rdc values were also
negative. The values simulated for the additive (co)variance
parameters approximate the range of estimates we have
found for the ratio σ2

c /σ
2
d and rdc in preliminary analyses

(unpublished data) of diameter growth from five field trials
of different forest species (Eucalyptus globulus, Pinus radi-
ata and Picea abies) at several ages from planting (ranging
from 4 to 18 years).

Under Eqs. (2) and (3), the scaling of competitive effects
enables the σ2

c values to correspond directly to the total (i.e.
summed over all neighbours) contribution of competitive
additive effects to the phenotypic variance, assuming that
the neighbours of a focal individual are genetically unrelated.
However, under Eq. (1), the total contribution of the
competitive additive variance to the phenotypic variance
would equal niσ2

c , assuming again unrelated neighbours.
Hence, the scaling of competitive effects using the fij factors
strongly affects the interpretation of the magnitude of
competitive effects. This is important when comparing
studies using fij factors to those not using fij factors.

The survival trait, which on an observed scale had a
phenotypic value of either 0 (dead) or 1 (alive), was as-
sumed to have an underlying normal distribution with an
additive variance of 0.5. Chambers et al. (1996) reported an
average genetic correlation of 0.5 between growth and sur-
vival across a number of trials, but the authors also indicated
that the magnitude of this correlation may be lower for sites
under severe drought conditions. Thus, we have assumed a
value of 0.3 for the genetic correlation between direct addi-
tive effects for growth and survival, as an attempt to accom-
modate a broad range of environmental stress conditions
(such as competition, frost and drought) impacting tree
survival. For each of the combinations of the (co)variance
parameters shown in Table 1, direct and competitive
additive values for growth, and direct additive values for
survival, were sampled from a multivariate normal distribution
using a mean vector (denoted by m) containing zeros and a
(3×3) variance–covariance matrix (denoted by C).

The simulation proceeded by mating founders, using
either cross-pollinated (CP) or open-pollinated (OP) mating
designs, to produce a progeny generation. For the CP

Table 1 Combinations of values used for genetic competition
parameters in the simulated data

Genetic
competition
parameters

Simulated values

σ2
c 10 10 10 5 5 5 2 2 2

rdc −0.3 −0.6 −0.9 −0.3 −0.6 −0.9 −0.3 −0.6 −0.9

σ2
c =genetic variance for competitive additive effects; rdc=genetic

correlation between direct and competitive additive effects
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design, 36 founders were generated and each founder was
crossed four times following a partial diallel mating design,
which resulted in 72 families, each containing 36 full-sibs.
Breeding values for the CP progeny were sampled from a
multivariate normal distribution with a mean vector:

m ¼
0:5dG;fp þ 0:5dG;mp

0:5cG;fp þ 0:5cG;mp

0:5dS;fp þ 0:5dS;mp

0@ 1A
and a variance–covariance matrix C* ¼ 0:5� C ; in m, d
denotes direct breeding value and c denotes competitive
breeding value, with d and c being subscripted with G to
denote growth or S to denote survival, and the abbreviations
fp and mp referring to female and male parents, respectively.
For the OP design, 72 founders were generated and each
founder was assumed to produce 36 progeny. Genetic values
for the OP progeny were sampled from a multivariate nor-
mal distribution with a mean vector:

m ¼
0:5dG;fp
0:5cG;fp
0:5dS;fp

0@ 1A
and a variance–covariance matrix C* ¼ 0:75� C . Non-
additive genetic effects were assumed to be unimportant in
our populations, and thus were not simulated under the
assumption that an additive genetic model is adequate for
the traits considered. In both designs, 2,592 progeny were
generated and positioned on a regular grid composed by 72
rows and 36 columns, with equal inter-row and inter-column
spacing.

Three levels of additive genetic relatedness within a
neighbourhood were imposed as:

medium relatedness—achieved under the CP mating
design by creating four-tree-line plots, in which case a
focal tree has one or two full sibs as neighbours in a
non-edge neighbourhood;
low relatedness—achieved under the CP mating design
by creating single-tree plots;
very low relatedness—achieved under the OP mating
design by creating single-tree plots.

The plots were placed at random on the grid, except for a
restriction on randomization that ensured that there was no
tendency for pairs of plots from the same two families to be
located together. For a neighbourhood comprising a focal
tree and its eight competitors, the resulting mean values for
the additive relationship coefficients among all pairs of
individuals were 0.11, 0.03 and 0.003 for medium, low
and very low genetic relatedness levels, respectively. The
mating designs and plot configurations described above are
regularly used in the context of field testing in forest
genetics (White et al. 2007). Thus, under comparable

experimental settings, it is expected that the three simulated
levels of relatedness will represent magnitudes of mean
genetic relatedness that may be commonly found within tree
neighbourhoods in actual field trials.

Growth phenotypes for progeny were simulated as
described in Eq. (2). When survival was 100 %, the fij were
needed to reflect the different strengths of competition
exerted by row and column neighbours relative to diagonal
neighbours. In addition, for 80 % survival, the fij were
needed to account for the fact that ni differed among non-
edge focal individuals. In the generation of residual effects
for growth, we have partitioned the random term Ei in Eq.
(2) into competitive and direct residual components. We
have further assumed that the competitive component fol-
lows a spatially correlated process, and the direct compo-
nent is an uncorrelated residual distributed independently of
the competitive term. In this context, the general form for the
variance–covariance matrix of the residuals was defined as
(after Gilmour et al. 1997; Stringer 2006; Stringer et al. 2011)

Var ξ½ � þ Var η½ � ¼ σ2
ce Σ j αð Þ þ σ2

ieI ð4Þ

where ξ is a vector whose elements follow a spatially corre-
lated process, η is a vector whose elements are pairwise
independent, Σ is the correlation matrix for the spatially
dependent process (conditional on the parameters in vector
α) with the associated variance given byσ2

ce ,σ
2
ie is the variance

of the independent residuals and I is an identity matrix. In
addition, we have assumed separable spatially dependent pro-
cesses in the row and column directions, and thus Σ was
defined as (for data ordered as columns within rows):

Σjα ¼ Σrowjαrow � Σcoljαcol ð5Þ
where αrow and αcol are vectors for row and column autocor-
relation parameters, respectively, and ⊗ denotes the Kro-
necker product operation. A first-order autoregressive (AR1)
process can be used inΣ to model either residual competitive
effects or local environmental trend but may not be effective to
model both (Stringer 2006; Stringer et al. 2011). In the present
study, we aim to explore the effects of competition per se, and
thus we have assumed in our simulated data that environmen-
tal trend was unimportant at both global and local levels (e.g. a
field trial located in a homogeneous site, with small environ-
mental variability). Therefore, we have used the AR1 process
in Σ, considering competition to be the dominant source of
autocorrelation at the residual level. In this sense, situations
where competition is dominant over environmental trend have
also been observed in preliminary analyses that we have
pursued for actual diameter growth data from forest genetic
trials of Pinus radiata (with ages from field planting ranging
from 11 to 13 years) and Picea abies (with ages from field
planting ranging from 16 to 18 years) (unpublished results). In
the AR1 model, each of the vectors αrow andαcol comprises a

Tree Genetics & Genomes (2013) 9:1–17 5



single autocorrelation parameter, which is typically negative
when competition is present at the residual level and is dom-
inant over environmental trend (e.g. Stringer 2006). Correlat-
ed residuals across the grid of R rows by C columns were
generated from a multivariate normal distribution with a mean
vector containing zeros and a covariance structure of the form
described in Eq. (5), assuming σ2

ce equal to 20 and the
parameters in αrow and αcol equal to −0.5. The independent
residuals were generated from a normal distribution with a
zero mean and σ2

ie equal to 80.
An underlying, continuous phenotype for survival, P*

S;i ,

was simulated using:

P*
S;i ¼ BV S;i þ ES;i ð6Þ

where BVS,i and ES,i denote the breeding value and the
residual term, respectively, for the ith individual. The ES,i

values were generated from a normal distribution with a
zero mean and a variance equal to 1. The P*

S;i values were

subsequently transformed to a binary scale using a threshold
X computed from the cumulative standard normal distribu-
tion, where the integral from minus infinity to X had either
the value 0 for 100 % survival or 0.2 for 80 % survival. That
is, if P*

S;i < X then PS,i00 (dead), otherwise PS,i01 (alive).

Then, for a focal individual i, its number of first-order
neighbours (ni) was given by:

ni ¼
X8
j¼1

PS;j ð7Þ

Buffer rows were assumed not to exist, and thus were not
simulated; hence, when the focal individual was an edge
tree, PS,j values were assumed to be zero for j corresponding
to a position outside the grid. Thus, for both 80 and 100 %
survival levels, the intensity of competition factors were also

needed to reflect the different strengths of competition
exerted over edge and non-edge focal individuals.

For each combination of values simulated for genetic
competition parameters (Table 1), three levels of genetic
relatedness and two levels of survival were tested. In total,
54 different scenarios were tested for a defined neighbour-
hood, and 100 replicates were generated for each scenario.
Each replicate was analysed under the four statistical models
described below. Also 100 replicates were used for each of
the scenarios exploring the impact on selection (see below).

Statistical models

Table 2 presents an overview of the statistical models that
were fitted in the present study to simulated data. The base
model (B) does not fit competition at either the genetic or
residual levels. The additive variance estimated under this
model is not assumed to explicitly represent direct additive
effects, and is denoted more generally as σ2

a . A breeding
value is not qualified as being either direct or competitive,
and is denoted simply as BV. Residual effects are assumed
independently and identically distributed, and the residual
variance is denoted simply asσ2

e. The Bmodel is expressed as:

y ¼ 1μþ Zaþ e ð8Þ

where y is the vector of simulated phenotypes, 1 is a vector of
ones linking phenotypes to the mean μ, Z is a matrix linking
phenotypes of individuals to their BV contained in the vector
a, and e is a vector of residuals. The variance matrix of the
additive effects in vector a is:

Var a½ � ¼ Aσ2
a ð9Þ

where A is a matrix of additive relationship coeffi-
cients among individuals in the population, and the

Table 2 Overview of statistical models fitted to simulated data

Abbreviation Name Random terms fitted Tested againsta dfb

B Base model σ2
a ;σ

2
e

AR Autoregressive model for the residuals σ2
a ;σ

2
ie;σ

2
ce; a1row ; a1col B 3

GC Genetic competition model σ2
d; σ

2
c ; rdc; σ

2
e B 2

GC-AR Combined genetic competition and autoregressive model σ2
d; σ

2
c ; rdc; σ

2
ie; σ

2
ce; a1row ; a1col AR 2

σ2
a=additive genetic variance under the B and AR models, assuming no competition at the genetic level; σ2

d=genetic variance for direct additive
effects under the GC and GC-AR models; σ2

c =genetic variance for competitive additive effects under the GC and GC-AR models; rdc=genetic
correlation between direct and competitive additive effects under the GC and GC-AR models; σ2

e=residual variance under the B and GC models,
assuming that the residuals are uncorrelated; σ2ie=independent residual variance under the AR and GC-AR models; σ2

ce=correlated residual variance
under the AR and GC-AR models;a1row anda1col=first-order autocorrelation parameters for the row and column directions under the AR and GC-AR
models
a The improvement of the model shown in the first column over the model shown in this column is tested via a likelihood ratio (LR) test. In this
sense, the test statistic was calculated by twice the difference in REML log-likelihood between the two models
b Difference between the compared models in the number of parameters fitted, which is used to specify the degrees of freedom (df) of the chi-
squared distribution to perform a LR test
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variance matrix of the residual effects in vector e is
defined as:

Var e½ � ¼ Iσ2
e ð10Þ

The second model (AR) in Table 2 does not account for
competition at the genetic level, but fits competition at the
residual level using a separable AR1 process. Thus, the
variance matrix of the additive effects in vector a was
defined as in Eq. (9), and the vector of random residuals
was partitioned as e0ξ+η and being fitted according to the
variance–covariance matrix described in Eqs. (4) and (5).

The third model is the genetic competition model (GC),
which explicitly separates additive effects into direct
and competitive additive effects. The genetic covariance
between direct and competitive additive effects is also fitted.
The GC model is expressed as:

y ¼ 1μþ Zddþ Zccþ e ð11Þ
where Zd and Zc are matrices linking phenotypes of
individuals to their direct breeding values and competitive
breeding values contained in the vectors d and c, respectively.
The fij factors used in the statistical analysis were identical to
those used in the generation of the data, with the ith row
in Zc containing the intensities of competition factors
computed for the neighbours j of the ith focal individual.
The variance–covariance matrix of the additive effects in
Eq. (11) is given by:

Var
d
c

� �
¼ σ2

d σdc

σdc σ2
c

� �
� A ð12Þ

where σ2
d, σ

2
c and σdc are defined as above. The use of the

matrix A allows us to link direct and competitive addi-
tive effects through individual relationships within and
across neighbourhoods. The variance matrix of the
effects in e is defined as in Eq. (10), as competition at
the residual level is not fitted under the GC model.

The fourth model in Table 2 is the combined genetic com-
petition and autoregressive model (GC-AR), which accounts
for competition at both the genetic and residual levels. Likeli-
hood ratio (LR) tests were performed for comparing nested
models, as shown in Table 2. The LR test is implicitly two-
tailed but it should be adjusted when a hypothesis test involves
testing variances (as in our case), which are restricted to be
greater than or equal to zero (Stram and Lee 1994). However,
rather than determining the correct theoretical asymptotic dis-
tribution of the LR test statistic for each model comparison,
two-tailed tests were always used with the stated degrees of
freedom. Hence, all the LR tests we have performed are con-
servative. All models were fitted with the ASReml software
(Gilmour et al. 2009), using restricted maximum likelihood for
the estimation of (co)variance parameters.

Impact on selection

In the framework of a quantitative genetic model accounting
for IGE, Bijma (2011) demonstrated the distinction between
the heritable component of phenotypic variance and the
heritable effects that an individual passes on to the next
generation. The latter term is completely a genetic property
of the focal individual. It represents the impact of the indi-
vidual's genes on the genetic mean value of a population

(Pgenetic) and is referred to as the total breeding value (TBV).
Following Eq. (2), the genetic mean of the population may
be defined as:

Pgenetic ¼ DBV þ nR fR þ nC fC þ nD fD
� �

CBV ð13Þ
and thus, for the ith focal individual, the total breeding value
(TBVi) will be defined as:

TBV i ¼ DBV i þ nR fR þ nC fC þ nD fD
� �

CBV i ð14Þ
where nR fR, nC fC and nD fD denote products of the means
taken across all focal individuals in the population for the
number of their neighbours and intensity of interaction
factors in the row, column or diagonal directions. For

100 % survival, the quantity nR fR þ nC fC þ nD fD was 2.7
in every replicate of the simulated scenarios.

It is important to examine the impact on selection deci-
sions (in addition to the impact on variance component
estimation) from not accounting for competitive effects in
genetic evaluation when they are actually present. In this
context, three methods of selection were compared:

(i) selection based on estimated breeding values using the

B model (bBV );
(ii) selection based on estimated direct breeding values

using the GC-AR model (DbBV );
(iii) selection based on estimated total breeding values using

the GC-AR model (TbBV );
with estimated breeding values being obtained by best linear
unbiased prediction (BLUP).

Progeny were ranked using the three methods. As an
indication of discrepancy in ranking, Spearman rank corre-
lations were computed for: comparing selections based onbBV and DbBV ; and comparing selections based on bBV and

TbBV . Expected genetic responses were computed for indi-
vidual (offspring) selection, following selection of around
the 5 % topmost ranked individuals. For simulated data, true
genetic values are available, and the expected response to
selection may be calculated from the average of the simu-
lated genetic values for the individuals selected under a
given method. By using the simulated (true) breeding values
(denoted as DBV, CBV and TBV for direct, competitive and
total genetic effects, respectively), the expected genetic

Tree Genetics & Genomes (2013) 9:1–17 7



responses from selections based on the B or GC-AR models
are expressed on the same scale, hence reflecting the differ-
ences between models in the individuals selected. Thus, the
strategywas to compare the average TBVof the top individuals
ranked under method (i) with the average TBV of the top
individuals ranked under method (iii). Average values were
also obtained for the two terms in Eq. (14), in order to
evaluate the contributions of direct and competitive genetic
effects to the total response from selection based on either
method.

Results

We have used the median to describe the results of the
studied parameters over the 100 replicates in the simulation.
When comparing estimators to summarise data, Hozo et al.
(2005) indicated that the median provides a consistent mea-
sure of central tendency for either normal or skewed distri-
butions when sample sizes are larger than 25.

Parameter estimates from fitting an incomplete model

The true values of the (co)variance parameters used to
simulate the data sets were best approximated by the
corresponding estimates obtained under the most complete
GC-AR model (Fig. 2). For the remaining models, the
following main patterns in (co)variance parameter estimates
were observed for σ2

c 0 10 and 100 % survival.
For the B model (Fig. 3), bσ2

a appeared to be unbiased under
very low relatedness but tended to become biased downwards
for rdc values beyond −0.3 under the other relatedness levels.
The residual variance in the B model exceeded always its
expected value (i.e. σ2

ie + σ2
ce 0 100), with the amount of bias

being close to the true value of σ2
c , and thus indicating that it

was absorbing additive effects due to competition. In addition,
the residual variance also seemed to absorb direct additive
variance under the medium relatedness level, as suggested by
the opposite trends in the estimates of these two variance
components as rdc became more negative (Fig. 3).

Under the AR model (Fig. 4), bσ2
a appeared to be

increasingly biased downwards for all relatedness levels as the
values of rdc became more negative, with the bias being
greater for medium relatedness relative to the other relatedness
levels. The bσ2

ie was inflated for all relatedness levels under
rdc0−0.3, but then it decreased as rdc became more negative,
reaching a downward bias for the very low relatedness level
under rdc0−0.9. Conversely, bσ2

ce appeared to be increasingly
biased upwards for more negative values of rdc. The opposite
trends observed for bσ2

ce and bσ2
a (Fig. 4) suggest that bσ2

ce may

have an increasing contribution in absorbingbσ2
a as rdc becomes

more negative. In addition, the observed biases in the residual

terms indicate that bσ2
ce may assimilate part of bσ2

ie under more
negative values of rdc, with the effect being particularly strong
for a very low relatedness level. Nevertheless, in general, the
results indicate that residual terms in the AR model may be
absorbing direct and/or indirect additive (co)variance
components.

For the GC model (Figs. 5 and 6), there were in general
upward biases in bσ2

d and bσ2
c, and a brdc more negative than its

true value. The biases in bσ2
d and bσ2

c increased as rdc became
more negative and tended to be smaller under very low
relatedness (Fig. 5). The biases in brdc were substantial when
the true values of the parameter were equal to −0.3 and −0.6
(Fig. 6). The residual variance was biased downwards rela-
tively to its expectation (i.e. 100), with the bias being more
accentuated as the rdc values became more negative (Fig. 5),
and thus suggesting that additive (co)variance components
may be absorbing residual terms (a situation which contrasts
with the tendencies indicated under the B and AR models).

Results obtained for 80 % survival and σ2
c 0 10, as well as

for both levels of survival and σ2
c 0 5 or σ2

c 0 2, are not
presented as the patterns observed for the estimated (co)vari-
ance parameters were in general similar to those described
above for 100 % survival and σ2

c 0 10.
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Fig. 2 Estimates of direct additive (bσ2d ), competitive additive (bσ2
c ),

independent residual (bσ2ie) and correlated residual (bσ2ce) variances from
data simulated for a trait representing tree growth and analysed under
the GC-AR model. The variance estimates are plotted against three
simulated values (−0.3, −0.6 and −0.9) of the genetic correlation
between direct and competitive additive effects, considering three
levels (medium, low and very low) of genetic relatedness within a
neighbourhood and 100 % survival. Variances for the underlying true
effects in the simulated data were σ2

d ¼ 20; σ2
c ¼ 10;σ2

ie ¼ 80 and
σ2
ce ¼ 20 for direct additive, competitive additive, independent residual

and correlated residual effects, respectively
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Ability to detect the most appropriate model

Following LR tests, the AR model proved to be always
highly significantly (P≤0.001) better than the B model,
whereas the improvement of the GC model over the B model
was dependent on the magnitudes of σ2

c, rdc and relatedness for
a given level of survival (not shown). These factors also
appeared to determine the ability to detect the most appropriate
model, as indicated by the significance probability from the LR
test comparing the GC-AR model with the AR model. Based
on the individual probability values obtained for each of the
100 replicated comparisons of the GC-AR and AR models,
average estimates of the significance probability are plotted in
Fig. 7 against the simulated values of rdc , considering the
different scenarios involving σ2

c, relatedness and survival. From
a total of 100 comparisons between theGC-AR andARmodels,
the number of LR tests that were not statistically significant at
the 5 % level is presented in Online Resource 2 (Electronic
supplementary material) for each of the simulated scenarios.

The ability to detect the correct GC-AR model tended to
diminish when rdc became less negative, theσ2

c decreased for
a given magnitude of rdc and the level of relatedness
decreased for given magnitudes of rdc and σ2

c . In addition,
decreasing survival from 100 to 80 % reduced in general the

ability to detect the most appropriate model for a given set
of parameters and genetic relatedness (Fig. 7 and Online
Resource 2). Yet, detecting the most appropriate model
under 80 % survival was reasonably successful for σ2

c 0

10; the same applies for all scenarios under σ2
c 0 5, except

for very low relatedness when rdc0−0.3.

Impact on selection

Selection outcomes under contrasting magnitudes of σ2
c

and rdc

The effect of contrasting magnitudes ofσ2
c and rdc on selection

outcomes is presented in Table 3 assuming 100% survival and
using simulated data with a mean additive genetic relatedness
within a neighbourhood equal to 0.03 (i.e. corresponding to an
intermediate level between the medium and very low related-
ness scenarios).

The Spearman rank correlations between breeding value

estimates from the B model (bBV ) and direct breeding value

estimates from the GC-AR model (DbBV ) were very high
(i.e. ≥0.97). Poorer agreement in ranking was found

between selections based on bBV from the B model and total
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Fig. 3 Estimates of additive (bσ2a) and residual (bσ2e) variances from data
simulated for a trait representing tree growth and analysed under the B
model. The variance estimates are plotted against three simulated
values (−0.3, −0.6 and −0.9) of the genetic correlation between direct
and competitive additive effects, considering three levels (medium,
low and very low) of genetic relatedness within a neighbourhood and
100 % survival. Variances for the underlying true effects in the simu-
lated data were σ2

d ¼ 20; σ2
c ¼ 10; σ2

ie ¼ 80 and σ2
ce ¼ 20 for direct

additive, competitive additive, independent residual and correlated
residual effects, respectively
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Fig. 4 Estimates of additive (bσ2a ), independent residual (bσ2ie ) and
correlated residual (bσ2

ce ) variances from data simulated for a trait
representing tree growth and analysed under the AR model. The
variance estimates are plotted against three simulated values (−0.3, −0.6
and −0.9) of the genetic correlation between direct and competitive
additive effects, considering three levels (medium, low and very low) of
genetic relatedness within a neighbourhood and 100% survival. Variances
for the underlying true effects in the simulated data were σ2

d ¼ 20;
σ2
c ¼ 10; σ2

ie ¼ 80 and σ2
ce ¼ 20 for direct additive, competitive

additive, independent residual and correlated residual effects, respectively
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breeding value estimates from the GC-AR model (TbBV ). In
this sense, the agreement in ranking based on these two
models became worse when rdc was more negative and/or

σ2
c increased. The Spearman rank correlations between bBV

from the B and AR models were always very high (i.e.
≥0.98; not shown), indicating that similar selection out-
comes are expected from comparisons between the GC-
AR model and either the B or the AR model.

For rdc0−0.3, the selections based on the B model resulted
in a response from direct effects which was able to compensate
for the negative contribution due to competitive effects, leading
always to a positive total response. For rdc0−0.9, the total
response from selection based on the B model was negative
under σ2

c 0 10, reflecting the larger contribution (in absolute
value) to TBVof negative competitive effects relative to direct
effects.

Total responses from selection based on the GC-AR
model were considerably better than those based on the B
model forσ2

c 0 10; in particular, for selections from the GC-AR
model, the contribution of positive competitive effects to TBV
has largely compensated the corresponding negative direct
effects observed under rdc0−0.9. However, the advantage of
the GC-AR model over the B model became less apparent for

σ2
c 0 2, as the corresponding total responses to selection tended

to converge, reflecting the smaller differences between models
in contributions to TBV due to direct or competitive effects. Yet,
despite these approximations in total response, the maximum
number of common selections from the two models under
σ2
c 0 2 was 63 only (for a total of 130 individuals selected).
Results obtained by assuming 80 % survival (not shown)

indicated similar patterns as those described above, but the
advantage of the GC-AR model over the B model in total
response to selection was in general slightly diminished
relative to comparable scenarios for 100 % survival. This
reflected a reduction in the contribution of competitive effects
to TBV, which may be due to the decrease in the number of
competitors around the focal individual under 80 % survival.

Selection outcomes under contrasting levels of relatedness
within a neighbourhood

The effect on selection outcomes from contrasting levels of
additive genetic relatedness within a neighbourhood (i.e.
mean levels of 0.11 and 0.003, corresponding to the simu-
lated medium and very low relatedness scenarios, respec-
tively) is presented in Table 4, assuming 100 % survival, an
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Fig. 5 Estimates of direct additive (bσ2
d), competitive additive (bσ2c) and

residual (bσ2
e) variances from data simulated for a trait representing tree

growth and analysed under the GC model. The variance estimates are
plotted against three simulated values (−0.3, −0.6 and −0.9) of the
genetic correlation between direct and competitive additive effects,
considering three levels (medium, low and very low) of genetic relat-
edness within a neighbourhood and 100 % survival. Variances for the
underlying true effects in the simulated data were σ2

d ¼ 20; σ2c ¼ 10;
σ2
ie ¼ 80 and σ2

ce ¼ 20 for direct additive, competitive additive,
independent residual and correlated residual effects, respectively
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Fig. 6 Estimates of the correlation between direct and competitive
additive effects from data simulated for a trait representing tree growth
and analysed under the GC model. The correlation estimates are
plotted against three simulated values (−0.3, −0.6 and −0.9) of the
genetic correlation between direct and competitive additive effects,
considering three levels (medium, low and very low) of genetic relat-
edness within a neighbourhood and 100 % survival. Variances for the
underlying true effects in the simulated data were σ2

d ¼ 20; σ2c ¼ 10;
σ2
ie ¼ 80 and σ2

ce ¼ 20 for direct additive, competitive additive,
independent residual and correlated residual effects, respectively
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intermediate value of σ2
c (i.e. 5) and intermediate and high

values of rdc (i.e. −0.6 and −0.9).
The rankings based on DbBV and TbBV from the GC-AR

model were, respectively, highly and poorly correlated with
the rankings based on bBV from the B model, consistent with
the selection outcomes described above. Nevertheless, for a
given value of rdc, the Spearman rank correlations between
TbBV and bBV indicated a better agreement in ranking when
relatedness increased.

In general, total response from selection based on either
B or GC-AR model tended to decline when the level of
relatedness decreased, but the relative changes in total

response with decreasing relatedness depended on the value
of rdc. In this sense, under medium relatedness, the advantage
of the GC-AR model over the B model in total response was
greater than under very low relatedness, but the difference
between models was diminished when rdc changed from −0.6
to −0.9. This result reflects the fact that, under selection based
on the GC-AR model, lowering the relatedness level decreased
total response by reducing the favourable contribution of the
competitive component relatively to the part attributed to direct
effects, with the difference between relatedness levels for
rdc0−0.6 being larger than that for rdc0−0.9. Results obtained
by assuming 80 % survival (not shown) indicated similar

True correlation between direct and competitive additive effects
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Fig. 7 Average significance probabilities from likelihood ratio (LR)
tests comparing the GC-AR model and the AR model. For each of the
simulated scenarios, the individual significance probabilities from LR
tests performed for each of the 100 replicated comparisons of the GC-
AR and AR models were averaged and plotted against simulated
values of the genetic correlation between direct and competitive addi-
tive effects. Simulated scenarios involved three values of the genetic

correlation between direct and competitive additive effects (−0.3, −0.6
and −0.9), three values of the genetic variance for competitive additive
effects (σ2

c 0 2, 5 and 10), three levels of genetic relatedness within a
neighbourhood (medium, low and very low) and two levels of survival
(100 and 80 %, pertaining to plots in A and B, respectively). The 5 %
significance level is represented by a dashed line

Table 3 Expected outcomes from individual selection for contrasting
magnitudes of the genetic variance for competitive additive effects
(i.e. σ2

c 0 10 and 2) and of the genetic correlation between direct and
competitive additive effects (i.e. rdc0−0.3 and −0.9), assuming 100 %

survival and a mean level of genetic relatedness within a neighbour-
hood equal to 0.03 (i.e. corresponding to an intermediate level between
the medium and very low relatedness scenarios). The results were
obtained from data simulated for a trait representing tree growth

True values of parameters Spearman rank correlationsa Genetic response to selectionb Common selected
individualsc

Direct Competitive Total

rdc0−0.3, σ2c 0 10 0.988 0.210 6.2 1.4 −3.7 8.8 2.5 10.2 11/130

rdc0−0.3, σ2c 0 2 0.994 0.793 6.1 4.7 −1.5 0.8 4.6 5.5 63/130

rdc0−0.9, σ2c 0 10 0.967 −0.765 6.0 −5.1 −10.4 10.4 −4.4 5.3 0/130

rdc0−0.9, σ2c 0 2 0.990 0.793 6.1 3.2 −5.0 −2.4 1.1 0.8 51/130

a Spearman rank correlations were calculated between breeding value estimates from the B model and direct (left column) or total (right column)
breeding value estimates from the GC-AR model
b Direct, competitive and total genetic responses from selection based on the B (left columns) and GC-AR (right columns) models were calculated
following selection of around 5 % top individuals
c The number of common individuals selected from both the B and GC-AR models is given (numerator) for a total number of individuals selected
by either model (denominator)
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patterns to those observed for 100 % survival in the effects of
contrasting levels of relatedness on selection outcomes.

Discussion

Parameter estimates from fitting an incomplete model

In general, our results indicated that ignoring competitive
effects at either genetic or non-genetic levels will lead to
biases in (co)variance estimates of other components. Fol-
lowing Cappa and Cantet (2008), the expected covariance
between the phenotypes of x and y can be expressed at the
genetic level as:

Axyσ
2
d þ

Xnx
i¼1

fxwiAywi þ
Xny
j¼1

fyzjAxzj

" #
σdc

þ
Xnx
i¼1

Xny
j¼1

fxwi fyzjAwizj

" #
σ2
c

ð15Þ

where focal tree x has nx neighbours denoted by wi, focal tree
y has ny neighbours denoted by zj, Axy is the additive relation-
ship between x and y, Aywi (Axzj ) is the additive relationship

between focal tree y (x) and a neighbour of x (y), Awizj is the

additive relationship between a neighbour of x and a neigh-
bour of y, and fyzj fxwið Þ is the intensity of competition exerted

by tree zj (wi) over y (x). In forest genetic tests, there are a
finite number of families and multiple progeny per family.
Consequently, under any planting design, it is highly probable
that there will be some proportion of pairings of relatives x
and y, where some neighbours of x are related to neighbours of
y, or to y itself, and some neighbours of y are related to x.
Thus, the coefficients of σdc and σ2

c are likely to be non-zero

and, in models that do not take into account competition,
competitive variance presents as increased residual variance.

Our results from the base model unequivocally demons-
trate that the residual variance has absorbed the (co)variances
arising from genetic and/or non-genetic competitive effects,
and this absorption occurred irrespective of whether competi-
tion was primarily between or within families. In this sense, in
conjunction with a single-tree plot design (low and very low
relatedness levels), our base model produced an unbiased
additive variance estimate, but a residual variance estimate
that was biased upwards. However, in conjunction with a
multiple-tree-line plot design (medium relatedness level), the
base model yielded a downward bias in the estimate of the
additive variance, and a residual variance estimate that was
further biased upwards, relatively to the single-tree plot
design, by an amount that matched the bias in the additive
variance estimate. In preliminary testing of our models, we
included a case scenario where competition was acting at the
non-genetic level only: there was never an instance where
residual competition variance was misconstrued as additive
variance under a base model. Thus, competition at the residual
level still presents a case of environmental covariance, but
per se (i.e. in the absence of actual competitive additive
effects) it will not have an influence on the genetic covariance
among relatives (and consequently on the additive variance).

Why the pattern of bias for the additive variance estimated
under the base model was only evident when there was a strong
negative correlation (i.e. beyond −0.3) between direct and
competitive additive effects is best understood by examining
the nature of the genetic covariance between two relatives, as
described in Eq. (15). To investigate the cause of the biases
observed when rdc0−0.9, we computed the average coeffi-
cients for σdc and σ2

c in Eq. (15) for all half-sib pairs and for
the CP planting designs we have used. In the case of four-tree-

Table 4 Expected outcomes from individual selection for contrasting
levels of genetic relatedness within a neighbourhood (i.e. mean levels
of 0.11 and 0.003 corresponding to the simulated medium and very low
relatedness scenarios, respectively), assuming 100 % survival, an in-
termediate value of the genetic variance for competitive additive

effects (i.e. σ2
c 0 5) and intermediate and high values of the genetic

correlation between direct and competitive additive effects (i.e. rdc0
−0.6 and −0.9). The results were obtained from data simulated for a
trait representing tree growth

True values of parameters Spearman rank correlationsa Genetic response to selectionb Common selected
individualsc

Direct Competitive Total

rdc0−0.6, medium 0.946 0.415 5.7 0.7 −3.7 5.0 2.0 5.7 15/130

rdc0−0.6, very low 0.971 0.204 4.7 0.3 −4.0 1.9 0.7 2.2 7/130

rdc0−0.9, medium 0.945 −0.296 5.7 −2.4 −6.7 4.7 −1.0 2.3 0/130

rdc0−0.9, very low 0.956 −0.681 4.7 −2.7 −5.7 3.5 −1.0 0.8 0/130

a Spearman rank correlations were calculated between breeding value estimates from the B model and direct (left column) or total (right column)
breeding value estimates from the GC-AR model
b Direct, competitive and total genetic responses from selection based on the B (left columns) and GC-AR (right columns) models were calculated
following selection of around 5 % top individuals
c The number of common individuals selected from both the B and GC-AR models is given (numerator) for a total number of individuals selected
by either model (denominator)
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line plots, the values were 0.42 and 0.29, respectively. In the
case of single-tree plots, the values were 0.15 and 0.21. There-
fore, the value of the coefficient for σdc is higher than the
coefficient forσ2

c under the four-tree-line plot design. The same
tendency was observed when investigating the values of the
coefficients for full-sib pairings. In addition, when rdc0−0.9,
the covariance between direct and competitive additive effects
has a higher absolute value than the competitive additive
variance (i.e. σdc0−12.7 versus σ2

c 0 10.0). Consequently,
the sum of the second and third terms in Eq. (15) has a
negative value, and thus genetic covariances between half
and full sibs are reduced to less than what they would be
under no competitive effects. The net effect is a reduced
additive variance. The “missing” additive variance, or the
amount the additive variance has been reduced from the true
value, is absorbed into the residual variance. The same occurs
when rdc0−0.6 but to a lesser extent. Cappa and Cantet (2008)
have observed a similar phenomenon occurring when com-
paring models (with and without fitting genetic competition
effects) applied to actual loblolly pine trial data, although
average values of coefficients for the terms in Eq. (15) were
not reported. In summary, for competition at the genetic level,
it appears that the estimated additive variance will only be
decreased under a base model when planting designs have
the effect of emphasising the σdc component in the genetic
covariance between any two relatives (as described in Eq.
(15)). Such designs would emphasise intra-family competition
over inter-family competition, examples of which are when
families are planted in multiple-tree-line or block plots.

In simulating and analysing the data, competition at the
residual level was modelled according to an autoregressive
process, which may provide a residual covariance structure
that is closer to the actual correlation structure in the data
from field trials (Stringer 2006; Stringer et al. 2011). Auto-
regressive models reflect the existence of correlated errors
between a focal individual and more distant neighbours, in
addition to the adjacent neighbours described in Fig. 1
(Gilmour et al. 1997). Furthermore, autoregressive models
provide a framework for fitting both environmental trend
and residual competitive effects (Stringer 2006; Stringer et
al. 2011). Stringer (2006) has explored an equal-roots
second-order autoregressive (EAR2) process as an alterna-
tive to the AR1 for trials where, at the residual level,
competition is dominant over local environmental trend. In
preliminary analyses of diameter growth from some actual
forest genetic trials, where competition at the residual level
seemed to be dominant over local environmental trend (as
suggested by negative estimates of the coefficients in α), the
EAR2 did not appear to fit better the data than the AR1. A
similar tendency has been generally found by Stringer
(2006) in the analyses of 22 sugar cane data sets. Neverthe-
less, the results in the present study suggest that residual
effects under the AR model may be absorbing indirect

additive (co)variance components. In addition, when
considerable genetic competition (e.g. as given in the
simulated data by σ2

c 0 10 and rdc more negative than
−0.3) is present but not modelled, accounting only for residual
competition through a AR1 process may lead to a downward
bias in additive variance estimates. Thus, it is recommended
that the model used for data analysis always attempts to fit
competition at both genetic and non-genetic levels.

Another incomplete model tested in our sequence fitted
competition at the genetic, but not at the residual level. Under
this situation, there is a chance for the environmental covariance
to be misinterpreted as genetic covariance among relatives, and
the estimates of all three additive (co)variance components (i.e.
σ2
d , σdc and σ2

c ) may become inflated as a consequence. Our
results indicated that there is a stronger chance for this misinter-
pretation to occur when the level of relatedness within the
neighbourhood of a focal individual increases.

As a final remark, it should be reminded that the results
discussed above were obtained under scenarios assuming
that environmental trend was negligible, and thus considered
competition to be the most important source of residual
autocorrelation. Consequently, our results may not strictly
apply to situations where environmental trend is strong and
dominant over competition at the residual level.

Ability to detect the most appropriate model

The correct model for data analysis is the GC-AR model
under the scenarios defined in our simulation. Considerable
genetic competition, as defined in the simulation by σ2

c 0 10,
could always be detected under the GC-AR model. The
ability of this model to detect moderate to weak genetic
competition (as defined by σ2

c 0 5 and 2) was dependent
on the magnitude of rdc, and the levels of relatedness and
mortality. Decreasing the relatedness level appeared to be an
important factor in reducing the ability to detect genetic
competition, with this reduction being magnified for de-
creased percentage of survival and for a small negative
correlation between direct and competitive additive effects.

In a study by Bijma (2010b), it was found that, for
increasing the precision of estimating IGE, schemes with
animals grouped into two families were superior to schemes
where animals were grouped at random. In our medium
relatedness scheme, the majority of neighbourhoods were
composed of three families. Under low and very low
relatedness levels, neighbourhoods constituted a maximum
of nine families. Though the parallels between animal
breeding experiments and forest genetic trials are imperfect,
our results support the finding in Bijma (2010b). In summa-
ry, our results indicated that, although the GC-AR model
provided on average the best approximation to the simulated
(co)variance parameters, it appeared to have a limited ability
to detect weak levels of genetic competition (as defined by
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σ2
c 0 2 and rdc0−0.3) under a level of very low relatedness

within a neighbourhood. Thus, under these experimental
conditions, trial and/or family sizes substantially greater than
those used in our simulation may be needed for increasing the
power to detect weak levels of genetic competition.

Impact on selection

The results of the present study indicated that ranking
genotypes on the basis of estimated breeding values using
models that ignore genetic competition does not correlate
well with a ranking based on estimated total breeding
values, which are a function of both direct and competitive
additive effects. Cannell (1978) has postulated that selection
of non-competitive genotypes leads to the greatest yields per
unit area, and the terminology “crop ideotype” has been
applied to such genotypes (Donald 1968). If selection
response is measured in terms of forest productivity per unit
area, then ranking and selection on the basis of total breed-
ing values may lead to greater response, and thus it will be
important to have a framework that allows the breeder to
distinguish direct breeding values from competitive breed-
ing values. Mixed model methodology and the ability to
model IGE within this framework has now provided us with
a suitable approach for identifying family differences in
terms of conforming to a particular ideotype.

For a given level of relatedness, our results indicated that
the total responses to selection (i.e. based on TBV) under the
GC-AR model were in general greater than under the B
model. This was achieved via selection of genotypes with
favourable values for CBV, rather than genotypes with
higher values for DBV. In fact, this implies selecting for
genotypes that are cooperative rather than competitive, in
which case a genotype with a positive CBV will benefit the
performance of its neighbours. However, the potential of a
population to respond to selection will be determined by the
magnitude of the heritable variation (Bijma 2011) which,
given the definition of TBV in Eq. (14) for the ith focal
individual, may be described as:

Var TBVð Þ ¼ σ2
d þ 2 nR fR þ nC fC þ nD fD

� �
σdc

þ nR fR þ nC fC þ nD fD
� �2

σ2
c ð16Þ

indicating that the magnitude of heritable variance deter-
mining the change in the population mean trait value may be
reduced when strong negative σdc and smallσ2

c are occurring
simultaneously. This is supported by our results as, for a
given level of relatedness, the total responses to selection
based on the B and GC-AR models became similar under
rdc0−0.9 and σ2

c 0 2. Nevertheless, a breeder may also
choose to maximise gain for DBV, subject to maintaining
the mean CBV at a zero value.

As indicated by Bijma et al. (2007a), the degree of additive
genetic relatedness among neighbourhood members is a key
factor in determining the response to selection under the
presence of competitive interactions among individuals.
Increasing relatedness among interacting individuals will
contribute to convert the covariance between phenotypic trait
values and TBV of individuals into total heritable variation,
and thus will increase the potential of the trait to respond to
selection (Bijma et al. 2007a). Consequently, relatedness
within a neighbourhood may help to lessen the adverse impact
of the competitive (co)variance components on response
to selection, hence contributing to reduce the negative
consequences of competition (Bijma et al. 2007a; Ellen et al.
2007). This is sustained by our results in that total responses to
selection under the GC-AR model increased with higher
levels of relatedness within a neighbourhood. In this sense,
the improvement in total response to selection with higher
relatedness levels reflected an increase in the beneficial
contribution from competitive effects to TBV relatively to the
component attributed to direct effects. Our results also suggest
that, although selection accuracy may have been improved by
using BLUP to obtain estimates of TBV, relatedness among
neighbourhood members remained an important factor to
optimise selection response under sizeable negative rdc (see
also Muir et al. 2010). Yet, the impact of relatedness in
determining the extent to which selection utilises total heritable
variance may be reduced when competitive effects have a
moderate to small additive variance and are strongly negatively
correlated with direct additive effects (Bijma 2011). This is
supported by our results under σ2

c 0 5 as, when rdc changed
from −0.6 to −0.9, the advantage of the GC-ARmodel over the
B model in total response to selection was diminished for
medium relatedness relatively to very low relatedness.

Further issues

Number of neighbours with a significant competitive effect
on a focal individual

An issue that we have not properly explored in the present
study is the number of neighbours that have a significant
competitive effect on a focal individual. In the simulated
data, it was assumed that all surviving neighbours out of the
eight possible first-order neighbours impart their competi-
tive breeding values to the determination of the focal indi-
vidual’s phenotype. This may not always be the case.
Cannell et al. (1984) have found competition to be asym-
metrical, meaning that small trees suffer more from suppres-
sion, rather than large trees benefit from their dominance.
This finding led these authors to suggest that light is the
main environmental resource competed for. If this would be
the case, and taking the geographic context in the southern
hemisphere as an example, then it would not be unexpected
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that only northern neighbours could be the significant com-
petitors. It is even conceivable that second-order neighbours
may be significant competitors. Related to this issue is the
concept of dilution, which Bijma et al. (2007a) and Bijma
(2010b, c) have defined as the decrease in the magnitude of
IGE with group size, although there is no clear analogy with
forest genetic trials. In essence, the whole field trial is the
group over which there is a finite amount of resources
distributed, perhaps non-uniformly, but within which there
is a continuum of neighbourhoods. Thus, tree density per
unit area may be more of an important factor in determining
dilution than neighbourhood size. Yet, it is important to
gauge the correct number of significant competitors be-
cause: (a) if this number is overestimated, there is a risk that
genetic competition will not be detected, especially if the
signal is already inherently weak; and (b) it has implications
for the prediction of selection response, assuming that
response is based on total breeding value. Consequently,
an important step in the analysis of genetic competition will
be to pursue a pre-analysis to evaluate the number of neigh-
bours with a significant competitive effect on a focal indi-
vidual, and this will comprise a topic for future research.

Ability to separate direct and competitive additive
(co)variance components

Bijma et al. (2007b) derived an expression for the expected
covariance between two focal individuals in different neigh-
bourhoods (akin to Eq. (15)), and demonstrated that σ2

c could

be separated from σ2
d only when the combined relatedness

between the neighbourhood members of two given focal
individuals differed from the relatedness between these two
individuals themselves. Thus, the capacity of the information
in the data to separate σ2

d , σdc and σ
2
c may be impaired if there

is a large number of instances where the coefficients for σdc
and/orσ2

c in Eq. (15) equal Axy , which is the coefficient forσ2
d.

Previous analyses from four-neighbour simulations,
where competitive effects were assumed to originate mainly
from row and column neighbours (i.e. assuming non-
significant competitive effects for diagonal neighbours)
revealed that, under the medium relatedness level, the ability
to detect the correct GC-AR model was reduced relatively to
the low relatedness level. This is the reverse of what oc-
curred when all the eight first-order neighbours were con-
sidered as being significant competitors, although the
poorest ability to detect the most appropriate model was
observed under the very low relatedness level for both
four- and eight-neighbour simulations. In order to explain
the observed difference in the four- and eight-neighbour
results, we have calculated the number of instances that
the coefficients for σdc and σ2

c in Eq. (15) equalled 0.5
(when x and y are full sibs) or 0.25 (when x and y are half

sibs), as a percentage of the total number of full- and half-sib
pairings (Online Resource 3, Electronic supplementary materi-
al). Under the medium relatedness scenario, the relative num-
ber of instances in which the coefficients for σdc and σ2

c in Eq.
(15) equalled 0.5 or 0.25 was larger for the four-neighbour
simulations when compared with the eight-neighbour simula-
tions. However, this tendency was only found for half-sib
pairings under the low relatedness scenario (Online Resource
3). Therefore, these differences between relatedness scenarios
in equivalence relationships may have led to differences in the
capacity to separateσ2

d, σdc andσ
2
c and thus diminish the ability

to identify the correct GC-AR model under the medium relat-
edness level for the four-neighbour simulations.

As the medium relatedness scenario in the four-neighbour
simulations had a greater mean level than that in the eight-
neighbour simulations (i.e. 0.21 versus 0.11), our results also
suggest that an adequate separation of direct and competitive
additive effects may require an optimum level of additive
relatedness within a neighbourhood. Thus, although increa-
sing relatedness among interacting individuals will improve
the utilisation of heritable variance for response to selection,
greater relatedness within a neighbourhood may also make it
more difficult to estimate indirect genetic (co)variances. In-
deed, previous studies have indicated that non-identifiable
(Bijma et al. 2007b) or biased (Cheng et al. 2009) indirect
(co)variances will appear when all neighbourhoods are com-
posed of single families of half or full sibs. Nevertheless, the
equivalence relationships mentioned above may not occur in a
field trial when inter-row distance is different to inter-column
distance (p≠1), or when a combination of diagonal and row or
column neighbours comprises the significant competitors (see
Online Resource 3). Given that the number and location of
significant competitors to a focal tree is an empirical issue, and
can only be determined once a pre-analysis step is undertaken,
a precautionary measure to take when designing field trials is
to have unequal inter-row and inter-column distances. This
will ensure that the intensity of competition factors in the row
and column directions will be different (assuming insignifi-
cant diagonal neighbours), which may improve the identifi-
ability of (co)variance components in models fitting genetic
competition (Cantet and Cappa 2008). In addition, the dis-
tance differential should not be so great as to cause dilution of
competitive effects from trees in a different row or column.

Intensity of competition factors

Uniformity of scaling of competitive effects enabled by the

restriction
Pni
j¼1

f 2ij ¼ 1 will account for differences in tree

density per unit of area, both among neighbourhoods within
a trial (e.g. due to differences in tree mortality) and across
trials (e.g. due to differences in inter-tree spacing).
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Competitive additive (co)variances are trial specific, as they
may depend on the given population of genotypes tested at a
given age. This may limit direct comparisons among trials.
Nevertheless, differences among trials in competitive additive
(co)variances, arising from different numbers of significant
competitors affecting on average a focal tree, may be attenu-
ated through the incorporation of the intensity of competition
factors in models used for genetic evaluation.

Conclusion

In general, our results indicated that estimates of (co)vari-
ance components and predictions of responses to selection
may be inaccurate when competition exists at the genetic
level but is not accounted for by statistical models used in
genetic evaluation. The underlying quantitative genetic
model should allow the genetic variance of competitive
effects and the genetic covariance between direct and com-
petitive effects to become part of the heritable variance,
which determines the full potential for a population to
respond to selection. Considering their implications for
tree improvement programmes (which typically have not
been considering genetic competition effects), key con-
clusions to be drawn from the current work can be
summarised as follows:

& If genetic competition is present but not modelled,
variance estimates obtained for additive genetic and
residual effects may be biased. In this context, we found
a downward bias in the additive variance estimate when
the actual genetic correlation between direct and com-
petitive effects became more negative (i.e. beyond −0.3),
with a propensity for the bias to occur under increasing
levels of genetic relatedness within a neighbourhood.
In addition, there was a general tendency for inflated
variance estimates in residual terms. Under models that
fitted competition at the genetic level only, we also
observed biased (co)variance estimates for direct additive,
competitive additive and residual effects. Thus, the model
used for data analysis should always attempt to fit
competition at both genetic and non-genetic levels.

& The ability to detect low to moderate magnitudes of
genetic competition effects (as given in our study by
ratios of competitive additive variance to direct additive
variance of 0.1 and 0.25) may be reduced as levels of
genetic relatedness within a neighbourhood decrease,
with the reduction being magnified with lower survival
and less negative values of the actual genetic correlation
between direct and competitive effects.

& When competition is present at both genetic and non-
genetic levels, accounting only for non-genetic compe-
tition may lead to selection outcomes that are similar to

those obtained by ignoring competition at both levels, as
suggested in our study by the high agreement in indi-
vidual rankings. However, allowing for a genetic basis
to competitive ability will be important to optimise
artificial selection schemes, as total response to selection
based on breeding values estimated from a model ignor-
ing genetic competition may actually be lower than
when based on total breeding value estimates from an
appropriate model incorporating competition at both
genetic and non-genetic levels. We observed that the
disparity in terms of total responses to selection was
greater for higher ratios of competitive additive variance
to direct additive variance and for increasing levels of
genetic relatedness within a neighbourhood. Neverthe-
less, our results also suggested that the heritable vari-
ance will decrease when a strong negative genetic
correlation between direct and competitive effects
occurs simultaneously with moderate to low ratios of
competitive additive variance to direct additive variance,
hence constraining the change in the population mean
trait value. This will reduce the difference in total
response to selection between a model ignoring genetic
competition and the appropriate model.
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