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Preface

This is the first issue of a new journal of the LNCS journal subline. The aim of the
journal is to encourage inter- and multidisciplinary research in the fields of com-
puter science and life sciences. The recent paradigmatic shift in biology towards
a system view of biological phenomena requires a corresponding paradigmatic
shift in the techniques from computer science that can face the new challenges.
Classical tools usually used in bioinformatics are no longer up to date and new
ideas are needed.

The convergence of sciences and technologies we are experiencing these days
is changing the classical terms of reference for research activities. In fact clear
distinctions between disciplines no longer exist because advances in one field
permit advances in others and vice versa, thus establishing a positive feedback
loop between sciences. The potential impact of the convergence of sciences and
technologies is so huge that we must consider how to control and correctly drive
our future activities.

International and national funding agencies are looking at interdisciplinary
research as a key issue for the coming years, especially in the intersection of
life sciences and information technology. To speed up this process, we surely
need to establish relationships between researchers of different communities and
to define a common language that will allow them to exchange ideas and re-
sults. Furthermore, expectations of different communities can be merged only
by running activities like common projects and experiences.

The Transactions on Computational Systems Biology could be a good forum to
help life scientists and computer scientists to discuss together their common goals.

This first issue is made up of contributions by members of the Editorial Board
to provide a smooth start-up of the journal. The first paper, by Gómez et al.,
surveys the new methods needed for acquiring data suitable to enable simulation
of simple cellular systems. Then Shenhav et al. discuss how system biology can
be of help also in studying very early organisms in the time evolution scale. The
third contribution is by Roux-Rouquié and Soto and shows how useful is the no-
tion of model and metamodel in the systemic approach to the study of biological
systems. Feytmans et al. investigate the relationships between the complexity of
a genome and the functional complexity arising from it. The next paper moves
inside computer science. Priami and Quaglia show how calculi for describing con-
current systems can be used to model biological systems as well. The last invited
contribution is by Uhrmacher et al. and copes with the problem of multilevel and
multiscale simulation. Finally, Zobeley et al., in the regular paper of this issue,
present a new complexity reduction method which is time-dependent and suited
not only for steady states, but for all possible dynamics of a biochemical system.

Trento, January 10, 2005 Corrado Priami
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Abstract. In recent years there has been an incredible explosion of 
computational studies of molecular biology systems, particularly those related 
to the analysis of the structure and organization of molecular networks, as the 
initial steps toward the possible simulation of the behavior of simple cellular 
systems. Needless to say, this task will not be possible without the availability 
of a new class of data derived from experimental proteomics. Large-scale 
application of the yeast two-hybrid system, affinity purification (TAPs-MS), 
and other methodologies are for the first time providing overviews of complete 
protein interaction networks. Interestingly a number of computational methods 
are also contributing substantially to the identification of protein interactions, 
by comparing genome organization and evolution. Other disciplines, such as 
structural biology and computational structural biology, are complementing the 
information on interaction networks by providing detailed molecular 
descriptions of the corresponding complexes, which will become essential for 
the direct manipulation of the networks using theoretical or experimental 
methods. The storage, manipulation and visualization of the huge volumes of 
information about protein interactions and networks pose similar problems, 
irrespective of the source of the information: experimental or computational. In 
this sense, a number of competing systems and emerging standards have 
appeared in parallel with the publication of the data. In this review, we will 
provide an overview of the main experimental, high-throughput methods for the 
study of protein interactions, the parallel developments of computational 
methods for the prediction of protein interactions based on genome and 
sequence information, and the development of databases and standards that 
facilitate the analysis of all this information. 

LNBI 
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1   Introduction 

Proteins are involved in key cellular processes, including signal transduction, 
metabolism, cellular architecture and information transfer. To carry out these 
functions, proteins interact to form complexes of varying nature and stability, from 
stable interactions of structural proteins to transient contacts modulated by post-
translational modifications, as is typical of signaling proteins.  
    During the last few years, proteomics has produced spectacular advances in the 
description of these complexes, utilizing high-throughput techniques such as 
systematic yeast 2-hybrid approaches [1-4], Tandem Affinity purification followed by 
Mass Spectrometry resolution of the isolated complexes [5], and various 
combinations of information obtained from peptide libraries [6, 7]. Other techniques, 
such as chromatin immunoprecipitation (ChIP), have systematically addressed the 
relationship between transcription factors and their specific DNA binding sites [8, 9]. 
Nevertheless, establishing the complete structure of the complexes and protein 
interactions in a living cell, including the modulation of the interactions in different 
cellular states (temporal) and compartments (spatial), is a formidably complex 
problem. 
    Despite its limited size, the public release of the first set of proteomic data has 
produced an avalanche of theoretical studies on the organization of protein interaction 
networks, the identification of the basic control and interaction motifs, and the 
comparison to other non-biological networks [10-18]. 
    At the formal level, the structure of metabolic and protein interaction networks has 
been fitted to power law distributions similar to those of many other biological and 
non-biological systems [19, 20]. As in these other systems, the implication is that the 
protein interaction networks are in a meta-stable situation (or critical state), which 
makes it impossible to predict the future development of the network and the fate of 
individual interactions. Considerable effort has also been put into the search for well-
defined regions of the interaction network associated with defined biological 
properties, such as metabolic pathways with distinctive patterns of interactions [15, 
21-24].  
    Here we review the sources of information available for protein interaction data, 
their organization in databases, and the potential of computational biology methods to 
complement the experimental information by inferring new interactions. Clearly, the 
availability of large-scale, well organized interaction data with the proper quality 
controls is essential for the success of theoretical studies of the properties of the 
molecular systems. 

2   Large-Scale Studies of Protein Complexes: The Proteomes 

2.1   Experimental Methods for the Large-Scale Detection of Protein Interactions 

Several experimental methods are being applied for the large-scale detection of 
protein interactions. Some of these involve the implementation of standard techniques 
to study protein-protein interactions. One of the methods most often used is the yeast 
two-hybrid system (Y2H) [25, 26], based on the modular properties of the Gal4 
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protein of the yeast S. cerevisiae, as well as its modifications for application to 
membrane proteins [27]. A similar approach is based on beta-lactamase activity 
recovery [28]. Genome-wide studies involving variations of the Y2H protocol have 
been carried out in yeast, H. pylori, C. elegans and Drosophila [1-5, 29]. 
    Ho et al., applied ultra-sensitive mass spectrometry to identify protein complexes in 
S. cerevisiae, covering 25% of the yeast proteome [30]. Tandem-affinity purification 
(TAP) and mass spectrometry was used by Gavin et al. to characterize multi-protein 
complexes in S. cerevisiae [5]. Yeast protein chips and microarrays have also been 
used to screen protein-protein interactions and protein-drug interactions [31]. Tong et 
al. applied a combination of computational prediction of interactions from phage-
display ligand consensus sequences with large-scale two-hybrid physical interaction 
tests, to identify interaction partners of yeast SH3 domains [7]. 
    Large-scale proteomics also implies some limitations, and the introduction of 
certain artefacts, such as those produced by the presence of promiscuous proteins with 
an artifactual preference to interact with many other proteins in Y2H assays or the 
over-representation of small proteins in complex purification strategies [32-36]. As in 
other high-throughput applications (e.g. DNA arrays), accuracy in the determination 
of individual properties is sacrificed in order to gain insight into the global properties 
of the system [37].  

2.2   Extrapolating Experimental Information to Build Interaction Networks of 
Related Species 

A number of attempts have been made to extrapolate the information on protein 
interactions obtained from model systems (S. cerevisae, C. elegans, H. pylori, D. 
melanogaster) to other genomes. In general, inferences have been made by assuming 
that orthologous sequences will participate in similar interactions. For example, the 
experimental interactions determined for H. pylori were extrapolated to E. coli by 
combining sequence similarity searches with a clustering strategy, based on 
interaction patterns and interaction domain information [38]. Lappe et al. developed 
an integration system to combine, compare and analyze interaction data from different 
sources and different organisms at a single level of abstraction [39]. Matthews et al. 
proposed a method to search for 'interologs' (potentially conserved interactions) in C. 
elegans using experimentally identified interacting protein partners of S. cerevisae 
[40-43]. 
    These studies are very interesting, and certainly correspond to the most-simple 
assumption of conservation of interactions across different species. Nevertheless, the 
risk of extrapolating too far is considerable, even more so given that the principle of 
conservation of interactions across large evolutionary time has yet to be demonstrated 
and the combinatorial possibilities of protein domains complicates the situation 
significantly. 
    An interesting exploration of this problem has been published by Aloy and Russell 
[44] in which they calculated the degree of conservation of the interaction regions for 
pairs of proteins with different degrees of similarity. The conclusion of this study was 
that similar interaction sites can be predicted for proteins with sequence similarities as 
low as 30-40 %, even if the noise of the system is considerable. It is important to bear 
in mind that this study only implies that proteins that do interact tend to do so using 
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similar regions, and not that similar proteins will necessarily interact (see below for a 
discussion of the problem of predicting interaction specificity). 

3   Computational Methods for the Prediction of Interaction 
Partners 

A number of computational methods have recently appeared that use sequence 
information to predict physical or functional interactions between proteins. Five of 
them are described in Box 1 [45, 46], although others are likely to appear. 
    The possibility of using sequence and evolutionary information to identify potential 
interaction partners brings additional opportunities to enrich the collection of 
interactions available for modeling studies. However, a definitive evaluation of these 
methods is still incomplete since the collections of experimental data on interacting 
proteins that can be used as controls have their own limitations (see the section on 
experimental methods above) and the overlap between the sets of predicted or 
experimental interactions is currently limited. Nevertheless, taking all these 
limitations into account, the increasing availability of genomic sequence information 
and the improvement of the methods still makes it likely that computational methods 
for predicting protein-protein interactions could achieve coverage and accuracies 
similar to those of the high-throughput experimental methods [47, 48]. 
    Not surprisingly, interaction networks predicted by the various experimental and 
computational methods that are based on similar principles tend to have similar 
organizations [17].  

3.1   Methods Based on Domain Composition 

An alternative to the prediction of functional relationships between protein interactions 
is the study of the statistical association between proteins that share domains. The 
assumption in this case is that proteins that share a given domain will be functionally 
related by virtue of having this domain. Given the large number of multidomain proteins 
found in eukaryotes, it is easy to see that such a network will be highly complex and 
extremely dense. One approach attempts to elucidate which domains participate more 
often in protein interactions by considering the pairs of interacting yeast proteins 
recorded in the MIPS, MYGD and DIP databases, and the sequence domains included 
in the InterPro Database [49]. Another approach considers proteins as collections of 
conserved domains, where each domain is responsible for a specific interaction with 
another and a Markov chain Monte Carlo approach is used for the prediction of 
posterior probabilities of interaction between sets of proteins [50, 51]. 

3.2   Hybrid Methods Based on Sequence and Structure. Extrapolating from 
Interaction Partners to Interacting Regions 

In order to manipulate molecular systems, by simulation or employing experimental 
methods, it is important to have information available not only about the general 
interaction networks, but also the details of the specific interaction at a molecular 
level. For example, the experimental manipulation of a signaling pathway with point 
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mutations requires specific knowledge of the amino acid residues involved in the 
interactions. In other words, it is important to develop methods for the discovery of 
interacting regions, as a way of channeling the capacity of molecular biology and 
simulation techniques for the exploration of interaction networks. 
    Computational methods for the prediction of interaction partners based on genome 
comparisons (phylogenetic profiles, conservation of gene neighborhood and gene 
fusion detection; see inset) do not provide information about the molecular details; the 
predictions remain at the level of functional relationships between sequences. In 
contrast, the predictions of the other two methods described here (mirror-trees and in-
silico-two-hybrid) can be translated at the residue level for particular proteins.  
    Structural biology is also contributing substantially to the study of protein 
complexes, and perhaps the most important milestone in this area has been the 
determination of the structure of the ribosome [52]. Generally speaking, information 
about the structure of proteins is an essential component of the study of biological 
systems. From this type of experimental information we have learned about stable and 
transient protein complexes, about their interaction surfaces, and, to some extent, 
about the specificity of their interactions. A very interesting new avenue has been 
recently open by Aloy et al. [53] with the combination of experimental structure, 
protein models, and biochemical information to build the structure of new complexes 
whose general shape was solved by systematic electron microscopy studies of protein 
complexes purified by TAPs-MS. 
    From a computational point of view, major advances have been in the development 
of programs for the prediction of the structure of protein complexes (docking 
programs, [54, 55]), and a number of sequence-related analysis systems for the 
prediction of potential interaction regions.[56] In the near future, interesting progress 
is expected in the prediction of interaction regions by combining structural and 
sequence information. 
    Beyond the prediction of complex structure for interacting proteins of known 
structure, we still have to face the problem of distinguishing between potentially 
interacting proteins, e.g. all the pairs of proteins belonging to two protein families, 
versus the few protein pairs that are actually interacting. The specificity of those 
interactions is essential for the function of cellular systems in which members of the 
same protein family, using the same basic architecture, are able to trigger different 
signaling pathways. It is conceivable that a combination of protein modeling 
techniques and sequence information analysis will contribute to the search for the 
molecular basis of protein-protein recognition specificity. A few methods have been 
developed to this end. These methods make use of residue pair potentials obtained 
from interacting surfaces of known complexes. The information is then used to assess 
the extent to which the homologues of two interacting proteins of known structure 
will interact [57, 58]. Lu et al. have extended their protein structure prediction method 
to the prediction of the stability of protein complexes (Multiprospector). In this case, 
all combinations of protein sequences are tested for their compatibility in the 
framework of known protein complexes. The rationale is that proteins that will 
naturally form complexes will be more stable when associated with their partners than 
in isolation [59, 60]. The application of this method to complete genomes shows an 
impressive capacity for predicting potential interactions and an accuracy similar to 
other prediction methods [61]. Our group has studied the problem of molecular 
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specificity in various systems in which computational predictions have allowed us to 
manipulate the molecular basis of specific recognition in protein interactions [62-66]. 
However, in some cases accurate prediction of interactions is not possible due to the 
complexity of the conformational changes in the interaction surfaces. 

4   Organization of the Information on Interactions in Specific 
Databases 

In recent years, high-throughput methods have made molecular biology a data-
intensive discipline. These data have to be stored in a structured way for data retrieval 
and analysis. A number of protein interaction results have been stored in this manner 
and made accessible via web services (see Table 1). All of these projects are still in an 
initial phase, which explains the current lack of differentiating characteristics that in 
the long run will determine their utility and survival in competition with other 
initiatives. 
    The Human Proteome Organization (HUPO) has launched an effort to establish 
standards for interaction databases that would be acceptable for all existing projects. 
These standards contain the minimum sufficient information to describe interactions, 
with the intention of facilitating information exchange between interaction databases. 
The consortium behind these initiatives has already designed the basic layer (XML) 
for the exchange, and a technical vocabulary for the description of the many 
experimental and theoretical techniques that produce data on protein interactions. 
Similar initiatives are taking place in related areas such as metabolic pathway 
databases[67]. The main databases of this kind have been running for years EMP [68, 
69], WIT [70], KEGG [71], EcoCyc [72], and new ones are still appearing (aMAZE) 
[73, 74]. They are designed for storing information on enzymes, biochemical 
reactions and small molecules, and in some cases, the corresponding kinetic 
parameters. There are initiatives to create compatible standards between metabolic 
databases (see for example BioPAX-http://www.biopax.org/), which in the future may 
include protein interaction databases. 
    Alongside the data standardization structure, other projects have focused on a 
solution to another major database problem: data distribution. Many institutes and 
labs have relevant scientific information that is accessible through static web 
interfaces that are rarely visited. New technologies are now arising that are able to 
make all these data accessible through a single interface that can retrieve the 
information from its main source. An example of this technology is the PLANET 
project (see http://eu-plant-genome.net), where different data repositories are being 
made accessible through a single interface thanks to BioMoby technology [75]. 

The internet has offered a fast channel for information interchange. This has been 
particularly the case for the development of computational biology. Massive data 
exchange operations have made data reliability a major concern. Error propagation 
has proved to be a concern in areas with database annotation, making the link between 
annotation and the underlying experimental information an important issue. This need 
has increased the efforts in text mining research to recover the links between protein 
interaction databases and the corresponding sentences in the literature. During the last 
few years the technology in this area has developed rapidly [76-79]. Nevertheless, key  
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Table 1. Main databases on protein-protein interactions 

Database Site and Description 

DIP [80-82] Stores experimentally determined interactions between proteins. 
Currently, it includes 18,488 interactions for 7134 proteins in 
104 organisms. http://dip.doe-mbi.ucla.edu/ 

MINT [98] Designed to store functional interactions between biological 
molecules (proteins, RNA, DNA). It is now focusing on 
experimentally-verified direct and indirect protein-protein 
interactions. http://cbm.bio.uniroma2.it/mint/ 

BIND [99] Contains full descriptions of interactions, molecular complexes 
and pathways http://www.bind.ca/ 

MIPS [100] Large collection of diverse types of interactions. Commonly 
used as equivalent to 'hand-curated' sets of interactions. 
http://www.mips.biochem.mpg.de/ 

PathCalling 
Yeast Interaction 
Database  [1] 

 

Identifies protein-protein interactions on a genome-wide scale 
for functional assignment and drug target discovery 
http://portal.curagen.com/extpc/com.curagen.portal.servlet.Yeast 

 
The GRID [101] A database of genetic and physical interactions that contains 

interaction data from several sources, including MIPS and BIND 
http://biodata.mshri.on.ca/grid/servlet/Index 

IntAct [67] The project (funded by a European Commission grant, 
TEMBLOR) aims to represent and annotate protein-protein 
interactions, and to develop a public database of experimentally 
identified and predicted interactions. The database structure is 
designed to incorporate experimentally determined and 
predicted interactions, with special care in tracing the origin of 
the information. The interactions will be directly linked to 
original sentences in the literature describing them, for which 
text mining technology will be used. http//www.ebi.ac.uk/intact 

STRING [46] 
 

STRING is a database of known and predicted protein-protein 
interactions. 
http://string.embl.de/newstring_cgi/show_input_page.pl 

HPID [42] The human protein interaction database. Contains human protein 
interactions inferred by homology searches against experimental 
interaction data. http://www.hpid.org/ 

Prolinks [102] A database of protein functional linkages derived from 
coevolution. Contains functional links predicted by several 
methods. http://169.232.137.207/cgi-dev/functionator/pronav 

Predictome [103] A database of putative functional links between proteins. 
Contains functional links establish by a variety of techniques, 
both experimental and computational. 
http://predictome.bu.edu/ 
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problems remain in the field, such as the identification of protein and gene names. For 
example, in 2001 it was possible to link only 30% of the DIP database entries to the 
literature [80-82]. Only 20% of the missing links were explained by inaccuracies in 
the text mining system; the remaining 80% were produced because the protein names 
used in the database were not found in any of the available Medline entries, or 
because there was no information about the interactions in the literature. In the current 
status of the technology, the number of synonyms has grown, as well as the number of 
technical possibilities for detecting interactions[79]. Thus, this technology is maturing 
fast and may soon be able to facilitate the tasks of annotating databases, and to keep 
direct pointers between the interactions and the literature. (Very recently a 
collaborative effort has been launched to assess technologies in this area, see 
http://www.pdg.cnb.uam.es/BioLink). 

5   Concluding Remarks 

Genomic sequencing, proteome characterization and structural genomics projects are 
providing a wealth of information about genes and proteins. Proteomics now offers 
the possibility of entering a new dimension of understanding, directly related to the 
organization of the basic components in protein networks and complexes. The 
experimental and computational approaches published in the last five years have 
provided the first wide ranging view of the properties, organization, evolution and 
complexity of protein interaction networks. Computational Biology is contributing to 
this collective effort with, firstly, new methods to identify protein interaction partners 
on a large scale, and secondly with new approaches able to provide detailed 
descriptions, and associated predictions, of protein interaction sites. 
    It is important to bear in mind that the characterization of protein interaction 
networks is only one initial step towards the understanding of cellular systems; a step 
for which high-throughput proteomics, bioinformatics and computational biology are 
inherently associated with the success of Computational Systems Biology. 
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Boxes 

Box 1.  Computational Methods for the Prediction of Interaction Partners 

Phylogenetic profiles. This method is based on the identification of genes that have 
the same pattern of presence/absence in a number of genomes. A group of genes with 
the same phylogenetic profile is assumed to encode proteins that are functionally 
related (for example, they may be part of the same metabolic pathway) and that may 
or may not interact physically. The drawback of the method is that it can only be 
applied to complete genomes [83, 84]. 
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Conservation of gene neighborhood. Especially in prokaryotes, the neighborhood of a 
gene has a tendency to be conserved, both in terms of identity and order of the genes. 
This is partly related to the fact that genes in prokaryotes are often organized in 
operons. Operons contain genes that need to be expressed in a coordinated fashion, 
usually because they are involved in related functions. The observed relationship 
between chromosome proximity and function [85] has been exploited to predict gene 
interactions, both in the physical and in the functional sense [86, 87]. 

Gene fusion. Two proteins, or protein domains, encoded by different genes are 
assumed to interact physically, or at least functionally, if in some species they are 
coded by a single gene, presumably originating from a gene fusion event [88, 89]. It 
has been shown that fusion events are particularly common in metabolic proteins [90]. 

Mirror trees. Interacting proteins are expected to co-evolve. Therefore, the 
corresponding phylogenetic trees should be more similar than those of non-interacting 
proteins. The first qualitative assessments of this concept were performed with the 
pairs composed of the insulin and their receptors [91], and dockerins and cohexins 
[92]. Later, linear correlation between the distance matrices used to construct the trees 
was proposed to measure tree similarity [93] and the approach was applied to large 
data sets [94]. Recently, a method based on this concept has been developed for 
predicting interaction specificity [95].  

In silico two-hybrid. The co-evolution of interacting proteins can be studied by 
analysis of mutations in one of the partners that compensate mutations in the other. 
The detection of correlated mutations has been used to predict the tendency of pairs of 
residues to be in physical proximity [96]. This method has been applied to large data 
sets of proteins and domains [97].  
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Abstract. Systems Biology constitutes tools and approaches aimed at decipher-
ing complex biological entities. It is assumed that such complexity arose gradu-
ally, beginning from a few relatively simple molecules at life’s inception, and 
culminating with the emergence of composite multicellular organisms billions 
of years later. The main point of the present paper is that very early in the evo-
lution of life, molecular ensembles with high complexity may have arisen, 
which are best described and analyzed by the tools of Systems Biology. We 
show that modeled prebiotic mutually catalytic pathways have network attrib-
utes similar to those of present-day living cells. This includes network motifs 
and robustness attributes. We point out that early networks are weighted 
(graded), but that using a cutoff formalism one may probe their degree distribu-
tion and show that it approximate that of a random network. A question is then 
posed regarding the potential evolutionary mechanisms that may have led to the 
emergence of scale-free networks in modern cells. 

1   Prebiotic Molecular Networks 

Most researchers admit that somewhere along the line towards the appearance of self-
reproducing protocells, a web of interacting molecules must have been at work. Yet, 
investigators are divided on a crucial question related to the first reproducing entities. 
One set of scenarios claims that life began with a single molecular replicator, e.g. an 
RNA-like biopolymer [1-3]. It is further assumed that complex molecular networks 
came much later, and were genetically instructed by the replicating polymers. The 
second set of scenarios asserts that early replicating entities must have constituted 
complex molecular networks right from the outset. The latter view claims that the 
emergence of single molecules, whose inner works allowed them to instruct the syn-
thesis of their own copies, are extremely unlikely under prebiotic conditions. It is 
claimed that the spontaneous accretion of specific mixtures or assemblies of simple 
organic molecules, capable of self-reproduction, is more probable. Furthermore, it is 
suggested that the capacity of such molecular assemblies to undergo a replication or 
reproduction-like process is a direct consequence of certain network properties paral-
lel to those that allow present-day cells to divide and beget progeny. If the “network-
first” scenario is right, then a better understanding of network properties within  
contemporary living cells should be a crucial tool for understanding prebiotic evolution. 
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The early Systems Biology view has a promise for merging the two seemingly con-
flicting scenarios for prebiotic evolution. This has been recently presented by Luisi 
[4]  as follows: “Another new wind in our field comes, in my opinion, from the de-
velopment of system biology – biology seen in terms of system theory, namely the 
whole biological system studied in its entire complexity: proteomics, genomics, net-
works and non linear systems, and so on. This has brought about a revival of theoreti-
cal and experimental studies on chemical complexity, like self-organization, emergent 
properties, autocatalysis – concepts that were already with us, that however have 
acquired nowadays a new importance.” 

2   Binary and Weighted Networks 

Until 1960, regular networks, such as lattices, were the typical structured mathematical 
entities studied in the realm of graph theory. One such regular network, a hyper-cube, 
underlies the dynamics described by the classical quasi-species model for early evolu-
tion [5]. Later, Paul Erdös importantly introduced random networks, and studied their 
mathematical properties. In this type of networks the nodes are connected in a haphaz-
ard fashion to every other, each edge having a probability p to appear. Such network 
inspired Kauffmann’s mutual catalysis model for the origin of life (Fig. 1B) [6]. 

Despite their seeming generality, it was more recently shown that random networks 
do not correspond properly to those that often appear in biological systems. In  
particular, random networks have a binomial or Poisson distribution of  node  degrees, 

 
 

typified by a most probable value, while many biological networks are scale-free, and 
their  degree distribution follows a power law (Fig.1 and 4) [7-13]. The scale-free 
nature of present-day protein networks (to address one example) stems from the fact 
that a few proteins, belonging to certain families, are capable of interacting with a 
large number of partners [14]. 

Considerable Systems Biology research has been performed in recent years on 
the properties of biological networks [12, 15-18]. Much of this effort pertains to 
unweighted - binary networks, in which a specific node is either connected or not 
connected to another. Classical network attributes such as degree distribution, mean 
path length and clustering coefficient, are based on counting these binary connec-
tions. However, in many instances, not only restricted to biology, every two nodes 
in a network are connected in a graded or weighted fashion. This happens when a 
continuous measure such as affinity or catalytic rate governs the interactions among 
nodes, as is the case in the Graded Autocatalysis Replication Domain (GARD) 
model for early evolution, described below. It is possible to explore ways in which 
to convert weighted networks into binary ones, so as to afford analyses with  
existing network tools. 

3   Specificity Attributes Within Networks 

In present-day cellular networks, connectivity is rather sparse. Thus, a protein interac-
tion network may have many thousands of nodes, but each node is connected to only a 
few or at most few dozen others (Fig. 1C, D). This state of affairs could be due to the 
long evolutionary process, in which proteins have emerged as highly specific and selec-
tive recognition devices.  However, it would be surmised that in the early stages of 
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A. The canonic composome (cf. figure 3) of a Graded Autocatalytic Replication Domain 
(GARD) system (cf. figure 2) with a molecular repertoire, NG=1000. The total molecular 
count in the system, N, is taken to be 800. Only molecular species with concentra-

tion 800
1

N

ni > are shown. An edge is shown if the catalysis exerted on joining of molecular 

species Ai by molecular species Aj (βij) enhances the reaction by at least 100 folds. 
B.  Schematic illustration of an autocatalytic set as proposed by Kauffman (modified from [6]). 

Strings composed of A’s and B’s represent molecular species (oligomers) with different 
length and sequence. Black lines joined by a black square represent a ligation (concatena-
tion) reaction. Wide arrows indicate catalysis on such ligation reaction by a member of the 
set. According to the model, if one assumes a fixed probability, p, for each molecular spe-
cies to catalyze each reaction and if the number of molecular species is sufficiently large, 
then an autocatalytic set will emerge. In such set, the formation of every molecular species, 
except for the basic building blocks (A and B) will be catalyzed by at least one member of 
the set. Kaufmann pre-biotic network is binary by definition, as no gradation of catalytic 
potencies is assumed. Its degree distribution is clearly binomial, as every edge has the same 
probability p to appear. 

C. Protein interaction map (PIM) generated by using ~100 known or suspected cell cycle 
regulators, including Cdk1 and Cdk2, in high throughput screens to detect possible interac-
tions with ~13,000 Drosophila proteins [36]. The typical hubs that typify contemporary  
biological network may be seen. 

D.  Metabolic network of E. coli, where each node corresponds to a metabolite, and   edges 
represent biochemical reactions. Figure is from [37]. 

GARD

A
B

C D

 

Fig. 1. Prebiotic and contemporary biological networks 



 Early Systems Biology and Prebiotic Networks 17 

molecular evolution, recognition was much more promiscuous. In particular, in pre-
biotic scenarios as proposed [6, 19-23] biopolymers such as folded proteins and RNAs 
may have not yet emerged, and smaller, simpler organic molecules may have played 
pivotal roles in information storage and catalysis. Under such circumstances, molecular 
species may have had a much larger number of interacting partners, and the correspond-
ing network would have very high average network degree values. Thus, early networks 
(Fig. 1A,B), whose properties we have attempted to capture in the GARD model, are 
markedly different from their more modern counterparts. In such early systems, it is 
likely that practically all interacting pairs would have affinities in the range of what 
would presently be considered non-specific binding. What nowadays constitute the 
background noise may have been the only existing interactions at the inception of life. 

4   GARD Dynamics and Composomes 

We have, in the last decade, explored a defined formalism for describing and simulat-
ing the behavior of early systems with mutual catalytic interactions among simple 
molecules under prebiotic conditions [24-27]. Accordingly, a formula was proposed 
that defined the probability for a particular value of catalytic potency for a randomly 
selected molecular pair. This formalism, which is based on a Receptor Affinity Dis-
tribution model [28-30], resulted in the definition of a matrix, β, specifying a non-
zero interaction for every pair of molecules. A reasonable way to regard such matrix 
is that it represents a fully connected weighted network of interactions (Fig. 3A). 

The Graded autocatalysis Replication Domain (GARD) model depicts the kinetic 
behavior of such networks. Along the time scale, a dynamic process unfolds, whereby 
inside a molecular assembly of a finite size, certain molecular species prevail and 
others are selected against. This results in the emergence of different “composome”, 
quasi-stationary states of the system, with different biased compositions. Fig. 3A 
shows a network that characterizes a complete β matrix. Despite the small number of 
components (NG=300), this network is rather densely connected, because it arises 
from a system in which nominally every component is connected to every other (visu-
alized with an edge cutoff of β=100). 

The GARD model provides a detailed dynamic description of time-dependent 
changes in the concentrations of different molecular species within an assembly. In 
terms of concrete chemistry, it is assumed that the molecules within a GARD assem-
bly are amphiphiles (lipid-like), held together within a micelle-like structure by hy-
drophobic forces. A GARD assembly, similar to a lipid bilayer, is a fluid structure, 
which can exchange molecules with the environment. Furthermore, rapid diffusion of 
molecules within it facilitates their mutual rate-enhancing interactions. Computer 
simulations of GARD equations allow one to view a time series of concentrations or 
compositions – a GARD trace. At each time point, the count of different molecular 
species is recorded, resulting in a trace of samples (see Figs. 2, 6B). 

GARD usually considers a collection of NG different molecules, i.e. a molecular 
repertoire of size NG. In GARD, every component of an assembly may catalyze the 
entry/exit or formation/breakdown of every other component. Thus, at every time 
point, GARD by definition constitutes a mutually catalytic network. The effectiveness 
of such network, that is the capacity to sustain homeostasis (Fig. 2), varies, and  
depends on the exact composition, and on the web of interactions that prevails among 
the components. Composomes are specific compositions that last over  many  growth- 
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Fig. 2. The dynamics of a GARD assembly [25]. The composition of a molecular assembly is 
represented in the GARD model by a vector, n, with components, ni, for every one of the NG 
different molecular species in the system. Each ni indicates the molecular counts of molecular 
species Ai in the assembly. A crucial assumption in the model is that every reaction would be 
catalyzed, to some extent, by each of the molecules in the assembly. GARD presumes that mo-
lecular assemblies undergo occasional fissions that yield smaller assemblies. This is modeled by 
having N0 molecules randomly removed from the assembly once its size ( = in  N ) exceeds a 

threshold of 2N0. A GARD trace is a series of compositional vectors as a function times 

A. GARD “carpet” showing an autocorrelation matrix of a trace containing 2,000 splits. The 
similarity between two compositions, n1 and n2, is measured by the scalar product: 
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with a color scale (right of  B) that has red for H = 1.0 (high similarity) and blue for H = 0 
(indicates no similarity). 

B.  A partial ‘carpet’ for the arbitrarily sampled splits 1,700-1,800 in the trace shown in A. Red 
squares indicate composomes [25]. Off-diagonal red squares indicate that composition of 
composomes tends to be repeated. 

C.  The projection of all 2000 NG-dimensional compositions in the trace (shown in A)  
displayed in a two dimensional plane defined by the first and second components in a  
Principle Components Analysis (PCA). The samples form a triangle in the plane, which is 
not occupied uniformly. The heavily occupied edge corresponds to samples in the promi-
nent composome and the opposing vertex to a lesser frequent composome. 

D. The projection of the samples illustrated in B to the plane defined in C. Each composition is 
colored according to its time of appearance (color bar on right). The blue diamond corre-
sponds to the first sample in the sub-trace and the red diamond to the last. Consecutive 
samples in time are connected by a line. The analysis show examples of paths taken from 
the dominating composome to the other one and back, e.g. samples 88-95 (red). 
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Fig. 3. Networks in the Graded Autocatalytic Replication Domain (GARD) model. An example 
of networks as found in a GARD system with NG=300, where each node corresponds to a dif-
ferent molecular species (monomer) and edges are catalytic potencies. A cutoff was used 
whereby edges are shown only for  values that exceed a threshold of 100. White nodes indi-
cate molecular species which appear only once in the composomes shown in B-F, whereas 
colored nodes are shared by at least two of these composomes. Colors are assigned arbitrarily 
but each color uniquely represents a particular molecular species, so as to allow visual inspec-
tion of similarities among composomes 

A. The thresholded network corresponding to the entire rate enhancement  matrix. 
B. The canonic composome. This is the composition which a GARD system assumes in the 

case of large assemblies (N0 >> NG). The canonic composome is approximated by  the 
main eigenvector of the  matrix, i.e. the eigenvector with the highest eigenvalue, whose 
elements are all real [38]. The only molecular species shown are those whose concentra-
tion would reflect at least one molecule for an assembly size of 120. 

C-F. Networks that correspond to four dynamic composomes, computed by numeric simulation of 
the GARD stochastic differential equation. These are as observed in a trace of 2,000 splits 
using the same size limit. The similarity of the composomes to each other (measured by 
H, cf. figure 2): 

Some networks modules (subset of connected nodes) are clearly shared by several compo-
somes, e.g. the pentameric cycle in B, E and F. 

 B C D E F 
Canonic (B) 1.0     
Composome1 (C) 0.6 1.0    
Composome2 (D) 0.7 0.6 1.0   
Composome3 (E) 0.8 0.7 0.4 1.0  
Composome4 (F) 0.9 0.6 0.6 0.7 1.0 
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split cycles due to efficient mutual catalysis that underlies homeostatic growth. These 
resemble fixed points of a dynamic system (Fig. 2). 

A specific GARD system, defined by a particular β matrix, may have numerous 
composomes, and each of these defines a weighted network of catalytic interactions 
(Fig. 3). It is, however, legitimate to investigate such network and their properties 
through conversion to a binary network, based on a judiciously selected cutoff. This 
analysis may be equally applied to individual composomes (Fig. 3C-F), or to the cal-
culated canonic composome (Fig. 3B). The different composomes may bear different 
degree of mutual similarities, as manifested in sharing of molecular species and in the 
values of mutual similarity measure H (Fig. 3, legend). 

In the basic GARD formalism, the only chemical reactions being modeled are cata-
lyzed exchange reactions – joining and leaving of molecules. The resulting dynamics 
involves compositional transitions that may be considered by some as resulting from 
mutations. When viewed within a limited time frame, the dynamics of this simple 
GARD model manifests graded transitions between different molecular networks, 
resembling an evolutionary process. 

5   How Did Scale-Free Networks Arise 

An important attribute of GARD is its parsimony, as it involves very few pre-
assumptions, and stems directly from chemical kinetics of small molecules. As men-
tioned above, the resulting networks are graded or weighted, and therefore cannot be 
readily analyzed by the standard tools of degree distribution analysis.  

Yet, with a threshold-based procedure it is possible to see that the degree distribu-
tion of a GARD network roughly obeys a binomial distribution (Fig. 4). This is to be 
expected, as these networks are derived from a randomly disposed matrix of interac-
tions. Importantly, GARD dynamics, leading to composomes select molecular species 
such that the β values deviate from the original lognormal distribution (Fig. 5), show-
ing an increased preponderance of high β values. 

The scale free - power law behavior of biological networks is usually rationalized 
as being related to the formation of a few hubs with a large number of connections 
[31]. A parallel potential explanation could be in terms of selective preservation of 
very richly connected nodes. That the early GARD networks are not scale free is in 
agreement with the notion that such property is a result of a long evolutionary proc-
ess. A crucial question is at what stage in evolution these properties arose, and how 
they are related to what distinguishes very early biological systems from later ones. 

As described above, in the basic “joining GARD” model, the concentrations of dif-
ferent molecular species may undergo profound changes, but the basic properties of 
the molecules may not change. A more open-ended configuration is afforded by later 
GARD versions that include chemical reactions, in which oligomers are formed by 
covalent concatenation of monomers. In this extended GARD model the number of 
molecular species is an exponent of NG (the size of the monomer repertoire). Prelimi-
nary analyses [32] show a more life-like behavior, and it appears that this polymer 
GARD formalism may also harbor a potential for a graded transition from random 
networks to scale-free ones. An intuitive rationalization is that a few of the vast num-
ber of oligomers that form in such a scenario might interact with or catalyze reactions 
of  a large number of other compounds, hence become network hubs. This is by virtue  
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Fig. 4. Comparison of distribution p(k) of degree values k for composomes vs. protein net-
works, drawn as a double-logarithmic plot. For each curve, the average degree is shown next to 
its bottom 

A. The degree distribution for GARD networks of canonic composomes with different cutoff 
values on concentration of selected molecular species. The distribution resemble a Bino-
mial distribution with N equals NE and p equals the probability for a catalysis βij to exceed 
the cutoff on  values. The range of degree values is much narrower than for a highly 
evolved network as shown in B. The distribution was computed for 1,000 canonic compo-
somes with NG =1,000. Similar distribution was also found for composomes observed in 
150 GARD simulations with the same NG and 1,000 GARD simulations with NG = 300. 

B. Degree distribution for yeast proteins interaction map [8], with  2114 proteins and with a 
total number of interactions of 4480 (average degree of  4.23). A linear power law relation-
ship is seen, with the best fit equation of  p(k) = 0.494* k-1.75. 
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Fig. 5. Comparing the distributions of rate enhancement values (β) for composomes and their 
original β matrices 
A. The distribution of rate enhancement values in the entire  matrix (light) and in the canonic 

composome (dark). The analysis was performed for 1,000 different  matrices with NG = 
1,000, whose values were randomly selected using a lognormal distribution with μ = -4 and 
σ = 4 in accordance to previous work [25]. 

B. The ratio the two distributions of Fig. 5A (canonic composome as the numerator). These 
two distributions are seen to differ significantly only for values of  larger than 10. In this 
range there is enrichment in the composome, suggestive of selection that favors species 
with higher values of rate enhancement. A similar phenomenon was observed also for 1000 
dynamic composomes obtained from traces similar to those from which the networks in 
Fig. 3C-F were derived. 
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of  “molecular adaptors” – sub-strings of the oligomers that may be shared by a large 
molecular repertoire, possibly in similarity to the small-world phenomenon describe 
for the repetitive Diels-Alder reactions networks [33]. 

6   Network Motifs 

Molecular networks underlie many different functions in contemporary cells. Analysis 
of network motifs in biological networks shows that some embody distinct network 
motifs indicative of information processing [34]. We set out to explore the existence of 
such motifs in the GARD networks delineated above. In a preliminary analysis for net-
work motifs in the canonic composomes of 1,000 different GARD system with 
NG=1,000, we have observed that the feed-forward loop motif and feed backward loop 
motif tend to be overrepresented (Z score > 2) for about 5% of the composomal net-
works. To verify that these values are statistically significant, 10 control sets consisting 
of 1,000 random networks with the same size distribution of the original set, were sub-
jected to the same analysis. Table 1 summarizes the results, showing that the enrichment 
of the feed-forward loop motif is not higher than expected by chance. On the other hand, 
feed-backward loop enrichment is statistically significant. This motif, which is a cycle 
of size 3, supports in a straightforward manner a process of homeostatic growth. It is 
thus suggested that in some GARD systems this motif may serve the role in the dynam-
ics of the composomal network. Further investigation, including consideration of motifs 
of larger sizes, is currently underway both for monomer GARD and Polymer GARD. 

Table 1. GARD network motifs 

Motif GARD Control 
None 952 976±4 
Feed forward loop (A B, B C, A C) 20 18.5±4.0 
Feed backward loop (A B, B C, C A) 27 4.5±1.9 
Both 1 0.4±0.5 

7   Sensitivity to Mutations in GARD Networks 

Cells maintain a homeostatic composition despite variations to their external milieu. 
They are also often robust towards internal variations such as genomic mutations that 
may be as severe as gene deletions [35] In fact, in yeast, only about 20% of the genes 
were shown to be essential producing a non-viable phenotype upon deletion and about 
40% of the genes hardly show any growth defect upon deletion. It was further shown 
[8] that genes encoding proteins which are highly connected in the interaction net-
work produced more deleterious phenotypes. We asked whether GARD composomes 
and the networks that they represent have somewhat similar invariance properties. 

We performed an analysis analogous to gene deletion within the GARD model.  
Repeated GARD simulations were carried out using the same molecular repertoire  
(β matrix) but in each round  a different  compound  was  completely depleted  from  the  
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Fig. 6. Robustness of GARD networks to compositional mutations. A GARD simulation with    
NG=100 was performed and the composome with the longest life-time selected. This simulation 
was subsequently repeated 100 times, each time with a different monomer depleted from the 
composomes external environment, hence also from its internal composition. For every result-
ing GARD trace the longest-living composome was tested for its cumulative lifetime and for its 
similarity (using a scalar product H) to the original composome 

A. Compositional diagram for undepleted original composome, with compounds that are 
essential for homeostatic growth (H<0.7) labeled light grey. It is seen that essentiality is not 
necessarily correlated with monomer concentration. 

B. The thresholded composome catalytic interaction network, with nodes colored light grey as 
in A. Essential monomers are not necessarily those that are highly connected hubs, and in-
cludes a significant number of terminal nodes with only one edge. 

C. Correlation between the life-time of monomer-depleted composomes and their similarity 
(H) to the composome with no depletion. A majority of the depletion events appear to have 
a weak “phenotype (high lifetime and high H), while some are more severely affected. 
There is a broad correlation between the two quantitative measures for composome  
effectiveness. 

 
 
composomes external environment, and thus from the network itself. We found that 
most compounds have only a small effect on both growth rate and molecular composi-
tion of the composome (Fig. 6C).  A minority compounds  (10-20%)  are  essential,  and  
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have a marked effect on the functional properties of the composomal network, as their 
removal significantly changes the assembly composition and/or reduces its growth rate. 
Fig. 6A, B respectively show the composition and the interaction network of a typical 
composome, highlighting the compounds essential for network stability. Surprisingly, 
essential compounds were not necessarily those with the highest concentration or  
highest connectivity within the network, suggesting non-trivial network properties. 

8   Conclusion 

The GARD model provides elaborate computing tools that help address prebiotic 
entities via the tools of present day Systems Biology. Since some characteristics of 
early GARD assemblies are shared with modern biological networks, the analyses 
described here may also lead to a better understanding of networks in present day  
life. In parallel, System Biology tools could assist in constructing better models for 
probing the important question of life’s emergence. 
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Abstract. We examined the process of virtualization to deal with data
intensive problems. Since data integration is a first-order priority in sys-
tems biology, we started developing a new method to manipulate data
models through ordinary metadata transactions, i. e. by preserving the
original data format stored in resources. After discussing why metamod-
els are made for, and the interplay of modeling languages in metamodel
design, we presented a systemic metamodel-driven strategy to integrate
semantically heterogeneous data.

1 Introduction

The process of virtualization has been defined as the mapping of an abstract
data set to a virtual space according to three majors intertwined steps consisting
of data selection for representing the problem space, assumptions definition to
define the final virtual space, the mapping between the starting space and the
final space through a metaphor [1]. Since that, virtualization has been extended
to the management of distributed data, the main goal in this approach being to
deal with data intensive problems [2].

The major features concern with the process of virtualization are:

– The preservation of data and knowledge in their actual format: the current
physical reality and its putative evolution are not impacted at all by the
virtualization process. This means that data and knowledge production can
go their own way without any necessary change.

– The operationability: virtualization is not just abstraction, it allows to re-
cursively transform the physical reality according to the lessons learned in
virtual reality. In these respects, virtualization aims to actualize physical
reality and, conversly, any change in physical reality has its counterpart in
virtual reality.

Virtualization may be defined more formally by sets E and V corresponding,
respectivelytophysicalrealityandvirtualrealityandthetwofunctionsME andMV :

ME : E → V, MV : V → E .

C. Priami et al. (Eds.): Transactions on Computational Systems Biology, LN 3380, pp. 28–43, 2005.
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The functions ME and MV define the mapping rules between E and V. V
is also named metaphor, which refers to a domain of knowledge. The choice of
metaphor is driven by both the final goal and the actual possibility to define
ME and MV .

The metaphor V can be homomorph or heteromorph. A metaphor V is ho-
momorph when the initial E paradigm is used in the V design. Conversely, a
metaphor V is heteromorph when a paradigm, different from the initial E one,
is used to design V; as an important consequence, different metaphors can be
selected to fit with different aims, according to a single physical reality.

Whatever ME and MV complexity, virtualization is a suitable process either
to face heterogeneity problems or to shift from one domain of knowledge to more
convenient representation as illustrated by the following examples.

Information technologies (IT) have been successful in using virtualization to
deal with heterogeneity problems, to increase productivity of IT tools and to
spread IT products to non IT-skilled users:

– Internet can be considered as the most famous and successful solution to
a problem, thanks to virtualization. Because of protocol heterogeneity, ex-
isting computer communication architectures were not able to interoperate
although they were built for the same purpose: exchanging data between
distant computers. This is the process of virtualization that both allowed
to integrate existing communication technologies and to preserve the future
development; this was a key feature for internet success. To overcome this
interoperability problem, a new protocol, named Internet Protocol (IP) and
a new computer address format (IP address) were designed upward from
the actual computer communication architectures; both IP and IP addresses
were virtual in the sense they were not ”natively” understood by any com-
puter communication architectures. Mechanisms from IP and IP addresses
to actual protocols and actual addresses (named respectively physical pro-
tocols and physical addresses) were designed to provide mapping. This was
achevied without putting any constraints on future technological develop-
ments. Internet is an example of how an homomorph metaphor, the proto-
col/address paradigm, is of help in the virtualization process.

– Another example concerns the desktop metaphor enabling the use of com-
puter hardware with a limited knowledge of the operating system (OS); in
this case the metaphor was heteromorph since the desktop paradigm is very
different from the computer hardware one.

– The third example concerns portability, which allows a software to be run
on any microprocessor architecture without rewriting it (even partially) but
just compiling it with the ad hoc compilator. Nevertheless, the use of compi-
lators can not mask all differences between microprocessor architectures and
there are always remaining portability problems. These increase dramatically
when the target architecture is not know in advance as it occurs on internet.
Virtualization was used to overcome this portability problem in the context
of internet. A virtual microprocessor architecture, named virtual machine (or
pseudo machine), and new high level programming language, named Java,
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was designed: Java compilators traduced Java written softwares in native
instructions, named byte code, for the virtual machine and the virtual ma-
chine architecture closely mimiked actual microprocessor architectures. In
these respects, the virtual machine is an isomorph metaphor with regards to
the microprocessor architecture paradigm.

In the field of systems biology, the diversity of biological sources as well as
experimental design and methodologies results in heavy heterogeneity, not only
at the technological level but also at the semantic level; making data integration
a major issue. In parallel, another challenge aims to simulate biological systems
to predict their behavior; the ultimate goal being to understand not only their
structure but also their dynamic [3].

To approach this problem, virtualization could be of great help. As it does
not require any modification in the way of the data are produced, it preserves
all accumulated experience and skills. Only mapping rules are concerned with
the problem of data heterogeneity and further modifications in experimental
approaches. Virtualization can be achieved by developing a metamodel-driven
strategy to elicit a model upward from the current knowledge; the availability
of such a metamodel for biological systems could be used as a grid for data
integration. This needs to have a clear understanding of what a metamodel is
made of, how it is designed and what it is doing for.

In these respects, metamodeling is not a final goal but an interface between
data from the physical world and models in the virtual world. The mapping be-
tween the two worlds is iterative and model transformations are the operational
side that misses single abstraction. As matter of fact, metamodeling is the junc-
tion that makes it possible to extend the database methodology to simulation
thanks to the process of virtualization.

2 Metamodel

Since data integration is a first-order priority in systems biology, metamodel-
driven strategies that are the foundation for data integration, should get much
attention.

What is a metamodel ?

The methodology to provide a generic metadata abstracting and structuring
all models into an integrated metadata repository consists into metamodeling.
This means that a metamodel provides all concepts, properties, operations and
relations between concepts necessary for designing any kind of models to be
contained in it, at some level of abstraction and from some perspective. In these
respects, a metamodel makes it possible to map multiple models into a single
model by coalescing those elements identified as representing the same concepts.

In a metamodel, the notion of semantics is very important and reflects not
only the need to model things in the real world (the signifier or the substance;
for example, a molecular structure), but also the meaning that these things have
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to have for the purpose of the metamodel (the signified, the role in a particular
context; for example, a molecular function).

To achieve a metamodel-driven integration, it is necessary to understand the
meaning of data in all systems to be integrated: which data have the same mean-
ing, which data are complementary and how they are related. Performing such a
semantic analysis yields a metamodel for the types of data to be integrated; In
these respects, one metamodel is a models integrator; conversely, the metamodel
instances are models.

As a metamodel upward from the model layer, metamodeling deals with the
full scope of paradigm translation, enabling the use of one model described into in
one formalism to be transformed into a model in another formalism as far as each
model is obeying well-formed rules, leading to possible model transformation and
coupling.

In discipline-specific metamodeling (DSM), metamodels are the way to ex-
plicit the meaning of concepts in such a specific realm and to capture the relevant
concepts. Among advantages, this approach allows to organize data without any
modification of their structures. In addition, it makes it possible to check for the
consistency of the multiple specifications as they do not conflict with one another
and must be ”in some sense” consistent. Also, it makes it easier to ensure model
validation by comparing the computerized model to the model designed by the
domain expert, for satisfactory range of accuracy.

From a technical point of view, a metamodel allows all local models and
other metadata contained in it to be added, deleted, or modified through ordi-
nary metadata transactions accounting for data and knowledge virtualization,
in contrast to a fixed global data model.

In practice, the building of a metamodel will consider four levels:

– the information level 1 or data level, which consists in the basic facts to
integrate;

– the data model at level 2, i. e. how the data are organized (for example, the
model of a database consists in a special implementation of the metamodel);

– the metamodel (level 3) that describes and organizes concepts with a set of
well-formed rules, to integrate all models from level 2;

– the language for metamodeling (metametamodeling, level 4) that use con-
cepts and the relations defined in the metamodel, and may consist in, both,
textual and/or graphic notations.

We present in figure 1, an example for a core language metamodel using a
class diagram in the object-oriented paradigm: the left part describes classes
accounting for the generic description of language elements called descriptor
elements; the right part shows classes responsible for instantiation of generic
elements and named instance elements. These two blocks are linked by binary
associations setting the connection between the generic descriptor elements and
the instance elements. They describe which elements of the instance level belong
to which element of the generic level.

The Meta Object Facility (MOF) is a well known metamodel maintained by
OMG [4]. It allows to create instances which are models, such as the Unified
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Fig. 1. A core metamodel for generic description and instantiation of language elements

Modeling Language (UML) or the Common Wharehouse Metamodel (CWM).
A four levels modelization is used to metamodel UML: the UML model is de-
fined with respect to the MOF, and the MOF is self-contained, i. e. it is used
for self-definition. We summarized these four levels of metametamodelization
(meta2modelization), which have been defined by OMG:

– the M0 level contains specific information described at level 1 and is data;
– the M1 level represents instances of the UML metamodel;
– the level M2 corresponds to the UML metamodels described with the MOF,

the UML metamodel being the language for creating UML models;
– the higher level, M3, corresponds to the MOF which is the language for de-

signing metamodels. For example, the metaclass MOFClass has an instance
which is the UMLClass; this recursive nature of the metamodel approach to
the definition of the syntax of the UML (see below for details) is elegant.

3 Modeling Languages

In addition to data integration, a metamodel is especially powerful when it is
self-contained and does not require auxiliary means or external tools to specify
itself; as such, it can be used as a true language to deal with as mentioned with
the MOF which, not only allows the design of metamodels, but also allows its
own design.

What is a modeling language ?

A modeling language is a language that contains all the elements with which a
model can be described. It is a set of symbols and rules used to specify concepts
and constructs for any kind of system; they may be textual and/or visual, struc-
tural and/or behavioral. Modeling languages are true languages and have syntax
(the notation) and semantics (the meaning). Syntactic issues focus purely on the
notational aspects of the language and modeling languages have to have a rigid
syntax if they have to be further compiled.
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In these respects, the structure of a modeling language is the following:

– An abstract syntax defines the different ways symbols may be combined to
create well-formed models. Syntax defines the formal relations between the
elements of the language; it deals with the form and the structure of the
various expression of the language without any reference to their meaning.

– A graphical notation is the concrete syntax, the representation with well-
formedness rules. For textual languages, the concrete syntax is a set of char-
acters, the alphabet, characters are grouped into words and arranged into
sentences according to precise grammar rules.

– A syntax mapping relates abstract syntax to concrete syntax and back; for
example, the syntactic operator ”sum” is mapped to the graphical notation
“+”.

– A semantic domain defines the elements that are described by the abstract
syntax; semantics considers the meaning of syntactically correct models:
what to think, what to feel, what to do for natural language, the computer
behavior for programming language.

– A semantic mapping gives the rules that map the syntax to constraints on
things in the semantic domain, it gives the ”meaning” of the model accord-
ing to the syntax. For example, the syntactic graphical operator ”+” in a
arithmetic expression is mapped to the addition operator of arithmetic, so
that the meaning of the expression 1+2 is to be the number 3, which is the
sum of the two numbers.

With the standardization of the UML, the aim was to gather within a unique
notation the best features of object-oriented languages. The usage of UML as
a modelling language has an important impact and UML descriptions turn out
to be abstractions used to capture important properties of the systems to be
developed, notably in terms of static structure and dynamic behaviour. In these
respects, UML is a true language and as such has syntax and semantics. The
UML standard has chosen to use a metamodeling approach based on the very
popular class diagram to characterize the abstract syntax of the language; nev-
ertheless, the language is composed of an additional set of notations that may
overlap. For example, the state diagram notation can be used to express the
same information that could be express in terms of pre/post conditions on op-
erations in class diagram, but there are other aspects of states diagrams that
can not. Let us consider some examples of the semantics and syntax of the UML
according to the dynamic aspects of the language.

– Statechart: from a semantic point of view, the UML statechart represents
the behaviour of entities capable of dynamic behaviour by specifying their
responses to the receipt of event instances. Typically, it is used for describ-
ing the behaviour of classes. From a syntactic point of view, a statechart
is a graph that represents a state machine. States and various other types
of vertices (pseudostates) in the state machine are rendered by appropriate
state and pseudostate symbols, while transitions are generally rendered by
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directed arcs that interconnect them. A statechart maps into a StateMa-
chine and a StateMachine is owned by a model element capable of dynamic
behaviour.

– State: in UML, a state is a condition during the life of an object or an
interaction during which it satisfies some condition, performs some action,
or wait for some events. A state may be simple or composite it is used to
model an ongoing activity that may be specified as a nested state machine
or by a computational expression. A state is shown as a rectangle with
rounded corners. A state may be subdivided into multiple compartments
separated from each others by a horizontal line. Notably, internal transitions
compartment holds a list of internal actions or activities that are performed
while the element is in the state. A state symbol maps into a State. A
composite state is decomposed into two or more concurrent substates or into
mutually exclusive disjoint subtates; and any substate of a composite state
can also be a composite state of either type. The notation of a composite
state allows showing its internal state machine structure; concurrent states
are shown by tiling the graphic region of the state using dashed lines to
divide it into substates; in contrast, disjoint states are shown by showing a
nested state diagram within the graphic region.

– Event: an event is a noteworthy occurrence; for practical purposes in states
diagrams, it is an occurrence that triggers a state transition. Events may
be of several kind. For example, the receipt of an explicit ”signal” from one
object to another results in a signal event instance; it is denoted by the
signature of the event as a trigger on a transition. A signal can be declared
using the <<signal>> keyword on a class symbol in a class diagram; such
keyword is specified as <<stereotype>>.

– Transition: a transition is a relationship between two states indicating that
an object in a first state will enter the second state and perform specific
actions. It is notated as a solid line originating from the source state and
terminated by an arrow on the target state. A transition string and the tran-
sition arrow that it labels together, map into a Transition and its attachment.
A concurrent transition may have multiple sources states and target states.
It represents synchronization and/or a splitting of control into concurrent
threads. From the semantic point of view, a concurrent transition is enabled
when all the sources states are occupied. After a compound transition fires,
all the destination states are occupied. A concurrent transition includes a
short heavy bar (a synchronization bar, which can represent synchronization,
forking or both). A bar with multiple transition arrows leaving it maps into
a fork pseudostate; conversely, a bar with multiple transition arrows entering
it maps into a join pseudostate (figure 2).

These limited examples on behaviour specifications clearly point out of the
respective parts relying UML syntax and semantics and their mapping. The very
intuitive UML notation is even expressive enough to account for a large vari-
ety of situations; in these respects, UML customization can be achieved thanks
to UML profiles that specify ”standard elements” beyond those specified by
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Fig. 2. States and concurrent transitions

the identified subset of the UML meta-model. (OMG Document: ad/99-03-10).
Because it gathers the best features of object-oriented language, we think that
UML fits all criteria for being developed as a profile in the realm of systems biol-
ogy. This would benefit the major efforts achieved for the standardization of the
language and the fine-tuning to systems biology would be achieve through exten-
sion capabilities. Accordingly, a limited number of well-known symbols would be
necessary for deciphering the various states of one particular entity, most of the
syntax and the semantics being defined by the language itself; in contrast, the
dialect in systems biology being refined according to domain-specific ontology,
metadata, etc.

The needs for language in Biology made of a limited number of symbol and
a simple grammar, have been emphasized recently [5].To support this require-
ment, it was noticed that more than 75.000 articles were published since 1997
about the apoptosis death-programmed process without giving a clear under-
standing of it. It was suggested that poor data integration was accounting for
such heavy difficulties. To encompass these bottlenecks, an international initia-
tive was launched to set up the Systems Biology Markup language (SBML), a
XML-based language, to facilitate data exchange and a Systems Biology Work-
bench (SBW) was developed for having heterogeneous application components
to communicate [6]. A parallel project, BioSpice was using a Model Definition
Language that was currently identical to SBML Level 2 [7]. Similarly the CellML
project is an XML-based open standard for describing and exchanging models
of cellular and subcellular processes [8]. In our hands, theses approaches mostly
focus on technological integration and deal with data exchange showing vari-
ations between formatting whereas the semantic approaches was dealing with
a limited number of topics, all necessary for building workflow models but not
expressive enough to account for the large variety of biological phenomena and
experimental approaches to depict. To fill this gap, graphical languages are be-
ing developed to achieve more detailed specifications. Cook [9] proposed a basic
lexicon of icons and arrows for describing the function of complex biological sys-
tems. This approach was rooted in the work of Khon [10] that delineated large
sets of molecular interactions maps. These initiatives and others [11, 12] have
been synthesized to propose a standard graphical notation for specifying biolog-
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ical networks; introducing more structured specifications of biological systems in
terms of expressiveness, consistency, extensibility, mathematical translation and
software support [13].

Otherwise, ontologies [14] are under development to provide standardized vo-
cabulary; they concern mostly the GO consortium that provides well-structured
controlled terms on Molecular Function, Biological Process, Cellular Component
[15], as well as related projects not to mention the BioProcess ontology that dis-
tinguish logical and biochemical actions to describe biochemical pathways [16].

At last, semantic mapping is an important part of the language structure
in identifying important concepts and how these concepts fit together. This ap-
proach has been launched in molecular biology by the pioneer work of Paton [17]
that identifies core question or concept, subordinate ideas that help explain or
clarify the main concept, details, inferences and generalization that are related
to each. This approach, which expressed biological knowledge as a society of
graph, could be of great help in further topology mappings between models; for
example, by mapping concepts from a vertex set of to a single vertex or from a
path to a single edge.

4 Systemic Metamodel and UML Profile for Systems
Biology

Of invaluable interests, all these initiatives can be merged within metamodel(s)in
a virtualization perspective. Developing metamodeling approaches for systems
biology require identifying primitive concepts, properties, operations and rela-
tions between concepts necessary for the specification of biological systems in
terms of structure and behavior as well as the methodological approaches in-
volved (i. e., genomics, transcriptomics, proteomics, etc.). In a more practical
view, this can be approached through the metaphor of reactive systems to or-
ganize concepts and data in systems biology, just as the Windows makes use of
the metaphor of desktop that was more familiar to office worker.

This issue can be achieved in the framework of the systemic paradigm [18],
which allows to state that:

– a functional entity can be efficiently represented as the interface between an
internal and an external environment in which it is evolving and on which
it is acting;

– the behavior of this entity can be described as the trajectory of its states
within a Time, Space, Form frame;

– events occurring from either internal and/or external environment may allow
some changes in state variables and the consecutive firing of state transitions;

– all these changes can be modelled as the mapping between state description
and process description.

It must be mentioned that the concept of action is central for virtualization
[19], and the systemic paradigm in centered on. In these respects, viewing molec-
ular entities as processes, interacting molecules as communicating processes, the



Virtualization in Systems Biology: Metamodels and Modeling Languages 37

change in interacting molecules as the change in process states, etc. [20], empha-
sizes the isomorphism between biological systems on the one hand, and reactive
systems on the other hand, making real-time extensions of the UML available
for customization to systems biology [21, 22]. This takes advantage of state di-
agrams to depict dynamic systems, which are grounded on the pioneer Harel’s
work on statecharts. This formalism was recently applied to biology by Kam et
al. for the modeling of the immune systems [23]; nevertheless, Kam’s approach
missed a reference to an explicit systemic metamodel to organize data.

As defined in section 2, a metamodel must bring all elements to define a
model; in these respects, a metamodel must acknowledge the mandatory require-
ments to integrate main data in systems biology, in terms of substances, con-
straints and processes (figure 3). In the systemic metamodel, this was achieved
as follows:

– Substances consist in biological entities, which have a persistent identity.
This must be clearly distinguished from the set of states taken by theses
entities and that refer to their history. In our model, substances referred
to any kind of biological entities, from organisms to molecules, and were
arranged into specialization (Is-a) and composition (Has-a) hierarchies. In
other words, substances were concerned with the identity (permanent) of
the entities and not their states, which are transitory. As a consequence,
the system was described with a limited number of classes (and relations)
as the entities derived from these classes have several states. Substances
were specified in the main class Substance, the child class S Molecular has a
specialized class S Protein with a proteinId which stores accession numbers
to database.

– The constraints (relationships) between system components constitute im-
portant aspects of living systems and most of the information we have on
constraints in pathways comes from biochemistry chemical. But such changes
are only half the story and our understanding of the functioning has to be
completed with the spatial-temporal location of molecules in the cells as
well as the properties attached to their three-dimensional behavior, i.e. all
context effects. In our model, three kinds of class accounted for such Space-
Time-Form constraints: (1)The SpaceOccurrence specified the position of
any entity with regards to its external environment, (2) the TimeOccurrence
referred to the age, time, period of any active entity (the time, the period
this entity is functioning), (3) the FormOccurrence specified the functional
isoform (if any) of the substance. The FormOccurrence was described as the
set of BioTransformation (for example, phosphorylation, acetylation, etc.)
that operated on the BioSubstance.

– Processes are represented - according to the systemic guidelines - as the
state trajectories of entities functioning over time. Understanding processes
requires the description, the modeling and the simulation of state trajec-
tories of these entities. To achieve this goal, the concept of active object
is very well adapted as active objects have their own behavior that can be
described with subsets of state machines. In our metamodel, this allows us
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to delineate the elementary entity involved in process and named Functional
Unit (FUn). A FUn has internal and external environment. Internal envi-
ronment delineates the roles of FUns as infraFunctionalUnit (infraFUn): a
functional entity has components that assume specific tasks to function; this
corresponds to its internal environment; for example, the components of the
general transcription factor TFIID that consist in TBP together with 8− 12
tightly bound subunits, constitute the internal environment of TFIID and
play the role of ”infra” functional units. In addition, FUns play two kinds of
roles according to the external environment: they are FUns nesting FUns; in
our metamodel, this role is named supraFunctionalUnit (supraFUn); further-
more, in their external environment, FUns have neighbor reacting entities,
they referred to their neighborFunctionalUnit (neighborFUn); for example,
their reactiveness can be assigned according to distances and/or domain
affinity at the molecular level, or concentration at the population level. This
can be modeled as messages passing between FUns and results into state
transition, from the current state to a new state.

Summarizing the major features of the systemic metamodel needs to un-
derscore the clear separation between structural and behavioral aspects with
respect to the functional entities (FUns) which were modeled as processes using
active objects, in contrast to substance that was modeled using passive objects.
This was achieved in a perspective to extend the database methodology to the
virtualization approaches.

Accordingly, the metamodel-driven strategy can be used to guide data in-
tegration as all concepts were being contained in it. Shortly, if we consider the
Microarray gene expression data model [24] that is detailed in the adopted speci-
fication of the OMG [formal/03-02-03], the BioSequence package, which contains
representations of a DNA, RNA or protein sequence, could be integrated into
the Substance package in the systems biology metamodel. Otherwise, limited
part of a data model could be integrated to the metamodel; for example, the
EntityLink.entity id (1,2) field of the Macromolecular Structure Specification
[OMG Formal/02-05-01) that represents the entity ids of the two entities joined
by a linkage, could be integrated at the metamodel level to specify the binding
between FUns. The same approach could be achieved with both the Bind-action-

Fig. 3. Systemic metamodel: (a) the active upper class FUn, (b) the passive class
Substance
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Fig. 4. Complexation is a synchronization process

type in the BIND database model [25] and the Action-type in [16], that can be
integrated in the metamodel to specify action occurring in a particular state
(figure 4).

Thus, a metamodel for systems biology would allow describing, in a common
way, the data found in the large variety of physical sources by clarifying the
hypotheses and the axioms that hold among concepts, as previously stressed in
reference [18] concerning relationships between Being (OMB) [14] Structural ele-
ment (EcoCyc)[26], Cellular function (GO) [15], Cellular role (YPD) [27] Struc-
tural element (EcoCyc) [26], Processes (GO) [15] Pathways (KEGG) [27], etc.

Because of the isomorphism between the systemic specifications of biological
systems and the reactive systems used as a metaphor to drive the virtualization
process, we consider the customization of the UML to systems biology, named
SB-UML, instead of developing a new language. In order to assess the relevance
of developing such UML extensions to systems biology (UML profile), we initi-
ated the writing of Khon’s molecular interaction maps into SB-UML. Shortly,
we found SB-UML more expressive than the referenced graphical notation as it
allows representing additional dynamic features. The figure 4 presents the com-
plexation of protein A to protein B showing concurrent behavior of protein A
and B until synchronization into complex AB is achieved. This approach em-
phasizes pattern occurrence allowing factored processes with, among important
advantages, software reusability (to be published elsewhere).

Details on the way one entity changes its respective states, take advantage of
the reactive systems metaphor. Figure 5a shows aspartate transcarbamoylase, an
instance of the the allosteric enzyme active class, containing an allosteric region
and an enzymatic region, all stereotyped as <<FUns>>. The figure 5b gives the
structure view of the enzyme that shows how the regulatory and enzymatic re-
gions communicate with their environment through specific amino-acid residues
symbolized as black squares. When the required interaction (signal) targets site-
specific amino-acids, a transition is fired from the initial state to the final state.
This corresponds to the changing from a free state to a bound state for the al-
losteric region and from an inactive state to an active state for the enzymatic one;
both processes are concurrent and theses changes occur simultaneously. When
the new states become occupied, the enzyme is allowed to perform carbamoyl
transfer (figure 5c). As shown, extending UML to systems biology allows ac-
counting for details that are no more mentioned in usual specifications because
of some limits in language expressiveness.
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Fig. 5. Instantiation of the systemic metamodel: aspartate transcarbamoylase. (a) class
diagram, (b) structure diagram, (c) state diagram

5 Conclusion and Perspectives

In this paper, we presented the metamodel-driven strategy as a key step in the
virtualization process. As this approach requires a metaphor relevant to the
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final goals in the field of systems biology, we found that biological systems could
be efficiently modeled as reactive systems within the systemic framework as
previously reported [18]. This allowed us specifying any biological entity as an
attribute vector depending of time, space and form variables,

→
v (t, s, f), and it

was achieved in the object-oriented paradigm using a systems biology extension
of the UML (SB-UML). This aims to delineate a UML profile for systems biology,
taking advantage of the UML expressiveness with regards to reactive systems.

In reactive systems, entities have their own thread of control and can behave
concurrently with steps for synchronization. This shows isomorphism to biolog-
ical entities which behave independently, although in a synchronized manner.
The reference to the systemic framework was achieved according to the design
of the attribute vector centered on the concept of form. This allowed to clearly
distinguish the structure of biological entities from their behavior, as most of
the structural data can be assigned to the substance passive class, whereas the
form attribute of the active Functional Unit (FUn) class can be referred to the
dynamic substance transformation according to time and space occurrences.

It must be strongly emphasized that a metamodel-driven strategy is not
just setting a model upward from the other models but it has a core function
for designing a new model from a former one or from the physical reality. This
function is central to the process of virtualization, which realises the coupling of a
physical reality with a constructed virtual reality. This is achieved by preserving
the diversity of data, without any modification at the data model level and
without any hypothesis on their future improvements. As matter of fact, data
evolution only impacts on the metamodel and the mapping rules between the
physical reality and the virtual reality.

Virtualization leads to operationability, in the sense of actionability, since
the virtual reality actualizes the physical reality; so that, any change in physi-
cal reality is reflected into virtual reality. In these respects, operationability is
the main difference between abstraction and virtualization: abstraction aims to
provide a general and synthetic point of view on reality, it does not provide any
way to act on the abstracted reality. Conversely, virtualization neither aims to
generalize nor to simplify: it aims to create a purpose-oriented virtual reality
with action capability. In systems biology, the major aims for virtualization deal
with heterogeneous data, data integration, analysis and simulation.

In these perspectives, our goal is to develop a method for virtualizing sys-
tems biology in any dimension of such systems i.e., data, process, experimental
methodologies, modeling, etc. Part of the method, using SB-UML, will take ad-
vantage of the many efforts for translating UML diagrams into formal models
suitable to carry out analysis on firm grounds [29]. Such transformations have
different applications which may concern model checking to verify the global
consistency, property verification at a low level of detail, simulation and pre-
diction of properties, etc. Numerous works are ongoing in the fields of systems
biology and we aim virtualization would help to integrate although preserving
these different and complementary contributions.
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Abstract. Calculations of potential numbers of interactions between gene 
products to generate physiological functions show that we can expect a highly 
non-linear relation between genome size and functional complexity. Moreover, 
very small differences in gene numbers or sequence can translate into very large 
differences in functionality.  

1   Introduction 

With the sequencing of the genomes of a substantial number of different species 
including the human [1-3] it has become possible to compare genomes in terms of 
their overall size, their total numbers of genes, and their degree of similarity. Two 
features have emerged that have generated frequent comment and analysis.  

The first is that the genomes of higher (complex) organisms are not very large 
compared to those of lower (simpler) organisms. For example, the human genome 
may have about 1.5 times the number of genes of a worm, c. elegans [4]. Complexity, 
however defined, does not seem to scale linearly with genome size or number [see 
also 5 page 280].  

The second is that the differences between the genomes of, for example, a monkey 
and a human turn out to be very small. So small, in fact, that the difference in 
functional capability must be represented by less than a 2% difference in genome 
sequence. These observations raise important questions concerning how biological 
complexity arises, how it is coded and how many genes are necessary for certain 
degrees of complexity in function.  

We are far from having answers to these fundamental questions. Nevertheless, 
even with the present information it is possible to do some simple calculations that 
demonstrate why there is, in principle, a much larger scope for biological complexity 
arising from, say, 30,000, genes than may initially be apparent, and why even small 
differences at the level of the genome, perhaps 1 or 2%, can translate into immense 
differences at a functional level. Furthermore, the Mycoplasma genitalium genome is 
composed of 517 genes, expressing 480 proteins of which about 300 are thought to be 
essential under laboratory growth conditions [6].  Similar calculations can be 
performed to evaluate the level of biological complexity in what is considered the 
minimal genome for an independently replicating cell.  
                                                           
* The authors are listed alphabetically. 
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2   Results 

The basis of the calculations presented here is that gene products (proteins) act in 
combination to generate biological functions. For example, to simulate most of the 
metabolism of E. coli it suffices to model about 120 gene products [7-9]. To model 
pacemaker activity in the pacemaker cells of the heart, or how these cells handle 
calcium signalling, even fewer protein components are sufficient [10, 11]. In some 
cases, at least, nature seems to be highly modular. We can therefore ask a simple 
question. In a genome of size n, with r genes required to code for a single biological 
function, how many possible distinct combinations could there be that are available 
for functional translation?  

 

Fig. 1. Ordinate: Number of potential biological functions. Abscissa: Number of genes required 
to define each biological function. The curves show results for genomes of various sizes 
between 100 and 30,000 

We consider the number of combinations of r objects taken out of n objects. Then 

nPr = n(n-1)(n-2) …… (n-r+1) = n !/(n-r) !                         (1) 

where, for a human genome, n is taken to be 30,000 (though for illustrative purposes, 
we will show the results for smaller numbers of genes) and r is variable according to 
how many gene combinations may underlie physiological functions.  

Figure 1 shows the results for various overall numbers of genes n between 100 and 
30,000, as r (the number of genes per function) increases from 0 to 100. The lowest 
curve (for 100 genes) is included largely for illustration of the principles involved.  
Clearly, in a genome of 100 genes, if 100 were required per function, then there  
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would be only one function. So, the curve rises to a peak and then falls to 1. This 
result would be obtained for all genome sizes when investigating the total number of 
functions as the number of genes per function rises towards the total number of genes 
available.  

The other curves show the results for increasing total numbers of genes, when the 
maximum number of genes involved in a function rises to 100. The result of interest 
here is that for 30,000 genes (estimated human genome size), the total number of 
functions that could be defined by 100 genes per function is truly enormous: 
approaching 1 x 10300.   In comparison, the curve for 500 genes approximates the 
level of complexity of the minimal genome defined for M. genitalium.   

Note also that the total number of possible functions increases much more rapidly 
than the total number of genes. Compare, for example, 500 genes with 5000. At 100 
genes per function, we have more than 1 x 10100 possible functions for 500 genes, and 
over 1 x 10200 for 5000 genes. Thus increasing the gene number by one order of 
magnitude leads to multiplying the available combinations by a further factor of 10100: 
one order of magnitude in gene numbers generates 100 orders of magnitude in 
potential functions. The dependence of potential functions on number of genes is 
therefore highly non-linear.  

The significance of this result becomes even clearer when we compare genomes of 
similar sizes or of great similarity in sequence. We have done this by investigating the 
effect of adding one gene to the genome, or of adding one gene for the biological 
function.  

Table 1 shows how surprising the results of these calculations can be. If we add 
just one gene to a genome of 30,000 genes, the number of possible new functions is 
about 10287. Conversely if a function requires just one more gene, then the number of 
newly created combinations would be about 10292. 

If we compare the number of functions potentially generated by the M. genitalium 
genome with those of the human genome, we see that the difference in complexity is 
almost equal to the human complexity itself (10289-1081  10289). 

Table 1. Number of potential biological functions. Column D1 represents the number of 
potential new functions obtained by adding one gene to a genome of size 30,000, while line D2 
shows the effect of increasing by one the number of genes required for a biological function   

  Number of Genes in the genome  
 

  30000 30001 D1 

100 4.6815x10289 4.6971x10289 1.5657x10287 
Number of 
genes 
required for 
a biological 
function 101 1.3859x10292 1.3906x10292 4.6815x10289 

 
D2 1.3812x10292 1.3859x10292  
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Table 2. Number of potential biological functions for the human and M. genitalium genomes. 
Column D1 represents the number of potential new functions that can be obtained by increasing 
the size of the genome by two orders of magnitude, while line D2 shows the effect of increasing 
by one order of magnitude the number of genes required for a biological function.  The number 
of potential new functions appearing in the human genome when compared to M. genitalium is 
shown in D3 

  Number of Genes in the genome   
   300 30000 D1 D3 

10 1.3983x1018 1.6248x1038 1.6248x1038  
Number 
of genes 
required 
for a 
biological 
function 100 4.1583x1081 4.6815x10289 4.6815x10289  

 
D2 4.1583x1081 4.6815x10289   

 
D3    4.6815x10289 

3   Discussion 

The calculations presented here are very simple. Equation (1) would have been known 
even to 19th century gamblers! But they reveal not only the expected high degree of 
non-linearity between gene numbers and functional possibilities, but also a 
surprisingly large effect of relatively small differences between genomes and of tiny 
changes to a genome.   

It is easy to understand the basis of this effect. If we add one gene to a genome, and 
because the mathematics is that of a geometric progression, we will still have all the 
possible functions for the smaller genome, and all of those again in combination with 
the added gene.   

We have investigated many variations of these calculations. The conclusions are 
valid for almost any values of n and r. Particularly if genomes are already fairly large, 
say greater than 5000, truly enormous differences in functional possibility can be 
coded by very tiny differences either in total number of genes, number of genes per 
function, or changes in sequence.  

While these numbers have no realistic physical meaning, we can compare them 
with the number of possible protein sequences of let’s say 100 residues, which is 20100 
or  1.3x10130, and shows us that nature has indeed been forced to select a infinitesimal 
sub-ensemble of the possible outcomes to create life.  As these numbers surpass the 
total number of atoms in the Universe (estimated to be 1080. [12]), it is impossible that 
the combinations have been and will be all tested. In fact, the numbers are so large 
that we are inclined to invert the usual question that is asked when genomes of great 
similarity are compared.  The question should not be “how can this small difference 
possibly code for all the functional differences between the species, or for the 
increased complexity?” but rather “how many of these immensely large potential 
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differences does nature actually use and how are they chosen?” Surely, nature has 
vastly more possibilities than are actually manifested in existing species. And that is 
what we should expect. The chemistry of protein-protein interaction will impose 
limits on how many other proteins, metabolites and signalling molecules a given 
protein can interact with. Some are hubs occupying central positions within networks; 
others are relatively unreactive, occupying peripheral positions. Compartmentation of 
proteins within cells and organs is also a large limiting factor. These will be factors 
limiting the number of interactions within a given organism. In a study [9] of 
metabolic networks in E. coli, for example, estimates of the total number of possible 
networks within E Coli metabolism were found to be somewhere around 4.4 x 1021, 
while actual used circuits are around 500,000. So the ratio in this case for ‘possible’ to 
‘actual’ is around 1016.  What can however not be estimated with our current 
knowledge, is the number of new combinations, generated by the addition of a single 
gene or gene variant, that are accessible within the constraints of the evolutionary 
choices already taken.  Even if this number is infinitesimally small compared to the 
total number of combinations, it certainly remains very large and accounts for the 
intra and inter-species diversity. 

On the other hand, during evolution nature has had even more possibilities 
available than are indicated by our calculations, which are based on each gene being a 
single fixed entity. In reality, many different isoforms are available.  Our calculations 
also ignore the influence of splice variants and post-transcriptional regulation. Most 
genes have more than one exon so that there are 3 or more possible splice variants. 
One gene (Dscam) in Drosophila melanogaster  has been shown to have as many as 
115 exons  with 38,000 putative protein products. Moreover, during development, 
some of the variants are regulated by more than an order of magnitude (from 1% to 
40% between birth and adulthood [13]).  This will further increase the estimated 
complexity.   For instance, if we predict that each gene has just two variants on 
average then, according to eq. 1, 100 genes can produce 4950 potential functions. 

We also ignore the effects of systematic variations in gene expression levels. Thus, 
in the heart, such regional variations are critical for defining the differences between 
cells in different regions with different functions (such as pacemaker activity, rapid 
conduction and contractility). Even within the wall of the ventricle there are 
substantial variations that are important for explaining the form of the 
electrocardiogram [14] and, possibly, for preventing arrhythmia. 

Finally, the non-linearity of combinatorial effects may have important implications 
for drug development. Very few drugs act on a single gene product. The great 
majority have multiple effects, many of which are unwanted side-effects. But given 
the combinatorial nature of biological functions there must be some combinations that 
are more beneficial than a single action compound. These will be those combinations 
of actions that most closely mimic natural biological combinations. Similar 
considerations to those presented in this paper show that, for just a few hundred drug 
binding sites, there will be immensely large numbers of possibly active combinations. 
For instance, if we consider a receptor family of 500 members, (same order of 
complexity as the GPCR family), and provided that a drug binds to only two of them, 
there will be over 100,000 (strictly 124750) possible pairs of receptors susceptible to 
binding.  Most drugs, however, act on more receptors albeit with varying affinities, 
dramatically increasing the complexity of drug action.  The results in Figure 1, 
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considered in this context, show that the potential number of combinations for 500 
sites can easily rise to the order of 10100.  As with gene combinations, the great 
majority of these potential combinations will be either harmful or chemically 
forbidden.  This supports the need for pathway and function-based approaches to drug 
discovery. 

One of the great challenges for systems and computational biology will be to 
identify the logic of the tiny proportion of functional gene interactions that are 
successful, in order to narrow down the immense potential numbers to more 
manageable proportions. Nature has had a vast canvas on which to evolve the species 
we have today.  
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Abstract. As a preliminary step in testing the expressiveness of Beta-
binders against realistic case studies, we comment on a number of oper-
ational properties of the formalism and present a set of derived patterns
that can be useful when modeling complex biosystems.

1 Introduction

The post-genomics era offers accurate descriptions of the fundamental compo-
nents of living systems, and in particular of proteins and cells. The understand-
ing of the functional interactions of individual components when gathered in
complex systems is however far from complete. This poses new challenges to
computer scientists working in bioinformatics.

Till very recently, the main contributions to life sciences from the research
community in computer science and information technology have been centered
around databases and algorithms to organize and compare static information.
Biologists now turn their attention to the investigation of networks of hundreds of
functionally distinct components, and are interested in discovering their possible
(chemical) interactions. Computational methods able to support modeling and
simulation of the dynamics of biological systems can aid this effort. Hopefully,
those methods will serve as foundational models to mechanized tools for ‘in
silico’ predictive research on the behaviour of complex systems. The tools on
their side could ease the analysis of the response to artificial perturbations, or
help uncovering evolutionary behaviours.

The interactions among genes, molecules, and biological entities in general are
regulated by principles analogous to those typically used to describe distributed
and mobile systems. Interactions depend on (chemical) messages, they are local-
ized at specific sites, and can change the future behaviour of the global system.

Given the above analogies, a number of ad hoc process calculi and the like
have been proposed by the research community in concurrency theory (see, e.g.,
[9, 11, 3, 10, 1, 5, 8]) as a response to the need of modeling the dynamics of bi-
ological systems. Generically speaking, these formalisms provide the means to
specify and reason on protein interactions and complex protein pathways. Each
of them, however, has been conceived to cope with some specific modelization

� This work has been partially supported by the FIRB project “Modelli formali per
Sistemi Biochimici”.
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concern, and it is yet not clear which of them (if any) can be considered as a
general model to formally reason on biology.

The biochemical stochastic π-calculus [9, 11] is a variant of the π-calculus
[7, 12] that enriches the actions with basal rates and allows stochastic reasoning
on process behaviours. CCS-R [3] offers the explicit machinery, on a CCS [6]
ground, to model reversible molecular reactions. Formal Molecular Biology [5]
is a language supported by specialized graph-rewriting techniques to illustrate
protein-to-protein interactions and bindings. Bio-ambients [10], Brane calculi [1],
and Beta-binders [8] share a common design principle: each of them provides the
means to model enclosing surfaces of entities and hence allows easy representa-
tion of the relative locations of components (think, e.g., of the position of the
nucleus in a cell, of a cell in a tissue, etc.). The three formalisms largely differ,
however, on the semantic role associated with surfaces.

First, Bio-ambients and Brane calculi allow nested wrapping of processes
and then permit the specification of hierarchical objects. Beta-binders disregards
nesting (at least in its explicit form, see below for more details on this point).

Second, Brane calculi, a calculus of membranes, is strongly specialized in
the representation of the dynamic evolutions of surfaces. In this respect, both
Bio-ambients and Beta-binders have a more general-purpose flavor: boxes can
represent any sort of limited biological environment, from molecules to tissues.

Last, and more interestingly, the possible activities of the enclosing surfaces
are totally different in Bio-ambients, Brane calculi, and Beta-binders. Surfaces
are just wrappers in Bio-ambients: processes can exit or enter a box, and boxes
can join or split, but in any case the box is passive and any movement of the
system is driven from the inside of boxes. Brane calculi, a calculus of mem-
branes, takes exactly the opposite point of view. Borders, i.e. membranes, are
themselves specialized coordinators which can perform a number of distinguished
actions (e.g. change the orientation of the membrane). W.r.t. the role played by
surfaces, Beta-binders is somewhere in the middle between Bio-ambients and
Brane calculi. Borders are equipped with typed sites that are used to discrimi-
nate the kind of interactions boxes may be involved in. Nonetheless the evolution
of boxes is partially driven from the inside (see below, e.g., the formalization of
interactions vs the merge of boxes).

Summing up, each of the process algebra based formalisms defined to model
the dynamics of biological systems tackles slightly different phenomena in a
mildly different perspective. As we mentioned, it is not clear yet if (and to which
extent) one of them can be set as the basis for formal reasoning about biological
dynamics. To acquire confidence in the expressiveness of the above formalisms
it is at least necessary to test them against realistic case studies. In this paper
we work towards this direction for Beta-binders. Specifically, we comment on a
number of operational properties of the formalism and present a set of derived
patterns that can be useful when modeling complex biosystems.

Beta-binders is strongly inspired by the π-calculus, and hence takes com-
munication as the primitive form of interaction between entities running (i.e.
living) in parallel. As in the π-calculus the basic ingredient of communication
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is the synchronization of input and of output actions on named channel (in the
π-calculus ‘names’ are synonyms of ‘channels’). Differently from the π-calculus,
Beta-binders provide the means to model the enclosing surfaces of entities and
possible interactions taking place at the level of the virtual surfaces. This is due
to a special class of binders which are used to wrap (quasi-) π-calculus pro-
cesses into boxes with interaction capabilities. More precisely, boxes represent
the borders of biological entities and are equipped with typed interaction sites
(receptors). The graphical representation of a simple process is shown below.

x(w). hide(x) . P

x : {z1, z2}

‖ u1〈v1〉. Q

u1 : {z1}

‖ u2〈v2〉. R

u2 : {z2}

Such a process, textually written

β(x : {z1, z2}) [x(w). hide(x) . P ] ‖
β(u1 : {z1}) [u1〈v1〉. Q] ‖
β(u2 : {z2}) [u2〈v2〉. R]

shows three parallel components with interaction sites x : {z1, z2}, u1 : {z1},
and u2 : {z2}, respectively. The set {z1, z2}, acting as the type of the site named
x, denotes that the leftmost box can potentially interact with both the middle
box and the rightmost one. This is ensured by the fact that these latest boxes
exhibit sites whose types ({z1} and {z2}, resp.) have non empty intersection
with {z1, z2}. The actual interaction between boxes consumes the input prefix
x(w) on one side, and the output prefix in the other box (u1〈v1〉 or u2〈v2〉, non
deterministically). After interaction, the site x of the leftmost box is hidden
(by consuming the prefix hide(x)), and the box gets isolated from the external
environment. As a final remark about the above example, notice that we are
assuming here the simplest form of types for sites (sets of names) and the simplest
relationship between types to compute their compatibility in interactions (non
empty intersection of sets). Different and more complex forms of types (based,
e.g., on XML patterns) and relationships between them can be envisaged without
altering the results presented in this work.

More generally, in Beta-binders the evolution of boxes is described by a lim-
ited number of macro-operations: communication between components within
the same box (intra-communication); communication between two boxes (inter-
communication); addition of a site to a box; hiding and unhiding of an interaction
site; joining of two boxes; splitting of a box in two boxes. Adding, hiding and
unhiding sites have a fundamental role in modelling the dynamics of box inter-
faces and hence, e.g., the functional dependency of the interaction capabilities
of biological components on their particular shape or folding. The join and split
operations, that are related to the evolution of the structure of boxes rather
than to the dynamics of their sites or interfaces, are described in a parametric
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way to accommodate possible distinct instances of the same macro-behaviour.
In more detail, the operational axiom for join (split, respectively) depends on a
function that checks the conditions under which two boxes can be merged and
also contributes to determine the identity of the resulting box (boxes, respec-
tively). Distinct instances of the above functions, and hence distinct instances
of the operational axioms for join and split, can live together in the same formal
system to allow the modeling of phenomena which are intrinsically analogous
but happen to be regulated by different factors.

The rest of the paper is organized as follows. First we present an overview
of the formal definition of Beta-binders. Then a number of operational patterns
are commented on in Section 3. In particular, we deal with: possible modeling
of endocytosis, meiosis, and exocytosis; the irrelevance of adding a top level
replication operator; the interplay between join and split of boxes; the intrinsi-
cally different nature of inter-actions and intra-actions; the directionality of the
operations over the structure of boxes (join and split); the simulation of hierar-
chical nesting of boxes; and the dynamic change of the type of sites. Eventually,
Section 4 concludes the paper with some final remarks.

2 Beta-Binders

This section presents an overview of Beta-binders. The reader will benefit from
some familiarity with the π-calculus.

The π-calculus is a process calculus where names are the media and the values
of communication. The same point of view is taken for Beta-binders, where we
assume the existence of a countably infinite set N of names (ranged over by lower-
case letters). Beta-binders allows the description of the behaviour of π-calculus
processes wrapped into boxes with interaction capabilities (hereafter called beta-
processes or simply boxes). Processes encapsulated into boxes (ranged over by
capital letters distinct from B) are given by the following syntax.

P ::= nil | x(w). P | x〈y〉. P | P | P | νy P | ! P |
expose(x, Γ ) . P | hide(x) . P | unhide(x) . P

For simplicity, despite the difference w.r.t. the usual π-calculus syntax, we refer to
the processes generated by the above grammar as to pi-processes. The deadlocked
process nil, input and output prefixes (x(w). P and x〈y〉. P , respectively), parallel
composition (P | P ), restriction (νy P ), and the bang operator (!) have exactly
the same meaning as in the π-calculus.

The expose, hide, and unhide prefixes are intended for changing the external
interface of boxes by adding a new site, hiding a site, and unhiding a site which
has been previously hidden, respectively.

The π-calculus definitions of name substitution and of free and bound names
(denoted by fn(-) and bn(-), respectively) are extended to the processes gen-
erated by the above syntax in the obvious way. It is sufficient to state that
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neither hide(x) nor unhide(x) act as binders for x, while the prefix expose(x, Γ )
in expose(x, Γ ) . P is a binder for x in P .

Beta-processes are defined as pi-processes prefixed by specialized binders that
suggest the name of the formalism and are defined as follows.

Definition 1. An elementary beta binder has either the form β(x : Γ ) or the
form βh(x : Γ ), where

1. the name x is the subject of the beta binder, and
2. Γ is the type of x. It is a non-empty set of names such that x /∈ Γ .

Intuitively, the elementary beta binder β(x : Γ ) is used to denote an active
(potentially interacting) site of the box. Binders like βh(x : Γ ) denote sites which
have been hidden to forbid further interactions through them.

Definition 2. Composite beta binders are generated by the following grammar:

B ::= β(x : Γ ) | βh(x : Γ ) | β(x : Γ ) B | βh(x : Γ ) B

A composite beta binder is said to be well-formed when the subjects of its elemen-
tary components are all distinct. We let well-formed beta binders be ranged over
by B, B1, B2, . . . ,B

′, . . ..
The set of the subjects of all the elementary beta binders in B is denoted by

sub(B), and we write B = B1B2 to mean that B is the beta binder given by the
juxtaposition of B1 and B2.

Also, the metavariables B∗, B∗
1, B

∗
2, . . . stay for either a well-formed beta

binder or the empty string. The above notation for the subject function and
for juxtaposition is extended to these metavariables in the natural way.

Beta-processes (ranged over by B, B1, . . . , B
′, . . .) are generated by the fol-

lowing grammar:

B ::= Nil | B[P ] | B ‖ B

Nil denotes the deadlocked box and is the neutral element of the parallel com-
position of beta-processes, written B ‖ B. But for Nil, the simplest form of
beta-process is given by a pi-process encapsulated into a beta binder (B[P ]).
Notice that nesting of boxes is not allowed.

To any beta-process consisting of n parallel components corresponds a simple
graphical notation, given by n distinct boxes, one per parallel component. Each
box contains a pi-process and has as many sites (hidden or not) as the number
of elementary beta binders in the composite binder. The relative position of
sites along the perimeter of the box is irrelevant, just as the relative positions of
parallel boxes in the two-dimensional space.

Beta-processes are given an operational reduction semantics that makes use
of both a structural congruence over beta-processes and a structural congruence
over pi-processes. We overload the same symbol to denote both congruences, and
let the context disambiguate the intended relation.
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Definition 3. Structural congruence over pi-processes, denoted ≡, is the small-
est relation which satisfies the following laws.

– P1 ≡ P2 provided P1 is an α-converse of P2
– P1 | (P2 | P3) ≡ (P1 | P2) | P3, P1 | P2 ≡ P2 | P1, P | nil ≡ P
– νz νw P ≡ νw νz P , νz nil ≡ nil, νy (P1 | P2) ≡ P1 | νy P2 provided y �∈

fn(P1)
– ! P ≡ P | ! P .

Structural congruence over beta-processes, denoted ≡, is the smallest relation
which satisfies the laws listed below, where β̂ is intended to range over {β, βh}.
– B[P1] ≡ B[P2] provided P1 ≡ P2
– B1 ‖ (B2 ‖ B3) ≡ (B1 ‖ B2) ‖ B3, B1 ‖ B2 ≡ B2 ‖ B1, B ‖ Nil ≡ B
– B1B2[P ] ≡ B2B1[P ]
– B∗β̂(x : Γ )[P ] ≡ B∗β̂(y : Γ )[P{y/x}] provided y fresh in P and y /∈ sub(B∗).

The laws of structural congruence over pi-processes are the typical axioms to
formalize structural congruence in the π-calculus. The laws over beta-processes
state, respectively, that (i) the structural congruence of pi-processes is reflected
at the upper level as congruence of boxes; (ii) the parallel composition of beta-
processes is a monoidal operation with neutral element Nil; (iii) the actual or-
dering of elementary beta binders within a composite binder is irrelevant; (iv)
the subject of elementary beta binders is a placeholder that can be changed at
any time under the proviso that name clashes are avoided and well-formedness
of beta binder is preserved.

The reduction relation, −→, is the smallest relation over beta-processes ob-
tained by applying the axioms and rules in Table 1.

The reduction relation describes the evolution within boxes (intra), as well
as the interaction between boxes (inter), the dynamics of box interfaces (expose,
hide, unhide), and the structural modification of boxes (join, split).

The rule intra lifts to the level of beta-processes any ‘reduction’ of the enclosed
pi-process. Notice indeed that no reduction relation is defined over pi-processes.

The rule inter models interactions between boxes with complementary in-
ternal actions (input/output) over complementary sites (sites with non-disjoint
types). Information flows from the box containing the pi-process which exhibits
the output prefix to the box enclosing the pi-process which is ready to perform
the input action.

The rules expose, hide, and unhide correspond to an unguarded occurrence
of the homonymous prefix in the internal pi-process and allow the dynamic
modification of external interfaces.

The rule expose causes the addition of an extra site with the declared type.
The name x used in expose(x, Γ ) is a placeholder which can be renamed to meet
the requirement of well-formedness of the enclosing beta binder.

The rules hide and unhide force the specified site to become hidden and un-
hidden, respectively. They cannot be applied if the site does not occur unhidden,
respectively hidden, in the enclosing beta binder.
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Table 1. Axioms and rules for the reduction relation

(intra)
P ≡ νũ (x(w). P1 | x〈z〉. P2 | P3)

B[P ] −→ B[νũ (P1{z/w} | P2 | P3)]

(inter)
P ≡ νũ (x(w). P1 | P2) Q ≡ νṽ (y〈z〉. Q1 | Q2)

β(x : Γ ) B
∗
1[P ] ‖ β(y : Δ) B

∗
2[Q] −→ β(x : Γ ) B

∗
1[P ′] ‖ β(y : Δ) B

∗
2[Q′]

where P ′ = νũ (P1{z/w} | P2) and Q′ = νṽ (Q1 | Q2)

provided Γ ∩ Δ �= ∅ and x, z /∈ ũ and y, z /∈ ṽ

(expose)
P ≡ νũ (expose(x, Γ ) . P1 | P2)

B[P ] −→ B β(y : Γ ) [νũ (P1{y/x} | P2)]
provided y /∈ ũ, y /∈ sub(B) and y /∈ Γ

(hide)
P ≡ νũ (hide(x) . P1 | P2)

β(x : Γ ) B
∗[P ] −→ β

h(x : Γ ) B
∗[νũ (P1 | P2)]

provided x /∈ ũ

(unhide)
P ≡ νũ (unhide(x) . P1 | P2)

β
h(x : Γ ) B

∗[P ] −→ β(x : Γ ) B
∗[νũ (P1 | P2)]

provided x /∈ ũ

(join) B1[P1] ‖ B2[P2] −→ B[P1σ1 | P2σ2]
provided that fjoin is defined in (B1, B2, P1, P2) and

with fjoin(B1, B2, P1, P2) = (B, σ1, σ2)

(split) B[P1 | P2] −→ B1[P1σ1] ‖ B2[P2σ2]
provided that fsplit is defined in (B, P1, P2) and

with fsplit(B, P1, P2) = (B1, B2, σ1, σ2)

(redex)
B −→ B

′

B ‖ B
′′ −→ B

′ ‖ B
′′

(struct)
B1 ≡ B

′
1 B

′
1 −→ B2

B1 −→ B2

The axiom join models the merge of boxes. The rule, being parametric w.r.t.
the function fjoin, is more precisely an axiom schema. The function fjoin deter-
mines the actual interface of the beta-process resulting from the aggregation of
boxes, as well as possible renamings of the enclosed pi-processes via the substi-
tutions σ1 and σ2. Such a reduction, in a formal context that disallows nesting
of boxes, can be used to render biological endocytosis, namely the absorption of
substances from the external environment. It is intended that as many different
instances of fjoin (and hence of join) can be defined as it is needed to model the
system at hand.
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The axiom split formalizes the splitting of a box in two parts, each of them
taking away a subcomponent of the content of the original box. Analogously to
join, the rule split is an axiom schema that depends on the specific definition of
the function fsplit. This function is meant to refine the conditions under which
a beta-process can be split in two boxes. With the same care as in the case of
endocytosis, split can be used to render exocytosis, i.e. the expulsion of biological
sub-components from a given compartment. Analogously to the case of the join
axiom, many instances of split can live together in the same formal system.

The rules redex and struct are typical rules of reduction semantics. They are
meant, respectively, to interpret the reduction of a subcomponent as a reduction
of the global system, and to infer a reduction after a proper structural shuffling
of the process at hand.

3 Operational Properties and Examples

In this section we present a collection of observations on the Beta-binders oper-
ational semantics, and a set of derived patterns that can be useful in modeling
complex biosystems.

Hereafter, we assume the following notational conventions. The symbol ⊥
stays for undefinedness, and the identity substitution is denoted by σid. As usual
B −→n B′ means that B transforms into B′ in n > 1 steps, i.e. there exist
B1, B2, . . . such that B −→ B1 −→ B2 −→ . . . −→ B′. Also, B −→≡ B′ is a
short-hand to denote that there exists B1 such that B −→ B1 ≡ B′.

3.1 Endocytosis and Meiosis

A first remark on the operational semantics of Beta-binders is about the possi-
bility of modeling biological endocytosis and meiosis, namely the absorbtion of
substances from the external environment, and, respectively, the separation of a
cell and of the contained genetic material that is typical of reproductive cells.

Since the formalism disallows nesting of boxes, endocytosis is rendered by
augmenting the internal pi-process with a parallel component representing the
engulfed substances. At the same time, the external interface can be modified to
represent those cases when the absorbed material can still have interactions with
the external environment. This effect is obtained by using appropriate instances
of fjoin. Consider for instance the definition below.

fjoin = λB1B2P1P2. if (B1 = β(x : Γ ) B∗
1 and B2 = β(y : Δ) B∗

2 and
Γ ∩ Δ �= ∅)

then (B1, σid, {x/y})
else ⊥

(1)

The specific instance in (1) imposes that the join reduction can take place only
if absorbing and absorbed beta-process have complementary sites (elementary
beta binders with non disjoint types). It also states that the absorbed process
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can keep interacting with the external environment through the same site which
has been used to engulf it (possible occurrences of input and output actions on
channel y in P2 are renamed by σ2 = {x/y}).

Meiosis is directly rendered in Beta-binders by using the split reduction. Sim-
ilarily to the case of join, the precise hypotheses leading to meiosis have to be
tuned by appropriately defining fsplit.

3.2 Exocytosis

Exocytosis is the biological dual to endocytosis and consists in the expulsion
of biological sub-components. The representation of exocytosis, just as that of
endocytosis, is influenced by the architectural choice of preventing box nest-
ing. In Beta-binders exocytosis is encoded by expelling a parallel component
of the internal pi-process, but taking care of wrapping it by the suitable
interface.

Suppose that the component P has to be expelled from B[P | Q]. Then we
distinguish two principal cases. If P shows interaction capabilities with the exter-
nal world via some binder in B then exocytosis can be rendered by appropriately
tuning fsplit in such a way that the split reduction

B[P | Q] −→ B1[Pσ1] ‖ B2[Qσ2]

leaves the original interaction potentials of both P and Q unaffected. Notice that
this kind of representation also requires, e.g., B be composed by at least two
elementary binders. If this is not the case, then an extra ‘dummy’ site can be
exposed before the split reduction is made applicable.

Assume now that all the sites in B are meant to model the external interaction
capabilities of Q, and that a split should not move out any of them. To model this
kind of situation two ancillary new names sp and z can be used, and B[P | Q]
can be translated into the following beta-process:

B[(expose(x, {sp}) . sp〈y〉 | sp(z). P ) | Q]

Then, taking for instance the following instance of fsplit,

fsplit = λBP1P2. if (P1 ≡ (sp〈y〉 | sp(z). P ) and B = B∗ β(x : {sp}))
then (β(x : {sp}), B∗, σid, σid)
else ⊥

we would would get, graphically, the derivation below (where each transition is
labelled by the main axiom involved, while the possible use of redex and struct
is not mentioned for notational convenience).
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expose(x, {sp}) . sp〈y〉 | sp(z). P | Q

B

−→(expose) sp〈y〉 | sp(z). P | Q

B x : {sp}

−→(split)

sp〈y〉 | sp(z). P

x : {sp}

‖ Q

B

−→(intra) P

x : {sp}

‖ Q

B

3.3 Replication of Beta-Processes

Recursion could be explicitly added to beta-processes by augmenting the syn-
tax with a bang constructor, say !!B[P ]. As usual, to give semantics to this
replication constructor the following extra structural law would be used:

!!B[P ] ≡ B[P ] ‖ !!B[P ] (2)

Here we argue that the bang operator over pi-processes, together with an
appropriate instance of the axiom split, is enough to simulate replication of beta-
processes. Consider, in fact, the following definition of fsplit:

fsplit = λBP1P2. if (P1 ≡ P and P2 ≡ ! P )
then (B, B, σid, σid)
else ⊥

(3)

Correspondingly to (2), by instantiating the split axiom with (3) and then using
the struct rule, we get the following behaviour for B[! P ].

! P ≡ P | ! P

B[! P ] ≡ B[P | ! P ] B[P | ! P ] −→ B[P ] ‖ B[! P ]
B[! P ] −→ B[P ] ‖ B[! P ]

This suggests that a spawn of !!B[P ] can be mimicked by a reduction of B[! P ].

Remark 1. Whichever move of !!B[P ] can be matched by a multi-step derivation
from B[! P ].
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To support Remark 1 it is sufficient to notice that any operational derivation for
!!B[P ] takes the shape:

!!B[P ] ≡ B1

B −→ B2········

(redex, struct)

B1 −→ B′
(struct)

!!B[P ] −→ B′

(4)

where !! B[P ] has been spawned either once or more times to get B1 and the
triggering step B −→ B2 depends on either a single copy of B[P ] or on an
interaction (or join) between to distinct copies of the replicated box. Namely:

– B1 is structurally congruent to either B[P ] ‖ !!B[P ] or to

B1
n = B[P ] ‖ . . . ‖ B[P ]

︸ ︷︷ ︸

n>1

‖ !!B[P ]

– B is either B[P ] or B[P ] ‖ B[P ].
Moreover, as shown above, the struct rule with a split in its premise can be
used to transform B[! P ] into a beta-process having B[P ] as one of its parallel
components. Hence, correspondingly to the move inferred for !!B[P ] in (4) some
B′′ matching B′ exists such that

B[! P ] −→ B[P ] ‖ B[! P ] −→ B′′ if B1 ≡ B[P ] ‖ !!B[P ]

B[! P ] −→n B[P ] ‖ . . . ‖ B[P ]
︸ ︷︷ ︸

n>1

‖ B[! P ] −→ B′′ if B1 ≡ B1
n.

3.4 Splitting Joins (and Joining Splits)

We now investigate the conditions under which a derivation inferred by using
the split (join) axiom can be immediately ‘undone’ by a derivation that makes
use of join (split), so leading to a cycle like:

B1 −→≡ B2 −→≡ B1.

The following observations are easy consequences of the definition of the
operational semantics.

Remark 2. If B[P1 | P2] −→ B1[P1σ1] ‖ B2[P2σ2] and fjoin(B1, B2, P1σ1,
P2σ2) = (B, σ′

1, σ
′
2) and, for i = 1, 2, σiσ

′
i is the identity over fn(Pi), then

B[P1 | P2] −→2≡ B[P1 | P2].

Remark 3. If B1[P1] ‖ B2[P2] −→ B[P1σ1 | P2σ2] and fsplit(B, P1σ1, P2σ2) =
(B1, B2, σ

′
1, σ

′
2) and, for i = 1, 2, σiσ

′
i is the identity over fn(Pi), then B1[P1] ‖

B2[P2] −→2≡ B1[P1] ‖ B2[P2].
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3.5 Inter-actions Versus Intra-actions

We now comment on the difference between inter-actions and intra-actions. A
very first observation is that inter-actions, distinctly from intra-actions, are non
driven by the syntactic identity of input and output channels. The interesting
point, however, comes from the possible interplay of the join axiom with the
inter and the intra rule, respectively. In particular, we focus on the conditions
under which the application of an inter followed by a join can be mimicked (up
to structural equivalence) by the application of a join followed by an intra.

Assume that the beta-processes B1[P ] and B2[Q] can inter-communicate.
Then, by the join rule in Table 1, appropriate binders and pi-processes exist
such that:

1. P ≡ νũ (x(w). P1 | P2) and Q ≡ νṽ (y〈z〉. Q1 | Q2)
2. B1 = β(x : Γ ) B∗

1 and B2 = β(y : Δ) B∗
2

3. Γ ∩ Δ �= ∅ and x, z /∈ ũ and y, z /∈ ṽ

and
B1[P ] ‖ B2[Q] −→
B1[νũ (P1{z/w} | P2)] ‖ B2[νṽ (Q1 | Q2)] = Binter

(5)

Suppose now that that the join axiom could be applied to B1[P ] ‖ B2[Q], too.
Then, for B, σ1 and σ2 such that fjoin(B1, B2, P, Q) = (B, σ1, σ2), and up to
structural congruence, we have:

B1[P ] ‖ B2[Q] −→
B[νs̃ (xσ1(w′). P1{w′

/w}σ1 | P2σ1 | yσ2〈zσ2〉. Q1σ2 | Q2σ2)] = Bjoin

(6)

The beta-process Binter in (5) could undergo a join reduction, even relative to
an instance of fjoin distinct from that used to derive Bjoin in (6). Such a reduc-
tion could render Binter structurally congruent to a single-box beta-process, say
B′

join = B′[R]. Nonetheless, in order to be able to infer that Bjoin −→≡ B′[R]
and hence close the diamond below

B1[P ] ‖ B2[Q]
�������

�������
Binter

������

Bjoin

B′
join

it would at least be necessary to infer, via the intra rule, a communication be-
tween the input action xσ1(w′) and the output action yσ2〈zσ2〉. Hence it should
be xσ1 = yσ2.

We conclude with an observation on the relative applicability of inter- and
intra-actions.



62 C. Priami and P. Quaglia

Remark 4. Whenever fjoin(B1, B2, P1, P2) = (B, σ1, σ2) and σ1, σ2 do not cause
the clash of names in sub(B1, B2), an inter-reduction followed by the joining of
the two boxes cannot be mimicked by first joining the boxes and then using the
intra rule.

The above remark suggests that beta binders are active borders, in the sense
that communications over the sites of boxes cannot in general be rendered by
resorting to synchronizations between components of the inner pi-process.

3.6 Directionality of Join (and Split)

In what follows we focus on the possible simmetry deriving from the interplay
of the struct rule with the join or the split axiom. Consider, for instance, the
beta-process

β(x : Γ ) [P1] ‖ β(y : Δ) [P2] (7)

and suppose that Γ ∩ Δ �= ∅ and that the join axiom of the reduction system is
used with the instance of fjoin defined in (1). Then, letting B1 = β(x : Γ ) and
B2 = β(y : Δ), the following derivations are both legitimate:

B1[P1] ‖ B2[P2] −→ B1[P1 | P2{x/y}]

B1[P1] ‖ B2[P2] ≡ B2[P2] ‖ B1[P1] B2[P2] ‖ B1[P1] −→ B2[P2 | P1{y/x}]
B1[P1] ‖ B2[P2] −→ B2[P2 | P1{y/x}]

Biologically speaking, the above symmetry is not necessarily a good feature. It
could corresponds, e.g., to assessing that a bacterium can engulf a macrophage in
the same way as a macrophage can engulf a bacterium. Unwanted bi-directional
applications of the join can be avoided by properly acting on the types of sites by
adding names that identify the component they refer to. An analogous reasoning
holds of the split axiom.

In [8] we suggested to adopt a partial ordering � on a specialized subset
of names (say n1 � n2 � . . .) used to denote the ‘endocytosis propension’ of
sites. Then the bi-directionality we commented upon could be disrupted by first
imposing that the type of each site contains one of those special names, and
finally dicriminating the absorbing process by the absorbed one on the basis of
the endocytosis propension that they exhibit at their sites. For example, the
definition in (1) could be refined into the following one.

fjoin = λB1B2P1P2. if (B1 = β(x : {nj} ∪ Γ ) B∗
1 and

B2 = β(y : {ni} ∪ Δ) B∗
2 and

Γ ∩ Δ �= ∅ and ni � nj)
then (B1, σid, {x/y})
else ⊥

When the complete system is not so big, and its players are a-priori known,
resorting to a partial ordering on names is surely superfluous. Unwanted reduc-
tions can be cut out by just augumenting the type of each of the relevant sites
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with one special name that identifies the component it belongs to. Then it is
sufficient to let fjoin inspect such a special name. Suppose for instance that in
(7) the beta-process β(x : Γ ) [P1] plays the macrophage and β(y : Δ) [P2] the
bacterium, and consider the following refinement of (7) and (1) respectively:

β(x : Γ ∪ {m}) [P1] ‖ β(y : Δ) [P2]

fjoin = λB1B2P1P2. if (B1 = β(x : Γ ∪ {m}) B∗
1 and B2 = β(y : Δ) B∗

2 and
Γ ∩ Δ �= ∅)

then (B1, σid, {x/y})
else ⊥

where m (for macrophage) is supposed to be a fresh name. The above refinement
would be sufficient to cut out the unwanted behaviour of the system.

3.7 Nesting

In Beta-binders nesting of boxes was forbidden to keep the formalism as simple
as possible. The role of typing for sites, however, together with the operational
semantics of interactions between boxes, ensures that a virtual (if not graphical)
form of nesting can be represented. Take for instance the following system:

B ‖ P

y : {u, z} w : {v}

‖ Q

x : {v}

Then, under the proviso that v is fresh w.r.t. the names exploited in the types
of the sites in B, the beta-process β(x : {v}) [Q] can only perform intra-actions
or be involved in inter-actions with β(y : {u, z}) β(w : {v}) [P ] through its site
x. Then, at least as long as its interface is not changed, β(x : {v}) [Q] behaves
like a compartment nested in β(y : {u, z}) β(w : {v}) [P ].

3.8 Changing the Type of Sites

Changing the type of sites can be particularly useful for modeling purposes.
Imagine for instance that the beta-process B[P ] has a site x : Δ, and suppose
that, due to biochemical modifications of the component, or even to its evolu-
tionary behaviour, the type of the site has to be changed to Γ . This can be the
case, e.g., when modeling the fact that a molecule can be alternatively phospho-
rilated and dephosphorilated (see, e.g., [2]). Phosphorilation can be rendered as
an interaction at a certain site x : {ph}. After phosphorilation, the site x : {ph}
is made unavailable to further interactions, and the molecule shows to be ready
to possible dephosphorilation by exposing another suitable site, say y : {deph}.

The modification of site types can be rendered in Beta-binders by a combi-
nation of the hide and of the expose prefixes as reported below.

Remark 5. Given B[P ], the modification of the site x : Δ into x : Γ can be
rendered by translating P into hide(x) . expose(x, Γ ) . P . Relatively to the beta-
process B[ hide(x) . expose(x, Γ ) . P ] notice that, by definition of the operational
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semantics, when the expose(x, Γ ) prefix is fired the name x is refreshed in P to
avoid clashes with the subject of the hidden site.

As a final observation, recall that the names occurring in the types declared
in expose prefixes are free names, and hence can be affected by substitutions.
For this reason, the types of sites can dynamically change simply due to the
evolution of beta-processes. This happens, e.g., in the following case:

β(x : Δ) [x(y1). x(y2). expose(y, {y1, y2}) . P ] ‖ β(w : Δ) [w〈z1〉. w〈z2〉. Q] −→2

β(x : Δ) [ expose(y, {z1, z2}) . P ] ‖ β(w : Δ) [Q].

4 Conclusions

We overviewed Beta-binders and commented on a set of operational properties
and patterns that can be useful schemata when modeling complex case studies.
Most of the features that have been tackled depend on the level of parametricity
that is ensured by building the formalism around typed interaction sites. For
instance, we noticed that appropriate types can be used to simulate hierarchies
of nested boxes.

More generally, the typing of sites allows an improved promiscuity of interac-
tion between entities, and we believe that this can be a relevant point in modeling
biological behaviours, especially in the perspective of predictive research and in
the analysis of the responses of biological systems to artificial perturbations.
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Abstract. Diverse modeling and simulation methods are being applied
in the area of Systems Biology. Most models in Systems Biology can eas-
ily be located within the space that is spanned by three dimensions of
modeling: continuous and discrete; quantitative and qualitative; stochas-
tic and deterministic. These dimensions are not entirely independent nor
are they exclusive. Many modeling approaches are hybrid as they com-
bine continuous and discrete, quantitative and qualitative, stochastic and
deterministic aspects. Another important aspect for the distinction of
modeling approaches is at which level a model describes a system: is
it at the “macro” level, at the “micro” level, or at multiple levels of
organization. Although multi-level models can be located anywhere in
the space spanned by the three dimensions of modeling and simulation,
clustering tendencies can be observed whose implications are discussed
and illustrated by moving from a continuous, deterministic quantitative
macro model to a stochastic discrete-event semi-quantitative multi-level
model.

1 Introduction

The goal of Systems Biology is to analyze the behavior and interrelationships
between entities of entire functional biological systems [1, 2]. As the systems un-
der study do not support an easy experimental access and analysis, models play
an important role in gaining an insight into the systems‘ behavior and structure.
Models can be evaluated differently. For instance, properties of the system can
be derived by using methods like model checking [3]. Simulation is a different
approach as it means an experiment based on the model. Thereby, it completes
the in-vivo or in-vitro experiments of Systems Biology by in-silico experiments
[1, 2]. Diverse modeling and simulation methods are being applied in the area
of Systems Biology. Efforts like the “Systems Biology Workbench” are aimed at
integrating different data analysis, visualization, modeling, and simulation tools
[4]. In this context SBML (Systems Biology Markup Language) is being devel-
oped to support the exchange of models between different simulation systems
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[5]. Similar to CellML [6], SBML focuses on continuous systems modeling and
simulation. In continuous systems models, the system is described by a set of
state variables, whose time-dependent changes are usually specified by a set of
differential equations [7, 8, 9, 10].

Aside from the continuous modeling approaches the discrete approaches also
have increasingly gained momentum: the behavior of the system is modeled by
states changing at arbitrary points on a still continuous time scale [11, 12]. State
transitions are triggered by external and internal events, which is in fundamen-
tal contrast to the continuous state changes of a differential equation system.
With the discrete approaches models have emerged that integrate qualitative
and stochastic aspects: the values of some variables and/or of the modeling pa-
rameters are qualitatively scaled or taken from probability distributions [13].
Qualitative continuous systems modeling approaches exist as well even though
those are more rare [14, 15]. The same can be observed with respect to stochastic
continuous approaches, e.g. [16].

Most models in Systems Biology can easily be located within the space that
is spanned by the three dimensions of modeling: continuous and discrete [17];
quantitative and qualitative; stochastic and deterministic, although this catego-
rization is neither exclusive in each dimension, nor are the dimensions entirely
independent.

In the following we will add a comparatively less explored dimension to dis-
tinguish modeling approaches in Systems Biology: the question at which level a
model describes a system: is it at the “macro” level, at the “micro” level, or at
multiple levels of organization.

The more mature a field becomes, the more hybrid approaches gain ground.
In Systems Biology, the number of models steadily increases that are no longer
purely quantitative or qualitative, or purely continuous or discrete. Thus, we
expect the same to happen with respect to the organizational level: one level
of explanation will hardly suffice. The more so, as the goal of Systems Biol-
ogy is to describe the dynamics of cellular systems in their entirety [1]. In this
context, not only interdependencies at one organizational level but between dif-
ferent ones become of interest, as “the whole is to some degree constrained by
the parts (upward causation), but at the same time the parts are to some degree
constrained by the whole (downward causation).” [18]. The importance of these
interdependencies has been emphasized for systems in general [19] and biological
systems in particular [20, 21], and also recently for Systems Biology with increas-
ing urgency [22, 23, 24, 25] motivating the development of concrete models, e.g.
[26, 27, 28, 29].

This paper is organized as follows: in chapter two the modeling approaches
in the area of Systems Biology are categorized into the three modeling dimen-
sions, which were described above (quantitative-qualitative, continuous-discrete
and stochastic-deterministic); chapter three introduces the idea of the different
organization levels for the distinction of the modeling approaches (micro, macro
and multi-level models) and interrelates the categorization approach to the mod-
eling dimensions studied in chapter two with a focus on multi-level models; after
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theoretical considerations about the different modeling dimensions and their in-
terdependencies, chapter four illustrates the explorations based on a biological
application example; chapter five gives a more in-detail discussion of the compo-
sition and interaction of multi-level models; it is followed by a general discussion,
summary and outlook.

2 Structuring the Space of Model Approaches

A formal model is described in a formal language to be interpretable by a com-
puter system. Each model forms an abstraction of a system to support some
concrete objective. Thus, we follow the definition of Minsky [30] that “A Model
(M) for a system (S) and an experiment (E) is anything to which E can be applied
in order to answer questions about S.”. As Cellier [31] points out, this definition
does not describe “models for systems” per se, a model is always related to the
tuple system and experiment. A model of a system might therefore be valid for
one experiment and invalid for another. One consequence of this definition is that
it is very unlikely to derive a model, which is valid for all possible experiments,
unless it is an identical copy of the system and thus no longer a model. Modeling
is a process of abstraction. It involves simplification, aggregation, and omission
of details. Although processes of omission and simplification become particularly
obvious if the model is described in a formal language, these processes play also
a role in in-vitro and in-vivo experiments. Whereas it seems natural to conclude
that the physical medium of in-vitro or in-vivo experiments restrain the experi-
ments and thus the question that can be answered, one is often not aware about
that and what constraints are implied by the respective modeling approach. How-
ever, the diversity of modeling approaches applied in Systems Biology illustrates
and suggests that, depending on the biological system, the available data and
knowledge about the system, and the objective of the simulation study, model-
ing approaches are chosen deliberatively on demand and thus address the diverse
needs of modeling and simulation in Systems Biology - if we do not assume that
the diversity is caused merely by the diverse backgrounds which the modelers
come from. So the question is to be asked what do certain approaches offer in
modeling biological systems when compared to others. By introducing and dis-
cussing the dimension of organizational levels we will try to partially answer this
question for the case of discrete-event, multi-level modeling approaches.

First we will use the dimensions of continuous and discrete, quantitative and
qualitative, and stochastic and deterministic modeling to structure the space of
modeling approaches applied in Systems Biology.

2.1 Continuous, Discrete, and Hybrid System Models

Distinguishing between continuous and discrete systems modeling and simula-
tion has a comparatively long tradition. Although different modeling formalisms
do exist, e.g. systems dynamics, bond graphs, or block diagrams, the continuous
realm of modeling and simulation is unified by differential equations for model
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representation and numerical integration algorithms for execution [31]. Thereby
time-dependent variables are assigned to different measuring or non-measurable
quantities of the system. The continuous state changes are modeled by a sum of
rates describing the increase and decrease of the quantities amounts. Frequently
kinetic rate equations, like the Michaelis-Menten or some mass action kinetics,
are used for that purpose. Such modeling approaches are perfectly suited for
the reproduction of measured time-dependent trajectories and also easily allow
the fitting of the model parameters. Continuous systems models are the dom-
inant type of model used in Systems Biology [32]. A series of simulation tools
for continuous systems modeling and simulation in general and Systems Biol-
ogy applications in particular support a comfortable developing of these types
of models, e.g. Gepasi [33], ProMoT/Diva [34], Jarnac [35], DBsolve [36], and
Cellerator [37]. Continuous models reflect nicely what is measured in cellular
biology. Small samples of cell cultures are analyzed by extracting the DNA, en-
zymes, or metabolites, and by quantifying the concentration of the respective
species over time.

Often a cell’s activity is perceived as being discrete rather than continu-
ous motivating the design of discrete systems models. In contrast to continuous
systems models, discrete systems models assume only a finite number of state
changes within a time interval. Depending on the time base that underlies the
model, discrete time stepped approaches and discrete event approaches are dis-
tinguished. The latter allows to associate arbitrary time spans with each state
of the system and thus is based on a continuous notion of time, whereas the for-
mer is based on time that advances in equidistant steps. Regular, time-stepped
Petri Nets have been applied to qualitatively describe biochemical reaction
networks [38]. The use of stochastic Petri Nets marks the transition to dis-
crete event simulation and the integration of quantitative and stochastic aspects
[39]. In discrete event models state transition functions define into which state to
change triggered by external events, e.g. the collisions of species like enzymes and
metabolites in a biological model, or triggered by the flow of time, e.g. after the
time required for intra-molecular rearrangements. In discrete event simulation,
situation-based and time-based events can occur at any point in time and the
resulting state and the time span needed for reaction can be randomly chosen.
Thus, stochasticity comes natural to discrete event simulation (see section 2.2).

Continuous systems models can easily be translated into a set of differential
equations, independently of being defined as bond graphs, as block diagrams, or
as set of chemical reactions. The discrete modeling and simulation realm lacks
such a common denominator that is widely accepted, even though general ap-
proaches exist. E.g. Devs [40], Petri Nets [41], and π-Calculus [42, 43] are
formal and generally applicable approaches toward discrete event systems model-
ing. Each has been developed with a rather different objective in mind. The goal
of Devs has been to combine the functional, network and hierarchical perspec-
tive in describing systems, and thus stands in the tradition of general systems
theory [44]. Devs distinguishes between atomic models and coupled models.
Whereas atomic models describe the behavior in terms of state transitions that
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might be triggered by external events or the flow of time, and output functions,
coupled models define how their components, which might be atomic or coupled,
interact with each other and thus control the interaction between them. Thus,
a hierarchical, modular construction of models is supported. An abstract sim-
ulator defines the execution semantics of typical Devs models [40]. Extensions
of Devs support variable structure models [45], models that entail in their de-
scription the ability to change their own composition and interaction structure
which is important in modeling and simulating biological systems [46]. Devs
models emphasize the definition of states and state transitions and therefore,
are closely related to StateCharts, a model formalism that is widely applied
in Systems Biology [47]. StateCharts can easily be transformed into Devs.
A transformation of Devs models into the graphical notation of StateCharts
facilitates the understanding of models [48].

Petri Nets and π-Calculus have been developed for describing concur-
rent processes and are best known in the context of computer and engineering
sciences. Whereas Petri Nets focus on concurrent processes competing for re-
sources, the π-Calculus is aimed at describing concurrent mobile processes,
channels, locations, and interactions respectively. Thus, processes like protein to
protein interactions can be described easily [49, 50, 51, 52]. Its extension in form
of the stochastic π-Calculus, supports the definition of discrete event models
and their execution by discrete event simulation. Thus, established approaches
to transform existing continuous models into discrete event models [53], can be
used to define and refine models in the stochastic π-Calculus. Openly avail-
able simulation systems like BiosPI also push the application of the stochastic
π-Calculus [54]. Recent developments like BioAmbients which is based on the
stochastic π-Calculus, allow the description of spatial cell compartments, and
entities moving from one compartment to the next and thus increase the expres-
siveness of the language [55]. The Brane Calculi [56, 57] addresses the need for
modeling constructs of cellular coordination via membranes. It forms an applica-
tion specific refinement of the general modeling and simulation approach. In the
Projective Brane Calculi the membrane actions become directed thereby,
moving the calculi even closer to the perception of the activities within biologi-
cal membranes [58]. These recent extensions are aimed at providing means and
places for describing coordination and cooperation within biological cells [50],
and lend additional structure and expressiveness to the modelling language. To
specifiy the executional semantics of a model in a non-ambiguous manner an
abstract simulator has been developed for the π-Calculi [54], as has been done
for Devs like models [40]. One might note that when a continuous model is
executed, numerical integration algorithms discretize the state and time base,
and so diminish the conceptual distance toward discrete models. However, the
assumption underlying continuous models is still that the system behaves con-
tinuously with an infinite number of infinitely close state transitions in each time
interval. The numerical integration merely serves to approximate this behavior.
In discrete event models in contrast, no continuity of behavior needs to be as-
sumed. However, the situation becomes more interesting since recently it has
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Table 1. Modeling formalisms: time and state space

Discrete event Discrete step-wise Differential equation
input and output arbitrary arbitrary real vector
state space arbitrary arbitrary real vector
time base real discrete real

been shown that discrete event models can be used to obtain approximations to
the solutions of differential equation systems [17, 59]. This is done using a pro-
cess of quantization in which events are scheduled based on predicted threshold
crossings rather than time steps. Executed by a discrete event simulation engine
it will reproduce the trajectories, in some cases in significantly less time [60].

Often systems can best be described by a combination of discrete and con-
tinuous models, e.g. if continuous processes exhibit discontinuities which require
to switch from one continuous model to another one, or if leaving or entering
a discrete phase depends on continuous processes that reach certain thresholds.
Hybrid systems models combine continuous and discrete systems behavior. Many
modeling and simulation approaches for discrete and continuous systems have
been extended to support hybrid systems models. Hybrid Petri Nets have
been developed by adding continuous places and continuous transitions to the
discrete places and transitions of regular Petri Nets [61]. The continuous tran-
sitions of Hybrid Petri Nets are used to describe kinetic reactions which are
turned on and off by the marking of discrete places. These discrete places form
the interface between continuous and discrete partitions of the Petri Net [62].
Hybrid Petri Nets as a graphical tool are well suited to describe metabolic
processes, as they visualize chemical reactions and interdependencies. Similar
arguments motivate the use of Block Diagrams, that allow to specify graph-
ically continuous and hybrid models [63] and are supported by many simulation
tools, e.g. [64]. The origin of block diagrams, unlike that of Petri Nets, lies in
the continuous realm. To allow the integration of discontinuities they have been
extended by discrete elements, e.g. switching blocks. Both Hybrid Petri Nets
and Block Diagrams support the mixed signal approach in describing hybrid
systems [65]. In contrast to that, Hybrid Automata [66] move the distinction
of phases into the focus of modeling. State transitions of Hybrid Automata are
triggered by continuous processes that are responsible for describing the continu-
ous behavior of a system while being in one phase and determining the time and
situation when to leave a phase and enter another one [67, 68, 69]. The growing
need to integrate discontinuous behavior into Systems Biology models is reflected
in extending existing simulation systems, e.g. Gepasi, or in the design of recent
simulation systems for Systems Biology, e.g. the e-Cell simulation system.

2.2 Deterministic and Stochastic Systems Models

Modeling is the process of structuring our knowledge about a given system [40].
In this perspective, stochastic processes represent one means to express the un-
certainty of our knowledge. A plethora of methods are dedicated to the problems
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of stochastic modeling, e.g. to estimate suitable distributions for random vari-
ates, and to interpret the results of the simulation runs [70]. ¿From the view of
the modelled system, integrating stochasticity into the models might also serve a
slightly different purpose: randomness or ”noise” arising from small numbers of
molecules involved in processes like gene expression and regulation can directly
be represented in the model [71, 72]. Although stochastic elements are often asso-
ciated with discrete event models, they are also applicable to continuous system
models. In Systems Biology, inclusions of stochastic elements for modeling con-
tinuous processes have gained ground recently. E.g. chemical reaction equations
are described by so called stochastic differential equations [73]. These equations
determine the probability with which a combination of molecules will react in a
given time interval.

Interestingly, to solve these equations Gillespie [74, 75] suggested an algorithm
that transforms the set of equations into a discrete event stochastic model. The
representation in discrete event form is particularly striking in more recent im-
plementations of the algorithm. E.g. the simulation system Stochastirator
is a discrete event simulator with the typical event queues and the handling
of time and situation triggered events [73]. Stode [53] transforms automati-
cally reaction rates and model parameters of a deterministic differential equa-
tion model internally into a stochastic discrete event model. The probabilities
of single reactions depend on the number of reactants which again is subject
to change via occurrence of reactions [73]. The stochastic discrete event mod-
els address specific constraints of continuous, deterministic models: concentra-
tions do not necessarily change continuously, particularly if the dynamics of a
small amount of entities, like DNA molecules and plasmids, shall be modeled
[76]. In addition, sometimes, the dynamics of biological systems can be best ap-
proached in a stochastic manner, e.g. if the gene regulation is to be described
[77], where stochastic fluctuations are abundant [78]. The exact stochastic sim-
ulation approach is not practical for the simulation of metabolic processes, in
which large numbers of molecules of the same kind are involved, due to the
computational cost for the calculation of all individual molecular collisions. Ex-
tensions of the approach overcome these difficulties and allow the stochastic sim-
ulation of systems composed of both intensive metabolic reactions and regulatory
processes involving small numbers of molecules [79, 80, 81]. The combination of
stochastic discrete with continuous sub-models has stimulated the desire for an
easy integration of stochastic aspects into continuous models. One common ap-
proach is to assume a normal distribution for key parameters of the differential
equation system. The result is that stochasticity can now permeate the entire
model [16].

2.3 Qualitative, Quantitative and Semi-quantitative Systems
Models

Continuous models are usually associated with quantitative models, i.e. models
whose variables are numerically scaled, in the case of differential equations the
state space is given by real values vectors. However, continuous behavior can
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also be described qualitatively. E.g QSIM [82] assumes a continuous, respec-
tively hybrid behavior of a system and describes this in qualitative terms, e.g.
rising trends, falling trends, landmarks, etc. This approach has also been used in
Systems Biology, e.g. to describe the development of a λ-Phage in an eukaryotic
cell [83]. Often the lack of quantitative data motivates the use of qualitative
methods. Qualitative methods are often used as a first step to develop a quanti-
tative model [84]. E.g. one obtains useful structural information by determining
what variables play a role for certain kinetics and whether there exists a posi-
tive or negative influence between variables [85, 86]. Another motivation for the
application of qualitative methods is that they are aimed at answering different
kinds of questions than quantitative methods and offer different possibilities for
analysis, for example whether certain states can be reached by the system and
under which conditions. On the other hand, if not only the existence but also the
degree, and the effect of opposite regulations are of interest purely qualitative
models will not prove to be sufficiently expressive [32].

It is one advantage of discrete event simulation that its models combine
easily qualitative and quantitative aspects of the system [12] (see also table 1),
even though the assumption, that discrete event simulation requires less data
than continuous one, as stated in [12], has to be inspected critically. In hybrid
systems models, the “qualitatively scaled variables” come into play to describe
the different phases or to initiate switching from one differential equation system
to another.

3 Micro, Macro, and Multi-level Systems Models

Traditionally, two dichotomous views on systems prevail. “With individualism,
macroscopic processes are either emergents or totally reducible aggregates, while
with holism microscopic actions occur as local manifestations of system-wide
processes” [87]. In sociology the distinction between micro, macro, and, to medi-
ate between both, multi-level models is comparatively well established [88, 89].
Macro models describe a system as one entity. Variables and their interdependen-
cies, which can be expressed as rules, equations, constraints etc., are attributed to
this entity. Typical representatives of this class are differential equation models,
which describe e.g. a biochemical system based on concentrations and reaction
rates.

Micro models are models that represent systems as comprising huge numbers
of rather homogeneously structured entities. Only the behavior of the individuals
is explicitly modeled. The macro level of the system exists only as it aggregates
results of the activities at micro level and is used for reflecting emergent phe-
nomena, e.g. the development of specific spatial patterns. They do not have any
behavior of their own. Typical representatives of this class are cellular automata
and Lindenmeyer systems which are also applied for reconstructing spatial bio-
chemical processes in Systems Biology [90, 91, 92, 93, 94].

Micro models often form only a transition to multi-level models which de-
scribes a system at least at two different levels. Interactions are taking place
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within and between those levels. The description of systems at different levels
of abstraction and different time scales facilitates taking spatial and temporal
structured processes into consideration, e.g. [95].

Multi-level models allow us to explicitly describe “upward”,- and “downward
causation”, i.e. “the whole is to some degree constrained by the parts (upward
causation), but at the same time the parts are to some degree constrained by
the whole (downward causation).” [18]. Their importance has been emphasized
for systems in general [19] and biological systems in particular [20, 21]. The
relevance of interrelating micro and macro models has also been raised recently
for Systems Biology [22, 23, 24, 25].

The structure of multi-level models typically reveals whether they originated
from macro or micro models. If the latter is the case we find a multiplicity
of homogeneously structured entities, that describe e.g. different population of
enzymes and proteins. If a macro model has been successively extended and
refined to describe a system at different levels of organization, then comparatively
few sub-models typically exist and those are heterogeneously structured with
different patterns of behavior.

Individual-based models, which describe systems at two levels of organization,
i.e. a micro and macro level [96, 97], belong to the class of multi-level models.
They reveal their close relationship to micro models. In individual-based models
the individual entities and the macro level are explicitly modeled. The individ-
uals typically do not interact directly but via the macro level. Individual-based
approaches are also increasingly being applied in cellular biology [98, 99, 100].

In the following we will shortly discuss the relationships of multi-level mod-
eling and the previously discussed dimensions.

Continuous and Discrete Modeling. Multi-level models are neither restricted
to discrete models nor to continuous ones. If multiple levels are formed by a suc-
cessive extension and refinement of macro models they might be both, continu-
ous or discrete. Continuous models can easily be structured into different cellular
compartments, e.g. [101, 102], each of which behaves continuously. Even if multi-
level models contain many homogeneously interacting and structured submodels,
these might form continuous systems models [103], although in the case of many
homogeneously interacting entities discrete models of the individuals prevail.
They allow to combine a qualitative discrete perception of individuals and their
behavior with a quantitative, concentration-oriented view at macro level and
thus a comparison with measured concentration changes.

Deterministic and Stochastic Modeling. Again multi-level models might
work deterministically or stochastically. The question whether stochastics plays
a major role in multi-level models is closely related to the question whether
discrete event models are part of the multi-level model. Most discrete event
models consider stochastic effects in determining when and what will happen. In
this case a simulation run turns into a random experiment and has to be treated
as such [70].



Discrete Event Multi-level Models for Systems Biology 75

When Gillespie suggested the transformation of deterministic continuous
models into stochastic discrete event models, he also prepared the way for a
micro perspective of cells. Although most implementations of the Gillespie al-
gorithm, e.g. [73], record the number of molecules being in certain states and
determine the time of next event and the most likely reaction to occur based on
this “macro view”, they consider the molecules as atomic entities to be added
or deleted from the bulk solution. A next step has been taken in StochSim
which attributes properties to these entities and thereby, allows to observe indi-
vidual molecules over time. The model is based on a discrete step-wise execution
[104]. The dominance of discrete approaches in multi-level modeling and single
individuals being represented motivates the integration of stochastic aspects. So
most multi-level models are stochastic models.

Quantitative and Qualitative Modeling. A multi-level model might be qual-
itative, quantitative, or semi-quantitative. If only continuous differential equa-
tion models are considered the state space presents itself as a vector of real
numbers. Discrete event models of individuals support the representation of the
modeled system by arbitrarily scaled variables. To allow a discrete event simu-
lation to jump from one event to the next after some pre-defined time interval
has elapsed, the time base of discrete event models is continuous and introduces
typically some quantitative information - when does the next event occur or how
long does a state persist per se. Purely qualitatively scaled variables are also per-
ceivable. However, the combination of discrete, qualitative models at individual
level and quantitative (discrete or continuous) models at macro level holds prob-
ably the most appeal to biologists as they allow to re-unify two perspectives in
dealing with natural systems.

To support the modeling of complex systems, many formalisms, languages
and tools allow to hierarchically compose models. Supporting a hierarchical
structure of a model helps realizing multi-level models however not all hierar-
chically composed models are designed as multi-level models. They do not nec-
essarily describe a system at different organizational levels, they use the model
hierarchy for modularization.

If we categorize a model as being quantitative, stochastic, discrete and multi-
level, it is therefore interesting to ask what this means not only for the model
itself but for potential sub- and super-models: what can be deduced along a
compositional model hierarchy, which might or might not reflect the different
organizational levels. A quantitative model implies that all sub-models are quan-
titative, the supermodel might be semi-quantitative or quantitative. If one sub-
model contains stochastic aspects the entire model becomes a stochastic one. If
a model is continuous all sub-models are continuous and all supermodel will be
either hybrid or continuous. If a model is a multi-level model, its sub-models
might be micro, macro, or multi-level models, its super-model will definitely be
a multi-level model. If we have a micro model, we will have many homogeneously
structured sub-models each of which describes an individual at macro level, its
super-model will be a micro or multi-level model. A macro model might not have



76 A.M. Uhrmacher, D. Degenring, and B. Zeigler

any sub-models. In case it has components, its components are all macro models;
the macro model itself can be part of a micro, macro, and multi-level model.

4 Biological Example: Diverse Models for the
Tryptophan Synthase

After these theoretical considerations about the different modeling dimensions
and their interdependencies, we will illustrate our exploration based on a bio-
logical example.

The Tryptophan Synthase is the last enzyme of the reaction cascade, which
is responsible for the synthesis of the aromatic amino acid Tryptophan. The
whole enzyme is a homo-dimer, whereas each monomer consists of two subunits,
the α- and the β-subunit, which are connected by a largely hydrophobic tunnel.
The enzyme has been isolated from microbial cells in [105] and characterized
by in-vitro experiments using radiolabelled substrates. For the description of
the in-vitro determined kinetics a quantitative, deterministic macro-model was
developed [106]. The deduced reaction mechanism of the enzyme is shown in
figure 1.

For each binding-state of the enzyme during the conversion from Indole-
glycerol-3-phosphate (IGP) and Serine to Tryptophan and Glyceraldehyde-3-
phosphate (G3P) at the α- and the β- subunit, respectively, a distinct variable
was introduced, so that a system of ordinary differential equations could be
derived (Figure 4).

After numerical integration and parameter fitting the trajectories resulting
from several in-vitro experiments could be reproduced by the corresponding
simulation experiments.
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Fig. 1. Reaction scheme of tryptophan synthase [29]
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˙IGP = 200IGP -E − 10IGP · E
˙IGP -E = 10IGP · E + 8IGP -E∗ − 200IGP · E − 0.16IGP -E
˙IGP -E∗ = 0.16IGP -E + 11Ind-G3P -E∗ − 8IGP -E∗ − 24IGP -E∗

˙Ind-G3P -E∗ = 24IGP -E∗+2G3P -E ·Ind−20Ind-G3P -E∗−11Ind-G3P -E∗

˙G3P -E = 20Ind-G3P -E∗+0.2G3P ·E−2G3P -E ·Ind−200G3P -E ·Ind
˙G3P = 200G3P -E − 0.2G3P · E
˙Ind = 20Ind-G3P -E∗ − 2G3P -E · Ind − 2EAA · Ind
˙Ser = 20E-Ser − 0.135Ser · E
˙E-Ser = 0.135Ser · E + 10EAA − 20E-Ser − 45E-Ser
˙EAA = 45E-Ser − 10EAA − 2EAA · Ind

˙E∗AA-Ind = 2EAA · Ind + 0.1E∗-Trp − 1000E∗AA-Ind
˙EsTrp = 1000E∗AA-Ind + 0.5E · Trp − 0.1E∗-Trp − 8E∗-Trp

˙Trp = 8E∗-Trp − 0.5E · Trp

Fig. 2. Continuous macro model of the tryptophan synthase

Summarizing the model it is clear that:

– it is a continuous systems model since the equation system 4 describes contin-
uous change rates of the metabolite concentrations via balancing the reaction
velocity terms for the building and decay of the different entities;

– it is a macro-model – as the model contains only one level and no individ-
ual entities are modeled, but homogeneous populations of the entities are
regarded as one variable and all variables are attributed to the same entity:
the tryptophan synthase system;

– it is deterministic – as equations 4 do not contain stochastic elements,
like distribution functions for inter-arrival times or the different enzyme-
metabolite populations (IGP-E, etc.);

– it is quantitative - as the state space is a real-valued vector (IGP-E, etc.);

As mentioned above, the model is particularly suited for the description of
the experimentally determined concentration changes. Nevertheless some known
structural characteristics of the enzyme Tryptophan Synthase are not reflected
equally well. Especially the macro-models’ description of the hydrophobic chan-
nel is strongly simplified: it is known from independently performed X-Ray ex-
periments for the structural analysis, that the tunnel can store up to four indole
molecules. This could imply a time delay for tunneling the indole from the α-
to the corresponding β-subunit, that was not taken into account by the macro-
model. Integrating the tunnel’s capacity into the described macro model would
significantly complicate the model’s execution, since time-delayed differential
equations have to be defined. In addition, it would burden the model structure
reducing the transparency of the model.

Therefore a discrete-event stochastic multi-level model was generated [100] to
allow a more detailed description of the individual enzymes including additional
structural (qualitative) information about the enzymes and to allow at the same
time the reproduction of the in-vitro experiments. In spite of the additional com-
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Fig. 3. A multi-level model of tryptophan synthase [29]

plexity the multi-level model should remain transparent for the experimentalists,
see figure 3.

In the following the conversion of the continuous deterministic macro-model
into the discrete-event stochastic multi-level model is discussed in more detail
step by step:

1. Transformation of a continuous deterministic macro-model to a discrete-
event stochastic macro-model:

– this is e.g. done by the Gillespie Algorithm [74], that was deduced to ex-
actly simulate a stochastic differential equation system describing chemi-
cal reactions systems. Depending on the actual numbers of each molecule
and enzymes in each binding-state at a discrete time, the algorithm de-
duces, when the next reaction will take place and what reaction it will
be. After that time the number of molecules and enzymes with different
binding-states is updated and the next reaction time is determined;

2. Transformation of a discrete-event stochastic macro model to a step-wise-
discrete stochastic micro model :

– to form a micro model from the discrete stochastic macro-model indi-
vidual entities with their properties, i.e. in our case mainly the different
binding-states of the enzymes, have to be modeled;

– corresponding simulations can be realized in Stochsim: at each time
step of the simulation, which is determined by the fastest reaction step,
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/ release G3P
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after (forwT s)after (bacwkT s)

after (chanT s)
/ putOutput(BETA, Ind)

Fig. 4. Phases and transitions for an α-subunit of a single enzyme [29]

i.e. in our case the tunneling reaction, two molecules were randomly
chosen. Their current properties, i.e. binding-states, decide whether a
reaction can take place at all. According to the probability defined for
this reaction (which is correlated to the reaction’s velocity) the reaction
will actually be executed;

– the simulation is time-consuming due to the many time-steps, at which
no reaction takes places;

3. Transformation of a step-wise-discrete stochastic micro model to a discrete-
event stochastic multi-level model :

– micro to multi-level: The individual enzyme with its different binding-
states is subdivided into an α- and a β-subunit, which communicate via
the tunnel.
In addition to the individual enzymes, a macro-level is introduced which
records the IGP, Ser, Trp, Ind, G3P molecules and the α- β-models in
the bulk solution. It has the function to distribute the substrate and
product molecules to and from the individual enzymes. The frequency
is determined by the current concentration of metabolites and enzymes
and the velocity of the different reactions. It offers a macro perspective
on the system, where the bulk solution is the system of interest having
concentrations and equations for describing the change of concentrations
attributed to it. As the bulk solution contains only metabolites that are
of interest for the tryptophan synthase, each change of concentration is
translated into forwarding metabolites to individual enzymes. In addi-
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tion, the macro level records the trajectories of the metabolite concen-
trations over time and can be used for validating the model based on the
in-vitro experiments.

– step-wise-discrete to discrete-event: the internal state, i.e. the binding-
state, of the α/β-model determines whether a reaction will take place
and when, this is defined according to the Gillespie algorithm (Figure 4).

5 Different Perspectives of Multi-level Models

Byadopting theobjectmetaphor, thenumberofdiscreteandcontinuous simulation
systems that integrate the different traditional views in modeling systems, i.e. as
functional models, as networks of interactions, and as hierarchical composition
of models is steadily increasing, e.g. James [107], GenomicObjectnet, [108],
e-cell [109], and BiosPI [110]. Thereby, composition and interaction determine
the overall structure of a model in general and of a multi-level model in particular.

At the lowest layer we find functional models of individuals. They might be
represented as quantitative, or qualitative, continuous or discrete model, inte-
grating stochastic aspects or describing the system’s behavior deterministically.
To define the interaction between models, interfaces have to be defined. To let
models interact it is important to distinguish between so called “value couplings”
that support a direct exchange of values, so each change in one submodel is di-
rectly reflected to a change in another submodel, and an exchange of values by
events. Whereas the former supports the coupling of continuous models the lat-
ter is used to support the coupling of discrete systems models. A combination
of both allows to support the coupling of hybrid models. To facilitate the in-
teraction, often the interaction of hybrid submodels is restricted to exchanging
discrete events at discrete times [111, 112].

Grouping stongly interacting submodels into one model supports a hierarchi-
cal composition of models. Thus, a compositional hierarchy is introduced bottom
up. Similarly we can assume that a hierarchy is introduced top down by starting
with the coupled or composite model and asking for its components. Most mod-
eling formalisms assume a strong composition, i.e. one model component belongs
only to one coupled model. Often coupled models or composite models simply
frame a group of models so that they can be treated as one model, e.g. as it is
the case in Devs, in composite hierarchical Petri Nets, like the GenomicOb-
jectNet [113], and in BioAmbients [55]. To belong to the components of such
a coupled model can easily be interpreted as residing in one space. This view is
emphasized in BioAmbients [55], which, based on the stochastic π-Calculus,
is directed toward supporting higher level abstractions and the description of
complex, spatial phenomena in Systems Biology.

If a coupled model is interpreted as representing a spatial cell compartment,
the ability to support variable structure models, i.e., models that are able to
change their own composition and interaction structure [45], becomes a pre-
requisite to describe phenomena of proteins joining and leaving cell compart-
ments. Composite models have no behavior of their own, their behavior is spec-
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Fig. 5. Screen shot explicating the atomic, the network and the hierarchy perspective
in multi-level modeling [114]

ified by their components and their interactions. This lack of own state and
behavior does not hamper to use them to introduce a notion what does and
what does not belong to a single cell compartment. However, to explicitly de-
scribe a macro view, a separate model has to be introduced to describe state
and dynamic at the macro level, as has been done to model the Tryptophan
synthase in James (Fig. 5). The multi-level model contains sub-models that de-
scribe enzymes as micro models, and sub-models that describe the behavior of
entire enzyme populations as macro models.

Figure 5 represents the different perspectives in modeling. The macro level
contains models that describe the state and dynamics of the different popula-
tions of the bulk solution (see also figure 3). The macro models responsible for
the indole, the serine, the IGP, and the G3P interact with the “micro model” re-
sponsible for the synthase. The former keeps track of the amounts of substrates,
products and enzymes and defines the behavior at the level of concentrations
and collision probability.

The micro model synthase contains thousands of models each of which de-
scribes a single enzyme, (figure 5 in upper left corner). Thus, the overall compo-
sition tree is highly unbalanced, one of the children has more than 800 children.
As we are interested in the role the channel plays in the tryptophan synthase,
we define the enzyme model to consist of two different subunits, i.e. α and β,
which communicate via the channel (see figure 5 on the right hand side). The
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behavior of each subunit is modeled as discrete transitions from one state to the
other. State changes might be triggered by the arrival of metabolites or by the
flow of time (see figure 5 in the lower, left corner).

Multi-level models promise a flexible approach toward the understanding
of cellular systems. However, they also provide new challenges for modeling,
simulation, and visualization techniques, alike – which is illustrated in the above
figure. Different perspectives on the model, that can be interactively selected
and refined, are needed to visualize the model structure in a compact manner
and to enable users to rapidly manipulate the model structure [114].

6 Discussion

Thinking about variables and their continuous change rates appears closely re-
lated to a macro perception rather than a micro perception of a system. Con-
tinuous models reflect the observation of experiments in cellular biology nicely.
The starting point of multi-level models seems somehow different. It is focused
on the active entities of the processes. Their states, behavior, and interaction
with others are directly described. In continuous models the structural informa-
tion are indirectly deducible from the model parameter and the structure of the
differential equations. Though continuous models can easily be structured into
components or objects to describe a system as being comprised of interacting
subsystems, often the focus is on the global scheme of reaction mechanisms.

Discrete modeling approaches prevail if single entities and their dynamics
shall be described. Since many phenomena can only be measured on popula-
tion level, models of single enzymes are typically only checked for plausibility.
For validation model populations can be created, thus turning to micro models
embracing many individuals. To consider the slight deviation between individ-
uals stochastic effects are introduced supporting realistic phenomena on macro
level. Individual-based models combine a macro and micro view on the system
under study. They form a first step toward multi-level models, where different
description levels of systems are integrated. Interaction and coordination are
taking place within and between levels of organization. Modularity, hierarchical
structure, and flexible modeling come natural to multi-level models, however at
the cost of simulation efficiency requiring special solutions [115]. There however,
appears to be no silver bullet for modeling cellular systems. The objective of the
simulation study should drive the level of resolutions chosen, structure, and the
formalism employed. The background of the modelers might bias the choice of
approach unintentionally. Therefore they should educate themselves to appreci-
ate the variety of choices that have become available in the last several years.

The multi-level modeling approach offers a way of bridging between micro
and macro level constructs. The concept of homomorphism has been proposed
as the way to express macro level constructs in terms of micro level ones in a way
that preserves their behavior. Although several examples have been developed
to illustrate this approach [44, 116, 117], more research and more attempts to
apply the research results are sorely needed. Advances in modeling, simulation,



Discrete Event Multi-level Models for Systems Biology 83

and computational biology in general, may well hinge on achieving better ways
to include multiple levels of resolution. Multi-level models move the focus of
modeling and simulation from seeking the most simplistic model able to repro-
duce the observed data, to a flexible, easily refinable and re-usable “middle-out”
model-design that suits the structure of our knowledge and the current question
of interest best.
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100. Degenring, D., Röhl, M., Uhrmacher, A.M.: Discrete event simulation for a better
understanding of metabolite channeling- A system-theoretic approach. In C., P.,
ed.: Computational Methods in Systems Biology. Volume 2602 of Lecture Notes
in Computer Science., Springer Verlag Heidelberg (2003) 114–126

101. Rizzi, M., Baltes, T., Theobald, U., Reuss, M.: In Vivo Analysis of Metabolic
Dynamics in Saccheromyces cerevisiae II. Mathematical Model. Biotechnology
and Bioengineering 55 (1997) 592–608

102. Takahashi, K., Yugi, K., Hashimoto, K., Yamada, Y., Pickett, C., Tomita, M.:
Computational challenges in cell simulation. IEEE Intelligent Systems 17 (2002)
64–71

103. Henson, M., Müller, D., Reuss, M.: Cell Population Modelling of Yeast Glycolytic
Oscillations. Biochemical Journal 368 (2002) 433–446

104. Morton-Firth, C.J., Bray, D.: Predicting Temporal Fluctuations in an Intracellu-
lar Signalling Pathway. Journal of Theoretical Biology 192 (1998) 117–128

105. Anderson, K., Miles, E., Johnson, K.: Serine Modulates Substrate Channeling
in Tryptophan Synthase. The Journal of the Biological Chemistry 266 (1991)
8020–8033

89. Troitzsch, K.: Multilevel Simulation. In Troitzsch, K., Mueller, U., Gilbert, G.,
Doran, J., eds.: Social Science Microsimulation. Springer (1996) 107–120



Discrete Event Multi-level Models for Systems Biology 89

107. Uhrmacher, A.M., Tyschler, P., Tyschler, D.: Modeling Mobile Agents. Future
Generation Computer System 17 (2000) 107–118

108. Elmquist, H., Mattson, S.: Modelica - The Next Generation Modeling Language
- An International Design Effort. In: First World Congress of System Simulation,
Singapore (1997)

109. Takahashi, K., Kaizu, K., Hu, B., Tomita, M.: A multi-algorithm, multi-timescale
method for cell simulation. Bioinformatics 20 (2004) 538–546

110. : Biospi simulator. http://www.wisdom.weizmann.ac.il˜biospi/ (access date: Okt.
2004)

111. Lynch, N., Segala, R., Vaandraager, F.: Hybrid I/O automata. Technical Report
MITLCS-TR-827d, MIT Laboratory for Computer Science (2003)

112. : Anylogic - Simulation Software. http://www.xjtek.com/anylogic/ (access date:
May 2004)

113. Nagasaki, M., Doi, A., Matsuno, H., Miyano, S.: Genomic Object Net: A platform
for modeling and simulating biopathways. Applied Bioinformatics (2003)

114. Biermann, S., Uhrmacher, A., Schumann, H.: Supporting Multi-Level Models
in Systems Biology by Visual Methods. In: Proceedings of European Multi-
Simulation Conference. (2004)

115. Fujimoto, R.: Parallel and Distributed Simulation Systems. John Wiley and Sons
(2000)

116. Zeigler, B.: Statistical Simplification of Neural Nets. Intl. J. of Machine Studies
7 (1975) 371–393

117. Zeigler, B.: Simplification of Biochemical Systems. In Segel, L., ed.: Mathematical
Models in Molecular and Cellular Biology, Cambridge University Press (1981)

106. Anderson, K., Kim, A., Quillen, J., Sayers, E., Yand, X., Miles, E.: Kinetic
Characterization of Channel Impaired Mutants of Tryptophan Synthase. The
Journal of Biological Chemistry 270 (1995) 29936–29944



A New Time-Dependent Complexity Reduction
Method for Biochemical Systems

Jürgen Zobeley1, Dirk Lebiedz2, Julia Kammerer2, Anton Ishmurzin2,
and Ursula Kummer1

1 EML Research gGmbH, Schloss-Wolfsbrunnenweg 33,
69118 Heidelberg, Germany

juergen.zobeley@eml-r.villa-bosch.de
2 IWR, University of Heidelberg, Im Neuenheimer Feld 368,

69120 Heidelberg, Germany

Abstract. Systems biology aims at an understanding of increasingly
large and complex cellular systems making use of computational ap-
proaches, e.g. numerical simulations. The size and complexity of the
underlying biochemical reaction networks call for methods to speed up
simulations and/or dissect the biochemical network into smaller subsys-
tems which can be studied independently. Both goals can be achieved by
so-called complexity reduction algorithms. However, existing complexity
reduction approaches for biochemical reaction networks are mostly based
on studying the steady state behavior of a system and/or are based on
heuristics. Given the fact that many complex biochemical systems dis-
play highly nonlinear dynamics and that this dynamics plays a crucial
role in the functioning of the organism, a new methodology has to be de-
veloped. Therefore, we present a new complexity reduction method which
is time-dependent and suited not only for steady states, but for all pos-
sible dynamics of a biochemical system. It makes use of the evolution of
the different time–scales in the system, allowing to reduce the number
of equations necessary to describe the system which is speeding up the
computation time. In addition, it is possible to study the way different
variables/metabolites contribute to the reduced equation system which
indicates how strongly they interact and couple. In the extreme case of
variables decoupling in a specific state, the method allows the complete
dissection of the system resulting in subsystems that can be studied in
isolation. The whole method provides a systematic tool for an automated
complexity reduction of arbitrary biochemical reaction networks. With
the aid of a specific example, the oscillatory peroxidase-oxidase system,
we show that coupling of time–scales depends heavily on the specific
dynamics of the system. Therefore, neither computational improvement
nor systematic understanding can be achieved by studying these aspects
solely under steady state conditions.

1 Introduction

Improved experimental techniques enable researchers to study molecules and
their concentrations in living cells instead of separately in test tubes. In ad-
dition, high-throughput techniques allow for the massive accumulation of data.
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These developments have led to a growing interest in systems biology which aims
at an understanding of increasingly complex biochemical systems in vivo. This
understanding can only be achieved if quantitative experimental technologies
are accompanied by computational research, not only because of the amount of
data, but also because of the complexity of the underlying biochemical networks.
Therefore, more and more computational techniques for this purpose have been
developed in the last few years [1].

One important aspect of computational research in systems biology is the
development of methods for complexity reduction of the systems. Complexity
reduction is used in two different ways. First of all, complexity reduction is
aiming at an increased speed for simulations. This is usually achieved by math-
ematically reducing the number of equations necessary to describe the system
which results in a facilitated simulation. However, a reduced number of equa-
tions does not necessarily mean an accompanying reduction of the biochemical
species in the system, since many different species might contribute to one equa-
tion after the mathematical transformation. Therefore, a likewise or even more
important aspect is that complexity reduction is needed in order to reduce the
biochemical system by dissecting it into several modules which can be studied
independently. This is needed to understand the interplay of specific subsystems
and facilitates research on these defined subsystems.

Rational and automatic approaches to both of the above issues should ensure
that complexity reduction will not lead again to a limited understanding (focus-
ing on arbitrary subsystems), but rather to an increased understanding which
enables researchers to determine in detail how and when subsystems interlink
with each other.

Past approaches to complexity reduction of biochemical systems have focused
mainly on methods studying the steady state behavior of the system [2, 3] and
on dissecting the system based on its network topology using heuristic rules
[4, 5]. The first approach is valid and helpful for biochemical systems that indeed
can be expected to display steady state behavior, e.g. simple microorganisms
in a fermenter. However, recent experimental data show that many complex
biochemical systems display highly nonlinear dynamics. Prominent examples are
calcium oscillations in plants and animals responsible for information processing
in cells [6], metabolic oscillations in neutrophils [7], and glycolytic oscillations
[8, 9]. Moreover, apart from a few cases, most organisms are not subject to a
constant environment and therefore will not display steady state behavior, but
rather transient behavior of different kinds at all times.

One of the simplest and best characterized representatives for nonlinear be-
havior in biochemistry is the so-called peroxidase-oxidase reaction (PO reaction).
During this reaction NAD(P)H is oxidized by molecular oxygen and the reaction
is catalyzed by the enzyme peroxidase [10]. The reaction was shown to display
a wide variety of nonlinear dynamics like simple periodic oscillations, complex
periodic oscillations, quasiperiodicity and chaos [10]. The system is well studied
and quantitative computational models exist [11].
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Given this dynamic nature of biochemistry in the living cell, we think that
complexity reduction methods should take it into account rather than focusing
on steady state behavior. Therefore, complexity reduction has to be performed
in a time-dependent way, following the dynamic behavior of the system and en-
abling researchers to reduce systems also during transient behavior. Methods for
such a time-dependent complexity reduction exist in other fields, e.g. chemistry
and physics [12, 13]. Here, one of the most common approaches is time–scale de-
composition. The concept of time–scale decomposition is based on the fact that
complex reaction networks typically consist of processes taking place on largely
differing characteristic time–scales. Depending on the actual time–scale of inter-
est processes being exhausted on a sufficiently fast time–scale are assumed to be
relaxed, whereas processes taking place on a sufficiently slow time–scale can be
assumed to be stationary. The time–scale of interest might of course change in
the course of the simulation of the system dynamics. This system dynamics is
then described with a reduced set of equations representing the time–evolution
of the processes being active on the actual time–scale. Thus, the system is de-
scribed with a reduced set of equations which does not necessarily imply that
these equations represent a smaller system of real chemical species. Therefore,
this approach is only meant to speed up computation time rather than dissect
the biochemical network into modules. The most prominent examples building
on the concept of time–scale decomposition are the Computational Singular Per-
turbation (CSP) method [14] and methods based on the computation of so-called
Low-Dimensional Manifolds (LDM) [15, 16, 17, 18]. Several variants of these two
methods have been successfully used e.g. in atmospheric and combustion chem-
istry modeling (see, e.g., [19, 20, 21]).

Time–scale decomposition should be an excellent approach to dynamic com-
plexity reduction in biochemical systems since biochemical processes proceed on
a wide range of time–scales spanning several orders of magnitude. Thus, events
like gene expression usually occur in the range of minutes to hours, whereas sig-
nal transduction and metabolic reactions take fractions of seconds to seconds to
evolve [22]. Looking even more into detail, e.g. at the elementary reaction steps
which are involved in a single metabolic reaction and on protein movements etc.,
one often observes time–scales in the order of fs to ms (see, e.g. [23]). Therefore,
separation of time–scales has indeed often been used in a simplified and heuris-
tic manner in the context of modeling biochemical processes. Examples include
the simulation of metabolic events without considering gene expression of the
associated enzymes or the description of an overall kinetics for a biochemical
reaction instead of describing all elementary steps. In the latter case, the famous
Michaelis-Menten approximation relies mainly on a separation of time–scales
which leads to a quasi-steady state approximation for reactive intermediates like
the enzyme-substrate-complex [24]. Apart from often being heuristic, the usage
of time–scale decomposition in this context has been mainly limited to assuming
the system to operate in a steady state and so far, no automated, time-dependent
attempt has been made to study complex metabolic reaction networks, except
for very small sample systems (see, e.g., [18]).
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In the following, we describe the adaptation of a LDM method for the use
in the computational decomposition and analysis of biochemical systems with
respect to time–scales. Compared to existing dynamic complexity reduction ap-
proaches our new adapted time–scale decomposition method for reaction net-
works has several advantages. The method can be applied to arbitrary biochem-
ical reaction networks and works independently of restrictive assumptions on
the specific dynamical regime of the system like e.g. the steady state approxi-
mation. Furthermore, the decomposition and analysis of the system dynamics is
performed in a fully automated way, therefore avoiding the error–prone a priori
identification of reactive intermediates / fast processes that are in most cases
valid only for a restricted dynamical regime of the reaction network.

In comparison to the above described LDM methods for chemical systems,
our method has an additional focus on the reduction of the underlying biochem-
ical network in a time–dependent manner and not only on the reduction of the
mathematical equations. In addition, some numerical differences are introduced
as described below.

The suitability of the presented time–scale decomposition method is demon-
strated by applying it to the analysis of the PO reaction system. We show that
it is not only highly interesting to follow the complexity reduction in time and
see how subsystems couple and decouple in the course of an oscillation, but we
further show that for nonlinear systems the decoupling of the system strongly
depends on the specific dynamics displayed at a specific time of the simulation.
Thus, time–scales decouple differently while the system is displaying relaxation
oscillations compared to regular oscillations. We show that therefore both as-
pects of complexity reduction, the improvement of computational speed and the
dissection into subsystems have to be discussed in the context of a specific dy-
namic behavior. These results underline the need for time–dependent complexity
reduction methods for the use in systems biology.

2 Methodology

In the following we will describe how mathematical transformations are used to
reduce the number of equations necessary to describe the system at any point in
time. This formalism is then used to analyze if and how the biochemical network
may be dissected into subnetworks in order to achieve a real decomposition of
the system.

In the context of a deterministic, homogeneous modeling framework, the state
of a biochemical reaction network is represented by the time-dependent state
vector c(t) of reacting species concentrations ci, (i = 1, . . . , n). The dynamics of
the system is determined by a set of n ordinary differential equations (ODEs)
together with an initial state c0.

dc(t)
dt

= f(c(t), k) = Nv(c(t), k), c(t = 0) = c0 (1)
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The stoichiometric matrix N contains the information about the structure of the
reaction network. The coefficient Nij , e.g., indicates the participation of species
Xi in reaction rj . The kinetics of the individual reactions is described by the
reaction rate vector v(c(t), k), where k is a parameter vector containing reaction
rate constants etc.

Due to the existence of mass conservation relationships the set of ODEs
often exhibits linear dependencies. These linear dependencies can be detected
and removed in a systematic, automated way by inspection of the stoichiometric
matrix (stoichiometric network analysis) [25, 26]. Each conservation relation can
be used to reduce the dimension of the ODE system by one unit. In the following,
the ODE system is always assumed to be in its reduced, linearly independent
form.

Although the representation of reaction rates dc(t)/dt in terms of contribu-
tions from individual reactions in Equation 1 is very intuitive, it is not appro-
priate for an analysis of the dynamic capabilities of the reaction system from a
time–scale point of view. For the latter purpose, a different representation has
to be chosen. In order to probe the time–scales inherent in the dynamics of the
reaction network, the response of the system to a perturbation at some reference
state cr is analyzed. As a starting point of this analysis a linearization with
respect to the state vector cr is performed and the nonlinear system dynamics
is replaced by a linear approximation in a neighborhood of cr using first-order
Taylor expansion.

dc(t)
dt

= f(c(t), k) ≈ f(cr, k) + Jcr
(c(t) − cr), Jcr

=
∂f(cr)

∂c
(2)

Here, Jcr
denotes the Jacobian matrix evaluated at reference state cr.

Using this linear approximation of the local dynamics of the system at state
cr the typically strongly coupled system of ODEs can be partitioned by an
appropriate transformation of the representation. In the conceptually simplest
case, assuming J to be diagonalizable, the eigenvector basis E of the real, non-
symmetric Jacobian matrix is used to transform the ODE system.

J · E = E · Λ, x = E−1 · c (3)

Here Λ represents the diagonal matrix of real or complex eigenvalues λi of J .
The components of the transformed state vector x are called modes. Due to the
fact that Λ is a diagonal matrix, the transformed ODE system is fully decoupled.

dx(t)
dt

= Λx(t) (4)

Solving the decoupled ODE system yields the time evolution of the individual
modes xi.

xi(t) = xi,0e
λit, τi =

1
|�(λi)| (5)
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According to Equation 5 each mode evolves on a characteristic time–scale τi;
i.e. the real parts �(λi) of the eigenvalues of J determine the time–scale of the
processes taking place locally in the reaction system. The modes xi may be
classified according to their qualitative behavior:

�(λi) < 0 → relaxing mode (exp. decay)
�(λi) = 0 → constant mode
�(λi) > 0 → exploding mode (exp. increase)
�(λi) �= 0 → oscillating mode

The transformed representation of the system dynamics in terms of modes
xi instead of concentration variables ci provides a systematic and straightfor-
ward basis for the time–scale analysis and decomposition of the reaction network
(modal analysis)[25]. Neglecting those modes that are considered to be suffi-
ciently relaxed on the time–scale τ of interest results in a reduced slow, active
state space spanned by the eigenvectors of J with �(λi) ≥ 0 and those with
�(λi) < 0 and 1/|�(λi)| ≥ τ .

So far, the discussion is based on a local analysis of the system dynamics
at some reference point cr in phase space only. For linear systems the Jacobian
matrix is constant, i.e. it does not depend on the concentration vector c. In this
specific situation, the above basis transformation and time–scale analysis are
valid over the full dynamic range of the system. However, biochemical reaction
networks are generally highly nonlinear in nature. Therefore, the structure of the
eigenvalue spectrum of J may strongly depend on the position of the reference
point cr in phase space. As a consequence, the specific partitioning of the state
space into slow/fast subspaces obtained at reference point cr has to be considered
as a local property of the system. In order to obtain a meaningful characterization
of the overall dynamics of the nonlinear system the above basis transformation
has to be applied repeatedly when propagating on a trajectory in phase space.

One additional problem which has to be considered for (bio)chemical reaction
systems of realistic size is that the Jacobian matrix exhibits close-lying or even
quasi-degenerate eigenvalues. In this situation the full decomposition of the ODE
system using the basis of eigenvectors of J is often ill-conditioned [29]. However,
in such cases a full decomposition of the system is not necessary and even not
reasonable, because the modes associated with eigenvalues of similar size also
contribute to the systems dynamics on a similar time–scale. Such modes may be
grouped together without losing a significant amount of information.

An alternative approach, that allows for the stable partitioning of the dy-
namic system into a slow, active, and a fast, relaxed, subspace has been in-
troduced by Maas and Pope [15]. For our investigation of the time–scale de-
composition in biochemical reaction networks we have adapted a variant of the
Maas/Pope decomposition scheme as presented by Deuflhard and Heroth [27].
This adapted partitioning scheme will be presented in the following.

In contrast to the basis transformation resulting in a full diagonalization of
the Jacobian matrix, this decomposition scheme is based on a similarity trans-
formation that transforms J into a matrix with block structure representing the
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partitioning of the full system into dynamically decoupled subspaces. This task
is accomplished by a sequence of matrix transformations.

In the first step, an orthogonal similarity transformation is applied to the
Jacobian matrix J . The resulting matrix S has real Schur form, i.e. it is a block
upper triangular matrix [28]. In the real Schur matrix S the eigenvalues of J are
obtained as diagonal entries Sii (i = 1, . . . , m). These may be either (1×1)-blocks
(real eigenvalues) or (2 × 2)-blocks (complex conjugate pair of eigenvalues).

QT · J · Q = S =

⎛
⎜⎜⎜⎝

S11 S12 · · · S1m

0 S22 · · · S2m
...

...
. . .

...
0 0 · · · Smm

⎞
⎟⎟⎟⎠ =

(
Sslow Scoup

0 Sfast

)
(6)

In S the eigenvalues have been reordered by a sequence of Givens rotations [28]
in such that |�(λ1)| ≤ . . . ≤ |�(λn)|. The entries of S are grouped together
into diagonal blocks Sslow and Sfast both of which are upper-quasi-triangular
submatrices. QT , Q is the orthogonal basis of Schur vectors.

For a given partitioning, Sslow/Sfast with dimension of the slow subspace
r = nslow, the non–zero entries of the coupling matrix Scoup can be eliminated
in a second step by solving the Sylvester equation [28]

Sslow · Zr − Zr · Sfast = −Scoup (7)

The solution of the Sylvester equation provides the transformation matrices
T−1

r , T r

T−1
r =

(
1 −

(
0 Zr

0 0

))
· QT , T r = Q ·

(
1 +

(
0 Zr

0 0

))
(8)

which are then used to perform a non-orthogonal similarity transformation on
J . The resulting matrix S̃ has the desired block structure with fully decoupled
slow/fast submatrices S̃slow and S̃fast.

T−1
r · J · T r = S̃ =

(
S̃slow 0

0 S̃fast

)
(9)

Finally, the application of T−1
r on the state vector c and reaction rate vector

f results in a decoupled representation of the system dynamics.

x =
(

xslow
xfast

)
= T−1

r · c, g =
(

gslow
gfast

)
= T−1

r · f (10)

The partitioning of the reaction system into slow/fast contributions is related to
a singular perturbation description of the ODE system in which

dxslow

dt
= gslow(xslow, xfast)

ε · dxfast

dt
= gfast(xslow, xfast) (11)

Here, ε = τr+1 is a singular perturbation parameter.
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Assuming εdxfast/dt = 0 (ε = 0 corresponds to infinitely fast time scales)
it follows gfast = 0 and the fast modes of the reaction system are fully relaxed.
The corresponding slow subspace spanned by the first nslow rows of T−1

r defines
the so–called intrinsic low-dimensional manifold (ILDM) at the reference point
cr of the decomposition. The dynamics of the system on the slow time–scale
takes place on the ILDM. The relaxed fast components xfast— in general lin-
ear combinations of contributions from reactive species— can be interpreted as
generalization of the concept of reactive intermediates that have to be identified
when applying the quasi–steady state approximation (QSSA).

However, in practice the fast modes are not fully relaxed (0 < ε � 1), i.e.
gfast �= 0 and therefore an error would result from neglecting these dynam-
ics completely. In order to determine a suitable partitioning of the modes into
slow/fast components, this error has to be determined and the partitioning has
to be chosen such that the error does not exceed a user-specified tolerance.

For this purpose, we adapted an error-criterion established by Deuflhard and
Heroth [27]. Here, the error when propagating the separated slow modes starting
from a point c = (xslow, xfast)T which results from a calculation with gfast �= 0
compared to the propagation of the same slow modes starting from the corre-
sponding point c̃ = (xslow, xfast,0)T with gfast = 0 is determined. This latter
point called consistent initial value is situated on the ILDM defined by gfast = 0
with fixed slow modes. It can be computed from (xslow, xfast)T by applying a
simplified Newton method which relaxes the point to the ILDM. A criterion for
the error in the integration of the slow modes generated by the (only approxi-
mately correct) assumption that the fast modes are relaxed (gfast = 0) can be
obtained according to [27]

τr+1|gslow(xslow, xfast) − gslow(xslow, xfast,0)| ≤ tol, (12)

where τr+1 is the time–scale of the fastest slow mode and tol a user specified
error tolerance.

We evaluate Equation 12 using an iterative procedure in which the number of
active slow modes r = nslow, determining the partitioning of the state space, is
decreased until the user-defined tolerance tol is reached or the Newton iteration
fails to converge. In that case the number of active modes has to be increased
again by one.

In order to be suitable for the task of analyzing highly nonlinear biochemical
reaction systems, the time–scale decomposition scheme has to be coupled to an
appropriate integration routine which performs the time propagation between
the decomposition steps, i.e. the overall procedure consists of an alternating se-
quence of decomposition and integration steps. In this sequence the information
obtained in the partitioning of the last point on the trajectory, e.g. the num-
ber of active modes, can be used as starting point for the partitioning at the
actual point. For the purpose of probing the time–scale decomposition along
the phase space trajectory of the highly nonlinear PO reaction system, we used
the numerical stiff integrator LIMEX with adaptive control of step-size [30] to
perform the time propagation of the full ODE system between successive decom-
position steps. The discretization of LIMEX is based on a linearly implicit Euler
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method combined with extrapolation. The reordered Schur decomposition and
the evaluation of the Sylvester equation were performed using LAPACK library
routines [31].

The above described time–scale decomposition procedure results in a separa-
tion of the modes in slow, active and fast, relaxed modes. This partitioning allows
the automated reduction of the dynamical system representation to the subspace
of slow modes only. Accordingly, the system dynamics of the full reaction system
comprising n ODEs is reduced to a differential–algebraic equation (DAE) sys-
tem consisting of nslow ODEs and n − nslow algebraic equations. In addition to
reducing the number of ODEs necessary to describe the systems dynamics with
sufficient accuracy, this process also results in ODEs with a relatively small span
of time–scales. This means that the stiffness of the equation system is strongly
decreased resulting in larger integration step-sizes and an additional speed–up
of the simulation.

As discussed so far, time–scale decomposition results in a reduced represen-
tation of the system dynamics reflected in a reduced number of ODEs describing
the time–evolution of the active modes. However, since each active mode of the
reduced system presentation corresponds to a linear combination of species / con-
centration variables (see Equation 10), this kind of complexity reduction only
offers a potential computational advantage. In order to also gain insight into the
composition and interplay of subsystems, we have to evaluate the contribution
of each concentration variable to the set of active modes. For this purpose we an-
alyze the transformation matrix T−1

r , the matrix element T−1
r,ij determining the

contribution of concentration variable cj to mode xi. Because we do not carry
out a full partitioning of modes in our approach, but only separate the set of ac-
tive, slow modes from the relaxed fast modes, it makes sense to analyze the sum
of contributions of a selected concentration variable cj to the whole set of active
modes. Thus, it is possible to determine which variable(s) are mainly responsible
for a certain dynamic behavior at a specific point in time. In the specific case
that a subset of species / concentration variables does not contribute to the set
of active modes, the time–scale decomposition of the system dynamics results in
a dissection of the reaction network itself. Of course, this network decomposition
may sensitively depend on the dynamic regime of the reaction system, i.e. it may
change in the course of the simulation.

3 Application and Results

In order to probe our adapted ILDM method, we computed and analyzed the
time–scale decomposition in the PO reaction system displaying different kinds of
dynamic behavior. A simple time–scale decomposition of very simplified models
of the PO reaction has been studied before, however not in a time–dependent
way [33]. The reaction mechanism of the PO reaction, the oxidation of NAD(P)H
catalyzed by peroxidase consists of a number of elementary reaction steps [10].
These steps are well characterized and kinetic parameters are known for most of
these steps and for several different peroxidases [10, 11, 34]. Therefore, it is possi-
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Table 1. Detailed model of the peroxidase–oxidase reaction coupled to the activa-
tion of an enzyme Enz (a Per3+ and Per2+ indicate iron(III) and iron(II) peroxidase
respectively. coI, coII and coIII indicate the enzyme intermediates compound I, com-
pound II and compound III. b In M−1 s−1. c In M . d In s−1. e The value of [O2]eq is
1.2 × 10−5 M . f The amount of Enzinact is assumed to be large compared to Enzact

and therefore considered constant)

reactiona rate expression constant
(1) NADH + O2 + H+ −→ NAD+ + H2O2 k1[NADH][O2] 3.0 b

(2) H2O2 + Per3+ −→ coI k2[H2O2][Per3+] 1.8 × 107 b

(3) coI + NADH −→ coII + NAD· k3[coI][NADH] 4.0 × 105 b

(4) coII + NADH −→ Per3+ + NAD· k4[coII][NADH] 2.6 × 105 b

(5) NAD· + O2 −→ NAD+ + O−
2 k5[NAD·][O2] 2.0 × 107 b

(6) O−
2 + Per3+ −→ coIII k6[O−

2 ][Per3+] 1.7 × 106 b

(7) 2O−
2 + 2H+ −→ H2O2 + O2 k7[O−

2 ]2 2.0 × 107 b

(8) coIII + NAD· −→ coI + NAD+ k8[coIII][NAD·] 11.0 × 107 b

(9) 2NAD· −→ NAD2 k9[NAD·]2 5.6 × 107 b

(10) Per3+ + NAD· −→ Per2+ + NAD+ k10[Per3+][NAD·] 1.8 × 106 b

(11) Per2+ + O2 −→ coIII k11[Per2+][O2] 1.0 × 105 b

(12) −→ NADH k12 variable

(13) O2(gas) −→ O2(liquid) k13[O2]eq 4.4 × 10−3d,e

(−13) O2(liquid) −→ O2(gas) k−13[O2] 4.4 × 10−3 d

(14) Enzinact + O−
2 −→ Enzact

k14[O−
2 ]5

(K5
f
+[O−

2 ]5)
0.005 b (k14)

0.4 cf (Kf )
(15) Enzact −→ Enzinact k15[Enzact] 1.6 d

ble to model the reaction using a detailed description of the reaction mechanism
as displayed in Table 1 [34]. The rate expressions for each reaction are listed as
well as the kinetic parameters used in this study. For the full and realistic system
no complexity reduction method has been applied so far.

In addition to analyzing the PO reaction, we coupled the activation of an
enzyme to the concentration of superoxide radicals in order to gain a simple
case study for the dynamic coupling of different subsystems. Superoxide radicals
are known to play the role of second messengers in the cell [35, 36]. The binding
characteristics of these radicals to their target molecules is not yet know. Since
many messenger molecules (e.g. calcium [37]) bind cooperatively to their respec-
tive targets, we assumed very general kinetics taking a potential cooperativity
and a simple linear deactivation step into account (see Table 1).

Using these reaction steps to model the whole system leads to a set of ordinary
differential equations as described in [34] plus the equation for the coupled en-
zyme activity. A stoichiometric network analysis of the reaction system detects
one conservation relation, namely the total number of peroxidase distributed
over the five different active species coI, coII, coIII, Per2+ and Per3+. This find-
ing, together with the fact that the species NAD(P)2 and NAD(P)+ are only
produced and not consumed in the PO reaction system, reduces the dimension
of the state space from 13 to 10.
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Fig. 1. Simulated time series of selected species concentrations of the PO reac-
tion system model as specified in Table 1. For the chosen NAD(P)H inflow rate of
k12 = 0.082[μM/s] the systems dynamics is characterized by sustained large amplitude
relaxation oscillations. The initial concentrations of O2 and Per3+ were 12.0 and 1.5
μM, respectively; all other initial concentrations were zero

Varying the rate of NAD(P)H inflow (k12) into the open system leads to
different kinds of nonlinear behavior which mimics the experimental observa-
tions very well [10]. We explicitly studied the behavior at k12 = 0.082, 0.129
and 0.132[μM/s] corresponding to a dynamics characterized by high-amplitude
relaxation oscillations, small amplitude regular oscillations and steady state be-
havior (see Figure 1-3). In the case of k12 = 0.129[μM/s] (Figure 2) the system
displays transient relaxation oscillations first before it settles into regular sus-
tained oscillations. We chose this specific situation as main focus of our analysis
because it offers the possibility to observe qualitatively differing behavior in
complexity reduction on a single run.

Studying the activity of the enzyme Enz coupled to the PO reaction system,
we observe that it is only activated in a pulse-like fashion when the system dis-
plays large amplitude relaxation oscillations whereas it remains constant (within
error-tolerance) during regular small amplitude oscillations with the chosen pa-
rameters (see Figure 2). Once again, we want to underline that the equation
for the enzyme activation does not correspond to one particular enzyme, but
rather represents some general properties occurring frequently in biochemical
systems and serves as a very simple, but characteristic prototype case in our
investigation.
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Fig. 2. Simulated time series of selected species concentrations of the PO reac-
tion system model as specified in Table 1. For the chosen NAD(P)H inflow rate of
k12 = 0.129[μM/s] the systems undergoes a transient phase characterized by large am-
plitude relaxation oscillations, followed by a dynamics regime showing sustained small
amplitude regular oscillations (starting at ≈ 3000s). Interestingly, the active form of
the enzyme Enzyme, driven by the periodic activation from Superoxide (O−

2 ) in the
transient large amplitude phase is dynamically switched off in the regular oscillation
regime. The initial concentrations of O2 and Per3+ were 12.0 and 1.5 μM, respectively;
all other initial concentrations were zero

The results of the complexity reduction analysis of this reaction system with
NAD(P)H inflow k12 = 0.129[μM/s] are shown in Figure 4. The dynamic sys-
tem represented by a set of 10 ODEs has been analyzed with our adapted ILDM
method while propagating along the phase space trajectory obtained by inte-
grating the full ODE system (see Figure 2) starting from the initial state t = 0s
up to t = 4500s. The user-specified error tolerance has been set to tol = 1.0e−4.

As can be seen in the lower panel, the original ODE system of dimension
10 is representable to a very good approximation by a transformed, reduced
system consisting of maximally five to six active modes while displaying large
amplitude relaxation oscillations. Within each oscillation period, the maximum
number of active modes is required in the short relaxation phase, i.e. in the time
interval, where the concentrations of the reacting species change most rapidly.
In the intervals between the rapid relaxation phases the active state space could
be further reduced to three to four active modes.
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Fig. 3. Simulated time series of selected species concentrations of the PO reac-
tion system model as specified in Table 1. For the chosen NAD(P)H inflow rate of
k12 = 0.132[μM/s] the systems shows a transient phase characterized by large am-
plitude relaxation oscillations, followed by a transient regime showing damped small
amplitude regular oscillations before approaching a steady state. Like in the case of
sustained small amplitude regular oscillations, the activation of the enzyme Enzyme is
dynamically switched off. The initial concentrations of O2 and Per3+ were 12.0 and 1.5
μM, respectively; all other initial concentrations were zero

In contrast to the situation observed in the relaxation oscillation regime, the
system can be represented by an even lower average number of active modes while
propagating in the regime of sustained regular oscillations starting at t ≈ 3200s.
The actual number of modes is oscillating between five and three. Again, the
maximum number of active modes is required in the time interval where the
concentrations of the reaction species change most rapidly.

In order to further rationalize the observed pattern of active modes we also
inspected the time-dependent eigenvalue spectrum of the Jacobian matrix along
the phase space trajectory. The real part of the eigenvalues �(λi) is displayed in
the two center panels of Figure 4. Very much like the pattern of active modes,
the overall structure of the eigenvalue spectrum nicely reflects the observed os-
cillatory structure of the time series of the reacting species. By far the most
eye-catching feature of the eigenvalue spectrum is the qualitatively differing
structure when changing from the transient relaxation oscillation phase to the
regular oscillation regime. The eigenvalues �(λi) of the Jacobian matrix are
directly related to the characteristic time–scales τi = 1/|�(λi)| of the modes.
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Fig. 4. Time–scale decomposition of the PO reaction system with an NAD(P)H inflow
rate of k12 = 0.129[μM/s]. The analysis is performed along the phase space trajectory
indicated by the time series of species O2 (- - -) and O−

2 (—) in the upper panel (see also
Figure 2). The two center panels show the structure of the time–dependent eigenvalue
spectrum of the Jacobian matrix along the trajectory. Plotted are the real parts �(λi)
of the eigenvalues. The lower panel shows the number of active, ‘slow’ modes resulting
from the time–scale decomposition of the phase space along the trajectory. Both the
eigenvalue structure and the time dependent pattern in the number of active modes
clearly reflect the qualitative change in the systems dynamics in the transition from
transient relaxation oscillations to sustained regular oscillations

Therefore, the structural difference in the eigenvalue spectrum is the main cause
of the change in behavior observed in the number of active modes. In the tran-
sient phase of relaxation oscillations the structure of the eigenvalue spectrum
exhibits a rather complex pattern. Repeatedly, relatively strong positive eigen-
values occur whenever the relaxation phase of the oscillations approaches. This
is the main destabilizing factor in the system which indicates the phase of the
oscillations where dramatical changes occur. The occurrence of distinct positive
eigenvalues may be interpreted in terms of a mode causing a periodic strong
perturbation that drives the whole system into an oscillatory pattern. Each per-
turbation, appearing on a relatively short time–scale, is followed by a relaxation
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Fig. 5. Time–scale decomposition of the PO reaction system with an NAD(P)H inflow
rate of k12 = 0.132[μM/s]. The analysis is performed in the interval of the trajectory
where the transient damped regular oscillatory behavior approaches the steady state.
This is indicated by the time series of species O−

2 in the upper panel (see also Figure 3).
The two center panels show the structure of the time–dependent eigenvalue spectrum
of the Jacobian matrix along the trajectory. Plotted are the real parts �(λi) of the
eigenvalues. The lower panel shows the number of active, ‘slow’ modes resulting from
the time–scale decomposition of the phase space along the trajectory

phase in which all eigenvalues are negative. The latter relaxation takes place on
a comparatively long time–scale.

The situation in the regular oscillation regime is much simpler. The eigenval-
ues in the spectrum of the Jacobian matrix, and therefore also the characteristic
time–scales observable in the systems dynamics are clustered together in groups,
the individual groups being separated by large gaps. In sharp contrast to the
relaxation oscillation regime, in which the appearance of positive eigenvalues
(exploding modes) causes distinct mode-mixing effects, the clustered eigenvalue
structure is only slightly influenced by the periodic appearance of relatively small
positive eigenvalues. Therefore, the number of active modes changes to a much
fewer extent as compared to the situation in the relaxation oscillation regime.
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Fig. 6. Analysis of the active modes with respect to the contributions of the species
present in the PO reaction system. The results of the modal analysis are shown at
two characteristic points on the phase space trajectory for a NAD(P)H inflow rate of
k12 = 0.129[μM/s]. On the left panel the species contributions to the active modes
are shown at an arbitrary peak position in the relaxation oscillation regime; the right
panel shows the result of the same analysis performed at a peak position of the regular
oscillation regime. An eye-catching difference in the distribution is observed for the
Enzyme contribution which is the largest contribution at the chosen peak position
in the relaxation regime, but is approximately zero in the regular oscillation regime.
This observation indicates the dynamic decoupling of the Enzyme subsystem in the
regular oscillation regime. In both cases the contributions from species being part of
the PO reaction system are of comparable size, indicating strong dynamic coupling of
the reaction processes in that system

In order to complete our investigation of the PO reaction system, we have
applied the time–scale decomposition scheme to a dynamic regime of damped
regular oscillations approaching the steady state. This dynamic regime is ob-
served when slightly increasing the NAD(P)H inflow from k12 = 0.129 to k12 =
0.132[μM/s] (see Figure 3). The results of this time–scale decomposition analysis
are shown in Figure 5. Obviously, the eigenvalue structure of this regime is much
simpler compared to the relaxation oscillations. The number of active modes
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starts with a pattern oscillating between one and five modes which gradually
decrease in number until the steady state with zero active modes is sufficiently
approached. To that end, the periodic appearance of positive eigenvalues has
vanished and the Jacobian matrix is approximately constant.

So far we have restricted the discussion on the analysis of the reduced number
of active modes resulting from the time–scale decomposition. This analysis offers
a potential computational advantage, namely the decrease in computation time
when integrating the system with reduced active state space. However, the other
important goal of complexity reduction, namely the dissection of the biochemical
system into different subsystems which can be treated separately cannot be
achieved by a systematic reduction of the number of active modes only. Since
every concentration variable can, in principle, contribute more or less to every
active mode, the time–scale decomposition scheme has to be extended by an
analysis that allows the automated study of the contributions of each variable
to the active modes. As already discussed, this information is obtained in a
straightforward way by analyzing the entries of the transformation matrix T−1

r

(see Equation 10). According to this equation, the elements of T−1
r correspond to

coefficients in an active mode vector representation as a linear combination of real
species variables (basis vectors). Therefore, they can be interpreted as weighting
factors measuring the relative contribution of each species to the active modes.
Figure 6 shows the results of the analysis of the active modes in the system with a
NAD(P)H inflow rate of k12 = 0.129[μM/s] in terms of contributions from all the
species concentrations. We compare the results of this analysis being performed
at two characteristic, selected states of the phase space trajectory, namely at
a peak position in the relaxation oscillation regime as well as in the regular
oscillation regime. Looking at this contributions, it is easy to see that in both
cases, the contributions from all species being part of the original PO system
are of comparable size. Therefore, no separation of subsystems in terms of time–
scales is possible within the PO system itself; the system has to be considered
to be strongly coupled on all time–scales of observation. However, the analysis
allows to observe that compound III, an enzyme intermediate together with
H2O2 contributes most to relaxation oscillation at this crucial point in time.
This is in accordance to experimental investigations which suggested these two
species to be the most important ones for the oscillations of the PO reaction [38].
Interestingly, during regular oscillation ferrous peroxidase seems also to play a
more dominant role.

Inspection of the full studied system, i.e. taking the enzyme coupled to the
PO reaction system into account, results in an obvious difference between the
two dynamic regimes. The variable representing the enzyme activity contributes
significantly to the active modes at the chosen peak position in the relaxation
oscillation regime, but has approximately zero contribution to the active modes
in the regular oscillation regime. This observation obviously indicates the strong
dynamic coupling of the enzyme activity to the PO reaction system in the case
of relaxation oscillations whereas it fully decouples from the PO system in the
case of regular oscillations. This holds for the full regular oscillation regime and
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makes a dissection of the biochemical network possible. Thus, this dissection
into subsystems depends strongly on the displayed dynamics. In this case study,
the PO reaction system therefore acts as a dynamic switch for the reactions
catalyzed by the enzyme activated by O−

2 .

4 Discussion

We have introduced an adapted ILDM method for the use of time–dependent
complexity reduction in the context of systems biology. We applied the method
to the PO reaction coupled to a simple enzyme activity while the system dis-
played different kinds of behavior (relaxation oscillations, regular oscillations,
steady state). We studied both the mathematical complexity reduction in terms
of reduced numbers of equations and the possibility to dissect the biochem-
ical network in dependence on the systems dynamics. We observed that the
number of active modes depends crucially on this dynamics, small amplitude
regular oscillations having a lower complexity (lower number of active modes)
than relaxation oscillations. In addition, the minimum number of active modes
necessary to represent the systems dynamics with a given accuracy also changes
during each phase of the oscillations. This result emphasizes the need to pursue
complexity reduction in a time–dependent manner.

Since the computation of the number of active modes is done repeatedly,
i.e. at each integration step, it is computationally expensive. Therefore, a real
computational advantage in terms of decreased simulation time is only to be ex-
pected when the algorithm is further improved and applied to high-dimensional
systems which allow a substantial dimension reduction using this method. More-
over, the computational advantage will multiply, once spatio-temporal systems
are simulated compared to homogeneous, temporal ones. In this case, time–scale
decomposition determined with this method and the subsequent simplification
of the system is applicable to each spatial element that is calculated. The com-
putation of the whole systems dynamics, involving ’spatial’ (transport) processes
as well as ’local’ chemical reactions can be drastically simplified by reducing the
representation of the chemical processes in a first step using time–scale decom-
position methods, and then using the reduced system as starting point for the
simulation of the full system.

An important additional aspect of our methodology is an increased under-
standing of the dynamic interaction of subsystems. This is achieved by analyzing
the contribution of each biochemical species (variable) to the active modes in
the system. We used a small and rather simple case study corresponding to the
PO reaction this time coupled to a single enzyme activity. Of course, this ac-
tivity would influence other variables in a real system, the particular enzyme
activity modeled here only representing the interface between the two systems.
We observed that variables contribute differently to different dynamic behavior
verifying the importance of the enzyme intermediate compound III during os-
cillations. However, all species within the PO reaction are too strongly coupled
to be able to fully dissect this system. Nevertheless, the subsystem consisting
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of the coupled enzyme can be detached depending on the type of oscillatory
behavior. We conclude that the possibility to dissect a system depends crucially
on the respective dynamics. Of course, this result could have been achieved by
simulating the time series and a simple visual inspection showing that in one
case, oscillations in the enzyme activity are observed whereas in the other case,
the enzyme activity remains constant. However, this case study is an extremely
simple case and chosen to point out the major aspects presented in this article.
Examining much larger systems in the future, we will need to rely on automated
methods providing this kind of analysis.

Our results show that both aims pursued by complexity reduction algorithms,
namely computational advantages as well as dissection of systems into subsystem
can only be achieved by taking into account the dynamic nature of biochemical
processes. Obviously, an analysis of the steady state of a system will not be
sufficient to allow a global decoupling of subsystems which holds for all states of
the system.
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