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Abstract A modification of the classical Ekman model of oceanic wind-driven currents
including the Stokes drift and stratification effects is discussed. The modification is formu-
lated as an application of turbulence mechanics accounting for the curvature effect of velocity
fluctuation streamlines. It is shown that similar to the Stokes drift effect, the presence of a
density jump layer (pycnocline) decreases the veering of the flow velocity vector at the sur-
face from the direction of the wind stress. It is shown also that in the pycnocline the decrease
of the norm of the velocity vector as well as its rotation with depth is smaller than in the
regions adjacent to the pycnocline. If the Stokes drift and stratification effects are neglected,
the model reduces to the classical Ekman solution with the coefficient of the turbulent shear
viscosity replaced by an effective viscosity coefficient. The vertical distributions of velocity
predicted by the modified model are compared with the velocity data measured in the Drake
Passage and within the Long-Term Upper Ocean Study (LOTUS) in the North Atlantic.

Keywords Turbulence · Modeling · Ekman layer · Stratification · Stokes drift

1 Introduction

Based on the observed vertical structure of the velocity of wind-driven currents in the upper
ocean, it has been argued that the observations deviate in several aspects from the structure
predicted by the classical Ekman model [7]—a large component of the shear in the down-
wind direction near the surface turns less than predicted by the Ekman solution [33], the angle
between the surface wind stress and the surface drift velocity vectors differs (in general) from
π/4 [5], the velocity shear and stresses seem non-collinear [24], and the velocity rotational
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depth scale estimated from the observed data is claimed to exceed its e-folding depth scale by
2–3 times [2,3,24,29–31,33,37,38]. Several attempts such as utilizing a depth-varying and
complex eddy viscosity [23–25] and accounting for the buoyancy and the Stokes drift effects
[4,27,28,39] have been undertaken to adjust the Ekman model to the observed differences.
The present paper follows the same aim, though applying another theoretical background.
Instead of utilizing the theoretical conceptions traditional in the field, this paper proceeds from
turbulence mechanics modified to account for the effects of the curvature of the velocity fluc-
tuation streamlines [10–12], hereafter referred to as the Theory of Rotationally Anisotropic
Turbulence or the RAT theory (Sect. 2). The applications of the RAT theory [10–22,35,36]
have so far proven this theory to be a tool complementing the variety of tools for discussing
oceanographic and other related problems. Concerning the Ekman layer it is shown that the
application of the RAT theory embraces the Stokes drift and stratification effects in one single
model. The suggested single model explains the observed deviations from the predictions of
the classical Ekman model indicated above.

For a negligible stratification effect, the outcome of the suggested model is compared
with data observed in the Drake Passage adopted from [24] and if the stratification effect is
assumed present (as judged from the type of the measured velocity profiles)—with the data
observed within the Long-Term Upper Ocean Study (LOTUS) in the North Atlantic [33].
It is shown that even if the rotational depth scale of velocity can exceed its e-folding depth
scale within the suggested model, for the data in [24] these scales appear rather close to each
other.

2 Theoretical background

Let us consider the quantity

� = 〈
v′ × k

〉
(1)

with the dimension of angular velocity of rotation (Fig. 1). In Eq. 1 v′ = v − u, where v is
the vector of actual velocity and u = 〈v〉, the angular brackets denote statistical averaging
and

k = ∂e
∂s

,

where e = v′/v′ (v′ = ∣∣v′∣∣) and s is the length of the v′ streamline, denotes the vector of
curvature of the velocity fluctuation streamline passing a flow point. The quantity � defined
by Eq. 1 determines the average angular velocity of rotation of medium particles at each flow
field point due to the fluctuating constituent of the flow velocity with respect to the random
curvature centre of the velocity fluctuation streamlines passing this point. Let us note that the
quantity � characterizes the fluctuating constituent of the flow field and therefore represents
a flow field characteristic independent from the average velocity.

It is natural to couple the definition in Eq. 1 with the definition of the dynamic character-
istic of motion

M = 〈
v′ × R

〉 = 〈
R2v′ × k

〉
, (2)

where R = k/k2(k = |k| = R−1, R = |R|) is the curvature radius of velocity fluctuation
streamline. The quantity M has the sense of the average moment of momentum (or angular
momentum) of medium particles at a flow field point due to the fluctuating constituent of the
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Fig. 1 Representation of the
fluctuating constituent of the
velocity at a flow field point:
v′—velocity fluctuation and
k—vector of curvature of the
velocity fluctuation streamline

flow field with respect to the random curvature centre of the velocity fluctuation streamlines
passing this point.

Let us notice that the total turbulence energy K = 1
2

〈
v′2〉 of the turbulent flow character-

ized by � and M can be represented as

K = K � + K 0, (3)

where

K � = 1

2
M · �,

and

K 0 =
〈(

v′ × k
)′ · (

v′ × R
)′〉

in which the prime denotes fluctuation of the quantity;
(
v′ × k

)′ = v′×k−�, and
(
v′ × R

)′ =
v′ × R − M. It is evident that for non-vanishing M the turbulence energy constituent K � in
Eq. 3 does not vanish and therefore the rotation in the medium characterized by � contributes
(in general) to the dynamical and energetical processes in the medium. This inference relates
the turbulent media characterized by the non-vanishing � and M to the class of micropolar
fluids [1,6,8,9].

According to the theory of micropolar fluids [8], grounded on the general principles of
continuum mechanics [32], the description of the situation constituted by Eqs. 1–3 should be
subject to the conservation laws of momentum, moment of momentum, or angular momentum
and energy K 0. The RAT theory [12], which is applied in the following for a modification of
the classical Ekman layer model, just derives the required equations from the Navier–Stokes
equation and solves the imminent closure problem in agreement with the general closure
technique applied in the context of the theory of micropolar fluids [1,6,8,9]. For the applied
closure and for � ≡ M ≡ 0 the RAT theory reduces to the conventional setup of the average
turbulence description. Due to the latter property the RAT theory does not reject, but instead
complements the conventional methods of the average turbulence description.

3 Model setup

3.1 The flow situation

Consider the flow in the upper layer of ocean in the Northern Hemisphere formed under
a constant wind stress τ . The model is set up for the right-hand Cartesian coordinate sys-
tem (x, y, z) rotating with the angular velocity ω0 = (0, 0,− f/2), where f is the Coriolis
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parameter, with the coordinate z directed downward, z = 0 at the ocean surface, and the
coordinate x directed in the downwind direction specifying the wind stress as τ = (−τ, 0, 0)

with τ > 0.
Similar to the setup of the classical Ekman model we shall assume for u that

u = [
ux (z), uy(0), 0

]
, (4)

while

u → 0 (5)

for z→∞, complemented within the discussed model by the following assumptions

� = [
Ωx (z),Ωy(0), 0

]
, (6)

and

�→0 (7)

for z→∞.

3.2 Model equations

For the flow situation specified above, the equations of the RAT theory coincide with the
equations applied in [12] for the description of turbulent flows in plain channels with two
exceptions—there is an additional Coriolis term in the equation of balance of the momentum
and the body moment term ρm(ρ = 103 kg m−3 is the medium characteristic density; m is
the density of the body moment acting on the medium due to the medium stratification) in the
equation of balance of the moment of momentum. With these two exceptions the governing
equations in the Boussinesq approximation can be written as

−∇ p + μ
∂2

∂z2 u + 1

2
∇ × σ + 2ρu × ω0 = 0, (8)

ϑ J
∂2

∂z2 � − σ + 4κ� + ρm = 0 (9)

where

σ = 4γ (� − ω), (10)

and the stratification effect is accounted for through [20]

ρm = −k1g
∂ρ∗

∂z
�, (11)

in which ρ∗ denotes the actual density of the medium. In Eqs. 8–11: ω = 1/2∇ × u
is the vorticity, p is the pressure, and J is the “effective moment of inertia” determined
by J = |M| / |�|. The coefficients μ, γ, κ, ϑ (with the dimension ML−1T−1) have the
following physical sense: μ is the coefficient of turbulent shear viscosity (quantifying the
supply of energy K 0 from the energy of average flow); γ is the coefficient of rotational
viscosity (coupling the average flow velocity and the medium internal rotation characterized
by �); κ is the coefficient quantifying the energy transfer from the orientated turbulence
constituent to the non-orientated turbulence constituent due to the cascading process; ϑ is
the coefficient of diffusion of the moment of momentum M; k1 (with the dimension of L2T)
is the proportionality coefficient quantifying the moment acting on the �–field due to the
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stratification and g = |g|, where g is the acceleration due to gravity. All medium coefficients
in Eqs. 8–11, as well as J are treated as constants. Let us note that for γ = 0 Eq. 8 reduces to
the respective equation of the classical Ekman model while for ρm = 0 and for � equalized
with the vorticity Eq. 9 reduces to the equation reflecting the Stokes drift effect. The boundary
conditions for Eqs. 8 and 9 at z = 0 are specified as

μ
∂ux

∂z
− 1

2
σy = −τ. μ

∂uy

∂z
+ 1

2
σx = 0, � = �(0), (12)

in the following we assume that the turbulent motion receives energy through an energy
cascade excluding the supply of energy K 0 immediately from the average flow. In terms
of the coefficients μ and γ this assumption is formalized by neglecting the shear viscosity
effects in respect to the rotational viscosity effect, i.e., by neglecting the terms in (8) and (12)
proportional to the shear viscosity μ.

3.3 Analysis of the model

3.3.1 Introductory notes

(a) With the simplifying assumption adopted, Eqs. 8, 9 and 12 can be rewritten in the form

−∇̃ p + γ ũ′′ + 2iγ Ω̃ ′ + iρ f ũ = 0, (13)

ϑ JΩ̃ ′′ − 4(γ + κ)(1 + S)Ω̃ + 2iγ ũ′ = 0, (14)

γ ũ′(0) + 2iγ Ω̃(0) = −τ and Ω̃ = Ω̃(0), (15)

where (and hereafter) i is the imaginary unit, ũ = ux + iuy, Ω̃ = Ωx + iΩy,

S = k1gρ∗′/4 (γ + κ), ∇̃ = ∂/∂x + i∂/∂y and the prime denotes differentiation
with respect to z.

(b) For ∇̃ p = 0 from Eq. 13 we have

∞∫

0

ũdz = iτ

ρ f
, (16)

which coincides with the integral volume transport of the classical Ekman model.

3.3.2 Unstratified flow

Let us firstly consider the compliance of the flow situation described by Eqs. 13 and 14 for S =
0 with the Stokes drift effect [26,27]. For monochromatic surface waves with amplitude a,
wavenumber kw and wave phase speed c the Stokes drift effect results in a flow velocity
determined by

ũ = US exp

(
− z

�w

)
, (17)

where �w = 1/2kw and US = c (akw)2. It is easy to make sure that Eq. 17 agrees with Eq. 14
for � = (ϑ J/4κ)1/2 = �w, and Ω̃ ≡ ω̃ = 1/2i ũ′. Based on this model outcome we shall
adopt for the value of the depth scale � in the open ocean the estimate � = �w = 5 m [27].

Consider now the case with ϑ J = 0, then from Eq. 14 we have

Ω̃ = iγ

2 (γ + κ)
ũ′ (18)

123



106 Environ Fluid Mech (2012) 12:101–113

and Eq. 13 reduces to μef ũ′′ + iρ f ũ = 0, which coincides with the equation of the classical
Ekman model with the shear viscosity replaced by μef = γ κ/(γ + κ) and with the Ekman
depth scale specified as �E = (2μef/ρ f )1/2. In the following we will make use of this result
assigning �E the value of about 30 m typical for the Ekman depth scale at midlatitudes in the
open ocean [34].

Assuming henceforth ∇̃ p = 0, if the stratification effects are neglected (S = 0), the
solution of Eqs. 13 and 14 is

ũ = C̃1 exp(λ1z) + C̃2 exp(λ2z), (19)

Ω̃ = i

2

(
1 − μef

γ

) [
λ1

1 − (μef/γ ) �2λ2
1

C̃1 exp(λ1z) + λ2

1 − (μef/γ ) �2λ2
2

C̃2 exp(λ2z)

]

,

(20)

where λ1 and λ2 are the roots of the biquadratic equation

λ4 −
(

1

�2 − 2i
μef

γ

1

�2
E

)

λ2 − 2i
1

�2�2
E

= 0 (21)

with negative real parts, while C̃1 and C̃2 are complex integration constants. Using the
equality

(
1 − μef

γ
�2λ2

2

) (
1 − μef

γ
�2λ2

1

)
= 1 − μef

γ
,

which holds due to the properties of the solution of Eq. 21, Eq. 20 can be written also as

Ω̃ = i

2

[(
1 − μef

γ
�2λ2

2

)
λ1C̃1exp (λ1z) +

(
1 − μef

γ
�2λ2

1

)
λ2C̃2exp (λ2z)

]
. (22)

In the following we assume that C̃1 and C̃2 in Eqs. 19 and 22 are determined for Ω̃ collinear
at z = 0 with the vorticity ω̃ = 1/2i ũ′. This assumption is formalized by Ω̃ (0) = k2ω̃ (0),
where k2 is a scalar coefficient quantifying the boundary condition for Ω̃ at z = 0. The
assumption results in

ũ′ (0) = − 1

γ (1 − k2)
τ and Ω̃ (0) = − i

2

k2

γ (1 − k2)
τ (23)

determining C̃1 and C̃2 as

C̃1 = τ

λ1μe f

[
1 − 1

1 − k2

μe f

γ
�2λ2

1

]
1

(
λ2

1 − λ2
2

)
�2

(24)

and

C̃2 = τ

λ2μe f

[
−1 + 1

1 − k2

μe f

γ
�2λ2

2

]
1

(
λ2

1 − λ2
2

)
�2

. (25)

For the estimates for � and �E adopted above (determining also μef ) the derived solution
appears depending on two parameters—on k2 (quantifying the boundary condition for Ω̃)

and on the coefficient of turbulence rotational viscosity γ (or μef/γ ).
In the following, a sequence of two approximations of the solution for the velocity in

Eq. 19 are considered. The approximations correspond to the characteristic values of � and
�E adopted above.
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The first approximation assumes that (�/�E)4 << 1. Under this assumption the terms of
order (�/�E)4 are neglected. Hence, the Taylor series exp

(
iα�2/�2

E

) = ∑∞
n=1

(
iα�2/�2

E

)n
/n!

becomes equal, in this approximation, to 1 + iα�2/�2
E(α is an arbitrary real quantity of order

1). This approximation determines λ1 and λ2:

λ2
1 = 1

�2 exp

(

2i

(
1 − μe f

γ

)
�2

�2
E

)

, λ2
2 = −2i

1

�2
E

(26)

giving

λ1 = −1

�
exp

(

i

(
1 − μe f

γ

)
�2

�2
E

)

, λ2 = i − 1

�E
. (27)

Equation 27 specifies the first and the second terms in Eq. 19 as the Stokes and the Ekman
velocity constituents, respectively,

ũS = ũS(0)exp (λ1z), (28)

ũE = ũE (0) exp (λ2z) , (29)

where (and henceforth) C̃1 and C̃2 are denoted by ũS (0) and ũE (0). As applied to Eqs. 24
and 25 the approximation results in

ũS(0) = τ�

μe f (1 − k2)

[

k2 − 1 + μe f

γ
exp

(

2i

(
1 − μe f

γ

)
�2

�2
E

)]

exp

(

i

(
−5 + 3

μe f

γ

)
�2

�2
E

)

(30)

and

ũE(0)= τ�E√
2μe f (1 − k2)

[

−k2+ exp

(

2i
μe f

γ

�2

�2
E

)]

exp

(

i

[
π

4
+

(
−4 + 2

μe f

γ

)
�2

�2
E

])

.

(31)

The second approximation assumes the ratio �2/�2
E to be sufficiently small that

exp
(
iα�2/�2

E

)
may be approximated by 1. Under this assumption, the expression for λ1

in Eq. 27 is replaced by λ1 = −1/� and Eqs. 30 and 31 would be replaced by

ũS(0) = τ�

μe f (1 − k2)

[
k2 − 1 + μe f

γ

]
(32)

and

ũE (0) = − τ

λ2μe f
= τ�E√

2μe f
exp(iπ/4). (33)

The derived solutions follow from Eqs. 13–15 set up for the Northern Hemisphere. These
solutions hold also for the Southern Hemisphere if the y-axis is reversed to the opposite
direction, forming a left-hand coordinate system (x, y, z).

We start the analysis of the derived solution from the second approximation. This approxi-
mation specifies k2 as having the values from the interval

[
1 − μef/γ , 1

]
. For k2 = 1−μef/γ

we have ũS = 0 and ũ = ũE, i.e., the solution reduces to the classical Ekman solution, and
for k2 = 1 we have ũE = 0 (equivalent to neglecting the Coriolis term in Eq. 13) and ũ = ũS,
corresponding to the Stokes drift situation. The latter case assumes τ = 0 with the inde-
terminate ratio τ/(1 − k2) equalized to ũ′ (0). The approximation agrees with the following
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observed deviations from the solution of the classical Ekman model: that the veering of the
surface drift velocity from the direction of the wind stress is less than π/4, the increase of
the downwind velocity component and of the downwind velocity shear next to the surface as
well as the non-collinearity of the stress and velocity shear in the Ekman layer (despite their
assumed collinearity at the surface z = 0).

While in the second approximation the Ekman and Stokes velocity constituents are inde-
pendent, within the first approximation these constituents appear interdependent. The inter-
dependence shows in the dependence of ũS (0) and ũE (0) on both scale parameters, �

and �E. In particular, due to the interdependence of the Ekman and Stokes velocity con-
stituents, the angle between the velocity constituent ũE (0) and the wind direction differs
from π/4 and the direction of the Stokes velocity constituent at z = 0 deviates from the
wind direction. The latter deviation is accompanied by a small turn of the Stokes velocity
constituent with depth in the direction opposite to the direction of rotation of the Ekman
constituent reflected by the negative imaginary component of λ1.

Within both approximations the velocity rotational scale and its e-folding scale coincide
below the “Stokes layer” leaving the description of the situations with different rotational
and e-folding scales to the general solution not restricted by the smallness of � in respect
to �E. The latter situation may occur, for example, at high latitudes in the presence of relatively
long surface waves.

Figure 2 compares the data from [24] (circles) measured in Drake Passage at depths from
z=26 m to z=90 m in conditions of (presumably) negligible stratification with the Ekman
constituent of the velocity calculated from Eq. 29 for Re ũE − U , where U is the estimated

Fig. 2 The depth-dependence of the velocity components Re ũE − U , where U = −0.25cm s−1 is the
estimated reference velocity, and Im ũE (solid curves), calculated from Eq. 29 for �E =40 m, Re ũE (0) =
2.276cm s−1 and Im ũE (0) = 1.865cm s−1 compared with the respective velocity data (circles) adopted
from [24]
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velocity at an expected reference level (hereafter the reference velocity), and Im ũE (curves).
The calculations are performed for the e-folding scale of the Ekman layer estimated from the
data and for ũE (0) calculated by Eq. 29 from the velocity value observed at z =26.15 m. The
comparison confirms the applicability of the classical Ekman solution in the depth interval
covered by the data in [24]. The only difference from the classical Ekman solution is the
angle between the Ekman constituent of the flow velocity at z = 0 and the wind stress, since
it is smaller than π/4. The smaller angle is explained within the model by the Stokes drift
effect.

As much as the classical Ekman model matches the observed velocity distribution in
Fig. 2, the velocity rotation and e-folding scales coincide and the turbulent stresses are col-
linear with the velocity shear in the data-covered depth interval. This implication evidently
disagrees with the statements in [24] drawn from the same data set about the velocity rota-
tion scale exceeding its e-folding scale by 2–3 times and about the non-collinearity of the
velocity shear and turbulent stresses. Similar statements have been repeated also in sev-
eral other papers cited in the Introduction. The disagreement follows from the misleading
extension of the notion “e-folding scale” in [24] to the data set from which the velocity
at a presumable reference level is subtracted. Due to the subtraction, the resultant velocity
vanishes at the reference level and the e-folding scale of velocity remains always smaller
than the reference level depth. The non-collinearity, on the other hand, follows from ignor-
ing the effect of non-zero velocity shear at the reference level if calculating turbulent
stresses.

3.3.3 Stratified flow

The discussion in the previous subsection will now be complemented with the inclusion of
the stratification effect (S �= 0) presented by the term 4 (γ + κ) SΩ̃ in Eq. 14. In Fig. 3 the
vertical profiles of the velocity and the respective velocity spirals calculated from Eqs. 13–
15 for ∇̃ p = 0, for the non-stratified ocean, S ≡ 0, (dashed curves) and for the stratified
ocean, S = 5, in the depth interval 0.67 < ζ = z/�E < 1.67 with S = 0 elsewhere, (solid
curves) are compared. The calculations are performed for the characteristic thicknesses of
the Stokes and the Ekman layers adopted above (� = 5 m, �E = 30 m), for μef/γ = 0.1 and
k2 = 0.9. Let us draw attention to the following effects. Firstly, similar to the Stokes drift
effect, the presence of a density jump layer (pycnocline) decreases the veering of the flow
velocity vector at z = 0 from the direction of the wind stress. Secondly, in the pycnocline
the decrease of the norm of the velocity vector as well as its rotation with depth is smaller
than in the regions adjacent to the pycnocline, or, in other words, the pycnocline layer moves
more like a slab, compared to the flow in adjacent depth intervals. The latter effects are
reflected also in the velocity spiral (Fig. 3b), where the velocity vectors in the pycnocline at
the depths 0.67 < ζ < 1.67 prove closer to each other than the vectors from the immediate
neighbouring depths.

The calculated vertical profiles of ux −U (solid curves), where U is the reference velocity,
and of uy (dashed curves) calculated from Eqs. 13–15 are compared in Fig. 4 with the data
from [33] collected in summer and winter conditions. The comparison confirms the effects
outlined above of stratification of the velocity profiles. The reference velocities U , the ocean
stratification conditions (specified within the model by S) and the boundary conditions at
z = 0 are not reported in [33], therefore the comparison just shows the applicability of
the model situation shown in Fig. 3a to the actual observed velocity profiles different in
summer and winter. In Fig. 4a (winter) U = 0.48 cm s−1 and S = 1 in the depth interval
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Fig. 3 (a) Vertical profiles of
velocity ξx = ux /|ũ (0)|,
ξy = uy/|ũ (0)| with
stratification (solid curves) and
with no stratification (dashed
curves) dependent on the depth
ζ = z/�E and (b) velocity spiral
(curve with dots over every
interval of 0.333 of the depth ζ )

corresponding to the velocity
profile in stratified medium in the
panel (a) with arrows
highlighting velocities at three
indicated depths. All calculations
are performed for � and ω

aligned at z = 0, for
μef/γ =0.1, �E = 30 m,

� = 5 m, k2 = 0.9, S = 0 for the
non-stratified medium and S = 5
in the depth interval
0.67 < ζ < 1.67 for the stratified
medium

23 m< z <50 m with S << 1 elsewhere; in Fig. 4b (summer) U = 0.6 cm s−1 and S = 1 in
the depth interval 10 m< z <13 m with S << 1 elsewhere. The values of S applied in the
calculation reflect the typical stratification conditions in the region in the summer and winter
situations. In all calculations the ratio τ/μef was kept equal to 0.05 s−1 entailing the propor-
tionality of μef as well as of the squared Ekman length scale �2

E to the wind stress τ . The
rest of the “model parameters” are specified as follows: in Fig. 4a μef/γ =0.09, �E =27 m,
� =5 m and k2 = 0.1; in Fig. 4b μef/γ =0.024, �E =10 m, � =1 m and k2 = 0.4. The
values of μef/γ, �E and � in winter are larger and k2 is smaller than their values in summer
indicating that τ is larger and the ocean surface is rougher in winter conditions.
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Fig. 4 Calculated vertical
profiles of ux − U and uy for
stratified ocean (curves), together
with the data adopted from [33]
on downwind (circles) and
crosswind (squares) velocity
components in winter (a) and
summer (b) situations.
Calculations are performed for
τ/μef = 0.05 s−1 and in (a) for
U = 0.6 cm s−1, μef/γ =0.09,

�E = 10 m, � = 1 m, k2 = 0.1,

S = 1 in the interval
23 m< z <50 m and S << 1
elsewhere; in (b) U =
0.48 cm s−1, μef/γ =0.024,

�E = 10 m, � = 1 m, k2 = 0.4,

S = 1 in the interval
10 m< z <13 m and S << 1
elsewhere

4 Conclusion

The suggested model is set up to complement the classical Ekman layer model by including
the Stokes drift and stratification effects. The model proceeds from the theory of Rota-
tionally Anisotropic Turbulence (RAT) enhancing the methods of turbulence mechanics by
accounting for the effects of the prevailing orientation of large-scale turbulent eddy rotation
receiving its energy immediately from the average flow. The model explains the flow situation
depending (in addition to the boundary and stratification conditions) on the characteristic
depth of the Stokes drift layer, on the Ekman depth scale (which can be estimated as equal
to the velocity rotation scale determined from the velocity data below the “Stokes layer”)
and on one physical coefficient specified as the coefficient of turbulence rotational viscosity.
According to the suggested model the additional effects incorporated in the model are: (a)
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an increase in the downwind component of the velocity shear at the surface, (b) a decrease in
the angle between the surface wind stress and the surface drift velocity, (c) that the velocity
shear and stresses in the “Stokes layer” are non-collinear with the wind stress. The suggested
model includes also the case where the velocity rotational depth scale exceeds its e-folding
depth scale, however it disagrees with the reasoning and the extent of the difference of the
scales declared in [24].
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