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Abstract We investigate a geometrically exact generalized continua of micromor-
phic type in the sense of Eringen for the phenomenological description of metallic
foams. The two-field problem for the macrodeformation ϕ and the “affine microde-
formation” P ∈ GL+(3) in the quasistatic, conservative elastic case is investigated
in a variational form. The elastic stress-strain relation is taken for simplicity as
physically linear. Depending on material constants different mathematical existence
theorems in Sobolev-spaces are recalled for the resulting nonlinear boundary value
problems. These results include existence results obtained by the first author for the
micro-incompressible case P ∈ SL(3) and the micropolar case P ∈ SO(3). In order to
mathematically treat external loads for large deformations a new condition, called
bounded external work, has to be included, overcoming the conditional coercivity of
the formulation. The observed possible lack of coercivity is related to fracture of the
substructure of the metallic foam. We identify the relevant effective material para-
meters by comparison with the linear micromorphic model and its classical response
for large scale samples. We corroborate the performance of the micromorphic model
by presenting numerical calculations based on a linearized version of the finite-strain
model and comparing the predictions to experimental results showing a marked
size effect.
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1 Introduction

1.1 Theoretical Aspects

In this article the modelling and mathematical analysis of geometrically exact gen-
eralized continua of micromorphic type is investigated. General continuum models
involving independent rotations have been introduced by the Cosserat brothers [16]
at the beginning of the last century. Their development has been rediscovered in
the early sixties [1, 22, 24, 36, 38, 48, 53, 65, 69, 74–76]. Since then, the Cosserat
concept has been generalized in various directions, for an overview of these so called
microcontinuum theories we refer to [6–8, 10, 11, 21, 23, 40, 50].

The micromorphic model includes in a natural way size effects, i.e., small samples
behave comparatively stiffer than large samples. These effects have recently received
much attention in conjunction with nano-devices and cellular structures.

The mathematical analysis of micromorphic solids for elastostatics in the
infinitesimal-strain case is given in [19, 33, 34, 41, 43] for linear micropolar models
and in [44–46] for linear microstretch models. The major difficulty of the mathe-
matical treatment in the finite-strain static case is related to the geometrically exact
formulation of the theory and the appearance of nonlinear manifolds necessary for
the description of the microstructure. In addition, coercivity turns out to be a delicate
problem related to the possible fracture of the material. No existence theorems for
finite micromorphic models had been known until [57]. The simpler, geometrically
exact nonlinear micropolar case has been dealt with in [60]. An extension to large
strain plasticity may be found in [28, 30, 61].

This contribution is organized as follows: first, in Section 1.2 we motivate the
application of the micromorphic model for the continuum-mechanical response
of metallic foams. After that, we review (Section 2) the basic concepts of the
geometrically exact elastic micromorphic theories with affine microstructure in a
variational context, i.e., we formulate the quasistatic conservative case as a mini-
mization problem. For simplicity we restrict attention to a macroscopically physically
linear stress-strain relation. Then we provide the corresponding balance equations
and highlight the influence of material parameters on the ellipticity of the force
balance equation.

In Section 3 the complete problem statement of the geometrically exact elastic
micromorphic case in a variational context is gathered. Since the two-field variational
problem is only conditionally coercive we need to introduce a modification for the
applied loads as given in [57, 58] in order to ensure first that the functional to
be minimized is bounded below and second that the curvature contribution can
be controlled. This modification of the loads, herein called principle of “bounded
external work,” expresses nothing but the physical fact that by moving a solid
arbitrarily in a “real” force field only a finite amount of work can be gained. Such
a condition is, however, unnecessary in either classical non-polar nonlinear/linear
elasticity or the linear micromorphic model.
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With this preparation, existence of minimizers in suitable Sobolev-spaces can be
obtained using the direct methods of the calculus of variations and an extended
Korn’s first inequality. The investigation of the general micromorphic case with
affine microstructure allows one to appreciate the peculiarities of the previously
investigated micro-incompressible and micropolar subcases more closely. The special
role played by the Cosserat couple modulus μc ≥ 0 is already seen in the infinitesimal
strain case, where the two fields of deformation and microdeformation do not
decouple even if μc = 0. This should be compared with the decoupling in linear
Cosserat models for μc = 0 and the physical inadmissibility of μc > 0 for continuous
bodies in the Cosserat framework [62].

Then we switch to the infinitesimal micromorphic elastic solid (Section 4) for
which we give the variational formulation (Section 4.1) and the corresponding
balance equations (Section 4.2). Based on the linearized kinematics we determine
effective material parameters in Section 4.3 and provide an identification with the
well known representation of Mindlin in Section 4.4, ensuring automatically positive
definiteness of the local strain energy.

In the final Section 5 we compute the response of an infinite micromorphic
continuum with a hole and identify it with the response of a cellular solid exhibiting
strong size effects. We compare the response of a traditional Cosserat model and
μc > 0 with the response of the linear micromorphic model and μc = 0. The relevant
notation is introduced in the Appendix. In the Appendix we also supply the coer-
civity inequality, the derivation of the nonlinear balance equations and an analytical
solution for a simplified linear micromorphic boundary value problem.

1.2 Application: Continuum Modelling of Metallic Foams

Cellular solids are strongly heterogeneous materials made of two highly contrasted
constituents, namely air with the highest volume fraction and at least one ceramic,
polymeric or metallic phase [35]. Their properties are extremely difficult to predict
from the knowledge of the hard phase content since they strongly depend on the
morphology of the hard skeleton. The complex microstructure of a nickel foam can
be seen in Fig. 1 showing the distribution of open cells of characteristic size close
to 500 μm. The edges of the faces of the polyhedral cells are nickel struts with a
triangular cross-section.

The need for homogeneous effective models for the design of components and
structures made of foam arises, because considering all individual cells remains
computationally prohibitive. In principle, such homogeneous equivalent models can
be obtained by means of classical homogenization techniques which are, however,
difficult to extend to the extreme morphologies of cellular solids [39]. Alternatively,
material parameters of phenomenological models can be identified from overall
tensile curves or/and strain field measurements [3]. The substitution of such highly
porous materials by a continuous homogeneous medium with an effective density,
though necessary for practical applications, is rather challenging since many impor-
tant features of the material behaviour can be lost. In particular, size effects are
observed in metallic foams as a result of the interaction between the size of the
considered structure and that of the microstructure, namely the cell size [5, 25, 64].
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Fig. 1 Scanning Electron Micrograph of a nickel foam for battery applications. The picture taken
from [18] shows the distribution of cells and struts with characteristic sizes 500 μm and 70 μm,
respectively

As a result, a continuum model should be able to reproduce the main macroscopic
size effects induced by the existence of a finite cell size, without considering each
individual cell. This is possible only if the phenomenological continuum model con-
tains some constitutive intrinsic length scale(s) (here denoted by Lc). In particular,
models based on classical Cauchy continua fail to reproduce the size effects presented
in this work. The Cosserat continuum is a possible candidate for modelling cellular
solids as recognized at several places [67, 77]. However, it will turn out to be quite
inadequate when dealing with the size effect addressed in this work. The reason
lies in the fact that cellular solids are highly compressible materials so that size
effects do not merely arise from gradients of rotations (Cosserat approach) but
also from microextension gradients [18]. That is why the attention is drawn here to
the micromorphic continuum which is based on a full microdeformation tensor as
additional degree of freedom. Another approach based on strain gradient plasticity
was proposed in [9] for the modelling of size effects in sandwich beams containing
aluminium foam.

We consider metallic foams mainly for their relatively high elastic stiffness in
comparison to available polymer foams [35]. Even though the tensile curves of
aluminium and nickel foams exhibit a clear elastic domain, the present work can
only be seen as a prelude to more realistic nonlinear analyses within the framework
of (finite-strain) elastoplasticity. Indeed, the size effect modeled in this work is not
linked to a specific local constitutive behaviour of the metal struts. It can be rather
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seen as a benchmark test for the continuum medium chosen for representing a
cellular solid.

We insist on the following prerequisite of the model for successful applications
to structural computations. Let us consider a foam plate with a machined cylindrical
hole of radius R and subject it to tensile loading, the load being applied far from the
hole. If the cell size l � R, a simple classical continuum model is able to correctly
predict the strain field around the hole. This has been demonstrated even in the
nonlinear regime based on the comparison between Finite Element simulations and
strain field measurements in a nickel foam [3]. Stress and strain concentrations occur
at the equator where the crack leading to final fracture initiates.

However, when the hole size becomes close to the cell size, it is clear that such
effect should not be noticeable any longer since the hole becomes nothing but a
pore similar to the other ones. The transition from large hole behaviour up to the
disappearance of any overall stress concentration effect in the case of holes with
R ∼ l/2, was studied experimentally by strain field measurements in [18].

A continuum model should be able to account for such a size effect if it is to
be trusted for computing components containing holes and notches. We show in
the computational part of the present work that the (infinitesimal) micromorphic
model is able to reproduce at least qualitatively this size effect, even in the elastic
regime, by solving numerically the problem of a cylindrical hole in an infinite matrix.
Furthermore, the numerical analysis provides a way of identifying the involved
characteristic length.

2 A Finite-strain Elastic Micromorphic Model with Affine Microstructure

Let us now motivate a finite-strain micromorphic approach.1 For our development
we choose a strictly Lagrangean description. We first introduce an independent
kinematical field of microdeformations P ∈ GL+(3) together with its right polar
decomposition

P = Rp U p = polar(P) U p = Rp e
α p
3 U p , det[P] = eα p ,

U p = U p

det[U p]1/3 ∈ SL(3) , P = P

det[P]1/3 ∈ SL(3) , (2.1)

with Rp ∈ SO(3) and U p ∈ PSym(3) ∩ SL(3). The microdeformations P are meant to
describe the substructure of the material which can rotate, stretch, shear and shrink.
We refer to Rp as microrotations.

The micromorphic theory we deal with can formally be obtained by introducing
the multiplicative decomposition of the macroscopic deformation gradient F into

1Following Eringen [21, p.13] we distinguish the general micromorphic case: P ∈ GL+(3) = R
+ ·

SL(3) with nine additional degrees of freedom (dof); the micro-incompressible micromorphic case:
P ∈ SL(3) with eight dof; the microstretch case: P ∈ R

+ · SO(3) with four dof and the micropolar
case: P ∈ SO(3) with only three additional dof.
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independent microdeformation P and the micromorphic, nonsymmetric right stretch
tensor U (first Cosserat deformation tensor) with

F = P U , U = P−1 F , U ∈ GL+(3), (2.2)

leading altogether to a micro-compressible, micromorphic formulation.2

The relative strain measure U = P−1 F has been proposed by Eringen [21]. It
measures how much the microdeformation departs from the macrodeformation.
There are two advantages in this choice. U is invariant with respect to Euclidean
transformations which makes it a formidable tool for developing constitutive equa-
tions. Secondly, its time derivative is

U̇ = P−1(Ḟ F−1 − ṖP−1)F .

This relative deformation rate, i.e., the difference between micro and macro defor-
mation rate, is the driving force for internal microstresses. The motivation for this
decomposition F = P U is indeed similar to that for multiplicative plasticity, insofar
as a unique decomposition with an Euclidean invariant plastic deformation tensor is
looked for. If the microdeformation is attributed to a plastic internal mechanism (like
plastic slip in crystals) and if the associated additional stress tensors are neglected, the
theory leads indeed to the multiplicative theory of plasticity by Mandel [54].

The notion micromorphic is nevertheless prone to misunderstandings: the mi-
crodeformation P must be considered as a macroscopic (average) quantity as the
deformation gradient and the resulting model is still phenomenological. However,
geometrical features of the real substructure to be modelled determine the choice
of geometric manifolds for P. Since the substructure of the metallic foam can in
principle be crushed, the choice P ∈ GL+(3) is mandatory.

In the quasistatic case, the micromorphic theory is derived from a two-field
variational principle by postulating the following “action euclidienne” [16, p.156]
I for the finite macroscopic deformation ϕ : [0, T] × � �→ R

3 and the independent
microdeformation P : [0, T] × � �→ GL+(3):

I(ϕ, P) =
∫

�

W(F, P, Dx P) − � f (ϕ) − �M(P) dV

−
∫

�S

�N(ϕ) dS −
∫

�C

�Mc(P) dS �→ min . w.r.t. (ϕ, P),

P|� = Pd , ϕ|� = gd(t) . (2.3)

The elastic stored energy density W depends on the macroscopic deformation
gradient F as usual and, in addition, on the microdeformation P together with its
first order space derivatives, represented through the third order tensor Dx P. Here
� ⊂ R

3 is a domain with boundary ∂� and � ⊂ ∂� is that part of the boundary where
Dirichlet conditions g, Pd for displacements and microdeformations, respectively,
can be prescribed while �S ⊂ ∂� is a part of the boundary, where traction boundary

2The strain measure U which is induced by this definition corresponds to CT
KL presented in (1.5.11)1

of [21, p.15].
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conditions in the form of the potential of applied surface forces �N are given, with
� ∩ �S = ∅. The potential of external applied volume force is � f and �M takes on
the role of the potential of applied external volume couples.3 In addition, �C ⊂ ∂�

is the part of the boundary, where the potential of applied surface couples �Mc are
applied, with � ∩ �C = ∅. On the free boundary ∂� \ {� ∪ �S ∪ �C}, corresponding
natural boundary conditions for ϕ and P apply; these are obtained automatically in
the variational process.

Variation of the action I with respect to ϕ yields the traditional equation for
balance of linear momentum and variation of I with respect to P yields the additional
balance of moment of momentum.

The standard conclusion from frame-indifference (here: invariance of the free
energy under superposed rigid body motions not merely observer-invariance of the
model [4, 55, 73]: ∀ Q ∈ SO(3) : W(F, P, Dx P) = W(QF, QP, Dx[QP]) leads to the

reduced representation of the energy (specify Q = R
T
p ):

W(F, P, Dx P) = W(R
T
p F, R

T
p P, R

T
p Dx P) = W(U pU, U p, R

T
p Dx P)

= W�(U, U p,Kp, ∇α p) , (2.4)

where for P = Rp U p ∈ SL(3) we set

Kp := R
T
p Dx P =

(
R

T
p∇(P.e1), R

T
p∇(P.e2), R

T
p∇(P.e3)

)
∈ M

3×3 × M
3×3 × M

3×3 ,

(2.5)

which coincides with one specific representation4 of the third order right microp-
olar curvature tensor (or torsion-curvature tensor, wryness tensor, second Cosserat
deformation tensor, bending-twist tensor, etc.), if P ∈ SO(3). For a geometrically
exact (macroscopically isotropic) theory we assume in the following an additive split
of the total free energy density into micromorphic relative local stretch (macro-
scopic), stretch of the substructure (microscopic) and micromorphic curvature part
according to

W� = Wmp(U)︸ ︷︷ ︸
relative macroscopic energy

+ Wfoam(U p, α p)︸ ︷︷ ︸
microscopic local energy

+ Wcurv(Kp, ∇α p)︸ ︷︷ ︸
microscopic interaction energy

, (2.6)

since a possible coupling between U and Kp for centrosymmetric bodies can be ruled
out [63, p.14].

3Appearing in a non-mechanical context, e.g., as influence of a magnetic field on the polarization of
a substructure of the bulk.
4Note that Ki

p = Rp
T∇(P.ei) �∈ so(3). Another representation of Kp is given by Kp :=

(
R

T
p ∂x P,

R
T
p ∂y P, R

T
p ∂z P

)
∈ T(3). Since ∂x(R

T
p P) = 0 for P = Rp ∈ SO(3), it follows that Kp ∈ so(3) ×

so(3) × so(3) in this case. It is therefore possible to base all considerations of curvature in the

micropolar case on a more compact expression K̂p :=
(

axl(R
T
p ∂x Rp)| axl(R

T
p ∂y Rp)| axl(R

T
p ∂z Rp)

)
∈

M
3×3. This is the traditional micropolar approach, see, e.g., [27, 37, 68]. For us it is, however, not

possible to use K̂p since we allow P ∈ GL+(3).
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2.1 The Elastic Macroscopic Micromorphic Strain Energy Density

For a macroscopic theory which is relevant mainly for small elastic strain5 we require
that Wmp(U) is a non-negative isotropic quadratic form (leading to a physically linear
problem). This should cover already many cases of physical interest. We assume,
moreover, that the relative macroscopic stretch energy density is normalized so that

Wmp(11) = 0, DU Wmp(U)|U=11
= 0 . (2.7)

For the local energy contribution elastically stored in the cell-structure we assume
the nonlinear expression

Wfoam(U p) = μm
∥∥∥ U p

det[U p](1/3)
−
∥∥∥

2

︸ ︷︷ ︸
isochoric substructure energy

+ λm

4

(
(det[U p] − 1)2 +

(
1

det[U p] − 1

)2
)

︸ ︷︷ ︸
volumetric energy

= μm ‖U p − 11‖2 + λm

4

(
(eα p − 1)2 + (e−α p − 1)2) =: Wfoam(U p, α p) ,

(2.8)

avoiding self-interpenetration in a variational setting, since Wfoam → ∞ as det[P] =
det[U p] → 0 if λm > 0.6 The most general form of Wmp consistent7 with the require-
ment (2.7) is

Wmp(U) = μe ‖ sym(U − 11)‖2 + μc ‖ skew(U − 11)‖2 + λe

2
tr
[
sym(U − 11)

]2
, (2.9)

with material constants μe, μc, λe such that μe, 3λe + 2μe, μc ≥ 0 from non-negativity
[21] of (2.9). It is important to realize that μe, λe are effective elastic constants which
in general do not coincide with the classical Lamé constants μ, λ > 0. Here, we
take the classical Lamé constants to be obtained from standard experiments of
sufficiently large samples of the materials such that length scale effects do not
interfere. The so-called Cosserat couple modulus μc (rotational couple modulus)
remains for the moment unspecified, but we note that μc = 0 is physically possible,

even in the micropolar case, since the micromorphic reaction stress DU Wmp(U) U
T

is not symmetric in general, i.e., the problem does not decouple.8 For comparison,
in [21, p.111] for the infinitesimal micropolar case, the elastic moduli are taken to be
μe = μ + κ

2 , μc = κ
2 , λe = λ, but in this formula μ can neither be regarded as one of

5By this we mean that the part of the deformation which is superposed onto the substructure
deformation has small elastic strains.
6Note that (det[U p] − 1)2 +

(
1

det[U p] − 1
)2 = 2 tr

[
U p − 11

]2 + O(‖U p − 11‖3).

7Mixed products like 〈U − 11, U p − 11〉 and tr
[
U − 11

]
· tr

[
U p − 11

]
are excluded by non-negativity.

8In a linearized isotropic micropolar model, balance of forces and balance of rotational momentum
are independent of each other if μc = 0.
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the Lamé constants.9,10 In [17, 20, 28, 29, 71, 72] the abbreviation μc is used while in
[37] it is μc = α and μc = Gc in [47] for the micropolar theory.

By formal similarity with the classical formulation, we may call μm, λm the micro-
scopic Lamé moduli of the affine substructure, which can in principle be determined
from classical experiments or numerical computation on the microscale, e.g., dealing
with a nickel-foam structure, they are the Lamé-constants of the smallest possible
representative volume element (RVE) in the foam. in Section 4.3 it will be shown
how to obtain consistent values for μe, λe if we know already the microscopic values
μm, λm and the macroscopic constants μ, λ.

2.2 The Nonlinear Elastic Curvature Energy Density of the Metallic Foam

The curvature energy is responsible for the size-dependent resistance of the cell-
structure against local twisting and inhomogeneous volume change. Thus, inhomo-
geneous microstructural rearrangements are penalized. For the curvature term, to be
specific, we assume

Wcurv(Kp, ∇α p) = μ
L1+p

c

12

(
1 + α4 Lq

c ‖Kp‖q)

×
(
α5 ‖ sym Kp‖2 + α6 ‖ skew Kp‖2 + α7 tr

[
Kp

]2
) 1+p

2

+ μ
L1+p

c

12

(
α8‖∇α p‖1+p + α8 Lc ‖∇α p‖2+p) , (2.10)

where Lc > 0 is setting an internal length scale with units of length. It is to be noted
that we have decoupled the curvature as a result of inhomogeneous volume changes
from that due to pure twisting. The values α4 ≥ 0, p > 0 and q ≥ 0 are additional
material constants. The factor 1

12 appears only for convenience and α5 > 0, α6, α7 ≥
0, α8 > 0 should be satisfied as a minimal requirement. We mean tr

[
Kp

]2 = ‖tr
[
Kp

]‖2

by abuse of notation. This choice for Wcurv does not presuppose any knowledge of
the magnitude of the micromorphic curvature in the material and is non-degenerate
in the origin ‖Kp‖ = 0, ‖∇α p‖ = 0.

Some care has to be exerted in the finite-strain regime: Wcurv should preferably be
coercive in the sense that we impose pointwise

∃ c+ > 0 ∃ r > 1 : ∀ Kp ∈ T(3) ∀ξ ∈ R
3 : Wcurv(Kp, ξ) ≥ c+ ‖(Kp, ξ)‖r, (2.11)

9A simple definition of the Lamé constants in (the restricted case of) micropolar elasticity is that
they should coincide with the classical Lamé constants for symmetric situations. Equivalently, they
are obtained by the classical formula μ = E

2(1+ν)
, λ = Eν

(1+ν)(1−2ν)
, where E and ν are uniquely

determined from uniform traction experiments for sufficiently large samples.
10Uniform traction and uniform compression do not activate rotations, hence the classical identifica-
tion of the Lamé constants is achieved independent of μc. Uniform traction alone allows to determine
the Young modulus E and the Poisson ratio ν [14, p.126]. Contrary to [31, p.411], we do not see the
possibility to define a specific “micropolar Young modulus” or “micropolar Poisson ratio.”
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or less demanding

∃ r > 1 : Wcurv(Kp, ξ)

‖(Kp, ξ)‖r
→ ∞ as ‖(Kp, ξ)‖ → ∞ , (2.12)

which implies necessarily α6, α8 > 0 in (2.10). Observe that our formulation of
the micromorphic curvature tensor is mathematically convenient in the sense that

‖Kp‖ = ‖R
T
p Dx P‖ = ‖Dx P‖ provides pointwise control of all first derivatives of P

independent of the values of P itself.11

Note that the presented formulation still includes a finite Cosserat micropolar
model as a special case, if we set P = R ∈ SO(3). In this fashion, we have the
following correspondence of limit problems:

λm → ∞ ⇒ micro-incompressible model: manifold SL(3) ,

μm → ∞ ⇒ microstretch model: manifold R
+ · SO(3) ,

μm, λm → ∞ ⇒ micropolar model: manifold SO(3) ,

μm, λm, μc → ∞ ⇒ higher (second) gradient continua . (2.13)

2.3 The Micromorphic Balance Equations

For the choices we have made, we supply the resulting material form of the highly
nonlinear field equations on the reference configuration (with α4 = 0, p = 1) which
can be obtained after some algebraic manipulations, see Appendix 2 (We have
gathered the influence of the external potentials in �(x, ϕ, P)):

0 = Div
(
S1(F, P) + 2 μc P−T skew(P−1 F)

) + Dϕ�(x, ϕ(x), P)R3 , balance of forces,

0 = skew(U
−1
p DU Wmp(U) U

T
U

T
p ) + skew

(
R

T
p Div

[
Rp DKp Wcurv(Kp, ∇α p)

]
U p

)

+ skew
(

DKp Wcurv(Kp, ∇α p)K
T
p

)
+ skew

(
R

T
p DP�(x, ϕ(x), P)U p

)
M3×3

,

rotational momentum ,

0 = dev sym
(

U
−1
p DU Wmp(U) U

T
U

T
p

)
− dev sym

(
DU p

Wfoam(U p, α p) U
T
p

)

+ dev sym
(

R
T
p Div

[
Rp DKp Wcurv(Kp, ∇α p)

]
U p

)

+ dev sym
(

R
T
p DP�(x, ϕ(x), P)U p

)
, (2.14)

volumetric momentum ,

11This is not true for other possible basic invariant curvature expressions like P
−1

Dx P or P
T

Dx P or
FT Dx P, see Eringen [21, 1.5.4,1.5.11].
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0 = tr
[
U

−1
p DU Wmp(U) U

T
U

T
p

]
− Dα p Wfoam(U p, α p) + Div D∇α p Wcurv(Kp, ∇α p) ,

isochoric momentum (2.15)

where S1 is the first Piola–Kirchhoff stress (for μc = 0) with the functional form

S1(F, P) = P−T [
2 μ sym

(
P−1 F − 11

) + λ tr
[
P−1 F − 11

]
11
]

, (2.16)

similar to [56, (P3)], and DKp Wcurv(Kp) is the material micromorphic moment tensor
(or couple-stress tensor). Note that DRp

Wfoam(U p, α p) = 0, leaving no contribution
of the local foam energy in the rotational momentum equation.

In our subsequent variationally based mathematical development the nonlinear
balance equations will not play a prominent role. They become more important,
however, for our numerical calculations.

Remark 2.1 Observe the chain of symmetry conditions for isochoric macroscopic
relative elastic strain energies Wmp(U):

U ∈ Sym ⇒ DU Wmp(U) ∈ Sym ⇒ DU Wmp(U) U
T ∈ Sym ⇔ S2(F, P) ∈ Sym ,

S2(F, P) := F−1 DF Wmp(P−1 F) ∈ Sym . (2.17)

The reverse implications are in general false.

2.4 The Micromorphic Micro-incompressible Balance Equations

In the special case P = P ∈ SL(3), α p ≡ 0, the balance equations have to incorporate
the nonlinear constraint det[P] ≡ 1. This can be done by suitably restricting the
possible variations of P, see (3.4) and set Wfoam(U p) := Wfoam(U p, 0),

0 = Div
[(

S1(F, P) + 2 μc P
−T

skew(P
−1

F)
)]

+ Dϕ�(x, ϕ(x), P)R3 ,

0 = skew(U
−1
p DU Wmp(U) U

T
U

T
p ) + skew

(
R

T
p Div

[
Rp DKp Wcurv(Kp)

]
U p

)

+ skew
(

DKp Wcurv(Kp)K
T
p

)
+ skew

(
R

T
p DP�(x, ϕ(x), P)U p

)
M3×3

,

0 = dev sym
(

U
−1
p DU Wmp(U) U

T
U

T
p

)
− dev sym

(
DU p

Wfoam(U p) U
T
p

)

+ dev sym
(

R
T
p Div

[
Rp DKp Wcurv(Kp)

]
U p

)
+ dev sym

(
R

T
p DP�(x, ϕ(x),P)U p

)
.

(2.18)
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A similar form of the unconventional12 balance of angular momentum equation has
been given in [6, p.63] for the micropolar case.

2.5 Constitutive Consequences of the Value for the Cosserat Couple Modulus

Looking at (2.9) with μc > 0, we see that the implication of this choice for μc at a
first glance is an innocuous rise in the macroscopic elastic strain energy Wmp(U), if
Rp �= polar(F), but Rp is generically assumed to be independent of the continuum
rotations polar(F). The choice μc > 0 acts like a local “elastic spring” between both
continuum rotations and microrotations.

Let us consider the mathematical implications of μc = 0 and 0 < μc ≤ μ, respec-
tively, in more detail. It is readily verified that for the elasticity tensors (differentiat-
ing the stretch energy density Wmp(U) at fixed P w.r.t. F)

μc >0 :∀ H ∈M
3×3 :D2

F Wmp(P−1 F).(H, H)≥2 μc ‖P−1 H‖2 ≥2μc λmin(P−T P−1) ‖H‖2,

μc =0 :∀ H ∈M
3×3 :D2

F Wmp(P−1 F).(H, H)≥2 μ

∣∣∣∣
∣∣∣∣12 (P−1 H+ HT P−T)

∣∣∣∣
∣∣∣∣
2

. (2.19)

Hence the choice μc > 0 leads to uniform convexity of Wmp(P−1 F) w.r.t. F if
P ∈ L∞(�, GL+(3)) and unconditional elastic stability on the macroscopic level:
regardless of what spatial distribution of microdeformations P(x) is given, the
macroscopic equation of balance of linear momentum would then be uniquely
solvable and this equation is insensitive to any deterioration of the spatial features
of the microstructure as long as P is merely essentially bounded. Uniform convexity
is difficult to accept from a constitutive point of view, since uniform convexity is
impossible for a geometrically exact description in the framework of a classical
macroscopic continuum but clear from the above discussion: the additional elastic
spring between micro- and continuum rotation extremely rigidifies the material
and completely changes the type of the mathematical boundary value problem in
comparison with the classical finite elasticity theory. Fortunately, such a far reaching

12Since we have not transformed the tensor equation into a related vector format, which is usually
preferred in the micropolar case. Following [6], we can identify an external volume couple b c in the

equilibrium vector-format with axl
(

skew
(

R
T
p M

))
. Then b c is a volume couple which is not a dead

load. We note that a term skew
(

DK p Wcurv(Kp) KT
p

)
does not directly appear in derivations based

on K̂p since, e.g., K̂1
p = axl(R

T
p ∂x Rp) and variation along a one-parameter group of rotations yields

δK̂1
p = axl

(
(ARp)T∂x Rp + R

T
p ∂x[ARp]

)
= axl

(
−R

T
p A∂x Rp + R

T
p (∂x A)Rp + R

T
p A∂x Rp

)

= axl
(

R
T
p (∂x A)Rp

)
.

This is not at variance with (2.18)2 since differentiation is carried out differently. Observe that

skew
(

DK p Wcurv(Kp) KT
p

)
= 0 if α5 = α6, α7 = 0, i.e., if couple stresses are proportional to the

curvature tensor.
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unsatisfactory conclusion does not hold for zero Cosserat couple modulus μc = 0, in
which case we have for ξ, η ∈ R

3:

D2
F Wmp(P−1 F).(ξ ⊗ η, ξ ⊗ η) = μ

(‖P−1ξ ⊗ η‖2 + 〈P−1ξ ⊗ η, η ⊗ P−1ξ 〉)

= μ
(

‖P−1ξ ⊗ η‖2 + 〈P−1ξ, η〉2
)

≥ μ ‖P−1ξ ⊗ η‖2,

(2.20)

which shows the physically much more appealing inequality

D2
F Wmp(P−1 F).(ξ ⊗ η, ξ ⊗ η) ≥ μ λmin(P−T P−1) ‖ξ‖2 · ‖η‖2 , (2.21)

expressing nothing but uniform Legendre–Hadamard ellipticity of the acoustic-tensor
with ellipticity constant μ λmin(P−T P−1), where λmin is the smallest eigenvalue of a
positive definite symmetric matrix. As a result we see that for large microstructural
expansion P, the ellipticity constant may deteriorate, i.e., the larger the foam is
extended, the weaker it gets while the compressed metallic foam gets stiffer. The
Legendre-Hadamard condition has the most convincing physical basis [2, p.461]
because it implies the reality of wave speeds and the Baker–Ericksen inequalities
(stress increases with strain, [49, p.19]).13

3 Mathematical Results

3.1 Statement of the Finite Elastic Micromorphic Problem in Variational Form

Let us gather the obtained three-field problem posed in a variational form. The task is
to find a triple (ϕ,P,α p) :�⊂R

3 �→R
3×SL(3) × R of macroscopic deformation ϕ and

independent microdeformation P=e
α p
3 P, minimizing the energy functional I with

I(ϕ,P, α p)=
∫

�

Wmp(P−1∇ϕ)+Wfoam(Up,α p)+Wcurv(R
T
p Dx P, ∇α p)−� f (ϕ)−�M(P) dV

−
∫

�S

�N(ϕ) dS −
∫

�C

�Mc(P) dS �→ min . w.r.t. (ϕ, P, α p), (3.1)

under the constraints

U p = R
T
p P, Rp = polar(P), U = P−1∇ϕ , P = e

α p
3 P , (3.2)

and the Dirichlet boundary conditions

ϕ|� = gd , Rp|� = Rpd, U p|� = U pd ⇒ P|� = RpdU pd , α p|� = α pd . (3.3)

13The preferred value μc = 0 for the macroscopic case can as well be motivated by the following
consideration: since the Green strains can be written as FT F − 11 = (U − 11)T (U − 11) + 2 sym(U −
11) it follows μ

4 ‖FT F − 11‖2 = μ‖ sym U − 11‖2 + O(‖U − 11‖3). Hence μc = 0 provides the correct
first order approximation to a classical St. Venant-Kirchhoff material. With μc = 0 we exclusively
recover the fact of the classical continuum theory that W isotropic implies symmetry of the Biot stress
tensor: DU W(U) ∈ Sym. If we expand R = 11 + A + . . . with A ∈ so(3) and write F = 11 + ∇u, then
the micropolar effects disappear to first order for μc = 0. In this sense, μc = 0 is close to classical
elasticity.
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Here, the constitutive assumptions on the densities are taken to be

Wmp(U) = μe ‖ sym(U − 11)‖2 + μc ‖ skew(U)‖2 + λe

2
tr
[
sym(U − 11)

]2
,

Wfoam(U p, α p) = μm ‖U p − 11‖2 + λm

4

(
(eα p − 1)2 + (e−α p − 1)2) ,

Wcurv(Kp, ∇α p) = μ
L1+p

c

12

(
1 + α4 Lq

c ‖Kp‖q)

×
(
α5 ‖ sym Kp‖2 + α6 ‖ skew Kp‖2 + α7 tr

[
Kp

]2
) 1+p

2

+ μ
L1+p

c

12

(
α8‖∇α p‖1+p + α8 Lc ‖∇α p‖2+p) ,

Kp = R
T
p Dx P =

(
R

T
p∇(P.e1), R

T
p ∇(P.e2), R

T
p ∇(P.e3)

)
, (3.4)

the third order curvature tensor .

The total elastic stored energy W = Wmp + Wfoam + Wcurv depends on the defor-
mation gradient F = ∇ϕ, and the microdeformations P together with their space
derivatives.

The parameters μe, λe > 0 govern the relative elastic deformation, μc ≥ 0 is called
the Cosserat couple modulus, μm, λm > 0 are the Lamé constants of a representative
volume element (RVE) of the substructure and Lc > 0 introduces an internal length
which is characteristic for the material, e.g., related to the cell size of the metallic
foam. The parameters αi, i = 1, .., 8 are dimensionless weighting factors. If not stated
otherwise, we assume that α5 > 0, α6 > 0, α8 > 0, α7 ≥ 0.

A finite Cosserat micropolar theory is included in the formulation (3.1), (3.2), (3.4)
by restricting it to P ∈ SO(3) or setting μm, λm = ∞, formally. Similarly, for μm = ∞
only we recover the micro-stretch formulation with P ∈ R

+ · SO(3) and for λm = ∞
we recover the micro-incompressible formulation case P ∈ SL(3).

3.2 The External Potentials

Traditionally, in the conservative, dead load case one would have

� f (ϕ) = 〈 f, ϕ〉 , �M(P) = 〈M, P〉 , �N(ϕ) = 〈N, ϕ〉 , �Mc(P) = 〈Mc, P〉 ,

(3.5)

for the potentials of applied loads with given functions f ∈ L2(�, R
3), M ∈

L2(�, M
3×3), N ∈ L2(�S, R

3), Mc ∈ L2(�C, M
3×3).

For our treatment, we need to assume, however, that the external potentials
describing the configuration dependent applied loads, are continuous with respect
to the topology of L1(�), L1(�S), L1(�C), respectively, and satisfy in addition the
condition

∃ C+ > 0 ∀ ϕ ∈ L1(�, R
3), P ∈ L1(�, GL+(3)) :∫

�

� f (ϕ) − �M(P) dV,

∫
�S

�N(ϕ) dS,

∫
�C

�Mc(P) dS ≤ C+ . (3.6)
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While continuity is satisfied, e.g., for the dead load case � f (ϕ) = 〈 f, ϕ〉 and f ∈
L∞(�), the second condition (3.6) restricts attention to “bounded external work.”
If we want to describe a situation corresponding to the classical dead load case we
could take

� f (ϕ) = 1

1 + [‖ϕ(x)‖ − K+]+
〈 f (x), ϕ(x)〉 (3.7)

for some large positive constant K+ and [·]+ the positive part of a scalar argument. It
suffices now that f ∈ L1(�), so that

∫
�

� f (ϕ) dV ≤ C+, independent of ϕ ∈ L1(�).
The new condition (3.6) can be rephrased as saying that only a finite amount of

work can be performed against the external loads, regardless of the magnitude of
translation and microdeformation. This is certainly true for any real field of applied
loads.14

In order to motivate why we need this new assumption consider the exemplary
situation with classical dead loads

I(ϕ, P) =
∫

�

‖P−1∇ϕ − 11‖2 + ‖P − 11‖2 + ‖Dx P‖2 − 〈 f, ϕ〉 dV �→ min .(ϕ, P) ,

(3.8)

for P ∈ SL(3). The first step in the direct methods of variations is to show that
sequences (ϕk, Pk) with finite energy I(ϕk, Pk) ≤ K are bounded in some Sobolov-
spaces. In order to obtain boundedness of ∇ϕ it is necessary to control P ∈ L6(�)

from Hölder’s inequality. This is true if we can already bound the curvature Dx P ∈
L2(�) from the standard embedding theorem. However, there is no way to infer an
a priori bounded curvature from bounded energy I, essentially because of the dead
load term, which can balance an unbounded curvature. If the local part ‖P − 11‖2 of
the substructure energy has a higher exponent (here 6), the problem may be avoided
in this simple setting. However, case II (see below) will always need the bounded
external work assumption.

A similar problem does not appear in the linearized case, in which we have to
consider instead

Ilin(u, p) =
∫

�

‖∇u − p‖2 + ‖p‖2 + ‖Dx p‖2 − 〈 f, u〉 dV �→ min .(u, p) . (3.9)

14In classical finite elasticity, such a condition is not necessary, since the elastic energy density is
assumed a priori to verify an unqualified coercivity condition [66] of the type W(F) ≥ c+ ‖F‖q −
C, q > 1, which, together with Dirichlet conditions and Poincaré’s inequality, controls the Lq(�)

part of the deformation.
Fields satisfying (3.6) are, e.g., the gravity field of a finite mass, the electric field of a finite charge

etc. Remark as well that (3.6) does not exclude local, integrable singularities. The traditional dead
load case in (3.5) must rather be interpreted as a linearization of the finite external potential:
write ϕ(x) = x + u(x), then �(x, ϕ(x)) = �(x, x + u(x)) = �(x, x) + 〈Dϕ�(x, x), u〉 + . . . = const. +
〈 f, u〉 + . . . with f (x) = Dϕ�(x, x). We are not aware of a previous introduction of a condition
similar to (3.6).
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Here, boundedness of sequences with finite energy follows from the simple local
estimate (adding zero, expanding and using Young’s inequality)

‖∇u‖2 ≤ 3

2

(‖∇u − p‖2 + ‖p‖2
)

, (3.10)

without any interference with curvature terms.

3.3 The Different Cases

We distinguish three different situations:

a: μc > 0, α4 ≥ 0, p ≥ 1, q ≥ 0, elastic macro-stability, local first order micromor-
phic. Fracture excluded.

b: μc = 0, α4 > 0, p ≥ 1, q > 1, elastic pre-stability, nonlocal second order micro-
morphic, macroscopic specimens, in a sense close to classical elasticity, zero
Cosserat couple modulus. Fracture excluded for bounded external work.

c: μc = 0, α4 = 0, 0 < p ≤ 1, q = 0, elastic pre-stability, nonlocal second order mi-
cromorphic theory, macroscopic specimens, in a sense close to classical elasticity,
zero Cosserat couple modulus. Since possibly ϕ �∈ W1,1(�, R

3), due to lack of
elastic coercivity, including fracture in multiaxial situations.

We refer to 0 < p < 1, q ≥ 0 as the sub-critical case, to p = 1, q ≥ 0 as the critical
case and to p ≥ 1, q > 1 as the super-critical case. We will mathematically treat the
first two cases a/b.

3.4 Existence for the Geometrically Exact Elastic Micromorphic Model

The following results extend the existence theorems for geometrically exact micro-
morphic micro-incompressible elastic solids given previously.15

Theorem 3.1 (Existence for elastic micromorphic model: case I) Let � ⊂ R
3 be

a bounded Lipschitz domain and assume for the boundary data gd ∈ H1(�, R
3)

and Pd ∈ W1,1+p(�, GL+(3)). Moreover, let the applied external potentials satisfy
(3.6). Then (3.1) with material constants conforming to case I and p > 1 admits
at least one minimizing solution triple (ϕ, P, α p) ∈ H1(�, R

3) × W1,1+p(�, SL(3)) ×
W1,2+p(�, R).

Proof The proof is obtained in [58], see also [57, 59]. ��

The proof simplifies considerably in the geometrically exact Cosserat micropolar
case P ∈ SO(3), in which case p ≥ 1 is already sufficient. We continue with the

15The proposed finite results determine the macroscopic deformation ϕ ∈ H1(�, R
3) and nothing

more. This means that discontinuous macroscopic deformations by cavities or the formation of
holes are not excluded (possible mode I failure). If μc > 0, fracture is effectively ruled out, which
is unrealistic.
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super-critical case which is more appropriate for macroscopic situations and closer
to classical elasticity.

Theorem 3.2 (Existence for elastic micromorphic model: case II) Let � ⊂ R
3 be a

bounded Lipschitz domain and assume for the boundary data gd ∈ H1(�, R
3) and

Pd ∈ W1,1+p+q(�, SL(3)). Moreover, let the applied external potentials satisfy (3.6).
Then (3.1) with material constants conforming to case II admits at least one minimizing
solution triple (ϕ, P, α p) ∈ H1(�, R

3) × W1,1+p+q(�, SL(3)) × W1,2+p(�, R).

Proof The proof is obtained in [58], see also [57, 59]. ��

4 The Infinitesimal Micromorphic Elastic Solid

4.1 The Variational Formulation

Starting from the proposed finite-strain formulation we may obtain a linear, infin-
itesimal micromorphic model by expanding all appearing variables to first order
and by keeping only quadratic terms in the energy expression. Thus we write F =
11 + ∇u, P = 11 + p, and the model turns into the problem of finding a pair (u, p) :
� ⊂ R

3 �→ R
3 × gl

+
(3) of macroscopic displacement u and independent, infinitesimal

microdeformation p satisfying

∫
�

Wmp(ε, p) + Wcurv(kp, ∇tr
[

p
]
) dV �→ min . w.r.t. (u, p),

ε = ∇u − p, p|� = pd ∈ gl
+
(3) = M

3×3, ϕ|� = gd ,

Wmp(ε, p) = μe ‖ sym ε‖2 + μc ‖ skew ε‖2 + λe

2
tr
[
sym ε

]2

+ μm ‖ sym p‖2 + λm

2
tr
[
sym p

]2

= μe ‖ sym ∇u − sym p‖2 + μc ‖ skew(∇u − p)‖2 + λe

2
tr
[∇u − p

]2

+ μm ‖ sym p‖2 + λm

2
tr
[

p
]2

,

Wcurv(kp, ∇tr
[

p
]
)=μ

L2
c

12

(
α5 ‖ sym kp‖2+α6 ‖ skew kp‖2 +α7 tr

[
kp
]2 +α8 ‖∇tr

[
p
]‖2

)
,

kp = Dx[dev p ] = (∇(dev p.e1), ∇(dev p.e2), ∇(dev p.e3)) . (4.1)

Here, kp is the third order infinitesimal curvature tensor, defined only on the purely
distortional part of the infinitesimal microdeformation dev p. If μe, μ

m > 0 and
μc, λe, λ

m ≥ 0 it is an easy matter to show existence and uniqueness. For μc = 0 we
have to invoke the classical Korn’s first inequality. It should be observed that even if
μc = 0 there remains a coupling of the two fields (u, p) due to the remaining coupling
in the symmetric terms.
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4.2 The Linear System of Balance Equations

The linearized macroscopic force balance equation is obtained by taking free varia-
tions with respect to the total displacement u. Hence we obtain

Div σ(∇u, p) = 0, u|� (x) = gd(x) − x , (4.2)

with

σ(∇u, p) = 2μe (sym ∇u − sym p) + 2μc (skew ∇u − skew p) + λe tr
[∇u − p

] · 11 .

(4.3)

The remaining system of nine balance equations for the nine additional components
of p ∈ gl

+
(3) = M

3×3 is obtained by taking free variations with respect to p which
results in

dev Div Dkp Wcurv(kp, ∇tr
[

p
]
) = dev

(
− 2μe (sym ∇u − sym p)

− 2μc (skew ∇u − skew p) − λe tr
[∇u − p

]
11

+ 2μm sym p + λm tr
[

p
] · 11

)
,

Div D∇tr[p]Wcurv
(
kp, ∇tr

[
p
]) = tr

(
− 2μe (sym ∇u − sym p)

− 2μc (skew ∇u − skew p) − λe tr
[∇u − p

]
11

+ 2μm sym p + λm tr
[

p
] · 11

)
. (4.4)

This is equivalent to

0 = dev σ(∇u, p) − 2μm dev sym p + dev Div Dkp Wcurv
(
kp, ∇tr

[
p
])

,

0 = tr
[
σ(∇u, p)

] − (2μm + 3λm) tr
[

p
] + Div D∇tr[p]Wcurv

(
kp, ∇tr

[
p
])

. (4.5)

4.3 Calculation of Consistent Effective Elastic Moduli

It is of prime importance to have values of μe, λe at hand which are consistent with
the classical linear elastic model for large samples. Considering very large samples
of the cellular structure amounts to letting Lc > 0, the characteristic length, tend to
zero. As a consequence of taking formally Lc = 0, the two equations (4.5) loose the
curvature terms and turn into

0 = dev σ(∇u, p) − 2μm dev sym p ,

0 = tr
[
σ(∇u, p)

] − (2μm + 3λm) tr
[

p
]
, (4.6)
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expressing an algebraic side-condition. Inserting formula (4.3) for σ into (4.6) allows
us to obtain, after some lengthy but straightforward computations, the following
algebraic relations

tr
[

p
] = (2μe + 3λe)

2(μe + μm) + 3(λe + λm)
tr [∇u] ,

dev sym p = μe

(μe + μm)
dev sym ∇u ,

dev skew p = dev skew ∇u , (μc not involved!) , (4.7)

where we used that the operator dev is orthogonal to R · 11 and sym is orthogonal to
skew and dev skew = skew. Moreover,

tr
[∇u − p

] =
(

1 − (2μe + 3λe)

2(μe + μm) + 3(λe + λm)

)
tr [∇u]

= (2μm + 3λm)

(2μm + 3λm) + (2μe + 3λe)
tr [∇u] . (4.8)

Reinserting the results into (4.3) yields, after taking dev on both sides,

dev σ(∇u, p)=2μe (dev sym ∇u − dev sym p) + 2μc (skew ∇u − skew p)

=2μe

(
dev sym∇u− μe

(μe+μm)
dev sym∇u

)

+ 2μc (skew∇u − 1· skew∇u)

=2μe

(
1 − μe

(μe + μm)

)
dev sym ∇u

= 2μe
μm

(μe + μm)
dev sym ∇u . (4.9)

Similarly, reinserting the results into (4.3) yields, after taking the trace on both sides

tr
[
σ(∇u, p)

]=2μe tr
[
sym∇u−symp

]
+ 2μc tr

[
skew∇u−skewp

]+λe tr
[∇u−p

] · tr [11]

= 2μe tr
[∇u − p

] + 3λe tr
[∇u − p

]
= (2μe + 3λe) tr

[∇u − p
]

= (2μe + 3λe)
(2μm + 3λm)

(2μm + 3λm) + (2μe + 3λe)
tr [∇u] . (4.10)

For a linear elastic isotropic solid, which represents the macroscopic stress-strain
relation for large samples, one has the classical relation

σ = 2μ sym ∇u + λ tr [∇u] · 11 ⇒
dev σ = 2μ dev sym ∇u and tr [σ ] = (2μ + 3λ) tr [∇u] . (4.11)
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Upon comparing coefficients of (4.11) with (4.9) and (4.10), we identify

2μ = 2μe
μm

(μe + μm)
,

(2μ + 3λ) = (2μe + 3λe)
(2μm + 3λm)

(2μm + 3λm) + (2μe + 3λe)
. (4.12)

This implies that in our model the large scale shear modulus μ is half the harmonic
mean16 of the relative elastic shear modulus μe and the microstructural shear modulus
μm, while the large scale bulk modulus κ = 2μ+3λ

3 is half the harmonic mean of the
relative elastic bulk modulus κe and the microstructural bulk modulus κm.

Hence, solving in a first step for the relative elastic shear modulus μe and the
relative elastic bulk modulus κe = 2μe+3λe

3 , we find

μe = μm μ

(μm − μ)
, 3κe = (2μe + 3λe) = (2μ + 3λ) (2μm + 3λm)

(2μm + 3λm) − (2μ + 3λ)
. (4.13)

Therefore,

μe = μm μ

(μm − μ)
, 3λe = (2μ + 3λ) (2μm + 3λm)

(2(μm − μ) + 3(λm − λ))
− 2

μm μ

(μm − μ)
. (4.14)

This result motivates that the “macroscopic” Lamé moduli μ, λ must always be
smaller than the microscopic moduli μm, λm related to the response of a represen-
tative volume element (RVE) of the substructure. This is physically consistent: the
large-scale sample cannot possibly be stiffer than the constitutive substructure. Let
us consider the interesting limit cases in (4.12):

micro-incompressible: λm → ∞ , μm < ∞ ⇒ λ = λe + 2μ2

3(μm − μ)
,

microstretch: μm → ∞ , λm < ∞ ⇒ λ = λe , μ = μe ,

micropolar: μm → ∞ , λm → ∞ ⇒ λ = λe , μ = μe . (4.15)

4.4 Identification with Mindlin’s Representation

Many papers on linearized micromorphic models start from a representation of the
free-energy function based on Mindlin’s work [52, 5.5], e.g.[42]. A major drawback
of Mindlin’s representation is, however, that no account has been taken to ensure
overall positivity of the quadratic energy. This has to be checked additionally and
can be quite labourous because of many appearing coefficients. We consider only the
local part (the part without curvature) of Mindlin’s representation. Let us define

ε = sym ∇u , ε := ∇u − p . (4.16)

16H(α, β) = 2
1
α

+ 1
β

= 2αβ
α+β

for α, β > 0, compare with the Reuss-bounds in homogenization theory.
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Then Mindlin’s local energy contribution WMind
mp with seven material constants

μ̂, λ̂, b 1, b 2, b 3, g1, g2 reads

WMind
mp (∇u, p) = WMind

mp (ε, ε) = λ̂

2
tr [ε]2 + μ̂ ‖ε‖2 + b 1

2
tr [ε]2 + b 2

2
‖ε‖2

+ b 3

2
〈ε, εT〉 + g1 tr [ε] tr [ε] + 2 g2 〈ε, ε〉 . (4.17)

Note that this defines a quadratic form, whose positive-definiteness is not ensured by
taking positive parameters μ̂, λ̂, . . .. In comparison, in (4.1) we have proposed a five
material constants representation which automatically defines a positive quadratic
form, if the coefficients are positive themselves.17 The proposed quadratic represen-
tation in (4.1) reads

Wmp(ε,p)=μe ‖ sym ε‖2 + μc ‖ skew ε‖2

+ λe

2
tr
[
sym ε

]2 + μm ‖ sym p‖2+ λm

2
tr
[
symp

]2

= μe ‖ sym ε‖2 + μc ‖ skew ε‖2 + λe

2
tr
[
sym ε

]2

+ μm ‖ sym p − ε + ε‖2 + λm

2
tr
[
sym p − ε + ε

]2

= (μe + μm + μc)

2
‖ε‖2 + (μe + μm − μc)

2
〈ε, εT〉 + (λe + λm)

2
tr [ε]2

+ μm ‖ε‖2 + λm

2
tr [ε]2 − 2μm〈ε, ε〉 − λm tr [ε]tr [ε] . (4.18)

Hence, comparing with Mindlin’s representation (4.17) we are able to identify

μ̂ = μm, λ̂ = λm, b 1 = λe + λm ,

b 2 = μe + μm + μc, b 3 = μe + μm − μc ,

g1 = −λm, g2 = −μm . (4.19)

Mindlin proposes [52, p.60]

3b 1 + b 2 + b 3 ≥ 0 , b 2 + b 3 ≥ 0 , b 2 − b 3 ≥ 0 ,

(
⇒ κe + κm ≥ 0 , μe + μm ≥ 0 , μc ≥ 0

)
(4.20)

as necessary conditions for a positive definite energy function which is (of course)
verified for (4.1).

Remark 4.1 It is not clear to us whether Mindlin’s seven parameter representation
of the local strain-energy can be obtained by consistently linearizing a finite-strain
micromorphic model.

17This can be slightly weakened: 2μe + 3λe ≥ 0, 2μm + 3λm ≥ 0, μe, μ
m, μc ≥ 0 is sufficient.
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4.5 The Intrinsically Linear Micromorphic Model

Several sets of generalized strain measures can be defined if one starts in an intrinsi-
cally linear context with no reference to some underlying finite-strain micromorphic
model. The strain measures used in [32] are retained for the computational part of
this work:

ε = 1

2
(∇u + (∇u)T), ε = ∇u − p, K = Dx p , (4.21)

i.e., the total strain ε , the relative deformation ε and the third-rank micro-deformation
gradient tensor K.18 Three generalized stress tensors may be introduced in the virtual
power of internal and contact forces:

π(i)(u, p) = 〈σ, ε̇〉 + 〈s, ε̇〉 + 〈S, K̇〉, π(c)(u, p) = 〈t, u̇〉 + 〈M, ṗ〉 , (4.22)

where the second-rank stress tensor σ is symmetric but should not be confused with
the classical Cauchy stress tensor. The additional stress tensors s and S respectively
are second and third-rank tensors. The balance of momentum and balance of mo-
ment of momentum equations read, in the absence of volume forces or generalized
couples (nor double forces):

Div(σ + s) = 0, Div S + s = 0 . (4.23)

They are coupled because of the micro–stress tensor s. Equilibrium at the boundary
reads

t = (σ + s).�n, M = S.�n , (4.24)

where the outer surface normal vector is denoted by �n.
In a linearized elastic micromorphic solid, the Helmholtz free energy is assumed

to be a quadratic form W�

lin(ε, ε, K) of the previous strain measures (4.21). The
state laws are then deduced from the exploitation of the entropy principle of
thermodynamics [30]:

σ = ρ
∂W�

lin

∂ε
, s = ρ

∂W�

lin

∂ε
, S = ρ

∂W�

lin

∂K
(4.25)

The most general form of the potential for an isotropic linear elastic micromorphic
medium has been proposed by Mindlin [52] based on such an intrinsically linear

18Note that we have given up the decoupling of the curvature into volumetric and distortional parts,
contrary to (4.1).
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development. Keeping the original index notation for the proposed invariants of the
strain tensors and the material moduli, it reads:

W�

lin = 1

2
λ̂ εiiε jj + μ̂ εijεij + 1

2
b 1 εiiε jj + 1

2
b 2 εijεij + 1

2
b 3 εijε ji

+g1 εiiε jj + g2 εij(εij + ε ji)

+A1 Kiik Kkkj + A2 Kiik K jkj + 1

2
A3 Kiik K jkk + 1

2
A4 KijjKikk

+A5 KijjKkik + 1

2
A8 Kiji Kkjk + 1

2
A10 Kijk Kijk

+A11 Kijk K jki + 1

2
A13 Kijk Kikj + 1

2
A14 Kijk K jik

+1

2
A15 Kijk Kkji , (4.26)

from which the constitutive relations

σ = λ̂ tr [ε] · 11 + 2μ̂ ε + g1 tr [ε] · 11 + 2g2 sym ε ,

s = g1tr [ε] · 11 + 2g2 ε + b 1 tr [ε] · 11 + b 2 ε + b 3 εT , (4.27)

and

Spqr = A1(Kriiδpq + Kiipδqr) + A2(Kiiqδpr + Kiriδpq) + A3 K jjrδpq

+A4 Kpiiδqr + A5(Kipiδqr + Kqiiδpr) + A8 Kiqiδpr

+A10 Kpqr + A11(Kqrp + Krpq) + A13 Kprq

+A14 Kqpr + A15 Krqp , (4.28)

are deduced. Hence, the most general isotropic linear elastic relations involve
7 + 11 = 18 constants. It should again be noted that the constants μ̂, λ̂ cannot
automatically be identified with the classical Lamé constants, despite appearance.
The coefficients Ai have the dimension of a bending stiffness modulus: MPa.m2.

In order to achieve positivity for the curvature part of the energy and to simplify
the exposition at the same time, we take

A1 = A2 = A3 = A4 = A5 = A8 = A11 = A13 = A14 = A15 = 0, A10 = μ L2
c

6

(4.29)

in our finite element simulation. Another simplification of the local energy expres-
sion seems to be expedient. We assume, further, that with some number α ∈ R

μc = 0 , μ = α μm , λ = α λm , α ∈ (0, 1) . (4.30)

For example, α = 0.9 means that the large-scale bulk behaviour is assumed to be
about 10 percent weaker than the response of a representative volume element



262 P. Neff, S. Forest

(RVE) on the small scale. Taking into account the homogenization formulas derived
in (4.13), we then find that

μe = α

1 − α
μm , λe = α

1 − α
λm . (4.31)

Hence, in terms of Mindlin’s representation, we obtain

μ̂ = 1

α
μ , λ̂ = 1

α
λ ,

b1 = λe + λm = α

1 − α
λm + λm = 1

1 − α
λm = 1

α (1 − α)
λ ,

b2 = b 3 = μe + μm = 1

α (1 − α)
μ ,

g1 = − 1

α
λ , g2 = − 1

α
μ , (4.32)

for given large-scale Lamé moduli μ, λ.

5 Implementation

5.1 Finite Element Method for the Infinitesimal Micromorphic Continuum

The variational formulation of the micromorphic boundary value problem is a
straightforward extension of the classical one:∫

�

〈σ, ε̇〉 + 〈s, ε̇〉 + 〈S, K̇〉 dV =
∫

∂�

〈t, u̇〉 + 〈M, ṗ〉 dS , (5.1)

with the boundary conditions (4.24). The finite element formulation follows from the
same discretization of the variational problem as in the classical case.

An analytical solution of a simple boundary value problem for the linear elastic
micromorphic continuum is proposed in Appendix 4, which serves as validation test
for the implementation of the model.

5.2 Finite Element Simulations of Hole Size Effects in Metallic Foams

One of the early goals of the mechanics of generalized continua was to control
the magnitude of stress concentrations at holes, edges or cracks. Indeed, Mindlin
analysed the stress concentration coefficient at a hole in a plate in the case of a
couple–stress medium [51]. Contrary to the classical situation, the stress concentra-
tion factor is found to depend on the relative size of the hole with respect to the
value of the characteristic size even if the hole is embedded in an infinite matrix. The
analytical solution of the more general problem of the spherical or cylindrical elastic
inclusion inside an infinite matrix was solved only recently for infinitesimal-strain
Cosserat elasticity [12, 13, 70]. Finite element simulations within the infinitesimal
Cosserat framework show that, contrary to the classical situation, the stress–strain
state is generally not homogeneous inside a spherical or cylindrical elastic hetero-
geneity [29]. The stress concentration factor at the equator of a cylindrical hole in an
infinite linear elastic Cosserat matrix tends asymptotically to the classical constant
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Fig. 2 (Traditional linear
Cosserat response) Strain
concentration at the
“equator” of a cylindrical hole
in an infinite Cosserat medium
under tensile loading by the
strain ε∞

22 in direction 2.
The component plotted is
ε22/ε

∞
22 . The material

properties of the Cosserat
equivalent medium
representing the nickel foam
are taken to be μe = μ =
165 MPa, λe = λ = 110 MPa,

μc = 1, 000 MPa, Lc =1.35 mm

value for large enough holes. For holes with a radius close to or smaller than the
value of the intrinsic lengths of the Cosserat matrix, the factor is found to decrease.
The value for vanishingly small holes tends towards an asymptotic limit that depends
on the Cosserat intrinsic length scale and on the additional Cosserat couple modulus
μc ≥ 0. For strictly positive Cosserat couple modulus μc > 0 it remains larger than one,
meaning that holes of any size induce stress concentration in a traditional infinitesimal
Cosserat medium. This behavior is illustrated by Fig. 2.

The strain field around a cylindrical hole in an infinite micromorphic matrix under
plane stress conditions is now investigated using the finite element method. The
material parameters used for the presented simulations are taken so as to represent
large scale samples of nickel foam studied at room temperature in [3, 18]. This
corresponds to

μ = 165 MPa λ = 110 MPa , (5.2)

in terms of the Lamé constants. We choose the factor α = 0.9 appearing in (4.30) and
the Cosserat couple modulus μc = 0. This implies

μ̂ = 1

α
μ = 183. MPa , λ̂ = 1

α
λ = 122. MPa , b 1 = 1

α (1 − α)
λ = 1222. MPa ,

b 2 = b 3 = μe + μm = 1

α (1 − α)
μ = 1833. MPa ,

g1 = − 1

α
λ = −122. MPa , g2 = − 1

α
μ = −183. MPa , (5.3)

in terms of Mindlin’s representation. The elastic parameters bi in (5.3) penalize
an increasing difference between micro and macrodeformation. When they are
large enough, micro and macrodeformation almost coincide and the micromorphic
theory reduces to a second gradient theory in the limit [30]. In the absence of
precise identification for these parameters, this is the choice made in this work. The
chosen value of α is such that the moduli bi are about ten times larger than the
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Fig. 3 Strain field ε22/ε
∞
22

around a cylindrical hole in an
infinite matrix under tensile
loading ε∞

22 and plane stress
conditions: a classical
continuum (reference
solution), b linear elastic
micromorphic continuum for a
hole radius R/Lc = 0.74,
c linear elastic micromorphic
continuum for a hole radius
R/Lc = 0.22. The tensile
direction 2 is vertical, the
horizontal direction is 1. For
the illustration, a magnifcation
factor was applied so that the
three holes have the same
apparent radius. Only the
region of the mesh sur-
rounding the hole is shown.
The elastic moduli used for the
simulation are given by (5.3)

0.2 0.6 1 1.4 1.8 2.2 2.6

a

b c

classical moduli. The simulation results are then similar to that for a second gradient
medium. A single additional parameter, namely the characteristic length Lc > 0, is
introduced in the six-rank tensor A by setting A10 = μ L2

c
6 in Mindlin’s representation

and A1, A2, . . . = 0 for the remaining coefficients. The characteristic length is set to
Lc = 1.35 mm in the following simulations. Hence,

A10 = μ L2
c

6
= 50 MPa mm2 . (5.4)

This value was identified in the particular case of nickel foam with relative density
ρ�/ρNi = 0.035 and mean cell diameter 500 μm. The strain field measurements on
nickel foam plates with a central hole presented in [18] subjected to tensile loading
have established the hole–size dependence of the strain field around the hole. Small
holes (typically with a radius twice larger than the cell size) are associated with less
strain concentration than large holes. The employed characteristic length Lc was
identified to optimally describe these experimental results.

We have chosen Neumann conditions for the microdeformation at the hole,
meaning that the double force density M (see (5.1)) vanish at the surface of the
hole and at the outer boundary of the matrix. Vanishing double forces are the most
natural conditions at a free boundary, which is the case at the hole boundary. The
matrix around the hole is large enough to be considered infinite. As a result, the
far–fields are almost homogeneous so that the microdeformation gradient vanishes.
Accordingly, the hyperstress S and therefore the double force M should vanish at
infinity.

Figure 3 shows the results of finite element simulations of the tension of a plate
with a machined cylindrical hole. Tension is applied along the vertical direction 2
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Fig. 4 Computed strain profile
along the ligament x2 = 0 for
the linear micromorphic plate
with a cylindrical hole of
radius R. The position x1 = R,
called “equator” is the location
of stress and strain maximum
at least for large enough holes.
The elastic moduli used for the
simulations are given by (5.3)

under plane stress conditions. The Fig. 3a shows the reference strain field ε22 around
the hole expected in the case of a classical Cauchy continuum. Only the mesh region
surrounding the hole is shown. Vertical displacement is applied at the top of the
mesh which is not represented in the picture. For such a classical simulation, the
size of the hole does not matter. In contrast, the Figs. 3b and 3c show the strain
map ε22 around a hole embedded in an infinite linear elastic micromorphic matrix
using the values of the elastic properties given by (5.3). The results are given for two
hole sizes: R/Lc = 0.74 and R/Lc = 0.22, respectively. For both computations the
applied strain at infinity ε∞

22 is the same and the material parameters correspond to
each other. The size of the hole is the only varying parameter. It clearly appears that
the strain field becomes more and more homogeneous when the hole size is reduced.
For R/Lc = 0.22, there is almost no strain concentration at the equator any longer.

For larger and larger holes, we have checked that the classical solution of Fig. 3a is
retrieved when using the micromorphic model. The striking feature of the numerical
simulations is that for vanishingly small holes, the micromorphic theory predicts a
strictly homogeneous strain field: tiny holes do not introduce any strain fluctuation.
This can be seen more quantitatively from the curves of Fig. 4. The strain profile
along the ligament x2 = 0 is plotted for different values of the hole radius ranging
from R = 10 mm to R = 0.1 mm. The curve obtained for R = 10 mm is almost
identical to the classical result which predicts a stress/strain concentration factor of 3
at the equator (x1 = R) under plane stress conditions. Strain localization decreases
for smaller holes. As a result, the strain concentration factor tends to 1 when the
hole size tends to zero. This is contrary to the case of the infinitesimal Cosserat
continuum (see Fig. 2). These numerical results cannot currently be compared to
analytical solutions, which do not seem to be available for a hole in a general
linear micromorphic continuum to the best knowledge of the authors. An ana-
lytical solution for the more restricted linear microstretch case has been derived
in [15].
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The interesting point is that, in a linear elastic micromorphic continuum, there is
a limit size below which no geometrical heterogenities can be detected. This limit
size sets the resolution of the continuum, in a way similar to the resolution of a
microscope. An equivalent parametric study is possible by varying the intrinsic length
scale parameter Lc for a fixed radius size R. This enables us, in fact, to identify the
value of the characteristic length that leads to strain concentration around holes only
when the holes are sufficiently larger than the cell size.

It must be noted that the finite element simulations were not carried out on one
quarter of the sample but for the entire structure, in contrast to the classical case.
The reason is that, in spite of the symmetry conditions, it is not possible to know
“a priori” what are the boundary conditions p11 or p22 (or conversely the reactions
M11 or M22) to be prescribed on the lines x1 = 0 or x2 = 0. This difficulty does not
arise for a linear Cosserat continuum since the symmetry conditions imply that the
infinitesimal microrotation vanishes at these boundaries. The computation time is
therefore increased not only by the larger number of degrees of freedom but also
by the fact that the entire specimen must be meshed instead of one quarter. The
mesh size in the presented simulations is satisfactory in the sense that convergence
is achieved for the generalized stress and strain fields upon mesh refinement, up to a
precision better than 1%.

6 Final Remarks

The presented variational finite-strain micromorphic problem fits neatly into the
framework of the direct methods of variations. The coercivity part for the defor-
mation is, however, nontrivial and for the value of the Cosserat couple modulus
μc = 0 additional difficulties arise which can only be circumvented by the use of
the generalized Korn’s first inequality. In both treated cases I/II, more realistic
assumptions on the applied external loads � are necessary to establish a lower bound
for the energy I and a control of the curvature independent of the magnitude of
deformation.

Altogether, the quasistatic finite-strain micromorphic theory is established on firm
mathematical grounds. With the same methods, the geometrically exact microstretch
case can also be treated. An extension of the method to other choices of strain and
curvature measures needs to be done, however, this might be a non-trivial task due
to certain deficiencies of these measures. The open case III allows for discontinuous
macroscopic deformations and might therefore be a model problem allowing to
describe fracture.

Our variational framework is ideally suited for subsequent numerical treatment
within the finite element method. This is shown by numerically studying the lin-
earized micromorphic model meant to describe the behaviour of nickel foams.
In these calculations, the Cosserat couple modulus μc is indeed set to zero and
the obtained result is contrasted with the response of a traditional infinitesimal
Cosserat model with high Cosserat couple modulus μc. It seems that the micro-
morphic model with zero Cosserat couple modulus μc = 0 is, indeed, sufficient to
capture the underlying physics. The importance of the characteristic size of the cells
on the response of the structure is clearly revealed. A more accurate description for
the foam is clearly needed but this requires an extension of the presented elastic
model towards a consistent elastoplastic constitutive setting as proposed, e.g, in [30]
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for infinitesimal and finite deformations. The involved characteristic length(s) can
be identified using an inverse approach from the strain field measurements. An
alternative way is to derive the effective properties of an equivalent homogeneous
micromorphic medium from the knowledge of the detailed cell morphology based
on homogenization procedures that are now available for generalized continua
[26].

Acknowledgement Both authors are grateful for constructive remarks from the reviewer which
helped to improve the presentation in this work.

Appendix

1 Notation

Let � ⊂ R
3 be a bounded domain with Lipschitz boundary ∂� and let � be a

smooth subset of ∂� with non-vanishing 2-dimensional Hausdorff measure. For
a, b ∈ R

3 we let 〈a, b〉R3 denote the scalar product on R
3 with associated vector

norm ‖a‖2
R3 = 〈a, a〉R3 . We denote by M

3×3 the set of real 3 × 3 second order
tensors, written with capital letters and by T(3) the set of all third order ten-
sors. The standard Euclidean scalar product on M

3×3 is given by 〈X, Y〉M3×3 =
tr
[
XYT

]
, and thus the Frobenius tensor norm is ‖X‖2 = 〈X, X〉M3×3 . In the fol-

lowing we omit the index R
3, M

3×3. The identity tensor on M
3×3 will be denoted

by 11, so that tr [X] = 〈X, 11〉. We let Sym and PSym denote the symmetric and
positive definite symmetric tensors respectively. We adopt the usual abbrevia-
tions of Lie-group theory, i.e., GL(3) := {X ∈ M

3×3 |det[X] �= 0} the general linear
group, SL(3) := {X ∈ GL(3) |det[X]=1}, O(3) :={X ∈ GL(3) | XTX = 11}, SO(3) :=
{X ∈ GL(3) |XT X = 11, det[X] = 1} with corresponding Lie-algebras so(3) := {X ∈
M

3×3 |XT = −X} of skew symmetric tensors and sl(3) := {X ∈ M
3×3 |tr [X] = 0} of

traceless tensors. We set sym(X) = 1
2 (XT + X) and skew(X) = 1

2 (X − XT) such
that X = sym(X) + skew(X). For X ∈ M

3×3 we set for the deviatoric part dev X =
X − 1

3 tr [X] 11 ∈ sl(3) and for vectors ξ, η ∈ R
n we have the tensor product (ξ ⊗

η)ij = ξi η j. The operator axl : so(3) �→ R
3 is the canonical identification. We write

the polar decomposition in the form F = R U = polar(F) U with R = polar(F) the
orthogonal part of F. For a second order tensor X we define the third order
tensor h = Dx X(x) = (∇(X(x).e1), ∇(X(x).e2), ∇(X(x).e3)) = (h1, h2, h3) ∈ M

3×3 ×
M

3×3 × M
3×3. For third order tensors h ∈ T(3) we set ‖h‖2 = ∑3

i=1 ‖hi‖2 to-
gether with sym(h) := (sym h1, sym h2, sym h3) and tr

[
h
] := (tr

[
h1
]
, tr

[
h2
]
, tr

[
h3
]
) ∈

R
3. Moreover, for any second order tensor X we define X · h := (Xh1, Xh2, Xh3)

and h · X, correspondingly. Quantities with a bar, e.g., the micropolar rotation Rp,
represent the micropolar replacement of the corresponding classical continuum rota-
tion R. In general we work in the context of nonlinear, finite elasticity. For the total
deformation ϕ ∈ C1(�, R

3) we have the deformation gradient F = ∇ϕ ∈ C(�, M
3×3)

and we use ∇ in general only for column-vectors in R
3. Furthermore, S1(F) and

S2(F) denote the first and second Piola Kirchhoff stress tensors, respectively. Total
time derivatives are written d

dt X(t) = Ẋ. The first and second differential of a scalar
valued function W(F) are written DF W(F).H and D2

F W(F).(H, H), respectively.
Sometimes we use also ∂X W(X) to denote the first derivative of W with respect to X.
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We employ the standard notation of Sobolev spaces, i.e., L2(�), H1,2(�), H1,2◦ (�),
which we use indifferently for scalar-valued functions as well as for vector-valued
and tensor-valued functions. Moreover, we set ‖X‖∞ = supx∈� ‖X(x)‖. For X ∈
C1(�, M

3×3) we define Curl X(x) and Div X(x) as the operation curl and Div applied
row wise, respectively. For h ∈ T(3) we define Div h = (

Div h1| Div h2| Div h3
)T ∈

M
3×3. We define H1,2◦ (�, �) := {φ ∈ H1,2(�) | φ|� = 0}, where φ|� = 0 is to be un-

derstood in the sense of traces and by C∞
0 (�) we denote infinitely differentiable

functions with compact support in �. We use capital letters to denote possibly large
positive constants, e.g. C+, K and lower case letters to denote possibly small positive
constants, e.g., c+, d+. The smallest eigenvalue of a positive definite symmetric tensor
P is abbreviated by λmin(P). Finally, w.r.t. abbreviates with respect to.

2 Derivation of the Geometrically Exact Micromorphic Balance Equations

The balance equations are obtained as for the micro-incompressible case with the
only provision that we can take as variation for U p ∈ PSym the following expression

d
dt

U p = T U p, T ∈ Sym(3) , (2.1)

instead of T ∈ sl(3) ∩ Sym(3) for the micro-incompressible case based on U p. Note
that any value of the differential d

dt U p can be obtained as d
dt U p = T U p for some

T ∈ Sym(3) while T U p is not necessarily symmetric if T is symmetric.

3 Derivation of the Geometrically Exact Micromorphic Balance Equations
in the Micro-incompressible Case

Introducing a constraint nonlinear manifold like SL(3) for the micro-incompressible
case complicates the derivation of the balance equations considerably.

The derivation of the force balance equation remains straight forward, however.
Since we can write P = Rp U p and Rp, U p can be prescribed arbitrarily, we may
realize the variation of P through independent variation of the orthogonal and
isochoric stretch part:

P = Rp U p ⇒ d
dt

P =
[

d
dt

Rp

]
U p + Rp

[
d
dt

U p

]
. (3.1)

Now take either d
dt U p = 0 or d

dt Rp = 0. In the first case, we have the variation

d
dt

P =
[

d
dt

Rp

]
U p = A Rp U p = A P, A ∈ so(3) , arbitrary , (3.2)

and in the second case we have

d
dt

P = Rp

[
d
dt

U p

]
= Rp T U p, T ∈ sl(3) ∩ Sym(3) . (3.3)

For the first case, we consider simultaneously in each space point a one parame-
ter group of microdeformations d

dt P̂(x, t)= A(x, t) P̂(x, t), P̂(x, 0)= P(x), A ∈ C∞
0
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(�, sl(3)). The corresponding stationarity condition is obtained from d
dt |t=0

I(ϕ,

P̂(x, t)) = 0. This yields three terms: the derivatives involving Wmp(F, P) and �(P)

are straightforward, using the definition of the one parameter group, and yield

d
dt |t=0

�(P̂(x, t)) =
〈

DP�(P̂(x, t),
d
dt

P̂(x, t)
〉

|t=0

= 〈DP�(P̂(x, t), A(x, t)P̂(x, t)〉|t=0

= 〈DP�(P)P
T
, A(x, 0)〉

= 〈DP�(P)U p R
T
p , A(x, 0)〉 =

〈
Rp R

T
p DP�(P)U p R

T
p , A(x, 0)

〉

=
〈

Rp skew
(

R
T
p DP�(P)U p

)
R

T
p , A(x, 0)

〉
, (3.4)

and

d
dt |t=0

Wmp(F, P̂(x, t)) =
〈

DU Wmp(U, U p),
d
dt

U
〉

=
〈

DU Wmp(U, U p),
d
dt

[P̂−1 F]
〉

=
〈

DU Wmp(U, U p),

[
d
dt

P̂−1

]
F
〉

=
〈

DU Wmp(U, U p),−P̂−1

[
d
dt

P̂
]

P̂−1 F
〉

=−
〈

DU Wmp(U, U p), P̂−1

[
d
dt

P̂
]

U
〉

= −
〈
DU Wmp(U, U p), P̂−1 A(x, 0) P̂(x, 0)U

〉

= −
〈
DU Wmp(U, U p)U

T
, P̂−1, A(x, 0) P̂(x, 0)

〉

= −
〈
P̂−T DU Wmp(U, U p)U

T
P̂T , A(x, 0)

〉

= −
〈
RpU

−1
p DU Wmp(U, U p)U

T
U p R

T
p , A(x, 0)

〉

= −
〈

Rp skew
(

U
−1
p DU Wmp(U, U p)U

T
U p

)
R

T
p , A(x, 0)

〉

= −
〈

Rp skew
(

U
−1
p DU Wmp(U, U p)U

T
U

T
p

)
R

T
p , A(x, 0)

〉
(3.5)

Here, 〈·, ·〉 means additionally integration w.r.t. x. For the term containing the
curvature part, we note

d
dt |t=0

∫
�

Wcurv(Kp(x, t)) dV

=
3∑

i=1

〈
∂Ki

p
Wcurv

(
K1

p,K
2
p,K

3
p

)
, R

T
p ∇(AP.ei) + (ARp)

T∇(P.ei)

〉
M3×3
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=
3∑

i=1

〈
Rp ∂Ki

p
Wcurv

(
K1

p,K
2
p,K

3
p

)
, ∇(AP.ei)

〉
M3×3

+
〈

Rp ∂Ki
p
Wcurv

(
K1

p,K
2
p,K

3
p

)
Ki,T

p R
T
p , AT

〉
M3×3

=
3∑

i=1

−
〈
Div

[
Rp ∂Ki

p
Wcurv

(
K1

p,K
2
p,K

3
p

)]
, AP.eiR3

〉

+
〈

Rp

(
3∑

i=1

∂Ki
p
Wcurv

(
K1

p,K
2
p,K

3
p

)
Ki,T

p

)
R

T
p , AT

〉

= −
〈
Div

[
Rp DKp Wcurv(Kp)

]
, AP

〉
M3×3

+
〈

Rp

(
3∑

i=1

∂Ki
p
Wcurv

(
K1

p,K
2
p,K

3
p

)
Ki,T

p R
T
p

)
, AT

〉

= −
〈
Div

[
Rp DKp Wcurv(Kp)

]
P

T
, A

〉

+
〈

Rp

(
3∑

i=1

∂Ki
p
Wcurv

(
K1

p,K
2
p,K

3
p

)
Ki,T

p

)
R

T
p , AT

〉

= −
〈
Rp R

T
p Div

[
Rp DKp Wcurv(Kp)

]
U p R

T
p , A

〉

−
〈

Rp skew

(
3∑

i=1

(
∂Ki

p
Wcurv(K

1
p,K

2
p,K

3
p)K

i,T
p

))
R

T
p , A

〉

= −
〈

Rp skew
(

R
T
p Div

[
Rp DKp Wcurv(Kp)

]
U p

)
R

T
p , A

〉

−
〈

Rp skew
(

DKp Wcurv(Kp)K
T
p

)
R

T
p , A

〉
. (3.6)

Since A ∈ C∞
0 (�, so(3)) is arbitrary, (2.18)2 follows. In order to obtain the remaining

five equations for the five independent components of U p ∈ SL(3) ∩ PSym(3) we
consider the second possible independent variation of P. With

d
dt

P = Rp T U p, T ∈ sl(3) ∩ Sym(3) , (3.7)

we consider simultaneously in each space point a one parameter group of microdefor-
mations d

dt P̂(x, t) = Rp T U p, P̂(x, 0) = P(x), T ∈ C∞
0 (�, sl(3)). The correspond-

ing stationarity condition is obtained from d
dt |t=0

I(ϕ, P̂(x, t)) = 0. This yields again
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three terms: the derivatives involving Wmp(F, P) and �(P) are straightforward, using
the definition of the one parameter group, and yield

d
dt |t=0

�(P̂(x, t)) =
〈

DP�(P̂(x, t),
d
dt

P̂(x, t)
〉

|t=0

=
〈

DP�(P̂(x, t), RpT(x, t) · U p(x, t)
〉

|t=0

=
〈

R
T
p DP�(P)U p, T(x, 0)

〉
|t=0

=
〈
dev sym

(
R

T
p DP�(P)U p

)
, T(x, 0)

〉
, (3.8)

and

d
dt |t=0

Wmp(F, P̂(x, t)) =
〈

DU Wmp(U, U p),
d
dt

U
〉

+
〈

DU p
Wmp(U, U p),

d
dt

U p

〉

= −
〈

DU Wmp(U, U p), P̂−1

[
d
dt

P̂
]

U
〉

+
〈

DU p
Wmp(U, U p), T(x, 0)U p

〉

= −
〈

DU Wmp(U, U p), P̂−1 RpT(x, 0) U pU
〉

+
〈

DU p
Wmp(U, U p)U

T
p , T(x, 0)

〉

= −
〈

DU Wmp(U, U p)U
T
, U

−1
p T(x, 0)U p

〉
+
〈

DU p
Wmp(U, U p)U

T
p , T(x, 0)

〉

= −
〈
U

−1
p DU Wmp(U, U p)U

T
U p, T(x, 0)

〉
+
〈

DU p
Wmp(U, U p)U

T
p , T(x, 0)

〉

= −
〈
dev sym

(
U

−1
p DU Wmp(U, U p)U

T
U p

)
, T(x, 0)

〉

+
〈
dev sym

(
DU p

Wmp(U, U p)U
T
p

)
, T(x, 0)

〉
. (3.9)

For the term containing the curvature part, we note

d
dt |t=0

∫
�

Wcurv(Kp(x, t)) dV

=
3∑

i=1

〈
∂Ki

p
Wcurv

(
K1

p,K
2
p,K

3
p

)
, R

T
p ∇

(
RpTU p.ei

)
+
(

d
dt

Rp
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∇
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P.ei

)〉
M3×3
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Rp ∂Ki
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2
p,K

3
p
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, ∇

(
TU p.ei

)〉
M3×3

= −
〈
dev sym

(
R

T
p Div

[
Rp DKp Wcurv(Kp)

]
U p

)
, T

〉
. (3.10)
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Since T ∈ C∞
0 (�, sl(3)) is arbitrary, (2.18)3 follows. By splitting the possible varia-

tions of P ∈ SL(3), we have implicitly used the Cartan Lie-algebra decomposition:
sl(3) = so(3) ⊕ p, p = {T ∈ sym(3) | tr [T] = 0}.

4 Validation of the Finite Element Implementation

Analytical solutions can be worked out for some particular boundary value problems
for the linearized elastic micromorphic continuum. They can be used to check the
Finite Element implementation presented in this work. An example is given here for
an infinite strip in direction 1 and with 0 ≤ x2 ≤ L, L being the thickness of the strip.
We look for displacement and microdeformation fields of the form:

u = u2(x2) e2, p = p11(x2) e1 ⊗ e1 + p22(x2) e2 ⊗ e2 (4.1)

with respect to a Cartesian orhonormal basis (e1, e2, e3). As a result the non vanishing
components of the strain measures are

ε22 = u′
2, ε11 = −p11, ε22 = u′

2 − p22 ,

K112 = p′
11, K222 = p′

22 , (4.2)

where the prime indicates differentiation with respect to the x2 variable. The corre-
sponding non–vanishing stress components follow from application of the linearized
elasticity constitutive (4.27):

σ11 = λ̂u′
2 + g1(u′

2 − p11 − p22) − 2g1 p11,

σ22 = (λ̂ + 2μ̂)u′
2 + g1(u′

2 − p11 − p22) + 2g1(u′
2 − p22) ,

σ33 = λ̂u′
2 + g1(u′

2 − p11 − p22) ,

s11 = g1u′
2 + b 1(u′

2 − p11 − p22) − (b 2 + b 3)p11,

s33 = g1u′
2 + b 1(u′

2 − p11 − p22) ,

s22 = (g1 + 2g2)u′
2 + b 1(u′

2 − p11 − p22) + (b 2 + b 3)(u′
2 − p22) . (4.3)

In the special case (4.29), the only non–vanishing components of the hyperstress
tensors are

S112 = Ap′
11, S222 = Ap′

22 . (4.4)

The stress tensors must fulfill the linearized balance equation of momentum and
generalized moment of momentum (4.23) which reduce here to

σ ′
22 + s′

22 = 0, S′
112 + s11 = 0, S′

222 + s22 = 0 . (4.5)

These equations lead to the following linear system of differential equations for the
unknowns (u2, p11, p22):

0 = λ̄u′′
2 − b 1 p′

11 − b p′
22 ,

0 = Ap′′
11 + b 1u′

2 − b p11 − b 1 p22 ,

0 = Ap′′
22 + bu′

2 − b 1 p11 − b p22 , (4.6)
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Fig. 5 Displacement and
microdeformation profiles
along the width of an infinite
strip subjected to a prescribed
microdeformation p2 = 0.01
at x2 = 10 mm. This test is
used in the validation
procedure of the Finite
Element implementation of
linear micromorphic elasticity.
The used material parameters
are given by (5.3)

where the following notations have been introduced:

b = b 1 + b 2 + b 3, λ̄ = λ̂ + 2μ̂ + 2g1 + 4g2 + b ,

b 1 = g1 + b 1, b = g1 + 2g2 + b .

When the displacement component u2 is eliminated from the system (4.6), we get

0 = Ap′′′
11 − Bp′

11 − Cp′
22 = 0 ,

0 = Ap′′′
22 − Dp′

11 − Dp′
22 = 0 , (4.7)

where the following notations were introduced:

B = 1

A

(
b − b

2
1

λ

)
, C = 1

A

(
b − b

2

λ

)
, D = 1

A

(
b 1 − b b 1

λ

)
. (4.8)

There exists then a linear combination p of p11 and p22 such that

p′′′ = ω2 p′ , (4.9)

provided that

ω4 − (B + C) ω2 − C2 = 0 , (4.10)

which admits in general a single positive root. The solution of the system (4.6) is
then a linear combination of cosh(ωx2) and sinh(ωx2) functions. The integration
constants are determined by the proper boundary conditions. The Fig. 5 gives
the functions u2(x2), p11(x2), p22(x2) over the segment [0, L] corresponding to the
following boundary conditions:

u2(0) = u2(L) = 0, p11(0) = p11(L) = 0, p22(0) = 0, p22(L) = p0 (4.11)

The set of elastic constants used for this example is given by (5.3). The particular case
L = 10 mm, p0 = 0.01 is illustrated in Fig. 5.
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