
Cambridge University Press
978-1-107-15029-4 — Unsteady Flow in Open Channels
Jurjen A. Battjes , Robert Jan Labeur 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Unsteady Flow in Open Channels

From river floods and tides, to systems for drainage and distribution of water, flows in open

channels affect the daily lives of many people. Practitioners in water engineering rely on a

thorough understanding of these flows in order to safeguard our habitat, while at the same

time sustaining the water environment.

Unsteady Flow in Open Channels provides a coherent approach to the analyses and

modelling of various types of unsteady flow, highlighting their similarities and differences.

It presents a unified framework, using the relative roles of inertia and resistance to

classify the different types of unsteady flow in environmental water systems. The link

between analytical approaches and numerical modelling is emphasized – in particular,

demonstrating how high-level computer languages, such as Python, can be used to solve

advanced problems.

Every major topic in the book is accompanied by worked examples illustrating

the theoretical concepts. Practical examples, showcasing inspiring research and engi-

neering applications from the past and present, provide insight into how the theory

developed. The book is also supplemented by a range of online resources, available at

www.cambridge.org/battjes, including problem sets and computer codes. A solutions

manual is also available for instructors. This book is intended for students and professionals

working in the field of environmental water systems, in areas such as coasts, rivers,

harbours, drainage, and irrigation canals.

Jurjen Battjes is Emeritus Professor at Delft University of Technology. Now retired,

Professor Battjes had a long career in university teaching and research in the field of fluid

mechanics. He taught courses in modelling, introductory fluid mechanics, unsteady flow in

open channels and wind-generated waves, the latter being his major research topic. He has
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Deltaworks in The Netherlands. Professor Battjes has received several prizes and awards,

including the International Coastal Engineering Award of the American Society of Civil

Engineers.

Robert Jan Labeur is Assistant Professor at Delft University of Technology. He teaches vari-

ous courses in environmental fluid mechanics. His research involves numerical modelling

of environmental flows, water-borne transport processes and morphology, in particular the
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Preface

This book grew out of lectures on unsteady flow in open channels in the Civil Engineering

Department of the Delft University of Technology for senior BSc students and first-

year MSc students in hydraulic and coastal engineering, water resources management,

hydrology and sanitary engineering. It deals with gradually varying, unsteady flows, or

long waves, in natural channels such as rivers, estuaries and tidal channels, as well as man-

made canals for various purposes such as drainage and irrigation systems and shipping.

Most existing books on open channel flow deal mainly with steady flows, unsteady

flows typically being diverted to a single chapter. In practice, unsteady flows are the

rule rather than the exception. Therefore, a unified introduction was deemed necessary,

in which the unsteadiness and the important associated notion of wave propagation are

essential ingredients from the start. The intended readership consists of students in the

above-mentioned disciplines as well as practitioners.

Subject

The subject of this book is the mathematical modelling of gradually varying unsteady

flows, or long waves, in open channels. Various classes of long waves are distinguished,

depending on their origin and the associated time scale, varying from the relatively rapid

translatory waves to the sluggish flood waves in lowland rivers. A chapter on steady flow

summarizes some relevant results within this subclass. Transport of dissolved or suspended

matter in open channels is briefly dealt with as well. Lastly, the numerical modelling of flow

in conduits is covered in a separate chapter.

Pressurized flow in pipelines falls formally outside the scope of this book, but it

is included nonetheless because pipe flow often is an integral part of water transport

systems, and the mathematical equations describing pressurized flow and those describing

open channel flow are quite similar. For these reasons, a summary is presented in

Appendix A.

Aim

This book offers a unified presentation of the mathematical modelling of various classes

of unsteady flows that can be expected in the context of design and operation of

xv
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xvi Preface

hydraulic engineering works in tidal areas, estuaries, rivers, canals etc., e.g. dredging

or the construction and operation of control structures or dams. The engineer should

be able to foresee consequences of the works being designed, both qualitatively and

quantitatively. This requires insight into these flows and the ability to schematize them,

quantify them through mathematical modelling and computations and interpret the results.

The achievement of these objectives is the primary aim of this book.

In view of the above, the more specific aims of this book can be summarized as follows:

• to provide qualitative knowledge of various classes of unsteady flow phenomena in open

channels that are important in engineering practice

• to provide insight into the relative importance of various mechanisms in the dynamics

of these flows

• to explain the physics of shallow-water wave propagation

• to stimulate an attitude of making a (qualitative) problem analysis including the

estimation of relevant effects

• to offer a unified, systematic overview of mathematical approximations and solution

methods suited to various categories of open channel flow

• to enable the reader to develop the ability to make schematizations and to perform

approximative computations for the flow phenomena considered

• to develop the ability to code algorithms for the computation of unsteady open-channel

flows

Approach

A key characteristic of this book is its emphasis on the development of physical insight.

This is approached through the presentation of simplified models of the principal classes

of flow considered and the corresponding analytical solutions, since these show explicitly

the effects of the major parameters involved.

Following the derivation of the basic one-dimensional equations for long waves (the so-

called shallow-water equations), distinct classes of waves are presented and discussed. For

each of these, order-of-magnitude relations between the different physical processes are

derived, including the boundary resistance relative to the inertia. In fact, the latter ratio is

used as the ordering principle for the remainder of the book, the successive chapters dealing

with a class of flows of increasing relative resistance, going from translatory waves with

negligible resistance to friction-dominated flood waves in lowland rivers.

In each of these chapters, the presentation proceeds from a qualitative discussion, via the

introduction of appropriate simplifications of the momentum equation, to the development

of a quantitative mathematical model. Analytical solutions are presented because these are

optimally suited to the development of physical insight. The aim in these chapters is not to

develop models of high quantitative accuracy. This is done in a final chapter, exclusively

devoted to numerical modelling.
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xvii Preface

In view of its importance, understanding of the notion of wave propagation is developed

gradually. A qualitative description of the propagation of low frictionless translatory waves

in prismatic conduits prepares the way to the derivation of the corresponding general

linear wave equation. Subsequently, these restrictions are gradually relaxed by considering

variations in channel cross section, allowing finite wave heights, and incorporating friction.

The method of characteristics is introduced next to provide added understanding as well as

a formal mathematical framework for quantitative evaluations.

The practical relevance of the developed concepts is demonstrated with examples from

inspiring engineering cases (such as the enclosure of the previous Zuiderzee in The

Netherlands) and captivating natural phenomena (e.g. tidal bores). Field observations and

some laboratory data are presented for a quantitative comparison with the theory.

Worked-out examples are presented for purposes of illustration, to provide more

understanding and to aid in the ability to apply the theory. Each chapter ends with a set

of Problems.

Layout

Chapter 1 opens with a brief description of the approach to the mathematical modelling

of unsteady flow in open channels. This is followed by a presentation of the basic

equations for these flows, which are the starting point for the analysis and modelling of

various categories of long waves in the following chapters. Chapter 2 describes several

characteristic long-wave phenomena qualitatively and presents a quantitative analysis of

their major characteristics, making visible which processes are dominant and which ones

are relatively weak in the various categories of long waves.

The notion of wave propagation with neglect of the effects of resistance is developed in

Chapters 3 and 4, followed by the introduction of the powerful method of characteristics

in Chapter 5.

Chapters 6–8 present suitable mathematical approximations for several classes of long

waves. Corresponding solution techniques and solutions are presented as well. Harmonic

motions are considered in Chapter 6 for standing oscillations in basins and in Chapter 7

for propagation with friction, mainly aimed at tidal propagation, in which resistance is

important but not dominant. Flood waves in lowland rivers, in which inertial effects can be

neglected relative to resistance, are the subject of Chapter 8.

Chapter 9 gives a brief summary of the modelling of steady flows, again in the order of

increasing slowness, viz. rapidly varying steady flow through control structures, gradually

varying steady flows (backwater curves) and finally uniform flow, which in essence is a

summary of expressions for boundary resistance. Chapter 10 presents an introduction to

the modelling of transport processes. Principles of numerical modelling of unsteady flows

in open channels are dealt with in Chapter 11.

Lastly, Appendix A covers pressurized flow in pipes. A summary of equations is

presented in Appendix B.
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xviii Preface

Prior Knowledge

The treatment of the various subjects relies on prior knowledge of basic fluid mechanics
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Preface

This book grew out of lectures on unsteady flow in open channels in the Civil Engineering
Department of the Delft University of Technology for senior BSc students and first-
year MSc students in hydraulic and coastal engineering, water resources management,
hydrology and sanitary engineering. It deals with gradually varying, unsteady flows, or
long waves, in natural channels such as rivers, estuaries and tidal channels, as well as man-
made canals for various purposes such as drainage and irrigation systems and shipping.

Most existing books on open channel flow deal mainly with steady flows, unsteady
flows typically being diverted to a single chapter. In practice, unsteady flows are the
rule rather than the exception. Therefore, a unified introduction was deemed necessary,
in which the unsteadiness and the important associated notion of wave propagation are
essential ingredients from the start. The intended readership consists of students in the
above-mentioned disciplines as well as practitioners.

Subject

The subject of this book is the mathematical modelling of gradually varying unsteady
flows, or long waves, in open channels. Various classes of long waves are distinguished,
depending on their origin and the associated time scale, varying from the relatively rapid
translatory waves to the sluggish flood waves in lowland rivers. A chapter on steady flow
summarizes some relevant results within this subclass. Transport of dissolved or suspended
matter in open channels is briefly dealt with as well. Lastly, the numerical modelling of flow
in conduits is covered in a separate chapter.

Pressurized flow in pipelines falls formally outside the scope of this book, but it
is included nonetheless because pipe flow often is an integral part of water transport
systems, and the mathematical equations describing pressurized flow and those describing
open channel flow are quite similar. For these reasons, a summary is presented in
Appendix A.

Aim

This book offers a unified presentation of the mathematical modelling of various classes
of unsteady flows that can be expected in the context of design and operation of

xv
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xvi Preface

hydraulic engineering works in tidal areas, estuaries, rivers, canals etc., e.g. dredging
or the construction and operation of control structures or dams. The engineer should
be able to foresee consequences of the works being designed, both qualitatively and
quantitatively. This requires insight into these flows and the ability to schematize them,
quantify them through mathematical modelling and computations and interpret the results.
The achievement of these objectives is the primary aim of this book.

In view of the above, the more specific aims of this book can be summarized as follows:

• to provide qualitative knowledge of various classes of unsteady flow phenomena in open
channels that are important in engineering practice

• to provide insight into the relative importance of various mechanisms in the dynamics
of these flows

• to explain the physics of shallow-water wave propagation
• to stimulate an attitude of making a (qualitative) problem analysis including the

estimation of relevant effects
• to offer a unified, systematic overview of mathematical approximations and solution

methods suited to various categories of open channel flow
• to enable the reader to develop the ability to make schematizations and to perform

approximative computations for the flow phenomena considered
• to develop the ability to code algorithms for the computation of unsteady open-channel

flows

Approach

A key characteristic of this book is its emphasis on the development of physical insight.
This is approached through the presentation of simplified models of the principal classes
of flow considered and the corresponding analytical solutions, since these show explicitly
the effects of the major parameters involved.

Following the derivation of the basic one-dimensional equations for long waves (the so-
called shallow-water equations), distinct classes of waves are presented and discussed. For
each of these, order-of-magnitude relations between the different physical processes are
derived, including the boundary resistance relative to the inertia. In fact, the latter ratio is
used as the ordering principle for the remainder of the book, the successive chapters dealing
with a class of flows of increasing relative resistance, going from translatory waves with
negligible resistance to friction-dominated flood waves in lowland rivers.

In each of these chapters, the presentation proceeds from a qualitative discussion, via the
introduction of appropriate simplifications of the momentum equation, to the development
of a quantitative mathematical model. Analytical solutions are presented because these are
optimally suited to the development of physical insight. The aim in these chapters is not to
develop models of high quantitative accuracy. This is done in a final chapter, exclusively
devoted to numerical modelling.
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In view of its importance, understanding of the notion of wave propagation is developed
gradually. A qualitative description of the propagation of low frictionless translatory waves
in prismatic conduits prepares the way to the derivation of the corresponding general
linear wave equation. Subsequently, these restrictions are gradually relaxed by considering
variations in channel cross section, allowing finite wave heights, and incorporating friction.
The method of characteristics is introduced next to provide added understanding as well as
a formal mathematical framework for quantitative evaluations.

The practical relevance of the developed concepts is demonstrated with examples from
inspiring engineering cases (such as the enclosure of the previous Zuiderzee in The
Netherlands) and captivating natural phenomena (e.g. tidal bores). Field observations and
some laboratory data are presented for a quantitative comparison with the theory.

Worked-out examples are presented for purposes of illustration, to provide more
understanding and to aid in the ability to apply the theory. Each chapter ends with a set
of Problems.

Layout

Chapter 1 opens with a brief description of the approach to the mathematical modelling
of unsteady flow in open channels. This is followed by a presentation of the basic
equations for these flows, which are the starting point for the analysis and modelling of
various categories of long waves in the following chapters. Chapter 2 describes several
characteristic long-wave phenomena qualitatively and presents a quantitative analysis of
their major characteristics, making visible which processes are dominant and which ones
are relatively weak in the various categories of long waves.

The notion of wave propagation with neglect of the effects of resistance is developed in
Chapters 3 and 4, followed by the introduction of the powerful method of characteristics
in Chapter 5.

Chapters 6–8 present suitable mathematical approximations for several classes of long
waves. Corresponding solution techniques and solutions are presented as well. Harmonic
motions are considered in Chapter 6 for standing oscillations in basins and in Chapter 7
for propagation with friction, mainly aimed at tidal propagation, in which resistance is
important but not dominant. Flood waves in lowland rivers, in which inertial effects can be
neglected relative to resistance, are the subject of Chapter 8.

Chapter 9 gives a brief summary of the modelling of steady flows, again in the order of
increasing slowness, viz. rapidly varying steady flow through control structures, gradually
varying steady flows (backwater curves) and finally uniform flow, which in essence is a
summary of expressions for boundary resistance. Chapter 10 presents an introduction to
the modelling of transport processes. Principles of numerical modelling of unsteady flows
in open channels are dealt with in Chapter 11.

Lastly, Appendix A covers pressurized flow in pipes. A summary of equations is
presented in Appendix B.
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Prior Knowledge

The treatment of the various subjects relies on prior knowledge of basic fluid mechanics
and an understanding of ordinary and partial differential equations and complex algebra.

Awareness of civil engineering will help in the understanding of the book, but this is not
considered essential. The book includes some worked examples using simple computer
code (written in Python) for which basic programming skills will be useful. These may
also be learned, however, by following along with the examples.

Course Plan

Teaching all of the material covered in the book will take some 24–36 lectures of 1 1
2

teaching hours each, depending on the depth at which the various topics are treated and the
expected self-study effort. When scheduled during a full semester, the course will typically
take two lectures per week, while an additional 3–4 hours will be required weekly for self-
study. Including exam preparation (2 days), the total work load for the student will amount
to about 170 hours.

Chapters 1–8 are considered the backbone of the course. Related topics are dealt with
in Chapters 9–11. The latter are often part of other, more dedicated, courses, in which
case they can be omitted from the course plan. This will reduce the total working load to
about 120 hours. The reduced course would also fit nicely into a half-semester schedule
consisting of three lectures a week and 5–6 hours of self-study.

For self-study rehearsal every chapter concludes with a series of Problems for which
a solutions manual is available separately. General solution strategies are explained in the
worked examples preceding each Problems section. A series of digital exercises is available
for the reader to become familiar with the concepts of the corresponding topic and to
practise, progressively, the required skills. They also include so-called diagnostic tests, to
assess one’s preparedness for the exam.
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The mathematical models for the considered long-wave categories presented in this book
are classical (with a few exceptions for an extension of the theory). Thus, no references
are made to individual contributors. Instead, we refer to the textbooks on the subject listed
below, to which we are much indebted. Only in cases of very specific results, and in cases
where results bear the name of the originator, have individual references been given.

Chaudry, M. H. 1993. Open-Channel Flow. Prentice Hall.

French, R. H. 1985. Open-Channel Hydraulics. McGraw-Hill.

.001
18:33:28,



xix Preface

Henderson, F. M. 1966. Open Channel Flow. Macmillan.

Sturm, T. W. 2010. Open Channel Hydraulics. McGraw-Hill.

Ven Te Chow 1959. Open-Channel Hydraulics. McGraw-Hill.

Supplementary Materials

The book comes with a collection of supplementary materials, which is available online.
Included are a solutions manual for the Problems at the end of each chapter, a series of
digital tests (for use in a MapleTA environment), and some Python scripts for carrying out
the computations and Problems of Chapter 11.

Acknowledgements

The authors thank the reviewers of the proposal for this book, as well as the editors at
Cambridge University Press, for their helpful suggestions. Professor Ad Reniers and Dr.
Marcel Zijlema are gratefully acknowledged for critically reading parts of the manuscript
and for their constructive criticisms.

Jurjen Battjes
Robert Jan Labeur

.001
18:33:28,



.001
18:33:28,



1 Basic Equations for Long Waves

This chapter presents the derivation of the basic equations that we will use in analyses and
calculations of unsteady free-surface flows in natural or man-made channels, e.g. tidal or
fluvial channels, shipping canals and irrigation canals. We deal with a mass balance and a
momentum balance integrated across the entire flow cross section, assuming a hydrostatic
pressure distribution.

1.1 Approach

The principal subject of this book is the class of unsteady free-surface flows of water with a
characteristic length scale that is far greater than the depth, the so-called long waves. Tides,
storm surges and flood waves in rivers provide good examples of this category (contrary
to ship waves or wind-generated waves, whose lengths are usually not large or even small
compared with the depth).

We restrict ourselves to flows in relatively narrow, weakly curved conduits such as tidal
channels and rivers, in which the main flow direction is determined by the geometry of
the boundary, which is assumed to be given beforehand (excluding morphological changes
such as meandering of rivers). In these cases, the bulk flow direction is known so that only
the flow intensity (the discharge, say) is to be determined, in addition to the water surface
elevation. A typical area of application, a long, slowly winding river reach with lateral side
basins, is shown in Figure 1.1.

As expressed by their name, long waves are characterized by length dimensions that far
exceed the depths. This implies that the curvature of the streamlines in the vertical plane
is negligible, for which reason we will assume a hydrostatic pressure distribution in the
vertical. This greatly simplifies the schematization and the calculations.

In bends, the flow is forced to change direction through a lateral variation of the water
level, being higher at the outer bank and lower at the inner bank. This is essential in detailed
computations of the spiral flow in bends, but it is irrelevant for the large-scale computations
of longitudinal variations with which we are concerned. So we will ignore lateral variations
in surface elevation. The height of this level above the adopted reference plane z = 0 is
designated as h. This quantity is a function of the downstream coordinate s (measured
along the axis of the conduit) and the time t, or h = h(s, t).

Because the water level is assumed not to vary within the cross section, the same applies
to the downstream pressure gradient driving the flow. Therefore, instead of working with
the point values of the velocities within each cross section, it is feasible to work with

1

.002
18:33:35,



2 Basic Equations for Long Waves

Fig. 1.1 Reach of the river Rhine in The Netherlands (Pannerdens Kanaal) with groyne fields and laterally connected side
basins; from, https://beeldbank.rws.nl, Rijkswaterstaat / Bart van Eyck

cross-sectionally integrated flow velocities (i.e. the total volume flux or flow rate, hereafter
referred to as the discharge Q, also for purely oscillatory flows).

Summarizing, we have two dependent variables (h and Q) that have to be determined as
functions of the longitudinal coordinate and time:

h = h(s, t) and Q = Q(s, t)

This requires a so-called one-dimensional flow model, typified by the dependence on only
one space coordinate.

This chapter presents the derivation of the basic equations that we will use in the analyses
and calculations in the following chapters. We deal with a mass balance and a momentum
balance integrated across the entire flow cross section.

1.2 Schematization of the Cross Section

As its name implies, a one-dimensional mathematical model for flow in open channels
contains only one space coordinate, the streamwise coordinate s. As a consequence, the
geometric description of the channel cross sections is possible only in terms of bulk
parameters applicable to the entire cross section. The variation of the bed elevation and
the bed roughness within the cross sections cannot be resolved because that would require
a lateral coordinate.

The characterization of the cross section requires a distinction between the transport or
conveyance of water, on the one hand, and its storage, on the other. There are situations
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3 1.3 Mass Balance

Fig. 1.2 Open conduit: cross section with groynes

where only a part of the wetted cross section contributes significantly to the conveyance.
A typical example is provided by a river with a sequence of groynes normal to the flow,
where the spaces between the groynes do contribute to the storage capacity but – in the
case of low or moderate water levels – not to the conveyance capacity. In those cases it is
necessary to distinguish between these two functions.

We designate the area, the width of the free surface and the mean depth of the
conveyance cross section as Ac, Bc and d, respectively, where d = Ac/Bc. The wetted
perimeter is P. See Figure 1.2. Storage takes place through a rise of the free surface, also
between the groynes, so that in this respect the total width of the free surface (B) is the
relevant parameter. It will be clearly indicated where we use the distinction between the
total cross section and that of the conveyance part.

The bed elevation above the horizontal reference plane z = 0, averaged over the
conveyance cross section, is denoted as zb. The elevation of the free surface above the
reference plane is designated as h. As stated above, and justified in Section 1.4.1, it is
assumed to be laterally uniform at all times.

We use a length coordinate s along the streamwise axis that may be weakly curved and
gently sloping. The longitudinal slope of the bed (tan β), if nonzero, is assumed to be very
small, allowing the approximations tan β ≈ β, sin β ≈ β and cos β ≈ 1.

1.3 Mass Balance

Consider the mass in a control volume consisting of a slice of a water course with length
�s, containing the entire wet area of the cross section, from bed to free surface. See
Figure 1.3.

Because of the free surface, pressure variations in environmental water systems are
very limited. Therefore, we can neglect pressure-induced density variations. The water can
then be considered as incompressible. In that case, the mass balance reduces to a volume

.002
18:33:35,



4 Basic Equations for Long Waves

Fig. 1.3 Open conduit: longitudinal transect

balance, also called the continuity equation. To derive it, we consider the change in volume
of the water in the control volume in a short time interval from t = t1 to t = t2 = t1 + �t.

The volume flux or discharge Q in a channel is defined as the volume of water passing a
given cross section in a unit of time:

Q =
∫ ∫

us dA = UAc (1.1)

in which us is the streamwise velocity at a point and U its value averaged over the
conveyance cross section. The net influx of volume of water into the control volume, in the
considered short time interval with duration �t, is

(Q1 − Q2) �t = −�Q �t (1.2)

Suppose this is positive, i.e. there is more inflow than outflow. The difference is stored in
the control volume, giving rise to an increase of the stored volume equal to �V = �A�s
(see Figure 1.3).

Equating this storage to the net inflow yields �A �s = −�Q �t. Dividing by �t and
�s, and taking the limit for �t → 0 and �s → 0, yields

∂A
∂t

+ ∂Q
∂s

= 0 (1.3)

The storage is effected through a rise of the free surface by an amount �h. Using the
total width B of the free surface (not only that of the conveyance area) gives �A = B�h
(Figure 1.3), with which Eq. (1.3) can be written as

B
∂h
∂t

+ ∂Q
∂s

= 0 (1.4)

For given geometry of the cross section, which may vary with the downstream location s,
the free-surface width B varies with time in a known manner through the time variation
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5 1.4 Equations of Motion

of h: B = B (s, h (s, t)). Therefore, Eq. (1.4), expressing mass conservation for the water
(considered incompressible), is our first equation linking variations of the two unknowns
Q and h. The second one, to be derived below, expresses momentum conservation.

The continuity equation (1.4) has been derived on the basis of a storage capacity that is
continuously distributed along the length of the water course. However, it is not uncommon
that there are lateral basins in communication with the main channel, such as harbours,
remnants of previous meanders of a river, or dredged sand pits. These provide a discrete
storage capacity that has to be taken into account in the overall mass balance. Some such
basins can be seen in Figure 1.1.

Assuming that these basins are small compared with the length over which the exterior
water level varies, the free surface inside can be assumed to be horizontal at all times,
so that the surface elevation is a function of time only, written as hb(t). Moreover, if
the entrance is sufficiently short and wide to allow an unobstructed in- and outflow, the
water level in the basin will equal the exterior water level. Chapter 6 elaborates on these
approximations in detail in the context of tidal basins.

The storage that can take place in a side basin can be incorporated in the continuity
equation (1.4) by a local enlargement of the storage width B over a short longitudinal
interval of the channel with length �s, containing the connection with the basin, as
sketched in Figure 1.4. In order to obtain a correct representation of the total storage
through the continuity equation on this interval, B must locally be increased with Ab/�s.

1.4 Equations of Motion

The formulation of Newton’s second law for a flowing mass of water leads to a so-called
equation of motion, which expresses a balance between inertia, forcing and resistance,
where each of these in turn can consist of a number of contributions. It is important to
be aware of this and to check the meaning of the various terms when writing or reading

Fig. 1.4 Storage basin connected to a river reach
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6 Basic Equations for Long Waves

an equation of motion. It is also important for a good understanding of the phenomena
involved to check whether one or more terms is negligible compared with another (in an
equation consisting of three or more terms). We discuss this extensively in Chapter 2.

We will initially ignore flow resistance and start from the Euler equations for the
acceleration of a fluid particle of an ideal (inviscid) fluid of constant density (ρ) under the
action of gravity with gravitational acceleration g. The derivation of the Euler equations
can be found in elementary textbooks on fluid mechanics and is not repeated here.

1.4.1 Euler Equations

We present the Euler equations in so-called natural coordinates, defined as follows. The
streamwise coordinate is s; the normal coordinate is n, which lies in the local plane of
curvature of the flow, pointing to the center of curvature; and the bi-normal coordinate
is b, which is perpendicular to the plane of the local curvature (the so-called osculation
plane); see Figure 1.5. For the nearly horizontal flows considered here, as in rivers and
tidal channels, the bi-normal is nearly vertical; in fact, we will use the vertical coordinate
z as the bi-normal coordinate.

Designating the respective particle velocity components as us, un and uz, and the radius of
curvature as r, and treating g and ρ as constants, the Euler equations can be written as

Dus
Dt

= ∂us
∂t

+ us
∂us
∂s

= −g
∂(z + p/ρg)

∂s
(1.5)

Dun
Dt

= ∂un
∂t

+ u2
s
r

= −g
∂(z + p/ρg)

∂n
(1.6)

Duz
Dt

= ∂uz
∂t

= −g
∂(z + p/ρg)

∂z
(1.7)

The total derivatives Dus/Dt etc. signify the acceleration of a fluid particle following its
motion, and p is the fluid pressure. The right-hand sides represent the forcing per unit
mass due to gravity and pressure gradients, often expressed as the gradient of the so-called

Fig. 1.5 Natural coordinate system
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7 1.4 Equations of Motion

piezometric head hp, defined as hp ≡ z + p/ρg. The Euler equations in three dimensions
form the basis for the computation of rapidly varying flows.

The assumption of long waves implies that the vertical accelerations are neglected. It
then follows from Eq. (1.7) that in this approximation the piezometric head is considered
to be uniform in the vertical, or that the vertical pressure distribution is hydrostatic. The
validity of this approximation is investigated quantitatively in Section 2.2.

The value of hp at the free surface, and therefore at all points in the vertical, is (h +
patm/ρg), in which h is the height of the free surface above the reference level z = 0,
and patm is the atmospheric pressure at the air–water interface. Using this, and neglecting
horizontal variations of the atmospheric pressure for the time being, the Euler equations in
the longitudinal and lateral directions can be written as

∂us
∂t

+ us
∂us
∂s

= − g
∂h
∂s

(1.8)

∂un
∂t

+ u2
s
r

= −g
∂h
∂n

(1.9)

Note that the combined forcing by gravity and pressure gradients is now expressed in
terms of the slope of the free surface, and is constant over the vertical. This is illustrated in
Figure 1.6, showing a slice of water and the pressure forces acting on both of its sides. At a
given elevation, the slope of the water surface gives rise to different pressures at both sides
of the slice, but in the case of hydrostatic pressure, the difference δp is constant over the
vertical.

Regarding Eq. (1.9), for the lateral motion, it is relevant to note that throughout this book
we consider flows in relatively narrow conduits, so that the flow direction at each point is
constant, from which it follows that ∂un/∂t = 0. Bends force the flow to change direction.
The associated centripetal acceleration u2

s /r is forced by a lateral slope of the free surface,
the latter being higher at the outside of the bend and lower at the inside. These lateral
variations in the height of the free surface are crucial in detailed considerations of the spiral
flow in bends, but their net effect on the large-scale streamwise motion, with which we are

Fig. 1.6 Hydrostatic pressure and net horizontal forcing
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8 Basic Equations for Long Waves

concerned, is ignored. This implies that the forcing is considered uniform in the entire cross
section and that only streamwise variations in surface elevation are taken into account.
Therefore, in the remainder we ignore Eq. (1.9) and continue with Eq. (1.8), considering h
to vary with t and s only.

So far we have considered the particle acceleration at a point of the cross section. In order
to arrive at a one-dimensional model, we need cross-sectionally integrated or averaged
values, as we did for the mass balance. The forcing is uniform in the cross section and,
still neglecting resistance and effects of flow curvature in bends, so are the local particle
accelerations and velocities. Therefore, in this approximation, Eq. (1.8) also applies to the
cross-sectionally averaged flow velocity U, simply by replacing us with U:

DU
Dt

= ∂U
∂t

+ U
∂U
∂s

= − g
∂h
∂s

(1.10)

1.4.2 Flow Resistance

Our next task is to introduce flow resistance, which was left out of consideration in the
above. In the context of a one-dimensional model, we consider boundary resistance to the
bulk of the flow through the (conveyance) cross section, rather than internal flow resistance.

Let �W be the boundary resistance experienced by the water in the slice considered
in Figure 1.3, with length �s. Its value per unit area, averaged over the wetted boundary
of the conveyance cross section, has the nature of a shear stress, written as τb (although,
as we will see, processes other than local shear stress can contribute to the resistance):
τb = �W/(P�s), in which P is the length of the wetted perimeter of the conveyance cross
section.

The resistance per unit mass, �W/ (ρAc�s), can be written as τb/ρR, in which R =
Ac/P, the so-called hydraulic radius of the conveyance cross section. For shallow, wide
cross sections, the hydraulic radius is approximately equal to the laterally averaged depth
of flow: R ≈ d.

Adding the resistance force per unit mass (i.e. −τb/ρR) to the right-hand side of
Eq. (1.10) yields the following balance between inertia, forcing and resistance:

DU
Dt

+ g
∂h
∂s

+ τb
ρR

= 0 (1.11)

For future reference, we write this equation in an alternative form as

DU
Dt

= g(is − if) (1.12)

in which is is the free-surface slope, defined as

is ≡ − ∂h
∂s

(1.13)
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9 1.4 Equations of Motion

and if is the so-called friction slope, defined as

if ≡ τb
ρgR

(1.14)

Eq. (1.12) captures the flow dynamics in a nutshell, showing at a glance that the fluid
acceleration results from an imbalance between the driving force and the resistance. For
steady, uniform flow, these are in balance.

Reverting to Eq. (1.11), with the expanded form of the acceleration, we obtain

∂U
∂t

+ U
∂U
∂s

+ g
∂h
∂s

+ τb
ρR

= 0 (1.15)

This equation seems to have been first derived by De Saint-Venant (1871), although
his name is usually associated with a similar equation in terms of the discharge Q; see
Eq. (1.19) below.

In order to complete the formulation, we need a constitutive relationship between the
resistance and the flow velocity. It is usually assumed that the resistance varies with the
average velocity U as in uniform, steady turbulent flows. The flows of interest have high
Reynolds numbers, typically of the order of 106, so that viscous effects can be ignored in
the modelling, and the resistance varies in proportion to the square of the flow velocity, as in

τb = cfρ|U|U (1.16)

in which cf is a dimensionless resistance coefficient. Methods of its estimation are dealt
with in Section 9.3, on uniform flow. Typical values are in the range of 0.002–0.006. We
will often use 0.004 in numerical examples.

The friction slope corresponding to Eq. (1.16) is

if = cf
|U|U
gR

(1.17)

Substituting Eq. (1.16) in to Eq. (1.15) yields

∂U
∂t

+ U
∂U
∂s

+ g
∂h
∂s

+ cf
|U|U

R
= 0 (1.18)

which completes the derivation of the acceleration equation for the averaged flow velocity
U including boundary resistance.

In the derivation of Eq. (1.18) it has been assumed that the resistance is evenly
distributed over the wetted perimeter of the cross section. This is a good approximation
if the variations of depth, bed roughness and flow velocities within a cross section are
moderate, but less so if they vary significantly.

In periods of high water in rivers, for example, the flood plains are covered and
contribute to storage as well as conveyance, but the depth of flow over the flood plains
is much less than it is in the main channel, and the resistance is usually much greater (due
to vegetation, buildings etc.). Similar situations occur in estuaries with their main channels
and shoals and in tidal channels bordered by tidal flats. These lateral variations in a cross
section can be accounted for in the schematization by dividing the cross section into two
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10 Basic Equations for Long Waves

or more subsections, each of them with its own characteristic width, depth and roughness.
(An application of this for tidal propagation is presented in Section 7.4.2.)

1.4.3 Momentum Balance

Since the discharge Q is one of our two primary variables (h being the other one), we
will now derive a momentum balance in terms of Q. For algebraic simplicity we will
temporarily make no distinction between the total cross section and the conveyance part.

We could derive the momentum balance from Eq. (1.18) by substituting U = Q/Ac,
but that requires several intermediate steps. It is simpler to start afresh by considering
cross-sectionally integrated quantities from the outset, which at the same time allows us to
express the effect of variations of the local particle velocity in a cross section. To this end,
we consider (again) a control volume covering the entire wet cross section, as in Figure 1.3.

The streamwise momentum per unit length is the cross-sectional integral of ρus, which
equals ρQ. The streamwise advection of streamwise momentum through a cross section is
the cross-sectional integral of ρ(us)

2, which is written as αρU2Ac, or αρQ2/Ac, in which
α is a coefficient expressing the effect of the variations of the particle velocity within the
cross section, defined as the cross-sectional average of (us/U)2. Its value is always more
than unity, but the deviations are usually rather small, and α is mostly ignored in practice.
The driving force and the boundary resistance, both per unit mass, are given by the last two
terms of Eq. (1.18).

Collecting the preceding contributions, we finally obtain the balance of streamwise
momentum as follows (dropping the constant mass density ρ):

∂Q
∂t

+ ∂

∂s

(
αQ2

Ac

)
+ gAc

∂h
∂s

+ cf
|Q|Q
AcR

= 0 (1.19)

In some applications, it is necessary to account for effects of the atmosphere on the flow.
This requires additional terms in the momentum balance, shown in Box 1.1.

In the derivation of Eq. (1.19), it was assumed that the entire cross section contributes
to the conveyance, such that A = Ac and B = Bc. If this is not the case, a lateral exchange
flow occurs between the main channel and the flood plains (in the case of river flow),
requiring an additional term in Eq. (1.19), which, if inserted in the left-hand side, is given
by ρU (B − Bc) (∂h/∂t); see Box 1.2.

Box 1.1 Inclusion of atmospheric forcings

In some applications, effects of a variable atmospheric pressure and of wind-induced shear at the free surface
must be taken into account. These influences can be included in Eq. (1.19) by adding patm/ρg to h and by
adding the streamwise component of the wind-induced shear force per unit length at the free surface (to be
divided by ρ) given by τsBc cos ψ , in which Bc is the width of the conveyance cross section, ψ is the angle
enclosed between the wind direction and the direction of the flow, and τs is the wind-induced shear stress at
the free surface: τs = cD ρa W2

10 in which cD is the wind drag coefficient (of order 0.001–0.002), ρa is the air
density, and W10 is the 10-min averaged windspeed at a height of 10 m above the mean water level.
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11 1.5 Summary of the Long-Wave Equations

Box 1.2 Lateral exchange of streamwise momentum

If the storage width B is different from the conveyance width Bc , an additional term must be included in
Eq. (1.19). To see this, consider a river with a main channel bordered by shallow flood plains, which contribute
a negligibly small amount to the conveyance. The total width of the flood plain (summed over both river
banks) is B − Bc . When the water rises, at the rate ∂h/∂ t, water is stored on the flood plain at the rate
(∂h/∂ t) (B − Bc)�s, which is the result of a lateral volume flow from the main channel to the flood
plain. This lateral flow carries streamwise momentum. Let us say that this amounts to ρU per unit volume.
This implies a net lateral outflow of streamwise momentum from the conveyance cross section at a rate
ρU (B − Bc) (∂h/∂ t) per unit length. This comes in addition to the net outflow of streamwise momentum
that results from the streamwise motion, given as ∂

(
αρQ2/Ac

)
/∂s in Eq. (1.19), and so explains the nature

of the additional term noted above.

In practice, this additional term is often ignored because the streamwise velocity at the
transition between the main channel and the shallow flood plain is usually (much) less
than U, the flow velocity averaged over the relatively deep main channel. This is supposed
to hold in particular in the case of flow from the flood plains back into the main channel
(∂h/∂t < 0), it being assumed that this outflowing water carries no streamwise momentum.
In some numerical models, the additional term is taken into account only for rising water
and ignored when the water falls.

It depends on the circumstances whether all contributions to the momentum balance are
important or whether one or two are negligible. In the latter case, the equation is reduced to
a simpler form, allowing approximate solutions for a rough calculation. In general, one can
say that resistance is less and less important as the motions vary more and more rapidly.
On the other hand, inertia becomes negligible when the variations are very slow. These
notions are elaborated in Chapter 2, and they form the basis for the subdivision of our total
subject matter in parts that are treated in separate chapters in the remainder of this book.

1.5 Summary of the Long-Wave Equations

The continuity equation (Eq. (1.4)) and the momentum balance (Eq. (1.19)) together form
the basis for analyses and computations of one-dimensional long-wave phenomena. They
are known as the equations of De Saint-Venant or as the (one-dimensional) shallow-
water equations (because the depth has been assumed to be very small compared with
typical length dimensions). They are repeated here for convenience (dropping α from the
momentum balance):

B
∂h
∂t

+ ∂Q
∂s

= 0 (1.20)

∂Q
∂t

+ ∂

∂s

(
Q2

Ac

)
+ gAc

∂h
∂s

+ cf
|Q|Q
AcR

= 0 (1.21)
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12 Basic Equations for Long Waves

These equations form a coupled set of hyperbolic partial differential equations for the two
unknowns h (water level) and Q (discharge) as functions of location (s) and time (t). The
geometric parameters Ac, R and B as well as the resistance coefficient cf are supposed to be
known functions of location (s), water level (h) and discharge (Q), so that mathematically
speaking they are known, variable coefficients. The set of partial differential equations can
be integrated if proper initial conditions and boundary conditions are provided.

Problems

1.1 What is the discharge through a conduit? What is its dimension?
1.2 Where is storage in free-surface flows taking place (mainly)?
1.3 Derive the volume balance equation for the flow in a river stretch provided with a

sequence of groynes; cast it in differential form.
1.4 Derive the volume balance equation for the flow in a river stretch that is laterally

connected to a basin (i.e. the situation of Figure 1.4).
1.5 Derive the volume balance equation (in differential form) for the flow in a river for

which seepage of water into the subsoil (at a rate of q volume units per unit area of
bottom and per unit time) has to be taken into account.

1.6 Derive an expression for the downstream force per unit volume in a flow with a
sloping free surface.

1.7 Which contributions to the force in Problem 1.6 can be distinguished?
1.8 Check the dimensions of the individual terms in Eq. (1.19).
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2 Classification and Analysis of Long Waves

The category of long waves encompasses different wave types, each with a different
origin and with different dynamics, in the sense that the relative importance of the various
physical processes, as expressed by the different terms in the equation of motion, can vary.
In this chapter we will first give an overview of the various types of long wave and their
generation, and we will verify formally that they can indeed be classified as ‘long’. Next,
we will estimate the relative magnitudes of terms in the equation of motion, which provides
an ordering of wave types based on the importance of inertia relative to the resistance.

2.1 Types of Long Waves

In general, one can say that the faster the flow varies, the more important will be the inertia
relative to the resistance, and the more it will be in balance with the net driving force.
Before dealing with these dynamics we give short descriptions of the origin and typical
characteristics of the different types of long waves:

• translatory waves (transient variations in discharge and water level, usually caused by
operation of controls)

• tsunamis (sea waves generated by subsea earthquakes, volcanic eruptions etc.)
• seiches (standing oscillations in lakes, bays, harbours etc.)
• tides in oceans, shelf seas, estuaries and lowland rivers
• flood waves in rivers

2.1.1 Translatory Waves

As a result of manipulation (or breakdown!) of pumps or valves in the operation of locks,
weirs, evacuation sluices, hydropower plants, etc., variations in discharge (δQ) can occur.
These are accompanied by variations in water surface elevation (δh). Such disturbances
travel as so-called translatory waves into the adjacent reaches of the conduit. The passage
of such wave induces a rise in elevation in the case of an increase in discharge, and a
lowering in the case of a decrease in discharge; see Figure 2.1. The particle velocities in a
translatory wave are in one direction only (either forward or backward), which explains the
name ‘translatory waves’, as opposed to ‘oscillatory waves’, in which the particles move
back and forth.

13
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14 Classification and Analysis of Long Waves

Fig. 2.1 Translatory waves after partial opening of a gate

January / February

Fig. 2.2 Water level records along the river Rhine in The Netherlands during high water of January/February 1995; from the
Department of Public Works, The Netherlands

Figure 2.2 shows water level records at five stations along the river Rhine during the high-
water period of January/February 1995. The record near the city of Amerongen shows
an abrupt lowering of the water level on January 24, which was the result of a negative
translatory wave on the river Rhine that resulted from the raising of a movable weir located
a small distance downstream, in anticipation of the approaching flood waters.

Translatory waves in navigation locks and navigation canals can cause hindrance to
shipping as well as large forces in the mooring lines of moored ships, in some cases
causing breaking. Such effects can be reduced through a more gradual operation of pumps
or valves. We return to this matter in Chapter 5.

2.1.2 Tsunamis

Tsunamis are impulsively generated waves in oceans, shelf seas or (large) lakes, most
commonly due to subsea earthquakes. Subsea volcanic eruptions or landslides are other
possible causes of tsunamis.
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15 2.1 Types of Long Waves

One can distinguish four stages in the life of a tsunami: the generation, the propagation
in relatively deep water from the source region to a coastal region, the enhancement and
deformation in shoaling water, possibly up to breaking, and finally the run-up onto land.

Earthquakes causing tsunamis often occur in the subduction zones along the rims of
tectonic plates. The accompanying sea bed motion has a plus–minus signature, generating a
positive wave (elevation) travelling seaward and a negative wave (a depression) travelling
landward. This is why the leading wave at the ocean side is usually one of elevation. This
was e.g. the case for the Indian Ocean tsunami of December 26, 2004. Locations to the west
of the source region off the Sumatra coast experienced an initial rise of the sea surface, as in
the record shown in Figure 2.3 for a location near Male in the Maldives. In contrast, at the
land side the leading wave is usually one of depression, resulting in an initial withdrawal of
the seawater from the coast, exposing vast stretches of what is normally a subsea bottom.
This should be a warning sign to humans who happen to be present at the site to seek high
ground as fast as they can, but unfortunately it also triggers the curiosity of some, who
venture seaward, unknowingly towards their almost certain death.

Depending on the distance involved, the propagation from the source region to a coastal
area may last several hours, giving time to issue warnings to coastal populations. However,
this is not the case when the source region is relatively close to land, as was the case for
the Indian Ocean tsunami, and for the Tohoku (Japan) tsunami of March 11, 2011.

In deep water, the individual waves in a tsunami wave train are typically a hundred
kilometres or more in length. This fact, combined with the relatively moderate wave
heights offshore, often less than a meter, makes the steepness of tsunami waves in the
deep ocean very low, causing them to pass unnoticed by ships in the deep ocean.

As the tsunami enters water of decreasing depth, the wavelengths shorten, the wave
heights increase and the wave fronts steepen, possibly up to the point of breaking. This
gives the tsunamis their often massive destructive power.

Fig. 2.3 Record of surface elevation measured offshore of Male, Maldives, on December 26, 2004; horizontal scale indicates
time (h), vertical scale indicates surface elevation (m); from Merrifield et al. (2005)
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16 Classification and Analysis of Long Waves

In the fourth and final stage, the tsunami waves may overflow low-lying coastal areas,
causing material damage and deaths, or they may run up against coastal mountain slopes,
locally up to heights in excess of 35 m in the two major tsunamis mentioned above.

2.1.3 Seiches

Oscillations of water or other liquids in a drinking glass, a bathtub or other ‘closed basins’
are easily observable by everyone. They are called ‘standing oscillations’, as opposed to
progressive, oscillatory waves. Similar standing oscillations occur in various natural water
systems and at widely different scales, in closed basins as well as basins that are closed
at one end and open at the other, comparable to an open organ pipe. Such oscillations
have been first systematically observed in Lake Geneva, by Forel (1875), who called them
‘seiches’, a name whose origin is obscure but that has nevertheless been rooted in the
scientific literature ever since, referring to standing oscillations in lakes, harbour basins
and the like.

Seiches are free or natural oscillations; i.e. their periods are for given restoring force
(gravity) determined by the geometry of the system, rather than by external forcing. A
weak periodic forcing may be sufficient to generate a significant response, provided the
excitation contains energy at the natural frequencies of the system. In such cases the system
response is resonant. In this manner, the water in coastal harbour basins can oscillate with
significant amplitude in response to low waves at sea, hardly discernable offshore, which
in turn can be the result of oscillations in wind speed and atmospheric pressure during the
passage of cold fronts (De Jong and Battjes, 2004).

Figure 2.4 gives an example for the port of IJmuiden, located at the North Sea coast
in The Netherlands. The record for the offshore surface elevation in panel (a) shows
minor disturbances, no more than about 0.1 m in height, superimposed on the astronomic
tide. Figure 2.4b shows a similar record in the outer harbour with resonantly enhanced
oscillations, with crest-to-trough heights up to 1.2 m and a period of about 35 min, which
is the longest natural period of the semi-closed outer harbour basin.

As will be seen, friction is usually unimportant for harbour seiches because of their
relatively short period and the large depths in which they occur. The largest contribution
to the damping of harbour seiches is the seaward radiation of energy through the harbour
mouth.

Seiches can have undesirable or even harmful effects. They can be a nuisance to
shipping, and occasionally cause breaking of mooring lines of moored ships. They also
affect the tidal window of passage of deep-draught ships through their influence on the
instantaneous available depth.

In contrast to human-caused translatory waves, nothing can be changed in the cause of
harbour seiches, i.e. the low, long waves incident from the sea (in the case of coastal
harbours or bays) or the atmospheric forcing (in the case of lakes). Some alleviation
of harmful effects can be achieved by reducing the resonance response factor, e.g. by
optimizing the geometry of the harbour mouth, but navigational demands put a limit to
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17 2.1 Types of Long Waves

(a)

(b)

Fig. 2.4 Simultaneous records of the surface elevation (in metres above the reference level NAP, roughly equal to mean sea
level); offshore of IJmuiden (a) and in the outer harbour of IJmuiden (b); from the Department of Public Works,
The Netherlands

this. (It can even happen that narrowing the entrance results in higher seiches, because such
narrowing may reduce the seaward radiation of seiche energy more than it hampers the
excitation; this is the so-called harbour paradox (Miles and Munk, 1961).) Another option
is adaptation of the geometry of the interior basins. This can shift the natural frequencies,
but this is an improvement only in the case where the shift is away from the energetic
frequencies in the excitation, which are usually not known a priori.

2.1.4 Tides

Tides are caused by the variations in time and space of the gravitational force exerted by the
moon and the sun, in combination with the effects of the rotation of the earth. On a global
scale, tides are oscillations in the ocean basins. On a smaller scale, the same is true for
shelf seas such as the North Sea. From the oceans or shelf seas, tidal waves enter estuaries
and bays where they may be damped or be resonantly enhanced, depending on the length
and depth of the estuary or the bay. The tide in the Bay of Fundy (Nova Scotia, Canada)
is an extreme example of strong enhancement, with a tidal range at the closed end up to
some 16 m, world’s highest.

In most locations, the semi-diurnal lunar tide (M2) is dominant; its period equals the
duration of half a moon-day, about 12 h 25 min. In some areas, e.g. South-east Asia or
the Gulf of Mexico, the diurnal solar tide is dominant, due to resonance characteristics of
adjacent ocean basins favouring these longer-period waves. See Figure 2.5.
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18 Classification and Analysis of Long Waves

(a)

(b)

(c)

Fig. 2.5 Semi-diurnal tides (a), mixed tides (b) and diurnal tides (c) at three locations in South-east Asia; after Dronkers
(1964)

Bed friction is relatively weak (compared with inertia) in ocean tides, because of the
large depths, and can there be neglected in a first approximation, but in shelf seas and
shallow tidal bays it is of equal significance as the inertia and cannot be neglected.

Tidal activity is visible in Figure 2.2, in the most downstream water level record in the
lower reaches of the Rhine. Notice that the tide is significantly damped during high river
stage, as a result of enhanced flow velocities and flow over the flood plains.

2.1.5 Flood Waves in Rivers

Enhanced precipitation and/or melting of snow in the catchment area of a river gives an
enhanced discharge downstream, with some delay, and an associated rise in water level, a
so-called flood wave. Figure 2.2 shows examples of the water surface elevation at several
locations along a branch of the river Rhine in The Netherlands, separated by some 100
river km, during a flood wave of January/February 1995. The uppermost plot is for the
most upstream location, and so on. All elevations are shown relative to the same reference
level (NAP, roughly equal to mean sea level [MSL]).

Flood waves in lowland rivers can last for several days or even weeks (see the example of
Figure 2.2). The corresponding variations in flow velocity are far slower than in translatory
waves and even significantly slower than in tides. In a first approximation, inertia can be
neglected relative to resistance.
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19 2.2 A Condition for the Long-Wave Approximation

2.2 A Condition for the Long-Wave Approximation

By definition, ‘long waves’ have a wavelength far greater than the depth in which they
occur. As a consequence, the vertical particle accelerations are negligible, so that the
pressure distribution can be considered to be hydrostatic. We shall derive a quantitative
criterion for the validity of this basic assumption in the mathematical modelling of long
waves.

It would not be sufficient to require that the vertical wave-induced acceleration be small
relative to that of gravity (this requirement also applies to low-steepness short waves). An
additional requirement is that the wave-induced pressure variation be almost uniform in
the entire vertical.

Consider a situation where the local water level is raised by an amount ζ from an
undisturbed situation. If the pressure were hydrostatic, the piezometric level (hp) would
be raised by the same amount at all points of the vertical (see Figure 2.6). Vertical
accelerations (az = Duz/Dt, in which uz is the vertical particle velocity) cause deviations
from this hydrostatic pressure distribution.

To quantify this, we use Euler’s equation for the vertical motion, with the forcing
expressed as the gradient of the piezometric head:

az = −g
∂hp

∂z
(2.1)

It follows that the variation of hp from the bottom to the free surface (�hp) can be
expressed as

�hp =
∫ d

0

∂hp

∂z
dz = −1

g

∫ d

0
az dz (2.2)

The approximation of hydrostatic pressure is valid if this difference is negligible compared
to the wave-induced variation ζ , or

∣∣�hp
∣∣ 	 |ζ |.

To elaborate this further, we assume a sinusoidal motion of the vertical free-surface
displacement with amplitude ζ̂ and (angular) frequency ω, as in ζ = ζ̂ cos ωt. Expressed
in terms of amplitudes, the above inequality becomes

Fig. 2.6 Hydrostatic pressure distribution
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20 Classification and Analysis of Long Waves

∫ d

0
âz dz 	 gζ̂ (2.3)

The vertical motion dies out downward. Therefore, the left-hand side is smaller than âz,0 d,
in which âz,0 is the amplitude of the vertical acceleration at the surface, equal to ω2ζ̂ . Thus,
a sufficient condition for the validity of Eq. (2.3) is

âz,0 d 	 g ζ̂ (2.4)

Because âz,0 = ω2ζ̂ , we finally obtain the following condition for the validity of the
approximation of hydrostatic pressure for harmonic motion:

ω2d
g

	 1 (2.5)

Box 2.1 shows that this condition can be expressed in terms of the wavelength/depth ratio.

Let us now investigate the implications of condition (2.5) for the most important categories
of long waves.

For the tides, we consider the semi-diurnal tide M2 in the deepest ocean trough on earth,
with a depth of approximately 104 m. The period of the M2 tides is 12 h 25 min, corre-
sponding to an angular frequency ω = 1.405 × 10−4 rad/s. For these conditions, ω2d/g 

2 × 10−5, so that even for these extreme depths the pressure in the tidal motion hardly
deviates from being hydrostatic. Needless to say, this is even less the case in waters of more
moderate depth. Therefore, the long-wave model is very well justified in tidal calculations.

Tsunami waves have much shorter periods (higher frequencies) than the tides. Neverthe-
less, most of the energy contained in them corresponds to periods long enough to treat
them as long waves. Taking a period of 10 min as an example, and a typical ocean depth of
4000 m, ω2d/g 
 0.04, small enough to justify the long-wave approximation, even in the
deep ocean. However, tsunamis may also contain some energy in higher frequencies, for
which the long-wave approximation is not valid in ocean depths, requiring nonhydrostatic
modelling.

Seiches have much shorter periods than tides, but these are important only in much
shallower waters than the oceans. For a seiche with a typical period of about 10 min
(ω 
 0.01 rad/s) in water of about 20 m deep, ω2d/g 
 2 × 10−4, so that also for these
oscillations the long-wave approximation is very well justified.

Flood waves in lowland rivers can vary on the time scale of days, in any case more slowly
than tides, at least in the lower river reaches, and the depths are relatively small, so that the

Box 2.1 The length of a ‘long’ wave

As we shall see below, long waves in water with a free surface and depth d have a speed of propagation c
approximately equal to

√
gd. If we substitute this with c = L/T = Lω/2π into Eq. (2.5) we obtain the

condition for hydrostatic pressure in the following form: L � 2π d. In other words: the wavelength should
be much larger than the depth. This explains and justifies the name ‘long waves’. A commonly used criterion
is L � 20 d.
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21 2.3 Estimation of Terms

approximation of hydrostatic pressure is even better justified in these cases than it is for
the tides.

Translatory waves usually result from manipulations of weirs, valves, pumps etc. These
are assumed to be gradual to prevent hindrance or damage. In these cases the pressure
can be assumed to be hydrostatic. However, in some cases, e.g. when they are the result of
an accident, a sudden power outage, etc., they vary more rapidly, even as a shock wave.
In such cases the long-wave assumption is locally invalid, but it can still be used in the
reaches on either side. This is sufficient for the calculations if locally the shock conditions
are used to connect the motions on either side of the shock wave.

Finally, it is obvious from Eq. (2.5) that this condition cannot be fulfilled by high-frequency
(short-period) waves in waters of moderate or large depth. Examples are ship-generated
waves and wind-generated waves, with periods of the order of seconds rather than minutes
or hours. Take an example of wind-generated waves with a period of 6 s in water of 10 m
depth. In that case, ω2d/g 
 1, so that the pressure is not even approximately hydrostatic.
Waves for which Eq. (2.5) is not (nearly) fulfilled are called short waves. These are the
subject of a class of theory different from that for long waves and are not considered here.

2.3 Estimation of Terms

We are now going to investigate the relative importance of the different terms in the long-
wave equations, in particular the equation of motion because that contains up to four terms
that may bear ratios to each other of different orders of magnitude. This estimation does not
have to be precise. What matters is to gain insight into the parameters determining which
contributions (resistance, inertia, etc.) are important in any given situation and which ones
are so unimportant that they can be neglected in a first approximation.

We start from the equation of motion in acceleration form as derived in the previous
chapter:

∂U
∂t

+ U
∂U
∂s

+ g
∂h
∂s

+ cf
|U|U

d
= 0 (2.6)

Here, we have replaced the hydraulic radius R by the cross-sectionally averaged flow depth
d, which is justified for relatively flat cross sections.

2.3.1 Advective Acceleration Term

We first consider the advective acceleration (U∂U/∂s) in relation to the local acceleration
(∂U/∂t), initially for a conduit whose cross section does not vary longitudinally (a
prismatic conduit). Let U be a characteristic flow velocity and L a characteristic length
scale, possibly a wavelength if it exists; see also Figure 2.7. In that case, U∂U/∂s is of the
order of magnitude U2/L. Likewise, ∂U/∂t is of the order U/T , where T is a characteristic
time scale of the motion, such as a wave period (if it exists). In that case, the ratio of the
advective acceleration to the local acceleration is of the order (U2/L)/(U/T ), or UT /L.
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Fig. 2.7 Schematic of scaling parameters

The ratio UT /L can be interpreted geometrically as the ratio of the longitudinal particle
displacement (of order UT ) to the length scale of the flow (L).

For waves in a prismatic conduit, the length scale L is determined by the flow and
coupled to T through the relation L = cT , in which c is the wave propagation velocity,
in which case UT /L = U/c. See Figure 2.7. As we will see further on, c = √

gd
for long waves, in which case U/c equals U/

√
gd, the Froude number Fr. (Similarly, in

compressible flows for which c is the speed of sound, U/c is the Mach number.) Therefore,
we can say that the lower the Froude number, the smaller is the relative magnitude of
the advective acceleration. The preceding considerations apply in like manner to the
momentum balance, Eq. (1.21), implying that the term arising from the advection of
momentum, ∂(Q2/Ac)/∂s, is negligible if Fr2 	 1.

The ratio UT /L also has an interesting link to the surface level amplitude (ĥ), which
follows from scaling the continuity equation:

B
∂h
∂t

+ ∂Q
∂s

= 0 (2.7)

The terms B∂h/∂t and ∂Q/∂s have orders of magnitude of Bĥ/T and UBd/L, respectively,
where B is the width of the channel. Since these terms equate it follows that ĥ/T = Ud/L
and, consequently, ĥ/d = UT /L = U/c = Fr.

For a given depth, therefore a given value of
√

gd, the Froude number (Fr) decreases
with decreasing wave height. The ratio of the advective acceleration to the local accel-
eration decreases in like proportion. Therefore, for relatively low waves (ĥ/d 	 1) in a
prismatic conduit, the advective acceleration is relatively small and can be neglected in a
first approximation. The same applies to the contribution of the advective momentum flux
in the momentum balance.

In harbour oscillations and offshore tidal currents, the flow velocity is seldom more than
0.5 m/s. If the depth there exceeds 10 m, the Froude number is below 0.05, implying that
the advective acceleration can be neglected in a good approximation. In tidal entrances,
estuaries etc., flow velocities typically exceed 1 m/s, so that in these flows the advective
acceleration is of some importance. The same holds for tides in shallow water, such as
over tidal flats, where the flow velocities may be less than in the channels but the depths
are smaller. In such flows, the advective acceleration is still not dominant but at the same
time not negligible.
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23 2.3 Estimation of Terms

Box 2.2 Varying geometries

In nonprismatic conduits, local variations in the geometry can force small length scales, such that U 2/L �
U/T , or UT /L � 1. In such conditions, the balance tips to the other side: the advective acceleration is
locally dominant. Flows through or over control structures are good examples of this. In such cases, the local
acceleration (∂U/∂ t) is unimportant. Neglecting it causes the time variation to vanish from the equation of
motion: the flow is being modelled as quasi-steady, which means that at any instant it has fully adapted to
the instantaneous boundary conditions, as if these were not changing in time.

The preceding estimates were restricted to waves in prismatic conduits, in which the length
scale is determined by the time scale and the propagation velocity through L = cT . See
Box 2.2 for scaling relations in the case of local variations in geometry, e.g. in control
structures.

2.3.2 Resistance Term

We now turn to the importance of the flow resistance relative to the local acceleration. We
first consider oscillatory motions, as in tides and seiches, in which the flow velocity varies
in time with amplitude Û and frequency ω. The local acceleration (∂U/∂t) is of the order
of ωÛ, whereas the resistance per unit mass in Eq. (2.6) is of order cfÛ2/d. This yields the
following result for the ratio of the resistance to the local acceleration, here denoted as σ :

σ ≡ cf
Û
ωd

(2.8)

The fraction Û/(ωd) allows for a simple physical interpretation: Û/ω is the amplitude of
the horizontal displacement of the water particles, so that said fraction expresses how far
the particles move back and forth relative to the flow depth.

Some typical, rounded values of σ for oscillatory motions have been collected in Table 2.1,
using arbitrary but realistic values for the parameters, including cf = 0.004. The entries
have been placed in the order of ascending value of σ .

It is clear from the σ -values in Table 2.1 that resistance plays no role whatsoever in
the instantaneous dynamics in tsunamis and seiches. The relative importance of resistance
in tidal propagation depends mainly on the water depth. It is negligible in the oceans.

Table 2.1 Estimation of the relative resistance (σ ) for different long-wave types

Category T (min) ω (rad/s) d (m) Û (m/s) σ

Tsunami 10 1.0 × 10−2 4000 0.1 1 × 10−5

Tide in the ocean 745 1.4 × 10−4 4000 0.3 2 × 10−3

Seiche 20 5.0 × 10−3 20 0.5 2 × 10−2

Tide in shelf sea 745 1.4 × 10−4 50 0.5 3 × 10−1

Tide in channel 745 1.4 × 10−4 15 1.5 3 × 100

Tide over flats 745 1.4 × 10−4 3 1.0 1 × 101
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For tides in coastal waters, resistance is in general not negligible, and over tidal flats even
dominant compared with the local acceleration.

Translatory waves are not included in the table. These typically have a time scale of the
order of minutes or even less, so that here resistance is unimportant for the instantaneous
dynamics. However, because its effect is always to resist motion, its influence can and
will be important in the long run. Therefore, when dealing with such motions over long
durations, compared with the time scale of the primary variations, resistance should be
included in the modelling.

Flood waves in lowland rivers vary much more slowly than the tides, while their depths
and flow velocities are comparable to those in tides in channels or over flats, so that in
these waves inertia is negligible compared with the resistance.

Example 2.1 A tidal wave in an estuary has a length scale (wavelength) L of 500 km, a time
scale (wave period) T of 12 h 25 min and a characteristic flow velocity U of 0.5 m/s. The
depth d is 20 m and the resistance coefficient cf equals 0.004. Give order of magnitude
estimates for:

1. the local acceleration term
2. the advective acceleration term
3. the resistance term.

What can you conclude regarding the importance of the various terms?

Solution

Velocity variations are of order U over a time interval T and a spatial interval L,
respectively, yielding the following estimates:

1. ∂U/∂t ∼= O (U/T ) = (0.50 m/s)/(45,000 s) ≈ (1.1 × 10−5) m/s2.
2. U∂U/∂s ∼= O

(
U2/L

) = (0.50 m/s) × (0.50 m/s)/(500,000 m) ≈ 5.0 × 10−7 m/s2.
3. cf|U|U/d ∼= O

(
cf U2/d

) = 0.004 × (0.50 m/s) × (0.50 m/s)/(20 m) ≈ 5.0 × 10−5 m/s2.

The resistance term is most important in this case, but the local acceleration term cannot be
neglected. The advective acceleration, however, is two orders of magnitude smaller than
the resistance term and can be safely omitted at first.

2.4 Solution Methods

2.4.1 Complete Equations

The complete long-wave equations, Eqs. (1.20) and (1.21), are the basis of a large
number of numerical models for the calculation of unsteady flows in open channels. Here,
‘complete’ refers to the fact that the equations have not been simplified by neglecting
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25 2.4 Solution Methods

a priori terms that are expected to be small in a given application. Therefore, such
models are suited, in principle, for all kinds of long-wave phenomena, provided these
can be modelled as one-dimensional, which of course in itself is an approximation.
Where this is not justified, one must resort to the long-wave equations in two horizontal
dimensions.

In these numerical models, the long-wave equations are integrated in discretized form.
Those techniques, the problems that may be encountered and the accuracy that can be
achieved are dealt with in Chapter 11.

2.4.2 Simplified Equations

Based on the complete set of long-wave equations, various simplified forms have been
developed and solved in order to obtain insight through simple calculations or analytical
solutions. Each of those is tuned to a specific subset of long-wave problems for which
certain terms in the equations of motion are estimated beforehand to be small, as was
done in Section 2.3. By neglecting them, a simplified model results, which may allow
analytical, preferably explicit solutions. This book focusses on these simplified models
and their solutions because the primary purpose is to obtain insight into the dynamics
of various long-wave phenomena that may be encountered in engineering practice. If
and when more accurate quantitative answers are needed, one must resort to a validated
numerical code.

The following subjects of wave propagation are dealt with in the remaining chapters:

• elementary wave equation, applicable to low, rapid waves: advective acceleration and
flow resistance are neglected (Chapter 3)

• translatory waves: advective acceleration can be included; resistance neglected
(Chapter 4)

• method of characteristics, showing fundamentals of wave propagation: particularly
suited to high translatory waves; advective acceleration not neglected; resistance can
be included but that is cumbersome (Chapter 5)

• harmonic method, suited for low-amplitude oscillatory progressive or standing waves
such as seiches and tides: advective acceleration neglected, resistance included in
linearized form (Chapter 7)

• flood waves in rivers: various approximations, inertia neglected (Chapter 8).

In addition, two chapters deal with highly reduced cases of unsteady motions that are
not wave-like: the response of a short basin to harmonic excitation, in which inertia is
negligible (Chapter 6), and flow through or over control structures in which storage is
negligible (Chapter 9). Finally, a summary is provided of some relevant results for steady
flow (Chapter 9).
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26 Classification and Analysis of Long Waves

Problems

2.1 What are ‘long waves’?
2.2 Derive a condition for the validity of the long-wave approximation.
2.3 Mention a few categories of wave phenomena that belong to the class of long waves.
2.4 Check for each of the categories of wave phenomena in Problem 2.3 to which extent

the long-wave approximation is justified.
2.5 For each of the categories of wave phenomena in Problem 2.3, choose some

characteristic, realistic values of the most relevant parameters such as depth, flow
velocity and time scale, and estimate the corresponding values of the ratios of various
terms in the equation of motion.

2.6 What are so-called translatory waves?
2.7 Are translatory waves normally the result of natural processes or human

intervention?
2.8 Argue why resistance is relatively unimportant in translatory waves.
2.9 What are seiches?
2.10 What is in general the cause of seiches?
2.11 Do seiches in essence belong to the class of progressive waves or to the class of

standing waves?
2.12 Seiches in a given basin cannot have arbitrary frequencies. Why not?
2.13 Which mechanism is the major cause of energy loss of seiches?
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3 Elementary Wave Equation

The considerations and analyses in this chapter are based on a strongly reduced set of
equations, viz. those for the modelling of low, long waves without resistance. We assume
a horizontal open channel without longitudinal variations in the channel cross section.
The channel does not have to be straight, but for simplicity we refer to it as a prismatic
channel. We account for storage and (local) inertia while neglecting advective accelerations
(consistent with the restriction to low waves) and resistance (restricting the validity of the
results to rapid variations). Based on these simplifying assumptions, a partial differential
equation will be derived, the wave equation, so called because it has wave-like solutions.
We present the wave equation in its most elementary form: linearized, with constant
coefficients, no resistance, no forcing.

3.1 Simple Wave

3.1.1 Propagation

The notion of wave propagation is crucial in the present context. In order to develop a
good understanding, we approach it in three steps of increasing complexity: a qualitative
description of the propagation of a so-called simple wave, travelling into a region of
rest; a quantitative description of the same in terms of algebraic relations derived from
overall balance equations for a finite control volume; and a description in terms of a partial
differential equation, the so-called wave equation.

We first consider a positive translatory wave, as sketched in Figure 3.1a (see also
Figure 2.1). We recognize three regions: an undisturbed region, a region of established
uniform flow and a travelling transient or wave front between them.

Thanks to the slope of the free surface in the wave front, a pressure gradient exists there
that causes an acceleration of the water particles in the direction from the high-water side
to the low-water side, indicated in the figure with a double arrow. At a given location, the
water is initially at rest, while it accelerates during the passage of the wave front. Once
the front has passed that location, the local free surface is again horizontal, the pressure
gradient is zero, and the flow velocity is constant (we ignore flow resistance).

As a result of the difference in flow velocity across the transient, the passage of the
transient causes a longitudinal compression of the water beneath it. Since water is almost
incompressible, this longitudinal compression is compensated by a rise of the free surface.
Because the wave considered here causes a rise in water level at a fixed point, we call it

27
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28 Elementary Wave Equation

(a)

(b)

Fig. 3.1 Accelerations (⇒), flow velocities (→) and propagation velocity (�) in a positive wave (a) and in a negative
wave (b)

a positive wave; see Figure 3.1a. (In the analogous case in gas dynamics, we refer to a
compression wave.)

Consider now the propagation of a negative wave, shown in Figure 3.1b. Notice that
here the acceleration is again to the right, but now this is against the direction of wave
propagation. Passage of this transient causes the particle velocities to go from zero to
positive, opposite to the direction of wave propagation.

3.1.2 Balance Equations

Following the qualitative description given above, we will now quantify the arguments. We
could start from the long-wave equations, which form a set of partial differential equations,
but at this stage we prefer an algebraic formulation based on balance equations for a finite
control volume between two fixed cross sections on either side of the transient. We restrict
ourselves to a low disturbance entering quiescent water, which causes small variations in
the elevation of the free surface (δh), the discharge (δQ) and the flow velocity (δU).

We consider the balances of mass and momentum during a time interval with duration
�t (Figure 3.2). We neglect compressibility of the water, so that the mass balance reduces
to a volume balance. We further assume that the transient travels without change in shape
(to be validated afterwards).

Volume Balance

This balance equates the net inflow of water, due to the difference in discharge δQ, to
the storage at the free surface (the shaded area between the subsequent wave fronts in
Figure 3.2) over a (storage) width B and with a rise in surface elevation δh, occurring in a
finite time interval �t:
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29 3.1 Simple Wave

Fig. 3.2 Control volume containing the transient

Net inflow = δQ �t = Storage = Bδh �s = Bδh c�t (3.1)

or

δQ = Bc δh (3.2)

Momentum Balance

The rise of the free surface (δh) gives rise to a pressure difference across the control volume
given by ρg δh, resulting in a net horizontal force on the flowing mass in the control
volume equal to ρgAc δh. Here, we have neglected the small contribution at elevations
above the undisturbed free surface (i.e. the small white triangle in the figure). Because of
the restriction to a low disturbance, the advection of momentum, which is proportional to
the square of the flow velocity, is negligible compared with the contribution by the wave-
induced hydrostatic pressure.

During the time interval with duration �t, the momentum inside the control volume
(initially zero) increases with the amount ρ δUAc�s = ρ δQ c �t (see the dotted area in
the figure, extending from the bottom to the free surface). The momentum balance becomes

Momentum delivered = ρgAc δh�t = Momentum gained = ρ δQ c �t (3.3)

or

δQ = gAc
c

δh (3.4)

Elimination of δQ and δh between Eqs. (3.2) and (3.4) yields the following important result
for the long wave propagation speed:

c =
√

gAc
B

(3.5)
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Since δQ = Ac δU, Eq. (3.4) can be expressed in terms of the flow velocity as

δU = g
c

δh (3.6)

If the total cross section contributes fully to the conveyance, Ac/B = Ac/Bc = d, in which
case the expression for the propagation speed reduces to

c =
√

gd (3.7)

The expression for the flow velocity can then be written as

δU =
√

g
d

δh = c
d

δh (3.8)

This also follows directly from Eq. (3.2).

The results derived here are valid only for (very) low waves (Fr 	 1). They are used
frequently in the following.

Example 3.1 As the result of a gate having been raised, a positive wave, with a rise in
surface elevation (δh) of 0.15 m, propagates in a canal with an initial depth (d) of 5 m, a
storage width (B) of 135 m and conveyance width (Bc) of 100 m, where the water is initially
at rest.

1. Compute the wave speed c.
2. Compute the discharge Q through the gate.
3. Compute the flow velocity U behind the wave.
4. Compute the ratio of the advective momentum transfer (ρU2Ac) relative to the pressure

force (ρgAc δh).

Solution

Because the water is initially at rest, the total discharge following the passage of the
transient (Q) equals δQ. For brevity, we will use the notation Q in the following.

1. Wave speed: c = √
gAc/B =

√
gdBc/B = 6.0 m/s

2. Discharge: Q = Bc δh = 122 m3/s
3. Flow velocity: U = Q/Ac = 0.24 m/s; this result also follows from U = (g/c) δh =

0.24 m/s.
4. Ratio of the advection of momentum relative to the pressure force: U2/g δh = 0.04.

In the derivation given above, the advection of momentum was neglected relative to the
pressure force. With the ratio of these respective terms being equal to 0.04 this assumption
is indeed justified in this example.
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3.2 Elementary Wave Equation

In this section, we derive and analyse a differential equation for long, low, frictionless
waves in a prismatic conduit. It will appear that the simple wave of the preceding section
is an important building block in the solution of this wave equation.

3.2.1 Derivation

The continuity equation is given by Eq. (1.20), which for easy reference is repeated here:

B
∂h
∂t

+ ∂Q
∂s

= 0 (3.9)

It is important to note that B is the full width of the free surface, available for storage, not
the width of the conveyance cross section only.

On account of the simplifying assumptions mentioned above, the equation of motion,
Eq. (1.21), reduces to

∂Q
∂t

+ gAc
∂h
∂s

= 0 (3.10)

In view of the assumption of low waves, the influence of a varying free-surface elevation
on the parameters B and Ac will be neglected. Therefore, these do not vary in time.
Furthermore, these parameters are supposed to be independent of the horizontal coordinate
s as well. Mathematically speaking, we then deal with a set of two first-order linear partial
differential equations with constant coefficients. These allow relatively simple solutions,
compared with nonlinear equations with variable coefficients.

We now eliminate Q by differentiating Eq. (3.9) with respect to t and Eq. (3.10) with
respect to s, with the result

∂2h
∂t2

− gAc
B

∂2h
∂s2 = 0 (3.11)

Note that this equation is of second order as a result of including storage (through Eq. (3.9))
and inertia (through Eq. (3.10)). The interplay of these allows wave propagation, as we
will see. Next, we ignore temporarily the findings of the preceding section, in particular
the results for the propagation speed, and for brevity define a quantity c by

c ≡
√

gAc
B

(3.12)

Substitution of this into Eq. (3.11) yields

∂2h
∂t2

− c2 ∂2h
∂s2 = 0 (3.13)

Elimination of h instead of Q would have given a similar partial differential equation for
the variable Q.
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A partial differential equation with the form of (3.13) is known as ‘the’ wave equation
because it is the most elementary form of all wave equations. It also applies to pressurized
flow in pipes, which is treated in Appendix A, and to the vibration of the strings of a musical
instrument. Notice that the wave equation (3.13) is linear, so that linear superposition
applies: a sum of solutions is also a solution.

3.2.2 General Solution

Without derivation, we now state that the general solution h(s, t) of Eq. (3.13) consists of
the sum of an arbitrary function h− of (s + ct) and an arbitrary function h+ of (s − ct):

h (s, t) = h+ (s − ct) + h− (s + ct) (3.14)

This solution is due to d’Alembert, who derived it in 1746; see Strauss (1992). A similar
expression applies to Q in terms of Q+ and Q−.

The wave equation (3.13) is linear. Therefore, in order to prove that the sum given by
Eq. (3.14) is a solution, it is sufficient to prove this for h+ and h− separately. We begin
with h+. This function depends on s and t exclusively through the combination s − ct,
which quantity we will represent as S+, so S+ = s − ct. Therefore, h+ = h+(S+), and
because ∂S+/∂s = 1 and ∂S+/∂t = −c, it follows that

∂h+

∂s
= dh+

dS+
∂S+

∂s
= (

h+)′ and
∂h+

∂t
= dh+

dS+
∂S+

∂t
= −c

(
h+)′ (3.15)

in which the prime on h+ indicates an ordinary derivative of h+ with respect to S+.
Continuing likewise, we obtain

∂2h+

∂s2 = (
h+)′′ and

∂2h+

∂t2
= c2 (

h+)′′ (3.16)

Substitution of these two expressions into the wave equation (3.13) shows that the latter
is satisfied by any function h+ = h+ (

S+) = h+ (s − ct). The same applies to h− and
therefore also to their sum, which was to be proven.

We will now investigate the meaning of the solution, first for h+ only. The latter depends
on s and t solely through S+, or through s−ct. Therefore, we observe no change in the local
value of h+ if we keep s − ct constant in time, i.e. ds/dt = c, i.e. if we move in the positive
s-direction with speed c. Stated another way: a point of constant h+ moves with speed c in
the positive s-direction. That is why the subscript + was chosen for this function. Because
c is a constant in the present approximation, all points of the disturbance h+ move with the
same speed: the disturbance propagates without change of shape with velocity c, whose
value is given by Eq. (3.12). Likewise, it can be shown that the function h− represents a
wave moving at speed c in the negative s-direction without change of shape.

It follows from the above that the quantity h(s, t), defined in Eq. (3.14), obeys the wave
equation (3.13). It can be shown also that Eq. (3.14) represents the general solution to
this equation, which therefore consists of two waves, propagating in opposite directions
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at a constant speed c without change in shape. Needless to say, where both are present
simultaneously, their sum does vary in shape. Whether such superposition actually occurs
depends on the initial conditions and on the boundary conditions.

3.2.3 Total Derivative

The property of propagation without change in the local value of a disturbed quantity (for
the + and − waves separately) can be formulated differently, in a manner that we shall use
more in the following. To this end, the concept of the total derivative is important.

Suppose an observer travels with a velocity V in the s-direction, observing the local
values of a quantity h. The change in h which is observed in a short time interval with
duration �t can be expressed as

�h = ∂h
∂t

�t + ∂h
∂s

�s = ∂h
∂t

�t + ∂h
∂s

V�t (3.17)

The observed change per unit time, in the limit as � t goes to zero, is the so-called total
derivative of h:

dh
dt

= ∂h
∂t

+ V
∂h
∂s

(3.18)

Now consider h+. It follows from Eq. (3.15) that it obeys

∂h+

∂t
+ c

∂h+

∂s
= 0 (3.19)

Comparison with Eq. (3.18) shows that the left-hand side of Eq. (3.19) is the total derivative
of h+ for an observer moving with velocity c, which is zero according to Eq. (3.19).
Therefore, this observer sees no change in the local value of h+. Since this reasoning
applies to all points of the disturbance, and the value of c is common to all of them
(in the present approximation for low waves!), we conclude that Eq. (3.19) implies that
the disturbance h+ travels in the positive s-direction at speed c without change in shape.
Therefore, another representation, equivalent to Eq. (3.19), is

dh+

dt
= 0 provided that

ds
dt

= c (3.20)

in which d/dt is the total derivative operator: dd/dt = ∂/∂t+c ∂/∂s. In this formulation, the
partial differential equation (3.19), for a single dependent variable h+ and two independent
variables s and t, is replaced by a set of two ordinary differential equations for the two
dependent variables h+ and s and one independent variable t. Likewise, the following is
valid for h−:

dh−

dt
= 0 provided that

ds
dt

= −c (3.21)

This kind of formulation will be used extensively in Chapter 5, dealing with the so-called
method of characteristics.
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3.3 Relation between Discharge and Free-Surface Elevation
in a Progressive Wave

Variations in discharge and related variations in the free surface elevation have been
considered in Section 3.1, using algebraic balance equations for mass and momentum in a
finite control volume. Here, we rederive those results using the wave equation, applied to an
arbitrary but low wave propagating in the positive s-direction into a region of uniform flow
with water level h0 and discharge Q0. The corresponding water level h+ obeys Eq. (3.19).
Substitution of this equation into the continuity equation (3.9) yields

− Bc
∂h+

∂s
+ ∂Q+

∂s
= 0 (3.22)

Integration of this with respect to s for constant Bc gives Q+ − Bc h+ = constant = Q0 −
Bc h0. Expressed in terms of the changes with respect to the undisturbed situation, namely
δh+ = h+ − h0 and δQ+ = Q+ − Q0, this becomes:

δQ+ = Bc δh+ (3.23)

This result had already been seen in Section 3.1. A similar result applies to h−:

δQ− = −Bc δh− (3.24)

3.4 Solution for Arbitrary Initial Conditions

Because the wave equation is of second order in time, two initial conditions are needed
for a well-posed problem. Here, we use the initial values of the disturbances in surface
elevation (δh) and discharge (δQ) at all points of the channel considered, relative to an
undisturbed state with uniform water level and discharge.

In Section 3.1, a disturbance travelling in the positive s-direction was considered. In the
present section we consider the more general case of given arbitrary, small values of δh
and δQ as functions of s for some initial instant t = t0:

δh0 (s) = δh (s; t0) and δQ0 (s) = δQ (s; t0) (3.25)

In order to determine the time evolution of this arbitrary disturbance, not necessarily
travelling in one direction only, we separate it into two contributions that each do travel in
one direction only:

δh = δh+ + δh− and δQ = δQ+ + δQ− = Bc
(
δh+ − δh−)

(3.26)

It follows from these equations that

δh+ = 1
2

(
δh + δQ

Bc

)
and δh− = 1

2

(
δh − δQ

Bc

)
(3.27)
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At the initial instant t = t0, the values in the right-hand sides of Eq. (3.27) are known as
functions of s. The same then holds for the initial values of δh+ and δh−. By translating
the initial profile of δh+ with speed c in the positive s-direction, and the initial profile of
δh− with speed c in the negative s-direction, and adding the results at each position for a
chosen instant, the free-surface profile at that instant is found. The same method applies to
the discharge.

If the water is at rest at the initial instant, the initial values of δh+ and δh− at each
location are equal to half the local value of δh0(s), as follows from Eq. (3.27). Figure 3.3
gives an example for this case.

The preceding results are restricted to low waves, described by the linear wave equation,
which allows linear superposition of elementary waves travelling in opposite directions
to find the total solution. If the restriction to low waves is relaxed, linear superposition
no longer applies, but we can still construct the total solution by considering component
waves travelling in opposite directions, using the so-called method of characteristics. This
is the subject of Chapter 5.

In the above, we have tacitly assumed that the disturbances can travel unimpeded in a
prismatic channel, as if this were infinitely long. If and when the disturbance reaches a
location where the channel geometry changes, reflection occurs. This is considered below.

3.5 Boundary Conditions

Because the wave equation is of second order in space (s), two boundary conditions are
needed for a well-posed problem.

Where the canal has a closed end, at s = sc say, the discharge must be zero at all times.
Mathematically, this is expressed as the boundary condition Q (sc, t) = 0 for all times.
In view of Eq. (3.26), this implies that δh− = δh+ at that location. In words: where an
incident wave (δh+), travelling in the positive s-direction, meets a closed end, a backward-
propagating wave (δh−) is generated whose height at the closed end equals that of the
incident wave at that location at all times. At the closed end, the free-surface elevation is
doubled. We say that at a closed end, total positive reflection occurs. (The qualification
‘positive’ refers to the free-surface elevation. The discharge is in fact negatively reflected
because δQ− = −δQ+ at the closed end.)

The opposite situation occurs if the canal at some point, at s = s0, say, is connected
to a nontidal sea or a large lake or reservoir, in which the water level is not measurably
affected by inflow into or outflow from the canal. This means that δh (s0, t) = 0 at all
times, implying that δh− (s0, t) = −δh+(s0, t): at an open end connected to a nontidal
sea or a large reservoir, total negative reflection occurs. It follows from Eq. (3.26) that at
such open end, δQ− = δQ+, so that there the discharge is positively reflected. Thus, the
discharge at an open end is doubled.

Numerical or physical models of flow in canals or rivers are often cut off at some
distance from the study area, even when in reality the system extends further. Such cut-
off creates an artificial, open model boundary. The condition to be imposed there is that
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36 Elementary Wave Equation

Fig. 3.3 Elementary wave solution for an initial discharge Q0 = 0 and a uniform initial water level disturbance over a
finite length

disturbances approaching that boundary from within the study area should not be reflected,
so as to simulate reality in which the disturbances continue unimpeded. Thus, if the positive
s-direction is from within towards the open boundary, δh− should be zero at the open
boundary at all times, implying the boundary condition δQ − Bc δh = 0; see Eq. (3.27).
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37 3.6 Periodic Progressive and Standing Waves

3.6 Periodic Progressive and Standing Waves

A standard solution of the linear wave equation consists of harmonic motions. This section
deals with such motions for the case of sinusoidal waves in a prismatic canal or basin. For
brevity, we denote the elevation of the free surface above its mean value as ζ . Its amplitude
is written as ζ̂ , the wave period is T, and the angular frequency (i.e. the phase change per
unit time) is ω = 2π/T. The wavelength is L and the wave number (i.e. the phase change
per unit propagation distance) is k = 2π/L.

If the wave is progressive, we have L = cT in which c is the speed of propagation. Since
we deal with free long waves, c = √

gAc/B, so that L = √
gAc/B T. Written in terms of

frequency and wave number, this becomes

ω

k
=

√
gAc
B

(3.28)

This is the so-called dispersion equation, linking frequency and wave number for the
system considered. Note that it also applies to the superposition of two waves with the
same frequency and wave number, as in the case of standing waves, even though the notion
of a propagation speed does not apply to the latter category.

3.6.1 Infinitely Long Canal

In a prismatic canal of infinite length (in practice: in a long canal, away from the influence
of boundaries), waves can propagate indefinitely in either direction without reflection, so-
called progressive waves. We assume a sinusoidal wave to be propagating in the positive
s-direction with speed c. The free-surface elevation above the mean water level can then
be written as

ζ = ζ̂ cos

(
2π

s − ct
L

)
(3.29)

Written in terms of frequency and wave number, this becomes

ζ = ζ̂ cos (ks − ωt) (3.30)

The corresponding discharge is given by (see Eq. 3.23)

Q = Bc ζ̂ cos (ks − ωt) (3.31)

Note that the phase ks − ωt is constant for an observer moving at a speed ds/dt = ω/k.
That is why this speed ω/k is called the phase speed. An observer moving at this speed
sees no variation in the local value of ζ and that of Q.

In a progressive wave as described above, the surface elevation and the discharge
(reckoned positive in the propagation direction) are in phase; i.e. at each location they
reach their maximum values at the same time.
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38 Elementary Wave Equation

For a wave progressing in the negative s-direction, we have

ζ = ζ̂ cos (ks + ωt) (3.32)

and

Q = −Bc ζ̂ cos (ks + ωt) (3.33)

In this case, the surface elevation and the discharge are 180◦ out of phase (in opposite
phase); i.e. at each location the maximum of one occurs at the same time as the minimum
of the other. In other words, under the crests of the wave, where the surface elevation has
its maximum, the discharge is minimal (maximal in an absolute sense, but in the negative
s-direction).

When both waves, with equal frequency and amplitude, but propagating in opposite
directions, are present simultaneously in the same canal, the resulting motion is given by
superposition of the preceding expressions, with the result

ζ = 2ζ̂ cos ks cos ωt = ζ̂st cos ks cos ωt (3.34)

This expression represents a standing wave because as time goes on the resulting profile
does not move forward or backward; it merely breathes up and down (see Figure 3.4b).
The maximum amplitude of its surface elevation, ζ̂st, is twice the amplitude of the two

(a)

(b)

Fig. 3.4 Progressive (a) and standing (b) periodic waves
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39 3.6 Periodic Progressive and Standing Waves

opposing component progressive waves of which it consists. The corresponding discharge
is given by

Q = 2Bc ζ̂ sin ks sin ωt = Bc ζ̂st sin ks sin ωt (3.35)

We see that in a standing wave, the surface elevation and the discharge are 90◦ (π/2
radians) out of phase, both in s and in t (they are in quadrature). At the locations where
cos ks = 0, the surface elevation is zero at all times. Those points are called nodes. At these
locations, the local amplitude of the discharge is maximal. The distance between adjacent
nodes is one-half wavelength. At the locations where cos ks = ±1, the local amplitude of
the surface elevation is maximal, but the discharge is zero at all times. These points are
called antinodes. The distance between adjacent antinodes is one-half wavelength.

In an infinitely long canal, progressive waves and standing waves can exist without
constraints on the frequency and wave number and (in the case of standing waves) on
the locations of the nodes and antinodes. This changes when the canal (or basin) is semi-
infinitely long or has a finite length, as considered in the following.

3.6.2 Semi-Infinitely Long Canal with a Closed End

In a canal with a closed end, progressive waves cannot exist for an unlimited duration
because sooner or later they either vanish towards infinity or are reflected at the closed
end. In the latter case, a standing wave develops with zero discharge, thus an antinode,
at the closed end and at all points at a distance of an integer number of half wavelengths
away from it. If we choose s = 0 at the closed end, the motion is described by Eqs. (3.34)
and (3.35). There are no restrictions on the allowable values of the frequency or the wave
number.

3.6.3 Closed Basin

In a finite-length basin, extending from s = 0 and s = �, say, closed at both ends, the
boundary conditions Q = 0 at s = 0 and Q = 0 at s = � have to be fulfilled at all
times. Thus, we have a standing wave with an antinode at each end, and possibly one
or more antinodes between them. Therefore, the basin contains a whole number of half
wavelengths. This implies that only a discrete set of wave numbers and wavelengths is per-
mitted: Ln = 2�/n or kn = nπ/� for n = 1, 2, . . . . Figure 3.5a shows the surface profile in
the standing wave for n = 3. The value of n equals the number of nodes in the closed basin.

Because we deal with free oscillations, ωn/kn = √
gAc/B for all n. Thus, the discrete

set of wave numbers kn corresponds to a discrete set of frequencies given by ωn =√
gAc/B kn, n = 1, 2, . . . , referred to as the set of natural frequencies, corresponding

to the natural oscillations of the water mass in the closed basin. Of these, ω1 is the
fundamental frequency, corresponding to an oscillation with only one node, halfway the
length of the canal (just one-half wavelength in the basin). The frequencies corresponding
to n = 2, 3, . . . are higher harmonics.
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40 Elementary Wave Equation

(a)

(b)

Fig. 3.5 Free standing wave: closed basin, n = 3 (a); semi-closed basin connected to a reservoir, n = 2 (b)

3.6.4 Semi-Closed Basin Connected to a Reservoir or Tideless Sea

Consider now a basin closed at one end, where s = 0, say, and connected to a large
reservoir of constant elevation at the other end (the open end), where s = �, say. This
corresponds to the boundary conditions Q = 0 at s = 0 and ζ = 0 at s = � for all times.
These conditions are fulfilled in a standing wave with an antinode at the closed end and a
node at the open end, requiring cos k� = 0 or kn� = 1

2π + nπ for n = 0, 1, 2, . . . . Written
another way: � = (2n + 1) 1

4 L: the basin contains an odd number of quarter wavelengths.
The value of n equals the number of nodes inside the basin, not counting the node at the
open end. See Figure 3.5b.

As above, there is a set of natural frequencies, here given by ωn = ( 1
2π +nπ)

√
gAc/B/�

for n = 0, 1, 2, . . . . The fundamental frequency ω0 applies to the case where there is just
one-quarter wave in the basin.

For a natural oscillation in a semi-closed basin connected to a reservoir, the discharge
amplitude is maximum in the entrance and the surface elevation amplitude is maximum at
the closed end.

Example 3.2 A prismatic basin, closed at one end, is connected at its open end to a reservoir.
The basin dimensions are B = 600 m, Bc = 300 m (the width of the conveyance cross
section), d = 6 m (the depth of the conveyance cross section) and � = 6 km. There is a
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41 3.6 Periodic Progressive and Standing Waves

natural oscillation in the basin with one node in the interior. The amplitude of the water
surface elevation at the closed end (ζ̂st) is 0.5 m. Calculate:

1. the period (T) of the oscillation
2. the amplitude of the discharge at the mouth (Q̂ (�))
3. the amplitude of the flow velocity at the mouth (Û (�)).

Solution

It follows from the given number of nodes that the basin length equals 3
4 wavelength, or

L = cT = 4
3× 6000 m = 8000 m.

1. The wave speed c = √
gAc/B = √

gdBc/B = 5.42 m/s, from which the wave period
T = L/c = 8000 m / 5.42 m/s = 1475 s.

2. Q̂ (�) = Bc ζ̂st | sin k�|. Since � = 3
4 L, we have k� = 3

2π and sin k� = −1, it follows
that Q̂ (�) = (600 m) × (5.42 m/s) × (0.5 m) = 1627 m3/s.

3. Û (�) = Q̂ (�) /Ac = Q̂ (�) /(dBc) = (1627 m3/s)/(1800 m2) = 0.90 m/s.

3.6.5 Semi-Closed Basin Connected to a Tidal Sea

Instead of a semi-closed basin connected to a reservoir or tideless sea, with a constant
water level, we now consider such a basin connected at its open end to a tidal sea. The
tide-induced up-and-down motion at the basin mouth generates oscillations of the water
mass inside the basin at the tidal frequency, not necessarily related to any of the natural
frequencies of the basin. In such cases we speak of a forced oscillation of the water mass
inside the basin.

As before, Q must be zero at the closed end. A standing wave with an antinode at the
closed end can fulfill this condition. Its amplitude is such that ζ at the mouth equals the
value being forced by the tide (Figure 3.6). The ratio of the amplitude of ζ at the closed end
to that at the open end equals 1/| cos k�|. This goes to infinity as | cos k�| goes to zero; i.e.
the basin contains a whole number of quarter waves. In such cases we speak of resonance,
occurring if the frequency of the forcing equals one of the natural frequencies of the basin.

Fig. 3.6 Forced standing wave: semi-closed basin connected to a tidal sea
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42 Elementary Wave Equation

As opposed to the case of (near) resonance, with strongly amplified motions in the
interior of the basin, we now consider a short basin, i.e. one whose length is small
compared with the wavelength: � 	 L, or k� 	 2π , so that cos k� 
 1. This implies
a very small phase difference from the mouth to the closed end (if there were a progressive
wave in the basin), so that the water level responds almost in unison to the tidal forcing at
the mouth, rising and falling with the tide but being virtually horizontal at all times. The
wave character of the motion in the basin can then be disregarded. This response is called
the pumping mode or Helmholtz mode.

Example 3.3 Consider the same (prismatic) basin as in Example 3.2, now connected at its
open end to a tidal sea with an M2-tide with a surface elevation amplitude of 1.5 m. The
period of the M2-tide is T = 12 h 25 min, or 44,700 s, so the tidal frequency ω = 1.4×10−4

rad/s.

1. Determine the response of the basin in terms of the surface elevation amplitude.
2. Calculate the discharge amplitude in the open end of the basin.
3. Calculate the discharge amplitude halfway between the open end and the closed end.

Solution

The value of c is the same as in Example 3.2, or 5.42 m/s, and the wavelength L = cT =
242 km, which is more than 20 times the basin length (�): the pumping mode approximation
applies.

1. In view of the open connection between the basin and the sea, we can equate ζ̂st to the
amplitude of the offshore tide (1.5 m).

2. The discharge amplitude in the entrance Q̂ (�) = B�ωζ̂b = (600 m)(6000 m)(1.4 × 10−4

rad/s)(1.5 m) = 756 m3/s.
3. In a short, prismatic basin the discharge varies linearly with the distance of the cross

section to the closed end. Therefore, the discharge halfway the length of the basin is
half of that in the mouth.

The pumping mode approximation neglects the influence of resistance, which usually
needs to be accounted for in tidal calculations (Chapter 6).

Problems

3.1 What does it mean to linearize the equation of motion? How can this be achieved?
What is a condition for its validity?

3.2 Explain why a small storage capacity in a river leads to an enhanced speed of
propagation of flood waves.

3.3 Calculate the speed of propagation of low, long waves without resistance in water
with a depth of 4000 m (ocean), 50 m (shelf sea) and 5 m (estuary).
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3.4 Calculate the corresponding wavelength for an M2-tide and for a tsunami with a
period of 10 min. First verify whether the latter can be regarded as a long wave in
the given depths.

3.5 Derive a relation between the variations in water level and discharge for a long wave
propagating without change in shape in open water.

3.6 A pumping station begins discharging water at a rate of 40 m3/s onto an evacuation
canal with a depth of 4 m and a width of 50 m. Calculate the speed of the resulting
translatory wave propagating into the canal, the associated rise of the free surface
and the particle velocity.

3.7 The following values of the surface elevation and flow velocity are given for an
initial disturbance (at t = 0) in an infinitely long, 5 m deep canal:

(ζ , U) =
{

(0.50 m, 0) for s < 0
(0, 0.50 m/s) for s ≥ 0

Calculate and plot the values of ζ and U as functions of s at t = 10 s.
3.8 Same as in Problem 3.7, now with the following initial values:

(ζ , U) =

⎧⎪⎪⎨
⎪⎪⎩

(0.50 m, 0) for − 100 m < s < 0
(0, 0.50 m/s) for 0 ≤ s < 100 m
(0, 0) elsewhere

Calculate and plot the values of ζ and U as functions of s for the instants t = 10 s and
t = 20 s.

3.9 Sketch the two functions cos(ωt − ks) and cos ωt cos ks for ks between −2π and 2π

and ωt = 0, 1
6π , 1

2π , π and 2π . Verify that the first of these two functions represents
a progressive wave advancing at a speed ω/k.

3.10 Can a periodic, progressive wave exist continually in a basin closed at one end or at
both ends?

3.11 Argue why a free periodic oscillation in a closed basin is possible for a countable set
of frequencies only. Same for a semi-closed basin.

3.12 Verify how the natural frequencies of a prismatic basin are affected by the width of
the free surface, the width and depth of the conveyance cross section, and the length.
Which of these has the most influence?

3.13 Calculate the three longest natural periods of a semi-closed prismatic basin with a
length of 30 km, a conveyance cross-sectional area of 6 × 103 m2 and a width of the
free surface of 600 m.

3.14 Continuing with the second of the three modes of the previous question: sketch a
longitudinal profile of the surface elevation and the discharge at the instant ωt = 1

4π

(using the phases as in Eqs. (3.34) and (3.35)). Check the relation between surface
elevation and discharge in a qualitative sense, including their signs.

3.15 Same as in the two preceding questions, now for a basin closed at both ends.
3.16 A semi-closed basin with the dimensions as in Problem 3.13 is subjected to a forced

oscillation. Sketch the longitudinal profiles of the surface elevation and calculate the
ratio (r) of the amplitude of the surface elevation at the closed end to that at the
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open end, for the periods T = 3 h and T = 6 h, respectively. Interpret these results
considering the periods of the forced motion in relation to the natural periods of the
basin.

3.17 Consider the situation of the preceding question for T = 6 h, with the additional
information that the amplitude of the surface elevation at the closed end is 1 m.
Calculate and plot the amplitudes of the discharge at the following distances from
the closed end: s = 1 km, 2 km, 3 km, 5 km and 10 km, and interpret the results.
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4 Translatory Waves

This chapter deals with the modelling of translatory waves. The archetype of a translatory
wave is a transient disturbance of discharge and surface elevation, travelling between two
regions of uniform flow (including the state of rest as a special case). We will discuss the
generation and propagation of these waves, considering uniform as well as non-uniform
canals. The effect of bed resistance on translatory waves is marginal initially, but it can
become important over long travelling distances. For this reason we will quantify the
associated damping mechanism. A special type of translatory wave is the tidal bore, whose
spectacular appearance alone, besides its intricate physics, would already motivate its
treatment here.

4.1 Introduction

Translatory waves are usually the result of operation of engineering structures, such as

• locks
• control structures
• pumping stations
• hydropower plants.

Manipulation of these structures gives rise to varying discharges onto the adjacent canal
reaches. For example, the levelling of the water in a lock chamber is accompanied by a
discharge into or from the adjacent canal reach, which gradually increases from zero to
maximum and then back to zero. This results in a transient disturbance in the canal in
which the variation of the surface elevation mirrors that of the discharge, going from zero
to an extreme (either a maximum or a minimum) and back to zero. The other three cases
usually involve a gradual shift to a new setting, which is then left unchanged for quite some
time; in such cases, the variation in discharge and surface elevation is monotonic (instead
of going through a maximum or a minimum), and the resulting translatory wave forms a
monotonic, moving transition between two different states of uniform flow.

The propagation of low translatory waves, and the relation between the changes in
discharge and surface elevation, have already been considered in the preceding chapter.
Here, we return to the subject by presenting some extensions dealing with propagation in
nonprismatic channels and with the process of gradual damping due to boundary resistance,
which is relevant in the case of long travel times and long propagation distances. All of
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46 Translatory Waves

this is based on the assumption of low waves, allowing linearization. Following this, the
constraint to low waves is relaxed, and the most important nonlinear effects of a finite
wave height are considered. The final section of this chapter presents some field data and
a comparison thereof with the theory.

4.2 Low Translatory Waves in Uniform Channels

For easy reference, we reproduce here the principal results from the preceding chapter,
valid for low, frictionless waves in a prismatic conduit. The propagation speed is given by

c =
√

gAc
B

(4.1)

and the variations in discharge, surface elevation and flow velocity are related by

δQ = Bc δh and δU = g
c

δh (4.2)

These equations apply to the wave as it propagates. In order to determine the state of
motion, the discharge must be specified at the location where the wave is generated.

Consider for instance the case of discharge through a gradually varying opening. In
order to calculate the time-varying discharge, the flow through the opening is modelled as
quasi-steady. The instantaneous discharge then depends on the instantaneous opening and
on the instantaneous head difference as for steady flow, for which a Bernoulli-type relation
applies (see Chapter 9):

Q(t) = μA(t)
√

2g (h1 (t) − h2 (t)) = μA(t)
√

2g�h (t) (4.3)

A (t) is the instantaneous area of the opening, μ an empirical discharge coefficient of order
1, dependent on the specific geometry, and h1 and h2 are the instantaneous water levels on
the upstream side and the downstream side. Operation of the gate changes the value of the
initial head difference across it, which must be taken into account in the calculations.

Example 4.1 A movable gate in a barrier between a canal (Ac = 80 m2, B = 30 m) and a
large reservoir is partially opened to an effective flow cross section μA of 4 m2. Initially,
the water in the canal is at rest, and the surface level is 3 m below that in the reservoir.
Calculate:

1. an estimate of the discharge through the gate opening (Q0), neglecting the influence of
the wave height on the discharge

2. the discharge (Q) through the gate opening, taking into account the influence of the
wave height on the discharge

3. the resulting wave height (δh) in the canal.
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Solution

The discharge Q = μA
√

2g �h. Initially, �h = �h0 = 3 m, changing to �h = �h0 − δh,
once the gate is opened, where δh = Q/Bc is the height of the wave propagating into the
canal (the water level in the reservoir is not affected).

1. Neglecting the influence of the wave height on the discharge gives the estimate Q0 =
μA

√
2g �h0 = 30.7 m3/s.

2. Substitution of �h = �h0 − Q/Bc into the discharge relation gives a second-degree
algebraic equation for the discharge whose solution (rounded) is Q = 29.7 m3/s.

3. The resulting wave height δh = Q/Bc = 0.20 m (using c = √
gAc/B = 5.11 m/s).

The wave height δh is about 7% of �h0. The initially estimated discharge Q0 is therefore
approximately 3.5% too high, since the discharge varies in proportion to the square root of
the head difference.

It follows from the above that the height and the wave-induced particle velocities in a
translatory wave that results from the opening of a gate, a valve, or a similar operational
device can be controlled through the discharge (Eq. (4.2)), which in turn can be controlled
through the maximum opening (Eq. (4.3)). In the case of lock-generated waves, the
levelling is controlled such that only acceptably low and slow variations in water level
and weak currents are produced in the lock chamber and in the approach canal, in order to
avoid hindrance to shipping.1

Let us now investigate how the time-varying conditions at a control structure, resulting
from its operation, manifest themselves in the adjacent canal reaches. We take the example
of a pumping station that delivers a time-varying discharge, from a time t = 0 until
t = T, with a maximum value Qmax, as shown in Figure 4.1a (a hypothetical, nonrealistic
variation). As soon as the discharge starts, a disturbance propagates into the canal reach,
in the positive s-direction, say. At a time t = t1, after the pumps have been switched off
(t1 > T), its front and its end have advanced through a distance of ct1 and c(t1 − T),
respectively. This is shown in the longitudinal profile of the discharge at time t = t1, in

(a) (b)
Fig. 4.1 Translatory waves in a canal; discharge variation in time at a fixed point (a) and wave height variation in space at a

given instant (b)

1 As a typical example, the following upper limits were used in the Seine–Nord Europe Canal project (PIANC,
2015): 30 cm for the height of the wave and 35 cm/s for the flow velocity (controllable through a limit on Q),
and 1 in 1000 for the surface slope (controllable through a limit on ∂Q/∂t).
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Figure 4.1b. It can be seen that this spatial profile is in a sense the mirror image of the
time variation in panel (a). This corresponds to the fact that for propagation in the positive
s-direction, the variations depend on s − ct, in which s and t have opposite signs.

4.3 Propagation in Non-Uniform Canals

4.3.1 Rapidly Varying Cross Section

As was noted in Section 4.1, translatory waves are often the result of manipulation of man-
made hydraulic structures in man-made canals. Although these canals are for the main part
prismatic, they do have variations in cross section, e.g. in the vicinity of navigation locks.
Furthermore, there may be a lateral harbour, a natural basin connected to the canal, or a
junction between three or more canal reaches.

We will investigate how these geometric variations affect the propagation of translatory
waves. We do this on the assumption that the extent of the transition is much shorter than
the wavelength, allowing us to treat the transitions as abrupt. Moreover, as elsewhere in
this section, the wave height is assumed to be small so that linear approximations can be
used.

Consider a transition in canal geometry between two prismatic reaches 1 and 2, such
that the conveyance cross-sectional area and the width of the free surface change from
(Ac,1, B1) to (Ac,2, B2) (see Figure 4.2). We expect an effect on the ongoing wave as well as
reflection to a certain extent. Therefore, we suppose that we have to deal with three waves:

(a)

(b)
Fig. 4.2 Translatory waves at a transition in canal geometry; longitudinal transect (a) and top view (b)
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49 4.3 Propagation in Non-Uniform Canals

incident (from reach 1), transmitted (into reach 2) and reflected wave (back into reach 1),
with the following parameters:

• incident: δQi, δhi in reach 1 with Ac,1, B1
• reflected: δQr, δhr in reach 1 with Ac,1, B1
• transmitted: δQt, δht in reach 2 with Ac,2, B2

We assume low waves and neglect wave–wave interactions and their effect on the
propagation speed, which in this approximation has the constant values c1 = √

gAc,1/B1
in reach 1, common to the incident wave and the reflected wave, and c2 = √

gAc,2/B2 in
reach 2. Because of continuity of discharge and elevation at the transition (neglecting the
respective velocity heads, in accordance with the linear approximation), we have

δhi + δhr = δht (4.4)

and
δQi + δQr = δQt or B1c1 (δhi − δhr) = B2c2 δht (4.5)

(Q is reckoned positive in the direction of wave incidence.) We now define the following
dimensionless ratios:

rt ≡ δht
δhi

, rr ≡ δhr
δhi

and γ ≡ B2c2

B1c1
=

√
Ac,2B2

Ac,1B1
(4.6)

With these definitions, Eqs. (4.4) and (4.5) are transformed into

1 + rr = rt and 1 − rr = γ rt (4.7)

which yield the following expressions for the ratios of the heights of the reflected wave
and the transmitted wave to the height of the incident wave:

rr = 1 − γ

1 + γ
and rt = 2

1 + γ
= 1 + rr (4.8)

The following points are noted with respect to this result:

• There is no reflection at transitions for which the product Bc remains constant (γ = 1),
even though B and c change.

• Waves experiencing a reduction in the value of Bc are positively reflected and their
transmission is enhanced.

• If B2c2 	 B1c1, the reflection is almost 100%, and the transmitted wave height is almost
twice the incident wave height (though the discharge in the transmitted wave is relatively
small because it is proportional to B2c2).

• In the case of a strong enlargement of the cross section (B2c2 � B1c1), as for waves
in a canal approaching a lake or reservoir, the reflection is negative and almost 100% in
absolute value, whereas the transmitted wave height is quite small, going to zero in the
limit as γ goes to ∞. (This property was already used in the preceding chapter.)

Notice that the designations of positive and negative reflection refer to the surface
elevation. A positive reflection of the surface elevation implies a negative reflection
for the particle velocity.
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If there is a connection of three or more canal reaches, or between the canal and a side
basin, the reflection and the transmission of a wave approaching the transition through
one of these can be calculated by lumping the others into one equivalent canal, having a
Bc-value equal to the sum of the Bc-values of the constituent canals that are being
approached by the incident wave. Because the waves considered are long compared with
the extent of the junction, they are insensitive to an abrupt change of propagation direction.
This has been confirmed empirically by Thijsse (1935).

The height of transient translatory waves can be significantly reduced by a local widen-
ing or by a basin connected to the canal. When a positive wave reaches the mouth, a certain
volume of water flows into the basin, thereby reducing the volume in the wave travelling
down the canal, while at the same time negative reflection occurs. Soon, a mixture of
partially reflected waves occurs, resulting in a confused pattern. This is illustrated in Figure
4.3 for the situation of a lock (point A) with a downstream approach canal (AB) and a
lateral harbour (BD) at some distance from the lock. The translatory waves generated by
the levelling of the lock are transmitted along the canal as well as into the harbour.

Let the Bc-value of the harbour mouth be twice that of the canal. The total Bc-value of
these is three times that of the canal itself, so the waves approaching the harbour mouth
experience a γ -value of 3. This gives rr = −0.5, or 50% negative reflection back to the
lock, and rt = 0.5, or 50% transmission down the canal and into the harbour. Since γ = 1
for reflected waves approaching the harbour mouth from the closed end of the harbour,
these waves are not reflected at the mouth but fully transmitted into both canal reaches.

Fig. 4.3 Wave reflection near the shipping lock in Born (The Netherlands); wave travel time in channel AB approximately
equals that in harbour BD; wave height is expressed as fractions of the initial wave height
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51 4.3 Propagation in Non-Uniform Canals

We see that the presence of the harbour causes the height of the initial wave transmitted
down the canal beyond the harbour mouth to be only 50% of the original height in the
upstream canal reach. Of course, in the long run the total volume of water discharged from
the lock must flow down the canal. The remaining 50% is temporarily stored in the harbour
and in the upstream canal reach, between the harbour and the lock, undergoing multiple
reflections and being released onto the canal going downstream in smaller portions, spread
out over time. (See the sequence of transmitted waves travelling downstream, towards
point C in Figure 4.3.) Note that this process of wave height reduction is effective only if
the basin is of sufficient length compared with the length of the translatory wave. If it is
relatively short, the wave reflected off the closed end of the harbour basin joins the primary
wave shortly after the latter first reached the mouth, thereby hardly changing its height or
profile.

Example 4.2 At a transition between two prismatic canal reaches, the values of Ac and B
change from 150 m2 and 50 m to 250 m2 and 80 m, respectively. A translatory wave with
a height δhi = 0.35 m approaches the transition from the side of the narrower canal reach.
Calculate:

1. the height of the reflected wave (δhr)
2. the height of the transmitted wave (δht)
3. the discharge (Q) at the transition shortly after reflection of the incoming wave.

Solution

The wave speeds (c = √
gAc/B) in the narrow and wide reaches are 5.43 m/s and 5.54 m/s,

respectively. This gives a Bc ratio γ = 1.63 (from narrow towards wider reach).

1. Reflected wave: rr = (1 − γ ) / (1 + γ ) = −0.24 giving δhr = −0.24 × 0.35 m =
− 0.08 m

2. Transmitted wave: rt = 2/ (1 + γ ) = 0.76 giving δht = 0.76 × 0.35 m = 0.27 m
3. Discharge: Q = Qi (1 − rr), where Qi is the discharge of the incoming wave (95 m3/s).

So Q = 95 m3/s × 1.24 = 118 m3/s

Since the discharge is continuous at the transition it equals the discharge of the transmitted
wave Qt = Bc δht (using Bc of the wide canal reach).

4.3.2 Gradually Varying Cross Section

In the above, we have dealt with abrupt transitions, at which partial reflection occurs,
possibly with a change in sign, and a change in the height of the transmitted wave. Let
us now consider the wave propagation in the case of gradual profile variations, such that
the changes of width and depth within a wavelength are relatively small.

A simple model for the resulting wave height variations is due to Green (1837). His
result can be derived on the basis of energy conservation. To see this, we first consider
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a low translatory wave of finite length, progressing without change of form and height
in a prismatic canal in which initially the water is at rest. Its energy moves along
with it.

Let us consider the energy contained in a long wave. Disturbing the surface of a water
mass in equilibrium in the field of gravity requires work to be done against gravity. A rise
in water level over a distance ζ (for brevity, this symbol is used here instead of δh)
corresponds to a raised mass ρζ per unit area, with its center of mass at a height 1

2ζ above
the equilibrium level, corresponding to an amount of work against gravity given by 1

2ρgζ 2

per unit area. (Alternatively, this result can be obtained by integrating the gravity potential
per unit mass, gz, from z = 0 to z = ζ .)

The kinetic energy per unit area is 1
2ρU2d. For a low progressive wave we have U =

c ζ/d; see Eq. (3.8). Substituting this into the expression for the kinetic energy shows that
the potential and kinetic energy have the same value (this is true in lowest order for all free
waves) and that the total energy per unit area is ρgζ 2. It follows that the total energy of a
wave with length L in a canal of width B can be written as ρgBLζ 2

rms, in which ζrms is the
root mean square value of ζ , where the mean is taken over the entire wave.

For waves propagating in a channel of slowly varying cross section, such that the
changes in depth and width within the length of the wave are relatively small, the reflection
is negligible, and the total energy of the forward-progressing wave may be assumed to
be conserved during the propagation. This implies that the wave height ζrms varies in
proportion to (BL)−1/2.

If the propagation speed c varies in space, the front and the rear of the wave move
at different speeds, causing a change in wavelength. However, the propagation speed is
assumed to depend on the location only, independent of time or the wave properties, so
that all points of the wave go through the same sequence of time intervals to traverse given
space intervals. This implies that the time it takes for a wave of finite length to pass a fixed
point is the same for all points. Since this duration is L/c, it follows that the wavelength L
varies in proportion to c = √

gd, which leads to Green’s law:

ζrms ∝ B−1/2d−1/4 (4.9)

It can be shown that Green’s law and the result for the transmission at an abrupt transition,
presented in the preceding section, are mutually consistent (see Box 4.1).

Box 4.1 Green’s law and abrupt transitions

Consider the continuous profile variation as the limit of a sequence of small but abrupt variations. For a weak
but abrupt transition, we write γ = B2c2/B1c1 = 1+δ (Bc) /B1c1 = 1+ε in which ε = δ (Bc) /B1c1

is small compared with unity, going to zero in the limit. According to Eq. (4.8), the corresponding value of the
transmission coefficient is rt = 2/ (1 + γ ) = 2/ (1 + 1 + ε) = 1 − 1

2 ε + O
(
ε2

)
. On the

other hand, from Green’s law we have rt = ζ2/ζ1 = (B2c2/B1c1)
−1/2 = (1 + δ (Bc) /B1c1)

−1/2 =
(1 + ε)−1/2 = 1 − 1

2 ε + O
(
ε2

)
, which for small ε is the same as for the abrupt transition.
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4.4 Damping of Translatory Waves

As stated in Section 4.1, the flow in a translatory wave is assumed to vary so rapidly that
resistance can be neglected. This is a reasonable assumption on the time scale of these
variations, but at longer times the effect of the continuously working resistance cannot be
ignored, since it causes a gradual damping of the wave.

In the following, we will make an estimate of the rate of damping of a transient
translatory wave propagating through a region of rest, as for a translatory wave in a canal
caused by the levelling of the water in a navigation lock, in which case the discharge goes
from zero to a maximum and then back to zero. We base the calculation on a bulk energy
balance for the entire wave.

It was seen above that the total energy per unit area is ρgζ 2. This decreases as a result of
the work done to overcome boundary resistance, at the rate τb U or cfρ |U|3 per unit area,
where we have used the quasi-steady approximation for the boundary resistance given by
Eq. (1.16). This is somewhat questionable for rapidly varying flow as in translatory waves,
as was seen in Chapter 2, but it should suffice for an indication. Integrating the above-
mentioned quantities over an interval of the canal encompassing the translatory wave at all
times, and equating the results, we obtain

d
dt

∫
ρgζ 2 ds = −

∫
cfρ |U|3 ds (4.10)

We substitute U = c ζ/d and introduce the dimensionless surface elevation profile, written
as η = ζ/ζ̂ , in which ζ̂ is the maximum of ζ , the variable whose evolution in time we
seek. Eq. (4.10) then becomes

d
dt

(
ρgζ̂ 2

∫
η2 ds

)
= −cfρ

c3

d3 ζ̂ 3
∫

|η|3 ds (4.11)

Neglecting the change in shape (not the height) of the free-surface profile allows us to take
the integral in the left-hand side outside the differential operator and to define the following
time-independent dimensionless profile shape parameter α:

α ≡
∫

η2 ds∫ |η|3 ds
(4.12)

It may be argued that a quadratic damping deforms the surface elevation profile, because
the higher parts are damped more strongly than the lower ones as a result of the quadratic
resistance, but that is a secondary effect. Suppose that the initial profile is a half-sine
function; the corresponding value of α is 3

8π , or about 1.2. When the wave flattens, the
value of α reduces, with a minimum of 1 in the case of a completely flat profile of uniform
height. This justifies the approximation of a constant α in the present order-of-magnitude
calculation.

Substituting Eq. (4.12) into Eq. (4.11), we obtain the following ordinary differential
equation for the time-varying maximum surface elevation:

dζ̂ 2

dt
= −cf

α

c3

g d3 ζ̂ 3 (4.13)

.005
18:36:04,



54 Translatory Waves

which can be integrated to yield

1
ζ̂ (t)

= 1
ζ̂0

+ cf

2α

c3

g d3 t (4.14)

in which ζ̂0 is the initial value of ζ̂ . This is a hyperbolic type of damping, as is common for
systems with quadratic resistance. Recasting this relation into an expression proportional
to ζ̂ (t), and substituting t = s/c with c = √

gd, to transform the time dependence into a
space dependence, the following final result is obtained:

ζ̂ (s) = ζ̂0

1 + s/S
(4.15)

in which S is a relaxation length defined by

S = 2α

cf

d2

ζ̂0
(4.16)

It can be seen from Eq. (4.15) that S represents the propagation distance over which the
initial amplitude is halved (ca. 10–100 km for realistic canal parameters and wave heights).
The above result seems to have first been published by Thijsse (1935), although without
derivation2 and with a different definition of the present factor α. A comparison with field
data is presented in Section 4.6.

Thijsse also showed that due to the gradual damping, a positive transient translatory
wave leaves a slight rise of the free-surface level (δζ ) behind, equal to the integral of the
friction slope over the length of the wave. This compensates for the loss of height of the
wave (whose length does not increase since the front and rear end travel at the same speed)
so that the total volume is conserved. Since this integral itself diminishes in time, so does
δζ , setting up a weak slope behind the wave and a corresponding weak flow, until in the
end a state of rest is reached (in absence of new disturbances) in which the total volume
released into the canal is spread evenly over the entire canal length.

4.5 High Translatory Waves

We will now abandon the assumption of (very) low waves, and do not make the associated
simplifying approximations of neglecting the advective acceleration and the effects of a
variable surface elevation on the channel cross-section geometry (the instantaneous values
of A and B). Because the resulting equations are nonlinear, their mathematical treatment
is much more complicated than it is for low waves described by linear equations. In the

2 Thijsse did give a derivation in his hydraulics lectures at the Delft University of Technology (written lecture
notes of the author JB, 1960), although this was based not on an energy balance but on the Euler equation with
quadratic resistance.

.005
18:36:04,



55 4.5 High Translatory Waves

present chapter, we will mention only a few characteristic consequences of the inclusion
of nonlinear terms. A more complete treatment is presented in Chapter 5.

4.5.1 Wave Deformation

Within the framework of the linear theory in the preceding chapters, the effects of the
presence of a (low) disturbance on the velocity of propagation were neglected. As a
consequence, propagation in a prismatic channel without change in shape is possible (in the
case of absence of resistance). In the case of higher waves, their effect on the instantaneous
depth and thereby on the velocity of propagation is no longer negligible. Various theories
have been developed to account for this, all having in common that the waves deform as
they propagate.

The occurrence of wave deformation can be made plausible, without a formal mathematical
derivation, using the relation c = √

gAc/B = √
gdB, in which dB is the average depth of the

entire cross section (not of the conveyance cross section only). This relation was derived
for low waves propagating without change in shape, but it should by approximation also
be valid for slowly varying waves, using the instantaneous local depth. This implies that
higher portions of a wave propagate at greater speed than lower portions.

Furthermore, the given expression for c applies to the wave speed relative to the water
mass ahead of it. The effect of the wave-induced (as opposed to pre-existing) flow velocity
on the wave propagation speed was neglected in the previous section. By taking it
into account, the wave speed relative to the bottom becomes U ± c, with c the wave
speed relative to the water as given above, the + and − signs being applicable to waves
propagating in the positive and the negative s-direction, respectively. For a positive wave
propagating in the positive s-direction, the wave-induced flow velocity U is positive,
enhancing the velocity of propagation relative to the bottom for the higher parts of the wave
even further. It follows that the wave deforms: positive waves steepen (see Figure 4.4),
negative waves flatten out. Because a positive wave steepens, it may eventually develop
into a shock wave, a so-called bore. An exact expression for the speed of a point of constant
d and U, including the effects of finite wave height and wave-induced flow velocity, is
derived in Chapter 5, using the method of characteristics (Eq. (5.24)). The result for a
wave advancing into quiescent water with depth d = d0 is given by

ds
dt

= U + c = 3
√

gd − 2
√

gd0 (4.17)

in which d/dt denotes the total derivative, following a point of constant depth d. This shows
explicitly how the propagation speed increases with increasing depth. For a finite but small
relative wave height ζ/d0, in which ζ = d − d0, this can be approximated as

ds
dt

= 3
√

gd0 (1 + ζ/d0) − 2
√

gd0 =
√

gd0

(
1 + 3

2ζ/d0

)
+ O

(
(ζ/d0)

2
)

(4.18)

In the derivation of Eq. (4.17), friction was not considered. Its effect is a gradual damping
of the wave. If the rate of friction-induced damping outweighs the rate of inherent
steepening, it may even prevent a shock wave from developing. Another reason why a
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t1

t2 = t1 + �t

t3 = t1 + 2�t

Fig. 4.4 Steepening of a positive wave

c

d0

dd

(a)

c

(b)

Fig. 4.5 Undular bore (a) and turbulent bore (b)

steepening wave does not necessarily develop into a bore is the fact that as the waves
become steeper, vertical accelerations increase, so that the pressure deviates more and
more from being hydrostatic. This effect, not included in the long-wave approximation,
delays the formation of a shock wave. (In fact, it allows the presence of certain nonlinear
waves that do not deform at all.)

There are two types of bores. For sufficiently low bores (relative bore height δd/d0 less
than about 0.28), the bore is undular; its surface is smooth and wavy (Figure 4.5a). Higher
bores are turbulent; in fact, they are travelling hydraulic jumps (Figure 4.5b).
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4.5.2 Tidal Bores

Shock waves in free-surface flows can develop as a result of human manipulation of control
structures, pumping stations etc., but also as the result of natural processes. Within the
latter category, the so-called tidal bores are the most common and best known. They occur
at a number of coastal bays and estuaries on earth at rising tide, particularly spring tide,
appearing as an undular or a turbulent front moving inland, causing a significant rise in
the local surface elevation in a short time. An overview of tidal bores occurring around the
world is given in Chanson (2012).

As an illustration, we present some details of the bores occurring in the estuary of the
River Severn in Great Britain (Rowbotham, 1983). The Severn discharges into the
Bristol Channel. The tides, approaching from the Atlantic Ocean, where they already
have a significant amplitude, are enhanced in this channel with a factor of about 3 as
a result of its funnel shape, narrowing in the inland direction. As a result, the tides
in the Severn estuary are quite strong, reaching 15 m tidal range at equinoctial spring
tides.

The incoming, rising tide front is steepened as it propagates inland. For sufficiently
high tides, a tidal bore develops somewhere in the estuary. This happens about 250
times a year. Most of the time, the bore occupies the entire width of the estuary,
advancing at a speed of a few meters per second. Depending on the height of the
tide and the local depths, the bore may be undular or turbulent; both types can be
present simultaneously: undular in the deeper parts of a cross section and turbulent
near the shallow banks, as can be seen in Figure 4.6. An individual bore in the Severn
estuary exists for about 2 h and traverses a distance of about 30 km, after which it
vanishes.

The highest tidal bores occur in the Qiantang River in Hangzhou, in the south-east of
China, which can reach a height of 4 m. They travel at a speed of some 40 km/h, spanning

Fig. 4.6 Tidal bore in the River Severn (UK); from Rowbotham (1983)
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the entire width of the estuary of several kilometres. Their approach, accompanied by a
strong roar, can be heard from a great distance.3

Whether or not a tidal bore develops depends on the strength of the tide and on
the longitudinal profile of the width and depth of the estuary. A funnel shape and
decreasing depths are conducive to bore formation. Due to dredging, several tidal bores
have disappeared from the scene. An example is the bore in the Seine river in France, which
was a regular phenomenon prior to major dredging works, even reaching Paris where its
rushing between the river banks, in the heart of this metropole, was a popular sight for
residents and tourists.

4.5.3 Bore Propagation

In this section, we derive an expression for the velocity of propagation of a bore, or shock
wave in open water, with height �d, which forms a moving transition between two regions
of uniform flow with depths d0 and d1 = d0 + �d, respectively. Ahead of the wave, the
water is at rest (U0 = 0); behind it the flow velocity is U1. We ignore whether the shock is
undular or turbulent. Contrary to the derivation presented in Section 3.1, using low-wave
approximations, we will here include the advection of momentum and use a more exact
expression for the total pressure force.

The long-wave theory does not apply to the flow in the shock region. Instead, we use
balance equations for the mass and momentum inside a control volume encompassing the
shock, indicated in Figure 4.7 by the chain line. The volume balance per unit width reads

U1d1 = c �d = c (d1 − d0) (4.19)

and the momentum balance
1
2
ρgd1

2 + ρU1
2d1 − 1

2
ρgd0

2 = ρU1d1c (4.20)

Elimination of U1 from these two equations yields after some algebraic manipulation

Fig. 4.7 Control volume containing a shock wave propagating into quiescent water

3 A number of spectacular videos and photographs can be seen on YouTube where there is also some erroneous
information, such as that the bore height can reach 9 m and that it is an annual phenomenon; the latter
misinformation is probably due to a mix-up with the fact that it is common for Chinese people to gather at
the site of the bore on the occasion of one of the annual Chinese festivals.
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c =
√

g
d0 + d1

2
d1

d0
(4.21)

This is the propagation speed of a shock wave entering quiescent water. More generally,
we can say that this is the propagation speed relative to the water ahead of the wave. If the
initial velocity U0 is nonzero, the wave speed relative to the fixed bed is U0 + c. Because
d1 > d0, it follows that c >

√
gd0 (and even c >

√
gd1). We see that the finite wave height

causes the wave propagation speed to exceed the linear-theory value.

4.6 Field Observations

4.6.1 Observations in the Twenthekanaal

Thijsse (1935) has presented the results of an extensive measurement campaign in a canal
in The Netherlands (the Twenthekanaal), aimed at a verification of the theory of translatory
waves. Although the data are old, they are unmatched in scope, both with respect to the
propagation distance (75 km) and propagation time (more than 4 h) and with respect to the
number of aspects that have been covered. For this reason, we present some of these data
and results here.

Layout

The measurements were taken in a canal under construction, situated between the river IJs-
sel (a branch of the Rhine) and a location 28 km inland (see Figure 4.8). A lock and a pump-
ing station are situated side by side in the canal at a distance of about 3 km from the junction
with the river, for which reason the canal is locally split into two short, parallel branches.

At a distance of some 25 km from the lock, the canal (under construction) is closed
by a temporary barrier. At km 17, a small stream (‘Bolksbeek’) issues into the canal.

Pumping
station

Lock

Fig. 4.8 Plan of the Twenthekanaal: lock and pumping station situated between stations Y3 and K1 (see inset for details);
upstream gauging stations K1 through K7; numbers indicate distance (km) from lock; after Thijsse (1935)
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Downstream of this point, i.e. towards the lock, the canal dimensions are larger than those
upstream to accommodate the occasional discharge from this stream.

At the day of the observations, the water level in the river was about 7 m below that in
the canal. Levelling of the lock took about 7 min, with a maximum discharge of some
50 m3/s. Simultaneous with the levelling of the lock, and for more than 4 h after that,
surface elevations were observed in a series of points in the lock chamber and along the
canal. Here, we use only the data for the 25 km-long canal reach upstream from the lock
(stations K1 through K7; see Figure 4.8).

Primary Wave

Levelling of the lock results in a negative translatory wave travelling upstream into the
canal. It is negatively reflected at the junction with the canal branch connecting to the
adjacent pumping station (see Figure 4.9, inset), and partially transmitted into the upstream
canal. As time goes on, the reflected waves are re-reflected at the lock, the pumping station
and the junction, resulting in a confused pattern, as in Figure 4.3.

Figure 4.9 shows a negative wave as observed and calculated at station K1, the first
station in the prismatic canal, taking account of the multiple reflections and partial
transmissions. Overall, the agreement is good, particularly during the first 12 min or so, in
which the major changes occur, lending support to the validity of the theoretical relations
involved, i.e. c = √

gAc/B, ζ = Q/Bc, and the expressions for the reflection and the
transmission at abrupt transitions.

Fig. 4.9 Observed (solid) and calculated (dashed) surface elevation of a negative translatory wave in the Twenthekanaal at
station K1 due to levelling of the lock; the inset shows the schematization of the short canal reaches between the
lock (S4), the pumping station (G2) and the beginning of the prismatic canal reach (station K1), with
corresponding travel times (in s) and Bc-values (in m2/s); after Thijsse (1935)
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Thijsse did not present details of his calculation, but we can retrace some of the steps.
The discharge into the lock chamber was calculated from the time variation of the water
level in the lock. From this, the surface elevation in the resulting negative translatory wave
and its multiple reflections was computed using the Bc-values of the short, schematized
canal reaches between the lock and the prismatic canal, shown in Figure 4.9, inset. At
the site of the lock, and in absence of reflections, the surface elevation at the moment of
maximum discharge (51 m3/s) is estimated at − Q/Bc = −19.6 cm. This primary wave
passes the junction (rt = 0.54) and the transition to the prismatic canal reach at station
K1 (rt = 1.23), so that its height at station K1 is estimated at −0.54 × 1.23 × 19.6
cm = −13.0 cm. The observed minimum is −13.4 cm, but this includes the effects of
multiply reflected lower disturbances of earlier origin, arriving at K1 at the same time
as the minimum elevation of the primary wave. We cannot reproduce Thijsse’s calculation
of this effect with precision because the time variation of Q is insufficiently known.

Propagation and Reflection

Figure 4.10 presents the observed surface elevations at the stations K1 through K7 as a
function of time. It shows at a glance the path of the leading edge of the main wave (thick
black lines) from the lock towards the barrier at 25 km from the lock, back to the lock and
then again towards the barrier, a total distance of 75 km, which is traversed in about 4 h.

The theoretical speed of propagation of the leading edge is
√

gd0, because at that point
the wave height is still zero. Thijsse noted that the value determined from the observed
wave path in s, t-space agreed with this theoretical value in some stretches, but fell short
by up to 7% in others. He made an estimate of the reduction in the theoretical propagation
speed due to resistance, and found that that could not explain the discrepancy (and taking
this into account would of course harm the agreement where that was found in absence of
resistance).

Close inspection of Figure 4.10 shows that the trough of the wave is lagging behind the
leading edge. This can be ascribed to the decrease in depth, and the counteracting flow
velocity, which result from the negative wave. Thijsse states that the ratio between the two
observed speeds was well represented by the factor

(
1 + 3

2ζ/d0

)
. This agrees with the

first-order approximation to the exact value, given in Eq. (4.18).
Where the primary wave reaches the Bolksbeek, some 17 km upstream from the lock, it

experiences a reduction in Bc-value from 250 m2/s to 185 m2/s approximately, with a weak
positive reflection as a result, observed and theoretically about 15%. (Note that ‘positive
reflection’ means reflection without change of sign, so that a positively reflected negative
wave is in fact negative.) Though weak, this reflected wave is clearly identifiable up to the
lock where it is again positively reflected, from where it can be traced all the way back to
the Bolksbeek (thick grey lines). These observations are consistent with the theory.

Damping

To investigate the rate of damping, we must use data on purely progressive waves, without
interference with possible reflections. Keeping this in mind, we can start the comparison
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Table 4.1 Computed and observed wave heights along various sections of the Twenthekanaal

Path Length ζ̂0 observed S ζ̂e observed ζ̂e computed

K2–K4 14 km −13.1 cm 55 km −10.4 cm −10.5 cm
K4–K′

2 9 km −5.3 cm 135 km −3.7 cm −4.9 cm
K′

2–K4 9 km −3.3 cm 230 km −2.9 cm −2.8 cm

between observed and calculated values at station K2, the first station in the prismatic reach
of the canal, and follow this primary wave to station K4 and hence back to K′

2 and from
there again to K4.

Table 4.1 lists the values of the observed minimum elevation at the start (subscript 0) and
at the end (subscript e) of each of these three paths, the values of the respective damping
length scale S defined in Eq. (4.16), in which we have used a representative canal depth
of 3.5 m, α = 3π/8 and cf = 0.004, and finally the values of the minimum elevations
computed with Eq. (4.15). The agreement is better than might be expected in view of the
approximations involved in the modelling of the resistance.

4.6.2 Observations in the Approach Canal to the Lanaye Lock

A remarkable effect of lock-induced translatory waves occurs in the approach canal
between the Lanaye lock in Belgium and the river Meuse at the border between Belgium
and The Netherlands, namely the occurrence of a free oscillation of the water mass in the
canal (Figure 4.11), generated by the levelling of the lock (Bertrand and Hiver, 1998; see
also PIANC, 2015).

The origin of the oscillation can be explained as follows. The positive surge generated
in the approach canal by the levelling operation is almost fully but negatively reflected at
the junction with the river, some 1700 m downstream from the lock, because the river
has a much larger cross section than the canal, and its Bc-value counts twice because
the transmitted wave can travel along the river in both the downstream and the upstream
directions.

A particular circumstance conducive to the generation of a free oscillation of the water
mass in the canal is that the travel time of a translatory wave from the lock to the river
and back again happens to be very near to the duration of levelling of the lock, both about
9 min. Therefore, at the time when the levelling process is completed, the negative wave
reflected off the river has just reached the lock. At that instant, the surface elevation of
the outgoing primary wave is more or less annulled by the negatively reflected wave over
the entire length of the canal, assuming that the time variation of the surface elevation
of the primary, outgoing wave is symmetric with respect to the time of occurrence of its
maximum value, 4.5 min after the start. The particle velocities, doubled by the negative
reflected wave, are then at their maximum, directed towards the river.

The situation just described corresponds to that in a quarter-wavelength free oscillation
of the canal (see Chapter 3) at the instant when this goes through its equilibrium
configuration, i.e. a horizontal water surface and an outgoing flow, with the boundary
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64 Translatory Waves

Fig. 4.11 Free oscillations in the approach canal to the Lanaye lock; from Bertrand and Hiver (1998)

conditions Q = 0 at the lock and ζ = 0 (say) at the junction with the river. From that
moment on the free oscillation sets in, as shown in Figure 4.11.

Data on the discharge and the geometry of the canal allow a rough check on the theoretical
expressions for the propagation speed and the initial height of the wave. The comparison
cannot be precise because a range of values has been given for the width and depth of the
canal, rather than point values.

PIANC (2015) lists the following data: maximum discharge Q = 108 m3/s, approach
canal length 1700 m, free-surface width B from 50 to 70 m, depth d from 4.0 to 4.5 m. Using
the mid-range value of d, we obtain c = √

gd ≈ 6.45 m/s, giving a travel time between
lock and river of 1700 m /(6.45 m/s), or about 4.4 min, close to the observed value of
4.5 min. Likewise, using the mid-range value B = 60 m, the initial amplitude of the surface
elevation is estimated at ζ = Q/Bc ≈ 28 cm, compared with an observed value of 24 cm.

Problems

4.1 What are translatory waves?
4.2 A control structure connects an irrigation canal (Ac = 100 m2, B = 30 m) with

a reservoir. At an initial head difference of 4 m, a gate is abruptly opened to an
effective flow area μA = 5 m2. Calculate the discharge and the height of the resulting
translatory wave in the canal for two cases: (a) neglecting the effect of the wave on
the head difference and (b) taking that effect into account.

4.3 Verify the percentages in the scheme in Figure 4.3.
4.4 Answer the questions in Example 4.2 for waves approaching the transition from the

other side.
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65 Problems

4.5 Mention a few theoretical consequences of the distinction between so-called low
translatory waves and high translatory waves.

4.6 Why do (high) translatory waves deform?
4.7 What is a characteristic difference between the deformation of positive translatory

waves and of negative ones?
4.8 How does resistance affect the deformation of translatory waves?
4.9 Mention some factors favouring the formation of tidal bores.
4.10 Why are there fewer tidal bores at present than in older days?
4.11 Derive an expression for the velocity of propagation of a bore entering a region with

depth d0 and flow velocity U0.
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5 Method of Characteristics

A general feature of wave phenomena is the transmission of information and energy
through a physical system at a finite speed. A disturbance brought about somewhere in
the system, e.g. due to operation of a control structure in an irrigation system, reaches
other locations after a finite time. Insight into this phenomenon is important both for the
purpose of effective control of water levels and discharges in the system and for performing
the required computations. The so-called method of characteristics lends itself particularly
well to this purpose because it makes visible how disturbances travel through the system
and it enables their computation. It was developed by Massau (1878).

5.1 Introduction

In this chapter, we use the mass balance and the momentum balance without the low-wave
approximations. Flow resistance is not included except for a minor reference.

As before, we restrict ourselves to one-dimensional systems, schematically represented
by the s-axis, and consider the varying position of a disturbance in the course of time.
This can be represented as a curve in the (s, t)-plane whose slope ds/dt equals the local
propagation speed of the disturbance. Such curves are called characteristics. They portray
how information travels through the system, as illustrated in Figure 4.10.

The balance equations for mass and momentum for one-dimensional wave phenomena
form a set of two partial differential equations for two dependent variables, such as the
depth (d ) and the discharge (Q), as functions of two independent variables (s, t). The two
dependent variables are called state variables. The instantaneous values of these can be
represented as a point in the state plane, a plane with the two state variables as coordinates.

Given a set of sufficient initial and boundary conditions, the solution of the set of partial
differential equations is determined. Expressed in terms of d and Q, this solution is a set
of values d (s, t) and Q (s, t), which can be represented as a surface in the (d, s, t)-space
and the (Q, s, t)-space, respectively, the so-called integral surfaces, depicted schematically
in Figure 5.1. In finite-difference methods for the integration of the partial differential
equations, the values of d and Q are determined for a set of points in the (s, t)-plane chosen
beforehand, for instance according to a rectangular grid with finite differences �s, �t (see
Chapter 11). In the method to be dealt with in this chapter, the computations proceed along
specific paths in the (s, t)-plane, the characteristics. The advantage of this is that (as we will
see) the set of two partial differential equations in s, t (the balances of mass and momentum)
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68 Method of Characteristics

(a) (b)

Fig. 5.1 Integral surfaces for d (a) and Q (b)

is replaced by a set of ordinary differential equations in t, simplifying the solution. Note
that a similar operation was carried out on h+ in Section 3.2.3, where the partial differential
equation given by Eq. (3.19) was replaced by the ordinary differential equations given by
Eq. (3.20).

As stated above, the slope of a characteristic (ds/dt) equals the local propagation speed,
which depends on the depth and the flow velocity, which are not known beforehand. That
is why the position of the characteristics has to be determined as part of the solution.
For low waves, the propagation speed does not depend on the disturbance, in which case
the slope of the characteristics is determined beforehand. Needless to say, this simplifies
the solution greatly. This low-wave approximation has already been used extensively in
preceding chapters.

The introductory remarks made above have given a broad indication of the essence of the
method of characteristics. The formal mathematical formulation is presented in Section 5.2,
which is followed by an outline of the principle of the application in Section 5.3. Examples
are given in subsequent sections.

5.2 Mathematical Formulation

For simplicity, we restrict the formulation to two-dimensional motions (i.e. no lateral
variations) over a horizontal bottom. We describe it in terms of the state variables U and d.

We recall the long-wave equations from Chapter 1. The continuity equation for one-
dimensional motion is

∂d
∂t

+ ∂Ud
∂s

= 0 (5.1)

whereas the equation of motion (without resistance) reads
∂U
∂t

+ U
∂U
∂s

+ g
∂d
∂s

= 0 (5.2)

(Because the bottom has been assumed to be horizontal, we can replace ∂h/∂s by ∂d/∂s.)
Instead of using d as one of the state variables, we use its equivalent, c, defined by
c ≡ √

gd. This simplifies the algebra without loss of information. Note that it is not
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69 5.2 Mathematical Formulation

necessary to assign a physical meaning to this quantity at this stage (as if we have no prior
knowledge about it from preceding chapters).

By substitution of d = c2/g into Eq. (5.1) and division of the result by c/g, and
substitution of d = c2/g into Eq. (5.2), we obtain

∂2c
∂t

+ c
∂U
∂s

+ U
∂2c
∂s

= 0 (5.3)

and
∂U
∂t

+ U
∂U
∂s

+ c
∂2c
∂s

= 0 (5.4)

Adding these two equations yields

∂(U + 2c)
∂t

+ (U + c)
∂(U + 2c)

∂s
= 0 (5.5)

For brevity, we define

R+ = U + 2c (5.6)

Using this shorthand notation, Eq. (5.5) becomes

∂R+

∂t
+ (U + c)

∂R+

∂s
= 0 (5.7)

The left-hand side of this equation represents the total derivative of R+ with respect to
t for an observer moving at a speed ds/dt = U + c in the positive s-direction (see
Section 3.2.3). Because the right-hand side is zero, such observer sees no change in the
value of R+. Stated another way: a constant value of the state variable U+2c is propagated
at speed U + c along the s-axis. Therefore, a formulation equivalent to Eq. (5.7) is

dR+

dt
= 0 provided that

ds
dt

= U + c (5.8)

Next, we perform the same operations with change of sign. Subtracting Eq. (5.4) from
Eq. (5.3), the result is

∂(U − 2c)
∂t

+ (U − c)
∂(U − 2c)

∂s
= 0 (5.9)

Defining

R− = U − 2c (5.10)

we obtain the following equivalent of Eq. (5.8):

dR−

dt
= 0 provided that

ds
dt

= U − c (5.11)

The velocities U ± c are called the characteristic velocities, and curves in the (s, t)-plane
for which ds/dt = U ± c are called positive characteristics and negative characteristics,

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/9781316576878.006
Downloaded from https:/www.cambridge.org/core. Columbia University Libraries, on 05 Jun 2017 at 21:40:31,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/9781316576878.006
https:/www.cambridge.org/core


70 Method of Characteristics

to be labeled as K+ and K−, respectively. (These are labels, not quantities.) The so-called
characteristic relations (5.8) and (5.11) imply that R+ is constant along K+ and that R− is
constant along K−.

The quantities R+ and R− (in some places taken together as R± for brevity) are called
Riemann invariants. Notice that the condition that R± = constant, or U ± 2c = constant,
corresponds to straight lines in the (U, c)-plane.

It follows from the preceding results that information is transmitted through the system
at speeds U ± c, or with speeds ± c relative to the fluid. This gives a physical meaning
to the quantity c, which formerly was only a short-hand way of writing

√
gd (ignoring

knowledge from previous chapters).

5.3 Principle of Application

5.3.1 General Procedure

The essence of the manner in which the characteristic method is applied is as follows.
Suppose that the state of motion is known for two closely neighbouring points in the (s, t)-
plane, say points 1 and 2 in Figure 5.2a, meaning that the values of U and c are known at
these points, shown as points S1 and S2 in the (U, c)-diagram in Figure 5.2b. Because the
values of the state variables U and c are known for points 1 and 2, so are the characteristic
velocities ds/dt = U ± c for these two points. These are velocities along the s-axis, but
they are also directions or slopes in the (s, t)-plane.

Now draw a short straight line segment in the (s, t)-plane, starting at point 1 in the
direction given by ds/dt = U1 + c1 (assumed positive, which will always be the case for
subcritical flow, regardless of the sign of U1). This is by definition a portion of a positive
characteristic K+. Likewise, we draw a line segment starting at point 2 with slope ds/dt =
U2 − c2 (assumed negative). This is a segment of a negative characteristic K−. Strictly
speaking, the characteristics are curved in general, but this can be ignored over sufficiently
short intervals, which can be achieved by starting at closely neighbouring points.

(a) (b)

Fig. 5.2 (s, t)-diagram (a) and state diagram (b)
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71 5.3 Principle of Application

The Riemann invariants R+ and R− are constant along the characteristics K+ and K−,
respectively. Physically, this means that information about the state of motion at points
1 and 2 is carried to point 3, which determines the state of motion at that point:

R3
+ = R1

+ and R3
− = R2

− (5.12)

or, in terms of the state variables U and c:

U3 + 2c3 = U1 + 2c1 and U3 − 2c3 = U2 − 2c2 (5.13)

The values of U3 and c3 are easily calculated from these two linear algebraic equations:

U3 = 1
2
(U1 + U2) + (c1 − c2) and c3 = 1

4
(U1 − U2) + 1

2
(c1 + c2) (5.14)

The various states of motion and the connections between them can be portrayed graphi-
cally in the (U, c)-diagram: the point S3, representing the state at point 3, can be found from
the states S1 and S2 as the point of intersection of the straight line R+ = U+2c = constant,
starting at point S1, and the straight line R− = U − 2c = constant, starting at point S2.

The computation can proceed in like manner as for point 3, by starting at an additional
point 4 with given state of motion, which yields a new point 5 where the state of motion
follows from that at points 2 and 4. This can be continued for many more points, so
covering the (s, t)-plane with a network of positive and negative characteristics, as shown
in Figure 5.3. The states of motion at the nodes of this network are determined from those
in the starting points. This is elaborated in following paragraphs.

5.3.2 Characteristics

As we have seen above, characteristics are paths in the (s, t)-plane along which the
information travels. This is of great importance for a good understanding of wave
propagation, as is needed for a proper operation of control structures, pumping stations etc.

Fig. 5.3 The (s, t)-plane with several characteristics
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72 Method of Characteristics

Box 5.1 Curved characteristics

Since the characteristic velocities depend on the instantaneous, local depth and flow velocity, they are not
known beforehand but must be determined as part of the solution, which therefore proceeds in consecutive
small steps. Moreover, in regions where U and d vary, so does U ± c. In those cases, the characteristics are
curved. Using straight-line segments instead is an approximation valid for weak disturbances and/or small
steps in s and t. This is in contrast to the (U, c) state diagram: the condition of constant Riemann invariants is
graphically represented as straight lines in the (U, c)-plane, no matter how large the variations.

The slope of a characteristic (ds/dt) equals the characteristic velocity (U ± c). If |U| =
c (i.e., Fr = 1), the flow is called critical. In subcritical flow, for which |U| < c, the
sign of ds/dt = U ± c equals that of ± c, so the slopes of the positive and the negative
characteristics have opposite signs. Stated another way: ds/dt > 0 for K+, and ds/dt < 0
for K−. This means that in subcritical flow, information is transmitted downstream as well
as upstream. In supercritical flow, |U| > c, and the sign of ds/dt = U ± c equals that of U,
for the positive as well as for the negative characteristics. Therefore, in supercritical flow,
information is transmitted in the downstream direction only.

In general, the characteristics are curved, but in some circumstances they are straight or
they can locally be approximated as such; see Box 5.1.

It is important to be aware that the position of the points in the (s, t)-plane (where?
when?) is determined by the characteristics, whereas the state of motion (what?) is
determined in the (U, c)-plane using the Riemann invariants. Different points in the (s, t)-
plane can very well have the same state of motion (steady, uniform flow), represented by a
single point in the (U, c)-plane.

5.3.3 Boundary Conditions

A boundary condition prescribes the values of a state variable, or a relation between
two state variables (such as a dependence of discharge on water level) at one of the
boundaries of the computational domain, as a function of time from the moment at which
the initial conditions have been prescribed. Two boundary conditions are required. The
flow regime (sub- or supercritical) determines at which boundary or boundaries these
should be imposed, as will be made clear in the following.

Consider therefore a prismatic canal of finite length, from s = 0 to s = �, say, in
which the values of U and d, so U and c, are known at time t = t0 (the initial conditions),
allowing the start of the construction of a network of characteristics and the determination
of the associated values of the state variables. Boundary conditions are specified for t > 0
at s = 0 and/or at s = �.

Subcritical Flow

Assuming subcritical flow, in which at each point the two characteristic velocities (ds/dt =
U ± c) have opposite signs (or, the characteristics have opposite slopes), we obtain a
network as shown in Figure 5.4, in which we have chosen four points (1, 2, 3, 4) in the
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73 5.3 Principle of Application

Fig. 5.4 Subcritical flow: characteristic paths for given initial conditions and boundary conditions

computational domain to start the computation. (This is just an illustration. In practical
applications, it is likely that more points would be required.)

In the manner described in Section 5.3.1, the solution can be obtained successively at
points 5 through 10, in a more or less triangular region bordered by the characteristics K+

issuing at t = 0 from the left boundary s = 0 (point 1), and K− issuing at t = 0 from the
other boundary s = � (point 4).

The values of the Riemann invariants at point 10 equal those at points 1 and 4, but
the characteristics linking these points to point 10 depend also on information at points in
between, in fact the entire interval from s = 0 to s = �. The latter interval is called the
domain of dependence of point 10. Boundary conditions at s = 0 and at s = � for t > 0
have no influence at point 10 (or in the triangular domain 1–4–10).

Conversely, considering an individual location such as s = s2, the initial condition there
can influence the state of motion only in the domain between the positive characteristic
(2–6–9) and the negative characteristic (2–5–11) issuing from that point at t = 0, the
so-called domain of influence of point s2.

In order to extend the solution beyond the domain of dependence (the triangle 1–4–10),
we continue the negative characteristic issuing from point 2 up to the left boundary, s = 0.
This yields point 11 and the value of R− in that point (R−

11 = R2
−). In order to find the

solution, a second relation is required. This cannot be delivered by a positive characteristic,
because such characteristic cannot reach point 11 from the region where information is
available. That is why a boundary condition is needed at the left boundary, and only one.
(With two boundary conditions in s = 0, the problem would be overdetermined, with three
relations for only two variables.)

Proceeding in this manner, we obtain two relations between the two state variables at the
left boundary, viz. the values of R− obtained from the initial condition, and the other one
being provided by the boundary condition. With this information, positive characteristics
issuing from the left boundary can be constructed, entering the domain of computation.
See e.g. point 12, where R+

12 = R11
+, and where R−

12 is also known, from the negative
characteristic through that point (R−

12 = R3
−). Thus, the solution at point 12 is known, etc.
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74 Method of Characteristics

Proceeding in like manner from the other boundary s = �, we see that there too a
boundary condition is required, and only one. We can conclude that in subcritical flow,
one boundary condition is required at each of the two boundaries. In other words, in
subcritical flow, one boundary condition is required at the upstream boundary and one
at the downstream boundary. This is consistent with Section 5.3.2, where it was noted that
in subcritical flow, information is transmitted downstream as well as upstream.

The influence of the left boundary enters the computational domain along positive
characteristics. When the positive characteristic issuing from point 1 reaches the right
boundary, the influence of the left boundary condition is felt in the entire domain.

Supercritical Flow

Next, we consider supercritical flow, in which the two characteristic velocities at each
point (ds/dt = U ± c) have the same sign (or, the characteristics are slanting in the same
direction), equal to that of U. Assuming U > 0, implying ds/dt > 0, we obtain a network
of characteristics slanting to the right, as shown in Figure 5.5.

In contrast to the situation for subcritical flow, the left boundary (the upstream boundary)
cannot be reached by negative characteristics issuing from the domain s > 0, where
information is available from the initial conditions. If we want to know the solution at the
left boundary for some time t > 0, as at point 8, the required information must be delivered
entirely by the (two) boundary conditions there. Thus, in supercritical flow, two boundary
conditions are required at the upstream boundary (e.g. depth and flow velocity). This is
consistent with Section 5.3.2, where it was noted that in supercritical flow, information is
transmitted downstream only.

Now consider the downstream boundary. The positive characteristic issuing from
point 3, for example, reaches the downstream boundary at point 7. But that point can also
be reached by a negative characteristic issuing closer to the downstream end because such
characteristics also slope to the right (downstream). Thus, the values of both Riemann
invariants at point 7 are known, and the state of motion there is fully determined. A
downstream boundary condition is not necessary. In fact, it would make the problem
overdetermined.

Fig. 5.5 Supercritical flow: characteristic paths for given initial conditions and boundary conditions
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75 5.3 Principle of Application

Transcritical Flow

Suppose now that, in supercritical flow conditions, after some time a gate at the down-
stream boundary is closed. Then what? Closing a gate effectively imposes a downstream
boundary condition Q = 0 in s = �. In that case, the local flow becomes subcritical, and
negative characteristics issuing from the closed downstream end enter the computational
domain. At some point these reach the region of supercritical flow, which point is also
reached by a positive characteristic and by a negative one issuing in the region of
supercritical flow. The solution is overdetermined at that point. It becomes multivalued;
i.e. two values of the surface elevation exist simultaneously at the same location, implying
the existence of a shock wave or bore.

At the location of the shock, there are five unknowns: the two state variables on
each side, and the velocity of the shock. An equal number of relations is available
for their determination: three Riemann invariants obtained from the three characteristics
intersecting at the location of the shock, and two equations for the balances of mass and of
momentum across the shock (as derived in the preceding chapter). Together, the available
information is just sufficient to obtain a unique solution.

5.3.4 External Forces

So far, external forces such as resistance or wind action have been ignored, as well as a
possible bed slope, so as to present the method of characteristics in its most elementary
form. This restriction is now relaxed.

Let F be the resultant of the external forces per unit mass acting in the positive
s-direction. We add this to the right-hand side of Eq. (5.2). Repeating the procedure to go
from the balance equations of mass and momentum to the characteristic form, we, obtain,
instead of Eqs. (5.8) and (5.11),

dR±

dt
= F provided that

ds
dt

= U ± c (5.15)

Instead of being truly invariant, the Riemann variables will now change along the
corresponding characteristics at a rate given by the forcing term F.

Referring to the situation sketched in Figure 5.2, the Riemann variable R+, correspond-
ing to the positive characteristic K+, will change between points 1 and 3 according to

�R+
1,3 ≡ R+

3 − R+
1 =

∫
K+

1,3

F(s, t) dt (5.16)

where the domain of integration K+
1,3 is the path from point 1 to point 3 along the

characteristic K+. Similarly, along the characteristic path K−
2,3 from point 2 to point 3,

the corresponding change of R− is given by

�R−
2,3 ≡ R−

3 − R−
2 =

∫
K−

2,3

F(s, t) dt (5.17)

These variations in R+ and R−, respectively, must be added to the right-hand sides in
Eq. (5.12), giving
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76 Method of Characteristics

Fig. 5.6 Inclusion of forcing terms in the state diagram in the case of a resistance force Fr

R+
3 = R+

1 + �R+
1,3 and R−

3 = R−
2 + �R−

2,3 (5.18)

or, in terms of the state variables U and c:

U3 + 2c3 = U1 + 2c1 + �R+
1,3 (5.19)

and
U3 − 2c3 = U2 − 2c2 + �R−

2,3 (5.20)

As a result, the point S3 does not lie on the line R+ = R+
1 (dashed line in Figure 5.6),

but on another (solid) line parallel to this. This line can be found by shifting the first one
such that �R+ = �U + 2�c = �R+

1,3. If we measure this shift along lines of constant c
(constant depth), or ‘horizontally’, then �c = 0 and we have �U = �R+

1,3. Similarly, the
line R− = R−

2 has been shifted over a distance �U = �R−
2,3.

If resistance is the only external force (F = Fr = −cf|U|U/d, say), F opposes U, and the
lines of constant R± must be shifted in the direction of U = 0, regardless of the direction
of the flow; see Figure 5.6. This results in a gradual decrease in absolute value of the flow
velocities, or a damping of the motion, as expected for the effect of resistance.

5.4 Graphical Solution Procedure

The method of characteristics lends itself to solving the one-dimensional shallow water
equations graphically. This leads to an elegant solution procedure that provides insight
into the behaviour of solutions, highlighting in particular the influence of the initial and
boundary conditions. For practical applications the graphical method has since long been
replaced by computer tools.1 Practising this method remains useful, however, to become
familiar with the essential ingredients of wave propagation problems, which is why we
treat it here.

1 The method of characteristics is frequently used in numerical models to formulate absorbing boundary
conditions. Some numerical methods are intrinsically based on the method of characteristics (so-called
characteristics-based methods). These are particularly suited to compute compression wave, bores, transcritical
flows and the like; see also Section 11.4.
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77 5.4 Graphical Solution Procedure

For ease of illustration we linearize the characteristic velocities. Although the ensuing
solution procedure is valid for infinitesimal disturbances only (low waves), the essential
features of the method are retained.

In the case of weak disturbances entering a region with uniform depth d0 and flow
velocity U0, the characteristic velocity can be approximated as ds/dt 
 U0 ± c0 =
U0 ± √

gd0. In this approximation, the characteristics are straight and independent of
the solution. We will use this approximation in following graphical representations and
elaborations

Also, we will draw the (s, t)-diagram ‘upside down’, compared with Figure 5.2; i.e. we
plot the direction of increasing time downwards, as in Figure 5.7. The advantage of this is
that the positive characteristics K+ in the (s, t)-plane are slanting in more or less the same
direction as the lines R+ = constant in the (U, c)-plane, and similarly for K− and the lines
of constant R− (except for supercritical flow).

5.4.1 Initial Value Problem

The long-wave equations (5.1) and (5.2), or their equivalent characteristic relations (5.8)
and (5.11), require a set of two conditions in t and two conditions in s for a well-posed
problem.

In order to be able to march forward in time with the integration of the basic equations,
we impose two initial conditions that specify the state of motion through the values of
two independent state variables at some initial instant t = t0 in the entire s-domain of
calculation.

As an example, we consider the evolution of an initial disturbance of finite length in a
long canal, such that the canal boundaries do not (yet) affect the solution. We start with the
same initial conditions as in the example presented in Section 3.4, i.e. a state of rest every-
where with an undisturbed depth d0 and a small rise of the free surface (to a depth d1) over
a finite interval from s = s1 to s = s2, say (Figure 5.8). The undisturbed state is labelled
as I, the disturbed state as II. The intervals in which these states exist initially are indicated
along the upper line in Figure 5.9. The states themselves are shown in Figure 5.10.

We introduce the initial conditions step by step, beginning with the construction of a
small network of characteristics issuing at t = 0 from the undisturbed region where s < s1

Fig. 5.7 Orientation of (s, t)-diagram and (U, c)-diagram

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/9781316576878.006
Downloaded from https:/www.cambridge.org/core. Columbia University Libraries, on 05 Jun 2017 at 21:40:31,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/9781316576878.006
https:/www.cambridge.org/core


78 Method of Characteristics

Fig. 5.8 Example: initial condition

(a)

(b)

(c)

Fig. 5.9 Example: characteristics and flow states in the (s, t)-diagram

(Figure 5.9a). We draw a positive characteristic from a point a and a negative one from a
point b. These intersect at a point c. Because the points a and b share the same undisturbed
state of motion (I, actually a state of rest), the corresponding lines of constant R± in the
(U, c)-diagram all pass through the point I, so that the same state (I) exists at point c. The
same is true for neighbouring points. Therefore, this undisturbed state (I) exists in the entire
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79 5.4 Graphical Solution Procedure

Fig. 5.10 Example: (U, c)-state diagram

domain to the left of the negative characteristic K−
1 . This is because the disturbance issuing

from s = s1 has not yet arrived at those faraway points in the restricted time. (We could
have stated this from the outset, but here we have derived the result formally to illustrate
the application of the method of characteristics.) The same applies to the region to the right
of K+

2 .
A similar consideration, applied to the triangular domain between the s-axis and the two

characteristics K+
1 and K−

2 , will show that the state II (still) exists in that domain. The
disturbances originating at the locations s = s1 and s = s2 have not yet reached the points
inside this triangular domain.

Next, we draw a positive characteristic issuing from the left region with initial
state I (point p) and a negative characteristic issuing from the region with initial state II
(point q) (Figure 5.9b). They intersect at point r. The state at this point can be found in the
state diagram of Figure 5.10 as the intersection of the line R+ = constant through point I
and the line R− = constant through point II, yielding the state III valid for point r and other
nearby points between K−

1 and K+
1 . Likewise, starting at points u and v, we find the state

IV for point w and nearby points between K−
2 and K+

2 .
The characteristics K+

1 and K−
2 intersect at point P. This point marks the corner of a

domain, centered between s1 and s2, in which the undisturbed state I has returned, as shown
in Figure 5.9c.

Figure 5.9c gives an overview of the results. It is clear that the initial disturbance is
effectively split into two disturbances, one propagating to the left and the other to the right
along the s-axis. At first, these two partial disturbances overlap, but after some time they
are separated, after which the undisturbed state is restored in the center, extending over an
increasingly long interval of the s-axis as the two disturbances propagate to the left and to
the right.

Using the finalized diagrams, the variation of the flow state in time at a particular location
can be found by plotting a vertical line s = constant in the (s, t)-diagram. Intersection of the
line s = s3 in Figure 5.9c with the principal characteristics (those separating the different
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80 Method of Characteristics

flow states) gives the time instances at which the state at point s3 changes. The alternate
flow states (subsequently II, III and I) are obtained from the corresponding state diagram,
Figure 5.10. Similarly, a horizontal line t = t1 in the (s, t)-diagram will give the spatial
variation of the flow state at time t1.

5.4.2 Inclusion of the Boundary Conditions

We will now illustrate how the boundary conditions are introduced, continuing with the
preceding example.

Suppose that at some point s = �, somewhere to the right of point s = s2 in
Figures 5.8 and 5.9, the canal connects to a reservoir with a constant water level. This
location is indicated in the extended (s, t)-diagram of Figure 5.11. Ignoring the velocity
head, the connection with the reservoir implies the boundary condition d = constant = d0
at s = �, which is represented by a straight line c = constant = c0 = √

gd0 in the extended
(U, c)-state diagram in Figure 5.12.

We have seen in the above that the initial conditions of the present example give rise
to two disturbances, one travelling to the left and one travelling to the right. We focus on
the latter. Its leading edge is represented by the characteristic K+

2 in Figure 5.9. The initial
state of rest (state I) exists in the domain to the right of this characteristic up to the instant
when the disturbance arrives at the boundary, labelled as point Q in Figure 5.11. From that
moment on, the influence of the boundary at s = � comes into play.

To determine the resulting state of motion, we draw a positive characteristic issuing at
t = 0 from a point d in the region of the initial disturbance, with state II. This characteristic
intersects the boundary at an instant labelled as e. Along this characteristic, we have R+ =
U + 2c = constant = 2c1 = Ue + 2ce. Together with the boundary condition ce = c0 =√

gd0, this yields Ue = 2(c1−c0). These relations have been plotted in the extended (U, c)-
diagram of Figure 5.12. The corresponding state of motion, with c = c0 and U = 2(c1−c0),
is labelled as state V. The domain where this exists has been indicated in Figure 5.11.

V

I

VI

Fig. 5.11 Example: boundary conditions, extended (s, t)-diagram; effect of boundary condition noticeable in shaded area
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81 5.4 Graphical Solution Procedure

Fig. 5.12 Example: boundary conditions, extended (U, c)-state diagram

Notice that the flow velocity in the disturbance approaching the reservoir is UIV =
c1 − c0, and that it is doubled due to the negative reflection of the travelling disturbance
against the reservoir, as we saw in Chapter 4 in the context of translatory waves.

After some time the trailing edge of the right-travelling disturbance arrives at the
boundary, labelled R in Figure 5.11, inducing yet another state of motion. It is determined
through a negative characteristic issuing from point e and a positive one issuing from the
s-interval with the initial, undisturbed state of motion (I). The result is state VI, as indicated
in the (s, t)-diagram of Figure 5.11 and in the state diagram of Figure 5.12.

Boundary Types

In the preceding example, the boundary condition of a constant depth was plotted as
a horizontal line in the state diagram. Its intersection with an outgoing characteristic
determines the new state of motion, including the effect of the boundary. Likewise, the
condition of a closed boundary is represented by a vertical line U = 0 in the state
diagram.

Instead of prescribing a constant value of U or d, it is also possible to prescribe a
relation between them. This is for instance the case when the boundary represents a control
structure (weir, orifice), for which a discharge relation has to be specified as the boundary
condition. Given that the head loss over such structures is proportional to the local velocity
head, the following relation between d and U will hold locally (see Chapter 9):

d = hB − ξ
|U| U

2g
(5.21)

where ξ is the head loss coefficient of the structure and hB is the water level in the water
system outside the structure (a lake or sea to which it is connected) with respect to the
local bed level in the canal. The notation using the absolute value of the velocity warrants
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82 Method of Characteristics

Fig. 5.13 Example: (U, d)-state diagram with parabolas R± = U ± 2
√

gd = constant

that the difference in head over the structure obtains the correct sign as the flow direction
reverses (as with the resistance term in the momentum equation).

In cases of such mixed boundary conditions, it can be convenient to use (U, d) as state
variables. The advantage of this is the ease of the graphical representation of the mixed
boundary condition in the (U, d)-state diagram, but this is at the expense of nonlinear
relations expressing the constancy of the Riemann invariants. These are now expressed as
R± = U ± 2

√
gd = constant, i.e. two half-parabolas in the (U, d)-diagram (see Figure 5.13,

which is the (U, d)-counterpart of the corresponding (U, c)-state diagram of Figure 5.10).
The graphical solution procedure remains effectively the same as when the value of U or

d is prescribed; i.e. establish the values of these state variables from the intersection of the
appropriate curve representing the boundary condition Eq. (5.21) with a line R = constant
for the outgoing characteristic.

Changes in the state of motion correspond to displacements along the parabolas of
constant R+ or R−, i.e. a curved path in the (U, d)-plane. For weak disturbances of an
undisturbed state (U0, d0), these displacements are small and follow approximately the
local tangent to the parabola, given by dU/dd = ∓√

g/d0. Thus, for small steps along these
local tangents, small variations in U and d are related by

δU = ∓
√

g
d0

δd = ∓ g
c0

δd = ∓ c0

d0
δd (5.22)

in which c0 = √
gd0 (see also Section 3.1.2).

Absorbing Boundaries

The influence of engineering measures in water systems is often mainly local, diminishing
with increasing distance from the site. This is utilized in physical or numerical model
studies of the local situation by cutting off the model at a sufficiently remote boundary, such
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83 5.5 Simple Wave

that it can reasonably be assumed to be beyond the influence of the engineering measure
concerned.

Because in reality the system extends further, such a cut-off creates an artificial, open
model boundary. The condition to be imposed there is that disturbances approaching that
boundary from within the study area should not be reflected, so as to simulate reality in
which they continue unimpeded. In these cases we speak of an absorbing boundary (see
also Section 3.5). The method of characteristics is particularly suited to determine the
appropriate condition to be imposed at an open boundary in order to make it absorbing,
because disturbances travelling in opposite directions are tracked separately.

The influence from the region outside the open boundary on the motion within the model
domain should be allowed to enter this domain without change. This can be achieved by
prescribing the incoming Riemann invariant at the open boundary. Suppose now that a
disturbance approaches this boundary from within. If it would (partially) reflect there,
its reflection would add to the disturbance entering the domain from outside the model
boundary. This possibility is excluded by prescribing the incoming Riemann invariant,
which therefore makes the boundary absorbing.

5.5 Simple Wave

This section deals in detail with the important case of a disturbance entering a region of
rest or of uniform flow, first considered in Section 3.1. Such disturbance, travelling in one
direction only, is called a simple wave. They occur frequently in practice as a result of
operation of control structures following a steady state.

5.5.1 General Solution

Initially, at t = 0, the flow is uniform with depth d0 (propagation speed c0 = √
gd0) and

flow velocity U0, indicated as state I in the (U, c)-diagram of Figure 5.14. Starting at t = 0,
a time-varying disturbance is imposed at s = 0 from where it propagates into the canal, in
the direction of s-positive, say (s > 0). We assume that the canal is prismatic and that there
are no reflections nor autonomous disturbances propagating in the direction of s-negative.

The disturbance enters the domain s > 0 at t = 0 with velocity U0 + c0. Where it has
not yet arrived, i.e. in the domain s > (U0 + c0)t, the initial state of uniform flow is still
present.

In order to determine the motion in the region where the disturbance is present, we need
(among others) negative characteristics issuing at t = 0 from the undisturbed domain. All
of these share the same value of R−, also in the disturbed region. It follows that in the
entire domain, including the disturbed part, all points have the same value of R−, given by
R0

− = U0 − 2c0. In other words, in the entire region, the two state variables U and c obey
the relation
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84 Method of Characteristics

(a) (b)

Fig. 5.14 Simple wave travelling in positive s-direction; (s, t)-diagram with characteristics (a) and state diagram (b)

U − U0 = 2c − 2c0 = 2
√

gd − 2
√

gd0 (5.23)

This is a straight line in the (U, c)-diagram passing through point I, as shown in
Figure 5.14b. It shows that the flow velocity in the simple wave increases with the local
depth, i.e. with the local wave height, and how. It is shown in Box 5.2 that for low waves,
Eq. (5.23) reduces to Eq. (3.8), derived in Chapter 3 for that category.

We now consider a positive characteristic K+
1 issuing from s = 0 at an arbitrary time

t = t1, say (see Figure 5.14a). Along this characteristic, R+ is constant = R1
+. But, as we

have seen, all points share the same value of R−, viz. R−
0 . It follows that both R+ and R−

are constant along K+
1 , so that the same is true for the two state variables U and c separately.

Since this applies to an arbitrary positive characteristic, it applies to all of them.
This in turn implies generally that in a simple wave, the state of motion is constant

along any positive characteristic. Since both U and c are constant along the positive
characteristics, so is their sum U + c, i.e. the characteristic direction (ds/dt) in the
(s, t)-plane. This means that in a simple wave, the positive characteristics are straight.

The value of U + c for any positive characteristic depends on the associated value of
R+, which in turn is determined by the boundary condition in s = 0 at the time when the
characteristic was started. Using Eq. (5.23), this can be written as

ds
dt

= U + c = U0 + 3c − 2c0 = U0 + 3
√

gd − 2
√

gd0 (5.24)

It follows that points of constant U and c (or constant U and d, therefore also of constant
discharge q = Ud) are moving with a constant speed, which is higher for points of the
wave with a larger wave height (larger depth) than it is for the lower parts. Stated another
way: higher parts of the wave travel faster than lower parts; the wave deforms. This can
also be seen from the characteristics, because two positive characteristics with constant
but different wave heights (therefore also different values of U and c) diverge or converge,
which means that the distance between any two points on the wave with constant but
different depths varies linearly in time.
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85 5.5 Simple Wave

Box 5.2 Low simple waves

In Chapter 3, relations were derived between variations in flow velocity and surface elevation for a low simple
wave; see Eq. (3.8). Eq. (5.23) is a similar relation, valid for simple waves of arbitrary height. Let us check
whether it reduces to Eq. (3.8) for low waves, i.e.δd = d−d0 	 d0. To this end, we make the approximation√

gd = √
gd0 (1 + δd/d0) 
 √

gd0
(

1 + 1
2 δd/d0

)
and substitute this into Eq. (5.23), to obtain

δU = U − U0 
 √
g/d0 δd = c0 δd/d0, which is indeed the same as Eq. (3.8) (accounting for the

difference in notation).

Thus, the wave deforms as it propagates. This was already made plausible in the context
of high translatory waves in Chapter 4. The difference is that we now have proof, and a
method to calculate the rate of deformation.

5.5.2 Expansion Wave

In order to investigate the wave deformation further, we choose a uniform state of rest
(U0 = 0, d = constant = d0) in a long canal as the initial condition, and a prescribed
time variation of the flow velocity in s = 0 as one of the boundary conditions. A
second boundary condition is provided by the assumed absence of reflected waves from
downstream, as in any simple wave.

We first consider a situation with outflow at s = 0 with an initially increasing outflow
velocity, followed by a constant value after some time, as sketched in Figure 5.15a. The
starting outflow causes a negative wave propagating away from the outflow boundary.

Along the characteristic K0
+ through the point s = 0, t = 0, the wave speed is U0 + c0

(actually, U0 = 0, but we write it for consistency in the expressions). It separates the
disturbed domain from the undisturbed one, thus representing the leading edge.

Next consider a characteristic K+
1 starting at the left boundary at some time t = t1, when

U = U1 < 0, so d = d1 < d0, and therefore also U1 + c1 < U0 + c0. This implies that
K+

1 diverges from K0
+. Thus, the point on the wave where d = d1 lags more and more

Fig. 5.15 Expansion wave travelling in positive s-direction; velocity variation at outflow boundary (a) and (s, t)-diagram
with characteristics (b)
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86 Method of Characteristics

behind the leading edge. The wave, being negative, becomes less and less steep and more
and more stretched as time goes on. This type of wave is called an expansion wave.

At some instant, the outflow velocity has become constant. From that moment on, the
positive characteristics issuing at s = 0 have the same values of U and c; they are mutually
parallel, signifying a new state of uniform flow, with a smaller depth than initially, and with
a negative flow velocity equal to the velocity finally imposed at s = 0.

Stoker (1957) treats in detail the case of a horizontally translating vertical gate, with
special attention to the case of withdrawal, which generates a negative wave. When the
gate recedes at a sufficiently high velocity, the water cannot keep up with it and the bed
falls dry. This is the so-called dam-break problem, which can be solved analytically in
closed form using the method of characteristics.

Example 5.1 Consider a semi-infinite canal with initial depth d0 = 5 m and initial velocity
U0 = 0. A pumping station at the (left) boundary of the canal starts withdrawing water, as
a result of which an expansion wave starts travelling along the canal. Consider a point on
the expansion wave in which the velocity U1 = −0.5 m/s.

1. Calculate the water depth (d1) at this point.
2. Determine the speed (ds/dt|1) with which this point propagates along the canal.

Solution

In the undisturbed region c0 = √
gd0 = 7.0 m/s.

1. Using Eq. (5.23) (with U0 = 0) we obtain c1 = c0 + 1
2 U1 = 6.75 m/s, so d1 = c2

1/g =
4.5 m.

2. The propagation speed ds/dt|1 equals U1 + c1 = c0 + 3
2 U1 = 6.25 m/s.

Notice how the smaller value of d and that of U (with respect to the initial state) both
contribute to the propagation speed (ds/dt) being smaller than its undisturbed value.

5.5.3 Compression Wave

We now treat a situation of inflow, with a flow velocity initially increasing from zero, and
finally going to a constant value, as in Figure 5.16a. The starting inflow causes a positive
wave propagating into the adjacent canal reach.

When in a certain time interval the inflow velocity increases, so do the local values of
d and c, therefore also that of U + c: the positive characteristics converge, and the wave
becomes steeper in time. This type of wave is called a compression wave. At some moment,
positive characteristics intersect, at which point (in space and in time) the solution becomes
multivalued, with two different values of the momentary surface elevation at the same cross
section. A discontinuity in surface elevation develops: a bore or shock wave.

Consider two positive characteristics K+
1 and K+

2 , issuing from s = s0 at times t = t1
and t = t2 = t1 +�t, respectively, such that ds/dt|2 > ds/dt|1. Elementary geometry shows
that they intersect at a time ti and a location si given by
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87 5.5 Simple Wave

Fig. 5.16 Compression wave travelling in positive s-direction; velocity variation at inflow boundary (a) and (s, t)-diagram
with characteristics (b)

ti = t1 + V2

V2 − V1
�t = t2 + V1

V2 − V1
�t (5.25)

and

si = s0 + V1V2

V2 − V1
�t (5.26)

in which we have used the shorthand notation V = ds/dt = U + c.
In the above, the prescribed time variation of the flow velocity was chosen as the

boundary condition, for convenience. In practice, it is more likely that the discharge is
given, as at a pumping station, or a relation between surface elevation and discharge, as in
a gated control structure. Such conditions make the algebra a bit more complicated without
adding insight into the process of wave deformation.

Example 5.2 As in Example 5.1, but with a discharge of water from the pumping station
causing a compression wave travelling along the canal. In a time interval from t1 to
t2 = t1 + �t = t1 + 60 s the velocity at the pumping station increases from U1 = 0.5 m/s
to U2 = 1 m/s.

1. Determine the instant, with respect to t1, at which the respective characteristics K+
1 and

K+
2 intersect.

2. Determine the location, with respect to the pumping station, where these characteristics
intersect.

Using V = ds/dt = c0 + 3
2 U gives V1 = 7.75 m/s and V2 = 8.50 m/s.

1. Instant of intersection (Eq. (5.25)): ti = t1 + (V2/ (V2 − V1)) �t = t1 + 680 s
2. Location of intersection (Eq. (5.26)): si = s0 + (V1 V2/ (V2 − V1)) �t = 5270 m from

the pumping station

A bore is formed when an intersection of positive characteristics first occurs. When and
where this happens depends on the time variation of the imposed inflow velocity. The
numbers used in the example were chosen arbitrarily; they do not refer to the instant and
location of bore formation.
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88 Method of Characteristics

Problems

5.1 Describe the essence of the method of characteristics.
5.2 What is a characteristic?
5.3 What is the importance of characteristics?
5.4 What is the physical meaning of characteristic velocities?
5.5 Which variables determine characteristic velocities?
5.6 Considering the characteristic velocities of long waves in open water, what can be

said about the relative importance of the flow velocity compared with the wave
speed?

5.7 Why do the two characteristic velocities in free-surface flows have opposite signs in
some cases, and the same signs in others?

5.8 What is the relevance of the answer to the previous problem for the boundary
conditions? For the initial conditions?

5.9 Is the speed of propagation of a shock wave, relative to the water ahead of it (with
depth d0), larger than

√
gd0, smaller, or equal to it?

5.10 A simple wave, started in s = 0 at t = 0, propagates into a prismatic canal (s > 0)
with water at rest, where the undisturbed wave speed is c0. Is it possible that under
certain circumstances it causes disturbances in the domain s > c0t?

5.11 Elaborate the examples of this chapter by making sketches of the corresponding (s, t)-
diagram and the state diagram.

5.12 Choose some instants in the solutions of Problem 5.11 and sketch the corresponding
longitudinal profiles of the state variables.

5.13 Choose some fixed locations in the solutions of Problem 5.11 and sketch the
corresponding time variations of the state variables at those points.

5.14 The following data apply to the situation of a simple wave in a prismatic canal: d0 =
5 m, U0 = 0 and

U(0, t) =
{

Um sin2(π t/T) for 0 < t < 1
2 T

Um for t ≥ 1
2 T

in which Um = −0.7 m/s and T = 60 s. The following questions should be answered
using the method of characteristics.
(a) Determine the state of motion in the domain s > c0t.
(b) Same for the domain s < c0t, both for some instants t < 1

2 T and for some instants
t > 1

2 T.
(c) Calculate and plot the variation of U and d with s for the instants chosen in

part (b).
5.15 Same as Problem 5.14, but for Um = +0.7 m/s.
5.16 Same as Problem 5.14, but now the discharge per unit canal width (q = Ud) is given:

q(0, t) =
{

qm sin2(π t/T) for 0 < t < 1
2 T

qm for t ≥ 1
2 T

where qm = 3.5 m2/s.
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89 Problems

5.17 A canal, initially at rest with d0 = 5 m, U0 = 0, is connected at s = 0 by a movable gate
to a reservoir whose surface level is 2 m above the undisturbed canal level. Initially,
the gate is closed but from time t = 0 to t = 1

2 T = 30 s, the gate is gradually opened
to an effective height μa(t) and then brought to a standstill. The discharge per unit
canal width (q) is related to the head difference across the gate (�h) by

q = Ud = μa
√

2g�h

in which the time variation of the gate opening is given as

μa =
{

μam sin2(π t/T) for 0 < t < 1
2 T

μam for t ≥ 1
2 T

where μam = 0.5 m. The same questions apply as in Problem 5.14.
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6 Tidal Basins

In the preceding chapters, the discharge and the surface elevation were treated as
continuous functions of s and t. This led to a coupled system of partial differential equations
in two unknowns, with wave-like solutions. Certain flow systems can be schematized in
terms of separate but connected components of finite dimension, in each of which we
disregard the spatial variations. In each component, either storage or transport is modelled,
but not both, so that the motion within them is not wave-like. In these cases, we speak of a
discrete model. One such model is presented in this chapter.

6.1 Introduction

The disregard of spatial variations in the system components considered is allowed if the
dimensions (�) are small compared with a typical length of the (long) waves in the domain.
Stated another way, system components for which the travel time (‘residence time’) of
long waves through them is short compared with the wave period. In such cases, phase
differences within each of the system components are negligible. In other words, within
each component the motion loses its wave-like character.

A good example of this category of situations is the tidal motion in a harbour basin.
The water level in the basin can to a good approximation be assumed to be horizontal at
all times, varying in time only. Its variation can be modelled with an ordinary differential
equation instead of a partial differential equation, which simplifies the mathematics greatly.

The discrete modelling approach is utilized in the present chapter. It is relevant in itself,
because numerous situations occurring in practice lend themselves to this approximation,
and it is at the same time a preparation for the theory in the following chapter (on harmonic
wave propagation) with respect to the linearized modelling of the flow resistance, and the
use of complex algebra in the solution process. The advantage is that these building
blocks, needed in the theory of Chapter 7, are introduced in the simpler context of the
present chapter.

We focus on flow systems consisting of a nearly closed basin or reservoir, connected
through some narrow, short opening or a channel of some length to an external body of
water with a time-varying water level. The latter distinction (short vs. long) is relevant
because in a short connection, inertia and wall resistance can be neglected, whereas these
may be important in a long connecting channel.

An artificial, man-made example of such system is the so-called tide well, a device used
for measuring tides or river stages, which may consist of a large-diameter tube, placed
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92 Tidal Basins

(a) (b)

(c) (d)

Fig. 6.1 Tide well with pipe (a) and with orifice (b), basin with channel (c) and with gap (d)

vertically and connected to an external water with varying water level. The connection
may be long, such as a piece of pipe needed to bridge the distance from the external water
to the location of the tide well (Figure 6.1a), or the connection may be quite short, for
instance not more than an orifice in the tube wall (Figure 6.1b).

A more common, natural example is the system consisting of a basin connected to a tidal
sea with a tidal channel (Figure 6.1c) or with a short connection such as an inlet, a breach
in a dike or a gap in a barrier (Figure 6.1d). In fact, this is the archetype of the category of
systems considered here. Below, we will for brevity use the terminology for such a tidal
system, even though the theory applies more generally.

In the discrete modelling of the flow systems as described, the only function (‘task’) of
the tidal basin is storage; its connection to the tidal sea has only a function of transport. In
the basin, flow resistance and inertia are neglected, whereas in the connection these may
be relevant, certainly head loss due to boundary resistance or expansion loss, but storage
is not. Thus, in such a discrete model these two functions are separated, in contrast to the
continuous-modelling approach in the preceding chapters, in which they were intertwined.

A similar schematization is used in the discrete model of a mass-spring system, well
known from classical dynamics, in which kinetic energy is stored only in the mass,
neglecting the mass of the spring, and all potential energy is ascribed to the spring, treating
the mass as a rigid body.

6.2 Mathematical Formulation

6.2.1 Motion in the Basin

The basin is assumed to be relatively short, and it is closed except for a connection to the
external body of water. There is no throughflow, so that the flow velocities in the basin are
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93 6.2 Mathematical Formulation

quite low. Flow resistance and inertia are negligible. Therefore, the water level in the basin
can be assumed to be horizontal at all times. It can be described as a function of time only:
hb(t). This is the so-called Helmholtz mode or pumping mode.

If we denote the incoming rate of flow (discharge) as Qin, and the area of the free surface
in the basin, available for storage, as Ab, the balance equation for the volume of water
stored in the reservoir reads

Qin = Ab
dhb
dt

(6.1)

Note that Ab may vary in time through its dependence on the time-varying water level:
Ab(t) = Ab(hb(t)).

6.2.2 Motion in the Channel

For generality, we assume initially that the connection between basin and sea consists of a
channel. By letting the channel length go to zero, we cover the case of a short connection,
e.g. a gap in a barrier. The main function of the channel is to convey water between the sea
and the basin. Within the discrete-modelling approach, storage in the channel is neglected.
This is allowable if the free-surface area in the channel is far smaller than that in the basin.

Rigid Column Approximation

Elaborating on this approximation, we start with the one-dimensional volume balance as
derived in Chapter 1:

B
∂h
∂t

+ ∂Q
∂s

= 0 (6.2)

where B is the width of the free surface in the channel. Neglecting storage in the channel
implies neglect of the first term in this equation, from which it follows that also ∂Q/∂s = 0.
Therefore, in the channel, Q can be considered to be a function of time only: Q(t), which
therefore also equals Qin(t).

By definition, Q = UAc. For a prismatic channel, ∂Ac/∂s = 0, in which case the
approximation ∂Q/∂s = 0 implies that also ∂U/∂s = 0. This means, if in addition the
channel is straight, that the distance between fluid particles is constant. The water mass
in the channel is moving back and forth as a solid block. This is called the rigid-column
approximation.

Momentum Equation

Our next task is to model the dynamics of the flow. We start with the motion in the channel.
The transitions at both ends are considered separately. See Figure 6.2. The equation of
motion for the flow in the channel (Eq. (1.21)) reads
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94 Tidal Basins

∂Q
∂t

+ ∂

∂s

(
Q2

Ac

)
+ gAc

∂h
∂s

+ cf
|Q|Q
AcR

= 0 (6.3)

We integrate this over the channel length, say from s = 0 at the sea side to s = � at the
basin side (not counting the transitions). To do this, we must know how the various terms
vary with s.

(a) Maximum flood:

Q = Qmax, dQ/dt = 0, hs − hb = W

(b) Zero head difference:

hs − hb = 0, Q > 0, dQ/dt = −gAcW/�

(c) Slack tide:

Q = 0, W = 0, dQ/dt = gAc(hs − hb)/�

Fig. 6.2 Flow in the channel

.007
18:35:57,



95 6.2 Mathematical Formulation

We set ∂Q/∂s equal to zero and, assuming a prismatic channel, do the same with ∂Ac/∂s,
so that the second term vanishes. This also makes the resistance term independent of s, and
since the same is true for the first term, it must also apply to the last remaining term,
proportional to the slope of the free surface. So we obtain on integration with respect to s:

�
dQ
dt

+ gAc (h (�) − h (0) + �Hr) = 0 (6.4)

in which �Hr is the head loss due to boundary resistance, given by

�Hr = cf
|Q|Q

gAc
2R

� = cf
�

R
|U|U

g
(6.5)

These equations apply to the flow in the channel.
Next, we account for the flow in both transitions. To this end, we distinguish the free-

surface elevation in the channel ends, h(0) and h(�), respectively, from those at sea (hs)
and in the basin (hb). (Of course, in practice such transitions are always gradual, and the
definition of a channel end is subjective, but we must make such schematizations in the
framework of a one-dimensional (s, t) model. It would require a two-dimensional (x, y, t)
model to account for the transitions in a more realistic way.)

We treat the flow in the transitions as quasi-steady, i.e. at any moment adapted to the
instantaneous upstream and downstream water levels, and to be modelled with the methods
of classical hydraulics (see also Figure 6.2):

• When and where there is inflow (flood at the sea side, ebb at the basin side), the flow
in the transition zone is accelerating fairly rapidly and we apply Bernoulli’s law (see
Chapter 9). (Boundary resistance in the short transitions is neglected.) This implies a
drop in the water level equal to the velocity head in the channel (U2/2g). (This drop
represents not an energy loss but merely a transformation of potential energy to kinetic
energy.)

• When and where there is outflow (ebb at the sea side, flood at the basin side), the flow is
decelerating, and we can assume an expansion loss given by �He = U2/2g, implying a
horizontal free surface across the transition.

For ebb as well as flood, the total head difference between sea and basin is now given by

hs − hb = h(0) − h(�) + �He (6.6)

in which �He is the expansion loss, given by �He = |U|U/2g. Substituting this into
Eq. (6.4) gives

hs − hb = �

gAc

dQ
dt

+ W (6.7)

in which W is the total head loss due to expansion and boundary resistance:

W = �He + �Hr = |U|U
2g

+ cf
�

R
|U|U

g
(6.8)
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The overall head difference, i.e. the left-hand side of Eq. (6.7), accelerates the water in the
channel (first term in the right-hand side) and it overcomes the losses (second term in the
right-hand side. Figure 6.2 shows longitudinal profiles at a few special instants during the
flood phase of the tidal cycle. (The subsequent ebb phase follows the same pattern and is
not shown separately.)

Figure 6.2a applies to the moment of maximum flood current, so that dQ/dt = 0. The flow
momentarily behaves as a steady flow, in which the available head difference (hs − hb) is
spent on overcoming the losses (W).

As a result of the inflow, the water level in the basin rises; at some moment it equals the
level at sea: hs − hb = 0 (Figure 6.2b). At that moment there is still flood flow, but it is
being decelerated because of the adverse pressure gradient (induced by the surface slope)
and the flow resistance. (Needless to say, this situation, with flow against the applied forces,
is possible only on account of inertia.)

In the next phase, the water level in the basin has risen above that in the sea,
strengthening the opposing pressure forces. The continuing action of the opposing forces
causes the flow at some moment to change direction, i.e. slack tide occurs, at which time the
flow velocity is momentarily zero, and so are the losses: W = 0, as shown in Figure 6.2c.
(This applies to the cross-sectionally averaged velocity. The relatively low near-bottom
velocities reverse earlier.) Following that moment, the ebb current starts, being accelerated
by the seaward-directed pressure force.

6.2.3 Coupled System

Equations (6.1) and (6.7) form a coupled set of two first-order ordinary differential
equations in hb and Q as functions of time. These can be integrated with numerical routines,
provided the initial values of hb and Q are known, as well as the time-varying tide level at
sea (hs); see Section 11.2. In the following we will consider the corresponding second-order
ordinary differential equation, which is obtained by eliminating Q (or, alternatively, hb)
from the equations.

First, we simplify the notation by introducing the dimensionless loss coefficient

χ = 1
2 + cf

�

R
(6.9)

with which the expression for W can be written as

W = χ
|U|U

g
= χ

|Q|Q
gAc2 (6.10)

Substituting this into Eq. (6.7) and rearranging terms we obtain

�

gAc

dQ
dt

= hs − hb − W = hs − hb − χ
|Q|Q
gAc2 (6.11)

Substituting Eq. (6.1) into this equation, with Q = Qin, and neglecting variations of Ac
with hb, yields
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�

g
Ab
Ac

d2hb
dt2

+ χ

g
Ab

2

Ac
2

∣∣∣∣dhb
dt

∣∣∣∣ dhb
dt

+ hb = hs (6.12)

This second-order ordinary differential equation for hb has the same form as the equation
for a quadratically damped mass-spring-dashpot system. Such system has natural oscilla-
tions with a natural frequency that in absence of damping (χ = 0) has the value

ω0 =
√

g
�

Ac
Ab

(6.13)

When such a system is excited sinusoidally, it responds primarily at the forcing frequency.
Initially, natural oscillations may also be excited (this is the homogeneous part of the
general solution, solely dependent on the initial conditions), but these are gradually
decaying due to the damping forces. In the end, the response is purely periodic at
the forcing frequency (the nonhomogeneous part of the general solution), although not
sinusoidal due to the nonlinearity of the damping in Eq. (6.12). In the following, we will
linearize the damping, in order to simplify the mathematics. In that approximation, the
response to a sinusoidal forcing is sinusoidal.

Seelig and Sorensen (1977) have applied an equation similar to Eq. (6.12) to the Pentwater
Inlet-Bay system, located at the eastern shore of Lake Michigan. The system was excited
by atmospherically induced seiching of Lake Michigan. The response to the measured
excitation was calculated numerically. The equivalent of our loss coefficient χ was
determined by trial and error, based on a comparison with the observed response. The
results are shown in Figure 6.3. Given the calibrated loss coefficient, the simulated water
level fluctuations agree well with the observations.

The excitation spectrum was broad but spiky, indicating the simultaneous presence of
several seiching modes in Lake Michigan. It can be seen in Figure 6.3 that the inlet-bay

Fig. 6.3 Observed (solid) and computed (dashed) water level fluctuations in the Pentwater Inlet-Bay system, Lake
Michigan; upper panel: lake level, lower panel: bay level; from Seelig and Sorensen (1977)
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98 Tidal Basins

Fig. 6.4 Observed response factor (dots) of water level fluctuations in the Pentwater Bay and results of the numerical
model (solid line); from Seelig and Sorensen (1977)

system acts as a filter, yielding a relatively smooth response around the apparent natural
period of about 1.4 h.

Seelig and Sorensen also calculated the bay response to harmonic excitation with a 3 cm
amplitude for a range of frequencies. The resulting amplitude response function (ratio of
response amplitude to excitation amplitude) is shown in Figure 6.4, along with measured
response values. The computed response overestimates the measured values (which Seelig
and Sorensen ascribe to the pulse-like nature of the excitation), but the overall pattern
is similar. Interestingly, the response shows an enhancement of the amplitude in the bay
relative to the excitation amplitude. This is the result of resonance or near-resonance at
frequencies at or near the natural frequency of the inlet-bay system. This would not be
possible if inertia in the inlet channel had been neglected.

6.3 Linearization of the Quadratic Resistance

The resistance W is proportional to |Q|Q. This nonlinear expression prevents an analytical
solution. In order to circumvent this problem, the loss term is linearized. Let us write it for
short as W = λ1|Q|Q, in which λ1 = χ/gAc

2 (see Eq. (6.10)). We assume that Q varies
sinusoidally in time:

Q = Q̂ cos ωt (6.14)

Figure 6.5 shows the form of the associated time variation of the resistance, plotted as
|Q|Q/Q̂2 = | cos ωt| cos ωt.
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99 6.3 Linearization of the Quadratic Resistance

Fig. 6.5 Quadratic resistance and linearization

The quadratic form, with a modulus operator, causes a deviation from a sinusoidal
variation. We want to get rid of that. To do so, we approximate the resistance term as
W = λ2Q instead of W = λ1|Q|Q, in which λ2 is a constant to be determined. In doing
so, we accept an error in the time variation, but we will choose λ2 in such a way that the
energy loss in a cycle (with duration T) has the same value in both formulations, so that
the damping in the course of time is correctly represented. The rate of energy loss due to
the resistance W is proportional to WQ, so that the condition to be imposed on λ2 can be
written as ∫ T

0
WQ dt =

∫ T

0
λ1|Q|Q2dt =

∫ T

0
λ2Q2dt (6.15)

Substitution of Eq. (6.14) and carrying out the integrations yields

λ2

λ1
=

∫ T
0 | cos ωt| cos2 ωt dt∫ T

0 cos2 ωt dt
Q̂ =

∫ 1
4 T

0 cos3 ωt dt∫ 1
4 T

0 cos2 ωt dt
Q̂ = 8

3π
Q̂ (6.16)

With this result for λ2, and using the definition λ1 = χ/gAc
2, we obtain the following

expression for the linearized resistance:

W = 8
3π

χ
Q̂

gA2
c

Q

(
= 8

3π
χ

Û
g

U

)
(6.17)

This important result has first been derived by Lorentz (1926). The criterion of equivalent
energy loss had been used earlier, but with an incorrect quantification (see Box 6.1). The
same result is obtained by requiring that the difference between the quadratic resistance and
the linear approximation be minimal in a least-square sense, or by expanding the quadratic
expression in a Fourier series and retaining only the first term.

In the approximation given by Eq. (6.17), W varies linearly with Q (or U), albeit with a
proportionality coefficient that contains Q̂, which is not known beforehand. The solution
can be determined iteratively by making successive, improved estimates of Q̂ (or of Û) and
using these as input in the next round of calculation. (It will appear that for the problem of
a tidal basin the solution can in fact be determined in closed form. For more complicated
situations iteration is indeed necessary; see Chapter 7.)
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100 Tidal Basins

Using the linear approximation to W (Eq. (6.17)) in Eq. (6.11), instead of the original,
quadratic expression (Eq. (6.10)), we obtain the following ordinary differential equation
instead of Eq. (6.12):

�

g
Ab
Ac

d2hb
dt2

+ τ
dhb
dt

+ hb = hs (6.18)

in which for brevity we have introduced a resistance parameter τ defined by

τ ≡ 8
3π

χ
Ab

gAc
2 Q̂ (6.19)

It appears from the structure of Eq. (6.18) that τ is the time scale (the relaxation time) of
the system response to a varying excitation. Because of the linearization of the resistance,
this time scale depends partly on the unknown amplitude of the discharge (Q̂) or of the
flow velocity (Û).

As stated before, we neglect variations of Ab and Ac with hb. In that approximation,
Eq. (6.18) is linear with constant coefficients. This implies that the response to a sinusoidal
excitation is also sinusoidal, with the same frequency.

For completeness we mention an aspect that so far has not been mentioned at all, i.e.
a difference in mean water level between basin and sea. Treating Ab and Ac as constants,
independent of the water level, is an approximation. Strictly speaking, the ebb flow occurs
on average at a smaller depth than the flood flow, so that it experiences a higher resistance.
The result is that the time-averaged water level in the basin is somewhat above that at sea
(see also Section 7.8.2). This is a nonlinear effect, which we neglect in the present linear
approximation. This allows us to write the instantaneous surface elevations as, respectively,

hs(t) = h0 + ζs(t) and hb(t) = h0 + ζb(t) (6.20)

in which h0 is the mean water level, the same in the basin as it is at sea (in the linear
approximation), and ζs and ζb are the fluctuations of the water level, being zero on average.
With this substitution, Eq. (6.18) is transformed into

�

g
Ab
Ac

d2ζb
dt2

+ τ
dζb
dt

+ ζb = ζs (6.21)

In the following paragraphs, we present solutions (ζb) to this equation for a given
sinusoidally varying water level at sea (ζs).

Box 6.1 Origin of the linearization procedure

The resistance term has been linearized by approximating it as proportional to the flow velocity U, with
the requirement that the total work done in a cycle to overcome the resistance be the same in the linear
approximation as in the original form. This idea seems to have been first utilized in the beginning of the
twentieth century, by Dubs (1909), in order to model the oscillations in surge tanks in the context of the design
of hydropower projects. Although Dubs formulated the requirement of equal energy dissipation correctly in
words, his mathematical elaboration is incorrect because he in fact equates the integral of the resistance with
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101 6.4 System with Discrete Storage and Resistance

respect to time (
∫

W dt, in fact a momentum and not an energy) in the two approximations, whereas the
integral of the rate of work done by the resistance (

∫
WU dt) should have been used. The result is similar to

that given by Eq. (6.17), except for the proportionality coefficient. It seems that Parsons (1918) was the first to
utilize the linearization of the resistance in tidal computations. Like Dubs, he formulates a correct criterion, but
his mathematical elaboration is incorrect because he assumes a parabolic variation of the flow velocity in time
from zero to its maximum value, instead of a sinusoidal variation. As far as is known to the authors, Lorentz
(1926) was the first to derive the correct linearization, given in Eq. (6.17). We return to this in Chapter 7.

6.4 System with Discrete Storage and Resistance

Before dealing with the full Eq. (6.21), we consider the simpler case of a short connection
in order to build up the complexity gradually.

6.4.1 Governing Equation

Short connections between the basin and the sea (i.e. � → 0), such as a gap in a barrier or
in a dike, contain little mass, whose inertia we can neglect. (Moreover, if � → 0, boundary
resistance in the connection becomes negligible, so that only expansion losses remain:
χ → 1

2 .) This reduces the system to one of storage in the basin and head loss in the
connection. Eq. (6.21) reduces to

τ
dζb
dt

+ ζb = ζs (6.22)

From a mathematical point of view, the neglect of inertia reduces the order of the equation
from second order to first order.

Physically, it implies that the discharge through the connection responds instantaneously
to variations in the head difference across it, being zero as soon as the head difference is
zero. Because the discharge is proportional to the rate of change of the water level in the
basin, this in turn implies that the maximum and minimum water levels in the basin occur
at the instants when the water levels in the basin and in the sea are equal. This of course
can also be seen in Eq. (6.22), since this shows that dζb/dt = 0 when ζb = ζs.

6.4.2 Nonhomogeneous Solution

We will now derive the nonhomogeneous (forced) solution of Eq. (6.22) for a sinusoidal
tide at sea with water level given by

ζs = ζ̂s cos ωt (6.23)

Since the response is also sinusoidal, with the same frequency, it can be written as

ζb = ζ̂b cos (ωt − θ) = r ζ̂s cos (ωt − θ) in which r = ζ̂b/ζ̂s (6.24)
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Fig. 6.6 Example solution of a linearized discrete system with storage and resistance

We have introduced the symbol r for the ratio between the two amplitudes. The amplitude
ζ̂b (or the ratio r) and the phase angle θ are to be determined. Notice that θ is the phase lag
of the water level in the basin behind that at sea.

Substitution of Eqs. (6.23) and (6.24) into Eq. (6.22) yields one equation in the
two unknowns r and θ , but that is sufficient because it must be fulfilled for all times.
Substituting two conveniently chosen phases to simplify the algebra, such as ωt = 1

2π and
ωt = θ , yields the results

tan θ = ωτ and r = cos θ = 1√
1 + (ωτ)2

(6.25)

To help visualize this result, the excitation and the response are shown in Figure 6.6, for an
arbitrary value of r. The two curves satisfy the condition that the water level in the basin is
at its maximum or minimum when the two curves intersect. Consider the first intersection
shown in the figure, occurring at time t = t1, say. At that moment, ζb reaches its maximum
value of ζ̂b, which implies that ωt1 = θ (see Eq. (6.24)), and ζs reaches the value ζ̂s cos ωt1
= ζ̂s cos θ . Since this must equal ζ̂b, it follows that r = cos θ .

It appears that the solution is determined by the dimensionless product ωτ or, stated
another way, by the ratio τ/T, in which τ is the time scale of the system response and
T = 2π/ω is the excitation period. Another interpretation is that ωτ = Ŵ/ζ̂b, as follows
from the definitions of W and τ (and using Eq. (6.26) given below). In other words, the
product ωτ represents the relative magnitude of the resistance.

If τ is small compared with T, or ωτ 	 1, resistance is insignificant, so the basin level
can more or less follow the relatively slowly varying water level at sea, so that r 
 1,
cos θ 
 1, and θ 
 0, in agreement with Eq. (6.25).

On the other hand, if the system has a time scale that is long compared with the excitation
period (ωτ � 1), it can hardly follow the excitation, which in this case varies relatively
rapidly, so the response is weak (r 	 1) and the lag is large (cos θ 	 1, or θ 
 1

2π ), again
in agreement with Eq. (6.25).

6.4.3 Explicit Solution

The solution has been expressed in terms of ωτ , in which τ depends on the amplitude of
the discharge or the flow velocity in the connection (see Eq. (6.19)), which is not known
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beforehand. To deal with this problem, we substitute Eq. (6.24) into Eq. (6.1), with the
result

Q̂ = Ab ω ζ̂b (6.26)

Substituting this into the definition of τ (Eq. (6.19)), we obtain

ωτ = 8
3π

χ

(
Ab
Ac

)2
ω2 ζ̂b

g
(6.27)

We replace the unknown ζ̂b in the right-hand side by rζ̂s and write the result as

ωτ = �r (6.28)

in which � is defined by

� ≡ 8
3π

χ

(
Ab
Ac

)2
ω2 ζ̂s

g
(6.29)

� is a dimensionless parameter containing all independent variables playing a role in the
present problem. Therefore, except for a scale factor, the solution is determined exclusively
and entirely by this parameter. This also follows from Eq. (6.28), knowing that r is
determined by ωτ .

If we now substitute (6.28) into (6.25), we obtain a quadratic algebraic equation in r2,
from which we finally obtain the following explicit, closed-form solution for r (therefore
also for θ , since r = cos θ ) as a function of the independent parameter �:

r = cos θ = 1√
2 �

√
−1 +

√
1 + 4�2 (6.30)

Figure 6.7 shows this variation of r and θ as a function of �. Qualitatively, the influence of
� on the solution is similar to that of ωτ , discussed above. Small values of � correspond to
a rapid (θ 
 0) and strong (r 
 1) system response, and large values to a slow (θ 
 π/2)
and weak (r 	 1) response. In these two limiting cases, simple approximations for r can
be derived from (6.30):

r 
 1 − 1
2
�2 for � � 10−1 (6.31)

and

r 
 1√
�

for � � 101 (6.32)

Keulegan (1951) presented an approximate solution to the problem considered presently, in
which he used a dimensionless parameter K, the so-called coefficient of repletion, which in
essence is the same as � (to be more explicit, � = 8

3π
K−2.) However, his solution cannot

be expressed in closed form.
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104 Tidal Basins

Fig. 6.7 Amplitude ratio and phase lag for a discrete system with storage and resistance as functions of the resistance
parameter �

In the above, inertia in the connection has been neglected, as is appropriate for a gap. This
may not be valid in the case of a channel. However, as we will see, it is possible for a
channel of some length to contribute significantly to the overall head loss, through bed
friction, while it is at the same time short enough for the inertia of the mass in it to be
negligible. We will now formulate a condition to check the validity of the neglect of the
inertia in the channel.

In Eq. (6.21), inertia is represented by the first term in the left-hand side, with amplitude(
ω2�/g

)
(Ab/Ac) ζ̂b. The third term in the left-hand side of Eq. (6.21), representing the

restoring force, has an amplitude ζ̂b. Looking at the ratio of these terms, it follows that
inertia may be neglected whenever

(
ω2�/g

)
(Ab/Ac) 	 1. See also Example 6.2.

Example 6.1 A tidal basin with length and width of the order of 10 km (Ab = 100 km2),
depths varying from 2 m to 3 m, is connected to the sea (M2-tide, ζ̂s = 0.75 m) by a
gap in a barrier under construction with Ac = 3000 m2. Demonstrate that the small basin
approximation is valid. Next, calculate:

1. the surface amplitude in the basin (ζb)
2. the phase lag (θ )
3. the maximum discharge in the gap (Q̂).

Solution

Tidal wavelength (without friction): L = T
√

gd, using T = 44,700 s (M2-tide) and d = 2 m
(lower bound), L 
 200 km � basin dimensions (≈ 10 km), as required for the small basin
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approximation. Loss coefficient: χ = 1/2 (gap), yielding (using given data) � = 0.71. We
now obtain:

1. r = 0.85 → ζ̂b = rζ̂s = 0.64 m
2. θ = arccos r = arccos 0.85 = 31◦

3. Q̂ = Abωζ̂b = 9.0 × 103 m3/s.

The parameter ωτ = �r 
 0.6 < 1, indicating that the influence of resistance is
considerable.

6.5 System with Discrete Storage, Resistance and Inertia

This section deals with the complete Eq. (6.21), representing the effects of inertia,
resistance and storage. We repeat it here for convenience:

�

g
Ab
Ac

d2ζb
dt2

+ τ
dζb
dt

+ ζb = ζs (6.33)

Equations of this form describe a forced, damped linear mass–spring system. As stated
above, the natural frequency of this system in absence of damping is

ω0 =
√

g
�

Ac
Ab

(6.34)

For harmonic forcing with frequency ω, the solution depends on ωτ (the relative damping,
as before) but also on the ratio of the forcing frequency to the natural frequency. It can be
found in texts on dynamics, and reads

ζ̂b

ζ̂s
= r = 1√

(1 − ω2/ω02)2 + ωτ
(6.35)

and

tan θ = ωτ

1 − ω2/ω02 (6.36)

As before, the solution is implicit because τ depends in part on the unknown amplitude
Q̂ or Û. Using the same approach as in the preceding section, we can make the solution
explicit in terms of the same � as before (� = ωτ/r), with the result

r = 1√
2

1
�

√
− (

1 − ω2/ω02
)2 +

√
(1 − ω2/ω02)4 + 4�2 (6.37)
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Once r is determined from this equation, the phase lag θ follows from

tan θ = ωτ

1 − ω2/ω02 = �r
1 − ω2/ω02 (6.38)

For ω/ω0 	 1, i.e. a slow excitation, with consequently a small role of inertia, this solution
reduces to that in the preceding section, where inertia was neglected a priori. The result
given by Eqs. (6.37) and (6.38) seems to have been presented first by Mehta and Özsoy
(1978).

The preceding expressions for r and θ show an explicit dependence on the excitation
frequency ω, but there is an additional frequency dependence through the parameter �,
which contains a factor ω2. We remove this hidden dependence by defining

�0 ≡ �
ω2

0
ω2 = 8

3π
χ

(
Ab
Ac

)2 ω2
0 ζ̂s

g
(6.39)

Insertion of � = �0 (ω/ω0)
2 in Eqs. (6.37) and (6.38) turns these equations into response

functions of the relative frequency ω/ω0 with �0 as a frequency-independent parameter.
Figure 6.8 shows the result for the amplitude response for a chosen set of values of �0. The
most striking feature is the occurrence of resonance for small or moderate values of �0,
manifesting itself in high r-values for ω/ω0 
 1. Reference is made to Figure 6.4, which

Fig. 6.8 Amplitude ratio of a discrete system with inertia, storage and resistance as functions of the resistance parameter
�0 and the frequency ratio ω/ω0
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107 6.5 System with Discrete Storage, Resistance and Inertia

shows a similar pattern in the computed and measured values for the Pentwater Inlet-Bay
system.

With increasing values of �0, the maximum response decreases and shifts to lower
frequencies. For large values of �0, i.e. a relatively high damping as a result of a narrow
connection and/or a large head loss, the effects of resonance are suppressed.

The parameter �0 has a simple geometric interpretation. To show this, we insert the
expression for the natural frequency, Eq. (6.34), into Eq. (6.39), with the result

�0 = 8
3π

χ
Ab ζ̂s
Ac �

(6.40)

The latter fraction in this expression is a volume ratio, viz. the ratio of the amplitude of the
volume variation in the basin, in the case of 100% response, to the volume of water in the
canal.

Example 6.2 Same as in Example 6.1, except that now the connection consists of a short
channel with length � = 600 m, conveyance cross section Ac = 3000 m2, hydraulic radius
R = 6 m and friction coefficient cf = 0.004. Demonstrate that the inertia term can be
neglected. Next, calculate:

1. the surface amplitude in the basin (ζb)
2. the phase lag (θ )
3. the discharge in the gap (Q̂).

Solution

Importance of inertia (relative to the restoring force):
(
ω2�/g

)
(Ab/Ac) ≈ 0.04, acceptably

small to neglect it in a first approximation. Including the boundary resistance in the
channel, the resistance coefficient χ = 1/2 + cf �/R = 0.9. We now obtain:

1. � = 1.28 → r = 0.73 → ζ̂b = 0.55 m
2. θ = arccos 0.73 = 43◦

3. Q̂ = Ab ω ζ̂b = 7.7 × 103 m3/s.

The channel is sufficiently short to allow the neglect of inertia, yet sufficiently long for the
bed resistance to have a significant effect.

Empirical verification of the preceding results has been presented by Terra (2005), based on
laboratory experiments. Details of the set-up and the results are presented in Box 6.2. Terra
used three groups of excitation amplitudes in his experiments, of about 0.6 mm, 2 mm and
5.5 mm, respectively. Within each of these groups, the actual amplitude varied considerably
due to a frequency dependence. (The amplitude range of each of the three groups is
indicated in Figure 6.9.) For a comparison with the theory, the value of �0 is required,
which is proportional to the excitation amplitude. Instead of using a separate value of �0 for
each individual excitation amplitude, the smallest and the largest amplitude of each of the
three groups was used, thus defining an upper bound and a lower bound to the theoretical
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Fig. 6.9 Experimental verification of linearized channel–basin system, measured (markers) and theoretical range of the
response factor for three groups of excitation amplitude; data from Terra (2005)

response values for each of the three groups. The results are shown in Figure 6.9.
The agreement is quite good.

Box 6.2 Experimental verification of basin response

The water in a laboratory basin (Ab = 0.916 m2) was connected by a pipe (length � = 441 mm, diameter
D = 76.4 mm) to a ‘sea’in which the free surface was forced to oscillate harmonically for a range of frequencies
and amplitudes. Terra (2005) fitted the theoretical model to the data and so estimated the values of the
natural frequency ω0 and the parameter �0/ζ̂s (in our notation). Instead, we use no fitting but make a priori
estimates of the necessary parameters, as follows. The pipe extended some distance into the water of the bay
and that of the ‘sea’, so that during inflow contraction occurs to half the pipe cross-sectional area (Borda),
followed by expansion with an accompanying head loss of U2/2g (Carnot). This comes in addition to the well-
known head loss at outflow of equal magnitude. Therefore, we use χ = 1 + cf �/R instead of Eq. (6.9).
Using cf = 0.002, we obtain χ = 1.05. To calculate the natural frequency, added mass must be taken
into account, which is expressed by using an effective pipe length �eff in Eq. (6.34), which is larger than the
geometric pipe length by an amount of the order of the pipe radius (as is known in acoustics for open organ
pipes). Using �eff = �+ 1

2 D, we obtain ω0 = 0.320 rad/s and finally �0 = (0.371 mm−1) ζ̂s. The minimum
and the maximum values of ζ̂s for each of the three amplitude groups have been applied in the computation
of the theoretical upper and lower bounds of the response factor.
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6.6 Solution through Complex Algebra

In preparation for the following chapter, we are once more going to derive the solution
given above for the system with storage and resistance, now using the representation
of sinusoidal functions as complex quantities. The advantage of this formulation is that
the amplitude and the phase angle are represented in terms of a single variable, the time
variation can be factored out, and the partial differential equation reduces to an algebraic
equation from which the solution can be more easily found and represented graphically.

6.6.1 Complex Representation

A real, harmonically varying quantity such as A = Â cos (ωt + α) can be represented as the
real part of a complex quantity Ã exp (iωt), in which Ã is the so-called complex amplitude
of A, given by Ã = Â exp (iα). The complex amplitude can be presented as a point in the
complex plane; see Figure 6.10. The modulus of Ã equals Â, i.e. the (real) amplitude of A,
and its argument is the time-independent part of the phase of Ã, or arg Ã = α.

The time variation of A is obtained by multiplying Ã with exp (iωt), i.e. by rotating
the corresponding vector in the complex plane over an angle ωt, followed by taking the
real part, i.e. the projection on the real axis. This time variation can be carried out at any
moment if desired, but it is not necessary to show this in a graph. It is sufficient to know
that it can be done, provided Ã is known.

We will apply the complex representation to find the harmonic (i.e., sinusoidal) solution
of the model with discrete storage and resistance, described by Eq. (6.22), which is repeated
here for convenience:

τ
dζb
dt

+ ζb = ζs (6.41)

Fig. 6.10 Complex representation of a harmonic function
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Each time-varying sine function is represented as the real part of a complex quantity:

ζs(t) = Re
(
ζ̃s exp (iωt)

)
and ζb(t) = Re

(
ζ̃b exp (iωt)

)
(6.42)

In view of Eq. (6.42), the first term in Eq. (6.41) is given by

τ
dζb
dt

= Re
(

iωτ ζ̃b exp (iωt)
)

(6.43)

We substitute this and Eq. (6.42) into Eq. (6.41). Each term in that equation is the real
part of a complex, time-varying quantity, but the presence of the time factor eiωt requires
that Eq. (6.41) be fulfilled by the corresponding complex, time-independent amplitudes.
Moreover, because the time factor is common to all terms, it can be factored out. The
result is

iωτ ζ̃b + ζ̃b = ζ̃s (6.44)

Here, we see two great advantages of using the complex representation: the time depen-
dence is represented as a common multiplier that can be factored out, and the differential
equation (6.41) is replaced by the algebraic Eq. (6.44).

6.6.2 Solution

For given ζ̃s, we need to find ζ̃b. First, we do this graphically because that gives a good
insight. After that the solution is determined purely algebraically.

For the graphical solution procedure, we plot ζ̃b in the complex plane as a vector with
length |ζ̃b|, i.e. the amplitude ζ̂b, at an angle arg ζ̃b with the real axis (see Figure 6.11).
The modulus and the argument of ζ̃b have been chosen arbitrarily. The quantity iωτ ζ̃b has
been plotted in Figure 6.11 as well. It stands at a right angle to ζ̃b, because of the factor
i, and its modulus is a factor ωτ larger than ζ̂b (or smaller, as the case may be); in the
figure, an arbitrarily chosen value of ωτ of about 0.5 was used. (Note that i = exp (iπ/2),
so multiplying with i means turning over 90◦.) According to Eq. (6.44), the sum of iωτ ζ̃b
and ζ̃b, i.e. the resultant of the corresponding two vectors in the figure (the hypotenuse),

Fig. 6.11 Complex amplitudes
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equals ζ̃s. The angle enclosed between this resultant and ζ̃b represents the phase difference
between the two, which we had denoted as θ , as indicated in the figure. We see at once in
the resulting right triangle that tan θ = ωτ and that cos θ = ζ̂b/ζ̂s = r, the same as was
found above.

For the analytical solution method, we define a complex-amplitude ratio r̃ as

r̃ ≡ ζ̃b/ζ̃s (6.45)

For the real amplitudes, we have |r̃| = |ζ̃b/ζ̃s| = |ζ̃b|/|ζ̃s| = ζ̂b/ζ̂s = r, and for the phases
we have arg r̃ = arg

(
ζ̃b/ζ̃s

)
= arg ζ̃b − arg ζ̃s = −θ . It follows from Eq. (6.44) and the

definition of r̃ that

r̃ = 1
1 + iωτ

(6.46)

so that

r = |r̃| =
∣∣∣∣ 1
1 + iωτ

∣∣∣∣ = 1
|1 + iωτ | = 1√

1 + (ωτ)2
(6.47)

and

arg r̃ = −θ = − arctan (ωτ) or tan θ = ωτ (6.48)

The preceding simple example illustrates the advantages and the potential of the complex
representation for solving a linear problem with sinusoidal forcing and response. This is a
good preparation for the application in the following chapter, which deals with the more
complicated problem of one-dimensional propagation of long waves, including damping.

Problems

6.1 What is the so-called small-basin approximation?
6.2 Under which conditions is the small-basin approximation valid?
6.3 Can a variation in the (undisturbed) depth in the basin affect the behaviour of the

system? If so, how (through which mechanism)?
6.4 Same question as in Problem 6.3, now with respect to the bed friction coefficient cf.
6.5 What is the so-called rigid-column approximation?
6.6 Under which conditions is the rigid-column approximation valid?
6.7 Explain why the water in a small basin, connected to a tidal sea by a gap in a barrier,

reaches its highest level at the instant when this level equals that at sea.
6.8 Which physical criterion is applied in the linearization of the quadratic resistance?

Why?
6.9 Which physical process is lost in the linearization of the quadratic resistance?
6.10 What is the meaning of the dimensionless parameters ωτ and � as used in this

chapter?
6.11 Derive Eq. (6.30), given Eq. (6.25) and the definition � = ωτ/r.
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6.12 Argue why the amplitude ratio r is nearly 1 for small � and goes to zero for large �

(without using the analytical solution).
6.13 A cylindrical tide well with an inner diameter of 1 m, placed in a harbour, should

be able to measure harbour oscillations (seiches) with a period of about 10 min and
an amplitude of 0.5 m with a damping of at most 1% (r at least 0.99). Calculate
the required diameter of the orifice that connects the tide well with the surrounding
water.

6.14 For the orifice diameter calculated in the answer to Problem 6.13, calculate the
damping of wind waves given that these have a period of 8 s and an amplitude of
0.3 m at the location of the tide well.

6.15 Argue for each of the following parameters how a 20% increase in their value could
affect the discharge through the channel between basin and sea: Ac, Bc, Rc, cf, �,
Ab, ζ̂s, ω. Think of possible feedback! Verify your estimates through numerical
calculation of the discharge for a self-chosen example. (Note that the number of
calculations required is less than the number of parameters.)

6.16 A tidal basin of approximately 10 km × 20 km in plan is connected by a channel to
a sea with M2-tide with a tidal range of 2 m. The channel is 10 km long and has a
cross-sectionally averaged mean depth of about 9 m, a free-surface width of 600 m
and a conveyance cross section of 5 × 103 m2 with cf = 0.004. Ignore inertia at first.
(a) Calculate the amplitude of the tidal elevation in the basin.
(b) Calculate the phase lag of the basin tide behind the tide at sea.
(c) Calculate the maximum discharge through the channel.
(d) Sketch in one plot the time variation of the tides at sea and in the basin as well

as the discharge through the channel and interpret the result.
Now take inertia into account.
(e) Calculate the natural frequency.
(f) Verify whether the neglect of inertia in the parts (a)–(c) was allowed.
(g) Regardless of the answer to part (f), take inertia into account and calculate the

amplitude of the tidal elevation in the basin and the phase lag of the basin tide
behind the tide at sea. Why is this lag greater with inertia taken into account than
when it is neglected?

6.17 Using complex algebra, and starting from Eqs. (6.33) and (6.34), derive the results
of Eqs. (6.35) and (6.36).

6.18 Given ζs = ζ̂s cos (ωt − α) with ζ̂s = 1 m and α = 212◦, calculate ζ̃s. Plot this in
the complex plane and calculate its real part and its imaginary part.

6.19 Given ζ̃s = (0.9 - 0.8i) m, plot this and give the corresponding expression for ζs(t).
Calculate ζs for ωt = 0 and ωt = 1

2π .
6.20 Suppose that ωτ = 0.5. Plot r̃, equal to 1/(1 + iωτ ), and calculate r and arg r̃.
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This chapter deals with low periodic long waves and oscillations such as tides and seiches,
taking into account inertia and resistance. The aim of this chapter is to provide insight
into the dynamics of these waves, in particular with respect to the effects of resistance,
which were mainly ignored so far. Using linear approximations, valid for low waves,
explicit yet simple analytical solutions are obtained in the form of complex exponential
functions, representing damped harmonic (sinusoidal) waves or oscillations. Solutions will
be derived for uniform as well as non-uniform channels, which are used subsequently to
analyze periodic wave motion in channels that are closed at one end or at both ends. The
chapter concludes with a discussion of nonlinear influences, such as the variation of the
cross-sectional parameters with the free-surface elevation, or the quadratic nature of
the resistance.

7.1 Introduction

A typical situation occurs when an initial state of rest is affected by continual periodic
disturbances at a boundary, which propagate into the domain considered. Given enough
time, a periodic state of motion is established in the entire domain, without memory of
the initial situation. In such cases the motion is unsteady within each wave cycle, but the
cycles themselves do not vary in time, as is approximately the case for the variation of
amplitudes and phases in seiches and tidal waves. The principal features of such waves
can reasonably well be represented with a linear model, assuming a harmonic variation of
the state variables involved.

To the authors’ knowledge, analytical modelling of the one-dimensional propagation
of long harmonic waves was pioneered by Parsons (1918), for the prediction of the tidal
flows in the then future Cape Cod Canal. Parsons’ linearization of the quadratic friction
was incorrect (see Box 6.1), and the system considered by him was simple, but his work
was nevertheless a commendable achievement. Yet it does not seem to have found a
recognizable follow-up. In fact, it is not even mentioned in the review of tidal computations
with the harmonic method by Ippen and Harleman (1966).

Apparently without being aware of Parsons’ work, a Dutch committee chaired by
the Nobel prize–winning physicist Hendrik Antoon Lorentz developed and used a more
extensive analytical model for tidal computations for the purpose of predicting the changes
that were to be expected in the tides as a result of the enclosure in 1932 of the previous
Zuiderzee, a large tidal basin in The Netherlands. For this purpose, Lorentz (1926)

113

.008
18:36:38,



114 Harmonic Wave Propagation

developed the correct linearization of the quadratic friction now named after him. The
resulting model was successfully applied to a network of 26 sections representing the tidal
inlets and the inner network of tidal channels. This so-called harmonic method soon found
its way into civil engineering practice and has been applied to numerous projects through
the world.

The approach in the present chapter is a continuation of the preceding chapter in the
use of the linearization of the quadratic resistance and the complex algebra formulation.
The difference is that we are now dealing with progressive and standing waves. We
start with a description of damped, harmonic progressive waves in terms of the complex
formalism, prior to a derivation of the characteristic features of these waves, in particular
the propagation speed and the rate of damping.

7.2 Complex Representation of Damped Progressive
Harmonic Waves

We assume a periodic wave progressing in the positive s-direction in a prismatic channel.
The wave period is T, the angular frequency (i.e. the phase change per unit time) ω = 2π/T,
the wavelength L, the wave number (i.e. the change of phase per unit distance) k = 2π/L,
and the propagation speed (or the phase speed, i.e. the speed of points of constant phase)
c = L/T = ω/k. The surface elevation ζ has a location-dependent amplitude ζ̂ :

ζ (s, t) = ζ̂ (s) cos (ωt − ks + α) (7.1)

In complex form, this can be written as

ζ (s, t) = Re
(
ζ̃ (s) exp (iωt)

)
(7.2)

in which
ζ̃ (s) = ζ̂ (s) exp (i (−ks + α)) (7.3)

Notice that in this complex formulation a separation of variables has taken place, i.e. the
dependences on s and on t occur in separate factors instead of combined as in cos (ωt − ks).
This simplifies the analysis.

As we saw in the preceding chapter, the complex amplitude ζ̃ at a fixed point (constant s)
can be represented as a point in the complex plane (see Figure 7.1a). Its argument is the
phase of ζ (s, t) at that point at time t = 0. The time variation is given by exp(iωt).

In contrast with the discrete approximation used in Chapter 6, in which the amplitudes
and phases were treated as constants, they are now continuously varying in space, i.e. as
a function of s. Starting at s = 0, arg ζ̃ = α, i.e. the phase at time t = 0, as shown in
Figure 7.1b. The phase at t = 0 at an arbitrary other point can be found by multiplication
of ζ̃ (0) with exp (−iks), i.e. by rotation over an angle −ks (Figure 7.1b).

Choosing a continuous succession of points, i.e. a continuous variation of s, we obtain
a continuously varying sequence of values of ζ̃ , generating a smooth curve in the complex
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(a)

(b)

(c)

Fig. 7.1 Complex plane with hodographs; (a) variation in time at a fixed point; (b) phase shift as a function of distance in a
progressive wave of constant amplitude; (c) variation of amplitude and phase as functions of distance in a damped
progressive wave

plane, a so-called hodograph. For constant amplitude, the hodograph is a circle, shown in
Figure 7.1b.

A special case of amplitude variation is the exponential decay with s, as occurs in
systems with linear(ized) resistance. Denoting the damping modulus with μ, this can be
written as ζ̂ (s) = ζ̂ (0) exp (−μs). In this case, Eq. (7.3) yields

ζ̃ (s) = ζ̂ (0) exp (−μs) exp (i (−ks + α)) = ζ̃ (0) exp (−ps) (7.4)

in which ζ̃ (0) = ζ̂ (0) exp (iα) and we have introduced the complex propagation constant

p = μ + ik (7.5)
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Box 7.1 The convergence angle of the logarithmic spiral

When propagating over a small distance �s from s1 to s2, a phase change occurs given by k�s, correspond-
ing to a rotation of the associated vector in the complex plane over a small angle k�s; see Figure 7.1c.
The amplitude, represented by the length of the radius to the origin, thereby reduces by a factor
exp (−μs2) / exp (−μs1) = exp (−μ (s2 − s1))= exp (−μ�s). The relative amplitude reduction is
therefore given by 1− exp (−μ�s), which for small �s can be approximated as μ�s. The angle between
the tangent and the normal to the radius, i.e. the angle of convergence, is therefore given by arctan(μ/k),
which is constant along the spiral.

In the right-hand side of Eq. (7.4), ζ̃ (0) is the initial complex amplitude, and exp(−ps)
describes its spatial variation. The rate of change of the real amplitude is given by μ, and
that of the phase is given by k. These two are combined in the single complex parameter p.

In the case of exponential decay, the hodograph of ζ̃ (s) takes the form of a logarithmic
spiral, characterized by a constant angle of convergence (i.e. the angle between the tangent
at a point of the spiral and the normal to the radius connecting that point with the origin,
designated as δ in Figure 7.1c). See Box 7.1.

The values of ω, μ and k are not independent because the wave motion must fulfill the
balances of mass and momentum. Only one of them can be chosen freely, normally the
frequency. Using the balance equations, an expression for p (ω), the so-called complex
dispersion equation, will be derived in the following sections. From this we also know
μ (ω) and k (ω) and from the latter the phase speed c = ω/k.

7.3 Formulation and General Solution

This section presents the basic equations and their solutions for harmonic motion.

7.3.1 Formulation

We start from the linearized one-dimensional balance equations for mass and momentum.
The quadratic resistance is linearized as in Chapter 6, and the advection of momentum
is neglected, as is allowed for low waves. The latter restriction also allows us to neglect
variations in the cross section that occur as a result of variations in flow depth. With this,
the linearized balance equations for mass and momentum are written as follows:

B
∂ζ

∂t
+ ∂Q

∂s
= 0 (7.6)

and
∂Q
∂t

+ gAc
∂h
∂s

+ κQ = 0 (7.7)
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The parameter κ is a shorthand factor (dimension: 1/time) in the expression for the
linearized resistance, defined by (see also Eq. (6.17)):

κ = 8
3π

cf
Q̂

AcR
= 8

3π
cf

Û
R

(7.8)

In the following derivations and applications, κ is assumed to be a known constant. Since
it contains the amplitude Q̂ or Û, which are not known beforehand, iteration is necessary.

Eqs. (7.6) and (7.7) form a set of two coupled partial differential equations in ζ and Q,
with constant coefficients (in the linear approximation). Such equations allow (complex)
exponential solutions.

For harmonic motion, the first term in the momentum balance is of the order of ωQ̂, and
the resistance term is of the order κQ̂. It follows that the ratio of resistance to inertia is of
the order κ/ω, written as σ for short:

σ ≡ κ

ω
= 8

3π
cf

Q̂
ωAcR

= 8
3π

cf
Û
ωR

(7.9)

Apart from the factor 8/3π (about 0.85), this is the same σ as in Chapter 2, of which some
typical values have been given in Table 2.1.

Eliminating Q between Eqs. (7.6) and (7.7), and using the property of a prismatic
channel that ∂Ac/∂s = 0, we obtain

∂2ζ

∂t2
− c2

0
∂2ζ

∂s2 + κ
∂ζ

∂t
= 0 (7.10)

in which c2
0 is the long-wave speed in absence of resistance:

c0 =
√

gAc
B

(7.11)

Eq. (7.10) is the linearized wave equation (see Chapter 3) with (linearized) resistance.
Because of this, and with reference to Chapter 3, we expect solutions that in general consist
of two waves, travelling in opposite directions, decaying as they propagate.

7.3.2 General Solution

We seek solutions for ζ(s, t) in the form

ζ(s, t) = Re
(
ζ̃ (s) exp(iωt)

)
(7.12)

We substitute this into Eq. (7.10), drop the time factor exp(iωt), and obtain

d2ζ̃

ds2 + ω2 − iωκ

c2
0

ζ̃ = 0 (7.13)
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Substitution of κ = σω and of k0 = ω/c0, the wave number in absence of resistance,
yields

d2ζ̃

ds2 + k0
2 (1 − iσ)ζ̃ = 0 (7.14)

This is an ordinary differential equation with constant coefficients. Such equations have
exponential solutions. Therefore, we pose

ζ̃ (s) = exp(Ps) (7.15)

and substitute this into (7.14), which results in

P2 + k2
0 (1 − iσ) = 0 (7.16)

This is the so-called complex dispersion equation. For given frequency (contained in
k0) and relative resistance (σ ), it determines the complex propagation constant P, which
governs the spatial variation, as expressed in Eq. (7.15).

Notice the reduction in mathematical complexity in the various steps: we started with
a partial differential equation, Eq. (7.10). Due to the restriction to harmonic solutions and
the complex representation, this reduced to an ordinary differential equation, Eq. (7.14).
Finally, assuming a (complex) exponential solution, the integration constant P is deter-
mined by an algebraic equation (7.16).

Eq. (7.16) is of second degree. It has two opposite, complex roots P1 and P2 = −P1,
which will be designated as p and −p, respectively, in which

p = ik0
√

1 − iσ (7.17)

The general solution for ζ̃ (s) can then be written as

ζ̃ (s) = C+ exp(−ps) + C− exp(ps) = ζ̃+(s) + ζ̃−(s) (7.18)

Eq. (7.18) is the general solution of Eq. (7.14). If we include the time factor exp(iωt),
it represents two waves travelling in opposite directions. The two (complex) integration
constants C− and C+, each containing amplitude and phase information, are to be
determined from the (two) boundary conditions, as we will see further on. If either
C− or C+ is zero, the propagation is in one direction only. Usually, there is some reflection
somewhere, in which case there is propagation of two wave systems in opposite directions.

7.3.3 Solution of the Dispersion Equation

Our next task is to derive a more explicit solution of Eq. (7.17). The propagation constant
p is in general complex. (If σ = 0 it is purely imaginary.) We write p = μ + ik, in which
μ and k are real, representing damping and propagation, respectively (see Section 7.2).

In order to determine μ and k, we have to separate the right-hand side of Eq. (7.17) into
its real part and its imaginary part, for which we need (among others) the modulus and
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the argument of
√

1 − iσ . The argument of this square root is − 1
2 arctan σ . To shorten the

notation, we introduce an auxiliary variable, an angle δ, such that

tan 2δ ≡ σ = 8
3π

cf
Û
ωR

(7.19)

where δ is a dimensionless measure of the resistance/inertia ratio, just as σ . It can be seen
as a kind of friction angle. In terms of δ, we have arg

√
1 − iσ = − 1

2 arctan σ = −δ.
Furthermore, |1 − iσ | = √

1 + σ 2 = √
1 + tan2 2δ = 1/ cos 2δ, so that altogether we

have

p = ik0
exp(−iδ)√

cos 2δ
(7.20)

or

p = i
cos δ − i sin δ√

cos 2δ
k0 = sin δ + i cos δ√

cos 2δ
k0 (7.21)

so that finally

Im p = k = cos δ√
cos 2δ

k0 = k0√
1 − tan2 δ

and Re p = μ = sin δ√
cos 2δ

k0 = k tan δ

(7.22)

The preceding algebraic steps have been visualized in Figure 7.2. (Note: it follows directly
from Eq. (7.22) that δ = arctan(μ/k), which is equal to the angle of convergence of the
logarithmic spiral representing the hodograph of ζ̃ ; see Box 7.1.)

Finally, we write the phase speed c = ω/k in a more explicit form, using the preceding
results:

c = ω

k
= ω

k0

√
1 − tan2 δ = c0

√
1 − tan2 δ (7.23)

or

c =
√

gAc
B

√
1 − tan2 δ (7.24)

Apparently, resistance not only dampens the waves but also slows them down.
As far as the authors are aware, the results given in Eqs. (7.22) and (7.24) have first been

derived by Parsons (1918) in his model of tidal propagation through the Cape Cod Canal
(though with a numerically different linearized resistance factor, and in an algebraically
different appearance in terms of σ instead of our auxiliary angle δ).

7.3.4 Solution for the Discharge

We express the discharge in complex form, analogous to Eq. (7.12). Substiuting this and the
general solution for ζ̃ (s) (Eq. (7.18)) in the continuity equation (7.6) yields the following
expression for the associated discharge, assuming a zero net value:
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Fig. 7.2 Solution of the dispersion equation

.008
18:36:38,
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Q̃(s) = iωB
p

(
C+ exp(−ps) − C− exp(ps)

)
(7.25)

or

Q̃(s) = iωB
p

(
ζ̃+(s) − ζ̃−(s)

)
(7.26)

The complex factor iωB/p can be reworked as follows:

iωB
p

= iωB
μ + ik

= ω

k
B

1 − iμ/k
= Bc

1 − i tan δ
(7.27)

Since arg(1 − i tan δ) = −δ, and |1 − i tan δ| = √
1 + tan2 δ = 1/ cos δ, we finally obtain

iωB
p

= Bc cos δ exp(iδ) (7.28)

Summarizing, the general solution for ζ̃ , Eq. (7.18), is

ζ̃ (s) = C+ exp(−ps) + C− exp(ps) = ζ̃+(s) + ζ̃−(s) (7.29)

and the corresponding discharge is

Q̃(s) = iωB
p

(
C+ exp(−ps) − C− exp(ps)

) = Bc cos δ exp(iδ)
(
ζ̃+ − ζ̃−

)
(7.30)

This general solution will be interpreted and elaborated in the following sections, first for
the simple case of a unidirectional wave system, so as to facilitate the understanding of the
meaning of the results, to be followed by various cases of bi-directional waves.

7.4 Unidirectional Propagation

The preceding results apply to the spatial variation of the complex amplitudes of the surface
elevation and the discharge, the time variation having been set aside temporarily. We will
now reintroduce it:

ζ(s, t) = Re
(
ζ̃ (s) exp(iωt)

)
(7.31)

This is still the general solution. In the following, we will examine the case of a purely
progressive wave.
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7.4.1 Physical Interpretation

We restrict the following discussion to ζ+:

ζ+(s, t) = Re
(
ζ̃+(s) exp(iωt)

)
= Re

(
C+ exp(−ps) exp(iωt)

)
(7.32)

Substituting p = μ + ik and expanding C+ into its modulus and argument, we obtain

ζ+(s, t) = Re
(|C+| exp(−μs) exp(i(ωt − ks + arg C+))

)
(7.33)

or

ζ+(s, t) = ζ̂+(s) cos (ωt − ks + arg C+) (7.34)

in which ζ̂+(s) = |C+| exp(−μs). The associated discharge is

Q+(s, t) = Bc ζ̂+(s) cos δ cos(ωt − ks + arg C+ + δ) (7.35)

Inspecting these equations, we note the following items:

• arg C+ is the initial phase (when ωt = 0) of ζ+ in s = 0.
• The phase varies in s and t as (ωt−ks), implying that we deal with a wave progressing in

the positive s-direction (that is the reason for the superscript + in C+, ζ+ and Q+) with
speed c = ω/k, the so-called phase speed, because, observed at this speed, the phase is
constant.

• |C+| is the amplitude of ζ+ in s = 0.
• |C+| exp(−μs) is the amplitude of ζ+ as a function of s: exponential damping in the

direction of propagation.
• In absence of damping (δ = 0), Q(s, t) = Bc ζ(s, t), the same as was found in Chapter 3

for purely progressive waves without resistance.
• The discharge is a factor cos δ smaller than Bc ζ , and it is an angle δ ahead in phase

relative to the surface elevation. The fact that resistance reduces the discharge for a
given surface elevation, i.e. for a given driving force due to the slope of the free surface,
is fairly obvious. The advance in phase of the discharge, by an angle δ, is due to the fact
that for a given periodic forcing the flow acquires less momentum in the presence of
resistance than it does without resistance, and therefore responds faster to the oscillatory
driving forces.

The preceding items refer to a purely progressive wave propagating in the positive s-
direction, i.e. proportional to C+, with C− = 0. Needless to say, they are equally applicable
to a wave propagating in the negative s-direction, apart from a change of sign in Q−. As
anticipated, the general solution of the wave equation (7.10) for harmonic motion consists
of two wave systems, propagating in opposite direction, each exponentially decaying in its
propagation direction.

Example 7.1 Consider, respectively, an M2-tide (T = 12 h 25 min) and a seiche (T = 1 h)
in a channel in an estuary with cf = 0.004, hydraulic radius R = 11 m, depth d = 12 m,
conveyance width Bc = 350 m and storage width B = 2Bc = 700 m. We consider the
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123 7.4 Unidirectional Propagation

Table 7.1 Example: unidirectional propagation of tidal waves and seiches

Quantity Equation Tide Seiche

T (given) 745 min 60 min
Û (given) 1.2 m/s 0.6 m/s
ω ω = 2π/T 1.405 × 10−4 rad/s 1.745 × 10−3 rad/s

c0 c0 = √
gAc/B 7.7 m/s 7.7 m/s

k0 k0 = ω/c0 1.8 × 10−5 rad/m 2.3 × 10−4 rad/m

L0 L0 = c0T = 2π/k0 343 km 28 km

σ σ = 8
3π

cf
Û
ωR 2.64 0.106

δ δ = 1
2 arctan σ 34.6◦ 3.02◦

tan δ tan δ 0.69 0.053√
1 − tan2 δ

√
1 − tan2 δ 0.72 1.00 (0.998...)

k k = k0/
√

1 − tan2 δ 2.5 × 10−5 rad/m 2.3 × 10−4 rad/m

μ μ = k tan δ 1.8 × 10−5 m−1 1.2 × 10−5 m−1

c c = c0
√

1 − tan2 δ 5.5 m/s 7.7 m/s

L L = 2π/k = cT 247 km 28 km

incident component of each, with Û = 1.2 m/s for the tide and Û = 0.6 m/s for the seiche,
and calculate the corresponding phase speed and damping. See Table 7.1 for the results.

The phase speed of the tide (5.5 m/s) is only about one-half of
√

gd (or
√

gAc/Bc), which is
almost 11 m/s. The difference is due to two factors: the width of the free surface (available
for storage) is twice the conveyance width Bc, which slows down the wave speed by a
factor 1/

√
2, or about 70%, and resistance reduces it further with a factor

√
1 − tan2 δ,

which is roughly another 70%. The phase speed of the higher-frequency seiches is hardly
affected by resistance, in agreement with the general conclusion in Chapter 2 about the
relative impact of resistance (Table 2.1).

Although σ (and therefore δ) is far smaller for the seiche than it is for the tide, their
μ-values, i.e. the relative damping per unit propagation distance, are comparable. This
is because μ is proportional not only to tan δ, but also to the wave number k, which is
almost a factor of ten larger (shorter wavelength) for the seiches than it is for the tides.
Therefore, the smaller damping of the seiches per wavelength, determined by the value
of δ, is more or less compensated by the larger number of wavelengths in a given space
interval. Over a propagation distance �s of 10 km, say, the tidal amplitude is reduced with
a factor exp(−μ�s), or about 0.84, whereas the seiche amplitude over that same distance
is reduced with a factor of about 0.89.
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Fig. 7.3 Cross section of a compound channel

7.4.2 Propagation in Compound Channels

In the derivations in this and other chapters, allowance was made for the possibility that
only a part of the total channel cross section contributes substantially to the transport; the
remainder was assumed to be available for storage only. We are now generalizing this
notion to channels with a compound cross section, consisting of (or rather, schematized to)
a number (j = 1, 2, 3, ...) of distinct, adjacent parts, each with its own characteristic width
(Bj), depth (dj), area (Aj = Bjdj) and resistance coefficient (cfj). See Figure 7.3. The total
width of the free surface is B = �j Bj, the total cross-sectional area is A = �j Aj, and the
mean depth is d = A/B. The values of these parameters define an equivalent rectangular
cross section. As before, the free-surface elevation is assumed to be laterally uniform.

The flow in a compound channel is commonly calculated on the basis of the assumption
that lateral momentum exchange between adjacent parts can be neglected, so that they are
dynamically decoupled. For steady, uniform flow, the discharge in each part (Qj) can then
be determined by applying the conventional uniform-flow results to each part separately
(for the given, common bed slope). The result can be used to calculate an equivalent bed
friction coefficient (cf,eq) for the equivalent rectangular cross section:

Q = �j Aj

√
g dj ib

cfj
= A

√
g d ib
cf,eq

(7.36)

It is customary to use the equivalent rectangular cross section together with the equivalent
resistance coefficient also in calculation of unsteady flow, but this is in fact incorrect
because it ignores phase differences between the flow velocities in the respective parts. In
the following, we present a model for harmonic wave propagation in a compound channel
that takes such phase differences within the cross section into account.

The continuity equation retains its original form as derived for a non-compound channel,
given by Eq. (7.6):

B
∂ζ

∂t
+ ∂Q

∂s
= 0 (7.37)
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The momentum balance (Eq. (7.7)) is applied to each subchannel separately:

∂Qj

∂t
+ gAj

∂ζ

∂s
+ κjQj = 0 for j = 1, 2, 3, . . . (7.38)

We expand ζ as follows:

ζ(s, t) = Re
(
Cζ exp (iωt + Ps)

)
(7.39)

in which Cζ is a complex proportionality constant and P is the complex propagation
constant. Likewise, we write

Qj(s, t) = Re
(
CQj exp (iωt + Ps)

)
(7.40)

Substitution of these expressions into Eqs. (7.37) and (7.38) yields

iωBCζ + P
∑

j
CQj = 0 (7.41)

and

CQj (iω + κj) + gAjPCζ = 0 for j = 1, 2, 3, . . . (7.42)

Substituting CQj from the latter equation into Eq. (7.41) yields

iωB − P2
∑

j

gAj

iω + κj
= 0 (7.43)

With the substitution tan 2δj = σj = κj/ω, and after some algebra, as in the
transformation of Eq. (7.17) into Eq. (7.20), we finally obtain the following expression
for the complex propagation constant P of the compound channel:

P2 = − ω2B/g∑
j Aj cos 2δj exp 2iδj

(7.44)

This equation has two opposite roots, say p and −p, in which p = μ + ik, determining the
damping modulus (μ) and the wave number (k), and therefore also the propagation speed
c = ω/k. The difference with the single-channel case is that it is not possible to obtain
explicit expressions for these constants because of the summation of complex quantities.
Nevertheless, they are fully determined through Eq. (7.44).

A part of the profile that is very shallow and rough was up to now supposed to contribute
to storage only but not to transport. With the formulation for a compound channel being
available, this rough schematization is no longer necessary. However, it can be seen as
a special case of the more general formulation by letting the resistance factor of the
shallow portion (κ1, say), go to infinity. This implies that the corresponding Q1 vanishes
(see Eq. (7.42)). Another way to see this is through Eq. (7.44), since κ1 → ∞ implies
that σ1 = tan 2δ1 → ∞, so cos 2δ1 → 0. Therefore, the corresponding portion of the
cross section does not contribute to the sum in the denominator in the right-hand side of
Eq. (7.44), whereas the contribution B1 to the storage width remains unaffected.

It is shown in Box 7.2 that for a non-compound channel, Eq. (7.44) reduces to Eq. (7.16),
which was derived ab initio for that simple geometry.
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Box 7.2 Non-compound channels

In the case of a non-compound channel, Eq. (7.44) should reduce to the expression for the single channel
given by Eq. (7.16). This is not obvious at first sight, but by substituting k0 = ω/c0 = ω/

√
gAc/B and

1 − iσ = exp(−2iδ)/ cos 2δ into Eq. (7.16), we obtain P2 = − (
ω2B/g

)
/ (Ac cos 2δ exp 2iδ). It

appears that the product in the denominator for the single-channel case is simply applied to each distinct
portion of the compound channel and then summed to obtain the denominator for the compound-channel
case (Eq. (7.44)).

7.5 Bi-directional Wave Propagation

In the linearization of the resistance, the amplitude of the discharge and that of the flow
velocity have been assumed constant. Even in a prismatic channel, this is not the case
because of the wave decay due to resistance. In practice, a long channel is subdivided in
sections of a limited length, such that in each of them the amplitude does not vary too much.
The above equations are applied to each of these sections, while the various solutions are
coupled by demanding continuity of discharge and surface elevation at the junctions. In
the preceding example, a length of some 10 km appears acceptable in view of the decay
numbers given above.

In this section, we will derive relationships between the surface elevation and the
discharge at one end of a prismatic channel section, expressed in terms of those at the
other end (Figure 7.4). These relationships should be valid for arbitrary combinations of
two wave systems travelling in opposite directions, not necessarily unidirectional waves.

7.5.1 Relation between the Complex Amplitudes at the Ends of a Prismatic Section

Our starting point is the general solution for the surface elevation and the discharge, given
in Eq. (7.29) and (7.30), which are repeated here for convenience:

ζ̃ (s) = C+ exp(−ps) + C− exp(ps) (7.45)

Fig. 7.4 Bi-directional wave propagation in a section

.008
18:36:38,



127 7.5 Bi-directional Wave Propagation

and

Q̃(s) = iωB
p

(
C+ exp(−ps) − C− exp(ps)

)
(7.46)

For easier algebraic manipulation, we eliminate temporarily the factor iωB/p by introduc-
ing a new complex variable Z̃, with the dimension of a length

Z̃(s) ≡ p
iωB

Q̃(s) = C+ exp(−ps) − C− exp(ps) (7.47)

It then follows that

ζ̃0 = C+ + C− and Z̃0 = C+ − C− (7.48)

where we have written ζ̃0 for ζ̃ (0), and likewise for Z̃. These two equations determine the
integration constants C+ and C− in terms of ζ̃0 and Z̃0:

C+ = ζ̃0 + Z̃0

2
and C− = ζ̃0 − Z̃0

2
(7.49)

Substituting these integration constants into Eq. (7.45) and (7.46), we can express the
values of ζ̃ and Z̃ at s = � in terms of those at s = 0:

ζ̃� = ζ̃0 + Z̃0

2
exp(−p�) + ζ̃0 − Z̃0

2
exp(p�) (7.50)

Z̃� = ζ̃0 + Z̃0

2
exp(−p�) − ζ̃0 − Z̃0

2
exp(p�) (7.51)

or

ζ̃� = ζ̃0 cosh p� − Z̃0 sinh p� (7.52)

Z̃� = − ζ̃0 sinh p� + Z̃0 cosh p� (7.53)

(See Box 7.3 for the hyperbolic functions of complex argument.) This is the key result of
this section, i.e. two equations relating the four complex amplitudes of surface elevation
and discharge at both ends of the channel section. Given any two of these, the other two
are determined. These relations play an important role in the calculations for a set of
channel sections in series or in a network, where it is necessary to transfer information
on amplitudes and phases from junction to junction.

A set of equations essentially similar to Eqs. (7.52) and (7.53) has been derived by
Parsons (1918), although with a different, incorrect linearization of the resistance, as noted
above. He used them to predict the tidal currents in the Cape Cod Canal, given the Atlantic
Ocean tidal surface elevations at both ends of the canal.

Note: although we have referred to channel section ‘ends’ in the preceding text, no
special conditions were imposed there. Therefore, the relations in fact apply to any pair of
cross sections of a prismatic channel. In other words, ‘p�’ in the equations above might
just as well be replaced by ‘ps’, indicating an arbitrary location.
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Example 7.2 We present a simple application of this result to a system as considered in
Chapter 6, viz. a small basin, closed except for a connection by a channel to a tidal sea.
The water in the channel is excited sinusoidally at the channel mouth (s = 0, say), while at
the other end (s = �) it in turn excites a Helmholtz mode in the basin with complex surface
elevation amplitude ζ̃b. In contrast to what was done in Chapter 6, we take not only inertia
but also storage in the channel into account, allowing for wave propagation in the channel
with the associated phase lags.

Solution

The volume balance for the basin reads Q(�, t) = Ab dζb/dt, implying that Q̃� = iωAbζ̃b.
Ignoring velocity-head effects in the transition between the channel and the basin, we have
ζ̃b = ζ̃�, so that

Q̃� = iωAbζ̃b = iωAbζ̃� = iωB
p

Z̃� (7.54)

Substitution of this result into Eqs. (7.52) and (7.53) yields the following result for the ratio
(r̃) of the complex amplitude in the basin to that at the channel mouth:

r̃ = ζ̃b

ζ̃0
=

(
pAb
B

sinh p� + cosh p�

)−1
(7.55)

In Chapter 6, it was assumed that the channel was short so that the storage in it could be
neglected. In that approximation, the motion in the channel was not wave-like. Instead, the
water was seen to oscillate back and forth as a rigid column. Here, we have gone beyond
that approximation by modelling wave propagation in the channel.

As the channel length goes to zero, r̃ → 1. This seems to contradict the results presented
in Chapter 6 for a short connection such as a gap or a breach. The apparent discrepancy is
resolved if one realizes that here we have modelled boundary resistance only, which goes
to zero in proportion to the channel length, whereas in Chapter 6 expansion losses were
included as well, which are even dominant for short connections such as a gap.

Box 7.3 Hyperbolic functions of complex argument

It was shown above that the superposition of two exponentially decaying waves, travelling in opposite
directions, gives rise to hyperbolic functions (cosh and sinh) of complex argument. To facilitate computation,
these are expressed in terms of their real and imaginary parts in the following. By definition, cosh ps =
(exp ps + exp (−ps)) /2. Substituting p = μ+ ik and collecting the real and imaginary parts, we obtain
cosh ps = cosh μs cos ks + i (sinh ps sin ks). Likewise, since sinh ps = (exp ps − exp(−ps)) /2, we
find sinh ps = sinh μs cos ks + i (cosh μs sin ks). Taking the squares of these expressions, we obtain
for the moduli, after some reworking: |cosh ps|2 = sinh2 μs + cos2 ks = cosh2 μs − sin2 ks and
|sinh ps|2 = sinh2 μs + sin2 ks = cosh2 μs − cos2 ks, in which we have used cos2 ks + sin2 ks = 1 and
cosh2 μs − sinh2 μs = 1.
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Fig. 7.5 Standing wave in a semi-closed basin

7.5.2 Response Function of a Semi-Closed Prismatic Basin

Consider a semi-closed prismatic basin, with its mouth at s = 0, where it is subjected to
harmonic excitation from the sea, and with a closed end at s = �; see Figure 7.5. We will
investigate the variation of the response as a function of the frequency of the harmonic
excitation. This yields the so-called response function.

At the open end, ζ(0, t) is prescribed as a sine function with known frequency, amplitude
and phase. At the closed end, the boundary condition is Q(�, t) = 0. Since this is just
a special case of the situation considered in the preceding section, we can immediately
obtain the required response from those results. Setting Z̃� = 0 in Eqs. (7.52) and (7.53),
and returning to the complete expression for the complex discharge (Q̃ = (iωB/p) Z̃), we
obtain

ζ̃� = ζ̃0

cosh p�
(7.56)

Q̃0 = iωB
p

(tanh p�) ζ̃0 (7.57)

Note that Eq. (7.56) also follows from Eq. (7.55) by setting Ab = 0.
According to Eq. (7.56), the ratio of the amplitude at the closed end to that at the mouth,

the so-called response factor, is given by

r ≡ ζ̂ (�)

ζ̃ (0)
= 1

| cosh p�| = 1√
sinh2 μ� + cos2 k�

(7.58)

This response factor is determined by two constants for the given channel: μ� and k�,
determining the damping and the phase change of a wave progressing over the length
of the basin. These two parameters can for given � be calculated from k0� and σ ,
which can therefore be used as independent parameters in the calculations. The graph in
Figure 7.6 is based on this. It consists of a set of curves, each showing the variation of r
as a function of k0� (proportional to the frequency) for constant σ according to Eq. (7.58).
The response function shown in Figure 7.6 gives at a glance insight into the dynamics of
wave propagation and reflection in a semi-closed basin.

For basins that are very short compared with the wavelength (k0� 	 1), the amplitude
at the closed end is virtually the same as it is at the mouth, signifying that the water level
in the basin rises and falls in unison with the external tide, the so-called Helmholtz mode
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Fig. 7.6 Response factor for a basin closed at one side

that we have encountered in Chapter 6. Notice that in this range the value of σ has no
influence, as expected, since resistance is negligible in a short, semi-closed basin.

For small to moderate values of σ , the response shows a high peak near k0� = 1
2π ,

signifying quarter-wave resonance. The influence of σ is significant, causing a strong
reduction in the response peak with increasing σ and a slight lowering of the resonance
frequency, which is the result of the influence of σ (or δ) on the phase speed. This is because
quarter-wave resonance occurs when k� = 1

2π , or k0� = 1
2π

√
1 − tan2 δ, therefore for

lower values of k0� when σ increases.
For values of k0� near 3

2π , there is another set of response peaks for small to moderate
values of σ , signifying three-quarter-wave resonance. These are less pronounced than
those near k0� = 1

2π because damping is more important for these longer basins (and/or
shorter waves).

The complex amplitude of the discharge at the mouth follows from Eq. (7.57). Substitution
of Eq. (7.28) into this equation yields the following expression for the real amplitude of
the discharge:

Q̂0

Bc ζ̂0 cos δ
=

∣∣∣∣ sinh k�
cosh k�

∣∣∣∣ =
√

sinh2 μ� + sin2 k�
sinh2 μ� + cos2 k�

(7.59)

Because of the sine and cosine functions of k� in this expression, the discharge amplitude
at the mouth is not a monotonic function of the relative basin length. Shortening of a basin
may therefore increase the discharge at the mouth (see Box 7.4).
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Box 7.4 The Zuiderzee closure (1932)

A significant example where the shortening of a tidal basin increased the discharge through its mouth occurred
when the previous Zuiderzee in the central part of The Netherlands was closed by the construction of an
enclosure dam in 1932. This shortened considerably the tidal basin, extending from the North Sea to the
closed end of the basin, but counter to intuitive expectations the discharge through the tidal inlets feeding
the tides in the basin increased significantly, more than 25% in the most nearby inlet. The reason was that the
tide in the shorter, remaining basin was nearer to quarter-wave resonance. This unexpected behaviour was
correctly predicted by the Lorentz Committee, using the harmonic method described above (though in a more
complicated version, to reflect the network topology of the tidal channels), which was specifically developed
for that purpose (see Figure 7.11 below).

7.6 Propagation in Non-Uniform Channels

7.6.1 Abrupt Channel Transition

In Chapter 4, we considered the partial reflection of low translatory waves at a location
where a discrete change in the channel geometry occurs. Here we do the same for harmonic
waves, using the same approach. Only the algebra is a bit different.

Two long, prismatic channel sections with mutually different geometry are connected at
a point s = 0 (Figure 7.7). From section 1 (s < 0), a harmonic wave is approaching
the transition and is partially reflected there, as well as partially transmitted into section 2
(s > 0), from where it does not reflect back to the transition. For given channel geometry
and incident wave parameters at the site of the transition, we have to make a first estimate of
the values of Û or Q̂ in both sections near the transition, so that we can start the calculation
with an estimated σ or δ. If necessary the calculations can be repeated with improved
estimates to obtain better results.

We write the following expressions for the incident waves (subscript i) and the reflected
waves (subscript r) in channel 1:

ζ̃i = Ci exp(−p1s) and ζ̃r = Cr exp(p1s) (7.60)

Fig. 7.7 Transition in channel geometry
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and the following for the transmitted waves (subscript t) in section 2:

ζ̃t = Ct exp(−p2s) (7.61)

The associated discharges are given by

Q̃i = (iωB1/p1) Ci exp(−p1s) and Q̃r = −(iωB1/p1) Cr exp (p1s) (7.62)

and
Q̃t = (iωB2/p2) Ct exp(−p2s) (7.63)

At the transition, where s = 0, we must have continuity in ζ and in Q, which implies

Ci + Cr = Ct (7.64)

and
iωB1

p1
(Ci − Cr) = iωB2

p2
Ct (7.65)

For brevity, we introduce a complex transition ratio

γ̃ = iωB2/p2

iωB1/p1
= B2c2

B1c1

cos δ2

cos δ1
exp (i (δ2 − δ1)) (7.66)

(see Eq. (7.28)) as well as a complex coefficient for reflection and one for transmission:

r̃r = ζ̃r(0)

ζ̃i(0)
= Cr

Ci
and r̃t = ζ̃t(0)

ζ̃i(0)
= Ct

Ci
(7.67)

It then follows from Eqs. (7.64) and (7.65) that

r̃r = 1 − γ̃

1 + γ̃
and r̃t = 2

1 + γ̃
= 1 + r̃r (7.68)

These results have a structure identical to those obtained in Chapter 4 for low translatory
waves, the difference being that here the transition ratio and the coefficients are complex,
bearing both amplitude and phase information. They also show that at the transition the
reflected wave is not in phase with the incident wave, because r̃r is complex. The only
exception to this is when the resistance angle δ does not change at the transition, in which
case γ̃ is real (equal to B2c2/B1c1, the same as in Eq. (4.6)), and therefore also r̃r and r̃t.
In that case, the results are fully identical to those of Chapter 4.

7.6.2 Exponentially Varying Cross Section

Alluvial tidal rivers generally have a funnel shape, in which the cross section increases in
seaward direction. Examples are the Western Scheldt estuary in The Netherlands, shown
in Figure 7.8, the Gironde estuary in France, the river Thames in the United Kingdom, and
the Delaware River in the United States.

This widespread phenomenon is related to tidal damping, which decreases the discharge
amplitude in the propagation direction of the tidal wave. This influences the net sediment
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Fig. 7.8 Bathymetry of the Western Scheldt estuary, 2014; bed level in metres with repect to mean sea level; data from the
Dutch Ministry of Public Works

Fig. 7.9 Conveyance area, storage width and depth in the Western Scheldt; data from Savenije (2005)

transport capacity, to which the river will respond by narrowing its cross section in the
inland direction. The diminishing discharge is then compensated by a proportional decay
of the cross-sectional area, giving the typical funnel shape. In this way the system tends to
a morphological equilibrium characterized by a uniform distribution of the maximum tidal
centre velocities and surface elevation amplitudes along the river. A detailed account of
this self-regulating mechanism is given by Savenije (2005).

Most alluvial tidal rivers are in this state of (near-)equilibrium. Deviations from this
state, if any, are mostly related to changing environmental conditions (e.g. sea level rise,
fresh water depletion) or human interventions (e.g. dredging works, barrier construction).
For a broad range of conditions, it has been found that the storage width and conveyance
area of such rivers converge exponentially, at the same rate, while the depth is nearly
constant. Figure 7.9 illustrates this for the Western Scheldt estuary; similar geometrical
properties have been observed in tidal rivers around the world.
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For an analytical treatment of tidal wave propagation in converging rivers, we can
therefore schematize the conveyance area and storage width as, respectively,

Ac (s) = Ac,0 exp (−2λs) and B (s) = B0 exp (−2λs) (7.69)

where Ac,0 and B0 are the conveyance area and storage width, respectively, at the mouth of
the river, λ is a convergence parameter, having the dimension of L−1, and s is a streamwise
coordinate, positive in inland direction and zero at the mouth. The factor 2 in Eq. (7.69) is
introduced with a view to the algebra that will follow shortly. We further assume that the
resistance of the tidal river can be characterized by a constant linear relative resistance σ ,
suggested by the small spatial variations of depth and velocity amplitude commonly
observed in nature; see also Eq. (7.9). Using this assumption, Ippen and Harleman (1966)
analyze the tidal motion in the Delaware estuary by using Green’s law combined with
exponential frictional damping. We take a different approach, starting from the dispersion
equation, which, in contrast to Green’s law, gives closed-form solutions for the complex
amplitudes of the surface elevation and discharge; see also Toffolon and Savenije (2011).

Dispersion Equation

Substitution of the expressions in Eq. (7.69) into the linearized continuity and momentum
equations, eliminating Q, and assuming periodic solutions with frequency ω results in the
following linear ordinary differential equation for the complex amplitude of the surface
elevation:

d2ζ̃

ds2 − 2λ
dζ̃

ds
+ k2

0 (1 − iσ) ζ̃ = 0 (7.70)

where k0 = ω/
√

gAc/B is the wave number in the absence of resistance and convergence.
In view of Eq. (7.69), this wave number is constant in the entire estuary. Elementary
solutions are therefore of the form C exp (Ps), where C is a constant and P is a solution
of the corresponding complex dispersion equation

P2 − 2λP + k2
0 (1 − iσ) = 0 (7.71)

After some rearrangement, the two solutions for P can be written as

P1,2 = ± ik0

√
1 − λ2/k2

0 − iσ + λ (7.72)

This result is similar to Eq. (7.17) for prismatic channels, and reduces to the latter if λ

vanishes. The two roots are associated with wave components travelling in the positive
(P2) and negative direction (P1), respectively. Their imaginary parts, differing in sign only,
constitute the wave number k. Their real parts, differing in magnitude if λ �= 0, constitute
the damping modulus μ.

Analytical expressions for the wave number k and the damping modulus μ may be
derived by following a procedure similar to that for the prismatic channel. We define the
convergence number α ≡ λ/k0, which measures the change of the cross section over the
wavelength in absence of resistance, and an auxiliary angle δ as the non-negative argument
for which
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tan 2δ = σ

1 − α2 (0 ≤ δ ≤ π) (7.73)

Using these definitions, the expression under the square root operator in Eq. (7.72) is
rewritten in exponential form as

1 − λ2/k2
0 − iσ = 1 − α2

cos 2δ
exp (−2iδ) (7.74)

With this result, Eq. (7.72) can be rewritten as

P1,2 = ± ik0

√
1 − α2

cos 2δ
(cos δ − i sin δ) + λ (7.75)

Separating the real and imaginary parts gives for the wave numbers

k1,2 = k = k0

√
1 − α2

cos 2δ
cos δ = k0

√
1 − α2

1 − tan2 δ
(7.76)

and for the damping moduli

μ1,2 = k tan δ ± λ (7.77)

where the subscripts 1 and 2 correspond to the waves travelling in the negative (seaward)
and positive direction (landward), respectively. It can be verified that the above solution is
continuous at α = 1, despite the denominator in Eq. (7.73) going to zero for α → 1.

Unidirectional Wave Propagation

An infinitely long estuary involves only the incident wave component, propagating in
the positive s-direction (no reflected wave), with complex surface elevation amplitude
given by

ζ̃ (s) = ζ̃0 exp (− (μ2 + ik) s) (7.78)

The corresponding solution for the complex discharge amplitude can be derived by
following the same steps as for the prismatic channel. The result, written in terms of the
flow velocity, is

Ũ (s) = Q̃ (s)
Bd

= c
1 + i (λ/k − tan δ)

ζ̃ (s)
d

(7.79)

Figure 7.10 shows the wave number and damping parameter in dimensionless form (by
scaling with the wave number k0), as functions of the convergence number α for a range
of values of the relative resistance σ .

Figure 7.10a shows that the wave number k decreases with increasing convergence,
implying that the funnel shape of an estuary increases the phase speed c = ω/k. The
latter may even exceed the wave speed in the absence of resistance and convergence
(c0 = √

gAc/B). For every value of σ there is one value of λ for which c = c0. In the
absence of resistance, the wave number is zero for λ > k0; the corresponding solutions are
standing waves. However, these are unlikely to occur in reality.
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(a)

(b)

Fig. 7.10 Infinitely long tidal river: wave number (a) and damping modulus (b) as functions of the relative rate of
convergence α for a set of values of the relative resistance σ

Inspection of Figure 7.10b shows that the damping modulus in general decreases with
increasing convergence. It may even become negative, in which case the amplitude of the
tidal wave is amplified in inland direction. For every σ there is one value of λ for which
the damping modulus vanishes, in which case the surface elevation amplitude is constant
along the estuary. It is shown in the next section that this value of σ is the same as the one
for which k = k0 and, furthermore, that this combination of parameter values corresponds
to morphological equilibrium.

In the absence of resistance, the damping modulus is μ2 = −λ, resulting in an amplitude
variation proportional to exp(λs). In view of the width variation given in Eq. (7.69), this
implies that ζ̂ varies in proportion to B−1/2, in agreement with Green’s law.
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Morphological Equilibrium

It can be seen in Eq. (7.76) that k = k0 if α = tan δ. Substituting this into Eq. (7.77),
we find μ2 = k tan δ − λ = k0 tan δ − λ = k0 (tan δ − α) = 0. In other words, if
λ/k0 = tan δ, we have k = k0 (also c = c0) and μ2 = 0, signifying that under this critical
condition the accelerating and enhancing effects of the convergence just compensate for
the retarding and damping effects of resistance.

In the critical condition referred to above, c = c0 and λ/k = tan δ, in which case
Eq. (7.79) reduces to

Ũ (s) = c0

d
ζ̃ (s) (7.80)

It follows that under these conditions the flow velocity varies in phase with the surface
elevation. Moreover, since in the critical condition the amplitude of the surface elevation
is uniform along the estuary, so is the amplitude of the flow velocity. This solution
therefore represents a state of morphological equilibrium. The shape of such an estuary,
characterized by the equilibrium convergence parameter λe, is obviously related to the
resistance. Indeed, substitution of α = tan δ = λe/k0 into Eq. (7.73), and using the formula
for the tangent of a double angle, gives

λe = 1
2σk0 (7.81)

Substituting Eq. (7.9) for σ , we find that the following proportionality holds:

λe ∝ cf
B0

R Ac,0
ζ̂0 (7.82)

which relates the geometrical parameters of an estuary in equilibrium to the resistance
coefficient and the tidal amplitude. Roughly speaking, a shallow tidal river subject to a
large vertical tidal range narrows rapidly; deep estuaries are likely to be more elongated,
the more so if the tidal range is small.

7.7 Propagation in Networks

It has been stated at numerous places in the above that a long channel may have to be
divided into a number of adjacent sections, forming a one-dimensional chain, with sections
in series. In other cases, the tidal channels in the study region form a network structure. In
all such cases, there are internal nodes at the channel junctions, and nodes providing a link
to the external world, usually a tidal sea or a closed end.

The primary unknowns are the complex amplitudes of the surface elevation and the
discharge at the nodes of the system, i.e. four (complex) unknowns for each section, or
on average two per node for each section, or 2N unknowns per node if there are N sections
joined at a node. As we have seen in Section 7.5, there are two algebraic equations for
each channel section describing the propagation therein, or (on average) one per node
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Fig. 7.11 Harmonic network model of the Zuiderzee, The Netherlands, as used by the Lorentz Committee; from
Lorentz (1926)

for each section, or N equations per node. For each node there is one more equation
describing that the sum of the discharges towards the node is zero (neglecting storage
at the node), and (N − 1) equations describing that the water levels of the N sections at the
node are equal (neglecting velocity-head effects). At external nodes, boundary conditions
are imposed. Altogether, the number of available independent equations is equal to the
number of unknowns, as required for a well-posed problem, so that the solution is uniquely
determined.

The tidal computations of the Lorentz Committee, performed for the prediction of the
tides after the construction of the enclosure dam in the previous Zuiderzee, utilized a
network of 26 channels. Figure 7.11 shows the previous Zuiderzee and the subdivision
into compartments representing tidal channels and adjacent flats. The inset presents the
corresponding network of compound channels. Boundary conditions were provided by the
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M2-tides at the four inlets connecting the basin with the North Sea, and the condition
of zero discharge was imposed at the southern boundary of the Zuiderzee. As mentioned
previously, the committee successfully predicted the changes in the tides that were the
result of the construction of the enclosure dam. The harmonic method has been applied
since then in many projects. Needless to say, numerical codes have long since replaced the
analytical harmonic method in practical projects, but the method is still useful for insight
into the wave dynamics and for preliminary computations.

7.8 Nonlinear Effects

In this section, we briefly touch on a few nonlinear effects, which were systematically
ignored in the above. We distinguish two kinds of nonlinearities in the equations describing
the flow: terms that are nonlinear in the dependent variables, e.g. quadratic terms, and
geometric nonlinearities, in particular the variation of the wet cross section with the water
level. In contrast to a linear system, the response of a nonlinear system to harmonic forcing
is not sinusoidal, although still periodic. Higher harmonics can be excited, as well as a
nonzero mean response.

7.8.1 Tidal Wave Deformation

Let us take the quadratic advective term in the momentum balance, ∂(Q2/Ac)/∂s, as an
example. If Q varies in time as cos ωt, then Q2 varies in time as cos2 ωt = (1+cos 2ωt)/2.
We see that the square introduces both a higher harmonic, at a frequency 2ω, and a nonzero
mean value. Likewise, a factor such as |Q|Q, occurring in the resistance term, introduces
third, fifth and higher odd harmonics if Q itself varies sinusoidally. The presence of higher
harmonics causes deformation of the wave profile.

Nonlinear effects increase with increasing ratio of wave height to water depth. They are
strongest in shallow water. That is why the nonlinearly generated higher harmonics of the
M2-tide, i.e. the components M4, M6 etc., are called ‘shallow-water tides’.

Geometric nonlinearities often play an important role in tidal propagation, because the
cross section available for flow can vary greatly between high water and low water, even
to the extent of falling dry.

Figure 7.12 gives a series of tidal curves, showing the variation in time of the surface
elevation at a sequence of stations along the Western Scheldt estuary and river. Station ‘V’
(Vlissingen) is the most seaward station, ‘A’ is Antwerp, and ‘G’ is Gentbrugge, far inland.
The increased deformation of the tidal curves for the more inland stations is obvious.

7.8.2 Mean Slope of the Free Surface

The tide in estuaries is usually mainly progressive, so that the surface elevation and the
discharge are in phase for most of the time. This means that for flood flow the cross section
available for conveyance is larger than it is for ebb flow. As a consequence, ebb flow

.008
18:36:38,



140 Harmonic Wave Propagation

Fig. 7.12 Tidal wave propagation in the Western Scheldt, The Netherlands; records are shown for a sequence of stations,
ranging from the seaward location at Vlissingen (V), via Antwerp (A) to the far inland station Gentbrugge (G); from
the Dutch Department of Public Works

velocities are on average higher than flood flow velocities, and so is the corresponding
resistance (which is proportional to |U|U/d). As a result, the mean water level slopes down
towards the sea, even in purely oscillatory flow in the absence of a net discharge. This
slope of the mean water level is clearly visible in Figure 7.12 (where it is partly due to a
net discharge).

An approximate analytical expression for the mean surface slope can be derived by time-
averaging the momentum balance, given by Eq. (1.21). For periodic motions, as considered
here, the time average of ∂Q/∂t vanishes. For low waves, the advective term is neglected
from the outset. The mean resistance is the only remaining contribution:

∂h
∂s

= dh
ds

= −if (7.83)

in which the overbar denotes the time average over an integer number of cycles. We use
the linearized version of the friction slope if, given by

if = 8
3π

cf
Û U
gR

= 8
3π

cf
Q̂ Q

gA2
cR

(7.84)

In order to express the influence of the varying water level on the conveyance cross section,
we write Ac = Bcd, neglect variations of Bc with the water level and replace the hydraulic
radius R by the flow depth d. Taking the time average, we obtain

if = 8
3π

cf
Q̂

gBc
2
(
Q/d3

)
(7.85)

Writing d = d0 + ζ , assuming |ζ | 	 d0, and restricting ourselves to purely oscillatory
flow (Q = 0), we approximate Q/d3 as follows:
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Q/d3 = Q/d3
0 (1 + ζ/d0)

3 ≈ d−3
0 Q (1 − 3ζ/d0) = −3 d−4

0 Qζ (7.86)

We assume sinusoidal variations of ζ and Q, with phase angles α and β at a fixed location,
as in

ζ = ζ̂ cos (ωt + α) and Q = Q̂ cos (ωt + β) (7.87)

This yields
Qζ = 1

2 Q̂ζ̂ cos (α − β) (7.88)

This shows explicitly that a mean slope of the water surface is the result of ζ and Q being
in phase (α − β = 0, as in a purely progressive wave without resistance), or partly so
(α − β �= 0 and α − β �= 1

2π ). Only when ζ and Q are exactly 90◦ out of phase, as in a
pure standing wave, does the resistance not contribute to a mean slope of the water surface.

Substituting Eqs. (7.86) and (7.88) into Eq. (7.85), we obtain

if = − 4
π

cf
Q̂

2

gBc
2d0

3
ζ̂

d0
cos (α − β) = − 4

π
cf

Û2

gd0

ζ̂

d0
cos (α − β) (7.89)

(Note that the factor cf Û2
/gd0 is the friction slope in uniform flow with velocity Û in

a depth d0.) Finally, considering a purely progressive wave, we substitute Eqs. (7.34)
and (7.35) into Eq. (7.89) and perform some straightforward mathematical manipulations,
in which we also use Eq. (7.24) for the phase velocity c. The result for the mean surface
slope can be written as

dh
ds

= − if = 4
π

cf cos δ cos 2δ
B
Bc

(
ζ̂

d0

)3

(7.90)

Notice that this implies a rise of the mean water surface elevation in the direction of
propagation of the wave. Because of the third power, the mean slope soon becomes
negligible for decreasing, small values of ζ̂ /d0, but for finite-amplitude waves in shallow
water, the resistance can cause a non-negligible mean surface slope.

Numerical results obtained with Eq. (7.90) are only approximate, considering its
assumptions, and should therefore be interpreted with care. Importantly, it provides insight
into the causative factors, as is always the case for analytical relations.

Problems

7.1 Mention two effects of resistance on the relation between variations in the discharge
and in the surface elevation.

7.2 An M2-tide in a channel with a width of the free surface B of 500 m has a
damping modulus μ = 2 × 10−5 /m and a wave number k = 1.5μ. The integration
constants are given as C+ = (1.2 m) exp(i 1

6π) and C− = (0.3 m) exp(−i 1
4π). Plot

the values of these constants in the complex plane and construct the corresponding
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two hodographs of the + wave and the − wave for a self-chosen sequence of values
of s. Construct the hodograph for the total surface elevation. Compare the angle of
convergence with the theoretical value.

7.3 For the data in Problem 7.2, construct the hodographs for Q̃+, for Q̃−, and for the
total discharge Q̃ = Q̃+ + Q̃−.

7.4 Using the data listed in Example 7.1, calculate the values of the dependent variables
in the left column of Table 7.1.

7.5 Calculate the wave number and the damping modulus for propagation in the channel
in Problem 6.16.

7.6 Using the result of Problem 7.5, verify whether the rigid-column approximation is
justified for this case.

7.7 Suppose that the channel of Problem 6.16 is closed at one end and that the M2-tide at
the mouth has a surface elevation amplitude of 1 m. Calculate the surface elevation
amplitude at the closed end, estimate it from Figure 7.6 and compare the results.
Calculate the value of the amplitude of the discharge at the mouth.

7.8 Do the same as in Problem 7.7 for a seiche with a period of 45 min and a surface
elevation amplitude at the mouth of 0.3 m.

7.9 The Bay of Fundy, where the world’s highest tides occur, has a length of about
270 km. The width does not vary too much, in contrast with the depth, but we will
ignore the latter variations for this problem and put the depth at a constant value
of 75 m. We take cf= 0.0025. If the M2-tide at the mouth has a tidal range of 5 m,
estimate the tidal range at the closed end, using Figure 7.6.

7.10 Using Figure 7.6, estimate the amplification factor for a seiche with a period of 20
min in a semi-closed harbour basin with a length of 3 km and a depth of 15 m;
the surface elevation amplitude at the mouth is 0.25 m. Check the influence of the
offshore amplitude on the amplification factor for this case. Do the same for the
preceding problem and compare both sensitivities.

7.11 Mention two sources of nonlinearity of the long-wave equations.
7.12 Derive an analytical expression for the complex amplitude of the discharge in an

infinitely long tidal river with an exponentially converging cross section.
7.13 Derive an analytical expression for the complex surface elevation amplitude in an

exponentially converging tidal river with the entrance in s = 0 and with a closed end
in s = �.

7.14 Explain why a mean slope of the free surface occurs in a purely oscillatory tide (no
net discharge).
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Flood waves, which are resistance dominated, constitute the final category in the
progression of wave types considered so far, ranging from the rapidly varying translatory
waves, for which resistance could be neglected, to the intermediate category of tidal
waves with their mixed character to the present case of flood waves, in which resistance is
dominant.

8.1 Introduction

Flood waves are in essence humps of water traveling downriver. Stated in more detail, they
are transient increases and decreases of discharge and water level (‘stage’) in a river caused
by temporarily enlarged run-off in the catchment area due to heavy rainfall or snow melt,
which travel downriver as a wave.

The temporal evolution and dynamics of flood waves differ greatly between the upper
and lower reaches of a river. In the upper reaches, characterized by relatively steep slopes
and a small catchment area, the response to an increased run-off can be quite fast, with
rapid variations in flow rate and water level, even to the extent that inhabitants along the
river border are taken by surprise, sometimes with fatal consequences.

In contrast, flood waves in the lower river reaches are slow processes, in many cases
taking place over several days, due to the larger catchment area, the existence of tributaries
and the greater propagation distance from upstream. Run-off peaks in different parts of the
larger catchment area do not in general occur simultaneously, so that the maximum of their
sum is less than the sum of the individual maxima. Moreover, as we will see, the internal
dynamics of the flood wave cause it to flatten and to elongate as it propagates. As a result,
the variations in flow rate and water level in the lower reaches are gradual, even such that
inertia is insignificant (see Table 2.1 and Box 8.1).

In engineering practice, numerical models are used to simulate flood waves. These are
based on the complete equations of De Saint-Venant (the long-wave equations), including
inertia (see Chapter 11). This is needed in order to cover a wide range of occurrences of
flood waves. Moreover, they should be able to cover the estuarine reaches of rivers, where
tides penetrate, for which inertia and resistance are of comparable magnitude. And they
should be able to simulate properly the effects of the operation of weirs, which can induce
rapidly varying translatory waves superimposed on the slowly varying flood waves.

143
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144 Flood Waves in Rivers

Box 8.1 Estimation of the relative inertia in a flood wave

We take the flood wave in the river Rhine shown in Figure 2.2 as an example for a comparison of the order
of magnitude of the inertia in the momentum balance (∂U/∂ t) with the down-slope gravity force per unit
mass (or the acceleration), g ∂h/∂s . The rate of rise of the water level in the steepest part of the rating curve is
about 2 m/24 h. The increase in flow velocity would be about 0.5 m/s per 24 h, corresponding to an acceleration
of about 5 × 10−6 m/s2. This is roughly a factor of 200 less than g |∂h/∂s|, if we equate the slope of the free
surface to the bed slope, which for the lower Rhine is about 10−4.

For an analytical study of flood waves, which is pursued here to obtain a fundamental
insight into their behaviour, we consider their most elementary form, in which inertia is
neglected, leaving a balance between the driving force and the resistance. The remainder
of this chapter is based on that assumption.

8.2 Quasi-Steady Approximation

The neglect of inertia leads to the so-called quasi-steady approximation: although the flow
is unsteady on a long time scale, the relations between dependent variables are at any time
assumed to be the same as for steady flow. In other words, the flow is instantaneously
adjusted to (slow) variations in the driving force. It has no memory, so to speak.

We use the continuity equation in the form given by Eq. (1.20):

B
∂h
∂t

+ ∂Q
∂s

= 0 (8.1)

In the momentum balance (Eq. (1.21)), we neglect the inertia terms, in which case it
reduces to

gAc
∂h
∂s

+ cf
Q2

AcR
= 0 (8.2)

We have replaced |Q|Q by Q2 because the flow is unidirectional. From a mathematical
point of view, the neglect of inertia in Eq. (1.21) has important consequences because it
reduces the set of coupled balances of mass and momentum from being of second order
in time to first order (though still second order in space). This implies that dynamic wave
propagation in two directions is not possible within this simplified model.

In previous chapters, dealing with translatory waves, tides etc., there was no preferred
flow direction. The undisturbed reference state was one of rest. A bed slope, if present,
played no particular role. This is quite different for river flow, where the reference state
is one of uniform, downward flow. For that category, it is meaningful to bring the bed
slope explicitly into account: ib ≡ −∂zb/∂s, in which zb is the cross-sectionally averaged
bed elevation above the reference plane z = 0. Writing d for the average depth in the
conveyance cross section, we have h = zb + d (see Figure 8.1). Substituting this into
Eq. (8.2) gives
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Fig. 8.1 Longitudinal profile of flood wave

∂d
∂s

− ib + cf
Q2

gAc
2R

= 0 (8.3)

Eq. (8.3) forms the basis of the analyses in the remainder of this chapter, using approxima-
tions of increasing complexity.

8.3 Quasi-Uniform Approximation

We assume an initial state of uniform flow that is gradually being disturbed by a flood
wave.

In uniform flow, the free-surface slope and the friction slope both equal the bed slope,
and the depth gradient ∂d/∂s is zero, in which case the discharge and the flow velocity are
given by

Q = Qu ≡ Ac

√
gRib

cf
and U = Uu ≡ Qu

Ac
=

√
gRib

cf
(8.4)

These equations express two messages: they define Qu and Uu, and they state that in
uniform flow the actual discharge Q and flow velocity U equal Qu and Uu, respectively.
The latter does not hold in nonuniform flow, but in that case Qu and Uu are still given by
the expressions in the respective right-hand sides of Eq. (8.4).

If the flood wave is sufficiently low and/or elongated, the difference between the free-
surface slope and the bed slope is small. We will initially neglect it. This is a so-called
quasi-uniform approximation, so named because the flow, though varying in space on a
large scale, is treated as if it were uniform as far as the relations between local variables
are concerned.
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8.3.1 Formulation and General Solution

In the quasi-uniform approximation, the value of the discharge is taken to be the value in
uniform flow, or Q = Qu as defined in Eq. (8.4). This is an algebraic equation, describing
the dependence of the discharge on the instantaneous values of the local geometric profile
variables Ac and R (not their derivatives!). The geometric profile variables are monotonic,
unique functions of the flow depth d. Therefore, we can consider Eq. (8.4) as an implicit
relation between the uniform-flow discharge Qu and the depth d, which is written as
Qu = Qu (d (s, t)). (The dependence on g, ib and cf given in Eq. (8.4) is not written
explicitly.) Substitution of Q = Qu and of Qu = Qu (d (s, t)) into Eq. (8.1), in which
we replace ∂h/∂t by ∂d/∂t (which is allowed since h = zb + d and ∂zb/∂t = 0), yields

∂d
∂t

+ 1
B

dQu
dd

∂d
∂s

= 0 (8.5)

The left-hand side of this equation has the structure of a total derivative of d for an observer
moving with a velocity ds/dt = (1/B)dQu/dd, and the equation states that an observer
moving at this speed sees no change in the local value of d (see Section 3.2.3 for an
introduction of the total derivative). Neither would this observer see changes in the other
local geometric variables such as R, Ac or A (assuming a prismatic channel), nor in the
discharge Q (within the quasi-uniform flow approximation Q = Qu). This can be expressed
mathematically as follows:

dd
dt

= 0,
dQ
dt

= 0 provided
ds
dt

= 1
B

dQu
dd

(8.6)

It follows from these relations that the specified value of ds/dt is the speed of propagation
of the flood wave. Denoting this as cHW (‘HW’ for high water), we have:

cHW ≡ 1
B

dQu
dd

(8.7)

It is noted that in finite-difference form, Eq. (8.7) can be written as δQ = BcHW δh,
the same as was found for translatory waves (Eq. (3.23)), except for the difference in
propagation speed.

We see that flood waves can only propagate downstream (at a low speed, as we will
see), as a consequence of the neglect of inertia in the momentum balance. For the latter
reason, flood waves are said to belong to the category of kinematic waves, as distinct from
the dynamic waves considered in preceding chapters, which – thanks to inertia – can travel
both downstream and upstream.

8.3.2 The High-Water Wave Speed

In order to obtain a more transparent, explicit expression for cHW, we substitute Ac = Bcd
into Eq. (8.4), as well as the approximation R = d, with the result
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Qu = Bc d

√
gdib

cf
(8.8)

so that, assuming a constant value of cf,

dQu
dd

= 3
2

Bc

√
gdib

cf
= 3

2
BcU (8.9)

With this, we find the following important expression for the propagation speed of the
flood wave:

cHW ≡ 1
B

dQu
dd

= 3
2

Bc
B

U (8.10)

We see that this speed is of the order of magnitude of the flow velocity. In the lower river
reaches, where the Froude number usually is much less than 1, the flow velocity U is much
less than the classical long-wave speed of

√
gd, and so is cHW. For Bc/B < 2/3, cHW is

even less than the flow velocity! When at a high river stage the flood plains are submerged,
B can be much larger than Bc, which causes the propagation speed of the flood wave to
become considerably less than the flow velocity in the main (conveyance) channel (see
Section 8.4.3).

For inertia-dominated waves in a channel, the wave speed is also affected by the ratio
Bc/B, but to a smaller extent. This can be seen from the expression for that speed, viz.
c = √

gAc/B. This can be written as c = √
Bc/B

√
gd. We see that for a given depth the

wave speed is here proportional to the square root of Bc/B, implying a lower sensitivity
than for resistance-dominated flood waves.

In the above, we have treated cf as a constant, independent of the depth, in which
case U varies in proportion to the square root of the depth (see Eq. (8.4)). Had we used
a Strickler- or Manning-type of resistance law (see Chapter 9), U would vary with the
2
3 -power of the depth, and the discharge with the 5

3 -power, in which case the coefficient 3
2

in Eq. (8.10) would have to be replaced by 5
3 .

8.3.3 Kinematic Wave Behaviour

According to the preceding results, it is possible for an observer to follow a point of
constant depth or discharge, provided the observer travels at the appropriate speed. This
also applies to the point with the highest surface elevation, or river stage, which implies
that this maximum remains constant: the flood wave does not diminish in height according
to this simple model. Nor does the flood wave lengthen in this model, since two points with
equal depth, one upstream of the maximum stage, the other downstream, would travel at
the same speed.

The fact that the propagation speed increases with depth (through its proportionality
to U) causes deformation of the wave, since points of larger depth travel faster than points
of smaller depth. It follows that the leading part of the flood wave steepens and the trailing
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148 Flood Waves in Rivers

part flattens. If this continues for a sufficient time and distance, the assumption that the
change in surface slope is negligible compared with the slope in uniform flow, i.e. the
bed slope, becomes untenable. In the following section we will consider the effect of this
variation in slope, first qualitatively and thereafter quantified in an extended mathematical
model.

8.4 Influence of Variable Free-Surface Slope

In the preceding section, the variations in the slope of the free surface, which accompany
the passage of a flood wave, were ignored. Actually, the slope varies, being larger than the
slope in uniform flow (ib) in the leading part of a flood wave, i.e. at rising river stage at
a fixed point, whereas it is less than ib in the trailing part, i.e. at falling river stage. This
can be seen in Figure 2.2. Prior to the arrival of the flood wave, the difference in water
surface elevation between the upper and lower gauging stations, some 100 river-km apart,
is constant in time at about 10 m, corresponding to a slope of about 1 in 104, equal to the
bed slope. When the flood wave is at its maximum, the difference has increased to about
13 m, corresponding to a slope of about 1.3 × 10−4.

At a given river stage at a fixed point, the free-surface slope is larger when the water level
rises than when it falls. The same then applies to the discharge. This is a manifestation of
the phenomenon of hysteresis. The hysteresis is illustrated with a rating curve in Figure 8.2,
i.e. a plot of the discharge versus the simultaneously occurring river stage at the same
location as a function of time during the passage of a flood wave. It can be seen that the
maximum discharge occurs ahead of the maximum stage. This is because the enhanced
slope of the free surface ahead of the cross section of maximum stage enhances the flow

Fig. 8.2 Example Q–h curve with hysteresis
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149 8.4 Influence of Variable Free-Surface Slope

rate, which more than compensates for the larger depth at maximum stage, which must do
with a smaller slope, viz. ib.

The occurrence of hysteresis in a flood wave has important consequences for the
evolution of the wave as it travels downriver. As noted above, the discharge is greater
ahead of the peak than it is following the peak, for two cross sections with the same
stage. Considering a (moving) control volume between two such sections, we see that
mass is flowing out of it at the downstream section at a higher rate than it is flowing into
it at the upstream section. In other words, the mass contained between those two cross
sections on either side of the crest of the flood wave decreases in time. As a result, the
surface elevations between these moving cross sections decrease as the wave propagates
downriver. This means that the flood wave decreases in height and (consequently)
increases in length as it propagates downriver.

8.4.1 Diffusion Model for Flood Waves

In order to model this phenomenon mathematically, we start with Eq. (8.3), recasting it
into an expression for the discharge:

Q = Ac

√
gR
cf

√
ib − ∂d

∂s
= Qu

√
1 − 1

ib
∂d
∂s

(8.11)

We have substituted the expression for Qu, i.e. the discharge for the given depth if the flow
were uniform, given by Eq. (8.4).

We take account of a variable surface slope on the assumption that it deviates by a
relatively small amount from the uniform-flow value, i.e. the bed slope ib. This implies that
the depth gradient, though nonzero, is small compared with the bed slope (|∂d/∂s| 	 ib).
This allows us to approximate the square root as in

√
1 − ε 
 1 − 1

2ε if ε 	 1. Using this
approximation, we obtain

Q = Qu

(
1 − 1

2ib
∂d
∂s

)
(8.12)

With this approximation, we have obtained a linearized expression for the effect of
the variable free-surface slope on the discharge, with a correction to Q = Qu that is
proportional to the depth gradient ∂d/∂s. Considering the depth of flow as a measure of
volume ‘concentration’, i.e. volume per unit horizontal area, we can say that the correction
to the volume transport is proportional to the gradient of the volume concentration. This is
typical for diffusive transport (see Box 8.2).

Box 8.2 Diffusive transport

The classical example of diffusion is heat transport in a continuous medium, which in good approximation is
proportional to the gradient of the temperature, the latter being a measure of the heat concentration. Such
transport takes place in the direction of decreasing temperature. Differences in temperature are gradually
erased as time goes on. That is typical for diffusion (see Chapter 10). A similar process applies in the case of
flood waves, although the physical mechanism behind it is drastically different.
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Our next task is to express the effect of diffusion on the flow depth mathematically. In
view of the volume balance, Eq. (8.1), we need the derivative of Q with respect to s, to be
determined from Eq. (8.12):

∂Q
∂s

= ∂Qu
∂s

(
1 − 1

2ib
∂d
∂s

)
− Qu

2ib
∂2d
∂s2 (8.13)

We neglect the small, second term between parentheses, which is consistent with the
approximation already made in the transformation of Eq. (8.11) into Eq. (8.12). Further-
more, since Qu can be considered a function of d only (for given geometry), we can express
∂Q/∂s as follows:

∂Q
∂s

= dQu
dd

∂d
∂s

− Qu
2ib

∂2d
∂s2 (8.14)

We substitute this into Eq. (8.1), replace ∂h/∂t by ∂d/∂t, and divide by B, with the result

∂d
∂t

+ 1
B

dQu
dd

∂d
∂s

− Qu
2ibB

∂2d
∂s2 = 0 (8.15)

The factor multiplying the first-order derivative of d can be recognized as the wave speed
cHW. The factor multiplying the second-order derivative of d is called the diffusivity, to be
denoted as K:

K ≡ Qu
2ibB

(8.16)

With these substitutions, Eq. (8.15) is transformed into

∂d
∂t

+ cHW
∂d
∂s

− K
∂2d
∂s2 = 0 (8.17)

This is a so-called (one-dimensional) advection–diffusion equation (see Chapter 10), a
standard equation in mathematical physics. The first two terms represent the displacement
(advection) of the longitudinal surface profile, with velocity cHW, as in the quasi-uniform
approximation. The third term adds the effect of diffusion. It is proportional to ∂2d/∂s2,
i.e. the curvature of the free surface, which results in a spatial smoothing of the profile,
elongating and flattening the flood wave as time progresses. This can be seen as follows.

Consider a control volume between two cross sections in a reach where the free surface
is concave (hollow) upwards. In that case, the discharge at the most upstream cross section
(inflow) is larger than it is at the downstream cross section (outflow), causing a net inflow
into this control volume and therefore a rise of the free surface.

Where the free surface is convex upward, i.e. concave downward, the opposite occurs,
with net outflow and a lowering of the free surface as a result. The overall effect is that
bumps are lowered and troughs are filled. In other words, the effect is to smoothen the
longitudinal profile of the free surface.
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8.4.2 Elementary Solution

Solutions of the one-dimensional advection–diffusion equation have been derived in the
classical literature in physics for a range of initial and boundary conditions. Without
derivation, we present just one of them here, for the case of the spreading of an initially
concentrated mass in an infinitely long river reach. (The analogous case for heat diffusion
would be the spreading of heat in a long conducting rod following a localized initial
heating.)

The advection–diffusion equation is of first order in time and of second order in space.
Therefore, one initial condition and two boundary conditions are required for a well-posed
problem. We choose the following conditions:

Initial condition: uniform flow with depth d = constant = d0 and flow velocity U = U0, to
which at time t = 0 a volume V is added abruptly, concentrated at the point s = 0. Note:
addition of a volume V means addition of a volume per unit width equal to V/B. This ratio
has the meaning of an area in the longitudinal profile of the surface elevation.

Boundary conditions: for s → ±∞, d = d0 at all times.

For simplicity, we treat cHW and K as given constants, equal to their initial values. That is
acceptable to obtain an impression of the effects of the diffusion term.

Without proof, we state that the solution of Eq. (8.17) with the above stated initial and
boundary conditions is given by:

d(s, t) = d0 + V/B√
2π σs(t)

exp

(
− (s − cHWt)2

2σs2(t)

)
(8.18)

in which

σs(t) =
√

2K0t and K0 = Q0

2ibB
= U0d0

2ib
Bc
B

(8.19)

It can be shown through back substitution that these expressions satisfy Eq. (8.17) as
well as the initial and boundary conditions. For a derivation and discussion, see for
instance, Strauss (1992).

The solution has been plotted for two instances t = t1 and t = t2 = 4t1 in Figure 8.3.
We note the following features of Eq. (8.18), also shown in the figure:

1. The first term in the right-hand side of Eq. (8.18) is the undisturbed depth; the second
term represents the flood wave. At any instant t > 0, the longitudinal profile of the
flood wave is the classical bell-shaped Gauss curve, with total area V/B and ‘standard
deviation’ (here: the distance from the location of the maximum to the locations of the
inflection points) σs as specified in Eq. (8.19).

2. σs increases in time proportional to
√

t: the wave elongates. At t = t2 = 4t1, we have
σs(t2) = 2σs(t1), so the ‘length’ of the wave is doubled compared with the situation at
t = t1.
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Fig. 8.3 Elementary solution of the advection–diffusion equation

3. At an instant t = t0, say, the spatially maximal depth occurs where ∂d(s, t0)/∂s = 0,
i.e. at s = cHWt0, where the exponential function has its maximum value of unity. This
shows that cHW is the speed with which this maximum travels downriver.

4. The value of this spatial maximum decreases in time proportional to 1/σs, or propor-
tional to 1/

√
t: the wave becomes lower. At t = t2 = 4t1, its maximum height is halved,

compared with the situation at t = t1. Note that the product of the height and the ‘length’
of the flood wave is constant, as required in view of volume conservation.

5. At a fixed point s = s0, say, the depth (or river stage) does not vary in time according
to a Gauss curve. This is because the wave becomes lower and longer as it passes the
point considered, so that the rising branch corresponds to a smaller value of σs than the
falling branch. Therefore, the rise occurs faster than the fall.

6. The spatially maximal depth passes the fixed location s = s0 at time t = s0/cHW, but
since it is continually falling, it is at the same location preceded by higher values. This
implies that the temporal maximum depth occurring at s0 occurs earlier than this and
has a larger value than the spatial maximum at time t = s0/cHW (this can be verified by
solving for t from ∂d(s0, t)/∂t = 0).

8.4.3 Observations

Figure 8.4 shows three plots of river stage versus time, measured in the river Rhine and one
of its branches (the Waal) in The Netherlands, following the bombardment in World War II
(May 1943) by the RAF of the Möhne dam in the river Ruhr in Germany (with the aim to
harm German capacity of electricity production, needed in the war industry; see Brickhill
(1951)). As a result of this bombardment, the dam failed and an amount of water of about
110 × 106 m3 flowed from the Möhne reservoir via the Ruhr river into the Rhine near the
city of Ruhrort, some 140 km downstream of the dam, where the height of the resulting
flood wave had been reduced to roughly 1.5 m.
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Fig. 8.4 Water level recordings in the Rhine/Waal river following the collapse of the Möhne dam. The numbers represent
the height of the water level above mean sea level, expressed in centimetres; from Wemelsfelder (1947)

Because of the abrupt release, it is meaningful to compare the solution given by
Eq. (8.18) with the observations.

The downstream progression of the flood wave, the lowering of the peak height and
the asymmetry between the rising branch and the falling branch are clearly present in the
measured data. The propagation speed determined from the observations varied somewhat
per river section, but in all cases it was of the order of 1 m/s, in fact somewhat less than
the flow velocity, due to the presence of groynes. As a result, the debris, which resulted
from the damage caused in the Ruhr valley by the raging flood waters, floating downstream
with the main current, arrived in The Netherlands ahead of the high water! In fact, these
observations led to the development of the diffusion model by Schönfeld (1948).

8.5 Discussion

The analytical model described above is meant mainly to provide insight into the special
features of the resistance-dominated flood waves in rivers, not so much as a tool for
practical applications. We mention in particular the following aspects:

• the relatively low propagation speed (of the order of the flow velocity)
• the important influence of the ratio of storage width to conveyance width on the

propagation speed (more than it is for inertia-dominated waves)
• the decrease of the flood wave height and increase of the flood wavelength during the

propagation
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• the occurrence of hysteresis in the relation between the local discharge and surface
elevation; i.e. for the same river stage the discharge is greater when the water rises than
when it falls

• at a fixed location, the maximum discharge occurs ahead of the maximum surface
elevation

• the asymmetry in the local variation of the river stage with time, the rising branch being
steeper and (therefore) of shorter duration than the falling branch.

The classical flood wave model described above allows wave propagation in the down-
stream direction only, at a low speed, of the order of magnitude of the flow velocity. These
are so-called kinematic waves.

The theory for kinematic flood waves rests on the assumption that the inertia is negligible
compared with the resistance, but its predictions are partly in conflict with this assumption.
Take the case of the pulse-type addition of a volume of water at one particular cross section.
The theory predicts a response in the form of a family of Gauss curves spreading in time.
This implies an infinitely fast spreading of the wave (the tails of the Gauss curves), which
in turn implies large accelerations, in conflict with the basic assumption that these would
be negligible.

A more complete theory, in which inertia is not neglected, has positive and negative
characteristics, corresponding to so-called dynamic waves, which can travel both down-
stream and upstream (assuming subcritical flow) at the speed U ± √

gAc/B. However, the
mass associated with these is very small, in practice insignificant. The bulk of the water
mass flows downstream with the much lower speed derived for the kinematic flood wave.
Yet the dynamic waves cannot be ignored in numerical models because their speed is the
speed at which information travels; numerical models should be able to deal with that.

Problems

8.1 What is the difference between the theories for so-called dynamic waves and
kinematic waves?

8.2 What is the principal difference in the behaviour of the categories of dynamic and
kinematic waves?

8.3 What is the so-called quasi-steady approximation?
8.4 What is the so-called quasi-uniform approximation?
8.5 Choose a few characteristic instants in the river stage records in Figure 2.2 and

estimate the associated values of h and ∂h/∂t.
8.6 Estimate for the instances in Problem 8.5 the value of the acceleration and verify the

validity of the quasi-steady approximation, assuming a bed slope of 10−4.
8.7 Verify for the instances in Problem 8.5 the validity of the quasi-uniform flow

approximation.
8.8 Prove that in the uniform-flow approximation the height and the length of the flood

wave are constant as it propagates downstream.
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8.9 Prove that in the uniform-flow approximation the flood wave deforms as it propa-
gates downstream.

8.10 Explain why theoretically the crest of a flood wave decreases in height during
propagation when the quasi-uniform flow approximation is not made.

8.11 What is the so-called hysteresis in flood waves? Explain why it occurs.
8.12 The propagation speed of a flood wave can be less than the flow velocity. What is the

condition for this to happen?
8.13 Because of the failure of a dam, a volume of 106 m3 of water is suddenly released

in a river, at t = 0 in s = 0, say. Initially, the flow is uniform; the bed slope is
ib = 1.5 × 10−4, cf = 0.005, d = 3 m, Bc = B = 50 m.
(a) Calculate the value of the diffusivity K (using the initial values of the flow

parameters).
(b) Calculate the maximum height of the resulting flood wave at t = 5 h, and the

location smax where this occurs.
(c) Explain why the maximum height from the previous question is less than the

maximum height occurring in s = smax during the passage of the flood wave,
and verify this with calculations for a few chosen instants near the time t = 5 h.
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9 Steady Flow

The preceding chapters have dealt with various types of long waves, in a sequence from
rapidly varying translatory waves to slowly varying flood waves in lowland rivers, slow
enough to be modelled as quasi-stationary. In the present chapter, we continue this line
of development by considering steady flow. Within this class, we again deal with rapidly
(spatially) varying flow first, in particular flow in control structures. This is followed by
a section on gradually varying steady flow, the subject of the so-called backwater curves.
Last, we deal with steady, uniform flow, mainly for a summary of expressions for flow
resistance.

9.1 Rapidly Varying Flow

So far, we considered the propagation of various classes of long waves in canals, tidal
channels and similar water courses, without obstructions of any kind. This no longer holds
in cases where control structures are installed and operated, e.g. water intakes or weirs of
various kinds for different functions such as

• discharge measurement
• control of discharge
• control of water level or flow depth.

From a hydrodynamics point of view, flows through or over a control structure belong to
the category of rapidly varying flows, with length scales of the order of the flow depth.
Because of these short scales, vertical accelerations are important, precluding the use of an
assumption of hydrostatic pressure. The long-wave approach is locally not applicable.

9.1.1 Scaling Analysis

Up to a distance of a few depths upstream of a control structure, as well as beyond distances
of some twenty flow depths downstream from it, the streamlines are more or less parallel,
so that the long-wave approximation is applicable there. The structure determines the
boundary conditions required for the calculation of these long waves. This is illustrated
in Figure 9.1 for the case of a vertical, movable gate above a sill.

This chapter presents the key characteristic features of the flow in, over or through
control structures, with respect to both the internal flow and the relations between the
discharge and the water levels on either side.
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158 Steady Flow

Fig. 9.1 Example control structure: movable gate above sill

The rapidly varying flow in control structures makes the calculation of the flow difficult,
but on the other hand the short length scales involved allow certain simplifications in the
modelling, which we will now consider.

A fluid particle passes the structure in a time of order �/U, in which � is the length
scale of the structure, which is of the order of the flow depth d. For all situations of
practical interest, this duration is small compared with the time scale of the variations
in the boundary conditions. This implies that a fluid particle experiences virtually steady
conditions while it passes the structure (see Box 2.2).

This allows the approximation of quasi-steady flow, in which case the flow can be
determined with classical methods from steady-flow hydraulics, determined at each instant
by the instantaneous boundary conditions. Specifically, we neglect the local accelerations
(∂us/∂t and ∂un/∂t) and we neglect storage (∂h/∂t) inside the domain of the structure. The
latter implies the approximation that the discharge is spatially uniform (∂Q/∂s = 0) over
the length of the structure.

In view of the short length of the structure and the corresponding large accelerations,
boundary resistance is negligible. Nevertheless, rapid decelerations will cause significant
expansion losses.

9.1.2 Flow Patterns

In one way or another, control structures cause a local constriction of the cross section
available for the flow. Accordingly, we can distinguish three principal zones:

• an inflow section, where the flow is accelerated
• the cross section with minimal area, the so-called throat or vena contracta, where the

maximum flow velocities occur
• the outflow section, where the flow is decelerating.

This distinction is relevant because it is known from experience that the dynamics in
accelerating flows and in decelerating flows are quite different.

Inflow Section

In accelerating flow, potential energy is converted into kinetic energy, which is an efficient
process with negligible internal energy losses, for which reason Bernoulli’s law (see below)
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159 9.1 Rapidly Varying Flow

(a) (b)

Fig. 9.2 Flow towards structure: (partially) obstructed (a), streamlined (b)

can be used in good approximation. This applies to the major part of the inflow region. Yet,
within this region, there may be local zones of decelerating flow, because at angular profile
variations, and at rounded changes with a too small radius of curvature, flow separation and
contraction occur, followed by local expansions with their inherent losses. This is sketched
in Figure 9.2a.

To prevent such local expansion losses, profile changes should be streamlined so that
separation does not occur; see Figure 9.2b. This usually requires a longer structure. It may
or may not be economical to accept the extra costs involved. In the case of a pumping
station, the extra construction costs may be compensated by savings on fuel consumption.
On the other hand, where there is ample head available to the flow, there is little point in
making extra investments to reduce the losses.

Minimal Cross Section

Obviously, at the minimal cross section, the flow velocities are maximal. It is the most
downstream location of the domain of applicability of the Bernoulli equation. Therefore,
the flow characteristics at this location form an important input for the determination of the
discharge.

Outflow Section

Downstream of the minimal cross section, where the flow velocities are maximal, the flow
must spread so as to occupy the full cross section of the reach downstream of the structure.
Here, kinetic energy is converted into potential energy, which is an inefficient process if it
is accompanied by flow separation, in which case significant expansion losses occur.

Expansion losses can be reduced by making the profile expansion gradual, as in a
diffuser. This gradual expansion can be in the vertical plane, e.g. in the form of a sloping
fixed bed, or in plan. A simple example of the latter type can be found in streamlining the
downstream ends of bridge piers or of the pillars between gates.

To minimize the expansion losses, the flow should not separate. This may be relevant
for the design of evacuation sluices, particularly if the available head is low. As a rule
of thumb, an expansion angle of not more than 1:7 is required for this, reducing the loss
to about 15% of what it would be if the pillars ended abruptly. However, this implies a
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(a)

(b)

(c)

(d)

Fig. 9.3 Flow over short-crested weir and through underflow gate; hampered and free flow conditions

long structure. A divergence angle of about 1:4 reduces the loss to about 30% and may
be a more acceptable compromise. Short extensions, such as a semi-circular cylindrical
extension spanning the width of the pillar, can be effective on the upstream side, but when
placed downstream they do not reduce the expansion loss.

The flow patterns on the downstream side can vary greatly, depending on the type of
structure and the water levels. This is illustrated in Figure 9.3 for a sharp-crested weir,
panels (a) and (b), and for an underflow gate, panels (c) and (d), respectively. In panels (a)
and (c), the tail water level is high, hampering a free flow. In panels (b) and (d), on the
other hand, there is free flow, independent of the downstream water level (as long as this
is low enough).

In panels (a), (b) and (c), a narrow jet of water impinges into a thicker layer of water. The
strong difference in flow velocity in the two regions causes the development of vortices at
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161 9.1 Rapidly Varying Flow

the interface, the so-called mixing layer, indicated in the figure as a shaded area. It forms
the transition between the ongoing flow and a mass of water that is more or less stagnant
except for a circulating motion, i.e. a large eddy.

The vortices generated in the mixing layer cause an exchange of momentum, which on
the one hand drives the large-scale eddy, and on the other hand slows down the rapid flow in
the jet, so decelerating it and (consequently) causing it to expand until it occupies the cross
section available at the downstream side. As a rule of thumb, the establishment of parallel
flow over the entire depth takes a distance of some 10 times the depth. The formation of the
vortices in the mixing layer goes at the expense of the energy of the ongoing flow, which
therefore experiences a so-called expansion loss.

9.1.3 Bernoulli Equation

The most relevant theoretical result for the determination of the discharge through a control
structure is the Bernoulli equation for a stream tube of finite cross section, expressing
conservation of energy. It is applicable in the inflow region, where the flow accelerates over
a short distance. For steady motion, this implies that the rate of energy transfer through a
cross section (F) is constant along the stream tube: dF/ds = 0. This transfer consists of
work done by the pressure, and advection of potential and kinetic energy:

F =
∫

Ac

(
p + ρgz + 1

2ρu2
s

)
us dA (9.1)

In a cross section where the streamlines are straight and parallel, the sum p+ρgz is constant
and can be taken outside the integral, in which case Eq. (9.1) can be rewritten as

F =
(

p + ρgz + β 1
2ρU2

)
UAc =

(
z + p

ρg
+ β

U2

2g

)
ρgQ = ρgQH (9.2)

in which H is the so-called energy head, and the coefficient β is defined as the cross-
sectional average value of (us/U)3. It corrects for the non-uniformity of the particle
velocity over the cross section, and is ignored in the following.

On the basis of mass conservation, ρgQ is constant along a given stream tube, and on
the basis of energy conservation, F is constant; therefore, so is H: the equation of Bernoulli
for a stream tube.

In a cross section with straight and parallel streamlines, the energy head H can be
presented geometrically as an energy level by adding the velocity head U2/2g to the
elevation of the free surface (setting the atmospheric pressure at zero). This same energy
level then applies also in regions with curved streamlines, for which the pressure is not
hydrostatic, and the particle velocities not uniform.

9.1.4 Relations between Water Level and Discharge

Relations between water level and discharge have a theoretical foundation, viz. the
application of Bernoulli’s law in the inflow region (accelerating flow) and the momentum
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balance in the outflow region (decelerating flow). Nevertheless, there is always the need
for additional empirical information to account for unknown effects of the following:

• flow conditions upstream
• streamline curvature
• local contractions
• expansion losses
• boundary resistance.

Moreover, for convenience some additional approximations are often introduced in the
theoretical relations, such as the use of the upstream water level in the expression for the
discharge, instead of the upstream energy level (see below), which also requires some
correction. For all these reasons, the definitive relations have to be determined through a
process of calibration. The final result is expressed in an elementary mathematical form
with one or more empirical coefficients. In some cases, coefficients are used for each of
a number of factors such as those listed above. In other cases, they are lumped into one
overall coefficient.

In the course of time, numerous formulas of theoretical origin, supplemented with
empirical calibration data and coefficient values, have been collected for a large variety
of structures in different handbooks (see e.g. Bos (1989) or ISO standards ICS-17.120.20,
available online). In the following, we restrict ourselves to a few archetypal examples.

Flow under a Gate

A classical case for a first application of the above is the flow under a gate. We first take the
case of a drowned outflow, shown in Figure 9.4. The streamwise uniformity of the energy
level up to the location of the minimal flow cross section is shown by the horizontal chain
line representing the energy level. Beyond that point, expansion losses occur, resulting in
a lowering of the energy line.

Let h1 be the water level just upstream of the gate, and h2 the water level at the location
of the minimum cross section. The Bernoulli equation applied to the flow between the cross
sections 1 and 2 gives H1 = H2, or

h1 + U2
1

2g
= h2 + U2

2
2g

(9.3)

in which U2 is the flow velocity in the vena contracta. Assuming two-dimensional flow
(no lateral variations) and a horizontal bed (z = 0), in absence of a sill, so that h1 = d1 and
h2 = d2, this becomes

Fig. 9.4 Underflow gate: drowned outflow
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163 9.1 Rapidly Varying Flow

d1 + q2

2gd1
2 = d2 + q2

2g(μa)2 (9.4)

in which a is the gate opening and μ the coefficient of contraction.
For a given discharge, Eq. (9.4) provides a relation between the two depths against the

gate on either side. However, in computations of the flows in the two reaches upstream and
downstream of the gate, we need a link between the depths in the regions of established
parallel flow, d1 and d3, respectively.

The Bernoulli equation cannot be applied beyond the minimal flow cross section because
of the head loss occurring where the flow expands to the parallel flow further downstream.
Instead, the value of d3 can be computed from a momentum balance:

1
2ρgd2

2 + ρ
q2

μa
= 1

2ρgd2
3 + ρ

q2

d3
(9.5)

In principle, d2 can be eliminated between Eqs. (9.4) and (9.5). This provides an algebraic
relation between the depths d1 and d3 for a given discharge q that cannot be solved
explicitly. However, for dimensional reasons it is necessarily of the form

d1 − d3 = ξ
U2

3
2g

(9.6)

in which ξ is a head loss coefficient that is determined by the geometry and the Froude
number of the flow; see for instance Box 9.1. Relations such as given in Eq. (9.6) are used
to impose boundary conditions for the flows on either side of the underflow gate, resulting
from its operation (Chapters 4 and 5).

In the case of free flow (Figure 9.3d), d2 equals μa, in which case Eq. (9.4) yields

q =
√

2g
d2

1d2
2

d1 + d2
(9.7)

Using potential-flow theory, Kirchhoff calculated the value of the contraction coefficient
for free flow (Figure 9.3d) in the case where the upstream depth is far greater than the gate
opening, with the result (Lamb, 1932)

Box 9.1 Head loss coefficient of an underflow gate with small opening

Under certain circumstances we can make simplifying assumptions allowing the derivation of an explicit
expression for the head loss coefficient. For weak flows (Fr 	 1), the rise of the free-surface elevation in
the region where the flow expands is relatively small. In view of the horizontal bottom, this can be expressed
in terms of the depths: �d ≡ d3 − d2 	 d3. Neglecting a term of O(�d)2 in Eq. (9.5), as well as the
advection of momentum in the downstream reach (the second term in the right-hand side), which is allowed
if Fr2

3 	 1, this equation yields �d = q2/ (g μa d3). Substituting this into Eq. (9.4) and neglecting
the upstream velocity head, we arrive at Eq. (9.6), with ξ given by ξ = (d3/μa)2 − 2d3/μa. For ξ to
be positive, the relative gate opening should obey the condition μa/d3 < 1

2 . Furthermore, the condition
�d 	 d3 can be expressed as �d/d3 = q2/

(
g μa d2

3

) = (
U2

3/gd3
)
(d3/μa) = Fr2

3 d3/μa 	 1.
Altogether, the above results are valid for Fr2

3 	 μa/d3 < 1
2 .

.010
18:38:22,



164 Steady Flow

μ = π

π + 2
∼= 0.61 (9.8)

In the beginning of this subsection, several items were listed that can violate the theoretical
assumptions. However, in the present case of flow under a vertical gate their effects are
negligible, so that the preceding equations can be used with only the contraction coefficient
to be determined empirically or, if applicable, from Eq. (9.8).

Broad-Crested Weir

Another well-known situation in the context of discharge relations is the flow over a broad-
crested weir, as sketched in Figure 9.5a for the case with subcritical flow both upstream
and downstream. The weir is supposed to have sufficient length in the flow direction for
the establishment of straight and parallel streamlines (the figure is not to scale), yet short
enough for boundary resistance to be negligible. The streamwise uniformity of the energy
level up to the downstream separation point is shown by the horizontal chain line. Beyond
the point of separation, expansion losses occur, resulting in a lowering of the energy line.

Assuming two-dimensional flow (no lateral variations), the Bernoulli equation applied
to the flow between the cross sections 1 and 2 gives

d1 + q2

2gd2
1

= a + d2 + q2

2gd2
2

(9.9)

For given weir height a, this is a cubic algebraic equation in the three variables d1, d2 and
q. If two of these are known, the other is determined. This can be used to determine the
discharge for given (measured) values of d1 and d2.

Suppose now that we keep the upstream energy level constant but lower the downstream
water level in Figure 9.5a somewhat and then hold it steady. This results in a negative

(a)

(b)

Fig. 9.5 Broad-crested weir: subcritical outflow (a) and supercritical outflow (b)
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165 9.1 Rapidly Varying Flow

translatory wave travelling upstream, after which a new steady-flow situation is established
with a lower water level and enhanced flow velocities over the weir.

If this lowering of the downstream water level is repeated time and again, a situation
is reached in which a further lowering of the downstream water level no longer has any
effect on the flow over the weir or further upstream. This is because with decreasing depth
and increasing (counter) flow velocities over the weir, the local Froude number increases
until it reaches the value 1 at some point, i.e., the flow has become critical. Disturbances
from downstream then can no longer propagate upstream. This situation is referred to as
free flow; see Figure 9.5b.

For free parallel flow over the weir, the local flow velocity is U = Ucr = √
gdcr, the

velocity head is U2
cr/2g = 1

2 dcr, and the energy head above the crest, denoted as E, is
E = dcr + U2

cr/2g = 3
2 dcr, so that dcr = 2

3 E. It follows that

q = dcr
√

gdcr = 2
3 E

√
2
3 gE (9.10)

This result is based on several theoretical assumptions that are only partly justified for flow
over a weir. In particular the length may not be long enough for the establishment of parallel
flow, or not short enough for bed resistance to be negligible. Moreover, in practice, the
height of the upstream water level above the level of the crest of the weir (h1) is often used
in Eq. (9.10) instead of the energy level, because it can be directly measured. To account
for this, and for the effects listed above, an empirical so-called discharge coefficient is used,
m, say:

q = m 2
3 h1

√
2
3 gh1 (9.11)

Sharp-Crested Weir

The preceding result, derived for flow over a broad-crested weir, is also used for sharp-
crested weirs (Figure 9.3b). The curvature of the streamlines near the crest causes higher
velocities and a larger discharge compared with a long-crested weir with the same upstream
water level above the weir crest, resulting in m-values in excess of unity. Moreover, the
nappe can be aerated or not. If not, entrainment of air bubbles by the jet impinging into the
downstream water mass reduces the pressure inside the air pocket beneath it, and with it
the size of that air pocket, until it totally vanishes. This reduced pressure beneath the nappe
causes an even higher discharge. To achieve a stable and well-defined flow condition,
needed for purposes of calibration or measurement, the nappe should be aerated so that
there is atmospheric pressure not only above it but also below it.

An accurate calibration result for aerated sharp-crested weirs has been given by Rehbock
(1929):

q = m 2
3 he

√
2
3 ghe (9.12)

Here, he = h1+ 1.1 mm and the discharge coefficient m is given by

m = 1.045 + 0.141
he
a

(9.13)
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in which a is the height of the weir crest above the upstream bed level. The water level h1
should be measured at a distance of at least 2a upstream of the weir. The height of 1.1 mm,
added to h1 in a dimensionally inhomogeneous manner, accounts for effects of surface
tension. Needless to say, it is relevant in application to small-scale flumes only.

In order to obtain the total discharge Q, the discharge per unit width (q) should
be integrated laterally across the flow over the weir. In practice, this amounts to a
multiplication of q with the total flow width B. This introduces an additional error, e.g.
due to sidewall resistance and/or lateral contraction, which is compensated by adopting
another discharge coefficient, m′, say. Applied to Eq. (9.11), this yields

Q = m′ 2
3 Bh1

√
2
3 gh1 (9.14)

In cases where the width of the weir crest (measured normal to the approaching flow)
is less than the upstream flow width, increasing contraction occurs with increasing water
depth over the weir, resulting in systematic variations of m′ with the water level. In order to
reduce this variation, the weir cross section can be made trapezoidal, as sketched in Figure
9.6a for the so-called Cipoletti weir, which has sides sloping at 4:1. The corresponding
value of m′ in Eq. (9.14) is about 1.09. Note that in this case B is the length of the weir
crest, not the width of the free surface in the weir.

In order to maintain sufficient accuracy in the measurement of small discharges, it is
advisable to reduce the flow width as the discharge decreases. This has resulted in the
V-shaped weir, the so-called Thomson weir, sketched in Figure 9.6b. The discharge over
sharp-edged weirs of this type can be expressed as

Q = m′
(

tan 1
2θ

)
h2

1
√

gh1 (9.15)

The product
(

tan 1
2θ

)
h2

1 can be recognized as the area of the triangle enclosed between the
weir profile and the upstream water level (Figure 9.6b). The discharge coefficient m′ varies
with the angle θ . Its value for the commonly used angle θ = 90◦ is approximately 0.45.

(a)

(b)

Fig. 9.6 Sharp-crested weirs: Cipoletti weir (a) and Thomson weir (b)
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Fig. 9.7 Hydraulic jump

9.1.5 Hydraulic Jump

In the case of free flow under a gate (no influence from downstream), the gate causes
a transition from the subcritical approaching flow to supercritical flow immediately
downstream of it. Most commonly, the flow farther downstream is subcritical, with a higher
water level. The transition from supercritical to subcritical flow takes place rather abruptly
in a hydraulic jump, as sketched in Figure 9.7. Disregarding the complex dynamics of the
highly turbulent internal flow, the overall properties of the jump can be calculated in a
straightforward manner on the basis of conservation of mass and momentum.

Consider a control volume encompassing the jump, with vertical sides upstream and
downstream at a sufficient distance from the jump, such that the local streamlines are
straight and parallel and the vertical pressure distribution is hydrostatic. We assume steady,
two-dimensional flow (no lateral variations) and denote the upstream and the downstream
depth as d1 and d2, respectively, and likewise for the mean flow velocity.

Conservation of mass (or volume, because of incompressibility) implies that the flow
rate per unit width (q) is constant across the jump, or

q = U1d1 = U2d2 (9.16)

We assume that the bed is horizontal, so that the streamwise component of the weight of
the fluid inside the control volume is zero. Furthermore, the bed resistance is neglected.
This is allowed because the jump is short compared with the length scale of significant
influence of bed resistance. It follows that in this approximation the streamwise momentum
is conserved across the jump, or

1
2ρgd2

1 + ρU2
1d1 = 1

2ρgd2
2 + ρU2

2d2 (9.17)

Elimination of the flow velocities from Eqs. (9.16) and (9.17) yields the following relation
between the discharge and the depths at both sides of the jump:

q2

g
= d1 d2

d1 + d2

2
(9.18)

The depths (d1, d2) obeying this relation for given q are said to be each other’s conjugate.
This result is used in Section 9.2 in the context of gradually varying steady flow, for the
determination of the location of the jump.
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The rate of energy loss in the jump can be calculated from an energy balance. To do so, we
use the expression for the rate of energy transfer through a fixed cross section, Eq. (9.2).
For parallel flow, with p + ρgz = ρgd, its value per unit width can be written as

F = ρgqH = ρgq
(

d + U2

2g

)
(9.19)

Since the flow is steady, the energy balance for the control volume containing the jump is
simply F1 − F2 = G, in which G denotes the rate of energy loss per unit width in the
jump. Substituting Eqs. (9.16), (9.18) and (9.19) and doing a little algebra yields

G = ρgq
(d2 − d1)

3

4d1d2
(9.20)

The fraction in the right-hand side represents the head loss, i.e., the energy loss per unit
weight of fluid. It can be seen that the rate of energy loss is proportional to the third
power of the jump height. The capacity of a hydraulic jump to dissipate energy is utilized
in hydropower projects for the design of spillways and the transition to parallel flow
downstream.

9.2 Gradually Varying Flow

Manipulation of control structures in an initially uniform flow leads to disturbances that
propagate away from the structure. If for a sufficiently long time the setting of the structure
is not changed, and in absence of disturbances entering the domain of interest from the
downstream side or the upstream side, a state of steady flow sets in, which in the vicinity
of the structure deviates strongly from the state of uniform flow and gradually varies with
increasing distance from the structure. The resulting elongated profile of the free-surface
elevation is called a backwater curve. The determination of backwater curves is the subject
of the present section.

9.2.1 Governing Differential Equation

In steady flow, ∂Q/∂t = 0 and ∂h/∂t = 0. Using the latter in the continuity equation,
Eq. (1.20), it follows that ∂Q/∂s = 0. Therefore, Q is constant in time and in space, so that
the surface elevation h remains as the only unknown, a function of s only: h = h(s). The
momentum balance, Eq. (1.21), then reduces to a first-order ordinary differential equation
for h(s), written as:

Q2

gAc

dA−1
c

ds
+ dh

ds
+ cf

Q2

gA2
cR

= 0 (9.21)

Because we deal here with steady flow, the flow velocity does not change sign, allowing
the replacement of |Q|Q by Q2.
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169 9.2 Gradually Varying Flow

As we saw in the context of flood waves in rivers, it is most natural to use the sloping bed
level as a reference, and to measure h with respect to this. Therefore, we write h = zb + d,
and use the depth d as the new unknown. The slope of the free surface, which delivers the
driving force in Eq. (9.21), can then be written as dh/ds = dd/ds + dzb/ds = dd/ds − ib.

The derivative in the first term of Eq. (9.21) must now be transformed into a derivative
of the depth. To do this, we substitute Ac = Bc d and neglect longitudinal variations of the
free-surface width Bc, so that dAc/ds = Bc dd/ds. With this, we obtain

Q2

gAc

dA−1
c

ds
= − Q2

gA3
c

dAc
ds

= −Q2Bc

gA3
c

dd
ds

= −U2

gd
dd
ds

= −Fr2 dd
ds

(9.22)

Substitution of the above intermediate results into Eq. (9.21) yields

dd
ds

(
1 − Fr2

)
= ib − if (9.23)

in which the friction slope if is given by

if = cf
Q2

gA2
cR

= cf
Q2P
gA3

c
(9.24)

(we revert to the wetted perimeter P = Ac/R for reasons of symmetry; see below).
Assuming Fr2 �= 1 (flow not critical), the result can be written in compact form as

dd
ds

= ib − if
1 − Fr2 (9.25)

Written explicitly in terms of the discharge Q, this becomes

dd
ds

= ib − cf Q2P/gA3
c

1 − Q2Bc/gA3
c

(9.26)

For wide, shallow conveyance cross sections, the wetted perimeter P and the width Bc
are almost equal; the same then holds for the two expressions in the numerator and the
denominator starting with Q2. It follows that the relative magnitude of ib and cf plays an
important role in the behaviour of the solutions of this equation, as we will indeed see
below.

9.2.2 Integral Curves

For a given discharge, the geometric profile parameters and the resistance coefficient
are supposed to vary in a known, monotonic manner with the depth, so that Eq. (9.26)
prescribes dd/ds as a function of s and d. This can be visualized by plotting short line
elements in a dense network of points in the (s, d)-plane with a direction given by the local
value of dd/ds. Solutions of Eq. (9.26) can graphically be constructed or represented as the
so-called integral curves, i.e. curves in the (s, d)-plane that are everywhere tangent to the
local line element.

.010
18:38:22,



170 Steady Flow

In uniform flow, if = ib, and dd/ds = 0. The corresponding depth is often called the
normal depth or the equilibrium depth. We designate it as du, and the corresponding Froude
number as Fru.

The denominator in the right-hand side of Eq. (9.25) (or Eq. (9.26)) is zero for critical
flow, with depth dcr and Fr = 1. As d → dcr, then dd/ds → ±∞.

For very large depths, as in a reservoir, the flow velocities are virtually zero, and so are
their dynamic effects and the resistance. It follows that dd/ds = ib very nearly; i.e., the
free surface is horizontal.

The above is illustrated in Figure 9.8 for the situation in which du > dcr, and in
Figure 9.9 for the situation in which du < dcr, showing line element graphs of a prismatic
conduit, in which the line elements have a direction that for constant d does not vary with s.
(The modification for nonprismatic channels is obvious.) The uniform-flow depth is
represented by a line with long dashes, and the critical depth by a line with short dashes.

The flow depth must be given at some point, which provides the boundary condition
(the heavy dots in the Figures 9.8 and 9.9). From there, the corresponding integral curve
of Eq. (9.26) can be constructed by drawing a smooth curve that is everywhere tangent to
the local line element. This has been in done Figure 9.8 for three cases, for which d > du,
dcr < d < du, and d < dcr, respectively. The boundary condition has been indicated by
a heavy dot, and the direction of integration (see below) by an arrow. Figure 9.9 shows
essentially the same for the case where du < dcr.

The figures clearly illustrate that the state of uniform flow is approached asymptotically,
since dd/ds → 0 as d → du. In contrast, the critical depth is approached increasingly
rapidly, because as d → dcr, then dd/ds → ±∞. In the latter case, the variations
become so rapid that the assumption of gradually varied flow, with a hydrostatic pressure
distribution, is no longer valid.

Fig. 9.8 Integral curves for mild slopes; dots indicate location of the boundary condition; arrows indicate direction of
integration; flow is to the right
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171 9.2 Gradually Varying Flow

Fig. 9.9 Integral curves for steep slopes; dots indicate location of the boundary condition; arrows indicate direction of
integration; flow is to the right

9.2.3 Classification of Backwater Curves

The preceding results show that the behaviour of the integral curve is quite different for
the two cases shown, i.e. for du larger than dcr and the other way around. This leads to a
classification of bed slopes as a function of the type of flow in the case where it is uniform,
as follows:

Steep slope (labelled ‘S’): du < dcr, the uniform flow is supercritical (Fru > 1).

Critical slope (labelled ‘C’): du = dcr, the uniform flow is critical (Fru = 1).

Mild slope (labelled ‘M’): du > dcr, the uniform flow is subcritical (Fru < 1).

Horizontal bed (labelled ‘H’): the bed slope equals zero.

Adverse slope (labelled ‘A’): the bed rises in the downstream direction.

Note that this classification does not depend on the actual state of flow. In contrast, the
following classification refers to the actual depth d in relation to du and dcr:

Type 1: refers to situations in which d exceeds both du and dcr. The flow in this category
is subcritical. A backwater curve of this type is labelled as M1, C1 or S1 on slopes of
type M, C or S, respectively. (For a horizontal bed or an adverse slope, uniform flow is
not possible.) In type 1 curves, the numerator and the denominator in Eq. (9.25) are both
positive, so that dd/ds > 0; i.e., the depth increases in the downstream direction.

Type 2: if the actual depth is between du and dcr, the backwater curve is labelled M2, etc.
For this category, the numerator and the denominator in Eq. (9.25) are of opposite sign;
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i.e. the depth decreases in the downstream direction. The flow is subcritical on mild slopes
(du > dcr) and supercritical on steep slopes (du < dcr).

Type 3: if d is smaller than both du and dcr, the curves are labelled as M3, etc. The flow
is supercritical. In these cases, the numerator and the denominator in Eq. (9.25) are both
negative, so that dd/ds > 0; i.e., the depth increases in the downstream direction.

Uniform flow is not possible on a horizontal bed or on an adverse slope. In these cases,
type 1 curves do not exist, and the curves are classified as type 2 or 3 if d > dcr or
d < dcr, respectively, corresponding to subcritical flow with depth decreasing downstream,
or supercritical flow with depth increasing downstream, respectively.

9.2.4 Boundary Conditions

As we have seen in Chapter 5, subcritical flow is determined by a downstream boundary
condition, and supercritical flow by a boundary condition at an upstream location. In the
present context, this means a prescribed depth at one of such locations. In the examples
shown in Figures 9.8 and 9.9, the (arbitrarily chosen) locations where the boundary
conditions are prescribed are indicated by heavy dots. The integration proceeds in the
direction of the arrow.

The transition from supercritical flow to subcritical flow can take place only in a
hydraulic jump. The location is not fixed, but varies along the conduit with the flow
conditions. We return to this in the examples presented below.

The transition from subcritical to supercritical flow always takes place at some kind of
discontinuity in the conduit, a so-called control section, e.g. a structure or an abrupt steep-
ening of the bed slope from mild to steep. This too will be illustrated in the examples below.

Control structures impose internal conditions, such as a relation between the depths at
both sides of the structure for the given discharge, as we have seen in the section on rapidly
varying flow.

9.2.5 Explicit Representation

The arguments presented above are valid for arbitrary cross sections. Both if and Fr are
implicit functions of the depth, increasing monotonically with decreasing depth (for given
discharge) in a manner that for arbitrary cross-sectional profiles can be accounted for only
numerically. This generality goes at the expense of explicit relations. In order to obtain
better insight into the problem and the possible solutions, we develop approximate but
explicit expressions in terms of the flow depth. To this end, we replace the hydraulic radius
(R) by the mean depth of the conveyance cross section (d). This is a good approximation
for relatively wide and shallow flow cross sections, and it has no effect on the qualitative
behaviour of the solutions.

For a compact notation, we use the cross-sectional average of the discharge per unit
width: q ≡ Q/Bc = Ud. Together with the above approximation, Eq. (9.26) is transformed
into
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173 9.2 Gradually Varying Flow

dd
ds

= ib − cfq2/gd3

1 − q2/gd3 (9.27)

The denominator in the right-hand side is zero for critical flow; the corresponding critical
depth obeys

d3
cr = q2/g (9.28)

The numerator is zero for uniform flow. The corresponding normal depth obeys

d3
u = cf

ib
q2

g
= cf

ib
d3

cr (for ib > 0) (9.29)

with corresponding Froude number given by

Fr2
u = U2

u
gdu

= q2

gd3
u

= ib
cf

(for ib > 0) (9.30)

We see that in this approximation the criteria for steep, critical or mild slopes can be written
as ib > cf, ib = cf and 0 < ib < cf, respectively.

Using the above expressions, and restricting ourselves to non horizontal beds (ib �= 0),
Eq. (9.27) can be written as

dd
ds

= ib
d3 − d3

u
d3 − d3

cr
(9.31)

This equation allows an analytical integration (named after Bresse), but we do not present
it here because it does not give added insight. Instead, we derive an approximate expression
for a characteristic length of the backwater curves for the special case in which the
actual depth deviates by only a small amount from the uniform-flow depth. This allows
a linearization of Eq. (9.31), as follows.

Writing d = du + �d, in which |�d| 	 d, we have

d3 − d3
u = (d − du)

(
d2 + ddu + d2

u

)
≈ 3d2

u �d (9.32)

If also d3 − d3
cr ≈ d3

u − d3
cr, Eq. (9.31) can be approximated as

dd
ds

= d (�d)

ds
≈ ib

3d2
u

d3
u − d3

cr
�d = L−1 �d (9.33)

in which L is an adaptation length defined by

L ≡ d3
u − d3

cr
3ib d2

u
= 1 − Fr2

u
3ib

du = 1 − ib/cf

3ib
du (9.34)

Considering L as a constant on the s-interval considered, Eq. (9.33) can be integrated to

�d = exp

(
s − s0

L

)
�d0 (9.35)

The adaptation length is proportional to du, but inversely proportional to the bed slope
ib. Therefore, it is many times greater than the (uniform-flow) depth. As an example,
consider the following situation: ib = 10−4, cf = 0.004, q = 4 (m3/s)/m. It follows that
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du = (cf q2/gib)1/3 = 4 m and Fr2
u = ib/cf = 0.025, so that L = 13 km. This shows that

the influence of a locally induced deviation from uniform flow extends over considerable
distances.

An exact integration of Eq. (9.27) is possible for flow over a horizontal bed. In that case,
the division by ib in Eq. (9.27) is not permitted, but the equation reduces to

dd
ds

= −cfq2/gd3

1 − q2/gd3 = −cf
d3

cr
d3 − d3

cr
(9.36)

This can be integrated to
1
4 d4 − d3

cr d + cf d3
cr s = const (9.37)

in which the constant is determined by the boundary condition.

Example 9.1 Figure 9.10 gives an example of steady flow on a mildly sloping conduit in
the presence of a partially opened vertical gate, such that the gate forces the subcritical
flow from upstream to become supercritical at the downstream side. The gate is the only
control structure in an otherwise undisturbed, prismatic reach, which has a free outflow at
the downstream end.

Solution

Upstream of the gate, the water level is raised above the uniform-flow value (du) to a level
that can be calculated with the method described in the preceding section on flow through
control structures. Because the flow in the upstream reach is subcritical, the resulting depth
at the gate is the boundary condition for this reach, so that an M1-type backwater curve is
established there.

Immediately downstream of the gate, where the flow is supercritical, an M3-type
backwater curve develops, with the minimum depth just past the gate as the upstream
boundary condition. Going downstream, the depth in this reach approaches the critical
depth with increasing rapidity until at some point the solution becomes invalid. Farther
downstream, the flow is subcritical. Due to the free outflow the depth is critical at the
downstream boundary, causing an M2 backwater curve upstream of it.

Fig. 9.10 Example 9.1: underflow gate with backwater curves and hydraulic jump
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175 9.2 Gradually Varying Flow

We see that over some distance downstream of the gate, two flow regimes with two
different depths seem to overlap: a supercritical regime with an upstream boundary
condition and a subcritical regime determined by the downstream boundary condition. The
two branches are connected by a hydraulic jump, forming the transition from supercritical
flow to subcritical flow.

In order to determine the location of the jump, we use the fact that the two depths at
both sides of the jump form a conjugate pair obeying Eq. (9.18). For every point on the
M3-curve, the corresponding conjugate depth is plotted at the same cross section, together
forming a smooth curve labelled M∗

3. The jump is located where this curve intersects the
backwater curve determined by the downstream boundary condition (M2).

Notice that with increasing distance upstream from the location of free outflow, the depth
of the M2-curve approaches the uniform-flow depth more and more. If the downstream
control is sufficiently far away, the flow immediately downstream of the jump can be
considered to be uniform.

Example 9.2 Consider a case where two very long prismatic channel reaches of equal slope
(labelled I and III) are connected by a shorter reach of somewhat steeper slope (labelled II),
although still mild in the formal classification; see Figure 9.11. Downstream controls, if
present, are situated at large distances from the steeper reach, leading to a state of uniform
flow immediately downstream of it.

Solution

The backwater curves in the respective reaches are of type M. Because of the change in
bed slope, the depth of uniform flow changes at the two transitions, but the critical depth
is the same everywhere because it depends on the discharge only, irrespective of the bed
slope.

Because the slope is mild, and in absence of influence of a possible downstream control,
the flow in the prismatic downstream reach III is necessarily uniform, as explained in
the preceding example. The corresponding depth (d = du,III) provides the downstream
boundary condition at point P2 for the depths in reach II. Since reach II is steeper than
reach III, its uniform-flow depth is smaller, so that an M1 backwater curve develops in
reach II, extending up to point P1, at the transition between reach I and reach II. The value

Fig. 9.11 Example 9.2: backwater curves caused by varying bed slope
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of the M1-depth at point P1 forms the downstream boundary condition for reach I, and
since it is smaller than du,I (which equals du,III), an M2-type backwater curve is present in
reach I. Going upstream, the depth approaches the uniform-flow value asymptotically.

9.3 Uniform Flow

Flow resistance in long waves is usually expressed through a quadratic dependence of the
boundary shear stress on the instantaneous cross-sectionally averaged flow velocity, as if
the flow were steady and uniform. The value of the dimensionless resistance factor cf was
so far left unspecified. Its estimation is the subject of the present section.

Uniform flow has been the subject of numerous investigations through the centuries,
spurred by the need to design and build water conveyance systems for irrigation or urban
water supply. These investigations pertained to free-surface flows as well as pressurized
flow in pipes. The purpose was mainly to determine the discharge under given forcing or,
equivalently, the resistance to such flows for given discharge.

Up to the beginning of the twentieth century, the approach was purely empirical,
resulting in a host of different expressions containing dimensional coefficients, which
in general were implicit boundary roughness parameters. Of the numerous empirical
expressions relating the mean flow velocity to the geometric parameters of the conduit,
three have survived in engineering practice, namely those presently named after Chézy
(1768), Manning (1889) and Strickler (1923).

The early twentieth century saw the advent of theories for turbulent boundary layers
and flow resistance, in particular for pressurized flow in pipes. The results were later
generalized to free-surface flow. They could in principle have superseded the older,
empirical results, but the latter are still widely used in engineering practice, not least
because of extensive empirical knowledge of the required coefficient values for varying
types and sizes of boundary roughness.

The results of both approaches are briefly summarized in the following, beginning with
results from turbulence theory. As pointed out by Rouse and Ince (1957) and Sturm (2001),
the empirical expressions have gone through quite an evolution. Interesting though this
may be, we will merely deal with these equations in their present form.

9.3.1 Equilibrium Relations

In steady, uniform flow, the forcing and the resistance are in balance; see Figure 9.12. The
surface slope (is) and the friction slope (if) are both equal to the bed slope (ib). Eq. (1.11)
then reduces to an algebraic expression of the equilibrium between the downslope
component of the fluid weight and the boundary resistance:

τb = ρgRib (9.38)
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177 9.3 Uniform Flow

Fig. 9.12 Balance of forces in a uniform flow

Substituting τb = cfρU2 yields the following well-known expression for the mean flow
velocity U

U = √
gRib/cf (9.39)

so that

Q = Ac
√

gRib/cf (9.40)

The remainder of this section deals with the determination of numerical values of the
resistance coefficient cf or its equivalents.

9.3.2 Resistance Relations

The Log Law

The theory of turbulent boundary layer flow results in a logarithmic variation of the mean
particle velocity with distance from the boundary (see Chapter 10). For free-surface flows,
the profile is given by Eq. (10.39). We will now elaborate on this result in order to establish
an expression for cf.

Integration of Eq. (10.39) over the depth from z = z0 to z = d, with z0 	 d, yields the
following expression for the depth-averaged velocity U:

U = u∗
κ

ln

(
e−1 d

z0

)
(9.41)

in which u∗ is the so-called shear velocity, defined as u∗ ≡ √
τb/ρ; κ is a constant of about

0.4, named after Von Karman; and z0 is the distance from the wall where the (extrapolated)
logarithmic profile gives a zero velocity. Combining this with cf = τb/ρU2 yields the
following expression for cf in uniform free-surface flow:

U
u∗

= 1√cf
= 1

κ
ln

(
e−1 d

z0

)
(9.42)

The logarithmic velocity profile given in Eq. (10.39) also applies to pipe flow (for which
in fact it was originally derived). Repeating the steps above yields the following result for
pipe flow:
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U
u∗

= 1√cf
= 1

κ
ln

(
e−3/2 r0

z0

)
(9.43)

in which r0 is the inner pipe radius.
Nikuradse (1933) has performed an extensive, now classical set of experiments on

pressurized flow in pipes, roughened by gluing closely packed sand grains of virtually
uniform diameter k on the inner pipe wall. His result confirmed the validity of the
logarithmic profile and yielded explicit expressions for z0. For hydraulically rough
boundary layer flow, he found z0 = k/30.

The two expressions for cf given above for uniform free-surface flow and for pipe flow,
respectively, have later been generalized to arbitrary cross sections by expressing both
in terms of the hydraulic radius R instead of the depth (R = d) and the pipe radius
(R = 1

2 r0). We then find e−1d/z0 ≈ 0.37R/z0 and e−3/2r0/z0 ≈ 0.45R/z0. For given
R/z0, the corresponding values of cf do not differ much because of the weak variation of
the logarithmic function with its argument. Therefore, it is justified to use a kind of average
between these two results for arbitrary cross sections, rounded to 0.4R, resulting in

1√cf
= 1

κ
ln

(
0.4

R
z0

)
(9.44)

Substituting κ = 0.4 and z0 = k/30, and switching from the natural logarithm to the
logarithm with base 10, the following result is obtained, which is used in practice:

1√cf
= 5.75 log

(
12 R

k

)
(9.45)

The ratio k/R is called the relative roughness.

In Nikuradse’s experiments, the roughness was brought about by gluing sand grains of
virtually uniform diameter (k) in close packing on the inner pipe wall. In natural channels
with alluvial beds, the size of the roughness elements is not uniform but is characterized
by a distribution. An equivalent value of k can then be determined, such that substitution
of its value in to Eq. (9.45) yields the same value of cf as the one that is obtained from the
measurements.

The resistance is mainly determined by the larger elements such as D84, i.e. the value of
the ‘diameter’ such that 84% is smaller by weight (for a Gaussian distribution, this limit
corresponds to the mean plus one standard deviation). Sturm (2001) lists values of the ratio
k/D84, determined from field measurements by various authors, ranging from 2.4 to 3.5.
The fact that k is several times larger than D84 is due to the fact that these relatively large
elements are not closely packed, as were the grains in Nikuradse’s experiments, but are
much more widely spaced, which allows the development of a larger wake behind each,
and therefore a higher resistance.

Williamson (1951) has reanalyzed the data obtained by Nikuradse, made some correc-
tions to his calculations, and supplemented the data with results from measurements in
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large-diameter pipes (up to about 6 m diameter), which resulted in a more than six-fold
increase in the range of relative roughness to very low values. He found that in the range of
small relative roughness, the log law overestimates the value of the resistance coefficient.
In contrast, he obtained a very good fit over the entire range of relative roughness with a
Manning- or Strickler-type power-law expression (see below), as follows:

λ = 0.180
(

k
D

)0.330
(9.46)

in which λ is the Darcy–Weisbach coefficient, equal to 8cf. Making this substitution,
replacing D by 4R, and approximating the exponent as the rational fraction 1/3, we obtain

cf = 0.0142
(

k
R

)1/3
(9.47)

The latter relationship, although based on measurements of pipe flow, is assumed to be
approximately valid for arbitrary cross sections, including those of open channels, in
the same vein as had been assumed for the log law given in Eq. (9.45). Substitution of
Eq. (9.47) into Eq. (9.39) yields

U = 8.4
(

R
k

)1/6 √
gRib (9.48)

Chézy

The French engineer Chézy (1768) reasoned (correctly) that the resistance to uniform,
turbulent flow is proportional to the square of the velocity and to the wetted perimeter
of the (conveyance) cross section (P), whereas the driving force is proportional to the
product of the area of the conveyance cross section and the bed slope (Acib). With these
two being in equilibrium in uniform flow, U should be proportional to

√
Acib/P or to

√
Rib.

This proportionality was later written as an equality through insertion of a proportionality
coefficient:

U = C
√

Rib (9.49)

This is the so-called Chézy equation, and C is the so-called Chézy coefficient. Comparison
of Eq. (9.49) with Eq. (9.39) shows that C and cf are related through

C = √
g/cf (9.50)

Obviously, a factor √g is hidden in C, causing it to have the dimension of L1/2T−1 (m1/2/s
in the metric system).

In applications, C may be given an a priori value from experience, such as C = 50 m1/2/s,
or it can be used as a calibration factor. Quite often, it is expressed in terms of the relative
roughness, based on the log law, by substituting Eq. (9.45) into Eq. (9.50):

C = 5.75
√

g log

(
12

R
k

)
(9.51)
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Needless to say, this is in fact a hybrid expression, in which a newer theoretically derived
result is used to assign numerical values to an outdated coefficient.

Manning

As did many of his predecessors, the Irish engineer Manning (1889) (re)analyzed data
on uniform flow in a wide variety of open channels and pipes, and concluded that
the data were best represented by an expression that is presently written (in the metric
metres/seconds system) as

U = 1
n

R2/3i1/2
b (9.52)

Obviously, as was the case with the Chézy equation, this equation is not dimensionally
homogeneous. The quantity n, usually called Manning’s n, has the dimension L−1/3 T.
Published values bear the unit m−1/3 s, although this is generally not stated; these n-values
are commensurate with U being expressed in metres per second and R in metres. Using the
feet/seconds system, with U expressed in feet per second and R in feet, the value of n should
in principle be adapted, but in practice it is left unchanged. In order to compensate for this,
the right-hand side of Eq. (9.52) is multiplied with the factor 1.486 if the feet/seconds
system is used, this being the value of (1 m/1 ft)1/3. Actually, the number 1.486 suggests
a quasi-accuracy that is neither achievable nor necessary. Using a factor 1.5, which differs
less than 1% from the nominal value, would be more appropriate.

Similar to the Chézy coefficient, 1/n contains a hidden factor √g. The remaining
dimension is L1/6. Comparison with Eq. (9.48) shows that n is proportional to the 1/6-th
power of the characteristic size of the boundary roughness elements. In fact, Eqs. (9.48)
and (9.52) are equivalent if

n = k1/6

8.4 √g
(9.53)

However, it is not common to express n in terms of the size of the roughness elements.
Instead, extensive tables have been developed (Ven Te Chow (1959), Henderson (1966),
Sturm (2001)), listing empirical values of n for boundary roughnesses and other types of
resistance elements of various sizes and kinds, including vegetation (Sturm lists more than
100 entries). This wealth of empirical information explains and justifies the continuing
wide use of Manning’s equation. To give an impression, Table 9.1 presents a brief listing
of n-values. Comparable information linking equivalent Nikuradse’s k-values to various
kinds of boundary roughness or other resistance elements has not been developed to the
same extent.

The connection of Manning’s n with Chézy’s C and cf is

1
n

R1/6 = C = √
g/cf (9.54)
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Table 9.1 Values of Manning’s n for a variety of boundary materials; single n-values are the
mean of a range of approximately ± 0.001 m−1/3s; data from Henderson (1966)

Boundary material Manning’s n (m−1/3s)

Glass, plastic, machined metal 0.010
Dressed timber, joints flush 0.011
Sawn timber, joints uneven 0.014
Cement plaster 0.011
Concrete, steel troweled 0.012
Concrete, timber forms, unfinished 0.014
Untreated gunite 0.015–0.017
Brickwork or dressed masonry 0.014
Rubble set in cement 0.017
Earth, smooth, no weeds 0.020
Earth, some stones and weeds 0.025
Natural river channels

Clean and straight 0.025–0.030
Winding, with pools and shoals 0.033–0.040
Very weedy, winding and overgrown 0.075–0.150
Clean, straight alluvial channels 0.031 D751/6 (D75 in ft)

Strickler

Not being satisfied with existing formulae for flow resistance, the Swiss engineer Strickler
(1923) set out to (re-?)analyze data on uniform flow in open channels and pipes. Apparently
unaware of Manning’s work, he arrived nevertheless at the same power law for the mean
velocity, written by him as

U = K R2/3i1/2
b (9.55)

with K given as

K = 4.75
√

2g D−1/6
m (9.56)

in which Dm is the mean diameter of the roughness elements (sand, gravel, shingle,
cobbles, etc.). Clearly, Strickler’s K is the reciprocal of Manning’s n, and his expression
for K reconfirms that the latter is proportional to the 1/6-th power of the roughness size.
Substituting by approximation k ≈ 3D84 ≈ 4Dm, we obtain

U ≈ 8.5
(

R
k

)1/6 √
gRib (9.57)

which is close to Williamson’s result given by Eq. (9.48).

9.3.3 The Overall Resistance of a Channel

In the preceding summary of formulations of flow resistance, it has been assumed that
the flow is uniform, with the tacit exception of the micro-scale flow around relatively
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small boundary roughness elements. Since these are relatively small, the resulting spatially
averaged resistance can be modelled as a bed shear stress with a coefficient whose value
could be expressed in terms of a relative roughness.

More generally, large-scale profile variations may be present, causing expansion losses
and so adding to the overall resistance to the flow. Shoals and dunes that may develop in
natural channels with mobile beds of alluvial material are a case in point. It is not feasible to
take these into account individually; their effect can be lumped in a single flow-dependent
resistance coefficient such as cf, but relations such as Eq. (9.56) lose their significance.
Additional resistance may be due to groynes, bridge piers etc. In these conditions, it is
very difficult to assign proper values to the resistance coefficient a priori. Calibration in
the target area is necessary. This must be done using the chosen profile schematization
because cf, Ac and R occur together in the single resistance term cf|Q|Q/ (AcR), so that
errors in the geometric profile parameters are compensated by errors in the estimated value
of cf.

9.3.4 Applicability to Unsteady Flow

Last, we should discuss the applicability of the quasi-steady approximation for the
determination of the flow resistance in unsteady flow. This rests on the assumption that
the velocity distribution in the vertical is the same as it is for steady, uniform flow with the
same cross-sectionally averaged velocity. In reality, it takes some time for this distribution
to adapt to changes in the mean velocity.

This process is similar to the establishment of uniform, steady flow in the case of inflow
from a reservoir or in the case of an abrupt change in bed roughness. As a rule of thumb,
such adaptation length is about 40 times the depth, corresponding to an adaptation time,
following the mean flow, of about 40 d/U. If this is small compared with the time scale of
the imposed flow variations, the assumption of quasi-steady resistance is justified.

Taking some realistic values of U and d for tidal flow in channels, such as U = 1 m/s and
d = 10 m, we find an adaptation time of about 400 s. This is small compared with the tidal
period of more than 12 h, justifying the quasi-steady approximation for tides. Translatory
waves ususaly occur in canals of less depth, but also cause lower velocities, so that the
adaptation time is comparable to those for tides. Since their time scale is typically of the
order of minutes (see Chapter 4), the quasi-steady approximation is less justified for this
category.

Problems

9.1 Explain why the unsteady flow through, over or under a control structure can be
treated as quasi-steady (under normal operating conditions).

9.2 The discharge in a laboratory flume is measured with a sharp-crested weir. The width
of the flume is 0.6 m and the height of the weir above the bed is 0.5 m. The upstream
water level is 0.2 m above the weir crest. Calculate the discharge.
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9.3 The discharge in an irrigation canal is measured with a 90◦ Thomson weir. The
upstream water level is 0.5 m above the lowest point of the weir crest. Calculate
the discharge for free flow.

9.4 A Cipoletti weir has a crest width (B) of 1 m. The upstream water level in a situation
of free flow is 0.4 m above the crest level. Calculate the discharge.

.010
18:38:22,



.010
18:38:22,



10 Transport Processes

This chapter deals with the transport of dissolved or suspended matter or heat in free-
surface flows. This subject is of great importance in the context of problems of water
quality, sedimentation, erosion etc. The present chapter is restricted to so-called passive
transports, based on the assumption that the presence of the transported matter or heat
in the water does not affect the flow. This restricts the treatment to relatively low
concentrations, such that the bulk density and the bulk viscosity are affected to a negligible
degree only. However, a warning is in order here. There are numerous situations in which
this approximation does not hold. A well-known example is the effect of salinity variations
on the fluid density, which in estuaries, for instance, is sufficiently strong so as to affect
the flow significantly. Likewise, effects of temperature variations and high concentrations
of fine suspended sediments occurring in practice are often not negligible. Nevertheless,
as stated, these effects are ignored in the present introductory chapter. A detailed account,
also treating flows induced by density differences, can be found in Fischer et al. (1979) and
Rutherford (1994).

10.1 Introduction

We distinguish the following types of physical transport processes, in order of increasing
length scale:

Molecular diffusion: the time-averaged value of fluctuating micro-transports due to
random thermal molecular motions (Brownian motion in fluids)

Advection: transports following the fluid at continuum scale

Turbulent diffusion: the time-averaged value of fluctuating advective transports due to
turbulent motion of finite fluid ‘parcels’

Dispersion: mixing arising in the two-dimensional or one-dimensional modeling of three-
dimensional transports due to integration over the depth or the cross section of a water
course.

The larger the scale considered, the higher the transport rates are. We start the modelling
of transport processes with the formulation of a generic balance equation, not restricted to
a particular type of transport or of transported substance. Thereafter, the types of transport
mentioned above are dealt with in succession.
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.011
18:38:40,



186 Transport Processes

10.2 Generic Balance Equation

In order to avoid the complexities of the derivation and solution of transport equations in
curvilinear coordinates (s, n, b), we will temporarily use Cartesian coordinates (x, y, z).

Suppose a quantity ‘X’ (salt, sediment, heat etc.) is being transported in three dimen-
sions, possibly in flowing water. Without paying attention to the type of physical transport
being considered from among those listed above, we represent the total transport of X at a
point by a vector �T pointing in the direction of the transport and whose magnitude equals
the amount of X being transported per unit time through a unit area normal to �T.

We apply this in the derivation of the balance for the amount of X inside a small
rectangular control volume in (x, y, z)-space, with sides given by x = x1, x = x2 = x1+�x,
etc., whose surface areas are given by �y�z, etc., and with volume �V = �x �y �z; see
Figure 10.1.

The amount of X transported per unit time into the control volume across the side given
by x = x1 equals Tx,1 �y�z, in which Tx,1 is the x-component of �T at x = x1. Likewise,
an amount Tx,2 �y�z leaves the control volume in unit time through the side for which
x = x2. The net inward transport per unit time through these two sides is therefore

(
Tx,1 − Tx,2

)
�y�z ∼=

(
−∂Tx

∂x
�x

)
�y�z = −∂Tx

∂x
�V (10.1)

Similar expressions apply to the other four sides, so that the total transport per unit time
into the control volume through the six sides is approximately given by

−
(

∂Tx
∂x

+ ∂Ty

∂y
+ ∂Tz

∂z

)
�V (10.2)

Fig. 10.1 Cartesian control volume
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187 10.3 Molecular Diffusion

The quantity between parentheses is the so-called divergence of �T, or ∇ · �T, in which ∇ is
the differential operator defined by

∇ (·) ≡ ∂ ·
∂x

�ex + ∂ ·
∂y

�ey + ∂ ·
∂z

�ez (10.3)

in which �ex is the unit vector in the direction of x-positive, etc. We see that the divergence
of a transport vector equals the net outflow per unit time and per unit volume through a
closed surface. In fact, this may be taken as the definition of the divergence of a (transport)
vector.

In addition to transport, production or loss of X may take place, represented through
so-called source terms. We denote the net production of X per unit time and per unit
volume as P.

Finally, we consider the storage of X, i.e. the amount of X inside the control volume.
The amount of X per unit volume is called the volume concentration, here denoted as c.
(Wave propagation is not considered in this chapter, so there will be no confusion with the
wave propagation speed c used in preceding chapters.)

Collecting the above results, we obtain the following balance equation:

∂c
∂t

�V = −
(
∇ · �T

)
�V + P �V (10.4)

or

∂c
∂t

+ ∇ · �T = P (10.5)

This is the archetype of all balance equations, regardless of the nature of the transport
process or the transported quantity. For a conserved quantity, production and dissipation
are zero, i.e., P = 0, in which case the balance equation takes the form of a conservation
equation:

∂c
∂t

+ ∇ · �T = 0 (10.6)

10.3 Molecular Diffusion

In common turbulent flows, the role of molecular diffusion is utterly negligible compared
with effects of turbulence. Yet we start with considerations on molecular diffusion because
the formulation of this process is relatively straightforward and is a model for the
more complicated processes of turbulent diffusion and dispersion, which will be treated
further on.

We could take any diffusive medium and any diffused quantity, but to emphasize that we
deal with molecular diffusion only we will occasionally refer specifically to the conduction
of heat in a solid medium, the physical process that stood at the basis of the theory of
diffusion.
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10.3.1 Fick’s Law of Diffusion

Molecular diffusion (or conduction, in the case of heat transfer) is the net transport resulting
from the thermal micro-motions of the molecules of which the medium consists, averaged
over a time interval that is just long enough to smoothen the molecular variations (here we
introduce the continuum approximation).

In an isotropic medium, the transport by molecular diffusion takes place in the direction
of strongest decrease of the concentration c of the transported quantity; i.e. it is directed
opposite to the gradient of c, i.e. ∇c. Because the length scale of the underlying micro-
motions is quite small compared with the length scale of the spatial variations of the
mean concentration (such as the flow depth), the diffusive transport rate can be assumed
to be proportional to that gradient. The proportionality coefficient, called the (coefficient
of) molecular diffusivity, has the dimension (length)2/(time) (in SI units: m2/s); it is here
denoted as ε:

�T = −ε ∇c = −ε

(
∂c
∂x

�ex + ∂c
∂y

�ey + ∂c
∂z

�ez

)
(10.7)

The conservation equation for a conservative quantity, subject to molecular diffusion, can
be found by substituting Eq. (10.7) into Eq. (10.6), with the result

∂c
∂t

= ∇ · (ε∇c) (10.8)

In the case of a homogeneous medium, ε is uniform in space, or ∇ε = 0, in which case we
obtain

∂c
∂t

= ε∇2c = ε

(
∂2c
∂x2 + ∂2c

∂y2 + ∂2c
∂z2

)
(10.9)

This is the standard diffusion equation in three dimensions. It is a linear, so-called parabolic
partial differential equation with a constant coefficient. The operator ∇2 is the so-called
Laplace operator.

10.3.2 One-Dimensional Diffusion

In order to obtain insight into the meaning of the diffusion equation, and to get acquainted
with the nature of its possible solutions, we restrict ourselves at first to one-dimensional
diffusion, for which the transport takes place in the direction of x-positive or x-negative
only. One can think of heat conduction along a thin metal rod. In that case, the
concentration c is the amount of heat per unit length, integrated over the cross section.

For the one-dimensional case, Eq. (10.9) reduces to

∂c
∂t

= ε
∂2c
∂x2 (10.10)

In order to see in a qualitative sense how the concentration varies due to diffusion, we
consider a short interval along the x-axis containing a maximum of c. This implies that the
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189 10.3 Molecular Diffusion

diffusive transport is directed outward at both end points of this interval, causing the local
concentration to decrease. This can also be seen from Eq. (10.10) because at and near a
local maximum, ∂2c/∂x2 < 0, which according to Eq. (10.10) implies a decrease in time
of the local concentration. Conversely, where the concentration has a minimum, the local
concentration increases. We see that diffusion reduces the spatial variations.

Solution in an Infinite Domain

To illustrate the above, we consider the archetypal example of the one-dimensional
spreading of an initially concentrated amount. We present it in terms of the conduction
of heat along a rod following an initial localized heating, but the result is also valid for
diffusion of substances.

At time t = 0, the temperature is uniform everywhere, while at that instant, heat with
an amount M is injected instantaneously at a point x = x0. This is the initial condition. Let
c be the amount of heat per unit length in excess of the original value. The two boundary
conditions are that c(x, t) → 0 as x → ±∞. (This problem is mathematically the same
as the flood-wave problem of Section 8.4.2.) The solution of Eq. (10.10) for this case is
presented here without derivation (its validity can be verified through back-substitution):

c (x, t) = M√
2π σ(t)

exp

(
− (x − x0)

2

2σ 2(t)

)
≡ M �(x − x0; σ(t)) (10.11)

in which

σ(t) =
√

2εt (10.12)

It follows from these equations that at each instant the concentration varies along the x-axis
as a Gaussian (bell-shaped) curve, centered at x = x0. See Figure 10.2. We have introduced
the symbol � to represent this Gaussian function in a shorthand fashion. As time goes on,

Fig. 10.2 Solution of the one-dimensional diffusion equation in an infinite domain: instantaneous injection of an amount M
at the point x = x0 at time t = 0
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the peak value decreases at a rate proportional to 1/
√

εt, while the ‘standard deviation’
σ , here defined as the distance of the inflection point of c(x, t) to the location of the peak
value, increases in proportion to

√
εt. Such variations are typical for all diffusion processes.

Note that the product of the peak value and the width, which is a measure of the total heat
content, is constant in time, in accordance with the fact that we deal with a conservative
quantity.

The solution expressed in Eq. (10.11) applies to an instantaneous point injection in
an infinitely long one-dimensional medium, for which the initial concentration was zero
everywhere. An injection spread out in time and/or in space can be subdivided into a
number of narrow local pulses of short duration. To each of these, the Gaussian solution can
be applied. The overall solution is then found as the sum of these partial solutions. This
is allowed because the diffusion equation (10.10) is linear. The same procedure can be
followed to determine the evolution following non-uniform initial conditions (in absence
of injection), by summation of a series of point sources; see Figure 10.3.

Solution in a Semi-Infinite Domain

In the case of diffusion in a finite one-dimensional domain, such as a rod, the transport
should be zero at the end points. This requires that ∂c/∂x = 0 at the end points. We will
first see how this can be achieved for the case of instantaneous injection of an amount M
at a point x = x0 of a semi-infinite domain extending from x = 0 to ∞.

Imagine first that the domain extends from −∞ to +∞, as above, and apply the Gauss
solution given by Eq. (10.11) to that extended domain. In that case, there would be an
outward diffusive transport at x = 0 because ∂c/∂x > 0 at x = 0; see Figure 10.4. Now
fold the tail of this Gauss solution that extends into the imaginary domain x < 0 around
x = 0 back into the physical domain x > 0. The x-derivative of this folded tail at x = 0
is exactly the opposite of the x-derivative of the original solution, so that the sum of these
solutions has zero x-derivative there, so fulfilling the boundary condition.

As can be seen in Figure 10.4, the folded left tail of the original Gauss solution, centered
at x = x0, is the same as the right tail of an imaginary Gauss solution centered at x = −x0,
i.e. the mirror image of the original solution with respect to the impermeable boundary at

Fig. 10.3 Initial concentration distribution as a series of point sources
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191 10.3 Molecular Diffusion

Fig. 10.4 Solution of the one-dimensional diffusion equation in the semi-infinite domain [0; ∞): superposition of
respective point sources at x = x0 and x = −x0

x = 0. Therefore, we can express the total solution analytically, in short-hand fashion using
the �-notation, as

c(x, t) = M (� (x − x0; σ) + �(x + x0; σ)) for x ≥ 0 (10.13)

(Note that �(x − x0; σ) is centered at x = x0, i.e. where its argument (x − x0) is zero.
Likewise, �(x + x0; σ) is centered where x + x0 = 0, i.e. at x = −x0.) For injection at
x = 0, the solution is

c(x, t) = 2M �(x; σ) for x ≥ 0 (10.14)

In this case, exactly half of a Gaussian function is folded back into the semi-infinite
physical domain. The solution in the physical domain is the same as it is for the injection
of the double amount in an infinite domain.

Solution in a Finite Domain

Next, we consider the instantaneous release of an amount M at a point x = x0 of a finite
domain, extending from x = 0 to x = �, say. In this case, the tails of the original distribution
extend across both boundaries; thus mirroring at both boundaries is necessary. Moreover,
the tails of the mirrored functions in their turn extend across both boundaries, requiring
that these be mirrored too, and so on; see Figure 10.5. For the special case of injection in
x = 0, this can be expressed mathematically as follows:

c (x, t) = 2M (� (x; σ) + �(x − 2�; σ) + �(x + 2�; σ) + �(x − 4�; σ) + · · ·) (10.15)

One can think of this succession of terms as representing the effect of repeated inward
folding of the tails of the original Gauss function at the boundaries, and adding the resulting
concentrations at each point.

Shortly after the injection, the original Gauss curve �(x; σ), with its maximum at x = 0,
is still highly peaked, in the sense that σ(t) 	 �. In other words, it extends over only a
relatively small distance into the physical domain 0 ≤ x ≤ �, and the influence of the
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Fig. 10.5 Solution of the one-dimensional diffusion equation in a finite domain: superposition of sources for injection of an
amount M at the point x = x0

boundary at x = � is hardly felt, so that mirroring (or folding) there is not yet necessary;
the first term between the parentheses in the right-hand side of Eq. (10.15) suffices initially.

As time goes on, the Gauss curve collapses and spreads, with σ(t) increasing in
proportion to

√
t. In other words, the tails become longer so that after some time, mirroring

at x = � becomes necessary, with an imaginary source at x = 2� (the second �-term
in Eq. (10.15)). After an even longer time, remirroring at x = 0 becomes necessary as
well (the third �-term, centered in x = −2�). In other words, as time goes on we have to
take more and more terms of Eq. (10.15) into account. At the same time, the total solution
becomes more and more nearly uniform on the entire interval 0 ≤ x ≤ �.

In fact, using Eq. (10.15), it can be verified that the distribution varies by less than 3%
between the two ends when σ(t) = �, or after a time t = �2/2ε. This applies to the case of
injection at one of the two end points. If the injection takes place halfway between the two
end points, such nearly uniform lateral distribution is reached when σ(t) = �/2, or after a
time t = �2/8ε. Ultimately, the distribution tends to a uniform value given by c∞ = M/�.

10.3.3 The Random Walk Model

The fact that an initially concentrated amount diffuses as a collapsing Gaussian function,
with standard deviation proportional to

√
t, can also be shown and understood by

consideration of the underlying random molecular motions. To do this, we use the model
of the so-called random walk, here presented for the one-dimensional case.

Consider a particle that makes a sequence of a large number of N stochastically independent
random displacements along the x-axis, written as �xi, i = 1, 2, ..., N, starting at x = 0
(the underscore denotes a random variable). The particle location after N steps is given by

xN =
N∑

i=1
�xi (10.16)

Since xN is the sum of a large number of stochastically independent contributions, the
central limit theorem of probability theory applies to it, implying that xN is Gaussian
distributed in the limit as N → ∞.
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Fig. 10.6 Diffusion: discrete versus continuum approach

To see the link of the above with the diffusion process, imagine that a very large number
of particles is released at x = 0, each subsequently making a random walk as described
above. It then follows that these particles will be distributed along the x-axis according
to the Gaussian density function, in accordance with Eq. (10.11). (See Figure 10.6 for a
schematic representation in two dimensions.)

The random walk model can be elaborated further in order to express the resulting
diffusivity in terms of the characteristics of the underlying micro-scale motions. For
simplicity, we assume that all steps have the same length, given by ��, and that only the
direction in which each step is made is random, with a 50% chance of the particle going to
the right and a 50% chance of it going to the left, independent of the preceding steps. With
these definitions, the mean value of the displacement �xi is zero for all i, and the standard
deviation is σ�xi = �� for all i.

The mean value of the sum xN equals the sum of the mean values of its contributions,
i.e. zero, which also follows directly from symmetry. Furthermore, since the displacements
are stochastically independent, the variance of their sum is the sum of their variances, or

σ 2
xN

= N(��)2 (10.17)

(This quantity is to remain finite as N → ∞, so �� ∼ 1/
√

N.) We now introduce time and
assume that successive steps are made at equal time intervals �t, with the same average
velocity U, so �� = U�t. Let this expression replace one of the factors �� in Eq. (10.17)
to obtain

σ 2
xN

= N (��) (U�t) = (U��) N�t = (U��) t (10.18)

in which t = N�t is the elapsed time since the injection of the particles at x = 0.
We reproduce here the important result that the particles spread in proportion to

√
t, as

in the diffusion model. Furthermore, we can now express the diffusivity in terms of the
characteristic velocity and displacement of the underlying random motions by comparing
Eqs. (10.18) and (10.12), with the result

εrw = 1
2 U�� (10.19)

in which the subscript ‘rw’ on ε indicates that it is the diffusivity resulting from the random
walk model.
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In the derivation of Eq. (10.19), we have made simplifying assumptions about the prob-
ability structure, the time interval between successive steps and the step size. Eq. (10.19)
corresponds to these particular choices. More complicated assumptions would have
required more algebra, but in the end we would find again that the diffusivity is determined
by the product of a characteristic velocity and a characteristic displacement of the under-
lying micro-motions. We will find a similar result for turbulent diffusion (Section 10.5).

10.3.4 Two-Dimensional Diffusion

For diffusive transport in a two-dimensional (x, y) isotropic and homogeneous medium,
Eq. (10.9) reduces to

∂c
∂t

= ε

(
∂2c
∂x2 + ∂2c

∂y2

)
(10.20)

Here, the meaning of c is that of an amount per unit area (for heat conduction in a thin plate,
it is the amount of heat per unit area integrated over the plate thickness). In the case of an
injection of an amount M at time t = 0 at a point x = 0, y = 0 of an infinite domain, with
similar initial and boundary conditions as above for the one-dimensional case, the solution
is the two-dimensional Gaussian density function (a bell shape), which can be written as

c(x, y, t) = M
2πσ 2 exp

(
−x2 + y2

2σ 2

)
= M �(x; σ) � (y; σ) (10.21)

in which σ = √
2εt. For this isotropic case, the concentration distribution is axially

symmetric, with circular iso-concentration contours (x2 + y2 = constant), centered on the
point of injection. The radial standard deviation increases in proportion to

√
t, so that the

injected amount is spread over an area that increases in proportion to t. The peak of this
bell-shaped concentration distribution decreases proportional to 1/t, so the volume of the
bell is constant, as it should be.

The solution for two-dimensional diffusion from a point injection in a finite domain
can be constructed similar to the one-dimensional case, i.e. by using the Gauss solution
for diffusion in an infinite domain as the building block, mirrored at the boundaries so
as to fulfill the boundary condition of zero transport. Non-uniform initial conditions and
injections spread out in time and/or space can likewise be dealt with similar to the one-
dimensional case.

10.4 Advection and Molecular Diffusion

Our next subject is transport by a combination of advection and molecular diffusion. We
repeat that molecular diffusion is irrelevant in civil engineering practice, where turbulent
diffusion and dispersion are dominant, but we treat it here nevertheless because of the
straightforward formulation and the qualitative similarity to the processes just mentioned.
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195 10.4 Advection and Molecular Diffusion

Advection is by definition the transport along with the mass of a moving fluid. Therefore,
the advection per unit area, of the quantity being considered with volume concentration c,
is given by c�u, in which �u is the fluid particle velocity. Together with the transport due to
molecular diffusion (−ε∇c), the total transport is

�T = c�u − ε∇c (10.22)

Substituting this into the generic conservation equation, Eq. (10.6), we find

∂c
∂t

+ ∇ · (c�u) − ∇ · (ε∇c) = 0 (10.23)

For an incompressible (∇ · �u = 0) and homogeneous (∇ε = 0) fluid, it reduces to

∂c
∂t

+ �u · ∇c − ε∇2c = 0 (10.24)

This is the standard advection–diffusion equation. The sum of the first two terms is the
total derivative of c, following the fluid. In other words, it is the material derivative. Using
the corresponding operator D/Dt = ∂/∂t + �u · ∇, Eq. (10.24) can be written as

Dc
Dt

= ε∇2c (10.25)

This has a structure that is analogous to that of the standard diffusion equation without
advection, given in Eq. (10.9). The difference is that Eq. (10.25) describes the effect of
diffusion in a frame of reference moving with the fluid.

For one-dimensional transport in x-space, Eq. (10.24) reduces to

∂c
∂t

+ ux
∂c
∂x

− ε
∂2c
∂x2 = 0. (10.26)

(Note the correspondence of this equation with the advection–diffusion equation (8.17) that
appeared in the context of flood waves in rivers; Chapter 8.) The solution of Eq. (10.26)
for the case of an instantaneous release of an amount M at time t = 0 at a point x = 0, with
the boundary conditions c → 0 as x → ±∞, and assuming that ux and ε are constant, is

c (x, t) = M�
(

x − uxt;
√

2εt
)

(10.27)

At each instant, this represents a Gauss function in x with its maximum where x = uxt;
see Figure 10.7. The effect of advection is to displace the total amount, whereas the effect
of diffusion is to spread this as it moves. In a fixed position, c does not vary in time as a
Gauss function because σ increases in time, which causes asymmetry. The rise in c occurs
at a higher rate than its fall, as we have seen for flood waves in rivers (Chapter 8). Also,
the maximum value of c at a fixed point occurs somewhat ahead of t = x/ux. However, the
asymmetry decreases with increasing distance from the point of injection.
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Fig. 10.7 Solution of the one-dimensional advection–diffusion equation: injection of an amount M at x = 0 at time t = 0

10.5 Turbulent Diffusion

Fluid turbulence is characterized by irregularly fluctuating, eddying motions of ‘parcels’
of fluid. The particle velocity varies randomly in magnitude and direction. The same is true
for the concentration of any substance, or heat, that is carried along with the fluid.

We have seen above that molecular diffusion is the time-averaged effect of random
underlying molecular motions. In like manner, turbulent diffusion is the time-averaged
effect of random turbulent displacements of fluid parcels.

10.5.1 Reynolds Averaging

It is not possible to describe the irregular turbulent motions in a deterministic manner.
However, a description in terms of averages is feasible, and at the same time sufficient for
practical applications. This method was introduced by Reynolds (1895). It forms the basis
of the modelling of virtually all kinds of turbulent flows.

The key element in Reynolds’ approach is to separate the instantaneous value of the
fluctuating quantities from their average values. The averages are taken over a time interval
long enough to cancel the effects of the turbulent fluctuations on the outcome, yet short
enough that we can describe relevant variations on a longer time scale, e.g. those due to
unsteady boundary conditions. (On this longer time scale, turbulence-averaged quantities
may be unsteady, but we will not indicate such time dependence because it is irrelevant
in the present context.) The resulting averages are indicated with an overbar and the
fluctuations around them by a prime, as in

c(t) = c + c′(t) (10.28)

It follows that c′(t) = 0.
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While the mean of each individual turbulent fluctuating quantity is zero, this does not in
general apply to the mean of the product of two fluctuating quantities. To see this, consider
the example of the vertical transport of a dissolved substance like salt, for the case of a
continuously stratified flow with –on average– saltier water near the bottom than higher in
the fluid column, due to gravity (∂c/∂z < 0).

Neglecting molecular diffusion, the instantaneous upward transport of salt per unit area
can be written as Tz = cuz. Taking the average, we obtain

Tz = c uz = (c + c′)
(
uz + u′

z
) = c uz + c u′

z + c′ uz + c′u′
z (10.29)

Since u′z = 0 and c′ = 0, this implies that

Tz = cuz = c uz + c′u′
z (10.30)

The transport by the averaged motion is given by c uz. We see that the turbulence adds to
this in the amount c′u′

z. Even though the averages of c′ and of u′
z are zero, this does not

hold for their product if they are correlated.

Since the time-averaged salt concentration decreases upward due to gravity, an upward
moving fluid parcel (u′

z > 0) will advect salt upward with a concentration that on average is
higher than the local mean value, so c′ > 0, while a downward velocity fluctuation (u′

z < 0)
on average advects salt downward with a lower-than-average concentration (c′ < 0). It
follows that c′u′

z > 0, as a consequence of the fact that ∂c/∂z < 0. We see that the
turbulent fluctuations cause a mean transport in the direction of decreasing values of the
mean concentration, as in a diffusion process. This is an important result.

10.5.2 Closure Hypothesis

In order to be able to calculate the net turbulent transport, additional equations are required
for the mean product of fluctuating quantities. However, these introduce new unknowns.
Somehow, this sequence must be cut off by a so-called closure hypothesis, expressing a
link between the relevant turbulence properties and the mean motion. Such hypothesis was
introduced by Prandtl (1925) with the concept of the mixing length. The idea behind it is
that local properties are advected with the turbulent eddies over some distance, and so cause
deviations from the average state in the new locality in the case of a mean gradient. These
deviations (fluctuations) are estimated in order of magnitude as the change of the average
concentration (c (z)) over a distance equal to the characteristic displacement of the eddies,
called the mixing length �t. The velocity fluctuations are estimated as a characteristic
particle velocity of the turbulent eddies (ut):

c′ ∼ �t
∂c
∂z

, u′ ∼ ut and c′u′
z ∼ ut �t

∂c
∂z

(10.31)

In this formulation, the average transport due to the turbulence is proportional to the
gradient of the mean concentration, as it is in molecular diffusion. Thus, the average
turbulent transport can be described as a diffusion process. The proportionality factor
is called the turbulence diffusivity, written as εt:
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c′u′
z = −εt

∂c
∂z

(10.32)

with which the total averaged transport (neglecting molecular diffusion) becomes

Tz = cuz = c uz − εt
∂c
∂z

(10.33)

The turbulence diffusivity is a new unknown, in order of magnitude given by εt ∼ ut �t.
(Notice the similarity with the diffusivity resulting from the random walk model.) For each
turbulent-flow problem, �t and ut have to be estimated or calculated.

10.6 Vertical Diffusion in Free-Surface Flows

10.6.1 Turbulence Diffusivity

The so-called turbulence diffusivity εt is a flow property (not a fluid property, as ε),
therefore not known beforehand. Its value can be estimated only by rough approximation,
using the notions of mixing length �t and eddy velocity ut according to the order-of-
magnitude relationship εt ∼ �tut.

Free-surface flows are boundary-layer flows. The interaction with the bed is crucial for
the generation of flow turbulence and determines its properties. Near the bed, the mixing
length is constrained vertically by the proximity of the bed, but less so with increasing
height above it, denoted as z (we take z = 0 at the bed). By approximation, we will assume
that it increases in proportion: �t ∼ z. However, this does not hold over the entire depth
(d) because the free surface damps the eddying motions vertically, reducing them to nearly
zero because gravity counteracts the tendency of eddies to rise above the mean free surface.
This effect is likewise represented as a proportional increase of �t with the distance below
the free surface. Taken together, we assume

�t ∼ z
(

1 − z
d

)
(10.34)

This is a parabolic variation of �t with z. Because the turbulence arises as a result of bed
shear stress (τb), we assume (confirmed by measurements) that the characteristic eddy
particle velocity (ut) is of the order of magnitude of the so-called shear velocity u∗, defined
as u∗ ≡ √

τb/ρ.

Altogether, we express these order-of-magnitude relations as an algebraic equality for εt,
with a proportionality coefficient κ (named after Von Karman):

εt = κu∗z
(

1 − z
d

)
(10.35)
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The value of κ has empirically been determined as about 0.4. The parabolic variation of
εt over the vertical implies that its maximum value occurs at mid-depth, with the value
1
4κu∗d, or about 0.1 u∗d. The depth-averaged value is 1

6κu∗d, or about 0.07 u∗d.

10.6.2 Vertical Distribution of Horizontal Velocity

The preceding result is now applied to determine the vertical distribution of the mean
streamwise particle velocity in a horizontally uniform flow. The approach is based on the
modelling of the turbulent vertical mixing of streamwise momentum in combination with
an equilibrium condition.

An upward displacement of a fluid parcel, with velocity uz, implies an upward transport
of streamwise momentum (ρux per unit volume) at a rate given by uz(ρux) or ρuxuz per
unit horizontal area. Since uz = 0 in a horizontally uniform flow, the average of this is
ρu′

xu′
z. Because uz decreases downward, due to bed resistance, ρu′

xu′
z < 0, implying a

net downward transport of forward momentum, equivalent to a shear stress, the so-called
Reynolds shear stress τxz. In line with Eqs. (10.31) and (10.32), with c replaced by ρux, i.e.
the x-momentum per unit volume, it is modelled as a diffusion process:

τxz = −ρu′
xu′

z = ρνt
∂ux
∂z

(10.36)

Here, νt is the so-called eddy viscosity, i.e. the turbulence diffusivity for momentum
exchange. It is modelled in the same manner as εt in the preceding section. For simplicity,
their values are here set equal to each other: νt = εt, given in Eq. (10.35).

The condition of equilibrium in a steady, uniform free-surface flow implies that the mean
shear stress τxz varies linearly from the value at the bed, τb, to zero at the free surface (see
Figure 10.8). Neglecting the viscous contribution, we obtain

τxz = τb
(

1 − z
d

)
= ρνt

∂ux
∂z

= ρκu∗ z
(

1 − z
d

) ∂ux
∂z

(10.37)

Substituting τb = ρu2∗ and dividing by the common factor ρu∗ (1 − z/d) yields

∂ux
∂z

= u∗
κ

1
z

(10.38)

Fig. 10.8 Vertical variation of the mean shear stress (τxz ) in a uniform free-surface flow (flow direction is from left to right)
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Integration yields the well-known logarithmic profile for the mean horizontal particle
velocity:

ux (z) = u∗
κ

ln
z
z0

(10.39)

The details of the flow very near the bed are not resolved by this model. Their effect
on the mean velocity profile is expressed through the height z0 at which theoretically,
i.e. according to the (extrapolated) logarithmic profile, the mean velocity vanishes. The
logarithmic velocity distribution has been elaborated in Chapter 9 for the derivation of a
theoretical expression for the resistance coefficient cf.

10.7 Horizontal Transport in Free-Surface Flows

10.7.1 Introduction

A substance or heat that is released in flowing water is advected downstream and at the
same time spread or mixed by turbulence. Rivers and canals usually have a width (B) that
is far greater than the depth, while the width in turn is usually small compared with the
downstream distances that are of interest in practice. Therefore, we can distinguish three
zones with respect to the advection and mixing from a point source (Figure 10.9):

The near field (I), extending downstream from the source over roughly fifty times the
depth, in which the mixing is three-dimensional (3D), though dominated by the vertical
transport; at the downstream end of this zone, complete mixing over the vertical has taken
place.

The intermediate field (II), an intermediate region that is (very) long compared with
the width, in which the released quantity, already more or less uniformly distributed
over the depth as a result of vertical diffusion in zone I, is gradually spread laterally by
turbulent mixing while it is advected downstream, as in a plume of smoke issuing from
a smokestack, until it is virtually uniformly distributed over the entire cross section. The
transport processes in this region are described with depth-integrated, two-dimensional
models in the longitudinal and lateral coordinates (2DH).

Fig. 10.9 Horizontal mixing of a substance released from a point source in a river (in reality the plume width would increase
at a slower rate than indicated)
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201 10.7 Horizontal Transport in Free-Surface Flows

The far field (III), an end zone in which the released quantity is virtually uniformly
distributed over the cross section as a result of the vertical and lateral transports in zones
I and II. Therefore, in zone III only longitudinal advection and mixing take place, to be
described with depth- and width-integrated, one-dimensional models in the longitudinal
coordinate (1DH).

In the following, we ignore the near field, because it is relatively short, and deal exclusively
with zones II and III, which in rivers may easily extend over tenths to hundreds of
kilometres, respectively. Furthermore, from here on we deal exclusively with turbulence-
averaged quantities without expressing this all the time. In line with this, averaged
turbulent quantities are written without an overbar. Instead, a single overbar will indicate a
depth average (of turbulence-averaged quantities), and a double overbar a cross-sectional
average, as in

c ≡ 1
d

∫
d

c dz and c ≡ 1
A

∫
A

c dA (10.40)

A local deviation from these averages is denoted by a prime.

10.7.2 Two-Dimensional Horizontal Transport

We integrate the amount of transported matter per unit volume, and its horizontal transport
per unit area at a point of the vertical, �T, over the depth. This gives∫

d
c dz = c d (10.41)

and ∫
d

�T dz = �Td (10.42)

With these definitions, the conservation equation for the amount of transported matter in a
control volume in the form of a vertical prism with unit horizontal area, extending over the
entire depth, reads

∂

∂t
(cd) + ∇ ·

(
�T d

)
= 0 (10.43)

Written in component form, this is

∂

∂t
(cd) + ∂

∂x
(
Txd

) + ∂

∂y
(
Tyd

) = 0 (10.44)

So far, we have made no restriction on the orientation of the (x, y)-axes in relation to
the orientation of the conduit or the flow field. However, we deal with long, relatively
narrow conduits for which it is meaningful to distinguish longitudinal transports and lateral
transports. To this end, we let the x-axis from here on locally point downstream and the
y-axis normal to it. With this convention, ux is the streamwise component of the turbulence-
averaged particle velocity at a point, ux its depth average value, and ux its cross-sectionally
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averaged value, equal to U = Q/A. Furthermore, Txd is the longitudinal transport per unit
width, and Tyd is the lateral transport per unit length.

Longitudinal Transport

The longitudinal transport at a point (x, y) consists in part of advection with the local
mean longitudinal velocity at that point, c ux. Because the mean velocity at a point (ux)
varies vertically, the released matter that at some instant is present in a vertical is advected
downstream with different velocities, thus being spread longitudinally (Figure 10.10). It
is subsequently continually mixed over the vertical by turbulent diffusion. The net effect
is a longitudinal spreading of the depth-integrated amount of transported substance, called
longitudinal dispersion.

Note that this process does not need to be described explicitly in three-dimensional
modelling of the transport because it is automatically represented therein. It arises in
the process of depth-integration of the transport, so reducing the dimensionality of the
formulation from three (x, y, z) to two (x, y). It comes in addition to the advection with
the depth-averaged velocity ux, and should therefore be accounted for as a separate
contribution in depth-integrated models.

Expressed mathematically, and omitting the turbulent diffusion for the time being, we have

Tx d =
∫ d

0
cux dz = cux d =

(
c ux + c′u′x

)
d = c qx + c′u′x d (10.45)

in which qx = uxd is the discharge of water per unit width.

The last term in (10.45) represents the transport due to longitudinal dispersion. (Remember
that a prime here means a deviation of a point value from the depth-averaged value, not
a turbulent fluctuation.) Mathematically, it can be expressed as a longitudinal diffusion
process, similar to turbulent diffusion, as in

c′u′x = −Kx
∂c
∂x

(10.46)

in which Kx is the coefficient of longitudinal dispersion. Its value has been derived by Elder
(1959) from the parabolic distribution of the turbulent eddy viscosity given in Eq. (10.35),
and the corresponding logarithmic velocity profile given in Eq. (10.39), with the result

Fig. 10.10 Longitudinal dispersion: vertical velocity profile (a), initial concentration distribution (b), advection by local mean
velocity (c) and vertical mixing by turbulent diffusion (d)
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203 10.7 Horizontal Transport in Free-Surface Flows

Kx ∼= 6 u∗d (10.47)

This is a factor of about 102 larger than the depth-averaged turbulent diffusivity, which
is about 0.07 u∗d. The effect of turbulent diffusion is qualitatively similar to that of
longitudinal dispersion, but we need not take it into account separately because it is
relatively small in a quantitative sense. We could say that it is included in the value of
Kx given by Eq. (10.47).

Using Eq. (10.46), the total longitudinal transport per unit width and unit time, given in
Eq. (10.45), can be written as

Tx d = qx c − Kx d
∂c
∂x

(10.48)

Lateral Transport

In principle, the same considerations as those given above apply to the lateral transport,
which therefore is expressed as

Ty d = qy c − Ky d
∂c
∂y

(10.49)

Yet there are important differences because the x-axis is directed downstream and the y-axis
is transverse to that. The flow velocities in the two directions are therefore quite different
in magnitude. In fact, in steady flow, when there is no net storage taking place (no net flow
towards or away from the river bank), qy must be zero. Nevertheless, a net lateral advection
can occur locally in the vertical because of secondary, spiralling currents, i.e. nonzero local
average lateral velocities with zero depth average.

Secondary currents occur particularly in river bends, where the upper layers have an
outward velocity and the lower layers an inward velocity. Therefore, the transported
matter that at some instant is present in a vertical is being spread laterally. This effect,
which manifests itself when considering the depth-integrated quantities, is called lateral
dispersion. It comes in addition to the advection with the depth-averaged lateral velocity
uy (which is quite small or even zero), and should therefore be accounted for as a separate
contribution.

Like the longitudinal dispersion, the lateral dispersion is expressed mathematically as a
diffusion process, as in Eq. (10.49), in which Ky is the coefficient of lateral dispersion.
Its value depends on the specific circumstances generating the secondary currents, such
as river bends or lateral depth variations. Therefore, there is no generally valid expression
for its value, unlike the coefficient of longitudinal dispersion. A very rough estimate for
natural water courses with lateral depth variations and bends is (see Rutherford, 1994)

Ky,disp ∼= 0.6 u∗d ± 50% (10.50)

This includes the effect of turbulent diffusion, which is a factor of about 10 smaller.

In the more or less academic special case of a laterally uniform flow, i.e. no lateral
variations of the turbulence-averaged velocities or the depth, there are no secondary
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currents and therefore there is no lateral dispersion. The lateral transport in this case
consists purely of lateral turbulent diffusion. The corresponding diffusivity is of the same
order of magnitude as that of the vertical turbulence diffusivity, but about twice as large
because the lateral turbulent displacements are not forced to (almost) zero at the bed and
at the free surface: Ky,diff ∼= 0.15 u∗d (Rutherford, 1994).

Two-Dimensional Advection–Diffusion Equation

Collecting the preceding results, the conservation equation (10.44) takes the following
form:

∂

∂t
(d c) + ∂

∂x

(
qxc − Kxd

∂c
∂x

)
+ ∂

∂y

(
qyc − Kyd

∂c
∂y

)
= 0 (10.51)

The depth-integrated continuity equation, expressing conservation of the volume of
water, is

∂d
∂t

+ ∂qx
∂x

+ ∂qy

∂y
= 0 (10.52)

We substitute this into the expanded Eq. (10.51), neglect the depth-integrated lateral
velocity, i.e. qy, and write qx = Ud instead of uxd. This yields

∂c
∂t

+ U
∂c
∂x

− 1
d

∂

∂x

(
Kxd

∂c
∂x

)
− 1

d
∂

∂y

(
Kyd

∂c
∂y

)
= 0 (10.53)

This has the appearance of the advection–diffusion equation, expressing the effects of
longitudinal transport with the depth-averaged velocity (second term), supplemented with
two terms representing the effects of longitudinal and lateral dispersion due to velocity
variations over the vertical. The sum of the first two terms is the total derivative of c for an
observer moving downstream with the depth-average velocity U.

In general, the parameters U, d, Kx and Ky vary with (x, y, t), such that numerical integration
of Eq. (10.53) is required to find a solution for c (x, y, t). For simplicity, we restrict ourselves
here to steady, horizontally uniform flows, in which U, d, Kx and Ky are constants, in which
case Eq. (10.53) reduces to

∂c
∂t

+ U
∂c
∂x

− Kx
∂2c
∂x2 − Ky

∂2c
∂y2 = 0 (10.54)

This is the two-dimensional, non-isotropic counterpart of Eq. (10.24). Elementary solutions
of this advection–diffusion equation for the concentration resulting from a point source
take the form of Gauss functions in x and in y, which gradually spread in proportion to

√
t

and collapse in proportion to 1/t while being advected downstream with velocity U. We
present two examples.
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205 10.7 Horizontal Transport in Free-Surface Flows

Case 1: Instantaneous Release at a Point

Suppose that at time t = 0 an amount M of some substance is released at a point
x = 0, y = 0 in a horizontally uniform flow of infinite extent, and instantaneously
distributed uniformly over the depth. This implies that zone II starts at the point of release.
The concentration is initially zero everywhere, and it remains so at infinity for all times.
The solution is analogous to that of Eq. (10.20) given in Eq. (10.21):

c (x, y, t) = M/d
2πσxσy

exp

(
− (x − Ut)2

2σ 2
x

− y2

2σ 2
y

)
(10.55)

or

c(x, y, t) = M
d

�(x − Ut; σx) �
(
y; σy

)
(10.56)

in which

σx =
√

2Kxt and σy =
√

2Kyt (10.57)

The solution in Eq. (10.55) represents the concentration in an elongated cloud of the
transported substance that is advected downstream with velocity U. It has the shape of
a Gaussian hat with ellipsoidal iso-concentration contours (σx > σy because Kx > Ky). At
any instant, the concentration varies longitudinally (x) and laterally (y) as a Gauss curve,
with its peak at x = Ut, y = 0, spreading in these directions in proportion to

√
2Kxt and√

2Kyt, respectively, due to dispersion.
If the flow is bounded at one impermeable bank, e.g. at y = 0, we have the boundary

condition Ty = 0 at y = 0, or ∂c/∂y = 0 at y = 0. The solution given in Eqs. (10.55)
or (10.56) no longer suffices because it does not fulfill this boundary condition. As before,
a valid solution can be obtained by mirroring this solution at y = 0 and adding the results.
For a point source at a distance y0 from the bank, we obtain

c(x, y, t) = M
d

�(x − Ut; σx)
(
�

(
y − y0; σy

) + �
(
y + y0; σy

))
(10.58)

In the case of two parallel banks, the solution that is valid in the infinite domain
must repeatedly be mirrored at both banks, as explained in Section 10.3. As time goes
on, the distribution occupies virtually the entire width B with a nearly uniform lateral
concentration distribution. When the lateral distribution has become more or less uniform,
let us say when σy has reached the value B, the longitudinal dispersion has given rise to
a σx-value of B

√
Kx/Ky, or about 3B in the case of longitudinal and lateral dispersion (Kx

and Ky given by Eqs. (10.47) and (10.50), respectively). This can be considered as the
initial value of σx for the subsequent purely longitudinal advection and dispersion in zone
III, treated below.

The lateral spreading is a relatively slow process. Accordingly, it takes a long time, and
therefore a large distance, to establish a laterally uniform distribution following a point
release. Box 10.1 gives a quantified estimate.
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Box 10.1 The lateral spreading rate

If the release takes place at one of the two banks, the state of near-uniformity is reached to within a few
percent when σy

∼= B, or after a duration of about B2/2Ky (see Section 10.3), at a distance �B = UB2/2Ky

from the source. Substituting Ky = Ky,disp
∼= 0.6u∗d, for lateral dispersion, and u∗ = √

cf U, we find
�B = (

B2/d
)
/
(

1.2
√

cf
)

. Assuming cf = 0.004 and B/d = 100, which are not unrealistic values, we
find �B

∼= 1300 B. These numbers show the extreme slowness of the lateral spreading.

Case 2: Continuous Release at a Point

Our second example deals with the continuous release at a fixed point x = 0, y = 0, at a
constant rate Ṁ, in a horizontally uniform flow. In this case, an elongated plume develops
downstream of the source, similar to a plume of smoke issuing from a smokestack into
the atmosphere. Because of the elongated shape, the longitudinal variations of the mean
concentration in the plume are far smaller than the lateral ones, for which reason we can
neglect the longitudinal dispersion in Eq. (10.54). Assuming moreover a steady state, the
latter equation reduces to

U
∂c
∂x

= Ky
∂2c
∂y2 (10.59)

This is just the one-dimensional diffusion equation, Eq. (10.10), if we replace the time t by
x/U. With the ‘initial’ condition of a constant Ṁ in x = 0, y = 0, and with the boundary
conditions that c → 0 as y → ±∞, valid for an infinite extent of the flow, the solution is
analogous to that given in Eq. (10.11), if we replace t by x/U, x by y and ε by Ky:

c(x, y) = C√
2π σy

exp

(
− y2

2σy2

)
= C �

(
y; σy

)
for x > 0 (10.60)

in which σy = √
2Ky x/U and C is a constant. The value of C follows from the condition

that the total transport through each cross section equals the rate of release Ṁ, as must
be the case for a conserved quantity and assumed steady conditions. Neglecting (again)
longitudinal diffusion and dispersion, we obtain∫ +∞

−∞
(Ud c) dy = Ud

∫ +∞

−∞
c dy = Ud C = Ṁ (10.61)

so that C = Ṁ/(Ud) = Ṁ/q, in which q = Ud, the discharge per unit width. Substituting
this into Eq. (10.60), we obtain

c(x, y) = Ṁ/q√
2π σy

exp

(
− y2

2σy2

)
for x > 0 (10.62)

This represents a plume centered at y = 0, with a lateral concentration distribution given
by the standard bell-shaped Gauss function, with standard deviation σy that increases
downstream in proportion to

√
x.
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In the case of the presence of one or two banks, this solution must be mirrored to satisfy
the condition of zero transport through the banks, as above. The distribution widens with
increasing distance downstream. If the release takes place at one of the two banks, it is
virtually laterally uniform where σy ∼= B, or where x = xB ∼= UB2/2Ky. Downstream
from this point, the distribution is more or less uniform in each cross section as well as
longitudinally, with the limit value

c∞ = Ṁ
qB

= Ṁ
Q

for x > xB (10.63)

This relation is sometimes used for a discharge measurement, by purposefully releasing
some substance at a constant rate Ṁ and measuring the (cross-sectionally averaged)
concentration at a sufficient distance downstream of the source. The value of Q can then
be calculated from Eq. (10.63).

10.7.3 One-Dimensional Horizontal Transport

In zone III, the concentration distribution is assumed to be virtually uniform in each
cross section, so that a one-dimensional model can be used to calculate its longitudinal
variations. In order to emphasize that we follow the water course in a one-dimensional
model, we denote the longitudinal coordinate by s (as in the preceding chapters) instead
of the Cartesian coordinate x. The longitudinal transport rate will be denoted as T, without
subscript. Neglecting molecular and turbulent diffusion, the total longitudinal transport
takes place by advection, as expressed in∫

A
uc dA = A T = A

(
u c + u′c′

)
= Q c + A u′c′ (10.64)

Remember that a double overbar indicates a cross-sectional average, whereas a prime refers
to a local deviation from the cross-sectional average. The last term of Eq. (10.64) represents
the effect of longitudinal dispersion, i.e. the effect of cross-sectional variations of the local
longitudinal advection. Again, it is mathematically represented as a diffusion process:

u′c′ = −K
∂c
∂s

(10.65)

in which K is the so-called coefficient of one-dimensional dispersion.

The difference between the present coefficient of longitudinal dispersion and that given in
Eq. (10.47), in the context of two-dimensional transport (zone II), should be noted. In the
latter case, only depth integration took place, so that only the variations of the flow velocity
in the vertical played a role. In the present case (zone III), the integration took place over
the entire cross section, so that also lateral variations of streamwise velocities are relevant.
These are mainly a consequence of lateral variations of the depth, and can be significant. It
follows that the value of K is much larger than that of Kx, given in Eq. (10.47).

Since the value of K depends on numerous geometrical characteristics, which in general
are not known a priori, it is impossible to estimate its value with any precision. On the
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basis of some general considerations, Fischer et al. (1979) present an expression for K in
the form

K = γ
U2B2

c
u∗d

= γ√cf

QBc

d2 (10.66)

in which we have written U for u, and γ is a proportionality coefficient whose value is
of the order of 10−2. However, this is no more than a rough indication. Comparisons
with observations show deviations from this expression of a factor of 4 both upward and
downward (1/4). For better estimates, local calibration or the use of two-dimensional or
even three-dimensional numerical models is required. (In the latter case, dispersion need
not be represented explicitly.)

We now write the one-dimensional balance equation for the transported matter that is
instantaneously present between two cross sections a unit distance apart:

∂A c
∂t

+ ∂AT
∂s

= 0 (10.67)

or

∂A c
∂t

+ ∂Qc
∂s

− ∂

∂s

(
KA

∂c
∂s

)
= 0 (10.68)

Expansion of the derivatives, assuming a prismatic conduit, and substitution of the
continuity equation (Eq. (1.3)), given by

∂A
∂t

+ ∂Q
∂s

= 0 (10.69)

yields

∂c
∂t

+ U
∂c
∂s

− K
∂2c
∂s2 = 0 (10.70)

Once more, we find the one-dimensional advection–diffusion equation. Its solutions are
similar to those we have seen above.

Case 3: Instantaneous Release in a Cross Section

Assume that at t = 0 an amount of material M is released in a river at s = 0, which
is instantaneously distributed uniformly in the cross section. Initially, the concentration is
zero everywhere. The solution is again a Gaussian density function, analogous to that in
Eq. (10.27), in which the proportionality factor now follows from the condition that the
amount of transported (conservative) matter that is present in the entire river is constant in
time, equal to the released amount M:∫ +∞

−∞
A c(s, t) ds = A

∫ +∞

−∞
c(s, t) ds = M (10.71)
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Fig. 10.11 Calibration of a one-dimensional horizontal transport model of the river Rhine: model result (solid) and
measurements (squares); from Van Mazijk (1996)

The solution can then be written as

c(s, t) = M/A√
2π σs(t)

exp

(
− (s − Ut)2

2σs2(t)

)
= M �(s − Ut; σs(t)) (10.72)

in which σs(t) = √
2Kt. The solution is –again– a Gaussian distribution that gradually

lowers and broadens as it is advected downstream. Figure 10.11 gives a set of rhodamine
concentration distributions measured in the river Rhine following an abrupt injection of
the tracer rhodamine in a cross section; see Box 10.2. The curves in Figure 10.11 have
been calculated from Eq. (10.72), with an empirical correction to the mean velocity in
the conveyance channel to account for the effect of groynes, and a best-fit estimate of
the coefficient γ in Eq. (10.66). Therefore, the results are more like a calibration than an
independent validation. Nevertheless, it is gratifying that the theory simulates the observed
pattern quite well.

Box 10.2 One-dimensional transport model of the river Rhine

In an effort to verify the validity of the theoretical result expressed in Eq. (10.72), a major experiment was
performed in the river Rhine as an international cooperative project (Van Mazijk, 1996). A tracer substance,
rhodamine, was abruptly released at a cross section near Basel, in Switzerland, after which the concentrations
were measured at a number of stations downstream, covering a distance of nearly 700 km. Figure 10.11 shows
the results. The peak passes the most downstream measurement station (Lobith), at a distance of some 688 km
from the source, approximately 6.8 days after the release, corresponding to an average velocity of nearly
1.2 m/s. The expected downstream decrease in peak concentration, the widening of the distribution, and the
asymmetry of the variation in time at each fixed point can be clearly seen.
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The total amount of tracer material passing any fixed cross section can be expressed as∫ +∞

0
AU c(s, t) dt = Q

∫ +∞

0
c(s, t) dt = M (10.73)

This relation can be used for the purpose of discharge measurement, similar to Eq. (10.63)
in the case of a continuous release.

Problems

10.1 What is the physical meaning of the mathematical quantity ‘divergence of a vector’?
10.2 What is the difference between a balance equation and a conservation equation?
10.3 Describe in your own words the meaning of the notions of molecular diffusion,

turbulent diffusion and dispersion.
10.4 Why, and under what circumstances, can turbulent fluctuations cause a net transport,

even though their averages are zero?
10.5 Which characteristics of turbulence determine the value of the turbulence diffusivity?
10.6 Why is there no need to represent dispersion explicitly in 3D-transport models?
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11 Numerical Computation of Solutions

This chapter provides an introduction to numerical methods by presenting the numerical
counterparts of some analytical models introduced earlier in the book. We will discuss a
particular type of solution method for a selection of problems, explain its most important
properties and present the resulting numerical code down to the level of the individual
program statements. The use of these program scripts will be demonstrated by means of
computational examples. In the wake of each method treated we will also summarize
some other methods, providing the reader with an overview of alternative solution
strategies.

11.1 Introduction

The preceding chapters dealt with various types of unsteady flow, resulting in analytical
solutions of the governing mathematical equations. These solutions generally provide
relations between the characteristics of a water system and its forcing, on the one
hand, and the system’s response, on the other. In terms of readiness and the overall
insight they provide, analytical approaches are still unmatched. However, for practical
applications involving complex geometries, arbitrary forcings, and possibly nonlinear
effects, they are also somewhat limited due to the assumptions and simplifications on which
they rely.

Since the 1950s computer models have therefore gradually, and decisively, replaced the
former analytical approaches for computing solutions to real-world problems. The use
of advanced numerical tools to compute flow problems in today’s engineering practice
is ubiquitous and has witnessed a tremendous increase in possibilities. Yet however
sophisticated these models may be, they are based on the same theoretical concepts as
their analytical predecessors, the study of which is still relevant to understand the results
provided by modern computer tools.

In this chapter we will take a first step into the realm of numerical computing by
working out some simple examples from previous chapters using the Python programming
language. For this purpose some basic knowledge of Python will be needed (see for
instance Hetland (2005) or Langtangen (2009)), but this may also be learned as we proceed
along the examples in this chapter.

211
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212 Numerical Computation of Solutions

11.2 Canal-Basin System

Our first numerical endeavor concerns a simple model of a small tidal basin that is
connected to the sea by a narrow gap or entrance channel. The imposed tidal water level
at sea (hs) leads to a time-varying water level in the basin (hb) that does not depend on
the position within the basin. The resulting discrete system has been discussed extensively
in Chapter 6, providing analytical solutions of the linearized equations. Using a numerical
model we may refrain from such linearization and include nonlinear resistance and possible
variations of the basin area and channel cross section with the water level as well. Because
of its simplicity, the resulting model perfectly illustrates some basic concepts of numerical
modelling.

11.2.1 Model Equations

For convenience we restate here the corresponding mathematical problem. The water level
variation in the basin and the net inward discharge in the entrance, denoted by Q, are related
by the continuity equation, (see also Eq. (6.1))

Ab
dhb
dt

= Q (11.1)

where Ab is the area of the free surface in the basin connected to the sea, possibly depending
on the water level in the basin.

The discharge in the entrance is found by solving the following momentum equation
(see Eq. (6.11)),

�
dQ
dt

= gAc (hs − hb) − χ
|Q|Q

Ac
(11.2)

where hs is the water level at sea, � is the length of the entrance (possibly zero), Ac is the
conveyance area of the entrance, and χ is a generalized resistance coefficient (including
expansion losses and bed friction). Both Ac and χ may depend on the water levels hb and/or
hs. The water level at sea is supposed to be known from measurements or tidal predictions.
Bathymetric data are required to determine Ab and Ac as functions of the respective local
water levels.

To complete the problem formulation, the water level in the bay and the discharge in the
entrance must be prescribed at the initial time. Problems of this type are commonly referred
to as initial value problems. Starting from the initial conditions, their solution is obtained
by marching forward in time by evaluating the rate of change of the state variables.

Our task is now to compute the water level hb and the discharge Q for some time interval
of interest I = [t0; tN], where t0 and tN are the start time and end time of our simulation,
respectively.
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213 11.2 Canal-Basin System

11.2.2 Discretization

In order to solve the above problem by means of a computer model, the ordinary differential
equations (11.1) and (11.2) must be transformed into algebraic equations. To that end,
instead of treating the dependent variables hb and Q as continuous functions of time t,
we will represent them as ordered sequences of discrete values. Consequently, the model
equations have to be approximated in some way or another, since the variables are no
longer continuous but have been reduced to finite sets of numbers. These two steps are
essentially intertwined and together define a particular numerical method.

We set out by representing the time interval of interest I as a sequence of N + 1 discrete
time levels: I = [t0, t1, . . . , tN−1, tN], where N is the number of time steps. This is called
a partitioning of the time domain I. Individual time levels are indicated with tn where n
is an index corresponding to the order in the sequence. Such a sequence will be denoted
by [tn]. Within reasonable limits, to be discussed later on, the individual time levels may
be chosen arbitrarily, but it may be convenient to use equal time step lengths or to use the
time instances from the water level measurements. The partitioning also defines the time
step sizes �tn ≡ tn+1 − tn; see Figure 11.1.

Next, the water levels at sea corresponding to the time levels tn are defined by the
sequence [hn

s ], whose elements are specified using the measurements or predictions. In a
similar way, we define the sequences [hn

b] and [Qn] representing hb and Q, respectively.
These can be specified only for n = 0 as yet (using the initial conditions), with the
remaining elements awaiting computation.

The time partitioning and definitions of the various discrete sequences complete the first
step of the solution process.

11.2.3 Semi-implicit Method

Since initial value problems are solved by marching forward in time, the sequences [hn
b]

and [Qn] must be constructed by computing their elements sequentially. That is, starting
from the initial values for n = 0 we compute the elements indexed n = 1, which are then
used to compute the elements n = 2, and so on. Each next element is thus expressed as a
function of the preceding ones, which is called a recurrence relation. The second step of
the discretization involves finding a general formulation to advance the solution from an

Fig. 11.1 Partitioning of the time domain
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214 Numerical Computation of Solutions

arbitrary time level tn to the next time level tn+1. We will do this in two consecutive steps,
using the continuity equation and momentum equation, respectively.

Continuity Equation

Expressing the continuity Eq. (11.1) at time t = tn gives the following semi-discrete
equation,

An
b

dhb
dt

∣∣∣∣
tn

= Qn (11.3)

Supposing that hn
b and Qn are known, the right-hand side and the coefficient An

b have known
values. The time derivative of the water level, on the other hand, must be estimated from
the elements of the sequence [hn

b]. Using for instance the forward Euler method it can be
approximated as follows:

dhb
dt

∣∣∣∣
tn

≈ hn+1
b − hn

b
tn+1 − tn

(11.4)

Substitution into Eq. (11.3) leads to the following recurrence relation:

hn+1
b : = hn

b + �tn
Qn

An
b

(11.5)

This assignment advances the discrete solution for hb from time level tn to time level tn+1
directly, because the right-hand side of Eq. (11.5) contains only quantities already known
at the previous time level tn. Such a relation, expressing the solution at the new time level
entirely in terms of the solution from the previous time level, is called explicit.

Momentum Equation

In order to find the discharge Qn+1 a similar procedure using the forward Euler method
could be applied to the momentum balance equation. However, combined with the
forward Euler method already applied to discretize the continuity equation, this leads to
a recurrence relation that will amplify small deviations in the solution. Small deviations
are always present, due to for instance rounding errors, and their unlimited growth will
ultimately dominate the sequence, which renders the solution useless. This is referred to
as instability, an important topic that will be discussed shortly. To avoid it, the backward
Euler method may be used to approximate the time derivative of the discharge, giving the
following approximation:

dQ
dt

∣∣∣∣
tn

≈ Qn − Qn−1

tn − tn−1
(11.6)

Using this expression to approximate Eq. (11.2) at time t = tn+1 leads to the following
recurrence relation:
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Qn+1 : = Qn + �tn
�

(
gAn+1

c

(
hn+1

s − hn+1
b

)
− χn+1 |Qn+1|Qn+1

An+1
c

)
(11.7)

The right-hand side contains several quantities that are unknown at the previous time level
tn and the expression is therefore said to be implicit. Equations of this type are usually
harder to solve than their explicit counterparts since they require an inversion rather than a
plain substitution of already known values.

Fortunately, solution of Eq. (11.7) is not too complicated because hn+1
b and the

geometrical parameters An+1
c and χn+1 are known after Eq. (11.5). What remains is a

single nonlinear equation (due to the resistance term) having Qn+1 as unknown. It can be
solved iteratively using the Newton–Raphson method or the Picard method. The quadratic
resistance term in Eq. (11.7) is then linearized as, respectively,∣∣∣Qn+1

∣∣∣ Qn+1 ≈ ∣∣Q∗∣∣ (2Qn+1 − Q∗
)

or
∣∣Q∗∣∣ Qn+1 (11.8)

in which Q∗ is an estimated value for the discharge at time tn+1. Initially, Q∗ is set to
Qn after which Eq. (11.7) can be solved to obtain a first estimate of the solution Qn+1.
Replacing Q∗ with this value and repeating the procedure will improve the estimate Qn+1,
and so forth. In most cases, it suffices to perform just one step, in which case we simply
set Q∗= Qn and compute Qn+1 directly.

Due to its alternate use of explicit and implicit steps the resulting method is referred to
as semi-implicit. It is the simplest member of the class of so-called symplectic methods in
which a particular sequence of explicit and implicit steps is performed that preserves the
dynamical structure of the underlying mass–spring–damper system; see Sanz-Serna and
Calvo (1994).

11.2.4 Some Other Solution Methods

The backward Euler method may be used in the discrete continuity equation as well
(by replacing Qn in Eq. (11.5) with Qn+1) giving the fully implicit method. The solution
strategy becomes slightly more complicated since now an expression for hn+1

b in terms of
Qn+1 (rather than its numerical value) must be substituted into the discrete momentum
equation (11.7) to obtain an expression for Qn+1. Back substitution of Qn+1 into the
discrete continuity equation then gives the solution for hn+1

b .
Another possibility is using a weighted average of the forward and backward Euler

methods to approximate the time derivatives in the continuity and momentum equations.
This can be expressed in terms of a weighting parameter θ , where θ = 0 corresponds to
the forward Euler method and θ = 1 to the backward Euler method. Taking the average
of the forward and backward Euler methods (θ = 1

2 ) gives the so-called Crank–Nicolson
method, which is the most accurate scheme belonging to this class of methods.

For completeness we finally mention Runge–Kutta methods where both the continuity
equation and the momentum equation are solved using explicit values of the water level and
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the discharge. By combining a limited number of explicit stages the approximation of the
time derivatives is systematically improved; see for instance Sanz-Serna and Calvo (1994).

11.2.5 Properties of the Semi-implicit Method

It has already been mentioned a few times that the various approximations of the time
derivatives involve errors. Application of numerical models without prior knowledge of
the nature of these errors is not advisable, since it can easily lead to unreliable results
that may lead to wrong conclusions or bad engineering decisions. Before coding the semi-
implicit tidal basin model into a Python script, we will therefore briefly examine some
important properties of discrete solutions obtained by Eqs. (11.5) and (11.7).

Accuracy

To determine the accuracy of our model approximation we assume that the analytical
solution for hb is a smooth function of time; its value at time t = tn+1 can then be developed
from the function value and its derivatives at time t = tn using a Taylor series expansion,
as follows:

hb (tn+1) = hb (tn) + �tn
dhb
dt

∣∣∣∣
tn

+ 1
2�t2n

d2hb
dt2

∣∣∣∣∣
tn

+ 1
6�t3n

d3hb
dt3

∣∣∣∣∣
tn

+ · · · (11.9)

For �tn sufficiently small, the second-order term dominates the sequence of higher-order
terms in the right-hand side. Therefore, a constant K exists such that this sequence is
smaller than K�t2n, provided �tn is sufficiently small. Supposing that the exact solutions
for hb and Q are known at time tn, the following inequality holds:

hn+1
b − hb (tn+1) ≤ K �t2n (11.10)

which follows after subtraction of Eq. (11.9) from Eq. (11.5) and using Eq. (11.3). The left-
hand side of this inequality represents the difference between the numerical approximation
hn+1

b and the exact solution hb (tn+1) and is called the local error. It occurs every time we
apply the recurrence relation given by Eq. (11.5). Eq. (11.10) cannot be used to estimate
the magnitude of the local error directly since the constant K is not known beforehand. It
merely states that the local error is proportional to �t2n.

This result may seem disappointing; however, it also implies that the local error can be
made arbitrarily small by decreasing the time step size. In the limit �tn ↓ 0 the local error
vanishes completely; the discrete approximation is therefore consistent with the continuous
form of the time derivative. The order of consistency is one in this case, meaning that a
linear function is integrated exactly. By similar analyses it can be proven that the backward
Euler method and Crank–Nicolson method are also consistent with consistency orders of
one and two, respectively.

Stability

We now turn to the topic of stability, touched on earlier. A numerical method is said to be
stable if small changes in the initial data cause only small changes in the computed result.
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217 11.2 Canal-Basin System

This guarantees that disturbances in the solution that may arise during a simulation (think
of limited accuracy or finite precision of computer arithmetic) will not grow during the
next sequence of time steps.

To examine the behaviour of such disturbances, imagine that the solution for the
discharge at time tn is perturbed with a small deviation δQn. Carrying out the assignment
defined in Eq. (11.5), the water level at time tn+1 will then deviate by an amount δhn+1

b =
�tnδQn/An

b from the regular solution. Performing next the discharge update according to
Eq. (11.7), ignoring the resistance term, the discharge deviation at time tn+1 equals

δQn+1 =
(

1 − �t2n
g
�

An+1
c
An

b

)
δQn (11.11)

During the next recurrence, the new disturbances δhn+1
b and δQn+1 will influence the

solution at time level n + 2, and so on. If these disturbances grow in magnitude during
each time step, they will ultimately overrule the regular solution, rendering the computed
result useless. In our example this occurs if in Eq. (11.11) the term between parentheses
has a modulus exceeding one. Since this term includes the time step size, apart from the
geometrical parameters and gravity, avoiding instabilities implies a bound on the time step
size, depending on the system properties.

A more profound analysis, involving the eigenvalues of the discrete system formed by
Eqs. (11.5) and (11.7), leads to the following necessary and sufficient stability criterion for
the semi-implicit method (ignoring resistance):

�tn ≤ 2
ωn

0
(11.12)

where ωn
0 = √

gAn
c/�An

b is the eigenfrequency of the canal–basin system at time level n.
The semi-implicit method is thus conditionally stable; the solution will be stable if and
only if the above condition on the time step size is met.

Inclusion of the resistance term in the analysis results in a smaller allowable maximum
time step size if the system remains dominated by inertia. If resistance dominates (see
Chapter 6), the discrete solution will always be stable, independent of the time step size,
which is referred to as unconditional stability. Without proof, we state that the semi-
implicit method for the tidal basin problem has stable solutions if �tn ≤ √

2/ωn
0, regardless

of the system parameters.

Convergence

An important consequence of stability is that local errors will not grow during the
recurrency. The accumulated error during a simulation, the so-called global error, is
therefore bounded by the sum of the local errors. Since the number of time steps N is
inversely proportional to the time step size, it follows that the global error of a stable
method is one order lower than the local error. The global error of the semi-implicit method
is therefore proportional to �t.
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We finally state what is perhaps the most important result of this section: the solution
of a stable and consistent method converges to the exact solution if the time step size goes
to zero. Although the local and global errors are not known a priori, we can make them
arbitrarily small by decreasing the time step size. In practice we will reduce the time step
size until the computed solution does not change anymore, indicating that we are close to
the exact solution. A comforting thought, indeed.

11.2.6 Python Implementation

Our computer code has to perform the following main tasks. First, the prescribed tidal
water levels and the geometric data of the basin and its entrance have to be processed.
To this end the tidal levels (hs) are stored in a file containing two columns giving the
discrete time levels and the corresponding tidal water levels, respectively. The bathymetry
of the system (Ab, Ac and R) must be prescribed for a range of water levels. They will be
interpolated for intermediate water levels. Second, the sequences representing the water
level in the basin [hn

b] and the discharge [Qn] have to be computed using the recurrence
relation. Finally, output of the model must be provided for further analyses and processing.

A Python script carrying out these tasks is given in Box 11.1. It is based on the semi-
implicit method. The scripts can be executed by running Python in the directory containing
the file basin.py and typing import basin.py. We will now examine the script in
detail.

Input and Initialization

In line 2 the module pylab is loaded containing array-computing methods and plotting
tools, which are not available in plain Python. Make sure this module has been downloaded
and installed! In line 5 the gravitational acceleration g is specified. Line 8 reads the
input file (tidal-levels.dat) and splits it into separate character strings which, after
executing line 9, yields an array of numbers containing the prescribed tidal water levels
and corresponding time instants.

The free-surface area of the basin as a function of the water level is specified in lines
12 and 13 by prescribing it for a number of intermediate water levels. This information is
passed to a function Ab(n), defined in line 16, which calculates the free-surface area for
a water level hn

b by means of interpolation. The function interp, used in this function, is
available from pylab. The geometry of the entrance channel (conveyance cross section,
hydraulic radius, and length) is specified in lines 19–21, respectively. In the example script
these geometrical parameters are assumed constant, but, when necessary, they can be made
functions of the water level as was done with the basin area. The dimensionless bed-friction
coefficient (cf) is specified in line 22, from which the overall resistance coefficient (chi)
is computed in line 23. This concludes the input section.

The computation proceeds by initializing some parameters first. The time levels, which
are stored at even index numbers in the array data, are assigned to a new array t, for
convenience, in line 26. The index specifier [0::2] refers to all elements in data from
index 0 (first array element) up to the last one, with a step size of 2. The number of time
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Box 11.1 Python script Basin.py

1 # import modules
2 from pylab import ∗
3
4 # physical constant(s)
5 g = 9.81 # gravitation [m/s2]
6
7 # read water level records
8 data = open(’tidal−levels.dat’).read().split()
9 data = array([float(p) for p in data])

10
11 # wet surface area basin
12 level = array([−2.0,−1.0, 0.0, 1.0, 2.0, 3.0]) # water level [m]
13 area = array([ 80, 90, 100, 115, 120, 125]) # basin area [km2]
14
15 # function := water level [m] −> basin area [m2]
16 def Ab(n): return interp(hb[n], level , area)∗1.E6
17
18 # channel geometry
19 Ac = 3000 # conveyance area [m2]
20 R = 6. # hydraulic radius [m]
21 L = 600 # length [m]
22 cf = 4.E−3 # bed friction coefficient [−]
23 chi = .5 + cf∗L/R
24
25 # time partitioning
26 t = data [0::2] # discrete time levels [s]
27 N = size(t) − 1 # number of time steps [−]
28
29 # tidal water levels
30 hs = data [1::2] # tidal level at sea [m]
31
32 # initial conditions
33 hb = zeros(N+1); hb[0]=hs[0]
34 Q = zeros(N+1); Q[0]=0
35
36 # time stepping
37 for n in range(N):
38 dt = t[n+1] − t[n] # time step size [s]
39 # continuity equation
40 hb[n+1] = hb[n] + dt∗Q[n]/Ab(n) # water level update [m]
41 # momentum equation
42 kappa = chi∗abs(Q[n])/Ac # resistance factor [m/s]
43 dQ = g∗Ac∗(hs[n+1]−hb[n+1])−kappa∗Q[n] # intermediate term
44 Q[n+1] = Q[n] + dQ/(L/dt + 2∗ kappa) # discharge update [m3/s]
45
46 # plot water levels
47 subplot(2, 1, 1)
48 plot(t/3600 , hs , ’−k’,linewidth =2); plot(t/3600 , hb , ’−−k’,linewidth =2)
49 legend([’$h_s$’,’$h_b$’], fontsize =20)
50 xlabel(’time [hrs]’, fontsize =14)
51 ylabel(’water level [m wrt datum]’, fontsize =20)
52
53 # plot discharge
54 subplot(2, 1, 2)
55 plot(t/3600 , Q, ’:k’,linewidth =4)
56 xlabel(’time [hrs]’, fontsize =14)
57 ylabel(’$Q$ [m$ 3 $/s]’, fontsize =20)
58
59 # output to screen
60 show()
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steps (N) equals the size of array t minus one, which is determined in line 27. The tidal
water level at sea, which is stored at uneven index numbers in the array data, is assigned
to a new variable hs in line 30. The water level in the basin and the discharge are initialized
as arrays of zeros hb and Q in lines 33 and 34, respectively. The first array element (with
index 0) prescribes the corresponding initial condition. In our example, the initial water
level in the basin is equal to the initial water level at sea, while the initial discharge is set
to zero.

Time Stepping

Next, the lists hb and Q are filled by applying the recurrence relations repetitively in a
loop defined in line 37, iterating over time indices n from 0 to N-1. After determining
the time step size dt (line 38) the new surface level element hb[n+1] is computed using
Eq. (11.5), which is implemented literally in line 40.

Solving the momentum equation is somewhat more elaborate. First, the resistance term
is linearized using a resistance factor κ = χ |Qn|/An+1

c , which is calculated in line 42. For
ease of implementation, Eq. (11.7) for the momentum update is then rewritten as follows:

(�/�tn + 2κ)�Qn = gAc
(

hn+1
s − hn+1

b

)
− κQn (11.13)

where �Qn is the discharge increment from time level n to n + 1. Newton–Raphson
linearization has been used to linearize the resistance term; see also Eq. (11.8). The right-
hand side of the above expression is calculated in line 43, using a temporary variable dQ,
after which the new discharge Q[n+1] is obtained in line 44.

Output of Results

What remains is to plot the results. By means of subplot (lines 47 and 54) a plot
window is created containing two figures, stacked vertically. The arguments of the plot
function (line 48 for the water levels and line 55 for the discharge) are the values on the
horizontal and vertical axes, respectively, and format specifiers for line style and markers.
To distinguish between the water levels at sea and in the basin, a legend is added to the
corresponding figure, specified in line 49. Horizontal and vertical axes are defined in lines
50 and 51 (water levels) and lines 58 and 59 (discharge), respectively. Note that Latex-
style editing is used to represent mathematical symbols. All of this is rather basic; more
advanced formatting examples can be found in the pylab user manual. The figures are
finally plotted to screen using the show() command in line 60, which also concludes the
tidal basin script.

11.2.7 Verification

Before using a numerical model in practice it should be tested to eliminate algorithmic
errors and programming flaws. We will therefore briefly examine some results of our tidal
basin model to see whether they make sense.
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Example 11.1 We use the tidal basin from Example 6.2 (Ab = 100 km2, Ac = 3000 m2, R =
6 m, � = 600 m). Natural oscillation of the unforced canal–basin system is considered with
initial conditions h0

b = 0.1 m and Q0 = 0. In absence of resistance and for constant system
parameters (Ab, Ac, and �), the surface elevation in the basin and the discharge in the canal
will vary harmonically, with an eigenfrequency ω0 = √

gAc/�Ab = 7.0 × 10−4 rad/s, and
amplitudes ĥb = h0

b = 0.10 m and Q̂ = ω0Abĥb = 7004 m3/s.
Choosing the time step size involves the stability criterion given in Eq. (11.12). The

maximum allowable time step for stability equals 2/ω0 ≈ 3000 s. This would lead to
about three time steps per wave period. The simulation would be stable, but it would also
lack resolution. Therefore a smaller time step size of 600 s is used to resolve the natural
oscillation more accurately.

Result

Figure 11.2 shows that the computed solutions for the water level and discharge match
the respective analytical solutions closely. Importantly, the computed solution maintains
its amplitude, without damping. Not every numerical method has this desirable property.
The fully implicit method for instance would yield a damped oscillation; see also
Problem 11.3.

Fig. 11.2 Natural oscillation of a canal–basin system (Example 11.1); (a) exact (solid line) and computed (circles) surface
elevation; (b) exact (solid line) and computed (circles) discharge
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Fig. 11.3 Tidal basin (Example 11.2); (a) water level at sea (dashed line), linear (solid line) and computed (circles) solution of
the water level in the basin; (b) linear (solid line) and computed (circles) solution of the discharge

Example 11.2 We add resistance to the system (cf = 0.004) and force it with a sinusoidal
M2-tide with a surface level amplitude ĥs of 0.75 m, as in Example 6.2. The initial
conditions for the simulation are h0

b = ĥs and Q0 = 0; the time step size �t is set to
1200 s, which is less than

√
2/ω0, satisfying the time step constraint. Anticipating a much

larger period of oscillation (M2-tide) than in the previous example, there seems no need (to
be verified) to reduce the time step size in this case.

Result

Figure 11.3 shows the computed water level and discharge, together with the respective
periodic solutions of the linearized problem. Resistance is dominant in this system and
therefore the solution adapts quickly to a periodic state. The general characteristics of
the computed periodic solution largely agree with the analytical solution of the linearized
problem; the differences are mainly caused by the nonlinear resistance term; see also
Box 11.2.

The observed absence of artificial damping is especially useful when modelling natural
oscillation or near-resonant forcing of a canal–basin system. If the natural period of
oscillation is much smaller than the period of the (tidal) forcing, the unconditionally stable
fully implicit method (allowing a larger time step size) is perhaps more practical.
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Box 11.2 Nonlinear effects in a tidal basin

Example 11.2 shows that around slack tide the discharge changes more rapidly than predicted by lin-
ear theory. Not only does the resistance term in the nonlinear model vanish at this time instant, but
also its time derivative. This causes a larger water level amplitude in the basin, compared with the
solution of the linearized model. On the other hand, around maximum ebb and flood the nonlinear
resistance is larger than its linearized counterpart. Overall, the computed discharge tends to oscillate
around the harmonic solution with a frequency twice that of the tidal forcing, clearly visible in Figure
11.3. This is the manifestation of a higher harmonic caused by the nonlinearity; see also the discussion
in Section 7.8.

The above findings give confidence in the Python program. More advanced testing, by
for instance comparing the model results with a wider range of analytical solutions, could
provide a more quantitative assessment of the numerical error.

11.3 Semi-Implicit Method for Long Waves

In this section we will discuss numerical solution methods for one-dimensional models of
shallow water flows in channels. In such systems the problem variables, being the water
level h and the discharge Q, may vary both in time and in space. Besides discretization of
the problem variables in the time interval of interest, as was done for the numerical model
of the tidal basin, this requires a discretization in the spatial domain of interest. Apart from
that, the ensuing solution algorithm will be quite similar to the previous methods for the
tidal basin in that a recurrence relation is obtained in which the water level and discharge
are computed sequentially.

11.3.1 Model Equations

For convenience, we repeat here the set of one-dimensional equations governing shallow
water flow in open channels.

Variations of the water level (h) in time are related to variations of the discharge (Q) in
space by the continuity equation (see also Eq. (1.20)),

B
∂h
∂t

+ ∂Q
∂s

= 0 (11.14)

where B is the storage width of the channel. If the channel is non-uniform, it will vary
along the streamwise coordinate s. If the cross section is not rectangular, it will also vary
in time through its dependency on h. Variations of the discharge in time are governed by
the momentum balance equation (see also Eq. (1.21)),
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∂Q
∂t

+ ∂

∂s

(
Q2

Ac

)
+ gAc

∂h
∂s

+ cf
|Q|Q
AcR

= 0 (11.15)

where Ac and R are the conveyance area and hydraulic radius, respectively, and cf is the
dimensionless resistance coefficient. These may all depend on the spatial coordinate s, for
instance where the cross-sectional profile or the bed roughness changes, and, through h,
they may depend on time as well.

In analytical models the dependency of cross-sectional parameters on the local water
level is usually ignored, while only highly schematized spatial configurations can be
considered; see for example Section 7.6. Also, the nonlinear resistance term in Eq. (11.15)
must be linearized to enable analytical treatment of the equations. Using a numerical
model, however, there is no need for such simplifications; rather, inclusion of these
nonlinearities is quite straightforward.

To solve Eqs. (11.14) and (11.15), initial conditions prescribing the state (h, Q) of the
water system at some initial time must be specified, together with boundary conditions
describing the interaction of the system with its environment. Problems of this type are
called initial boundary value problems. They must be solved by marching forward in time,
starting from the initial condition.

Consider therefore the spatial domain S = [s0; sM], where s0 and sM are the coordinates
of the respective end points of a channel reach of interest. The task lying ahead is to
compute the water level h and discharge Q in the space–time domain S × I, where
I = [t0; tN] is the time interval of interest, with t0 and tN being the start time and end
time of the simulation.

11.3.2 Discretization

To solve Eqs. (11.14) and (11.15) approximately using computer arithmetic, they must be
transformed into algebraic equations. To that end the dependent variables h and Q must
be represented as discrete sets of numbers. Besides discretizing the variables in the time
domain, introduced in Section 11.2 for the tidal basin model, this involves a discretization
in space.

Spatial Domain

The spatial domain can be partitioned using the following sequence of points: S =
[s0, s1, . . . , sM−1, sM]. This defines M sections, numbered m = 1, 2, . . . , M, having lengths
�sm ≡ sm − sm−1. All sections may have the same length, though not necessarily,
in which case the partitioning is called uniform. Furthermore, in each section m we
define a corresponding discharge Qm, the conveyance area Am and hydraulic radius Rm.
(For compact notation, and since there is no risk of confusion, A will be used from here on
to denote the area of the conveyance cross section.)

At the transitions between sections and at the domain boundaries we next define
additional computational nodes, numbered m = 0, 1, . . . , M, holding the discrete water
levels hm. (Note that there is one more water level node than there are sections.) We also
define the local storage widths at these nodes, and denote them by Bm. This arrangement,
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Fig. 11.4 Arrangement of variables in a staggered grid

where water levels and discharges reside in alternate locations, is called a staggered grid.
It is depicted schematically in Figure 11.4.

Time Domain

The preceding provides a complete description of the channel geometry and the flow state
in the channel at a particular time instant. To describe the problem variables in time, the
time domain I is partitioned into N time intervals. We use a sequence of discrete time levels:
I = [t0, t1, . . . , tN−1, tN], where t0 and tN are the start time and end time of the simulation,
respectively.

We may now define the two-dimensional sequences [hn
m] and [Qn

m] of which the elements
hn

m and Qn
m denote the water level at node m and the discharge in section m, respectively,

at time level tn. A similar convention can be used for the various parameters describing
the geometry and the resistance of the channel. In a computer program these sequences are
coded as two-dimensional arrays, covering the entire space–time domain or just a part of it
(for instance the spatial values at time tn and tn+1 only, which are overwritten alternately).

All elements having time index n = 0 are already specified by the initial conditions.
Where water level boundary conditions are imposed, the corresponding elements [hn

0]
(water level given at s = s0) and/or hn

M (water level given at s = sM) are readily specified
as well. All other elements of [hn

m] and [Qn
m] are still unknown and must be constructed by

the time stepping algorithm.

11.3.3 Semi-Implicit Method

A general recurrence relation will be formulated to advance the solution from time level
n, say, to time level n + 1. Starting from the initial conditions, the repeated application of
such a relation will finally yield the solution over the entire time domain. In the following
we will formulate a semi-implicit method in which the water level is updated first (using
the continuity equation), followed by an update of the discharge (using the momentum
equation). In this way the solution marches forward in time. This approach is conceptually
similar to the method used for the tidal basin problem.
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Continuity Equation

The first step involves the continuity equation Eq. (11.14). Approximating the time
derivative of the water level at point s = sm and at time t = tn by the forward Euler
method gives

Bn
m

hn+1
m − hn

m
�tn

≈ − dQ
ds

∣∣∣∣
sm,tn

(11.16)

The right-hand side of this ordinary differential equation may be evaluated by comparing
the discharges in the sections adjacent to water level node m, being section m + 1 and
section m, respectively. The difference between the corresponding discharges divided by
the streamwise distance between the midpoints of both sections is a measure of the spatial
derivative of Q at the point s = sm. This approach, commonly referred to as central
differencing, leads to the following approximation:

dQ
ds

∣∣∣∣
sm,tn

≈ Qn
m+1 − Qn

m
1
2 (�sm + �sm+1)

(11.17)

While this approximation of the spatial derivative of Q cannot be used at boundary nodes,
its substitution into Eq. (11.16) leads to the following assignment at interior nodes:

hn+1
m := hn

m − �tn
�Sm

Qn
m+1 − Qn

m
Bn

m
for m = 1, . . . , M − 1 (11.18)

using the definition �Sm ≡ 1
2 (�sm + �sm+1), to denote the average section length around

node m. The storage width Bn
m may depend on the associated water level hn

m.
The right-hand side of the assignment in Eq. (11.18) is known explicitly at time level

n. The expression is quite similar to Eq. (11.5), used to update the water level of the tidal
basin, in that the water level increment equals the net inflow towards a particular control
volume divided by its storage area.

Boundary Conditions

The assignment in Eq. (11.18) is defined at interior water level nodes only. To determine
the water levels hn+1

0 and hn+1
M at the left and right boundary, respectively, the boundary

conditions must be applied.
At water level boundaries the imposed water level is simply assigned to the water level

variable residing in the respective node, which is referred to as a Dirichlet boundary
condition.

If the discharge is specified as a boundary condition, Eq. (11.18) is modified locally to
give

hn+1
0 := hn

0 − �tn
�S0

Qn
1 − Qn

L
Bn

0
or hn+1

M := hn
M − �tn

�SM

Qn
R − Qn

M
Bn

M
(11.19)

in which Qn
L and Qn

R denote the imposed discharge at the left and right boundary,
respectively, at time level tn. They may be specified directly, leading to a so-called
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Neumann boundary condition, but they may also depend on the local water level, in which
case we have a so-called Robin boundary condition. An example of the latter is the weakly
reflective boundary condition where the Riemann invariant along the ingoing characteristic
is prescribed. Writing the Riemann invariants as R± = Q ± Bc h, and prescribing R+ at the
left boundary and R− at the right boundary, we obtain

Qn
L = R+

L − (Bc)n
L hn

0 or Qn
R = R−

R + (Bc)n
R hn

M (11.20)

where the local Bc values are calculated using the geometric parameters of the section
adjacent to the respective boundary node, at time tn. The corresponding value of the
local Riemann invariant is based on the flow state assumed in the domain outside the
boundary.

Imposing Riemann boundary conditions avoids the artificial reflection of disturbances
approaching the boundary from the interior of the domain. This would occur when the flow
state in the canal does not match with the boundary condition. Robin-type boundary con-
ditions may also be used to impose various other discharge relations treated in Chapter 5;
for example those involving in/outflow head losses, control structures and the like.

Momentum Equation

Next, the discharge in the canal sections will be updated using the just obtained values of
the discrete water levels at time level tn+1. To simplify matters, we will temporarily ignore
the advection of momentum and reintroduce it later on. Consideration of the momentum
equation (11.15) in section m (denoted by Sm) at time t = tn+1, and discretizing the
time derivative using the backward Euler method, then leads to the following ordinary
differential equation

Qn+1
m − Qn

m
�tn

= −gAn+1
m

dh
ds

∣∣∣∣
Sm,tn+1

− χn+1
m

�sm

|Qn+1
m |Qn+1

m

An+1
m

(11.21)

in which χn+1
m ≡ cf�sm/Rn+1

m denotes the dimensionless bed resistance coefficient of
section m, a definition similar to that for the tidal basin system used in Eq. (11.2). The
water level gradient appearing in the right-hand side of Eq. (11.21) can be evaluated by
central differences, using the water level nodes at both ends of each section

dh
ds

∣∣∣∣
Sm,tn+1

≈ hn+1
m − hn+1

m−1
�sm

(11.22)

This approximation results in the following assignment to update the discharge,

Qn+1
m : = Qn

m − �tn
�sm

(
gAn+1

m

(
hn+1

m − hn+1
m−1

)
+ χn+1

m

∣∣Qn+1
m

∣∣ Qn+1
m

An+1
m

)
for all m

(11.23)

This expression is defined for all sections; boundary conditions do not have to be specified
at this stage of the algorithm. The assignment is implicit since the right-hand side of
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Fig. 11.5 Semi-implicit method: continuity equation (1), momentum equation (2)

Eq. (11.23) contains several quantities at the new time level n + 1. The coefficient χn+1
m

and cross-sectional area An+1
m may depend on the water level in a section and are readily

evaluated once the new water levels are known.
What results is a set of M uncoupled equations, having unknowns Qn+1

m , that can
be solved sectionwise. The nonlinear resistance term can be linearized using the Picard
method or the Newton–Raphson method, according to Eq. (11.8). The similarity of all the
above with the discrete momentum equation of the tidal basin model, Eq. (11.7), is evident.

The overall algorithm, with its alternate use of explicit and implicit steps, is called
semi-implicit. It is depicted schematically in Figure 11.5. Together with the staggered
arrangement of the Q and h variables, the semi-implicit time stepping guarantees stability
of the method; see also Section 11.3.5.

Inclusion of Momentum Advection

So far, the advection term has been ignored in the discrete momentum equation. This
approximation is valid only for low waves propagating in (nearly) stagnant water. For
high waves and/or significant ambient flow this assumption is no longer justified and we
have to include momentum advection in the formulation.

The advection term in the momentum equation can be discretized by differencing the
momentum flux F = Q2/A over a section, leading to an approximation similar to that in
Eq. (11.22) for the water level gradient

∂

∂s

(
Q2

A

)∣∣∣∣
Sm

≈ F̃m − F̃m−1

�sm
(11.24)

in which F̃m and F̃m−1 denote the momentum fluxes at nodes m and m − 1, respectively.
The discharge and cross-sectional area, which determine the momentum flux, are defined
sectionwise, rendering the flux F̃ double-valued at nodes. A unique value may be obtained
by averaging the fluxes in the sections adjacent to the considered node. However, the nodal
flux will then depend on the flow state downstream of a node. This will cause a transfer of
information in the upstream direction, which will lead to numerical artefacts.
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(a) (b)

Fig. 11.6 Upwinding of the momentum flux: positive discharge (a), negative discharge (b)

A better approach is therefore to compute the nodal momentum flux using the section
situated on the upstream side of the node only. This results in the following formulation
for the nodal momentum flux:

F̃m =

⎧⎪⎪⎨
⎪⎪⎩

Q2
m/Am if Qm > 0 and Qm+1 > 0

Q2
m+1/Am+1 if Qm < 0 and Qm+1 < 0

0 otherwise
(11.25)

This expression is then used in Eq. (11.24) to calculate the gradient of the momentum flux
over section m. The result is multiplied with �tn and subtracted from the right-hand side
of Eq. (11.23). The overall procedure is referred to as upwind differencing. It is depicted
schematically in Figure 11.6.

The momentum flux gradient may be evaluated explicitly at time level n or implicitly
at time level n + 1. The latter is consistent with the backward Euler method already used
to discretize the momentum equation in time. However, a set of coupled equations will
then result since the advection term depends on the unknown discharges in neighbouring
sections. Solution of such a system involves the inversion of a tri-diagonal matrix, which
is more elaborate than the sectionwise calculation of the discharge used so far. Implicit
treatment of the advection term is further complicated by its nonlinearity, requiring
Newton–Raphson or Picard linearization. It is therefore more practical to evaluate the
advection term explicity. Fortunately, this will not compromise the performance of the
semi-implicit method.

11.3.4 Some Other Solution Methods

The shallow water equations can be discretized in a number of ways; the semi-implicit
method is just one of many possible approaches. Without pretending to be complete, a
brief summary of some other well-known methods is given below. More comprehensive
treatments can be found in for instance Vreugdenhil (1994), Abbott and Basco (1997) or
Wesseling (2001).

Leapfrog Method

A slight modification of the semi-implicit method is obtained by staggering the variables
Q and h in time as well, giving the leapfrog method. Using indices as in Figure 11.7,
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Fig. 11.7 Leapfrog method: continuity equation (1), momentum equation (2)

the method involves the same sequence of steps as the semi-implicit method, the only
difference being that the discharge Qn

m is attributed to time tn + 1
2�tn instead of tn.

Algorithmically the two methods are equivalent, except for the implementation of the
initial and boundary conditions. The initial discharge Q0

m must now specify the discharge
at time t = t0 + 1

2�t0, while the Neumann boundary condition for the continuity equation
to obtain hn+1 must be specified at time t = 1

2 (tn + tn+1). This is a slight complication for
which reason the semi-implicit method is often preferred. Formally, the leapfrog scheme is
more accurate in time than its semi-implicit counterpart.

Implicit θ -Method

The semi-implicit method can be turned into a fully implicit method by using the backward
Euler method in the discrete continuity equation as well. The right-hand side of Eq. (11.18)
will then contain the unknown discharges Qn+1

m and Qn+1
m+1. Replacing these terms using

the expression given in Eq. (11.23) gives a system of equations for the nodal water levels
hn+1

m . For linear waves in a uniform canal, ignoring resistance and momentum advection,
this leads to the following implicit equation for the water level at an interior node m,

− σ 2 hn+1
m−1 +

(
1 + 2σ 2

)
hn+1

m − σ 2 hn+1
m+1 = hn

m − �t
Qn

m+1 − Qn
m

B �s
(11.26)

in which σ ≡ c�t/�s is the so-called Courant number. It plays an important role in
numerical analyses. Supplemented with the boundary conditions, a set of M + 1 equations
results with M + 1 unknown nodal water levels. The terms in the right-hand side of
Eq. (11.26) are computed explicitly. The combination of all left-hand sides constitutes a
tri-diagonal matrix. It can be solved with relatively little effort using Gauss elimination.
Substitution of the solution for the nodal water levels into the discrete momentum equation,
which is a sectionwise operation, finally gives the solution for the discharge.

Using a weighted average of the forward and backward Euler method in both the
continuity equation and the momentum equation gives the θ -method. The right-hand sides
of Eqs. (11.18) and (11.23) are then formulated at time level n + θ , where 0 ≤ θ ≤ 1. The
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resulting set of equations is implicit for θ > 0 and has the same structure as Eq. (11.26).
In practice it makes sense to only consider θ ≥ 1

2 since the method is otherwise unstable
for wave problems. For θ = 1

2 the Crank–Nicolson method is obtained, which of all these
methods has the highest order of accuracy.

Preissmann Method

It is also possible to avoid any staggering of variables. By defining the water level
and discharge variables at common spatial locations and at common time instances, a
collocated grid is obtained. It is depicted in Figure 11.8.

To obtain a stable method for the shallow water equations, the continuity and momentum
equations are discretized sectionwise, in a coupled fashion. For section m the discrete
equations are (for linear waves in a uniform domain, ignoring resistance and momentum
advection)

B
hn+1

m+1 + hn+1
m − hn

m+1 − hn
m

2�t
= −Qn+1

m+1 − Qn+1
m + Qn

m+1 − Qn
m

2�s
(11.27)

Qn+1
m+1 + Qn+1

m − Qn
m+1 − Qn

m
2�t

= −gA
hn+1

m+1 − hn+1
m + hn

m+1 − hn
m

2�s
(11.28)

Note that the time derivative has been averaged between nodes m and m + 1 and that
the spatial derivative has been averaged between time levels n and n + 1, giving a nice
skew-symmetry1 of the formulation. Variations are possible using the general θ -method to
discretize in time and upwind or downwind differencing in space. This class of algorithms
is referred to as the Preissmann method.

For a domain of M sections, the method gives 2M equations, while the number of
unknown Q and h variables equals 2 (M + 1) (since there is one more node than there
are sections). Two of the unknowns are supplied by the boundary conditions after which a
system of 2M equations with 2M unknowns is obtained. It can be solved by inversion of a
matrix having a banded structure containing seven diagonals. The solution process, using
Gauss elimination, will therefore be quite efficient.

Fig. 11.8 Preissmann method

1 In both physics and numerics skew-symmetry always hints at energy conservation. It is a desirable property of
any numerical method used to simulate nondissipative systems.
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Since the discrete equations are formulated sectionwise, the method generalizes easily to
network systems, which is one of the reasons for its widespread use in commercial software
packages.

Finite Element Method

We finally mention the finite element method where the problem variables Q and h are
represented as linear combinations of predefined trial functions. The water level for
instance is discretized as

h (s, tn) =
∑

m
hn

m ϕm (s) (11.29)

where the ϕm are the trial functions and hn
m discrete coefficients. Generally, the trial

functions are chosen to have compact support – i.e. they are zero in all nodes except the
associated node m– and are interpolated between nodes. An example of such a set of trial
functions and the corresponding interpolation of the water level is shown in Figure 11.9.

The coefficients hn
m in Eq. (11.29), and similar coefficients for the discharge, are the

unknowns of the resulting discrete problem. Before integrating them in time, the problem
equations are multiplied by so-called test functions and integrated over the spatial domain.
This is called a variational formulation of the problem. Helpful in this respect is that the
representation of a function in terms of (continuous) trial functions also defines its gradient.
If the number of test functions equals the number of trial functions, the procedure will give
the same number of equations as there are unknowns. A choice commonly made is to use
the trial functions as test functions as well, giving the Galerkin method. Since a wide range
of function spaces can be used to define trial/test functions, an incredibly rich class of
methods is obtained; see for instance Pironneau (1989) or Zienkiewicz et al. (2014).

11.3.5 Properties of the Semi-Implicit Method

This section discusses some basic properties of the previous semi-implicit method. Being
aware of the numerical limitations and artefacts warrants a proper use of such modelling
tools. Occasionally we will also touch on the properties of some of the alternative methods
mentioned in the previous section.

Fig. 11.9 Finite element method: interpolated function hn(s) using trial functions
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Accuracy and Consistency

The forward and backward Euler methods, used for time integration of the continuity and
momentum equations, respectively, involve a truncation error in the time derivatives that
is proportional to the time step size. The local error in the approximation of the solution is
then proportional to the time step size squared. Already demonstrated for the semi-implicit
tidal basin model (see Eq. (11.9)), this holds invariably for the semi-implicit shallow water
model.

The error due to the approximation of the various spatial derivatives by central
differences can be quantified in a similar way, using Taylor series expansions. The discrete
continuity equation, for instance, uses the discharges at the midpoints of sections m and
m + 1 to estimate the discharge gradient at node m; see Eq. (11.17). Developing these
discharges in terms of function values and derivatives at point sm and assuming a uniform
section length �s gives, respectively,

Qm = Q (sm) − 1
2�s

dQ
ds

∣∣∣∣
sm

+ 1
8�s2 d2Q

ds2

∣∣∣∣∣
sm

− 1
48�s3 d3Q

ds3

∣∣∣∣∣
sm

+ · · · (11.30)

Qm+1 = Q (sm) + 1
2�s

dQ
ds

∣∣∣∣
sm

+ 1
8�s2 d2Q

ds2

∣∣∣∣∣
sm

+ 1
48�s3 d3Q

ds3

∣∣∣∣∣
sm

+ · · · (11.31)

Subtraction of these equations and division by �s leads to

Qm+1 − Qm
�s

= dQ
ds

∣∣∣∣
sm

+ 1
24�s2 d3Q

ds3

∣∣∣∣∣
sm

+ · · · (11.32)

Comparing this result with Eq. (11.17) reveals that, for a uniform partitioning with
�s sufficiently small, the discrete discharge gradient involves a truncation error that
is proportional to �s2. (For a non-uniform partitioning the truncation error would be
proportional to �s.) This error can be made arbitrarily small by letting �s go to zero.
The approximation given in Eq. (11.17) is thus consistent with the continuous discharge
gradient.

A similar result can be derived for the discrete water level gradient in Eq. (11.22), affirm-
ing its consistency with the corresponding continuous form. The one-sided differencing
of the momentum flux gradient, due to the upwinding introduced in Eq. (11.25), is also
consistent, but comes with a first-order truncation error. (This can be made plausible by
noting its similarity to the forward and backward Euler methods for time differencing.)
Overall, we can conclude that our semi-implicit method is consistent with the shallow
water equations given in Eqs. (11.14) and (11.15).

In fact, all methods discussed in the previous section share this favourable property.
Since they all employ some form of central differencing to approximate the spatial
derivatives they are also equally accurate in space. Concerning the approximation of the
time derivatives, the semi- and fully implicit methods involve an error proportional to
the time step size. The Crank–Nicolson method, the Preissmann method of Eqs. (11.27)
and (11.28) and the leapfrog method are second-order accurate in time.
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Stability

Considering stability, we have to study the behaviour of small perturbations of the discrete
solution. Such deviations will always occur during a computation; if not initiated by
local errors, just discussed, they will be induced by the finite precision of computer
arithmetic. These deviations should not grow in magnitude after repetitive application of
the recurrence relations. Otherwise, the computed results will ultimately become useless.

Consider the recurrence relation in Eq. (11.18), which is used to compute hn+1
m using

the discrete discharge at time level n. We now express the required discharge in terms of
the discrete water level at time level n by applying the momentum update, Eq. (11.23),
from time level n − 1 to time level n. For linear waves in a uniform domain, and ignoring
resistance, the result can be written as follows:

hn+1
m : = σ 2 hn

m−1 +
(

1 − 2σ 2
)

hn
m + σ 2 hn

m+1 − �t
Qn−1

m+1 − Qn−1
m

B �s
(11.33)

where σ = c �t/�s is the Courant number. This equation shows that an initial perturbation
of the water level δhn

m at time level n will cause deviations from the regular solution
δhn+1

m = (
1 − 2σ 2) δhn

m and δhn+1
m±1 = σ 2δhn+1

m , respectively, at time level n+1. These new
disturbances will then cause other ones after the next time step, and so on. The resulting
sequence of deviations will decay if |1 − 2σ 2| ≤ 1 and σ 2 ≤ 1. This leads to the following
sufficient stability criterion:

c
�t
�s

≤ 1 (11.34)

In words, the distance travelled by a disturbance during one time step should not exceed the
section length. The semi-implicit method is therefore conditionally stable. This restriction,
which holds for the leapfrog method, too, is known as the CFL condition after Courant,
Friedrichs and Lewy, who pioneered numerical analyses (Courant et al., 1928). This
important result relies on a staggered spatial arrangement of the flow variables. Combining
semi-implicit time stepping with a collocated grid, on the other hand, will lead to persisting
disturbances, so-called spurious modes; see Box 11.3.

Box 11.3 Spurious modes

An important feature of our semi-implicit method is the spatial staggering of the discrete variables. Without
it unphysical fluctuations may persist in the solution. These so-called spurious modes are remnants of local
errors that neither grow nor decay after repeated time stepping. To understand this, the collocated grid may
be regarded as a superposition of two staggered grids, where one is shifted over a distance of 1

2 �s relative
to the other. Using central differencing to approximate the spatial derivatives, two discrete realizations of the
solution will emerge that are essentially decoupled from each other. These two sets of variables will behave
independently. Aliasing of the differences between them is manifested as spurious modes. By formulating the
discrete equations at locations between the nodes, the coupling is restored, which also eliminates the spurious
part of the solution. This is the conceptual background of the Preissmann method.
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It can be shown that the implicit θ -method is stable for θ ≥ 1
2 , which includes the fully

implicit method and the Crank–Nicolson method. From the perspective of stability these
methods do not require a restriction on the time step size; they are unconditionally stable.
However, a large time step size will increase the truncation error in the time derivative.
This may compromise the quality of the solution if the chosen time partitioning is too
coarse with respect to the time scale of the wave phenomenon to be simulated. Using the
fully implicit method (θ = 1), increasing the time step size will enhance the damping of
the simulated waves, which can be an advantage if time stepping is merely used to obtain
a steady-state solution.

Convergence

Involving time differencing and multiplication with �t, the updates in Eqs. (11.18)
and (11.23) finally lead to a local error in the discrete solution of O

(
�s2, �t2

)
. Having

confirmed consistency and stability, it is guaranteed that after performing a number of
time steps the sum of these local errors remains bounded. The associated global error,
which is the accumulated error after a number of time steps, will not exceed the sum
of the individual local errors. It can be made arbitrarily small by decreasing the section
lengths and time step size. The important property of convergence is thus established;
we may get as close to the exact solution as desired by increasing the resolution of our
simulation.

Since the number of sections and time steps is inversely proportional to the section
length and time step size, respectively, the convergence order of the global error is equal to
the approximation order of the underlying partial differential equation. For the (staggered)
semi- and fully implicit method this implies an O

(
�s2, �t

)
behaviour of the global error.

The Crank–Nicolson method, leapfrog method and the central Preissmann method involve
an O

(
�s2, �t2

)
global error and are thus more accurate in the time domain.

All of this does not yet provide us with an estimate of the actual error; it merely states
that the global error is bounded and shows how its convergence depends on the section
length and time step size. In practice, to guarantee a sufficiently accurate solution, the
spatial resolution and the number of time steps will be increased until the solution does not
change significantly anymore.

11.3.6 Python Implementation

We will next code the semi-implicit method for shallow water waves into a simple
Python program. Obviously, the core of this program will be the repeated execution of
the recurrence relations, Eqs. (11.18) and (11.23). Besides, a number of administrative
tasks are to be performed to provide the model with the required input (domain, initial and
boundary conditions) and to transfer the computed results as data files or plots.

The resulting script is given in Box 11.4. The first lines loading the pylab module and
the final lines where the solution is plotted to screen are omitted for brevity; these lines are
essentially similar to those of the script in Box 11.1.
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Box 11.4 Python script Canal.py

1 # physical constant(s)
2 g = 9.81 # gravitation [m/s2]
3
4 # domain partitioning
5 L = 5000 # length [m]
6 M = 200 # number of sections [−]
7 s = linspace(0,L,M+1) # nodal coordinates [m]
8
9 # section lengths

10 ds = s[1:M+1] − s[0:M] # section length [m]
11 dS = zeros(M+1);
12 dS[0:M] += ds/2; dS[1:M+1] += ds/2 # section length at nodes [m]
13
14 # function defining cross−section: s,h −> A,B,R
15 def geometry(s,h):
16 d = 3.5 + (h[0:M]+h[1:M+1])/2 # midpoint depth in section [m]
17 A = 10∗d # conveyance area section [m2]
18 B = 10 + 20∗(s<L/2) # nodal storage width [m]
19 R = A/(10+2∗d) # hydraulic radius section [m]
20 return A,B,R
21
22 # resistance coefficient
23 cf =.003 # [−]
24
25 # time stepping
26 t0 ,tN = 0 ,1500 # start and end time simulation [s]
27 N = 500 # number of time steps [−]
28 t = linspace(t0 ,tN ,N+1) # time instances [s]
29
30 # initial conditions
31 h = zeros(M+1) # initial water level [m]
32 Q = zeros(M) # initial discharge [m3/s]
33 A,B,R = geometry(s,h) # initial geometry
34
35 # time loop
36 for n in range(N):
37 dt = t[n+1] − t[n] # time step size [s]
38 # boundary conditions
39 QL = 3∗(1+ tanh((t[n]−150.)/50.)) # discharge left boundary [m3/s]
40 QR = 0 # discharge right boundary [m3/s]
41 # continuity equation
42 dh = append(Q,QR) − append(QL ,Q) # discharge difference
43 h −= dt∗dh/(B∗dS) # water level update
44 # momentum flux (explicit)
45 F = zeros(M+1) # initialise momentum flux
46 F[0:M] += .5∗(Q−abs(Q))∗Q/A # left contribution
47 F[1:M+1] += .5∗(Q+abs(Q))∗Q/A # right contribution
48 F[0] += max(QL ,0)∗QL/A[0] # inward flux left boundary
49 F[M] += min(QR ,0)∗QR/A[M−1] # inward flux right boundary
50 # new geometry & resistance
51 A,B,R = geometry(s,h) # geometry at time level n+1
52 chi = cf∗ds/R # resistance coefficient section [−]
53 kappa = chi∗abs(Q)/A # linear resistance factor [m/s]
54 # momentum equation
55 dQ = g∗A∗(h[1:M+1] − h[0:M]) + kappa∗Q # surface slope & resistance
56 dQ += F[1:M+1] − F[0:M] # momentum flux difference
57 Q −= dQ/(ds/dt + 2∗ kappa) # discharge update
58
59 # write final results to file
60 outfile = open(’output.dat’,’w’)
61 for m in range(M): print >> outfile , 2∗’%10.5f’ % ((h[m]+h[m+1])/2,Q[m])
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Input and Initialization

Gravity is specified in line 2, the length L of the canal in line 5 and the number of sections
M in line 6. Using a uniform partitioning of the domain, the sequence holding the spatial
coordinates s is defined in line 7. The linspace function, used to define s, is available
from numpy. It creates an array with a specified number of elements (M + 1 in this case),
whose values are evenly distributed between a specified lower bound and an upper bound
(being the first and second argument, respectively). The nodal coordinates also define the
section lengths ds, computed in line 10, and the average lengths dS of sections adjacent
to each node, which is computed in lines 11 and 12.

The function geometry, defined in lines 15–20, computes the required cross-sectional
parameters as a function of the spatial coordinate s and the water level h, where the latter
may vary in time t as well. Whenever this function is called it will return several arrays
containing the geometrical parameters, using the current value of the nodal water levels.
In respective order it computes the flow depth d and conveying area A for each section,
the storage width B for each node, and the hydraulic radius R, which is also defined sec-
tionwise. The given example features a rectangular cross section where the storage width
changes abruptly halfway down the canal. The function can be easily adapted to define
other geometries. Inclusion of the dimensionless resistance coefficient cf in this function
is an option, but instead a constant value is assumed here, which is specified in line 23.

Lines 26–28 define the time interval of interest and its partitioning. Initial conditions for
the water level and discharge are specified in lines 31 and 32, respectively. The numpy
function zero is used here to create an array filled with zeros, of specified length. In line
33 the geometry function is called for the first time, to compute the canal geometry at
the initial time t0. This concludes the input section.

Time Stepping

An indexed loop using the for statement starts the time-stepping sequence in line 36. In
line 37 the new time step size dt is determined from the array t of time instances.

Each time step starts with the continuity equation. The discharge boundary conditions
at the left and right end of the canal are defined in lines 39 and 40, respectively. In this
example a time-varying discharge is imposed at the left boundary, while the discharge at
the right boundary is set to zero. The discharge difference over each node is computed in
line 41, using the temporary variable dh. For convenience the numpy function append is
used to construct discharge arrays including the boundary values. The continuity equation
is completed in line 42 by computing the new water level h. If water level boundary
conditions are to be used, the corresponding array element of h is simply replaced with
the imposed value of the water level after executing the general update.

For an elegant treatment of the momentum equation, we rewrite it in a form similar to
Eq. (11.13) as used in the tidal basin script,

(
�sm/�tn + 2κn+1

m

)
�Qm = −gAn+1

m

(
hn+1

m − hn+1
m−1

)
−

(
F̃n

m − F̃n
m−1

)
− κn+1

m Qn
m

(11.35)
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where �Qm is the discharge increment in section m, and κn+1
m = χn+1

m |Qn
m|/An+1

m is
the corresponding linear resistance factor; see also Eq. (11.23). Note that one Newton–
Raphson step has been used to linearize the resistance term.

Momentum advection is computed explicitly, at time level n, by determining the
momentum flux towards each node. After specifying an array of zeros having the required
size (line 45), the flux from the left section (line 46) and the right section (line 47) are
added subsequently. In a similar way the fluxes corresponding to the (imposed) discharge
at the boundaries are added in lines 48 and 49.

Once the (explicit) momentum fluxes have been computed, the geometry can be updated
by calling the geometry function in line 51. After calculating the new resistance
parameters chi and kappa, in lines 52 and 53, respectively, the water level difference and
the explicit part of the resistance term are computed in line 55 and stored as a temporary
variable dQ. Line 56 adds the momentum flux difference, which completes the right-hand
side of Eq. (11.35). Division by the factor (�s/�t + 2κ) and adding the result to the
discharge Q finalizes the solution update in line 57.

Output of Results

The above sequence is repeated N times. At each time step, the old values for water level
and discharge are overwritten by their most recent values. This warrants an efficient use
of internal memory, although in the presented set-up, with its relatively small number of
sections and time steps, this is not a strict necessity. During the recursion, intermediate
results may be plotted to screen or written to an output file. For some basic plotting
commands, see Box 11.1.

As an example lines 61 and 62 contain some basic printing commands. First, an
output file output.dat is opened in write mode (’w’), after which the midpoint
water level and discharge per section are written to this file using a for loop. The
print statement contains the format specifier 2*’%10.5f’; two floating point num-
bers are written having ten digits and five decimal places each. The variables to be
printed are enclosed in parentheses, which in Python means a tuple, an immutable
sequence.

The script in Box 11.4 contains just the bare minimum of output commands. Program-
ming examples containing sophisticated output formatting and interactive manipulation of
the model (using widgets) can be found in Langtangen (2009).

11.3.7 Verification

For preliminary testing of the model, the propagation of low translatory waves in a canal
of varying cross section will be simulated. The computed results will be compared with
the corresponding linearized solutions derived in Chapter 4, giving an impression of the
model’s accuracy. The script in Box 11.4 already contains the most important parts to
perform the tests that will be presented next.
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Example 11.3 The computational domain is a 5 km long, horizontal canal having a rectangu-
lar cross section with a conveyance width Bc of 10 m and an initial depth of 3.5 m. Halfway
down the canal the storage width B changes abruptly from B1 = 30 m to B2 = 10 m, in
the positive s-direction. The corresponding wave speeds in the respective canal reaches are
c1 = 3.4 m/s and c2 = 5.9 m/s. The bed resistance coefficient cf has been set to 0.003,
uniformly.

At the left boundary a discharge is imposed that gradually increases from 0 to 6 m3/s
after which it remains constant. The time variation of the discharge has a time scale of 50 s,
i.e. the denominator in the hyperbolic tangent function in line 39 of the script Canal.py in
Box 11.4. The right boundary is closed.

The canal is partitioned into 200 sections with a length of 25 m each. The chosen time
step equals 3 s, leading to a maximum Courant number (the narrow part of the canal is
normative in this respect): σ2 = c2�t/�s = (5.9 m/s) × (3 s) / (25 m) ≈ 0.7, which
satisfies the CFL condition.

Result

Figure 11.10 shows the computed water level in the canal at various time instances. The
plots for t = 300 s and t = 700 s show the incident wave approaching the transition from
the left (the wider canal reach). A slight surface slope is noticeable at the trailing edge of
the wave, which is caused by the bed resistance, as mentioned in Section 4.4. At time

t = 300 s t = 700 s

t = 1100 s t = 1500 s

Fig. 11.10 Partial reflection of a gradual translatory wave (Example 11.3)
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t = 1100 s, following partial reflection at the transition, a reflected wave is travelling
back towards the left boundary and a transmitted wave continues travelling in the positive
direction. At time t = 1500 s the transmitted wave has been reflected fully from the right
(closed) boundary. All is in accordance with the theory of Chapter 4.

Let us next examine the results more closely. Between t = 300 s and t = 700 s (see
Figure 11.10) the incident wave travels over a distance of about 1400 m. This gives an
estimated wave speed of about 3.5 m/s, which agrees with the theoretical wave speed c1
of 3.4 m/s. The computed height of the incident wave (0.06 m) agrees with the theoretical
height δh = Q/ (B1c1) = (6 m3/s) / ((30 m) × (3.4 m/s)) = 0.059 m. This wave height is
sufficiently small, relative to the water depth, to justify the use of linear wave theory in the
above.

For the incident wave, the parameter γ characterizing the transition equals
√

1/3, giving
a reflection coefficient r = (1 − γ )/(1 + γ ) ≈ 0.27. The theoretical height of the reflected
wave is therefore 0.27 × 0.059 m = 0.018 m, which matches the computed result exactly.
Since the computed water level is continuous at the transition it follows that the height of
the transmitted wave is also reproduced correctly. Furthermore, the increase of the surface
elevation at the right boundary after reflection of the transmitted wave equals twice the
transmitted wave height, in accordance with theory.

Example 11.4 The previous results show that the semi-implicit method can provide accurate
solutions. However, the assignments in Eqs. (11.18) and (11.23) involve truncation errors
that will become more pronounced as the time and length scales of the wave decrease
with respect to the chosen time step and section length, respectively. In the example, the
partitioning of the space–time domain and the scaling parameters of the wave problem
were chosen such that the resulting numerical error was hardly noticeable.

As a counterexample, a simulation is performed for the same channel where now the
discharge at the left boundary increases more rapidly. To this end the denominator in the
hyperbolic tangent function prescribing the inflow (line 39 of canal.py) has been adjusted
from 50 s to 10 s. All other parameters and computational settings remain the same.

Result

Figure 11.11 shows the results for the steeper wave, resulting from the more rapid increase
of the discharge at the left boundary. While the overall wave properties (speed and net
height) are reproduced correctly, the result is plagued by oscillations that appear on the
trailing edges of the waves. This is a signature of high wave number components travelling
at a speed that is too low, an artefact referred to as numerical dispersion; the computed
propagation speed depends on the wavelength relative to the section length.

The numerical results are in agreement with linear wave theory, for suitably chosen
parameter values. The spatial discretization and time step size should be selected carefully,
considering the time and length scales of the particular wave problem at hand. More
elaborate analyses of the semi-implicit method will reveal the dispersion error as a function
of the wavelength relative to the section length; see for instance Vreugdenhil (1994).

.012
18:38:42,



241 11.4 Characteristics-Based Methods

t = 300 s t = 700 s

t = 1100 s t = 1500 s

Fig. 11.11 Partial reflection of a steep translatory wave (Example 11.4)

11.4 Characteristics-Based Methods

The computation of compression waves and shocks requires numerical techniques dedi-
cated specifically to these nonlinear problems. The methods from Section 11.3 cannot be
used for these types of wave since they tend to generate artificial oscillations once the com-
puted wave steepens; see also Example 11.4. Exact solutions of the homogeneous shallow
water equations will never develop such maxima or minima, which is a consequence of the
characteristic structure of the problem. Along each characteristic the associated Riemann
invariant cannot exceed the value that is assumed initially or imposed at the boundary,
which is known as the maximum principle. Numerical methods preserving this property
are called monotone. They can be constructed by using the characteristic structure of the
problem in a discrete manner.

11.4.1 Characteristic Equations

For convenience, the characteristic equations are repeated here. Assuming a rectangular
canal of uniform width, the shallow water equations can be transformed into (see
Section 5.2),

∂R±

∂t
+ V± ∂R±

∂s
= g

(
ib − if

)
(11.36)
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where R± = U ± 2c are the characteristic variables (Riemannn invariants), and V± =
U ± c are the characteristic velocities, in which c = √

gd denotes the wave speed.
The right-hand side of Eq. (11.36) contains the external forcing terms, which involve
the bed slope ib and the resistance; the latter is represented here using the friction slope
if ≡ (

cf/gR
) |U|U. Equation (11.36) is valid for canals of uniform width only. It can,

however, be extended to the general case of non-uniform width; see Problem 11.8.
Equation (11.36) constitutes a pair of partial differential equations that can be solved

independently of each other. Moreover, they are of a special mathematical form in that
they can be cast into a set of coupled ordinary differential equations as follows:

dR±

dt
= g

(
ib − if

)
provided

ds
dt

= V± (11.37)

The variation along a characteristic of the associated variable R± is determined by a first-
order ordinary differential equation. Once R± is known for one point of the characteristic,
it is known for all points of the characteristic. This initial value is naturally specified where
a characteristic crosses a lateral boundary (boundary condition) or where it passes a time
level where the solution is already known (initial condition).

This principle can be exploited numerically. From computational nodes at which the
solution has to be computed, a pair of characteristics is traced back in time until they enter
a part of the discrete (s, t)-plane where the solution is already known. This can be one of
the lateral boundaries or it can be the previous discrete time level. This fixes the solution
along the entire characteristic, which determines the solution in the target node. Repeating
this process advances the solution in time.

11.4.2 Space–Time Discretization

To set out we construct a discrete (s, t)-plane first; see Figure 11.12. The spatial domain
of interest S is partitioned into M sections by defining a sequence of M + 1 nodes; S =
[s0, s1, . . . , sM]. The section lengths may vary where �sm denotes the length of section m
that is situated between nodes sm and sm−1. The time interval of interest I is partitioned into
N time steps, leading to a sequence of N + 1 discrete time levels: I = [t0, t1, . . . , tN]. The
intervals between individual time levels may vary and will be denoted by �tn = tn+1 − tn,
as before.

We next prescribe the bed level and resistance of the canal. The bed level z must be
prescribed at the nodes. This leads to a bed slope ib, which is sectionwise constant. Also
the friction slope if is defined to be sectionwise constant. It may depend on time through
its dependence on the local water depth and flow velocity.

We use the water depth d and flow velocity U as flow variables. The discrete Riemann
invariants are defined uniquely if d and U reside in the same computational nodes. For
this reason characteristics-based methods commonly employ a collocated arrangement of
the flow variables. We will allocate them in the nodes of the discrete (s, t)-plane, shown in
Figure 11.12.
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Fig. 11.12 Characteristic method: discrete (s, t)-plane and allocation of flow variables

The collocated positioning of variables leads to sequences of water depths
[
dn

m
]

and
flow velocities

[
Un

m
]

that are coded as arrays. The array elements at time level n = 0 can
be specified from the initial conditions.

11.4.3 Forward Time Backward Space Method

The recurrence relation we aim for must advance the numerical solution from one time
level tn, say, to the next (tn+1) along characteristics. The ensuing procedure will be quite
similar to the graphical solution method outlined in Section 5.4. We will first consider the
homogeneous problem, omitting the right-hand side of Eq. (11.36). It will be reintroduced
later on.

Interpolation

Consider a region in the discrete (s, t)-plane comprising the sections between the points
sm−1 and sm+1 and the time interval from tn to tn+1; see Figure 11.13. Let K+

P denote
the positive characteristic through node T = (sm, tn+1) issued from point P = (sP, tn).
Supposing that the flow is subcritical, sP will be situated to the left of sm.

Furthermore, with P being situated between sm and sm−1, an interpolation parameter
αP ∈ [0, 1] can be defined expressing sP in terms of sm−1 and sm:

sP = αPsm−1 + (1 − αP) sm (11.38)

By approximation, the positive characteristic velocity V+
P in P will be expressed as the

average of the characteristic velocities in nodes (sm−1, tn) and (sm, tn), as follows:

V+
P =

(
V+)n

m−1 + (
V+)n

m
2

(11.39)
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Fig. 11.13 Interpolation along characteristics: subcritical flow

If it is assumed that the characteristic K+
P is a straight line (which is exact for simple waves

and holds approximately otherwise), the following relation holds:

V+
P = sm − sP

�tn
= αP�sm

�tn
(11.40)

giving

αP = V+
P

�tn
�sm

(11.41)

For a homogeneous problem the Riemann invariant R+ is constant along K+
P . Its value in

target node T is therefore equal to the known value at point P, leading to

(
R+)n+1

m := R+
T = R+

P = αP
(
R+)n

m−1 + (1 − αP)
(
R+)n

m (11.42)

A similar procedure applied to the negative characteristic K−
Q issued from a point Q =(

sQ, tn
)

and going through target node T (see Figure 11.13) yields the Riemann invariant
R− at point sm and time tn+1:

(
R−)n+1

m := R−
T = R−

Q = αQ
(
R−)n

m+1 + (
1 − αQ

) (
R−)n

m (11.43)

in which the parameter αQ is given by

αQ = −V−
Q

�tn
�sm+1

(11.44)

assuming once again that the flow is subcritical. Importantly, the procedure outlined above
is valid only if the spatial interval [sm−1, sm+1] comprises the domain of dependence of
the target node T = (sm, tn+1) at time level tn. After the assignments in Eqs. (11.42)
and (11.43) both Riemann invariants are known at interior nodes of the domain, which
also determines the corresponding flow states. Note that the advective acceleration does
not receive a special treatment; it is naturally incorporated in the interpolation procedure.
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Boundary Conditions

At the boundary nodes, only the Riemann invariants corresponding to the respective
outgoing characteristic have been updated. It remains to complete the solution in these
nodes by prescribing the boundary conditions, which effectively determines the Riemann
invariant along the ingoing characteristic.

For subcritical flow, the ingoing characteristic at the left boundary (m = 0) specifies R+,
the value of which must be prescribed such that the resulting solution for U and c satisfies
the local boundary condition at time t = tn+1. For an imposed velocity Un+1

0 or depth dn+1
0

this gives, respectively,(
R+)n+1

0 = 2Un+1
0 − (

R−)n+1
0 or

(
R+)n+1

0 = 4
√

gdn+1
0 + (

R−)n+1
0 (11.45)

Likewise, at the right boundary node (m = M) the negative characteristic is ingoing
(provided the flow is subcritical), implying that the local value of R− must be prescribed,
leading to

(
R−)n+1

M = 2Un+1
M − (

R+)n+1
M or

(
R−)n+1

M = −4
√

gdn+1
M + (

R+)n+1
M (11.46)

imposing the flow velocity (Un+1
M ) or water depth (dn+1

M ), respectively.
It is also possible to compute the value of the incoming Riemann invariant at the

boundary from an equation relating the local water depth to the flow velocity (e.g. a
discharge relation of a control structure) or to impose its value directly, the latter giving a
nonreflective boundary.

Forcing Terms

To account for nonhorizontal bed level and bed resistance, forcing terms must be
added to the right-hand sides of the assignments in Eqs. (11.42) and (11.43). The
Riemann invariants are no longer constant along characteristics.2 The characteristics
themselves and the corresponding interpolation procedure are not influenced by the forcing
terms.

Having prescribed the bed level z at the nodes, the bed slope term g ib is sectionwise
constant. It is independent of the solution and can be computed in advance. We now pick
the value belonging to the section in which point P is situated and add this term, after
multiplication with �tn, to the interpolated value of

(
R+)n+1

m obtained from Eq. (11.42).
In a similar way the value of

(
R−)n+1

m is adjusted using the bed slope term in the section
holding point Q. See also the remarks in Box 11.5.

Likewise, the resistance term can be computed sectionwise, using the average flow
velocity and hydraulic radius in a section, after which the corresponding Riemann variable
is augmented with this term. Since the resistance term is nonlinear, it must be recomputed
at every time step, either explicitly or by using an implicit linearization step.

2 In the presence of forcing terms Riemann invariants cease to be ‘invariant’, for which reason they are also
named characteristic variables.
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Box 11.5 Consistent implementation of forcing terms

The presented implementation of the bed slope term might seem pretty straightforward; however, it has been
designed carefully to match with the chosen interpolation procedure. Otherwise, simple balance principles
may be violated at the discrete level, resulting in numerical artefacts. To illustrate this, consider a state of rest
in section m − 1. Averaging the characteristic velocities sectionwise and using Eqs. (11.42) and (11.43) then
leads to

(
cn

m + cn
m−1

) (
cn

m − cn
m−1

)
/�sm = −g (zm − zm−1) /�sm. It is easily verified that this implies

zm + dn
m = zm−1 + dn

m−1, or hn
m = hn

m−1, which is consistent with the rest state. Balancing the forcing
terms consistently is a nontrivial issue in characteristics-based methods; see for instance Toro (2001).

Supercritical Flow

The assignments in Eqs. (11.42) and (11.43) rely on the flow being subcritical. For
supercritical flow one of the characteristic velocities will change sign and the interpolation
procedure to determine either R+

P or R−
Q will fail. Assuming that the domain of dependence

of the target node T at time tn remains enclosed by the spatial interval [sm−1, sm+1], the
solution procedure can be adapted easily to account for supercritical conditions.

Consider supercritical flow with U > c, for which the characteristics3 going through the
target node T are shown in Figure 11.14. The intersection point P is situated in the same
section as for subcritical flow, and the interpolation procedure formulated in Eqs. (11.38)–
(11.42) remains valid. Point Q, however, has moved in upstream direction ending up in the
same section as point P. Therefore, a similar procedure as for point P must be followed to
determine R− by interpolating between nodes m−1 and m, using an interpolation parameter

αQ = V−
Q

�tn
�sm

(11.47)

The velocity V−
Q is now based on the state in section m − 1, using the average of the

characteristic velocities in nodes m and m − 1.

Fig. 11.14 Interpolation along characteristics: supercritical flow with U > c

3 The notation using a ‘–’ superscript (as in K−, R− etc.) suggests a negative direction of propagation, which is
not true if U > c. For the same reason the ‘+’ superscript is perhaps confusing if U < −c.
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For supercritical flow with U < −c, the situation reverses. Point P will now move to
another section, while Q stays in the same section as for subcritical flow. The procedure to
obtain R−

Q is therefore the same as for subcritical conditions, using Eqs. (11.43) and (11.44),
while R+

P must now be interpolated using the same sequence of steps as for R−
Q .

A practical way to implement this in a model is to compute the increments of the
Riemann invariants (i.e. the terms −�tn V±∂R±/∂s) sectionwise, after which the result
is assigned to either the right node, if V± ≥ 0, or to the left node, if V± < 0. Summation of
the contributions from all sections yields the nodal increments of R±, which are then simply
added to the respective values at the previous time level to obtain an updated solution.

11.4.4 Some Other Characteristics-Based Methods

Characteristics-based methods can be used in many alternative ways, of which we present
a brief summary. A more complete overview of possible solution strategies exploiting
characteristics is provided in LeVeque (1990).

Higher-Order Interpolation

The solution procedure explained so far is based on linear interpolation of the characteristic
variables using the end nodes of the section in which the intersection points P and Q are
located. Without altering this solution principle the accuracy can be improved by using
higher-order interpolation. This requires the addition of supporting nodes to the left and/or
right of the respective intersection point. After fitting a polynomial of the desired order
through the corresponding nodal values of R±, the values of R+

P and R−
Q can be computed.

The properties of the discrete solution will depend on the polynomial order and the location
of supporting nodes. As a rule of thumb, they should be centered around the intersection
points P and Q.

The interpolation domain must enclose the domain of dependence of the target node T
to obtain stable solutions; see also Section 11.4.5. Increasing the number of supporting
nodes also allows a larger domain of dependence of T, which, in principle, increases the
maximum allowable time step size. Polynomial orders that are too high should be avoided,
however, since the interpolation polynomial will be susceptible to oscillations. This may
generate new maxima and minima of the discrete solution and may even compromise
the stability of the algorithm. For this reason moderate polynomial orders of one to
three, say, are commonly used. Higher-order interpolation methods can be made viable
by suppressing the extrema. An example of the latter is given in Priestly (1993).

Implicit Interpolation

If the distance travelled along a characteristic during one time step exceeds the section
length, the intersection point with the previous time level tn will end up in a section that is
not adjacent to the target point T. This is the case for the characteristic K+

P in Figure 11.15,
having an intersection point P′ at time level n. The associated variable R+

P′ may be found
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Fig. 11.15 Implicit interpolation (point P) and explicit interpolation (point Q)

by fitting a linear or higher-order interpolation polynomial using at least nodes m − 2 and
m − 1. The solution procedure remains explicit but is complicated by the fact that the type
of interpolation needed depends on the section (possibly varying) in which P′ is situated.

As an alternative, we may consider intersection point P having a spatial coordinate
sm−1 and situated between time levels tn and tn+1. The time level tP of this point may
be expressed in terms of an interpolation parameter βP as tP = βPtn + (1 − βP) tn+1. To
determine βP, considering the slope of the characteristic K+

P leads to

V+
P = sT − sm−1

tn+1 − tP
= �sm

βP�tn
(11.48)

from which it follows that

βP = �sm

V+
P �tn

(11.49)

In absence of forcing terms, the Riemann variable R+
T at the target point T equals R+

P at
intersection point P, leading to(

R+)n+1
m : = R+

T = R+
P = βP

(
R+)n

m−1 + (1 − βP)
(
R+)n+1

m−1 (11.50)

after which the forcing terms can be included in the same way as for the explicit
method. Since the variable

(
R+)n+1

m−1 appearing in Eq. (11.50) is unknown at time level
tn, Eq. (11.50) leads to an implicit solution procedure. That is, a system of equations has to
be solved. The intersection point Q in Figure 11.15 is still situated in the section adjacent
to the target node T and there is no need to abandon the explicit interpolation procedure
for the characteristic K−

Q . These types of method are coined IMEX (IMplicit-EXplicit),
switching between implicit formulations where needed and explicit ones where possible.

Flux Difference Splitting

Instead of tracing the solution back along characteristics, the method of characteristics can
also be used to compute fluxes, which are then used to update the solution. To this end the
flow variables and channel geometry are defined section wise thus representing piecewise
constant functions. They remain collocated. The evolution of these variables in time is
governed by the associated fluxes at the interfaces between sections. Since the flow state
is discontinuous at interfaces, the interface fluxes are not defined uniquely but must be
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Fig. 11.16 Structure of the local characteristics problem

blended from the two states adjacent to each interface. Simple averaging will not do here.
All information will then propagate in two directions, whether or not this is supported by
a characteristic, which will lead to instabilities.

Each discontinuity in fact constitutes the initial condition of a local characteristics
problem, the solution of which is given by an intermediate state φ̃, say, separated from
the initial states by a pair of characteristics; see Figure 11.16. For subcritical flow, and
ignoring forcing terms, the flow state at an interface is the intermediate state, which can
be computed from the initial states to the left and right of an interface, respectively, using
the solution method from Chapter 5. Once the intermediate state is known, the associated
fluxes can be computed, which are then used to update the solution in the sections adjacent
to the considered interface, in a way similar to that of Eq. (11.24).

Alternatively, the flux at the interface may be computed directly, by applying conser-
vation laws over portions of the right and left sections containing a characteristic. This
approach was initially conceived by Godunov (1959) and developed further in Harten et al.
(1983). Equating the increment of a conserved flow variable (d or q) in a section to the
associated flux difference over the same section (see Figure 11.16) gives for the left and
right sections, respectively,

V+
R

(
φR − φ̃

)
= FR − F̃ (11.51)

V−
L

(
φ̃ − φL

)
= F̃ − FL (11.52)

where φ denotes either the water depth or the specific discharge, and F denotes the
associated flux, that is, the specific discharge or specific momentum flux, respectively.
Subscripts L and R refer to the sections to the left and right of an interface, and a tilde
denotes the interface itself. Eliminating φ̃ from Eqs. (11.51) and (11.52) gives for the flux
at the interface

F̃ = V+
R FL − V−

L FR + V+
R V−

L (φR − φL)

V+
R − V−

L
(11.53)

While derived for subcritical flow, Eq. (11.53) also holds in the case of supercritical flow.
This unified treatment of both flow regimes is a clear advantage over interpolation-based
methods.

Once the characteristic speeds V−
L and V+

R are known, the interface flux can be computed
using Eq. (11.53), and the resulting update of the flow state can be assigned to the left
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and right sections, respectively. For simple, subcritical flows the characteristic speeds
may be computed directly from the local flow state. More sophisticated formulations
are needed in the case of transcritical flow (e.g. hydraulic jump) or when flooding and
drying of sections occurs; see for instance Toro (2001). An advantage of the flux-based
approach is that forcing terms, due to for instance non-uniform width or nonhorizontal
bottom, can be added in a consistent and straightforward manner, as for instance in Glaister
(1993).

The above procedure is explicit; implicit versions can be developed from similar
principles. Accuracy may be increased by determining the initial flow states at an interface
using higher-order interpolation. The state within a section is reconstructed to higher
order using the information from neighbouring sections. To remain monotone, oscillations
that may arise must be suppressed, usually by limiting the contribution from higher-
order terms where these would otherwise lead to new extrema; see for instance LeVeque
(1990).

11.4.5 Properties

In the following some basic properties of the explicit characteristics-based interpolation
method will be discussed. We will focus on the homogenous form of the equations.

Accuracy

Substituting the expression for αP given in Eq. (11.41) into Eq. (11.42), the following
discrete equation is satisfied by R+:

(
R+)n+1

m − (
R+)n

m
�tn

+ V+
P

(
R+)n

m − (
R+)n

m−1
�sm

= 0 (11.54)

A numerical method of the form of Eq. (11.54), which can be used to discretize an
advection equation, is commonly referred to as the forward time backward space (FTBS)
method, originally conceived by Courant et al. (1952). This method is also used in
numerical transport models to discretize the advection term, in which case it is often
combined with a term representing diffusion; see Box 11.6.

Since one-sided differencing is used, both in time and in space, the truncation error of
Eq. (11.54) behaves as O (�s, �t) for �s and �t sufficiently small. This can be proven
by developing

(
R+)n+1

m and
(
R+)n

m−1, respectively, as Taylor series from the function
properties at (sm, tn), following the same procedure as used in Sections 11.2.5 and 11.3.5.
See also Problem 11.7.

The same error estimate holds for the Riemann variable R−, since it satisfies the same
type of equation. It follows that the characteristics-based interpolation method is consistent
with the characteristic equations given in Eq. (11.36); the numerical error vanishes in the
limit of �t and �s going to zero.
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Box 11.6 Inclusion of a diffusion term

Addition of a diffusion term to Eq. (11.36) results in an advection-diffusion equation, such as Eq. (8.17) in
the context of river flood waves, and Eq. (10.70) in the context of transport problems. The advective part of
these equations has a characteristic structure and can be integrated numerically using the FTBS-method. The
diffusion term has the form −K∂ 2φ/∂s2, where K is a diffusion constant and φ is the modelled variable
(e.g. the water depth in a flood wave model or the species concentration in a transport model). Using central
differences, the diffusion term can be discretized as −K (φm+1 − 2φm + φm−1) /�s2. It can be treated
explicitly, using the discrete variable φ at the known time level, or implicitly, leading to a system of equations
in the unknownφ at the new time level. The importance of the discrete diffusion term relative to the advection
term is measured by the mesh Péclet number, defined as Pe = |V|�s/2K . This determines to a large extent
the behaviour of the numerical solution. In particular, when Pe > 1 the solution may become oscillatory
if the advection term is discretized by central differences as well, e.g. V (φm+1 − φm−1) /2�s. Backward
differencing, as used in the characteristics-based interpolation method, will then cure this problem, at the
price of introducing a larger error, acting as a diffusion term.

Monotonicity and Stability

Inspection of Eq. (11.42) reveals that the solution for
(
R+)n+1

m will be bounded by the
values of

(
R+)n

m−1 and
(
R+)n

m if αP ∈ [0, 1]. If this condition is satisfied, the repeated use
of Eq. (11.42) will never cause any of the R+

T to fall outside the range of previous values
of R+ anywhere in the domain. The discrete solution will be monotone.

This desirable property does not depend on the direction of the characteristic. It holds
invariably for R− if αQ ∈ [0, 1] and also in the case of supercritical flow. It can therefore be
concluded that our characteristics-based interpolation method is monotonicity preserving
provided that

|U ± c| �t
�s

≤ 1 (11.55)

which is reminiscent of the CFL condition for stability, Eq. (11.34).
A consequence of monotonicity is that disturbances of the discrete solution will not

grow as the recursion proceeds. A monotone method is therefore also a stable method.
The characteristics-based interpolation method is therefore stable, provided the condition
in Eq. (11.55) is respected.

Forcing terms were omitted in the preceding. If they are included, monotonicity of the
discrete solution is no longer guaranteed, which is in accordance with physics though.
For stability, the bed slope term does not pose any problem since this (constant) term,
cancels from the equations describing the behaviour of disturbances. The bed resistance
term, on the other hand, is (quadratically) dependent on the flow velocity, which may
compromise stability if it is treated in an explicit manner. Implicit treatment of this term
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must be considered if the resulting maximum time step size is much smaller than the value
imposed by Eq. (11.34).

Convergence

Being both consistent and stable, the interpolation method is also convergent. The exact
solution of the characteristic equations will be approached when �t and �s go to zero,
provided they are chosen to meet Eq. (11.34). The global error of the obtained solution,
that is, the accumulated error after performing a number of recursions, will be proportional
to O (�s, �t).

It can be shown using Taylor series that this error has the appearance of a diffusion
term. This effectively smoothens sharp wave fronts. The lower order accuracy of the
FTBS method, compared with for instance the semi-implicit method, is thus the price to be
paid for keeping the solution monotone. It was Godunov (1959) who proved that a linear
monotone method is at most first-order accurate, known as the order barrier theorem.

11.4.6 Python Implementation

A Python implementation of the characteristics-based interpolation method is given in Box
11.7. The first line importing the pylab module has been omitted, as are the final lines
containing plot functions and write statements.

Initialization

The computation contains a number of steps in which the differences between the discrete
variables in neighbouring nodes or midpoint values in sections have to be computed; an
example of this is the computation of the characteristic velocity in Eq. (11.39). As a general
programming rule, repeated use of elementary program structures should be coded by
means of predefined functions or subroutines. For this purpose the functions dif and avg
are defined in lines 5 and 8, respectively, for differencing and averaging arrays. They take
an arbitrary array and return a new array containing, respectively, the increments between
and averages of successive elements of the input array.

The spatial partitioning is specified in lines 11–14, followed by assigning the variable
bed level z (line 17) and the resistance coefficient cf (line 20), which is assumed constant.
The time interval of interest and its partitioning are defined in lines 23–25.

The initial fields for the flow velocity (U0) and water level (h0) are prescribed in
lines 28 and 29, which together with the bed level define the initial wave celerity c0
(line 30). From these variables the initial solution arrays for U and c are constructed
in lines 33 and 34. Next, the corresponding arrays for the initial Riemann invariants
R+ and R− (denoted by, respectively, R1 and R2) are constructed in lines 37 and 38.
The bed slope term gib, which is constant, is computed in line 41, which completes the
input section.
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Box 11.7 Python script Characteristics.py

1 # physical parameters
2 g = 9.81 # gravitation [m/s2]
3
4 # differencing function
5 def dif(f): return f[1:M+1] − f[0:M]
6
7 # averaging function
8 def avg(f): return (f[1:M+1] + f[0:M])/2
9

10 # spatial domain
11 L = 3000 # length [m]
12 M = 100 # number of sections
13 s = linspace(0,L,M+1) # spatial coordinates [m]
14 ds = dif(s) # section lengths [m]
15
16 # bed level
17 z = −5 + (s>L/2)∗4 # bed level [m]
18
19 # bed resistance
20 cf = .004 # resistance coefficient [−]
21
22 # time stepping
23 t0 ,tN = 0,450 # start and end time [s]
24 N = 200 # number of time steps [−]
25 t = linspace(t0 ,tN ,N+1) # time instances [t]
26
27 # initial conditions
28 U0 = 0 # initial flow velocity [m/s]
29 h0 = 0 # initial water level [m]
30 c0 = sqrt(g∗(h0−z)) # initial wave celerity [m/s]
31
32 # create initial arrays
33 U = U0∗ones(M+1) # flow velocity [m/s]
34 c = c0 # wave speed [m/s]
35
36 # characteristic variables
37 R1 = U + 2∗c # Riemann variable R+ [m/s]
38 R2 = U − 2∗c # Riemann variable R− [m/s]
39
40 # bed slope term
41 g_ib = −g∗dif(z)/ds # bed slope term [m/s2]
42
43 # time loop
44 for n in range(N):
45 dt = t[n+1] − t[n] # time step size [s]
46 # forcing term
47 R = avg(c∗c/g) # hydraulic radius [m]
48 Um = avg(U) # flow velocity mid section [m/s]
49 F = g_ib − (cf/R)∗abs(Um)∗Um # forcing term [m/s2]
50 # positive characteristic
51 V1 = avg(U + c) # characteristic speed V+ [m/s]
52 alpha_P = dt∗V1/ds # interpolation parameter [−]
53 R1[1:M+1] −= alpha_P∗dif(R1) − dt∗F # new Riemann variable R+ [m/s]
54 # negative characteristic
55 V2 = avg(U − c) # characteristic speed V− [m/s]
56 alpha_Q = dt∗V2/ds # interpolation parameter [−]
57 R2[0:M] −= alpha_Q∗dif(R2) − dt∗F # new Riemann variable R− [m/s]
58 # left (velocity) boundary condition
59 UL = .25∗(1+ tanh((t[n]−20)/2.)) # imposed velocity [m/s]
60 R1[0] = 2∗UL − R2[0] # ingoing Riemann variable [m/s]
61 # right (absorbing) boundary condition
62 R2[M] = −2∗c0[M] # ingoing Riemann variable [m/s]
63 # new flow variables
64 U = (R1 + R2)/2 # new flow velocity [m/s]
65 c = (R1 − R2)/4 # new wave speed [m/s]
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Time Stepping

The recurrent loop is defined in line 44 after which the current time step size is calculated
first in line 45. The recursion proceeds in three subsequent steps.

First, the forcing term, which is the right-hand side of Eq. (11.36), is computed using
the midpoint value of the flow velocity and the hydraulic radius in the respective sections
(lines 47–49) and the previously computed bed slope term.

Next, the interpolation procedure is performed by computing for the positive and neg-
ative characteristics, respectively, the midpoint values of the characteristic velocity (lines
51 and 55), and the interpolation parameters αP (line 52) and αQ (line 56). The increments
for the Riemann invariants are computed in lines 53 and 57 by adding the contributions
from the interpolation procedure, using the dif function, and the forcing terms.

Finally, the boundary conditions are implemented assuming subcritical conditions. In
the example script the (left) boundary condition at node m = 0 has a prescribed velocity
UL, which is specified as a function of time in line 59. Together with the already
computed value for R−

0 , this defines the value of R+
0 , which is assigned in line 60. At

node M, the ingoing characteristic determines R−
M, the value of which must be computed

from the current value of R+
M, and the prescribed boundary condition. The example has a

nonreflective boundary condition here, specifying the value of R−
M directly.

The recursion ends by computing from the Riemann variables the updated values for the
flow velocity U (line 64) and the wave celerity c (line 65). This is essentially similar to the
construction of the intersection point in the state plane, used in the graphical procedure of
Chapter 5.

11.4.7 Verification

It is easily verified, by computing for instance the propagation of a positive translatory
wave over an abrupt depth discontinuity (see Example 11.4), that computed wave fronts
remain monotone, even if they are high and steep. Here, we will demonstrate the capability
of the method to reproduce nonlinear effects by studying the deformation of simple waves,
for which analytical solutions were derived in Section 5.5.

Example 11.5 The domain is a horizontal canal of uniform width, having an initial depth d0
of 3.65 m and a length of 8 km. It is partitioned into 80 uniform sections with a length �s
of 100 m each. At the left boundary of the canal a gradually increasing outflow is imposed,
with the corresponding velocity UL prescribed as

UL (t) = Umax
1 + tanh

((
t − t′

)
/τ

)
2

(11.56)

in which the maximum velocity Umax = −2 m/s, the time scale τ = 25 s, and the time
shift t′ = 250 s. At the right boundary a nonreflective boundary condition is applied by
prescribing the ingoing Riemannn invariant as R−

M = −2
√

gd0. A time step size �t of 10 s
is used, giving a Courant number σ ≈ 0.6 based on the initial state, which satisfies the
CFL condition.
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Fig. 11.17 Expansion wave (Example 11.5): progression of wave front starting from t = 0 with time intervals of 150 s;
analytical solution (solid lines) and computed solution (circles)

Result

The solution is a right-travelling expansion wave that is initially steep, flattening out as
it propagates into the canal. Figure 11.17 shows the sequence of computed wave fronts
together with the corresponding analytical solution, obtained from Eqs. (5.23) and (5.24).
The computed and analytical wave profiles match closely, indicating that the nonlinear
effects causing the deformation of the wave are reproduced adequately by the model. The
numerical wave deforms slightly faster than predicted by the analytical solution, which is
due to the first-order accuracy of the FTBS method.

Example 11.6 The computational set-up of Example 11.6 is used now to simulate a compres-
sion wave. To this end, the maximum inflow velocity at the left boundary is set to Umax =
2 m/s and the time scale τ is increased to 125 s. This generates a compression wave that
is initially flat and will steepen as it moves into the channel. In reality such a wave will
finally break, after which it continues as a bore.

In the initial stages, the deformation of the wave can be computed analytically from
Eqs. (5.23) and (5.24). After some time, however, a bore is formed and the characteristic
solution ceases to be valid. Reverting to Eqs. (4.19) and (4.21), it can be shown that the
bore has a height �d of 1.3 m and a speed c of 7.6 m/s.

Result

The numerical solution is plotted in Figure 11.18 together with the analytical solution,
which is valid during the early stages of the wave deformation. The computed and
analytical wave profiles are in good agreement.
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Fig. 11.18 Compression wave (Example 11.6): progression of wave fronts starting from t = 0 with time intervals of 150 s;
analytical solution (solid lines) and computed solution (circles)

At t ≈ 750 s the analytical compression wave transforms into a bore. In the model,
though, further steepening of the wave front ceases before the actual bore is formed. This
is a signature of the first-order interpolation of the FTBS method, which manifests itself
as a diffusion term in the discrete equations. This tends to flatten the computed wave
and ultimately balances its further steepening, capturing the bore over typically a few
nodes. However, the overall properties of the bore, its height and speed of propagation,
are reproduced correctly.

The example illustrates that the propagation and deformation of nonlinear waves is mod-
elled adequately by our characteristics-based method. Numerical dissipation influences
the rate at which the wave deforms, but also warrants a correct overall behaviour of the
computed bore. Should wave fronts have to be resolved more accurately, then (limited)
higher-order characteristics-based methods must be used.

Problems

11.1 Prove that the fully implicit method for the discrete basin–canal system is uncondi-
tionally stable.

11.2 Using Taylor series expansion, prove that the Crank–Nicolson method for time
stepping has a second-order truncation error in the time derivative.
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11.3 Use the fully implicit tidal basin model (available online as supplementary material)
to compute the natural oscillation of a canal–basin system. Compare the results with
those obtained from the semi-implicit method.

11.4 Perform some tests with the script Canal.py in order to verify the CFL condition
for the semi-implicit model for long waves.

11.5 Use the script Canal.py to simulate a small amplitude tidal wave in an estuary
for different values of the relative resistance σ . Verify the results using analytical
solutions from Chapter 7.

11.6 Use the script Canal.py to simulate a river flood wave. Verify the result using the
analytical solutions in Chapter 8.

11.7 Prove that the FTBS method has a local truncation error that is first order in time
and first order in space.

11.8 Show that a non-uniform canal width can be accommodated in the character-
istic equations by adding terms ∓

(
U

√
gd/B

)
dB/ds to the right-hand side of

Eq. (11.37). Modify the script Characteristics.py to include this extension and
perform some tests to demonstrate its validity.

11.9 Use the script Characteristics.py to simulate a low standing wave in a semi-closed
basin without resistance. Perform the same simulation using the script Canal.py.
Compare both computed results with the theoretical solution (Chapter 7) and
explain the differences.

11.10 Modify the script Characteristics.py to handle supercritical conditions as well.
Verify the algorithm by computing a backwater curve for a mildly sloping canal
with supercritical inflow and subcritical outflow, as in the river reach downstream
of the underflow gate in Figure 9.10.
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A Appendix A Pressurized Flow in Closed Conduits

In the preceding chapters, we have seen that the one-dimensional shallow-water equations
(named after De Saint-Venant) form a set of partial differential equations of hyperbolic
type. Their mathematical structure is defined by the underlying characteristics, which
property is used in the technique of integration. Pressurized flow of a liquid (water, oil, etc.)
in closed conduits is mathematically described by a similar set of equations. Therefore,
with relatively little extra effort, a solution method for pressurized flow can be obtained.
This fact in itself would not be a sufficient justification for the inclusion of this subject in
the present book, but since pressurized flow frequently occurs in conjunction with free-
surface flow in the context of hydro-engineering projects, it was decided to include the
subject, albeit in abbreviated form and in an appendix in order to not interrupt the line of
development of the principal subject of this book. The presentation below rests heavily
on Chapter 5, to which the reader is referred for more extensive background information.
A more detailed account of the subject than is appropriate here can be found in Streeter
and Wylie (1967), Jaeger (1977), Fox (1989) and Thorley (1991).

A.1 Introduction

In free-surface flows, storage takes place through variations of the free-surface elevation.
This is accompanied by pressure variations of a few metres of water column at most,
too small to cause appreciable changes in density. The water can therefore be treated
as incompressible. Pressurized flows do not have a free surface, so that a corresponding
storage cannot occur. In these cases, storage can take place only through elasticity of the
pipe wall, allowing profile variations, and compression of the liquid, allowing variations in
mass in a given volume.

The abrupt closure or opening of a valve or the abrupt switching on or off of a pump
in a pipeline for irrigation, hydropower, drinking water supply, etc., either purposefully
or as the result of a failure or an accident, results in rapid variations in flow velocity,
accompanied by large pressure variations. This phenomenon is called water hammer
because it can sound as if the pipe wall is struck by a hammer. Too large pressures should
be avoided, or at least reduced in view of the limited strength of the materials. Modelling
of these effects requires the use of the constitutive equations for the elasticity of the pipe
wall and the compression of the liquid in addition to the equations of conservation of mass
and momentum. This is elaborated in the following.
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Water hammer induces negative pressure variations as well. When the pressure reduces
to the vapour pressure of the water, vapour bubbles are formed, the so-called process
of cavitation, resulting in a two-phase system of water and bubbles. This mixture is far
more compressible than pure water, so that the speed of propagation of the pressure waves
through the pipe/liquid/bubbles system is drastically reduced. Locally, a zone with a free
surface of the liquid can develop, even to the point of column separation. These processes
are not considered in this chapter.

The actual magnitudes of the variations in cross-sectional area and density are quite
small, resulting in an almost rigid response. In fact, if the flow varies gradually, the pressure
variations are mild, and these storage effects can be neglected, leading to the so-called
rigid-column approximation, in which the liquid moves axially as a rigid body. In this case
the conservation of mass is fulfilled a priori so that we have to deal with the conservation
of momentum only.

A.2 Governing Equations

We restrict ourselves to liquids (water, oil, etc.) for which the density varies exclusively
as a result of compression, ignoring possible variations of the density due to differences in
salinity or temperature.

A.2.1 Constitutive Equations

We need to establish so-called constitutive equations for the liquid and for the pipe wall,
providing the connection between the pressure p and

• the liquid density (ρ) and
• the cross-sectional area (A).

We will use linear, elastic models for this purpose.

Liquid Compressibility

The modulus of compression (K) of a liquid is defined through the relation

dρ

dp
= ρ

K
(A.1)

Under normal operating conditions, the modulus of compressibility of water is K = 2.2
GPa approximately, virtually independent of pressure or temperature. (In the case where
the liquid contains gas or vapour bubbles, even in minute amounts, the bulk value of K is
reduced drastically because of the high compressibility of the gas or vapour in the bubbles.)

We will need the partial derivatives of ρ with respect to t and s in the conservation
equations. Using Eq. (A.1), these can be expressed as follows in terms of the derivatives
with respect to the pressure p:
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∂ρ

∂t
= dρ

dp
∂p
∂t

= ρ

K
∂p
∂t

(A.2)

∂ρ

∂s
= dρ

dp
∂p
∂s

= ρ

K
∂p
∂s

(A.3)

Pipe Elasticity

Consider a pipeline with a circular cross section with inner diameter D and a uniform,
relatively thin wall thickness δ (so δ 	 D; see Figure A.1, in which the relative wall
thickness has been exaggerated). Suppose now that a small increase in pressure (dp) causes
an increase in hoop stress in the pipe wall equal to dσ . Neglecting the inertia of the fluid
(radially) and of the wall, equilibrium relations can be used, from which it follows that

2δ × dσ = D × dp (A.4)

Because of the elasticity of the pipe wall, with modulus E, an increase in hoop stress dσ

causes an increase in the circumference (P = πD) and therefore also of the pipe diameter,
which according to Hooke’s law can be expressed by

dD
D

= dP
P

= dσ

E
(A.5)

Since the cross-sectional area A is proportional to D2, and using Eq. (A.4), it follows that

dA
A

= 2
dD
D

= D
δ

dp
E

(A.6)

so that
dA
dp

= D
δE

A (A.7)

Using this, the partial derivatives of A with respect to t and s can be expressed as

∂A
∂t

= dA
dp

∂p
∂t

= D
δE

A
∂p
∂t

(A.8)

∂A
∂s

= dA
dp

∂p
∂s

= D
δE

A
∂p
∂s

(A.9)

Fig. A.1 Cross section of pipe for pressurized flow
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262 Pressurized Flow in Closed Conduits

A.2.2 Conservation of Mass

The mass balance for the liquid under pressure in a pipeline reads

∂

∂t
(ρA) + ∂

∂s
(ρAU) = 0 (A.10)

This can be expanded into

A
∂ρ

∂t
+ ρ

∂A
∂t

+ ρU
∂A
∂s

+ ρA
∂U
∂s

+ UA
∂ρ

∂s
= 0 (A.11)

We substitute Eqs. (A.2), (A.3), (A.8) and (A.9), and divide by A, with the result(
ρ

K
+ ρD

Eδ

)
∂p
∂t

+
(

ρ

K
+ ρD

Eδ

)
U

∂p
∂s

+ ρ
∂U
∂s

= 0 (A.12)

Defining a quantity c through

1
c2 = ρ

K
+ ρD

Eδ
(A.13)

and substituting this into Eq. (A.12) brings the latter in the following compact form that
will be used in water-hammer computations:

∂p
∂t

+ U
∂p
∂s

+ ρc2 ∂U
∂s

= 0 (A.14)

We will see below that c represents the propagation speed of axial pressure waves through
the pipeline with the pressurized liquid. In an infinitely rigid pipe (E → ∞), we have
c = √

K/ρ, which is the classical expression for the propagation speed of compression
waves (the speed of sound) in a liquid, which for water (without bubbles!) is about 1500
m/s. The elasticity of the pipe wall causes the actual speed in the coupled system to be less
than this, often on the order of 1000 m/s in the case of steel pipes; see also Example A.1.

In the approximation of an incompressible liquid and a rigid pipe, c → ∞. This implies
that in this approximation a pressure perturbation would be felt instantly over the entire
pipe length. This also follows from the mass balance Eq. (A.12), which in this case
(K → ∞ and E → ∞) reduces to ∂U/∂s = 0; i.e. the fluid behaves as a rigid column. As
we will see below, this approximation applies when the flow varies slowly compared with
the time it takes for a pressure wave to travel the length of the pipe.

Example A.1 Consider the pressurized flow of water (ρ = 1000 kg/m3) in a pipeline. The
bulk modulus (compressibility) of water (K) amounts to 2.2 × 109 Pa. Compute the speed
of pressure waves in the pipeline in the case of:
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263 A.3 Pressure Waves in Pipelines

1. a pipeline with an infinitely rigid wall
2. a steel pipeline (tensile modulus E = 220 × 109 Pa) with a pipe diameter of 50 times the

wall thickness
3. a glass-reinforced plastic pipeline (E = 17 × 109 Pa), also with a pipe diameter of 50

times the wall thickness.

Solution

To calculate the speed of pressure waves in a pipeline use Eq. (A.13).

1. For an infinitely rigid pipe wall E → ∞ reducing Eq. A.13 to 1/c2 = ρ/K (second
right-hand side term is zero), from which it follows that c = √

K/ρ = 1483 m/s.
2. Using the full expression for c and setting D/δ = 50 gives c = 1211 m/s.
3. Carrying out the same steps as in question 2 leads to c = 543 m/s.

Provided the wall thickness does not change relative to the pipe diameter, increasing
elasticity of the pipe wall slows down the speed of pressure waves. For synthetic materials
frequently used in civil engineering, such as high-density polyethylene, this decrease can
be considerable.

A.2.3 Conservation of Momentum

The mass balance must be supplemented with an expression for conservation of momen-
tum. Since we are primarily interested in relatively rapid variations, we will initially neglect
flow resistance and use Euler’s equation for the streamwise motion:

∂U
∂t

+ U
∂U
∂s

+ 1
ρ

∂(p + ρgz)
∂s

= 0 (A.15)

In a state of equilibrium, the sum (p + ρgz) is constant (hydrostatic pressure distribution),
whose value we set at zero for convenience. (This is like setting the pressure gauges at zero
prior to the onset of flow.) With this convention, the pressure p is actually the deviation
from this initial hydrostatic value, and we can omit the term ρgz in Eq. (A.15).

A.3 Pressure Waves in Pipelines

This section deals with applications of the method of characteristics to pressure waves in
closed conduits, in particular, pipelines, for which it is highly suitable, as we will see.

A.3.1 Characteristic Equations

The characteristic relations for U and p can be derived from Eqs. (A.14) and (A.15) through
the same kind of procedure as was used in Chapter 5 for open water, with the result
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dR±
p

dt
= 0 provided

ds
dt

= U ± c (A.16)

in which
Rp

± = p ± ρcU (A.17)

Using the so-called piezometric level h ≡ p/ρg and U as the two state variables, we define

Rh
± = h ± c

g
U (A.18)

and obtain
dR±

h
dt

= 0 provided
ds
dt

= U ± c (A.19)

It follows from these characteristic relations that c is the speed of longitudinal propagation
of pressure waves in the coupled fluid–pipe system, relative to the fluid.

Although the pressure-induced variations of the mass density ρ have been accounted for
in the mass balance, and so in the expression for the wave speed, the relative magnitude
of these is always quite small and can be neglected where ρ appears in the equations
as a multiplying factor. The same applies to the diameter D and the wall thickness δ. In
this approximation, the wave speed c is independent of the actual state of motion, and
lines of constant values of Rp

± in the (U, p) state diagram are straight; so are lines of
constant values of Rh

± in the (U, h)-plane. This means that variations in U and p or h are
proportional, not only for infinitesimal variations, but also for finite values. Written in finite
difference form, the characteristic relations can be expressed as

�p = ∓ρc�U and �h = ∓ c
g
�U provided

ds
dt

= U ± c (A.20)

These relations are valid for disturbances of arbitrary magnitude, not just infinitesimal
ones.

For low disturbances in free-surface flows, the relation δd = ∓(c0/g)δU was derived
(Eq. (5.22)), valid along the ± characteristics. At the free surface, δp = 0, so that δd = δh
and δh = ∓(c0/g)δU along the ± characteristics, the same as for pressurized flow in a
pipe. The difference is that for free-surface flows these proportionalities are valid only for
weak disturbances, whereas such restriction does not apply in pressurized flows.

A.3.2 Physical Behaviour

As a result of the very limited storage available in pressurized flow (in contrast to free-
surface flow where mass can be stored by a rise in the free surface), the speed of pressure
waves in pipe flow is quite high, of the order of 1000 m/s; see Example A.1. Relative to
this, the flow velocity U can be neglected in the characteristic velocities U ± c, which
therefore can be approximated as ds/dt = ± c, in which moreover c can be considered to
be a constant (for pipes of constant cross section and elastic properties), independent of the
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265 A.4 Closure Procedures

actual pressure. This means that the characteristic velocities to a very good approximation
can be considered as constant; i.e. the characteristics are straight lines, independent of the
state of motion.

It follows from Eq. (A.20) that large variations in pressure can result from even moderate
changes in flow velocity, because of the high values of c. For example, if c = 1000 m/s, a
pressure variation of 100 m water column results from a change in flow velocity of 1 m/s.

The large pressure variations associated with water hammer can be positive as well as
negative. When and where the fluid pressure tends to become lower than the vapour pres-
sure, cavitation occurs; i.e. vapour bubbles or even complete cavities are formed. When
these collapse, an intense sound is generated (which in some houses can be heard when
closing the kitchen tap too rapidly), not unlike the sound caused by hammering on steel.

Water hammer and the associated cavitation can cause serious damage, even fracture,
to the pipeline system including its appurtenances such as pumps and valves. Therefore,
water hammer requires careful consideration in the design, and it imposes restrictions on
the allowable operation of pipeline systems.

A.4 Closure Procedures

Next, some examples are given of application of the method of characteristics to pipe
flow involving the operation of valves in pipeline systems. In each case, the solution is
determined graphically. It is important to study the example problems and their solutions
closely and to rework them. Reference is made to Chapter 5 for more information about the
use of the state diagram (the (U, h)-plane) and the characteristics diagram (the (s, t)-plane).

A.4.1 Abrupt Closure

Consider a pipe with length � between two reservoirs. Initially, the flow in the pipe is
uniform with velocity U0. Wall friction and velocity head effects at the upstream end are
ignored, so the piezometric level in the pipe at that end is set equal to the free-surface level
in the adjacent reservoir, which we take as our reference level h = 0 (boundary condition in
s = 0), which is also the initial level in the whole pipe. At t = 0, a valve at the downstream
end is suddenly closed completely (boundary condition U = 0 in s = � for t > 0). The
solution is given in Figure A.2, showing the (s, t)-diagram and the (U, h) state diagram.

At the location of the closed valve, the initial flow (state I) is suddenly brought to a
halt and the pressure rises steeply (state II). The front of this transition travels upstream
and reaches the open end at time t = �/c, where it is 100% negatively reflected (state III)
because h = constant as a result of the presence of the reservoir. The reflected negative
wave arrives at time t = 2�/c at the end of the closed valve and is reflected there by 100%
(state IV).

At time t = 4�/c, the front has traveled up and down the pipe once more, after which the
original state is restored and the process repeats itself with a period T = 4�/c. This goes on
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266 Pressurized Flow in Closed Conduits

(a) (b)

Fig. A.2 Abrupt closure at downstream end of a pipe; (s, t)-diagram (a) and (U, h)-state diagram (b)

‘forever’ because energy losses (due to wall friction and expansion at the exit) have been
neglected.

Ignoring cavitation, the maximum and minimum piezometric level are ±c U0/g
higher/lower than the undisturbed value of zero, corresponding to pressure variations
of ±ρcU0. The states I through IV (Figure A.2b) are indicated in the (s, t)-diagram
(Figure A.2a) as well as in the graphs in Figure A.3 where they are visible as a sequence
of longitudinal profiles.

At a fixed point, the maximum and minimum pressures alternate as time goes on. Near
either end, the durations of maximum and of minimum pressure are unequal (consider
some sections s = constant in the (s, t)-plane), but halfway down the length of the pipe they
last equally long.

Figure A.4 shows a time record of absolute pressure head measured at a fixed point
in the middle of the pipe for the situation considered presently. The initial pressure was
sufficiently high to prevent the occurrence of cavitation (see the minimum pressure head
of a little more than −10 m water column). The pattern of the pressure variations and
the values agree with the theory. The most notable deviation is the gradual decay of
the measured oscillations, which is not predicted by this theory in which all losses were
neglected. (For a quantitative check, the experimental data listed in Problems A.9 and A.10
at the end of this chapter can be used.)

A.4.2 Gradual Closure

The large pressure variations associated with abrupt closure of a valve (or the sudden start
or shut-off of a pump) are undesirable. They can be avoided to a controllable extent by a
more gradual closure. This can be seen as follows.

The preceding example shows that the high-pressure wave, originated at the location of
the sudden closure, is negatively reflected at the other, open end of the pipe. When this
reflected, negative wave arrives at the closed end, it can compensate for the pressure build-
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(a) t = 0 (b) 0 < t < �/c

(c) t = �/c (d) �/c < t < 2�/c

(e) t = 2�/c (f) 2�/c < t < 3�/c

(g) t = 3�/c (h) 3�/c < t < 4�/c

Fig. A.3 Abrupt closure: snapshots of pressure variation and flow velocity in a pipeline; state at t = 4�/c equals that at
t = 0 (a)

up there, provided the closure was not yet complete by the time of arrival of the reflected,
negative wave. This means that the closure should take longer than 2�/c.

In the following elaboration of this idea we assume the same situation and approxima-
tions as in the preceding example, except for the presence of a valve at the downstream
end. Initially, the valve is fully open (h = 0). We assume the following relationship to
describe the effect of partial closure of the valve:

h =
(

1
μ2 − 1

) |U|U
2g

(A.21)
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Fig. A.4 Abrupt closure: measured (solid line) and computed (dashed line) pressures; from Tijsseling (1993)

Fig. A.5 Gradual closure at downstream end of a pipe; (s, t)-diagram (a) and (U, h)-state diagram (b)

in which h is the piezometric level; U the flow velocity in the pipe near the valve, taken
positive for outflow; and μ is the ratio of the effective cross-sectional area of the valve
opening to that of the pipe. This relation is shown graphically in the state diagram of
Figure A.5 as two mirrored half-parabolas. For a fully open valve, μ = 1 (h = 0 for
finite U), and for a fully closed valve, μ = 0 (U = 0 for finite h).

Instead of using a truly gradual closure we approximate it as a two-step process,
assuming that at t = 0 the valve is abruptly but partially closed, such that μ = constant =
μ1 for 0 < t < 4�/c, with 0 < μ1 < 1; it is abruptly fully closed (μ = 0) at time t = 4�/c.

The solution is shown in Figure A.5. It can be seen that the partial closure causes a
moderate pressure rise (state II). In the end, after the valve has been closed completely, a
periodic state is established (states V-VI-VII-VIII-V), as in the preceding example, but the
maximum and minimum pressures are smaller in absolute magnitude due to the effect of
the reflected negative wave arriving at the valve at t = 2�/c, when the valve was not yet
fully closed.

.013
18:40:37,



269 A.4 Closure Procedures

It is obvious from the above that closing the valve in a sequence of small steps, or
gradually, can reduce the maximum and minimum pressures (in absolute magnitude) at
will, provided the duration is sufficiently long compared with the basic travel time of 2�/c.

A.4.3 Influence of Exit Losses and/or Wall Friction

We return to the situation first considered, of initially uniform flow in a pipe that at the
downstream end is abruptly closed. The only difference is in the boundary condition at
s = 0, where we now take velocity head effects into account, leading to h = 0 during
outflow and h = −U2/2g during (streamlined) inflow. This results in the following relation
to be imposed in s = 0:

h =
{

0 if U ≤ 0
−U2/2g if U > 0

(A.22)

The solution is presented in Figure A.6. Again, an oscillation develops with a period equal
to 4�/c, but this time the extreme values decrease in time as a result of the assumed exit
losses.

So far, we neglected wall resistance. It can in principle be taken into account with the
method described in Chapter 5, using numerous points distributed along the length of the
pipe. The overall effect, i.e. the gradual decay of the oscillations, can be obtained more
simply by lumping the overall resistance in one or two end points, accounting for it through
a modification of the boundary conditions.

A.4.4 Influence of Time Scales

The examples presented above clearly show that two time scales are important: the time
scale τe of external influences, e.g. the duration of closure of a valve on the one hand, and
the internal system time scale of the travel time of pressure waves over a pipe length (�/c)
on the other. Their ratio determines the dynamics of the system:

Fig. A.6 Influence of exit losses; (s, t)-diagram (a) and (U, h)-state diagram (b)
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• For τe 	 �/c (relatively fast excitation), dynamic effects are important and compression
waves must be taken into account.

• For τe � �/c, the influence of (slowly varying) boundary conditions is quasi-
instantaneously present throughout the pipe length via frequent pressure waves
travelling back and forth.

In the latter case, by approximation, the fluid reacts as a rigid column; compression and
expansion waves need not be considered.

Problems

A.1 Where is storage taking place in pressurized flow?
A.2 Describe an important consequence of the difference in character and magnitude of

the storage as compared with free-surface flows.
A.3 Derive the mass balance equation for pressurized flow in a pipe.
A.4 Considering the characteristic velocities of pressure waves in a closed pipe, what can

be said about the relative importance of the flow velocity compared with the wave
speed?

A.5 Verify step by step the graphical solutions for the examples of Section A.4 by critical
analyses of the corresponding (s, t)-diagram and the state diagram.

A.6 Elaborate the examples of Section A.4 by making sketches of the corresponding
(s, t)-diagram and the state diagram.

A.7 Choose some instants in the solutions of the examples of Section A.4 and sketch the
corresponding longitudinal profiles of the state variables.

A.8 Choose some fixed locations in the solutions of the examples of Section A.4 and
sketch the corresponding time variations of the state variables at those points.

A.9 The following data apply to the experiments of Figure A.4: E = 120 GPa, D = 19.05
mm, δ = 1.588 mm, � = 36 m, K = 1.95 GPa, ρ = 1000 kg/m3. Calculate c and �/c
and compare the latter value with the experimental data in the figure.

A.10 The pressure shown in Figure A.4 was measured after the sudden closure of a valve
in a flow with initial velocity U0 = 0.239 m/s. Calculate the difference between the
maximum and the minimum piezometric levels and compare it with the experimental
result in the figure.
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One-Dimensional Shallow Water Equations

Continuity equation

B
∂h
∂t

+ ∂Q
∂s

= 0

Momentum equation

∂Q
∂t

+ ∂

∂s

(
Q2

Ac

)
+ gAc

∂h
∂s

+ cf
|Q|Q
AcR

= 0

Elementary Wave Equation

Partial differential equation

∂2h
∂t2

− c2 ∂2h
∂s2 = 0

where c = √
gAc/B

General solution (d’Alembert)

h (s, t) = h+ (s − ct) + h− (s + ct)

Corresponding discharge, flow velocity

δQ = Bc
(
δh+ − δh−)

, δU = g
c

(
δh+ − δh−)

271
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272 Summary of Formulas

Translatory Waves

Reflection and transmission (low wave)

Abrupt change of cross section (1 → 2):

rr ≡ δhr
δhi

= 1 − γ

1 + γ
, rt ≡ δht

δhi
= 2

1 + γ

where γ = B2c2

B1c1

Gradual change of cross section (Green’s law)

Bc ζ 2 = constant

Wave damping (of pulse with height ζ̂ )

ζ̂ (s) = ζ̂0

1 + s/S

where S = 2α

cf

d2

ζ̂0
, α = 1 (block pulse), α = 3

8π (half-sinusoidal pulse)

Bore entering still water

c =
√

g
d0 + d1

2
d1

d0

Characteristic Method

Characteristic relations for prismatic conduits (horizontal bottom, without friction)

U ± 2c = constant along
ds
dt

= U ± c

Solution for small disturbances, superimposed on rest state (d0, c0)

δd = ∓c0

g
δU = ∓

√
d0

g
δU along

ds
dt

= ±c0
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Linearized Channel-Basin System

Differential equation

ω−2
0

d2ζb
dt2

+ τ
dζb
dt

+ ζb = ζs

where ω0 =
√

gAc
�Ab

, τ = 8
3π

χ
Q̂Ab
gA2

c
and χ = 1

2 + cf
�

R

Complex response factor

r̃ ≡ ζ̃b

ζ̃s
= 1

1 − ω2/ω2
0 + iωτ

Amplitude ratio

r̂ ≡ ζ̂b

ζ̂s
= 1√

2 �

√
− (

1 − ω2/ω2
0
)2 +

√(
1 − ω2/ω2

0
)4 + 4�2

where � ≡ ωτ

r
= 8

3π
χ

(
Ab
Ac

)2
ω2ζ̂s

g

Phase lag

tan θ = ωτ

1 − ω2/ω2
0

= �r
1 − ω2/ω2

0

Harmonic Method

Differential equation

d2ζ̃

ds2 + k2
0 (1 − iσ) ζ̃ = 0

where k0 = c0

ω
, c0 = √

gAc/B, σ = κ/ω, and κ = 8
3π

cf
Q̂

AcR

General solution

ζ̃ (s) = C+ exp (−ps) + C− exp (ps) = ζ̃+ + ζ̃−

where p ≡ μ + ik, k = k0√
1 − tan2 δ

, μ = k tan δ, δ = 1
2 arctan σ
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Corresponding discharge

Q̃(s) = iωB
p

(
C+ exp (−ps) − C− exp (ps)

) = Bc cos δ exp (iδ)
(
ζ̃+ − ζ̃−

)

Basin closed at one side (s = �)

ζ̃� = ζ̃0

cosh p�

Q̃0 = iωB
p

(tanh p�) ζ̃0

where sinh p� = cos k� sinh μ� + i sin k� cosh μ�

cosh p� = cos k� cosh μ� + i sin k� sinh μ�

Response factor

r ≡ ζ̂�

ζ̂0
= 1

|cosh p�| = 1√
sinh2 μ� + cos2 k�

Discharge amplitude

Q̂0 = Bc cos δ |tanh p�| ζ̂0 = Bc cos δ

√
sinh2 μ� + sin2 k�
sinh2 μ� + cos2 k�

ζ̂0

Flood Waves

Quasi-steady approximation

B
∂d
∂t

+ ∂Q
∂s

= 0

where Q = Qu

√
1 − i−1

b ∂d/∂s, Qu = Ac
√

g R ib/cf

Kinematic wave model, prismatic conduit

dd
dt

= 0 along
ds
dt

= cHW

where cHW = 1
B

dQu
dd

= 3
2

1
B

Qu
d

= 3
2

Bc
B

Uu

.014
18:40:40,



275 Steady Flow

Diffusion wave model, prismatic conduit (small deviations from uniform flow state)

∂d
∂t

+ cHW
∂d
∂s

− K
∂2d
∂s2 = 0

where K = Qu
2ibB

Response following abrupt release of volume V in s = 0 at time t = 0

d(s, t) = du + V/B√
2π σs

exp

(
− (s − cHWt)2

2σ 2
s

)

where σs = √
2Kt

Steady Flow

Discharge relations

Underflow gate (free outflow)

q =
√

2g
d2

1d2
2

d1 + d2

Weir (free outflow)

q = m 2
3 h

√
g 2

3 h

where h is the upstream water level with respect to the crest of the weir

Hydraulic jump

q =
√

gd1d2
d1 + d2

2

Backwater curves

Backwater equation

dd
ds

= ib − if
1 − Fr2

∼= ib
d3 − d3

u
d3 − d3

cr
(for R ∼= d)

where dcr =
(

q2

g

)1/3

, du =
(

cf

ib
q2

g

)1/3

=
(

cf

ib

)1/3
dcr
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Solution for small deviations from uniform flow state, boundary condition d = d0 at s = s0

d(s) = du + (d0 − du) exp

(
s − s0

L

)

where L = 1 − ib/cf

3ib
du (adaptation length)

Solution for horizontal bed
1
4 d4 − d3

cr d + cf d3
cr s = const

Uniform flow

Equilibrium relation

τb = ρgRib

Shear velocity

u∗ ≡
√

τb/ρ = √cf U

Uniform flow velocity, discharge

U = √
gRib/cf, Q = Ac

√
gRib/cf

where
1√cf

= 5.75 log

(
12R

k

)

Transport

Vertical diffusion

Turbulence diffusivity

εt = κu∗z
(

1 − z
d

)

Vertical distribution of horizontal velocity

u(z) = u∗
κ

ln
z
z0

, z0 = k/30 (Nikuradse)

Advection and two-dimensional dispersion (zone II)

Depth-averaged advection–diffusion equation

∂c
∂t

+ U
∂c
∂x

− 1
d

∂

∂x

(
Kxd

∂c
∂x

)
− 1

d
∂

∂y

(
Kyd

∂c
∂y

)
= 0

Kx ∼= 6 u∗d, Ky ∼= 0.6 u∗d ± 50%
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Solution for instantaneous release of mass M in (x, y) = (0, 0) at time t = 0, uniform depth

c̄(x, y, t) = M/d
2π σxσy

exp

(
− (x − Ut)2

2σ 2
x

− y2

2σ 2
y

)

where σx = √
2Kxt and σy = √

2Kyt

Solution for continuous release Ṁ in (x, y) = (0, 0), uniform depth

c̄(x, y) = Ṁ/q√
2π σy

exp

(
− y2

2σ 2
y

)
(x > 0)

where σy = √
2Kyx/U

Advection and one-dimensional dispersion (zone III)

Cross-sectionally averaged advection–diffusion equation

∂c
∂t

+ U
∂c
∂s

− K
∂2c
∂s2 = 0

K = γ√cf

QBc

d2 in which γ ∼= 10−2, with an uncertainty of a factor of about 4

Solution for instantaneous release M in s = 0 at time t = 0, uniform cross section

c(s, t) = M/A√
2π σs

exp

(
− (s − Ut)2

2σ 2
s

)

where σs = √
2Kt

Pressurized Pipe Flow

Continuity equation

∂p
∂t

+ U
∂p
∂s

+ ρc2 ∂U
∂s

= 0

where c = 1/
√

ρ/K + ρδ/ (ED) (wave speed)

Momentum equation

∂U
∂t

+ U
∂U
∂s

+ 1
ρ

∂ (p + ρgz)
∂s

+ cf
|U|U

R
= 0

Characteristic relations, absence of forcing terms (resistance, slope)

�p = ∓ρc �U and �h = ∓ c
g

�U along
ds
dt

= U ± c

.014
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De Saint-Venant, M. 1871. Théorie du mouvement non permanent des eaux, avec applica-
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