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PREFACE 

Prospective authors of a technical book are faced with a dilemma. If their 
subject is well established-the theory of elasticity, for example-then it 
is likely that they have been preceded by someone who has taken far more 
pains to produce a book than they possibly could. On the other hand, if 
they have not been so preempted, it may well be because their subject is 
still evolving. Their “snapshot” of a subject in its infancy might then rap- 
idly become out of date. 

Fracture mechanics is a subject that has not yet fully matured. Yet, it 
has existed long enough, and its practical applications are important 
enough, that a great deal of information is already available. Neverthe- 
less, we wrote this book believing that fracture mechanics is currently at 
a unique stage. Enough research has been performed to provide a solid 
foundation upon which future progress will build. At the same time, soci- 
etal dictates for optimum uses of energy and materials are increasingly 
forcing structural integrity assessments to be made in the more realistic 
way afforded by a fracture mechanics approach. Accordingly, a book 
offering its readers a unifying treatment of the subject for a wide variety 
of structural materials and application areas is one that should be of 
value, even though much work remains to be done. 

While a number of excellent books on fracture mechanics have already 
been written-many by our friends and colleagues-we do not feel these 
offer the particular perspective we have sought in this book. We have 
addressed the subject from the point of view of applied mechanics. At the 
same time we feel that some fundamental aspects have not been made as 
clear in the existing books as they perhaps should be for the newcomer to 
this field. We hope that we can also improve on this aspect for our 
readers. 

To those not well acquainted with it, the subject of fracture mechanics 
may appear to be rather exotic and mysterious. But it should not. Any 
reader who understands the basic concepts of stress and strain, as might 
be acquired in an undergraduate course on the strength of materials, 
should find little conceptual difficulty with it. In essence, fracture 
mechanics circumvents the difficulty arising from the presence of a sharp 
crack in a stress analysis problem (where there would be an infinite stress, 
and fracture, under any load) by providing a parameter that characterizes 
the propensity of the crack to extend. This parameter, which can be gen- 
erally referred to as the crack extension force, can be calculated knowing 
the stress-strain behavior of the material, the crack/structure geometry, 
and the boundary conditions. A critical value of the crack extension force 
is generally taken as a property of the material. This property, which can 
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be inferred from simple tests, constitutes the only additional information 
needed. 

Fracture mechanics, be it for elastic-brittle, ductile, time-dependent, or 
heterogeneous materials, is simply based on equating the calculated crack 
extension force for a cracked structure to the fracture property for the 
structural material, The result is an explicit relation for crack extension 
for prescribed applied load, crack size, component dimensions, and mate- 
rial. Applying this method in any particular circumstance may not be 
obvious. This book would not be necessary if it were. But the basic 
approach is both simple and widely applicable. 

We now state more definitely what we mean by the term “fracture 
mechanics.” In common with most researchers in the field, we define the 
term in the following way: Fracture mechanics is an engineering disci- 
pline that quantifies the conditions under which a load-bearing body can 
fail due to the enlargement of a dominant crack contained in that body. 
This definition is obviously quite general. Accordingly, what it does not 
include is perhaps equal in importance to what it does. 

First, this definition does not restrict the size, shape, or location of the 
crack. Nor does it limit the direction or the rate at which it enlarges. 
Hence, relatively slow crack growth rates as in stress corrosion and 
fatigue are included along with dynamic processes such as rapid “brittle” 
crack propagation. Second, no constraint is placed on the constitutive 
relation obeyed by the cracked body. It follows that elastodynamic, elas- 
tic-plastic, and viscoplastic continuum material behavior, along with het- 
erogeneous and atomistically viewed materials, are equally admissible 
with the conventional (and most widely used) linear elastic continuum 
view. Third, the causation of crack extension is not specified in our def- 
inition. Mechanical and thermal stresses that vary arbitrarily in time 
along with environmental agents, separately or in combination, can be 
considered. As a final point the definition leaves the nature of failure itself 
unspecified. Thus, any condition from the mere appearance of a detect- 
able crack to catastrophic fracture can be considered within the domain 
of fracture mechanics. 

What should follow from the definition just given is the vacuousness 
of statements that imply that fracture mechanics does not work in some 
given area. As an example, not too many years ago many people con- 
cerned with the use of fiber composites for aircraft structures undoubt- 
edly would have subscribed to the sentiment expressed by one of them: 
“Fracture mechanics will work only for a composite structure that some- 
one has attacked with a hatchet.” The interpretation of such a remark is 
this: linear elastic fracture mechanics techniques developed for high 
strength metals are not directly applicable to a composite unless a 
through-wall crack exists that is large in comparison to the scale of the 
micromechanical failure events that precede fracture. Linear elastic frac- 
ture mechanics, to be sure, is by far the most highly developed and widely 
applied version of fracture mechanics. But, it is just that-a specializa- 
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tion of the general subject that must not be considered as synonymous 
with the subject as a whole. Thus, when “fracture mechanics doesn’t 
work,” it is very likely because the methodology has been applied at too 
simple a level. 

A key feature of any fracture mechanics definition is the explicit 
requirement of a dominant crack. This is the essential difference between 
fracture mechanics and other kinds of structural analysis. That cracks can 
and do appear in every type of structure is, of course, the ruison d’etre of 
fracture mechanics. But, the requirement that at least one identifiable 
crack exist can be troublesome. For example, fracture mechanics cannot 
predict failure in a simple tensile test. No engineering structure can be 
assessed via fracture mechanics unless at least one crack is either 
observed (or postulated) to exist in that structure. 

Another drawback to fracture mechanics is a subtle one that even many 
people with long experience in the field do not always recognize. Fracture 
property values cannot be directly measured. Such values can only be 
inferred-via the interposition of some assumed analysis model-from 
quantities that can be experimentally determined. The reason is that 
there is no instrument that can be made to provide fracture property val- 
ues for all materials in all testing conditions to the extent that a strain 
gage measures a change in a length or a thermocouple measures a change 
in temperature. To “measure” a material fracture property, the theoreti- 
cal crack driving force is calculated for the crack length and load level at 
the observed point of crack extension. The fracture property is just the 
critical value of this crack driving force. While this is true even under 
linear elastic conditions, there is little difficulty in that regime. But, in 
nonlinear and dynamic fracture mechanics, serious consequences can 
result from not recognizing that the fracture “property” can be strongly 
affected by the analysis method used with the measurement process. 

The foregoing requirements suggest a constraint on the definition of 
fracture mechanics. To qualify as a true fracture mechanics approach, the 
measured fracture properties must be broadly applicable and not 
restricted only to the special conditions in which the characterizing exper- 
iments are performed. Approaches in which a specific structural compo- 
nent is closely simulated are therefore not in this spirit. Even though such 
tests are performed on cracked materials, if a basic fracture parameter is 
not correctly involved, the results are limited to an interpolative func- 
tion; that is, reliable predictions can only be made for conditions that 
correspond to those in which the experiments were performed. 

The hallmark of a true fracture mechanics approach is that it has an 
extrapolative function. It should be possible to obtain reliable predictions 
even for conditions that differ significantly from those in which crack 
growth measurements were made. In accord with this constraint, fracture 
mechanics makes possible the use of small-scale laboratory tests (e.g., 
compact tension specimens) to provide material crack growth and frac- 
ture property data for integrity assessments of large-scale structures. Of 



viii Preface 

course, a properly founded analysis approach provides the critical link 
needed to make such a transition possible. 

Our basic definition of fracture mechanics may also help readers of this 
book to appreciate just how broad the subject of fracture mechanics is. 
Far from being a specialized subject, it underlies all structural analysis 
and materials science. No structural material is exempt from a defected 
condition, and, if it could not fail because of such defects, it would be 
pointless to analyze it in any other way. Consequently, each and every 
structural component is, or could be, a candidate for treatment by frac- 
ture mechanics. While all applications obviously do not now receive such 
scrutiny, it is clear from present trends that the years to come will see 
fracture mechanics assessments become more and more commonplace. 

We have sought to satisfy two general groups of readers. In the first 
group are those who may have had little or no association with fracture 
mechanics, but possess a background in stress analysis and/or materials 
science equivalent to that acquired in an undergraduate engineering pro- 
gram. The second group contains those who have worked, perhaps exten- 
sively, in a particular aspect of fracture, but who have not been exposed 
to the variety of application areas covered. Our presentation can be lik- 
ened to a paraphrase of a remark on the nature of science attributed to 
the French mathematician Poincark: a technical book is built of facts the 
way a house is built of bricks, but an accumulation of facts is no more a 
book than a pile of bricks is a house. That is, we have sought to provide 
more than just a haphazard collection of analysis approaches and results. 
We want instead to show the essential unity of fracture mechanics and 
the basic commonality of its many specializations. Simply put, our goal 
is to demonstrate principles rather than recount details. Thus, we want 
our book to be judged on whether it enables its readers to understand 
fracture mechanics, not on its worth as a source of up-to-the-minute data 
and problem-solving techniques. 

This book is partly based on lecture notes for a two-quarter course on 
fracture mechanics taught in the Department of Engineering Mechanics 
at the Ohio State University. The introductory course for advanced 
undergraduate and beginning graduate students is confined primarily to 
linear elastic or small-scale yielding fracture mechanics. It draws upon 
material from Chapters 1 through 3, supplemented with selected topics 
from Chapter 5.  The more advanced topics in Chapters 2 and 4 through 
7 form the subject matter for the second course. Since experience has 
demonstrated that the book contains more material than can conceivably 
be covered in a two-quarter course, the book should also be suitable for 
use in a two-semester course. Chapter 1 evolved from notes developed 
for short courses designed to introduce fracture mechanics to practicing 
engineers interested in structural integrity and nondestructive evaluation. 

In common with most engineering-oriented subjects, fracture mechan- 
ics practitioners have had to face the problems arising from the use of 
different sets of units. We are convinced that the SI system will eventually 
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become universally accepted and, accordingly, have tried to use it to the 
extent possible in this book. However, a great amount of data has been 
collected and reported in English units. We do not feel obliged to convert 
these data, and, in fact, because the English system is still far from obso- 
lete, feel that we would not be providing a service in so doing. Dual sys- 
tems are tedious and tend to become much more of a hindrance than a 
help to understanding. We have provided a conversion chart at the front 
of the book to assist the reader with a need to have particular results in a 
system other than the one in which we have reported it. 

In writing this book we have been able to draw upon a vast amount of 
published material. This is of course not an unmixed blessing. There are 
simply too many worthwhile reports of research activities in fracture 
mechanics for us to report on but a fraction of them. For example, the 
two primary journals exclusively devoted to the subject-The Znterna- 
tional Journal of Fracture and Engineering Fracture Mechanics-con- 
tained some 3 100 pages between them in 1983. Added to this are perhaps 
two dozen other technical journals that regularly contain papers on some 
aspect of fracture mechanics together with countless volumes of confer- 
ence proceedings and other compilations. Accordingly, we make no pre- 
tense of completeness in covering the subject. We believe that the approx- 
imately 800 references we have cited will provide ready access to the 
remaining literature in any particular specialized area. Furthermore, we 
have selected references to reflect the main contributors to the subject, 
thereby identifying the people from whom important work in each area 
of interest to our readers can be expected in the future. In so doing, we 
have provided citations that are readily obtainable in English and would 
be available in most technical libraries. Our apologies to those whose 
major contributions we have unintentionally (and inevitably) over- 
looked, and to those whose claims of historical priority-particularly in 
non-English-language papers-we have thereby violated. 

We have found it possible to embark upon the preparation of this book 
because of the wide diversity of the research we have been involved in. 
For this, both of us must primarily credit our associations with the Bat- 
telle Memorial Institute. Each of us could also compile a long list of col- 
leagues and co-workers who have in some way contributed to extending 
our knowledge of fracture mechanics. That we have not named them 
individually does not, we hope, suggest that our debt to these associations 
is a small one. It is not. There are, however, four individuals whose influ- 
ence on the first author have been such that he would be extremely remiss 
not to acknowledge them specifically. These are Mr. Eugene Eschbach, 
who guided his first professional work while both were employed by the 
General Electric Company in Richland, Washington; the late Professor 
Norman Goodier, his teacher, advisor and friend at Stanford University; 
Dr. George Hahn, his co-worker for many years at Battelle’s Columbus 
Laboratories; and the one foremost in his affections, his wife, Jean. The 
second author would like to acknowledge his friend and mentor, the late 



X Preface 

Professor Ivor K. McIvor. He also owes a debt of gratitude to his wife, 
Joyce, for not only proofreading the manuscript but also for her forbear- 
ance and love in general. Finally, we are indebted to Sherry Galford, 
Norma Hunter, and Claudia Riser who cheerfully and painstakingly 
typed the many versions of the manuscript, to Victor Holmes for prepar- 
ing many of the figures, to John Merkle for his thorough critique of the 
draft version of the book, and, finally, to Louisa Ronan for helping in so 
many ways. 

San Antonio, Texas 
Columbus, Ohio 
January 1984 

M. F. K. 
C. H. P. 
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1 
INTRODUCTION AND OVERVIEW 

The existence of crack-like flaws cannot be precluded in any engineering 
structure. At the same time, increasing demands for energy and material 
conservation are dictating that structures be designed with smaller safety 
margins. Consequently, accurate quantitative estimates of the flaw tolerance 
of structures is increasingly becoming of direct concern for the prevention of 
fracture in load-bearing components of all kinds. This has not always been so. 
Prudent design procedures that avoided large stress concentrations- 
together with immediate repair or retirement from service of components that 
exhibited cracks-have been reasonably effective in preventing catastrophic 
failures. However, two important factors have now emerged to negate this 
traditional strategy. 

First, improved nondestructive evaluation (NDE) procedures have enabled 
defects to be found that would have gone unnoticed earlier. Second, the 
presence of a crack-like defect does not necessarily mean that a structural 
component is at  (or even near) the end of its useful service life. The cost of the 
repair or replacement of a flawed component can therefore be balanced 
against the possibility that continued service could lead to a failure. The new 
engineering concept known as damage tolerance has been developed to 
provide quantitative guidance for this purpose. It, in turn, is largely based 
upon the technology of fracture mechanics. While not the only ingredient of 
structural integrity assessments, as this book will make clear, it plays a central 
role. 

Concern for fracture has surely existed back to antiquity. While much of this 
concern is unrecorded, some evidence of scholarly study that substantially 
predates our times does exist; see for examples Gordon’s books (1.1). As 
described in Timoshenko’s history of the strength of materials (1.2)-see also 
Irwin’s review paper (1.3)-da Vinci performed experiments to determine the 
strength of iron wires in the fifteenth century. He found an inverse relationship 
between the wire length and the breaking load for constant diameter wires. 
Because this result would otherwise imply that strength is dependent upon the 
wire length, it can be surmised that the presence of cracks dictated the fracture 
stress; that is, the larger the volume of material tested, the more likely it is that 
a large crack exists. Considering the wire quality available at that time, this is 
highly plausible. Nevertheless, little of a quantitative nature could be done 
with this possibility. Fracture theories based on’ crack extension require the 
mathematical concepts of stress and strain that were not forthcoming until 
given by Cauchy and the other great French mathematician/engineers of the 
nineteenth century (1.4). 

3 



4 Advanced Fracture Mechanics 

A. A. Griffith was the first to make a quantitative connection between 
strength and crack size (1.5). Hence, as one possibility, fracture mechanics 
could be dated from 1922. However, many would agree that fracture 
mechanics became largely an engineering discipline, as opposed to one of mere 
scientific curiosity, as a result of George Irwin’s basic contributions in the 
years following the Second World War. Accordingly, we feel that fracture 
mechanics should be dated from 1948, the year of publication of the first of 
Irwin’s classic papers (1,6). 

Because the developments that directly followed from Irwin’s work were 
almost entirely focused on linear elastic fracture mechanics, there appears to 
be a second distinct demarcation point in the history of fracture mechanics. 
This point coincides with the introduction of the basic ideas necessary for the 
treatment of nonlinear problems. This time can be taken as 1968. In that year 
J. R. Rice presented his J-integral(1.7) and J.  W. Hutchinson (1.8) showed how 
such a concept could be used to obviate the need for a direct description of the 
discrete and nonlinear events involved in crack extension. We will refer to the 
methodology that evolved subsequently for the treatment of nonlinear and 
dynamic problems beyond linear elastic fracture mechanics as advanced 
fracture mechunics. 

As our title suggests, this book will primarily address the subject in terms of 
the nonlinear and dynamic aspects that require analysis techniques beyond 
those now in common use. To set the stage for these presentations, this 
overview chapter is intended as an introduction to fracture mechanics for 
those not previously acquainted with the subject. I t  is written on a level that 
should be readily accessible to readers familiar with the basic concepts of 
stress and strain-that is, as might be acquired in an undergraduate course in 
the strength of materials. The first section of this chapter presents applications 
of current techniques. The four sections that follow step back to introduce 
fracture mechanics from a historical point of view. The penultimate section 
then presents some practical problems of current interest where conventional 
linear elastic fracture mechanics techniques will not entirely suffice. A short 
philosophical section giving our personal views on fracture mechanics and its 
uses concludes the chapter. 

1.1 Current Fracture Mechanics and Its Applications 

Fracture mechanics is an engineering discipline that primarily draws (in 
roughly equal proportions) upon the disciplines of applied mechanics and 
materials science. In its most basic form it can be applied to relate the 
maximum permissible applied loads acting upon a structural compoiient to 
the size and location of a crack-either real or hypothetical-in the 
component. But, it can also be used to predict the rate at  which a crack can 
approach a critical size in fatigue or by environmental influences, and can be 
used to determine the conditions in  which a rapidly propagating crack can be 
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arrested. Current damage tolerance assessment procedures are now available 
that make effective use of these capabilities for materials that otherwise behave 
in an essentially linear elastic manner. 

In applications where either extensive elastic-plastic or time-dependent 
deformation might be experienced prior to fracture, linear elastic fracture 
mechanics methods are generally inadequate. But, procedures are now 
becoming available for such conditions. Also on the horizon are treatments of 
the even more complicated conditions involved in the cracking of welds and 
other areas where residual stresses are present, of heterogeneous materials 
such as fiber reinforced composite materials, of adhesives and other viscoelas- 
tic materials, and the like. However, it is unlikely that one could have an 
appreciation for such advanced work without understanding the manner in 
which fracture mechanics applications are currently being made. Accordingly, 
we begin by describing current fracture mechanics and its applications. 
Consistent with the approach that we will take throughout this book, we will 
do so from the point of view of applied mechanics. 

1.1 .1  The Consequences of Fracture 

Readers of this book will certainly already have a definite interest in fracture 
mechanics and, no doubt, a general appreciation for the consequences of 
fracture in practice. Nevertheless, some graphic examples might usefully be 
provided. To begin, Figures 1.1, 1.2, and 1.3, taken from Burdekin (1,9), show 
instances where a catastrophic fracture in a structural component could be 
traced to the existence of a crack-like flaw. While pictures of failures such as 
these are not uncommon, these pictures are unusual in one respect-the flaw 
that triggered the fracture was specifically identified. These flaws are shown 
along with the fractured component in Figures 1.1, 1.2, and 1.3. In all three 
cases it can be seen that the initiating flaws were not overly large. Conceivably, 
they could well have been detected prior to failure whereupon applications of 
fracture mechanics would presumably have revealed that the structure was in 
jeopardy. Obviously, they were not. 

The costs of fracture associated with industrial accidents such as those 
pictured are not easily determined. They would likely be dominated by the 
replacement cost and the loss of revenue in the interim. But, there are other 
instances in which these are dwarfed by another possible aspect: the loss of life 
and property in the neighborhood of the facility. Perhaps the most spectacular 
instance of this kind is the catastrophic rupture of a liquified natural gas 
(LNG) storage tank that took place in Cleveland in 1944. Figure 1.4 shows the 
attendant devastation in the neighborhood of the plant. The ruptured vessel 
and two of the other four originally at the site, can be seen near the center of 
the photograph. 

According to Atallah (l,lO), 79 houses, 2 factories, and some 217 auto- 
mobiles were totally destroyed with another 35 houses and 13 factories 
being heavily damaged. The extent of the combined property damage was 
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Figure 1 . 1  A nuclear plant boiler failure precipitated by a weld crack. 

estimated at 6 to 7 million (1944) dollars. The sequence of events evidently 
involved an initial rupture of the vessel that allowed a substantial amount of 
liquefied natural gas to escape. The liquid then vaporized and was somehow 
ignited. When the gas ignited, according to Atallah, 
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Figure 1.2 An ammonia converter failure originating from a heat-affected-zone crack. 

7 



8 Advanced Fracture Mechanics 

Figure 1.3 A power station boiler failure caused by a surface crack. 
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Figure 1.4 Devastated area in the vicinity of a ruptured liquefied natural gas storage tank. 

sewers exploded, propelling manhole covers into the air. Heavy underground 
blasts lifted entire street pavements, demolished houses, ruptured water and gas 
mains, and broke hundreds of store plate-glass and residence windows. . . . the 
height of the ball of flame (was estimated) at 2800 feet. Roasted birds fell out of 
the sky. 

Most serious of all was that the LNG tank fires and the explosions that 
accompanied them killed 130 people and seriously injured another 300. These 
figures are understandable in view of the devastation that can be seen in 
Figure 1.4. 

The origin of the Cleveland L N G  tank failure was never unequivocally 
determined. But, i t  is thought to have been due to a welding defect with 
subsequent fatigue crack growth caused by vibrations and  shocks from heavy 
train traffic and  from the many stamping mills in the vicinity (1.10). Coupled 
with this was the likelihood that the material used for the tank-a low-carbon 
3.5 percent nickel-alloy steel-was too low in toughness at  the service tem- 
perature of -250°F. 

In 1982 the National Bureau of Standards (NBS) commissioned a study of 
the total direct and indirect costs of fracture in the economy of the United 
States. This study, conducted by Duga et al. (1 .1  I ) ,  not unexpectedly reveals 
that the costs are high indeed. Along with the direct losses and imputed costs 
associated with fracture-related accidents of all kinds, they have included 
estimates encompassing the necessity to overdesign structures because of 
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nonuniform material quality and to perform inspection, repair, and replace- 
ment on materials that have degraded in service. Ttne grand total is some 
120 billion dollars annually. One can only wonder about the costs worldwide, 
and, with the ever increasing reliance on structural integrity as our society 
becomes ever more complex, what these costs will become in the future. 

An interesting feature of the NBS study is the estimates that have been 
made on possible savings. It was suggested that some 35 billion dollars 
annually (30percent of the grand total) could be saved if all known best 
fracture control technology were applied today. Another 28 billion dollars 
(23 percent)could be saved as a result of applying the new knowledge that they 
expect to be generated in the future. Regardless of how literally one takes these 
estimates, it is certainly clear that fracture is a serious problem and that much 
more could be done to resolve it than is currently being done. In view of the 
relative newness of fracture mechanics as an engineering discipline, it is not 
too surprising that many structural designers, metallurgists, nondestructive 
evaluators, and others concerned with structural integrity do  not employ 
fracture mechanics as the engineering tool as it can and should be used. 

1.1.2 Fracture Mechanics and Strength of Materials 

In the strength of materials approach that is certainly familiar to all structural 
engineers, one typically has a specific structural geometry (assumed to be 
defect free!) for which the load carrying capacity must be determined. To 
accomplish this, a calculation is first made to determine the relation between 
the load and the maximum stress that exists in the structure. The maximum 
stress so determined is then compared with the material’s strength. An 
acceptable design is achieved when the maximum stress is less than the 
strength of the material, suitably reduced by a factor of safety. The similarity 
between this approach and that of fracture mechanics can be illustrated with 
the help of the example shown in Figure 1.5. 

In the simple structure shown in Figure l.5(a), a built-in cantilever beam of 
length L, depth H, and thickness B is required to support a weight Wat its free 
end. As indicated in Figure 1.5(b), the maximum tensile stress acts in the 
outermost fibers of the beam at its built-in end and is related to the load and 
the beam dimensions by the relation 

6WL 
o m a x  = - B H ~  

(1.1-1) 

It can be assumed that failure will not occur unless om,, exceeds the yield 
strength of the material, oy. Then, for fixed beam dimensions, Wmust be small 
enough that the right-hand side of Equation (1.1-1) is less than oy. To assure 
this, a factor of safety S can be introduced to account for material variability 
and/or unanticipated greater service loadings. ysing Equation (1.1-1), om,, 
will be less than o,/S if 

B H ~  W<- 
6SL (1.1-2) 
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whereupon the structure will be safe, at least from the viewpoint of strength of 
materials. 

Now, consider that the beam, instead of being defect-free, contains a crack. 
Further suppose that, as shown in Figure 1.5(c), the crack is located where the 
maximum stress is anticipated. As will be thoroughly discussed below, the 
governing structural mechanics parameter when a crack is present, at least in 
the linear approach, is an entity called the stress intensity factor. This 
parameter, which is conventionally given the symbol K, can be determined 
from a mathematical analysis like that used to obtain the stresses in an 
uncracked component. For a relatively small crack, an analysis of the flawed 
beam shown in Figure 1.5(c) would give to a reasonable approximation 

K = 1.12omaXJlra (1.1-3) 

where a is the depth of the crack and omax is the stress that would occur at the 
crack location in the absence of the crack. 

I H 

W 
t 

Figure 1.5 Basis for the comparison 
of strength of materials and fracture 
mechanics approaches: ( 1 )  unflawed 
cantilever beam, (b) tensile stresses in 
an unflawed beam, (c) cracked beam. 
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The basic relation in fracture mechanics is one that equates K to a critical 
value. This critical value is often taken as a property of the material called the 
plane strain fracture toughness, conventionally denoted as Klc.  When an 
equality is achieved between K and K,,, the crack is presumed to grow in an 
uncontrollable manner. Hence, the structure can be designed to be safe from 
fracture by assuring that K is less than K,,. Further assurance can be obtained 
by having K < K, , /S ,  where, just as in the strength of materials approach, the 
number S is a factor of safety. Using Equation (1.1-1) to replace amax in 
Equation (1.1-3) then leads to 

B H 2  K, ,  
W < -  

6SL 1 .12f i  
(1.1-4) 

which is the fracture mechanics estimate of the safe operating load. 
A comparison between inequalities(l.1-2) and (1.1-4)is instructive. It can be 

seen that the structural geometry and the factor of safety enter both relations 
in exactly the same way-that is, through the multiplicative parameter 
(BH2/6SL) .  Also, both relations contain a basic, albeit different, material 
property. The essential difference is that the fracture mechanics approach 
explicitly introduces a new physical parameter: the size of a (real or postulated) 
crack-like flaw. In fracture mechanics the size of a crack is the dominant 
structural parameter. It is the specification of this parameter that distinguishes 
fracture mechanics from conventional failure analyses. 

1.1.3 Basic Uses of Linear Elastic Fracture Mechanics 

The generalization of the basis for engineering structural integrity assessments 
that fracture mechanics provides is portrayed in terms of the failure boundary 
shown in Figure 1.6. Clearly, fracture mechanics considerations do not obviate 
the traditional approach. Structures using reasonably tough materials (high 
K, , )  and having only small cracks (low K) will lie in the strength of materials 
regime. Conversely, if the material is brittle (low K l c )  and strong (high by), the 
presence of even a small crack is likely to trigger fracture. The fracture 
mechanics assessment is then the crucial one. 

However, fracture is not the only way that a structure can fail. In the 
example of Figure 1.5, an excessive deflection at the end of the beam, even 
though the beam still adequately supports some load, could be judged as a 
failure in some applications. Nonetheless, in the presence of a crack-like flaw, 
fracture is likely to be of most concern. 

Note here that the words “crack” and “flaw” tend to be used interchange- 
ably. But, while all cracks can be considered to be flaws (or defects), not all 
flaws are cracks. The distinction is in the sharpness of the tip, a crack being a 
flaw with a very small radius of curvature at its tip. Volumetric defects are 
clearly not cracks. But, unless specific information is available to the contrary, 
prudence dictates that all flaws be so considered. 
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Figure 1.6 Generalization of engineering structural integrity assessments provided by fracture 
mechanics. 

Although it is tangential to our main objective here, the special circum- 
stances that would be called into play in the upper right-hand corner of the 
diagram shown in Figure 1.6 are worth noting. I n  this regime a cracked 
structure would experience large-scale plastic deformation prior to crack 
extension. Linear elastic treatments of the kind discussed so far are then 
invalid. As discussed later in this chapter, this fact necessitates the use of 
nonlinear fracture mechanics treatments and requires more precise definitions 
of the fracture parameters. However, for introductory purposes, it will suffice 
to simply accept the specialization of the general subject known as “linear 
elastic fracture mechanics” (or, simply, LEFM) as applicable for all 
crack/structure/loading conditions where the inherent inelastic deformation 
surrounding the crack tip is small. 

The problem category in which LEFM is valid is also known as one 
satisfying “small-scale yielding” conditions. Its validity requires that the 
applied stresses be small enough that general plastic yielding does not occur. 
Figure 1.7 shows an example of the center cracked panel data collected by 
Fedderson (1,12), which illustrates that fracture can indeed occur well below 
net section yielding. These results, made on an aircraft material, typify the 
applications for which LEFM has so effectively been made. 
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Figure 1.7 Comparison of net-section failure and fracture mechanics prediction for center- 
cracked tension panels of 7075-T6 aluminum alloy. 

There are three general ways in which a flaw can appear in a structure. These 
are, (1) inherent defects that occur in the material (e.g., inclusions in a metal, 
debonded regions in a composite), (2) defects introduced during the fabrication 
of a structural component (e.g., lack of fusion in a weld, welding arc strikes), 
and (3) damage incurred during the service life of the component (e.g., dents 
and cuts, fatigue, and environmentally assisted cracking). Within the confines 
of linear elastic fracture mechanics, it makes no difference how a flaw is 
introduced. A crack-like flaw of a given size and position in a body is assumed 
to obey the same fracture rules regardless of its origins. The basic capability 
that fracture mechanics provides can then be employed in either of two general 
ways. First, the maximum safe operating loads that an engineering structure 
can sustain for the sizes and locations of existing flaws can be determined. 
Such cracks might be those actually found during an inspection, whereupon 
the continued safe operation of the structure is in question. Second, for given 
loads, the largest crack size that can exist without fracture can be determined. 
This will provide specifications to be set in advance of an inspection. 

Of most importance in regard to linear elastic fracture mechanics are 
applications where weight is a primary concern. When the resistance to 
yielding is high (e.g., in a high strength steel), the fracture toughness tends to be 
low. Combined with the necessity to use highly stressed components, it follows 
that fracture mechanics analyses are essential to achieve a proper balance 
between performance and reliability. In fact, the use of fracture mechanics for 
structural integrity assessments is largely due to the importance of considering 
small flaws in aerospace, off shore, and other applications where high strength 
materials are used to minimize weight. 
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1.1.4 Linear Elastic Fracture Mechanics Relations 

Linear elastic fracture mechanics relates the size of a crack with the loading 
that will fracture a given component by linking two separate activities: ( I )  a 
mathematical stress analysis of the loaded structure, and (2) experimental 
measurements of the material’s fracture properties. Expressed in quantitative 
terms, fracture will occur when 

K(a ,  D ,  a) = K,(T, 6, B )  ( I .  I - 5 )  

where K is a calculated parameter that, as indicated in Equation (1.1-5), 
depends on crack size, a, component dimensions, D, and applied stress, r ~ .  It  
will not depend on the material. In  contrast, K ,  is a material parameter called 
the fracture toughness that depends on the temperature at the crack tip, T, the 
rate of loading, &( =do /dr ) ,  and B, the thickness of the cracked section. I t  is an 
experimentally measured quantity that is independent of the crack/structure 
geometry, of the loading imposed on the structure, and of the crack size.* 

It is particularly important to understand that, in order to perform a 
fracture mechanics assessment, both K and Kcare needed: neither parameter is 
meaningful by itself. To recall the analogy between fracture mechanics and 
strength of materials given in Section 1.1.2, this parallels the basic distinction 
that exists in the latter subject. The strength of a material is the stress required 
to break a specimen of that material-a number usually determined in a 
uniaxial tension test. The strength of a structure is the force that makes the 
maximum stress acting in the structure equal to the strength of the material, 
the maximum stress being independent of the material. Thus, the relation 
omax = oY is adirect counterpart of Equation ( I .  l-5), including the fact that the 
values of the two quantities are not meaningful by themselves. These values 
are only relevant in a relative sense. 

Table l . t  displays a set of representative stress intensity factors for some 
simple load/crack/structure combinations of interest. This list is far from 
exhaustive (n.b., catalogs of stress intensity factors have been compiled-see 
Chapter 9). Figure 1.8 shows typical ranges of the fracture toughness data for 
aluminum, titanium, and steel alloys. These data illustrate the inverse relation 
between yield strength and fracture toughness that generally exists. Collec- 
tions of fracture toughness data also can be found and these too are cited in 
Chapter 9. 

The pronounced dependence of the fracture toughness upon the degree of 
triaxial constraint at the crack tip is of some importance. Triaxial constraint is 
primarily manifested by the plate thickness in a through-wall cracked plate 
test. This effect is illustrated by the data of Jones and Brown (1.13) on 4340 
steel that are shown in Figure 1.9. It  can be seen that the lowest value of K ,  is 
that which occurs for large thicknesses-that is, the plane strain fracture 
toughness value, K , , .  Here, plane strain conditions hold and the trinxial 

* When the loading rate becomes significant, the symbol K, is often used to denote the fracture 
toughness. Similarly, when Equation (1.1-5) is used to characterize the arrest of a rapidly 
propagating crack, the symbol K, is used. 
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Table 1.1 Approximate Stress Intensity Factors for Selected Crack/Structure Geometries 

Structure Crack Load Stress intensity Factor 
- 

- 

- 

- * 

Very large body 
subjected to a 
tensile stress 

Very large body 
subjected to a 
tensile stress 

Strip of width 
2W subjected to 
a tensile stress 

diameter D and 
wall thickness h 

diameter D and 
wall thickness h 

Vessel having 

Vessel having 

Very large body 
with circular hole 
of radius R 

Centrally located Remote tension u 
normal to crack crack of length 2a 

Edge crack of 
length a normal 
to free edge 

crack of length 2a 

Remote tension u 
normal to crack 

Centrally located Remote tension u 
normal to crack 

Through-wall axial Internal pressure p 
crack of length 2a 

Through-wall circum- Internal pressure p 
ferential crack of 
length 2a 

Two symmetrical Remote tension u 
cracks at edge of 
hole of length a cracks 

normal to the 

K = uJna 

Figure 1.8 Fracture toughness and yield strength ranges for some engineering materials at 
ambient temperature. 
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Figure 1.9 Effect of specimen thickness on fracture toughness of 4340 steel. 

constraint is the greatest. The plane strain fracture toughness determinations 
for metallic materials are made under precisely defined procedures dictated by 
the American Society for Testing and Materials (ASTM) Standard E399. 

A convenient relation between the plane strain fracture toughness K,, and 
the somewhat greater values under less constraint is the semiempirical 
equation developed by Irwin (1.14). This is 

(1.1-6) 

where B is the plate thickness and b y  is the yield stress of the material. Note 
that this equation can be used either, (1) to estimate toughness values for 
conditions that approximate plane stress conditions, knowing the plane strain 
value, or (2) to remove the thickness dependence in small size specimen testing 
to obtain the plane strain value as Merkle has done (1.15). 

The effects of temperature and loading rate on the fracture toughness values 
of engineering materials are also of importance. Typically, a pronounced 
difference exists between the lower toughness values at low temperatures, 
generally resulting from cleavage fracture behavior, and the higher toughness 
values at high temperatures characteristic of ductile fracture. Although the 
transition occurs over a range of temperatures, a material-dependent 
temperature is conventionally used to delineate the two regimes. This is known 
as the ductile-brittle transition temperature and as the nil-ductility transition 
(NDT) temperature. The opposite effect of loading rate above and below the 
ductile-brittle transition temperature might be noted. Generally, increasing 
the loading rate diminishes the fracture toughness in the low toughness region 
while increasing it in the high toughness region. 

The reference temperature designations have been a source of confusion. It 
should be recognized that an ASTM standard, E208, exists for determining the 
NDT temperature. This standard, which specifies the use of the drop-weight 
test developed at the Naval Research Laboratory, is referenced in several 
ASTM specifications and the American Society of Mechanical Engineers 
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(ASME) Boiler and Pressure Vessel Code; see Section 1.1.8. An alternative 
reference parameter is RTNDT, the reference temperature for nil-ductility 
transition. This is an approximation to the NDT that is obtained by Charpy 
specimen testing. The R T N D T  can either exceed the NDT temperature, or be 
equal to it, but cannot be less. The RTNDT is most useful when insufficient 
material exists to perform either a fracture experiment or a sufficient number 
of drop-weight tests to properly determine the NDT. 

An early fracture control measure was simply to assure that the component 
operated above the ductile-brittle transition temperature as determined, for 
example, by Charpy tests. However, such a procedure does not preclude 
fracture. As emphasized in the foregoing, fracture can always occur if the 
combination of the load and crack size gives rise to a high enough crack 
driving force; that is, even at “upper shelf” conditions, the material’s fracture 
toughness is finite. Furthermore, fracture control measures based only on 
operation above the transition temperature do not provide quantitative 
connections between crack sizes and applied loads. Nevertheless, Charpy 
testing retains an important role in fracture mechanics. 

A Charpy test is usually much less expensive to perform than a fracture 
toughness characterization experiment. In addition, there are instances where 
it is very difficult to obtain fracture toughness data directly-for example, in 
irradiated capsules and weldments where only a small volume of material is 
available for testing. Consequently, i t  is not surprising that a number of 
empirical correlations between Charpy values and fracture toughness have 
been established. Perhaps the best known is the upper shelf correlation 
developed by Rolfe and Novak (1.16). Their relation was based on results 
obtained on I I steels having yield strengths ranging from I10 to 246 ksi. This 
relation is 

($)2 = 5[T CVN - .05] 
( 1.1-7) 

where CVN is the upper shelf Charpy energy in ft-lbs, cry is in ksi and K,, is in  
ksi Many other correlations of this type also exist; the book of Barsom 
and Rolfe (see reference in Chapter 9) provides a good source for these. 
Needless to say, all such empirical relations have a limited range of 
applicability and should be used with caution. 

The work of Oldfield (1.17) in developing fracture toughness reference 
curves should also be mentioned in this regard. He has been successful with the 
choice of the sigmoidal function 

K, = A + B tanh(T) T - T ,  
( 1.1 -8) 

where Tis the temperature while A, B, C, and Ti are arbitrary constants that fit 
Charpy test data. This relation gives “lower shelf” behavior for T << To and 
“upper shelf” behavior for T >> To with a transition region between. Note that 
the physical mechanisms that give rise to these differences (i.e., the brittle 
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cleavage fracture that generally occurs at low temperatures versus the ductile 
fracture at higher temperatures) are not of concern (nor need they be) in this 
type of formulation. We will return to consider this representation in Section 
1.1.8. 

1.1.5 Some Illustrative Applications of Fracture Mechanics 

To demonstrate the application of fracture mechanics to practical structures, 
consider a cylindrical pressure vessel. The design of such a structure could be 
based simply upon the hoop stress, 0, = pD/2h, where p is the internal 
pressure, D is the mean vessel diameter, and h is the wall thickness. Hence, 
following the strength of materials procedure of Section 1.1.2, a safe operating 
pressure would be given by equating 0, to Qy to obtain 

( 1.1 -9) 

where Q~ is the material yield stress and, again, the factor of safety S is 
introduced to reflect common engineering practice. 

Now, suppose that a shallow axial surface crack of depth a could exist in the 
vessel. Just as in the beam example given above, the fracture mechanics 
approach to evaluating the critical crack depth requires the appropriate stress 
intensity factor. Typically, one would make the conservative assumption that 
the crack length along the surface is much greater than its depth into the wall. 
An approximate relation for such a crack is that for an edge-cracked plate in 
tension; see Table 1.1. Equating this K value to K , / S  then gives a safe 
operating pressure for a flawed vessel. The result is 

( 1.1 - 10) 

The commonality of the geometric parameters and the factor of safety in the 
grouping (2hlSD) can again be seen in both estimates. 

A use to which Equation (1.1-10) could be put is to determine the maximum 
vessel pressure, given the minimum flaw size that could be reliably detected. 
But, knowing the depth of a crack that could cause fracture in operation is of 
equal importance. For example, the critical flaw depth could be determined for 
operation at a design pressure given by Equation (1.1-9). It is easily shown by 
combining Equations (1.1-9) and (1.1-10) that this depth is approximately 
a = a(K,c/oy)Z,  where a is a geometry-dependent constant that is equal to 0.25 
in this example. Note that rough “back of the envelope” estimates are often 
made by taking a to be this. Thus, as this simple calculation shows, fracture 
mechanics estimates can be obtained using concepts not much more complex 
than those used routinely in engineering structural integrity assessments. 

It is important to recognize that the location of a flaw is just as significant as 
its size. For example, consider a large tension panel of 4340 steel (a material 
used extensively in airframes) with a yield stress of 240 ksi and a K,, value of 
50 ksi-in.*. Suppose that the crack is a through-wall crack in the center of the 
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panel and its length is small relative to the overall dimensions of the panel. The 
first entry in Table 1.1 is therefore appropriate. If the applied stress is taken as 
60 ksi (i.e., S = 4), the critical length of such an internal crack is then given by 

2 K,, 2 50 
2a, = - n (;y = - n (-) 60 = 0.44 in. 

For comparison, suppose that the crack instead exists at the edge of the panel, 
but with all other conditions being the same. Then, using the second entry in 
Table 1.1,  the critical length of an edge crack is 

Thus, because the critical crack size is smaller, the crack in the edge of a plate is 
considerably more dangerous than the one in the interior. 

To both reveal the influence of the material and to demonstrate a possible 
remedial action when the critical flaw sizes are too small, consider a lower 
toughness grade of 4340 steel. Such a material might have a yield strength of 
180 ksi and a K, ,  value of 105 ksi4n.f (cf. Figure 1.8). Consider again an edge 
crack in a large tension panel subjected to a tensile loading equal to 60 ksi. 
This condition leads to a critical length of 

This marked difference with the high strength grade of 4340 steel clearly points 
up the importance of considering trade-offs in the selection of the component 
material. 

For an example illustrating how a stress intensity factor handbook might be 
used, consider the cracked cantilever beam shown in Figure 1.5. A more 
precise expression for the stress intensity factor can be obtained from a hand- 
book in the typical form 

K = * a f [  bH2 1.99 - 2.47($) + 12.97(;)’ -23.17($>’ + 24.8($)l] 

(1.1-11) 

where L now denotes the distance between the crack and the loaded end of the 
beam, with other parameters as given in Figure 1.5. Note that in the earlier 
example the value of a / H  was assumed to be negligible in comparison to 
unity; an assumption that is reasonable only for crack sizes that are in the 
order of a few percent of the beam depth. As Equation (1.1-1 1) indicates, for 
very deep cracks, this would be a nonconservative assumption. To demon- 
strate this, Equations (1.1-3) and (1 .1-11)  can be combined to give 

K = ( K ) , [  1 - 1.24(:) + 6.52(:7 - 11.64(;y + 12 .46( iy ]  

(1.1- 12) 
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where ( K ) ,  denotes here the value of the stress intensity factor as a / H  + 0; 
that is, its value from Equation (1.1-3). For example, at a/H = 0.5, the stress 
intensity factor would be some 33 percent greater than this limiting value. The 
stress intensity factor expressions contained in the catalogs listed in Chapter 9 
are very often given in polynomial form, as in this instance. 

1.1.6 Approaches for Complex CracklStrrrcture Geometries 

The examples given in Section 1.1.5 were for rather simple crack geometries. 
To illustrate how a fracture mechanics approach can relate to more realistic 
geometries, consider the part-through-wall surface flaw shown in Figure 1.10, 
Here the depth of the flaw in the thickness direction is denoted by (I, its length 
along the wall by 2c, and the wall thickness is h.  The wall is subjected to a 
uniform tensile stress that acts remotely in the direction normal to the crack 
plane. A “worse case” analysis would consider that c >> h >(I. The assumed 
crack front would then be the horizontal line in Figure 1.10 whereupon the 
analysis problem is one of plane strain with the only crack dimension of 
concern being 4. To determine the critical crack depth (I, for a given applied 
stress 6, the approximate relation K = 1 . 1 2 a G ( s e e  Table 1 .1 )  can therefore 
be equated to K, ,  and solved for a = a, as described in Section 1.1.5. 

Unstable crack growth in the thickness direction presents the structure with 
a through-wall crack. But, this crack will not necessarily continue to 
propagate. That is, because the speed at which the crack propagates after 
instability occurs is generally much higher than the loading rate, a safe 
assumption is that a through-wail crack appears at the instant of fracture 
instability. The length of the through-wall crack will then probably beequal to 
2c; see the vertical lines in Figure 1.10. The computational process required to 
determine the critical crack length c, would then use the relation K = c f i .  
The appropriate fracture toughness value would depend upon the degree of 
lateral constraint at the crack tip, which, in turn, depends upon the thickness 
of thecracked component;see Figure 1.9. While the use of K, ,  for the through- 
wall crack would then be a conservative assumption, a more accurate 
procedure would be to use Equation (1.1-6) to obtain the K ,  value 
corresponding to the wall thickness h = B. : 

The results of the part-through-wall and through-wail analyses can be 
coupled to give a conservative estimate of the critical dimensions of an initial 
flaw. Figure 1.1 1 compares three possible flaw shapes with these critical 
dimensions. Flaw Type A is benign even though its surface dimension is 

h 

a 

Figure 1.10 Part-through-wall surface crack 
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Figure 1.1 1 
loading-bearing component. 

Basis for a conservative estimate of the critical dimensions of a surface crack in a 

greater than the critical surface dimension because its depth dimension is less 
than a,. (Recall that a, was established on the basis of an infinitely long surface 
length.) Similarly, flaw Type B is benign. Despite the fact that its depth 
dimension exceeds a,, because its surface dimension is less than 2cc, the 
through-wall crack resulting from the initiation of flaw Type B will not be 
critical. Only flaw Type C, where both dimensions exceed the corresponding 
critical values would lead to complete fracture. 

In the important class of applications where Figure 1.1 1 represents a fluid 
containment boundary, flaw Type B would give rise to the so-called “leak- 
before-break” condition. That is, the crack would grow through the wall, 
allowing a contained fluid to escape but, presumably, at  only a limited rate. 
Hence, the presence of the crack could be detected in time to take remedial 
action. Flaw Type C would not exhibit this desirable condition. Crack growth 
through and along the wall would take place almost simultaneously, allowing 
no time for effective operator intervention to halt the process. Both of these 
statements, of course, are based on the tacit assumption that the applied stress 
does not change during the crack growth process. In most instances this 
assumption would be conservative in that loss of a contained fluid is likely to 
be accompanied by a decrease in pressure. However, this may not always be so. 
In certifying that a given crack shape will exemplify leak-before-break 
behavior, one ought to consider the effect of crack growth on the applied 
stresses. This is sometimes overlooked in practice, however. 

As a further thought on the subject of leak-before-break, suppose that the 
approximate analysis procedure just outlined suggests that fracture will occur 
in some instances. Because of the built-in conservatism, which could be 
sizable, the particular conditions may actually be fracture-safe. Remedial 
action is always expensive and, in some cases (e.g., an improper weld repair), 
may actually exacerbate the problem. Thus, analyzing more accurately before 
taking action is often worthwhile. This can be done by removing some of the 
simplifications, one of which is the assumption of linear elastic behavior. The 
use of advanced fracture mechanics techniques for this purpose is discussed 
in Section 1.5.3. Another is to consider the actual crack shape. 
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An early approach to the analysis of part-through wall cracks that is still 
often used is that given by Irwin (1.18). Starting from the exact solution for an 
elliptical crack embedded in an infinitely large elastic body, Irwin introduced 
approximate correction factors to account for the free surface and for crack-tip 
plasticity. His result can be written 

1.12afi K =  [o' - 0.212(-32]1 
(1.1- 13) 

where 0 = 0(a,c) is a factor that depends on the crack shape. It can be 
expressed in terms of the elliptic integral 

Irwin suggested that Equation (1.1-13) should be valid for crack depths up to 
half the thickness. This approach was subsequently extended by Kobayashi 
and Moss (1.19) through the use of magnification factors designed to account 
for back surface and other effects. Perhaps the most accurate procedure now 
available is the approach of Newman and Raju (1.20). 

Using the results of three-dimensional finite element analyses, Newman and 
Raju developed an empirical stress intensity factor equation for semielliptical 
surface cracks. The equation applies for cracks of arbitrary shape factor in 
finite sized plates for both tension and bending loads. For simplicity, and 
because such conditions will cover the majority of all applications, only the 
specialized form of their equation applicable for tension loading of a wide 
plate will be considered here. This is 

(1.1 - 14) 

where 4 denotes the angle between the plate surface and a generic point on the 
crack front. The dimensions Q, c, and h are as shown in Figure 1-10, with the 
functions M, , M2, and M, expressable as follows: 

M1 = 1.13 - 0.09(:) 

M2 = 0.89b.2 + (:)I-' - 0.54 

M3 = 0.5 - [0.65 + (:)I-' + 14[ 1.0 - (:)Iz4 
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Newman and Raju indicate that Equation (1.1-14) is accurate to within & 5  
percent, provided 0 -= a/c < 1.0 and a/h  < 0.8. 

The Newman-Raju equation shows that, for small values of u/c the 
maximum value of K is at 4 = 4 2 ,  the point of deepest penetration. For a/c, 
about equal to 0.25, K is roughly independent of 4, At larger values of a/c, K 
exhibits a maximum on the plate surface. Because it is likely that the first- 
mentioned case occurs most often in practice, specific results for the point 
6 = 4 2  are of interest. First, for a shallow crack where a << h, Equa- 
tion (1.1-14) reduces to 

' 

K = 1.130@[ 1 - .08(:)][ 1 + 1.464(:)1'6s]-' (1.1-15a) 

This result can be compared with Equation (1.1-13). Second, for a very long 
crack where a << c, Equation (1.1-14) becomes 

K = 1 . 1 3 0 6  [ 1 + 3.46( i r  + ll.S(f)l] (1.1-15b) 

which should be valid for a/h < 0.8. 

1.1.7 Damage Tolerance Assessments 

Fracture mechanics is not limited to determining critical crack size/load 
combinations for fracture instability. It can also be applied to determine the 
rate of progression of a crack from a defect of a benign size to a critical 
condition. The crack growth rate is clearly dependent upon the mechanism 
involved. There are two distinct types that are of most practical concern: 
fatigue and environmentally assisted cracking. Included in environmentally 
assisted cracking are corrosion, stress corrosion, and corrosion fatigue. 
Because even specialists in the subject cannot always agree on the precise 
distinctions between them, the all-inclusive name will be used herein. 

The quantitative relations that have so far been developed for fatigue and 
environmentally assisted cracking both draw upon linear elastic fracture 
mechanics considerations. Specifically, for fatigue, the expression commonly 
used to relate the change in crack length with the number of applied load 
cycles is widely known as the "Paris Law." For an applied load that is cycled 
uniformly between K,,, and Kmin, this relation is given by 

(1.1- 16) 

where AK = K,,,  - Kmi,, while C and m are taken as material-dependent 
constants that also depend upon load frequency, environment, and mean load. 
Typical data for some steel, titanium, and aluminum alloys, taken from Bates 
and Clark (1.21) and Mackay et al. (1.22) are shown in Figure 1.12. These data 
further illustrate that the mechanical properties of the material can also affect 
the fatigue crack growth rates. Note the existence of the so-called threshold 
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Figure 1.12 Fatigue crack growth rate data for some engineering materials at ambient 
temperatures. 

stress intensity, (AK), , , ,  below which no fatigue crack occurs. This parameter 
can depend upon R = Kmin/Kmax and the mechanical properties. 

Crack growth under an environmental influence can occur even under a 
constant or moderately varying loading. In these conditions, the relation 

da 
dt 
- = DK" (1.1-1 7) 

is often used. Here, a denotes the crack length, t is time, K is the LEFM 
stress intensity factor, and D and n are empirical constants for the 
material/environment system of concern. The existence of a threshold level for 
environmental crack growth, generally denoted as K l s c c ,  is also important. 
Note that in subcritical crack growth by fatigue, at least for the particular 
circumstances where the load is cycled from zero to a maximum at a constant 
rate (i.e., d N / d t  = constant), the form of Equation (1.1-16) will be identical to 
(1.1-17). While the values of the constants would be dissimilar, the latter form 
can therefore be used to illustrate the damage tolerance assessment procedure 
for both stress corrosion and fatigue crack growth. 

Consider stress corrosion crack growth in a plate under constant applied 
tension. As subcritical crack growth proceeds, K will usually increase and the 
crack will grow more and more rapidly. Consider that the initial crack length is 
a,, and, further, that a, is less than ad, the minimum crack size that can be 
reliably detected. Referring to Figure 1.13, nondestructive examination (NDE) 
would not reveal such a crack prior to the time id. But, detection of the crack 
prior to the time t,, at which the critical crack length a, would be achieved, is 
essential. Consequently, there must be at least one inspection in the time 
interval td c t < t ,  if the crack is to be found before it  reaches a critical size. 

When a, is unknown, td and t ,  cannot be known. Counteracting this 
uncertainty is one key plausibility: the time required for the crack to grow from 
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Figure 1.13 Use of fracture mechanics in the damage tolerance approach to structural integrity. 

detectible size to the critical size is independent of the initial crack size. This 
makes it possible to design an NDE program based upon (At),ax as the 
maximum permissible inspection interval. To obtain this quantity, Equation 
(1.1-17) can be rewritten as 

(1.1- 18) 

For an edge crack the relation K = 1.120f i  can be used to perform the 
integration whereupon 

(1.1 - 19) 

From this result (At),,, can be determined from a, and ad (knowing of course 
the applied load and the material/environment constants) independently of 
the initial crack size. It should be recognized that similar results can be 
obtained for other load/crack/structure conditions as well as for fatigue. 

An appropriate design would be one in which the inspection procedure need 
not be carried out too frequently. Typically, the interval that would be selected 
is (At),J2, which reflects the fact that NDE crack detection methods, as well 
as our ability to anticipate the future loads and other conditions, is not 
completely reliable. Clearly, despite these elements of uncertainty, a predictive 
methodology of this type is definitely required for assuring structural integrity 
by precluding fracture. 

1.1.8 Code Requirements 

The discussions to this point have focused on deterministic approaches that 
can be used to assure the integrity of cracked structures. It has been tacitly 
assumed that the shape and location of the crack and the type and magnitude 
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of the load applied to the component are precisely known. Unfortunately, 
such certainty is seldom, if ever, reached in practice. Reflecting this un- 
certainty, codes providing conservative approaches have been developed to 
assist the designers and operators of structures where fracture is a concern. 
Perhaps the most widely known of these is the American Society of 
Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, strictures 
that in many localities have the force of law. To illustrate the use of such a 
code, we will here briefly outline the procedures prescribed in Section XI of the 
ASME Code: “Rules for Inservice Inspection of Nuclear Power Plant 
Components.” Of specific interest are the procedures for determining critical 
crack sizes that are given in Appendix A of Section XI of the ASME code 
along with the material fracture property data given in Appendix G. 

Section XI of the ASME Code distinguishes two types of operating 
conditions: “normal” and “faulted.” Normal conditions are supposed to occur 
often enough that continued operation with a minimum of interruption would 
be expected. Faulted conditions are very severe, but would occur so seldom 
that it would only be necessary to terminate operation safely. The critical 
crack sizes corresponding to these two sets of conditions are called a, and ai, 
respectively, The crack length a/ is defined as the crack depth at the end of the 
component’s design life. Then, if either 

af 2 O.la, 
or 

af >/ 0.5.1, 

the requirements of Section XI mandate that the flaw be repaired or the 
component be withdrawn from service. 

The analysis procedures given in Section XI to implement its rules are those 
of linear elastic fracture mechanics. For surface flaws the first step is to 
linearize the stress distribution into a membrane stress om and a bending stress 
b b .  Then, K can be calculated from the relation 

(1.1-20) 

where M,,,, M b ,  and Q are geometry-dependent factors. Because concentric 
crack growth is assumed, only the crack depth a appears explicitly in 
determining the stress intensity factor. 

Fatigue crack growth rates are usually calculated from Equation (1.1-16). 
The constants C and rn are material properties chosen for the frequency, 
environment and R (=Kmin/Kmnx) value of concern for the particular 
application while K,,, and Kmin are obtained from Equation (1.1-20) using the 
maximum and minimum cyclic load levels. Thecrack growth rate data for 
nuclear pressure vessel steel for water and air environments from which these 
parameters can be determined are shown in Figure 1.14. The factors appearing 
in Equation (1.1-20) are approximate values taken from flat plate 
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Figure 1.14 Fatigue crack growth 
rate data for pressure vessel steel used 
in the ASME code. 

analyses. As suggested by McGowan (1.23), the more exact results of Newman 
and Raju presented in Section 1.1.6 appear in this same form and may 
eventually be mandated instead. A comparison is shown in Figure 1.15. 

The critical crack size determinations are obtained by equating the stress 
intensity factor given by Equation (1.1-20) to an appropriate fracture 
toughness value for the temperature of interest. Recognizing that the fracture 
toughness of pressure vessel steel also varies with the loading rate, two 
reference curves are provided in Appendix XI. The K,, curve is the lower 
bound of all available quasi-static crack initiation test data while KI, is the 
lower bound of all available dynamic crack initiation and crack arrest test 
data. These data are shown in Figures 1.16 and 1.17 as a function of the service 
temperature minus the index reference temperature, RTNDr. For normal 
operating conditions critical crack sizes are determined by using KI,, For 
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Figure 1.16 Fracture toughness data for pressure vessel steel used in the ASME code. 
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Figure 1.17 Crack arrest toughness values for pressure vessel steel used in the ASME code. 

faulted conditions, crack growth initiation is supposed to be governed by K,, 
with the possibility of arrest using K , ,  also being allowed. 

In initial versions of Section I11 of the ASME code, a lower bound curve of 
static, dynamic, and crack arrest data from specimen tests on A533B and A508 
steel was used that is designated as the K I R  (R for reference) curve. This curve 
was supposed to apply for all ferritic materials approved for nuclear pressure 
vessel boundaries having a specified yield strength of 50 ksi (345 MPa) or less 
at room temperature.* This relation is 

K I R  = 26.8 + 1.223exp(.0145(T - R T N D T  + 160)) (1.1-21) 

where T is the temperature at the crack tip and R T N D T  is the reference 
temperature for nil-ductility transition. For completeness, the corresponding 

* The K , ,  curve apparently originated from the work done under the auspices of the Pressure 
Vessel Research Committee that appeared in 1972 in Welding Research Council Bulletin No. 175. 
The related curve for initiation in A533B Steel is sometimes referred to as the "million dollar 
curve." 
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relation for KI, in the ASME code is 

K,,  = 33.2 + 2.806exp[.02(T - RTNDr + loo)] (1 * 1-22) 

In both Equation (1.1-21) and (1.1-22), T is in O F  while K I R  and KI,  are in 
ksi4n.f. It might be noted that the dynamic fracture toughness values K,, and 
K,,,  being always less than KIc,  determined the K I R  curve. Hence, Equation 
(1.1-21) provides a good approximation to KI, for nuclear pressure boundary 
materials. 

The essential idea in Equations (1.1-21) and (1.1-22) is that heat-to-heat 
variations in material properties can be taken into account by determining 
RTNDT. This has been criticized by Oldfield (1.17) on both statistical and 
physical grounds. In particular, the notion that the toughness increases 
without limit as the temperature increases is incorrect and anti-conservative.* 
One might look for relations such as that given by Equation (1.1-8) to 
eventually be embodied in the code, therefore. Dougan (1.24) in turn, has 
pointed out some inconsistancies in that type of relation. It can only be 
concluded that this type of development is still in an evolutionary state. 

1.2 The Origins of Fracture Mechanics 

The preceding section introduced the subject of fracture mechanics as it is now 
most often being applied. Because fracture mechanics is a continually growing 
discipline, the new concepts and techniques that will surely evolve in the years 
to come may be better understood if one has an appreciation of the origins of 
the subject. Accordingly, in this and the following two sections we step back to 
trace the early development of the subject. 

1.2.1 T h e  Evolution of Structural Design 

As depicted in Figure 1.18, the evolution of structural design to include 
fracture mechanics has proceeded through a series of stages. The earliest work 
(e.g., the pyramids, the great cathedrals of Europe) simply relied upon previous 
attempts, proceeding in an essentially trial and error manner. It was not until 
the development of the concepts of stress and strain and their incorporation in 
the mathematical theory of elasticity during the nineteenth century that 
quantitative design procedures became possible; see references (1.1)-(1.4). 
The application of elasticity concepts to determine the strength of a material is 
shown as the second stage in the chronology of Figure 1.18. As nicely 
described by Gordon (l.l),  the logical extension of these ideas to treat stress 
concentrations, however, led to a severe dilemma- the existence of singular 
behavior and, hence, infinite stresses- that was only resolved by the invention 
of fracture mechanics. 

* To describe the lower bound behaviorconveniently, an exponential function was fit to the test 
data envelope. This was understandable in that, given the lack of upper shelf data, no high 
toughness limit was evident. However, in practice, an upper bound of 200 ksi-in.* has been 
invoked. 
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Figure 1.18 The evolution of structural design. 

Shown as the third stage in Figure 1.18 is the result obtained by Inglis (1.25) 
in the early years of this century for the stress concentration at the end of an 
elliptical hole in a plate in tension.* This result relates cr, the stress acting at the 
most highly stressed point on the edge of the hole, to the remote or nominal 
stress, cr,,,. It can be seen that this relation depends on the ratio of L, the half 
length of the hole, to R, the radius of curvature at  the point of interest. Note 
that for a circular hole, where L = R, cr = 30,,,. But, because R = 0 for a 
sharp crack, an infinite stress would then be expected. This result suggests that 
a body with a crack could sustain no applied load whatever! 

The paradox arising from the application of inglis’ result to a crack was 
resolved by Griffith (1.5) whose landmark work on glass fibers first appeared 

Similar results were obtained at about the same time by Kolosov in Russia. 
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around 1920. However, while some additional work was subsequently 
contributed-for example, by Obriemoff (1.26) and Westergaard (1.27)- 
fracture remained for some time a scientific curiosity that did not permeate 
engineering design. One reason may be the apparent non-applicability of the 
Griffith Theory to engineering materials with fracture resistance values orders 
of magnitude greater than that of glass. Regardless, this state existed until 
sometime after the Second World War. Severe instances of fracture in Liberty 
ships (1.28), missile casings, and other structures (1.29) then gave the impetus 
to more intensive studies of fracture in the U.S. with the Comet aircraft 
disasters (1.30) additionally spurring work in Europe. This gave rise to the next 
major contribution to the subject that was given by Irwin (1.6) when he 
generalized Griffith’s ideas for applicability to metals and other engineering 
materials-an idea that was suggested independently by Orowan (1.31). 

A key subsequent step, to connect the stress intensity factor to Griffith’s 
energy balance, was also performed by Irwin (1.32). Couched in the 
terminology of Griffith-Irwin or linear elastic fracture mechanics, this 
accomplishment is shown as the fourth stage of the evolution depicted in 
Figure 1.18. To a large extent, it represents currently applicable technology, as 
described in the preceding section of this chapter. 

The fifth stage shown in Figure 1.18 represents the kind of activity that has 
been initiated only within the past few years. This is the explicit recognition 
that cracks do exist in every engineering structure, whether arising from initial 
defects in the material, from fabrication flaws, or from service conditions. 
Because more refined and intensive nondestructive evaluation (NDE) pro- 
cedures are increasingly being applied, the integrity of the structure must be 
addressed by taking account of cracks. This is done by a combination of NDE 
and fracture mechanics calculations that (1) assume an initial crack size, (2) 
estimate the rate of subcritical crack growth (e.g., by fatigue, stress corrosion), 
and (3) determine the critical crack size for fracture instability. In this 
approach, it is generally assumed that a crack exists in the structure having a 
size that would be just missed by NDE. The growth rate calculation then 
allows an inspection interval to be set that would allow that crack to be found 
prior to its achieving the critical size. This procedure, generally known as a 
“damage tolerance” approach, was illustrated in Figure 1.13 and described in 
Section 1.1.7. 

The damage tolerance concept is now mainly used in the aerospace industry. 
However, it seems likely that its use will be broadened in the future. Efforts are 
now underway to implement it for the prevention of cracking in railroad rails 
and offshore platforms, for example. Clearly, such a procedure can be applied 
to any engineering structure where, first, the growth of small flaws to a critical 
size is a concern and, second, NDE methods that can reliably detect subcritical 
cracks are available. 

1.2.2 Griflth’s Theory 

As already mentioned, it was Griffith’s fundamental contributions (1.5) that 
resolved the infinite crack-tip stress dilemma inherent in the use of the theory 

 



Introduction and Overview 33 

AAA 
U 

f u  Figure 1.19 Atomic model for 
theoretical strength calculations. 

of elasticity for cracked structures. While this ultimately led to the develop- 
ment of fracture mechanics as an engineering discipline, Griffith was 
apparently motivated by other considerations (1.1). That is, as illustrated in 
Figure 1.19, simple estimates can be made for the strength of a crystalline solid 
based on its lattice properties. But, this results in a relation for the theoretical 
tensile strength that is not attained in actuality. Griffith’s work was primarily 
focused on resolving this dichotomy. 

The interatomic force-separation law can be approximated by a function 
that exhibits three properties: (1)an initial slope that corresponds to the elastic 
modulus E, (2) a total work of separation (i.e., area under the curve) that 
corresponds to the surface energy y, and (3) a maximum value that represents 
the interatomic cohesive force. Because the exact form that is selected makes 
little difference, i t  is convenient to use a sine function. As can readily be 
verified, the appropriate relation is then 

E b  f x 
4 x )  = (1.2-1) 

where b represents the equilibrium interatomic spacing and x denotes the 
displacement from the equilibrium separation distance. It follows that the 
theoretical strength-the maximum value exhibited by this relation-is 

f 
U,h = (?) (1.2-2) 

For many materials y N E b / 4 0  so that 0 t h  z E / 6 .  But, such a prediction is 
clearly much in excess of the observed strengths; a result that was explained by 
Griffith who, drawing upon the mathematical development of lnglis (1.29, 
traced the discrepancy to the existence of crack-like flaws. It may be of interest 
to note that it was the analogous discrepancy between the theoretical shear 
strength of a crystalline solid and the observed values that led to the 
identification of the dislocation as the fundamental element in metal plasticity 
in the mid 1930s. 

Figure 1.20 shows the results of Griffith’s series of experiments on glass 
fibers having different thicknesses. As the fiber thickness decreased, the 
breaking stress (load per unit area) increased. At the limit of large thickness, 
the strength is that of bulk glass. But, of considerably more interest, at the 
opposite limit of vanishingly small thickness, the theoretical strength is 
approached. This observation led Griffith to suppose that the apparent 
thickness effect was actually a crack size effect. Figure 1-21 illustrates his 
observation. It is worth mentioning here that this ‘‘size effect” is responsible for 
the usefulness of materials like glass and graphite in fiber composites; that is, 
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Figure 1.20 Results of Griffith’s experiments on glass fibers. 

Figure 1.21 
for fracture calculations. 

Atomic model with defect 

the inherent defects can be considerably reduced by using such materials in 
fiber form bound together by a resin. 

The basic idea in the Griffith fracture theory is that there is a driving force 
for crack extension (that results from the release of potential energy in the 
body) along with an inherent resistance to crack growth. The resistance to 
crack growth, in glass at least, is associated with the necessity to supply surface 
energy for the newly formed crack surfaces. By using the existing mathematical 
development of Inglis (1.26), Griffith was able to formulate an energy balance 
approach. This leads to a critical condition for fracture that can be written as 
an equality between the change in potential energy due to an increment of 
crack growth and the resistance to this growth. For an elastic-brittle material 
like glass, this is 

d W  dU 
dA d A  
- _ _ -  - Y  (1.2-3) 

where Wand U, respectively, are the external work done on the body and its 
internal strain energy, y is the surface energy of the material, and A = 4Ba is 
the crack surface area for an internal crack in a body of thickness B. 
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For a crack in an infinite body subjected to a remote tensile loading normal 
to the crack (the problem considered by Griffith), only the net change in elastic 
strain energy needs to be evaluated. This is today most conveniently 
accomplished by making use of a procedure developed by Bueckner (1.33). 
Bueckner recognized that the strain energy due to a finite crack is equal to one- 
half of the work done by stresses (of equal magnitude but opposite in sign to 
the applied stress) acting on the crack faces. The crack face opening for the 
Griffith problem is therefore given by Westergaard's solution for plane stress; 
this is 

u =- (a  *= 2 - X2)f ( 1.2-4) 
E 

where t~ is the applied stress and the origin of the coordinates is taken at the 
center of the crack. Consequently, for an internal crack, work is done at four 
separate surface segments. As a result, i t  is readily shown using Equation 
(1.2-4) that 

Equation (1.2-3) then gives 

(1.2-5) 

(1.2-6) 

where of denotes the applied stress that would lead to fracture. 
While Equation (1.2-6) was derived for constant applied stress conditions, 

the same result is also obtained for fixed displacement conditions. Following 
Erdogan (1.34), if the crack is introduced after the load CJ is applied with the 
grips then being fixed, then the total strain energy of the body will be (plane 
stress) 

1 CJ2 02n2  u = - -  v-71- 
E (1  -2-7) 

where I/ is the volume of the body under consideration. I t  can readily be seen 
that, because W = 0 under fixed grip conditions, use of Equation (1.2-3) with 
d A  = 4Bda will again lead to Equation (1.2-6). 

The influence of the local crack/structure geometry on the critical applied 
stress might be noted. For example, if plane strain conditions were taken, the 
factor of E appearing in Equation (1.2-6) would be replaced by E/(1 - v 2 ) .  
Further, as shown first by Sneddon (1.35), the axisymmetric case of a penny- 
shaped crack of radius a leads to an expression given by 

E 
=/= (;(l --- - "'J (1 -2-8) 

which differs by a factor of ( 2 / ~ ) ~  from the plane strain version of Equation 
(1.2-6). Thus, the results for different conditions result in the same form of 
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equation and differ only in the value of the numerical factor that appears in 
them. Recognition of this fact later provided Irwin with the key to generalizing 
crack problems to fracture mechanics. 

Returning to Griffith’s work, the theoretical strength given by Equation 
(1.2-2) can be combined with the fracture stress given by Equation (1.2-6) to 
obtain a relation between the theoretical strength and the fracture stress in the 
presence of a crack. This is 

2. (y 
OIh 

(1.2-9) 

Substituting values for bulk glass leads to a value of an inherent crack size of 
about .001 inches. Referring to Figure 1.20, it can be seen that when the fiber 
thicknesses are reduced below this value (whereupon the fibers are likely to be 
flaw-free), the theoretical strength begins to be approached. This strongly 
indicates that cracks are indeed the source of the discrepancy between 
theoretical and observed strength and that quantitative predictions involving 
them can be made. 

1.2.3 Some DifJiculties with the Grifith Theory 

The astute reader will notice that Equation (1.2-6) was derived for a body with 
dimensions much greater than the crack size. Yet, it was applied to fibers 
having thicknesses comparable to the crack size. Such bold applications are 
not atypical in fracture mechanics, the rationale being that, in view of the 
many uncertainties that exist, order of magnitude estimates are often all that 
can be expected. But, there are even more fundamental difficulties. 

As pointed out by Goodier (1.36), in calculating the elastic strain energy in 
the plate, Griffith neglected the stresses due to the surface tension that are 
implied by the existence of surface energy on the crack faces. If surface energy 
is specified, the boundary value problem to be solved is one that would include 
a normal traction y/p,  where y is the surface tension and p is the radius of 
curvature on the “stress free” crack. This problem was solved by Rajapakse 
(1.37) who found that the nature of the crack tip singularly then becomes 
radically different. Furthermore, because the specification of an energy 
balance then becomes redundant (i.e., it is guaranteed by the solution of a 
properly posed boundary value problem), some alternative criterion for 
fracture must be sought. 

Griffith himself found that the energy balance criterion was not useful for 
fracture under combined stress conditions. For combined stress states, Griffith 
(1.5) found it necessary to employ an alternative to the energy balance, stating 
that: 

the general condition for rupture will be the attainment of a specific tensile stress 
at the edge of one of the cracks. 

To avoid the singularity, he employed a thin ellipse with a finite radius of 
curvature po at the crack tip. Rajapakse emulated this by equating the normal 
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stress at the crack tip from his model to the theoretical strength. He thereby 
obtained for the fracture criterion 

(1.2- 10) 

By setting po = b (the interatomic spacing) Rajapakse concluded that the 
contribution of the surface energy term is negligible in comparison to that of 
the applied stresses. While he left his development at that point, it can be taken 
a step further by using Equation (1.2-2) to replace a,, in Equation (1.2-10). This 
substitution gives 

af =! (?>” 1 + 0.273 (31 2: 0.52 (y (1.2-11) 
2 a  

where the approximate result was obtained using the estimate y = Eb/40. It is 
readily seen that Rajapakse’s result is very nearly the same as Equation (l.2-6), 
differing in only a minor way from the constant (2/74f = 0.80 that appears in 
the latter equation. The phoenix-like character of Griffith’s result is evident. 

It should be recognized that Equation (1.2-3) describes a condition 
necessary for the initiation of crack growth, but it is not a sufficient condition 
for fracture. For continued (unstable) crack growth, it  is clear that 

(1.2- 12) 

But, this restriction is not a detriment to the theory. A more practical 
consideration in the application of the Griffith Theory is its apparent 
restriction to ideally brittle materials. The fracture resistances of engineering 
structural materials are greater than y by several orders of magnitude. 
Moreover, i t  is possible to achieve stable crack growth even where the left- 
hand side of inequality (1.2-12) is positive-an impossibility if y is a material 
constant independent of crack length. 

1.2.4 The Origins of Fracture Mechanics 

Despite the theoretical questions that Griffith’s work engenders, it unques- 
tionably was an important first step. Nevertheless, the subject was relatively 
dormant during the two decades following his work. As quoted in the prologue 
to a paper by Tipper (1.38), Mott stated in 1949 that: 

quite apart from its practical importance, fracture is the most interesting 
property of solids to the theoreticians because it is the least understood property, 
no progress having been made beyond the 1924 Griffith Crack Theory. It  is not 
known how cracks exist nor what causes them. Experimented work has made 
clear what happens during fracture but not how it occurs. 

More than any other single factor, the large number of sudden and 
catastrophic fractures that occurred in welded merchant ships during and 
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following the Second World War, gave the impetus for the development of 
fracture mechanics. Out of approximately 5000 welded ships constructed 
during the war, over 1000 suffered structural damage with 150 of these being 
seriously damaged. Ten ships fractured into two parts;eight of these were lost. 

The puzzling feature of the welded ship fracture problem was the fact that 
the normally ductile ship steel fractured with only limited plastic flow and, 
hence, little energy absorption. While this observation might have im- 
mediately suggested that use be made of Griffith’s theory, other approaches 
were tried first. The concept of flow and fracture as competing mechanisms is 
one such approach. But, because of its inability to account for crack size, it was 
eventually found to be vacuous. Irwin and his associates at the US. Naval 
Research Laboratory were left to make use of Griffith’s ideas and thereby set 
the foundations for fracture mechanics. 

Two key contributions were required to turn Griffith’s theory into an 
engineering discipline. These were, first, by Irwin (1.6) and Orowan (1.31) 
independently, to extend Griffith’s theory to metals and, second, by Irwin 
(1.32), to connect the global concepts of Griffith to a more readily calculable 
crack-tip parameter. Because of the leading roles played in its development, 
linear elastic fracture mechanics is also known as Griffith-Irwin fracture 
mechanics and, somewhat less often (generally by materials scientists), as the 
Griffith-Irwin-Orowan theory. 

The extension of Griffith’s elastic-brittle fracture concepts to metals by 
introducing the plastic energy dissipation to supplement the surface energy 
involves no new mathematical developments. The fracture stress for the 
Griffith problem, Equation (1.2-6), was simply rewritten in the form 

(1.2-13) 

where yp  denotes the plastic energy per unit  of crack extension per crack 
tip. Orowan estimated that y p  is some three orders of magnitude greater than y 
in a metal, whereupon inclusion of the latter is superfluous. Equation (1.2-13) 
clearly then is indistinguishable from Equation (1.2-6), provided that a more 
general interpretation is put on y in the latter. 

In current terminology, the left-hand side of Equation (1.2-3) can be used to 
define a parameter called the strain energy release rate or, alternatively, the 
crack driving force. This is conventionally given the symbol G in honor of 
Griffith. Thus, by definition 

( 1.2- 14) 

Alternatively, as shown by Irwin (1.3), i t  is convenient to work with the 
compliance of the cracked component to calculate this quantity. This can be 
expressed as 

( 1.2- 1 5) 
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where P is the applied load and C is the compliance. In either instance 
Griffith’s energy balance statement of the critical condition for crack 
extension is then 

G = G, (1.2-1 6) 

where G, represents the material’s resistance to crack growth.* 
Irwin (1.32) later referred to this approach as the “modified Griffith theory” 

for “somewhat brittle materials” and, still later (1.39), as the “old modified 
Griffith theory of Irwin and Orowan.” The need to make this distinction will 
be made clear later. Regardless, the application of Equation (1.2-16) led to the 
solution of a number of important practical problems. As an especially 
pertinent example, the fracture of a generator rotor, described by Schabtach 
et al. (1.40), was resolved by application of Griffith-Irwin fracture mechanics 
in work reported by Winne and Wundt (1.41). This work provided a very 
significant confirmation of fracture mechanics and its utility for engineering 
analyses that was recognized even at that time as a landmark achievement; see 
the discussion to referrence (1.41). 

1.2.5 The Stress Intensity Factor 

Irwin’s masterstroke was to provide a quantitative relation between the 
sometimes mathematically awkward strain energy release rate, a global 
parameter, and the stress intensity factor, a local crack-tip parameter. Anal- 
ogous to Griffith’s use of the existing mathematical development of Inglis, 
Irwin was able to utilize the cracked body solutions of Westergaard (1.27). 
Specifically, Irwin (1.32) needed two specific relations: for a,,, the normal stress 
on the crack line, and u, the opening displacement of the crack faces. In 
current notation, these can be written for either plane stress or plane strain by 
introducing the material parameter K, defined in terms of Poisson’s ratio by 

plane stress 

(3 - 4v plane strain (1.2-1 7) 

Then, the normal stress ahead of the crack and the displacement on the crack 
surface are given for the Griffith Problem by 

xa 
a,, = x > a  

(x2 - a y  

and 

Ev d 
= --(a2 - x2), x < a  

(1 + V)(K + 1)  2 

(1.2-18) 

( 1.2- 1 9) 

* While the quantity G, was originally called the fracture toughness, despite the fact that they 
are not numerically equal, it is now the quantity K, that is generally so called. This is a 
consequence of the predominance of K-based expressions for crack growth in engineering work. 
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where x is taken from an origin at the center of the crack. More convenient 
relations that are valid very near the crack tip can be obtained by taking 
1x - a( << a. Equations (1.2-18) and (1.2-19) can then be written to a close 
approximation as 

oy i K[27r(x - u)]-*, x > a (1.2-20) 

and 

where K (for Kies, one of Irwin’s collaborators) is the stress intensity factor. 
K is a geometry-dependent quantity that here has the value a& 

Imagining that the crack has extended by an amount Aa, Irwin calculated 
the work required to close it back up to its original length. This amount of 
work can be equated to the product of the energy release rate and the crack 
extension increment. Thus, 

GAa = 2 laa+*‘ 4oy(x) u(x - Aa) dx (1.2-22) 

Or, upon substituting Equations (1.2-20) and (1.2-21) into (1.2-22), Irwin 
obtained 

1 K 2  K 2  
4 E E’ 

G = - ( ~ + v ) ( K +  l)-=- (1.2-23) 

where E‘ = E for plane stress and E’ = E/(1 - v2)  for plane strain. 
Equation (1.2-23) thus provides a replacement for finding the derivative with 
respect to crack length of the total strain energy in a cracked body.* 

Initially, Equation (1.2-23) was perceived only as a convenient means for 
evaluating G. This is the reason for the ubiquitous appearance of the factor f i  
in expressions for K .  That is, the parameter that characterizes the singular 
behavior at a crack tip, using Equation (1.2-18), can be found to be 

which does not include 71. Thus, the awkward fi, incorporated artificially into 
the definition of K to simplify the calculation of G, is completely unnecessary. 
In retrospect, because by far the greatest number of fracture mechanics 
applications now employ K rather than G-and do  so because of its 
connection with the local crack-tip field as shown by Equation (1.2-24)-this 
was rather unfortunate. 

Because the analysis problem was made tractable for practicat problems by 
the use of Equations (1.2-23), i t  can be said that fracture mechanics as an 

* Irwin has referredto the procedureembodied in Equation( 1.2-22)as thecrack closuremethod. 
While this is a properly descriptive phrase, it should be recognized that the current use of the term 
“crack closure” more often refers to the contact of the crack faces during the unloading portion of 
a cyclic load in fatigue; see Chapter 8. There is no connection between these two ideas. 
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engineering discipline had its origins in this procedure. Through the use of 
complex variable methods, Sih, Paris, and Erdogan (1.42), for example, 
provided the first collection of stress intensity factors for practitioners of 
fracture mechanics. Sih, Paris, and Irwin (1.43) also provided a generalization 
of Equation (1.2-23) for anisotropic materials. For a homogeneous or- 
thotropic material with the crack parallel to a plane of symmetry, this relation 
can be written 

where the aij are elements of the compliance matrix written in the form 

The introduction of the stress intensity factor did much to establish the basis 
of fracture mechanics. Nevertheless, some fundamental conceptual difficulties 
still existed. These centered on the necessity to reconcile the linear elastic 
nature of the derivation of Equations (1.2-23) and (1.2-25) with the fact that 
nonlinear deformation will engulf the crack tip in most engineering materials. 
As stated by Irwin and Paris (1.39): 

~l = ~ i j ~ j , j  = 1, ..., 6. 

In terms of the old modified Griffith theory, the condition critical for the onset of 
rapid fracture was a point of stable balance, between stress field energy release 
rate and rate of plastic work near the crack, to be followed by a regime of 
unstable rapid crack propagation. 

However, as they later came to recognize: 

the point of onset of rapid crack fracture was an abrupt instability point 
followed by a stable regime in which work rate and loss of stress field energy were 
balanced through a considerable range of crack speeds. Indeed, the instability 
point could be preceded by a slow regime of crack extension in which the crack- 
extension process was also stable. From these facts, it was not clear that the 
assumption of an equality between rate of strain energy release and plastic work 
rate would be helpful for understanding (the) sudden onset of fast crack 
extension. 

This view, strongly influenced by the studies of the plasticity at the crack tip 
developed by McClintock and Irwin (1.44), had the effect of shifting the 
emphasis in fracture mechanics away from the energy balance to crack-tip 
characterization. This viewpoint is paramount in modern fracture mechanics. 

Further reinforcement for the crack-tip characterization viewpoint emerged 
from the work of Barenblatt (1.45). He found it necessary to invoke two 
postulates: that (1) intense cohesive forces act over a small interval at theends 
of the crack, and (2) the local distribution of these cohesive forces is always the 
same for a given material under given conditions. Goodier (1.36) suggested 
that a further feature of Barenblatt’s approach beconsidered as a third postu- 
late: the stress singularity arising from the cohesive forces is such that it cancels 
that due to the applied stresses. As a direct consequence of abolishing the 
stress singularity, the two crack faces close smoothly in a cusp shape (rather 
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than opening to an ellipse with a finite radius of curvature as in the Griffith 
problem). A material constant emerges that is called the modulus of cohesion. 

Barenblatt’s theory supposes that, as the applied loads increase from zero, 
the cohesive stresses at  the crack tip will also increase. But, there is a limit to 
the material’s ability to restrain the crack faces from opening. Then, an 
“immobile equilibrium crack” becomes a “mobile equilibrium crack” and 
dynamic crack propagation ensues. The transition point was then expressed 
quantitatively using the complex variable representation of the theory of 
elasticity formulated by Muskhelishvili (1.46) and Barenblatt’s postulates. 
This leads to an expression for the modulus of cohesion KO given by 

(1.2-26) 

where g(<) denotes the intensity of the cohesive force and d is the (small) 
interval at the crack tips where it acts. While he was unable to evaluate the 
integral in Equation (1.2-26), Barenblatt was able to show that 

KO = (xEr )*  (1.2-27) 

which eliminates the necessity to perform calculations on the molecular 
scale. Finally, use of the singularity canceling procedure leads to the fracture 
criterion 

(1.2-28) 

where K is the stress intensity factor. Using Equation (1.2-27) and taking 
K = a(na)* for the Griffith problem recovers Equation (1.2-6) to within a 
constant. 

1.2.6 Atomic Simulation of Fracture 

In this section we will digress to look at  the various analysis models that have 
been proposed to address fracture in the most fundamental way possible- by 
the rupture of the interatomic bonds that keep a solid intact. It is not difficult 
to recognize that such modeling efforts can only proceed with sweeping 
assumptions and a degree of computational complexity that essentially 
obviates any practical applications. Yet, such work is nonetheless of interest 
for the insight that it can bring to a basic understanding of the origins of 
fracture toughness. 

Implicit in fracture analyses from their inception is the idea that atomic 
bonds must be ruptured to allow a crack to propagate; for example, see 
Figure 1.21. The first quantitative treatment that explicitly considered inter- 
atomic bond rupture may have been that of Elliott (1.47). Using the linearelas- 
tic (continuum!) solution for a cracked body under uniform tension, Elliott 
evaluated the normal stress and displacement values along a line parallel to 
the crack plane (see Figure 1.22), but situated at a small distance b/2 into the 
body. He then plotted the stress at  each position as a function of the 
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Figure 1.22 Pseudo atomic model for fracture mechanics calculations. 

displacement at that point. The shape of this function turns out to be 
consistent with what one would intuitively expect for interatomic force- 
separation law-that is, one that obeys Hooke’s law for small separations, 
exhibits a maximum, and diminishes monotonically to zero at very large 
separations [cf. Equation (1.2-I)]. 

On the basis of this interesting finding, Elliott formulated a model in terms 
of two semi-infinite blocks that attract each other with interatomic forces. This 
is shown in Figure 1.22. In this model the distance b between the blocks is 
taken as the equilibrium interatomic separation distance, and the area under 
the force-separation curve is set equal to the surface energy y. The final step is 
to equate the maximum stress to the critical rupture stress for the material. 
This gives a relation that can be written in a form like that of Griffith. For 
plane strain conditions and v = 0.25, this is 

01 = - 8 (-) Ey 
7 a  

(1.2-29) 

which can be compared with Equation (1.2-6). Remarkably, it can be seen that, 
apart from a difference in the numerical constants of only about 1 percent, 
these results are identical. Nevertheless, because the approach is based 
completely on linear elastic continuum theory (as Elliott certainly recognized), 
such a result might be regarded as fortuitous. Cribb and Tomkins (1.48) 
subsequently performed a more direct analysis of the interatomic cohesive 
forces at the tip of a crack in a perfectly brittle solid, nevertheless finding a 
result in essential agreement with Elliott’s. 

Elliott was concerned also with another aspect of the problem, one that 
troubles all atomistic and energy balance approaches. Because there is only 
one equilibrium point, the crack should close up at all applied stress values 
less than the critical value! Consequently, some physical agency not present 
in the model (e.g., a missing layer of atoms, gas pressure, a nonadhering inclu- 
sion) must be postulated to assure the existence of the crack prior to fracture 
instability. Elliott argued that such a deus ex machina would be compatible 
with his approach. Subsequent investigators simply took the initial displace- 
ments of the atoms on the crack plane to be beyond the separation distance 
corres,ponding to the maximum cohesive force. 

Improvements on continuum-based analyses of discrete atomic-scale 
events were forthcoming only with the advent of large-scale numerical 
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computation. The first of these may have been that of Goodier and Kanninen; 
see reference (1.36). While actually motivated by Barenblatt’s postulates, they 
in effect extended Elliott’s model. Specifically, they considered two linear 
elastic semi-infinite solids connected by an array of discrete nonlinear springs 
spaced a distance b apart (b was taken as the interatomic separation distance). 
The crack-tip region in this model is shown in Figure 1.23. 

Goodier and Kanninen selected four different analytical forms to represent 
the interatomic force separation law. In each of these the initial slope was 
made to correspond to the elastic modulus E with the area under the curve, 
representing the work of separation, equated to the surface energy y [cf. 
Equation (1.2-l)]. For any of these “laws,” the solution for the resulting mixed 
nonlinear boundary condition problem was obtained numerically by mono- 
tonically loading the body (with a finite length 2a over which the atoms were 
already supposed to be out-of-range of their counterparts) until the maximum 
cohesive strength was achieved. Computations performed for a range of crack 
lengths led to a relation for the fracture stress that can be written as 

f. 
Of = u (:) (1.2-30) 

where a was a number on the order of unity that depend modestly on the 
interatomic force law that was used in the calculation. The similarity with 
Equations (1.2-6) and (1.2-29) is evident. 

An obvious shortcoming in the model of Goodier and Kanninen is the 
limitation to the atomic pairs bridging the crack plane. As later shown by Rice 
(1.7), the application of the J-integral (see Section 1.4.4) to such a problem 
results in G = 2y regardless of the force law that is used-the difference found 
for the various choices simply reflecting the discreteness of the model, not the 
nonlinearity. Recognizing this, Gehlen and Kanninen (1.49) extended the 
Goodier-Kanninen treatments by directly considering the crystal structure at  
the crack tip. Specifically, equilibrium atomic configurations at the tip of a 

Figure 1.23 Crack tip in a pseudo- 
atomic fracture model. 

nonlinear law 

3 
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crack in alpha-iron, a body-centered-cubic structure for which interatomic 
potentials are reasonably well known, were determined for different load 
levels. But, owing to the limited sizes of the model that they were able to 
employ, the crack growth condition had to be deduced in an artificial way. 
This work nevertheless also produced a relation of the type given by Equation 
(1.2-30), again with a constant about equal to unity. A similar approach 
pursued by Chang (1.50) led to the same type of result. 

Because the number of "free" atoms that Kanninen and Gehlen could admit 
into their computation was small (typically about 30), the atomic positions 
were highly constrained by the linear elastic continuum displacement field in 
the vicinity of the crack tip. Consequently, the coincidence between their result 
and that of Griffith is not surprising. Nonetheless, this effort was valuable in 
that the fundamental process responsible for cleavage crack extension was for 
the first time confronted in a realistic way and, simplicity aside, no artificial 
postulates were required to support it. Of more importance, such a model 
allows the process of dislocation nucleation-the origin of crack-tip 
plasticity-to occur naturally. Consequently, it should be possible to delin- 
eate the mechanical properties of a material that dictate whether brittle or 
ductile fracture will occur. The later work of Gehlen et al. (1.51), where larger 
models with less rigid constraints in the boundary of the computational model 
were used, did indeed permit bond rupture to be possible; see Figure 1.24. 
Their work also showed the origins of dislocation nucleation. Subsequently, 
Markworth et al. (1.52) showed that the influence of a foreign atom (e.g., 
hydrogen) on the rupture of atomic bonds was also admissable in this 
treatment. They found that the iron atoms in the proximity of the hydrogen 
atom were attracted to it. This elongated the Fe-Fe bonds which then ruptured 
more readily. 

Work of current note in atomic fracture simulation was initiated by Weiner 
and Pear (1.53), who first addressed rapidly propagating cracks. A somewhat 
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Figure 1.24 Lattice model of a crack tip in bcc iron showing crack extension. 
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tangential line of development that has much in common with the finite 
element method is one reflected by Ashhurst and Hoover (1.54). The current 
state-of-the-art in large-scale atomistic computer simulation of crack tips is 
probably represented by the work of Markworth et al. (1.55), Mullins (l.56), 
and Paskin et al. (1.57). 

The calculations of Markworth et al. (1.55) were based upon body-centered- 
cubic iron. Reasonably reliable interatomic force-separation laws (con- 
ventionally expressed in terms of two-body potential functions) are available 
for this system and for its interactions with hydrogen and helium atoms. A 
typical computation is performed by inserting a hydrogen (or helium) atom 
into the lattice ahead of the crack tip. In contrast to their earlier result 
(n.b., different potential functions were used), the computation that was carried 
out shows that the presence of the hydrogen atom causes severe local distor- 
tion of the iron crystal, whereupon a relatively small applied stress can bring 
about a unit of crack advance by bond rupture. In this sense, the iron crystal 
was indeed “embrittled” by the hydrogen. While such a result is intuitively 
reasonable and probably to be expected, quantitative results can be obtained 
only through computations such as these. 

While results such as those of Markworth et al. are encouraging, the 
prospects for further progress in atomistic simulation of fracture are daunting. 
The most serious barrier would seem to be the paucity of reliable multi-body 
interatomic force-separation laws (for both like as well as unlike atoms) that 
can account for temperature effects. Work on the atomic scale will always be 
handicapped by computer limitations. Compounding this constraint is the 
ultimate necessity to treat corrosion fatigue that involves low-level but 
repeated loadings. Nevertheless, formidable as the computational problems 
are, we feel that work in this area is now much more constrained by 
inadequacies in the physics of the problem (i.e., in deriving reliable potential 
functions) than in the mechanics aspects. 

In concluding this section, it might be recognized that simpler models also 
exist. As a prime example, Kelly, Tyson, and Cottrell (1.58) have devised a 
rough indication of whether a crystal will fail in a ductile or in a brittle mode. 
Their criterion was that, if the ratio of the largest tensile stress to the largest 
shear stress at the crack tip exceeds the ratio of the ideal cleavage strength to 
the ideal shear strength, then a fully brittle crack will be sustained. Otherwise, 
dislocations are presumed to be generated whereupon crack extension will be 
accompanied by significant plastic flow and the fracture mode will be ductile. 
The simple approach of Kelly, Tyson, and Cottrell was later extended by Rice 
and Thomson (1.59). 

1.3 The Establishment of Fracture Mechanics 

The essential feature of fracture mechanics is the delineation of the 
contributions of the load and the structural geometry from that of the 
material. This procedure permits a material’s fracture property to be 
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determined in a convenient laboratory-scale test and, in conjunction with a 
mathematical analysis, to be used to predict the behavior of full-scale 
engineering structures. As just described, the introduction of the stress 
intensity factor was instrumental in a practical approach for the initiation of 
crack propagation under conditions where predominantly elastic material 
response can be expected. In this section the extensions of fracture mechanics 
to subcritical crack growth, nonmetals, and to rapid crack propagation that 
employ this parameter are described. 

1.3.1 Subcritical Crack Growth 

The failures in welded ships discussed by Williams and Ellinger (1.28), the 
molasses tank and other vessel failures reviewed by Shank (1.29), the Comet 
aircraft disasters described by Bishop (1.30), the collapse of the Point Pleasant 
bridge over the Ohio River reported by Bennett and Mindlin (1.60), and the 
generator rotor fractures described by Schabtach et al. (1.40,1.41), reveal 
clearly the necessity of quantifying the processes by which a crack achieves a 
critical size. We here turn to the extension of the Griffith-Irwin concepts to 
treat these aspects of fracture mechanics. As a prime example, in work that 
appeared in 1961, Paris, Gomez, and Anderson (1.61) first showed how the 
stress intensity factor could be effectively applied to describe fatigue crack 
growth. As discussed later by Paris and Erdogan (1.62), a number of 
competing fatigue “laws” existed at that time that could adequately describe 
data obtained from specific specimen geometries and loading types. But, by 
applying a discriminating test in which fatigue crack growth rates obtained 
under different conditions could be correlated, Paris and Erdogan clearly 
showed the superiority of relations based upon K .  Figure 1.25 shows this 
key result. Here, data for center cracked tensile panels under remote tension 
(K increasing with crack length) and under a wedge loading on the crack faces 
(K decreasing with crack length) very nicely consolidate. This result fairly 
well established the type of relation that is now commonly known as the 
‘‘Paris law”-that is, Equation (1.1-16). 

Fatigue crack growth presents a number of complications beyond the 
simple behavior exemplified by a Paris-law equation. The load history to be 
considered must not substantially deviate from uniformity. A t  one extreme, it 
is known that crack growth does not occur if AK is less than some threshold 
value. At the opposite extreme, fatigue cracking will be superseded by rapid 
crack growth. In addition, there is usually an effect of the mean stress in the 
load cycle. As described in Chapter 8, a plethora of empirical fatigue relations 
exist to account for one or more of these complications. For example, a variant 
of Equation (1.1-16) that accounts for the lower limit to AK for fatigue 
cracking that can be seen in Figure 1.25 is 

(1.3- 1) 

where (AK),, is known as a threshold value. An extension of Equation (1.1-16) 
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for the higher AK crack growth regime was suggested by Foreman et al. (1.63). 
Their result can be written as 

da C(AK)” 
d N  - (1 - R ) K , ,  - K,,, 
_ -  (1.3-2) 

where R = Kmin/K, , , .  Like Equation (1.1-16), this equation has a limited 
theoretical basis. But, owing to its ability to accurately represent observed 
results, it is very widely used in structural integrity assessments. 

A semiempirical formulation of great importance in fatigue crack propa- 
gation is the crack closure concept advanced by Elber (1.64) in 1971. He 
recognized that, because a fatigue crack leaves a wake of plastic deformation 
behind it, the crack faces can close on each other under a tensile applied stress. 
Hence, even if the minimum load level on the unloading portion of the load 
cycle has not been reached, no further damage occurs at the crack tip during 
that load cycle. Equivalently, during the loading portion of the cycle, no effect 
will occur until the crack has opened. On this basis, Elber proposed the idea 
of an effective stress, (AK)eff E K,,, - K O p ,  where Kop corresponds to the 
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opening stress level. The quantity (AK)eff can then be used to replace A K  in 
Equations (1.1-16), (1.3-1), or (1.3-2). While this substitution is logically 
defensible, unfortunately, K o p  is a difficult quantity to obtain. Nevertheless, as 
discussed in Chapter 8, Elber's idea is clearly a cornerstone in modern 
attempts to develop nonlinear fatigue crack propagation models. 

In an analogous manner to fatigue crack growth characterization, environ- 
mentally assisted crack growth (i.e., corrosion cracking, corrosion fatigue) has 
also come to employ the stress intensity factor. In contrast, a widely accepted 
counterpart of the Paris-law type of relation does not exist. Where agreement 
generally exists is on the threshold level required for environmental crack 
growth, Kjscc .  That is, i t  is supposed that there is a material and environment- 
dependent constant such that if K c Klscc,  an existing crack cannot propa- 
gate. The origin of this notion is probably due to Brown and Beacham (1.65). 

Much less of a consensus exists on relations that are appropriate to 
determine crack growth rates when K exceeds Kjscc .  Perhaps the most widely 
accepted relation is the power law form suggested by Evans and Johnson 
(1.66), Equation (1.1-17). This formulation was based upon earlier work by 
Charles (1.67) who formulated an energy release rate relation for environmen- 
tally assisted crack growth. As formulated in terms of K by Evans and Johnson, 
environmentally assisted crack growth consists of three characteristic regions. 
This is shown in Figure 1.26. Just above Kjscc there is region I-a region in 
which the crack velocity varies rapidly with K. A nearly constant velocity 
region, termed Region 11, exists at higher K levels. A t  K levels approaching K,,  
there is Region 111; another region in which the crack velocity varies rapidly. 
The values of A and n, of course, will differ depending upon which region is 
being considered. 
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Figure 1.26 Environmentally assisted crack growth data for two materials: (a) glass and 
(b) alumina. 
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Alternatives to the power law form also exist. For example, a relation that 
has been used to treat crack growth in ceramics is 

CK - Eo da 
- =  dt v0exp( RT ) (1.3-3) 

where Vo and Care empirical material-dependent constants while Eo,  R ,  and T 
denote the activation energy, the universal gas constant and the absolute 
temperature, respectively. I t  can nevertheless be seen that the stress intensity 
factor retains a key role in this type of relation. 

1.3.2 Fiber Reinforced Composites 

By transcending the initially micromechanical approaches to take a complete 
reliance on continuum mechanics, early work on the fracture of fiber- 
reinforced composites paralleled the development of relations for their 
deformation behavior. Prominent among the primary contributors to for- 
mulating micromechanical models for the various energy absorbing processes 
involved in the fracture of fiber composites (e.g., fiber breakage, matrix 
cracking, fiber pull-out, fiber-matrix debonding, inter-ply delamination) were 
Cooper and Kelly (1.68). However, while useful for a basic understanding of 
composite materials, such isolated models do not suffice for structural in- 
tegrity assessments. At the same time, the use of the rule of mixtures and 
lamination theory that has been so successful for deformation behavior in fiber 
composite laminates will not suffice for fatigue and fracture. The trend has 
therefore been towards semiempirical adaptations of the LEFM formulations 
with disposable parameters being introduced to account for the additional 
complexities that arise. 

A n  early application of continuum fracture mechanics to composites was 
made by Wu (1.69), who developed a failure surface approach for mixed mode 
fracture. Wu established a relation that can be generalized to the form 

($7 + (2y = 1 (1.3-4) 

where K ,  and K , , ,  respectively, are the Mode I and Mode I1 stress intensity 
factors,* K , ,  and K I E  are their critical values, while m and n are material- 
dependent constants. Using experimental data on wood, Wu found the 
particular values rn = 1 and n = 2 to be appropriate. Different values have 
been found to be necessary when applying Equation (1.3-4) to other types of 
composites. 

* Work in fracture mechanics considers three distinct fracture modes: Mode I, the opening 
mode, Mode 11, the sliding mode, and Mode 111, the out-of-plane mode. These encompass all 
possible ways in which the crack tip can deform. Mode 1 predominates for isotropic materials 
because crack growth tends to occur in planes that are normal to the maximum tensile stress 
where K,, = 0. Hence, only this condition has been considered to this point. See Chapter 3 for a 
further description. 
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Because Equation (1.3-4) cannot completely account for the diversity of 
crack growth processes in a fiber composite laminate, Zweben (1.70), Konish 
et al. (1.71) and others developed alternate forms. In essence, by allowing the 
fracture toughness to be direction-dependent, their models allowed for crack 
growth to occur in a non-self similar manner. A similar approach was 
formulated by Harrison (1.72). He delineated “cracking” from “splitting” by 
assigning separate toughness values for the two processes. Recognizing that 
the crack driving force is also direction-dependent, the crack growth criterion 
is then given by the particular equality (i.e., for cracking or for splitting) that is 
satisfied at the lower load level. 

Together with the several crack length adjustment models that have been 
offered, the models of Zweben, Konish et al., and Harrison can be categorized 
as two-parameter relations. Although having broader uti l i ty than only for 
fiber composites, the strain energy density theory of Sih can be contrasted with 
these. As advanced for composites by Sih and Chen (1.73), the approach 
centers on the strain energy density quantity given by 

S = a, ,K:  + 2 a , , ~ ,  + a,,K$ (1.3-5) 
where c1, ,, a,,, and a,, are known functions of the elastic constants and of the 
direction of crack extension. The strain energy density theory is based upon 
two hypotheses: that crack extension occurs, ( I )  in a direction determined by 
the stationary value of S ,  and (2) at a load level such that S equals a critical 
value, S,. It can be seen that, while the strain energy density model depends 
only on a single experimentally determined parameter, i t  can also determine 
the direction of crack growth. For further details, see Chapter 6. 

While the models that have been developed are appropriate for uni- 
directional composites, they are not as well suited for multi-directional 
laminates. Also, because of the usual requirement in fracture mechanics for an 
identifiable dominant crack, the small defects that are usually associated with 
the initiation of fracture in fiber composite laminates pose difficulties. Current 
work is therefore becoming focused on hybrid continuum/micromechanical 
models and probabilistic treatments. The fracture mechanics models that have 
been developed for fiber composite materials are discussed in Chapter 6. 

1.3.3 Elastomeric Materials 

Because of their importance as engineering materials, most fracture mechanics 
developments have at least tacitly focused on metals. Consequently, a classic 
paper in the field has not received the attention that i t  deserves. This is the 
extension of the Griffith theory to the rupture of rubber, contributed by Rivlin 
and Thomas (1.74) in 1953. This work is of interest because i t  initiated an 
entire branch of the subject-the fracture mechanics of elastomers-and it  
extended the basis of the general subject as a whole. 

The essence of the Rivlin-Thomas approach was to demonstrate the 
existence of a characteristicenergy for the tearing of thin sheets of rubber that 
is independent of the test piece configuration. To do this, they introduced a 
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quantity called the tearing energy, defined for fixed grip loading conditions as 

8U 
8A 

T =  -- (1.3-6) 

where U is the stored elastic energy and A is the slit area (e.g., for an edge- 
cracked constant width specimen, A = aB, where a is the slit length and B is 
the specimen thickness). While this is similar to the Griffith approach, Rivlin 
and Thomas recognized that the elastic energy given up to support crack 
extension need not only be transferred to surface energy. Like Irwin and 
Orowan, they expected that energy changes would be proportional to the 
amount of growth and, hence, would be related to the crack-tip deformation 
state, independent of the shape of the test specimen and the manner in which it 
is loaded. As they put it: 

It is therefore to be anticipated that the energy which must be expended at the 
expense of the elastically stored energy, in causing a given small increase in the 
cut length at constant overall deformation of the test-piece will be substantially 
independent of the shape of the test-piece and the manner in which the 
deforming forces are applied to it .  This energy will therefore be a characteristic 
energy for tearing of thin sheets of the material, although it may depend on the 
shape of the tip of the cut. 

As Rivlin and Thomas later recognized, the critical tearing energy can also be 
affected by the temperature and the loading rate, as of course are the fracture 
properties of most materials.* 

Rivlin and Thomas performed experiments using three different test 
specimen geometries to determine critical (or characteristic) tearing energy 
values numerically via Equation (1.3-6). For several different vulcanizates, 
they found essentially constant values of T, for catastrophic tearing. These 
experiments apparently involved a significant amount of stable crack growth 
prior to instability and their values for the initiation of growth were sub- 
stantially lower. Regardless, of most interest here, they demonstrated that 
a simple energy balance analysis could be developed to evaluate T for a given 
specimen that accounts for the large deformations and the incompressible 
nature of rubber. Then, using values from measurements using an entirely 
different test specimen geometry, reasonably accurate predictions were made 
of the onset of crack growth. 

Interestingly, these results suggest that, in rubber, T, is independent of the 
fracture mode. But, of most importance to  the foundations of fracture 
mechanics in general, was the implicit connection between a global energy 

* There is some ambiguity in the parameter designation used by Rivlin and Thomas who 
denoted both the crack driving force and its critical value by the symbol T. in accord with more 
recent fracture mechanics approaches, we will preserve the distinction through the use of the 
equality T = for elastomeric crack growth. Note that, while the symbol Tis also currently being 
used to denote the tearing modulus in elastic-plastic fracture mechanics (see Section 1.4.8). these 
concepts are totally dissimilar. 
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balance and the autonomous state of the crack tip at the onset of fracture that 
Rivlin and Thomas demonstrated for an elastomeric material. This work 
spawned an entire branch of fracture mechanics-for example, the work of 
Gent, Lindley, and Thomas (1.75) and Lindley and Stevenson (1.76) on the 
fatigue of rubber. For recent work, see Rivlin and Thomas (1.77) and the 
publications of the Malaysian Rubber Producers’ Association of the U.K. 

In common usage are expressions for the tearing energy valid for the large 
deformations experienced in rubber having the typical form 

T = 2kwa (1.3-7) 

which Rivlin and Thomas (1.74) developed for an edge-cracked tension 
specimen. In Equation (1.3-7), w is the strain energy density and k is a strain- 
dependent geometrical factor. For linear elastic conditions where w = a2/2E,  
it can be seen that Equation (1.3-7) is consistent with the LEFM relations 
provided k = (n/4)(1 + V ) ( K  + 1 ) ;  [cf. Equation (1.2-23)]. But, for large defor- 
mations and small shape factors (i.e., the ratio of the loaded area to the 
stress free surface of a rubber component), this relation will differ. 

1.3.4 Numerical Methods in Fracture Mechanics 

Returning to linear elastic fracture mechanics, one of our primary contentions 
is that Irwin’s introduction of the stress intensity factor, by superseding a 
global energy balance approach, constituted the origin of fracture mechanics. 
This view is supported by the proliferation of mathematical solutions that 
have been developed for the stress intensity factors in various crack/structure 
geometries and by the relative ease for which numerical solutions can be made 
for situations where these do not exist. Adding vital support for the practical 
utilization of this idea was the detailed development of the stress state in the 
vicinity of a crack tip provided by Williams (1.78) and, later, by Karp and 
Karal (1.79). This work has been particularly important in the variety of 
numerical techniques that have been used. 

One of the first uses of the finite element method to determine stress 
intensity factors was that of Chan et al. (1.80). They used conventional 
elements at  the crack tip and were therefore forced to use an awkward 
procedure in which K was inferred by extrapolating crack opening displace- 
ment values back to the crack tip. Shortly thereafter a number of investigators 
devised special elements that explicitly contained the elastic singularity. The 
first of these may have been that of Byskov (1.81). However, even this 
procedure became unnecessary owing to the discovery by Henshell and Shaw 
(1.82) of the so called quarter-point element. This is a conventional finite 
element in which the mid-side nodes have been shifted whereupon, by seren- 
dipity, the element appears to reflect the r -*  singular behavior needed for 
elastic crack problems. Because of its simplicity, the quarter-point element 
became the usual choice of analysts for LEFM problems. A further 
contribution was made by Barsoum (1.83) who developed analysis procedures 
using isoparametric finite elements. 
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Several alternative numerical analysis methods have been used in fracture 
mechanics applications. These include the boundary collocation method used 
by Kobayashi et al. (1.84), the boundary integral method of Cruse (1.85), the 
finite difference method advocated by Wilkins and coworkers (1.86), and the 
alternating method. A review of numerical methods in fracture mechanics 
with particular emphasis on their application to the three-dimensional corner 
crack problem has been given recently by Akhurst and Chell (1.87). As a 
general guideline, the tendency among numerical analysts currently is to use a 
finite element code with conventional elements and to evaluate the crack 
driving force through a path-independent contour integral such as J (see 
Section 1.4.4). This technique allows the crack-tip region to be modeled with 
much less mesh refinement than is necessary to model the singular behavior 
directly and eliminates the need for a library of special elements. 

1.3.5 Rapid Crack Propagation 

The first quantitative assessment of dynamic fracture may be the paper by 
Mott (1.88) in 1948. By the use of a dimensional analysis procedure to 
determine the kinetic energy of a crack moving quasi-statically in an infinite 
domain, Mott deduced an expression suggesting the existence of a material- 
dependent limiting crack propagation speed. His limiting speed result was 
proportional to Co,  through an undetermined constant, where C ,  = mp is 
the elastic bar wave speed for the material. Note that this result is independent 
of the fracture resistance of the material. However, there is a basic error in 
Mott’s derivation that invalidates his crack length history result (see below). 

The landmark paper of Yoffe (1.89) provided the first dynamic solution- 
that is, with inertia forces included in the equations of motion-albeit by 
considering the rather unrealistic case of a constant length crack translating at 
a constant speed in an infinite domain. Her paper, which appeared in 1951, 
focused on determining the stress field ahead of a propagating crack in order 
to develop a criterion for crack branching. This work led to a limiting crack 
speed estimate of 0.6C2, where C2 = is the shear wave speed and 
p = E/2(1 + v )  is the shear modulus. 

The next subsequent noteworthy effort was the enlargement of Mott’s 
quasi-static approach that was made by Roberts and Wells in 1954 (1.90). In 
particular, Roberts and Wells were able to estimate the undetermined 
constant in Motts’ work-a result that suggests that 0.38C0 is the limiting 
crack speed. At about the same time, Hall (1.91) began to consider the origins 
of fracture toughnesses via crack-tip plasticity. Although the idea is implicit in 
the earlier papers of Irwin-see reference (1.6), for example-Hall appears 
to be the first to include the effect of plastic deformation in rapid crack propa- 
gation. His results suggested that the fracture requirement may depend 
upon crack speed, a now generally accepted idea. 

A definite escalation in interest in the analysis of rapid crack propagation 
came in 1960 with the appearance of four major papers. Included are the 
quasi-static analyses of Dulaney and Brace (1.92) and of Berry (1.93), and the 
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dynamic analyses of Craggs (1.94) and Broberg (1.95). Dulaney-Brace and 
Berry independently derived a crack growth history relation that corrected the 
error in Mott’s result. By incorporating the Roberts and Wells limiting speed 
estimate, this result can be written as 

V = 0.38 Co( I - :) ( I  .3-8) 

where a = n ( t )  is the instantaneous crack length and a. = n(0) is the initial 
crack length. This result is widely quoted. However, it must be recognized that 
its derivation employed several assumptions that are seldom met in actual 
applications. Specifically, Equation (1.3-8) is based on quasi-static crack 
motion in an infinite domain subjected to a constant applied stress and 
assumes that the material’s fracture energy is independent of the crack speed. 
Nevertheless, the limiting speed estimate of 0.38 C,  that arises in this result is 
entirely reasonable. Broberg’s 1960 paper improved Yoffe’s solution by 
considering a uniformly expanding crack-a result that suggested that the 
limiting speed was C,, the Rayleigh wave speed.* 

A key subsequent step wascontributed by Atkinson and Eshelby(l.96), who 
considered the flow of energy to the tip of a dynamically propagating crack 
and thereby introduced the contour integral idea into dynamic fracture 
mechanics. Subsequently, in a series of papers appearing in 1972 through 
1974, Freund (1.97) provided results for unrestricted crack growth in an 
infinite domain. Coupled with the 1973 work of Nilsson (1.98), this work has 
completed the picture for elastodynamic crack propagation problems when 
wave reflections from component boundaries are not important. In so doing i t  
has also set the basis for the quasi-static approach to crack arrest by providing 
what is now called the Freund-Nilsson relation. This key result, which is the 
dynamic generalization of Equation (1.2-23), can be expressed as 

K 2  G = A ( V ) - - ;  
E (1.3-9) 

where A( V )  is a monotonically increasing, geometry-independent, function of 
the crack speed that has a value of unity at V = 0 and increases monotonically 
to become infinite at the Rayleigh speed; see Chapter 4. While this result 
appears to have been first obtained by Craggs, the universality of Equation 
(1.3-9) stems more directly from the work of Freund and Nilsson and is 
therefore more properly attributed to them. 

On the experimental side, the earliest reported work may be that of 
Schardin that was conducted in the 1930’s; see reference (1.99). An early 
instance of an actual crack speed measurement was the value of 40,400 in./sec 
(in steel) reported by Hudson and Greenfield in 1947 (1.100). Later, the 

* For a Poisson’s ratio of 0.25, CR/C2 = 0.91 (plane stress). Thus, the limiting speed estimates of 
Roberts and Wells and of YofTe, are nearly the same. For comparison with Broberg, their limiting 
speed value is 0.66CR. 
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photoelastic investigations of Wells and Post (1,101) in 1958 and the early 
crack growth measurements of Carlsson (1.102) reported in 1963 are perhaps 
most noteworthy. There of course have been many large-scale testing 
programs such as those conducted at the University ofIllinois, in Japan, and 
the large-scale pipe fracture experiments conducted at Battelle’s Columbus 
Laboratories. 

Irwin (1.103) identified six particular research areas-crack speed, crack 
division, crack arrest, the onset of rapid fracturing, minimum toughness, and 
the direction of cracking-and introduced the concept of “progressive 
fracturing” to link them. Thus, one has the slow stable growth of small flaws to 
near critical size, the rapid spreading of the worst flaw (Le., the one that first 
achieves the critical condition), and, possibly, the arrest of such a crack. Each 
of these events must be governed by a criterion that connects the 
load/geometry of the cracked component to an appropriate material property 
for the particular event. At that precipitous time, these characterizations, 
which had been largely limited to linear elastic material behavior and static 
conditions, could begin to include nonlinear and dynamic effects. This 
development ushered in the modern approach to dynamic fracture mechanics 
that is discussed in Chapter 4. 

1.3.6 Dynamic Crack Arrest 

The subject of crack arrest has been a virtual battleground throughout much 
of its history. Two mutually exclusive points of view for the arrest of a rapidly 
propagating crack have been vigorously advanced. One stems from the 
suggestion, apparently made first by Irwin and Wells (1.104), that crack arrest 
can be considered as the reverse in time of crack initiation. This proposition 
means that crack arrest should be characterizable in terms of a distinct mate- 
rial constant (commonly, the plane strain linear elastic fracture mechanics 
parameter K,,J and the crack driving force that corresponds to the crack 
length at the arrest point. Since there is no necessity to consider the rapid crack 
propagation process preceding arrest-indeed, there is not even the possi- 
bility of so doing-this approach must be expressed in static terms. 

The opposing point of view is one based upon an equality that governs the 
moving crack. Crack arrest occurs as the special case when this equality can no 
longer be satisfied. Such an approach has previously been known as the 
dynamic view of crack arrest (because of the dynamic effects in the equations 
of motion of the cracked body) to contrast i t  with the static view of Irwin and 
Wells. But, refering to it as a kinetic approach, as we will do  in this book, is 
more accurate because the focal point is on the crack growth process itself 
regardless of the importance of dynamic (inertia) forces. 

An understanding has now been reached between the two opposing 
viewpoints. Dynamic effects generally exist in crack arrest. Nevertheless, 
statically determined arrest values can be determined experimentally that 
often suffice for practical purposes. Specifically, the quasi-static approach 
requires a small crack jump length in the experimentation being conducted to 
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determine the arrest property. The reason is that a dynamic analysis for crack 
propagation in an infinite medium provides the legitimization for the quasi- 
static view. In actual structures, the return of kinetic energy to the crack tip 
prior to crack arrest can make the quasi-static approach invalid. As this 
condition is often not inhibiting, the bulk of current state-of-the-art appli- 
cations of dynamic fracture mechanics to rapid crack propagation and arrest 
are based upon the use of quasi-static crack arrest concepts. 

For the initiation and termination of rapid crack propagation under linear 
elastic fracture mechanics (LEFM) conditions, one has Equation (1.1-5) for 
crack initiation, and 

K = K,,(T) ( 1.3- 1 0) 

for crack arrest where Tdenotes the temperature at thecrack tip. Note that, in 
both instances, K is calculated just as if the crack were stationary (quasi-static 
growth) while K , ,  and K , ,  are taken as temperature-dependent material 
properties. Again, this point of view does not include (nor could it) any 
consideration of the unstable crack propagation process that links the 
initiation and arrest points. 

The kinetic point of view gives direct consideration to crack propagation 
with crack arrest occurring only when continued propagation becomes 
impossible. Within the confines of elastodynamic behavior, unstable crack 
propagation occurs in such an approach under the condition that 

K = K , D (  v, T )  (1.3-1 1) 

where K I D ,  the dynamic fracture toughness, is a temperature-dependent 
function of the crack speed, V .  Note that this function generally does not 
include an initation value [i.e., K , D ( O ,  T )  # K,,(T)] so that Equation (1.1-5) 
is common to both approaches. It also does not include an arrest value as such. 
In the kinetic approach arrest occurs at the position and time for which K 
becomes less than the minimum value of K I D  and remains less for all greater 
times.* 

In Equation (1.3-1 I ) ,  K generally is the dynamically calculated value of the 
stress intensity factor. It  therefore must be determined as part of the solution 
of an initial value, moving boundary value problem. In early work an energy 
balance was adopted in which Equation (1.2-14) was generalized to 

( I .3- 12) 

where T denotes the kinetic energy in the body. Equation (1.3-9) was then 
used to obtain the dynamic stress intensity factor in order to employ Equa- 
tion (1.3-1 l )  as the crack growth criterion. Within this framework the kinetic 

* As Barenblatt (1.45) has noted, crack propagation has a reasonably close analogy with a block 
pushed along a rough surface. The difference between static and sliding friction is similar to the 
difference between the initiation and propagation fracture toughness. Note that there is no 
“arrest” friction coefficient per se. The block motion terminates (arrests) when it is not pushed 
firmly enough to overcome the sliding friction. 
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counterpart of Equation (1.3-10) is the inequality 

K c min { K , D }  
o s v < C R  

(1.3- 13) 

The minimum value of K has at various times been designed as K I M  and as 
K j A  with an emerging preference for the latter. This is obviously a key 
parameter. In  fact, the legitimacy of the quasi-static approach rests upon the 
notion that K,, is a good approximation to K I A .  

Ripling and his associates at the Materials Research Laboratory have 
provided extensive data on crack arrest using a quasi-static interpretation of 
this process (1.105). Interestingly, while their original purpose was to obtain 
K,, data for rapidly applied loading (i.e,, K I ,  values), this work initiated 
quantitative treatments of crack arrest; see, for example, Figure 1.17. The 
work of Hahn and co-workers at Battelle’s Columbus Laboratories beginning 
shortly thereafter was foremost in developing the kinetic approach to crack 
arrest (1,106). While a considerable number of data and analyses were 
developed on crack arrest in the Battelle and MRL programs, decisive 
evidence for one or the other point of view was lacking. This was eventually 
forthcoming from the experiments on photoelastic materials performed by 
Kalthoff et al. (1.107) and by Kobayashi et al. (1.108). These were instrumental 
in resolving the issue in favor of the kinetic point of view. A key result is that of 
Kalthoff et al. shown in Figure 1.27. 

The experimental results shown in Figure 1.27, obtained using the method 
of caustics combined with high-speed photography, enabled a direct measure- 

Figure 1.27 Comparison of static stress intensity factors and actual values during rapid crack 
propagation and following arrest in a DCB test specimen as determined by the method of caustics. 
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ment of the crack driving force for a fast moving crack to be obtained for the 
first time. It can be seen that there is a distinct difference between the actual 
arrest value and the static value that exists at a later time. Of some importance, 
these results provided direct confirmation of the computational results 
obtained earlier by Kanninen (1.109) that indicated the incompatibility of 
Equation (1.3-10) and inequality (1.3-13) in certain conditions, In addition, by 
performing experiments in different crack speed regimes, Kalthoff and his co- 
workers were also able to establish K , ,  functions that were in general accord 
with those developed indirectly by Hahn et al. A relation constructed from 
tests like that shown in Figure 1.27 is shown in Figure 1.28. 

Ironically, results of the type shown in Figure 1.28, while undermining the 
conceptual basis for the quasi-static approach to crack arrest, also provide a 
pragmatic basis for the use of Equation (1.3-10). Specifically, results of this 
type can generally be well-correlated by an empirical relation of the form 

( 1.3- 14) 

where KIA, and m are temperature-dependent material constants. As 
described more completely in Chapter 4, if a K I ,  value is obtained under the 
proper conditions, it will be identical to K f A ;  that is, crack jump lengths short 

I 

1.5 - 

V, mlsec 
Figure 1.28 Dynamic fracture toughness values as a function of crack speed in Araldite-B. 
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enough that reflected stress waves do not return to interfere with the moving 
crack tip together with moderate crack speeds. Then, a kinetic prediction of 
crack arrest will be indistinguishable from the quasi-static prediction. As a 
consequence, it now appears that the controversy over the use of quasi-static 
or kinetic treatments of rapid crack propagation, which dominated the field 
over the decade of the 1970’s, is now fairly well resolved. 

In essence, it is now generally understood that, while kinetic treatments are 
necessary for certain geometries (e.g., where the crack propagation path 
parallels a nearby free surface), the simpler quasi-static point of view suffices 
for most engineering structures in many types of applications. Replacing this 
controversy at the forefront of research interest is one involving the 
appropriate nonlinear characterization for propagating cracks. Key work in 
this area is being focused on the question of the correct crack-tip characteriz- 
ing parameter for inelastic conditions. These efforts are employing the crack 
opening angle parameter and other new concepts to make crack 
propagation/arrest predictions in dynamic-plastic conditions and in dynamic 
viscoplastic conditions. As described in Chapter 4, research in the decade of 
the 1980’s will clearly see progress that will generalize dynamic fracture 
mechanics to address such nonlinear problems. 

1.3.7 Probabilistic Fracture Mechanics 

Probabilistic fracture mechanics treatments fall into one of two general 
categories. In the first category are applications where a dominant flaw does 
not exist and, hence, fracture initiates from one of a distribution of flaws. The 
prime application areas are to highly brittle materials like ceramics and to 
fiber composite materials. The key variable is then the time to failure. The 
second category in which probabilistic treatments are used is for applications 
involving a chain of events, each of which has some degree of uncertainty 
involved in it. The simplest example is where the existence of a flaw of a given 
length, the variation in the material toughness properties, and the magnitude 
of the applied stresses are all uncertain and must be treated in a statistical 
manner. In this instance the key variable is the hypothetical failure 
probability-a number that has significance only in a relative sense. 

A cynical view might be that all probabilistic approaches are expressions of 
ignorance of one kind or another. As more intimate knowledge is acquired for 
a better quantitative understanding, the need for statistical treatments 
diminshes. Indeed, all too often, statistics are applied to experimental results 
when basic results exist that would alleviate the observed “scatter.” Neverthe- 
less, it cannot be denied that a lack of precise information exists in many 
practical applications where fracture is a concern. These situations therefore 
are candidates for probabilistic treatments. 

The origins of probabilistic fracture mechanics as a quantitative approach 
to structural integrity can be directly connected to the work of Weibull(1.110). 
Yet, in a qualitative sense, probabilistic phenomena have played a prominent 
role since the beginnings of serious thinking about fracture. As reviewed by 
Irwin and Wells (1.104), da Vinci, the prototypical Renaissance man, 
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conducted a series of experiments on iron wires in which he found that short 
lengths of wire were noticeably stronger than longer lengths. From the 
mechanics point of view, advanced somewhat later by Galileo, the breaking 
strength should of course only depend upon the cross-sectional area, and be 
independent of the length. The explanation lies in the flaw probability. 

Considering the quality of the material that was probably available in the 
sixteenth century, the wires tested by da Vinci would have contained a 
significant number of imperfections whereupon the fracture strength would be 
dictated by the most critical flaw in a distribution of flaws. A longer length of 
wire would simply be more likely to contain a large flaw in a highly stressed 
location than would a shorter length. Hence, its breaking point would be 
lower. Irwin and Wellsestimated on this basis that the fracture strength should 
be roughly in inverse propagation to the length of the wires-an effect that 
could be readily recognized even with the load measuring equipment available 
to da Vinci. This size effect was noted in many different studies, including one 
concerning the wires used in British aircraft during World War I. Such results, 
in fact, apparently led Griffith to his cornerstone fracture theory. 

Weibull supposed that a structural component behaves as if composed of 
many subunits, each possessing an intrinsic fracture strength. By assuming a 
specific distribution of strengths, he was able to predict a variation in strength 
with component volume that corresponded at least qualitatively with 
observed fracture behavior. In so doing, the Griffith theory was taken as a base 
whereupon the approach is sometimes referred to as the Weibull-Griffith 
theory. Weibull’s two-parameter distribution relation can be expressed as 

(1.3- 15) 

where u and /? are stress and temperature-dependent parameters known as 
the shape factor and the scale factor, respectively. More general forms of the 
Weibull distribution also exist that can be used. An early use of probabilistic 
fracture mechanics made by Besuner and Tetleman (1.1 11) is illustrated in 
Figure 1.29. Example applications of a probabilistic fracture mechanics 
approach are given by Rau and Besuner (1.112), Gamble and Strosnider 
(1.113), and by Harris and Lim (1.1 14). 

fracture 
stress intensity 

Figure 1.29 Overlap of fracture toughness and stress intensity factors in a probabilistic fracture 
mechanics approach. 
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1.4 Nonlinear Considerations 

The original motivation for the development of fracture mechanics was (and 
largely still is) to be able to account for materials that fracture with limited 
plastic deformation- that is, at applied stress levels less than those producing 
net section yielding. The discipline was initially focused exclusively on 
essentially linear elastic-brittle behavior. But, with the successes that were 
achieved with LEFM, materials for which such an approximation would be 
invalid also became of interest. Primary concern was for conditions in which 
the cracked structural component itself would likely obey the dictates of 
LEFM, but the small-scale laboratory experiments needed to provide the 
necessary fracture properties would not; that is, for materials sufficiently 
ductile and tough that the extent of plastic yielding accompanying the crack 
growth would be comparable to the specimen dimensions. Interest in direct 
consideration of the plastic deformation attending crack growth has also been 
pursued for the purpose of achieving a better understanding of the metallurg- 
ical origins of fracture toughness in metals. Most recently, attention has been 
focused on structural components (e.g., stainless steel nuclear plant piping) 
for which LEFM is inappropriate. The origins of the nonlinear fracture 
mechanics techniques that have been developed for these circumstances are 
addressed next. 

1.4.1 Simple Crack-Tip Plasticity Models 

The first quantitative accounting for the effect of the plastic zone at the crack 
tip seems to be that suggested by Irwin, Kies, and Smith (1.1 15). On the basis 
that a plastically deformed region cannot support the same level of stress that 
it could if yielding did not intervene, they argued that a cracked body is 
somewhat weaker than a completely elastic analysis would suggest. To 
account for this within the framework of linear elasticity, they supposed that 
the effect would be the same as if the crack length were slightly enlarged. Thus, 
a plasticity-modified stress intensity factor for a crack in an infinite medium 
can be written as 

K = OJR (a  + r y )  (1.4-1) 

where ry  is supposed to be a measure of the plastic zone size-for example, the 
radius of a circular zone. 

Estimates of ry can be obtained in a variety of ways. Perhaps the simplest is 
to take 2r, as the point on the crack line where oy = or, the yield stress. Using 
Equation (1.2-20), this simple argument gives 

r, = 
plane stress 

plane strain 
(1.4-2) 

The distinction arises because by is taken as the uniaxial tensile yield stress for 
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plane stress while for plane strain it is appropriate to use 40, as the 
parameter governing the plastic zone size. Thus, ry  is a factor of 3 smaller in 
plane strain than in plane stress. Combining Equations (1.4-1) and (1.4-2) gives 
(plane stress) 

(1.4-3) 

From Equation (1.4-3) it can be seen that this approximate plastic zone 
correction will be negligible when CT << O r ,  but will increase K by about 
40 percent at  applied stresses that are of yield stress magnitude. In  plane strain, 
the correction will generally be less than 10 percent, however. 

Through the use of Equations (1.2-23), Equation (1.4-3) can be written in 
terms of the energy release rate. For plane stress conditions and assuming that 
a << uY, this relation is 

( I .4-4) 

which is a form once in common use for a plasticity-corrected crack driving 
force. It will be useful here only for comparisons with the results obtained 
using the COD approach described below. 

1.4.2 Origins of the COD Approach 

At about the same time as Irwin and his associates were developing the 
plasticity-enhanced stress intensity factor to broaden the applicability of the 
linear elastic approach, Wells ( 1 . 1  16) advanced an alternative concept in the 
hope that it would apply even beyond general yielding conditions. This 
concept employs the crack opening displacement (COD) as the parameter 
governing crack extension. Wells evaluated this parameter using Irwin's 
plastic zone estimate and the equations for a center crack in an infinite elastic 
body. Specifically, substituting Equation (1.4-2) into Equation (1.2-2t) to 
obtain 6 = 2u(r,) gives 

Y2 
I\ 

6 = a -  
Ear 

(1.4-5) 

Here, a is a numerical factor that in Wells' work was equal to 4 / 7 ~  
Wells recognized that the factor 4/n is inconsistent with an energy balance 

approach (which would require a factor of unity) and subsequently adopted 
a = 1. Other investigators later found other values of a to be appropriate. 
Regardless, Equation (1.4-5) shows that the COD approach is entirely 
consistent with LEFM where the latter applies. Note from Equations (1.4-2) 
and (1.4-5) that 

6 
ry = - 

2ne, 
(1.4-6) 
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where e y  = ay/E is the uniaxial yield strain. Then, it can be shown that 

6 
2neya 
- = - 13-’ (1.4-7) 

which Wells felt would be acceptable up to o/by = 0.8. While there may be 
little that is remarkable about this result, Wells’ next step certainly was. This 
was to convert Equation (1.4-7) to general yielding conditions. Wells argued 
that 

It is appropriate to assume, although it is not thereby proven, that the crack 
opening displacement 6 will be directly proportional to overall tensile strain e 
after general yield has been reached. 

By assuming that r,/a = e / e u ,  Wells’ intuitive argument led to 

(1.4-8) 

which he suggested would be an approximate fracture criterion for the post- 
yield regime. This set the basis for the widely used COD method, as will be seen 
in the following section. 

While elastic-plastic analyses to determine the plastic region at  a crack tip 
were available, an explicit relation was needed for 6 in order to advance the 
COD concept. This was provided in a key paper published in 1960 by Dugdale 
(1.1 17) in which he developed a closed-form solution applicable for plane 
stress conditions. Using methods of the complex variable theory of elasticity 
developed by Muskhelishvili (1.46), Dugdale supposed that for a thin sheet 
loaded in tension, the yielding will be confined to a narrow band lying along 
the crack line. Mathematically, this idea is identical to placing internal stresses 
on the portions of the (mathematical) crack faces near its tips; the physical 
crack being the remaining stress-free length. 

The magnitude of the internal stresses in Dugdale’s model are taken to be 
equal to the yield stress of the material. In order to determine the length over 
which they act, Dugdale postulated that the stress singularity must be 
abolished.* For a crack of length 2a in an infinite medium under uniform 
tension o, this led Dugdale to the relation 

a n u  
- C = cos (i--) (1.4-9) 

Here, c = a + d, where d denotes the length of the plastic zone at each crack 
tip; see Figure 1.30(a). This can also be written as 

(1.4- 10) 

* Goodier and Field (1.118) have pointed out the resemblance to the finiteness condition 
invoked in Joukowski’s hypothesis in airfoil theory. 
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Figure 1.30 (a) The Dugdale model; 
(b) Dugdale’s results for the plastic zone 
size and a comparison with analysis. 

0.5 
U/Q, 

where the approximation is valid for small-scale yielding conditions. This can 
be compared with the expression for r,, given by Equation (1.4-2). Note that the 
obvious mathematical similiarities between this approach and that of 
Barenblatt (1.45) has led a number of writers to refer to the “Barenblatt- 
Dugdale” crack theory. We believe that this is misleading on the basis that the 
physical bases of the two approaches (i.e., one representing molecular 
cohesion, the other macroscopic plasticity) differ so markedly. 

Dugdale obtained experimental results that could be compared with the 
plastic-zone-size predictions of Equation (1.4- 10) by strain etching steel 
sheets having both internal and edge slits. The comparison is shown in 
Figure 1.30(b). Despite this good agreement, his approach was not im- 
mediately accepted. This could have been due to doubt that yielding could 
actually occur in this fashion (nab., Dugdale did not provide pictorial evidence 
in his classic paper). It remained for Hahn and Rosenfield (1 .1  19) to show that 
zones in plane stress conditions do, in fact, conform to the Dugdale model. 

1.4.3 Extension 01 the COD Approach 

The crack face displacements in the Dugdale model were first worked out in 
1963 by Goodier and Field (1.118). The form of their result is rather cum- 
bersome. But, as shown, for example, by Kanninen et al. (1.1201, the normal 
displacement on the crack faces can be written in the reasonably convenient 
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form 

, O S X S C  (1.4-11) 
x x J Z 7 - a J Z - 7  
a x J Z 7  + a J T - 7  

+ - log 

It may be of passing interest to recognize that u(x) has a vertical slope at x = a, 
as can be found by differentiating Equation (1.4-1 1). However, conceptual 
sketches of the Dugdale model seldom show this [cf. Figure 1.30(a)]. 

Of more interest is the displacement at the crack tip given by the Dugdale 
model. This can be obtained via a limiting procedure applied to Equa- 
tion (1.4-1 l). The result is 

4 aoy c 
u(a) = - - log - n E  a (1.4- 12) 

Noting that the COD in Wells’ approach is 6 = 2u(a), and using Equa- 
tion (1.4-9) to eliminate c, then gives the widely used form first obtained by 
Goodier and Field. This is 

6 = 8 n E  3 log [sec (5 k)] (1.4-1 3) 

This key result was later obtained independently by Burdekin and Stone 
(1.121) who used it directly to advance Wells’ COD concept. They first showed, 
by expanding the right-hand side of Equation (1.4-13) in a Taylor’s series, that 

(1.4- 14) 

whereupon Equation (1.4-14) demonstrates the compatibility of the Dugdale 
model with LEFM for 0 << by. This can also be seen by comparing Equation 
(1.4-14) with (1.4-4), recognizing that G = oyS. 

Burdekin and Stone also demonstrated the plausibility of the notion that 
fracture could be governed by critical 6 values by experimental results on mild 
steel in tension and bending. This work provided the basis for the semiempir- 
ical “COD Design Curve”approach that is now used extensively in the United 
Kingdom for fracture under contained yielding conditions. As evolved by 
Dawes (1.122) and his co-workers at the UK Welding Institute, the COD 
design curve approach is based upon empirical correlations that currently 
take the form 

where e is the local applied strain that would exist in the vicinity of the crack if 
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the crack were absent, ey = ay/E is the yield strain, 6, is the critical COD, and 
ir,,, is a conservative (an underestimate) of the critical flaw size. By comparing 
Equation (1.4-15) with Equations (1.4-7) and (1.4-8), it can be seen that the 
origin of the COD approach is directly traceable to Wells (1.1 16) although, 
clearly, semiempirical improvements have been made. 

Applications of the COD design curve approach are usually focused on the 
“yielding fracture mechanics” regime- that is, one between linear elastic 
fracture mechanics behavior and fully plastic behavior where failure occurs by 
plastic instability. As described by Harrison et al. (1.123), these applications 
are intended to be conservative. This can readily be seen by comparing 
Equation (1.4-15) with (1.4-7). This comparison shows that for small values of 
a/au = e/ey ,  there is a built-in factor of safety of two on the crack size-a 
factor that is assumed to hold for the entire loading range. Corrections to 
account for residual stresses and geometric stress concentrations, as might be 
found in welded structures, have been developed, primarily through the efforts 
of The Welding Institute of the U.K. 

1.4.4 T h e  J-Integral  

An alternative to the COD design curve for applications of fracture mechanics 
where elastic-plastic deformation must be taken into account is one based 
upon the path-independent contour integral introduced by Rice( L7), coupled 
with the crack characterization studies of Hutchinson (1.8) and Rice and 
Rosengren (1.124). While similar concepts were advanced independently by 
Sanders (1.125), Eshelby (1.126), and Cherepanov (1.127), Rice’s approach has 
clearly carried the day. In what is very likely one of the two most quoted 
papers in all of the fracture mechanics literature (the other is Griffith’s), Rice 
laid the ground work for the bulk of the applications in elastic-plastic fracture 
mechanics and for crack-tip characterization in a variety of other appli- 
cations. The basic relation is 

au 
ax 

J = jr w d y  - T - ds (1.4- 16) 

where r is a curve that surrounds the crack-tip,T is the traction vector, u is the 
displacement vector, w is the strain energy density and the y direction is taken 
normal to thecrack line. Of most importance is that, for deformation plasticity 
(i.e., nonlinear elastic behavior), J is “path-independent” and will have the 
same value for all choices of r. 

The use of J in elastic-plastic fracture mechanics will be taken up in Chapter 
5 where it will be shown that the interpretation of J as the rate of change of the 
potential energy for nonlinear constitutive behavior plays a key role for the 
analysis of fracture in elastic-plastic conditions. Here, we will focus on the role 
played by J in unifying linear elastic fracture mechanics. Specifically, by taking 
r to be a contour that just circumscribes the cohesive zone in Barenblatt’s 
model (1.45), Rice readily found that 

(1.4-1 7) 
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where c denotes the cohesive stress and 6, is the separation distance at the 
crack tip. At the onset of fracture, 6, must be equal to 6,, the out-of-range 
interatomic separation distance. Then, the right-hand side of Equation 
(1.4-17) would be twice the surface energy. Thus, for fracture, J, = 27. This 
relation strongly suggests that, for linear elastic conditions, J and G are 
equivalent. 

This equivalence can also be shown directly through an energy release rate 
interpretation of J, which results in 

an J = - - - E G  
da 

(1.4-1 8) 

where TI denotes the potential energy of the cracked body. From this finding 
Rice was able to conclude that: 

the Griffith theory is identical to a theory of fracture based on atomic cohesive 
forces, regardless of the force-attraction law, so long as the usual condition is 
fulfilled that the cohesive zone be negligible in size compared to characteristic 
dimensions 

Finally, Rice also applied the J-integral to the Dugdale model. The result is 
just the same as Equation (1.4-17) provided o(6) is taken equal to by. The result 
is simply 

J = 0 y 6 ~  (1.4- 19) 

where6, is thecrack-tipopening displacement. Equations(l.4-18),and(1.4-19) 
taken together with (1.2-23) show the equivalence of all of the popular fracture 
mechanics parameters under linear elastic conditions. 

That J is based on deformation plasticity should not be viewed as an 
extreme deficiency for, as Budiansky (1.128) has shown, provided proportional 
loading exists, deformation plasticity and incremental plasticity are equiva- 
lent. However, this will not be true for a growing crack. Crack advance in an 
elastic-plastic material involves elastic unloading and nonproportional load- 
ing around the crack tip. Neither of these processes is adequately ac- 
commodated by deformation theory. This fact has led Hutchinson (1.129) to 
state that 

Tempting though it may be, to think of the criterion for initiation of crack 
growth based on J as an extension of Griffith’s energy balance criterion, it is 
nevertheless incorrect to do so. This is not to say that an energy balance does not 
exist, just that it cannot be based on the deformation theory J. 

Nonetheless, as the work reported in Chapter 5 will show, the energy-based 
definition of J given by Equation (1.4-18) has been very useful in mathematical 
analyses, both to  determine critical J values from experimental load-deflection 
records and for component fracture predictions. 

1.4.5 T h e  Collinear S t r i p  Yield Model  

The term “strip yield model” refers to the introduction of crack-tip plasticity 
as a line or strip element that emanates from the crack tip. The Dugdale or 
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collinear strip yield model discussed above is the simplest and best known of 
these. I t  has a physical justification for thin sections where the through-the- 
thickness plastic relaxation characteristic of plane stress conditions occurs. 
However, for thicker sections where plane strain deformation might occur, the 
Dugdale model would clearly not represent the plastic deformation that would 
ensue. A mathematical model has been developed for these conditions by 
assuming that the plastic yielding occurs on lines inclined to the crack plane. 
Like the Dugdale model, this model can be formulated by linear elastic 
analysis methods whereupon the principle of linear superposition is valid. 
Because this possibility admits a great deal of mathematicat convenience, 
many problems can be solved, albeit at the expense of some physical reality. 
These models are discussed in this section.* 

Lying as it does completely within the realm of linear elasticity, the collinear 
strip yield model is highly amenable to mathematical analyses (n.b., the use of 
linear superposition is valid). It can also be physically realistic. A research 
program carried out at Battelle’s Columbus Laboratories in 1967 illustrates 
these facts. The experiments, performed by C. R. Barnes, used rectangular, 
center-cracked coupons of steel foil that displayed elongated plastic zones. 
One such experiment is shown in Figure 1.31, where the plastic regions can be 
seen at a series of monotonically increasing loads. 

Because the extent of the yielding can clearly become comparable to the 
specimen dimensions, the infinite plane solution would be inadequate to 
predict the results shown in Figure 1.31. In addition, there will be an effect of 
misaligning the load. This issue was investigated by Kanninen (1.130) who 
solved the Dugdale problem for a linearly varying remote tensile loading 
6, = ex, where x is the direction parallel to the crack. For small values of a, 
this result can be used to find a correction to the crack opening displacement at 
the more highly strained crack tip. This is 

A8 =-tan(;:) 4ua2 
E 

(1.4-20) 

which would be added to Equation (1.4-13) to obtain the true crack opening 
displacement. Unfortunately, one would not necessarily know the appropriate 
value of a, particularly if it characterizes an unwanted misalignment. But, for 
foil at least, what could be observed is the discrepancy in the plastic zone 
lengths; see Figure 1.31. An approximate expression obtained by Kanninen 
from his exact result is 

A 8  Ad 
S d  
_ -  - -cos(;;) (1.4-2 1) 

* Within applied mechanics the terms “plane stress” and “plane strain” have very precise 
meanings. However, these terms are applied in somewhat looser ways in fracture mechanics. 
Specifically, while plane stress rigorously means that the principal stress acting in the direction 
normal to the plane of interest is negligibly small, the plane stress condition in fracture mechanics 
is commonly taken to characterize thin components with in-plane loading and the surface layer of 
thicker components. But, for a state of plane stress to occur, the stress gradients in the direction 
normal to the plane must also be negligibly small-a condition that applies only approximately 
to a thin plate but certainly not to the surface of a thick body. 
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SPECIMEN LL-39-A 
c = 0.110 

Figure 1.31 Plastic zones observed in 
center-cracked steel foil sheets sub- 
jected to tension loading. 

a/.” = 0.91 

where d is the plastic zone length given by Equation (1.4-10) and 2Ad is equal to 
the difference between the plastic zone lengths at  the two crack tips. 
Interestingly, Equation (1.4-21) reveals that the plastic zone lengths are more 
sensitive to load misalignment than are the crack opening displacements. 
Hence, they are a conservative indicator of the propensity of a skewed loading 
to produce a premature fracture. 

A strip yield zone model generally does not provide a good description of 
thecrack-tip plasticzone per se. I t  has a further disadvantage in that the extent 
of strain hardening can only be related to a local strain in an arbitrary 
manner-that is, because a line zone has a zero gage length. Kanninen et al. 
(1.120) generalized the collinear strip yield model to permit a variable flow 
stress along the plastic zone. The flow stress at each point was then associated 
with the displacement at that point through a local necking model that 
associated the displacement with a strain. But, the complexity so introduced, 
together with the attendant arbitrariness, makes such an approach lose its 
prime virtue of simplicity. Hence, such approaches are useful indeed for 
relating the COD to component dimensions and applied loads (see above), but 
cannot be expected to provide a faithful representation of the details of the 
crack-tip deformation. 

One of the drawbacks to the COD method for fracture problems is the 
difficulty of calculating such values for arbitrary crack/structure geometries 
and loading conditions. Elastic-plastic finite element methods are cumber- 
some and, in addition, because the crack-tip in a finite element model will have 
a zero normal displacement, they require an arbitrary definition of COD. For 
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this reason, the Dugdale model has been of central importance for the 
implementation of this approach. The computational procedures that have 
been applied to obtain solutions for Dugdale cracks in various geometries 
have recently been reviewed by Petroski (1.131) who also provides a solution 
(by a weight function method) for edge cracks. To illustrate, for an edge crack 
in a semi-infinite plate subject to remote uniform tension, he has found that 

0.06952 (a ! d Y + 0. 7099 (a ! d Y + 3.1724 (a ! d Y = 1.258n :r 
(1.4-22) 

While this method does not necessarily give good estimates of the crack 
opening displacement, Chell (1.132) has shown that Equation (1.4-12) is very 
nearly geometry independent. Hence, to a good approximation, d values 
determined from Equation ( 1.4-22) can be used to obtain o( = 2v) values for 
edge cracks. 

1.4.6 Other Strip Yield Models 

Dugdale formulated the collinear strip yield model using the complex variable 
formulation of the theory of elasticity. Shortly thereafter, Bilby, Cottrell, and 
Swinden (1.133) presented an alternative approach based on the use of linear 
dislocation arrays. This approach is sometimes referred to as the BCS model in 
honor of the authors of that paper. Mathematically, their approach replaces 
the solution of the usual differential equations of the theory of elasticity by an 
integral equation solution. Like Dugdale's approach, a singularity canceling 
equation is introduced. 

A dislocation pileup model gives a unique value of the crack-tip opening 
displacement, but appears to be very limited in the boundary value problems 
that can be handled. Consequently, it has been largely superseded by the 
continuum approach. The more enduring idea that emerged from this work is 
the subsequent development by Bilby and Swinden (1.134) of a model in which 
plastic relaxation occurs by dislocation pileups on slip planes that are inclined 
symmetrically from the crack plane. This approach is known both as the 
Bilby-Swinden model and as the inclined strip yield model. 

The Bilby-Swinden model was originally proposed in terms of a continuous 
distribution of edge dislocations along both the crack line (i.e., as in the BCS 
model) and along the assumed slip lines. However, this problem proved to be 
intractable. Only some preliminary numerical results (of uncertain validity) 
were obtained by a finite difference scheme. Atkinson and Kay (1.135) neatly 
circumvented the mathematical difficulties by introducing a superdislocation 
to represent the net effect of the plastic zone dislocation array. This approach 
was later extended by Atkinson and Kanninen (1.136), who had in mind the 
use of this model to address problems in which fatigue crack growth leaves 
behind a wake of plasticity. 

The basic equations of the Atkinson-Kanninen inclined strip yield model 
are for the equilibrium of the superdislocation representing the crack-tip 



72 Advanced Fracture Mechanics 

plasticity and, like all strip yield models, for the cancellation of the crack-tip 
singularity. In the equilibrium equation, the superdislocation is “pushed nut” 
from the crack-tip by the applied stress and resisted by a “friction stress” 
related to the yield stress. The unknowns are the strength of the super- 
dislocation and its position relative to the crack-tip. Such a model clearly does 
not give an accurate representation of the plastic zone size. But, this is 
tolerable because it does give a good estimate of the crack-tip opening 
displacement. Other uses of the inclined strip yield zone model have also been 
made. These include the contributions of Riedel (1.137), Vitek (1.138), and 
Evans ( I ,  139). 

A third type of strip yield model has been proposed recently by Weertman 
et al. (1.140). Their “double slip plane crack mode1”consists of a Griffith crack 
with slip planes parallel to the crack on both sides. The model is supposed to 
represent either Mode I1 (in-plane shear) or Mode 111 (anti-plane shear). They 
report that, when the crack tip advances, the stress intensity factor becomes 
smaller whereupon the residual plasticity left behind a growing crack can be 
represented. Their work, like that of Kanninen and Atkinson (1.141), is aimed 
at fatigue crack growth. 

Strip yield zone models have also been useful in aspects other than elastic- 
plastic conditions. Knauss (1.142) and Schapery (1.143) have used this idea in 
developing a viscoelastic fracture mechanics model. Propagating crack 
models employing a dynamic generalization of the Dugdale model were 
contributed by Kanninen (l.l44), who adopted Yoffe’s approach, and 
Atkinson (1.145), who emulated Broberg. Embley and Sih (1.146) later 
provided a complete solution for this class of problems. These approaches are 
described more fully in Chapter 4. 

1.4.7. Origins of Elastic-Plastic Fracture Mechanics 

While the initial work in fracture mechanics was based upon an energy 
balance criterion, later work identified alternate fracture parameters: princi- 
pally, the stress intensity factor, the crack opening displacement, and the J -  
integral parameter. In linear elastic fracture mechanics (LEFM), these are all 
interrelated. Specifically, for plane strain conditions in the “opening” mode, it 
has been shown that 

(1.4-23) 

In view of Equation (1.4-23), which of the four basic parameters involved in 
LEFM is the “most basic” may appear to be a purely academic question. 
However, it is considerably more important when it becomes necesssary to 
select the basis of nonlinear fracture mechanics for elastic-plastic conditions. 
Many possibilities exist, all of which have their origins in one of the LEFM 
parameters. But, a set of equalities like (1.4-23) does not exist beyond LEFM. 
Consequently, a considerable amount of research has been focused on 
developing inelastic fracture parameters. 
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The basic work in elastic-plastic fracture mechanics was that contributed 
from a completely theoretical point of view, primarily by Rice (1.7), and by 
Hutchinson (1.8). Hence, in what can be seen as a common pattern in the 
development of fracture mechanics (cf. Inglis and Griffith, Westergaard and 
Irwin, Muskhelishvili and Dugdale), the mathematical framework already 
existed that could be exploited by experimentalists to make a significant 
advance in the subject. In the case of elastic-plastic fracture mechanics, it was 
the perceptiveness of Begley and Landes (1.147, 1.148) that accomplished this. 
Their key papers appeared in 1972. While aided by an element of good 
fortune-see (1.149)-they were able to establish the J-integral parameter as 
the premier criterion in elastic-plastic fracture mechanics, as follows. 

Begley and Landes, in seeking a failure criterion that could predict fracture 
for both small- and large-scale plasticity, recognized that J provides three 
distinct attractive features: (1) for linear elastic behavior it is identical to G, 
(2) for elastic-plastic behavior it characterizes the crack-tip region and, hence, 
would be expected to be equally valid under nonlinear conditions, and (3) it  
can be evaluated experimentally in a convenient manner. The third of these 
follows from the path-independent property of J and its energy release rate 
interpretation. 

Specifically, Rice has shown that, for deformation plasticity, J can be 
interpreted as the potential energy difference between two identically loaded 
bodies having neighboring crack sizes; see Equation (1.4-18). Along with all 
subsequent uses of the approach, Begley and Landes recognized that the 
energy interpretation of J, because deformation plasticity becomes invalid 
when unloading occurs, is not strictly valid for an extending crack. J cannot 
therefore be identified with the energy available for crack extension in elastic- 
plastic materials. But, as they argued, because it  is a measure of the 
characteristic crack-tip elastic-plastic field, Equation (1.4-18) nevertheless 
provides a physically relevant quantity. 

Subsequent work of note was contributed by Bucci et al. (l.l50), who first 
showed how simple engineering estimates could be made using the energy- 
based definition of the J-integral. A classic use of this approach was made by 
Rice, Paris, and Merkle (1.151) to determine critical 4 values from experi- 
mental load-deflection records for a bend specimen. By assuming the specimen 
to be so deeply cracked that the only relevant specimen dimension is the 
ligament length 6, they were led to the relation 

J = -  M d 4  b’ (1.4-24) 

where M is the applied moment per unit thickness and 4 is the rotation 
through which M works, minus the corresponding rotation in the absence of 
the crack. This can be put into the more convenient form 

A 
J = q -  bB (1  -4-25) 
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where A is the area under a load-displacement curve, B is the specimen 
thickness, b is the remaining ligament size, and q is a constant that has a value 
of two for a deeply cracked bend specimen. This approach was subsequently 
extended by Merkle and Corten (1.152). The use of the q-factor as a geometry- 
dependent parameter to extend the applicability of Equation (1.4-25) was 
introduced by Turner (1.153). This factor currently forms the basis for 
generalizing the energy-based approach to work-hardening and other com- 
plicating aspects; see Chapter 5. 

Applications of elastic-plastic fracture mechanics using J clearly also 
require the ability to compute it for an engineering structure. In large 
structures this computation is often done through the use of plasticity- 
corrected strain energy release rate expressions. This method is acceptable for 
load levels that do not produce full-scale yielding. For more extreme 
conditions, resort must usually be made to finite elements or other numerical 
methods. But, some simple estimation methods do exist. For example, for 
power-law stress-strain behavior of the form = o/oo + a(o/c,,)n, a 
solution can be obtained relative to the limit load solution for perfectly plastic 
behavior. If P here denotes a load parameter, this result can be written 

n +  1 

J = oooeoah,, (E) (1.4-26) 

where Po refers to the limit load solution. In Equation (1.4-26), h,, is a 
dimensionless function of n and the component geometry that has been 
compiled for a number of cases. Further details are discussed in Chapter 5. 

1.4.8 Tearing Instability Theory 

Very prominent in current nonlinear fracture mechanics applications, par- 
ticularly for nuclear plants, is the tearing modulus concept. This concept is 
based upon the fact that fracture instability can occur after some amount of 
stable crack growth in tough and ductile materials with an attendant higher 
applied load level at fracture. To take account of such a process, the resistance 
curve concept is useful. The idea of a resistance curve seems to have first been 
suggested by Irwin around 1960; see Srawley and Brown (1.154). It was 
extensively developed and used for thin section materials in LEFM terms by 
Heyer and McCabe (1.155). 

In the LEFM version of the resistance curve approach, the material fracture 
toughness is expressed by the function KR = K,(Aa),  where Aa denotes the 
extent of stable crack growth. This function is taken as a material property in 
the same sense as the initiation toughness K ,  is a thickness-dependent material 
property. In fact, K, = KR(0) .  The condition for fracture of a cracked 
component is obviously not synonymous with the conditions for achieving 
crack initiation. The fracture point is instead determined through a stability 
analysis. This focuses on the point in the stable crack growth process at which 
the rate of change of the crack driving force exceeds the rate of change of the 
material’s resistance to continued crack growth. Thus, fracture instability 
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occurs when 

(1.4-27) 

from which it  can be seen that the point of fracture is dictated by the 
compliance of the loading system. It will be different for load-control than for 
displacement-control, for example. 

The use of J as the crack driving force parameter in a resistance curve 
approach was a natural idea that was adopted soon after the establishment of 
J as a elastic-plastic fracture parameter by Begley and Landes. But, it was 
clearly the contributions of Paris and his co-workers (1.156) that led to the 
widespread acceptance of this concept. In essence, the resistance curve concept 
was simply reformulated as JR = JR(Aa), where again Aa denotes the extent of 
stable crack growth. Fracture instability then occurs when d J / d a  exceeds 
dJR/da. Paris formalized this concept by defining the parameters 

E dJ T = - -  06 da 

and 

E dJR 
T R = z K  

(1.4-28) 

(1.4-29) 

where cro is the flow stress of the material. The dimensionless parameter T is 
known as the tearing modulus with its critical value TR = TR(Aa) taken to be a 
property of the material. Paris’ concept (1.157) is illustrated in Figure 1.32. 

Shown in Figure 1.32(a) is a typical J-resistance curve. It is important to 
recognize that all such relations have a finite range of applicability. The limit is 
denoted by the value (Aa),i,,,, which can be estimated from the w parameter 
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Figure 1.32 Basis of the tearing modulus prediction of fracture instability. 
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Figure 1.33 Experimental results of Paris showing the ability of the tearingmodulusconcept to 
delimit stable and unstable crack growth behavior for a ductile material. (a) Spring-loaded beam 
specimen. (b) Comparison of experiment and theory. 

introduced in the work of Hutchinson and Paris (1.158). This is 

b dJ  
J da 

m = - -  (1.4-30) 

where b denotes the smallest relevant dimension from the crack tip to the 
boundary of the cracked component -for example, the remaining ligament 
size. The work of Hutchinson and Paris shows that w >> 1 for the theory to be 
valid whereupon there will be some value of ( A U ) , ~ ~  that designates the largest 
amount of crack growth (and J value) for which the theory is valid.* Assuming 
that the fracture instability point would occur before (Aa),im is reached, its 
determination can be readily found via the J/T diagram shown as 
Figure 1.32(b). Clearly, to use this approach, one needs the J-resistance curve 
(and some means for accurately determining its slope) together with estimates 
of J and T for the crack/structure/load conditions of interest. 

The incentive for the use of the tearing modulus approach is that it offers a 
convenient way to estimate the often substantial increase in load carrying 
capacity over that associated with initiation that accrues when small amounts 
of crack growth are permitted in ductile materials. The fracture prediction 
then centers on crack growth stability. The first demonstration that such 
predictions could be accurately made was that performed by Paris and co- 
workers (1.156). They employed a spring-like loading system and a material 
for which TR 2: 36 just following initiation. As shown in Figure 1.33, test 
results obtained by varying the compliance of the loading system to change T 
systematically did indeed produce stable and unstable behavior in accord with 
the theory. 

* The appropriate value of w is geometry-dependent, and cannot be stated precisely for any 
configuration. Currently, a value of perhaps w > 5 to 7 is thought to be realistic. 
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1.4.9 Criteria for  Crack Growth in  Nonlinear Conditions 

Particularly for nuclear plant components, the tearing modulus approach will 
generally give a more accurate assessment of the margin of safety than will one 
based only upon crack initiation. Nevertheless, this approach to nonlinear 
fracture mechanics (along with every alternative) has drawbacks as well as 
virtues. One of these is obviously the restriction to small amounts of stable 
crack growth reflected by the (A&, parameter. A possible way of overcoming 
this limitation is throirgh the use of the crack-tip opening angle (CTOA) 
parameter that after an initial transient, appears to remain constant for 
extended amounts of stable crack growth. However, while an intriguing 
possiblity, effective use of the CTOA parameter in nonlinear fracture 
mechanics remains in the future. A more important consideration currently is 
the lack of verification that has been achieved for actual structures. The first of 
relatively few such attempts was the analysis of circumferentially cracked 
nuclear plant piping developed by Zahoor and Kanninen (1.159), which was 
assessed by experiments conducted by Wilkowski et al. (1.160). 

A point made early in this chapter was that fracture mechanics con- 
siderations do not obviate the need for considering failure due to plastic 
yielding. Especially for the tough, ductile materials used in nuclear plant 
piping, ordinary plastic collapse analyses will possibly suffice. Kanninen et al. 
(1.161), for example, demonstrated this possibility by showing that a net 
section collapse load analysis procedure predicts the failure point of 
circumferentially cracked stainless steel piping. 

The key to developing an analysis procedure for plastic fracture is to identify 
an apropriate crack-tip fracture criterion. Work performed by Kanninen et al. 
(1.162) and Shih et al. (1.163) in a cooperative effort encompassed three main 
stages. First, steel and aluminum test specimens were tested to obtain detailed 
data on crack growth initiation and stable growth. Second, “generation- 
phase” analyses were performed in which the experimentally observed applied 
stress/stable crack growth behavior was reproduced in a finite element model. 
In each such computation, the critical values of each of a number of candidate 
crack initiation and stable growth criteria were determined for the material 
tested. In the third stage, “application-phase” finite element analyses were 
performed for another crack/structure geometry using one of the candidate 
criteria. These computations determined the applied stress/crack growth 
behavior that could be compared with experimental results for the given 
specimen geometry. 

The fracture criteria examined included the J-integral, the local and 
average crack opening angles, the conventional LEFM R curve, and various 
generalized energy release rates. Because each of the candidate criteria was 
attractive in one way or another, the task of selecting the best criterion for 
application to nuclear steels was difficult. Clearly, geometry-independence is a 
crucial test of the acceptability with practicality being another. The ad- 
vantages of the J-integral are its virtual independence of finite element type 
and element size, the computational ease involved in evaluating it, and, 
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because of its history-independence, its catalogability. However, it is valid 
only for a limited amount of stable crack growth and is unable to cope with 
large amounts of stable crack growth attended by large-scale plasticity. 

Use of the crack opening angle parameter as a stable crack growth criterion 
is appealing because of its readily grasped physical significance and the 
opportunity that it offers for direct measurement. The fact that after an initial 
transient, stable crack growth appears to proceed with a virtually constant 
crack shape provides a particularly simple criterion. This was first reported in 
the experimental work of Green and Knott (1.164), Berry and Brook (1.165), 
and, in the integrated experimentation/analysis approach of deKoning 
(1,166). However, there are two different definitions of the crack opening 
angle: a crack-tip value that reflects the actual slope of the crack faces (CTOA), 
and an average value based on the original crack position (COA). While the 
critical value of the COA can be measured, how its value has any direct 
connection with the fracture process is difficult to see. Conversely, while the 
critical value of the CTOA can likely be associated with the fracture process, it 
presents a formidable measurement task. In addition, there are clearly some 
difficulties in making either value apply to mixed character shear/flat crack 
growth. 

A proper stable crack growth criterion must differentiate between the 
energy dissipated in direct fracture-related processes near the crack-tip and 
energy dissipated in geometry-dependent plastic deformation remote from the 
crack-tip. With this in mind, a number of investigators have opted for a 
generalization of the LEFM energy release rate as the basic plastic fracture 
methodology. But inherent in this approach is a basic difficulty: There is a 
theoretical basis for expecting a computational step size dependence in the 
energy release rate parameter that is based on the work of separating the crack 
faces. This consequence can be handled by appealing to micromechanical 
considerations, as Kfouri and Miller (1.167) have argued. Regardless, it 
appears that the necessity to arbitrarily circumvent the inherent step size 
difficulty with any energy release rate parameter makes its use somewhat 
unattractive. 

There is also the basic point, generally credited to Rice (1.168), in connection 
with the use of the energy release rate in a nonlinear analysis. This is, for a 
material with a stress-strain curve that saturates at infinity, the solution of an 
elastic-plastic boundary value problem (which automatically includes an 
energy balance) will have no surplus of energy that can be assigned to the 
energy release rate. An energy balance calculation will then produce a value of 
G that is identically zero. This point was also recognized by Goodier and Field 
(1.1 18). A tabulation of the various attempts to produce generalized energy 
release rate formulations for nonlinear material behavior can be found in 
reference (I .  16 1). 

It would be inappropriate to conclude this account of elastic-plastic fracture 
mechanics without mention of the pioneering work of McClintock (1.169), 
who provided an approach to ductile fracture via the growth of holes. Also of 
importance is the two-parameter (fracture and yielding) criterion first 
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advanced by Milne (1.170). The key advance provided by Shih (1.171) that 
connected J and the CTOD for power law hardening materials should also be 
cited. By defining an effective crack-tip opening displacement by the 
separation at the points where 45" lines emanating from the crack-tip intersect 
the crack faces, Shih found that 

J 6 = d , -  
UY 

(1.4-31) 

where d, is a constant of order unity that depends primarily upon the strain 
hardening exponent n. 

The pioneering work of M. L. Williams on viscoelastic fracture mechanics 
(1.172) was followed by a number of investigators, his students being 
prominent among them. These include Knauss (1.142) and Schapery (1.!43), 
who developed their ideas by extending the strip yield zone concept originated 
by Dugdale for elastic-plastic materials. Following a suggestion made by 
Goldman and Hutchinson (!.!73), Landes and Begley (1.174) introduced the 
C* parameter by extending the J-integral to apply to time-dependent material 
behavior. Other recent work of note for crack growth in viscoelastic materials 
is that of Christensen and Wu (1.175)and Bassani and McClintock (1.176). It is 
safe to say that the characterization of high-temperature creep crack growth, 
for which these formulations are needed, is not yet resolved. This subject is 
taken up in Chapter 7. 

The proliferation of fracture mechanics parameters may be somewhat 
daunting to one who, perhaps with the help of the earlier sections of this 
chapter, has become comfortable with the basically simple and straightfor- 
ward uses of LEFM. The situation might be likened to atomic physics. After 
becoming accustomed to concepts based on neutrons, protons, and electrons, 
we have had quarks and other more exoticentities thrust upon us. Yet, as may 
eventually also be the case in physics, we would like to conclude this section by 
suggesting that a basic order will eventually be restored to fracture mechanics. 
Our personal feeling is that focusing on the local crack opening displacement 
may offer the way to accomplish this. The investigations of Rice and his co- 
workers-see reference (1.177), for example-have tacitly assumed that such 
a parameter does govern the crack growth process. Other possibilities also 
exist-for example, the approach being developed by Andrews ( t  .178). 
Regardless, the most important issue that now confronts the subject of 
fracture mechanics is the identification and development of appropriate crack 
extension criterion for nonlinear and dynamic fracture mechanics. 

1.5 The Necessity for Nonlinear and Dynamic Treatments 

The preceding sections have discussed the development of fracture mechanics 
from a historical point of view, beginning with Griffith, but concentrating on 
the time period from theend of the Second World War to the early 1970s. The 
development of that era was strongly influenced by the energy balance 
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concept with the stress intensity factor originally receiving its legitimacy by 
being connected to the energy release rate. However, there were both 
conceptual difficulties with the basis of the energy release rate concept and 
with the generally cumbersome mathematical procedures needed for its 
application. The focus in fracture mechanics therefore shifted to crack-tip 
characterization with K replacing G as the working parameter. But, as 
inelastic applications became more important, the inadequacies of K have 
become clear. The more modern point of view is one that blends a crack-tip 
characterizing parameter with an energy release rate formulation for its 
implementation. 

Before considering the specific nonlinear and dynamic research areas that 
constitute advanced fracture mechanics, i t  may be useful to touch on a few 
significant application areas where fracture mechanics techniques beyond 
those of LEFM would appear to be required. The examples we have selected 
are applications to nuclear reactor power plant pressure vessels and piping. 
While probably no more susceptible to subcritical cracking and fracture than 
other types of engineering structures, because of the catastrophic con- 
sequences of a failure, nuclear plant systems have been subjected to an 
unprecedented degree of scrutiny. Such scrutiny has explored many situations 
in  which applications of linear elastic fracture mechanics (as conservatively 
permitted by code procedures) would indicate that failure should occur when 
in fact experience has demonstrated otherwise. Such observations have led 
to a great amount of research focused on the development of nonlinear (e.g., 
elastic-plastic) and dynamic fracture mechanics methods to obtain more 
realistic assessments of the risk of fracture in  nuclear plant components. With 
the possible exception of the aerospace industry, the advanced fracture 
mechanics treatments that have evolved since roughly 1975 onwards have 
been primarily motivated by the concerns of the nuclear power industry. We 
review this application area as an introduction to the more detailed fracture 
mechanics that are contained in the remaining chapters of this book. 

1.5.1, The Thermal Shock Problem 

The two most interesting fracture mechanics applications for nuclear plant 
systems lie in the reactor pressure vessel and in its attendant piping systems. In 
the first area is the so-called “thermal shock” problem of nuclear reactor 
power plant pressure vessels. This application is currently of profound 
concern to the nuclear power industry (1.179), to the U.S. Nuclear Regulatory 
Commission(l.l80), and has received attention in the public press (1.181). The 
scenario referred to as thermal shock involves the possibility of the fracture of 
a nuclear reactor pressure vessel during a loss of coolant accident (LOCA) 
under circumstances that are most likely to occur in a pressurized water 
reactor (PWR) plant. Three conditions appear to be necessary for such an 
incident to occur: (1) a large upward shift in the nil ductility transition (NDT) 
temperature due to a combination of nuclear irradiation during service and 
the presence of high copper and nickel content in the vessel welds, (2) the 
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existence of an initial flaw on the inner surface of the vessel, and (3) a severe 
over-cooling transient caused by the splashing of cold water on the inner 
surface of the vessel-for example, by the activation of the emergency core 
cooling system (ECCS) during a LOCA. 

It should be recognized that, while LOCA’s have occurred during reactor 
operation (e.g., Three Mile Island 11), because all three of the above conditions 
were not simultaneously satisfied, no catastrophic fractures of nuclear plant 
pressure vessels have been experienced. Current data indicate that the 
problem is confined to those few plants in which the welding procedures have 
since been disallowed. Furthermore, even in those particular plants, the extent 
of neutron irradiation will not soon reach a danger point. Nonetheless, the 
application is clearly significant and must be taken seriously. This in turn calls 
for the utmost in fracture mechanics analysis. 

The most significant research currently addressing the thermal shock 
problem is being conducted at the Oak Ridge National Laboratory (ORNL) 
by Cheverton et al. (1.182) under the auspices of the US. Nuclear Regulatory 
Commission. On the experimental side, a series of medium-size vessel tests is 
in progress (planning is scheduled through 1986) to study the key events that 
might follow a LOCA in a nuclear plant. It is important to recognize that an 
exact simulation is not being sought. The impossibility of achieving a 
toughness reduction by neutron irradiation would alone preclude this. Rather, 
the idea is to obtain measurements on crack propagation/arrest behavior 
under conditions similar to an actual event and to use these observations to 
validate an analysis procedure. If the analysis is then applied to the actual 
conditions of interest, its predictions can be accepted with confidence. 

The analysis effort developed in the ORNL research program relies upon 
linear elastic, quasi-static fracture mechanics considerations. That is, 
Equation (1.1-5) is used for crack growth initiation and (1.3-10) for arrest. A 
time element enters because the temperature distribution in the vessel wall 
during the transient period following a thermal shock is a function of time.* 
This causes time-varying thermal stresses and, in turn, time-varying stress 
intensity factors. Figure 1.34 shows the types of temperature-dependent mate- 
rial fracture property data that are needed for an analysis. The calculation 
of a run/arrest event at a specific time during a transient is illustrated 
in Figure 1.35. Finally, Figure 1.36 shows the crack propagation/arrest 
history that was predicted by Cheverton et al. for one of their experiments 
(TSE-SA). The key results from three of their experiments are provided in 
Table 1.2. 

Figure 1.36 shows several interesting features of the ORNL predictions for 
the thermal shock experiment TSE-5A. Of most importance is that, in accord 
with the experiment itself, crack arrest occurs far before the complete 

* Because the equations of heat transmission are parabolic, even if the vessel surface is 
subjected to a step change in temperature, there will be no shock in the usual solid mechanics 
sense. Shock wave propagation can occur only in systems governed by hyperbolic equations. This 
misnomer is nevertheless common usage and for this reason will be used in this discussion. 
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Figure 1.34 Fracture toughness data 
used in thermal shock analyses. 
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Figure 1.36 Crack propagation/ 
arrest prediction for a thermal shock 
event. 
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Table 1.2 Summary of Events for ORNL Thermal Shock Experiments 
with Long Axial Cracks in A508 Steel Cylinders 

Time Temperature Aa K l  

( s d  Event ("C) n / w  (mm) (MPamt) 

Experiment No. TSE-5" 
105 Initiation -9  0.10 79 

arrest 36 0.20 15 86 
177 Initiation - 3  0.20 1 1 1  

arrest 82 0.63 65 104 
205 Initiation 79 0.63 115 

arrest 89 0.80 26 92 

Experiment No. TSE-5Ab 
79 Initiation 

91 Initiation 

123 Initiation 

185 Initiation 

arrest 

arrest 

arrest 

arrest 

. I 1  
22 
12 
38 
13 
51 
21 
67 

0.076 
0.138 
0.138 
0.199 
0.199 
0.316 
0.316 
0.535 

70 
9 76 

85 
9 86 

108 
18 107 

I35 
33 130 

Experiment No. TSE-6' 
69 Initiation - 12 0.10 46 

arrest 34 0.27 13 63 
137 Initiation - 28 0.27 87 

arrest 64 0.93 50 104 

Wall thickness = 152 mm, outer wall diameter = 991 mm. initial wall temperatures = 93°C. thermal shock 
temperature (inner wall) = - 197°C; experiment conducted August, 1979. 
Vessel dimensions and test temperatures same as in TSE-5; experiment conducted September. 1980. 
Wall thickness = 76 mm. outside diameter = 991 mm, initial wall temperature = 96°C. inner wall temper- 
ature = - 196OC; experiment conducted December, 1981. 

penetration of the vessel wall. I t  can be seen that four separate crack jumps are 
predicted, and this too is consistent with the results of this particular 
experiment; see Table 1.2. One key feature associated with the final arrest is 
the "warm prestress"(WPS) effect. WPS is invoked in the analysis to preclude 
reinitiation whenever dK/d t  < 0 on the basis that the prior crack-tip blunting 
reduces the actual crack driving force. Key experimental work supporting this 
concept has been contributed by Loss et at. (1.183); see also the recent review 
by Pickles and Cowan (1.184). 

The WPS effect is of course a nonlinear effect that cannot be directly treated 
within the context of a linear analysis. The WPS effect is analogous to that of 
crack growth retardation in fatigue, which also arises because of prior plastic 
deformation that alters the crack driving force; see Chapter 8. I t  too is a 
nonlinear problem not effectively treatable by linear methods. 

In a large-break LOCA a step change would occur in the coolant 
temperature that is in  contact with the inner surface of the pressure vessel. The 
change would typically be from 288°C to 21°C. Simultaneously, the internal 
pressure would be expected to fall from the operating pressure to one 
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atmosphere. (If the pressure remains high, the event is known as a pressurized 
thermal shock (PTS) event.) In the actual ORNL experiments a more severe 
thermal shock is administered to partly compensate for the absence of 
radiation damage; see Table 1.2. Additional control over the fracture 
toughness is achieved through the use of differing tempering temperatures for 
the test vessel materials. 

A long axial inner surface crack was considered in all three of the 
experiments shown in Table 1.2. Cladding on the inner wall was omitted. The 
times at which events occurred during the experiments were indicated by step 
changes in the crack opening displacement (COD) measurements made on the 
vessel surface. The crack sizes at these times were inferred from ultrasonic 
measurements that connected the COD data to crack depth via a post-test 
finite element computation. The measured temperature distributions and the 
inferred crack depths at the times of crack initiation and arrest events were 
then used to calculate critical stress intensity values for those events. These are 
the K,, and K,, values given in Table 1.2. 

One objective of the ORNL experimentation was to compare their test 
results for K,, and K,, with the corresponding laboratory data-for example, 
with Figure 1.34. These comparisons were generally favorable. Cheverton 
et al. were able to offer several additional key conclusions. First, complete 
penetration of the vessel will not occur under thermal stresses alone. Second, 
quasi-static LEFM procedures appear to be valid for the analysis of thermal 
shock conditions. Third, crack arrest will occur under the condition that K = 
K,, even though d K / d a  is increasing (n.b., KI, data are generally obtained 
under conditions where d K / d a  < 0). Finally, crack initiation is precluded if 
d K / d t  is decreasing even if K >> K,,. This is the warm prestress phenomenon. 

In addition to the warm prestress effect, there are aspects of the thermal 
shock problem that, as effective as the ORNL analysis has been for thermal 
shock, suggest the need for nonlinear treatments. One is the possibility of 
stable tearing after the arrest of a crack that penetrates deeply into the vessel. 
This problem must be handled by elastic-plastic fracture mechanics. Simi- 
larly, as the inner surface of an actual vessel has a weld-deposited clad- 
ding, the small flaws that are known to exist under the cladding could be 
affected by the residual stress state that exists there. As revealed by Figure 1.35, 
such flaws can be critical and, moreover, because they would likely give rise to 
longer crack jumps, they would be more dangerous than deeper flaws. Finally, 
elastic-viscoplastic fracture mechanics procedures appear to be needed to 
address dynamic crack arrest at  the high toughness upper shelf material 
conditions that would be experienced for a deeply penetrating crack. 

I .5.2 Degraded Nucleur Plant Piping 

One of the most likely causes of a loss of coolant accident in a nuclear power 
plant is a rupture in the piping system caused by stress corrosion. Many 
incidents of stress corrosion cracking have been reported, particularly in  
smaller diameter stainless steel pipes. Consequently, there is also a great need 
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for a quantitative understanding of the behavior of cracked pipes under 
normal operating and postulated accident conditions-for example, a seismic 
event, In most instances, concern is for surface cracks that initiate at the inner 
surface of the pipe in the heat affected zone around a girth weld. Assisted by 
the weld-induced residual stress, these cracks tend to grow circumferentially 
and radially, sometimes attaining a size that is a significant fraction of the pipe 
wall area. Figure 1.37 shows an example of the cracks that were discovered in 

crrck 

'Idm 

i2.7mm 

02 mm 

Figure 1.37 Crack detected in a 4411. diameter recirculation by-pass of a boiling water reactor 
plant. 
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the wall of 4-in. diameter stainless steel pipes in a boiling water reactor (BWR) 
plant in 1974. This example illustrates that substantial crack sizes can be 
achieved before detection. 

A prime consideration in analyzing cracked nuclear plant pipes is to 
determine, if failure actually occurs, whether it will lead to a “leak-before- 
break” condition, As described in Section 1.1.6, the leak-before-break concept 
generally refers to a pressure containment system failure event in which a part- 
through-wall crack extends to become a through-wall crack, thus allowing the 
contained fluid to escape. If no further crack growth occurs, then the loss of 
fluid can presumably be detected in one way or another and the system can be 
shut down safely. The alternative-where the through-wall crack propagates 
along the wall-is very likely to lead to a catastrophic event. Obviously, it 
must be avoided. If failure occurs, i t  is very desirable to be assured that it will 
be confined to the leak-before-break mode. 

In nuclear power plant applications it is necessary to show that the leak- 
before-break concept is the applicable failure mode in critical piping systems 
where cracking has occurred or even could occur. Specifically, it must be 
established that a pipe crack will be revealed by leak detection techniques 
before it reaches a condition where fracture could occur under normal 
operating or postulated accident conditions. Anticipating the failure mode in 
connection with subsequent events triggered by a pipe failure is also 
important. The design basis accident used in nuclear plant regulations around 
the world is the so-called full guillotine offset break (i.e., an instantaneous 
circumferential fracture). This extreme condition has resulted in the in- 
corporation of massive pipe whip restraints into nuclear piping systems. These 
restraints are not only very expensive todesign and install, but they can reduce 
the reliability of inservice inspection while increasing the radiation hazard in 
the inspection process. The necessity for such devices in the design stage and as 
modifications in operating plants would be substantially relieved if leak- 
before-break conditions could be demonstrated. Consequently, there is 
currently a great deal of research interest in developing more precise fracture 
mechanics analysis methods. 

Nuclear plant piping materials are very ductile and tough and this is the 
essential difficulty in the application of fracture mechanics. In the materials 
selected for such service, crack growth is generally preceded by substantial 
crack-tip blunting while significant amounts of stable crack growth can occur 
prior to fracture instability. Linear elastic fracture mechanics techniques 
usually provide very conservative predictions in such circumstances, con- 
servatism that often prompts unnecessary remedial action. Compounding the 
complexity of the analysis problem is the fact that pipe cracks tend to be 
located within weld-induced residual stress and deformation fields. Recent 
results have indicated that the fracture toughness values of nuclear piping 
welds can be substantially less than that of the base material. At the time of 
this writing, generally accepted analysis procedures for these conditions do  not 
exist. 
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1.5.3 T h e  Leak-Before-Break Condition 

Leak-before-break can be simply viewed as one possible outcome of a 
sequence of crack extension events. For a ductile material, a general sequence 
of events might be one in which a weld defect or other intrinsic flaw enlarges in 
service through the following series of events: (1 )  subcritical crack growth by 
fatigue and/or corrosion to a critical crack depth, (2) stable crack growth 
under operating or accident loads, (3) fracture instability and subsequent 
rapid crack growth through the wall, (4) arrest of the through-thickness crack 
(leak), ( 5 )  reinitiation of the through-thickness crack and subsequent stable 
growth along the wall, and (6) fracture instability and rapid crack growth 
(break). Leak-before-break occurs when events 4 and 5 are well separated in 
time or when events 5 and 6 are precluded. 

The above list describes several factors affecting the occurrence of leak- 
before-break. These include: (1) the orientation of the initial flaw, (2) the size 
and shape of the crack at the onset of stable crack growth, (3) the type, 
intensity, and duration of the applied loads, (4) the distribution of any residual 
stresses that might be present, and (5) the mechanical and fracture properties 
of the pressure boundary material. To illustrate these effects, consider that a 
part-through-wail axial crack exists in a pressurized pipe under conditions 
such that a linear elastic fracture mechanics approach is applicable. Further, 
suppose that the length of the crack along the surface is long in comparison to 
the crack depth (n.b., this will lead to a conservative prediction for all crack 
aspect ratios). Then, the initiation of unstable crack propagation will occur in 
the radial direction when, approximately (see Table 1.1) 

1 . 1 2 f l [ m s e c ( ~ ~ ) ~  h = K , ,  (1.5-1) 

where po is the internal pressure, K,, is the plane strain fracture toughness, 
while a, c,  R, and h are the geometric parameters shown in Figure 1.38. 

The nature of the unstable crack propagation event that follows the 
satisfaction of Equation (1.5-1) is likely to result in a through-wall crack of 
length equal to the surface length of the original part-through crack. I t  can be 
assumed that this state will exist, momentarily at least, before the crack 
continues to grow along the wall. The critical condition for reinitiation of 
crack growth to occur is given by (see Table 1.1) 

f 
@ h [ZC (1 + 1.61 2-1 = K ,  (1.5-2) 

where p1 is the internal pressure at the onset of longitudinal crack instability 
and K, is the fracture toughness that corresponds to the wall thickness. 

A relation that provides the boundary between leak and break behavior can 
be obtained by combining Equations (1.5-1) and (1.5-2): 

[I + 1.61 a(f)’]f= 1.25($)’(:)i;sec(i;) (1.5-3) 
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Figure 1.38 Axial surface crack in a pipe wall. 
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Figure 1.39 LEFM leak-before-break assessment diagram for axial cracks in a pressurized pipe. 
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which provides a leak-before-break delimitation for axial cracks in pressurized 
pipes. Equation (1.5-3) can be solved numerically (e.g., by Newton’s method) 
for c /h  as a function of a/h,  provided the remaining parameters are specified. 
Equation (1.1-6) demonstrates that K, will generally differ from K , c .  Of equal 
importance to this discussion, p1 also can differ from po.  In the case of fluid 
leakage, the inequality p 1  < po  is expected. However, if the fracture is caused 
by a waterhammer or other dynamic loading, p1 > po  is entirely conceivable. 
Thus, it is of interest to explore the effect of variations in these parameters. 
Figure 1.39 shows the set of results obtained for R/h = 10. 

Figure 1.39 reveals the important (albeit intuitive) conclusion that the 
differences in the fracture properties and the change in applied stress during 
the fracture event can have a significant effect on the leak-before-break 
delimitation. For example, accounting for the greater toughness that generally 
confronts a through-wall crack and admitting a reduction of the pressure due 
to fluid leakage would shift the boundary so as to enlarge the ‘‘leak’’ zone. But, 
in contrast, should an escalation in the pressure overcome the increased 
toughness, it would be the “break” region that enlarges. Clearly, con- 
siderations of this kind should enter into any leak-before-break assessment 
procedure. Further information on leak-before-break and its applications to 
nuclear plant piping can be found in reference (1.185). 

1.6 Status and Prospects of Fracture Mechanics 

A definition of fracture mechanics was offered in the preface to this book. At 
this transition point between the introductory aspects of the subject and the 
more advanced treatments of the chapters to come, it  may be worth restating. 

Fracture mechanics is an engineering discipline that quantifies the conditions 
under which a load-bearing solid body can fail due to the enlargement of a 
dominant crack contained in that body. 

The consequences of this definition-primarily its generality-have been 
broadly amplified in this chapter. Here, it may be worthwhile to emphasize an 
aspect that has been implicit in the foregoing. This aspect is one that can be 
called “transferability”. This term refers to the use of a measurement taken 
frotr a simple test specimen for a prediction of failure in a structural 
component. That is, many different .quantities can be measured in a fracture 
mechanics experiment. The question is, which of these will have the same value 
when that material is used in a different geometric configuration and loading 
system. Only those that do can be said to possess transferability. 

For a metal, if small-scale yielding conditions occur in both a character- 
ization test and in the application, then the parameter K,, will exhibit 
transferability. If both the characterization test and the application occur 
under net section yielding conditions, i t  may be that a critical flow stress 
instead is transferable. But, there are many important instances where a 
similar desirable correspondence does not occur. In fact, it can be said that 
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advanced fracture mechanics is necessitated by the many practical instances 
where the conveniently performed crack growth tests do not adequately 
mirror the conditions expected for the application. The development of a 
physically sound basis for selecting a transferable parameter is then the 
hallmark of an advanced fracture mechanics treatment. 

I t  should be recognized that, while the concept of transferability is implicit 
in  all fracture mechanics applications, it is often used with little physical 
justification. Consequently, transferability is not exclusively vested in one 
particular parameter. Provided the characterizing test and the intended 
application are sufficiently similar, virtually any measured value taken from 
the former will suffice to predict the latter. Indeed, much of the progress in 
applications of fracture mechanics to ductile materials has evolved from 
empirical correlations of full-scale experimental data-for example, gas 
transmission pipes. Less obvious are fatigue crack growth characterizations in 
terms of stress intensity factors where the necessity to closely approximate the 
application conditions is known as the “similitude” requirement. 

Reliance on large-scale component testing for basic crack growth data is a 
rather inefficient and restrictive use of fracture mechanics. Clearly, the firmer 
the physical basis for a given fracture mechanics application, the less 
constraining will be the requirements on the testing needed to obtain values of 
the crack growth parameter and the more reliable will be its predictions. The 
capability provided by a sound fracture mechanics technique to allow 
laboratory scale test data to be used to predict the behavior of engineering 
components is the most effective possible usage of the technology. 

The necessity to focus on a dominant crack in fracture mechanics is a result 
of inherent limitations in computational techniques and in inspection and 
measurement equipment. However, this focus does not mean to exclude 
conditions other than those specific instances with only one potentially 
dangerous crack. There is a growing area of interest that addresses problems 
when a dominant crack does not exist. This field is coming to be called 
“damage mechanics”; for example, see Chaboche (1.186). Damage mechanics 
primarily applies to brittle bodies like ceramics that contain a fairly dense 
population of defects with the largest defects being more or less equal in size. 
As such, i t  may be viewed as a precursor to the fracture mechanics regime; the 
demarcation (obviously, a somewhat arbitrary one) being when one member 
of the population either grows more rapidly than the others or some other 
reason exists for it to be singled out. In either instance, a deterministic 
treatment, via the fracture mechanics techniques introduced in this chapter, is 
then appropriate. 

The linear elastic fracture mechanics techniques outlined in Section 1.1 
cover the great majority of all applications of fracture mechanics at  present. 
While nonlinear techniques beyond those of LEFM are increasingly being 
developed and used, it is unlikely that this trend will obviate LEFM. Simplicity 
of application and a conservative prediction are generally associated with a 
LEFM approach. If nothing else, one will often find that LEFM techniques 
are useful for a first cut at a given problem before resorting to the generally 
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more complex procedures inherent in a nonlinear fracture mechanics treat- 
ment. It should be clear from this chapter that the LEFM methodology is far 
from being the entirety of fracture mechanics, however. 

One of our basic contentions is the universality of fracture mechanics. 
Rather than being a narrow specialized discipline, fracture mechanics is as 
broad as materials science and structural mechanics together. That is, for any 
circumstances in which a structural material may be said to fail, the presence 
of a crack-like defect can only intensify the risk of failure. We note here in 
passing that fracture need not always be synonymous with failure. Achieving a 
fracture well could be the objective-in comminution processes, for example. 
The principles that govern the crack growth process supplied by fracture 
mechanics are neverthless the same. 

Just as it should not be assumed that fracture mechanics is confined to 
metals, it should not be assumed that it is useful only for engineering 
structures. Applications to bone have been made by a number of 
investigators-for example, by Bonfield et al. (1.187). Applications have also 
been made to paper; see, for example, Seth and Page (1.188). Finally, Suh and 
co-workers have employed fracture mechanics in developing their innovative 
approach to wear (1.189). 

The process of writing this book has confirmed a notion about the 
progression of fracture mechanics that can be expressed in words attributed to 
the French writer Alphonse Karr, “plus ca change, plus c’est la meme chose”: 
the more things change, the more they remain the same. Fracture mechanics 
evolved because of the paradox recognized by C. E. Inglis, G. V. KOISOV, and 
others at the beginning of this century when the theory of elasticity became 
refined enough to treat a sharp crack. Because of its singular nature, the 
natural idea of relatingfailure to the existence of a finite critical stress or strain 
value is inapplicable when a sharp crack is admitted. 

A. A. Griffith’s work resolved the dilemma via an energy balance approach 
and, with the key contributions provided later by G. R. Irwin, fracture 
mechanics was initiated. This development provided the crack-tip character- 
ization view. However, their work relied upon several important assumptions, 
among them that the cracked body is essentially linear elastic. When the extent 
of inelastic deformation attending a crack becomes large enough, or 
significant amounts of crack growth occur, the Griffith-Irwin linear elastic 
fracture mechanics approach must be superceded by nonlinear approaches. 
Currently, for many such applications, the J-integral is being used as the crack 
extension force parameter with its evaluation being drawn from energy 
balance considerations. Because of the inability of J to characterize extended 
crack growth, measures such as a critical strain in the nonlinear deformation 
region ahead of an advancing crack-tip are also being invoked. Thus, as Karr 
might have anticipated, structural integrity assessments have, to some extent, 
come full circle. 

This observation should not be taken in any sense as a condemnation of 
fracture mechanics. The likely correct interpretation is that both present 
computational capabilities and the pressing practical needs for nonlinear 
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analyses have simply out paced our ability to model the details of the fracture 
process. This is precisely where progress in fracture mechanics will come in the 
next several years. The objective of this book, by reflecting the commonality 
that underlies the wide ranging applications of the methodology, is to further 
this progress. 

1.7 References 

(1 .1)  Gordon, J.  E., The New Sderice qf Strong Materials, or W h y  You Don’[ Full Through the 
Floor, Penguin, New York (1976); and Structures or W h y  Things Don’t Full Down, 
Penguin, New York (1978). 

(1.2) Timoshenko, S. P., Ilistory of’ the Strength of’ Materiuls, McGraw-Hill, New York (1953). 
(1.3) Irwin, G. R., “Structural Aspects of Brittle Fracture,” Applied Materials Research, 3, 

(1.4) Bell, E. T., Men .f Mnthematics, Simon and Schuster, New York (1937). 
(1.5) Griffith, A. A., “The Phenomena of Rupture and Flow in Solids,” Philosophicol 

Transactions of the Royul Society of Londoii, A221, pp. 163-197, 1921; and “The Theory 
of Rupture,” Proceedings of the First fnternationol Conference of Applied Mechanics, Delft 
(1924). 

(1.6) Irwin, G. R., “Fracture Dynamics,” Fracturing of’ Meta/s,  American Society for Metals, 
Cleveland, pp. 147-166 (1948). 

(1.7) Rice, J. R., “A Path Independent Integral and the Approximate Analysis of Strain 
Concentrations by Notches and Cracks.” Jourriul qf Applied Mechanics, 35, pp. 379-386 
( 1968). 

(1.8) Hutchinson, J .  W., “Singular Behavior at the End of a Tensile Crack in a Hardening 
Material,” Journal of the Mechanics arid Physics nf Solids, 16, p. 13-31 (1968). 

(1.9) Burdekin, F. M., “The Role of Fracture Mechanics in the Safety Analysis of Pressure 
Vessels,” Inrernotionol Journal of the Mechctnicnl Sciences, 24, pp. 197-208 ( 1  982). 

(1.10) Atallah, S., “ U S .  History’s Worst LNG Disaster,” firehouse,  January ( I  979), p. 29 et seq. 
( 1 . 1  I )  Duga, J. J. and others, The Economic .Cfl>crs of Fracture iri the United Sfutes,  Battelle’s 

Columbus Laboratories Report to the National Bureau of Standards, March (1983). 
( I .  12) Feddersen, C. E., “Evaluation and Prediction of the Residual Strength of Center Cracked 

Tension Panels,” Darwtge Tolerunce in Aircrqfi Srructures, ASTM STP 486, American 
Sociely for Testing and Materials. Philadelphia, pp. 50-78 (1971). 

(1.13) Jones, M. H. and Brown, W. F., Jr . ,  “The Influence of Crack Length and Thickness in 
Plane Strain Fracture Toughness Tests,” Reuiew qf Developments in Plune Sfrain Fracture 
Tougliness Testiriy, ASTM STP 463, American Society for Testing and Materials, 
Philadelphia, pp. 63-101 (1970). 

(1.14) 1rwin.G. R,”Fracture ModeTransition for a Crack Traversing a Plate,”Journal nf Basic 
Engineering, 82, pp. 41 7-425 (1960). 

(1.15) Merkle, J. G., “New Method for Analyzing Small Scale Fracture Specimen Data in the 
Transition Zone,” Tenth Water  Reactor Sajety Meeting, 4- Materials Engineering 
Research, US. Nuclear Regulatory Commission, Washington, D.C. (1982). 

(1.16) Rolfe, S. T. and Novak, S. R., “Slow Bend K,, Testing of Medium-Strength High- 
Toughness Steels,” Review of’ Deuelopmenfs in Plane Strain Fracture Toughness Testing, 
ASTM STP 463, American Society for Testing and Materials, Philadelphia, pp, 124-159 
( 1970). 

(1.1 7) Oldfield, W., ”Development of Fracture Toughness Reference Curves,” Journal of 
E n q i n c w i i i g  M[trerictls trritl Technology. 102, pp. 107- I 17 ( 1  980). 

( I .  18) Irwin. G. R., “Crack Extension Force for a Part-Through Crack in a Plate,” Jorrrnrrl of 
Applied Mechanics. 29, pp. 651 -654 (1962). 

(1.19) Kobayashi, A. S. and Moss, W. L., “Stress Intensity Magnification Factors for Surface- 
Flawed Tension Plate and Notched Round Tension Bar,” Frttcwre 1969, Chapman and 
Hall, London, pp. 31-45 (1969). 

(1.20) Newman, J. C., Jr. and I .  S. Raju, “An Empirical Stress Intensity Factor Equation for 
Surface Cracks,” Engineering Fracture Mechanics, 15, pp. 185- I92 ( I  98 I ) .  

pp. 65-81 (1964). 



Introduction and Overview 93 

(1.21) Bates, R. C. and Clark, W. G., Jr., “Fractography and Fracture Mechanics,” Transoctions 
of the A S M ,  62, pp. 380-389 (1969). 

(1.22) Mackay, T. L., Alperin, B. J., and Bhatt, D. D., “Near-Threshold Fatigue Crack 
Propagation of Several High Strength Steels,” Engineering Fracture Mec,/irmics, 18, 

(1.23) McGowan, J. J., “An Overview of Current Methods Used for Assessing Surface Flaws in 
Nuclear Reactor Vessels,” Nuclear Engineering and Design, 73, pp. 275-28 1 ( 1  982). 

(1.24) Dougan, J. R., “Relationships Between Charpy V-Notch Impact Energy and Fracture 
Toughness,” Oak Ridge National Laboratory Report ORNL/TM-7921, NUREGICR- 
2362, U.S. Nuclear Regulatory Commission, Washington, D.C. (1982). 

(1.25) Inglis, C. E., “Stresses in a Plate Due to the Presence of Cracks and Sharp Corners,” 
Transactions of the Institute of‘ Naval Architects, 55, pp. 219-241 (191 3). 

(1.26) Obriemoff, J. W., “The Splitting Strength of Mica,” Proceedings qf the Royal Society o/ 
London, 127A. pp. 290-297 (1930). 

(1.27) Westergaard, H. M., “Bearing Pressures and Cracks,” Transactions q/ the Antcricnn 
Society of Mechanical Engineers, 61, pp. A49-A53 (1939). 

(1.28) Williams, M. L. and Ellinger, G. A., “Investigation of Structural Failures of Welded 
Ships,” Welding Journal, 32, pp. 4989-528s (1953). 

(1.29) Shank, M. E., “Brittle Failure of Steel Structures-A Brief History,” Metal Progress, 66, 

(1.30) Bishop, T., “Fatigue and the Comet Disasters,” Metal Progress, 67, pp. 79-85 (1955). 
(1.3 1) Orowan, E., “Fracture and Strength of Solids,” Reports on Progress i n  Physics, XII ,  p. I85 

(1948). 
(1.32) Irwin, G. R., “Analysis of Stresses and Strains Near the End of a Crack Traversing a 

Plate,’’ Journal of Applied Mechanics, 24, pp. 361-364 (1957). 
(1.33) Bueckner, H. F., “The Propagation of Cracks and the Energy of Elastic Deformation,” 

Transactions of the American Society of Mechanical Engineers, 80, pp. 1225- 1230 (1958). 
(1.34) Erdogan, F., “Stress lntensity Factors,” Journal of Applied Mechanics, 50, pp. 992- 1002 

(1983). 
(1.35) Sneddon, I. N., “The Distribution of Stress in the Neighborhood of a Crack in an Elastic 

Solid,” Proceedings of the Royal Society o j  London, A187, pp. 229-260 (1946). 
(1.36) Goodier, J. N., “Mathematical Theory of Equilibrium Cracks,’’ Fracture, H. Liebowitz 

(ed.), Vol. 11, Academic, New York, pp. 1-66 (1968). 
(1.37) Rajapakse, Y.D.S., “Surface Energy and Surface Tension at Holes and Cracks,” 

Internationul Journal of Fracture, 11, pp. 57-69 (1975). 
(1.38) Tipper, C. F., “The Fracture of Metals,” Metallurgirr, 39, pp. 133-137 (1949). 
(1.39) Irwin, G. R. and Paris, P. C., “Fundamental Aspects of Crack Growth and Fracture.” 

Fractirre, H. Liebowitz (ed.), Vol. 111, Academic, New York, pp. 1-46 (1971). 
(1.40) Schabtach, C., Fogleman, E. L., Rankin, A. W., and Winne, D. H., “Report of the 

Investigation of Two Generator Rotor Fractures,” Tronsactions of the Ainerican Sociery 
of Mechanical Engineers, 78, pp. 1567- 1584 ( 1  956). 

(1.41) Winne, D. H. and Wundt, B. M., “Application of the Griffith-Irwin Theory of Crack 
Propagation to the Bursting Behavior of Disks, Including Analytical and Experimental 
Studies,” Transactions of the Airierican Society of Mechntiical Engineers, 80, pp. 1643- 
1655 (1958). 

pp. 403-416 (1983). 

pp. 83-88 (1954). 

(1.42) 

( I .43) 

( 1.44) 

( 1.45) 

( 1.46) 

( I  .47) 

(1.48) 

Sih, G. C., Paris, P. C., and Erdogan, F., “Crack Tip, Stress-lntensity Factors for Plane 
Extension and Plate Bending Problems,” Jowt7rrl of Applied Mechanics, 29, pp. 306-3 12 
(1962). 
Sih, G .  C., Paris, P. C., and Irwin, G. R., “On Cracks in Rectilinearly Anisotropic Bodies,” 
International Journal of Fracture Mechanics, I, pp. 189-203 (1965). 
McClintock, F. A. and Irwin, G. R., “Plasticity Aspects of Fracture Mechanics.” Froctttre 
Toughness Testing and Its Applications, ASTM STP 381, American Society for Testing 
and Materials, Philadelphia, pp. 84-1 13 (1965). 
Barenblatt, G. I., “The Mathematical Theory of Equilibrium of Crack in Brittle 
Fracture,” Advances in Applied Mechanics, 7 ,  pp. 55-129 (1962). 
Muskhelisvili, N. I., Some Basic Problems in the Matheniaticol Theory oj Eln.stic,ity. 
Nordhoff, The Netherlands (1954). 
Elliott, H. A., “An Analysis of the Conditions for Rupture Due to Griffith Cracks,’‘ 
Proceedings of the Physical Society, 59, pp. 208-223 (1947). 
Cribb, J. L. and Tomkins, B., “On the Nature of the Stress at the Tip of a Perfectly Brittle 
Crack,” Journal of the Mechanics and Physics of Solids, 15, pp. 135-140 (1967). 



94 

(1.49) 

(1.50) 

(1.51) 

(1.52) 

(1.53) 

(1.54) 

(1.55) 

(1.56) 

(1.57) 

(1.58) 

(1.59) 

(1.60) 

(1.61) 

(1.62) 

( 1.63) 

(1.64) 

Advanced Fracture Mechanics 

Gehlen, P. C. and Kanninen, M. F., “An Atomic Model for Cleavage Crack Propagation 
in Alpha Iron,” Inelastic Behaoior of Solids, M. F. Kanninen et at. (ed.), McGraw-Hill, 
New York, pp. 587-603 (1970). 
Chang, R., “An Atomistic Study of Fracture,” lnternatiorral Journal of Fracture 
Mechanics, 6,  pp. 1 1  1-125 (1970). 
Gehlen, P. C., Hahn, G. T., and Kanninen, M. F., “Crack Extension by Bond Rupture in 
a Model of BCC Iron.” Scripta Metallurgica, 6, pp. 1087-1090 (1972). 
Markworth, A. J., Kanninen, M. F., and Gehlen, P. C., “An Atomic Model of an 
Environmentally Affected Crack in BCC Iron,” Stress Corrosion Cracking and Hydrogen 
Embrittlement of Iron Base Alloys, R. W. Staehle et al. (eds.), National Association of 
Corrosion Engineers, Houston, Texas, pp. 447-454 (1977). 
Weiner, J. H., and Pear, M., “Crack and Dislocation Propagation in an Idealized Crystal 
Model,” Journal of Applied Physics, 46, pp. 2398-2405 (1975). 
Ashurst, W. T., and Hoover, W. G., “Microscopic Fracture Studies in the Two- 
Dimensional Triangular Lattice,” Physical Reoiew B, 14, pp. 1465-1473 (1976). 
Markworth, J. A., Kahn, L. R., Gehlen, P. C., and Hahn, G. T., “Atomistic Computer 
Simulation of Effects of Hydrogen and Helium on Crack Propagation in BCC Iron,” Res. 
Mechanica, 2, pp. 141-162 (1981). 
Mullins, M., “Molecular Dynamics Simulation of Propagating Cracks,” Scripta Metallur- 
gica, 16, pp. 663-666 (1982). 
Paskin, A., Som, D. K., and Dienes, Q. J., “The Dynamic Properties of Moving Cracks,” 
Acta Metallurgica, 31, pp. 1841-1848 (1983). 
Kelly, A., Tyson, W. R., and Cottrell, A. H., “Ductile and Brittle Crystals,” Philosophical 
Magazine, IS, pp. 567-586 (1967). 
Rice, J. R. and Thomson, R., “Ductile versus Brittle Behavior of Crystals,” Philosophical 
Magazine, 29, pp. 73-97 (1974). 
Bennett, J.  A., and Mindlin, H., “Metallurgical Aspects of the Failure of the Point 
Pleasant Bridge,” Journal of Testing and Eoaluation, 1, pp. 152-161 (1973). 
Paris, P. C.,Gomez, M. P., and Anderson, W. P., “A Rational Analytic Theory of Fatigue,” 
The Trend in Engineering, 13, pp. 9-14 (1961). 
Paris, P. and Erdogan, F., “A Critical Analysis of Crack Propagation Laws,” Journal of 
Basic Engineering, 85, pp. 528-534 (1963). 
Foreman, R. G., Kearney, V. E., and Engle, R. M., “Numerical Analysis of Crack 
Propagation in Cyclic-Loaded Structures,” Journal of Basic Engineering, 89, pp. 459-464 
( 1967). 
Elber, W., “The Significance of Fatigue Crack Closure,” Damage Tolerance in Aircraji 
Structures, ASTM STP 486, American Society for Testing and Materials. Philadelphia, - 
pp. 230-242(1971). 

(1.65) Brown, B. F. and Beachem, C. D.,“A Study of the Stress Factor in Corrosion Cracking by 
Use of the Pre-Cracked Cantilever Beam Specimen,” Corrosioti Science, 5, pp. 745-750 
(1965). 

(1.66) Evans, A. G. and Johnson, H., “The Fracture Stress and its Dependence on Slow Crack 
Growth,” Journal of Materials Science, 10, pp. 214-222 (1975). 

( I  .67) Charles, R. J., “Dynamic Fatigue of Glass,” Journal of Applied Physics, 29, pp. 1657- I662 
( 1958). 

(1.68) Cooper, G. A. and Kelly, A., “Tensile Properties of Fibre-Reinforced Materials: Fracture 
Mechanics,” Journal of the Mechanics of Physics and Solids,” 15, pp. 279-297 (1967). 

(1.69) Wu, E. M.,“Application of Fracture Mechanics to Anisotropic Plates,” Journal oj’ Applied 
Mechanics, 34, pp. 967-974 (1967). 

(1.70) Zweben, C., “On the Strength of Notched Composites,” Journal of the Mechanics and 
Physics of Solids, 19, pp. 103-1 16 (1971). 

(1.71) Konish, J. J., Swedlow, J. L., and Cruse, T. A., “Fracture Phenomena in Advanced Fibre 
Composite Materials,” AlAA Journal, 1 I, pp. 40-43 (1973). 

(1.72) Harrison, N. L., “Strain Energy Release Rate for Turning Cracks,” Fibre Science and 
Technology, 5, pp. 197-212 (1972). 

(1.73) Sih, G .  C. and Chen, E. P., “Fracture Analysis of Unidirectional Composites,” Journal of 
Composite Materials, 7 ,  pp. 230-244 (1973). 

(1.74) Rivlin, R. S. and Thomas, A. G., “Rupture of Rubber. 1. Characteristic Energy for 
Tearing,” Journal of Polymer Science, X, pp. 291-3 18,1953; “11. The Strain Concentration 
at an Incision,” XVIII, pp, 177-188 (1955). 

(1.75) Gent, A. N., Lindley, P. B., and Thomas, A. G., “Cut Growth and Fatigue of Rubbers: 



Introduction and Overview 95 

(1.76) 

(1.77) 

(1.78) 

(1.79) 

(1.80) 

(1.81) 

( 1.82) 

(1.83) 

(1.84) 

(1.85) 

(1.86) 

(1.87) 

(1.88) 

(1.89) 

( 1.90) 

(1.91) 

( I .92) 

(1.93) 

(1.94) 

(1.95) 

( I .96) 

( I .97) 

( 1.98) 

( 1.99) 

(1.100) 

(1.101) 

1. the Relationship Between Cut Growth and Fatigue,” Journal of Applied Polymer 
Science, 8, pp. 455-466 (1964). 
Lindley, P. B., and Stevenson, A., “Fatigue Resistance of Natural Rubber in Com- 
pression,” Rubber Chemistry and Technology, 55, pp. 337-351 (1982). 
Rivlin, R. S. and Thomas, A. G., “The Incipient Characteristics Tearing Energy for an 
Elastomer Crosslinked under Strain,” Journal of Polyrner Science, Polymer Physics 
Edition, 21, pp. 1807-1814 (1983). 
Williams, M. L.,“On the Stress Distribution at the Base of a Stationary Crack,” Journal of 
Applied Mechanics, 24, pp. 109-1 14 (1957). 
Karp, S. N. and Karal, F. C., Jr., “The Elastic-Field Behavior in the Neighborhood of a 
Crack of Arbitrary Angle,” Communications on Pure and Applied Malhematics, XV, 

Chan, S. K., Tuba, I. S. and Wilson, W. K., “On the Finite Element Method in Linear 
Fracture Mechanics,” Engineering Fracture Mechanics, 2, pp. 1-17 (1970). 
Byskov, E., “The Calculation of Stress Intensity Factors Using the Finite Element 
Method With Cracked Elements,” International Journal of Fracture Mechanics, 6,  

Henshell, R. D. and Shaw, K. G., “Crack-Tip Finite Elements are Unnecessary,” 
International Journal for  Numerical Methods in Engineering, 9, pp. 495-507 (1975). 
Barsoum, R. S., “On the Use of lsoparametric Finite Elements in Linear Elastic Fracture 
Mechanics,” International Journal of Numerical Methods iri Engineering, 10, pp. 25-37 
(1976). 
Kobayashi, A. S., Cherepy, R. D., and Kinsel, W. C., “A Numerical Procedure for 
Estimating the Stress Intensity Factor for a Crack in a Finite Plate,” Journal of Bnsic 
Engineering, 86, pp. 681-684 (1964). 
Cruse, T. A,, “Lateral Constraint in a Cracked Three-Dimensional Elastic Body,” 
International Journal OJ Fracture Mechanics, 6,  pp. 326-328 ( I  970). 
Wilkins, M. L. and Streit, R. D., “Computer Simulation of Ductile Fracture,” Nonliriear 
and Dynamic Fracture Mechanics, N. Perrone and S. N. Atluri  (eds.), American Society of 
Mechanical Engineers, AMD, 35, pp. 67-77 (1979). 
Akhurst, K. N. and Chell, G. G., “Methods of Calculating Stress Intensity Factors for 
Nozzle Corner Cracks,” fnternational Journal of Pressure Vessels and Piping, 14, pp. 227- 
257 (1983). 
Molt, N. F., “Fracture of Metals: Theoretical Considerations,” Engirreerirrg, 165, pp. 16- 
I8 ( I  948). 
Yoffe, E. H., “The Moving Griffith Crack,” Philosophical Magazine, 42, pp. 739-750 
(1951). 
Roberts, D. K. and Wells, A. A., “The Velocity of Brittle Fracture,” Engineering, 178, 
pp. 820-821 (1954). 
Hall, E. O., “The Brittle Fracture of Metals,” Journal of the Mechonics of Physics and 
Solids, I ,  pp, 227-233 (1953). 
Dulaney, E. N. and Brace, W. F., “Velocity Behavior of a Growing Crack,” Jorrrnnl of 
Applied Physics, 31, pp. 2233-2236 (1960). 
Berry, J. P., “Some Kinetic Considerations of the Griffith Criterion for Fracture,” Joirrnol 
of the Mechanics of Physics and Solids, 8, pp. 194-216 (1960). 
Craggs, J. W.,“On the Propagation of a Crack in an Elastic-Brittle Materia1,”Jorrrrinl of 
the Mechanics of Physics and Solids, 8, pp. 66-75 (1960). 
Broberg, K. B., “The Propagation of a Brittle Crack,” Arkiv for Fysik, 18, pp. 159-192 
(1 960). 
Atkinson, C. and Eshelby, J. D., “The Flow of Energy Into the Tip of a Moving Crack,” 
International Journal of Fracture Mechanics, 4, pp. 3-8 (1968). 
Freund, L. B., “Crack Propagation in an Elastic Solid Subjected to General Loading,” 
Journal of the Mechanics of Physics and Solids, 20, pp. 129-140, pp. 141-152 (1972); 21, 

Nilsson, F., “A Note on the Stress Singularity at a Non-Uniformly Moving Crack Tip,” 
Journal of Elasticity, 4, pp. 73-75 (1974). 
Schardin, H., “Velocity Effects in Fracture,” Fracture, M.I.T. Press, Cambridge, Mass., 

Hudson, G. and Greenfield, M., “Speed of propagation of Brittle Cracks in Steel,” Jourtinl 
of Applied Physics, 18, pp. 405-408 (1947). 
Wells, A. A. and Post, D., “The Dynamic Stress Distribution Surrounding a Running 

pp. 413-421 (1962). 

pp. 159-167 (1970). 

pp. 47-61 (1973); 22, pp. 137-146(1974). 

pp. 297-330, 1959. 



96 Advanced Fracture Mechanics 

Crack-A Photoelastic Analysis,” Proceedirigs of the Society ,J)r Experimental Stress 
Analysis, 16, pp. 69-92, 1958. 

(1.102) Carlsson, A. J.,“On the Mechanism of Brittle Fracture Propagation,” Transactions of the 
Royal Institure of Technology (Sweden), 205, pp. 2-38, 1963. 

(1.103) Irwin, G. R., “Basic Concepts for Dynamic Fracture Testing,” Journal of Basic 
Engineering, 91, pp. 519-524 (1969). 

( I .  104) Irwin, G. R. and Wells, A. A., “A Continuum-Mechanics View of Crack Propagation,” 
Metallurgical Reviews, 10, pp. 223-270 (1965). 

(1.105) Crosley, P. B. and Ripling, E. J., “Dynamic Fracture Toughness of A533 Steel,” Journal of 
Basic Engineering, 91, pp. 525-534 (1969). 

(1.106) Hahn, G. T., Hoagland, R. G., Kanninen, M. F., and Rosenfield, A. R., “A 
Preliminary Study of Fast Fracture and Arrest in the DCB Test Speciman,” 
Dynamic Crack Propagation, G.  C.  Sih (ed.), NoordhofT, Leyden, The Netherlands, pp. 
649-662 (1973). 

( I .  107) 

(1.108) 

( I .  109) 

( 1 . 1  10) 

( I .  1 1 1 )  

(1.112) 

(1.113) 

(1.114) 

(1.115)  

(1.116) 

(1.117) 

(1.118) 

( 1 . 1  19) 

Kalthoff, J. F., Beinert, J., and Winkler, S., “Measurements of Dynamic Stress Intensity 
Factors for Fast Running and Arresting Cracks in Double-Cantilever-Beam Specimens,” 
Fast Fracture and Crcick Arrest, G .  T. Hahn and M. F. Kanninen, (ed.), ASTM STP 627, 
American Society for Testing and Materials, Philadelphia, pp. 161-176 (1977). 
Kobayashi, A. S., Seo, K., Jou. J. Y., and Urabe, Y., “A Dynamic Analysis of Modified 
Compact Tension Specimens Using Homolite- 100 and Polycarbonate Plates,” Experi- 
mental Mechanics, 20, pp. 73-19 (1980). 
Kanninen, M. F., “An Analysis of Dynamic Crack Propagation and Arrest for a Material 
Having a Crack Speed Dependent Fracture Toughness,” Prospects o j  Frcrcture hlechtrnics, 
G .  C Sih et al. (ed.), NoordhoR, Leyden, The Netherlands, pp. 251-266 (1974). 
Weibull, W., “A Statistical Distribution Function of Wide Applicability,” Jorrrrictl q/  
Applied Meckanic.~, 18, pp. 293-297 (1951). 
Besuner, P. M. and Tetelman, A. S., “Probabilistic Fracture Mechanics,” Nuclear 
Engineering and Design, 43, pp. 99-1 14 (1977). 
Rau, C. A,, Jr. and Besuner, P. M., “Risk Analysis by Probabilistic Fracture Mechanics,” 
Product Engineering, 50, No. 10, pp. 4 1-47 ( 1979). 
Gamble, R. M. and Strosnider, J., Jr., An Assessment of the Failrrrc~ Rate j b r  the Beltline 
Region of P WR Pressure Vessels During Norind Operation arid Certoin Transient 
Coriditions, U S .  Nuclear Regulatory Commission Report NUREG-0778 (198 I ) .  
Harris, D. 0. and Lim, E. Y., “Applications of a Probabilistic Fracture Mechanics Model 
to the Influence of In-Service Inspection on Structural Reliability,” Probabilistic Fracture 
Mechanics and Fatigue Methods: Applications f o r  Structural Design and Maintenance, 
J. M. Bloom and J. C. Ekvall (ed.), ASTM STP 798, American Society for Testing and 
Materials, Philadelphia, pp. 19-41 (1983). 
Irwin,G. R., Kies, J. A., and Smith, H. L.,“Fracture Strengths Relative to Onset and Arrest 
of Crack Propagation,” Proceedings of the Aniericaii Society j b r  Testing Materich, 58, 

Wells, A. A., “Application of Fracture Mechanics at and Beyond General Yielding,” 
British Weldirig Journol, 10, pp. 563-570 (1963). 
Dugdale, D. S., “Yielding of Steel Sheets Containing Slits,” Journd of the Medianics ant/ 
Physics of Solids, 8, pp. 100- I08 ( 1960). 
Goodier, J. N. and Field, F. A., Fracture of Solids, D. C. Drucker and J. J .  Gilman Wiley, 
New York, pp. 103-1 18 (1963). 
Hahn, G. T. and Rosenfield, A. R., “Local Yieldina and Extension of a Crack Under Plane 

pp. 640-657 (1958). 

Stress,” Actu Metalluryico, 13, pp. 293-306 (1965). 
(1.120) Kanninen, M. F., Mukherjee, A. K., Rosenfield, A. R., and Hahn, G. T., “The Speed of 

Ductile Crack Propagation and the Dynamics of Flow in Metals.” Mechanical Bekcruior 

(1.121) 

( I  . I  22) 

( I .  123) 

of Materials Untie;. Dynamic Loads, US. Lindholm (ed.), Springer-Verlag, New York, 

Burdekin, F. M. and Stone, D. E. W., “The Crack Opening Displacement Approach to 
Fracture Mechanics in Yielding Materials,” Journal of Strain Analysis, 1, pp. 145-153 
( 1966). 
Dawes, M. G., “Fracture Control in High Yield Strength Weldments,” Welding Journal 
Research Supplement, 53, pp. 3693-379s (1974). 
Harrison, J. D., Dawes, M. G.,  Archer, G. L., and Kamath, M. S., “The COD Approach 
and Its Application to Welded Structures,” Elastic-Plastic Fracture, J. D. Landes et al. 
(ed.), ASTM STP 668, American Society for Testing and Materials, Philadelphia, pp. 606- 
631 (1979). 

pp. 96-133 (1969). 



Introduction and Overview 97 

(1 . I  24) Rice, J. R. and Rosengren, G. F., “Plane Strain Deformation Near a Crack Tip in a Power- 
Law Hardening Material,” Journal of the Mechanics of Physics and Solids, 16, pp. 1-12 
(1968). 

(1,125) Sanders, J. L.,“On the Griffith-Irwin FractureTheory,” Journal of Applied Mechanics, 27, 

(1.126) Eshelby, J. D., “Energy Relations and the Energy-Momentum Tensor in Continuum 
Mechanics,” Inelastic Behavior of Solids, M. F. Kanninen et al. (ed.), McGraw-Hill, New 
York, pp. 77-1 15 (1969). 

( I .  127) Cherepanov, G. P., “On Crack Propagation in Solids,” International Journal of Solids and 
Structures, 5, pp. 863-871 (1969). 

(1 ,I 28) Budiansky, B., “A Reassessment of Deformation Theories of Plasticity”, Journal of 
Applied Mechanics, 26, pp. 259-264 (1959). 

(1.129) Hutchinson, J. W., “Fundamentals of the Phenomenological Theory of Nonlinear 
Fracture Mechanics,” Journal of Applied Mechanics, 50, pp. 1042-1051 (1983). 

(1.130) Kanninen, M. F., “A Solution for a Dugdale Crack Subjected to a Linearly Varying 
Tensile Loading,” International Journal of Engineering Science, 8, pp. 85-95 (1970). 

(1.131) Petroski, H. J., “Dugdale Plastic Zone Sizes for Edge Cracks,” International Journal of 
Fracture, 15, pp. 217-230 (1979). 

(1.132) Chell,G. G.,“The Stress Intensity Factors and Crack Profiles for Centre and Edgecracks 
in Plates Subjected to Arbitrary Stresses,” International Journal of Fracture, 12, pp. 33-46 
( 1976). 

(1.133) Bilby, B. A., Cottrell, A. H., and Swinden, K. H., “The Spread of Plastic Yield from a 
Notch,” Proceedings of the Royal Society, A272, pp. 304-314 (1963). 

(1.134) Bilby. B. A. and Swinden, K. H., “Representation of Plasticity at Notches by Linear 
Dislocation Arrays,” Proceedings of the Royal Society, A285, pp. 22-33 (1965). 

(1.135) Atkinson, C. and Kay, T. R., “A Simple Model of Relaxation at a Crack Tip,” Actn 
Metallurgica, 19, pp. 679-683 (1971). 

(1.136) Atkinson,C. and Kanninen, M. F.,“A Simple Representation of Crack Tip Plasticity: The 
Inclined Strip Yield Superdislocation Model,” International Jourrtal of Fracture, 13, 

(1.137) Riedel, H., “Plastic Yielding on Inclined Slip-Planes at a Crack Tip,” Journal of the 
Mechanics of Physics and Solids, 24, pp. 277-289 (1976). 

(1.138) Vitek, V.,“Yieldingon Inclined Planesat theTipof a Crack Loaded in Uniform Tension,” 
Journal of the Mechanics and Physics of Solids, 24, pp. 263-275 (1976). 

(1.139) Evans, J.T,“ReverseShearon Inclined Planesat theTipof a Sharpcrack,” Journalofthe 
Mechanics of Physics and Solids, 27, pp. 73-88 (1979). 

(1.140) Weertman, J., Lin, I. H., and Thomson, R., “Double Slip Plane Crack Model,” Acta 
Metallurgica, 31, pp. 473-482 (1983). 

(1.141) Kanninen, M. F. and Atkinson, C., “Application of an Inclined-Strip-Yield Crack Tip 
Plasticity Model to Predict Constant Amplitude Fatigue Crack Growth,” International 
Journal of Fracture, 16, pp. 53-69 (1980). 

(1.142) Knauss, W. G., “Delayed Failure-The Griffith Problem for Linearly Viscoelastic 
Materials,” International Journal of Fracture Mechanics, 6, pp. 7-20 (1970). 

(1.143) Schapery, R. A., “A Theory of Crack Initiation and Growth in Viscoelastic Media,” 
International Journal of Fracture, 11, pp. 141-159, pp. 369-388 pp. 549-562 (1975). 

(1.144) Kanninen, M. F., “An Estimate of the Limiting Speed of a Propagating Ductile Crack,” 
Journal of the Mechanics of Physics and Solids, 16, pp. 21 5-228 (1968). 

(1.145) Atkinson, C., “A Simple Model of a Relaxed Expanding Crack,” Arkiv for Fysik, 26, 

(1.146) Embley, G. T. and Sih, G .  C., “Plastic Flow Around an Expanding Crack,” Engineering 
Fracture Mechanics, 4, pp. 431-442 (1972). 

(1.147) Begley, J. A. and Landes, J. D., “The J-integral as a Fracture Criterion,” Fracture 
Toughness, ASTM STP 514, American Society for Testing and Materials, Philadelphia, 

(1.148) Landes, J. D. and Begley, J. A,, “The Effect of Specimen Geometry on J,,,” Fracture 
Toughness, ASTM STP 514, American Society for Testing and Materials, Philadelphia, 

(1.149) Begley, J .  A. and Landes, J. D., “Serendipity and the J-Integral,” International Journal of 
Fracture, 12, pp. 764-766 (1976). 

(1.150) Bucci, R. J., Paris, P. C., Landes, J. D., and Rice, J. R., “J-Integral Estimation Procedures,” 
Fracture Toughness, ASTM STP 514, American Society for Testing and Materials, 
Philadelphia, pp. 40-69 (1972). 

pp. 352-353 (1960). 

pp. 151-163(1977). 

pp. 469-476 (1968). 

pp. 1-20(1972). 

pp. 24-29 (1972). 



98 Advanced Fracture Mechanics 

(1.151) Rice, J. R., Paris, P. C., and Merkle, J. G., “Some Further Results of J-Integral Analysis 
and Estimates,” Progress in Flaw Growth and Fracture Toughness Testing, ASTM STP 
536, American Society for Testing and Materials, pp. 231-245 (1973). 

(1.152) Merkle, J. G. and Corten, H. T., “A J-Integral Analysis for the Compact Specimen, 
Considering Axial Force as Well as Bending Eflects,” Journal of Pressure Vessel 
Technology, 96, pp. 286-292 (1974). 

(1.153) Turner, C. E., “The Ubiquitous q Factor,” Fracture Mechanics: Twelfrh Conference, 
ASTM STP 700, American Society for Testing and Materials, Philadelphia, pp. 3 14-337 
(1980). 

(1.154) Srawley, J.  E. and Brown, W. F., Jr., “Fracture Toughness Testing Methods,” Fracture 
Toughness Testing and Its Applications, ASTM STP 381, American Society for Testing 
and Materials, Philadelphia, pp. 133-196 (1965). 

(1.155) Heyer, R. H. and McCabe, D. E., “Crack Growth Resistance in Plane Stress Fracture 
Testing,” Engineering Fracture Mechanics, 4, pp. 413-430 (1972). 

(1.156) Paris, P. C., Tada, H., Zahoor, A., and Ernst, H. A,, “Instability of the Tearing Mode of 
Elastic-Plastic Crack Growth,” Elastic-Plastic Fracture, J. D. Landes et al. (ed.), ASTM 
STP 668, American Society of Testing and Materials, Philadelphia, pp. 5-36 and pp. 251- 
265 (1979). 

(1.157) Paris, P. C. and Johnson, R. E., “A Method of Application of Elastic-Plastic Fracture 
Mechanics to Nuclear Vessel Analysis,” Elastic-Plastic Fracture: Second Symposium, 
ASTM STP 803, C. F. Shih and J. P. Gudas (ed.), American Society for Testing and 
Materials, Philadelphia, Vol. 11, pp. 5-40 (1983). 

(1.158) Hutchinson, J. W. and Paris, P. C., “Stability Analysis of J-Controlled Crack Growth,” 
Elastic-Plastic Fracture, ASTM STP 668, American Society for Testing and Materials, 
Philadelphia, pp. 37-64 (1979). 

(1.159) Zahoor, A. and Kanninen, M. F., “A Plastic Fracture Mechanics Prediction of Fracture 
Instability in a Circumferentially Cracked Pipe in Bending-Part I: J-Integral Analysis,” 
Journal of Pressure Vessel Technology, 103, pp. 352-258 (1981). 

(1.160) Wilkowski, G .  M., Zahoor, A., and Kanninen, M. F., “A Plastic Fracture Mechanics 
Prediction of Fracture Instability in a Circumferentially Cracked Pipe in Bending- 
Part 11: Experimental Verification on a Type 304 Stainless Steel Pipe,” Journal of 
Pressure Vessel Technology, 103, pp. 359-365 (I98 1). 

(1.161) Kanninen, M. F., Broek, D., Hahn,G.T., Marschall, C. W., Rybicki, E. F., and Wilkowski, 
G. M.,“Towards an Elastic-Plastic Fracture Mechanics Predictive Capability for Reactor 
Piping,” Nuclear Engineering and Design, 48, pp. 117-134 (1978). 

(1.162) Kanninen, M. F., Rybicki, E. F., Stonesifer, R. B., Broek, D., Rosenfield, A. R., Marschall, 
C. W., and Hahn, G .  T., “Elastic-Plastic Fracture Mechanics for Two-Dimensional Stable 
Crack Growth and Instability Problems,” Elastic-Plastic Fracture, ASTM STP 668, 
J. D. Landes, et al. (ed.), American Society for Testing and Materials, Philadelphia, 

(1.163) Shih, C. F., Delorenzi, H. G.,and Andrews, W. R.,“Studies on Crack Initiation and Stable 
Crack Growth,” Elastic-Plastic Fracture, ASTM STP 668, J. D. Landes el al. (ed.), 
American Society for Testing and Materials, Philadelphia, pp. 65-12q1979). 

(1.164) Green, G .  and Knott, J. F., “On Erects of Thickness on Ductile Crack Growth in Mild 
Steel,” Journal 0s the Mechanics and Physics of Solids, 23, pp. 167-183 (1975). 

(1.165) Berry, G. and Brook, R., “On the Measurement of Critical Crack-Opening-Displacement 
When Slow Crack Growth Precedes Rapid Fracture,” International Journal of Fracture, 

(1.166) deKoning, A. U., “A Contribution to the Analysis of Quasistatic Crack Growth in Sheet 
Materials,” Fracture 1977; Proceedings of the Fourth International Conference on Fracture, 
Taplin (ed.), 3, pp. 25-3 1 (1977). 

(1.167) Kfouri, A. P. and Miller, K. J., “Crack Separation Energy Rates for Inclined Cracks in an 
Elastic-Plastic Material,” Three-Dimensional Constitution Relations and Ductile Fracture, 
S .  Nemat-Nasser (ed.), North Holland, pp. 79-105 (1981). 

(1.168) Rice, J. R., Proceedings of the First International Conference on Fracture, Vol. I, Japanese 
Society for Strength and Fracture of Materials, Tokyo, pp. 283-308 (1966). 

(1.169) McClintock, F. A., “A Criterion for Ductile Fracture by the Growth of Holes,” Journal of 
Applied Mechanics, 35, pp. 363-371 (1968). 

(1.170) Milne, I., “Failure Analysis in the Presence of Ductile Crack Growth,” Materials Science 
and Engineering, 39, pp. 65-79 (1979). 

(1.171) Shih, C. F., “Relationships Between the J-lntergral and the Crack Opening Displacement 

pp. 121-150(1979). 

I I ,  pp, 933-938 (1975). 



Introduction and Overview 99 

for Stationary and Extending Cracks,” Jourriol of the Mechartics and Physics oj’Solitfs, 29, 

(1.172) Williams, M. L., “The Fracture of Viscoelastic Materials,” Fracture of Solids, D. C. 
Drucker and J. J. Gilman (eds.), Oordon and Breach, New York, pp. 157-188 (1963). 

(1.173) Goldman, N. L. and Hutchinson, J. W., “Fully Plastic Crack Problems: The Center- 
Cracked Strip Under Plane Strain,’’ International Journal of Solids and Structures, 11, 

(1.174) Landes, J. D. and Begley, J. A., “A Fracture Mechanics Approach to Creep Crack 
Growth,” Mechanicsof Crack Growth, ASTM STP 590, American Society for Testing and 
Materials, Philadelphia, pp. 128-148 (1976). 

(1.175) Christensen, R. M. and Wu, E. M.,“ATheory of Crack Growth in Viscoelastic Materials,” 
Engineering Fracture Mechanics, 14, pp. 215-225 (1981). 

(1.176) Bassani, J. L. and McClintock, F. A., “Creep Relaxation of Stress Around a Crack Tip,” 
International Journal 01 Solids and Structures, 17, pp. 479-492 (1981). 

(1.177) Drugan. W. J., Rice, J. R., and Sham, T. L.,“Asymptotic Analysis of Growing Plane Strain 
Tensile Cracks in Elastic-Ideally Plastic Solids,” Journal of the Mechanics of Physics and 
Solids, 30, pp. 447-473 (1982). 

(1.178) Andrews, E. H. et at., “Generalized Fracture Mechanics,” Journal of Materials Science: 
Part 1,9,pp. 887-894(1974); Part 2,11, pp. 1354-1361 (1976); Part 3,12, pp. 1307-1319 
(1977). 

(1.179) Marston, T. U., Smith, E., and Stahlkopf, K. E., “Crack Arrest in Water-Cooled Reactor 
Pressure Vessels During Loss-of-Coolant Accident Conditions,” Crack Arrest Method- 
ology and Applications, G .  T .  Hahn and M. F. Kanninen (ed.), ASTM STP 71 1, American 
Society for Testing and Materials, Philadelphia, pp. 422-431 (1980). 

(1.180) Serpan, C. Z., Jr., “USNRC Materials Research for Evaluation of Pressurized Thermal 
Shock in RPV of PWR’s,” Nuclear Engineering and Design, 72,  pp. 53-64 (1982). 

(1.181) Wald, M. L.,“Steel Turned Brittle by Radiation Called a Peril at 13 Nuclear Plants,” New 
York Times, September 27,1981; see also D. L. Basdekos,“The Risk of a Meltdown,”New 
York Times, March 29,1982; and Bill Pau1,”High Strength Steel is Implicated as Villain in 
Scores of Accidents,” The Wall Streel Journnl, January 16, 1984. 

(1.182) Cheverton. P. D., Canonico, D. A., Iskander, S. K., Bolt, S. E., Holtz, P. P., Nanstad, R .  K., 
and Stelzman, W J., “Fracture Mechanics Data Deduced from Thermal Shock and 
Related Experiments with LWR Pressure Vessel Material,” Jourrial oj Pressure Vessel 
Technology, 105, pp. 102-1 10 (1983). 

(1.183) Loss, F. J.,Gray, R. A,, Jr., and Hawthorne, J. R., “Investigation of Warm Prestress lor the 
Case of Small A T  During a Reactor Loss-of-Coolant Accident,” Jotrrmd of Pressure 
Vessel Technology, 101. pp. 298-304 (1979). 

(1.184) Pickles, B. W. and Cowan, A., “A Review of Warm Prestressing Studies,” Intemutionul 
Journal of Pressure Vessels and Piping, 14, pp. 95-131 (1983). 

(1.185) Strosnider, J. R., Jr. et al. (eds.), Proceedings of the C S N l  Specialists Meeting on Leak- 
Before-Break in Nuclear Reactor Piping, NUREG/CP 51, CSNl Report 82, US. Nuclear 
Regulatory Commission, Washington, D.C. (1984). 

(1.186) Chaboche, J. L., “Continuous Damage Mechanics-A Tool to Describe Phenomena 
Before Crack Initiation,” Nuclear Engineering nnd Design, 64, pp. 233-247 (1981). 

(1.187) Bonfield, W., Grynpass, M. D., and Young, R. J., “Crack Velocity and the Fracture of 
Bone,” Jourttal of Biomechanics, I I ,  pp. 473-479 (1  978). 

(1.188) Seth, R. S. and Page, D. H., “Fracture Resistance of Paper,” Journal of Materials Scierice, 

(1.189) Suh. N. P., “An Overview of the Delamination Theory of Wear,” Wear, 44, pp. 1-16 

pp. 305-326 (1982). 

pp. 575-591 (1975). 

9, pp. 1745-1753 (1974). 

(1977). 



2 
ELEMENTS OF SOLID MECHANICS 

In this chapter the fundamental concepts and the field equations of solid 
mechanics that provide the basis for work in advanced fracture mechanics are 
reviewed. No pretense of completeness is made. Rather, attention is focused 
upon those particular elements of elasticity, viscoelasticity, plasticity, and 
viscoplasticity that we believe are essential for the understanding of the subject 
matter in the following chapters. The material is presented from the viewpoint 
of continuum mechanics and, for the most part, within the confines of small 
(infinitesimal) strains. Cartesian tensors and the indicia1 notation are em- 
ployed because of the convenience, compactness, and simplicity they offer. 

The reader who is well versed in these theories may choose to pass over this 
chapter, yet much of the notation used in subsequent chapters is set forth here. 
For this reason it may be worthy of at least a casual reading. On the other 
hand, the reader who finds the present treatment too terse or who desires even 
more detail is referred to references (2.1)-(2.10) and to the references contained 
therein. 

2.1 Analysis of Stress 

In general a body can experience two types of external loadings: body forces 
acting directly on volume elements of the body and surface forces acting over 
elements of surface area. For the body B illustrated in Figure 2.1, these forces 
are assumed to be prescribed functions of the fixed Cartesian coordinates 

100 

Figure 2.1 Internal forces in a solid body. 
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xI, x2,  x3.  Now, consider an elemental surface area AS of a closed surface S in  
the body and let n be the local outward normal to AS. The material exterior to 
S produces a force Af over the area AS. The stress vector or traction T(") at the 
point (x,, x2,  x3) is defined as 

(2.1-1) 

where the limit is assumed to exist. The superscript ii has been used to 
emphasize the dependence of the stress vector on the orientation of the 
elemental surface area. 

If the special case for which the normal to the surface element is parallel to a 
coordinate axis x i  ( i  = 1,2,3) is considered, then 

(2.1-2) 
where Ty) are the scalar components of T") and the unit base vectors e, are 
directed along the positive coordinate axis xi. The last equality introduces the 
summation convention; that is, a repeated minuscule index (subscript) in a 
term denotes a summation with respect to that index over its range. Unless 
otherwise noted, the range of a roman index will be from 1 to 3. 

T(') = Ty)e,  + TY'e, + T';"e3 E T(!)e J J  

It is convenient and customary to write 
gij Tj" (2.1-3) 

where the nine scalar quantities aijare the components of the stress tensor. The 
first subscript of aij corresponds to the direction of the outward normal to the 
element of area. The second subscript indicates the direction of the 
component of the stress vector. The stress component is considered positive if 
both its sense and the outer normal to the surface are in the same coordinate 
direction, whether the direction be positive or negative. Otherwise, a negative 
value is assigned to the stress component. The positive sign convention is 
illustrated in Figure 2.2. The components aij with i = j (i.e., a1 at2,  oj3) are 

Figure 2.2 Positive sign convention 
for stress components. 
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Figure 2.3 Forces acting on an elemental tetrahedron at point P. 

called normal stresses and the remaining components aij, i # j, are referred to 
as shear stresses. These stress components define the state of stress at  a point. 

2.1 . I  Equilibrium Equations 

Once the components of the stress tensor are known at a point P, then the 
stress vector T acting on any other plane through P having a unit normal n can 
be determined. With F = Fiei denoting a body force per unit of volume, the 
equilibrium of the small tetrahedron of Figure 2.3 requires that* 

(2.1-4) 

where ASi = ASni and ni are the direction cosines of n. After introducing the 
combination of Equations (2.1-2) and (2.1-3) into Equation (2.1-4) and taking 
the limit as h -+ 0, we obtain 

for the components of the traction T = 7;ei. Hence, knowing the components 
of the stress tensor, one can determine from Equation (2.1-5) the components 

AS 
3 

T AS - T"' AS, - T'2' AS, - T'3' AS3 + Fh - = 0 

= ajinj (2.1-5) 

* Other terms that tend to zero in the limit as h - 0  have been neglected in writing 
Equation (2.1-4). 
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of the traction on an element of surface whose orientation is defined by its unit 
norm a I. 

If the body B is in equilibrium, then any volume V of material bounded by a 
closed surface S within B (see Figure 2.1) must also be in equilibrium. The 
forces acting on this material consist of the body force F distributed 
throughout Vand the stress vector or traction T distributed over the boundary 
S.  Force equilibrium of this volume of material requires that 

JvFdV + JsTdS = 0 

or, equivalently, 

[” & f f V  + Is T d S  = 0 

J/dV + J s G j , n j d S  = 0 

Noting Equation (2.1-5), we may rewrite the latter as 

(2.1-6) 

(2.1-7) 

(2.1-8) 

Assuming that the stress components oji are continuous and possess 
continuous first derivatives, one may use the divergence theorem to transform 
the surface integral in Equation (2.1-8) to a volume integral.* Hereby, 
Equation (2.1-8) becomes 

r 

Since Equation (2.1-9) must hold for an arbitrary volume V ,  then 

throughout the body. 
0 j i . j  + 4 = 0 

Moment equilibrium demands that 

(2.1-9) 

(2.1 - 10) 

j v r  x . F d V  + l s r  x TdS = 0 

1“ & i j k X j F k  dV + Is & i j k x j O l k n l  dS  = 

(2.1-1 1) 

where r = xiel is the position vector from the origin to the point (xl, x z ,  x g ) .  
The scalar form of Equation (2.1-1 1) is 

(2.1 - 12) 

in which Equation (2.1-5) has been used and where the alternating tensor &ijk is 
defined by 

0 if any two of i, j, k are equal 
1 if i ,  j, k is a cyclic permutation of 1,2,3 (2.1-13) 

- 1 if i , j ,  k is a cyclic permutation of 1, 3, 2 

* According to the divergence theorem Js4 in ,  dS = I, 4i,i dV, where 4i,i E d4Jdxi. 
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The divergence theorem permits writing Equation (2.1-12) as 

& i j k C X j ( b I k , l  + 4) + olkxj,J dV = 0 (2.1 - 1 4) I 
Due to Equation (2.1-10) the quantity within the parentheses of this integrand 
vanishes. Furthermore, xj,l = d,,, where the Kronecker delta dj, is defined as 

1 if j = l  
{o if j + l  

d j I  = (2.1 - 15) 

Consequently, blkxj.1 = alkdjI = b j k .  Since Equation (2.1-14) must hold for any 
material volume V ,  then the integrand must vanish and, with the foregoing, 
this condition reduces to 

& i j k b j k  = 0 

Because cijk = -cikjr the latter equation implies that the stress tensor is 
symmetric; that is, 

b i j  = bj, (2.1 - 1 6) 

Thus, Equations (2.1-10) and (2.1-16) form the equations of equilibrium. 
For the sake of generality, the equation of motion can be readily obtained 

from Equation (2.1-10) by interpreting the body force as due to inertia. Then 

bji , j  = pui (2.1 - 1 7) 

where u, denote the components of the displacement in the direction of x i ,  p is 
the mass density of the material, and a superposed dot indicates a partial 
differentiation with respect to time, t .  

2.1.2 Principal Stresses 

At every point in a body there exists a plane, called a principal plane, such that 
the stress vector lies along the normal n to this plane. That is, 

Ti = mi = adijnj (2.1-18) 

where Q is the normal stress acting on this plane. The implication is that there is 
no shear stress acting on a principal plane. The direction of n is referred to as 
the principal direction. The introduction of Equation (2.1-18) into Equation 
(2.1-5) yields 

(aji - adij)nj = 0 (2.1 - 19) 

which is a set of three homogeneous equations for the direction cosines n, 
defining the principal direction. Since nini = 1, then to avoid the trivial 
solution 

laji - 0dijl = 0 (2.1-20) 
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which in the unabridged form is 
Q l l  - u Q12 

0 2  1 Q 2 2  -' O 2 3  (2.1-2 1 )  
Ir)/ a32 Q 3 3  - Q 

This is a cubic equation in u that can be written as 

c3 - l1a2 + 12a - l3 = o (2.1-22) 
where 11, I,, and I ,  are scalar quantities that are independent of the coordinate 
system in which the stress components are expressed. They are called stress 
invariants and are expressed as 

11 = Qii 

12 = +(QiiQjj - QijUij) 

13 = i & i j k & p q r b i p Q j q b k r  

or, in unabridged form, 

(2.1-23) 

11 = 0 1 1  + 0 2 2  + 0 3 3  

12  = ( 4 1 1 4 2 2  + 6 2 2 6 3 3  + 6 3 3 6 1 1 )  - Uiz - Q i 3  - Q i 1  (2.1-24) 

O11 O 1 2  u13 

I 3  = O 2 1  O22 O 2 3  

IG3, u 3 2  u l j  
Due to the symmetry of the stress tensor, there are three real roots 

(al, 02, u3), referred to as principal stresses, of Equation (2.1-21). Associated 
with each principal stress is a principal direction satisfying Equation (2.1-19) 
and nini = 1. The three principal directions and the associated principal planes 
are mutually orthogonal; It can be shown that the principal stresses 
correspond to the maximum, intermediate, and minimum normal stresses at a 
point. Moreover, the maximum shear stress at this point is equal to one-half of 
the difference between the maximum and minimum principal stresses and acts 
on a plane making an angle of 45 degrees with the direction of these stresses. A 
knowledge of the principal stresses is important because they form the basis of 
failure theories of materials. 

2.2 Analysis of Strain 

Strain is induced in a continuous body when a physical action causes its 
configuration to change or deform. The change is normally assumed to be 
continuous with a one-to-one correspondence existing between the deformed 
and undeformed states. An analysis of the kinematics of the deformation 
under these conditions is presented in this section. It is noteworthy that the 
one-to-one correspondence will be lost for points lying on a prospective 
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fracture plane when a crack passes through these points. Consideration will be 
given to this anomaly in the subsequent chapters. 

2.2.1 Strain Tensor 

Let the position of two neighboring points P and Q, separated by a distance dS 
in an undeformed body, be defined by the coordinates x i  and x i  + dx i ,  
respectively (see Figure 2.4). When the body is loaded, P and Q are displaced to 
points p and q, defined by coordinates ti and ti + d&, respectively. Let the 
separation between these points in the deformed body be ds. 

It can be assumed for our purposes that a one-to-one correspondence exists 
between xi and ti and, in addition, that the displacement components ui at P 
are functions of x i ;  that is, 

51 = t i ( x I , x 2 , x 3 )  (2.2-1) 

and 

(2.2-2) 

dS2 = dxi  d x ,  (2.2-3) 

and 

ds2 = d t i d t i  (2.2-4) 

where 

I "/ i 

Figure 2.4 Description of the deformation of a body. 
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Hence, Equation (2.2-4) becomes 

dS2 = (6 ,  + U i , j  + U j , i  + Uk,i  U k , j )  d x i  d x j  (2.2-5) 

Clearly, there will be no relative change in position of points P and Q if 
dS2 = ds2.  Conversely, straining occurs whenever dS2 # ds2. This straining 
can be expressed by the components yi j  of the Green strain tensor defined by 

ds2 - dS2 = 27, dxi d x j  (2.2-6) 

It follows with Equations (2.2-3) and (2 .2 -5 )  that the finite-deformation strain 
components are given by 

?ij = $ ( u i , j  + u j , i )  + i u k . i u k , j  (2.2-7) 

and, furthermore, that the strain tensor is symmetric. For sufficiently small 
displacement gradients u k , i  (i.e., Iuk,il << l), their products in Equation (2.2-7) 
are negligible and y i j  reduce to 

This simplification yields the strain tensor for infinitesimal strains. 
e i j  = 3 ( u i , j  + u j . i )  (2.2-8) 

2.2.2 Compatibility Equations 

Equation (2 .2 -8 )  represents six independent equations relating six strain 
components to only three displacement components. To ensure single-valued 
displacements ui,  the strain components eij  cannot be assigned arbitrarily but 
must satisfy certain integrability or compatibility conditions. These conditions 
can be obtained by eliminating ui between the equations of Equation (2 .2 -8 )  
through differentiating the latter with respect to x k  and x I  and interchanging 
the order of differentiation. Thus, the compatibility equations are 

&ij,kI + &kl.fj - &ik,jI - &jl,ik = 0 (2.2-9) 

Of the 8 1  equations included in Equation (2.2-9), only six are independent. The 
remainder areeither identities or repetitions due to the symmetry of .zij. The six 
independent compatibility equations are 

2&, , , , 2  - &11,22  - &22,11  = 0 

2&23.23 - &22.33  - &33.22 = 

& 2 2 , 3 1  + &31.22  - &12.23  - &23,21  = 

&33,12 + &12.33 - &23,31 - &31,32  = 

Finally, the displacement gradient can be written as 

u i , j  = 4 c u i . j  + u j . i )  + 4 ( u i , j  - u j 3 i )  

= Eij + w i j  (2 .2 -1  1 )  
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where oij is the skew-symmetric rotation tensor. The compatibility equations 
ensure that the displacements in a simply connected region will be single- 
valued functions of the coordinates when evaluated by integrating the 
displacement gradients along any path in this region. If the region is multiply 
connected-for example, a plane body with an interior crack-then the 
displacements may be multiple-valued. 

2.3 Elasticity 

The equations of equilibrium and the kinematic relations are independent of 
the type of material. However, the connection between the stress and strain 
components depends upon the specific type of material behavior. In this 
section constitutive relations for elastic behavior are considered. Constitutive 
relations for viscoelastic, elastoplastic, and elastic-viscoplastic responses 
appear in the following sections. 

2.3.1 Strain Energy Density 

With only a slight modification we adopt Green’s (2.1 1 )  definition of an elastic 
material as one for which there exists a positive-definite, single-valued, 
potential function W = W(&,,)  of the strains &kl  defined by 

W = jr cij ds ,  (2.3-1) 

This function is referred to as the strain energy density. It is further required 
that W be a convex function of the strains in the sense that for two strain fields 
cii and s;; 

Convexity of Wis a sufficient condition for its positive definiteness and assures 
that the material is stable. 

For W to be independent of the loading path and a function of the final 
strains only, 

in which 
dW = b i j  deij (2.3-3) 

aw 
asij Qij = - 

must be a perfect differential. This condition is satisfied if 

a2w a2w 

at, a&,, aEk,  as, -=- 

(2.3-4) 

(2.3-5) 

or, equivalently, 

(2.3-6) 
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Equation (2.3-4) is the constitutive relation connecting the stress and strain 
components while Equation (2.3-5) ensures symmetry in this relation. I t  is 
assumed that the stress-strain relation has a unique inverse; that is, the 
Jacobian la2 wfaEij a&k,l # 0. 

2.3.2 Linear Elastic Materials 

For example, if W is the quadratic function 

w = + C i j k { & i j & k l  (2.3-7) 

then Equation (2.3-4) yields the generalized Hooke's law 

bij = C i j k l E k l  (2.3-8) 

for a linear elastic material. The tensor of elastic constants or moduli of the 
material is denoted by CiJkl. Symmetry of the stress and strain tensors requires 
that c i j k l  = cjik, and Cijkl = Cij,k, respectively. The condition [Equation 
(2.3-5)] for the existence of a strain energy function also requires that 
C,, = cklijo These latter conditions reduce the number of elastic constants 
from 81 to 21. The existence of material planes of elastic symmetry further 
decreases the number of independent constants until there are only two for an 
isotropic material. Consequently, for an isotropic material 

(2.3-9) 

where f i  is the shear modulus, v is Poisson's ratio, and the elastic modulus is 
E = 2(1 + v)p. 

The combination of Equations (2.3-7) and (2.3-8) yields 

w = +OijEij  (2.3- 10) 

for a lineai elastic material. The. introduction of Equation (2.3-9) into 
Equation (2.3-10) gives 

V w = fi ( Ei jE i j  + - 1 - 2 v  W j j )  (2.3- 11) 

for an isotropic material. 

2.3.3 Complementary Strain Energy Density 

The existence of a unique inverse of the constitutive relation, Equation (2.3-4), 
subject to 

(2.3- 1 2) 

assures the existence of the complementary strain energy density W* = 
W*(aij) defined by 

w* = Oij"j - w (2.3- 13) 
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From chain-rule differentiation of Equation (2.3-1 3) and the introduction of 
Equation (2.3-4) we find that 

(2.3- 14) 

It is a straightforward task to show that convexity of W* follows from 
convexity of W .  

For a linear elastic material the combination of Equation (2.3-10) and 
(2.3- 13) yields 

w = w* = ;aijeij (2.3-15) 

One can also write for this case that 

w* = ~ c & ~ ~ i j ~ k (  (2.3- 16) 

where the elastic tensor c&l is the inverse of the tensor Cijkl and C g ,  = 
C$kl = C$k = Ctlij .  It f o ~ ~ o w s  from Equations (2.3-14) and (2.3-16) that 

&.. IJ c* t jkl  Q k l  (2.3-17) 

For an isotropic material Equation (2.3-17) reduces to 

(2.3-18) 

and W* becomes 

If a power law relationship between stress and strain exists such that the 
strain is a homogeneous function of degree n of the stress, then Equa- 
tion (2.3-14) implies that W* must be a homogeneous function of the stress 
components of degree n + 1. It follows from Euler’s theorem on homogeneous 
functions [e.g., see (2.12)] and Equation (2.3-14) that 

1 
q j  = - QijEi j  

w*=----.- 1 aw* 
n + 1 aoij n + l  (2.3-20) 

Furthermore, the combination of Equations (2.3-1 3) and (2.3-20) permits 
writing 

(2.3-21) 

When stress is proportional to strain (n = l), Equations (2.3-20) and (2.3-21) 
become identical to Equation (2.3-15). 

2.3.4 Elastic Boundary Value Problems 

For an elastic material the governing field equations are the equilibrium 
equations [Equations (2.1-10) and (2.1-16)], the kinematic relations 
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[Equation (2.2-8)] and the compatibility equations [Equation (2.2-lo)]. 
These must be supplemented by a constitutive relation whose most general 
form is expressed by either Equation (2.3-4) or Equation (2.3-14). For the case 
of a linear material, the latter assume the forms of Equations (2.3-8) and 
(2.3-17), which reduce, respectively, to Equations (2.3-9) and (2.3-18) for an 
isotropic material. 

The precedingequations must hold within the volume Vof the body and on 
its boundary S. On the portion S, of the boundary where the tractions are 
prescribed we require that 7;. be equal to the specified values T.  Over the 
remainder of the boundary S, = S - S,, the displacements ui must assume 
their prescribed values iii. 

2.3.5 Rubber Elasticity 

The discussion to this point has been largely confined to small strain 
behavior-a limitation that is not particularly severe for most engineering 
materials. However, for rubber and other elastomers, a small strain as- 
sumption would be highly inappropriate. In this section the generally accepted 
theoretical models embodying the large strain behavior characteristic of 
rubber elasticity will be outlined. The discussion will focus on the constitutive 
relations developed by Rivlin and Mooney, following the treatments of the 
subject given by Treloar (2.13) and Gent (2.14). 

In a manner that is analogous to the development of Section 2.1.2 above, the 
homogeneous deformation of an elastic body can be expressed in terms of 
three principal extension ratio A,, I,, I 3  (i.e., ratio of the deformed dimension 
to the undeformed dimension) and, in turn,  to three invariants given by 

Rubber is very nearly an incompressible material whereupon i t  is usually 
appropriate to set I ,  = 1. This allows Equation (2.3-22) to be simplified to 

(2.3-23) 

Rivlin has developed a general treatment of rubber-like solids by introducing 
the basic assumption that the material is elastically isotropic in the unde- 
formed state. More specifically, he argued that the strain energy density 
function W must be a function of I, and f 2  that vanishes in the undeformed 
state. The most general form satisfying these conditions is 

(2.3-24) 

where the upper limit of the summation is arbitrary. Taking the limit to be 
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unity gives the first-order expression 

w = CI(1, - 3) + CZ(1, - 3) (2.3-25) 

which is sometimes referred to as the Mooney-Rivlin equation. 
Because of the assumption of incompressibility only the differences of 

principal stresses can be determined. Expressed in terms of the strain energy 
density function, the expressions are 

(2.3-26) 

with similar expressions for o2 - o3 and o3 - ol. Thus, for a Mooney-Rivlin 
material 

o1 - o2 = 2(1: - A;)(Cl + 1.:C2) (2.3-27) 

2.4 Energy Principles 

Because of the conservative nature of many loadings and the reversible nature 
of elastic materials, energy principles represent important concepts in the 
theory of elasticity. As described in Chapter 1, these principles have played 
(and continue to play) a fundamental role in the development of many of the 
concepts in fracture mechanics. They frequently form the bases of finite 
element methods used to obtain numerical solutions to boundary value 
problems. Due to their importance we review some of the most pertinent 
principles in this section. The reader can find additional treatments of energy 
principles and methods in references (2.2) and (2.3). 

2.4.1 Principle of Virtual Work 

Consider a body that occupies the volume V and is bounded by the surface 
S = ST + S, to be in static equilibrium under the action of prescribed body 
forces F;: and surface tractions on ST. Over the remaining portion of the 
boundary S, the displacements U; are specified. A statically admissible stress 
field a; is defined as one that satisfies the equations of equilibrium, 
Equations (2.1-10)and(2.1-16),andwhosestressvector Ti = aijnjtakeson the 
prescribed values on S,.  A kinematically admissible displacement field ui’ is 
one that is three times continuously differentiable and assumes the specified 
values on S, .  There need not be any connection between a statically admissible 
stress field and a kinematically admissible displacement field. 

For a statically admissible stress field oij and a kinematically admissible 
displacement field u;’, 

Tiui’ dS + F,u; dV = a!.~!’. dV (2.4-1) b I J“ I’ ” 

expresses the principle of virtual work. The strain field eii is derivable from u; 
through Equation (2.2-8). The proof of Equation (2.4-1) follows directly upon 
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substituting Ti = a;nj into the left-hand side, employing the divergence 
theorem and noting that ojj satisfies the equilibrium equations. If this virtual 
work statement holds for all kinematically admissible displacement fields, 
then the stress field ojj must necessarily be statically admissible. 

If oij and u l  are the actual stress oij and displacement ui fields in a body 
obeying a power law relationship between stress and strain, then 
Equations (2.4-1), (2.3-20), and (2.3-21) yield 

= (n + 1) 1" W* dV = (n + 1)U* (2.4-2) 

The strain energy and complementary strain energy of the body are denoted 
by U and U*, respectively. For a linear elastic material (n = l), Equa- 
tion (2.4-2) becomes an expression of Clapeyron's theorem, which states that 
the work done by the body forces and tractions acting through the 
displacements from the unstressed state to the final equilibrium configuration 
is equal to twice the strain energy or the complementary strain energy of the 
body. 

2.4.2 Potential Energy 

For a kinematically admissible displacement field uy , let the potential energy 
ll of a body under the action of conservative body forces Fi and prescribed 
surface tractions on ST be defined by 

n(u;l) = 1" W ( ~ f j )  dV - T u r  dS - jv Fp;' dV (2.4-3) 

where the compatible strain field 8;; is related to u; by Equation (2.2-8). If 
oij, cii, and ui are the actual stress, strain, and displacement fields, respec- 
tively, then 

= j" [ W(E;;) - W(Eij) - (&;; - E i j )  (2.4-4) 

In arriving at Equation (2.4-4) the surface integral has been extended over the 
entire surface S since uf' - ui vanishes on S,. Furthermore, the principle of 
virtual work has been invoked since uy - ui is also a kinematically admissible 
displacement field. Due to the assumed convexity of Wit follows that 

n(u;l) 2 n(u,) (2.4-5) 
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Equation (2.4-5) expresses the principle of minimum potential energy. Among 
all the kinematically admissible displacement fields the actual displacement 
field, which is also statically admissible, minimizes the potential energy. 

2.4.3 Complementary Potential Energy 

For a statically admissible stress field a;j the complementary potential energy 
ll* is defined by 

c c 

(2.4-6) 

where Ti = a;nj is the reaction on S,. If aij, eij, and ui are the actual stress, 
strain, and displacement fields, then 

rI*(a{,) - n*(oij) = W*(a:,) - W*(Oij) - (6; - aij) - aw*] dV 
aaij 

~ij(aij - aij) dV - (Ti - 17;:)ui dS (2.4-7) + J v  Js . 
where the surface integral has been extended to include ST since T ;  - 17;: = 0 
there. The contribution of the last two integrals is zero due to the principle of 
virtual work. Recalling the convexity of W* we conclude from Equation 
(2.4-7) that 

which is the basis of the principle of minimum complementary potential 
energy. Of all the statically admissible stress fields, the actual one which is also 
kinematically admissible (compatible) minimizes the complementary poten- 
tial energy. 

For the actual stress, strain and displacements fields, upon adding 
Equations (2.4-3) and (2.4-6) and employing Equation (2.3-1 3), we can write 

n*(aij) + n(ui) = IV (W* + W )  dV - ?;ui dS - Jv Fpi dV 

n*(aij) 2 n*(aij) (2.4-8) 

(2.4-9) 

= Jv aijeij dV - Js I;ui dS  - 1" F,ui dV 

But, the right-hand side of Equation (2.4-9) vanishes due to the principle of 
virtual work so that 

Furthermore, the minimal properties of n and TI* permit writing 
rI*(a,) = -n(ui) (2.4-10) 

-rI(u:l) < -rI(u,) = rI*(Vij) < n*(aij) (2.4-1 1) 

which provides upper and lower bounds to the potential energy. If ui = 0 on S, 
(i.e., the reactions do no work), then the introduction of Equation (2.4-6) into 
Equation (2.4-10) yields 

rI*(a,) = -rI(u,) = V*(Cij) (2.4- 12) 
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Figure 2.5 Typical structure and load-displacement diagram. 

In this case Equation (2.4-11) also provides upper and lower bounds to the 
complementary strain energy. When the material obeys a power law, 
Equation (2.4- 1 1) also provides bounds to the strain energy. 

It is noteworthy that the preceding developments and principles are 
applicable to structural analysis by viewing the stresses, strains, and displace- 
ments in the foregoing as generalized forces, strains, and displacements, 
respectively. As an example consider the structure and its load versus load- 
point displacement depicted in Figure 2.5. Here P represents a generalized 
force and A is the conjugate generalized displacement such that the product 
PA represents the work done. The area A under the curve is equal to the strain 
energy U and the area B between the curve and the load axis is the 
complementary strain energy U*. The potential energy is 

in agreement with Equation (2.4-12). 
n = v - p ~ = - v *  (2.4- 13) 

2.5 Viscoelas t ici t y 

As the name reflects, a viscoelastic material is one that possesses both elastic 
and viscous properties. Under a step loading in time (see Figure 2.6) such a 
material may exhibit an initial elastic response followed by creep where the 
material continues to strain at a rate that depends upon the intensity of the 
stress. Upon removal of the load there may be a partial instantaneous elastic 
recovery followed by a period of decreasing strain. When the strain recovery is 
complete, it is referred to as delayed elasticity. On the other hand, if the 
material is subjected to a sustained constant strain, the material will relax in 
the sense that the stress decreases with time from its initial value. 

Viscoelastic materials display a pronounced sensitivity to the rate of 
straining or stressing and possess time-dependent material properties. This 
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Figure 2.6 Examples of (a) creep and recovery and (b) stress relaxation in a viscoelastic material. 

type of behavior is readily observable at room temperature in many polymers 
and adhesives that are increasingly being found in load-bearing members. 
Metals in high temperature applications such as gas-turbines, nuclear power 
plants, and space vehicles can also exhibit similar characteristics. 

2.5.1 Linear Viscoelastic Materials 

Suppose a time-dependent material is subjected to a stress history o(t) = 
clol(t) + c202( t  - T), where c1 and c2 are constants. If the strain ~ [ o ( t ) ]  
satisfies the basic property of a linear functional that 

then thematerial is referred to as being linear viscoelastic. Fnr such materials a 
simple uniaxial creep test can be used to establish the rwtionship between 
stress and strain. In this test the material is subjected to a uniaxial stress, 
Q = o,H(t), where H ( t )  is the Heaviside step function defined as H ( t )  = 1 for 
t > 0 and H ( t )  = 0 for t < 0. The axial strain is observed to obey the law 

&(t) = aoC(t) (2.5-2) 

Equation (2.5-2) defines the creep compliance C(t), which is a monotonically 
increasing function of t for t 2 0. Without loss in generality it is understood 
that C(t) E 0 for t < 0. Alternatively, in a relaxation test the material is 
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subjected to a step strain, E = EOH(t),  and the stress is measured. In the case of a 
linear material 

~ ( t )  = EOG(t) (2.5-3) 

where G ( t )  is the relaxation modulus that is a monotonically decreasing 
function of t for t 2 0 and G(t) 3 0 if t < 0. 

Knowing the creep compliance we can now express the strain for an 
arbitrary stress history depicted in Figure 2.7. The strain at time t can be 
visualized as resulting from a sequence of infinitesimal step stresses occurring 
at times 7 for - co < T < t .  For example, the incremental strain de due to the 
infinitesimal stress d a ( 7 ) H ( t  - 7 )  illustrated in Figure 2.7 is 

d& = C(t - 5 )  da(7)  

Integrating the foregoing expression from T = - co to t ,  we obtain 

(2.5-4) 

Equation (2.5-4) signifies that the current strain is a function of the previous 
stress history. Consequently, the convolution integral in this equation is 
referred to as a hereditary integral. 

Equivalent forms of Equation (2.5-4) also exist. For example, since 
C(t - 7 )  = 0 for 7 > t ,  then the upper limit of integration in this equation can 
be replaced by 00. In this manner the strain can be expressed in terms of the 
Stieljes integral 

C(t - 5 )  do(7 )  (2.5-5) r=* I =  -30 

E ( t )  = 

If the loading commences at time t = 0 so that oij = cij = 0 for t c 0, then 
Equation (2.5-4) can be written as 

&(t )  = o(O+)C(t) + 
d7 

(2.5-6) 

7 t Figure 2.7 Stress-time history. 
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The first term reflects the strain due to the initial stress and the integral 
represents the strain due to the ensuing stress. An integration by parts of 
Equation (2.5-6) leads to 

dC(t  - 5 )  dr lo d(t  - 7) & ( t )  = o(t)C(O) + 
(3  5-7) _." I ,  

If the material is subjected to a prescribed strain history rather than a stress 
history, a similar analysis yields 

G(t  - t) d+) 

(2.5-8) 

(2.5-9) 

(2.5-10) 

(2.5-1 1) 

When either the creep compliance or the relaxation modulus is known, the 
other can be determined. This connection is readily d_emonstrated with the 
Laplace transform method. Let the Laplace transform f(s) of the function f ( t )  
be defined by 

(2.5-12) 

ItAfollows from an integration by parts that the Laplace transform of df /d t  is 
sf(s) - f(0'). The Laplace transform of the convolution integral 

f ( t )  = f ( t  - T ) ~ ( z )  d t  sd 
is f(s) = f(s)i(s); see reference (2.15). 

Operating on Equation (2.5-6) with the Laplace transform, we obtain 

Z(S) = S t ( S ) I ? ( S )  (2.5-1 3) 

Following the same procedure for Equation (2.5-10) one finds that 

Z(s) = s&)qs) (2.5-14) 

We note in passing that Equation (2.5-14) in the transformed space has the 
same form as the elastic law if s&s) is associated with E. Equations (2.5-1 3) 
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and (2.5-14) can be combined to yield 

1 
SZ 

&)G(s) = - (2.5-15) 

The left-hand side of Equation (2.5-15) is the Laplace transform of the 
convolution integral whereas the right-hand side is the Laplace transform of t. 
Hence, 

j: G(t  - t )C ( t )  d t  = G(s)C( t  - 5 )  d s  = t (2.5- 1 6) sd 
is the connection between the creep compliance and the relaxation modulus. 
In addition, the limiting properties (2.15) of the Laplace transforms as s -, 0 
and s + cn provide that 

C(O)G(O) = C ( C O ) G ( ~ )  = 1 (2.5-17) 
When generalizing the constitutive relations, Equations (2.5-4) and (2.5-8), it 

is convenient to introduce the deviatoric stress components sij  and strain 
components eij defined by 

s.. I) = 6. 1j - l* 3 k k  6 i j ?  

eij = Ei j  - 3 kk 6.. 81' 

sii = 0 

e i i  = 

(2.5- IS) 

(2.5-19) 

For a linear, isotropic viscoelastic material 

dsij(7) 
C,(t - 7 )  - dt 

C,(t - t )  - 

d t  
eij = 

dcii(T) ds 
dt 

or, alternatively, 

(2.5-20) 

(2.5-21) 

(2.5-22) 

(2.5-23) 

where C,(t) and G,(t)  are the creep compliance and relaxation modulus in 
shear, respectively, and C,(t)  and G2(t) are their dilatational counterparts. The 
integrals in these constitutive relations can also be expressed in any of the 
equivalent forms discussed earlier for the uniaxial case. Carrying the analogy 
an additional step, one obtains 

rt rt 
G,(t - t)C,(s) d t  = G,(r)C,(t - t )  dt = t (2.5-24) Jo J O  

where no sum over a = 1,2 is intended. 
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2.5.2 Thermorheologically Simple Materials 

The creep compliance and the relaxation modulus of many viscoelastic 
polymers depend upon the temperature T.  There is a class of materials 
known as thermorheologically simple materials for which a change of 
temperature from a reference temperature To is equivalent to changing the 
time scale. Temperatures above (below) the reference temperature effectively 
increase (decrease) the real time. For these materials it was first demonstrated 
empirically and later shown theoretically that 

C(T, t )  = C(T,,t /aT(T)) (2.5-25) 

where the shift factor aT(T) is a measured function of temperature. Conse- 
quently, for temperatures above To, where a,(T)  is less than unity, the process 
appears to be accelerated relative to the reference temperature. The opposite 
effect occurs for temperatures below To, where uT(T) is greater than unity. 
Williams, Landel, and Ferry (2.16) have found that for many polymers a, (T)  is 
given by the WLF equation 

(2.5-26) 

where c1 and c2 are material properties. A relation analogous to Equa- 
tion (2.5-25) can also be written for the relaxation modulus. 

Not only does this time-temperature superposition principle permit the 
inclusion of the influence of temperature upon the constitutive law, but it also 
provides an efficient technique for establishing master relaxation modulus and 
creep compliance curves. In developing a master curve, the relaxation 
modulus or the creep compliance is measured over one or two decades of time 
for a range of temperatures. The logarithm of the relaxation modulus or creep 
compliance is plotted against the logarithm of time for each temperature. All 
these curves except the one at the reference temperature are shifted parallel 
along the abscissa until they form a single continuous master curve extending 
over perhaps ten or more decades of time. Examples of the use of this principle 
to determine master curves for polymers together with further discussion can 
be found in the texts of Tobolsky (2.17) and Ferry (2.18). 

2.5.3 Correspondence Principle 
The governing equations for a linear, isotropic viscoelastic material are 
Equations (2.1-lo), (2.1-16), (2.2-8), (2.5-20), (2.5-21), and the boundary 
conditions 

r =  on ST (2.5-27) 

ui = iii(t) on S, (2.5-28) 

where the overbar is used to denote prescribed quantities. Alternatively, 
Equations (2.5-20) and (2.5-21) can be replaced with Equations (2.5-22) and 
(2.5-23). Operating on these governing equations with the Laplace transform, 
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we obtain 
A 

. . A  

r?i j , j  + 4 = 0, aij = aji 
i i j  = + &) 

s -  
i i j  = SClc?ij + 3 (C, - 2.,)s;jr?k,, 

(2.5-29a-f) 
A s *  A 

Si j  = SG, 2;j + - (G, - Gi)dij&, 3 
5 

$ = on S ,  

ui = Ei on S, A -  

These transformed equations have the same form as the corresponding 
equations of linear, isotropic elasticity if the transformed variable is 
associated with the equivalent elastic variable and if sG1, s6,, s t , ,  and se, are 
associated with the corresponding elastic constants. It follows that the 
solution of the viscoelastic problem in the transformed plane corresponds to 
the solution of the equivalent elasticity problem. Therefore, if the solution to 
the latter problem is known, the solution to the viscoelastic problem reduces to 
effecting the inverse Laplace transform. The association of the solution of the 
transformed viscoelasticequations with the solution of the elasticity equations 
forms the basis of the correspondence principle of linear viscoelasticity. While 
only isotropic materials have been considered here, the correspondence 
principle also holds for anisotropic materials. 

At first hand, the correspondence principle may appear to be quite general, 
but a little reflection reveals two important limitations associated with mixed 
boundary value problems. First, in transforming the boundary conditions i t  is 
assumed that at a point on the boundary either the traction or the conjugate 
displacement is prescribed for all t > 0. This is not the case, for example, in 
contact or indentation problems where the boundary conditions on the 
prospective contact surface change with time from prescribed traction to 
prescribed displacement. The second limitation, which has direct bearing on 
the subject of this text, assumes that the boundaries ST and S, do not vary with 
time. This is not, of course, the case during crack propagation where new 
surfaces are being created. 

Subject to additional restrictions, Graham (2.19) has extended the corre- 
spondence principle to include a class of mixed boundary value problems in 
isotropic viscoelasticity involving time-dependent boundaries. Included in 
this class of problems are the aforementioned contact and fracture problems. 
The specific restrictions required for the problem of a propagating crack 
are: (1) the crack front is not permitted to retreat; (2) the crack plane stresses 
for the equivalent elastic problem must be independent of the elastic 
constants; and (3) the elastic crack plane displacement D must have the 
separable form u = f(E, v) V ( x i ,  t ) ,  where V ( x i ,  t) is independent of the elastic 
constants whereas f is a function of only these constants. 
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The first restriction does not permit any crack closure or crack healing. 
With respect to the second restriction we note that if only stresses are 
prescribed on the boundary of the body, then the stress field will be 
independent of the modulus of elasticity but not necessarily independent of 
Poisson’s ratio. However, for simply connected bodies and for multiply 
connected bodies in plane stress or plane strain for which the resultant force on 
each boundary vanishes, the dependence of the stresses upon Poisson’s ratio 
also disappears. The final restriction is perhaps the most exacting. But, if the 
viscoelastic materials has a constant Poisson’s ratio, a condition approxi- 
mately satisfied by many polymers, then Graham (2.20) has further shown that 
the correspondence principle is still applicable even though Poisson’s ratio 
cannot be included in the separable factor. I t  is also applicable to anisotropic 
viscoelastic materials with a single relaxation function. 

The emphasis in this section has been on linear viscoelastic materials. The 
treatment of nonlinear viscoelastic materials and extensive references can be 
found in the treatises by Christensen (2.4) and by Findley, Lai, and Onaran 
(2.5). 

2.6 Elastoplasticity 

When a material is loaded beyond its elastic limit, plastic deformation, an 
irreversible process, ensues. Consequently, the final state of deformation 
depends not only upon the final loading, but also upon the loading path. In 
contrast to viscoelastic behavior, plastic deformation, at least for quasi-static 
loading, tends to be rate-independent. At a minimum the constitutive relation 
for plastic deformation must reflect these characteristics. The theory that 
satisfies this criterion and that has found widespread application is the 
incremental or flow theory. Deformation or total strain theory, which has a 
more restricted range of application but often possesses the redeeming feature 
of reduced mathematical complexity, is also worthy of consideration. In the 
following we develop the constitutive relations based on these two theories 
and then compare them. Finally, the slip-line theory for plane strain, perfectly 
plastic behavior is summarized. 

2.6. I Yield Criteria 

It is convenient to write the strain Eij in an elastic-plastic material as 

Eij = E;  + E C  (2.6-1) 

where E;  and E;  are the elastic and plastic contributions, respectively. The 
elastic component of the strain is assumed to be related to the stress aij by one 
of the Hookean laws discussed in Section 2.3. If the stress level is such that no 
yielding occurs, then the plastic strain component is identically zero. When 
yielding does occur, the plastic deformation is assumed to be incompressible 
or, equivalently, 

&; = 0 (2.6-2) 
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Consequently, there is no need to make a distinction between the plastic strain 
and its deviatoric counterpart ec. 
A yield criterion is required to assess whether or not yielding or plastic 

deformation is imminent or has occurred. We postulate theexistence of a yield 
function 

f = f (oij) (2.6-3) 

which at the very minimum is a function of the current state of stress oij. The 
yield surface f = 0 represents a hypersurface in the nine-dimensional 
Euclidean stress space oij.  In general, the yield surface can expand (isotropic 
hardening), translate (kinematic hardening) or both during plastic de- 
formation. However, all current stress states must lie either on or inside(J 6 0) 
this surface, but never outside (f > 0) it. All stress states or variations falling 
within the surface are elastic whereas during plastic deformation the current 
stress state must be on the yield surface. 

We note that 8f/daij are the components of the gradient to the yield surface 
and consider a current state of stress that lies on the yield surface. A small 
change in the loading giving rise to stress increments do, produces elastic 
unloading if the incremental stress vector having components do,, is directed 
towards the interior of the surface (i.e., elastic unloading from a plastic state 
occurs when f = 0 and (af/aoij) do, c 0). On the other hand if f = 0 and 
(af/aa,) doij > 0, then the incremental stress vector is directed outward from 
the yield surface and plastic loading occurs. For the intermediate case when 
the incremental stress vector lies in the tangent plane to the yield surface [i.e., 
f = 0 and (af/aoij) do, = 01, the loading is neutral. 

For isotropic material behavior the yield function must be an isotropic 
function of the stress. This requires that 

f = f ( l l , 1 2 , 1 3 )  (2.6-4) 

where li are the stress invariants of Equation (2.1-23). Since these invariants 
can be expressed in terms of the principal stresses, then alternatively 

f = , f (o,  9 (12 9 0 3 )  (2.6-5) 

Experimental evidence indicates that yielding of most metals is not influenced 
by a moderate hydrostatic pressure 

p = 0ii/3 = 1113 (2.6-6) 

For such cases the yield function is independent of the first stress invariant and 
depends only upon the deviatoric stresses si j .  Accordingly, for isotropic 
behavior 

.f = f ( J 2  1 53) (2.6-7) 

where 

J2 = +sijsi j  

J3 = s s i j s i k s j k  (2.6-8) 
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are the second and third invariants of the deviatoric stress tensor, As a 
consequence the yield surface f (o l ,  02 ,  u3) = 0 in the principal stress space will 
be normal to the octahedral ll-plane, ul + o2 + u3 = 0. If the material 
manifests the same yield stress in tension and compression (i,e,, no Bauschin- 
ger effect), then f(sij) = f( - s i j )  and f must be an even function of J 3 .  

Two of the most widely used yield criteria are the von Mises and the Tresca 
yield conditions. The von Mises yield function is 

f = J 2 - k 2  (2.6-9) 

where k depends upon the strain history for a work hardening material and 
assumes a constant value for a perfectly plastic material. In terms of the 
principal stresses the von Mises yield surface is defined by 

f = &[(a, - 02)’ + (02  - ~ 3 ) ’  + ( ~ 3  - o , ) ~ ]  - k 2  = 0 (2.6-10) 

For a material in pure shear, o1 = -03 = T and o2 = 0, and it follows from 
Equation (2.6-10) that k = 7 is the yield stress in shear. For yielding in uniaxial 
tension, o1 = oy and o2 = o3 = 0; whereupon k = o y / f i .  In the principal 
stress space Equation (2.6-10) defines a circular cylindrical surface whose axis 
is the ray o1 = u2 = 03. 

The Tresca criterion postulates that yielding occurs when the maximum 
shear stress in the material reaches the yield stress k in shear. In terms of the 
principal stresses this criterion can be expressed as 

maxClo, - 021r lo2 - 031, lo3 - a l l l  = 2k (2.6- 1 1 )  

or in the symmetric form 

f = [(al - ~ 2 ) ’  - 4k2][(~2 - 0 3 ) ’  - 4k2][(03 - ~ 1 ) ’  - 4k2] = 0 (2.6-12) 

The Tresca yield surface is a regular hexogonal cylinder with the axis o1 = 
o2 = o3 in the principal stress space. When the principal stresses are not 
known a priori, then the form, 

45: - 275: - 36k2Ji + 96k4J2 - 64k6 = 0 (2.6- 13) 

due to Reuss can be used. 

2.6.2 Incremental Plasticity 

The phenomenon of stable work hardening in a material under uniaxial 
tension is associated with a positive increment of stress do for a plastic strain 
increment dsp or, equivalently, do dsP > 0, which is equally valid for compres- 
sive loadings. Drucker (2.21) generalized this simple concept of work 
hardening to include all states of stress and loading paths by considering the 
work done by an external agency as it  quasi-statically applies additional 
stresses to an already stressed medium and then removes them. After such a. 
cycle the original configuration may or may not be recovered. It is to be 
understood that the external agency is independent of the one producing the 
existing states of stress and strain. A stable work hardening material is 
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postulated to be one for which the work done by an external agency during the 
application of additional stresses is positive and for which the net work 
performed by the external agency during a complete cycle of loading and 
unloading is nonnegative. 

Assume the initial stress field o: to lie either on or inside the yield surface. 
Allow the external agency to add stresses to this state by following a path 
entirely within the yield surface until a state of stress uij lying on this yield 
surface is reached (see Figure 2.8). Up to this point only elastic deformations 
have occurred. Now, further suppose the external agency increments these 
latter stresses by doij and produces an increment of plastic strain dc;. Next, 
permit the external agency to unload along an elastic path to the state of stress 
0:. Since the elastic work is recoverable, the net work done by the external 
agency according to Drucker’s postulate is 

(oij - c:) dc; + doij d&; 2 0 (2.6- 14) 

Since o: can include oij, then 

do, dc; 2 0 (2.6- 15) 

On the other hand the difference oij - o: can be made arbitrarily large 
compared to doij so that Equation (2.6-14) also yields 

(oij - 0:) dc; 2 0 (2.6- 1 6) 

To understand the significance of Equation (2.6-16), let P denote an 
arbitrary point on the yield surface and consider a hyperplane at this 
point normal to the incremental strain vector having components dc; (see 
Figure 2.8). The inner product of Equation (2.6-16) implies that the stress 
vector, olj - o:, cannot make an obtuse angle with the strain vector. 

Figure 2.8 A yield surface with a corner at point Q, 
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Consequently, this stress vector must lie to one side of the hyperplane. Since P 
can be any point on the yield surface, then the surface must be convex. 

During neutral or plastic loading the stress vector do,  is directed outward 
from the yield surface and is limited by the tangent plane to the yield surface. If 
P is a smooth or regular point on the yield surface, then Equation (2.6-15) 
implies that the incremental plastic strain vector d e t  must be normal to the 
yield surface and has a well defined direction. However, at  a corner Q where the 
normal to the yield surface is undefined the vector d s t  can assume any 
direction bounded by the limiting normals to the yield surface at the corner. 

The normality of the plastic strain increment to the yield surface implies 
that at a smooth point 

(2.6-17) 

where dA > 0 during plastic loading. A comparison of the incremental form of 
Equation (2.6-1 7) and Equation (2.3-14) suggests that f can also be viewed as 
a plastic potential. 

Consider isotropic hardening wherein the yield surface does not change 
shape or translate in the stress space, but only expands uniformly with plastic 
deformation. Suppose there exists a universal stress-strain curve, 5 = h(J dIP),  
expressing an effective stress 5 as a function h of an effective plastic strain 
increment dBP integrated over the strain history. With the effective stress 
defined by 

a‘ = (35,)+ = ( + S i j S i j ) +  (2.6- 18) 

the size of the von Mises yield surface is measured by IF. The coefficient in 
Equation (2.6-18) is chosen such that 5 = lo1 for a uniaxial state of stress. 
The corresponding effective plastic strain increment is defined by 

d I P  = (3 de; d&;)* (2.6-19) 

where the numerical factor is chosen such that for a uniaxial state of stress 

dBP = dt.fl = -2dt.42 = -2dt.$3 

The introduction of von Mises yield criterion, Equation (2.6-9), into 
Equation (2.6-17) yields 

whence it  follows that 
de; = d h i j  (2.6-20) 

dt.5 de; = (dl)’sijstj 
or, equivalently, 

3(dFp)’ = j (dA)2a2 
Consequently, 

(2.6-21) 
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where h’ is the slope of the universal stress-strain curve at the current effective 
stress 5. After substituting Equation (2.6-21) into Equation (2.6-20) we have 

3 sij dt$ = - - dEp 2 5  

or 

(2.6-22) 

(2.6-23) 

When there is no work hardening (h’ = 0), Equation (2.6-23) is no longer valid 
and Equation (2.6-22) must be used. However, the latter equation only permits 
the determination of the strain increments within an arbitrary multiplicative 
constant. The plastic deformation is governed by the amount of plastic work 

dWp = 5 dEP (2.6-24) 

done on a unit volume of material. Therefore, Equation (2.6-22) can be 
rewritten as 

(2.5-25) 

which is equally valid for hardening and nonhardening materials. 

criterion or J ,  and incompressible plastic flow are 
Finally, the incremental constitutive relations based upon von Mises yield 

(2.6-26) 

where a = 1 if f = 0 and dt7 > 0 and a = 0 if either f < 0 or d5  < 0. These 
relations are frequently referred to as the Prandtl-Reuss equations. 

2.6.3 Deformation Plasticity 

In addition to the incremental theory of plasticity, there is the deformation or 
total strain theory due to Hencky. Whereas the incremental theory is quite 
general, the deformation theory, which is actually a nonlinear elasticity theory, 
has very definite limitations. Nevertheless, it offers certain mathematical 
simplifications that makes its use attractive. 

In the deformation theory it is assumed that 

E ;  = 4 S i j  (2.6-27) 
where 4 is a scalar function of the invariants of stress and plastic strains. It 
follows from Equation (2.6-27) that 

3 B P  

2 c  
I$=--  

(2.6-28) 

(2.6-29) 
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where the effective plastic strain B p  is defined by 

, - P = ( 1  3 E i j E i j )  P P * (2.6-30) 
Combining Equations (2.6-27) and (2.6-30) one obtains 

(2.6-3 1)  

where E, is the secant modulus in uniaxial tension. Once again, the existence of 
a universal stress-strain curve 5 = h ( P )  is assumed. When these plastic strains 
are added to the elastic strains, then 

(2.6-32) 

for an isotropic material. 
The principal limitation of the deformation theory of plasticity is reflected 

by Equation (2.6-27). That is, the plastic strains depend only on the current 
state of stress and are independent of the path leading to this state. This is 
contrary to the usually observed behavior of plastic deformation. However, 
for proportional or radial loading (loading along a radial line in the stress 
space), one may write [see Hill (2.7)] 

sij = csij (2.6-3 3) 

where Sij is constant nonzero reference state of stress and c is a monotonically 
increasing function, say, of 1. The introduction of Equation (2.6-33) into 
Equation (2.6-20) gives 

dEc = cSi, dA 

which upon integration yields 

E:  = Sij cd l  = [ f c d l ]  sij 

If 4 is identified with (J’cdA)/c, then the latter equation assumes the form of 
Hencky’s Equation (2.6-27). Consequently, for proportional loading, the 
incremental or flow theory and the deformation or total strain theory of 
plasticity coincide. 

Proportional loading is a sufficient condition for the incremental and 
deformations theories to agree. This is not to say that for some other 
nonproportional loadings that the two theories cannot agree approximately. 
Examples for which this can occur are discussed in reference (2.6). In many 
cases the deformation theory has been used because of the relative mathemat- 
ical simplicity it embraces. 

2.6.4 Rigid Plastic Materials 

In regions of rather extensive plastic deformation the elastic strains may be 
much smaller than the plastic strains and can be neglected. With the neglect of 
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the elastic strains the material is considered incompressible. If work hardening 
is insignificant, then the material can be modeled as being rigid-perfectly 
plastic. The slip-line theory then offers an effective method of solution for 
plane strain problems satisfying these conditions. A brief discussion of the 
theory is presented here. The reader interested in more detail is referred to Hill 
(2.7), Kachanov (2.6), or Mendelson (2.8). 

Under plane strain loading u, = u,(xI,x2),  u2 = u2(x,,x2), and u3 5 0, 
which implies that ci3 = 0. Under this condition Equation (2.6-20) provides 
that si3 = 0 and whence oIJ = 6 2 3  = 0. Moreover, 

6 3 3  = + b l  1 + 0 2 2 )  = P (2.6-34) 

is a principal stress. The other two principal stresses are 

'11 + 622 + [ ("" "">' + .:,]+ (2.6-35) 
2 -  

which upon the introduction of the von Mises yield criterion 

can be written as 

"') = p k k 
6 2  

(2.6-36) 

(2.6-37) 

where k can be identified with the maximum shear stress. Hence, the state of 
stress at a point can be specified in terms of the hydrostatic pressure p and the 
yield stress k in shear. There remains to specify the principal directions or, 
equivalently, the direction of maximum shear stress. 

It is convenient to introduce a set of orthogonal slip lines a and p that are 
tangent at every point to the directions of maximum shear stress. Since the 
principal directions of stress and strain increments coincide, the rate of 
extension along a slip line is zero for an incompressible material. Let 4 (see 
Figure 2.9) be the angle measured positive counterclockwise from the x,-axis 
to the local tangent of an a-line. It follows for the stress state shown that 

cI1 = p - ksin24 

c~~~ = p + k sin 2 4  

0 1 2  = k c 0 ~ 2 4  

(2.6-38) 

The substitution of Equation (2.6-38) into the equilibrium equations 
[Equation (2. I -  lo)] yields 

(2.6-39) 
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X l  

Figure 2.9 Stresses on a small curvilinear element bounded by pairs of GI- and @lip lines. 

in the absence of body forces. If a local Cartesian coordinate system (s,, s2, s3) 
is introduced with s1 and s2 tangent to the a- and p-lines, respectively, then 
Equation (2.6-39) is still applicable if x i  is replaced by si and 4 = 0. Hence, 
Equation (2.6-39) assumes the simple form 

a 
- ( ~ + 2 k 9 5 ) = 0  
a s 2  

(2.6-40) 

Integrating Equation (2.6-40) we obtain the Hencky equations 

p - 2k4 = constant on an a-line 

p + 2k95 = constant on a p-line 
(2.6-4 1)  

If the stresses are prescribed on the entire boundary S = ST, then 
Equation (2.6-41) is sufficient to determine p and 4, and hence the state of 
stress, throughout the body. On the other hand, if velocities are prescribed on 
a part of the boundary S,, then Equation (2.6-41) is insufficient to obtain a 
solution and it must be supplemented with kinematic relations. 

Let u and u be velocity components along the a- and p-lines, respectively. 
Within second-order terms the increment of velocity (see Figure 2.10) along an 
a-line is (u + du - u d 4 )  - u. A similar relation can also be written for the /I- 
line. Since the rates of extension along the slip lines vanish, then 

du - u d 4  = 0 along an a-line 

du + u d 4  = 0 along a p-line 
(2.6-42) 

The simultaneous solution of Equations (2.6-41) and (2.6-42) is generally a 
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X l  

Figure 2.10 Velocity components along a- and /?-slip lines. 

formidable task and is usually done by trial and error. A slip line field satisfying 
the boundary conditions on S, is constructed. The boundary conditions on S, 
are checked and the slip line field is modified accordingly. The procedure is 
repeated until all the boundary conditions are satisfied. 

We list below some of the properties of slip lines and refer the reader to 
Kachanov (2.6) for their proofs. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

Along a slip line the hydrostatic pressure p is proportional to the angle 
q5 between the line and the x,-axis. 
The change in the angle 4 and hydrostatic pressure p is constant in 
passing from one slip line to another of the same family along any 
intersecting slip line. 
If the value of p is known at one point in a given slip line field, i t  can be 
deterinined throughout the field. 
If a segment of a slip line is straight, then the state of stress is constant 
along this segment. 
If both the a- and @-lines are straight in a region, then a uniform state of 
stress exists in the region. 
If a segment of an a(@)-line cut by two @(a)-lines is straight, then any 
other a( @)-line between these two @(a)-lines is straight. 
Straight segments of slip lines between two slip lines of the other family 
have the same lengths. 
The radii of curvature of a(p)-lines where they intersect a @(a)-line 
decreases in proportion to the distance traveled in the positive direction 
along a p(a)-line. 
The center of curvature of the @(a)-lines at points of intersection with 
a( @)-lines form an involute of the @(a)-line, 
If the radius of curvature of an a( @)-line is discontinuous as it crosses a 
@(,)-line, then all a( p )  lines crossing the @(a)-line are discontinuous as 
are the stress gradients. 



132 Advanced Fracture Mechanics 

- - 

These properties will be exploited in Chapter 5 to construct and interpret slip 
fields near the crack tip in an elastic-perfectly plastic material. 

2.7 Elastic-Viscoplasticity 

As the name implies, elastic-viscoplasticity characterizes the response of 
materials that are not only elastic but also exhibit strain rate dependent 
permanent deformation. The primary usefulness of such a theory is for the 
representation of the constitutive behavior of materials that are strain rate 
sensitive in the inelastic range. Figure 2.1 1 shows, for titanium, the behavior of 
interest . 

In contrast to the well-established character of elastic, viscoelastic, and 
elastoplastic behavior, viscoplasticity is still in a formative stage. A number of 
competing constitutive models currently exist. From a structural mechanics 
point of view at least, there are three requirements of any such model: (1) a 
physical basis, (2)material property values that can be obtained in a 
straightforward manner, and (3) ease of application. Which model will prove 
to be able to satisfy these requirements best is uncertain now. Nevertheless, the 
model developed by Bodner and his associates (2.22,2.23) clearly has a number 
of advantages for structural mechanics applications in general and for fracture 

5 

4 

n m 
Q 
I 
0 3  
0 - 
Y 

D 
2 

1 

Figure 2.1 1 Influence of strain-rate on the stress-strain curves for titanium (2.21). 
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mechanics in particular. Accordingly, and also because a full discussion of this 
subject is beyond the scope of this book, we will confine our discussion to 
Bodner's approach. 

The constitutive relations for an elastic-viscoplastic work hardening 
material proposed by Bodner and Partom (2.22) offer two important 
advantages for fracture mechanics problems. Neither a separate specific yield 
criterion is required nor is it necessary to consider loading and unloading 
separately. A disadvantage is that both elastic and inelastic deformations are 
present at all stages of loading and unloading. However, the plastic 
contribution is very small when the material behavior should be essentially 
elastic. The model does allow anisotropic (directional) hardening- the 
Bauschinger effect-to be included in the material characterization. 

Consistent with the usual assumption of elastoplastic material behavior, the 
Bodner-Partom treatment assumes that the elastic and plastic strain rate 
components are additive at all stages of deformation [cf. Equation (2.6-l)]. 
Thus, the total rate of strain can be written as 

6 ,  = s; + dP. V (2.7-1) 

The elastic strain rates are related to the stress-rates by Hooke's law. Thus, 
from Equation (2.3- 18) 

(2.7-2) 

It is assumed that the plastic deformation is incompressible, whereupon 
Equation (2.6-2) is applicable, and that the Prandtl-Ruess flow rule, 
Equation (2.6-20), holds. Introducing the second invariant of the plastic 
deformation rate deviator 

Dl; = 4k:k: (2.7-3) 

then, using a dislocation dynamics argument, it is assumed that 04 is a 
function of J 2 .  That is, since Dl; is a measure of the effective inelastic shear 
deformation rate and J2 is the effective shear stress, the relation 

04 = f ( J 2 )  (2.7-4) 

can be considered to be a multidimensional generalization of the uniaxial 
result. 

The particular form selected by Bodner and Partom is one that they believe 
has both a physical basis and allows for flexibility in modeling actual material 
response. This is 

Dl; = 0; exp[-(A2/J2)n] (2.7-5) 

where 

(2.7-6) 
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and Di) n, and 2 are material constants; each of which has a physical 
interpretation.* Specifically, Di is the limiting value of D$ for very high 
stresses, n is related to the steepness of the DZ versus J ,  curve and to the rate- 
sensitivity, while Z is a history-dependent internal state variable that 
represents the overall resistance to plastic flow. For isotropic hardening, Z is a 
scalar that corresponds in a general way to the level of the flow stress. An 
empirically based form must be postulated with 2 being a function of some 
measure of hardening-for example, the rate of plastic work. 

Bodner and Aboudi (2.23) offer a rationale for arriving at the relation 
selected more arbitrarily by Bodner and Partom (2.22). Their argument is 
based on the plastic work W, being the controlling factor in hardening. Then 

(2.7-7) 

where W,can be obtained from Equation (2.6-24). The form that has been used 
in the Bodner-Partom model is 

(2.7-8) 

On the basis of Equation (2.7-8), Equation (2.7-7) can be integrated to give 

2 = Z ,  - (2, - 2,) exp( - rnWp/ZO) (2.7-9) 

where Z o ,  Zl, and m are temperature-dependent material constants. Specifi- 
cally, m indicates the rate of work hardening, Zo represents the initial hardness 
while Z ,  is the upper limit of 2. Note that the hardness must have an upper 
limit to preclude DS from approaching zero for large Wp. This would imply 
fully elastic behavior at large strains-behavior that would obviously not be 
realistic. 

The relations given above are applicable to multi-dimensional deformation 
conditions, subject to the limitations of small strains and isotropic behavior. 
But, to demonstrate more clearly the material response that they predict, they 
can be specialized to uniaxial conditions. Then, taking 6, , as the only nonzero 
stress component, use of Equations (2.6-18) and (2.7-3) give J2 = a:,/3 and 
D$ = 3(i:1)2/4. Substituting these values into Equation (2.7-5) then leads to 

It is convenient to define 

(2.7 - 1 0) 

(2.7-1 1) 

* In recent papers, Bodner and his associates have redefined A as simply Z /  J 3  and m as n / Z , .  
These changes do not affect the concepts that are involved in this approach. 
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and 

6 1  1 y=- 

so that Equation (2.7-10) can be expressed in the simpler form 
- 1/2n 

Y = [2 In (31 
(2.7- 1 2) 

(2.7-1 3) 

This result is shown in Figure 2.12 for selected values of n. Note that Bodner 
suggests that a temperature dependence can be incorporated in this formula- 
tion via 

n = B + C / T  (2.7-14) 

where B and C are material constants. Hence, Figure 2.12 also illustrates the 
behavior predicted by the Bodner-Partom model as a function of both strain 
rate and temperature. 

Values of the parameters for the Bodner-Partom model have been 
determined for a number of materials including titanium, copper, and the 

1.2 
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Figure 2.12 The uniaxial stress and plastic strain rate relation for the Bodner-Partom model. 
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engine material Rene’ 95. Parameters for a particular material can be obtained 
by fitting test results at two constant rates of extension. For example, values 
for commercially pure titanium at room temperature are E = 1.18 x 
lo5 MPa, p = 0.44 x lo5 MPa, p = 4.87 gm/cm3, Z,, = 1.15 x lo3 MPa, 
Z, = 1.40 x lo3 MPa, Do = lo4 sec-’, n = 1, and m = 100. These values 
were used to calculate the family of curves shown in Figure 2.1 1 (2.23). 

Note that the model can be based upon material parameter values 
determined at moderate strain rates, but it will still reflect the effects 
anticipated at very high strain rates. This can be seen from Figure 2.12. This is 
important to the subject of dynamic fracture mechanics where the strain rates 
in the near vicinity of a crack tip are too high to be accessible to commonly 
used test procedures. As the results of Abuodi and Achenbach (2.24) for rapid 
crack propagation and of Merzer (2.25) for adiabatic shear demonstrate, 
predictions based upon the Bodner-Partom model can offer realistic results. 
Further discussions of this topic are given in Chapter 4. 
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3 
LINEAR ELASTIC F R A C T U R E  M E C H A N I C S  

In this chapter fracture mechanics within the confines of the linear theory of 
elasticity-that is, linear elastic fracture mechanics (LEFM)-is treated. It is 
not the intent of this chapter to present a complete expost on LEFM. Not only 
would it be impossible to do so in a single chapter, but it is unnecessary due to 
the numerous texts (3.1-3.7) devoted almost entirely to this subject. Rather, 
the objective is to set forth the theory, principles, and concepts of LEFM in 
sufficient detail so that this and the preceding chapter can serve as a 
springboard for addressing the advanced topics in the subsequent chapters. In 
so doing, it is hoped that the limitations inherent in LEFM that must be 
relaxed in order to treat the advanced subjects will become more readily 
apparent. An equally important goal is to identify those principles and 
concepts of LEFM that can be extended or generalized to nonlinear fracture 
mechanics. 

This chapter commences with an analysis of the linear elastic crack tip stress 
and displacement fields whose strengths are measured by the stress intensity 
factor K. The concept of small-scale yielding and the existence of a “K-  
dominant” region that form the modern view of LEFM and that lead 
naturally to a fracture criterion are presented. Because of its importance, 
methods for determining the stress intensity factor for a cracked body and its 
loading are discussed. Next, the energetics of cracked bodies are examined. 
This gives rise to the energy release rate parameter G and the energy balance 
criterion for fracture. The path-independent J-integral for nonlinear elastic 
materials and other invariant integrals are treated. The equivalence between 
various LEFM fracture characterizing parameters-the stress intensity 
factor, the energy release rate, and the crack-tip opening displacement-is 
established. The plastic zone attending the crack tip and its relationship to the 
fracture toughness is examined. This chapter concludes with a treatment of 
stable crack growth in a material whose fracture resistance increases with 
crack extension. 

3.1 Linear Elastic Crack-Tip Fields 

Aside from ideally brittle materials, any loading of a cracked body is 
accompanied by inelastic deformation in the neighborhood of the crack tip 
due to stress concentrations there. Consequently, the ultimate utility of an 
elastic analysis of a real cracked body must necessarily depend upon the extent 
of the region of inelastic deformation being small compared to the size of the 
crack and any other characteristic length. Inelastic deformation satisfying this 
138 
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(a) (b) (C) 

Figure 3.1 Three basic loading modes for a cracked body: (a) Mode I, opening mode; (b) Mode 
11, sliding mode; (c) Mode 111, tearing mode. 

condition is referred to as small-scale yielding and is embodied in the concept 
of linear elastic fracture mechanics (LEFM). 

Other essential concepts of LEFM are most readily assimilated and 
demonstrated for plane elasticity problems. Let the crack plane lie in the 
x,x,-plane and take the crack front to be parallel to the x,-axis. For plane 
problems the stress and displacement fields are functions of x, and x2 only. 
The deformations due to the three primary modes of loading are illustrated in 
Figure 3.1. Mode I is the opening or tensile mode where the crack faces 
separate symmetrically with respect to the x1 x2- and x1 x,-planes. In Mode 11, 
the sliding or in-plane shearing mode, the crack faces slide relative to each 
other symmetrically about the x1 x,-plane, but antisymmetrically with 
respect to the x,x,-plane. I n  the tearing or antiplane mode, Mode 111, the 
crack faces also slide relative to each other but antisymmetrically with respect 
to the x1x2- and x,x,-planes. In the vernacular of dislocation theory these 
three modes correspond, respectively, to wedge, edge, and screw dislocations. 

An investigation of crack-tip stress and displacement fields is important 
because these fields are typically the ones that govern the fracture process 
occurring at the crack tip. In the following sections, the crack-tip fields are 
developed for the three primary modes of loading in a homogeneous, 
isotropic, linear elastic material. 

3.1.1 The  Antiplane Problem 

Because of its relative simplicity, the antiplane, Mode 111 problem wherein 
u l  = 14, = 0 and u3 = u , (x~ ,  x,) is considered first. Equation (2.2-8) yields the 
following nonzero strain components 

-33, = h . 0 :  (3.1- 1) 

where Greek subscripts are understood to have the range 1, 2. Therefore, 
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according to Equation (2.3-9) the nontrivial stress components are 

0 3 .  = 2 ~ 3 a  (3.1-2) 

Finally, the only relevant equation of equilibrium in the absence of body 
forces is 

03a,a = 0 (3.1 -3) 

Equations (3.1-1)-(3.1-3) can be combined to yield Laplace's equation 

U3,aa = v 2 u 3  = 0 (3.1-4) 

where V 2  = a2/dx:  t a 2 / a x i  is the two-dimensional Laplacian operator. 
The complex variable method provides a powerful technique for establish- 

ing the solution of Equation (3.1-4) and other plane elasticity problems. Let 
the complex variable z be defined by z = x ,  + ix, or, equivalently, in polar 
coordinates z = re", where i = m. The overbar is used to denote the 
complex conjugate; for example, Z = x ,  - ix, = rev ie .  It  follows that 

x ,  = Re@) = ( z  + 2 ) / 2  
x2 = Im(z) = ( z  - 1 ) / 2 i  

(3.1-5) 

where Re and Im denote the real and imaginary parts, respectively. By chain 
rule differentiation one can write 

and, therefore, 

(3.1-6) 

(3.1-7) 

Let f (z) be a holomorphic function* of the complex variable z, which can be 
written as 

f(z)  = u(x, ,x,)  + iv(x,,x,) (3.1-8) 

where u and u are real functions of x ,  and x,. I t  is permissible to write 

(3.1-9) 

where the prime is used to denote a differentiation with respect to the 
argument of the function. It  follows that 

* A complex function is said to be holomorphic or analytic and regular in a region if i t  is single 
valued and if its complex derivative dj'/dz exists in the region. 
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/- 

Figure 3.2 Crack-tip region and coor- 
dinate system. 

whence upon the substitution of Equation (3.1-8) yields 

au a U  au au 
ax, ax, ax2 ax2 

au du a U  

a x ,  ax2’  ax,  ax, 

- + i - = - -  i- 

Equating real and imaginary parts we obtain the Cauchy-Riemann equations 

- -- all -- -=- 

which may be combined to yield 

v 2 u  = v2v = 0 

Thus, the real and imaginary parts of any holomorphic function are solutions 
to Laplace’s equation. 

Therefore, the solution of Equation (3.1-4) can be written as 
1 

cc u3 = - Cf(z) + m1 (3.1 - 1 0) 

where f(T) = u(xl,x2) - iv(x,,x,) is the complex conjugate of f(z).* 
Introducing Equation (3.1-10) into Equation (3.1-1) and employing Equation 
(3.1-9) we find that 

(3.1-11) 

Combining Equations (3.1-2) and (3.1-1 1) one can write 

031 - i032  = 2 f ’ ( ~ )  (3.1 - 1 2) 

Let the origin of the x,, x2 ,  x3 coordinate system be located at the tip of a 
crack lying along the negative x,-axis as shown in Figure 3.2. Attention is 
focused upon a small region D containing the crack tip and no other 

* Frequently, the notationf(z) is also used to denote the complex conjugate of f ( r ) ,  
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singularities. The dominant character of the stress and displacement fields in D 
is sought. Consider the holomorphic function 

f(z) = Cz'+l, C = A + iB (3.1 - 1 3) 
where A, B, and A are real undetermined constants. For finite displacements at  
the crack tip ( l z l  = r = 0), 3, > - 1. The substitution of Equation (3.1-13) into 
Equation (3.1-12) yields 

031 - io,, = 2(A + 1)Cz' = 2(1 + l)r'((A + iB)(coslO + ' is inlo)  
whence, 

031 = 2(A + l)r'(AcosAO - BsinA6) 
032 = -2(A + l)r'(AsinAO + BcosA6) 

(3.1-14) 

The boundary condition that the crack surfaces be traction free requires that 
032 = 0 on 6 = &TI. Consequently, 

AsinAn + BcosAn = 0 
AsinAn - BCOSAR = 0 

To avoid the trivial solution the determinant of the coefficients of the 
foregoing equations must vanish. This leads to 

sin 2An = 0 
which for A > - 1 has the roots 

i, = -+, n/2, n = 0,1,2 ,... 
Of the infinite set of functions of the form of Equation (3.1-13) that yield 

traction-free crack surfaces within D, the function with A = - $  for which 
A = 0 provides the most significant contribution to the crack-tip fields. For 
this case Equations (3.1-14) and (3.1-10) become, respectively, 

and 

(3.1- 15) 

(3.1 - 16) 

where B has been chosen such that 

The quantity K,,, is referred to as the Mode I11 stress intensity factor, which 
is established by the far field boundary conditions and is a function of the 
applied loading and the geometry of the cracked body. Whereas the stresses 
associated with the other values of 1 are finite at  the crack tip, the stress 
components of Equation (3.1-15) have an inverse square root singularity at  
the crack tip. It is clear that the latter components will dominate as the crack 
tip is approached. In this sense Equations (3.1-15) and (3.1-16) represent the 
asymptotic forms of the elastic stress and displacement fields. 
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3.1.2 The Plane Problem 

Before discussing methods for determining the stress intensity factor and the 
role it plays in LEFM, the asymptotic fields for the plane strain problem, 
wherein u1 = ul(xI,x2), u2 = u2(xl,x2), and u3 = 0, will be developed. 
According to Equation (2.2-8) the strain components gJi will vanish. It follows 
from Equation (2.3-18) that c3a = 0 and 

(3.1 - 18) 
0 3 3  = Vaaa 

where gap = crap(x1,x2). In the absence of body forces the equilibrium 
equations, Equation (2.1-lo), reduce to 

0dp.a = 0 (3.1-19) 

and the nontrivial compatibility equation [Equation (2.2-lOa)] becomes 

Eap.ap - Eaa,bp = 0 (3.1-20) 

The equilibrium equations will be identically satisfied if the stress compo- 
nents are expressed in terms of the Airy stress function, Y = Y(x,, x2), such 
that 

(3.1-21) 

After the introduction of Equation (3.1-21) into Equation (3.1-18), the 
compatibility equation requires that the Airy function satisfy the biharmonic 
equation 

Yaapp = VZ(V2Y) = 0 (3.1-22) 

Noting that V2Y satisfies Laplace’s equation, one can write analogous to the 
antiplane problem that 

(3.1-23) 

where f ( z )  is a holomorphic function. Equation (3.1-23) can be integrated to 
yield the real function 

Y = 4 [ZR(z) + Z i i ( Z )  + o(2) + 6(T)- j  (3.1-24) 

where n(t) and o ( z )  are holomorphic functions. 
The substitution of Equation (3.1-24) into Equation (3.1-21) permits writing 

022 - c1 - 2i0, 4-= a2y 

az2 

= 2[ZB”(Z) + 6”( T)] 
(3.1-26) 
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and 

o,, - io,, = W ( z )  + @(T) + z i i”(T)  + iS”(T) (3.1-27) 

Let 

D = u1 + iu2 (3.1-28) 

define the complex displacement. Consequently, 

a D  
2 - =  e l l  - e2, + 2isI2 aT 

and 

(3.1-29) 

(3.1-30) 

The introduction .of the stress-strain relation, Equation (3.1-18), into the 
preceding equations and the employment of Equations (3.1-25)-(3.1-27) 
provide 

d D  
2p - = - [ziiyz) + iS”(Z)] az 

and 

= 2[R’(z) + ii’(L)] 

(3.1-31) 

(3.1-32) 

Integrating Equations (3.1-31) and (3.1-32) we obtain within a rigid body 
displacement 

2 p D  = K ~ ( z )  - zQ’(Z) - G’(T) (3.1-33) 

for the complex displacement where 

u = 3 - 4 v  (3.1-34) 
This complex variable formulation is equally valid for generalized plane stress 
[see Green and Zerna (3.8)] if 

3 - v  
l + v  

K=- (3.1-35) 

is used. 
To examine the character of the Mode I stress and displacement fields, we 

again position the origin of the coordinate system at the crack tip. Due to 
symmetry with respect to the crack plane a solution of the form 

where A, B, and E. are real constants is chosen. For nonsingular displace- 
ments at the crack tip, A > - 1 .  The introduction of Equation (3.1-36) into 

0 = Az‘”, 0’ = &”+’ (3.1-36) 
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Equation (3.1-27) yields 
o~~ - icI2 =(I + l)rA{A[2cos18 + Icos(I  - 2)8] + BcosI8 

.% 

-i[AIsin(I- 2)8 + BsinAO]} (3.1-37) 

which must vanish for 8 = f n. Consequently, 

A(2 + I)COS In + BCOS In = 0 
A I  sin In + B sin In = 0 

for which a nontrivial solution exists if 

sin 2In = 0 

or, equivalently, 
I = - L  2 , 3 ,  n n = 0 , 1 , 2  ,... 

Again the dominant contribution to the crack-tip stress and displacement 
fields occurs for I = - $ for which A = 2B. As in the antiplane problem, an 
inverse square root singularity in the stress field exists at the crack tip. 
Substituting Equation (3.1-36) with A = 2B and 1 = -4 into Equa- 
tions (3.1-25), (3.1-33), and (3.1-37), we find that 

1 - sin(B/2) sin (38/2) [ 1 + sin(8/2) sin(38/2) 

cos(8/2)[~ - 1 + 2sin2(8/2)] {::I = 2 (&y { sin(8/2)[~ + 1 - 2cos2(8/2)] 

(3.1-38) I K~ cos (6/2) sin(0/2) cos(30/2) (i3 =of 
and 

} (3.1-39) 

The Mode I stress intensity factor K I  is defined by 
(3.1-40) 

When the foregoing is repeated with A and B being pure imaginary, the 
Mode I1 fields 

- sin(8/2)[2 + cos(8/2)cos(38/2)] 
cos(8/2)[ 1 - sin(8/2) sin(38/2)] 
sin(8/2) C O S ( ~ / ~ )  cos(38/2) 

and 

sin(6/2)[~ + 1 + 2cos2(8/2)] 
- c o s ( ~ / ~ ) [ K  - 1 - 2sin2(8/2)] 

are obtained where 

(3.1-41) 

(3.1 -42) 

(3.1-43) 
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is the Mode I1 stress intensity factor. For plane strain a33 = v(al, + 022) 

whereas a33 = 0 for plane stress. 

3.1.3 Fracture Criterion 

It bears repeating that the foregoing stress and displacement fields for the three 
modes of loading represent the asymptotic fields as r --t 0 and may be viewed 
as the leading terms in the expansions of these fields about the crack tip. The 
applied loading a, the crack length a, and perhaps other dimensions of the 
cracked body will affect the strength of these fields only through the stress 
intensity factor; that is, K = K(o ,a ) .  When using these expressions, attention 
must be confined to a sufficiently small neighborhood of the crack tip where 
only the leading terms are dominant. In Figure 3.3, a measure of the 
characteristic size of this “K-dominant” neighborhood is represented by D. 

Because of the singular nature of the elastic stress field, there exists an 
inelastic (plastic) region surrounding the crack tip where the processes of void 
nucleation, growth, and coalescence that constitute ductile fracture occur. Let 
R be a representative dimension of this inelastic region. An estimate for R can 
be obtained, say, for Mode I by equating a22 to the yield stress ay at r = R and 
8 = 0, so that 

(3.1-44) 

Within this region the linear elastic solution is invalid. It is not possible, 
therefore, to characterize directly the fracture process with a linear elastic 
formulation. This is not essential provided the inelastic region is confined to 
the K-dominant region. The situation where R is small compared to D and any 
other geometrical dimension is referred to as small-scale yielding. 

/ \ 
\ 
\ 

\ 
I 

/ 1 i : ; u n d a r y  Outer 

K-dominant 
region ---- 

Figure 3.3 Basis of linear elastic fracture mechanics. 
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The elastic analysis indicates that the distributions of stresses and strains 
within the K-dominant region are the same regardless of the configuration 
and loading. Thus, given two bodies with different size cracks and different 
loadings of the same mode, but otherwise identical, then the near tip stress and 
deformation fields will be the same if the stress intensity factors are equal. 
Consequently, the stress intensity factor characterizes the load or deformation 
experienced by the crack tip and is a measure of the propensity for crack 
extension or of the crack driving force. That is, if crack growth is observed to 
initiate in the first body at a certain critical stress intensity factor, then crack 
extension in the second body can be expected when its stress intensity factor 
attains the same critical value. Therefore, within the confines of small-scale 
yielding the LEFM fracture criterion for incipient crack growth can be 
expressed as 

K(o ,a )  = K ,  (3.1-45) 

where K, is the critical value of the stress intensity factor K and is a measure of 
the material’s resistance to fracture. 

In general the assessment of the structural integrity of a cracked component 
requires a comparison of the crack driving force-for example, as measured 
by the stress intensity factor K, and the material’s fracture toughness, say, K,. 
An assessment involves either determining the critical loading to initiate 
growth of a prescribed crack or establishing the critical size of a crack for a 
specified loading. The determination of K and K, for use in an evaluation 
within LEFM is considered in the following sections. 

3.2 The Stress Intensity Factor 
The task of determining the stress intensity factor is by no means a simple one. 
Because of. the difficulties in satisfying the boundary conditions for finite 
bodies, only a limited number of closed-form solutions exist. Nevertheless, 
when the site of the crack is small compared to other dimensions of the body, 
the crack can be viewed as being in an infinite body. In  this case there are 
standard techniques for establishing the stress intensity factor. 

3.2.1 Closed Form Solittions 

Based upon the analysis of the preceding section, the asymptotic form of Q([) 
for the plane strain and plane stress problems can be written as 

whence 

(3.2-1) 

(3.2-2) 

For convenience z has been replaced by 5 where the latter is understood to be 
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measured from the crack tip. It follows from Equation (3.2-2) that 

K, - iK,, = lim (2(2z(J*a’(l,)} (3.2-3) 

Hence, the task of determining the stress intensity factor reduces to 
establishing Q’(l,) and proceeding to the limit in Equation (3.2-3). 

Consider an infinite body with n collinear planar cracks lying along the 
segments L,, a, < x1 < b,, r = 1,2,. . . , n, of the real axis. Suppose that for the 
prescribed loading the stress field is known for the uncracked body where the 
stress components on the surface x2 = 0 are 

4-0 

o2i = Pi(x1) 
It is now necessary to superimpose the solution to the residual problem where 
the remote boundary is traction free and where the prescribed stresses on the 
crack faces are now 

where Lis the union of L,. Only the stress field of the latter problem is singular 
at the crack tip and, therefore, is instrumental in determining the stress 
intensity factor. 

Outside of the cracks on x2 = 0 there is continuity of the displacements and 
the stress components oZi. For both plane strain and plane stress, continuity of 
the displacements [see Equation (3.1-33)] requires that 

02{ = -pi(xl) on L (3.2-4) 

where the + and - denote evaluations for x2 + O f  and x2 + 0-, respectively. 
Since limx2,0t Q(z) = limxz+o- a@), the above equation can be rewritten as 

- -  
= lim {KO(~)  + za’(T) + ~ ‘ ( r ) }  

xz-+o- 

Consequently, the function 

(3.2-5) 

is continuous outside of the cracks on x2 = 0 and, moreover, is holomorphic 
in the whole plane cut along L. 

Similarly, continuity of the stress vector oz2 - io,, [see Equation (3.1-27)] 
demands that 

- 3 _ _  

R’+(Xl) + Q“(x,) + X,Q”+(X,) + O”+(X,) - -  
= a’-(x,) + a’-(x,) + xla”-(Xl )  + O”-(x,) 

or, alternatively, - - -  
lim {a’(~) - a‘(z) - z ~ ” ( T )  - ~ ’ ’ ( z ) }  

X Z - r O +  - - -  
= lim { a ’ ( ~ )  - a’@) - zQ”(2) - o”(Z)) 

x z + o -  
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Therefore, - -  
@(z)  = R(z) - znyq - oyq (3.2-6) 

is continuous outside of the cracks on x2 = 0 and is holomorphic in the whole 
plane cut along L. Equations (3.2-5) and (3.2-6) further imply that Q(z) is also 
holomorphic in this same cut plane. Equation (3.2-6) can be used to eliminate 
o ’ ( z )  in favor of +(z)  so that the complex stress and displacement can be 
written as 

- 
r~~~ - ia,, = R’(z) + W ( T )  + ( z  - T)R”(z) - @’(T) (3.2-7) 

and - 
~ , u D  = KR(z) - R(T) + (5 - z)R’(z) + @(Z) (3.2-8) 

Equation (3.2-7) can be used to express the boundary conditions on the 
crack surfaces as 

-p2(x1) + ipl(xl) = R’+(x , )  + R’- (x l )  - +’-(x1) 

-P2(X1) + iP l (X, )  = R’+(Xl) + Q’-(xl) - +’+(XI)  

and 

on L. Adding and subtracting the foregoing equations we have 

2R‘+(x1) - $‘+(xl)  + 2Q’-(x,) - t,hf-(x1) = -2p2(x1) + 2ipl(xl)  (3.2-9) 
and 

+’+(xl) - + ’ - ( X I )  = 0 (3.2-10) 

for x1 on L. 
The problem of finding a sectionally holomorphic function in the whole 

plane subject to the boundary condition of the form of Equation (3.2-9) is 
known as a Hilbert problem. An accounting of the solution of the Hilbert 
problem can be found in references (3.8)-(3.11). For the present problem the 
solution can be written as 

where X ( z )  is the Plemelj function 
n 

(3.2-1 2) 
k = l  

where the branch is selected such that z”X(z)  --t 1 as IzI + m. The undeter- 
mined function P(z )  is holomorphic in the whole plane. Because the stresses 
must vanish as 121 -+ 00 and because X ( z )  is of the order of z - “  for large 121, 
then P(z)  is a polynominal of degree n - 1 with n undetermined coefficients. 
These coefficients are chosen such that the displacement field is single valued; 
that is, 

(3.2- 1 3) 
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where C is any closed contour within the body and, in particular, a contour 
enclosing a crack. When Equation (3.2-13) is written for contours enclosing 
each crack, then n linear, complex algebraic equations for determining the n 
coefficients are obtained. For the homogeneous Hilbert problem defined by 
Equation (3.2-10) with vanishing stresses as IzI --t 00, 

*'(z) = 0 (3.2- 14) 

If contrary to assumed here, there is a nonzero resultant of the initial tractions 
on the crack surfaces, then a nontrivial $'(z) exists. The development for the 
latter can be found in England (3.9) with examples given by Paris and Sih 

If a similar analysis is repeated for the antiplane strain loading where 
(3.12). 

6 3 2  = p 3 ( ~ I )  on L for the uncracked body, then 

where P ( z )  is again a polynomial of degree n - 1. The coefficients of this 
polynomial are determined such that SC 2 dz = 0 (3.2- 16) 

for closed contours enclosing each of the n cracks. 

function for this case is 
Consider a single crack extending from x1 = - a  to x1 = a. The Plemelj 

X ( z )  = ( z  + a)-+  - a)-+ = ( 2 2  - d)-+ 
Letting z - a = rleiel and z + a = r2eiez, we conclude that 

X+(X1) = - x - ( x , )  = - i ( d  - x:)-f, 1x11 < a 

For single-valued displacements, P(z )  = 0 and Equation (3.2-1 1) becomes 

(z2 - a*)-* (a2 - t2)f[p2(t) - i p l ( t ) l  dl (3.2-17) Q'(z) = - S- 0 , t - z  2n 
In general the usual approach to determine Q'(z) is to express the foregoing 
integral in terms of a contour integral and to evaluate the latter by Cauchy's 
integral theorem. However, for the present purposes this is not necessary. 
Instead, write z = + Q and substitute Equation (3.2-17) into Equation (3.2-3) 
to obtain 

for the stress intensity factors at the crack tip x, = a. A similar analysis for the 
antiplane strain problem yields 

(3.2- 1 9) 
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If p i ( t )  is an even function of t ,  then it is convenient to introduce the change 
of variable t = asin $J so that Equations (3.2-18) and (3.2-19) become 

(3.2-20) 
K,, ,  = 2 (:y Jy2 p3(a sin 4) d $ ~  

For an infinite body subjected to uniform remote tractions t$ (the Griffith 

K ,  = KII = = C T T ~ ~  (3.2-21) 

If equal and opposite forces per unit thickness are applied to the crack surfaces 
at x1 = 6 such that p2(x1) = P6(x1 - b) and pl(xl)  = QS(xl  - b), where 
6 ( x ,  - b) is the Dirac delta function, then Equation (3.2-18) yields 

problem), then p i  = 02 and Equation (3.2-20) leads to 

P - i Q  a + b *  
(xu)* ( a  - b )  

-- - - 

Koiter (3.13), using the method of this section, investigated the problem 
depicted in Figure 3.4 of a plane body that contains an infinite periodic array 
of collinear cracks and that supports uniform remote tractions 0;. While 

\ i 

Figure 3.4 Periodic array of collinear cracks. 
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Koiter computed the change in the strain energy due to the presence of the 
cracks, he stopped short of determining the stress intensity factors. Neverthe- 
less, by exploiting the relationship between the rate of decrease in the strain 
energy and the stress intensity factors of Section 3.3 [cf. Equation (3.3-17)], it 
is a simple manner to show that 

(3.2-22) 

The latter were also obtained by Irwin (3.14) using the Westergaard stress 
function. In the limit as b co, Equation (3.2-21) for Modes I and 11 is 
recovered from Equation (3.2-22). Equation (3.2-22) indicates that there is 
insignificant interference between the cracks when the periodic spacing is 
greater than about twice the crack length. 

From Mode I loading the shear stress oI2  vanishes on the planes of 
symmetry represented by the dashed lines in Figure 3.4. If the body is cut 
along a pair of these planes, a finite width strip supporting a uniform remote 
stress oT2 and containing variously a central crack, a single edge crack or 
double edge cracks is obtained. In addition a nonuniform stress ol  acts on the 
exposed planes. However, if the crack tip is sufficiently far removed from these 
edges, then the influence of the latter stress on the stress intensity factor will be 
relatively small. For example, Paris and Sih (3.12) demonstrate that the 
difference between Equation 3.2-22 and Isida’s (3.1 5) numerical analysis of the 
remotely stressed center-cracked strip is less than 7 percent for a lb  < 4. The 
dikerence for single-edge- and double-edge-cracked strips is less than 3 per- 
cent for u/b < t .  On the other hand, for ulb << 1 

K I  = 1 . 1 2 & m  (3.2-23) 

and Equation (3.2-22) underestimates the stress intensity factor by 12 percent. 
Until now only cracks with straight fronts have been considered. Sned- 

don (3.16) analyzed the axisymmetric problem of a circular (penny-shaped) 
crack of radius a in an infinite body subjected to a uniform remote uniaxial 
stress. Green and Zerna (3.8) generalized the loading to permit the crack to be 
opened by a normal stress 033 = - p ( p )  depending only upon the radial 
distance p from the center of the crack. Again, there is an inverse square root 
stress singularity at the crack tip and the forms of the near crack-tip stress and 
displacement fields are the same as those for plane strain. The stress intensity 
factor is given by 

(3.2-24) 

which yields for a uniform remote stress 0T3 

(3.2-25) 
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Starting with the crack opening displacement (COD) of Green and Sneddon 
(3.17) for an elliptical crack embedded in an infinite solid loaded by a uniform 
remote stress aj”j normal to the crack plane, and noting that the near crack-tip 
stress and displacement fields relative to a local coordinate system at the crack 
front are the same as the plane strain fields, Irwin (3.18) found that 

(3.2-26) 

In Equation (3.2-26), 2a and 2c are, respectively, the minor and major 
dimensions of the elliptical crack, E(k)  is the complete elliptic integral of the 
second kind and k 2  = (c2 - a2)/c2. The coordinates of a point on the 
boundary of the crack are expressed in parametric form by x1 = c cos 4 and 
x2 = a sin 4. In this case the stress intensity factor varies along the crack front 
from its minimum value 

at the extremities of the major diameter to its maximum value 

(3.2-27) 

(3.2-28) 

at the ends of the minor diameter. Consequently, if crack extension is 
governed by the stress intensity factor attaining its critical value, then the 
elliptical crack will have a tendency to grow into a circular one. Kassir and 
Sih (3.19) have determined the stress intensity factors when the direction of the 
remote uniaxial stress makes an arbitrary angle with the plane of the ellip- 
tical crack. In this case the crack front experiences all three modes of loading. 
For mixed mode loading such as this there is a lack of agreement on what the 
appropriate fracture criterion ought to be. 

Until now primary consideration has been given to cracks in elastic bodies 
of infinite extent because it is frequently possible in these instances to obtain 
closed form expressions for the stress intensity factors. Paris and Sih (3.12) 
present a relatively extensive listing of these factors that can be superposed for 
more complicated loadings. It has been demonstrated by way of examples that 
if an uncracked boundary or another crack is of the order of a crack length or 
more from the crack tip, then these solutions provide reasonable approxi- 
mations for the stress intensity factors. When the interference between the 
crack tip and an uncracked boundary is significant, the task of satisfying the 
boundary conditions on the latter can be sufficiently difficult to preclude 
closed-form expressions for the stress intensity factors. Under such circum- 
stances one must resort to numerical methods of solution. 

3.2.2 Numerical Methods 

In the following some of the more popular methods that have been used to 
determine the stress intensity factors catalogued in references (3.20)-(3.23) are 
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summarized. The boundary condition that the crack surfaces be stress free [cf. 
Equation (3.2-9) with pl(xl) = p 2 ( x , )  = 03 and Equation (3.2-10) will be 
satisfied by 

Q’(z) = (i2 - a2)-’F(z) + G(z) (3.2-29) 

$‘(z) = 2G(z) 

for an internal crack and by 

Q’(z) = z -*F(z)  + G(z) (3.2- 30) 

$’(z) = 2G(z) 

for an edge crack. The holomorphic functions F(z) and G(z) must be 
determined such that the boundary conditions on the uncracked portion of 
the boundary are satisfied. 

In principle, these functions can always be expanded in Laurent series with 
the undetermined coefficients chosen to satisfy the boundary conditions point 
by point. Because this is impractical, truncated series 

N M 
F ( z )  = 1 u,z”, G(z) = 2 bmZm (3.2-31) 

n = O  m = O  

are used. The condition for finite displacements at the crack tip requires that 
the exponents in these series be limited to nonnegative integers. The boundary 
collocation method requires that the boundary conditions be satisfied a t  an 
appropriate number of selected points. The minimum number of points must 
be sufficient to generate enough independent algebraic equations to determine 
the coefficients. Frequently, an improved solution is attained if a number in 
excess of this minimum is chosen. The resulting overdeterminate system of 
equations is satisfied in a least square sense. It is only necessary to determinea, 
in order to establish the stress intensity factor from Equation (3.2-3). 

The stress intensity factors for the single edge notch, three point bend, and 
compact tension fracture specimens were computed by Gross et al. (3.24- 
3.26) using the boundary collocation method. Kobayashi et al. (3.27) used this 
method to determine the stress intensity factor of a central crack in a finite 
width strip. 

The Schwarz-Neumann alternating method [see references (3.28) and 
(3.29)] has been used to study the interference of a crack with a free surface. In 
principle the method is simple, but its application to the numerical solution of 
the crack problem can be tedious. Basically, the method yields a solution in the 
overlapping region of interest formed by two intersecting regions B, and B, 
by alternately solving a sequence of separate, but related, boundary value 
problems in each region. In the limit the solutions in the common region 
converge to the desired solution. 

For example, consider a crack near the free surface of a half space B, and 
assume the surfaces of the crack are subjected to a specified normal pressure. 
Next suppose that the solution for this same crack and pressure loading in an 
infinite medium B2 is known. This solution will give rise to tractions at  the site 
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of the free surface of B,. A residual problem, whereby these tractions are 
negated, is solved for an uncracked half-space. This in turn will produce 
normal tractions at the location of the crack surfaces which must be canceled 
by solving once more the problem of acrack in an infinite medium subjected to 
this new pressure loading. The process of alternately establishing solutions in 
the two regions is continued until the residual tractions on the free surface and 
the crack surfaces are deemed insignificant. 

This approach was used by Smith et al. (3.30) to determine the stress 
intensity factor for a semicircular edge crack in a semi-infinite solid. Smith and 
Alavi(3.31) used this method to establish the stress intensity factor for a penny- 
shaped crack near the free surface of a half-space subjected to uniaxial tension. 
If the crack tip is removed from the free surface by a distance equal to at least 
the radius of the crack, then the stress intensity factor is nearly equal to that for 
a crack in an infinite medium. Shah and Kobayashi (3.32-3.34) used the 
alternating method to study the interaction of an elliptical crack and the free 
surface of a half-space. 

The boundary integral equation method follows from Betti's reciprocal 
theorem, which states that, for a linear elastic body subjected to two different 
loadings, the work done by the first loading acting through the displacements 
produced by the second loading equals the work done by the second loading 
acting through the displacements due to first loading. That is, 

T p u y  dS  + jv F p u p  dV 

P (3.2-32) 

where the superscripts identify the quantities of the given loading. The proof 
of the theorem follows from the principle of virtual work [cf. Equation(2.4-l)] 
and the fact that cr!,!)#) = ojf)~!,!) for a linear elastic material. 

Let the first loading be the one of interest and for the second loading 
consider a system of orthogonal unit loads in the x j  direction acting at point p. 
Define Tj( p, Q )  and Vij( p ,  Q )  to be the tractions and displacements in the xi 
direction at point Q on the boundary due to the unit loads at p. Then, in the 
absence of body forces, Equation (3.2-32) yields 

r r 

for an interior point p and where for convenience the superscript 1 has been 
dropped. In arriving at Equation (3.2-33) a cut is introduced from the 
boundary to a spherical surface enclosing the point p and then the radius of the 
sphere is allowed to approach zero. In the limit as p tends to a point P on the 
boundary [see Rizzo (3.35)] the boundary integral equation becomes 

P 
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On the portion S, of the boundary where the displacements u,(Q) are 
prescribed, the tractions 7JQ) are unknown and vice versa on the portion ST 
of the boundary. In order to solve for these unknowns, Equation (3.2-34) is 
reduced to a system of algebraic equations. This is done by representing the 
boundary by a set of boundary segments over which interpolation functions 
are written in terms of the unknown nodal values; for example, see Cruse 
(3.36). Equation (3.2-34) is written for each nodal point. The resulting algebraic 
equations are solved for the nodal quantities. Once the boundary data has 
been determined, Equation (3.2-33) can be used to  determine the displacement 
at any interior point p. Having established the displacement field in the 
proximity of the crack tip, one can compute the crack opening displacement 
and/or the stresses and numerically extrapolate estimates for the stress 
intensity factor; for example, for Mode I, from 

or 

(3.2-35) 

(3.2-36) 

Equation (3.2-35) usually gives more consistent and precise estimates. 
Cruse (3.37) has compared solutions using the boundary integral equation 

method with other solutions for a variety of cracked configurations. When 
both crack surfaces of a planar crack are modeled, the coefficient matrix 
becomes singular. This problem can be circumvented if the surfaces are 
modeled as distinct with a small nonzero distance of separation; that is, the 
crack is represented by a notch. Blanford et al. (3.38) used multidomain 
discretization to eliminate the problem of a singular matrix without modeling 
the crack as a notch. A principal advantage of the boundary integral equation 
method is that only discretization on the boundary but not in the interior is 
required. A computational disadvantage is that the method leads to a 
nonsymmetrical, nearly fully populated system of equations. 

Rice (3.39) in 1968 noted that the finite element method of numerical 
analysis of fracture was in its infancy and possessed great potential for 
handling the crack-tip singularity. Since that time there have been literally 
hundreds of publications devoted to finite element analysis of fracture. 
Perhaps the unique feature that makes this method so attractive is its potential 
for handling fracture problems well beyond the limits of LEFM. The method 
will be discussed only from an elementary point of view, since to do  otherwise 
would lead to a significant departure from the central purpose of this chapter. 
Fortunately, a number of excellent tests on the finite element method-for 
example, see references (3.40)-(3.43)-and several reviews, references (3.44)- 
(3.48), of its application to fracture mechanics analysis are at  the disposal of 
the reader desiring a more sophisticated and detailed treatment of the subject. 

In the finite element method the domain of interest is divided into a finite 
number of subdomains called elements. The stiffness finite element method 
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consists of assuming for an element a local displacement field 

(3.2-37) 

where [ N ( x i ) ]  denotes the assumed displacement shape of interpolation 
function and {uf} is the vector of nodal displacements of the element. When 
Equation (3.2-37) is introduced into Equation (2.2-8), the elemental strain field 
can be written as 

{El  = C ” ( X i ) l { U T )  (3.2-38) 

where [ N ‘ ( x i ) ]  is the matrix obtained after performing the required dif- 
ferentiation. For the assumed displacement field satisfying relevant interele- 
ment continuity the strain energy U‘ of the element computed from Equations 
(2.3-7) and (2.4-2) can be written as 

u, = + { u ; } T [ k e ] ( u f )  (3.2-39) 

The superscript T denotes the transpose and the elemental stiffness matrix 
[k‘)  is 

r 
(3.2-40) 

in which [C] is the matrix of elastic coefficients Ci,k,. The elemental stiffness 
matrices are summed to form a global stiffness matrix [K]. The equations of 
equilibrium that are derivable from the principle of minimum potential energy 
may be written as 

(3.2-4 1) 

where {u}  is the vector of global nodal displacements and {F} is the vector of 
generalized nodal forces. Standard numerical techniques may be used to invert 
Equation (3.2-41) to obtain the nodal displacements. 

Two important considerations in the development of a finite element 
analysis for fracture mechanics are the proper modeling of the crack-tip 
singularity and the interpreting of the results in terms of a stress intensity 
factor or a crack driving force. These considerations have been addressed in 
the review by Gallagher (3.44) not only for the stiffness method but also for the 
hybrid method (assumed displacement and stress method). 

Initially conventional (nonsingular) elements were used to model the crack- 
tip singularity. This requires a large number of small elements in the proximity 
of the crack tip. Consequently, the number of equations to be solved can be 
very large and, therefore, obtaining a solution can be expensive. This is 
partially offset by the fact that the global stiffness matrix tends to be strongly 
banded, a condition which can be exploited by efficient equation-solving 
algorithms. 

In order to account explicitly for the singularity, singular elements have 
been developed. Singular elements based upon using the classical singular 
solutions for a crack in an infinite plate as the interpolation functions have 
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been established. These are usually circular elements that interface with 
conventional elements. Special techniques are usually required to handle the 
displacement discontinuity between the two different types of elements. Such 
techniques are unnecessary if triangular elements in conjunction with 
polynomial interpolation functions that yield a 1/ f i  strain singularity are 
used. Since a few singular elements could replace a large number of 
conventional elements, increased computational efficiency might be expected. 
Certainly the number of equations to be solved is reduced, but generally at  the 
expense of an increased bandwidth for the stiffness matrix, and the apparent 
savings can evaporate. 

It is well known that the transformation from physical to isoparametric 
coordinates will be singular if the nodes along the sides of the element assume 
certain positions. When the midside nodes nearest to the crack tip node of the 
eight-noded quadrilateral isoparametric element and the 20-noded three- 
dimensional isoparametric brick are moved to the quarter point, an inverse 
square root singularity develops only along the edges of these elements. 
Barsoum (3.49) showed that the singularity can be made to occur along all rays 
emanating from the vertex of a triangular element formed by collapsing a 
quadrilateral element. The modeling of the singularity by judicious placement 
of side nodes in an isoparametric element is particularly appealing because 
these elements are usually present in general purpose finite element codes. 

Having modeled the crack-tip singularity and having determined the nodal 
displacements, it is necessary to compute the stress intensity factor. This can be 
done by using the extrapolation procedure discussed in connection with the 
boundary integral equation method [cf. Equations (3.2-35) and (3.2-36)]. 
Because the precision of the displacements obtained from the stiffness method 
is greater than for the stresses, the extrapolation is usually based upon the 
displacements. As will be shown in the next section the stress intensity factor 
can be related to the rate of decrease of the strain energy with crack extension, 
the crack closure integral, and the path independent J-integral. The im- 
plementation of the latter into the finite element method is addressed by 
Gallagher (3.44) and the references therein. The J-integral method seems to be 
the most efficient alternative for interpreting the finite element computations. 

The treatment of other analytical techniques-for example, conformal 
mapping, integral transform methods, and singular integral equations-as 
well as the preceding ones can be found in Sih (3.50). 

3.3 Energetics of Cracked Bodies 

Griffith (3.51) approached the fracture of an ideally brittle material from a 
thermodynamic viewpoint. He postulated that during an increment of crack 
extension da there can be no change in the total energy E composed of the sum 
of the potential energy of deformation ll and the surface energy S; that is, 

d E  = d l l  + dS = 0 (3.3-1) 
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For a crack in a two-dimensional deformation field it is convenient to define 
these energies as being per unit thickness of the body. If y denotes the surface 
energy density per unit area, then, dS = 2y da for the two increments of 
fracture surfaces formed during the extension. At incipient or during crack 
growth Equation 3.3-1 yields 

G = 2y (3.3-2) 

where 

d n  
da 

G =  -- (3.3-3) 

is known as the energy release rate. Because G is derivable from a potential 
function in much the same way as a conservative force can be, it  is.often 
referred to as a crack driving force. The right-hand side of Equation (3.3-2) 
represents the fracture resistance that must be overcome by the driving force in 
order to produce a unit of crack extension. This resistance is a characteristic of 
the material whereas G depends upon the loading and geometry of the cracked 
body. 

3.3.1 The Energy Release Rate 

Consider the cracked linear elastic body depicted in Figure 3.5. Let P represent 
a generalized force per unit thickness and let A be the corresponding 
generalized load-point displacement through which P does work. The 
potential energy [cf. Equation (2.4-13)] for a prescribed P (dead loading) is 

n = v - J J A = - U *  (3.3-4) 

where U and U* are, respectively, the strain and complementary strain 

Figure 3.5 A flawed body. 
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energies. By Clapeyron’s theorem U = PA12 and Equation (3.3-4) becomes 

ll= -PA12 = - U *  (3.3-5) 

Substitution of Equation (3.3-5) into Equation (3.3-3) yields 

G = (T)p = i P ( g )  P (3.3-6) 

Note that in this development only a single crack tip has been considered. 
When there exist two equally loaded crack tips-for example, the Griffith 
problem-it will be necessary to replace the differentiation with respect to a 
by 2a in order to obtain the energy release rate per crack tip. The lack of 
proper consideration of this point has been the source of confusion and error. 

For a linear elastic body 
A = CP (3.3-7) 

where C denotes the compliance of the body of unit thickness and is a function 
of the geometry of the body and its elastic constants. Combining Equation 
(3.3-6) and (3.3-7) one obtains 

P2 dC 1 A2 dC 
2 da 2 C 2  da 

G=--=--- (3.3-8) 

If the compliance of the body is known, then Equation (3.3-8) yields the rate of 
energy that would be release during a virtual extension of the crack tip. The 
energy release rate can also be established experimentally from measuring the 
compliance of the cracked body. The crack is then extended a small increment 
Aa, say, by cutting, and the change in compliance AC is measured. The ratio 
ACIAa is used to approximate the derivative in Equation (3.3-8). Of course, 
care must be exercised in these measurements because one is dealing with 
differences of quantities of approximately the same magnitude. 

If the load-point displacement A is prescribed (fixed-grip loading), then the 
potential energy is 

and it follows from Equation (3.3-3) that 
n = U = PA12 

(3.3-9) 

Substituting Equation (3.3-7) into Equation (3.3-9) we arrive again at  
Equation (3.3-8) and conclude that the energy release rate is independent of 
the type of loading. Due to the form of Equation (3.3-9), G is also known as the 
strain energy release rate. The introduction of a spring, representing the 
stiffness of a compliant loading device, between the specimen and the load will 
not change Equation (3.3-8) since the energy stored in the spring Is 
independent of a. 

Equations (3.3-6) and (3.3-9) can be given a graphical interpretation. 
Consider the load versus load-point displacement curve for a cracked body 
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0 A 
(a) 

d 
(b) 

Figure 3.6 Load-deflection curves for (a) dead loading and (b) fixed-grip loading, 

(see Figure 3.6). Now extend the crack (e.g., by cutting) an amount da under 
constant load. The area of the triangle OABin Figure 3.6a is the increase in the 
complementary energy at fixed load. According to Equation (3.3-6), this area 
is Gda. If this procedure is repeated but with the displacement held fixed, then 
the area OAC in Figure 3.6b is the decrease in the strain energy and by 
Equation (3.3-9) equals Gda. Since the difference between the areas OAB and 
OAC is the infinitesimal area ABC of higher order, the area between the two 
curves for loadings intermediate to fixed load and fixed displacement is also 
Gda. This interpretation offers an alternative for determining experimentally 
the energy release rate of a cracked body by measuring the area between P-A 
curves for slightly different crack lengths. 

To establish the connection between the stress intensity factor and the 
energy release rate, consider duplicate loading of two linear elastic bodies that 
are otherwise identical except the first has a crack length a whereas the second 
has a crack length a + Aa. Both bodies can be envisioned as having a crack of 
length a + Aa except that the crack of the first one is closed by an amount Aa 
by stresses 02i acting on the crack surfaces over a c x1 c a + Aa. 

By means of Clapeyron's theorem the potential energy per unit thickness of 
the first body in the absence of body forces is 

n(a) = -tJs, 7)Ji(U)dS 

where ST is the portion of the boundary of the body on which the tractions are 
prescribed. In the above, ui(a) is used to denote the displacement field 
associated with a crack of length a. In a similar manner for the second body 

l l(a + Au) = -4 Is+ qui(a + Au) dS  

where S;  is the union of S,  and the additional traction-free crack surfaces 
associated with the increment of crack length Aa, Since 'T; = 0 on the latter 
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surfaces, then 

An = n(a + Aa) - n(a) = - q[ui(a + Aa) - ui(a)] dS (3.3-10) 

The above integral has been extended over the entire boundary S of the first 
body since ui(a + Aa) = ui(a) on S,. 

The displacement field ui(a) of the first body is a kinematically admissible 
field for the second body. If the stress components a2i on a < x1 < a + Aa and 
x2 = 0 are included as part of the tractions, then the field ui(a + Aa) of the 
second body is kinematically admissible for the first body. The principle of 
virtual work permits writing 

IS 

[u;(a + Aa) - $ ( a  + Aa)]a2i1x2=0 dx, la + 7;ui(a + Aa) dS + 

= jA aij(a)sij(a + Aa) dA (3.3-1 1)  

where u: (a + Aa) and u; (a + Aa) are the displacement components of the 
upper and lower crack faces, respectively. Betti’s reciprocal theorem and the 
principle of virtual work provide that 

r r 
aij(a)qj(a + Aa) dA = a& + Aa)qj(a) dA J A 

= Is 7;ui(a) dS (3.3- 12) 

The combination of Equations (3.3-1 1 )  and (3.3-12) leads to 

1- T[ui(a + Aa) - ui(a)] dS 

Cu:(a + Aa) - u;(a + Aa)]a2i(a)),,=odx, (3.3-13) 

Substitute Equation (3.3-13) into Equation (3.3-10) and make the change of 
variable X, = x1 - a to obtain 

-AH = $ [u:(a + Aa) - u;(a + A ~ ) ] O ~ ~ ( ~ ) I , , = ~  dX, (3.3-14) 

The right side of this equation is the work that must be done during quasi- 
static application of the crack-plane stresses aZi on a < x1 < a + Aa and x2 
= O+ to close a crack of length a + Aa by an amount Aa. The integral of 
Equation (3.3-14) is referred to as the crack closure integral (3.52). Because of 
the reversible nature of elastic bodies, this is also the energy that would be 
released during a quasi-static virtual crack extension Aa. Thus, 

LAa 
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For Mode I, u l  = -u; and ~7~~ = 023 = 0 on x2 = 0. The asymptotic 
forms, 

and 

from Equations (3.1-38) and (3.1-39) are sufficient for evaluating the right side 
of Equation (3.3-15). The stress intensity factors for the prescribed loading and 
crack lengths a and a + Aa are denoted, respectively, by &(a) and K,(a + Aa). 
Hence, 

(3.3- 1 6 )  
G = lim 

bad0  4npAa 

( K +  1 ) K t  - K t  -- - - 
8P E' 

where E' = E for plane stress and E' = E/(1 - v 2 )  for plane strain. This 
relationship between G and K ,  was established by Irwin (3.52). When all three 
modes of deformation are present, Equation (3.3-15) yields 

(3.3- 17) 

When K,, for example, attains its critical value, then G must also reach its 
critical value and Equation (3.3-16) implies that 

G, = K:/E'  (3.3-18) 

Consequently, for linear elastic bodies, the stress intensity factor and the 
energy balance approaches to fracture are equivalent. 

If Equation (3.3-18) were used to compute G, from K,, say, for a metal, the 
value of G, so determined would be several orders of magnitude greater than 
the surface energy 2 y .  Or, conversely, if G were equated to the surface energy, 
then unrealistically small failure loads would be predicted for metals. Until 
about 1950 it was thought that the Griffith energy balance theory of fracture 
was only applicable to brittle materials such as glass. About that time Irwin 
(3.53) and Orowan (3.54) independently recognized that the most significant 
part of the released energy went not into surface energy, but was dissipated in 
the plastic flow around the crack tip and in the creation of a new plastic zone 
as the crack tip extends. The energy balance approach to fracture is known as 
the Griffith-Orowan-Irwin theory and the fracture criterion is frequently 
written as 

G = G, = R = 2r (3.3- 19) 

where R and 2 r  are variously referred to as the plastic energy dissipation rate, 
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work of fracture, or simply fracture toughness. Literal interpretations of the 
latter have been the source of much confusion. It is perhaps best to consider 
them as simply the critical value of the energy release rate parameter at 
incipient crack extension; cf., K and K,. 

3.3.2 The J-Integral 

Equation (3.3-15) for the energy release rate is only valid for linear elastic 
material behavior. A generalization to nonlinear elastic materials leads to the 
path independent J-integral, which plays an important role not only in elastic 
but also elastic-plastic fracture mechanics. Although Eshelby (3.55) was the 
first to derive this integral, Rice (3.39) was apparently the first to recognize its 
potential use in fracture mechanics. 

Consider the two-dimensional deformation of the nonlinear elastic body 
shown in Figure 3.7. In the absence of body forces the potential energy of the 
body is 

n(a) = j A  W d A  - lrT T u i d s  (3.3-20) 

where r, denotes the contour of the body on which the tractions are 
prescribed and A is the total area of the two-dimensional body. The tractions 
are assumed to be independent of a and the crack surfaces are taken to be 
traction free. Differentiating Equation (3.3-20), one obtains 

(3.3-21) 

The contour of the line integral can be extended along the boundary To of the 
body in the counterclockwise direction from the lower crack face to the upper 
one since dui/da = 0 on the boundary r, where the displacements are 
prescribed independently of a. In performing the differentiation it is conve- 
nient to introduce acoordinate system X i  = x i  - adi, attached to the crack tip. 

A .  

Figure 3.7 A plane, cracked nonlinear 
elastic body. 
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since dX, /da  = - 1 and d / d X ,  = a/ax,, Therefore, Equation (3.3-21) becomes 

But 

where the constitutive relation, Equation (2.3-4), and symmetry of the stress 
tensor have been used. Since au,/aa is a kinematically admissible displacement, 
then the principle of virtual work permits writing 

Therefore, Equation (3.3-22) reduces to 

which upon application of the divergence theorem becomes 

= l r n ( W d x 2  - (3.3-23) 

in which n, ds = d x 2  has been used to write the last integral. 
Rather than considering the contour of the body for the path of integration, 

Rice (3.39) considered an arbitrary contour I“ starting from the lower crack 
face extending counterclockwise around the crack tip to a point on the upper 
face (see Figure 3.8) and defined 

J = J r ( W n l - 7 ; : G  a u i )  ds  (3.3-24) 

It can be shown that the J-integral is path independent. Let J1 denote J 
obtained for any other contour r,. One can write 

J ,  - J = I (Wn, - 3) ds 
r , + r + s I + s z  ax I 

where the contour has been closed by including S,  and S, on which = 
n, = 0. This contour is traversed such that the enclosed area A is on the left. 
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Figure 3.8 
tip. 

Contours enclosing a crack 

Once more the divergence theorem is invoked to yield 

J1 - J = [z - & (aij z ) ] d A  

Hence, J = J ,  and J is independent of the path. Since the J-integral is path 
independent, then according to Equations (3.3-23) and (3.3-24) the J-integral is 
equal to the rate of decrease of the potential energy; that is, 

d l l  
da 

J = - -  (3.3-25) 

Consequently, for a linear elastic material J and G are synonymous and 

(3.3-26) 

The path independence of J can be exploited at times to determine the stress 
intensity factor without the necessity of involved computations. For example, 
consider the semi-finite crack in the infinite strip of Figure 3.9. Assume the 
lateral edges (x2 = 1/11) are clamped and then symmetrically displaced u20.  For 
the contour r shown, nl  = 8u,/dx, = 0 on x2 = Ihl and aij = 0 at x1 = -a. 
Therefore, the only contribution to J for the contour r must occur at  x l  = co, 
where dui/dx, = 0 and E~~ = ulO/h.  Hence, J reduces to 

- h  
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I "PO 
Figure 3.9 A semi-infinite crack in an infinite strip. 

where by Equation (2.3-1 1)  
(1  - v ) E E ~ ~  

w ' x l = m  = 2(1 + v)(l - 2v) 
for plane strain. Therefore, 

( 1  - v)Euio 
( 1  + v)(l - 2v)h J =  

or, equivalently, from Equation (3.3-26) 
Eu20 

[(l + V ) * ( 1  - 2v)h-Jf K, = (3.3-27) 

In an effort to eliminate the unrealistic prediction of singular stresses that 
accompany an elastic analysis, Dugdale (3.56) and Barenblatt (3.57) independ- 
ently introduced yielded or cohesive strip zones extending from the crack tip, 
as depicted in Figure 3.10, to model the inelastic response of real materials in 
this region. In this model the opening of prospective fracture surfaces ahead of 
the crack tip is assumed to be opposed by a cohesive stress that Dugdale took 
to be the yield stress of the material. The extent d of the cohesive zone is 
determined by the condition that the stresses be nonsingular. 

Let o be the cohesive stress that in general can depend upon the separation 
6 = 1.4: - u; of the upper and lower prospective crack surfaces. For a contour 
shrunk to the boundary of the right yield or cohesive zone n, = TI = 0 and J 
becomes 

= j: o(6) d6 (3.3-28) 

where 6, is the crack-tip opening displacement. If {he cohesive stress is taken to 
be the yield stress-that is, r~ = 0,-then Equation (3.3-28) yields 

J = o,, 6, (3.3-29) 
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Figure 3.10 Dugdale yielded strip or cohesive model. 

If the extent of the cohesive zone is small compared to any other 
characteristic dimension of the body, then sufficiently remote from these zones 
the deformation field will differ only imperceptibly from the elastic solution 
that ignores these zones. Since J is path independent, then J = G for a remote 
contour. Consequently, 

J = G = K:/E'  = o,, 6, (3.3-30) 

Hence, the J-integral, the energy release rate, the stress intensity factor, and 
the crack-tip opening displacement are all equivalent fracture parameters 
within the confines of small-scale yielding. Consequently, when any one of the 
four attains its critical value, then the others must also rt .rch simultaneously 
their critical values. Therefore, the fracture criterion can be expressed in terms 
of any of the four parameters. Which parameter is the more basic is primarily 
an academic question. From an application viewpoint the choice revolves 
about which one is more convenient to compute and to extract from 
measurements. In this regard, the J-integral or, equivalently, the energy release 
rate and the stress intensity factor are about equal and offer distinct 
advantages over the crack-tip opening displacement. For example, the J -  
integral can be readily incorporated into finite element codes and thereby 
eliminate the need for extrapolated estimates of the stress intensity factor. 

3.3.3 Other Invariant lntegrals 

The J-integral is not the only invariant integral or conservation law of 
elastostatics. For example, Knowles and Sternberg (3.58) have established a 
total of three such conservation laws. For a two-dimensional deformation 
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field these integrals are 

where C is a closed contour in the x,x2-plane. The J-integral is the first 
component of the vector J,. Whereas the integrals J, and L will vanish for any 
closed contour in an elastic (linear or nonlinear) region containing no 
singularities, the integral M will vanish only for contours in linear elastic 
regions. If the contour encloses a singularity, the integrals will, in general, 
differ from zero. However, the value of the integral for any other contour 
enclosing this singularity and no other will remain invariant. The principal 
advantage of these integrals is that they describe an invariant characteristic of 
the singularity. If the contour encloses the crack tip, i t  is important that the 
contour extending along the crack faces to the crack tip be included in order to 
ensure path independence of J2. 

For the general three-dimensional deformation field, these integrals gen- 
eralize to 

Jk = (Wnk - qui&) dS (3.3-34) 

L, = Eki,(Wxjni + q u j  - TUlajX, )  dS (3.3-3 5) 

I S  

r 
M = J (Wx,ni - - J T u , )  dS 

S 
(3.3-36) 

where S is a closed surface with components ni for the outward unit normal. 
The integral J,  was originally established by Eshelby (3.55). 

Budiansky and Rice (3.59) have interpreted Jk, I!,,, and M as being the 
energy release rate when a cavity is translated along the xk-axis relative to the 
material body, is rotated about the x,-axis, and is expanded uniformly, 
respectively. With the exception of the work of King and Herrmann (3.60), 
there has been apparently little effort to apply Lk and M to physical fracture 
problems. 

Fletcher (3.61) has extended these invariant integrals to linear elastody- 
namics. Cherepanov (3.3,3.62) has developed invariant integrals that can be 
used to characterize singularities in other physical fields such as electromag- 
netics and hydrodynamics. 

The preceding two-dimensional invariant integrals involved only contour 
integrals. Kishimoto et al. (3.63) introduced the path-independent integral ?, 
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defined by 

j b  = 1 ( Wn, - 
r+r. 

for static loading with body force 4. The area integral extends over the region 
bounded by the contour r enclosing the crack tip and the portion I-, of the 
crack faces between r and the crack tip. The eigen strain components E $  are 
defined in terms of the total strain components cij and the stress-induced 
elastic strain components E ;  by 

Examples of eigen strains are thermal strains, moisture-absorption strains, 
and plastic strains. The elastic strain energy density W is the same function of 
the elastic strain components introduced previously; that is, W = W(E;)  such 
that oij = awps;. 

It is clear that, when eigen strains and body forces are present, the ],-integral 
is not expressible by only a contour integral. In the absence of these quantities, 
j, reduces to J, and, moreover, jl conforms to the J-integral. The J,-integral 
enjoys the same physical interpretation as the J,-integral. 

The j,-integral has proven to be useful in studies of elastic-plastic fracture 
and fracture in the presence of thermal gradients. For example, the eigen 
strains due to a temperature change 8 from the natural state are 

(3.3-39) 
where uij are the coefficients of thermal expansion. When body forces are 
neglected, the introduction of Equation (3.3-39) into Equation (3.3-37) yields 

E $  = Ei, - &; (3.3-3 8) 

E* V = aij 8 

(3.3-40) ae 

As expected .?, reduces to J, for an isothermal field. Furthermore, j1 is identical 
to the +integral introduced by Ainsworth et al. (3.64). The path-independent 
integral introduced by Wilson and Yu (3.65) for a linear elastic, isotropic 
material can be shown to be a special case of jl and Je.  

When thermal strains are present, one should be cognizant of the differences 
in the strain energy density functions used by various investigators. For 
example, Kishimoto et al. (3.63) and Ainsworth et al. (3.64) define 

(3.3-41) 

which for a linear elastic, isotropic material becomes 

(3.3-42) V 

By contrast Wilson and Yu (3.65) use 
V E u O E ~ ~  w = p EijEij + - E . . E . .  - ( 1-2v JJ) 2(1 - 2v) 

(3.3-43) 
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and Gurtin (3.66) 

(3.3-44) 

These variances in the definition of the strain energy density yield path- 
independent integrals that appear outwardly to be different but in reality are 
identical. 

As an alternative to J, Blackburn (3.67) proposed the path-independent 
integral 

aui J* = lim +oUeij d x ,  - '& - ds 
P-0 s dx  1 

(3.3-45) 

where p is the radius of a small circle centered at the crack tip and A is the area 
bounded by this circle, the contour r, and the crack surfaces. Whenever it is 
possible to construct a contour r lying wholly within a linear elastic region, 
then the contour integral in Equation (3.3-46) is equal to J. Hence, the 
difference between J and J* is given by the area integral in Equation (3.3-46). If 
the material enclosed by r is entirely linear elastic, this integral vanishes and 
J* is identical to J .  While it has been purported that J* will be closer to the 
true potential energy release rate, this is not the case for nonlinear elastic 
(power law hardening) materials for which J *  < J .  Therefore, an energy 
release rate interpretation can not generally be associated with J*.  

Blackburn et al. (3.68) and Batte et al. (3.69) claim J *  can be used where 
creep, elastic unloading from a plastically deformed state, or thermal or 
inhomogenity effects render J inadmissible. Because the theoretical basis for 
J* is not clear, it is not entirely certain that these claims are valid. 

The number of path-independent integrals appears to be unlimited. It is 
always possible to generate another one by adding or subtracting two path- 
independent integrals. For example, if the path-independent integral 

$ d(uioi2) 

is subtracted from J, then one obtains 

1 agij 
1 = -lr [(oijeij - W )  d x 2  - njui - a x  1 d s  (3.3-47) 

The quantity within the parentheses is recognized as the complementary 
energy density W*. The path-independent 1-integral was originally es- 
tablished by Bui (3.70) using complementary energy principles. In this sense 
the I-integral is the dual of the J-integral. Because displacement-based finite 



172 Advanced Fracture Mechanics 

element methods yield inherently less precise stress fields, this expression 
containing the derivative of the stress tensor lacks the computational efficacy 
of the J-integral. However, the advantages of J virtually vanish when a hybrid 
finite element method that yields the stress and displacement fields to the same 
precision is used. 

The path-independent integrals considered until now have been limited to 
small (infinitesimal) deformation. Atluri (3.71) has generalized the con- 
servation law, Equation (3.3-31), of Knowles and Sternberg (3.58) to finite 
deformations. Included in this generalization are the effects of body forces, 
material accelerations, and arbitrary traction and displacement conditions on 
the crack faces. While not explicitly included, thermal effects can be readily 
accommodated by replacing the body force 6 by -clE6,,/(1-2v). Hence, 
Atluri's generalization includes the path independent integrals of Rice (3.39), 
Kishimoto et al. (3.63), Ainsworth et al. (3.64), and Wilson and Yu (3.65) as 
special cases. 

3.4 The Plastic Zone and Fracture Toughness 

Linear elastic fracture mechanics is based upon the condition that the size of 
the plastic zone attending the crack tip is small compared to the K-dominant 
region, the crack length, and any other characteristic geometric length. Within 
these restrictions of small-scale yielding the equivalence expressed by 
Equation (3.3-30) is justifiable. Based upon the near crack-tip elastic analysis, 
estimates of the size and shape of the plastic zone will be developed. The 
relationship between the size of the plastic zone and the fracture toughness will 
be examined. 

Equation (3.1-38) yields 

(3.4-1) 

for the ideally elastic Mode I stress distribution on the crack plane (6 = 0). 
This distribution and a hypothetical elastic-perfectly plastic distribution are 
shown schematically in Figure 3.1 1. The length 

r =-(-) 1 K ,  
271 ay 

(3.4-2) 

identifies the point on the crack plane where the elastic stress a22 of Equation 
(3.4-1) equals the uniaxial yield stress oy. Local yielding near the crack tip in a 
real material leads to a redistribution of the stress as depicted in Figure 3.1 1. 
To a first approximation this yielding causes the elastic load over the region 
0 < r -= ry  on the crack plane to be uniformly distributed over the length, r p ,  
the extent of yielding on this plane. That is, 

c' crZ2 dr = ayrp 
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Figure 3.1 1 
plane stress distributions. 

Elastic and inelastic crack 

which for the distribution of Equation (3.4-1) provides 

r p  = 2ry = -  - 
OY 

(3.4-3) 

for a state of plane stress. Irwin (3.72) estimated that the constraint introduced 
by the conditions of plane strain elevates the stress required to produce 
yielding by a factor of $3. The plane strain equivalent of Equation (3.4-3) is 

r p  = 2ry =- - 
3n oy 

(3.4-4) 

The Dugdale model (see Figure 3.lO)can also be used to provide yet another 
estimate of the extent of the plastic zone. In this model the opening of the 
crack by a Uniform remote stress o is restrained in part by a uniform stress 
022 = o,, in the strip cohesive or plastic zone of length d. Viewing the crack 
to be of length 2a + 2d and employing superposition one is left with the 
residual problem on x2 = 0 of p 2 ( x 1 )  = o on JxlI < a and p 2 ( x 1 )  = o - oy on 
a < lxll < a + d. Making use of Equation (3.2-20) and the condition that the 
stress intensity factor for the Dugdale model must vanish for nonsingular 
stresses one obtains 

oa + (o - oy)(; - a)  = 0 

where 

a = sin- [a/(a + d)] 

It follows from Equation (3.4-5) that 

d = a  sec -- c3-11 

(3.4-5) 

(3.4-6) 

(3.4-7) 



174 Advanced Fracture Mechanics 

Recalling that K, = o(aa)* in the absence of yielding and taking 4 to be small 
compared to ay, we find from Equation (3.4-7) the approximation 

(3.4-8) 

for the extent of yielding. The latter compares favorably with the plane stress 
estimate of Equation (3.4-3). 

An effect of yielding is to increase the displacements or, equivalently, to 
reduce the stiffness of the body relative to the ideally elastic one. Based upon 
the antiplane, elastic-perfectly plastic solution of Hult and McClintock (3.73), 
Irwin (3.74) argued that the same effect can be approximated in the ideally 
elastic body by increasing the effective length of the crack. As a first 
approximation Irwin, who viewed the crack tip as being centered in the plastic 
zone, incremented the crack length by the plastic zone radius and introduced 
the effective crack length 

a, = a + ly (3.4-9) 

The latter expresses what has become known as the Irwin's plastic zone 
correction for the crack length. This effective length is used in computing the 
stress intensity factor. Because the effective stress intensity factor is a function 
of a,, which in turn depends upon the former, an iterative solution is usually 
required to establish the effective stress intensity factor. 

Equations (3.4-3), (3.4-4), and (3.4-8) only provide estimates for the size of 
the plastic zone. Before the shape of the zone can be established, a yield 
criterion must be specified. The von Mises yield criterion of Equation (2.6-10) 
can be expressed as 

(61 - a 2 ) 2  + ( 6 2  - a3)2 + (C3 - a1)2 = 20; (3.4- 1 0) 
For the plane problems the principal stresses are 

Q l }  = 0 1 1  + 4 2 2  [ ("" "")' 
6 2  2 

0, plane stress 
v(ol + c2), plane strain 

+ 0:2]' 
(3.4-1 1) 

Strictly speaking the stress field from an elastic-plastic analysis should be 
used in establishing the shape of the plastic zone. We shall have to wait until 
Chapter 5 for such an analysis. In lieu of that, a first approximation to the 
shape of the zone can be obtained by using the elastic fields. The introduction 
of Equation (3.1-38) for the Mode I stress field into Equation (3.4-1 1) leads to 

(3.4- 12) 
(0, plane stress 

cos 812, plane strain 
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The substitution of Equation (3.4-12) into Equation (3.4-10) provides, 
respectively, 

[(l - 2 ~ ) ~ ( l  + cos6) + $sin26] K: ry(6)  = - 
4 n 4  

and 

(3.4- 13) 

(3.4- 14) 

for the plane strain and plane stresss boundaries of the plastic zone. From a 
comparison of these boundaries for v = 0.3 in Figure 3.12 it is clear that the 
plane strain zone is significantly smaller. The coordinates x, y of points on 
these boundaries are normalized with respect to r p  = ( K , / u J 2 / n  for plane 
stress. Plastic zones based upon the Tresca yield condition can be found in 

Figure 3.12 Plane stress and plane strain plastic zone boundaries for Y = 0.3. 
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Figure 3.13 Schematic of Mode I plastic zone varying from plane stress at the lateral surfaces to 
plane strain at the mid-section. 

Figure 3.14 Appearance of planestress plasticdeformation at the front surface, a normal section 
and the back surface of a fracture specimen (3.75). 
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Broek (3.1), and they do not differ appreciably in appearance from these. While 
a more refined analysis will yield somewhat different configurations for the 
elastic-plastic interface, no significant change in the relative sizes of the 
envelopes is to be expected. 

The size of the plastic zone relative to the thickness of the body influences 
whether the crack tip state of stress is essentially plane stress, plane strain, or a 
combination of the two. Conversely, the type of stress field dictates the size of 
the plastic zone. Clearly, the classification of the stress field is not a simple 
task; particularly, in light of the fact that the traction-free lateral surfaces of 
the body are in a state of plane stress. Ordinarily this would not be such an 
important issue if it were not for the fact that the fracture characteristics of a 
material are influenced by the stress state attending the crack tip. It is possible 
to establish guidelines for determining whether this state will be predomi- 
nantly plane stress or plane strain. 

When the size of the plastic zone as computed from Equation (3.4-3) is of the 
order of the thickness B of the body or greater, then insufficient material at the 
interior exists to prevent through-the-thickness straining. Such deformation is 
usually evidenced by dimpling or necking in the crack-tip region. Under these 
conditions the state of stress is predominantly plane stress. At the other 
extreme where the size of the plastic zone is small-say, r p  -= B/25-then 
there is sufficient material present to prevent through-the-thickness straining. 
Except for the states of plane stress confined to thin boundary layers near the 
traction-free lateral surfaces, the state of stress is primarily one of plane strain. 
For intermediate sizes of the plastic zones, 1 > r , /B  > A, the state of plane 
stress extends beyond the simple boundary layers near the free surfaces, but 
not completely through the thickness. There is a gradual transition from plane 
stress at the free surface to plane strain at the interior, as depicted 
schematically in Figure 3.13. 

One can expect the plastic deformation in ductile materials to occur as 
slipping along planes of maximum shear stress. The principal stress o3 is 
always normal to the free lateral surfaces. For plane stress o3 = 0 and the 
planes of maximum shear stress make 45-degree angles with the free surfaces. 
By contrast o2 < o3 < c1 for plane strain and the planes of maximum shear 
stress are normal to the free surfaces. 

By loading notched and fatigue-cracked, silicon iron fracture specimens and 
then etching the polished surfaces, Hahn and Rosenfield (3.75) were able to 
reveal the plastic zone and the accompanied slip planes. Figure 3.14 shows the 
appearance of the plastic zone on the front surface, a section normal to the 
crack plane and the back surface. In these photographs the lighter portions 
represent regions of rather extensive slipping. The presence of the 45-degree 
slip bands are consistent with the direction of maximum shear stress in a plate 
under plane stress. This slip produces a considerable strain in the thickness 
direction, which appears as localized necking. Figure 3.15 shows evidence of 
the plastic slip, appearing as dark regions in these photographs, at  sections 
parallel to the specimen’s lateral surfaces and demonstrates the anticipated 
convergence of these slip bands for plane stress as the midsection is 
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Figure 3.15 Plasticzone revealed by etching(a) thesurface of the specimen, (b) a section halfway 
between the surface and mid-section, and (c) the mid-section (3.75). 

approached. These results are for a plastic zone whose size is approximately 
twice the 5-mm thickness of the specimen and are compatible with the 
character of plane stress deformation. 

On the other hand, for a relatively lower stress level for which the plastic 
zone is smaller than the thickness of the specimen, the character of the plastic 
deformation revealed by etching sections parallel to the plate surfaces 
remained nearly invariant. This is consistent with plane strain deformation in 
which the slip bands are normal to the surface of the plate. 

From these observations Hahn and Rosenfield constructed the crack-tip 
deformation patterns shown in Figure 3.16. Under plane strain the plastic flow 
tends to occur around a hinge. In plane stress wedges are typically formed and 
along their surfaces slipping occurs to produce the rather large through- 
thickness straining. 

It should be clear by now that the thickness of the specimen relative to the 
size of the plastic zone influences the state of stress and the deformation within 
the zone. Consequently, the fracture characteristics of the specimen can also 
be expected to depend upon its thickness. For example fracture tests frequently 
indicate that the critical stress intensity factor K, at initiation of crack growth 

I' 

Figure 3.16 Crack tip plastic defor- 
mation in (a) plane stress .and (b) plane 
strain. (a) 

4 p  

(b) 
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Klc 

for Mode I varies with the thickness B of the specimen as depicted in 
Figure 3.17. Also shown are the distinguishing features of the fracture surfaces 
that are typical of the various regions of the curve. 

For relatively large thicknesses the fracture surface is predominantly flat 
with relatively small shear lips (slant fracture surfaces) occurring near the free 
surfaces. The former is typical of plane strain fracture in the interior, whereas 
the latter is a characteristic of plane stress fracture at the free surfaces. For 
large thicknesses sufficient constraint can exist to produce a triaxial state of 
stress, This triaxiality tends to reduce the apparent ductility of the material 
and fracture proceeds at a lower critical stress intensity factor. Because further 
increases of the thickness beyond a certain minimum value B, does not 
change appreciably the triaxiality, the fracture resistance or toughness 
remains invariant. This plane strain fracture toughness is denoted by K,,,  is 
independent of the thickness and is considered to be a material property. It is 
clear from Figure 3.17 that it also represents the lower limit of the critical 
value K, .  

At the other extreme of thickness B,,, there is minimal constraint provided 
by the thickness and a biaxial state of stress exists. The loss of triaxiality 
contributes to an apparent increase in the ductility and, hence, in the fracture 
resistance. In this case the fracture surfaces are slanted at 45 degrees to the 
specimen’s surfaces and are composed entirely of shear lips. This maximum 
fracture resistance can be several times larger than the value of K,,,  For still 
thinner sections the curve may level off or even decrease. Which prevails likely 

K O  

-- 

B m  B C  B 

Figure 3.17 Critical Mode I stress intensity factor as a function of specimen thickness. 
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depends upon the extent of straining the material can withstand prior to 
failure. 

At intermediate thicknesses between B,,, and B, some constraint is present 
but not sufficient to develop the triaxiality fully. The central portion of the 
specimen will be nearly in plane strain, whereas the remainder is closer to 
plane stress. The fracture surface usually consists of a central flat portion and 
appreciable shear lips at the edges. This combination results in a fracture 
resistance that is intermediate to the minimum plane strain toughness KI, and 
the maximum plane stress toughness. 

Because predictions of quasi-static loads required to initiate crack growth 
based upon the fracture toughness KI, will be conservative, a great deal of 
effort has been devoted towards measuring KI,. The American Society for 
Testing and Materials (ASTM) has established Standard E-399 (3.76) for the 
measurement of KI,. The three point bend and compact tension specimens are 
frequently used in the determination of KI,. To produce a sharp crack tip the 
machined starter notch is fatigue cracked. The specimen is loaded quasistat- 
ically and the load required to initiate crack growth is measured. This load and 
the specimen’s geometry are used to calculate the stress intensity factor, which 
will be equal to KI, if all the specifications of the Standard are met. The 
specifications must be rigorously followed in order to establish a valid KI, 
value-that is, the value for which one is assured that a larger or  thicker 
specimen will not yield an even smaller quantity. The reader contemplating 
performing such tests would be well advised to study the ASTM E-399 
Standard in detail. 

In order to ensure that the size of the plastic zone is small compared to the 
thickness and other geometric dimensions, the Standard requires for a valid 
KI, that 

B > 2.5 (2y 
W > 5.0 (7) Klc 

(3.4-15) 

where B and W denote the thickness and depth or width of the specimen, 
respectively. The thickness of the specimen is required to be approximately 50 
times the radius of the plane strain plastic zone. For a material with relatively 
low or moderate toughness and high strength, only a modest thickness is 
required. A minimum thickness of only 5.5 mm is required for a low- 
temperature heat treated AISI 4340 steel with KI, = 65 MPa m* and a, = 
1400 Mpa. For the latter a larger thickness may be required to prevent 
buckling during testing. By contrast an inordinately large thickness may be 
needed for a high toughness-low strength material. For example, the minimum 
thickness required for A533B, a nuclear reactor grade steel, having a toughness 
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of K,c = 180 MPa m* and a yield stress of c,, = 350 MPa is approximately 
0.6 m! Due to the large specimens needed in K,, testing of high toughness-low 
strength materials, alternative test methods with less stringent size require- 
ments must be used. Depending upon the circumstances LEFM may not be 
appropriate for these materials. 

Compendia of sources of fracture toughness data for metallic alloys have 
been prepared by Hudson and Seward (3.77,3.78). Because the fracture 
toughness depends upon many variables, the data should not be used 
indiscriminately. The user should be sure that all factors influencing the 
toughness are properly considered. 

Prior to the development of fracture mechanics the Charpy V-notch (CVN) 
impact test was used to compare the fracture resistance of materials. In the 
standard Charpy test (3.79) a notched three-point bend specimen is impacted 
with a pendulum. The fracture energy is equated to the energy lost by the 
pendulum during the impact. The test is relatively inexpensive, simple, easy to 
conduct and widely used. Consequently, a great deal of data has been 
generated. These data have formed the bases of empirical correlations and 
engineering judgments that have been used to translate Charpy energies into 
specifications for material toughnesses in designs. 

When CVN tests are conducted on low or intermediate strength steels at  
different temperatures, the dependence of the Charpy energy upon temper- 
ature has the character depicted in Figure 3.18. At the lower temperatures 
corresponding to Charpy energies on the lower shelf or plateau of this curve 
the fracture surface is reminiscent of the quasi-static plane strain fracture 
surface in that it is flat (cleavage) with little or no shear lips. The nil-ductility 
temperature (NDT) is used to define the upper limit of temperature for which 
plane strain fracture under impact exists. At the other extreme of temperatures 
the fracture surface associated with the upper shelf energies exhibits general 
yielding and ductile failure accompanied usually, but not always, by large 

I I Figure 3.18 Typical Charpy V-notch 
NDT energy versus temperature for low and 

Temperature intermediate strength steels. 
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shear lips. In the brittle-ductile transition between these two extremes, elastic- 
plastic fracture occurs and the fracture surface features a mixture of cleavage 
and shear lips. This sudden shift or transition in absorbed energy with 
temperature frequently does not occur in high strength steels and many other 
materials. 

It has become common practice in the bridge and ship building industries to 
specify the minimum toughness of a material by prescribing a minimum 
Charpy energy at a given service temperature. As an added measure of safety 
the NDT is usually required to be below the lowest anticipated service 
temperature so that the load-bearing material is operating on the upper shelf. 
Since the transition for quasi-static loading frequently occurs at a lower 
temperature, the practice of specifying impact fracture energies instead of 
static values tends to be conservative. 

Correlations between K,, and Kid, the plane strain fracture toughness under 
dynamic or impact loading, and the CVN energy have been made. For rather 
extensive discussions of these correlations the reader is referred to Chapter 6 
of Rolfe and Barsom (3.5). Because the transition temperature can depend 
upon the thickness of the specimen, dynamic tear (DT) and drop weight tear 
test (DWTT) have been designed to accommodate the full thickness of the 
plate of material. Correlations between K,,  and the energy absorbed in these 
compact tests can be found in Hertzberg (3.6) and references therein. 

3.5 Plane Stress Fracture and the R-Curve 

As already noted, the fracture toughness K,, is independent of the thickness of 
the body and the extent of crack growth when the triaxial constraint is such 
that a state of plane strain is attained. On the other hand, when insufficient 
thickness exists to support this constraint-that is, when the size of the plastic 
zone is no longer small compared to the thickness-the fracture resistance 
depends upon the thickness. Unlike the plane strain case, the plane stress 
fracture resistance is frequently observed to increase with increasing crack 
growth. The fracture resistance may increase to several times its value at crack 
initiation. Hence, there exists a potential reserve toughness that may be 
exploited. 

Aside from temperature and thickness the fracture resistance usually is a 
function only of the amount of crack extension Aa and independent of the 
crack length. The fracture resistance as a function of the crack growth is 
referred to as the resistance curve or R-curve. The R-curve can be expressed in 
terms of K, G, the crack opening displacement, or any other equivalent 
parameter within the context of LEFM or small-scale yielding. An analysis 
using any of these fracture parameters can be performed. In the following an 
energy approach is selected because it can be readily extended to the analysis 
of stable elastic-plastic crack growth. A parallel treatment based upon a K- 
resistance curve is given by Hutchinson (3.80). 
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During crack growth equilibrium between the crack driving force and the 
fracture resistance can be expressed by 

G(a) = R(Aa) (3.5-1) 
where a = a, + Aa is the current crack length and a, is the initial crack length. 
A typical R-curve is depicted in Figure 3.19(a). The current configuration is 
stable if a slight (infinitesimal) increase of the crack length at constant load 
does not give rise to a driving force that exceeds the material's resistance. This 
condition implies that in addition to satisfying Equation (3.5-l), 

dR (2)p dda (3.5-2) 

for stable crack growth. In other words, the crack growth is stable if the rate of 
increase of the driving force with crack length does not exceed the rate of 
increase of the material's resistance to crack growth. The limit of stable 
growth is expressed by 

dR E), = z (3.5-3) 

Equations (3.5-1) and (3.5-3) represent two equations for determining the 
driving force and the extent of crack growth at  instability. In a graphical 
solution of these equations, G and R(Aa) are superimposed on the same plot as 
shown in Figure 3.19(b). A family of G-curves can be plotted for prescribed 
loads P3 > P2 > P, as depicted there. The point of intersection of the driving 
force and resistance curves defines the amount of crack growth for that load, 

0, 

- L a  

n a  a0 a c  a 

(a) (b) 
Figure 3.19 R-curve analysis. 



184 Advanced Fracture Mechanics 

P, a 

a b 

W 

4 - -  
1- I 

4 

* 1 

Equations (3.5-1) and (3.5-3) imply that the limit of stable crack growth occurs 
when the crack driving force curve for the critical load P, is tangent to the R- 
curve. It is clear from this diagram that an increase of the load above P, will 
give rise to a driving force that exceeds the fracture resistance and unstable 
crack growth will ensue. 

For a more general treatment, consider the compliant loading of the 
cracked component in Figure 3.20. Let P be the induced load per unit 
thickness of the component due to the prescribed total displacement AT and 
let A be the load-point displacement. Denote by c,,, the total compliance of 
the loading device so that the prescribed displacement can be written as 

A ,  = c M P  + A (3.5-4) 
where C, = C,B. Treating G and A as functions of P and a, as well as other 
invariant parameters, one can write 

dAT = C,dP + dP + (g) da = 0 
P 

and 

dG = dP + (g) da 
P 

(3.5-5) 

(3.5-6) 

The combination of Equations (3.5-5) and (3.5-6) yields 

(g)*T = (g)p - (g)p [c, + (g)J1 (3.5-7) 
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It can be shown through manipulation of Equations (3.5-1), (3.5-4), and 
(3.5-6) that Equation (3.5-3) is equivalent to a stationary value of AT; that is, 
dAT/dG = 0. The latter condition will usually correspond to a maximum of A T  

(limit point) beyond which no solution to Equation (3.5-1) exists. 
Since A = CP,  where C = C(a) is the compliance of the component having a 

unit thickness, then 

(g)* = c, ( $ ) p  = PC' 
(3.5-8) 

where the prime is used to denote a differentiation with respect to the 
argument of the function. When there exist m equally loaded crack tips, it 
follows that 

(3.5-9) 
P2 C" 

P 2 m  
Equations (3.5-7)-(3.5-9) lead to 

(3.5-10) 

for the rate of increase in the driving force for fixed A T .  
While the crack driving force is independent of the compliance of the 

loading device, its rate of change depends upon this compliance. For dead 
loading (C, 4 oc)) Equation (3.5-10) reduces to 

AT 2m P 

P2C" ( P c y  

whereas for fixed grip loading (C, + 0), Equation (3.5-10) yields 

2m mC 

The condition for stable crack growth is 

d R  
($)AT < dda 

At incipient unstable crack growth, 

d R  
r Z ) A T  = dda 

A comparison of Equations (3.5-10) and (3.5-1 1) shows that 

( g ) p  ' r Z ) A T  

(3.5- I 1) 

(3.5- 1 2) 

(3.5-13) 

(3.5- 1 4) 

(3.5-1 5 )  

Consequently, for the same driving force the prescribed load rather than 
displacement presents a more severe loading condition for stable crack 
growth. 
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For a uniform remote loading, uT2 = P /  W, of a square plate having a width 
W large compared to a central crack of length 2a, the energy release rate per 
crack tip is given by 

(3.5- 16) 

When the latter equation is compared to Equation (5.3-9) with m = 2, then 

4na C'=- 
E W2 (3.5-17) 

Upon integrating Equation (3.5-17) and selecting the constant of integration 
to be the compliance of the uncracked plate, one finds that 

(3.5-18) 

The substitution of Equations (3.5-16)-(3.5-18) into Equation (3.5-10) yields 

(3.5- 1 9) 

Due to the assumed smallness of 2a relative to W, the second term within the 
brackets of Equation (3.5- 19) can be neglected. Consequently, within this 
approximation 

G nP2 
= a = EW2 (3.5-20) 

and there is no significant difference for this example between prescribed load 
and prescribed displacement. The condition for stability, Equation (3.5-13), 
becomes 

G < aR' (3.5-21) 
At initiation of crack growth it follows from Equations (3.5-1) and (3.5-21) 

that stability will be ensured if 

a, > R i / R :  

where R ,  = R(0) and R :  = R'(0). Clearly, the growth will be unstable for all 
crack lengths if R :  = 0 as is the case for plane strain fracture. If R: > 0, then 
the initial crack growth in the center cracked panel will be stable for 
sufficiently long cracks and unstable otherwise. For a given thickness the 
length I = R J R :  is a material parameter. When the initial portion of the R- 
curve is approximated by its tangent at  Aa = 0, the material length I represents 
the amount of crack growth associated with a doubling of R above Ri .  This 
length may vary from a few millimeters for the more ductile material behavior 
to a few centimeters or more for brittle-like behavior. 

For other types of structural components alternate expressions for 
(dG/da),, that may be more convenient than Equation (3.5-10) exist [see Paris 
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,et al. (3,81)]. For example, the Mode I stress intensity factor can be written as 

(3.5-22) 

The dimensionless function Y = Y(a/  W )  may also depend upon other fixed 
geometric parameters. Expressions for Y ( a / W )  can be found for a number of 
specimens and structural components in Tada et al. (3.21). The introduction of 
Equation (3.5-22) into Equation (3.3-30) yields 

Consequently, by Equation (3.5-9) 

a Y' 
2m a W Y  

and 

(3.5-23) 

(3 I 5- 24) 

(3.5-25) 

The substitution of Equations (3.5-24) and (3.5-25) into Equation (3.5-10) 
leads to 

The latter equation reduces to Equation (3.5-19) for the center cracked plate 
where m = 2, Y = &and C = 1/E. Furthermore, Equation (3.5-1) holds 
during crack growth so that 

is a function of the current crack length. When this expression is introduced 
into Equation (3.5-14), a transcendental equation for the critical crack length 
is obtained. The critical load can be determined from Equation (3.523) for this 
crack length and the associated value of R = G. 

In determining C it is sometimes convenient to write 

A = A, + A,,, (3.5-28) 

where An, is the load-point displacement of the uncracked component and A, 
is the contribution to the load-point displacement due to the presence of the 
crack. It follows that 

c = c, + c,,, (3.5-29) 

where C,,, is the compliance of the uncracked body that can be computed using 
standard methods and C, = A J P  i! the compliance due to the crack. Tada 
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et al. (3.21) give expressions for Ac for a number of cracked bodies so that Cc 
can be readily computed for these cases. 

From known expressions, either computed or available from handbooks, 
for Y and C, and for a given R-curve of the material, it is a straightforward task 
to evaluate the righthand side of Equation (3.5-27) and to ascertain from 
Equation (3.5-14) the limits of stable crack growth. In principle it makes no 
difference if either Equation (3.5-10) or Equation (3.5-26) is used in evaluating 
(dG/da),,; particularly, when exact expressions are available for Y and C. In 
practice the latter are often determined numerically and then curve fitted to 
obtain an analytical relation with an error of usually less than 1 percent. Each 
successive derivative of the fitted functions will increase the error. Since 
Equations (3.5-26) and (3.5-27) contain lower-order derivatives, these equa- 
tions are preferred when dealing with numerically determined values for Y 
and C. 

Further discussion of the R-curve analysis and testing can be found in 
Broek (3.1) and Rolfe and Barsom (3.5). While there is no standard R-curve 
test, ASTM (3.82) has a tentative recommended practice. 
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DYNAMIC FRACTURE MECHANICS 

It might be thought that the term “dynamic fracture mechanics’’ only applies 
to those fracture problems in which inertia forces must be included in the 
equations of motion of the body. While such problems are certainly included, 
we believe that the subject is actually much broader. In our view it 
encompasses all fracture mechanics problems where either the load or the 
crack size changes rapidly, regardless if inertia forces thereby become 
significant. I t  follows that any time-dependent boundary value problem 
addressing rapid crack growth initiation, propagation, and/or arrest lies 
within dynamic fracture mechanics. Note that, while the demarcation between 
“rapid” and “slow” crack propagation processes is difficult to fix in a formal 
way, the distinction is usually not difficult in practice. 

The word “dynamic” has been used to connotate crack growth processes 
accompanied by rapidly occurring changes in the crack/structure geometry 
and where these changes are not necessarily well described by a sequence of 
static equilibrium states. (That latter usage, of course, identifies those 
boundary value problems where the inclusion of inertia forces is necessary.) 
This ambiguity has caused a great deal of unnecessary confusion. To avoid 
this, we will use the term “kinetic” to designate an analysis model that 
explicitly includes the propagating crack and “static” for those analyses that 
consider only the end points of such an event. Both the kinetic and the static 
models are of course part of dynamic fracture mechanics. 

General background on wave propagation in solids can be found in the 
books of Kolsky (4.1), Bland (4.2), and Achenbach (4.3). The books of Broek 
and of Lawn and Wilshaw (see Chapter 9 for references) have addressed 
dynamic fracture mechanics specifically, but are largely limited to quasi-static 
concepts. Several comprehensive review articles are contained in Liebowitz’s 
Fracture Treatise. Of these, Erdogan’s (4.4) is particularly noteworthy; see also 
Kolsky and Rader (4.5) and Bluhm (4.6). But, of course, these do  not reflect the 
progress that has been achieved since the late 1960s. Since that time three 
volumes of conference proceedings entirely devoted to dynamic fracture 
mechanics have appeared (4.7-4.9). In addition, there have been a number of 
papers reviewing specific aspects of the subject..The most notable of these are 
the articles of Achenbach (4. lo), Freund (4.1 l), Rose (4.12), Francois (4.13), 
Kanninen (4.14), Kamath (4.15), and Nilsson and Brickstad (4.16). 

A phenomenological classification of problems in dynamic fracture me- 
chanics might include five specific focal points: the initiation of rapid crack 
propagation, the ensuing crack path, the crack speed, crack branching, and 
crack arrest. In our view, applications of the technology are best served by 
192 
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considering the latter four phenomena within a general theory of crack 
propagation. Indeed, in practice, two kinds of dynamic fracture mechanics 
problems have received most attention. These are: 

1. bodies with stationary cracks that are subjected to a rapidly varying 

2. bodies under fixed or slowing varying loading that contain a rapidly 

By far the most attention and effort has been placed upon the second 
classification. Accordingly, it will be emphasized in this chapter. 

applied load, and 

moving crack. 

4.1 Dynamic Crack Propagation and Arrest Concepts 

At present, much as in all other branches of fracture mechanics, the bulk of the 
applications in dynamic fracture mechanics assume linear elastic conditions. 
The development of this aspect of the subject is now fairly complete. Current 
research efforts are focused on incorporating elastic-plastic and other forms 
of nonlinear material behavior into dynamic treatments. The full range of 
these activities will be addressed in this chapter. To begin, this section first 
introduces the basic concepts of linear elastic dynamic fracture mechanics. 
The development of the subject is then traced from a historical point of view. 
The section concludes with a discussion of inelastic considerations. 

4.1 .I Basic Dejnitions and Terminology 

Two points of view on dynamic fracture mechanics are extant: continuum- 
based and micromechanical-based. Except for one dominant crack-like defect, 
the former view generally assumes the material to be continuous. The latter, in 
contrast, considers the failure process to develop from the initiation, growth, 
and coalescence of a great many random material imperfections. This chapter 
emphasizes the continuum view, consistent with by far the most research and 
application work in the field. The micromechanical view, of interest primarily 
for high-energy processes such as penetration/perforation processes in 
armaments, is touched upon briefly for completeness and for the potential 
that this application area offers for future dynamic fracture mechanics 
applications. 

In an applied mechanics analysis, fracture mechanisms enter only through 
their influence on the quantitative fracture resistance level. Cleavage fracture 
will generally be associated with a low fracture energy requirement, ductile 
fibrous fracture with a high fracture energy requirement. While the reasons for 
this varying behavior are intuitively understood, quantitative relations have 
yet to be evolved from metallurgical considerations in a completely sat- 
isfactory way. However important these connections may be in developing 
better structural materials, they are really unnecessary for the analysis of 
fracture in the terms presented here. What is essential is an appropriate 
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measure of the material’s fracture resistance to crack growth at the temper- 
ature, constraint, loading rate, and crack speed of interest. Dynamic fracture 
mechanics treatments are therefore focused on critical values of a crack-tip 
characterizing parameter. 

It is important to recognize that cleavage fracture in a metal, which 
generally occurs below the ductile-brittle transition temperature for the 
material, involves limited plastic deformation. Cleavage fracture can therefore 
ordinarily be addressed by linear elastic fracture mechanics (LEFM) tech- 
niques. In contrast, ductile fracture is usually accompanied by significant 
plastic deformation, making the use of LEFM suspect for such conditions. 
Despite the fact that rapid ductile fracture is not an impossibility, one often 
hears rapid crack propagation referred to as “brittle fracture.” While brittle 
materials most often do produce fast running cracks, it should not ever be 
forgotten that large-scale ductile fracture is also possible. Consequently, we 
prefer to use “brittle fracture” only in a metallurgical sense, and not as a 
synonym for rapid crack propagation. 

Two points of notation will arise throughout this chapter. First, unlike 
some authors, we will not provide an explicit designation on the stress 
intensity factor to indicate that it is dynamically computed. We reserve the use 
of subscripts and superscripts for quantities that represent material properties. 
The context should make clear whether the crack driving force is computed 
dynamically or not. The second point of notation is that we will carry the 
subscript I in denoting a fracture property. This usage for designating a 
material fracture property is technically correct only when plane strain 
conditions are satisfied. However, the distinction is not too important for the 
purposes of this chapter. 

As stated above, there are two general classes of dynamics fracture 
mechanics problems: crack initiation under rapidly applied loading and rapid 
crack propagation following initiation. Within the framework of linear elastic 
material behavior, the first classification is relatively free from controversy. 
There is general agreement that an appropriate quantitative form for the 
initiation of unstable crack growth is given by the relation 

K = Kld(C?, T )  (4.1-1) 

where K I d  is supposed to be a material property that depends upon the loading 
rate 6 and the temperature T. The disagreement that does exist involves the 
necessity to determine K by dynamic computations for practical problems. 
There is general agreement in principle on the correctness of so doing even 
though in most instances it is not. 

The second class of dynamic fracture mechanics problems, particularly as it 
involves the arrest of rapid crack propagation, has been a virtual battleground 
throughout most of the history of the subject. However, it can now be said that 
an understanding has been reached between two opposing viewpoints: the 
static and the kinetic points of view. Because dynamic effects exist at crack 
arrest, the static approach is a simplification. Nevertheless, reasonably 
constant statically determined arrest values can be determined experimentally 
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that will suffice for many practical purposes. Such an approach has been 
successfully used in one important practical application- the thermal shock 
problem in nuclear power plant pressure vessels described in Section 1.5.1. 
Nevertheless, caution should always be exercised in a static approach because 
the neglect of dynamic effects tends to be anticonservative. 

The static approach requires a small crack jump length in experimentation 
to determine the arrest property. The reason is that a kinetic analysis for crack 
propagation in an infinite plane provides the legitimization for the static view. 
In actual structures, the return of kinetic energy to the crack tip prior to crack 
arrest can make the static approach invalid. But, as this condition is often not 
inhibiting, the bulk of current state-of-the-art applications of dynamic 
fracture mechanics to rapid crack propagation and arrest are based upon the 
use of static crack arrest concepts. Specifically, for the initiation and 
termination of unstable crack propagation under linear elastic fracture 
mechanics (LEFM) conditions, one has 

and 

(4.1-2) 

(4.1-3) 

In both instances K is calculated just as if the crack were stationary (quasi- 
static growth) while K,, and K,, are taken as temperature-dependent material 
properties. It can be noted that this point of view does not include (nor could 
it) any consideration of the crack propagation process that links the initiation 
and arrest points. 

The static view of crack propagation requires crack arrest to occur 
smoothly with an intimate connection between the slowing down process and 
the static deformation state long after arrest; that is, crack arrest must be the 
reverse, in time, of crack growth initiation. However, there is ample evidence 
to suggest that elastodynamic crack arrest instead occurs abruptly at a value 
that is unrelated to the corresponding static condition. The kinetic point of 
view, which gives direct consideration to crack propagation with crack arrest 
occurring only when continued propagation becomes impossible, is in much 
better agreement with the observations. Within the confines of elastodynamic 
behavior, rapid crack propagation occurs in such an approach under the 
condition that 

(4.1-4) 

where K I D ,  the dynamic propagating fracture toughness, is a temperature- 
dependent function of the crack speed, I/. Note that this function generally 
does not include an initiation value; that is, K , D ( O ,  T) # K,,(T).  Thus, a 
kinetic approach will also generally employ Equation (4.1-2). Of more 
significance, the kinetic approach does not include an arrest value as such. In 
the kinetic approach arrest occurs at the position and time t ,  for which K 
becomes less than the minimum value of K I D ,  and remains less, for all t > t,. 
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The minimum value of K I D ,  which has been designed as K I M  and is here 
called K I A ,  is obviously a key parameter, In fact, the legitimacy of the static 
approach rests upon the notion that K I ,  is a good approximation to K I A .  
There are indeed many practical problems where the difference between the 
predictions of a static and a kinetic approach is not great. These applications 
are typified by, (1) the use of K,, values measured from short crack jumps, 
whereupon K, ,  provides a close approximation to K I A ,  and (2) component 
boundaries that do not reflect stress waves back to the running crack tip. These 
conditions are often satisfied in a structural component, but are less often valid 
in a small-scale test specimen. 

4 .  I .2 Quasi-Static Analyses of Propagating Crack Speeds 

The first quantitative prediction for the speed of a rapidly propagating crack 
appears to be that given by Mott (4.17) who in 1948 extended Griffith’s theory 
to include a kinetic energy contribution. Mott considered an infinite body 
subjected to a remote tensile stress 0 containing a propagating crack whose 
instantaneous length is 2a. Assuming that the crack speed is small in 
comparison to the velocity of sound in the body, Mott was able to express the 
kinetic energy of the body, per unit thickness, through a term having the form 

where p is the mass density, V is the crack speed, and u(x, y) represents the 
quasi-static displacements in the body. On dimensional grounds, Mott 
asserted that the above integral must be proportional to the quantity (aa/E)’. 
The kinetic energy can then be written as & k p V 2 ( a a / E ) 2 ,  where k is a 
numerical constant to be determined. The total energy due to the presence of 
the crack was then obtained by adding the kinetic energy to the diminution of 
the elastic energy and the surface energy increase due to the crack. Provided 
that no external work is supplied, conservation of energy then requires that 

na’a’ 
3 k p a 2 V 2  (i)2 - - + 4ya = constant E 

(4.1-5) 

where y denotes the surface energy. 
Mott reasoned that, since the total energy must be constant, its derivative 

with respect to crack length will be zero. Making the questionable assumption 
that dV/da  = 0, Mott deduced an expression for the crack speed having the 
form 

(4.1-6) 

where a. = ( 2 / n ) ( E y / 0 2 ) ,  the critical crack length in the Griffith Theory, was 
taken as the crack length at the start of the event [cf. Equation (1.2-6)]. It 
can readily be seen that Equation (4.1-6) predicts a limiting crack speed 
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I( = (27r/k)*(E/p)*. From this result Mott concluded that 

the velocity of propagation, under uniform stress, of a crack in a material that is 
not ductile, will tend towards a value of the order of the velocity of sound in the 
material, and which is independent of the stress applied or of the atomic cohesive 
forces across the cleavage plane. 

However, the exact value of this limiting speed, which depends upon the 
numerical constant k, was not specified. It might be kept in mind that a tacit 
assumption in Mott’s work was that V << C, = (E /p)* .  Nevertheless, the result 
was carried to a point where this assumption is clearly violated. 

Roberts and Wells (4.18), in a paper that appeared in 1954, advanced Mott’s 
analysis by determining a specific value for k .  This was done by numerically 
evaluating the kinetic energy in the body during quasi-static crack growth. 
They used Westergaard’s solution for the displacements in an infinite domain 
under remote biaxial stresses with a crack of length 2a on the x-axis. For plane 
strain, these relations are 

2pu = (1 - 2v)ReZ - y I m Z  
2pv = 2(1 - v)ImZ - y R e Z  

(4.1-7) 

For a crack in an infinite domain subjected to an applied stress 0 

bZ 
Z =  

(22 - aZ)+ 
(4.1-8) 

where p is the shear modulus, z = x + iy and 

d -  Z = - Z  
dz 

Because the integration for the kinetic energy does not converge, Roberts and 
Wells related the value of the integral to an arbitrarily chosen finite limit 
radius of integration, r. For each such limit, values of the quantity (2nlk)) 
were determined numerically. To select the correct outer limit, the argued that 

If the displacements are immediately communicated to the outermost parts of 
the plate, then the crack may only move with a very small terminal velocity. 
However, it also appears that the communication of these displacements is 
limited by the velocity of elastic waves themselves. 

From this Roberts and Wells concluded that, if the crack has grown to length a 
from a very small value a,, then the farthest wavefront will only have traveled a 
distance equal to r = Cot = a(k/2n)*, a result that apparently follows from 
integrating Equation (4.1-6) with u0 = 0. This provides the result that 
r/a = 2.62 and gives a lower limit for (2n/k)* equal to 0.38 (n.b., this result 
was obtained for v = 0.25). Thus, Mott’s equation can be put into the more 
definite form 

(4.1-9) 
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estimate of 0.38C0. 

The calculation of Roberts and Wells that provided their limiting crack speed 

where, as above, C, = ( E / p ) *  is the velocity of elastic waves in a thin rod (one- 
dimensional wave propagation). This gives the terminal or limiting crack 
speed = 0.38C0, a widely quoted result. Figure 4.1 shows their analysis 
procedure. 

The assumptions violated in Mott’s approach are, of course, also violated in 
arriving at Equation (4.1-9). In addition, it should be recognized that the 
assumption made to determine r, apparently to avoid a difficult integration, is 
a critical one. A more exact estimate would necessarily involve the initial crack 
length a,; that is, from Equation (4.1-6), using the approximation r = Cot, it 
is easily shown that 

da 

But, because the integral will clearly be a function of a/ao, the entire approach 
is dubious. However, because the value of (2n/k)* obtained by integrating the 
kinetic energy is a slowly varying function of r (see Figure 4.1), it could be 
argued that there probably is some appropriate value of t and that it is not too 
important just what this value is. In addition, the result is consistent with 
experimental results that show that terminal velocities exist and do not appear 
to depend upon the manner of producing the crack nor upon the applied 
stress. Indeed, values of measured crack speeds for both glasses and metals 
typically lie in a range from about 0.2C0 to 0.4c0, in rough agreement with this 
estimate. Table 4.1 provides some measured values for various materials. 
Table 4.2 gives values of the elastic wave speed that can be used for 
comparison with these observations. 
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Table 4.1 Observed Limiting Crack Speeds (4.6) 

c2 v, 
Material (m/sec) (m/sec) WC2 

Glass (soda-lime-silica) 3140 1540 0.49 
Glass (silica) 3 700 2190 0.59 
Cellulose acetate 680 300 0.44 
Steel 3160 1500 0.47 
Columbia resin 940 550 0.59 

Table 4.2 Approximate Value of Elastic Wave Speeds for Common Engineering 
Materials (4.1) 

Steel Copper Aluminum Glass Rubber 

E (GPa) 210 I20 70 70 20 
P (kg/m3) 7800 8900 2700 2500 900 
V 0.29 0.34 0.34 0.25 0.5 
CR (m/sec) 2980 2120 2920 3080 26 
C2 (m/sec) 3220 2250 3100 3350 27 
Co (m/sec) 5190 3670 5090 5300 46 
C, (m/sec) 5940 4560 6320 5800 1040 

Stroh (4.19), recognizing the possibility that the neglect of “relativistic” 
effects in Mott’s treatment could be significant when the crack speed 
approaches the velocity of sound, suggested in 1957 that the limiting speed 
must instead be the Rayleigh velocity. His argument follows from the 
presumption that the limiting velocity is independent of the surface energy of 
the material. If so, the situation is just the same as if y = 0, whereupon the 
work done in creating new crack surfaces must also be zero. This is 
tantamount to a disturbance moving on a stress-free surface, disturbances that 
moves at the Rayleigh velocity. For a Poisson’s ratio of 0.25 (see Table 4.3), 
this would give a limiting speed of CR = O.S8C,-a speed somewhat in excess 

Table 4.3 Elastodynamic Wave Speeds as a Function of Poisson’s Ratio 

Plane Stress Plane Strain 

V COIC2 CdC2 c,/c2 cR/c2 cI/c2 
0 

0.10 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 - 

1.414 
1.483 
1.549 
1.581 
1.612 
1.643 
1.673 
1.703 
1.732 

0.874032 
0.89 14 I6 
0.905 I84 
0.9 10996 
0.91 62 14 
0.920916 
0.925 165 
0.929019 
0.932526 

1.414 
1.49 1 
1.58 1 
1.633 
1.690 
1.754 
1.826 
1.907 
2.000 

0.874032 
0.893106 
0.910996 
0.919402 
0.9274 13 
0.935013 
0.942195 
0.948960 
0.955313 

1.414 
1.500 
1.633 
1.732 
1.87 I 
2.082 
2.449 
3.317 
- 
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of the observed values. Nonetheless, Stroh’s intuitive conjecture is interesting 
in that the more precise dynamic treatments that came later definitely 
established the Rayleigh velocity as a theoretical limiting speed. 

The next important advance in the theoretical crack propagation formula- 
tions appeared in two papers published almost simultaneously in 1960. These 
are the papers of Berry (4.20) and of Dulaney and Brace (4.21), both of which 
re-examined (and corrected) Mott’s problem. While the approaches differed, 
they reached essentially the same result. The more straightforward approach 
of Dulaney and Brace takes Equation (4.1-5) as its starting point and, like 
Mott, introduces a definition of the initial crack length from the Griffith 
Theory to eliminate the surface energy. By imposing an initial condition such 
that V = 0 when a = a, and replacing y by (n/2)(a2ao/E) ,  Equation (4.1-5) can 
be written as 

Hence, by simply solving this equation for V, Dulaney and Brace readily found 
that 

By using Roberts and Wells’ result to estimate k ,  this becomes 

(4.1-11) 

(4.1 - 1 2) 

Because of the use of the erroneous assumption dV/da  = 0 used by Mott, 
Equation (4.1-12) is clearly to be preferred over Equation (4.1-9).* 

Neither Dulaney and Brace nor Berry (like Mott) could provide a way to 
establish the constant k and had to rely upon the result of Roberts and Wells 
for this purpose. It might be noted that Roberts and Wells’ questionable 
assumption (that a, = 0) could be removed by integrating Equation (4.1-12). 
The kinetic energy integration limit arising in Roberts and Wells’ treatment 
would then take the form 

(4.1 - 13) 
From Figure 4-1 it can be clearly seen that Roberts and Wells’ result 
corresponds to the condition that (ao/a)f(a/ao) = 1; a condition that would 
indeed be approached, but only for very long crack lengths. 

It would be possible to improve upon the corrected form of Mott’s quasi- 
static crack growth relation through a more accurate implementation of 
Roberts and Wells’ results via Equation (4.1-13). However, this has been 
rendered somewhat superfluous by the dynamic approach of Freund (4.23- 

* This was recognized by Wells and Post (4.22) in a footnote to their 1958 paper. 
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4.26) for crack propagation in an infinite domain that appeared in 1972. As 
shown in Section 4.1.6, by using a slight numerical approximation, his result 
can be applied to Mott’s problem (i.e., crack propagation in an infinite medium 
under uniform tensile loading) to obtain 

V=C,(I-?) (4.1 - 1 4) 

where C, is the Rayleigh speed. The ratio of C, to C,, varies from 0.54 to 0.62, 
depending upon Poisson’s ratio. Thus, the crack speed history predicted by 
Equation (4.1-14) would be qualitatively the same as that arising from 
Equation (4.1-12), but would be roughly 50 percent greater at each stage of 
growth up to and including the terminal state. 

While observed crack speeds tend to agree somewhat better with Equation 
(4.1-12) than with (4.1-14), this is somewhat fortuitous. The latter form is 
essentially free of the several questionable assumptions embodied in the 
former. A more important consideration is that, to this point in the discussion, 
it has tacitly been assumed that the fracture energy of the propagating crack is 
not only the same as for the onset of rapid fracture, i t  is independent of the 
crack propagation speed. As will be shown later in this chapter, these 
assumptions are generally not true. In addition, i t  is possible that crack 
branching will intercede to provide a limiting crack speed. 

The crack propagation relations that have been obtained are very definite in 
predicting that crack speeds cannot exceed a theoretical upper limit that is 
connected to an elastic wave speed. As suggested by Winkler, Shockey, and 
Curran (4.27), under the normal kinds of loading conditions, the upper limit 
must arise from a restriction on the flow of energy to the crack tip. That is, 
since crack propagation at speeds less than C, must be an energy absorbing 
process, the rate at which it can proceed depends upon the rate at which 
sufficient energy can be supplied to the crack-tip process region. Usually, the 
load is applied at a distance from the crack tip whereupon the energy must be 
transmitted through the material at a rate that is restricted by the elastic wave 
speeds. But, as Winkler et al. showed, when the load is applied directly to the 
crack tip by a laser impulse, the resulting crack speeds can greatly exceed those 
normally observed. Moreover, they succeeded in producing crack speeds from 
one to two orders of magnitude above C, by this artifice. 

While the results of Winkler et al. are important for establishing the 
theoretical framework for crack propagation, of more practical significance is 
the role of plastic deformation at the crack tip in governing the crack speed. 
Hall (4.28) seems to have been the first to have considered the effect of the 
plastic energy dissipation at the tip of a propagating crack. In 1953 he 
reasoned that 

It  isto beexpected that the magnitude(of the plastic work) will depend upon the 
velocity of the crack front.. . the faster the motion of the stress field around the 
tip of the crack, the less time there is for plastic deformation to spread as plastic 
waves into the bulk of the material on either side of the crack before the stress 
concentration has passed, 
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Hall concluded from this that an additional relation is needed to connect the 
crack speed and the plastic work, and, in so stating, he anticipated the modern 
approach to the subject. 

Hall developed a simple model to estimate the effect of crack-tip plasticity 
based upon plastic wave propagation theory. Unfortunately, as the above 
statement implies, his model suggested a sharp decrease in the amount of 
plastic work with crack speed-a result that was not supported by later 
results, which, as embodied in the K , ,  parameter, generally show a rising 
character with crack speed. Note that these results did not take the increase in 
yield stress with strain rate into account, an effect that would lower the plastic 
work still more. Stroh (4.29) subsequently developed a simple crack growth 
model in which the fracture energy was associated with crack-tip plasticity 
and, hence, dependent upon temperature and strain rate. From this reasoning, 
he suggested that a transition from brittle to ductile behavior with increasing 
temperature could be explained. However, only qualitative results were 
obtained. 

It might be noted at this point in our review of early treatments of rapid 
crack propagation that these efforts were based upon several tacit as- 
sumptions that have since been abandoned. One is that there is always a 
distinct period of acceleration prior to crack propagation at a constant speed. 
Other assumptions were that quasi-static analysis procedures based upon 
an energy balance procedure that use a crack speed-independent fracture 
energy, would suffice. As the following will indicate, these were gradually 
superceded in evolving the present-day dynamic fracture mechanics analysis 
procedures. 

4.1.3 Dynamic Crack Propagation Analyses 

The first analysis treatment to include the effect of inertia forces on crack 
propagation was also the first to attempt a quantitative treatment of crack 
branching. This was the “moving Griffith crack” solution of Elizabeth Yoffe 
(4.30) given in 1951. She considered a crack propagating in an infinite elastic 
region under a uniform applied stress o acting normal to the crack line. The 
special feature of her analysis was that the crack retains its original length; in 
essence, it is a disturbance that propagates at a constant speed without change 
of form. While physically unrealistic, it did at least provide an indication of the 
influence of crack speed on the stress state at the tip of a rapidly propagating 
crack. 

Yoffe was motivated by a suggestion of Orowan (see reference 4.30) who 
anticipated that, while the stresses about a stationary crack are such that crack 
extension will occur in the line of the crack, there might be a tendency for the 
crack to curve or branch at high propagation speeds. For this idea to be 
quantitatively assessed, the stress state ahead of a crack propagating rapidly 
enough for inertia forces to be important was needed. Consideration of 
constant length, constant speed, crack propagation in an infinite medium 
allows a solution to be obtained without resort to numerical methods. 
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Yoffe used a Fourier method that is somewhat lengthy (a more direct 
approach is given in Section 4.3.4) to obtain a closed form speed-dependent 
solution that reduces to that of Inglis in the limit of zero speed. Of most 
interest in view of Orowan’s suggestion was the stress component bee(r, 0) in 
the near vicinity of the crack tip. For comparison, in the static case this is 

(4.1-1 5) 

where the terms omitted are of higher order in r. The speed-dependent 
solution can be expressed in a similar way whereupon the specific value of a/r 
is irrelevant for the purpose of assessing the propensity of the crack to deviate 
from the original crack plane. Yoffe plotted the &dependent portion of her 
solution as shown in Figure 4.2. From this plot she concluded that there is a 
critical velocity of about 0.6C2 for crack curving; that is, above this speed the 
angle for which the maximum value of 000 occurs changes from 6 = 0 to some 
value 8 > 0. Here, C2 denotes the shear wave speed and is given by m. 

The compilation of limiting crack speed data given in Table 4.1 can be 
compared with Yoffe’s prediction. It can be seen that these results are generally 
in the range from 0.4C2 to 0.6C2. Thus, the observed results generally lie just 
under Yoffe’s prediction. For comparison with the quasi-static approaches 
described in the preceeding subsection, for an average Poisson’s ratio of 0.25, 
C2 = 0.63C0. Thus, the range of observed values is from 0.25 to 0.38v/co. 

The next important dynamic crack propagation solutions were those 
contributed by Broberg (4.31) and by Craggs (4.32), both in 1960. Guided by 
Mott’s original approach, Broberg argued that, if the surface energy is 
negligibly small, then the crack will nucleate from an infinitesimally small 
microcrack and will achieve the limiting velocity immediately [c.f. 
Equation (4.1-6)]. He therefore solved the dynamic problem of a crack 
expanding from zero length at a uniform rate. Baker (4.33) subsequently 

I 

6 6  so* Figure 4.2 The calculated result of 
YoITe that provided a crack branching 

3d 

8 speed estimate of 0.6C2. 
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generalized Broberg's solution to include a finite initial crack. Like Yoffe's 
solution, these are also artificial solutions that have no direct structural 
application. However, they also have provided useful insights and continue to 
be useful today for the assessment of dynamic numerical analyses; that is, by 
providing check cases in which the stress and displacement fields attending a 
moving crack are known. 

An example of this usage is that of Nishioka and Atluri(4.34) who 
compared their moving singularity formulation with Broberg's result 

K = o&k(V) (4.1 -16) 
where k( V) is a monotonically decreasing function of the crack speed and the 
elastic wave speeds that becomes equal to zero at  the Rayleigh velocity. In 
common with the results of other investigators, to a reasonable approxi- 
mation, this function can be written as 

V 
k ( V )  cz 1 - - 

CR 
(4.1-1 7) 

where C, denotes the velocity of Rayleigh surface waves. Specifically, Nishioka 
and Atluri expanded a crack in a finite element model at  a selected constant 
speed and computed K / o m  as a function of time. By checking their result 
with Equation (4.1-17) they were able to verify the suitability of their model 
formulation. 

Craggs (4.32) considered a semi-infinite crack propagating at  a constant 
speed under the action of surface tractions on the crack faces that move with 
the crack tip. Hence, like Yoffe's solution, a steady-state problem was 
considered. Craggs results can be interpreted to show that the instantaneous 
crack extension force G can be related to the dynamic stress intensity factor K 
through a crack-speed-dependent relation given by 

(4.1 - 18) 
where C ,  and C, are elastic wave speeds and D is a universal function of the 
crack speed given by 

This function vanishes at zero crack speed and at the Rayleigh velocity. It is 
positive at intermediate values. It can be shown through a limiting procedure 
that 

2 ~- - (x )  4 as v-o 
K + 1  c, 

noting that 

cf K + 1  _ -  -- c: K - 1  
(4.1-20) 



Dynamic Fracture Mechanics 205 

It can be seen that Equation (4.1-18) reduces, as it must, to Equation (1.2-23) 
for zero crack speed. 

The development of Equation (4.1-18) might be Craggs most lasting 
contribution. Nevertheless, in addition, he also developed results for crack 
branching that were more systematic than those of Yoffe, but nonetheless 
showed general agreement with the V = 0.6C2 criterion. Crack branching was 
also a central concern of Carlsson (4.35). In his 1963 paper Carlsson supposed 
that a crack propagates through the formation of microcracks that grow 
ahead of the crack tip and link up with it. He was able to formulate a model 
using complex variable methods of the theory of elasticity. Carlsson showed 
that his model was qualitatively in accord with experimental observations of 
crack branching, but did not obtain a clear-cut quantitative prediction. 
Carlsson also suggested that the Dugdale model could be incorporated into a 
crack propagation formulation to reflect the effect of crack-tip plasticity. But, 
the actual accomplishment of this idea did not occur until somewhat later. 

4.1.4 Crack Branching 

Recall that Yoffe’s solution was motivated by crack branching. Hence, before 
discussing the topic of crack arrest in the next subsection, we consider progress 
on crack branching. First, even though crack branching offers attractive 
research opportunities to both mathematicians and experimentalists, its 
practical applications are not of nearly as much significance. Comminution 
processes and terminal ballistics aside, the importance of crack branching in 
structural mechanics probably lies in its role in  limiting rapid crack 
propagation. That is, after a sufficiently high crack speed has been attained, 
further increases in the crack driving force apparently only cause repeated 
branching with no increase in the average crack speed. This possibility was 
suggested by several investigators including Cotterell (4.36), who concluded 
that, while fracture propagation will normally proceed along a local symmetry 
line where the principal stress normal to the line is a maximum, two such lines 
will develop at high speeds causing the fracture to branch. Clark and Irwin 
(4.37) have stated that successful crack branching implies that a limiting speed 
has been nearly achieved. The origins of the latter’s ideas are as follows. 

Clark and Irwin, in discussing a qualitative explanation for the existence of 
a limiting crack speed offered by Saibel (4.38), used the fact that observed 
limiting crack speeds are roughly half of the Rayleigh velocity. From this 
observation they reasoned that 

This indicates that damping processes rather than inertia of the material 
dominate in setting the value of q. Thus, we can regard the running crack as 
subsonic, over-damped, low inertia disturbance moved ahead by a driving force 
G. Until the value of G begins to overdrive the crack toward crack division, the 
crack speed increases and decreases in phase with the force. 

In common with the observations reported by Schardin (4.39), Clark and 
Irwin found that the crack speed just before crack division was nearly the same 
as that of the most advanced crack in a multiple division crack pattern. Hence, 
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in contrast to Yoffe’s argument, the crack does not branch solely because it has 
reached some critical velocity. Clark and Irwin were able to arrive at an 
alternative explanation through estimates (quasi-static) of the crack driving 
forces prior to and following branching. Upon finding them to be nearly equal, 
they concluded that 

It seems best therefore to regard attainment of a critical K (or G), rather than a 
crack-speed-induced modification of the stress pattern, as the primary factor 
controlling crack division. 

This same conclusion was reach independently by Congleton and Petch (4.40) 
who offered a rationalization based on the nucleation of cracks ahead of the 
moving crack tip. In contrast to the observations reported by Clark and Irwin, 
however, their findings indicated that branching can occur at crack speeds well 
below the limiting value. These conclusions were subsequently reinforced by 
Anthony et al. (4.41). 

An energy balance approach to the prediction of crack branching was 
proposed by Johnson and Holloway (4.42) in 1966. Starting from Mott’s 
equation, Equation (4.1-5), and assuming that the only effect of crack division 
would be to double the surface energy contribution, they arrived at a condition 
for branching that can be expressed as 

(4.1-21) 

This approach was criticized by Rabinovitch (4.43) on the basis that, if, as 
Johnson and Holloway assumed, the crack speed at branching is the limiting 
speed 6,  then the bracketed term in Equation (4.1-21) is identically equal to 
zero; that is, from Equation (4.1-5) it can be seen that 6 = (2n/k)*C0. A similar 
conclusion was reached by Jacobson (4.44). 

Anderson (4.45) has calculated the stress intensity factors for crack branches 
of infinitesimally small length. On the basis that crack division occurs at the 
angle for which KI is maximum, he predicted that the angle between two 
branches should be about 60 degrees. However, as Kalthoff (4.46) pointed out, 
the experimental measurements indicate that actual angles are instead only 
about 30 degrees. Kalthoff suggested an alternative branching criterion based 
on consideration of K ,  and Kll. In a numerical study, he noted that for two 
cracks oriented at an angle of 28 degrees, K,, is just equal to zero and crack 
growth at that angle would be stable whereas greater or lesser angles would be 
unstable. However, while this finding is undoubtedly connected with the 
development of crack division, it does not provide any quantitative insight 
into the initiation of branching. 

To conclude this discussion we note that the mathematical study of crack 
bifurcation under dynamic conditions is currently a fairly active research area. 
As yet, no universal crack branching criterion has emerged. It can be 
conjectured that, like other areas of fracture mechanics, the most fruitful 
avenue is one that integrates experimentation with mathematical studies. This 
may be the reason for the progress recently achieved by Ramulu and 
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Kobayashi (4.47) who have arrived at a combined criterion that appears to be 
in good agreement with experimental observations. This involves, (1) a 
necessary condition for the generation of secondary cracks given by K ,  = K l b ,  
where K,, is a material constant, and (2) a sufficiency condition given r,, < rc, 
where r,, is a characteristic distance governed by the local stress state and rc is a 
material property. 

4.1.5 Early Views on Crack Arrest 

Broadly speaking, the behavior of the materials used in engineering structures 
can be classified as either ductile or brittle. In the presence of a crack, the 
failure point of a ductile material can be estimated reasonably well in terms of 
the net cross-sectional area that remains on the crack plane to support the flow 
stress. In contrast, a brittle material will fail well before this point, particularly 
when the crack is small in comparison to the remaining ligament size. A given 
material can exhibit both extremes of behavior. That is, a metal that is 
ordinarily tolerant of flaws (i-e., because it fails only after substantial plastic 
deformation) can also exhibit brittle behavior at low temperatures and/or 
high loading rates. That the risk of inducing brittle failure is increased by the 
presence of notches, cold, and impact was well known to construction 
engineers of the nineteenth century. But, as evidenced by the catalog of failures 
cited in Chapter 1, this phenomenon has perhaps not always been recognized 
by their successors in the present century. 

This lack of appreciation for the dual nature of engineering materials led to 
compartmentalized approaches to failure analysis. Some investigators con- 
centrated attention on fast brittle crack propagation and others on crack 
initiation from flaws. According to Wells (4.48), 

The proponents of each study defended their hypothesis.. . and a controversial 
battle was joined. Like other battles, it was wasteful of resources and led to 
casualties among scientific reputations”. 

It is clear from the predominance of efforts focused on fracture control by 
precluding crack growth initiation which viewpoint eventually carried the day. 
Nevertheless, the alternate viewpoint-fracture control by arrest of rapid 
crack propagation-has not been obviated. In fact, owing to ever more 
widespread recognition that crack initiation cannot ever be absolutely 
precluded, interest in crack arrest for structural components is growing 
significantly at  present. 

Generally speaking, if the initiation of crack propagation cannot be 
absolutely precluded and the consequences of fracture are sufficiently large, 
then a crack arrest strategy is mandated as a second line of defense against a 
catastrophic rupture. A prominent example of the necessity for crack arrest 
considerations is the thermal shock problem for nuclear pressure vessels, as 
described in Chapter 1. In this problem reduced toughness levels due to 
neutron irradiation coupled with the severe loading conditions experienced in 
a loss of coolant accident could well lead to initiation of crack growth from a 
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Figure 4.3 A pragmatic crack arrest device in a ship structure. 

small flaw. But, serious consequences can be avoided if crack arrest will 
intercede before the moving crack can penetrate the wall. As another example, 
rapid crack propagation over several miles has been experienced in gas 
transmission pipelines. Ship structures also offer instances where crack arrest 
considerations are appropriate. Figure 4.3 shows a primitive application of a 
crack arrest approach in a ship at sea. While this application was obviously 
successful (no such picture would likely have survived otherwise), more 
quantitative approaches are certainly useful. 
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There are two approaches to characterizing crack arrest. These are the static 
and the kinetic arrest theories. The former has received its rationalization from 
Irwin and Wells (4.49) who stated in 1965 that 

It would now appear that the majority of running brittle cracks in mild steels are 
manifestations of plane-strain fracture, such that arrests are simple reversals on 
the time scale of possible plane-strain initiations. 

As a consequence of this observation, there must exist a material property, 
commonly designated Kr,, that governs crack arrest in the same sense as K,, 
governs initiation. But, the formal concept of a crack arrest toughness, as 
measured in a static interpretation of a post-arrest condition, had its origins in 
the work of Crosley and Ripling (4.50). They later suggested a formal 
definition of KI, as being the value of K at about one millisecond after a run- 
arrest segment. They assumed that a nearly static stress state would be 
established by that time. This, of course, avoids the difficult problem of 
characterizing the crack tip at the instant of crack arrest and offers the 
possibility of treating crack arrest by methods that are no more difficult than 
are used for initiation. 

Interestingly, while their objective was to study the effect of strain rate on 
the fracture toughness of a pressure vessel steel, Crosley and Ripling found 
that the K,, parameter exhibited much less variability than did K,, measure- 
ments on the same materials under the same testing conditions. Moreover, 
these data were found to be in good agreement with the lower bound of all 
static and dynamic crack initiation toughness measurements. The K,, 
reference fracture toughness curve of the American Society of Mechanical 
Engineers (ASME) Boiler and Pressure Vessel Code in fact uses KI, data in this 
spirit (see Section 1.1.8). It was only subsequently that K,, values were used 
together with statically computed stress intensity factors to estimate whether 
or not a rapidly propagating crack would arrest. 

As summarized by Kanazawa (4.51), a great deal of very important research 
on crack arrest has been performed in Japan. But, because the formal 
development of the dynamic crack arrest theory owes much to the efforts of 
G. T. Hahn and co-workers at Battelle (4.52), we will focus on this work here. 
This work was based on an alternative to the static arrest approach-an 
approach we now refer to as kinetic. A kinetic approach focuses on the crack 
propagation process and considers arrest only as the termination of such a 
process. The quantitative development of this approach was intimately 
connected with the use of the double cantilever beam (DCB) test specimen, 
shown in Figure 4.4. Figure 4.5 shows schematically results obtained by Hahn 
and co-workers that revealed clearly the importance of a kinetic analysis, at 
least for the DCB test specimen. 

Because of the blunted initial crack tip conimonly used in the type of 
experiment shpwn in the upper portion of Figure 4.5, the stress intensity factor 
at the onset of crack growth, K , ,  can be made arbitrarily greater than KI,. 
Accordingly, the crack speed and the crack jump length can be systematically 
increased by increasing the ratio K,/KI , .  The more blunt the initial crack, the 
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Figure 4.4 A double cantilever beam (DCB) test specimen instrumented with timing wires to 
determine the crack propagation history. 

CRACK 
G R O W T H  

TIME 

CRACK 
SPEED 

CRACK G R O W T H  
Figure 4.5 Schematic comparison of static and dynamic analyses of crack propagation and 
arrest in the DCB test specimen. 
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more strain energy can be stored in the arms of the DCB specimen whereupon 
the crack will be driven further and faster. Because the crack run/arrest 
event proceeds under essentially fixed grip conditions, the crack propagates 
into a diminishing stress field whereupon the arrest of a fast moving crack 
within a DCB specimen is possible. Also, because of the proximity of the free 
surfaces that parallel the crack plane, the DCB specimen is the most 
“dynamic” of any of the commonly used test specimens. Consequently, even 
though it may not be representative of service conditions, the DCB specimen is 
ideally suited to an elucidation of crack arrest principles. 

The beam-like character of the DCB specimen was exploited by a number 
of investigators-for example, Benbow and Roessler (4.53) and Gilman 
(4.54)-who developed expressions for the energy release rate using simple 
built-in beam relations. Kanninen (4.55) extended this idea by modeling the 
uncracked portion of the specimen as a beam on an elastic foundation. From 
this an expression for the specimen compliance was obtained for the entire 
range of possible crack lengths. This result was shown to be in good agreement 
with measured values by Hahn et al. In terms of an applied load P, the stress 
intensity factor deduced for this model is 

1 sinh’ I c  + sin2 I c  1 sinh Ic  cosh Ic  - sin Ac cos Ac +- sinh’ I c  + sin21c l a  sinh2 l c  - sin2 I c  

(4.1-22) 

where 2h and B, respectively, are the specimen height and thickness, c is the 
uncracked speciment length, and A = (6)*/h. Equation (4.1-22) was found to be 
in excellent agreement with the numerical results of Srawley and Gross (4.56). 
More recently, Fichter (4.57) has used a Fourier transform and the Wiener- 
Hopf technique to determine the stress intensity factor for plane stress 
conditions. Because he neglected the free end, a comparison can be made only 
with the special case where c >> h. For completeness, the three results can be 
written for this case as 

1; + 0.69, Gross and Srawley 

(4.1-23) 
KBh’ a h2 - = 1 - + 0.6728 + .0377 -r, Fichter 
2$P h a 

+ 0.64, Kanninen 

For practical purposes, these results are essentially the same. Equation 
(4.1 -22), however, provides the only closed-form expression for the com- 
plete specimen. In particular, that result indicates that free end effects cannot 
be neglected unless c > 2h. 

For dynamic conditions, the energy balance condition with the kinetic 
energy included was taken as the crack growth criterion. This can be written, 
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per unit thickness, as 

(4.1-24) 

where, as above, Wand U denote the external work done on the component 
and its elastic energy, per unit thickness, respectively, while T denotes the 
kinetic energy in the component per unit thickness. Crack growth is then 
supposed to proceed according to a relation G(t)  = Gc(V)  with crack arrest 
occurring at a time when the criterion is no longer satisfied. Now, as indicated 
schematically in Figure 4.5, crack propagation in a DCB specimen from an 
initially blunted crack tip under slowly inserted wedge loading proceeds at an 
ostensibly constant velocity. This fact, albeit unexpected, made possible a 
decisive comparison of the various analysis approaches. 

The simplest of the approaches shown in Figure 4.5 is one in which the 
crack propagates under quasi-static conditions with a fracture toughness that 
is always equal to the initiation toughness, &,. This approach uses an energy 
balance, assigning the differences between the strain energy release rate and 
the fracture energy requirement to kinetic energy. From this a crack speed can 
be inferred. As shown in the lower part of Figure 4.5, for quasi-static 
conditions with G, being speed-independent, a crack speed that differs 
markedly from the observed values is predicted. Also, the crack jump length is 
considerably underestimated. 

An obvious improvement in the approach can be based upon the use of 
different initiation and running fracture energies. For heuristic purposes, one 
could select a value of G, to match the observed crack arrest point. But, 
Figure 4-5 also reveals the inadequacy of this approach: the predicted crack 
speeds exceed the elastic wave speeds for the material. Clearly, therefore, the 
resolution of this difficulty does not lie in the choice of a fracture toughness 
property alone. It would instead appear that extended amounts of rapid crack 
propagation cannot be characterized with a static computational approach. A 
dynamic solution using the beam on elastic foundation model is shown in 
Figure 4.5 where, to be a quite good approximation, the experimental results 
were reproduced both qualitatively (i.e., a linear crack length-time record 
virtually from the onset of crack growth to just prior to arrest) and 
quantitatively. 

This success, coupled with the inadequacies of static analyses, led to 
questioning of the then widely accepted static post-arrest characterization of 
crack arrest. For example, Kanninen (4.58) performed a series of com- 
putations for different initiation conditions in the DCB specimen which 
showed that the static condition following arrest was a very definite function 
of the crack jump length in the test. This means that the post-arrest condition 
characterized by K,, cannot be related to the material properties controlling 
the propagation event. Clearly, these two approaches are theoretically 
incompatible and, on the basis of the foregoing, it appears to be the kinetic 
approach that is correct. However, it remained for the decisive experimental 
work of Kalthoff et al. (4.59) and A. S. Kobayashi et al. (4.60) to resolve the 
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issue. These results, shown as Figures 4.6 and 4.7, were obtained on 
photoelastic materials using optical techniques. 

The results shown in Figure 4.6 were obtained on DCB specimens using the 
method of caustics (4.59). In contrast, the results shown in Figure 4.7 were 
obtained on a compact tension (CT) specimen via a photoelastic method 
(4.60). In both cases an estimate of the stress intensity factor of the 
propagating crack was made from optical images using high-speed pho- 
tography (see Section 4.4.1). These results clearly show that the static 
interpretation of a run-arrest is vacuous. In particular, it can clearly be seen 
that the actual stress intensity factor at  the point of arrest does not correspond 
to the static value. Figure 4.6, which presents the results of five individual 
experiments, further reveals that there is a progressive increase in the 
discrepancy between the static and observed values with increasing crack 
jump length. The constancy of the actual stress intensity factor value at crack 
arrest is evident in this set of results. The “ring-down” in the stress intensity 
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Figure 4.6 Comparison of static stress intensity factors with values observed by the method of 
Caustics for Araldite B DCB specimens. 
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Figure 4.7 Comparison of static stress 
intensity factors with values observed 
by the photoelastic method in a poly- 
carbonate modified compact tension 
specimen. aa,mm 
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factor long after arrest, which indicates that the static value is eventually 
restored, was also shown in the work of Kalthoff et al. (4.59). This was shown 
in Chapter 1 as Figure 1.27. 

Although it is tangential to the question of crack arrest, the analogous 
situation of static versus dynamic interpretations of rapidly loaded compo- 
nents might also be noted. Kalthoff et al. (4.61) haveemployed their method of 
caustics approach to study the impact loading of a three-point bend specimen. 
Their results reveal that there is again a complete lack of correspondence 
between the static interpretation and the observed stress intensity factors. 
Finally, in concluding this section, it should be recognized that a considerable 
amount of experimental work has been contributed that has served to 
illuminate the basic issues. This body of work would include the early 
contributions of Schardin and Smekal in Germany, Kanazawa in Japan, 
Carlsson in Sweden, Robertson in Britain, and Hall in the United States. 
Pertinent recent work would include that of Kalthoff et al. (4.62), Hoagland et 
al. (4.63), Kobayashi and Dally (4.64), Kobayashi and Mall (4.65), Crosley and 
Ripling (4.66), Dahlberg et al. (4.67), and Kanazawa and Machida (4.68). We 
will return to this subject in Section 4.1.7. 

4.1.6 The Basis of Elastodynamic Fracture Mechanics 

Paralleling the more pragmatic efforts to identify appropriate measures for 
crack arrest in practical engineering problems was mathematical work. The 
focus of these efforts was the determination of the dynamic counterpart of 
Irwin’s relation between the energy release rate and the stress intensity 
factor-that is, Equation (1.2-23). Craggs (4.32) seems to have been the first 
to deduce such a relation, albeit for the artificial conditions of a constant 
speed, semi-infinite crack. For an expanding crack, a result for a steadily 
moving crack was later obtained by Sih (4.69). Freund (4.23), using the energy 
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flow rate formulation developed by Atkinson and Eshelby (4.70), appears to be 
the first to develop such a relation for non-steady state motion. A rigorous 
derivation of this key is given in Section 4.2.2. 

Broberg, Baker, and others developed relations for the dynamic stress 
intensity factor for an infinite medium. Their relations can be written in a 
common form as 

K ( t )  = k( V)K(O) (4.1-25) 

where K ( t )  denotes a dynamically computed value of the stress intensity 
factor, with K(0)  being its static counterpart, while k ( V )  is a universal (i.e., 
geometry-independent) function of the crack speed. The k( V )  function is 
slightly different in the different solutions. Values of this function for two 
different solutions are shown in Figure 4.8. 

The function k ( V )  is defined by a complicated expression that is not readily 
manipulated. Accordingly, the approximate simplified form developed by 
Rose (4.71) is useful for practical computations. This is 

k ( V )  = (1  - i ) ( l  - h V ) - *  (4.1-26) 

where h is a function of the elastic wave speeds (having units of reciprocal 
crack speed) that Rose develops in several different ways, each to a different 
degree of approximation. The only closed-form expression is 

(4.1-27) 

where C,, C2, and C, are the elastic wave speeds defined in Section4.2. 
Detailed calculations provided by Rose show that use of Equation (4.1-27) 
will give only a slight underestimate of k (e.g., within 5 percent) up to V/C2  = 
0.5, which covers the great majority of all practical applications. 
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Figure 4.8 The function M u ) .  
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The result derived by Freund (4.23) for the dynamic energy release rate is 

(4.1-28) 

where G ( t )  is the dynamic energy release rate, G(0) is its static counterpart, and 
g( V) is a universal function of crack speed. The latter function is given to a 
close approximation by 

V 
g(V)  = 1 - - 

CR 
(4.1-29) 

This relation can be used to deduce the speed of a rapidly propagating crack in 
a large body. Let us suppose, like Mott (4.17), that a critical energy release rate 
governs crack propagation; that is that crack propagation proceeds in accord 
with the equality G = G,. Now, consider that crack propagation has initiated 
from a crack of length 24, in an infinite domain subjected to a remote constant 
applied stress o. Then, G(0) = 02m. For the special circumstances where G, is 
the same for initiation and propagation, it is evident that 02mo = G,. 
Substituting these quantities into Equation (4.1-28) and using Equation 
(4.1-29) produces Equation (4.1-14), which was introduced above to compare 
with the quasi-static results of Mott et seq. 

A.s described in Section 4.1.5, two seemingly opposing views of crack arrest 
exist: the static approach centered on the K,, parameter and the kinetic 
approach based on K f D  = KfD(  V )  function that views arrest as the termination 
of propagation. Substantial amounts of evidence were accumulated in 
support of each point of view. Widespread acceptance of one or the other 
position awaited the more direct experimental evidence that was eventually 
forthcoming in the shadow pattern (or method of caustics) and dynamic 
photoelasticity work described in Section 4.1.5. Both techniques, when 
coupled with flash photography, enable extraction of the stress intensity factor 
of a fast running crack to be made. If, as assumed in the kinetic point of view, 
crack propagation occurs only when K = K,,(V), then experimental results 
such as these can be used to determine directly the material property K I D  as a 
function of crack speed V .  An example was shown in Chapter 1 as Figuie 1.28. 
However, because these results were obtained on a polymeric material, the 
subsequent adaptation of the method of caustics in reflection, which enabled it 
to be applied to study metals, was important. This was first accomplished 
Shockey et al. (4.73) and later by Rosakis and Freund (4.74). A comparison of 
results for a polymer and for steel showing that the same effects are present is 
shown in Figure 4.9. 

The observations revealed in Figure 4.9 were anticipated by the results of 
kinetic fracture calculations-for example, see Kanninen (4.58). That the 
major influence causing the so-called dynamic effect is the reflection of stress 
waves from the specimen boundaries can be seen in the results of these 
calculations as illustrated in Figure 4.10. This figure compares a dynamic 
solution that takes into account the finite dimensions of the DCB specimen 
with the dynamic solution for an infinite medium given by combining 



Dynamic Fracture Mechanics 217 

HIGH STRENGTH STI 

0.0 
60 140 220 100 180 260 

Aa,mm. 
Figure 4.9 Stress intensity factors obtained by the method of Caustics for Araldite B 
(Transmission) and a high strength steel (reflection). 
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Figure 4.10 Comparison of calculated crack propagation/arrest results for a DCB specimen 
with an infinite medium solution. 
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Figure 4.1 1 
of Figure 4.10. 

Distribution of energy during crack propagation in the DCB specimen experiment 

Equation (4.1-22) with Equation (4.1-25). This result demonstrates an import- 
ant conclusion: a kinetic approach via an initial value-boundary value 
problem will coincide with the quasi-static crack arrest prediction when 
reflected stress waves are not important-see short time agreement in 
Figure 4-10-but will otherwise predict that the crack may penetrate further 
into the body. 

The result presented in Figure 4.9 also reveals that kinetic energy plays a 
crucial role in crack propagation; see Equation (4.1-24). That is, the time 
required for an elastic stress wave to travel from the crack tip to the specimen 
boundary in a DCB test specimen and return is approximately 2h/C,. For the 
specimen dimensions considered, this time is 26 psec. And, as Figure 4-10 
shows, this is about where the infinite medium solution departs from the finite 
body solution. Figure 4.1 1, which shows the partitioning of the initial strain 
energy contained in the specimen during the run-arrest event, further bears 
this out. 

Figure 4.1 1 shows that the kinetic energy rises to a maximum at about the 
statically predicted arrest point (i.e., a - a. = 35 mm). The subsequent 
decrease indicates the reflection of waves from the specimen boundaries. 
The results obtained by Kobayashi et al. (4.60), as shown in Figure 4.12, reveal 
that quantitatively similar behavior occurs in a compact tension specimen. 
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Kinetic energy 

0 50 100 200 Figure 4.12 Distribution of energy 
during crack propagation in the CT 
specimen experiment of Figure 4-7. na,mm 

Thus, while the DCB specimen is highly dynamic, it displays an effect that is 
common to all run/arrest events in the vicinity of free surfaces. 

Figure 4.13 shows the result of a kinetic calculation by Popelar and 
Kanninen (4.75) for the oscillation of the stress intensity factor following crack 
arrest at a hole in the DCB specimen. Their approach utilized a dynamic 
viscoelastic analysis approach for the DCB specimen. Of most significance, 
the Popelar-Kanninen analysis indicated that the amount of viscous energy 
dissipation that occurs prior to crack arrest is negligible. This conclusion is at 
odds with the inferences made from observations by Shukla et al. (4.76) that 
seem to indicate that a substantial amount of energy is lost away from the 
crack tip. This question is currently unresolved. 
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Figure 4.13 Comparison of stress intensity factors calculated by a dynamic viscoelastic analysis 
and values observed by the method of caustics. 
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4.1.7 Crack Arrest Methodology 

While the kinetic analyses made in the work conducted by Hahn and his 
associates were based upon a dynamic energy balance and a critical energy 
release rate parameter, the Freund-Nilsson relation, Equation (4.1-1 8), shows 
that this would be equivalent to a crack growth criterion based on the stress 
intensity factor. Thus, the expression for dynamic crack propagation, 
Equation (4.1-4), can be generally taken in the form K ( t )  = KID(  V ) ,  where K is 
computed from the equations of motion for the cracked body as part of an 
initial value-boundary value problem. Formally, the crack arrest condition 
can be expressed as the inequality 

(4.1-30) 

Despite the apparent dichotomy posed by the two opposing crack arrest 
criteria offered by inequality (4.1-30) and Equation (4.1-3), an accomodation 
exists. This can be drawn from the infinite medium results presented in the 
preceding section, as follows. 

Equation (4.1-18) can then be used to relate KID(V) to a critical energy 
release rate for a rapidly propagating crack. For plane strain conditions 

(4.1 -31) 

where A ( V )  is defined in an obvious way from Equation(4.1-18). Next, 
Equation (4.1-25) can be used to introduce the static stress intensity factor. 
Using a linear approximation to the k( V )  function-see Figure 4.8-this 
gives the result 

(4.1-32) 

where, again, K(0)  denotes the value of the stress intensity factor calculated 
statically from the instantaneous position and load level. 

Suppose that KID(VM) is the minimum value of the running fracture 
toughness (n.b., this respresents the most general situation and does not 
exclude VM = 0). Then, a material property K I A  can be defined such that 

(4.1-33) 

Then, substitution of Equation (4.1-33) into Equation (4.1-32) would produce 
exactly the same form as Equation (4.1-3). Hence, if K,, = K I A ,  Equation 
(4.1-3) would then be consistent with inequality (4.1-30). But, while this corre- 
spondence might be taken as a verification of the static crack arrest theory, 
there is one key point that must be recognized: Equation (4.1-32) was 
developed for an infinite medium. Hence, it is valid for a finite domain only 
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until stress wave reflections from the nearest boundary begin to impinge upon 
the crack tip.* As revealed in Figure 4.6, if crack arrest occurs before this, the 
static and kinetic approaches will correspond. But, for more extended crack 
propagation, they do not. 

It is commonly accepted that the use of the static crack arrest approach is 
conservative. Indeed, if one were to infer a value of K,, from a test like that 
shown in Figure 4.6, the true fracture toughness property would clearly be 
underestimated. However, the use of such a value in an application to a 
structure via a static approach will not be conservative if the dynamically 
computed stress intensity factor exceeds its static counterpart. As a heuristic 
illustration of this idea, suppose that a K,, value had been obtained from the 
short crack jump length experiment shown in Figure 4.6. This could give a 
value that underestimates the true crack arrest toughness by perhaps 
10 percent. Now, if this value were used together with the static K, curve to 
predict the point of crack arrest in the longest crack jump experiment shown in 
Figure 4.6, it can be seen that an underestimate of roughly 25 percent of the 
crack jump would be made! To be sure, such a dramatic effect might not occur 
in an actual structure. Nevertheless, it should be recognized that such a 
possibility does exist and, unless it is certain that reflected stress waves cannot 
return to the crack tip, at least some initial dynamic calculations may be 
prudent in critical applications. 

To help make the foregoing somewhat more definite, consider the K I D  = 
K X D ( V )  data of the type first suggested by Eftis and Krafft (4.77) for metals 
and Paxton and Lucas (4.78) for polymers. Of particular interest are the data 
generated by Kanazawa and Machida (4.68) shown in Figures 4.14 and 4.15 
and those of Rosakis et al. (4.74) in Figure 4.16. These are typical of most of 
the data that have been reported which suggest that, while K j D  is roughly 
speed independent at low crack speeds, it increases rapidly with increasing 

* The dynamic K value computed for the infinite medium is sometimes called the "reflectionless 
stress intensity factor." 
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Figure 4.16 Dynamic fracture toughness values for 4340 steel. 

crack speed as some material-dependent limiting speed is approached. A 
generic form for the functional dependence of K I D  might then be 

(4.1-34) 
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where KIA, h and m are material constants that must be determined 
empirically. Using this relation, if continued crack propagation requires that 
K = K I D ,  then it is clear that crack arrest will occur at a time when K < K I A  

for all subsequent times. 
Now, as already stated, a kinetic analysis admits two complications beyond 

the static analysis. These are inertia forces and reflected stress waves. If K,, is 
the statically determined value of K that corresponds to the arrest condition, 
then, if there are no reflected stress waves, K , ,  will be exactly equal to K I A .  It 
follows that K, ,  is a perfectly legitimate fracture parameter if i t  is measured in 
a short-jump crack arrest test-that is, before reflected stress waves can 
impinge upon the crack tip. For larger crack jumps, K , ,  is still useful because it 
then provides a lower bound conservative estimate to the true crack arrest 
measure, K I A .  

To illustrate the use of dynamic calculations to assess the use of a static 
approach to crack arrest in a critical application area, let us return to the 
thermal shock problem for nuclear power plant pressure vessels described in 
Section 1.5.1. As stated there, the ORNL work reached the conclusion that 
dynamic effects at arrest are negligible in a thermal shock event. To  assess this 
conclusion in a more direct way, Jung and Kanninen (4.79) performed a series 
of run/arrest computations, both statically and dynamically, for thermal 
shock experiment number TSE-SA; see Table 1.2 for the experimental details. 

The immediate difficulty in any such calculation is the lack of proven K f D  = 
K I D ( K  T) relation for the A508 steel vessel material. Since the available 
data typically have the general character shown in Figures 4.14 to 4.16, it 
might be assumed that this relation is given by Equation (4.1-34). For heuristic 
purposes, Jung and Kanninen reasoned that the crack speeds in a thermal 
shock event might be such that V << whereupon the speed-dependent term 
in Equation (4.1-35) can be neglected. They further assumed that the existing 
KI,  data were collected under conditions such that they provide a sufficiently 
close approximation to K I A .  The dynamic calculations were performed to 
contrast the static calculations on this basis. The results are shown in 
Table 4.4. 

Table 4.4 Comparison of Quasi-Static and Dynamic Crack Jump Lengths with 
ORNL Experimental Results for Thermal Shock Experiment TSE-5A 

Average Data Lower Bound Data 

Experimental Dynamic Quasi-static Dynamic Quasi-static 
Event (mm) (mm) (mm) (mm) (mm) 

1st 5.78 6.60 2.14 13.3 5.19 
2nd 13.7 7.25 3.8 1 17.8 9.15 
3rd 10.7 11.0 6.10 14.3 15.2 

43.8 36.6 4th 39.7 27.2 23.2 
Total 69.9 52.1 35.4 89.2 66. I 

I__ - - - - 
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The computational results of Jung and Kanninen provided in Table 4.4 
were made using initial conditions that correspond to the experimentally 
determined times of crack initiation events in TSE 5-A, but are otherwise not 
connected to the results of that experiment. It can be seen that two separate 
sets of computations were made. In the first, the K,, and K,, property values 
were taken as the average of the laboratory data. In the second computation, 
lower bound K,, and K I D  values, consistent with the values obtained in the 
thermal shock experiment, were used. These data are shown in Figure 4.17. 

Two general conclusions are illustrated by the comparisions shown in 
Table 4.4. First, if the calculations are made on a common basis, when inertial 
forces and reflected stress wave effects are not too important, then the static 
and kinetic approaches will give essentially the same result (cf. Figure 4.10). 
Therefore, it is not possible that the static approach is ever correct when the 
kinetic approach is not. The second conclusion is that, again if the 
computations are made on the same basis, then the kinetic approach will 
predict a larger crack jump at arrest. Specifically, the kinetic results given in 
Table 4.4 obtained using the small specimen data account for roughly half of 
the discrepancy between the static prediction and the measured values. In the 
computation using the K,, values derived from the vessel experiment, the static 
result of course agrees well with the measured values, while the kinetic 
prediction is somewhat higher. 

The foregoing was intended to demonstrate that the static and kinetic 
approaches to the analysis of crack arrest are compatible, the former being 
simply a special case of the latter that is applicable when reflected stress waves 
do not interfere with the moving crack tip. Nonetheless, the literature still 

0 -  Original data uncorrected for 

0 -  Data corrected for ligaments 
ligaments 

Figure 4.17 Crack arrest data used in 
the analyses for the thermal shock 
experiment TSE-SA. 
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provides evidence that this point is not understood. There appear to be two 
factors that cause this. First, there has been some confusion arising from the 
use of approximate relations for extracting K I D  values from experiments. One 
that has been used is 

(4.1-35) 

where K ,  is the apparent K value at the initiation of rapid crack propagation. 
Some investigators apparently believe such a relation to be a definition of K,,. 
Obviously, it is not. Among other shortcomings, use of this relation does not 
recognize the inherent speed dependence of K f D  and, more importantly, it can 
never coincide with K , ,  for short crack jumps, as it must. The results of the 
cooperative crack arrest test program conducted by Crosley et al. (4.80) suffer 
somewhat in this regard. 

A second factor is the evidence that is cited by Crosley and Ripling (4.66) for 
cracks that slow down smoothly to arrest. Figure 4.18 shows a typical load- 
time record for a crack run/arrest experiment in a tapered DCB test specimen 
together with the corresponding crack length history. According to Crosley 
and Ripling, because the crack appears to arrest smoothly, a dynamic 
approach predicts a more abrupt arrest and therefore must be invalid. The two 
strain gage histories shown in Figure 4.18 were offered as further support of 
this postulate (n.b., these gages are at fixed locations and do not, of course, 
move with the crack tip). It seems likely that such data cannot be characterized 
elastically (i.e., small-scale yielding is not valid) whereupon a nonlinear (e.g., 

40-ARREST- 
----.5----- 

-550mJsec 

(b) 0 -  ' 

(a) 

0 4 0  80 120 160 200 

t . u s e c  
Figure 4.18 Load and strain gage readings during a run/arrest experiment in a pressure vessel 
steel CT specimen. 
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viscoplastic) dynamic analysis would be necessary. Thus, while most attention 
has been placed upon the conduct and interpretation of crack arrest tests by 
elastic considerations, it must be recognized that nonlinear interpretations 
may be necessary in some regimes. 

4.1.8 Nonlinear Aspects of Dynamic Fracture Mechanics 

As should be apparent from the discussion to this point, applications of 
dynamic fracture mechanics for crack arrest are largely confined to elastody- 
namic considerations. Nonetheless, questions that are now outstanding 
appear to be resolvable only by resort to nonlinear dynamic treatments. One 
of these bears on the uniqueness of the K I D  property. For example, in 
Figure 4-14, it can be seen that values obtained using the DCB specimen 
(lower toughnesses) match reasonably well the data collected in wide plate 
experiments (higher toughnesses). Although there is clearly scatter in these 
data, it can be concluded that the data are reasonably geometry-independent, 
as they must be for K I D  to qualify as a material property. This is a key point 
because other investigations have revealed a small, but systematic, de- 
pendence on specimen geometry. A particularly revealing result is that of 
Kalthoff (4.81) shown in Figure 4.19. 

One explanation for a geometry dependence is that K I D  may not be a 
function only of the instantaneous crack speed but may also depend upon 

0 100 200 300 
V , mis 

3 

Figure 4.19 Geometry-dependence of the dynamic fracture toughness revealed by results in 
different specimens. 
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higher derivatives of crack length. An intuitive argument against this was 
given by Eshelby (4.82) who stated that “thecrack tip has no inertia,” meaning 
that the acceleration of the crack tip does not affect the calculated value of the 
crack driving force. It is generally concluded from this that the KID property 
also cannot depend on the acceleration. It must therefore be concluded that 
local nonlinear effects must be responsible for whatever nonuniqueness in K I D  

that exists. 
Except for the fact that a generally accepted crack advance criterion for such 

conditions does not exist, dynamic elastic-plastic and dynamic viscoplastic 
crack propagation computations pose no difficulty in principle. Important 
work on the characterization of the crack tip for dynamic elastic-plastic 
conditions has been given by Achenbach et al. (4.83), Freund and Doug- 
las (4.84), Dantam and Hahn (4.85), and Ahmad et al. (4.86), among others. An 
early appreciation of the problem was in fact evidenced by Tetelman (4.87). 

The essence of the problem is that a wake of relaxed plasticity is left behind 
the moving crack tip and this violates the “K-dominance” requirement 
described in Chapter 3. Hence, an approach based upon incremental plasticity 
is required. But, owing to the high rates of deformation associated with a 
rapidly propagating crack, viscoplastic treatments that account for strain rate 
effects may well be required. A start on this type of problem has been made by 
Aboudi and Achenbach (4.88,4.89), Hoff et al. (4.90), Lo (4.91), and Bricks- 
tad (4.92). An illustrative example is given in Figure 4.20 that reveals the 
practical effect of treating viscoplastic material behavior. 

Figure 4.20 shows the result obtained by Brickstad (4.92) using the 
viscoplastic model of Perzyna in analyzing experimental test data on crack 
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Figure 4.20 Comparison of elastic and viscoplastic determinations of the critical energy release 
rate for crack propagation in different sized edge-cracked tension panel experiments. 
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propagation in single edge notched (SEN) plates. The elastic interpretation of 
these results, given earlier by Dahlberg et al. (4.67), showed distinct geometry- 
dependence. But, by including viscoplastic effects, these have essentially been 
eliminated. Indeed, as Figure 4.20 shows, much of the speed-dependence is 
also removed. It might be noted that a number of viscoplastic formulations are 
available. However, the model advanced by Bodner and Partom (4.93) 
appears to have the most potential for use in dynamic fracture mechanics. One 
reason is the type of result shown in Figure 4.21. Further details on this model 
are given in Chapter 2. 

The condition that the inelastic deformation surrounding the crack tip is 
“dominated” by the elastic K field (see Chapter 3) sets a requirement for 
contained or small-scale yielding. But, because a moving crack inevitably 
leaves a wake of relaxed plasticity behind, except for very short crack jumps, 
LEFM clearly cannot in principle offer a valid characterization of a 
propagating crack. We note that the same conceptual difficulty arises in 
fatigue (albeit at generally much lower stress levels) where it is dealt with by 
appealing to the idea of “similitude.” For similitude the parameters governing 
the crack growth rate must be measured for the same type of load history as in 
the application of interest. When similitude is violated, the fatigue relations do  
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not work-for example, in crack growth retardation following an overload. 
One might therefore expect the same kind of effects in dynamic fracture. 
Hence, just as current advanced research efforts in fatigue are now being made 
via direct consideration of plastic yielding and relaxation, dynamic fracture 
mechanics researchers are also turning to elastic-plastic analyses. 

A difficulty that immediately arises in elastic-plastic analyses is in identify- 
ing the proper crack growth criterion. A critical strain at a critical distance 
ahead of the crack tip has been proposed, for example. Freund and 
Douglas (4.84) have used this criterion effectively in deducing the running 
fracture resistance values shown in Figure 4.22. But, such a parameter is 
somewhat unappealing-it cannot be measured and is not in any event 
palatable unless it can somehow be connected to a micromechanical picture. 
While results have been obtained in anti-plane strain that show a connection 
between ductile hole growth and a continuum strain measure ahead of a crack 
tip, a general result has yet to be obtained. An alternative to a critical strain 
criterion is the crack-tip opening angle (CTOA). This parameter is attractive 
from both a computational point of view and from the extensive experience 
garnered in elastic-plastic fracture mechanics that shows the constancy of the 
CTOA in stable growth; see Chapter 5. Nevertheless, the use of this parameter 
similarly requires a proper theoretical basis that does not now exist. 

ob Oil 012 0!3 014 015 ols- 
v/c, 

Figure 4.22 Results of Freund and Douglas. 
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Computations in which a crack extension criterion is specified and the crack 
length history determined in a given initial value-boundary value problem 
Kanninen (4.14) has called “application-phase” computations. As already 
mentioned, their counterparts, “generation-phase” computations, are those in 
which an actual crack propagation event is simulated in order to generate 
values of one or more selected crack growth criteria. Clearly, while the current 
lack of a well-established elastic-plastic dynamic criterion prohibits 
application-phase computations, generation-phase computations on approp- 
riate experiments are still possible. 

4.2 Mathematical Basis of Dynamic Fracture Mechanics 

Engineering structures requiring protection against the possibility of large- 
scale catastrophic crack propagation (i.e., nuclear reactor pressure vessels and 
piping, ship hulls, gas transmission pipelines) are generally constructed of 
ductile, tough materials. Consequently, the procedures of linear elastic 
fracture mechanics (LEFM) can give only approximately correct predictions 
for such materials. More rigorous fully elastic-plastic and viscoplastic 
treatments are required to give precise results. However, because the direct 
incorporation of inelastic effects in dynamic fracture problems is only in its 
initial phases, the process of rapid unstable crack propagation and arrest in 
structures is therefore predominantly treated in terms of LEFM concepts and 
parameters. This section presents the mathematical basis of dynamic fracture 
mechanics with emphasis on the elastodynamic point of view. 

4.2.1 Elastodynamic Cruck-Tip Fields 
The asymptotic crack-tip fields for self-similar crack propagation in a linear 
elastic isotropic material are important for a sound theoretical basis of 
dynamic fracture mechanics. In developing these, the crack speed is assumed 
to be sufficiently great to warrant retention of inertia effects. But, i t  will not 
exceed the characteristic Rayleigh wave speed of the material. 

Consider a plane crack in the x,-x,-plane. The x,-axis is normal to the crack 
plane. Crack extension occurs in the x1 direction. Then, combining the 
equations of motion, Equation (2.1-17), the strain-displacement relation of 
Equation (2.2-8), and the constitutive relation, Equation (2.3-9), the Navier 
equations 

(4.2-1) 

are obtained. Each superposed dot denotes a partial derivative with respect to 
time. Also, 

I = 2pv/( 1 - 2v) (4.2-2) 

where p denotes the shear modulus and v is Poisson’s ratio. 
For plane strain (i-e., u3 = 0). it is convenient to express the in-plane 

displacement components in terms of two potential functions. These are the 
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dilatational and shear wave potentials 4 and rl/, given respectively by 

(4.2-3) 

Equation (4.2- 1) then reduces to 
c:v2(#J = 4, c:v2* = li; (4.2-4) 

Notice that, by writing 

(4.2-5) 

for the dilatational and shear wave speeds, Equations (4.2-4) are also valid for 
plane stress. Here 

(4.2-6) for plane strain 
K = {:~;/(1+ v )  for plane stress 

as in Chapter 3. 
Introduce an x - y coordinate system attached to the crack tip such that 

x = x1 - a(t)  and y = x2,  Then, x1  = a(t) and x2 = 0 define the location of the 
propagating tip. This change of coordinates permits writing 

(4.2-7) 

where the instantaneous crack ,speed is V = Li. A similar relation can be 
obtained for 3;. 

Because the crack-tip fields are expected to be singular at the crack tip, the 
leading term on the right-hand side of Equation (4.2-7) will dominate the 
others there. Hence, the asymptotic fields are governed by 

(4.2-8) 

where 
P: = 1 - V 2 / C :  and /?: = 1 - V2/C: (4.2-9) 

Note that /?: > /?: > 0. As a final step, let 
Y l  = PLY and Y2 = P2Y (4.2- 10) 

The use of these variables then reduces Equations (4.2-8) to equations having 
the form of the Laplace equation; that is, 

(4.2- 1 1 )  
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Therefore, 
analytic function of the complex variable 

can be expressed as either the real or imaginary part of an 

z ,  = x + i y ,  = x + ip,y = rleiel (4.2- 12) 

Similarly, t+b can be expressed in terms of 

z2  = x + iy, = x + ip2y = r2eiez (4.2- 13) 

I t  follows that 

r#~ = A,  Re[z;], t+b = A,  Im[z;] (4.2-14) 

with A, ,  A , ,  and s being real constants. In this formulation the stresses and 
deformations are symmetric with respect to the crack plane-that is, Mode I. 
Moreover, s > 1 for nonsingular displacements at the crack tip. 

From here on the analysis follows that given for a stationary crack in 
Chapter 3. The condition that cr2, = 0,, = 0 on 6 ,  = 62 = K yields two linear 
homogeneous algebraic equations for A, and A,. The singular solution is 
identified with s = 3 and A, = -2A1P2/(1 + pf). With the Mode I dynamic 
stress intensity factor defined by 

K ( t )  = lim [ ( 2 ~ ) ~ a , ~ ( r , O ,  t ) ]  (4.2- 1 5 )  
r - 0  

the dynamic crack-tip singular field can be written as 

(2xr)f 

48, 8 2  

0 2 ,  = = [ - ( 1  + 8:) (?)* COS(0,/2) 
( 2 7 ~ ) )  

+ I + ’; (‘)* r2 cos(8,/2)] 

where 

B = (1 + P : ) / D ( V )  (4.2- 17) 
and D ( V )  = 4P,P2 - (1 + pi ) ,  is equivalent to that given in Equation 

Note that, in the limit as the crack speed V tends to zero, the stress field of 
Equation (3.1-38) for a stationary crack is recovered. Nilsson (4.94) and 
Freund and Clifton (4.95) developed Equation (4.2-16) for an arbitrarily 
advancing crack tip whose instantaneous speed is V. Consequently, 
Equation (4.2-16) includes as a special case the constant speed crack case. 

(4.1-1 9). 
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The particle-velocity field near the crack tip is 

This velocity field also has an inverse square root singularity at the crack tip, 
The crack-tip stress and velocity fields can be derived in a similar way for 
Mode I1 loading. 

The dynamic stress intensity factor, which in general will be a function of the 
loading, crack length, and geometry of the flawed body, determines the 
strength of the crack-tip singular field. When the size of the plastic zone 
attending the crack tip is small compared to the characteristic dimension of 
the region over which the singular field dominates, the concept of K- 
dominance for a stationary crack tip can be extended to a propagating crack 
(cf. Chapter 3). That is, when K-dominance exists, the fracture process is 
governed by K ( t ) .  Hence, the linear elastodynamic crack propagation criterion 
is an equality between K and its critical value, a parameter known as the 
running fracture toughness. On the basis that the plane strain value of this 
parameter can depend only on temperature and crack speed, the crack 
propagation equation can be written as 

K ( t )  = K,D(V, T )  (4.2- 19) 

Equation (4.2-19), which can be viewed as the equation of motion for the crack 
tip, can be integrated to yield the crack growth history. 

The K , ,  relations that have so far been developed, shown in the preceding 
section of this chapter, contain a sharp increase at higher crack speeds. A 
partial explanation for this effect may be due to the effect of stress triaxiality. 
That is, it follows from Equation (4.2-16) on 8 = 0 that the ratio of the 
principal stresses can be written as 

(4.2-20) 

Equation (4.2-20) shows that 022 decreases continuously relative to o1 from 
equality at zero crack speed to zero at the Rayleigh speed. Because the 
toughness generally increases as the triaxiality decreases, the consequent 
reduction in the stress triaxiality as V increases could be at least partly 
responsible for the increasing fracture toughness at high crack speeds in rate- 
sensitive materials. 

Achenbach et al. (4.83) have developed asymptotic analyses for dynamic 
crack propagation in elastic-plastic materials. Of most importance, assuming 
that the nature of the singularity in the stress field has the form r-' ,  they were 
able to determine explicit values for s. Their solution employed a bilinear 
constitutive relation with E, denoting the slope of the stress-strain curve in the 
plastic region. They then found that s is a strong function of €,I€, where E is 
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Figure 4.23 Order of the crack-tip singularity for crack propagation in a bilinear elastic-plastic 
material under plane stress conditions. 

the elastic modulus. But, the results revealed only a modest dependence upon 
V / C 2 ,  Their results for plane stress conditions are shown in Figure 4.23. It can 
be seen that, while the crack speed does effect the singularity, the stress-strain 
behavior is much more influential. 

4.2.2 The Energy Release Rate 

To establish the connection between the stress intensity factor and the energy 
release rate, consider an elastic body containing a propagating planar crack. 
This is depicted in Figure 4.24. To determine the energy released to the crack 
tip, consider a vanishingly small loop r* surrounding the crack tip. The loop 

Figure 4.24 Dynamic 
gation in a plane body. 

crack propa- 
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r* can have an arbitrary shape, but it must remain fixed relative to a 
coordinate system attached to the crack tip. The region R of interest is 
bounded by the outer boundary S of the body, the traction-free crack faces, 
and the loop r*. 

The rate of work P done by the tractions on S is equal to the rate of increase 
of the strain energy U and kinetic energy 'f in R and the flux F of energy into 
the crack-tip region. That is, 

P = U + T + F  (4.2-21) 

where 

P = Ttiids I (4.2-22) 

(4.2-23) 

(4.2-24) 

Since the loop r* moves with the crack tip, the region R is time-dependent. 
Therefore, the time rate of change of the strain energy equals the integral over 
R of the time rate of change of the strain energy density W(Eij) less the flow of 
this density through the loop r*. Hence, 

U = lim W d A  - lirn W K d s  (4.2-25) 
r*+o r*-+o jJ* 

where V,  = Vn, = Vcos 8is thecomponent of the crack-tipvelocity normal to 
r* and 8 is the angle that the outward unit normal to r* makes with the x1 
direction. The positive direction for traversing I"* is in the counterclockwise 
direction. 

With the aid of Equation (2.3-4) and the symmetry of the stress tensor, the 
energy rate expression can be written as 

. aw, w = - Ei, = Uijdij = uijlii,j 
a E i j  

(4.2-26) 

Hence, 

Similarly, 

(4.2-28) 
J*+0 

The introduction of Equations (4.2-22), (4.2-27), and (4.2-28) into (4.2-21) then 



236 Advanced Fracture Mechanics 

gives an expression for the energy flux, 

(4.2-29) 

- lim (oijtii,j + pi i i i i )  d A  r*+o J R 

After introducing oijtii,j = (oijtii),j - uij,jlii, invoking the divergence theorem, 
and making use of the equations of motion-see Equation (2.1-17)-then 
Equation (4.2-29) can be written as 

F = lim 1. [(W + jpliitii)V, + T j i ]  ds (4.2-30) 
r*+o 

Equation (4.2-30) states that the flux of energy to the crack tip is the sum of the 
flux of total energy (strain energy plus kinetic energy) through r* as the crack 
tip moves through the material, plus the rate of work done by the material 
outside of r* on that within r*. 

The dynamic energy release rate G is related to the energy flux by F = VG. 
Therefore, using Equation (4.2-30), G can be expressed as 

[(W + fpt i i t i i )V,  + T i i ]  ds  (4.2-3 1)  

Usually the symbol G is considered to pertain only to linear elastic material 
behavior. However, it should be noted that Equation (4.2-31) is actually valid 
for nonlinear elastic behavior. 

Consider another contour extending from the lower crack face counter- 
clockwise around the tip to the upper crack face. The application of the 
divergence theorem to the region R* bounded by r, r*, and the crack faces 
can be shown to give 

In contrast to the static problem, the energy release rate can not be expressed 
by a path-independent contour integral. That this is to be expected is readily 
demonstrated following an argument given originally by Eshelby. If a wave 
front intercepts one contour, but not the second one, then two different values 
for G would be expected if it were represented by a contour integral only. It is 
the area integral in Equation (4.2-32) that preserves the invariant character of 
G. Equation (4.2-32) and its variations have proven to be useful in numerical 
investigations-for example, the finite element method, where, due to 
numerical difficulties, it is not feasible to evaluate the limiting contour integral 
of Equation (4.2-31). An alternative to Equation (4.2-32) is developed in the 
next section. 
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Under conditions of steady-state crack propagation where rii = 
- Vi3wi/ax,, Equation (4.2-32) reduces to 

aui au i  
G = J  [ ( W + + p V 2 - - )  ax, ax, n, - T l  ds (4.2-33) 

r 

Hence, as first shown by Atkinson and Eshelby (4.70), G is path-independent 
for steady-state crack growth. It is also clear that Equation (4.2-33) reduces to 
the J-integral when V = 0 [cf. Equation (3.3-24)]. 

The introduction of the linear elastic stress and velocity fields of 
Equations (4.2-16) and (4.2-18) into Equation (4.2-31) gives 

(4.2-34) 

where D( V )  is given by Equation (4.1-19). This relationship establishes the 
generality of Equation (4.1-18). It follows that, whenever K ( t )  is at its critical 
value, then G is necessarily at its critical value. Hence, as in the static case, the 
dynamic fracture criterion for a linear elastic material can be expressed in 
terms of either a critical stress intensity factor or a critical energy release rate. 

It is important to recognize that, while Equation (4.2-34) is geometry- 
independent, the individual values of K and G are distinctly geornetry- 
dependent. Consider Yoffe’s constant crack length solution discussed in 
Section 4.1.3. Because K is independent of crack speed in the Yoffe problem, i t  
follows from Equation (4.2-34) that G in this case increases monotonically 
with crack speed and becomes unbounded at the Rayleigh wave speed. In  
Broberg’s expanding crack solution, K is a monotonically decreasing function 
of crack speed that becomes zero at the Rayleigh wave speed. This produces a 
finite value of G throughout. Figure 4.25, taken from Cotterell (4.36), contrasts 
the results of Yoffe and Broberg. 

v/c , 
Figure 4.25 Comparison of constant- 
length and uniformly expanding crack 
propagation models. 
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As an illustration of how the path independence of G for steady-state crack 
growth can be exploited, consider the steady-state crack growth of a semi- 
infinite crack in an infinite linear elastic strip. The static analog of this problem 
was treated in Chapter 3; for example, see Figure 3.9. The lateral edges, 
Jx2(  = h, are displaced uniformly and symmetrically by an amount without 
tangential motion. If the same contour r as in the static problem is used, then 
au, /dx,  = 0 on it. Hence, the kinetic energy density in Equation (4.2-33) 
vanishes on r. The dynamic and static energy release rates are then identical; 
for example, for plane strain see the development leading to Equation (3.3-27). 
This result is 

( 1  - v)Eui, 
( 1  + v)(l  - 2v)h 

G =  (4.2-35) 

Therefore, the energy release rate is independent of the crack speed for I/ < 
C,. This expression for G is simply the strain energy per unit cross-sectional 
area far ahead of the crack tip. Bergkvist (4.96) used this interpretation to 
establish G. When the lateral edges are shear-free, Popelar and Atkinson (4.97) 
have shown that such an interpretation is no longer valid. 

The introduction of Equation (4.2-35) into Equation (4.2-34) leads to 

( 1  - v)D(V) + EU20 

= ( P I ( 1  - p:,)  [(l  + v)2(1 - 2v)h-y 
(4.2-36) 

Again, as dimensional analysis requires, the dynamic stress intensity factor is 
the product of the equivalent static stress intensity factor and a function of 
crack speed. Nilsson (4.98) used the Wiener-Hopf technique to obtain this 
result among others. Since D( V)  + 0 as V + C,, then K + 0 as V + C,. 

4.2.3 Elastodynamic Contour Integrals 

Using Equation (4.2-3 1) to evaluate the dynamic energy release rate presents 
no particular difficulties when closed form solutions for the stress and velocity 
fields are available. Unfortunately, only a few such solutions for dynamic crack 
propagation and crack arrest exist. And, these solutions are often for highly 
idealized problems. In practice, the stress and velocity fields are typically 
determined numerically. In many instances the greatest imprecision in a 
numerical technique (e.g., the finite element method) is associated with 
modeling the singular behavior in the crack-tip region. Specifically, it is 
impossible to proceed numerically to the limit that is required in 
Equation (4.2-3 1). Therefore, we develop an equivalent representation for the 
energy release rate that is less sensitive to numerical inaccuracies in the crack- 
tip region. 

For a convective coordinate syslem attached to the crack tip the particle 
velocity can be written as 

au, aui  fii= - V - + -  
a x ,  at 

(4.2-37) 
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The leading convective term in Equation (4.2-37) will be dominant in the 
limiting crack-tip region bounded by the crack faces and the contour I-* in 
Figure 4.24. Hence, it is permissible to rewrite Equation (4.2-3 1) as 

(4.2-38) 

As in the preceding section let r denote a contour extending from the lower 
crack face counterclockwise around the crack tip to the upper crack face. 
Invoking the divergence theorem for the region R* bounded by the union of r, 
r*, and the traction-free crack faces permits writing 

dUi (4.2-39) 
+ lim pu, - d A  

r*+o  a.x , 
In obtaining Equation (4.2-39) we have also introduced the equations of 
motion, Equation (2.1-17), and the constitutive relation, Equation (2.3-4). 
This expression for the energy release rate is independent of the contour I- 
selected, Moreover, it agrees with the energy release rate obtained by Aoki et 
a!. (4.99) who also developed the dynamic analogues of the L- and M- 
integrals-that is, Equations (3.3-32) and (3.3-33). 

It is also possible through use of Equation (4.2-37) and the divergence 
theorem to write 

(4.2-40) 
d A  - lim jR* p1/2 - - a2u i  aui  

r*-o ax: ax, 

Therefore, Equation (4.2-39) can be written as 

(4.2-4 1) 

This form for the energy release rate is less sensitive to numerical inaccuracies 
in the crack-tip region than Equation (4.2-31) or, equivalently, Equation 
(4.2-38). Equation (4.2-41) obviously reduces to Equation (4.2-33) for steady- 
state crack propagation. 

The path independent j-integral developed by Kishimoto et al. (4.100) is 
based upon writing the energy balance equation as 

P = lirn (@ + piiitii) d A  + VJ^ 
r-o J R (4.2-42) 
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When this equation is compared with Equation (4.2-21) et seq., it follows that 

(4.2-43) 

I t  is therefore clear that J^ differs from the energy release rate by the flux of the 
strain and kinetic energies through the contour r*. It might be noted that 
Kishimoto and co-workers have provided a more comprehensive relation that 
contains thermal stresses and incremental plasticity. 

4.3 Analyses of Some Simple Configurations 

Although it  is seldom made on a rigorous basis, the commonly used 
assumption that dynamic effects can be neglected in the arrest of rapid crack 
propagation in engineering structures is probably a reasonable one in most 
instances. Freund’s analysis for crack propagation in an infinite medium 
provides the legitimacy for this assumption. Unfortunately, the requirement 
that stress waves not be reflected from boundaries to the propagatingcrack tip 
is less likely to be met in laboratory test specimens. Even with modest crack 
jump lengths, the finite size of the specimen must be taken into account if the 
experiment is to be properly interpreted. While this can usually be done with 
large-scale finite element models, simpler analysis approaches are always 
useful. Two of the specimen geometries commonly used for dynamic crack 
arrest experimentation lend themselves to such treatments. These are the 
“beam-like’’ configurations known as the double cantilever beam (DCB) 
specimen and the double torsion (DT) specimen. Their geometries can be 
effectively exploited to produce one-dimensional (spatial) analysis models. 
Analogous to these is crack propagation in an infinite stretched strip and in a 
pressurized pipeline. Also discussed are steady-state crack propagation and 
the use of strip-yielp zone models in dynamic crack propagation. 

4.3.1 The Double Cantilever Beam Specimen 

A laboratory test specimen used effectively by many investigators is the double 
cantilever beam (DCB) specimen; see Figure 4.26. A model for dynamic crack 
propagation in the DCB specimen has been developed by Kanninen and co- 
workers in a series of papers culminating with the work of Gehlen et al. 
(4.101). In  the latter paper Reissner’s (4.102) variational principle combined 
with assumed forms for the stress and displacement fields was used to 
develop the governing equations. This approach has an advantage in that, 
once the forms of these fields are selected, an entirely consistent formulation 
follows without additional ad hoc assumptions. Let 

(*pt i i t i i  - ~ i j ~ i j  + W * )  dR dt (4.3- 1)  

where the integration is over the volume R of the specimen and W* is the 
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Figure 4.26 Double cantilever beam 
specimen and beam on an elastic 
foundation model. 

complementary strain energy density; see Equation (2.3-19). Reissner’s 
principle is then embodied in the variational equation 

6L = 0 (4.3-2) 

for arbitrary variations of the stress and displacement fields subject to 

Due to the symmetry with respect to the crack plane, only the upper half 
lzl < h/2 of the specimen depicted in Figure 4.26 needs to be considered. 
Exploiting the beam-like character of this specimen, the nonzero stress 
components can be assumed to have the forms 

6u,( t , )  = 6u&) = 0. 

MZ 
bl l  =- 

I 

(4.3-3) 

P 
B 

6 3 3  = - H( - z ) H ( x  - a) 

where M, S, and p (the bending moment, transverse shear and crack-plane 
tension) are undetermined functions of x and t ,  H is the Heaviside step 
function, and I is the centroidal moment of inertia. The displacement 
components are then written as 

(4.3-4) 
v M z 2  w 

h 2EI + 2 - z H ( - z ) H ( x - a )  u 3 = w - -  
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where w = w(x,t)  is the vertical displacement of the centerline (z = 0) and 
I,$ = $(x, t) is its rotation. The nonzero strain components become 

(4.3-5) 

a* 
E l l  = - z - ,  & I 3  

ax 

v M z  2w 
El  h E33 = -- + - H ( - z ) H ( x  - a) 

(4.3-5) 

where the z dependence of ~ 1 3  has been neglected. 

Equation (4.3-2) leads to the equations of motion 
With the introduction of Equations (4.3-3)-(4.3-5) into Equation (4.3-1), 

s =  - P I $  
aM 
ax 
-- 

~ H ( x  - a)  = PAW 
as 
ax 
-- 

and the constitutive relations 

(4.3-6) 

(4.3-7) 

2EB 
h 

p = - w H ( x  - a) 

where A = Bh is the cross-sectional area. Note that, while a rectangular DCB 
specimen is considered here (Lee, h = constant), the analysis is readily adapted 
to an arbitrarily contoured specimen [i.e., h = h ( x ) ] .  

As shown in the preceding sections of this chapter, the energy release rate 
approach and the stress intensity factor approach are equivalent. Because the 
crack-tip singularity is not modeled explicitly, the former is more useful here. 
Accordingly, the fracture criterion can more conveniently be written as 

where the fracture resistance R ( V )  in terms of the fracture toughness is 
G = R ( V )  (4.3-8) 

R( V )  = A( V ) K f D (  V ) / E ’  (4.3-9) 

The energy release rate is given by Equation (4.1-24) or, equivalently, by 

(4.3- 1 0) 

where n is the potential energy per unit thickness; see Equation (2.4-13). When 
Equations (4.3-3) and (4.3-6) are introduced into the strain energy per unit 
thickness, 

(4.3-1 1 )  
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then it becomes 

U = 1 s’ [ E I ( g r  + i p A ( g  - $)’ + 7 w 2 H ( x  - a )  dx (4.3-12) 
B - e  1 

The kinetic energy per unit thickness is 

(4.3- 13) 

Under wedge opening (fixed-grip) loading, Il = U .  The introduction of 
Equations (4.3-12) and (4.3-13) into Equation (4.3-10) then leads to 

G = 2E [ :] 
.X=0 

(4.3-14) 

It can be shown that Equation (4.3-14) is equally valid for compliant loading. 
Equations (4.3-6) and (4.3-7) can be combined to obtain the form of a 

Timoshenko beam on an elastic foundation. This alternative formulation is 

3 a2w a2w a+ 6 
a x 2  ax h 2  c,: at2 

H ( x  - a)w = -- 

and 

a 2 $  +-- -+=--  4 aw 1 a Z +  

ax2 h 2  ax  c,: at* 
- 

(4.3-1 5) 

(4.3- 16) 

where Co is the elastic bar wave speed. Under static loading it  is always 
possible to obtain closed-form solutions to these equations for a uniform 
specimen and to use Equation (4.3-14) to establish a static energy release rate. 
The stress intensity factor-for example, see Equation (4.1-22)-follows from 
Equation (3.3-16) relating G and K .  As described in connection with Equation 
(4.1-23), the predictions of this model are in excellent agreement with the more 
exact approaches. 

In order to achieve the supercritical condition necessary for extended rapid 
crack propagation in the DCB specimen, the initial crack tip is intentionally 
blunted. The degree of blunting can be characterized by K , ,  the static stress 
intensity factor existing at  initiation of crack extension. Commonly, the view is 
taken that the blunting inherently alters the intrinsic fracture resistance of the 
material in the neighborhood of the tip such that initiation of crack growth is 
associated with K,. After initiation, however, further growth is governed by 
the dynamic fracture toughness K I D (  V) .  

For a rapidly propagating crack, Equations (4.3-15) and (4.3-16) must be 
numerically integrated-for example, using a finite difference method. 
Equation (4.3-14) is then used to compute the energy release rate at each time 
step. This value of G is compared with R using a virtual crack speed based 
upon the time since the last increment of growth. When G = R, the crack is 
permitted to advance the next increment. If G remains less than R for an 
arbitrarily long period, the crack is considered to have arrested. In this manner 
it is possible to determine the crack history. 
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A comparison of the predictions of this model with the crack propagation 
and arrest phenomena observed by Kalthoff et al. (4.59) for Araldite B 
was made by Gehlen et al. (4.101). The dynamic fracture toughness used in 
the analysis is that presented in Figure 1.28 for Araldite B. A further 
complicating characteristic of Araldite B, common among other polymers, is 
that it exhibits rate effects. For example, its dynamic elastic modulus is 
approximately 10 percent greater than its static value. While this difference is 
relatively small, it can have an appreciable influence upon the crack history. A 
viscoelastic analysis along the lines performed by Popelar and Kanninen 
(4.75) would be required to accommodate such rate effects. Unfortunately, this 
requires further material characterization. In lieu of such, the dynamic 
properties were used in the dynamic analysis. Gehlen et al. found that using the 
static properties generally resulted in less favorable comparisons. 

Figure 4.27 shows the predicted crack history and the energy composition 
as a function of crack growth for a wedge-loaded DCB specimen of the 
photoelastic material Araldite B with K, = 1.34 MPa m*. The measured crack 
history is also shown for comparison. Both the measured and predicted crack 
histories reveal that crack extension over a substantial portion of the event 
occurs at a constant speed. The analysis underpredicts slightly the crack speed 
and overestimates the extent of crack growth in this test. It can also be seen 
that the strain energy decreases at  a greater rate during the initial stages than 
during the final portion while the kinetic energy increases initially and then 

0.02 

0 
0 2 0  4 0  6 0  

n a , m m .  
Figure 4.27 Crack propagation and energy composition history for a wedge-loaded DCB 
specimen of Araldite-B. 
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decreases later. The maximum kinetic energy in this case is approximately 10 
percent of the initial stored energy. When K, = 2.35 MPa m*, the maximum 
kinetic energy increases to approximately 25 percent of the initial stored 
energy. 

Figure 4.28 compares the measured and predicted dynamic stress intensity 
factors with crack growth. Except near the end of the event the agreement is 
quite good. It would be impossible to achieve this kind of correlation without 
the inclusion of dynamic effects; for example, consider the simple static 
predictions displayed in Figure 4.6. 

In contrast to the DCB model presented here, Burns and Chow (4.102) have 
devised a model based on the representation of the specimen as a simple built- 
in cantilever beam. In order to obtain a dynamic solution for this model (in 
which crack propagation occurs by increasing the length of the beam), i t  is 
necessary to restrict the solution to the case where the load points are 
continually displaced and the crack length is initially zero. However, these 
conditions approximate reasonably well the impact loading experimental 
procedure used by Burns. 
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Figure 4.28 Comparison of measured and predicted dynamic stress intensity factors for wedge- 
loaded DCB specimens. 
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As Malluck and King(4.103) have shown, the results obtained by Burns and 
Chow are virtually identical to those obtained when theearly version of model 
devised by Kanninen et al. (4.104) is suitably specialized. Further comparisons 
with the closed-form result obtained by Freund (4.105) using an approximate 
shear beam model for the DCB specimen also give good qualitative agreement 
with Equations (4.3-15) and (4.3-16). A beam model formulation has also been 
used by Steverding and Lehnigk (4.106) and by Bilek and Burns (4.107). 

4.3.2 The Double Torsion Specimen 

Perhaps the simplest illustration of the role of stress waves in dynamic crack 
propagation and crack arrest is given by the one-dimensional analysis of the 
double torsion (DT) specimen. As shown in Figure 4.29 this specimen consists 
of a rectangular plate with an initial blunted precrack of length a,. A four- 
point loading system subjects the arms of the specimen to equal and opposite 
torques until a sharp crack emanates from the blunted tip. During the sub- 
sequent dynamic crack propagation event no further rotation of the end 
z = 0 is usually permitted; that is, fixed grip loading is considered. 

Following the approach developed by Popelar (4.108), several simplificat- 
ions are introduced to achieve a one-dimensional (spatial) model. They are, 
(1) the crack front is straight and normal to the plane of the plate, (2) elastic 
torsion theory describes the deformation, and (3) the stiffness of the plate 
ahead of the crack tip is such that the deformation in this region can be 
neglected. For rectangular sections, the motion in the region 0 c z c a( t )  is 
governed by the torsional wave equation 

pKI#J” = p I $  (4.3- 17) 

where I#J(z, t) is the rotation of the cross section about the centroidal axis z ,  p K  
is the torsional rigidity, p l  is themass moment of inertia, and a prime is used to 
denote a partial derivative with respect to z .  

The introduction of the rate of twist, or(z,t) = I#J’, and the angular velocity, 
o ( z ,  I )  = d, permits replacing Equation (4.3-17) by a system of first order 

Figure 4.29 Mathematical model for double torsion specimen. 
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equations. They are 

(4.3- 18) 

where C = ( p K / p l ) f  = ( K / l ) * C 2  is the torsional wave speed. By differentiat- 
ing the boundary conditions #(O, t )  = #, and #[a(t), t ]  = 0, it is found that 
o = 0 at z = 0 and o + Va = 0 at z = a(t). When t = 0, a = -#,/ao = a, 
and o = 0. 

For fixed grip loading, the energy release rate for the DT specimen can be 
written as 

G = - (0 + f ) / V h  (4.3- 19) 

where 
U = pK J:a'dz 

T = p l  Ji w 2  dz 

Following an integration by parts and the introduction of Equations (4.3-1 8) 
and the boundary conditions, i t  can be shown that Equation (4.3-19) gives 

(4.3-20) 

a2[a( t ) , t ] ,  V < C (4.3-2 1) 

The energy release rate at incipient crack extension is 

GQ = p K  a i / h  (4.3-22) 

During crack extension G = R. While the fracture resistance R can in general 
depend upon the crack speed, a speed-independent resistance will be used in 
the following. 

The method of characteristics provides an efficient solution technique. The 
solution domain is defined by 0 < z < a(t)  and t > 0. The characteristics of 
Equation (4.3-18) are defined by z k Ct = constant and are depicted in 
Figure 4.30. On these characteristics o k Ca = constant, respectively. At  
t = 0, when a sharp crack emanates with a speed V' from the blunted tip(point 
A in Figure 4.30), there is a precipitous decrease in a at z = a,. This produces 
an unloading wave that propagates along the characteristic AB towards B 
corresponding to z = 0. There the wave is reflected and propagates along the 
characteristic BC where it overtakes the crack tip at C. 

In the domain AOB, w = 0 and Q = a,. Within ABC the method of 
characteristics gives for a typical point P 

(4.3-23) 

where the subscript is used to denote the point in the solution domain at which 
the variable is to be evaluated. When the crack tip is at point N intermediate to 
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Figure 4.30 Method of characteristics solution. 

A and C, then the combination of Equations (4.3-21)-(4.3-23) leads to 

(4.3-24) 

Therefore, from the time of initiation of crack growth until the reflected 
unloading wave overtakes the crack tip, the crack speed V is constant. If the 
fracture resistance is a function of crack speed, the crack will also propagate 
during this interval with a constant speed. Equation (4.3-24) then becomes a 
transcendental equation for the crack speed. 

By the time the reflected unloading wave overtakes the crack tip, it has 
restored the angular velocity of the specimen to zero and reduced the rate of 
twist in 0 c z c a, to 

(4.3-25) 

This rate of twist is insufficient to support further crack growth. Crack arrest 
then occurs. In this time interval the crack tip will have advanced from A ro C 
at a speed V .  Hence, the crack length at  arrest is 

a, 1 + V / C - G ,  
a, 1 - V/C R 

Just before crack arrest G = R, while after arrest, 

_ -  - -- 

or, equivalently, 

Rao R 2  G, = - =- 
GQ 

(4.3-26) 

(4.3-27) 

(4.3-28) 

Equation (4.3-28) demonstrates that G, depends upon the initial condition G ,  
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and is not a material property. Only if the crack jump Aa = a, - a. is small 
compared to ao, will C, be approximately equal to R. 

The method of characteristics may be used to study how the total energy is 
partitioned into strain, kinetic, and fracture F energies during the dynamic 
crack propagation and arrest event. The partitioning of these energies, 
normalized with respect to the initial strain energy, for G Q / R  = 4, is shown in 
Figure 4.31. As the sharp crack emerges from the blunted notch, G decreases 
abruptly from GQ to R .  Because of this sudden reduction, the specimen is no 
longer in static equilibrium and an unloading wave propagates with the speed 
C towards the loaded end. As it does so it reduces the strain energy and 
increases the kinetic energy as more of the specimen gathers momentum, 
When the unloading wave reaches the loaded end, the crack has increased its 
length by 60 percent. The reflected wave begins to bring the specimen to rest as 
it speeds towards overtaking the crack tip. After the crack has quadrupled in 
length, the reflected wave overtakes the crack tip, the specimen is at rest, the 
driving force decreases to less than the fracture resistance, and crack arrest 
occurs. 

Because of dispersive effects that the present model does not exhibit, the 
specimen will not normally be quiescent when crack arrest occurs. Hence, the 
driving force will generally ring down from R to G, and will not take place 
instantaneously as this model predicts. The dashed curves in Figure 4.31 are 
the results of a prediction based upon a static interpretation of this dynamic 

( a  - a. ) l a o  

Figure 4.31 Energy composition in a double torsion specimen. 
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event. The static analysis overestimates the crack driving force for a ,  < 
a < 2u0 and underestimates it for greater crack lengths associated with the 
latter stages of the event. These results are analogous to those obtained by 
Freund (4.105) for a shear model of the double cantilever beam specimen. 

4.3.3 Axial Crack Propagation in a Pressurized Pipeline 

Crack propagation in pressurized pipelines, as determined by full-scale tests, 
generally occurs at an essentially constant speed. And, when arrest takes place, 
i t  does so in a fairly abrupt manner. Typically, the ductile (or shear) crack 
speeds observed in full-scale tests range from 100 to 300 m/sec, brittle crack 
propagation speeds from 600 to lOOOm/sec. Note that, for typical gas 
transmission pipe dimensions (e.g., R / h  = 40), these are considerably smaller 
than the Rayleigh wave speed, C,. 

Kanninen (4.109) provided a limiting speed prediction for rapid crack 
propagation in a gas transmission pipeline using a beam-like model. This 
approach was based on an elastic-plastic extension of Yoffe’s branching 
criterion and a model based upon the analogy between the deformation of a 
circular cylindrical shell under axisymmetric loading and the deflection of a 
beam on an elastic foundation. Under the assumptions that, if the crack speed 
exceeds the gas decompression speed, the pressure behind the propagating 
crack tip is zero and the presence of the crack introduces a step change in the 
shell stiffness, the limiting crack speed was found to be 

(4.3-29) 

where h and R are the pipe wall thickness and radius, respectively. As shown in 
Figure 4.32, comparisons with measured speeds of cleavage crack propa- 
gation in full-scale tests conducted by Maxey et al. (4.1 10) agree well with this 
result. 

Most experimental work has been focused on obtaining empirical guide- 
lines for the toughness necessary to insure crack arrest in the ductile regime. 
Empirical results based on a minimum value of the Charpy upper-shelf 
energy are available from the results of Maxey et al. (4.1 10) and others. While a 
decisive comparison of the different relations might seem possible experiment- 
ally, this is not the case. The difficulty lies in the fact that no experiment has yet 
been able to determine a specific value of an arrest parameter for given 
operating conditions. It can only determine whether the crack has propagated 
or not. Consequently, while qualitative comparisons are possible, direct 
quantitative verification is not. A theoretical analysis would appear to offer the 
only way to resove this dilemma. Accordingly, the dynamic fracture mechanics 
analysis procedure of Kanninen et al. (4.1 11) for pipelines results in a one- 
dimensional representation for crack propagation. Under steady-state con- 
ditions, explicit consideration was given both to the principal features of the 
gas-filled pipe problem and the important elements of dynamic crack 
propagation. Their model is shown in Figure 4.33. 
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Figure 4.32 Comparison of theoretical limiting crack speed in pressurized steel pipelines with 
measured speeds. 

P L A S T I C  BEHAVIOR 

,r- ELASTIC BEHAVIOR 

Figure 4.33 Fracture propagation analysis model for a buried pressurized pipeline. 

Starting from the equations for a circular cylindrical shell, four key 
assumptions were introduced to make the analysis tractable: ( I )  radial 
deformations predominate, (2) circumferential variations in pressure can be 
neglected, (3) the crack-opening displacement is equal to the circumferentially 
integrated radial displacement ii, at any cross section in the cracked region, 
and (4) a plastic yield hinge is developed behind the crack tip. Further 
simplification can be introduced by specializing to steady-state conditions. 
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This was accomplished with the coordinate transformation { = x - Vz, where 
x is the axial coordinate, t is time, and V is the crack speed. This led to the 
ordinary differential equation 

1 - v2 
= 2 4 ~  - 

Eh3 (4.3-30) 

where c1, is the shear modulus of the soil. Because the governing equation 
involves the pressure exerted on the pipe walls, a fluid mechanics treatment is 
also required. By assuming a predominately axial flow problem and account- 
ing for the change of pipe cross-sectional area plus gas leakage behind the 
crack tip, an equation governing the pressure distribution p = p({, V) was 
obtained-a result that has been verified by the more detailed analyses of 
Emery et al. (4.1 12). 

The next step involved the development of an expression for the crack 
driving force G as a function of ii; via Equation (4.3-30). Omitting the details, a 
relation G = G(V) was obtained as a function of the pipe diameter and wall 
thickness; the elastic modulus, Poisson's ratio, and yield stress of the pipe 
material; the specific heat ratio, speed of sound, and pressure of the 
undisturbed gas; and the shear modulus of the soil surrounding the pipe. A 
typical result is shown in Figure 4.34. Of particular importance is the existence 
of a maximum crack driving force value for any given set of pipe geometry and 
operating conditions. This was used to estimate the minimum crack arrest 
toughness value. Also of interest in this solution is that the limitingcrack speed 
agrees with Equation (4.3-29). 
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Figure 4.34 Calculated crack driving force for crack propagation in a pressurized pipeline 
( R  = .457 m, h = 8.4 min, p = 8 M Pa). 
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Figure 4.35 Comparison of predicted and measured crack speeds in a pressurized pipeline. 

To assess the accuracy of the model, crack speeds were calculated for 
comparison with the experimental results. This was done using a value of the 
dynamic fracture energy requirement obtained from a drop-weight tear test 
(the best available alternative) in conjunction with curves typified by those of 
Figure 4.34. In this way the steady-state equilibrium point was determined. As 
shown in Figure 4.35, the crack speeds so determined were found to compare 
well with observed speeds in full-scale pipeline tests. Note that, while other 
pipe fracture models have been developed-for example, Freund et al. 
(4.1 13)-the model just described is so far the only one that offers a prediction 
of crack speeds that can be compared with experimental results. 

4.3.4 Steady-State Crack Propagation 
Significant analytical progress can be made by specializing the theory to admit 
only disturbances that propagate at a constant speed V in the positive xl  
direction. This can be accomplished by introducing the transformation < = 
x, - Vt and using a stress function q5 = d(<,  y, t ) .  The result is a generalized 
biharmonic equation given by 

(4.3-3 1) 

where PI and p, are defined in Equation (4.2-9). 
If V < C, c C, , Equation (4.3-31) is elliptic and has the real solution 

(4.3-32) 
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where now 

and, as usual, a bar over a quantity denotes its complex conjugate. Relations 
for the in-plane stress and displacement components, known as the Sneddon- 
Radok equations (4.1 14), are as follows: 

21 = 5 + iPly, zz  = t + %Y (4.3-33) 

6 2 2  = (1 + P i )  Re[F;’(z,) + F;I(Z2)1 (4.3-34) 

u l l  + oZ2 = -2(p:  - 0:) Re F;’(zl) (4.3-35) 

+ ”)’ F;(z2 ) ]  (4.3-36) 
~ P z  

Gul = -Re[F\(zl) + i ( 1  + P:)F;(z2) l  (4.3-37) 

PlF\ (z l )  + - 
2 P 2  

(4.3- 3 8) 

It must of course be recognized that these results are applicable only to steady- 
state conditions; that is, an observer moving with crack tip can sense no 
change whatever in the deformation field from one time (or position) to 
another. While this is a rather unrealistic condition, because the mathematics 
is so much more amenable than otherwise, there is a definite benefit to 
proceeding in this manner. 

To demonstrate the utility of the Sneddon-Radok equations, the problem 
originally solved numerically by YoRe using the Fourier method can be 
obtained much more directly as follows. The appropriate boundary con- 
ditions for a constant length crack of length 2a propagating at a constant 
speed in an infinite medium under remote biaxial tension are, on y = 0, 02, = 
o , ~  = 0, 151 c a and u2 = u12 = 0, 151 c a. At infinity, nz2 = u, g l l  = ACT, 
and oI2 = 0. The dynamic solution that satisfies these boundary conditions 
can be written as 

where 

(4.3-39) 

and, as above, D = 4/.?1fl2 - ( 1  + 
Of most interest in any crack problem are the normal stresses ahead of the 

crack and the normal displacement on the crack faces. First, by substituting 
Equations (4.3-39) into Equation (4.3-34), the normal stress acting ahead of 
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the propagating crack tip is 

(4.3-40) 

Similarly, substituting Equations (4.3-39) into Equation (4.3-38) gives the 
crack opening displacement as 

(4.3-41) 

From these it can be seen that 022 is independent of the crack speed in Yoffe's 
solution while, in contrast, 6 depends upon the crack speed. In particular, it 
can be shown (by a limit process) that, while Equation (4.3-41) reduces to that 
of the static problem when V = 0, for V > 0, S is always greater than its static 
counterpart, becoming infinite at the Rayleigh velocity C,. 

4.3.5 Use of Strip Yield Models 

The Sneddon-Radok equations are readily usable to incorporate a collinear 
strip yield zone. As shown by Kanninen (4.1 15), the crack opening displace- 
ments for a constant-length moving crack then have the same form as in static 
conditions-see Equation (1.4-1 1)-but are escalated by a multiplicative 
factor L = L( V )  defined as 

t ( V )  = "'(')" K + ~ D  C, 1 - (;)2] 
(4.3-42) 

In particular, for plane stress, the crack-tip opening displacement at the crack 
tip is 

8 aoy e 
n E  a 

6 = -- t( V )  log- (4.3-43) 

Because the singularity canceling equation in the Y offe/Dugdale model is the 
same as in the static case, Equation (1.4-9) can be inserted in the above to give 
the dynamic COD in terms of the applied stress. Then, 

8 aoY 
n E  S =--L(V)log (4.3-44) 

Because L(0) = 1, this result reduces to that of Equation (1.4-13)for stationary 
cracks, as i t  must, for V = 0. 

On the basis that the crack opening displacement is constant during rapid 
crack propagation, Kanninen used Equation (4.3-44) to predict crack speeds. 
These predictions were made to compare with measured speeds observed in 
steel foil as a function of crack length at five different load levels. The 
comparison is shown in Figure 4.36. The results are reasonable, particularly in 
view of the fact that the analysis did not attempt to account for the finite 
dimensions of the test specimens. This approach was among the earliest 
quantitative approaches that employed a critical crack opening displacement 
criterion-a procedure that has recently become of particular interest for use 
in elastic-plastic dynamic crack propagation analyses. 
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Figure 4.36 Comparison of observed 
crack propagation results with pre- 
diction of a propagating strip yield 
zone model for steel foil sheets in 
tension. 

I 
a l w  

Also of interest in this solution was the development of a plasticity-based 
limitingcrack speed prediction, which was based on the point at which the two 
in-plane principal stresses become equal. Estimates of the crack speed 
dependence of the flow stress were also incorporated in this relation. While 
these results are perhaps not too realistic, they are of interest in  that they 
anticipated a current trend in dynamic fracture mechanics-the use of 
dynamic elastic-plastic analyses to estimate the resistance of the material to 
crack growth. 

Atkinson (4.1 16) has provided a strip yield zone generalization of Broberg's 
model. His Broberg/Dugdale propagating crack solution was confined to the 
elucidation of the finiteness condition (i.e., the singularity canceling equation). 
Embley and Sih (4.1 17) subsequently broadened this treatment to include the 
crack face displacements and, in addition, corrected an error appearing in the 
published version of reference (4.1 16). Like Atkinson, Embley, and Sih 
considered a crack expanding at a uniform speed V having a collinear strip 
yield zone whose tip is simultaneously expanding at a speed p. The body is 
supposed to be infinite and to be acted on by a remote tensile applied stress Q. 

The crack face displacements for these conditions are given by 

( V 2  - 2c;y 
(c: - V 2 ) +  1 4c3c: - V2)*  - c, 

(4.3-45) 
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As Embley and Sih pointed out, if a = Vt and c = Pt are used to replace V and 
p in Equation (4.3-49, the result will be identical to Kanninen’s result 
obtained for the Yoffe/Dugdale model. In particular, Equation (4.3-43) is the 
same in both models. However, because the singularity canceling equation 
differs, Equation (4.3-44) is not common to the two models. Indeed, as 
Atkinson found, the finiteness condition in the Broberg/Dugdale model is 
speed-dependent. As given by Embley and Sih, this relation can be written as 

0 2 v3(c: - V 2 ) * ( P 2  - - = [ I  + -  
br II c, C m V )  

4c; 

( P 2  - 2c92 I1 ($,A,)] 
+ vyc: - V 2 )  

where A: = 1 - p2/C:, 2; = 1 - Pz/C:, and K, E, and I1 are elliptic functions 
of the first, second, and third kind, respectively. 

Figure 4.37 presents a plot of Equation (4.3-46) showing the plastic zone tip 
velocity as a function of the applied stress and the crack speed. These results 
indicate that, for moderate applied stress levels (e.g., o/ar < 0.5) and for the 
crack speeds normally encountered, /J is approximately equal to V .  There will 
then be little difference between the speed-dependent finiteness condition and 
its static counterpart, Equation (1.4-9). Note that, for u = 0, /3 and V are 
exactly the same whereupon Equation (4.3-46) reduces to Equation (1.4-9). I t  
would therefore appear that the simpler results obtained by Kanninen could 
be used with reasonable accuracy. 

c I c =0.54a 
R I  

0 0.5 1 .o 
RATIO OF APPLIED STRESS TO YIELD 

STRESS 

Figure 4.37 The finiteness conditions 
for an expanding crack with a strip yield 
zone model. 
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4.4 Applications of Dynamic Fracture Mechanics 

In this section, emphasis is on the measurements and analyses of rapidly 
growing cracks, up to and including crack arrest. For this class of problems 
attention focuses on the K,, and K,, parameters. The following sections 
describe some of the commonly used experimental methods and provide some 
typical results. 

4.4.1 Crack Propagation Experimentation 

Early experimental work in dynamic fracture mechanics was highly pragma- 
tic. In essence, the objective was to develop reproducible test procedures that 
would correlate well with service failures. Such results would then be expected 
to produce “go-no go” material specifications- that is, either the material 
would be suitable for a given application or it would be rejected for those 
service conditions. The crack arrest temperature (CAT) test developed by 
Robertson (4.1 18) is one prominent example; see Figure 4.38. Here a crack is 
initiated at the cold side of a plate. The plate has a temperature gradient and is 
subjected to a uniform tensile stress. The crack is initiated by an impact from a 
bolt gun. The crack propagates rapidly, driven by the applied stress and 
assisted by the low toughness of the material at the colder side of the plate, 
but eventually encounters material at a higher temperature sufficiently tough 
to arrest it. The temperature at the point of crack arrest is the CAT for the 
given applied stress level; a value that presumably could be used in structural 
design. 

Because Robertson-type tests tend to be difficult to conduct on a routine 
basis, a number of alternative procedures were developed. As described by 
Lange (4.1 19) and Pellini (4.120), researchers at the U.S. Naval Research 
Laboratory developed the explosion-bulge test and the Pellini drop weight 
tear test (DWTT). These are simpler to conduct than tests with a temperature 
gradient, but suffer in that the stress level in the test cannot be readily related to 

Figure 4.38 The Robertson crack arrest temperature specimen. 



Dynamic Fracture Mechanics 259 

service conditions. Regardless, from the standpoint of the engineering analyst, 
they are of limited value as none of these tests is designed to produce values of 
a crack-tip characterizing parameter. 

The various types of large size test specimens that have been used for 
fracture resistance determinations include: (1) the transversely welded wide 
plate tension specimen, (2) the ESSO (originally the SOD) specimen, (3) the 
deep notch specimen, and (4) the double tension test specimen. These are 
shown in Figures 4.39, 4.40, 4.41, and 4.42. For completeness, Figure 4.43 
shows the various type of DCB test specimens that have been used. 

While large specimen testing was once extensively performed-for 
example, see Nordell and Hall (4.121)-it was largely superceded by the much 
more economical testing that can be done with DCB and other small scale 
specimens. Lately, however, it has been recognized that crack arrest in very 
ductile conditions, which cannot be studied effectively in small-scale speci- 
mens, can be accommodated in wide plate testing. Accordingly, such 
experiments, properly instrumented and accompanied by dynamic finite 
element analyses, are now being used to probe the otherwise inaccessible 

DETAILS OF BUTT WELD 
Figure 4.39 The transversely welded wide plate test specimen. 



260 

E 
E 
0 
0 
v) 

Advanced Fracture Mechanics 

t t t t t  

45'WEDG 

NOTCH DETAILS 

LENGTH 2Qmn 

15mm 

I '  1 1 

400mm m 

Figure 4.40 The ESSO wide plate test specimen. 

Figure 4.41 The deep notch test 
specimen. 
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Figure 4.44 Typical geometry and loading arrangement for the double tension test. 

temperature required for crack arrest data. Figure 4.44 shows the loading 
arrangement that would be typical of a wide plate test. 

Rapid crack propagation/arrest experiments can be classified as either 
direct or indirect, depending upon whether crack-tip characterizing param- 
eters are measured during the event or are inferred from a supplementary 
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Figure 4.45 The method of caustics for transmission and reflection. 
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analysis. In the first category are the experiments on photoelastic and 
reflective materials where a shadow spot (caustic) or a fringe pattern is 
photographed by high speed cameras. Figure 4.45 shows the shadow optical 
method as used in transmission and in reflection. Figure 4.46 shows a typical 
set of results for a moving crack. Figure 4.47 shows corresponding results from 
a photoelastic study. 

The second category contains experiments where only the crack growth 
history is measured-for example, by timing wires broken by the advancing 
crack, The resulting crack length versus time data can be used as input to, say, 
a finite element computation in which details (e.g., the dynamic stress intensity 
factor) that cannot be measured can then be calculated in what has been called 
a “generation-phase” calculation. 

In both types of experiments some assumption about both the nature of the 
event and the constitutive behavior of the material during rapid crack 
propagation is required. While this is obvious in the indirect approach, it is 
equally true in the direct approach. The size of 9 reflected shadow spot may 
indeed correspond to the dimensions of the crack-tip plastic zone, but its 
relation to other features of the deformation will depend upon the material 

Figure 4.46 Use of the method of caustics with flash photography for measurements of stress 
intensity factors during dynamic crack propagation. (Provided by J. F. Kalthoff.) 
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Figure 4.47 Use of the photoelastic method with Rash photography for measurements of stress 
intensity factors during dynamic crack propagation. (Provided by A. S. Kobayashi.) 

behavior at the strain rates experienced by the crack tip. It therefore appears 
that the question of the correct formulation for a rapidly propagating crack 
cannot be unequivocally answered by experimentation alone any more than it 
can by analysis alone. 

A cooperative test program has recently been conducted to assess a 
methodology for determining crack arrest values under the auspices of the 
ASTM. The program employed the compact crack arrest (CCA) test specimen 
(see Figure 4.43) and used two nuclear pressure vessel steels at two different 
test temperatures. The work focused on the determination of K,, and an 
average value of K I D  as a function of crack jump length. The results, based on 
the report of Crosley et al. (4.80), are provided in Figures 4.48,4.49, and 4.50. 

These results, representing the combined findings of some 30 different 
laboratories, clearly show a significant degree of variability. This is partly due 
to material differences but also to differences in the test procedure as executed 
at different laboratries. Regardless, a definite decrease in the K,, values can be 
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Figure 4.48 Cooperative crack arrest test program results for A5338 steel at room temperature. 

seen as the crack jump length increases. This result is consistent with the 
findings discussed in Section 4.1.7. The average K I D  values increase somewhat 
with crack jump length as would be expected from the nature of the K I D  

relation (cf. Figures 4.15 to 4.17). However, caution should be exercised in 
using these K I D  values as they are not associated with any definite crack speed. 

4.4.2 Dynamic Crack Propagation Analysis 

Analyses of dynamic crack propagation and crack arrest for a specified initial 
flaw size, external geometry, and applied load can be conducted in either of 
two different ways. Given a material property relation such as K I D  = K,D(Li ) ,  
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Figure 4.49 Cooperative crack arrest lest program results for A533B steel at 0°C. 

one can compute the resulting crack growth history a = a(r) and the crack 
arrest point. Alternatively, given the crack length-time behavior observed in 
an experiment, by forcing a computer model to respond in exactly the same 
manner, one can compute critical values of the fracture criterion. The former 
represents the procedure that would be followed in an “application phase” 
calculation to assess the safety of a structural component. The latter could be 
associated with a “generation phase” calculation to evaluate material 
properties from laboratory tests. The following discussion will use these names 
as defined here. 
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Figure 4.50 Cooperative crack arrest test program results for 1018 steel at room temperature. 

One drawback to performing generation phase calculations based on 
experimental data is that a direct experimental determination of crack speeds 
does not appear to be possible. Experimentalists can at best supply crack 
length-time data from which crack speeds must be inferred by numerical 
differentiation.* Finite element models can be forced to follow the crack 
propagation/arrest behavior observed in photoelastic materials in  order to 
compare the dynamic fracture toughness values determined from photoelastic 

* While it is commonly assumed that the crack length history is a smooth function, van 
Elst (4.122) has shown that brittle fracture in steel can proceed by discrete steps of a few 
millimeters in length with pauses of 1 to 20 psec between steps. 
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analysis with calculated values. Clearly, this can be done from point to point 
along the crack path without regard to the crack speed existing at each point. 
But, while this procedure has provided reasonable agreements with observed 
photoelastic results, such results can depend on the way in which the crack 
speeds are deduced. Consequently, whether or not material property data as a 
function of crack speed can be accurately extracted from experimental results 
in this way is still an open question. 

Dynamic finite element codes were first based on an explicit time inte- 
gration scheme and constant strain quadrilateral elements. Crack-tip mo- 
tion was modeled by discontinuous jumps with the crack tip moving from one 
node to the next at discrete time intervals in accord with the crack speeds 
measured in the accompanying photoelastic experiments. The perturbations 
caused by this procedure are “filtered” in computing the dynamic energy 
release rate. This is done by using the time-averaged normal stress ahead of the 
advancing crack tip and the corresponding time-averaged crack opening 
displacement after crack advance. Specifically, the product of the two terms 
divided by the crack advance length is used as a measure of the dynamic 
energy release rate G. 

Advancing a crack in the finite element method has raised some funda- 
mental questions. In particular, if no work is done in the sudden release of the 
nodes connecting finite elements across the prospective crack plane, there can 
be no crack-tip energy dissipation in such a model. In this case, the energy 
contained in the model will be too great as crack growth progresses and an 
ever increasing error in the computational results expected. This artifact seems 
to have been contained in the analyses of Aberson et al. (4.123) to extend their 
work to propagatingcracks. Keegstra et al. (4.124) and Yagawa et al. (4.123, i t  
might be noted, overcame this difficulty by releasing nodes over a period of 
time. 

Keegstra et al. developed a transient dynamic finite element model and have 
applied i t  in an attempt to obtain fundamental material properties from the 
Charpy test. Their predictions were “tuned” to experimental results by the 
adjustment of parameters representing the toughness of an initially blunt 
crack, the dynamic toughness of the running crack, and the striker/specimen 
contact stiffness. The crack growth criterion was based on the crack-tip node 
force, a quantity that is proportional to the stress intensity factor. To provide 
an energy sink, the crack-tip node was not suddenly released when a critical 
value was achieved. Instead, the force was reduced slowly so that work is done 
(and energy dissipated) at the crack tip. Encouraging agreement between the 
computer predictions and the experimental measurements was claimed, but, 
of course, much of the agreement was forced in view of the tuning process. I t  
appears that what they have done can be considered as a “generation-phase” 
analysis (in the sense of the preceding discussion), albeit by a trial and error 
approach. 

In addition to the errors introduced experimentally, significant inaccuracies 
in generation phase calculations can be introduced by the analysis model itself. 
Aside from the usual LEFM assumption that no inelastic deformation exists in 
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the material, the most important source of inaccuracy is the perturbations 
caused by the manner of advancing the crack. Finite element models with crack 
growth simulated by sudden node release are particularly sensitive. Unless 
special measures are used-for example, to relax the node force over several 
time steps-quite large spurious oscillations will be introduced. Obviously, 
the oscillations will have a large effect on the crack speeds inferred from the 
model. These must be precluded if accurate crack-speed-dependent values are 
sought. However, by relaxing the node forces gradually, it becomes difficult to 
precisely locate the crack tip-a point of no small importance when 
calculations are to be made with a crack-speed-dependent fracture tough- 
ness. 

The scheme employed by Kanninen et al. (4.126) to advance a crack in 
accord with a crack-speed-dependent fracture criterion presents an improve- 
ment. They considered that a crack advance increment has taken place at a 
time to .  If the next increment of growth is to occur at any subsequent time t ,  
then the crack speed would be Aa/(t - to), where Aa is the increment length set 
by the model. The essence of the procedure was to compare the actual value of 
the crack driving force at each time step with the value of the crack growth 
resistance based on the hypothetical crack speed associated with that time. 
Clearly, this scheme depends upon having an exact crack-tip position in the 
model. An improvement on this approach was subsequently offered by Ahmad 
et al. (4.127) who were able to associate the partial relaxation of the crack-tip 
node forces with the advance of the crack part-way through an element in their 
finite element model. 

4.4.3 Crack Growth Initiation Under Dynamic Loading 

If a test specimen is loaded dynamically, it is well established that the apparent 
toughness can be different from that obtained under slow loading. To 
distinguish the toughness values obtained in rapid loading tests from those 
obtained in conventional slow testing, the dynamic values are designated as 
Kid.* Typically, a monotonic diminution of K,, with loading rate is found 
from slow loading rates (e.g., 1 ksifi./sec) to impact rates (e.g., 
lo5 ksifi./sec) below the transition temperature while the reverse is true 
above the transition temperature. The values considered to be useful for design 
purposes in the lower toughness regime are those obtained under impact 
loading as these are felt to give a minimum. 

For the most part, dynamic fracture initiation testing uses fracture 
specimens identical to those used for static testing. The test specimen most 
widely used to obtain K,,, values is a fatigue-cracked three-point bend 
specimen loaded by a striking tup mounted on a freely falling weight. The 
specimen and/or the tup is instrumented to record the applied load as a 
function of time. Usually, it is assumed that inertial effects do not significantly 

* An alternative, which seems to be favored by ASTM, is to designate the rapidload plane strain 
fracture toughness as K,<( t ) ,  where t is the loading time in the test. 



270 Advanced Fracture Mechanics 

change the state of deformation in the body from that which would exist under 
static loading. Strain gages are used to detect crack initiation and the static 
load at that time. Beam bending relations are then used to infer the value of the 
stress intensity factor at  the time the crack initiates and, hence, determine Kid. 

To minimize inertial effects, the impact speed is typically limited to that 
obtained by dropping a 1600-pound weight a distance of about 9 inches. In 
addition, the impact is cushioned by placing a soft aluminum or lead pad 
where the tup strikes the test specimen. The pad is supposed to eliminate the 
elastic ringing waves in the specimen and to increase the loading time during 
the test. To check for possible inertial effects, the experimental parameters 
have been varied systematically. It is claimed that these do  not cause any 
significant alternations in the measured Kid values. Nevertheless, independent 
dynamic analyses indicate that the basis of these results is somewhat suspect. 

Kalthoff et al. (4.61) have recently examined some of the assumptions in 
instrumented impact tests using an optical experimental procedure. They were 
able to measure dynamic stress intensity factors with the method of shadow 
patterns (caustics) for both propagating cracks and stationary cracks under 
dynamic loading. In applying their techniques to study notch bend specimens 
subjected to a dropped weight, they have come to a number of conclusions of 
interest to the numerical analysis of impact tests. First, the time at which crack 
growth begins does not generally coincide with the maximum load; typically, 
the stress intensity factor is still increasing when the load begins to decrease. 

t ,  u s e c  
Figure 4.51 Comparison of static stress intensity factors with values observed by the method of 
caustics for an impact loaded high strength steel three-point bend specimen. 
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Second, when conditions for crack growth initiation are changed (e.g., by 
blunting the crack tip), the load as a function of time is essentially unchanged. 
Consequently, the Kld value based on static relations and the maximum load 
can lead to erroneous results. It can be concluded that, for properly 
determined values, fully dynamic analyses must be performed that take inertia 
effects into account for the entire system (tup, specimen, and anvil). 
Figures 4.51 and 4.52 show a typical result. It might be noted that the short- 
time solution (i.e., infinite medium) gives K - f i i n  accord with these results. 

4.4.4 Terminal Ballistics and Fragmentation 

There are two important areas in which dynamic fracture mechanics might be 
thought to be useful, but cannot be directly applied. The reason is that a pre- 
existing dominant crack that could provide the focal point for an analysis is 
not present. These are terminal ballistics-equivalently penetration and 
perforation processes-and fragmentation. In the latter area less work would 
appear to have been done even though the field can be dated back to the early 
contributions by Mott (4.128) and Taylor (4.129). More recent work has been 
given by Davison et al. (4.130) and Grady (4.13 1). 

The hypervelocity impact processes that are involved in terminal ballistics 
produce a high concentration of energy in the vicinity of the impact point. 

I I I I I I I I  
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Figure 4.52 Calculated stress intensity factors in a center-cracked elastic strip subjected to 
suddenly applied remote tension. 
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This causes a violent interaction between the projectile and the target in which 
energy is dissipated through many different physical mechanisms. These 
include material vaporization, plastic flow, and fracture. Effective computer 
codes have been developed to model the resulting penetration/perforation 
events-for recent surveys, see Backman and Goldsmith (4.132) and Zukas et 
al. (4.133). However, all existing codes are handicapped by the relatively 
primitive failure models that are currently available. Indeed, it is generally 
agreed that the most serious limitation in the extensive use of current 
computational codes is not their cost or complexity, but the inadequacy of the 
material failure models that they employ. Considerable interest in dynamic 
fracture mechanics has been evidenced recently to alleviate these inadequate 
features. 

Even though one failure mode tends to dominate, penetration/perforation 
processes usually occur by a combination of two or more mechanisms. But, as 
stated by Jonas and Zukas (4.134), with few exceptions, existing codes use 
simplistic criteria that assume instantaneous failure in a computational 
element once some critical condition is reached. Consequently, computations 
currently made are in accord with the philosophy best expressed by 
Wilkins (4.135); impact computations are not performed to predict results, but 
to enhance understanding of an experimental result. That is, the operative 
failure mechanisms must be specified in advance if the computation is to be 
successful. 

While the use of computational codes to enhance physical understanding is 
certainly commendable, it would clearly be more desirable to have the failure 
modes arise in a natural way. What appears to be needed is a code that treats 
the individual failure modes as competing-but not mutually exclusive- 
events. According to Bodner (4.136), this can be done for the lower range of 
impact velocities (i.e., less than 1000 m/sec), but not for higher speeds. Models 
for the individual modes can be based on one or a combination of three 
distinct possibilities: (1) cumulative damage criteria based on elastic-plastic 
continuum concepts, (2) micromechanical hole growth and coalescence 
models, and (3) dynamic-plastic fracture mechanics. The first two of these 
possibilities have been vigorously pursued without entirely satisfactory 
results. The third, in contrast, appears to have not been adequately considered. 
Yet, as described above, there has been substantial progress in the field 
recently, which suggests that extensions of this type of approach to terminal 
ballistics problems could be useful. This progress, coupled with an intimate 
knowledge of currently available experimental and analysis results in terminal 
ballistics, could well lead to significant improvements in material failure 
modeling. 

Phenomenologically, spalling, petalling, and plugging types of failure are 
observed in materials subjected to high-energy impact; see Figure 4.53. 
Spalling is common in thick targets composed of a material with relatively 
poor tensile properties. The mechanism of spa11 is usually explained as being 
due to the interaction of reflecting tensile waves from the free boundary and 
the secondary release wave at the point of contact; for example, see Gilman 
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Brittle Fracture 

Figure 4.53 Schematic representation 
of failure events arising in terminal 
ballistics. 

and Tuler (4.137). Petalling occurs in thin targets and the critical stress is 
perpendicular to the direction of impact. Plugging, often called adiabatic 
shear, is observed in thick targets made of ductile materials. 

It has been hypothesized that plugging occurs when the transport of the 
heat generated due to the deformation of the target is not fast enough, leading 
to a concentrated band of material subjected to thermal softening. An example 
of alternating modes of failure is the point where a thick target becomes thin 
during the failure process whereupon plugging and petalling can be alternately 
induced. I t  is emphasized that, while the dominant mechanism that controls 
the particular failure mode can be identified in most cases, other mechanisms 
also participate. Hence, the great difficulty in modeling. 

Most computer codes used for impact calculations contain some form of 
failure criterion. The most common of the criteria is based on the equivalent 
plastic strain reaching a critical value, generally the rupture strain for the 
material. The equivalent strain is a measure of the octahedral shear and, 
hence, is not connected to the hydrostatic stress state or to a preferred 
orientation. Consequently, if such a criterion is invoked, the material element 
or cell is isotropically precluded from transmitting tensile stresses. Another 
common criterion is the tensile strain in any direction reaching the critical 
rupture strain of the uniaxially tested material. In this case it is possible for the 
material to continue to transmit stresses in the perpendicular directions, thus 
allowing a directionality in the failure condition. But, this ignores the fact that 
the dilatational part of the deformation can also contribute to failure, and in 
some instances can achieve dominance in the material response. 

An alternative approach resulted in the hole nucleation and growth models 
proposed by Shockey and Curran (4.138). In simple terms, their models 
(NAG/FRAG/SAG) are based upon the voids and shear bands that appear 
within metallic materials subjected to intense straining. A void growth-rate 
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equation which contains scalar constants that depend on the material is 
embedded in the model to account for progression of damage due to wave 
reflections (cycles of stressing). Also degradation of the material due to 
damage accumulation is accounted for by reducing the stiffness of the 
particular cell. 

Another damage model that has received attention is the Tuler-Butcher 
integral for calculating the time to initiate damage (4.139). It is representative 
of several models that calculate damage accumulation, generally, as a function 
of stress/strain, temperature, and the current damage fraction. In the Tuler- 
Butcher model the stress pulses that exceed a threshold stress value are 
assumed to cause increments of damage, the relation being through an 
exponent of the stress exceedances. When the sum of the increments reaches a 
critical value, the material is assumed to have failed. Some models including 
the NAG/FRAG/SAG models have sought to include progressive weakening 
of the material as the damage fraction grows. 
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5 
ELASTIC-PLASTIC FRACTURE MECHANICS 

Linear elastic fracture mechanics is limited by the small-scale yielding 
condition that the plastic zone attending the crack tip be small compared to 
the size of the K-dominant region and any relevant geometric dimension. It is 
virtually impossible to satisfy this condition for high toughness, low strength 
materials which generally undergo extensive plastic deformation and crack-tip 
blunting prior to initiation of crack growth. Crack initiation in these materials 
is usually followed by stable crack growth or tearing. While LEFM can 
accommodate an increasing fracture resistance during stable growth, as 
demonstrated in Chapter 3, its prediction of the load carrying capacity of a 
degraded component may provide misleading estimates. 

The need to include the influence of significant plastic deformation that may 
accompany crack initiation and the subsequent stable growth has been the 
main impetus for the development of the field of plastic fracture mechanics. 
While the development of this field is ongoing, sufficient advances have been 
made that plastic fracture mechanics is being used in design and assessment of 
the structural integrity of degraded components, The survey by Kanninen, 
Popelar, and Broek (5.1) summarizes the advances made through 1980. 
Recognizing that there will be further advances and refinements of existing 
approaches, we present in this chapter the developments of elastic-plastic 
fracture mechanics that will likely form the basis for these advances and 
refinements. 

This chapter begins by considering the Dugdale model and its applications 
and limitations to plastic fracture. Because it is one of the few problems where 
closed-form solutions exist, the plastic antiplane strain problem is treated next. 
These solutions aid in developing an understanding and an appreciation of 
plastic fracture. After this the plastic crack-tip fields for power law hardening 
materials are investigated. The use of the J-integral as a fracture character- 
izing parameter follows naturally from this analysis. Simplified engineering 
methods for estimating the J-integral are presented. This is followed by a 
description of test procedures for determining the critical value of J at crack 
initiation. While J is, strictly speaking, only applicable for stationary cracks, 
conditions for J-controlled crack growth are considered. When these 
conditions are satisfied, a J-resistance curve analysis of stable crack growth is 
developed. Finally, extended crack growth beyond where J loses its sig- 
nificance is treated. 

28 1 
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5.1 The Dugdale Model 

Early attempts to model the plastic deformation attending the crack tip were 
based upon extensions of LEFM. An example is the Dugdale-Barenblatt yield 
strip or cohesive model for yielding in thin cracked sheets. The deformation in 
the plane stress plastic zone is due to slipping on planes at  45 degrees to the 
surface of the sheet as shown in Figure 3.14 and illustrated schematically in 
Figure 3.16(a). Experimental investigations by Hahn and Rosenfield (5.2) 
revealed that the height of the plane stress plastic zone is approximately equal 
to the thickness of the sheet. 

Dugdale (5.3) assumed the length of the plastic zone to be much greater than 
the thickness of the sheet and modeled the plastic zone as a yielded strip ahead 
of the crack tip. The material is assumed to be elastic-perfectly plastic so that 
022 = o,, within the strip. Dugdale postulated that the effect of yielding is to 
increase the crack length by the extent of the plastic zone as depicted in 
Figure 5.1 for a finite length crack in an infinite medium subjected to a uniform 
remote stress 022 = o. Within the yielded strip, a < Ix, I < c, the opening of 
the crack faces is restrained by the stress oZ2 = by. The length d of the strip is 
established from the condition that the stress field be nonsingular. 

The solution to this problem can be obtained by the superposition of the 
solutions for the uncracked sheet loaded by remote tension 022 = oand for the 
cracked sheet with no remote loading and with pressure, p 2 ( x , )  = o for 

t x2 

t 
U 

Figure 5.1 The Dugdale model. 
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/ x l  1 c a and p 2 ( x 1 )  = o - O, for u < Ixl I < c, on the crack surfaces. For the 
former problem the potential functions are d ( z )  = 2Rf(z) = a /2  and for the 
latter @(z) = 0 and W(z) is given by Equation (3.2-17). The resultant 
expression for n’(z) is 

o (z2 - c 2 ) - +  p2(t)(c2 - t 2 ) *  dt  
(5.1- 1) 4 2n s - e  t - 2  

nyz) = - - 

The condition of bounded stresses [see Equation (3.4-7)] leads to 

d = u  sec - - 1  [ (3 1 (5.1-2) 

for the length of the plastic zone. Dugdale found very good agreement between 
measured lengths of the plastic zones in steels and the predictions based upon 
Equation (5.1-2) for o as large as 0.90,. Equally good agreement was reported 
by Mills (5.4) for cracked polycarbonate, polysulfane and polyvinylchloride 
sheets. 

The evaluation of the integral in Equation (5.1-1) can be accomplished by 
replacing it with a closed contour integral shrunk onto the crack and then 
employing Cauchy’s integral theorem. Etrecting this integration and comput- 
ing the displacements, one finds [e.g., see (5 .5 )  and (5.6)] that the crack-tip 
opening displacement 6, is 

u2(a,0+) - u2(u,O-) --= 6, = n E  
It is also possible to view 6, as a measure of the stretching or deformation 
occurring in the plastic zone. By representing the crack and yielded zones by 
an inverted pile-up of dislocations, Bilby, Cottrell, and Swinden (5.7) obtained 
expressions analogous to Equation (5.1-3) for Modes I1 and 111. 

Within the context of the Dugdale model an elastic-plastic fracture criterion 
can be expressed in terms of a critical value of 6,. A t  initiation of crack growth 

6, = 61, (5.1-4) 
where 6,, is the critical value that is considered to be a material property. 
Rather extensive reviews of this fracture criterion and of methods for 
measuring a,, are given in Broek (5 .8)  and Knott (5.9). Since by Equation 
(3.3-29) J = 0,6,, then Equation (5.1-3) can also be expressed as 

J = - - u l n  sec -- n E  O,’ [ (1 ;)I (5.1-5) 

Consequently, any fracture criterion based upon 6, attaining a critical value is 
equivalent to J reaching a critical value J,; that is, at initiation of crack 
extension 

J = J, (5.1 -6) 

where J, = cry d,, is a material property. 
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Noting that K ,  = o f i a n d  employing the small-scale yielding results of 
Equation (3.3-30) one can write 

Equations (5.1-5) and (5.1-7) provide that 

J Jssy = 8 n2 (:y ln [sec( i t ) ]  

(5.1-7) 

(5.1-8) 

The right-hand side of Equation (5.1-8) may be viewed as the plastic 
correction to the small-scale yielding prediction. For o/oy << 1 this quantity 
approaches unity whereas it becomes unbounded as c + by. To first order 
Equation (5.1-8) yields 

J - 1 +"('> 2 -- 
Jssy 24 by 

where the second term on the right-hand side is about 18 percent smaller than 
the Irwin plane stress plastic zone correction. 

At fracture D = a-, J = J, and Equation (5.1-8) gives 

(5.1-9) 

Within the context of small-scale yielding one can also write J, = K,?/E,  which 
when combined with Equations (5.1-7) and (5.1-9) leads to 

Equation (5.1-10) can be used to establish K, for intermediate scale yielding 
when or is measured in a fracture test. Conversely, if J, or, equivalently, K, is 
known, then this equation can be used to predict the failure stress of. 

The latter concept was extended by Harrison, Loosemore, and Milne (5.10). 
They postulated that Equation (5.1-10) could be used to interpolate between 
linear elastic fracture (oflay << 1) for one extreme of failure and large-scale 
plastic yielding or collapse at  the other extreme (cf/cY + l), if the yield stress 
were replaced by the plastic collapse stress 0, in order to accommodate other 
flawed configurations. The resulting Failure Assessment Curve or R-6 Curve is 

(5.1-11) 

The plastic collapse stress is determined from a limit analysis. For example, 
in many instances it is possible to write 

0, = yoo(l - a/ W)" (5.1 - 1 2) 
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where a. is the flow stress that attempts to accommodate work hardening and 
the through-thickness constraint. The width of the specimen per crack tip is 
denoted by W ,  y is a dimensionless constant, n = 1 for center-cracked and 
double-edge cracked plates, and n = 2 for bend specimens (5.1 1, 5.12). 

The failure assessment diagram is constructed in the K ,  - S, plane where 

(5.1 - 1 3) 

are proportional to the applied load through the parameters a and K , .  The 
failure assessment curve shown in Figure 5.2 is the loci of points ( K r ) f ,  (Sr)f 
satisfying Equation (5.1-1 1). Failure is associated with any combination of 
loading and crack size giving rise to a point ( K , ,  S,) falling on or outside of this 
curve; and, conversely, the combination will be safe if the point lies inside the 
curve. Since K, and S, are proportional to the applied load, the distance from 
the origin to the point (K, ,  S,) is also proportional to the load. For a crack of 
fixed length, changing the applied load causes the point (K,,  S,) to be displaced 
along the ray through the origin. The safety factor is the ratio of the distance 
from the origin to the point of intersection of this ray and the failure 

Path to Failure 1 0 

0.2 
/ 

/ ,’ 7 0.1 

/ 
/ - 

/ 
/ 

0 I I I 
0 0.2 0.4 0.6 0.8 1 .o 

5, 
Figure 5.2 
cracked panel having a/a, = 4 and aJ;;VJ’/K, = 3. 

The Failure Assessment Diagram with the plane stress path to failure for a center- 
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assessment curve and the distance between the origin and the point (Kr,S,). 
For a prescribed load intensity the loci of points ( K r , S r )  for different crack 
lengths is referred to as the path to failure. Once a path to failure has been 
established for one intensity of load, other paths can be constructed for other 
intensities by simple proportionality. 

As an illustration of the use of the Failure Assessment Diagram consider a 
thin panel of width 2W containing a central crack of length 2a loaded by a 
uniform remote stress 6. In this case 

and 

so that 

a, = o,(l - a / W )  

(5.1 - 1 4) 

For a prescribed stress 6, Equation (5.1-14) is a parametric representation for 
the path to failure in the Failure Assessment Diagram. Such a path is shown 
in Figure 5.2 for a/ao = 4 and o@/K, = $. From the point of intersection 
of this path with the failure assessment curve, failure can be expected for 
a/W > 0.66. By increasing a/oo by the product of the ratio of lengths OB 
to OA one finds that ‘/ao = 0.63 will produce failure for a / W  = 0.2. 
Alternatively, for ‘/ao = and a/W = 0.2 the safety factor is 2.5. 

In Figure 5.3 comparisons between the Failure Assessment Curve and 
similar curves based upon finite element computations for plane strain are 
made. In these computations J was computed and the linear elastic 
relationship, Equation (3.3-30), between J and K was used to cast these results 
into the required form. Chell (5.13) found that a universal failure curve does 
not exist. However, the differences between the curves are relatively small 
when compared to the uncertainties associated with the failure assessment of a 
real structure. With the obvious exceptions illustrated in Figure 5.3, the 
Failure Assessment Curve approximates a lower bound. 

Chell and Milne (5.14) have extended this concept to include the influence of 
thermal and residual stresses and to investigate stable crack growth and 
tearing instability under load and displacement control. In the instability 
analysis the concept of a J-resistance curve is used. Chell(5.13) found that the 
failure assessment diagram can lead to nonconservative predictions when 
residual stresses exist. 

The appealing aspect of the Failure Assessment Diagram is its simplicity. 
Only the LEFM stress intensity factor and the plastic limit or collapse load 
(stress) are required in the failure analysis. However, the question of what 
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Figure 5.3 Comparison of Failure Assessment Curve and failure curves from plane strain finite 
element computations (5.13). 

value should be used for the flow stress when computing the collapse load 
remains unanswered and becomes increasingly more difficult to answer for 
materials that exhibit appreciable strain hardening. The simplicity of the 
method associated with prescribed loading is diminished when conditions of 
controlled load-point displacement (e.g., fixed-grip loading) exist (5.13). For 
the latter loading condition the method may be considered in some 
applications as providing overly conservative estimates of failure. 

For high toughness, low strength materials the failure can be expected to be 
due to plastic collapse of the remaining ligament or net section; that is, K, z 0 
and S, ‘v 1. The concept of net section collapse has been used by Feddersen 
(5.15) and Broek (5.8,5.16-5.18) in the study of fracture of subsize aluminum 
panels. For a center cracked panel under plane stress loading the net section 
collapse criterion can be written as 

c =a, = ao(l  - a / W )  (5.1 - 1 5) 

In the Q - a/W plane Equation (5.1-15) is a straight line through the points 
a / W  = 0, Q = u0, and a/W = 1, Q = 0. 
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Kanninen et al. (5.19,5.20) found that this approach was also applicable to 
Type 304 stainless steel under noncompliant loading. The applied stress 
required for initiation of crack growth in 12-in. wide Type 304 stainless steel, 
center cracked panels was measured. Because the initial crack growth is stable, 
these panels could be further loaded before reaching a tearing instability at 
maximum load. The measured stress at crack initiation and at instability 
appears to fall on straight lines through the point, 2a = 12 in. and 0 = 0 in 
Figure 5.4. The flow stresses at crack initiation and maximum load are 
apparently 66 ksi and 73 ksi, respectively, compared to a yield stress of 
approximately 40 ksi. The disparity between the yield stress and the flow stress 
is indicative of the large degree of strain hardening that this material exhibits. 
Further tests also indicate that the type of loading (quasi-static, high strain 
rate, interrupted and cyclic) had only minor influences upon the applied stress 
at crack initiation and maximum load. 

Kanninen et al. (5.19) used the net section collapse criterion to analyze 
circumferentially cracked Type 304 stainless steel pipes in four-point bending. 
In the limit load analysis of this configuration the previously determined flow 

2a (mm) 

500 
A high strain rate 

Sensitized 
V V interrupted 

7 0  

60  0 +cyclic 

0 2 4 6 0 10 12- 
2a (in) 

Figure 5.4 Residual strength as a function of crack size for Type 304 stainless steel center- 
cracked tensile panels (5.1). 
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stress obtained from the center cracked panel tests was used. The predicted 
load for crack initiation agreed very well with theobserved load in quasi-static 
fracture tests of through-wall circumferentially cracked, 4-in. diameter pipes 
loaded primarily in bending. Because the load at crack initiation is nearly 
coincident with the maximum load, the net section collapse criterion can also 
be used to predict pipe fracture in this instance. 

Another example of the use of the Dugdale model is the work of Hahn et al. 
(5.21) in the development of a criterion for crack extension in circular 
cylindrical pressure vessels. The driving force for a through-wall axial crack in 
the pressurized vessel is due to the hoop stress and to the bulging of the 
unsupported vessel wall in the Aanks of the crack. The basic premise of this 
development is that a cracked, thin-walled pressure vessel can be treated as a 
flat panel, having the same thickness and crack length, in tension provided the 
nominal stress d in the panel is written as 

d = Mdh (5.1 - 16) 

where ah is the vessel’s hoop stress. The factor M is a function of the crack 
length 2a, radius R of the vessel, and wall thickness t .  Folias (5.22) has 
established the basis of Equation (5.1-16) for small-scale yielding. The 
function M can be approximated by 

R 2 t 2  
1 + 1.255 - - 0.0135 - a2 

Rt 

In the limit as R + co, M + 1, and the flat panel is recovered. 
The introduction of Equation (5.1-16) into (5.1-5) yields 

(5.1-1 7) 

(5.1- 18) 

where the yield stress has been replaced by the flow stress. The flow stress of 
line pipe materials has been found to average about 10 ksi (69 MPa) greater 
than the yield stress. At crack extension J = J,  and d h  = dhj  and Equation 
(5.1-18) becomes 

(5.1 - 1 9) 

A dimensionless plot of Equation (5.1-19) appears in Figure 5.5. For high 
toughness, low strength materials containing small cracks; that is, for large 
values of J,E/aa;,  Mah, /a ,  approaches unity-a condition equivalent to 
large-scale yielding or plastic collapse. 

Kiefner et al. (5.23) proposed that Equation (5.1-19) could also be used for 
part through wall axial cracks if M is modified appropriately. It is necessary to 
replace M by the empirical relation 

t - d / M  
t - d  (5.1-20) 
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Figure 5.5 Comparison of predicted and measured failure stress for surface flaws (0) and 
through wall flaws (0) in pipes (5.25). 

where d is the maximum depth of the surface flaw. Furthermore, when the 
depth of the surface flaw is not uniform, an effective crack length defined by 

2a, = A / d  (5.1-2 1) 

where A is the surface area of the flaw, is to be used. As d / t  tends to unity, M p  
becomes unbounded. In light of the previous discussion, the implication is that 
only a small hoop stress is required in this case to produce plastic collapse in 
the remaining ligament of the wall. 

For Mohf/o, < 0.8, Maxey et al. (5.24) found a nearly one-to-one corre- 
lation between J, given by Equation (5.1-19) and the Charpy-V-Notch upper 
plateau energy normalized with respect to the net cross-sectional area of the 
Charpy-V-Notch specimen. Using this value for J,, Maxey (5.25) made the 
comparison in Figure 5.5 of the predictions based upon Equation (5.1-19) and 
measured results from fracture tests on pressurized pipes with axial through- 
wall and surface cracks. These tests involved pipes having radii from 3.3 in. to 
21 in., wall thicknesses from in. to 1; in., and crack lengths from 1 in. to 
24i  in. The flow stress varied from 32 ksi to 120 ksi. In general the agreement is 
quite good with the experimental data scattered around the curve given by 
Equation (5.1-19). The large differences for the surface cracks are associated 
with either shallow ( d l t  < 0.3) or deep ( d l t  > 0.7) cracks. This may be due to 
tougher zones of materials lying near the surfaces of the pipe (5.23). 

At failure the remaining ligament is severed and a through-wall crack is 
produced. If the stress level is less than that necessary to initiate axial growth 
of the resulting through-wall crack, then a leak occurs. On the other hand, a 
break (an axially propagating crack) will occur if the stress level is greater than 
the required initiating value. It follows from the present model that with 
everything else equal a leak-before-break is to be expected when M < M,. 
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Figure 5.6 Comparison of predicted [Equation (5.1-22)] and measured failures of pressurized 
A106B steel pipes with axial through wall cracks. 

As noted earlier, the Dugdale model predicts that large-scale yielding or 
plastic collapse will occur for small flaws in pipes made of high toughness, low 
strength materials. The condition for plastic collapse is 

%c/% = 1IM (5.1-22) 

for through-wall cracks and 
~ I l C l ~ ,  = 1IMp (5.1-23) 

for surface flaws. In the latter equations ohC is the hoop stress for plastic 
collapse. Comparisons of predictions based upon Equations (5.1-22) and 
(5.1-23) and measured results are shown in Figures 5.6 and 5.7 for through- 
wall and surface flaws, respectively. In general, the agreement is quite good. 

In closing this section we note that there are additional experimcnts in pipes 
with initial part through-wall cracks that produced failure loads somewhat in 
excess of those predicted by the net section or plastic collapse criterion. 
Situations also exist for which the net section collapse is simply inapplicable. 
For example, under nearly displacement controlled conditions extensive 
stable crack growth can occur beyond maximum load and only a plastic 
fracture mechanics approach is capable of predicting the failure load. 
Furthermore, there remains the question as to what value should be used for 
the flow stress in strain hardening materials. While the net section collapse 
criterion and the Failure Assessment Diagram based upon the Dugdale model 
have many appealing attributes, they do not represent a panacea for elaslic- 
plastic fracture. 
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Figure 5.7 Comparison of measured and predicted failures in 24 x 1.50-in. Type 316 stainless 
steel pipes with surface Raws. 

5.2 Antiplsne Elastic-Plastic Solutions 

In the Dugdale model plastic yielding is confined to a strip ahead of the crack 
tip. Without such a contrivance the mathematical difficulties for Mode I 
loading are such as to defy, even within the realm of small-scale yielding, an 
elastic-plastic solution in closed form. However, for Mode 111 loading these 
difficulties are sufficiently reduced that closed-form solutions are attainable 
for small-scale yielding. The solution to the antiplane problem is useful 
because it often provides a basis for a qualitative understanding of the opening 
mode behavior. 

Consider the antiplane loading of a crack in an elastic-perfectly plastic 
material depicted in Figure 5.8. This problem was first addressed by Hult and 
McClintock (5.26). The nonzero displacement u3 and stress components 03 1 

and 032 are assumed to depend only upon x, and x,. In the plastic zone ahead 
of the crack tip they must satisfy the equilibrium equation 

& aa32 +-=o 
a x ,  a x ,  

the von Mises or Tresca yield condition 
fYil + r& = 7;  

(5.2-1) 

(5.2-2) 

and the Hencky deformation constitutive relations [cf. Equation (2.6-27)] 

(5.2-3) 
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Figure 5.8 Antiplane shear deformation in an elastic-plastic cracked body. 

where T~ is the yield stress in shear and A is a scalar function of the stress and 
strain invariants. 

The form of Equation (5.2-2) suggests writing 

031 = - 7 0  sin 6, 032 = ro cos 6 (5.2-4) 

which will also satisfy Equation (5.2-1) provided 
6 = tan-’(x2/x1) (5.2-5) 

is the polar angle, Equations (5.2-4) and (5.2-5) imply that the shear stress 
nJB = T~ on 8 = constant. In addition Equations (5.2-3)-(5.2-5) provide that 

(5.2-6) 

on 6 = constant. Consequently, rays emanating from the crack tip are slip 
lines. 

According to Equations (5.2-4) and (3.1-12) 
031 i- i032 = i toeie 

031 + iaJl = 2f’(z) 
in the plastic zone and - 

(5.2-7) 

(5.2-8) 

within the elastic region. On the elastic-plastic boundary, z = R(6)eie, 

2f’(z) = -iTOe-le (5.2-9) 

Furthermore, on the stress-free crack surfaces (0 = 
f ( t )  must satisfy 

n) the analytic function 

Im f ’ ( z )  = 0 (5.2-10) 
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For a plastic zone small compared to the K-dominant region (small-scale 
yielding) the stress field must approach asymptotically the singular elastic 
stress field at distances sufficiently removed from the plastic zone; that is, (see 
Section 3.1 .), 

(5.2-1 1 )  

The solution [see (5.27) and (5.28)] to the boundary value problem 
described by Equations (5.2-10) and (5.2-1 1) is 

(5.2- 12) 

From the introduction of Equation (5.2-12) into Equation (5.2-9) it follows 
that the elastic-plastic boundary is a circle of diameter r,, = k'i,/(nr;)centered 
on the x,-axis at x ,  = KiJ(27r~;). Consequently, the plastic zone doe$ not 
engulf the crack tip for this material. 

The substitution of Equation (5.2-12) into Equation (5.2-8) yields 

0 3 2  + ia3, = K , , ,  {2* (z - *)}-* 2nr; (5.2- 1 3) 

for the elastic stresses. The effect of yielding is to produce a stress field in the 
elastic region that is identical in character to the elastic singular field for a 
crack tip shifted to the center of the plastic zone. This is the basis of the Irwin 
correction introduced in Section 3.4. 

Equation (5.2-6) implies that u3 = u3(0 )  in the plastic region and, therefore, 
the engineering shear strain 

I C'U,  
Y3.9 = - - r 20 

has a r - l  singularity at the crack tip. Furthermore, since y 3 8  = ~ , , / p  on the 
elastic-plastic boundary, r = R ( 0 )  = r p  cos 8, then 

Consequently, in the plastic zone 

K i ,  cos H 
n p ,  r Y,@ = -- , y3, = 0 

(5.2- 14) 
u3 = - sin 0 

= P O  

Note that the plastic strains at each point increase proportionally with 
and, therefore, this solution also satisfies the equations of incremental 
plasticity theory. 
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The crack-tip opening displacement is 

(5.2- 15) 

Since J = K & / 2 p  for small-scale yielding, then Equation (5.2-15) yields 

I1 J = - tos, 
4 

(5.2- 16) 

Equations (5.2-15) and (5.2-16) can be compared, respectively, with the small- 
scale yielding results, 

from the Bilby, Cottrell, and Swinden (5.7) yield strip model. 
Next, we consider the influence of isotropic strain hardening upon the shape 

of the plastic zone and the singularities of the Mode 111 stress and strain fields. 
Assume that the principal antiplane shear stress t and engineering shear y, 
where 

T = (4 + a:,)+, Y = cr:, + Y:#, (5.2-17) 

obey a linear law to the yield point ( t o , y o )  and a hardening law thereafter; that 
is, 

TO 

Yo 
t = - y = C I y ,  Y < Y o  

The Hencky deformation relations are 

(5.2- 18) 

(5.2-1 9) 

These equations must be supplemented by the equation of equilibrium, 
Equation (5.2-1), and the compatibility equation 

(5.2-20) 

In much the same manner that was employed for perfect plasticity, Rice 
(5.27,5.29) obtained the small-scale yielding solutions to these equations for a 
semi-infinite crack in an infinite medium. The contours of constant y or t in the 
plastic region are circles of radius R(y)centered on the x,-axis at x1 = X ( y )  as 
depicted in Figure 5.9. Here 

(5.2-21) 
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Figure 5.9 Contours of constant maximum antiplane shear strain for small-scale yielding in an 
elastic-strain hardening material. 

The elastic-plastic boundary that now encompasses the crack tip is centered at 
x, = X(y , )  and has a radius R(yo) = Ki,/2nz5. In the elastic region the 
contours of constant z or y and the elastic-plastic boundary are concentric 
circles. The principal shear direction makes an angle 4, measured positive 
counterclockwise, from the x2 direction. Consequently, 

and 
ze'4 = 6 3 2  - its,, 

ye'@ = 732 - iy31 

(5.2-22) 

(5.2-23) 

It is clear from Figure 5.9 that on contours of constant y 

and 

x 1  = X ( y )  + R(y) cos 2 4  
(5.2-25) 

x2 = R(y) sin 24, Y > y o  
These equations can be used to determine the stress and strain fields. For 
example, in the elastic region Equation (5.2-24) can be rewritten as 

x1 + ix2  = z = X ( y o )  + R(y)eZi4 (5.2-26) 
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where in this region 

It follows from Equations (5.2-22), (5.2-26), and (5.2-27) that 

(5.2-27) 

(5.2-28) 

Again, the effect of yielding is to produce a stress field within the elastic region 
identical to the elastic singular field for a crack tip shifted to the center of the 
plastic zone. 

In the plastic zone Equation (5.2-25) permits writing 

It is apparent from Figure 5.9 that 

X ( y )  sin(24 - 8) 
R(Y) - sin 8 
-- 

The latter can be used to simplify Equation (5.2-29) to 

sin 2 4  
r = R(y)  - sin 8 

( 5.2- 30) 

(5.2-3 I )  

Once the hardening law is specified, Equation (5.2-31) can be inverted to yield 
y. The stress and strain fields are determined from Equations (5.2-22) and 

For example, consider a material exhibiting power law hardening according 
(5.2-23). 

to 

In this case Equation (5.2-21) yields 

It follows from Equations (5.2-31)-(5.2-33) that 

(5.2-32) 

(5.2-33) 

(5.2-34) 
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and 

where 4 and 8 are related by 

sin(24 - 6) n - 1 
sin 8 f l + l  

=- 

(5.2- 35) 

(5.2-36) 

The stress and strain components follow directly upon the substitution of 
Equations (5.2-34) and (5.2-35) into Equations (5.2-22) and (5.2-23), re- 
spectively. Since the straining represented by Equation (5.2-34) is pro- 
portional, the use of the deformation theory is justified. The strain has a 
r-"/("+ singularity whereas the stress has a r - l ' ("+  l )  singularity. The plastic 
zone extends a distance 

2n 1 K i 1  
rp  = X ( y o )  + R(yo) = - - - 

f l  + 12R 7; 

ahead of the crack tip and a distance 

behind the tip. In the limit as n -, 1 and n -P co, the elastic and the elastic- 
perfectly plastic stress and strain fields are recovered. 

Rice (5.27, 5.30) has also addressed the problem of an edge crack in an 
elastic-perfectly plastic, half-plane under uniform antiplane shear oS2. In this 
case the length r p  over which the plastic zone extends ahead of the crack tip 
and the crack opening displacement are given by 

2 1 + s 2  r p = a  -- 

(5.2-37) 
[ R  1 - S z  E2(&) - '1 

1 (1 + S Z ) E l ( S 2 )  - 1 

where s = 0 3 2 / ~ o ,  and El and E ,  are the complete elliptic integrals of the first 
and second kind, respectively. For small loads such that sz can be neglected 
compared to unity, these expressions reduce to the small-scale yielding results. 
Significant departure between the plastic zone sizes for small- and large-scale 
yielding commence at 40-50 percent of the limit load (s = 1). Crack opening 
displacements begin deviating significantly at 60-70 percent of the limit load. 
The plastic zone elongates from the circular shape until it becomes unbounded 
in the x1 direction at the limit load. Its height approaches asymptotically 4 a / ~ .  
Also, as can be seen from Equation (5.2-37), the crack-tip opening displace- 
ment becomes unbounded at the limit load. 

For power hardening materials Rice (5.27, 5.29) also found that there is a 
transition from the circular plastic zone of small-scale yielding to a highly 
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elongated zone as the applied stress is increased relative to the yield stress. 
As is to be expected, this transition is more gradual in  a material exhibiting a 
larger degree of strain hardening. 

5.3 Plastic Crack-Tip Fields 

In this section the two-dimensional stress and strain fields described by the 
dominant singularity governing the plastic behavior at the tip of a line crack 
are considered. When the strain hardening can be characterized by a power 
law, the dominant-singularity is referred to as the HRR singularity after the 
investigations of Hutchinson (5.3 1) and Rice and Rosengren (5.32). While the 
development is for small strains, nonlinearity enters into the study through the 
elastic-plastic constitutive relation. 

The uniaxial stress-strain curve is modeled by the Ramberg-Osgood 
relation 

E d  
- = - + (5)' 
EY OY 

(5.3-1) 

where oy and E~ are the yield stress and strain, respectively, n > 1 is the strain 
hardening exponent or index, and a is a dimensionless material constant. The 
first term on the right-hand side of Equation (5.3-1) describes the usual linear 
elastic behavior whereas the second term provides the nonlinear or plastic 
response. Typical curves are shown in Figure 5.10 for selected values of the 
hardening exponent n. In the limit as n -, co, an elastic-perfectly plastic 
material behavior is approached. Equation (5.3-1) is strictly applicable for a 
monotonically increasing stress and cannot accommodate elastic unloading. 
Alternatively, Equation (5.3-1) can be viewed as describing a nonlinear elastic 
material. 

Because proportional loading in the plastic zone engulfing the crack tip is 
anticipated, a deformation theory of plasticity is used and Equation (5.3-1) is 
entirely appropriate. The plastic deformation is assumed to be incompressible 
and independent of the hydrostatic component of stress a,,/3. Under these 
conditions the generalized stress-strain relation [see Equation (2.6-32)] can be 
written as 

(5.3-2) 

where the deviatoric stress components are 

sij = oij - i d k k  6 i j  (5.3-3) 

The effective stress 5 and plastic strain B P  are given by Equations (2.6-18) and 
(2.6-30), respectively; that is, 

3 = (34 ) f  = (3SijSij)f 

E P  = ( $ E ! E $ ) f  
(5.3-4) 
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Figure 5.10 Ramberg-Osgood stress-strain relations for a = 0.01. 

where J2 is the second deviatoric invariant and &fi denotes the plastic strain 
components. In accordance with Equation (5.3-1) the effective stress and 
plastic strain are assumed to be related by 

(5.3-5) 

Consequently, the generalized stress-strain relation that reduces to the 
Ramberg-Osgood relation for a uniaxial stress state is 

(5.3-6) 
l + v  1 - 2v 

Sf j  + - Eij = - 3E E 

Since a singularity at the crack tip is expected, the plastic strain will be much 
greater than the elastic strain near the tip. Therefore, in a small region D (see 
Figure 5.1 1) encompassing the crack tip, the elastic strain will be negligible 
compared to the plastic strain. Within this region Equation (5.3-6) can be 
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Figure 5.1 1 Crack-tip region. 

approximated by 
- n - 1  

OY 
(5.3-7) 

Moreover, i t  is assumed that the only singularity contained within this 
region is associated with the crack tip. Hence, for a circular path of radius 
r < D enclosing the crack tip one can write 

Since the deformation theory of plasticity can be viewed as a nonlinear 
elasticity theory, then the J-integral of Equation (5.3-8) is also path- 
independent. Consequently, the integrand of Equation (5.3-8) must exhibit, at 
least in its angular average, an inverse r singularity to ensure this path 
independence. This was observed to be the case for linear elastic fracture and 
for elastic-plastic, antiplane strain problems. Since the terms of the integrand 
are essentially products of stress and strain-like components, then 

(5.3-9) 

In fact Hutchinson (5.31) has shown this to be the case for power law 
hardening materials if the stress and strain components can be written as 
separable forms in r and 8. 

For power law hardening materials fulfilling Equation (5.3-7), 
Equation (5.3-9) implies that 

uij(r, 0) = K r -  I/("+ ' ) Z i j ( 0 )  

(5.3-10) 
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where K is a constant not to be confused with the elastic stress intensity factor. 
It is clear from Equation (5.3-10) that for other than linear elastic materials 
(n = 1) the orders of the stress and strain singularities are different. In the limit 
as n + ao, the stress field is nonsingular, whereas the strain field has a r - l  

singularity for the stationary crack tip. 

5.3.1 Mode I Fields 

While Equation (5.3-10) provides the form of the dominant singularity at the 
crack tip, the 0-dependent functions must be determined in order to establish 
the structure of the crack-tip stress and strain fields. Toward this end 
introduce the Airy stress function Y, which identically satisfies the equations 
of equilibrium and which assumes the asymptotic form 

tp = ~ ~ ( 2 n + l ) / ( n + l ) q ( e )  (5.3-1 1 )  

The near tip stresses in terms of this function are 

(5.3- 12) 

where the prime denotes differentiation with respect to 8 and s = (2n + 1)/ 
(n + 1). The Airy stress function must satisfy the compatibility equation 

(5.3- 13) 

For plane strain where G~~ = (G,, + 0ee)/2, the crack-tip effective stress 
can be written as 

= [$(ar, - ~ 7 6 0 ) ~  + 30;eI' 
(5.3- 14) - - Kr-l (n+l )  {4[q" 22 - s2qJ2  + 3[(1 - s)q'l2}* 

Equations (5.3-12) and (5.3-14) are substituted into Equation (5.3-7) to obtain 
the strain components, which, when introduced into Equation (5.3-13), yield 

-')I (5.3-15) 
-+-- 
do2 n + l n + l  

( i n  - 1 ql)! = o  4n 
(n + 1)' 

+- 
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A similar treatment for plane stress leads to 

q)  (5.3-16) n + l  n + l  +- 
(n + 1)2 

(p - 1 lp)) = O  6n +- 
(n + 1)2 

where for plane stress 
q e )  = [c;, + zi0 - crrdoee + 30‘;0~+ 

= ([P + s q ] ’  + [s(s - 1)qy (5.3-17) 

- s(s - 1)[6” + sq]6 + 3[(1 - s )q ‘ I2} f  
It follows from Equation (5.3-12) that the conditions, a@,, = ore = 0 on 8 = 

k n, for traction-free crack surfaces require 

‘k(*n)  = ‘ t I ( k n )  = 0 (5.3- 18) 

For the opening mode, Y must be symmetric with respect to 6 = 0 and the 
boundary conditions on 6 = - n can be replaced by 

9 y O )  = Pya) = 0 (5.3- 19) 

The homogeneous differential equations, Equations (5.3-15) and (5.3-16), 
together with the homogeneous conditions, Equations (5.3- 18) and (5.3-19), 
define a two-point boundary value problem. Equivalently, the latter can 
be viewed as a nonlinear eigenvalue problem where the exponent of r in the 
solution for Y is the eigenvalue. However, the eigenvalue for the domi- 
nant singularity has been established through the arguments leading to 
Equation (5.3-10). Thus, there only remains to determine the eigenfunction 
q(6) .  Because it has been impossible to integrate Equations (5.3-15) and 
(5.3- 16) in closed form, their integration has been performed numerically by 
treating the problem as an initial value one. Since the eigenfunction can only 
be determined to within a multiplicative constant, one can set q(0 )  = 1 
without loss in generality. Ultimately the eigenfunction is normalized such 
that d,,, = o,,. For an assumed value of q’”(0) the numerical integration can 
be performed-for example, using a Runge-Kutta method. In general, the 
boundary conditions 8 ( n )  = q’(n)  = 0 will not be satisfied. The value of 
‘t”(0) is adjusted systematically; say, by Newton’s method, and the procedure 
repeated until these conditions are satisfied. 

The 6-variations of the stress and strain components for n = 3 and 13 
appear in Figure 5.12 for the plane strain opening mode. In these plots the 
stress and strain components have been normalized with respect to o,, and E,, 
respectively. For purposes of comparison, companion plots of the stress and 
the slip-line fields for a perfectly plastic material are also presented. Due to the 
symmetry with respect to 6 = 0, only the upper half of the fields are illustrated. 
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Figure 5.12 Plane strain structure of Mode I crack-tip fields for (a) a power law hardening 
material with n = 3 and 13, and (b) a perfectly plastic material (5.33). 

For the perfectly plastic material the slip lines in the region AOB are straight 
and are indicative of a uniform stress state. Since o , ~  = u22 = 0 on the crack 
surfaces, then o12 = 022 = 0 and oI1 = 2ay/fl throughout this region. Or, 
equivalently, for n > 6, > 37114 

a,, = oy(l + cos26,)/J5 

= oy(sin 20)/J5 

aee = by( 1 - cos 26)/J5 (5.3-20) 

On the /?-line extending from the crack surface around the crack tip to the xl- 
axis [see Equation (2.6-41)] 
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where 4 is the angle that the a-line makes with the x,-axis. On the plane of 
symmetry x1 > 0, where a12 = 0 and 4 = x/4, the yield condition 
[Equation (2.6-36)] implies 

Consequently, for 0 < 6 c n/4 these equations yield a,1 = xay/ f i ,  a22 = 
(2 + x)aY;/$ and a12 = 0 or 

a,, = ay( 1 + n - cos 2 6 ) / f i  

6 2 2  - 0 1 1  = 2ay/fi  

= aY(l + x + cos2e)/J?j (5.3-21) 

a,@ = ay(sin 26)/J?j 

In the fan BOC the d i n e s  are the radial lines and 4 = 8. Making use of 
Equations (2.6-38) and (2.6-41), one concludes that 

(5.3-22) 

for n/4 < 0 c 3x14. 
While numerical dificulties preclude treating the limiting case n = co, the 

near coincidence of the stress fields for perfect plasticity and for n = 13 in the 
hardening material suggests that the limiting stress field of the hardening 
solution is the perfectly plastic solution given by Equations (5.3-20)-(5.3-22). 
Because the governing equations for the perfectly plastic material are 
hyperbolic, it is not possible to establish the crack-tip strain field from a local 
analysis. Nevertheless, the plastic strains in the fan will have a l / r  singularity. 
Since a,, = Gee in the fan BOC, then E,, = = 0 and E,, is the only nonzero 
strain component. The hardening solutions for large values of n have a similar 
characteristic. 

The stress and strain fields for the plane stress opening mode determined by 
Hutchinson (5.33) are displayed in Figure 5.13. These distributions can be 
compared with the plane strain distributions. While the normal stresses are 
tensile in the latter, the former includes compressive stresses. Furthermore, a 
rather abrupt change in a,, exists near 0 = 5n/6 for n = 13. The origin of this 
change can be understood from examining the perfectly plastic solution where 
continuity of the tractions along a radial slip line implies that a,, and a,@, but 
not necessarily a,,, are continuous. If the yield condition, represented by 

a:, + O& - ~,,aee + 3a,2, = cy 2 (5.3-23) 

is satisfied on either side of the radial line, then a discontinuity of the form 

0; - 0,; = (40; - 30& - 120,2,)' (5.3 - 24) 

is permissible. A discontinuity of this kind is characteristic of a perfectly 
plastic model. While the inclusion of elastic strains or strain hardening 
would preclude this discontinuity, rather large stress gradients would be 
anticipated. 
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Figure 5.13 Plane stress structure of Mode 1 crack-tip fields for (a) a power law hardening 
material with n = 3 and 13, and (b) a perfectly plastic material (5.33). 

In the constant stress region AOB of Figure 5.13, all = -by and 0 2 2  = 
aI2 = 0, or 

= - iay(i + cos 28) 

= - +ay( 1 - cos 28) (5.3-25) 

are = 3 ay sin 28 

The compressive stress behind the crack tip due to the discontinuity along OB 
is in marked contrast to the tensile stress for plane strain. This compressive 
stress can result in buckling of a cracked member. The stress field is also 
uniform in the region BOC except a jump, given by Equation (5.3-24), in a,, 
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occurs along the radial line OB defined by OoB. In this region 

a;, = ay[i( - 1 + 3 cos 2e0,) + t (  1 + cos 2e0,) cos 2(e - eoB) 
+ 4 sin 2eoE sin 2(e - eoB)] 

= -a,, + ay( - 1 + 3 cos 200,)/2 

= a,[+ sin 2e0, cos 2(e - eoB) - ) (I  + cos 2e0,) sin 2(e - eoB)] 

(5.3-26) 

where O,, remains to be determined. Hutchinson (5.33) symmetrically 
centered the fan COD in order to satisfy are = 0 on 8 = 0. The stresses in this 
fan are 

(5.3-27) 

Continuity of ae, and Ore on the radial line OC(0 = OOc) demands of 
Equations (5.3-26) and (5.3-27) that 

a( -. 1 + 3 COS 2e0,) - i ( i  + cOS 2e0,) COS 2(eOc - eoB) 
L - t. sin 28,, sin 2(eOc - eoB) = - J? cos 280, (5.3-28) 

- )(1 + cos 28,,) sin 2(00, - eoB) + + sin 200, cos 2(eOc - BOB) 

1 
= - sin 200, Jr 

The simultaneous solution of these equations yields O,, = 79.7" and BOB = 
15 1.4". 

Again close similarity is observed between the stress distributions of the 
hardening solution for large values of n and those of the perfectly plastic 
solution. In the fan COD, bee = 2a,, and, hence, s,, = 0. Consequently, for the 
perfectly plastic solution E,, = 0 for all 8. This characteristic is also reflected by 
the low strain hardening solution n = 13. Hutchinson (5.33) has also presented 
hardening solutions and a perfectly plastic slip-line solution for Mode 11. 
Again many of the details of the perfectly plastic solution are reflected in the 
stress fields for low hardening materials. 

Having established the stress and strain distributions, one can evaluate the 
J-integral. The introduction of Equation (5.3-7) into Equation (2.3-21) per- 
mits writing 

n + l  

(5.3-29) 

in which Equation (5.3-4) has been used. The combination of Equations 
(5.3-8), (5.3-lo), and (5.3-19) leads to 

J = aEyayK"+ '1. (5.3-30) 
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where 

The quantities ii, and ilk are obtainable from the strain displacement relations 
for E, and as 

(5 .3-  32 )  
[q” - s(2s - 3 ) $ ]  - iir 

The variations of I,  with n for plane stress and plane strain are depicted in 
Figure 5.14. 

When Equation (5.3-30) is used to replace K in favor of J in Equation 
(5 .3 - lo ) ,  the HRR stress and strain singular fields and the displacement fields 
are 

oa3 = 0 

E,3 = 0 (5 .3-33)  

033 = + ( 0 1 1  + 0 2 2 ) ,  E~~ = O plane strain 

4 3 3  = 0, = -(ell + E ? ? )  plane stress 

The parameter J is a function of the applied load, crack length, and the 
geometry of the body. Since the stress field increases monotonically with J 
everywhere, then the use of deformation plasticity theory is justifiable. 

5.3.2 Fracture Criterion 

It is clear from Equation (5 .3-33)  that the intensity of the crack tip fields in the 
J-dominant region D depends only upon the parameter J. Interpreting J not 
as an energy release rate but as a measure of the intensity of the HRR fields 
forms the basis of plastic fracture mechanics. Let R in Figure 5.15 denote the 
characteristic size of the fracture process zone where nonproportional 
loading, large strains, and other phenomena associated with fracture occur, 
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but are not properly accounted for in a small strain deformation theory of 
plasticity. If R is small compared to D, it can be argued that any event that 
occurs within this process zone must be controlled by the deformation in the 
surrounding “J-dominant” region. Therefore, where J-dominance exists, the 
initiation and growth of a crack can be expected to be governed by a critical 
value of J. Thus, the plastic fracture criterion can be expressed as 

J(a,a) = J, (5.3-34) 
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Figure 5.16 Definition of crack-tip 
opening displacement, 

where J, is a material property. Apparently, Begley and Landes (5.34) were the 
first to recognize the potential of J in plastic fracture mechanics. 

From Equation (5.3-33) the displacement components of the upper crack 
face can be written as 

The crack opening displacement is 6 = 2u2(r, II). Except for the limiting case of 
perfect plasticity (n + m), these displacements tend to zero with r. Due to the 
latter property the definition of an effective crack-tip opening displacement is 
somewhat arbitrary. Tracy (5.35) used the definition, as illustrated in Figure 
5.16, that the crack-tip opening displacement, 6,, is the crack opening at  the 
intercept of the two symmetric 45" lines from the deformed crack tip and the 
crack profile. Thus, 

r - ul(n) = 6,/2 = u2(n)  (5.3-36) 

The introduction of Equation (5.3-35) into Equation (5.3-36) leads to 

(5.3-37) 

for the point of intersection. The substitution of Equation (5.3-37) into 
Equation (5.3-35) yields 

6, = d ,  JIGy (5.3-38) 

(5.3-39) 

The dependence of d, upon n and E, = oy/E in Figure 5.17 for plane stress and 
plane strain conditions was determined by Shih (5.36). For a perfectly plastic 
behavior (n + co) under plane stress, d, = 1 and Equation (5.3-38) coincides 
with the Dugdale model [cf. Equation (3.3-29)]. In general d, depends strongly 
upon n and mildly upon oJE. 

Clearly, Equation (5.3-38) establishes an equivalence between J and 6,. 
Therefore, any fracture criterion based upon a critical value of 6, is equivalent 

where 

d ,  = 2(a~,)'~"[Cu',(n) + u'~(7r)"'"C2(n)/1, 
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Figure 5.17 Dependence of dn on n and u,/E for (a) plane stress and (b) plane strain (5.36). 

to one based upon a critical value of J and vice versa. The J-integral has 
become the preferred fracture characterizing parameter because it is unam- 
biguously defined, easier to compute and simpler to measure than 6,. In order 
to ensure the validity of Equation (5.3-38), the HRR field must dominate the 
crack-tip deformation over a region at  least as large as 6,. The solution to the 
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antiplane problem indicates the zone of dominance of the HRR singularity 
decreases with increasing n and vanishes in the limit of nonhardening 
materials where the plastic zone no longer engulfs the crack tip. This strongly 
suggests that there is no unique relationship between J and 6, for non- 
hardening materials. Consequently, a one-parameter characterization of the 
intensity of the crack-tip fields, be it J or S,, assumes the existence of strain 
hardening. 

For the same intensity of loading as measured by J ,  Equation (5.3-33) can 
be used to compare the stress, 02*(r, 0), ahead of the crack tip for conditions of 
plane strain and plane stress. In the limil as n -, 03 

(5.3-40) 022(r ,O)p~atrain  - ?I 

0 2 2 ( r ,  0)p1, stress 2 - 1 + -  

which reflects the significantly higher tensile stress associated with plane 
strain. This is in contrast with the linear elastic solution for which this ratio is 
unity. The larger plane strain stresses ahead of the crack tip are more 
conducive to the process of formation, growth, and coalescence of voids that 
constitute plastic fracture. For 8 = 0 the ratio of the plane strain to plane 
stress triaxiality as measured by okk/3 has the limiting value, 1 + n, as n + oc). 

The increased triaxiality of plane strain is responsible for the development of 
elevated stresses ahead of the crack tip that are in excess of the yield stress. I t  is 
for these reasons that plane strain loading represents the more severe loading. 

5.4 An Engineering Approach to Plastic Fracture 

As reflected in the fracturecriterion, Equation (5.3-34), the solution to a plastic 
fracture problem involves two parts: the determination of the driving force 
and the measurement of the fracture resistance. The computation of J usually 
involves a sophisticated analysis employing advanced finite element methods. 
Such capabilities are not universally available. Perhaps, to a lesser degree 
LEFM initially experienced a similar obstacle. However, the tabulation of 
LEFM solutions aided immensely in the application of LEFM to where its 
application is more or less commonplace now. In this section an engineering 
approach to plastic fracture is presented. As in LEFM, successful general 
implementation of this approach depends upon cataloging plastic solutions 
for a wide range of cracked configurations and loadings. 

Within the confines of LEFM the fracture parameters, the J-integral, the 
crack opening displacement 6 and the load point displacement A, due to the 
presence of the crack, can be expressed as 
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In Equation (5.4-1) Pis a generalized load per unit thickness such that P acting 
through the generalized load-point displacement A produces work per unit 
thickness. Here and in the following the subscripts e and p will be used to 
designate elastic and plastic components, respectively. The load-point 
displacement can be decomposed as 

A = Anc + Ae (5.4-2) 

where Anc is the load-point displacement in the absence of a crack and is 
ordinarily obtainable from an elasticity solution. The functions fl, f2, and f3 
depend upon the crack length to width ratio, a/W, and possibly other 
geometric parameters. These functions or their equivalents can be found in 
linear elastic fracture handbooks; for example, see (5.37)-(5.39). 

5.4.1 Fully Plastic Solution 
Consider a fully plastic cracked body in which the elastic strain components 
are negligible compared to their plastic counterparts. Further assume that the 
plastic deformation can be described by J,-deformation plasticity theory with 
power law hardening. The small strain constitutive relation can be written as 

(5.4-3) 

For such a material behavior Il'yushin (5.40) showed that a solution to a 
boundary value problem involving a single monotonically increasing load or 
displacement parameter assumes a relatively simple form. For example, if the 
tractions = P T ; ,  P denoting a loading parameter, are prescribed on the 
boundary S, then the solutions can be written as 

aij = Pai j (x i ,  n) 

cij = a c y ( E ) " c i j ( x i ,  n) (5.4-4) 
OY 

ui = aEy - ui(x i ,n)  (3" 
where the quantities oj,, E ; ,  ui are functions of x i  and n and are independent of 
P .  This result follows trivially from the homogeneous nature of the equations 
of equilibrium and compatibility and the constitutive relation, Equation 
(5.4-3). According to Equation (5.4-4), if the fields are found for one value of 
the load parameter-for example, P = 1-then they can be determined 
immediately for any other value of P .  Moreover, since the stress and strain 
fields increase proportionally at every point, the fully plastic solution based 
upon deformation plasticity theory coincides with the solution for incremental 
or flow theory. 

Since the integrand of the J-integral involves products of stresses and 
displacement gradients, then the fully plastic J will be proportional to P"+I 
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The fully plastic fracture parameters can be expressed as 

Jp = arsyaybg , (a/ W ) h  (a/ W ,  n)( P ,'Po) + 

6, = ar&,,aY,(a/W)h,(a/W,n)(P/Po)n 

Acp = a&,ag,(a/W)h,(a/W, n)(P/Po)" 

4, = a&,bg,(a/W)h,(a/W, n)(PIPoY + 

(5.4-5) 

where Po is the limit load based upon ay and b = W - a is the remaining 
uncracked ligament (see Figure 5.18). The dimensionless functions, h l  - h4, 
depend upon a/W, n, and possibly other geometric parameters, but are 
independent of P. The known dimensionless functions, y1 - y4, are selected 
for convenience of tabulation. I t  follows from Equation (5.3-38) that 

114 = dn Y 1 11 1 / g4  (5.4-6) 
where d ,  is given in Figure 5.17. The functional forms of Equation (5.4-5) can 
be compared to their linear elastic (n = 1) counterparts in Equation (5.4-1). 

The functions, h ,  - h 3 ,  can be computed using the finite element method. 
Computations of this kind were first performed by Goldman and Hutchinson 
(5.41). For the condition of plane stress, conventional finite element techniques 
suffice to establish the fully plastic solutions (5.42). The plane strain 
incompressible deformation introduces constraints on the displacements, and 
special techniques discussed in references (5.41), (5.43)-(5.45) were developed 
to treat this case. A compendium of plane stress and plane strain functions, 
h l  - h , ,  for a variety of fracture specimens and flawed cylinders under Mode I 

Figure 5.18 A flawed structural com- 
ponent. 
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1' 

Figure 5.19 A three-point bend specimen. 

loading can be found in reference (5.46). The differences between these 
numerical solutions and known solutions are typically less than 5 percent. 

Tabulations of the functions for a three point bend specimen (Figure 5.19) in 
plane stress and plane strain are presented, respectively, in Tables 5.1 and 5.2 
for L/W = 2.* For this case g,(a/W) = 1. The plane strain limit load (5.10) and 
the plane stress limit load (5.1 1 )  are, respectively, 

Po = 0.728ayb2/L and Po = 0.536ayb2/L (5.4- 7) 

The difference in the coefficients is due to the difference between plane strain 
and plane stress constraints. In this example 6 is the crack mouth opening 
displacement at the edge of the specimen. For the same load per unit thickness 
on the bend specimen, Tables 5.1 and 5.2 reveal that the plane stress Jp is 
greater than the plane strain Jp,  However, for the same ratio of PIPo, the plane 
stress Jp is generally the smaller. 

5.4.2 Estimation Technique 

Strictly speaking the fully plastic solution is only applicable when the cracked 
configuration has completely yielded and the elastic strains are negligible 
throughout the body. General yielding will occur when P is large compared to 
Po. At the other extreme, small-scale yielding will occur for P small compared 
to Po and LEFM is applicable. For the Ramberg-Osgood stress-strain 
relation, Equation (5.3-1), Shih (5.47) and Shih and Hutchinson (5.48) 
proposed interpolating over the entire range of yielding by superposing the 
linear elastic and the fully plastic solutions according to 

(5.4-8) 

* Tables for h ,  - h3 for other specimens and loading can be found in Appendix A. 
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Table 5.1 h , ,  h,,  and h, for Three-Point Bend Specimen in Plane Stress (5.46) 

n = l  n = 2  n - 3  n = 5  n = 7  n = l O  n = 1 3  n = 1 6  n = 2 0  

h, 0.676 0.600 0.548 0.459 0.383 0.297 0.238 0.192 0.148 
a/W = Q h2 6.84 6.30 5.66 4.53 3.64 2.72 2.12 1.67 1.26 

h3 2.95 20.1 14.6 12.2 9.12 6.75 5.20 4.09 3.07 

h ,  0.869 0.731 0.629 0.479 0.370 0.246 0.174 0.117 0.0593 
afW = 4 h, 5.69 4.50 3.68 2.61 1.95 1.29 0.897 0.603 0.307 

h, 4.01 8.81 7.19 4.73 3.39 2.20 1.52 1.01 0.508 

h, 0.963 0.797 0.680 0.527 0.418 0.307 0.232 0.174 0.105 
a/W = 4 h, 5.09 3.73 2.93 2.07 1.58 1.13 0.841 0.626 0.381 

h ,  4.42 5.53 4.48 3.17 2.41 1.73 1.28 0.948 0.575 

h, 1.02 0.767 0.621 0.453 0.324 0.202 0.128 0.0813 0.0298 
a/W = 4 h ,  4.77 3.12 2.32 1.55 1.08 0.655 0.410 0.259 0.0974 

h ,  4.60 4.09 3.09 2.08 1.44 0.874 0.545 0.344 0.129 

h, 1.05 0.786 0.649 0.494 0.357 0.235 0.173 0.105 0.0471 
a/W = 8 h2 4.55 2.83 2.12 1.46 1.02 0.656 0.472 0.286 0.130 

h3 4.62 3.43 2.60 1.79 1.26 0.803 0.577 0.349 0.158 

h ,  1.07 0.786 0.643 0.474 0.343 0.230 0.167 0.110 0.0442 
a/W = 4 h2 4.39 2.66 1.97 1.33 0.928 0.601 0.427 0.280 0.114 

h ,  4.39 3.01 2.24 1.51 1.05 0.680 0.483 0.316 0.129 

h ,  1.086 0.928 0.810 0.646 0.538 0.423 0.332 0.242 0.205 
afW = 4 h, 4.28 2.76 2.16 1.56 1.23 0.922 0.702 0.561 0.428 

h ,  4.07 2.93 2.29 1.65 1.30 0.975 0.742 0.592 0.452 

Such a procedure can be shown to be exact for the special case of an infinite 
strip with a semi-infinite crack under either antiplane strain (5.47) or plane 
stress loading. 

To incorporate small-scale yielding effects the elastic contributions are 
based upon the effective crack length 

(5.4-9) a, = a + $ry 

where 

1 n - 1  K 
r y  = pll (x)(<) (5.4- 10) 

is the Irwin correction modified for strain hardening. The form of this 
correction is based upon the antiplane strain hardening solution of Section 5.2 
[cf. Equations (5.2-28) and 52-33)]. To simplify the calculation of r,,, K is 
based upon the crack length a. For plane stress and plane strain, respectively, 
f l  = 2 and f l  = 6. The coefficient 

(5.4- 1 1.) 

has been introduced in an attempt to reduce the correction under conditions 
of contained plasticity while retaining the plasticity correction ry in the fully 
plastic regime where J ,  6, and Ac are dominated by the second terms in 
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Table 5.2 h i ,  h2 ,  and h3 for Three-Point Bend Specimen in Plane Strain (5.46) 

n = l  n = 2  n = 3  n = 5  n = 7  n=10 n=13 n=16 n=20 

h ,  0.936 
a/W = h2 6.97 

h3 3.00 

a/W =i h ,  5.80 

h ,  1.33 
a/W=s h ,  5.18 

h ,  1.41 
a/W = f h2 4.87 

h ,  1.46 
a/W = 4 h2 4.64 

h ,  1.48 
a/W = 2 h2 4.47 

h ,  1.50 
afW =i h2 4.36 

hi 1.20 

h ,  4.08 

h3 4.51 

h j  4.69 

h 3  4.71 

h 3  4.49 

h3 4.15 

0.869 
6.77 
22.1 

1.034 
4.67 
9.72 

1.15 
3.93 
6.0 1 

1.09 
3.28 
4.33 

1.07 
2.86 
3.49 

1.15 
2.75 
3.14 

1.35 
2.90 
3.08 

0.805 0.687 
6.29 5.29 
20.0 15.0 

0.930 0.762 
4.01 3.08 
8.36 5.86 

1.02 0.084 
3.20 2.38 
5.03 3.74 
0.922 0.675 
2.53 1.69 
3.49 2.35 

0.896 0.631 
2.16 1.37 
2.70 1.72 

0.974 0.693 
2.10 1.36 
2.40 1.56 

1.20 1.02 
2.31 1.70 
2.45 1.81 

0.580 
4.38 
11.7 

0.633 
2.45 
4.47 

0.695 
1.93 
3.02 

0.495 
1.19 
1.66 

0.436 
0.907 
1.14 

0.500 
0.936 
1.07 

0.855 
1.33 
1.41 

0.437 
3.24 
8.39 

0.523 
1.93 
3.42 

0.556 
1.47 
2.30 

0.331 
0.773 
1.08 

0.255 
0.518 
0.652 

0.348 
0.618 
0.704 

0.690 
1 .oo 
1.06 

0.329 
2.40 
6.14 

0.396 
1.45 
2.54 

0.442 
1.15 
1.80 

0.21 1 
0.480 
0.669 

0.142 
0.287 
0.361 

0.223 
0.388 
0.441 

0.551 
0.782 
0.828 

0.245 
1.78 
4.54 

0.303 
1.09 
1.90 

0.360 
0.928 
1.45 

0.135 
0.304 
0.424 

0.084 
0.166 
0.209 

0.140 
0.239 
0.272 

0.440 
0.613 
0.649 

0.165 
1.19 
3.01 

0.215 
0.758 
1.32 

0.265 
0.684 
1.07 

0.0741 
0.165 
0.230 

0.04 1 1 
0.0806 
0.102 

0.0745 
0. I27 
0.144 

0.321 
0.459 
0.486 

Equations (5.4-8)(5.49). Furthermore, this factor preserves the continuity of 
the partial derivatives of J and A, with respect to P a t  P = Po (5.50). While this 
is not essential to the treatment here, it is important in the stability analysis of 
crack growth where these derivatives appear. 

Figures 5.20 and 5.21 compare the estimation analysis based upon Equation 
(5.4-8) (solid curves) with the full finite element, deformation plasticity analyses 
(dashed curves) using Equation (5.3-1) for a center cracked panel and a bend 
specimen. The numerical results are for plane stress, u/W = 4, CI = $, and a 
height to width ratio of three for the center cracked panel and L/W = 2 for the 
bend specimen. In these two specimens the remaining ligaments experience the 
extremes of either tension or bending. In both cases the overall agreement is 
quite good and improves with decreasing hardening. The comparison is better 
for the center cracked panel than for the bend specimen. In the limit as n --* co 
both results agree with the predictions of reference (5.51). Equally good 
agreement between the estimation analysis, full finite element computations 
and experimental results has been found for other flawed configurations 
(5.46, 5.50). These limited investigations show that the estimation method 
describes adequately the elastic-plastic driving force for simple cracked 
configurations. As the plastic fracture handbook becomes more complete, this 
method offers a simple, attractive approach to design and safety analyses. 
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Figure 5.20 Comparison of estimation analysis based upon Equation (5.4-8) (solid curves) and 
full finite element analysis (dashed curves) of a center-cracked tensile panel (5.48). 

and 

5.4.3 The  Hardening Failure Assessment Diagram 

The estimation procedure can be used to develop failure assessment curves 
analogous to the R-6 curve. I t  is possible to include in these the influence of 
strain hardening and the cracked configuration of which the R-6 curve is 
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incapable. It is convenient to write 

(5.4-12) 

where je and 4 are independent of P and can be related to fi(a/W) and 
hl(a/W, n) via Equations(5.4-1) and(5.4-5), respectively. Within theestimation 
method, the fracture criterion can be written as 

J = J,(a,)(P/Po)' + S, (~ ,n ) (P / l 'o )"+ '  = J ,  (5.4-1 3) 

The latter may also be expressed as 

Je 

Sb(ae>C PIPJ2 + J p ( a ,  n)( P/P~Y + 

where J, is the elastic driving force having the form 

Je = & ( a ) ( ~ / p o ) '  
In addition Je is also related to K by 

Je = K ' / E l  

Je 

Jc 
= -  (5.4- 14) 

(5.4-15) 

(5.4-16) 

Hence, J, and &(a) are readily obtainable from solutions for K. Furthermore, 
the fracture resistance J, and the fracture toughness K ,  are connected by 

J ,  = K:/E'  (5.4- 17) 

In a manner analogous to the development of the failure assessment 
diagram in Section 5.1, let the stress ratio S, be defined as 

s, = PIP0 (5.4- 18) 
and the elastic driving force to fracture resistance ratios be 

K, = K / K ,  and J, = JJJ,  (5.4-19) 

It follows from Equations (5.4-16) and (5.4-17) that 

J, = K :  (5.4-20) 
The introduction of Equations(5.4-15) through (5.4-20) into Equation (5.4-14) 
permits writing 

where 

(5.4-21) 

(5.4-22) 

The locus of points (S , ,  K,) in the S ,  - K, space satisfying Equation (5.4-21) 
defines the failure assessment curve where the crack driving force J is in 
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Figure 5.22 The influence of strain hardeningon the Pailure assessment curve or a center-cracked 
panel in plane stress with a/ W = 0.5 (5.46). 
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Figure 5.22 The influence of strain hardeningon the Pailure assessment curve or a center-cracked 
panel in plane stress with a/ W = 0.5 (5.46). 

equilibrium with the fracture resistance of the material J,. The influence of the 
cracked configuration, the hardening exponent, and other material properties 
occurs implicitly through the quantities He and H,*. 

In Figure 5.22 the failure assessment curve is depicted for a center cracked 
panel (CCP) in plane stress for different values of the hardening exponent. The 
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Figure 5.23 Comparison of plane strain and plane stress failure curves for a center-cracked panel 
(CCP) and a compact specimen (CS) with (I/ W = 0.5 and n = 10 (5.46). 
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effect of strain hardening is to permit S, to exceed unity and still be safe which 
is impossible according to the R-6 curve. As the hardening exponent increases 
(strain hardening decreases) these failure curves move closer to the R-6 curve. 
The failure assessment curves for the center cracked panel and compact 
specimen (CS) are compared in Figure 5.23 for plane stress and plane strain. A 
modest dependence upon the configuration and the type of constraint is 
exhibited by these curves. Finally, Figure 5.24 indicates the relative de- 
pendence of the failure assessment curves on the crack length. In all these cases 
the R-6 curve is observed to be conservative. 
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Figure 5.24 The influence of crack length on the failure assessment curve for a plane strain 
center-cracked panel with n = 10 (5.46). 

Bloom (5.52) compared actual test data from GE/EPRI 4T-compact 
specimens of A533B, a reactor grade steel, with the respective failure 
assessment curve. The crack length to width ratio ( u / W )  for these specimens 
varied from 0.58 to 0.80. The plane strain failure assessment curves (Figure 
5.25) for the compact specimen correspond to a /W = 0.625 and 0.75, c1 = 
1.115, and n = 9.708. In general the agreement between the predicted and 
measured values is very good with the predictions being conservative. Also 
shown in this figure is the failure assessment curve for an infinitely wide center 
cracked panel that is the hardening equivalent of the R-6 curve. Again this 
curve would provide conservative predictions. 

5.4.4 Other Estimations 

The estimation procedure can be generalized to other uniaxial stress-strain 
relations. Note the similarity between the forms of Equations (5.3-1) and 



322 Advanced Fracture Mechanics 

1 .o 

0.8 

K r 

6 OS6 
0.4 

0.2 

0 
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

sr 
Figure 5.25 Failure assessment of GE/EPRI A533B 4T-compact specimens. Failure curves are 
shown for compact specimens (solid curves) with a/W = 0.625 and 0.75, and a center-cracked 
panel (dashed curve) (5.52). 

(5.4-13). Hence, for the piecewise power law uniaxial stress-strain relation 

& a  -=-, O < O ,  
EY =Y 

(5.4-23) 

the estimation for J is written as 

J = Je(ae) = ~ ( a e ) ( P / P o ) 2 ,  

J = &(a,) + J(a,n)(P/Po)"+' ,  

P < Po 
(5.4-24) P > Po 

Analogous expressions can be written for 6 and A,. Equations (5.4-24) can be 
shown to be exact for the plane stress infinite strip with a semi-infinite crack. 

The discontinuity of the slope of the piecewise power law stress-strain 
relation at the yield stress can present analytical difficulties when it comes to 
analyzing stable crack growth. The stress-strain relation 

(5.4-25) 
n a > ay 

has a continuous slope everywhere. In this case 

Many materials do not strain harden indefinitely as a power law would 
indicate, but eventually saturate at a stress a,. A uniaxial stress-strain relation 
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reflecting this latter phenomenon (5.46) is 

(5.4-27) 

The saturation stress cr, is chosen to ensure that m/n >> 1. For a material of this 
kind there are three regimes of deformation: linear response for Q c by, strain 
hardening for by < < a,, and nearly perfect plasticity for d > 0,. The 
estimation for J is 

J = jb(a,)(P/P0)' + $(a,n)(P/P,)"+' + & ( U , ~ ) ( P / P ~ ) ~ + '  (5.4-28) 

where 
P, = Ibo, (5.4-29) 

in which ,4 is a constraint factor. Again Equations (5.4-26) and (5.4-28) can be 
shown to be exact for the plane stress infinite strip with a semi-infinite crack. 

5.5 &Integral Testing 

Begley and Landes (5.34) recognized that J and, hence, a critical value of J ,  
could be evaluated experimentally from the interpretation of J as the energy 
release rate given by 

(5.5- 1) 

where U is the strain energy and B is the component thickness. Using multiple 
specimens with different crack lengths, they obtained the load-displacement 
records shown schematically in Figure 5.26(a). For a specified value of A the 
area under the load-displacement curve is the strain energy for the respective 
crack length. In this manner the strain energy per unit thickness versus crack 
length for fixed A can be established as illustrated in Figure 5.26(b). By 
Equation (5.5-1) the negative of the slope of these constant A-curves is J. 
Finally, J versus A for a fixed crack length can be plotted as in Figure 5.26(c). 

Begley and Landes found that crack initiation in specimens having different 
crack lengths occurred at  virtually the same value of J and, thereby, 
experimentally substantiated the use of a critical value of J as a fracture 
criterion. Furthermore, the plane strain critical value Jr, agreed favorably with 

J,, = K;JE' (5.5-2) 

where K , ,  was obtained from independent K,,-fracture tests. 

5.5.1 Single Specimen Testing 

The major disadvantage of the preceding method for determining J,, is that 
five to ten specimens are necessary to develop the calibration of J versus 
displacement. Therefore, a technique for establishing J from a single specimen 
is very desirable. A method for estimating J from a single measured load- 
displacement record was proposed by Rice et al. (5.5 1). 
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Figure 5.26 Schematic for extracting 
J versus A from a load-displacement 
record. (C) 

I t  is convenient to introduce alternative forms for J given by 

J = lop r;) P d P  

(5.5-3) 

(5.5-4) 
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tions for J .  

Equivalent represenla- 

where unless otherwise noted Pis  the generalized load per unit  thickness of the 
component. When J is viewed as an energy release rate, i t  can be seen from 
Figure 5.27 that these are equivalent definitions of J .  Equations (5.5-3) and 
(5.5-4) represent, respectively, the rates of decrease of the strain energy for 
fixed displacement and of increase of the complementary strain energy U *  for 
fixed load with crack extension. 

Consider the deeply cracked bend specimen of Figure 5.28, where M is the 
applied moment per unit thickness and 6 is the relative rotation of the ends. 
For this case Equation (5.5-4) becomes 

(5 .5 -5)  

The rotation 8 can be decomposed according to 

o = en, + 6, (5.5-6) 

where 8,, is the relative rotation in the absence of a crack ( a  = 0) and Oc is the 
remainder due to the crack. If the ligament b is small compared to W, then 
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the rotation 0, will be due largely to the deformation in the ligament and will 
be independent of L when L is large compared to W .  From dimensional 
considerations 

9, = F(M/Mo b /W)  (5.5-7) 

where 

Mo = a,,b2/4 (5.5-8) 

is the fully plastic limit moment. While the function F may depend upon other 
dimensionless parameters, the present form is general enough for the purposes 
here. For sufficiently deep cracks, b/W << 1, F will depend weakly upon b/W, 
particularly, when the remaining ligament is fully yielded. For example, in the 
linear elastic range (5.38) 

16M e, = - as b/W + 0 b’E’ 

The introduction of Equation (5.5-6) into Equation (5.5-5) yields 

J=IoM(Z)  M d M  

since en, is independent of a. From Equation (5.5-7) it follows that 

- M dMo d F  1 d F  --- 
M i  db  d ( M / M o ) - W a ( b I W )  

and 

1 d F  
($)a = a a ( M / M o )  

which combine to give 

The introduction of Equation (5.5-1 1 )  into Equation (5.5-10) leads to 

(5.5-9) 

(5.5-10) 

(5.5-1 1) 

1 d M ,  1 M dF 
Joe’ M do, - - (5.5- 12) J = - -  

Mo  d b  a(b/w) d M  

where de, = (at l , /aM)dM for fixed a has been used in the first integral. Since 
aF/a (b /W)  = 0 for a deeply cracked specimen, and since according to 
Equation (5.5-8) 

1 dMo 2 --=- 
Mo d b  b 
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Equation (5.5-12) reduces to 

J =ij: M d 0 ,  (5.5- 1 3) 

The integral in Equation (5.5-13) is simply the area under the M versus 0, curve. 
Hence, J is twice the work per ligament area done by the moment acting 
through the rotation due to the crack. Consequently, a single test record is 
sufficient to evaluate J. 

If the remaining ligament supports primarily a bending moment due to an 
applied load P per unit thickness, then Equation (5.5-13) becomes 

(5.5-14) 

Equation (5.5-14) is applicable to deeply cracked three-point bend and 
compact specimens. For the three-point bend specimen the displacement 
component A,, can be appreciable and should be eliminated in evaluating J by 
Equation (5.5- 14). On the other hand A,, will be negligible compared to A, for a 
typical compact specimen. 

The second term of Equation (5.5-12) is frequently referred to as the Merkle- 
Corten correction (5.53). The remaining ligament of a compact specimen not 
only supports a bending moment but also a normal force. Depending upon the 
depth of thecrack the latter can providea significant contribution to J .  Merkle 
and Corten (5.53) have examined the influence of this normal force on the J -  
integral for a compact specimen. Since A,, can be neglected for a compact 
specimen, it is permissible and convenient to write 

A = A, = A, + Ap (5.5-15) 

Consequently, Equation (5.5-4) can be written as 

aA, aAp 
= I0 ( Z ) , d P  + lo (da), d P  

(5.5-16) 

The first term is the linear elastic contribution and can be readily evaluated. 
The term 

Jp = Iop (2) d P  
P 

(5.5- 17) 

is the plastic contribution and attention is now focused upon evaluating this 
quantity. 

The stress distribution in the remaining ligament and the displacement 
diagram at plastic collapse are shown in Figure 5.29. Equilibrium demands 
that 

Po = 20,ca = a,ba (5.5-18) 
and 

a’ + 2a(a/c + 1) - 1 = 0 (5.5- 1 9) 
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Figure 5.29 Stress distribution in the remaining ligament and deformation in a deeply cracked 
compact specimen at plastic collapse. 

where c = b/2 is the half length of the ligament and ac is the distance from the 
center of the ligament to the point of stress reversal (neutral axis). For a 
specified value of a/c, Equation (5.5-19) can be used to establish a. Assuming 
that rotations occur about the neutral axis, one can write 

A, = [a + ( 1  + a)c]8, = 2 - (1  - a) - '1 8, (5.5-20) 2 W 

where 0, is the plastic angle of rotation. 
Analogous to the bend specimen the plastic rotation is assumed to be a 

function of the ratio of the applied load P to the fully plastic load Po; that is, 

0, = f(P/PO) (5.5-2 1) 

The substitution of Equation (5.5-21) into Equation (5.5-20) yields 

When 0, and A, are viewed as generalized displacements, then it is clear from 
Equations (5.5-7) and (5.5-22) that these generalized displacements enjoy 
similar functional forms in b/W and the respective generalized forces M and P. 
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This similarity combined with that of Equations (5.5-9) and (5.5-17) permits 
writing 

It follows from Equation (5.5-18) that 

3 db = o,,( a + b 2) 
Differentiating Equation (5.5-19) and using Equation (5.5-19) to eliminate a/c 
in the resulting expression, one obtains 

da 
db  b 1 + a 2  

1 ( 1  + 2a - a 2 ) a  - = -  

Consequently, 

1 dPo 2 l + a  
Po d b  b 1 + a 2  
--=-- (5.5-24) 

In a similar manner 

1 aF f 1 - 2 a - a 2  2 1 - & - a 2  - - -  aA,  (5.5-25) 
W d ( b / W )  2 1 + a' b ( 1  + 

where a + ( 1  + a)c = b( 1 + a2) /4a ,  which follows from Equation (5.5-19), has 
been used. Finally, the combination of Equations (5.5-23)-(5.5-25) yields 

---=- 

J,=-- :::2 loAp P d A ,  + 2 - (1 Jop A, d P  (5.5-26) 

Once again'the J-integral can be evaluated from a single compact specimen 
load-displacement record. 

The first and second integrals of Equation (5.5-26) are, respectively, the 
strain energy and complementary energy per unit thickness. For a deeply 
cracked specimen (a/c >> l ) ,  a = 0 and Equation (5.5-26) reduces to Equation 
(5.5-14) when Ap is replaced by A,-that is, when the elastic contribution to Ac 
is negligible. For the rigid plastic case the complementary energy as well as 
the elastic deformations vanish and Equation (5.5-26) becomes 

2 l + a  
J=-- b 1 + a 2  POA (5.5-27) 

Merkle and Corten (5.53) found for compact specimens with a/W > 0.5 that 
the total J may be computed from Equation (5.5-26) using the total load-point 
displacement; that is, 

J=-- 1' JoA P d A  + 2 - ' ( I  Iop A d P  (5.5-28) 
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When the complementary energy is much smaller than the strain energy, 
Equation (5.5-28) reduces to 

(5.5-29) 

Using Equations (5.5-1) and (5.5-14) Landes et al. (5.54) evaluated J 
experimentally for three-point bend specimens having a span to height ratio of 
four. Equation (5.5-1) was used as the standard for comparison because it is 
simply the definition of J and involves no approximations. The best 
agreement between the two was obtained when Ac was replaced by A in 
Equation (5.5-14) that is, when the total strain energy was used in the 
evaluation rather than only that due to the crack. The comparison of the two 
approaches is shown in Figure 5.30. Slight differences are to be expected 
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Figure 5.31 Comparison of J based upon Equation (5.5-1) (solid curves) and Equation (5.5-14) 
(solid points), and Equation (5.5-29) (open points) using measurements from HY-130 steel, 1T- 
compact specimens (5.54). 

because of the inherent inaccuracies in effecting the numerical differentiation 
required in Equation (5.5- 1). Similar comparisons were made for compact 
specimens based upon Equations (5.5-1), (5.5- 14), (5.5-26), and (5.5-29). Figure 
5.31 compares values of J for compact specimens using Equations (5.5-l), 
(5.5-14), and (5.5-29). The J values based upon Equation (5.5-26) tend in 
general to exceed the values predicted by the other equations. The best agree- 
ment occurs between Equations (5.5-1) and (5.5-29). These results support the 
use of J estimation methods in the experimental evaluation of the J-integral 
from a single specimen. 

5.5.2 Standard JI, Test  Method 

A standard test method, E 813, has been issued by ASTM (5.55) for 
determining Jf , ,  the plane strain value of J at initiation of crack growth. The 
value of J,, may be used to characterize the toughness of materials at  or near 
the onset of crack extension from a pre-existing fatigue crack. It can also be 
used in 

to obtain a conservative estimate of KI, when sufficient thickness precludes a 
valid K,, test according to the size requirements ?f the ASTM E 399 method. 
The method can be used to determine Jrc for a wide range of ductile 
engineering materials. However, materials with extremely high resistances to 
tearing may not test satisfactorily because crack growth due to physical 

K?, = J f c E  (5.5-30) 
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tearing may be indistinguishable from extensive crack-tip blunting. A 
pronounced nonlinear relationship between J and the amount of crack 
extension may present problems in determining J j c .  

Preferred specimens are a three point bend specimen and a compact 
specimen. For a valid J,, value the remaining ligament b and thickness B* must 
satisfy 

b, B > 25Jlc/oy (5.5-31) 

where oy is the effective yield strength of the material at the test temperature. In 
this method oy is the average of the 0.2 percent offset yield strength and the 
ultimate strength. Since the crack-tip opening displacement is proportional to 
J,,/o,, Equation (5.5-31) requires that the ligament and the thickness be large 
compared to this displacement. Furthermore, the dimensions b and B must be 
greater than 15 Jla, for all values of J calculated as data points. Since values of 
J and J j ,  are not known a priori, the selection of the specimen dimensions 
can only be based upon previous experience. 

The initial crack length a, must be at  least one-half the width W of the 
specimen but not greater than 0.75W. Experience indicates that a,/W = 0.6 
is about optimum. The specimen thickness is nominally OSW. The span to 
width ratio of the three-point bend specimen is four with an overall length of 
4.5 W. The compact specimen is similar to the one recommended in Standard E 
399 for K,, testing, but modified slightly to meet the needs of this method. 

The procedure requires the measurement of applied load and load-point 
displacement to obtain the total work done on the specimen. Load versus 
displacement is either recorded autographically on an X- Y plotter or digitized 
for accumulation in a computer information storage facility. In the multiple 
specimen technique the crack extensions are marked after having deformed 
the specimens to selected values. The marking may be done either by heat 
tinting or by fatiguecycling the specimen. The specimens are then broken open 
and the crack extensions are measured. In the single specimen technique the 
specimen is periodically unloaded about 10 percent and the elastic unloading 
compliance is measured. From the unloading compliances the crack lengths 
and, hence, crack extensions are calculated. Upon completion of the test the 
total amount of crack extension predicted by the unloading compliance 
technique must agree within 15 percent of the average value determined by the 
heat tint method. 

The area A under the measured load displacement curve (see Figure 5.32) is 
measured graphically or numerically integrated if the computer technique is 
used. For the three-point bend specimen J is computed from 

2A 
J = -  

bB (5.5-32) 

in accordance with Equation (5.5-14) except that the total displacement is used 

~ 

* If the specimen is side grooved, then B is the minimum thickness. 
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as suggested by Landes et al. (5.54). The normal force in the compact specimen 
requires that J be computed from 

2 l + a  A 
b l  + a 2  B 

J=--- ( 5.5-3 3) 

Compare with Equation (5.5-29), where from Equation (5.5-19) SI is given by 

(5 .5 -  34) 

The values of J are plotted against the physical crack growth Aa, as 
depicted in Figure 5.33. Superimposed on this same plot are three additional 
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Figure 5.33 Illustration of data reduction required to establish J,, using ASTM E813 Standard. 
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lines. One is the blunting line defined by 

J = 2ny Aap (5.5-35) 

This line approximates the apparent crack advance due to crack-tip blunting 
in the absence of tearing. It is based upon the assumption that prior to tearing 
the crack advance is one-half of the crack-tip opening displacement. The other 
two lines are parallel to the blunting line but offset 0.15 mm and 1.5 mm. For a 
valid test at least four data points must fall within the region bounded by the 
abscissa and the vertical lines through the points of interaction of a linear 
regression line and these offset lines. Points outside this region are considered 
invalid. The valid data points are used to establish a final linear regression line. 
The intersection of this line with the blunting line establishes JQ. If Band bare 
greater than 25JQ/cry and if the slope of the linear regression line is less than cry, 
then JQ = JI,. 

To demonstrate an advantage that JI,  testing offers, consider the minimum 
thickness requirements. Assume that JIc = 150 kJ/mz, uy = 280 MPa, and 
E = 210 x lo3 MPa, values that are typical of reactor grade steel. For a valid 
J,, test of this material 

B > 25J,,/aY = 14 mm 

Equation (5.5-30) yields K I ,  = 180 MPa m* and the minimum thickness for a 
valid K I ,  test is 

B = 2 . 5  - = l m !  (:j2 
The main purpose of JIc testing is not, of course, to establish K I e ,  but to 
determine the fracture resistance that is an integral part of a J-based plastic 
fracture mechanics for high toughness, low strength materials. 

5.6 J-Dominance and J-Controlled Crack Growth 

For a single parameter characterization, be it J or d,, of the crack-tip fields to 
be valid, the region D over which the HRR singularity dominates must engulf 
the fracture process zone whose extent is typically on the order of 6, for ductile 
rupture. As previously noted, the size of the region D for antiplane strain 
loading decreases with increasing n and vanishes in the nonhardening limit of 
n + co. Furthermore, McClintock (5.56) found that the perfectly plastic slip- 
line fields for the cracked bend bar (CBB) in pure bending, the center crack 
panel (CCP) and the double-edge cracked panel (DECP) in tension depicted in 
Figure 5.34 are dramatically different. In addition there is no unique 
relationship between the crack-tip stress and strain fields-the latter field 
being dictated by the geometry of the body. Consequently, a one-parameter 
characterization requires the presence of strain hardening. Even in the 
presence of strain hardening the condition for J-dominance will likely depend 
upon the configuration. This is suggested by the rather drastic difference in the 
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:‘“I 
Figure 5.34 Perfectly plastic slip-line fields for cracked bend bar, center-cracked panel, and 
double edge notched specimens. 

slip-line fields for the CBB and CCP specimens. Begley and Landes (5.57) also 
reported measuring a J-resistance curve for a CCP specimen that was quite 
different from that for a compact tension specimen. 

McMeeking and Parks (5.58) performed finite-deformation, finite element 
analyses of plane strain CCP specimens subjected to uniform remote tension 
and CBB specimens in pure bending. A J,-flow theory of plasticity was used in 
these analyses. The predicted normal stress distributions on the plane ahead of 
the crack tip for a CCP with u/W = 0.5, n = 10, and u,/E = 1/300 are shown in 
Figure 5.35 for various values of b/(J/u,). Note that S, z J / 2 0 ,  is a measure of 

0 1 2 3 4 

*L 

Figure 5.35 Normal stress distribution ahead of the crack tip in a CCP with a/W = 0.5, n = 10, 
u,/E = & and selected values of buy/.!. The solid curve is the small-scale yielding prediction 
(5.58). 
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the size of the fracture process zone. When J-dominance holds, it follows from 
the HRR fields [see Equation (5.3-33)] that the stress field when plotted 
against r/(J/oy) should be independent of J. These results as well as others in 
reference (5.58) suggest that 

is required for J-dominance in the center cracked panel. 
Shih and German (5.59) have performed finite element computations 

for cracked bend bars, center cracked panels, and single-edge cracked panels. 
The analysis is based upon J2-flow theory, a Ramberg-Osgood uniaxial 
stress-strain curve with a = 3/7 and E, = o,/E = 2 x and small strains. 
The small strain formulation permits direct comparison between the numer- 
ically calculated stress and strain fields and the HRR fields. The results of 
McMeeking and Parks indicate the effect of finite deformation occurs over 
a distance of approximately twice the crack-tip opening displacement or, 
equivalently, over a distance of about J/o,. 

Figure 5.36 shows the normal stress oZ2 ahead of the crack tip in CBB and 
CCP specimens based upon the finite element solutions and the HRR field for 
different levels of plastic deformation corresponding to bo,/J equal to 600, 

b > 200J/oy (5.6-1) 

6T"T3 bOy/J =600 
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Figure 5.36 Variation of normal stress ahead of the crack tip in CBB (---) and CCP (-) from 
contained yielding to fully plastic behavior for a/W = 0.75, n = 3, and UJE = &. Also shown is 
the HRR field ( . * . ) (5 .59) .  
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200, 60, and 30 and a relatively large strain hardening (n  = 3). The larger 
values of bay/J correspond to contained plasticity whereas the smaller values 
are associated with nearly fully plastic conditions. The stress fields in the CBB 
agree favorably with the HRR singularity over a distance of about 3J/ay 
( ~ 6 6 , )  for the range of plastic deformation considered. By comparison the 
agreement for the CCP over the same distance is good for bo,/J > 200 and 
poor for baJJ Q 60. 

Similar comparisons for a weakly hardening material ( n  = 10) are presented 
in Figure 5.37. Again good agreement between the calculated stress field and 
the HRR singular field is obtained for the CBB over the range of plastic 
deformation considered. The agreement for the CCP tends to deteriorate 
rapidly for bay/J < 200. 

Both the computations of McMeeking and Parks (5 .58)  and Shih and 
German (5.59) suggest that J-dominance will be preserved in cracked bend 
bars if ba,/J > 30. This condition compares favorably with experimentally 
observed behavior and the specifications in the E 813 Standard for J,, testing. 
On the other hand J-dominance can only be assured in the center crack panel 
when bay/J > 200. The dependence of the condition for J-dominance upon 
specimen geometry is also reflected in the E 813 Standard by the caution that 
the use of specimen configurations other than those recommended in the 
method may involve different requirements for validity. 

Crack growth is accompanied by elastic unloading and, hence, nonpro- 
portional plastic deformation in the neighborhood of the crack tip. The J -  
based plastic fracture mechanics that is founded on a deformation theory of -- 

0- - 
a 4 8 1 2  ' 0 2 4 8  

r a y i d  r U / J  

Figure 5.37 Variation of normal stress ahead of the crack lip in CBB (---) and CCP (-1 
from contained yielding to fully plastic behavior for a / W  = 0.75, n = 10, and o,/E = A. Also 
shown is the HRR field (...)(5.59) . 
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plasticity is incapable of rigorously modeling these character4c.s of plastic 
crack extension. The implication is that J is strictly valid for analyzing 
stationary cracks. Nevertheless, if nearly proportional loading occurs every- 
where except in a small neighborhood of the crack tip, then J can be used 
to analyze crack growth provided additional conditions for J-controlled crack 
growth are satisfied. For when nearly proportional loading occurs, the 
difference between a deformation theory and a corresponding flow theory of 
plasticity will be negligible. Such behavior is frequently observed in inter- 
mediate strength metals that can withstand substantial plastic deformation 
beyond crack initiation while exhibiting very limited amounts of crack 
growth. 

When the conditions for J-controlled crack growth are satsified, then J is a 
meaningful fracture characterizing parameter and a unique, configuration- 
independent relationship between J and Au exists. If conditions of plane strain 
are not satisfied, then the resistance curve relating J to Au may depend upon 
the thickness of the body as the small-scale yielding resistance curve does. 
Under these conditions the small-scale yielding resistance curve analysis of 
Chapter 3 may be extended to form a J-resistance curve analysis for crack 
growth under large-scale yielding. The conditions for J-controlled crack 
growth have been examined by Hutchinson and Paris (5.60). 

Consider a material with a J-resistance curve, JR(Au), depicted in 
Figure 5.38 where the fracture resistance J R  increases with crack extension Au. 
In particular, emphasis is placed upon materials for which a small amount of 
crack growth, say, a millimeter or two, is accompanied by a several-fold 

n a  ie 
Figure 5.38 Typical J-resistance curve. 
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increase in J above the initiation value J,. Since the discussion is also 
applicable when plane strain conditions do not exist, the plane strain 
designation for the initiation value of J has been dropped. According to the 
deformation theory the dominant strain field is 

ci, = k,(J/r)""" + ".Fij(e) (5.6-2) 

where k, is a constant. Again D in Figure 5.39 denotes the characteristic length 
of the region dominated by this HRR singular field. Since crack extension will 
produce an elastic unloading wake and a region of nonproportional loading 
on the order of Aa in length, then one condition for J-controlled crack growth 
is 

Aa << D (5.6-3) 
The second condition follows from the requirement that predominantly 

proportional loading occurs within the annular region I < r < D of Fig- 
ure 5.39. An increment in the strain field due to increments of J and n is 

(5.6-4) 

where for a coordinate system attached to the crack tip the change due to a is 
-(a/ax,)da. Since 

a a sine a -=cos~-----  
ax I dr r ae 

Equation (5.6-4) becomes 

NonoroDortlonai 
toeding zone 

Elastic 
unloading wake 

1 
I 
I 

\ 
\ 
\ 

I 

Figure 5.39 Schematic of crack tip deformation zones for a growing crack. 
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where 

(5.6-6) 

The first term in the brackets of Equation (5.6-5) corresponds to proportional 
loading (dJ > 0) in that deij cc e i j ,  whereas the second term is nonproportional. 
Since hj and Fij are of the same order of magnitude, then predominantly 
proportional loading will occur in the annular region of Figure 5.39 if 

dJ da 
J r  
- >> - 

Let 

1 1 dJ 
1 J da 
-= - -  

(5 -6- 7) 

(5.6-8) 

where according to Figure 5.38 1 can be viewed as the crack growth just beyond 
initiation associated with a doubling of J above 4. This definition of lreduces 
to the material-based length 1 introduced in the small-scale yield resistance- 
curve analysis of Section 3.5. If further 

I << D (5.6-9) 

then there exists an annular region 

l < < r c D  (5.6- 10) 

in which the plastic loading is predominantly proportional and the HRR 
singular fields dominate. Consequently, if Equation (5.6-9) is satisfied, then a 
negligible difference can be expected between the strain fields predicted by a 
flow theory and a deformation theory for r >> 1. More importantly, J uniquely 
governs or controls the intensity of the fields in the region defined by 
Equation (5.6-10). 

For a fully yielded configuration D will be some fraction of the smaller of the 
remaining ligament b or some other characteristic length from the crack tip to 
the boundary or load point. Thus, Equation (5.6-9) can be written as 

1 << b 

or, equivalently, 

(5.6-1 1) 

for J-controlled crack growth. 
Shih et al. (5.61) performed a finite element analysis of crack growth in a 

A533B steel, 4Tcompact specimen using J2-flow theory. The J-integral was 
computed for a wide variety of contours and was plotted against crack 
extension as illustrated in Figure 5.40. The larger the subscript on J in these 
plots the more remote is the contour from the crack tip; for example, J2 is for 
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Figure 5.40 J-resistance curves for different contours on a A533B, 4T-compact tension specimen 
(5.6 I) .  

the contour closest to the crack tip. In this figure JMc denotes the value of J 
computed from the experimental data using the Merkle-Corten method and 
can be veiwed as a far field value for J .  The path independence of J reflected by 
these computations for small amounts of crack growth (Au < 4 mm) is 
consistent with the concept of J-controlled growth. Clearly, for large amounts 
of crack growth (Au > 4 mm), J is no longer path-independent and J -  
controlled crack growth is lost. For the compact specimen in this analysis 
w x 40. Shih et al. (5.62) found for members subjected primarily to bending 
that the conditions expressed by Equations (5.6-3) and (5.6-1 1) become 
Aa < 0.06b and w > 10, respectively. 

The question of what is the smallest value of w for which J-controlled crack 
growth is assured remains unanswered. Indications are that i t  will depend. 
upon the configuration and the degree of strain hardening. It was demon- 
strated earlier in this section that the condition for J-dominance in a CCP 
specimen is more severe than for a CBB specimen. In order for J-controlled 
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crack growth to exist, strain hardening must be present; otherwise, in the 
nonhardening limit the annular region defined by Equation (5.6-10) vanishes 
with D. Furthermore, as will be seen in Section 5.8, the l/r strain singularity for 
a stationary crack in a perfectly plastic material becomes a In r singularity for a 
propagating crack. 

In summary, a consequence of J-controlled crack growth is that the J R  curve 
obtained from fully yielded specimens will coincide with the one obtained 
under small-scale yielding conditions if the plastic constraint remains 
unchanged. Except for perhaps a thickness dependence, the JR curve will be 
independent of the configuration. When J-controlled growth exists, stable 
crack growth and the onset crack instability can be analyzed using a resistance 
curve approach based upon J or 6, .  

5.7 Stability of Kontrolled Crack Growth 

As noted in the previous section, the J-resistance curve, JR(Aa), is a unique 
configuration-independent property of the material provided that the con- 
ditions (o >> 1 and Aa << D) for J-controlled crack growth are satisfied. It is 
then feasible to extend the LEFM R-curve analysis and to perform a J -  
resistance curve analysis of ductile crack growth and tearing instability. For 
conditions under which the amount of crack growth is too great to be 
controlled only by J ,  a resistance curve must be determined for the geometry 
of interest or an alternate procedure found. Hutchinson and Paris (5.60) have 
developed a J-controlled crack growth and stability analysis. In the following 
a generalization (5.63) of this method is presented. 

5.7.1 The Tearing Modulus 

Consider a body with a through-thickness crack as illustrated in Figure 5.41. 
Let P be a generalized load per crack tip and per unit thickness of the body. 
When more than one crack tip exists, assume the flawed body and its loading 
are such that each tip experiences the same crack driving force. Take A to be 
the generalized load-point displacement through which P acts to do work on 
the body. The linear spring in Figure 5.41 can be veiwed as modeling the elastic 
compliance of the testing machine or any associated structure through which 
the body is loaded. The prescribed total displacement AT can be written as 

AT = CMP + A(P,a )  (5.7-1) 

where CM = mBC, in which m is the number of crack tips. 
At impending or during crack extension equilibrium between the crack 

driving force and the material’s resistance to ductile fracture and tearing 
requires that 

J(P ,a )  = JR(Au) = JR(u - ao) (5.7-2) 

The crack extension is said to be stable if an arbitrarily small increase, Sa > 0, 
in the current crack length with the total displacement AT held fixed does not 
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Figure 5.41 Typical flawed structures with one and two crack tips. 

give rise to a driving force in excess of the material's fracture resistance. That is, 
the equilibrium state of Equation (5.7-2) will be stable if 

(5.7- 3) J(P ,a  + Sa) < &(a + Sa - ao) 

for fixed AT and 6a  > 0. 
The expansion of this inequality about the current crack length yields 

(5.7-4) 
1 d2J(P ,u )  d2JR(U - U o )  

+j{( da2 ) A T -  da2 

in which Equation (5.7-2) has been used. Since this inequality must be satisfied 
for vanishingly small 6a > 0, then the condition for the stability of the 
equilibrium state, Equation (5.7-2), reduces to 

(5.7-5) 

The equilibrium is unstable if 

(5.7-6) dJR(a - aO) (q)AT > da 

The demarcation between stable and unstable (neutral) equilibrium is 
expressed by 

(5.7-7) 
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Strictly speaking, the stability of the equilibrium defined by Equations 
(5.7-2) and (5.7-7) depends upon the sign of the next higher-order term in 
Equation (5.7-4). Equations (5.7-1) and (5.7-2) can be considered as parametric 
equations relating A T  as a function of J .  When Equation (5.7-7) is satisfied, it 
can be shown (5.64) that d A T / d J  = 0. Depending upon the sign of the next 
higher-order term this condition is associated with either a maximum or an 
inflection point. 

Paris et al. (5.65) introduced the dimensionless tearing moduli defined by 

(5.7-8) 

where 
Equations (5.7-5) and (5.7-6) become 

is an appropriate flow stress. In terms of the tearing moduli, 

T < T R  for stability 

T > TR for instability 
(5.7-9) 

Equations (5.7-2) and (5.7-7) represent two equations for determining the 
load and the crack length at the limit of stable crack growth. If, as is usually 
done in a resistance curve analysis for dead loading, JR and J with P as a 
parameter are plotted against a as in Figure 5.42, then the limit of stable crack 
growth is identified with the point of tangency between the resistance curve, 
JR, and the driving force curve, J .  

A general expression for (dJ /da) , ,  can be developed. Consider the 
differential 

d J =  -- d a +  - d P  
(::)p (;;)o 

' Extent of s tab le  
c rack  growth  

(5.7- 1 0) 

a0 a 
Figure 5.42 Schematic of typical J-resistance curve analysis. 
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With AT held fixed it follows from (5.7-1) that 

d b ,  = C,dP + ( g ) a d P  + (2) da = 0 
P 

whence, 

(5.7-1 1) 

The combination of Equations (5.7-10) and (5.7-1 1) yields 

which can be compared with Equation (3.5-7) for LEFM. As in the elastic case 
the presence of the spring influences (dJ/da) , ,  but not J .  

It is convenient to write Equations (5.5-3) and (5.5-4) as 

J = -(g)A = (g) P (5.7-13) 

where 

u = JoA P d A  and U *  = l o p A d P  (5.7-14) 

are, respectively, the strain energy and complementary energy per crack tip 
and per unit thickness of the body. According to Castigliano's theorem 

A = ($) a 

and, hence, by differentiating this expression 

The introduction of Equation (5.7-15) into Equation (5.7-12) leads to 

($)AT = ( $ ) p  - (g): [ cM + 

(5.7-16) 

For dead loading (C, -, co) Equation (5.7-16) reduces to 

(5.7-17) 

At the other extreme, corresponding to fixed grip loading, ( d J / d ~ ) , ,  is an 
absolute minimum when C, = 0. Since in general (dJ/da) , ,  < . (dJ/da) , ,  then 
clearly dead loading provides the most adverse condition for stable crack 
growth. 
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5.7.2 The q-Factor 

To determine (dJ/da),, it is necessary to evaluate the partial derivatives 
( a J / a a ) ,  and (aJ/dP) ,  in Equation (5.7-16). To accomplish this it is convenient 
to decompose the load-point displacement due to the crack into its linear 
elastic and plastic components so that 

Ac = Ace + Acp (5.7-18) 

Equation (5.7-18) permits rewriting Equation (5.5-4) as 

(5.7-19) 

since A,, is independent of a. It is permissible to write 

Ace = C,(a) P, C,(O) = 0 (5.7-20) 

where C,(a)/m is the contribution to the elastic compliance of the flawed body 
due to the presence of the crack. It follows from Equations (5.7-19) and (5.7-20) 
that 

1 dC, 
C, da  

J, = 2 jop P d P  = - - joAce p &jce 

Equivalently, 

(5.7-21) 

(5.7-22) 

where V,, is the elastic contribution to the strain energy due to the crack, and 

(5.7-23) 

is a dimensionless geometric factor. The qe-factor defined in Equation (5.7-23) 
is the reciprocal of the q-factor originally introduced by Turner (5.66). 

Based upon the developments of Riceet al. (5.51) [cf. Equations (5.5-13) and 
(5.5-14)], Sumpter and Turner (5.67)* proposed writing 

rt 
J p  = joAcp PdA, ,  = -I! b v,, (5.7-24) 

where U,, is the plastic (nonlinear elastic) contribution to the strain energy due 
to the crack. The dimensionless parameter qp is similar to qe in that i t  is 
assumed to be a function of the flawed configuration and independent of the 
deformation. I t  is necessary and sufficient for the existence of such an q p  that 
P and Acp be related by the separable form 

p = f ( a ) d A c , )  (5.7-25) 

in whichf(a) is a function of geometry only and ~ ( 6 , ~ )  is a function of AcP but 

* Sumpter and Turner used the total plastic strain energy rather than only the contribution due 
to the crack that is employed here. 
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independent of a. This form exists at limit load, for deeply cracked bodies in 
which the remaining ligament experiences experiences primarily bending, and 
for a body exhibiting power law hardening that is subjected to a single 
monotonically increasing load parameter. 

The use of the qp-factor simplifies the task of determining J. It allows the 
stability of crack growth to be assessed rigorously when q,, exists and 
approximately when it does not. It also permits the stability of J-controlled 
crack growth to be formulated generally. The assumed existence of q p  does not 
appear to be any more severe than the assumptions regarding the form of the 
load-displacement function in alternative approaches. Paris et al. (5.68) argued 
that qp does not rigorously exist when the plasticity in the remaining ligament 
changes substantially as it  develops from small-scale yielding to the fully 
plastic state. In this case the separable form of Equation (5.7-25) does not exist. 
But, any other approach that relies on a relationship of this type will also suffer 
the same shortcoming. 

The combination of Equation (5.7-24), 

and 

Jp = Jop (2) d P  
P 

for a fixed crack length yields 

Equivalently, 

which is the plastic counterpart of Equation (5.7-23). 
For a fixed crack length Equations (5.7-22) and (5.7-24) yield 

fle dJ  = - PdAce +'I. P d A C p  b b 
and, whence, 

= (u). + = P[? (%)a + 'lp b (")J a p  

(5.7-26) 

(5.7-27) 

(5.7-28) 

(5.7-29) 

(5.7-30) 

Since A,, is independent of a, Equations (5.7-25) and (5.7-30) imply that 

(5.7-31) 

(5.7-32) 
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Noting that V,, = PA,, - U:, (see Figure 5.43) one can write 

b 
J, = 2 (PAcp - U:,) 

which upon differentiation gives 

where 

(5.7-34) 

In arriving at Equation (5.7-33), da = -db  and Equations (5.7-12), (5.7-28), 
and (5.7-32) were used. In a similar way 

(%)p = (y)  ’ (w) aAce + Je 
a 

(5.7-3 5) 

P 

Figure 5.43 Load versus load-point displacement due to the crack. 
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where 

(5.7-3 6) 

The combination of Equations (5.7-33) and (5.7-35) gives 

( $ ) p = t J e + ~ J p +  b ( ; )2[d - + s: (.>.1 (5.7-37) 

Finally, the introduction of Equations (5.7-30) and (5.7-37) into 
Equation (5.7-16) yields 

If the relationship between the load and the load-point displacement is known, 
either experimentally or analytically, then the tearing modulus can be 
computed from Equation (5.7-38). The stability of the crack growth can be 
examined by Equation (5.7-9). 

Equations (5.7-22) and (5.7-24) are strictly valid only for a nonextending 
crack even though they are frequently used to determine J-resistance curves. 
Since J is based upon deformation theory, it is independent of the path leading 
to the current values of a and A, provided that the conditions for J-controlled 
crack growth are satisfied. Thus, for arbitrary increments of a and A c p ,  
Equation (5.7-24) yields 

dJp = "[("-) dACp + (%)Acpda] + %[l - - - I d a  b drlp 
b 8 A c p  a s p  d b  

Since Jp = - (dV,p/da)Acp and P = (dQp/dAcp)a, then the preceding equation 
can be rewritten as 

dJp = 2 P d A c P  +- 5 Jpda b b 

Because dJp is an exact differential, then 

Jp = JoAcp 2 PdA,, + 1: f Jpda (5.7-39) 

holds for any path leading to the current values of a and Acp. The analogous 
expression for J, is 

J, = joAc8 5 P dAce + (5.7-40) 
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Equation (5.7-40) has been presented to illustrate the symmetry between J, and 
Jp .  Rather than using Equation (5.7-40) it is simpler to compute J, from 
J, = K 2 / E ’ .  

The following method can be used to determine Jp for a growing crack from 
a P-A,, curve depicted in Figure 5.44. Since within deformation plasticity 
theory Equation (5.7-39) for Jp is path-independent, then the path OA for a 
fixed crack length a, may be followed to a load-point displacement A&. 
Because da = 0 on this path 

JA = J’ P = ( ?), jOAkp P dACp (5.7-41) 

where the integral represents the area under the curve OA. Furthermore, 

(5.7-42) 

To determine J r  for a crack length a,, and displacement At;’ integrate 
Equation (5.7-39) along the path OB and then along BC, where Aep is constant 
to obtain 

l p  

(5.7-43) 

I i t  1 
A C P  A C P  C C P  

Figure 5.44 Typical P-A,, curve for a growing crack. 
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To a first approximation 

$ Jp da = ($) &(ai + - ai) 
i 

(5.7-44) 

Hence, 

Jr = CJb + Ai,i+ i ( ~ p / b ) i I C l  + (ai+ 1 - ai)(~p/b)iI (5.7-45) 

where Ai, i+ is the area under the P-Acp curve between A& and A:; I .  

In this manner the simultaneous measurement of the load, load-point 
displacement and crack extension permits until instability intercedes the 
determination of a J-resistance curve from a single test. The use of a mini- 
computer in automated data acquisition and reduction simplifies this task. 

5.7.3 Illustrative Examples 

For a compliant loading of a deeply cracked bend specimen [e.g., see 
Figure 5.45(a)] the generalized load and displacement are P = M and A = 8, 
respectively. It follows from dimensional analysis that M = b'F(6,) [cf. 
Equations (5.5-7) and (5.5-8)]. Consequently, Equations (5.7-23) and (5.7-29) 
lead to qe = qp = 2 for this specimen. Equation (5.7-38) reduces to 

(5.7-46) 

where 

C = C M  + C,,, = C M  + de,,,/dM (5.7-47) 

L L 

(b) 
1 -  

Figure 5.45 Compliant loading of (a) a bend specimen and (b) a three-point bend specimen. 
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is the combined compliance. Equation (5.7-46) agrees with the results of 
Hutchinson and Paris (5.60) who used a slightly different approach. 

For fixed grip loading (C, = 0) Equation (5.7-46) applies with C = Cnc. 
Under dead loading (C, = co) Equation (5.7-46) reduces to 

(5.7-48) 

For a fully yielded, elastic-perfectly plastic specimen, M is the limit moment 
which is independent of 19, so that Equation (5.7-46) becomes 

J 4 M 2 C  (g)oT= - g + 7  (5.7-49) 

This analysis may also be applied to the compliant loading of the three- 
point bend specimen of Figure 5.45(b). In this case 

(5.7-50) 

in which 

C = CM + C,, = C, + dA,,/dP (5.7-51) 

is the combined elastic compliance. With qe = qp = 2, Equations (5.7-39) and 
(5.7-40) combine to give 

J = 2 joAc f dA, - ja: d a  (5.7-52) 

for a growing crack. 
Prior to the initiation of crack growth i t  is possible to evaluate all the 

quantities on the right-hand sides of Equations (5.7-46) and (5.7-50) from a 
single experimental record. Since these quantities are also continuous across 
the initiation point, then it is possible to use Equations (5.7-46) and (5.7-50) 
and a single experimental record to assess the stability of crack growth at  
initiation. When the remaining ligament is fully yielded and exhibits little 
strain hardening, it may be possible in some instances to neglect C(aA4/iWc), in 
Equation (5.7-46) or C(dP/aA,) ,  in Equation (5.7-50). If these terms are not 
negligible, it will be necessary to determine them by some other means in order 
to assess the stability of crack growth beyond initiation. 

Paris, Ernst, and Turner (5.68) found that 

(5.7-53) 

for a deeply center-cracked panel. According to Equation (5.7-53), qp will be 
equal to or less than unity for this specimen. With this expression 
Equation (5.7-38)can be shown to yield the same tearing modulus obtained by 
Hutchinson and Paris (5.60). In general up given by Equation (5.7-53) is a 
function of the deformation. This is, of course, contrary to Turner’s original 
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assumption and the one assumed here that q, be independent of the 
deformation. If the dependence of qp upon the deformation is weak, then to a 
first approximation qp can be taken outside the integral as in Equation 
(5.7-24). To the extent that the latter is an appropriate approximation, then 
Equation (5.7-38) is general since its development does not depend upon the 
restriction that qp be independent of the deformation. 

Equations (5.7-38)-(5.7-40) also contain the development of Ernst et al. 
(5.69) as a special case. The latter assumed that q, = q, = q, which holds in 
particular for deeply cracked bend specimens, but not in general. 

5.7.4 Tearing Instability for Power Law Hardening 

The forms of Equations (5.7-24) and (5.7-38) are particularly well suited for use 
with the GE/EPRI elastic-plastic fracture handbook (5.46). For a power law 
hardening material 

n 
n + l  q, = - p 4 p  

which upon the introduction into Equation (5.7-24) yields 

n 
J, = - PA,, n + l  b 

Substituting Equation (5.4-5) into Equation (5.7-54) one finds that 

n + 1 b2ay g , (a /W)  h,(a/W,n) 
aPo g M W )  h , W W  n)  ? P = T -  

(5.7-54) 

(5.7-55) 

which can be evaluated for the specimens and structures included in the 
handbook. Computations demonstrate that q, can depend rather strongly 
upon the crack length and the hardening exponent for tension loading. A 
typical result is shown in Figure 5.46. However, as shown in Figure 5.47, q, for 
a bend specimen is virtually independent of the hardening exponent for a 
range of crack lengths. For deeply cracked bodies qp also appears to be 
independent of the hardening exponent and approaches a constant value that 
is specimen dependent. 

Having established q,, one can determine dq,/db numerically. Because it is 
the quantity, 

(5.7-56) 

that appears in  Equation (5.7-34), it may be more convenient to form the 
numerical derivative of d(ln qp)/d(ln b). It also follows from Equation (5.4-5) 
that 

(%)o = 3 g3 (i) h3 (i,n)(;--’ (5.7-57) 
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Figure 5.46 The q,-factor determined from the GE/EPRI plastic fracture handbook as a 
function of crack length and hardening index for a single-edge-notched tensile specimen. 

which completes the determination of the plastic contributions in 
Equation (5.7-38) for (dJ/da),,.  The elastic contribution to this quantity can 
be readily evaluated using LEFM handbooks-for example, Tada et al. (5.38). 

The principal advantage of this approach over that suggested in reference 
(5.46) is only a single numerical differentiation rather than four is required. 
Furthermore, as suggested by Parks et al. (5.70), a judicious choice of g1 and y, 
can even simplify this computation. To the extent that the tabulated functions 
h l  and h,  exist in reference (5.46) for the configurations of interest, this 
approach can be used to assess the stability of crack growth in power law 
hardening materials. 

For flawed configurations not included in the handbook, one can generate 
h ,  and h ,  for the configurations of interest or develop an alternative approach. 
A rather efficient approximate procedure is the following one. Suppose that an 
approximation for qp = qp(b) has been established, say, through a combination 
of dimensional analysis and Equation (5.7-29) as was done in the previous 
examples. Since 

Jp = V,, = - (do)Acp 8% 
= (%) A,, 

(5.7- 5 8) 
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3 

%J 

0 

2 -  

1 -  

then 

dUC, 
v,, b 
- = 3 db for ACp = A:, = constant 

Integrating Equation (5.7-59) yields 

where 

(5.7-59) 

(5.7-60) 

(5.7-61) 

A representative reference length of the remaining ligament of the flawed 
configuration is denoted by b,  and A:, is an associated prescribed plastic load- 
point displacement. From Il’yushin’s theorem it follows that 

(5.7-62) 



356 Advanced Fracture Mechanics 

The combination of Equations (5.7-60) and (5.7-62) leads to 

In addition 

From Castigliano's first theorem 

n + 1 U,,(bo,App) 
n A:, 

from which it follows that 

For a given power law hardening material and a flawed configuration a 
single reference computation for a prescribed plastic load-point displacement 
App and remaining ligament length b, is sufficient to determine Ucp(bo, 
The finite element method can efficiently perform this type of computation. 
Having established U,,(b0, A,",), it is clear from Equations (5.7-64)-(5.7-66) 
that P and ( I ~ A ~ ~ / I ~ P ) ~  can be determined for any other crack length and load- 
point displacement for this configuration. When these quantities are combined 
with their elastic counterparts, everything is in place for performing a tearing 
instability analysis. 

A comparison of this approach and the known solution from the GE/EPRI 
handbook for bend specimens is made in Tables 5.3 and 5.4 for plane stress 
and planestrain. Based upon the previous dimensional analysis, v p  = 2 is used 
for the bend specimen. In these tables bo = W / 2  is the reference length of the 
remaining ligament and Jo is the corresponding value of J, for a fixed AcP. If 
there were perfect agreement, then the ratio of ( J p / J o ) ,  from the handbook and 
( Jp /Jo)  determined from Equation (5.7-64) would be unity. For the most part 
the agreement is fairly good. Significant differences appear for a/  W < 0.25 and 

Table 5.3 Comparison of Handbook Solution and Approximate Solution for Plane 
Stress Three-Point Bend Specimen 

(JP/JO)h/(JP/JO) 

a/W n = l  2 3 5 I 10 13 16 20 
~~ 

25.18 0.514 0.101 0.640 0.699 
' 4.484 0.853 0.828 0.906 0.948 i 1.818 1.018 0.979 0.991 0.945 

4 0.653 0.955 0.911 0.999 0.995 
2 0.512 0.884 0.926 0.945 0.956 
4 0.444 0.862 0.922 0.962 0.985 

f 1.000 1.000 1.OOo 1.000 1.000 

~ 

0.713 0.729 0.742 0.764 
0.946 0.950 0.957 0.911 
0.984 0.985 0.990 0.992 
l.m 1.000 1.000 1.000 
0.999 1.000 1.003 1.01 1 
0.961 0.960 0.962 0.969 
1.003 1.018 0.923 1.025 
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Table 5.4 Comparison of Handbook Solution and Approximate Solution for Plane 
Strain Three-Point Bend Specimen 

(JdJO)h/(J,lJO) 

a/W n = l  2 3 5 7 10 13 16 20 

6 25.96 0.553 0.541 0.581 0.613 0.636 0.638 0.637 0.641 
4 4.498 0.798 0.793 0.866 0.910 0.953 0.941 0.952 0.957 
3 1.813 0.993 0.997 1.006 0.984 1.004 0.984 0.980 0.963 

4 0.657 0.971 1.016 1.040 1.049 1.050 1.028 1.041 1.031 
9 0.509 0.930 1.014 1.032 1.050 1.078 1.070 1.080 1.074 a 0.444 0.892 0.989 1.056 1.098 1.150 1.136 1.144 1.097 

f 1.Ooo 1.OOo 1.ooo 1.OOo 1.OOo 1.000 1.000 1.OOo 1.OOo 

smaller departures for the larger values of n and a /  W > 3 exist. The large 
variances for n = 1 are of little practical consequence since linear elastic 
solutions are readily available. The range of a / W  and n for which the 
differences are significant is, as expected, the same range where the plots in 
Figure 5.47 differ appreciably from qp = 2. 

It is also clear from Tables 5.3 and 5.4 that, except for n = 1, better 
agreement occurs for crack lengths close to the reference crack length. Thus, it 
is advisable to perform the reference computatior) for the anticipated flaw size. 
In this way the error introduced by the approximation inherent to this 
approach will be minimized when neighboring flaw sizes are considered. In 
addition, for reasons of precision it is better to work with Aep than P. If 
Equation (5.7-65) is used to eliminate A,, in Equation (5.7-64), then the term 
(b/b,)-"" appears in Jp. Because of this term a small error in up, when 
multiplied by a large value of n, can produce a substantial error in J, if b/b,  
differs appreciably from unity. 

With this approach a tearing instability analysis can be performed in the 
following manner. For an assumed value of the crack extension Aa, J,(Aa) is 
determined from the resistance curve. A value of Acp is selected and Jp and P are 
computed from Equations (5.7-64) and (5.7-65). The value of P can be used to 
compute J, using LEFM methods. The sum, J = J, + J,, is compared with JR.  
If J # J R ,  then A,, is adjusted appropriately and the procedure repeated until 
J = JR. Next, (dJ/da), ,  is computed using Equation (5.7-38), and the stability 
of the crack growth is assessed by means of Equation (5.7-9). Alternatively, the 
same procedure can be followed to determine (dJ/da), ,  versus J = JR. The 
value of J at instability is identified with the point of intersection (if it exists) of 
this curve and dJ,/da versus J R .  The resistance curve can be used to determine 
the limit of stable crack growth. When J, can be neglected compared to Jp, then 
Jp = JR so that Acp can be determined without iteration from Equation 
(5.7-64); whereupon, P follows from Equation (5.7-65). 

5.7.5 Applications 

For application of a tearing instability analysis consider a long pressurized 
pipe of mean radius R and thickness t with a through wall axial crack of total 
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n 
E .- 

length 2a. The pressure loading in essence corresponds to a condition of load 
control. A tearing instability in this case usually results in a rapidly 
propagating axial crack accompanied by a depressurization of the pipe. A 
summary of failure test data for A106B carbon steel pressurized pipes is 
contained in Table 5.5 (5.71). 

Typical J-resistance curves for compact specimens of ASTM A 106 Class C 
steel obtained by Gudas and Anderson (5.72) are shown in Figure 5.48. These 
tests employed specimens with 20 percent side grooves to minimize the 
formation of shear lips. The test temperature of 550°F is in the temperature 
range of 538-625°F for the test data in Table 5.5. Within the scatter evident in 
Figure 5.48, the J-resistance curve after crack initiation can be approximated 
by a straight line. Average values of J,, and dJR/da from six tests are 1.8 ksi-in. 
and 18.6 ksi, respectively. In the following analysis the J-resistance curve is 
taken to be a straight line passing through JR = 1.8 ksi-in. and Aa = 0 and 
having constant slope dJR/da = 18.6 ksi. 

8 ,  

I 
5 -  I - 

/ blunting line 
I 
I 9 s  

a 0,; DnA 
4 -  

I 0 
0 -  A '  

0 o o  
A 

- 

- 

Based upon a Dugdale model for the plastic zone ahead of the crack tip, the 
J-integral for the pressurized pipe is given by Equation (5.1-18). In this 
analysis the flow stress is taken to be 

00 = (ay + 0,)/2.4 (5.7-67) 

where o,is the ultimate tensile stress. A family of curves of the J-integral versus 
the half-crack length, a, with the hoop stress as a parameter is shown in 
Figure 5.49 for the first data set of Table 5.5. Similar curves for the remaining 
two data sets of Table 5.5 can be constructed. 

Superimposed on Figure 5.49 is the resistance curve (shown dashed) of 
Figure 5.48 for Experiment 3 in Table 5.5 for which a, = 12.25 in. When 
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Figure 5.49 Crack driving force versus crack length for first data set in Table 5.5. 

plotted on this scale, the relatively large value of dJ,/da for this material 
becomes more vivid. The condition for tangency between the resistance curve 
and a crack driving force curve identifies the hoop stress at  instability, which is 
predicted to be 13.6 ksi for this test. This prediction compares favorably with 
the measured value of 13.5 ksi. For a failure criterion based upon J attaining 
the critical value of J,, = 1.8 ksi-in., the predicted hoop stress would be 10 ksi. 
This underestimates the observed failure stress by 35 percent. With everything 
else constant the percentage difference between measured and predicted hoop 
stresses based upon a critical value of J will increase with increasing crack 
length. 

The same procedure can be repeated for the other tests in the data set. In this 
manner the predictions of Table 5.5 were obtained. A graphical comparison of 
the measured and predicted hoop stresses at failure appears in Figure 5.50. If 
the agreement were perfect, all the solid points would fall on the straight line. 
When all things are considered, the agreement is very good. The successful use 
of the Dugdale model in this instability analysis depends upon using an 
appropriate value for the flow stress. 

It  is clear that dJ,/da is relative large in this instance. If Equation (5.1-18) is 
differentiated, then 

-=-+- dJ J 2o,a, [2SI - 0.054- a4 ] tan (::) (5.7-68) 
da a M E  R2t2 



Elastic-Plastic Fracture Mechanics 361 

?2 
v) 
Y 
Y 

cn 
v) 
Q 
L CI 

v) 

0 
0 
r 

n 

50 

4 0  

30 

20 

10 

0 
0 10 20 30 40 50 

Measured hoop stress (ksi) 
Figure 5.50 Comparison of measured and predicted hoop stress at failure of axially cracked 
A106B steel pipes based upon a J/T analysis (0) and plastic collapse (0). 

As Mah/ao + 1, dJ/Ga becomes unbounded. Conversely, for very large 
(unbounded) values of dJ,Jda, instability can be expected to occur when 

MCTh/G, = 1 (5.7-69) 

which in Section 5.1 was associated with plastic collapse. The hoop stress for 
plastic collapse in this case will bound from above the value for a tearing 
instability. Predicted hoop stresses for plastic collapse based upon 
Equation (5.7-69) are summarized in Table 5.5 and compared in Figure 5.50 
(open circles) with the measured values at failure. Again very good agreement 
is observed. This is consistent with the observation that flawed structures 
made of high toughness, low strength materials under load control usually fail 
near limit load. 

As an example of a complaint loading system consider the four-point bend 
test of a circumferentially cracked pipe depicted in Figure 5.51. This problem 
has been treated by Zahoor and Kanninen (5.73). The case of a noncompliant 
loading has been considered by Tada et al. (5.74). 

The limit load for this configuration is 

(5.7-70) 



362 

2i5 

Advanced Fracture Mechanics 

Figure 5.51 

+- initial 
crack 
front 

crack 
Compliant four-point bend loading of a circumferentially cracked pipe. 

where 

h ( 4 )  = cos(4/4) - + sin(4/2) (5.7-7 1) 

For this case 

b = (2rc - 4 ) R / 2  and P = I’/t (5.7-72) 

It can be argued from dimensional considerations that A,, must be a function 
of P / P ,  or, equivalently, 

p = ~ ( 4 ) d A c p )  (5.7-73) 

Noting that d/da  = ( 2 / R ) ( d / d 4 )  and introducing Equation (5.7-73) into 
Equation (5.7-29) one obtains 

qp = - ( 2 ~  - @ ) h ’ / h  (2n - 4 ) R t P  (5.7-74) 
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With the aid of Equations (5.7-72) and (5.7-74), Equation (5.7-24) yields* 

(5.7-75) 

for a nongrowing crack. For an extending crack Equations (5.7-39) and 
(5.7-74) combine to give 

Jp = 2p IOAcp fi dAcp + s,”. yJp d 4  (5.7-76) 

where y = ,“/!I‘ and p is evaluated for the initial crack angle & o .  

their plastic counterparts, Equation (5.7-38) reduces to 
When the elastic contributions to J and A can be neglected compared to 

where C = C, + dA,,/dP. Substitution of C, = 2C,t and Equation (5.7-74) 
into Equation (5.7-77) leads to 

(5.7-78) 2Y + - J  ($)A~ = 1 + (2Cs + C , ) ( J ~ / a A , , ) ,  R 
4t(pP)2(2C, + C,) 

where 

dA,, (2 - ~5)~(2 + 2 L )  c,=-= (5.7-79) d P  24EI 

is the elastic compliance of the uncracked pipe and E l  is its flexural rigidity. 
The term (aP/aA,,), can be evaluated from the load-displacement record up to 
the point of crack initiation. For many, but not all, ductile materials crack 
initiation occurs very near maximum load where (aP/aA,,), z 0. In this case 
Equation (5.7-78) reduces to 

2YJ = 4t(/IP)’(2Cs + C,) + - R (5.7-80) 

Figure 5.52 depicts J-resistance curves for Type 304 stainless steel obtained 
from a center crack panel, a three-point bend bar and two circumferentially 
cracked pipes in four-point bend (5.75). The pipes were tested in essentially the 
configuration shown in Figure 5.51 but without the spring. The load- 
displacement and the load-crack length records were used to establish the J -  
resistance curves for the pipes using Equation (5.7-76). It is clear from Figure 
5.52 that these J-resistance curves exhibit significant geometry dependence. 
The variances in the initiation values of J are due in part to the lack of 
conditions of plane strain, to differences in material, and to estimation 
methods used to deduce J from measurements. 

* Apparently, the factor of 2 in Equation (5.7-75) was inadvertently dropped in reference (5.73). 



364 Advanced Fracture Mechanics 

h 
C .- .- 
v) 
Y 

7 

Y 

4 5  

4 0  

35 

30 

2 5  

2 0  

15 

10 

5 

n a  (mm) 

0 5 1 0  15  2 0  25  30 

6 

5 

4 z  
(0 n. z 

3 7  
Y 

2 

1 

0 '0 
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

A a  (in) 

Figure 5.52 
experiments on four cracked configurations. 

Comparison of J-resistance curves for Type 304 stainless steel inferred from 

A pipe fracture instability experiment on a 102-mm (4-in.) diameter 
Schedule 80, Type 304 stainless steel pipe is reported by Wilkowski et al. (5.76). 
The flaw is a through wall crack having a total length of 104 mm (4 = 104"). 
The loading configuration is the one depicted in Figure 5.51 with 2 = 1.35 m 
and L = 0.41 m. The compliance of the spring is C, = 1.63 m/MN and simu- 
lates the compliance of an approximately 9-m long pipe. This yields CJC, z 
21. The fracture instability was observed to occur after the load had 
decreased to 86 percent of its maximum value, which followed shortly after 
initiation of crack extension. The average stable crack growth at each tip was 
about 19 mm. 

In this experiment the remaining ligament is fully yielded and near limit load 
conditions exist. For an assumed value of J the extent of crack growth can be 
determined from a J-resistance curve such as in Figure 5.52. When this crack 
extension is added to the initial crack length, the corresponding limit load can 
be computed from Equation (5.7-70). Finally, for the assumed value of J and 
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with P = Po, ( d J / d ~ ) , ,  is determined from Equation (5.7-80). In this manner a 
plot of (dJ/dU),, versus J can be constructed. The solid curves in Figure 5.53 
were established in this fashion for the J-resistance curves for pipes 3 and 4 in 
Figure 5.52. Superimposed on this plot is dJR/da versus JR from the resistance 
curves of these pipes. These are the dashed curves in Figure 5.53. 

Since J = J R  has been employed, then at the point of intersection of the 
applied and material curves, ( d J / d ~ ) , ,  = dJR/da, which defines the limit of 
stable crack extension. To the left of this point of intersection (dJ/da),, is less 
than dJR/da and, hence, the crack growth is stable. Conversely, the crack 
growth will be unstable to the right of this point. The value of J = JR at the 
point of intersection can be used to determine from the J-resistance curve the 
amount of crack extension at instability. The extent of stable crack growth at 
each tip is predicted to be between 15.2 mm and 22.1 mm compared to the 
observed growth of 19 mm before instability. If the analysis is repeated using 
the J-resistance curve for the three-point bend bar, then the predicted crack 
growth at instability would be only 6.8 mm. 

Further examples of tearing instability analyses for compliant loading 
systems can be found in reference (5.77) for three-point bend specimens and in 

J (MPa m) 
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Figure 5.53 Fracture instability predictions for Type 304 stainless steel circumferentially 
cracked pipes using J-resistance curves for pipes. 
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reference (5.78) for compact specimens. The foregoing stability analysis for a 
circumferentially cracked pipe has been applied by Joyce (5.79). In these 
analyses strain hardening was accommodated only approximately through 
the use of a flow stress. Pan et al. (5.64) applied a simple method that accounts 
for material hardening to predict tearing instability in a circumferentially 
cracked pipe in bending. 

The J-resistance curve will be unique only for limited amounts of stable 
crack growth; otherwise, as seen in Figure 5.52, the curves exhibit geometry 
dependence, The tearing instability analysis for the circumferentially cracked 
pipe demonstrates that to make reasonable predictions of extended stable 
crack growth and instability, the J-resistance curve that properly reflects the 
degree of plasticconstraint at thecrack tip must be used. The triaxiality that is 
known to determine the degree of plastic constraint varies significantly as the 
primary loading on the remaining ligament changes from tension to bending. 
Thus, for extended amounts of crack growth, at least two fracture parameters 
would be required to characterize the intensity of the deformation as well as 
the triaxiality. I t  has been suggested that a lower bound J-resistance curve, say, 
from a compact specimen would provide conservative estimates for the 
circumferentially cracked pipe in bending. This is borne out by the previous 
analysis. 

In summary the J-integral, tearing modulus approach to the analysis of 
stable crack growth and tearing instability depends upon the uniqueness of 
the J-resistance curve. To the extent that the J-resistance curve is unique, then 
this approach, which comprises a resistance curve analysis, is well founded. 
From an analysis point of view i t  makes little difference whether or not the 
loading is compliant. When J-controlled crack growth exists any discrepancy 
between predicted and observed behavior must be due to approximations in 
the analysis and/or experimental scatter, but not due to the concept of a 
resistance curve analysis. The resistance curve analysis can still be performed 
when J-controlled crack growth is lost. It  is only necessary to use a resistance 
curve that reflects the proper crack-tip constraint. When this necessitates 
developing a resistance curve for the specific flawed configuration of interest, 
than nearly all the appealing aspects of the approach arc lost. 

5.8 Extended Crack Growth 

The J-integral is an appropriate fracture characterizing parameter governing 
the initiation of crack growth in ductile materials. Furthermore, its use in the 
analysis of quasi-statically extending cracks can be justified when the 
conditions for J-dominance and J-controlled growth (Au << D a n d ' o  >> 1) are 
satisfied. For certain flawed configurations the amount of crack extension 
permitted within these restrictions may be quite limited-for example, less 
than 10 percent of the remaining ligament. When the conditions for J -  
controlled growth are not fulfilled, the J-resistance curve is no longer a unique 
material property, but becomes a function of the flawed geometry. Under such 
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conditions the application of the J-integral approach must be limited by the 
use of a J-resistance curve obtained for the specific geometry of concern. This 
severely diminishes the efficacy of this ttpproach. 

Because the triaxial constraint is usually greatest in bending, the J -  
resistance curve obtained from a bend specimen seems to have the lowest 
value. It can be argued that an analysis of a flawed configuration using a lower 
bound resistance curve will lead to conservative predictions of fracture 
instability that are still more realistic than those based upon a LEFM analysis. 
It should be recognized that not only must the J-resistance curve be a lower 
bound, but also its slope, dJ,/da, must be smaller. Moreover, the stress analysis 
must not underestimate the actual values of J and dJ/da. 

If these restrictions are satisfied and if the prediction is not inordinately 
conservative, then the J-based plastic fracture mechanics will suffice. If not, an 
alternate fracture criterion must be found. It is clear that the criterion should 
be independent of the geometry of the flawed configuration. Physical 
relevance and ease of application are other prime considerations. 

An effective way of evaluating potential fracture characterizing parameters 
is by what is referred to as generation-application phase analyses. In this 
approach tests are conducted to gather data on initiation of crack extension 
and subsequent stable growth. In the generation phase, an analysis is 
performed in which the experimentally observed load-stable crack growth 
behavior is reproduced in a finite element model and each potential fracture 
characterizing parameter is evaluated. In the application phase an analysis is 
again executed using one of the candidate criteria to predict the load-crack 
growth phenomenon for an alternate specimen. The criterion is assessed by 
comparing the predicted and observed behavior. I n  this manner an appro- 
priate fracture criterion can be identified. Figure 5.54 shows this method. 

5.8.1 The Crack-Tip Opening Angle 

A number of different criteria can be used for the basis of a plastic fracture 
methodology to predict crack growth and instability using the concept of a 
resistance curve. Two of the most appealing ones for extended crack growth 
are based upon the J-integral and the crack opening angle. There are two 
definitions for the crack opening angle. The crack-tip opening angle (CTOA) 
reflects the local slope of the crack faces near the crack tip. The average crack 
opening angle (COA) is the ratio of the crack opening displacement at the site 
of the initial crack tip to the current crack extension. While the value of the 
COA can be measured, its relationship to the events occurring at the crack tip 
is somewhat nebulous for extended stable growth. On the other hand, the 
CTOA reflects more closely the crack-tip behavior, but its measurement 
represents a formidable task. When J-dominance exists the intensity of the 
crack-tip displacement field is measured by J and, hence, J and CTOA are 
equivalent parameters. However, when J-dominance and J-controlled growth 
are lost after relatively small amounts of crack extension, J and CTOA are no 
longer equivalent. 
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methodology. 

Schematic of generation/application phase analysis for developing a plastic fracruie 

Through a finite element simulation of experiments by Broek (5.80) on 
2-mm thick, 2024-T3 aluminum, center cracked tension panels de Koning 
(5.81) demonstrated the constancy of CTOA during crack growth. I t  is clear 
from Figure 5.55 that while the J-resistance curve continually rises, the CTOA 
remains virtually constant until instability. The computed shape of the crack 
opening can be compared qualitatively with the observed profile for a crack in 
the Type 304 stainless steel center-cracked tension panel in Figure 5.56 (5.82). 

Kanninen et al. (5.82) went one step beyond de Koning in their in- 
vestigation. First, they performed a generation phase analysis for a 2219-T87 
aluminum compact specimen for which the results are illustrated in Figure 
5.57. Again the J-resistance curve increases with crack growth whereas the 
CTOA after an initial transient remains nearly invariant. Next they performed 
application phase analyses for a 221 7-T3 aluminum center cracked panel. The 
results of four such analyses along with experimental measurements appear in 
Figure 5.58. In one computation the J-resistance curve from the compact 
specimen was used. In the second case a constant CTOA fracture criterion was 
employed. The third analysis used the J-resistance curve for about the first 
10mm of crack extension and then switched to the plateau value of 0.08 
radians for the CTOA. The fourth analysis was similar but used the COA with 
a plateau value of 0.05 radians. I t  is seen that the combined J/CTOA criterion 
was still capable of handling the extended growth. Since the experiment was 
conducted under load-controlled conditions, instability occurred at maximum 
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Figure 5.56 An illustration of stable crack growth profile in a Type 304 stainless steel center- 
cracked panel. 

load. The J/CTOA approach predicted quite well not only this load, but also 
the crack extension at instability. 

These results suggest a two-parameter criterion may be appropriate for 
crack extension beyond the validity of J-controlled growth. The J-resistance 
curve analysis would be used for crack initiation and a limited amount of 
stable growth. During this presumably J-controlled growth the CTOA is 
calculated. When the CTOA becomes constant, continued crack growth is 
permitted to occur at this constant value. In this regard the two-parameter 
approach offers the advantage that only a J-resistance curve is needed for the 
calculations; that is, no more information than in the usual J-resistance curve 
analysis is required. Because of the additional complexity in computing the 
CTOA, the price of this approach appears to be the relative simplicity 
frequently associated with the J-resistance curve analysis. 

5.8.2 Asymptotic Fields for Growing Cracks 

Consider the asymptotic stress and deformation fields at the tip of a steadily 
extending crack in an elastic-perfectly plastic solid under plane strain Mode I 
loading. The nature of the elastic-plastic strain singularity has been examined 
by Rice (5.27), Rice and Sorensen (5.83), and Cherepanov (5.28). In these 
analyses a full Prandtl field is assumed to exist at the crack tip. However, Rice 
et al. (5.84) subsequently found that the full Prandtl field is inappropriate for 
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the extending crack because it fails to satisfy the requirement that the plastic 
work done be everywhere positive. Specifically, the stress component ore acting 
through the discontinuity of the radial velocity component v, at the boundary 
between the centered fan C and the constant stress zone B in the Prandtl field 
of Figure 5.59(a) does negative work. This suggests the existence of an 
intervening elastic unloading zone. 

Within the context of small strains, the stress field at the tip of a crack in an 
elastic-perfectly plastic solid is bounded and, consequently, oij = oij(e) as 
r + 0. Furthermore, Rice and Tracy (5.85) argue that r doij/dr + 0 as r -+ 0 
and, hence, in the crack-tip region the equilibrium equations reduce to 

(5.8-1) 

In addition, 
a 
r t3ij = a;(e)e = a;(e) - sin 8 (5.8-2) 

for a polar coordinate system attached to the steadily extending crack tip. The 
dot and prime are used to denote differentiation with respect to time and 0, 
respectively. 
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(b) 
Figure 5-59 Slip-line fields for (a) a stationary crack and (b)  a steadily growing crack. 

The Prandtl-Reuss flow rule is expressed by 

l + v  1 - 2v 
3 ,  + - Sijtjk,, + As, Dij = D ;  + Dt = - (5.8-3) 3 E  E 

where the strain rate tensor D!, defined in terms of the velocity components 
vi = tii is 

Dij = t (0 i . j  + v j . i )  (5.8-4) 

During elastic loading and unloading the plastic components Of; of the strain 
rate tensor vanish while during plastic loading 

DC = Asij (5.8-5) 

where 

A = (D;D;/s,,s,,,,J~ (5.8-6) 

The Mises yield condition is 

sijsij = 20,213 (5.8- 7) 

Whenever 

D$,(D$D$)-*  = 0 (5.8-8) 
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it follows from Equation (5.8-5) that s33 = 0 and Equation (5.8-7) yields 

(000 - a,,)’/4 + = 0,2/3 (5.8-9) 

with a33 = (a,, + 0,,)/2. Equation (5.8-9) can be expected to be valid 
asymptotically as r 0 when a plastic strain singularity exists. It should be 
noted that constant stress sectors do  not produce unbounded plastic strains. 
In this case Equation (5.8-9) becomes an approximate criterion for plane strain 
yielding in these zones. 

The differentiation of Equation (5.8-9) with the aid of Equation (5.8-1) leads 
to 

(5.8- 10) 

In sectors for which da,,/d6 = 0, Equations (5.8-1) and (5.8-9) imply that 

a,, = +ay/& a,, = 00, = a33 = constant 2 ( 2 a y / f i ) B  (5.8-1 1) 

In slip-line theory these sectors correspond to centered fans. The regions in 
which d(a,, + oe,)/dO = 0 are constant stress sectors since aij is independent of 
0 there. 

Let ei(0) and hi(B) = ei(6) be the direction cosines of unit vectors in the r and 
6-directions, respectively. Under a transformation of coordinates it follows 
that 

s,, = s i je ie j ,  S,, = sijeihj,  SO, = si jhihj  (5.8- 12) 
Since s,, = s,, = 0 and s,, = a,/$ in the centered fan, then 

sijeiej = (sijeiej)’ - 2e;sijej 

= s:, - 2s,e = -ay/$ 

While s,, approaches zero as r -+ 0, Rice (5.86), nevertheless, found that 
As,, = -(1 - Zv)(a,/flE)(ti/r)sinO as r -P 0. Failure to retain this term in 
earlier investigations (5.83, 5.84) produced minor inaccuracies. For example, 
this product vanishes for an elastic, incompressible material ( v  = 3). 

Multiplying Equation (5.8-3) by e ie j  and noting from Equation (5.8-1 1) that 
a;k = - 6ay/fl, Rice (5.86) obtained 

(1 + v)sjjeiej + - (’ - 2v) aik] P sin 0 + Asljeiej  
3E r 

Therefore, 

5 - 4v ay v,=- -  
f i E  

(5.8- 1 3) 

(5.8- 14) 
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wheref(0)and R remain undetermined in this asymptotic analysis. In a similar 
way 

- au, u 1 du 6(1 - 2v) ay rl 
D , ,  + D 2 , = - + + + - 2 =  - - - sin 8 (5.8-1 5) 

a r  r r d8 f i  E r  

and 

D o =  --- 5 - 4v ay d(l -$cosB)[ln(;) + " l _ f ( O ) + g ( r )  5 - 4v (5.8-16) 
f i E  

where g ( r )  is also undetermined except g(0) = 0. Because the material is rate- 
independent, f and g will be homogeneous of degree one in rl and in a loading 
parameter describing the intensity of the applied load. 

Since Dij for the centered fan can be computed from these velocity 
components and since D; can be determined from the known stress rates eij, 
then DE = Di, - D t  can be ascertained. Because s,, = see = 0 in the centered 
fan, the only nonvanishing component of DG referred to the polar coordinate 
system is 

f " + f  +- 2r (5.8- 17) 

When the latter is transformed into the Cartesian components, the resiilting 
strain rate tensor may be integrated to yield (5.84) 

5 - 4v ay &t=-- 
2$ E 

(5.8- 18) 

as r + 0, where Hij(B) are undetermined and 

G,,(8) = G22(8) = -2sin8 

G1,(8) = G2,(B) = In[tan(8/2)/tan(lr/8)] + Z(cos6, - t/$) 
(5.8- 1 9) 

Whereas the plastic strain singularity for the stationary crack in a non- 
hardening material is l / r ,  a logarithmic singularity exists for the steadily 
growing crack. When strain-hardening is present, the stress field also has a 
logarithmic singularity (5.87). 

To the extent that Equation (5.8-9) is an adequate approximation for the 
yield condition, the crack-tip stress field in the inelastic region consists of 
either centered fans or constant stress sectors. Rice et al. (5.84) found it  
necessary to include an elastic unloading sector between the centered fan 
region C and the trailing constant stress sector B in the slip-line field shown in 
Figure 5.59(b). They found that for v = 0.3, 8, z 115", and 8, z 163" 
compared to O1 x 112" and O2 z 162" for v = 0.5. Surprisingly, the stress field 
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ahead of the crack tip for this slip-line representation differs only about 1 
percent from the Prandtl stress field. Even in the elastic region the largest 
difference is of the order of only 10 percent. 

The form of the crack opening rate 6 near the tip is identical to that for the 
Prandtl field; that is, 

(5.8-20) 

where p = 5.08 for v = 0.3 and p = 4.39 for v = 0.5. The quantity A remains 
undetermined in the asymptotic analysis but is a homogeneous function of 
degree one in a and the loading rate parameter. 

When the applied loading does not significantly change the elastic-plastic 
boundary (e.g., by inducing elastic behavior in large portions of previously 
plastically deformed material), then is expected to be linear in d! and the 
loading rate parameter. The choice of a loading parameter is virtually 
arbitrary. When the plastic yieldingis contained, the far field will be elastic and 
the far-field value of the J-integral is a convenient load parameter. However, 
in this case neither path independence nor any meaning in the plastic tip region 
can be attached to J .  With a and p undetermined, substitute 

A = aj/oy + pci (5.8-21) 

into Equation (5.8-20) to obtain 

(+) a s r + O  6 = a - + ph -II In 
. j  

OY E 
(5.8-22) 

where p has been combined with R to form a new length parameter R.  

yields the familiar result 
For monotonic loading of a stationary crack (h = 0) Equation (5.8-22) 

(5.8-23) 

Finite element computations (5.88) indicate that the dimensionless parameter 
a* varies from 0.65 for small-scale yielding to 0.51 for the fully plastic 
condition. Since a is constant for small-scale yielding, it is generally thought to 
be approximately constant up to general yielding in deeply cracked bend 
specimens. 

When a increases monotonically with J ,  the asymptotic integration (replace 
da by dr) of Equation (5.8-22) for constant a yields c) a s r - + O  6 = - - + p r A I n  - ar d J  

oy da E 
(5.8-24) 

For the growing crack 6 = 0 and d6/dr = cg at the crack tip. The parameter R 
is expected to reflect the size of the plastic zone or at  least the size of the region 
over which the slip-line field of Figure 5.59(b) prevails. Hence, for small-scale 
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yielding one can write 
R = 1EJ/a; (5.8-25) 

where the parameter 1 remains to be determined, say, from finite element 
computations. 

Sham (5.89) has performed more refined finite element solutions for small- 
scale yielding than in reference (5.83). Depending upon how one interprets 
these solutions, values of c1 from 0.53 to 0.65 can be obtained. These results also 
suggest that, at least for small amounts of crack extension, c1 is nearly the same 
for stationary and growing cracks. For a growing crack under constant J ,  
Equation (5.8-24) reduces to 

(5.8-26) 

Sham found that Equation (5.8-26) for the near-tip crack opening profile 
agreed favorably with the finite element solutions for p = 5.4 and i. = 0.23- 
the former value being somewhat greater than the theoretical value of 5.08 for 
v = 0.3. For this value of A, the parameter R expressed by Equation (5.8-25) is 
found to be 15 to 30, percent greater than the maximum plastic zone radius 
predicted by the finite element solution. 

Dean and Hutchinson (5.90) have also performed finite element com- 
putations for quasi-static crack growth under small-scale yielding. While they 
obtained near-tip stress fields in agreement with those determined for the slip- 
line field of Figure 5.59(b), they found no identifiable elastic unloading region 
near the crack tip. It may be that a further refinement of the mesh will be 
necessary to reveal it. The best least square fit of Equation (5.8-26) to the four 
computed values of 6 closest to the tip yields p = 4.28 and i. = 0.78 for v = 0.3. 
When /3 is fixed at 5.08 the best least square fit for i is 0.32. Clearly, further 
research is needed to determine definitive expressions for the dependence of 51 

and R on the crack growth for both small-scale and large-scale yielding. 

5.8.3 Comparison of Theory and Experiment 

Since Equation (5.8-24) can be written as 

6 = ( P r q E )  W l r )  

P = eR exPC(alP)(~lo;)(dJlda)l 

where 

= Rexp[l + aT/P] 

(5.8-27) 

(5.8- 28) 

the form of the near-tip crack profile depends only upon the parameter p. 
Hermann and Rice (5.91) postulated that fracture proceeds such that the near- 
tip geometric profile of the steadily extending crack remains invariant. This is 
equivalent to constancy of the crack-tip opening angle. For the present 
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development, this requires 

Consequently, Equation (5.8-28) yields the differential equation 

p = constant (5.8-29) 

(5.8-30) 

relating J to A a  
There are a number of implications associated with crack growth under an 

invariant near-tip geometrical profile. First, it is clear from Equation (5.8-30) 
that, unless R = p/e, J will in general vary with crack growth. This is strictly a 
plasticity effect. Crack growth with an invariant profile is not possible for a 
nonlinear elastic material (deformation plasticity) having the same stress- 
strain relation as the elastic-plastic material under monotonic loading. For 
such a nonlinear elastic material the near-tip crack profile and J are inherently 
connected; therefore, constancy of one implies constancy of the other. 

Second, the crack growth criterion of Equations (5.8-28) and (5.8-29) implies 
that microcracking and void nucleation that are characteristic of the fracture 
process must be confined to the near crack-tip region. Obviously, this growth 
criterion cannot be expected to apply with much precision when these fracture 
processes occur in highly stressed regions removed from the immediate 
vicinity of the crack tip. Neither can it accommodate the transition from a 
stable ductile tearing mode of fracture to a cleavage fracture mode. 

Apparently, other fracture criteria can give rise to a differential equation for 
crack growth having the same form as Equation (5.8-30). For example, Rice et 
al. (5.84) have shown that the equivalent plastic shear strain y p  at points within 
the centered fan at a small distance r directly opposite the crack tip can be 
expressed as 

y p  = 0.94(5 - 4v)(oy/E) ln([/r) 

where 

t; = Lexp{ [m/0.94(5 - 4v)](E/o;)(dJ/da)} 

with m and L undetermined in the asymptotic analysis. A crack growth 
criterion based upon a fixed strain state near the crack tip requires that 
t; = constant and leads to a differential equation having the form of Equation 
(5.8-30). Wnuk (5.92) also obtained an equation of the same form using the 
Dugdale model and the final stretch criterion. 

Hermann and Rice (5.91) conducted crack growth tests on four AISI 4140 
sidegrooved compact specimens. The nominal tensile yield and ultimate 
strengths for this material are ay = 1170 MPa and a, = 1330 MPa. The 
remaining ligament 6 in these specimens is small compared to the overall 
dimensions and, hence, the specimens can be modeled as deeply cracked bend 
specimens. In  these tests the unloading compliance method was used to 
determine the amount of crack extension. Typical experimental results are 
shown in Figure 5.60. The applied moment and fully plastic moment per unit 
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Figure 5.60 M ,  My, G, J d ,  and J, versus crack growth for specimen 2 of reference (5.91). 

thickness are given, respectively, by M = P(a + b / 2 )  and My = 0.364b2ay ,  
where Pis  the applied load per unit thickness. This figure illustrates the change 
from contained yielding in the early stages of the test to general yielding in the 
later stages. 

The elastic energy release rate is given by (5 .93)  

G = 16(1 - v 2 ) M 2 / E b 2  (5.8-3 1) 

The deformation theory value of J-that is, &--is obtained by integrating 
[see Equation (5.7-52)] 

If the material were nonlinear elastic or if the crack growth were Jd-controlled, 
then this integration would be path-independent. Moreover, J d  would agree 
with the definition of the J-integral and in the limit of small-scale yielding 
J d  = G .  From Figure 5.60 it is clear that Jd and G agree until  M almost equals 

Finally, the far-field value of J-namely J’-follows from integrating 

dJd = ( 2 P / b )  dA - (J,/b) da (5 .8  - 3 2) 

MY 

dJ, = ( 2 P / b )  dA 
= dJd + (Jd/b)  da 

(5.8- 3 3) 
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This value of Jf agrees with the J-integral for a contour coinciding with the 
outer boundary of a deeply cracked, rigid-plastic bend specimen. There is no 
evidence that a similar interpretation can be made for an elastic-plastic 
specimen or rigid-plastic specimens of other geometries. For relatively small 
amounts of crack extension there is little difference between JJ and Jd; 
however, the difference increases dramatically with increasing growth. I t  
should be noted in passing that j’has the property that at full plasticity i t  is 
independent of li, whereas j d  depends upon i. More will be said about this 
later. 

and J replaced by Jd, Equation (5.8-30) becomes 
Based upon small-scale yielding (taking a = 0.65, p 

- Jd = 7.82 (2)2 ln (O.cEJd)  
da 

where in one place ay has been replaced by a, to 
hardening effects. As Jd approaches the limiting value 

for steady-state growth, Equation (5.8-34) implies that 
Jd (i.e., dJd/da = 0) is required for continued growth. 

= 5.08, and A = 0.23) 

(5.8-34) 

accommodate strain 

(5.8- 3 5 )  

no further increase in 

Hermann and Rice integrated Equation (5.8-34) subject to Jd = 35 kN/m at 
crack initiation as suggested by the experimental data. Values of the 
remaining disposal parameter p were selected to best fit the experimental data 
for J’ prior to general yielding. The comparisons of theoretical predictions and 
experimental results for two tests are shown in Figure 5.61. The solid curves 
are identical and correspond to the best fit of the data of specimen 4 for which 
p = 7.175 mm and (Jd)ss = 80 kN/m. The dashed curves conform to the value 
of p giving the best fit of the data for that specimen, even though the theory 
requires it to be specimen independent. The open circles are data points prior 
to general yielding (M < My) and the solid points identify post general yielding 
data. With the exception of small variations of p the predications of the small- 
scale yielding model agree reasonably well with the experimental data for 
crack extensions prior to general yielding. 

5.8.4 J for Extended Crack Growth 

Rice et al. (5.84) as well as Hermann and Rice (5.91) have speculated about 
crack growth under large-scale yielding. While the definition of the loading 
parameter is arbitrary, it is important to recognize that the definition of J 
influences through Equation(5.8-21) the values of p and perhaps a. Since p was 
ultimately absorbed by R,  the latter will also depend upon the interpretation 
of J. Therefore, it is necessary to be more precise about the definition of J for 
extended crack growth and yielding. Some guidance in this direction can be 
provided by considering the limiting case of rigid-perfectly plastic material- 
that is, in the limit as oy/E -+ 0. For a fully yielded specimen of this material the 
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Figure 5.61 Comparison of theoretical predictions and experimental results (5.91). 

crack opening rate 8 has the form 8 = RA, where A is a prescribed generalized 
displacement and R is a geometric factor. This expression is valid for both 
stationary and growing cracks; that is, it is independent of a. For R to remain 
well defined in the rigid-plastic limit, whatever definition that is adopted for J 
must be such that j depends only upon A and not on a in this limit. Otherwise 
R would have to contain a factor exp(E/a,) in order that the second term in 
Equation (5.8-22) annul the the lidependence of j in the first term as o,/E -+ 0. 
This would result in an unsatisfactory behavior of R for this limiting case. 

Rice et al. (5.84) have shown that the far field value, J,, of the J-integral for 
the rigid-plastic bend-type specimen possesses this characteristic, but the 
deformation theory value of J ,  Jd, does not. On the other hand, J,, has the 
proper character for the rigid-plastic double-edge cracked tension specimen 
with sufficiently deep cracks to permit full development of the Prandtl field 
over the uncracked ligament. Due to the nonuniqueness of the stress field in 
the remaining rigid region, J, is not uniquely defined. Both Jd and J, have the 



382 Advanced Fracture Mechanics 

proper limiting behavior for the rigid-plastic, center-cracked tension speci- 
men. However, this specimen does not possess the Prandtl-like slip-line field at 
the crack tip. 

Ernst (5.94) has proposed a definition of J which has the property that j is 
independent of h in the limit as ay/E -+ 0. The deformation theory value of J 
can be decomposed into its linear elastic contribution and its plastic (nonlinear 
elastic) component; that is, 

Jd = J, + J p  = G + J p  (5.8-36) 

Assuming that Jd = Jd(A, a), then 

Jd = ($).A + ( 2 ) . d  + (2) A a 
or upon rewriting 

Jd - ($!$Ad = ($).A + (g) A d 

Since (aG/aa), + 0 as a,/E + 0, then 

is independent of a and 

(5.8-37) 

(5.8-38) 

This definition of J has the desired character and reduces, of course, to Jd in the 
absence of crack growth. Equation (5.8-37) can be rewritten as 

(5.8-39) 

While J defined in Equation (5.8-38) yields the correct limiting behavior, there 
is no assurance that this is the only definition to do so. 

Assuming the existence of the qp factor, one can write 

J = 2 U p  v 
P b  

and, whence, 

(5.8-40) 

(5.8-41) 

where yp  is given by Equation (5.7-34). Consequently, for known qp and Jd 
Equation (5.8-41) can be introduced into Equation (5.8-38) to obtain 

(5.8-42) 
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Moreover, the substitution of Equation (5.8-41) into Equation (5.8-39) yields 

(5.8-43) 

For the deeply cracked bend specimen qp = 2, yp = - 1, and Equation (5.8-43) 
reduces to 

dJ  dJd ( J d -  G )  -=-+ 
da da b 

(5.8-44) 

in agreement with the interpretation of J given by Hermann and Rice. 
It is apparent in Figure 5.61 that the Jd-resistance curve reached a plateau 

and then decreased (dJd /da  < 0) with increasing crack growth. A negative 
slope of the resistance curve would indicate instability, whereas the test is quite 
stable in this case. However, with J defined by Equation (5.8-42) the slope of 
the associated resistance curve given by Equation (5.8-44) will be positive and 
vanish only if d A p  = 0. 

Ernst (5.94) has examined the resistance curves for geometrically similar 
compact specimens of A508 Class 2A steel at 4000F. Each specimen had a 
thickness one-half of its total width and a/  W = 0.6. The sizes ranged from 
1/2T (W = 1 in.) to 10T (W = 20 in.). The Jd-resistance curves for each 
specimen showed consistency during the early stages of crack growth, but 
significant departures occurred as the crack extension became an appreciable 
fraction of the remaining ligament. Such differences become more vivid when 
Jd is plotted against its respective tearing modulus 5 as in Figure 5.62. The 
large scatter for the smaller values of is a reflection of the deviation of the 
resistance curves at the larger values of Jd. 

Rather than using Jd  as a fracture characterizing parameter and appealing to 
J,-controlled crack growth, Ernst has suggested that i t  may be more 
appropriate to use J defined by Equation (5.8-38) and the normalized form of 
Equation (5.8-39) for the tearing modulus or, equivalently, Equations (5.8-42) 
and (5.8-43). When the previous data are interpreted in terms of these 
definitions of J and T ,  the result is shown in Figure 5.63. In  this instance the 
scatter is significantly reduced and the implication is that J defined by 
Equations (5.8-38) and (5.8-42) correlates better than Jd for extended amounts 
of crack growth. 

Not only should a potential fracture characterizing parameter correlate 
data for differing amounts of crack growth in the same kind of specimens, but 
also data from specimens of different configurations. Figure 5.64 compares the 
Jd-resistance curves for compact specimens and center cracked panels of 2024 
aluminum alloy. The deviation of the resistance curves beyond the limit of Jd- 
controlled crack growth is apparent. When these data are replotted in terms of 
the newly defined J ,  Figure 5.65 shows the oorrelation to be enhanced 
significantly. These limited data suggest that J defined by Equations (5.8-38) 
and (5.8-42) improves the correlation of resistance curves obtained from 
specimens of different sizes and geometries. 
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Figure 5.64 J,-resistance curves for 2024-T351 aluminum 4T compact tension specimens (0) 
and center cracked panels (A) (5.94). 
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Figure 5.65 J-resistance curves for specimens and data of Figure 5.64 (5.94). 

The concept of a resistance curve analysis and fracture instability is 
independent of the fracture characterizing parameter. Ideally, the resistance 
curve should be independent of the specimen's configuration. The tearing 
instability analysis of Section 5.7 is based upon a Jd-resistance curve. The 
disconcerting aspect of this analysis is that the Jd-resistance curve is specimen 
dependent once the ill-defined limit of J,-controlled crack growth is exceeded. 
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If the proposed new definition of J in this section should prove to be appli- 
cable universally for even greater crack extensions, then Equations (5.8-38) 
and (5.8.39) or, equivalently, Equations (5.8-42) and (5.8-43) provide the con- 
nections between Jd/q and JIT. Consequently, the analysis of Section 5.7 can 
be carried over in terms of these new parameters in a straightforward manner 
and presumably would lead to more reliable predictions. 

In summary, the J-integral in elastic-plastic fracture mechanics was 
originally employed as a measure of the intensity of the near-tip stress and 
deformation fields for stationary cracks subjected to monotonic loadings. 
Under such conditions Jd- the deformation theory value of J-suffices for 
characterizing crack initiation and limited amounts of crack extension. 
However, for extended amounts of crack growth accompanied by significant 
elastic unloading, Jd losses its significance as a crack-tip parameter and an 
alternative parameter must be used. The crack-tip opening angle (CTOA) 
represents one possibility, but it has the disadvantage that it is difficult to 
measure and to compute. The asymptotic solution for a growing crack in an 
elastic-perfectly plastic material has established a connection between the 
local crack profile (CTOA) and a loading parameter that is more readily 
measured and computed. This permitted the identification of certain limiting 
properties that the parameter must possess. A possible alternate definition of J 
[Equation (5.8-38)] that satisfies these properties has been proposed. Limited 
experimental evidence indicates that this definition permits correlating the 
fracture resistance for extended growth in specimens of different sizes and 
geometries. This has potentially strong implications with respect to tearing 
instability analyses that currently suffer from the dependence of Jd-resistance 
curves upon the specimen’s geometry. While these results are certainly 
encouraging, further theoretical studies of the crack-tip mechanism involved 
in extended growth under general yielding and further experimental analyses 
of the resulting growth criterion are required. 

5.9 Closure 

While much has been accomplished in the development of a plastic fracture 
mechanics methodology, much remains to be done. The problem of extended 
crack growth in elastic-plastic materials is certainly worthy of more study. 
Efficient methods for analyzing large crack growth are needed. Currently, 
solution techniques are limited to two-dimensional problems. There is a 
distinct lack of research devoted to the three-dimensional problem involving 
cracks with curved fronts. It  is even less clear here how growth proceeds and 
what the fracture criterion should be. The development of an effective plastic- 
fracture mechanics analyses for three-dimensional flawed structures and 
curved crack fronts will not likely be successful until an understanding of two- 
dimensional plastic fracture mechanics is achieved. Investigations to date have 
been limited primarily to monotonic Mode I loading involving a single 
loading parameter. The problem of multiple load parameters has many 
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interesting facets that have yet to be explored. Work on mixed mode plastic 
fracture is nearly nonexistent. The transition from the ductile tearing mode to 
a cleavage-type fracture is not clearly understood. The problem of the 
interaction of the plastic.crack-tip stress field and a residual stress field, say, in 
the neighborhood of the heat affected zones of welds deserves consideration. 
Most of the analyses have been limited to small strains that may be an 
oversimplification near the crack tip of high toughness-low strength 
materials. Clearly, the surface of plastic fracture mechanics has only been 
scratched. 
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FRACTURE MECHANICS MODELS FOR 
FIBER REINFORCED COMPOSITES 

Fiber composite materials are very strong for their weight and are generally 
fatigue and fracture tolerant. Consequently, they are highly attractive for use 
in aerospace, automotive, and other applications where weight is a primary 
cmcern. Reflecting this, a large number of textbooks have been written that 
provide the basic analysis approaches developed for the design of composite 
structures. The more recent of these are given as references (6.1)-(6.7). The 
more general treatment of Kelly (6.8) may also be profitably pursued. Tsai and 
Hahn (6.7) append a more complete listing-one that includes some 19 books 
on the subject that have appeared since 1966-but still omit several of the 
titles just given. There are currently eight journals devoted to composite 
materials with a steady stream of ASTM Special Technical Publications on 
the subject. This amount of publication is indicative of the importance of this 
class of materials-an importance that can only intensify in the years to come. 

Despite their attractiveness, composites are not now being used as much as 
they could be. And, often when they are used, it is in low stress applications, or 
with such large factors of safety as to nullify much of their potential. The basic 
reason surely is the uncertainty that exists in determining their strength and 
safe-operating lifetime in service conditions-particularly when defects could 
be present. For example, it is well known that damage resulting from low 
velocity impact events that might readily occur in normal service can have an 
extremely detrimental effect on the subsequent performance of a fiber 
composite component. Hence, there has been a large amount of research 
addressed to determining the effect of a damaged condition on the strength of 
a fiber composite that have drawn upon fracture mechanics. The books of 
Vinson and Chou (6.2), Tewary (6.3), Agarwal and Broutman (6.5), and 
Piggott (6.6), each contain extensive treatments of linear elastic fracture 
mechanics while Jones (6.1) and Christensen (6.4) provide at  least cursory 
treatments. 

The importance of composite materials is not as well reflected by the 
fracture mechanics community per se; for example, of the fracture mechanics 
books that we have listed in Chapter 9, only the book of Jayatilaka (6.9) 
addresses this subject. However, there have been a number of review papers on 
the application of fracture mechanics to composites. These include Argon 
(6.10), Corten (6.1 l), Erdogan (6.12), Zweben (6#13), Beaumont (6.14), Smith 
(6.15), Kanninen et al. (6.16), Dharan (6.17), and Backlund (6.18). As reflected 
in these papers, because failure processes often emanate from crack-like 
defects in the material, it is natural to apply fracture mechanics techniques to 
392 
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obtain more precise strength and lifetime predictions. But, as stated by Potter 
(6.19): 

The great success of linear elastic fracture mechanics in predicting the behaviour 
of isotropic materials has led, almost hypnotically, to its direct application to 
composites with little or no modification. 

Hence, despite the fact that LEFM techniques have been very successful for 
assessing defects in metals, limited success has so far been achieved for 
composites. What appear to be needed are more theoretically valid analysis 
models that recognize the inherent differences in the fracture processes in 
composites and metals. This chapter focuses on such fracture mechanics 
analysis models. 

6.1 Preliminary Considerations 

Composite structural materials present a fracture mechanics analyst with a 
very complex situation. First, because they are heterogeneous, crack growth 
does not generally progress in the relatively simple manner that usually occurs 
in metals. Second, the myriad of failure processes that can occur are asociated 
with mechanical properties that are time-dependent and sensitive to temper- 
ature, moisture, and other environmental parameters. Third, the constituents 
of the composite will generally have properties that can differ markedly from 
one to another and, in addition, from position to position in the material. The 
development of mathematical predictive models for fiber composites con- 
sequently presents a formidable challenge indeed. 

Before addressing the various specific applications of fracture mechanics for 
fiber composites, i t  will be useful to highlight the key aspects that must 
underlie such applications. First, the conventional classifications and notation 
for fiber composite laminated structures are introduced. Next, some basic 
considerations in the application of fracture mechanics to composites are 
discussed. To illuminate the basic nature of the problem facing fracture 
mechanics analysts, the failure processes that are observed in fiber composites 
are briefly reviewed. Finally, the additional complications associated with 
laminates are described. 

6.1 .I Classifications and Terminology 

Recognizing that virtually all engineering materials are in a sense a composite 
of two or more constituents, the term “composite materials” may need a 
precise definition. It is commonly accepted that a composite material consists 
of at least two constituents that are chemically distinct on a macroscopic scale 
and have a clearly recognizable interface between them. Ordinarily, one 
constituent is a discontinuous phase that is bonded to, or embedded in, a 
continuous phase. The former is termed the reinforcement, the latter the 
matrix. The main classes of composites include, ( 1 )  embedded particle 
composites, (2) sandwich or layered composites, and (3) fiber reinforced 
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composites. The latter are of most engineering interest and have received by 
far the most attention in fracture mechanics. They will be treated exclusively 
here. 

Fiber reinforced composites (fiber composites for short) can be classified in 
various ways. One way distinguishes between glass fiber and so-called 
advanced composites-the latter designation referring to the use of boron, 
graphite, polyaramid, or other non-glass fiber materials. Another basis of 
classification is whether the matrix material is a polymer or a metal. In the 
former, a distinction exists between thermosets and thermoplastic resins- 
each having a distinct range of properties. Another classification basis is 
whether the fibers are (1) continuous and aligned or (2) chopped and 
distributed randomly in the matrix. Still another important distinction 
between the various types of advanced composites is in regard to the relative 
fiber size: boron fibers have a diameter in the order of 0.1 mm while glass and 
graphite fibers are roughly .01 mm in diameter. The latter are generally 
produced in tow form with 50 to 2000 fibers being contained in a single tow. 
Figure 6.1 illustrates this. 

Regardless of the distinctions just described, the general behavior of a fiber 
composite is always governed by the same general principles. Specifically, a 
fiber composite material exploits the high strength of a material in the form of 
a fiber. As was shown long ago by Griffith-see Figure 1.20-the fiber form 
exhibits a high strength primarily because of the elimination of debilitating 
defects. In a fiber composite the fiber strength is retained by embedding them 
in a binding material that keeps the fibers in a desired location and orientation, 
transfers load between fibers, and protects them from environmental and 
handling damage. 

Advanced composites are typically used in the form of laminates. A 
laminate is an assembly of “pre-pregs” or thin plies consisting of parallel fibers 

Figure6.1 
layers between two adjacent plies. 

Enlarged view of a ply in a graphite/epoxy laminate showing individual fibers and the 
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laid onto a resin and partially cured by heating. A number of pre-pregs 
normally are stacked (or layed-up) in some prescribed manner to obtain the 
properties needed for a particular application. The composite laminate is then 
final cured under heat and pressure. A commonly used notation for the lay up 
of a laminate is based upon the convention that designates the ply (or laminae) 
orientation by the angle between the fiber direction and primary load 
direction. That is, a 0” ply is one in which the load acts in the direction parallel 
to the fibers; a 90” ply is one in which the load acts in the direction transverse to 
the fiber length. Using this convention, a laminate designated as [0/&45/9014 
means that any four consecutive plies are in the o”, 45”, -45“, and 90” 
directions and that there are four sets of these; 16 plies in all. An extension of 
this notation is to employ a subscript S to denote symmetry about the mid- 
plane. Thus, a [0/&45/90],, laminate is also one containing 16 plies, but 
arranged in a slightly different order then in the first example. 

While many of the early analyses took a niicromechanical approach (i.e,, 
one in which the properties of the fiber and the matrix are specifically 
identified), it was gradually superceded by the macromechanical approach 
known as lamination theory. In lamination theory, the ply level is the smallest 
subdivision, with the mechanical properties of the fiber and the matrix being 
smeared into effective ply properties by the rule of mixtures. This superceded 
an approach known as netting analysis-an approach which assumes that the 
fibers carry all of the load with the matrix serving only to hold the fibers 
together. That the matrix plays an important role in a composite used in a 
loaded-bearing application is now clear. What is not so clear is its role in 
determining the strength of the composite and, in particular, the strength of 
the interface. 

The terms “failure” and “strength” are not always used in a precise manner 
in engineering applications. But, because of the complexity of fiber com- 
posites, the distinction is of particular concern. There are many different ways 
that a structure made of a composite material can become unable to perform 
its primary function. in each such instance “failure” can be considered to have 
occurred. The term “strength” is conventionally associated with the load level 
at which failure occurs by some specific means-usually in a standard test 
specimen. The possible failure modes range from simple loss of structural 
stiffness due to gross inelastic deformation (e.g., yielding), through a premature 
warning of a potential loss of load-carrying capacity (e.g., first ply failure), to a 
catastrophic reduction in load-carrying capacity by gross macroscopic 
deformation and separation (e.g., fracture). 

Failure can be gradual or rapid, and may or may not be catastrophic in 
nature. Clearly, the strength will depend upon the failure mode under con- 
sideration and will be a function of many different parameters in the test pro- 
gram. Hence, it may or may not be directly applicable to the material when 
used in a different form in service. 

i t  is clear that an analysis procedure that provides a bridge between 
standard test procedures and engineering applications is absolutely necessary. 
Only in this way can reliable estimates of the failure loads expected in service 
be made using strengths determined in small-scale laboratory tests. While 
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substantial failure analysis work has been performed on composite materials, 
a general theoretically valid capability does not exist. It is likely that the least 
progress has been made in the most critical problem area-when crack-like 
defects exist in the material. This, of course, is the motivation for the use of 
fracture mechanics for composite materials. 

6.1.2 Basic Mechanical Behavior 

The simplest point of view that can be taken in analyzing a composite 
laminate is to regard it as a homogeneous continuum and to make no 
distinction either between the fiber and matrix materials that make up the 
composite or between the individual plies. The laminate is then treated as a 
single material with suitably averaged properties of itsconstituents. As a result 
of such a sweeping generalization, much progress is possible. As already 
indicated, such an approach has been superceded by lamination theory. 
However, the “rule of mixtures” still forms the basis for many analyses. The 
manner in which the properties and geometrical arrangements of the 
individual materials in the composite contribute to the average mechanical 
properties of the material is therefore of interest. 

A mathematical model of a composite can be constructed by applying 
combinations of elasticity, plasticity, and viscoelasticity to model the fiber and 
the matrix. The simplest approach is to envision the fiber and matrix as a 
simple series of parallel tensile elements. Then, if both the fiber and matrix are 
linear elastic materials and are firmly bonded to each other, the elastic moduli 
in axial tension, transverse tension, and shear, respectively, are given by 

EA = VJEf + ( 1  - V/)Em (6.1-1) 

1 - v, - ’  
El- = (2 + 7) (6.1-2) 

(6.1-3) 

where V’ denotes the volume fraction of fiber and the subscripts f and m 
denote properties of the fiber and the matrix, respectively. These results are 
known as the “rule of mixtures” and are, of course, only approximations. As 
an important example, the law of mixtures approach is completely invalid for 
predicting the toughness of a composite. Nevertheless, such relations can be 
useful for predicting the mechanical properties of a composite. 

The introduction of an oriented family of fibers gives a definite direction- 
ality to the material. Hence, even if the constituents of the composite are 
isotropic, the composite itself will be anisotropic in its elastic properties. 
Moreover, unless the fibers are everywhere aligned in parallel straight lines 
(i.e., a unidirectional composite), the principle directions characterizing the 
elastic anistropy will vary from point to point. Finally, in a laminate where 
there is more than one family of fibers, the composite will have several 
preferred directions (possible varying from point to point) and the material 
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exhibits an even more general form of anistropy. When the material contains a 
crack that is not aligned with a principle direction, even greater complications 
to a complete analysis are presented. 

Other important combinations of continuum mechanics theories to fiber 
component materials include the viscoelastic fiber and matrix, elastic-plastic 
fiber and matrix, elastic fiber and viscoelastic matrix, and elastic fiber with an 
elastic-plastic matrix. Relations comparable to the rule of mixtures do not 
exist for these models. Nevertheless, some qualitative results can be stated. For 
example, if either or both constituents are viscoelastic, the composite is 
viscoelastic. Then, the five elastic constants of a directionally anisotropic 
(orthotropic) elastic material are replaced by five relaxation or creep functions. 
Similarly, if either or both constituents are elastic-plastic, the problem is one 
of an orthotropic elastic-plastic solid. In most cases, it can be assumed that the 
macroscopic response of the body in axial tension will be predominately due 
to the properties of the fibers, while its behavior in both transverse tension and 
in transverse or axial shear will be mainly governed by the properties of the 
matrix. 

6.1.3 Anisotropic Fracture Mechanics 

In their gross response to load, composite materials can be considered as being 
orthotropic in their elastic properties. (Orthotropic, meaning orthogonal 
anisotropy, is a special case of general anisotropy.) However, in a cracked 
orthotropic body where the crack is not associated with a plane of elastic 
symmetry, the analysis becomes a problem of a generally anisotropic body. In 
so far as the fracture mechanics of anisotropic bodies is concerned, the stress 
intensity factors are in most practical cases just the same as for isotropic 
bodies. In particular, except when unbalanced loads act on the crack faces, the 
stress intensity factors will be independent of the material constants and, 
therefore, will be identical to the K values derived in isotropic fracture 
mechanics. This holds for each of the three possible modes of crack extension. 
The analysis of the virtual work of crack extension, which relates the stress 
intensity factors to the energy release rates for each mode, is then much the 
same as in the isotropic case. In general, however, the relationship is nonlinear 
in the K values so that simple superposition of loads is not possible except 
under simple states of applied stress. 

Following the derivation given by Sih et a]. (6.20), let the generalized 
Hooke’s law be written in index notation as 

c. 

Ei = 2 aijoj ,  
i =  1 

i = 42, ..., 6 (6.1-4) 

where aij = aj i ;  = E ~ ,  c2  = E, ,..., 66 = y x y ;  and 0, = ox, o2 = o,,. ,., 
0 6  = 7xy.  In general anisotropy there are 21 independent elastic constants. In 
plane problems this number is reduced to six. For plane stress these are: a , , ,  
a 2 2 , a 6 6 , a 1 2 , a 1 6 , a 2 6 .  Notice that from a mathematical viewpoint the formu- 
lation of plane stress and plane strain problems are identical-a solution for 
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the latter being obtained from the former by replacing the aiis by b,’s, where 

ai3aj3 
a3 3 

bij = aij - - , i , j =  1,2 ,..., 6 (6.1-5) 

In either case (i.e., either using the aiis or the bi,’s) a solution by a complex 
variable technique leads to a result involving a parameter p that is one of the 
roots of the characteristic equation 

a11P4 - 2a16P3 + (2a12 + a66)P2 - 2a26,u + 0 2 2  = 0 (6.1-6) 

Because the roots of Equation (6.1-6) are either complex or purely imaginary, 
p can always be expressed in the conjugate pairs (pl,j i l  and ( p 2 , j i 2 ) .  

Just as in the isotropic case, a knowledge of the stress and displacement 
fields in the neighborhood of the crack tip is the key to expressing the fracture 
strength of a cracked body. The difficulty in the anisotropic case is that crack 
extension will not necessarily occur in a planar fashion. However, because the 
mathematical difficulties involved in treating angled cracks is prohibitive, this 
complication is usually ignored. Consequently, in the same manner as in the 
isotropic case, the energy release rate-stress intensity factor equivalence is 
determined from a virtual crack extension Aa. For Mode I conditions, this is 

PA4 
GI = lim J t~~( r ,O)u~(Aa  - Y, n) dr 

A 4 + 0  0 
(6.1-7) 

where the components of stress and displacement are considered to be given in 
terms of a polar coordinate system (r, 0) at the crack tip. Similar expressions 
for Mode I1 and Mode 111 deformation can also be written. 

Omitting the details, if the stress and displacements corresponding to a 
crack in a rectilinearly anistropic body in plane stress are substituted into 
Equation (6.1-7), the results are found to be 

GI = --a22 K :  Im{+} 1 + P2 
2n 1 P2 

(6.1-8) 

Similarly, 

where in Equations (6.1-8) and (6.1-9), p1 and p2 are the distinct roots of the 
characteristic equation (6.1-6). Notice that, provided there are no unbalanced 
loads acting on the crack faces, the stress intensity factors K ,  and K,, are exactly 
the same functions of the applied loading and geometry as in the isotropic 
cases. For example, for a uniform tensile stress t~ acting at an angle a to the 
crack plane in an infinite sheet, these are 

K, = OJ.. sin2 u 

K, ,  = oJ.. sin a cos a (6.1 - 10) 

where 2a is the crack length. 
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Equations (6.1-8) and (6.1-9) simplify somewhat if the material is or- 
thotropic with the crack on one plane of symmetry. Then, a 1 6  = a 2 6  = 0 so 
that there are only four independent elastic constants. More importantly, the 
roots of (6.1-6) can be extracted conveniently. Then (6.1-8) and (6.1-9) reduce 
to 

(6.1-1 1 )  I’ G , = K : t T ) i [ ( ( l i i )  a22 ’ + 2a12 + a66 

2a1 I 

and 

GI, = K,,  2 - all  [ (“) + 
J2 a11 

(6.1- 12) 

For an isotropic material, a,, = a22 and 4 6  = 2(a11 - a 1 2 ) .  Making these 
specializations then reduces (6.1-1 1) and (6.1-12) to the ordinary relations of 
linear elastic fracture mechanics given in Chapter 3. 

The conclusion that can be drawn from the foregoing is that linear elastic 
fracture mechanics can be applied to generally anisotropic bodies with cracks 
in very much the same way as it is for isotropic bodies. In  fact, if suitable values 
of K, are known (or, when more than one mode is present, the appropriate 
functional form (K,, KII, Kll,) = f,, is known), in most cases of practical interest 
the analysis is identical to the isotropic case. Again, this is true only if 
unbalanced forces do not act on the crack faces and crack extension takes 
place in the place of the original crack. A modification of the isotropic fracture 
mechanics approach is necessary if the fracture criterion is derived from 
energy considerations-for example, work of fracture for a composite 
material. Then, Equations (6.1-8) and (6.1-9) must be used to cast the result in 
terms of a critical toughness level, a procedure that, in general, will require the 
determination of the roots of the characteristic equation. 

6.  I .4 Basic Considerations for Fracture Mechanics Applications 

As repeatedly emphasized in this book, fracture mechanics should be 
applicable regardless of the constitutive behavior of a cracked body and of the 
origin, size, shape, and the direction of growth of the crack. However, most 
applications have called upon fracture mechanics relations that are valid only 
for rather specialized conditions-conditions that do not generally hold for 
fiber reinforced composites. A brief review of the basis of linear elastic fracture 
mechanics (LEFM) may be useful in  seeing why this is so. 

If a body everywhere obeys a linear elastic stress-strain relation, then the 
stresses at the tip of a crack in such a body will be given by 

(6.1 - 1 3) 

where rand 8 are polar coordinates with their origin at the crack tip and K ,  is 
the Mode I stress intensity factor. The omitted terms in Equation (6.1-13) are 
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of higher order in r. Hence, very near the crack tip where r is small, only this 
term is significant. It follows that the remote stresses, the crack length and the 
external dimensions of the body will affect the stresses at the crack tip only as 
they affect K .  Furthermore, there will be region surrounding the crack tip in 
which the r - t  term given by Equation (6.1-13) will be a sufficiently good 
approximation to the actual stresses. This is called the “K-dominant” region. 

Now, if the inelastic processes that occur in the vicinity of the crack tip are 
entirely contained within the K-dominant region, any event occurring in the 
inelastic region is controlled by the deformation that occurs in the annular 
elastic region surrounding it. Because this deformation is solely dependent 
upon the value of K , ,  if crack growth occurs, it must do so at a critical K ,  value. 
This leads directly to the basic equation of linear elastic fracture mechanics. 
Using notation common in work on composite materials, this is 

(6.1-14) 

where K ,  is a material-independent function of the crack size a, the component 
dimensions b, and the applied stress 6, while K1, is a material property that 
can depend upon temperature T and loading rate b. Note that there is 
no restriction on the direction of crack growth in this argument.* 

For metals, the above argument leads to the conclusion that, for 
Equation (6.1-14) to be valid, the crack length must be large in comparison to 
the value of (Klc/oy)’, where oY is the yield stress of the material. A 
comparable relation for composites is not so readily arrived at. Nevertheless, it 
is clear that the crack length in a composite must be large compared to the 
damage zone that would be experienced at a crack tip in the composite for this 
approach to be valid. It is therefore safe to say that most of the applications of 
fracture mechanics to composites have suffered as a consequence of violating 
this requirement. 

In developing more appropriate fracture mechanics techniques for appli- 
cations to fiber reinforced composite materials, several basic facts must be kept 
in mind. First, the initial defects that are apt to trigger a fracture are usually 
quite small. Sendeckyj (6.21) has recently cataloged the many different types of 
defects that occur and their effects on structural performance. These include 
preparation defects (e.g., resin-starved or fiber-starved areas), defects in 
laminates (e.g., fiber breaks, ply gaps, delaminations), and fabrication defects 
(edge delaminations caused by machinery, dents, and scratches). Of most 
significance to the present discussion is the inapplicability of Equation (6.1-14) 
to flaws such as these. 

A second key fact involved in the application of fracture mechanics to FRP 
materials is the basic heterogeneous nature of fiber reinforced composites. 
This manifests itself in several different ways. Within a ply, cracking can be 

______ 
* The notation used in mixed mode conditions must avoid use of K, ,  to denote fracture 

toughness as this term is generally reserved for plane strain conditions. Accordingly, the values 
K , c ,  Kz , ,  and K,, are used. Note that they will therefore depend upon the degree of triaxial 
constraint; for example, they will be thickness-dependent. 
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both discontinuous (e.g., fiber bridging) non-collinear crack growth (e.g., 
matrix splitting). On the laminate level, cracking can proceed in a distinctly 
different manner in different plys and, in addition, interply delamination can 
occur, Again, Equation (6.1-14) is ill-equipped to cope with these complexities. 
Consequently, many researchers have pursued an energy balance approach to 
the problem. This does not really present a significant improvement over the 
fundamental difficulties associated with the stress intensity factor point of 
view, however. 

Until recently, composite fracture mechanics research generally fell into one 
of two broad categories: Either, (1) a continuum analysis for a homogeneous 
anisotropic linear elastic material containing an internal or external flaw of 
known length, or (2) a semi-empirical analysis of the micromechanical details 
of the crack-tip region in a unidirectional fiber composite. The continuum 
approach completely ignores the inherently heterogeneous nature of com- 
posite materials and the basic way that heterogeneity affects crack extension. 
In fact, this approach represents only a slight extension of ordinary linear 
elastic fracture mechanics to account for the anisotropic response of the 
material to load. It involves only an evaluation of the left-hand side of 
Equation (6.1-14) with the right-hand side tacitly being considered a material 
constant that can be obtained from experiments. 

The micromechanical approach, the second of the two cited above, can also 
be related to Equation (6.1-14). It essentially represents a way to determine the 
right-hand side in terms of basic material properties by considering various 
mechanisms involved in composite fracture. For example, energy values have 
been deduced for debonding of the fiber from the matrix material, pull-out of 
the fiber from the matrix, and for inelastic deformation and fracture of the 
matrix material. Piggott (6.6) gives an extensive summary of these mechanisms 
and the relations that have been developed for them. 

As stated by Wells (6.22), a composite material can suffer any of the modes 
of failure of its constituents together with a few more arising from their 
combination. It is for these reasons that approaches in which the two sides of 
Equation (6.1-14) are attacked independently will not ordinarily suffice for 
composites-a conclusion reached some time ago by Zweben (6.13). 
Nevertheless, it is useful to explore some of the results in the literature that 
have adopted such an approach. Understanding these may lead to more 
fundamentally sound approaches to the problem. Accordingly, consideration 
is given next to the micromechanical factors in crack growth. 

6.1.5 Micromechanical Failure Processes 

In the absence of a large cut, i t  can be assumed that failure in a fiber composite 
emanates from small inherent defects in the material. These defects may be 
broken fibers, flaws in the matrix, and/or debonded interfaces. The longer the 
fiber, the greater the probability that a critical defect exists that will cause 
individual fiber breakage at loads well below the average fiber strength of the 
composite. Regardless, after a single fiber break, more fiber breakage plus 
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debonding and separation of the fiber and matrix will result. Defects in the 
matrix may also lead to yielding and fracture of the matrix between fibers. This 
will create further stress concentrations at the fibers and fiber/matrix 
interfaces. Thus, even at relatively low load levels, small cracks of a size on the 
order of several fiber diameters or fiber spacings are likely to exist. 

Under higher load levels the microcracks can coalesce to form an 
identifiable crack-like flaw. Even so the size of the damage zone near the crack 
tip will still be small relative to the crack length and other dimensions of the 
body. Hence, qualitatively, the same failure mechanisms (e.g., fiber breakage, 
debonding, matrix yielding, cracking) will always be important in the fracture 
process. This will be true whether the composite is composed of uniaxially or 
multiaxially oriented fibers for all different fiber/matrix combinations. An 
illustration of various possible micromechanical damage processes for a 
macrocrack running transverse to the fibers is shown conceptually in 
Figure 6.2. 

Figure 6.2 shows several possible local failure events occurring prior to the 
fracture of a fiber composite. At some distance ahead of the crack, the fibers 
are intact. In the high stress region near the tip they are broken, although not 
necessarily along the crack plane. Immediately behind the crack tip, fibers 
pull-out of the matrix. They absorb energy if the shear stress at the 
fiber/matrix interface is maintained while the fracture surfaces are separating. 
Theoretical treatments of the mechanics of the fiber/matrix interface have 
been given by several investigations; for examples, see Phillips and Tetelman 
(6.23), Cooper and Kelly (6.24 to 6.26), Gresaczuk (6.27), and Beaumont and 
Harris (6.28). 

In some bonded composites, the stresses near the crack tip could cause the 
fibers to debond from the matrix before they break. When total debonding 
occurs, the strain energy in the debonded length of a fiber is lost to the material 
and is dissipated as heat. Fiber stress-relaxation, a variation of the debonding 
model, estimates the elastic energy that is lost from a broken fiber when the 
interfacial bond is not destroyed. It is also possible for a fiber to be left intact as 

Figure 6.2 Schematic representation 
of micromechanical failure events ac- 
companying crack extension in a fiber 
composite material. 
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the crack propagates and this process, known as crack bridging, can also 
contribute to the toughness of the material. An analysis of debonding and 
crack bridging for brittle fibers in a perfectly plastic material has been given by 
Piggot t (6.29). 

When brittle fibers are well bonded to a ductile metal matrix, the fibers tend 
to snap ahead of the crack tip leaving bridges of matrix material that neck 
down and fracture in a completely ductile manner. The fracture toughness in 
these circumstances is largely governed by the energy involved in the plastic 
deformation of the matrix to the point of failure. Of the energy absorption 
models, debonding and pull-out have been used most widely. Obviously, the 
same mechanisms will not be important in all combinations of matrix and 
fiber materials. For example, the fracture energies of carbon fiber composites 
have been more successfully correlated with the pull-out model; for boron and 
glass composites, debonding is more successful. Marston et al. (6.30) have 
shown that no single mechanism such as pull-out, debonding, or stress 
redistribution taken alone can account for the observed toughness of 
boron/epoxy composites. 

Considerations of this kind can be contrasted with the simple “rule of 
mixtures” describe above, which works quite well in determining the effective 
elastic moduli. In the predictions of effective moduli, it may be safely assumed 
that the generic stress/strain relations and geometries do  not change under 
load. In contrast, the prediction of strength implies that process in the material 
have progressed to theextent that significant changes in material behavior and 
geometry have occurred-for example, yielding, damage formation, and 
crack growth. Thus, in order to perform a failure analysis properly, it is 
necessary to quantify these fundamental changes in the behavior of a 
structure. 

While the micromechanical failure events that can take place may be the 
same for simple unidirectional composites as for rnulti-axial laminates, the 
macroscopic failure modes for each can be quite different. The reason is that 
the local stress states are different, even under the same applied loading. The 
situation is further complicated by the fact that the order in which a sequence 
of discrete failure modes occurs is important. In general, several processes are 
likely to occur more or less simultaneously with the amount of energy 
dissipated being dictated by the kind and rate of loading, the flaw size and 
orientation, external geometry, and the temperature. Hence, the appropriate 
value of K,, to be used with a theoretically derived K, for a given application- 
see Equation (6.1-14)-cannot be deduced by simply summing the effects of 
single mechanisms operating independently. 

In the experimentation of Poe and Sova (6.31) on center-cracked sheet 
specimens of boron/aluminum, failure largely occurred by self-similar crack 
extension. Radiographs of the specimens indicated that the principal load 
carrying fibers began to break at the crack tip at about 80 percent of the 
eventual failure load. The breaks progressed from fiber to fiber, in effect 
producing resistance curve behavior and fracture instability after some sta- 
ble crack growth, similar to that which occurs in elastic-plastic fracture 
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Figure 6.3 Edge view of graphite/epoxy laminae in three dilferent laminates. 
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Figure 6.4 Fracture directions for center-cracked graphite/epoxy tension panels. 

mechanics, in the manner first noted by Gaggar and Broutman (6.32) and by 
Mandell et al. (6.33). 

In later work, Poe (6.34) found similar behavior in graphite/epoxy 
laminates. His radiographs show broken fibers and splits (matrix cracks) to a 
distance of 3 mm (about 20 percent of the crack length) ahead of the crack tip. 
It is of some interest to recognize that the damage in the -45" ply, which 
consisted of matrix cracking, coincided with the fiber cracking damage in the 
0" ply. Of further interest is his observation that damage progresses in a series 
of discrete jumps (accompanied by audible noise) that can start below one-half 
of the eventual failure load. Hence, it would appear, much as stated by Poe, 
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Figure 6.5 Comparison of LEFM 
prediction with fracture data on a fiber 0.1 0.2 0.3 0.4 
composite laminate-results of Zim- 
mer. 2a/w 

that the fracture process cannot be properly analyzed without knowing the 
size and nature of the crack tip damage. 

Following the work contributed by Wu (6.35), a number of investigators 
promulgated linear elastic fracture mechanics models for fiber composites; see 
references (6.36)-(6.45). Most of these can be summed up by noting that 
LEFM can be applied provided crack extension takes place prior to trans- 
verse splitting. The observations of Brinson and co-workers (6.46,6.47) show 
that the effect is dependent upon the lay-up. Their results are shown in 
Figures 6.3 and 6.4. But, as shown for example by Zimmer (6.39), the agree- 
ment is not particularly satisfactory even when splitting does not occur. His 
results are shown in Figure 6.5. 

6.2 Linear Fracture Mechanics Analysis Models 

Despite the fact that composite materials are by their very nature heterog- 
eneous materials, analyses developed for homogeneous materials are usually 
applied in treating composite fracture. A typical rationale has been given by 
Corten (6.1 1 )  who stated that, correct or not, such a point of view allows 
relationships between the variables to be developed for engineering purposes 
that could not otherwise be obtained. Of course, in composite materials, the 
picture is much more complex than in more conventional materials. 
Composite materials are inhomogeneous as well as anisotropic and, as 
described above, various fracture mechanisms with separate but perhaps 
coupled fracture energies must be accounted for. However, perhaps the single 
most complicating feature of composite fracture is that significant amounts of 
damage growth generally precede fracture in a fiber composite material. Self- 
similar crack growth is not likely to occur, even for undirectional or symmetric 



Fracture Mechanics Models for Fiber Reinforced Composites 407 

multi-directional laminates. Direct consideration (and implementation) or 
these key observations is one of the major delineations between the various 
approaches that have been offered. 

6.2.1 Crack Length Adjustment and Other Simple Models 

The early fracture theories of Waddoups et al. (6.36), Cruse and co-workers 
(6.40, 6.41), and Whitney and Nuisimer (6.48) are based entirely on linear 
elastic fracture mechanics considerations. Each of these investigators found 
that, in order to use various fracture solutions for either holes or cracks, the 
crack length had to be adjusted to include an “intense energy” region at each 
crack tip. The size of the intense region had to be found by experiment. 
Consider first the influential work of Waddoups et al. They have employed an 
empirical extension of linear elastic fracture mechanics for isotropic materials 
in which a damage zone of length 1 is taken as simply increasing the crack 
length, much as in Irwin’s plastic zone correction factor (see Section 1.4.1).* 
For a crack of length 2a in an infinite body under tensile load normal to the 
crack, their result is expressed as 

K, = ~ J R ~ ( U  + /)* (6.2-1) 

where 1 is taken to be the dimension of the characteristic intense energy region 
at the crack tip. The critical stress for crack extension is then 

K 1.2 
x f ( l  + a)+ 

a, = (6.2-2) 

where K is the fracture toughness. 
Waddoups et al. treated K,, and 1 as disposable parameters that could be 

evaluated from experimental data. They then concluded that the agreement of 
this equation with the single body of data from which these two parameters 
were determined shows that linear elastic fracture mechanics can be applied to 
composite materials. In fact, they devised a two-parameter empirical corre- 
lation of certain test data that may or may not be applicable to other materials 
or to other crack orientations in the same material. 

The actual crack-tip geometries (as opposed to the assumed ideal crack-tip 
geometries used in fracture analyses) are important for composite materials. 
Notch insensitivity is implicit in many fracture models as little distinction is 
made between a through circular flaw and a through crack. For this reason, 
the approach of Whitney and Nuisimer (6.48) has been of definite interest. 
They argued that, while different size holes in an infinite plate have the same 
stress concentration factor, the stress gradient is quite different for each. That 
is, large stresses are localized more closely to the edge of a small hole than a 
large hole. As a result, a critical defect is more likely to occur in a region of high 
stress for a large hole. Both a point stress and an averagestress technique were 

* There is a similarity between this approach and one described in Chapter 8 to elucidate the so- 
called short crack effect in fatigue. 
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used. The point stress criterion was given by 
2 

2 + R 2  + 3R4 + f ( K , " , R )  
- a, 

00 

_ -  (6.2- 3) 

where R = r / ( r  + do),  2r is the hole diameter, do is the size of the damage zone, 
and O, and a. are the critical notched and unnotched fracture stresses, 
respectively. The quantity f ( K , " ,  R) is a function of the hole size R and the 
orthotropic stress concentration factor for an infinite sheet K,". 

6.2.2 Models Allowing Non-Self-similar Crack Growth 

Wu (6.35), though a combination of experiment and analysis on balsawood 
plates and unidirectional glass fiber composites, developed a crack initiation 
criterion for anisotropic materials having the form 

K, + (;;J2 - = 1  
K1c 

(6.2-4) 

It was later suggested by Spencer and Barnby (6.49) that the fracture criterion 
for angle cracks in orthotropic materials can be obtained by generalizing Wu's 
criterion to 

(2- + (2)" = 1 (6.2-5) 

where K K2, ,  m, and n are supposed to be properties of the composite. It can 
be seen that Equation (6.2-5) involves four disposable parameters. Mall et al. 
(6.50), for example, have developed specific values for wood using this type of 
relation and found that Wu's relation (i.e., m = 1, n = 2) best fit their data. 

Laboratory results on balanced symmetric laminates containing a flaw 
perpendicular to the direction of loading indicate that the damage mode may 
either propagate in a self-similar manner or may change to another mode- 
for example, axial splitting. In the work given by Konish et al. (6.41), K t ,  
values in the laminates were found to depend upon the crack path. Not 
surprisingly, a high value of the fracture energy was obtained for tests in which 
fibers were broken while values approximately two orders of magnitude lower 
were obtained when the crack passed between fibers. 

A further step towards a direct quantitative consideration of transverse 
crack growth in materials was taken by Harrison (6.51) and by Wright and 
Iannuzzi (6.42). To remove the restriction on self-similar crack growth, 
Harrison postulated different energy-release rates for crack growth in the 
plane of the crack and for growth normal to the crack. Denoting these as G, 
and G,, respectively, his approach leads to different relations for fiber breaking 
and splitting. These are, for splitting normal to the crack 

G, = R,, G, < R ,  (6.2-6) 

while for fiber breakage in the plane of the crack 
G, < R,, G,= R, (6.2-7) 
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where R ,  and R,  are the critical energy absorption requirements for crack 
growth in the two directions. The difficulty here, of course, lies in calculating 
energy release rate values for non-self-similar crack extension. In addition, in 
this form, the approach is strictly applicable only to unidirectional fiber 
com posi tes. 

A number of fracture theories subsequently generalized Harrison’s 
approach. Wu (6.52) and Sih and Chen (6.53) each have approaches based on 
an anisotropic continuum interpretation of fracture. These techniques require 
that the intense energy region size be estimated either from the analysis or from 
an experiment. Both are designed to predict fracture and the direction of crack 
growth. In Wu’s method this is accomplished by locating the intersection of 
the stress vector surface and the failure surface in the intense energy region 
ahead of the flaw. The failure surface must be obtained from experimental 
studies to determine remote properties. A disadvantage of the approach is that 
the intense energy region ahead of the crack must be obtained by experiment. 

6.2.3 The Unifying Critical Strain Model 

Poe (6.34), recognizing that experimentation to determine K Ic values for each 
combination of material and layup is prohibitive, has proposed a new fracture 
toughness parameter Q, as an alternative to testing each laminate. This 
approach is based upon a failure strain criterion for fibers in the principal load- 
carrying piles. The Q, parameter is supposed to be a material constant 
independent of the layup of the laminate, whereupon it  can be determined 
from experiments on one single layup. Then, through the use of the ordinary 
elastic relations for a laminate, failure conditions can be predicted for other 
layups of the same material. Poe’s data appear to suggest that the Q, 
parameter is simply proportional to the ultimate tensile strain in the fibers 
measured on a unidirectional laminate whereupon K I c  can be obtained for 
any composite laminate from its unidirectional tensile strength. As Poe 
recognizes, this will not be true if either extensive delamination or splitting 
occurs. Consistent with the idea that matrix splitting effectively removes the 
stress concentration at the crack tip, Poe reports that splitting elevates Q, 
whereupon his predictions provide lower bounds when splitting occurs. This 
would seem to confine the applicability of Poe’s approach to through-wall 
cracked components where crack extension occurs in a self-similar manner, as 
in his work. 

Poe’s Q, parameter was derived on the basis that the failure of a composite 
laminate is precipitated by breakage of the principal load-carrying fibers just 
ahead of the crack tip. Thus, damage growth should correspond to achieving 
critical strain levels in these fibers. If the damage region is small compared to 
the crack length, the LEFM regular stress field should be valid whereupon the 
strain field can be obtained from a laminate analysis. This gives 

Qc 
E l e  = - f i  (6.2-8) 
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where c lc  is the critical fiber strain and x is the distance from the crack tip. The 
critical value of the stress intensity factor can then be obtained as 

EyQc 
5 

K, = - (6.2-9) 

where 

< = 1 - vyx (:)'cos2a + (:)+sin's 
where a is the fiber orientation angle of the critical load-carrying plies while 
Ex,  E,, and vxy are the elastic constants of that ply (x is taken parallel to the 
crack, y is normal to the crack). It can be seen from Equation (6.2-9) that for an 
isotropic material where Ex = Ey = E that Q, reduces to 

l - v G , '  
Q c = ( T T ; 7 )  (6.2-1 0) 

whereupon it would appear that Q, is a variant of the critical strain energy 
release rate (n.b., the dimensions of Q, are square root of length). The 
similarity with the point stress criterion of Whitney and Nuisimer described 
above can readily be seen from Equation (6.2-3). 

By replacing E,, by Efuf it follows that; if Qe/Efuf  is unique, there must be a 
characteristic distance 

(6.2-1 1) 

Poe's data suggest that Q, is proportional to the ultimate tensile strain of the 
fibers, E , , , ~ ,  and that their ratio should therefore be unique for all fiber 
composites that fracture in a self-similar manner with limited crack-tip 
damage. The data indicate that Q,/E~,,/ varies between 1.0 and 1.8 mm* for 
those layups that fail largely by self-similar crack extension and do  not 
delaminate or split extensively. Using a median value of Q,/E~,,, = 1.5 mm* 
allows a relation for the strength of the center cracked panels examined by Poe 
to be developed in terms of readily determinable parameters. This is 

s, = (6.2- 12) 

where So is the tensile strength of an uncracked panel, a and W are the crack 
length and plate width, respectively, and 5 is the bracketed term defined in 
connection with Equation (6.2-9). Comparisons of the experimental results 
with the predictions of Equation (6.2-10) show reasonable agreement. 
However, no comparisons were made with other crack/structure geometries 
or for non-through wall cracks, assuming that the approach could be modified 
to treat such more complex conditions. 
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6.2.4 Mixed Mode Fracture Models 

While a number of crack growth parameters have emerged in recent years, the 
four parameters that have so far been introduced--, K ,  J, and 8-are 
adequate for the great majority of all fracture mechanics applications. Indeed, 
for linear elastic fracture mechanics, any one of the four would suffice. 
Obviously then, it is the necessity to confront nonlinear problems that has 
produced the proliferation of other parameters. We begin with the parameters 
devised to handle mixed-mode crack growth problems. 

We have to this point concentrated on “opening mode” or “Mode I”  crack 
growth problems on the basis that these adequately cover both the theoretical 
aspects and bulk of the applications in fracture mechanics. Nevertheless, there 
are conditions in which one must consider the two other possible modes. The 
distinction between the three modes was introduced by Irwin (see Chapter 3) 
who observed that there are three independent ways in which the two crack 
faces can move with respect to each other. These three modes describe all the 
possible modes of crack behavior in the most general elastic state. It might be 
noted that combinations of Modes I and 11-the opening and the sliding 
modes-arise in problems involving a crack oriented at an acute angle to the 
applied stress or, more generally, when the applied stress is biaxial. 
Mode 111-the antiplane tearing mode (not to be confused with the tearing 
instability theory)-can occur in  very- thin components. But, because the 
mathematical formulation of Mode 111 problems is considerably simplier 
than for in-plane crack growth problems, it also serves as a testing ground for 
new approaches to difficult problems. 

The generalization of the relation connecting the stress intensity factor to 
the energy release rate is commonly written for plane strain conditions as 

1 G = E ’ ( K f  + K;) + - K i j  (6.2- 13) 
2 P  

where p is the shear modulus. Note that the individual terms appearing in 
Equation (6.2-13) are designated as GI, GII, and GIII, respectively; Equa- 
tion (6.2-1 3) therefore provides the special case where these are additive. 

Sih and Liebowitz (6.20) provided a further generalization of Equation 
(6.2-1 3) to rectilinearly anisotropic bodies. As they point out, because cracks 
do not extend in a self-similar way in generally anisotropic materials, their 
general result based upon this assumption is of somewhat academic interest. 
However, in the more specialized conditions corresponding to an orthotropic 
material with the crack aligned with a line of symmetry, this result is 
meaningful. For these conditions, it can be written as 

(6.2- 14) 
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where the aii are the coefficients in Hooke’s law expressed in the form E~ = uijoJ: 
see Chapter 2 and Section 6.1.3. 

The most prominent alternative to the above for the solution of mixed mode 
crack problems is the strain energy density theory introduced by Sih in the 
early 1970s to remove the restriction to self-similar crack extension. His strain 
energy density factor can be written as 

S = a , ,K:  + 2al2K1K,, + a Z 2 K i  (6.2-15) 

where 

( 1  + COS 8 ) ( K  - COS 8) 
1 

a,1 =- 
16np 

1 
16np 

a 1 2  = - ( ~ c o s ~  + 1 - K )  

and K is defined as (3 - v)/( l  + v)  for plane stress and (3 - 4 v )  for plane strain 
while 8 denotes a generic angle from the crack line. The parameter S 
characterizes the local strain energy density on any radial plane that intersects 
the crack tip. 

Sih’s crack growth criterion involves two hypotheses: (1) that crack initia- 
tion occurs in the direction for which S is a minimum (i.e., where dS/d8  = 0) 
and (2) at a point when S achieves a material-dependent critical value, S,. 
Clearly, S, is related to the conventional toughness measure in Mode I 
conditions via 

(6.2- 16) 

In applying the S-theory to determine the initial direction of crack growth in 
an angled crack problem, note that the appropriate stress intensity factors are 

K, = o(m)* s inZp 

and 

KII = a(nu)* sin p cos p (6.2- 17) 

where p denotes the angle between the applied stress and the crack line. The 
relation for determining 8,, the angle of crack extension, is then given by 
(P z 0) 

(K - l)sin(B, - 2p) - 2sin(28, - 21) - sin 28, = 0 (6.2-18) 

More details of this approach, together with comparisons with experimental 
results, are given by Sih and Chen (6.54). A variation on the strain energy 
density approach has recently been given by Partizjar et al. (6.55). 
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Figure 6.6 Rosen's materials engineering model. 

The approach of Rosen and his associates (6.56) is shown in Figure 6-6. 
They limit their model to consider crack growth normal to the crack plane, as 
observed for both unidirectional and general laminates that contain 90 degree 
plies. In their model, the region adjacent to the notch is taken as a shear stress 
transfer region. The regions adjacent to the crack are subdivided into a region 
of local shear stress transfer, a region of stress concentration, and a region of 
shear stress transfer in the average material. It is necessary to identify 
experimentally the size of the region of intense energy adjacent to the flaw and 
the demarcation between mode I and mode I1 behavior. If axial fracture 
(normal to the original crack surface) is assumed, their technique requires two 
arbitrary parameters. If greater freedom is allowed, additional arbitrary 
parameters must be specified. 

Recently, Zhen (6.57) has developed a variant of the Whitney-Nuismer 
average stress criterion approach. This approach is based upon a damage 
parameter that represents the aggregate of the inelastic micromechanical 
processes that occur at a notch or other stress concentrators. Zhen defines the 
damage parameter D in terms of go, the unnotched tensile strength of the 
material, such that 

(6.2-19) 

where uv is the normal stress acting ahead of the stress concentration. Failure 
occurs when D becomes equal to the ultimate damage, D,, which is supposed to 
be a material property independent of the load and geometry. Zhen was able 
to show that unique values of 0, exist for a variety of composites used in a 
number of laminate configurations and specimen geometries. He was also able 
to show that D,, which has the dimensions of length, compares well with 
measured damage zones. 

Zhen's damage parameter has a clear physical basis and appears to provide 
an impressive correspondence with existing experimental data. However, it 
has the obvious limitations of any two-parameter linear elastic approach: it 
can only be applied when a major stress concentrator is present and it cannot 
discern individual ply behavior. In fact, it can be shown that this approach is 
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only modestly different from a normal LEFM approach. For example, for a 
center-cracked tension panel, Equation (6.2- 19) leads to 

(6.2-20) 

where c is the applied stress. Hence, when c << c,,, a reasonable assumption in 
most cases, it can readily be found from Equation (6.2-20) that D, = 
(2/n)(Kl,/ao)2. A similar result would be obtained for other geometries. 

6.2.5 Perspective 

In concluding this section on linear elastic approaches to fracture of fiber 
composites, we remark that one trend in developing analytical representations 
clearly is to introduce more and more disposable parameters into a linear 
elastic continuum mechanics formulation. With enough parameters, of 
course, any model can be made to match a body of experimental results. If the 
number of disposable parameters is restricted but comparisons are limited to 
those data used to set the parameter values, a similar conclusion can of course 
be reached. Experimental verification is not really at issue and therefore is not 
of much concern to us. 

A more appropriate basis for judgment is whether or not the parameters 
contained in the model have a clear-cut physical significance. If not, the model 
is nothing more than a curve fitting device that can be used only for 
interpolation of a specific set of experimental results. If the parameters do 
have physical significance, then experiments can be designed to obtain 
accurate values and the model can be expected to be valid over a wide range of 
conditions. That is, it will have an “extrapolative” function. It can then be used 
with some degree of confidence to predict behavior beyond the regime in 
which the parameters contained in them were experimentally established. 
Models that bindly employ LEFM concepts will inevitably fall somewhat 
short of this goal. 

This is not to say that “interpolative” models-those that cannot be relied 
upon beyond the regime that contains their experimental support-are not 
useful. There are applications that can be effectively simulated by character- 
ization experiments whereupon simple models are indispensible for evaluating 
various matrix (fiber/interface properties). Nicholls and Gallagher (6.58) have 
recently employed cantilever beam specimens in this way. Wells and 
Beaumont (6,59), 6.60) have devised a fracture map approach that provides a 
systematic way to achieve this purpose. Kunz-Douglass et al. (6.61) have 
provided more specific models for investigating the toughness of epoxy- 
rubber particular composites. 

An area of particular concern currently is inter-ply delamination. The first 
use of fracture mechanics to model this aspect was that given by Rybicki et al. 
(6.62) who employed an energy release rate approach. More recent models 
have been offered by Wang and co-workers (6.63), Jurf and Pipes (6.64), 
and O’Brien (6.65). The approaches that have been developed in this still 
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evolving area are similar to those that have been developed for the fracture of 
adhesive joints discussed below. Another currently active research area is that 
of compression strength; see, for example, Kwiashige (6.66). 

6.3 Nonlinear Fracture Mechanics Analysis Models 

In the many other applications discussed in this book, the well-demonstrated 
applicability of fracture mechanics to metals is being steadily advanced to 
cope effectively with nonlinear and dynamic conditions. In contrast, fracture 
mechanics applications to fiber-reinforced composites have been less success- 
ful. In essence, these have mainly been generally empirical extensions of linear 
elastic fracture mechanics that are limited in their ability to treat the 
complexity of the crack extension process as seen from the micromechanical 
point of view. The key to a more appropriate approach was suggested by 
Potter (6.19): 

Clearly, a simple, reliable fracture criterion may be developed only by the 
identification of those particular factors which govern the propagation of the 
crack (or the cracks) which will ultimately cause failure. The identification and 
isolation of these factors is the only means by which an acceptable degree of 
material idealization may be determined and from which such reliable fracture 
criteria may be developed. 

In accordance with this sentiment, some of the more adventurous possibilities 
that have recently been suggested to improve upon this situation will be 
discussed in this section. 

Because of the pronounced effects of subcritical damage growth on 
laminate performance due to load redistributions and stress concentrations, 
incorporation of micromechanical failure processes into a fracture model of a 
fiber composite laminate would seem to be necessary for realistic fracture 
predictions. A convenient catagorization of such events would include fiber 
breakage, matrix cracking, fiber/matrix debonding, and interply delam- 
ination. Clearly, however, the direct consideration of the sequence of such 
events requires an extremely localized focus that cannot be included in 
continuum treatments of actual structural components. Nor is the con- 
sideration of such events independent of the load and crack/structure 
geometry of such components likely to be particularly fruitful. Approaches 
that integrate micromechanical damage growth into an overall continuum 
point of view are therefore required. In this section the work of representative 
investigators that take this point of view will be described. 

6.3. I Continuum Models 

A great number of analysis approaches have been advanced that attempt to 
model the micromechanical events that precede fracture at a stress riser in a 
fiber composite material. Some of those are given as references (6.67-6.77). In 
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this section, attention will be focused on the representative approach 
developed by Potter (6.72). Potter has developed a fracture model based upon 
three observations: (1) tensile failure of a laminate is governed by the failure of 
the plies having fibers parallel to the load direction, (2) these fibers fail 
sequentially by a process in which the failure of the fiber causes its neighbor to 
fail, and (3) other laminate failure processes (e.g., longitudinal splitting of the 
axial plies, transverse tensile or shear failure of the angle plies, and 
delamination) are important only insofar as they influence the fiber failure 
process in the axial plies. 

These observations have led Potter to develop a model for a notched 
laminate based upon two conditions. First, the initiation of failure requires 
that the laminate unnotched tensile strength oo must be reached at the notch 
tip. This criterion can be expressed as 

co = oo (6.3-1) 

where o is the remote applied stress and C is the notch tip elastic stress 
concentration factor. The second condition involves failure propagation. It is 
based on the idea that sustained propagation of a crack across axial load- 
bearing fibers requires a critical load to be transferred from the broken fiber to 
its neighbor. This condition involves the stress gradient ahead of the notch tip, 
0: ( = ao,/ao,,), and can be expressed as 

slaLl = 6 D  (6.3-2) 

where s is the fiber spacing, 6 is the increase in the fiber stress due to the failure 
of an adjacent fiber, and D (= E, /EJ)  is the ratio of the laminate stress in the 
fiber direction to the fiber stress. When Equation (6.3-2) is satisfied, the fibers 
will fail in sequence. 

A useful feature of Potter’s model is that it distinguishes between large blunt 
notches and small inherent defects. In the former case, laminates generally 
behave in a brittle manner whereupon the initiation criterion, Equation 
(6.3-1), governs. Potter found it convenient to introduce the parameter 
R (= o/g0) as a dimensionless failure stress. Here, the failure criterion for a 
laminate containing a blunt notch is simply 

1 
c R = -  (6.3-3) 

Conversely, for small sharp notches where the initiation criterion is readily 
satisfied, the propagation criterion governs. However, in this regime, failure 
will be preceded by the development of a crack-tip damage zone that expands 
as the load is increased. This presents a difficult analysis problem. But, by 
modeling the damage zone as an increase in notch tip radius, Potter deduced a 
relation for failure due to small defects of length 2a in the form of the 
pol y nominal 

R 3  + [(K4 - 2) - (K4 + 2)bA]R2  + ( 1  - 2K4)R + K ,  = 0 (6.3-4) 
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Figure 6.7 Comparison of Whitney-Nuisimer and Potter analysis models. 

Here, b is the notch tip radius and 

K~ = 2 a m  (6.3-5) 

(6.3-6) 

(6.3-7) 

where Ex and E, are the longitudinal and transverse elastic moduli, G,, is the 
in-plane shear modulus, and vxy is Poisson’s ratio. 

In Potter’s model, failure is predicted at the lesser of the values given by 
Equations (6.3-3) and (6.3-4). As shown in Figure 6.7, the model predictions 
are similar to those obtained using the average stress criterion of Whitney and 
Nuismer (6.48). This is not too surprising in that both approaches utilize 
maximum and minimum strength values based upon the unnotched strength 
and the elastic stress intensity factor, respectively. The importance of Potter’s 
approach is rather that, perhaps for the first time, the failure mechanisms that 
are involved in the fracture of a composite were directly confronted. And, in so 
doing, it was possible to discriminate between small and large flaws. 

6.3.2 Hybrid Models 

To achieve an improved predictive capability for composite fracture, a 
mathematical model directly incorporating the various micromechanical 
failure processes must be developed. A model initiated by Kanninen and his 
associates (6.78) and (6.79) seeks this end by merging a micromechanical failure 
analysis with a macromechanical analysis. Their hybrid approach treats the 
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material as homogeneous where it is acceptable to do so and as discrete only 
where it is necessary. In this way, the manner in which the sequence of 
microstructural failure events that accompany the stable growth of a flaw 
under an increasing load up to the point of catastrophic fracture can be 
directly determined. Moreover, because micromechanical damage events are 
modeled only locally, actual structural configurations and loads can be 
treated. 

The approach suggested by Kanninen et al. can be likened conceptually to 
the well-established singular perturbation and matched asymptotic expansion 
techniques of fluid mechanics. That is, the problem of a composite material 
containing a flaw is divided into distinct “inner” and “outer” regions. In each 
of these regions, the material is modeled in different ways. The inner region, 
which contains the tip of a macroscopic crack or any other type of stress riser 
and can also include an entire microscopic crack, is considered on the 
microscopic level and treats the material as being heterogeneous. This region 
was called a local heterogeneous region (LHR). The outer region surrounds 
the crack-tip region and treats the material as a homogeneous orthotropic 
continuum. A typical LHR model is shown in Figure 6.8. 

Figure 6.8 depicts a unidirectional fiber composite containing three distinct 
components: the fibers, the matrix, and the fiber/matrix interface zones. For 
precise quantitative results, the constitutive relations of these elements, up to 
and including their rupture points, must be known. In the model, any element 
of a fiber composite ruptures when an intrinsic critical energy dissipation rate 
can be provided at some point of that element. (Alternatively, the somewhat 
simpler approach based on a critical effective stress can be used.) These critical 
values are assumed to be independent of local stress field environment at  the 

Figure 6.8 Hybrid fracture mechanics 
model. FIBER 
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Figure 6.9 Computational result of a hybrid fracture mechanics model showing damage growth 
by splitting. 

point of incipient rupture. Data from fracture tests on isolated fibers and on 
neat matrix materials must therefore be available to be inserted into the model, 
or they can be inferred from the computational results. 

Computations for arbitrary flaw size and orientation were first performed 
for unidirectional composites with linear elastic/brittle constituent behavior. 
The mechanical properties were nominally those of graphite/epoxy. With the 
rupture properties arbitrarily varied to test the capability of the model to 
reflect real fracture modes in fiber composites, it was shown that fiber 
breakage, matrix crazing, crack bridging, matrix/fiber debonding, and axial 
splitting can all occur during a period of (gradually) increasing load prior to 
catastrophic fracture. Qualitative comparisons with experimental results of 
Brinson and Yeow (6.46) on edge-notched unidirectional graphite/epoxy 
specimens have also been made. Figures 6.9 and 6.10 show some typical 
results for damage growth at the tip of a sharp crack in a unidirectional 
corn posi te. 

The example computational result presented in Figure 6.9 shows that the 
propagation of damage (in this instance, fiber/matrix splitting) requires an 
increasing load. Figure 6.10 similarly shows fiber bridging. These results were 
found to be in reasonable qualitative agreement with the experiments of Yeow 
et al. (6.46). However, the absence of realistic in situ matrix/fiber/interface 
properties, along with the restriction of the work of reference (6.78) to a single 
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Figure 6.10 Computational result of a hybrid fracture mechanics model showing damage 
growth by fiber bridging. 

ply, precluded quantitative comparisons. Nevertheless, while the work 
reported in reference (6.78) was focused on a sharp crack normal to the fiber, 
direction, any type and direction of stress riser can be accommodated in this 
approach. Indeed, any type of loading, including impact, can be 
accommodated. 

The work reported in reference (6.79) recognized that, while events in the 
fiber/matrix/interface scale at a stress riser are crucial to a quantitative 
understanding of damage growth and fracture, these can be significantly 
affected by events occurring elsewhere in the composite. In particular, the load 
transfer that occurs in a laminate when damage progresses at different rates in 
the individual plies must considered (and/or when delamination occurs). To 
address this, a parallel-spring continuum model was developed. Computa- 
tions were performed for center-cracked graphite/epoxy tension panels using 
fiber fracture and matrix splitting toughness values inferred from the 
experiments of Yeow et al. (6.47). Crack growth was allowed to occur within 
each ply either parallel to or normal to the fiber direction-in essence, using 
Harrison’s approach via the crack closure method suggested by Rybicki and 
Kanninen (6.80). Typical results are shown in Figures 6.1 1 and 6.12. 

The LHR concept was developed by taking the through-thickness 
fiber/matrix representation in the form of a series of plates. This is shown in 
Figure 6.13(b) [c.f. the actual configuration shown in Figure 6.13(a)]. Thus, 
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the quasi-three-dimensional representation shown in Figure 6.13(c) was 
developed. This approach assumes that the fibers are square in cross section 
and are distributed in a regular array. The analysis model then takes as its focal 
point the strip of material far enough from a ply interface for periodicity 
conditions to be appropriate. Comparisons between some heuristic com- 
putational results and experimental results as graphite/epoxy tension panels 
show reasonable agreement (6.114). 

Ouyang and Lu (6.81) have adopted a point of view that coincides with 
Kanninen and coworkers. They maintain that, even for small-scale yielding 
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Figure 6.1 3 Two-dimensional and quasi-three-dimensional idealizations of a fiber composite 
ply. (a) Edge view of ply .(b) Platelet representation. (c) Discrete representation. 

conditions, the crack-tip region must be addressed in terms of elastic-plastic, 
finite deformations, and heterogeneity. Because an elastic anisotropic con- 
tinuum description is used outside the crack-tip region, their formulation of 
the problem is just as shown in Figure 6.8. 

Ouyang and Lu assume that the effect of the inner heterogeneous region on 
the outer continuum region can be neglected. This effectively decouples the 
problem and gives boundary conditions for the inner region that depend only 
upon the applied stress and the overall crack/structure geometry. The inner 
problem is that formulated with an elastic-plastic large deformation finite 
element model in which individual fiber, matrix, and interface elements are 
represented by four-noded elements. When the effective stress of an element 
reaches a critical value, the nodes were relaxed to simulate local failure. 
However, no computational results were given, nor have they indicated how 
the laminate configuration would enter into their approach. 
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Other noteworthy approaches to the laminate fracture problem include the 
analyses of Nuismer and his associates (6.82,6.83). As these investigators have 
recognized, while simple approaches such as the average stress theory of 
Whitney and Nuismer seem to suffice for notched laminates under uniaxial 
loading conditions, they cannot account for the progressive damage and 
consequent stress redistribution that occur from small defects and nonpro- 
portional biaxial loadings. Nuismer and Brown therefore developed an 
approach that allows for the damage to the matrix and fibers in individual plys 
that precedes the ultimate failure of the laminate. This is accomplished with an 
incremental finite element model that traces the damage and invokes 
appropriate stiffness changes in the laminate via laminated plate theory. 

In the Nuismer-Brown approach, failure of a ply in the fiber direction is 
assumed when the strain in that direction reaches an experimentally 
determined critical value. Similarly, matrix failure occurs when either the 
transverse or the shear strain reaches a critical value. Recognizing that the ply 
does not completely lose its stiffness after failure, Nuismer and Brown 
developed post-failure constitutive relations, as follows. First, when a ply 
element fails in the fiber direction, it loses its stiffness in the fiber direction and 
in shear, but not its transverse stiffness; that is, E, = v,, = Gxy = 0, Ex # 0. 
Second, when matrix failure occurs, there is a loss of stiffness in the transverse 
direction and in shear, but not in the fiber direction; that is, Ex = v,, = G,, = 
0, E,  # 0. Because the laminate stiffness is determined using the ply stiffness 
(damaged or undamaged) in conjunction with laminate theory, the approach 
is justifiable unless extensive interply delamination occurs, 

It might be noted that the Nuismer-Brown approach differs in one 
important respect from recent work of Kanninen et al. The latter have 
employed the “death” option, as it is known from work on concrete, to 
represent local failure. In this procedure, failure of an element is enforced by 
simply deleting the appropriate terms in the global stiffness matrix. Of more 
importance, the Nuismer-Brown model is a completely continuum represen- 
tation that does not attempt to include the actual micromechanical failure 
events. However, more recent work by Nuismer and co-workers has been 
addressed to this end-for example, by incorporating a micromechanical 
model to describe the initiation and growth of matrix cracking in a ply 
subjected to transverse tension. Their preliminary computations have revealed 
that, after damage begins, the constitutive behavior of a ply is laminate 
dependent. An example of their computational modeling is shown in 
Figure 6.14. 

6.3.3 Finite Element Models 

The first attempts to develop finite element fracture models for fiber 
composites seem to be those of Adams (6.84) and Wang et al. (6.85). Adams 
and his co-workers have progressed to consider the details of the fracture 
process in composites; for example, see reference (6.86). Other models are 
those of Reedy (6.87), who has concentrated on boron aluminum laminates, 
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Figure 6.14 Nuisimer’s model for pro- 
gressive damage growth in fiber 
composites. 

and Wang and Crossman (6.88) to (6.89), who have studied cracking and edge 
delamination in graphite/epoxy laminates. Reedy’s nonlinear finite element 
approach is focused on a unidirectional, notched boron fiber composite. As 
noted in Section 6.1, the fiber size is then comparable to the ply thickness, 
necessitating a treatment that is somewhat different in detail from those 
developed for graphite/epoxy. Reedy employs a shear-lag assumption that is 
somewhat analogous to Rosen’s approach described above. His finite element 
formulation allows elastic work hardening constitutive behavior to be used for 
both the fibers and the matrix materials. Stable crack growth is modeled using 
a critical stress criterion. Reedy’s model is shown in Figure 6.15. 

INTERFACE 

Figure 6.15 Reedy’s model for fracture of a boron/aluminum composite. 
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6.4 Related Topics 

This chapter has concentrated on analysis models for damage growth and 
fracture under a monotonically increasing load. The loading conditions were 
tacitly assumed to be slow enough that dynamic effects were unimportant, but 
to be rapid enough that environmental and other time-dependent (viscoelas- 
tic) effects need not be of concern. As complex as the fracture mechanics 
problem is under thoseconditions, it must be recognized that such a loading is 
highly idealized in comparison to actual design and service conditions. 
Fatigue and environmental effects-especially those due to temperature and 
moisture-are a primary concern in most practical situations. Because the 
polymeric materials commonly used as the matrix material in a fiber 
composite exhibit viscoelastic behavior, time-dependent alterations in the 
matrix-dominated mechanical and failure properties of a polymer-based 
composite due to temperature and state of stress can indeed be important. 
Some of these complications will be briefly touched upon in this section. 

6.4.1 Fracture of Adhesive Joints 

The difficulties in the fracture analysis of fiber composite materials that 
preclude the direct application of the linear elastic fracture mechanics (LEFM) 
techniques developed for metals stem from two main sources. First, the scale 
of the damage that accumulates in the form of inelastic deformation around a 
crack is not usually negligible. The necessity for this condition for the validity 
of LEFM was outlined in Section 6.1.4. The second source of difficulty arises 
because fiber composites in structural applications are generally used in the 
form of laminates. The variation in the damage that occurs from one ply to 
another in a laminate can be significant. Compounding these effects is the 
possibility of interply delamination. Because these effects cannot be directly 
accounted for within LEFM, many current efforts are therefore attempting 
to develop nonlinear fracture mechanics approaches based upon hybrid 
micromechanicallcontinuum analysis models. Thus, at first sight, the analysis 
of fracture in an adhesive joint would appear to be much less difficult. 

An adhesive is a homogeneous material, and in the form of a joint, is 
subjected to constraints that force crack growth to proceed in a reasonably 
predictable manner under conditions that closely approximate plane strain. 
However, while the same difficulties that attend fiber composites do not arise 
for adhesives, there are difficulties nontheless. Cracks that lie on an interface 
between two dissimilar materials (adhesive fracture) give rise to an oscillatory 
form of singular behavior that not only differs from that associated with 
cracks embedded in a continuous material, it gives rise to physically 
unacceptable behavior. Thus, the fracture mechanics techniques described in 
Section 6.1.3 do not apply. At the same time, referring to the argument of 
Section 6.1.4, because of the narrowness of adhesive joints, cohesive cracking 
will not likely occur with a damage zone that is small compared to this 
dimension. 
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Despite the possibility that an LEFM approach is as unlikely to be 
successful for an adhesive joint as it has proven to be for fiber composite 
laminates, nonlinear fracture mechanics approaches are not much in evidence 
for adhesives. One reason may be that, unlike most structural applications, 
adhesive joints that closely simulate service conditions can be tested readily in 
the laboratory. Thus, one can rely upon the concept of “similitude” that is 
often invoked for fatigure crack growth in metals; see Chapter 8. In essence, 
even though the assumptions of LEFM are violated, provided the conditions 
in the laboratory test and the intended application are similar, an LEFM 
approach can be used. Tacitly, this argument supports the universal use of 
LEFM parameters and concepts in adhesive fracture. As described in this 
section, most current work in the assessment of adhesive joints with flaws is 
based upon this approach. 

While not unique to adhesives, mixed mode crack growth is much more 
prominent in adhesive fracture than in other situations. This most often 
involves combined modes I and 11, but can also include a mode 111 
component-for example, in a scarf joint. The well-accepted yield criteria of 
either von Mises or Tresca make it possible to predict the onset of yielding 
under a multiaxial state of stress knowing only the uniaxial yield stress value. 
However, there currently is no counterpart for fracture. The nearest analog is 
probably that given by Equation (6.2-5). 

One reason for the lack of a fracture surface is that, since most engineering 
materials are most susceptible to fracture in mode I conditions, by far the bulk 
of the experimental data have been collected for this condition alone. Another 
reason is the difficulty of obtaining valid experimental results under either 
pure mode I1 or mode 111 conditions. For fiber composites, and especially for 
adhesive joints, the general lack of a fracture counterpart of the yield 
condition is probably the single most serious obstacle to the analysis of flawed 
adhesive joints. For this reason, it is therefore appropriate to review briefly the 
experimental results before considering the analyses that have been developed 
for adhesives. 

Recognizing the difficulties involved in determing K , ,  K,,, and K,,, values for 
adhesive layers, the early work of Ripling et al. (6.90,6.91) was focused on G, 
the strain energy release rate. Because adhesives are usually brittle, and 
because the constraint imposed by the near proximity of high modulus 
adherends precludes a volume change in the adhesive, cohesive fracture tends 
to occur under plane strain conditions. If this is valid, there should be unique 
fracture toughness values for each mode-that is, the plane strain values, K,,, 
KlIc, and Klllc. Nonetheless, for the sake of generality, the designations K1,, 
K2, ,  and K?,  will be used to preserve the possibility that a constraint effect 
could arise In some applications. 

Ripling et a]. (6.92) have recently completed a preliminary study on the 
behavior of flawed joints subjected to mixed mode I and 111 loadings. They 
used graphite/epoxy plates bonded with an epoxy adhesive. Their test 
specimen was modified tapered double cantilever beam specimen with a scarf 
joint. By increasing the joint angle 8, the ratio of the mode I11 to the Mode I 
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contribution can be systematically increased in this configuration. Ripling et 
al. found that, as K,,, was increased, G, initially increased, then decreased. This 
reversal could be correlated with an observed change in the fracture character. 
That is, the cracking was at the center of the bond for 8 = 0 (no mode 111 
contribution), but tended towards the adherend/adhesive interface as 9 was 
increased (with increased amounts of fiber pull-out). At the point at which G, 
began to decrease with increasing 9, the fracture changed from cohesive 
(within the adhesive) to adhesive (on the interface). 

Everett (6.93) has conducted a combined experimental and analysis 
investigation on mode I failure of an adhesive that focused on the role of “peel 
stresses”-- that is, stresses resulting from tensile loading normal to the bond 
line. His experiments were conducted on graphite/epoxy laminates bonded by 
an epoxy adhesive in the form of a cracked lap shear specimen. Debonding was 
monitored by a photoelastic method. Tests were run under constant 
amplitude cyclic loading with the peel stresses systematically altered by the 
imposition of a compressive load applied through a spring-loaded clamp. The 
failure mode in all tests was cohesive. 

A finite element model focused on the strain energy release rate parameters 
was developed to provide an analysis of the experimental results. It was noted 
that crack growth normally proceeds in this specimen by a mixed mode 
process with GI, N 2GI. However, GI,/GI increases when the clamping device is 
used. It was found that, for the clamping force that was required to arrest the 
debond process, GI1 increased while GI became almost equal to zero. From this 
finding, Everett concluded that GI governs debond crack growth with GII being 
irrelevant. 

Ikegami and Kamiya (6.94) have conducted an experimental investigation 
on the tensile and shear strength of joints with interfacial flaws. Butt joint 
specimens consisting of thin wall tubes were subjected to axial tension and to 
torsion loadings. Their results were analyzed using the stress intensity factor 
for layered materials developed by Erdogan and Gupta (6.95). The strength of 
joints without a flaw were correlated by the use of an effective flaw size. 
Experiments were conducted with carbon steel and other metals as the 
adherends and an epoxy resin as the adhesive. The stress-strain curves 
reported by Ikegami and Kamiya show that this resin behaves essentially as an 
elastic-brittle material. 

The experimental results obtained by Ikegami and Kamiya were similar for 
all the adherends they tested and can be summarized as follows. First, the 
strength in shear (torsion) is always greater than in tension. Second, the 
fracture stress decreases with increasing thickness of the adhesive layer. Third, 
the strength of ajoint with a large crack is roughly one-half that of a joint with 
a small or no crack for thin adhesive layers, but the presence of a crack does 
not have a large effect for thick adhesive layers. 

Ikegami and Kamiya observed that fracture was initiated from the artificial 
crack and, because of the elastic-brittle nature of the adhesive that they used, 
concluded that a linear elastic fracture mechanics approach could be used. 
They also noted that, while the problem involved mixed mode fracture, K , ,  is 
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small compared to K ,  in tension while KI is small in comparison to KII in shear. 
Thus, values of K,, and K,, could be readily obtained. Their results indicate 
that the fracture toughness values so inferred depend upon the adherend. 

Other experimental work of note on the fracture of adhesives would include 
that of Saxena (6.96) who suggests that an “effective” stress intensity factor 
given by (K:  + Ki)* can be used to predict fracture. Crack growth measure- 
ments were made by Gledhill and Kinloch (6.97) who found that fracture could 
be uniquely described by a critical plastic zone size developed at  the crack tip. 
Finally, Bitner et al. (6.98) have studied the time-dependent behavior of 
structural adhesives and have concluded that elastomer-modified adhesives 
achieve their very good fracture properties through viscoelastic processes that 
vary substantially with temperature and loading history. 

Turning to the analysis approaches that have been developed for adhesives, 
one of earliest efforts is that of Bikerman (6.99). Subsequently, important 
contributions were made by Cook and Gordon (6. loo), Williams (6.101), Gent 
and Kinlock (6.102), Knauss (6.103), and Trantina (6.104). Much of this work 
was based upon the use of simple beam models for which a more rigorous 
approach was later provided by Chang et al. (6.105). Here, the more recent 
work of Wang and Yau (6.106) using finite element methods will be 
highlighted. 

As Wang and Yau point out, the interfacial cracking (or debonding) of an 
adhesively bonded joint can occur both at geometric boundaries (e.g., edges, 
re-entrant corners) due to local stress concentrations and from internal flaws 
from faulty joining (e.g., from incomplete wetting between adherend and 
adhesive). Because it is one of the most widely used structural joint 
configurations, they focused on the lap-shear joint. Recognizing that the 
adhesive layer thickness is a crucial characteristic dimension in the problem, 
they have advanced a conservation integral approach via the J- and M -  
integrals; see Chapter 3. The finite element mesh and the integration path for 
the M-integral are shown in Figure 6.16. 

The procedure developed by Wang and Yau reduces the problem to a 
pair of linear algebraic equations whereupon stress intensity factors can 
be evaluated directly from far-field information, once the conservation 
integrals have been evaluated. For this purpose, Wang and Yau have 
used a conventional finite element method with eight-noded isoparametric 
elements. Example results showing K ,  and K,, as a function of the system 
elastic moduli, the adhesive thickness, and the crack length are given in 
reference (6.106). 

6.4.2 Fiber Pull-Out Models 

Following the basic picture developed by Cottrell(6.107), consider a bundle of 
parallel elastic fibers, each of length I ,  embedded in a ductile metal rod that is 
then strained longitudinally. Let T be the tangential stress exerted on a fiber by 
the matrix material as it flows plastically. The stress a(x) in the fiber at a 
distance x from one end, assumed to be free, for a fiber of radius r is given by 



Fracture Mechanics Models for Fiber Reinforced Composites 429 

M I N T E G R A L  
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Figure 6.16 Finite element model for crack growth in an adhesive layer. 

the force balance 
2nrtx = nr2a(x)  

or 
2TX 

a ( x )  = - (6.4- 1 )  r 

If 7 is a constant, the fiber stress a ( x )  will increase linearly to a maximum value 
and will be constant thereafter. This maximum value is approximately equal to 
EE, E denoting the overall tensile strain of the rod, because there will be no 
relative slip between the matrix and the fiber beyond the point where the 
elastic strain in the fiber becomes equal to E.  

Let xo denote the distance from the free end at which the maximum stress 
is attained. This load transfer length reaches its highest value, /,/2, when 
a(xo) = or, where or is the fracture stress of the fiber. Hence 

'a/ 1, = - 
7 

(6.4-2) 
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To exploit the intrinsic strength of the fibers, the composite must be designed 
such that 1 >> I ,  whereupon the overall strength of the composite will be 

0, = Of Vf + Y,(1 - v,, (6.4-3) 

Here V’ is the volume fraction of the fibers and Y, is the yield strength of the 
matrix. This is the highest strength that the composite can have. However, if 
the matrix has a limited ability to carry additional load by work hardening, 
because for 1 >> I ,  the fibers are stressed to their limit, if one fiber breaks a 
fracture can easily spread. Hence, this is not an optimum situation. 

By contrast, if I c I , ,  the fibers do not break but are pulled out of their holes. 
Assuming that the tangential stess T continues to be exerted during the pulling 
out, the work done on each fiber is 

work done/fiber = (2nrr)x d x  = n r d 2  sd 
The number of fibers per unit surface area normal to the fiber axes is A f / n r 2 .  
Hence, the fracture energy per unit surface is 

T I 2  G, = Vf 7 (6.4-4) 

(Note that Cottrell finds the same result but with the factor &appearing on the 
right-hand side.) For fibers of length I,, this can be rewritten to eliminate T in 
favor of of. The result is 

G, = AfOjl, (6.4-5) 

which shows that the fracture toughness increases with I,. I t  follows t1i . t t  for 
greatest toughness I should be slightly smaller than I ,  while I ,  should be as large 
as possible. The low T necessary for a large 1, can be obtained either from a 
weak matrix or a weak interface. 

More recent work on fiber pull-out has been contributed by Gent and 
Yeoh (6.108), Phan-Thien et al. (6.109), and Atkinson et al. (6.1 10). 

6.4.3 Accelerated Characterization 

Fiber composites can readily be designed to achieve high in-plane strength and 
stiffness characteristics. However, for applications involving loadings such as 
flexure and torsion, the out-of-plane behavior is dominated by the matrix 
properties alone. Thus, elevated temperature and stress levels can lead to 
significant property changes in time and can also induce basic material phase 
changes. Moisture diffusion can have similar effects. Increased water content 
can cause swelling of organic materials, which, in turn, induces internal 
stresses, causes basic material property alterations, and degrades the integrity 
of the matrix/fiber bond. This section will briefly review the treatments of 
these effects from the point of veiw of damage accumulation and fracture. 

Ordinarily, a fiber composite structure is designed so that the fibers are in 
the high stress directions while the relatively weak and compliant polymeric 
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matrix operates under low stress levels. While this might suggest that the 
matrix is relatively unimportant as a load carrying agent, this is not so. The 
matrix serves to transfer the applied stress from fiber to fiber and from ply to 
ply. It is for this reason that the matrix, and hence matrix-dominated 
properties, play an important role in structural design and/or behavior of a 
composite material and cannot be ignored. 

Matrix dominated moduli and strength properties of fiber reinforced plastic 
laminates are time-dependent or viscoelastic and as such are sensitive to 
environmental conditions-for example, temperature and moisture. Conse- 
quently, the long-term integrity of a composite structural component is an 
important consideration in the initial design process. Therefore, how vis- 
coelastic matrix dominated modulus (compliance) and strength properties 
vary with time over the design lifetime is necessary to the initial design process. 
As many structural components are designed for years of service, property 
variations over years are often needed. Obviously, long-term testing equiva- 
lent to the lifetime of a structure is impractical and undesirable. The 
alternative is to develop analytical and experimental methods that can be 
reliably used for extrapolation. 

The accelerated characterization procedure developed for graphite/epoxy 
composite laminates by Brinson and co-workers (6.1 11,6.112) is based upon 
the well-known time-temperature superposition principle (TTSP) for poly- 
mers and the widely used lamination theory for composite materials. The 
objective was to develop a method by which the time-dependent deterioration 
of laminate moduli (compliances) and strength could be calculated from the 
results of a minimum number of tests. Advanced composite laminates are 
most frequently designed using lamination theory. This theory allows the 
calculation of the properties of a general laminate from the knowledge of the 
behavior of a single lamina or ply. The stress-strain properties of a single ply 
may be found from constant strain-rate tests on unidirectional laminates and 
are normally routinely obtained when a general laminate is made. Thus, 
Brinson’s accelerated characterization plan assumes that lamina stress-strain 
properties from zero load to failure are known. 

The transformation equation for the moduli of orthotropic materials has 
been shown to be valid for unidirectional laminates. Also, various orthotropic 
failure theories have been shown to be valid for unidirectional laminates. 
Therefore, modulus and strength properties as a function of fiber angle are 
known. But, before the time-dependent properties of a general laminate can be 
predicted, knowledge of the time-dependent behavior of a single ply is 
required. For this reason, constant strain-rate behavior is insufficient for 
viscoelastic predictions. Long-term creep or relaxation tests to determine the 
necessary lifetime information are impractical since the objective is to make 
long-term predictions from a minimum number of tests conducted in a short 
time. 

The fundamental concept employed by Brinson and co-workers to 
overcome the above obstacle was to use the well-known time-temperature- 
superposition principle to produce a modulus (compliance) master curve for a 
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single fiber orientation. The TTSP principle applied to composite laminates 
requires the short-term creep tests to be conducted on a unidirectional 
laminate at various temperatures. (These can likely be performed in a single 
day or a few days at most.) Next, either an Arrhenius or WLF-type equation 
could be modified to predict the variation of the shift function with fiber angle 
for a single lamina without further testing. If this can be done, then the results 
can be combined to produce the modulus (compliance) master curves by 
simple scaling procedures without additional testing. 

Delayed failure predictions, of course, require knowledge of time- 
dependent strength properties. The determination of such properties often 
requires large amounts of testing over a prolonged period of time. To avoid an 
extensive creep rupture testing program, the assumption was made that 
strength master curves were of the same shape as modulus (compliance) 
master curves for any particular fiber angle. From this assumption lamina 
strength master curves as a function of fiber angle and temperature were 
determined again by simple scaling procedures. Important work in this area 
has also been contributed by Christensen (6.113). 
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7 
T I M E - D E P E N D E N T  F R A C T U R E  

Materials exist for which a suddenly applied constant stress produces an 
instantaneous elastic strain followed by a slow continuous straining or creep. 
The creep strain is usually characterized by three different stages: primary, 
secondary (steady-state), and tertiary. Straining in the primary stage proceeds 
at a decreasing rate until a constant strain rate associated with the secondary 
stage is attained. The latter stage is followed by the tertiary stage where 
straining occurs at an increasing rate and terminates in rupture of the 
material. 

The failure of structural components can occur by crack growth in the 
presence of creep-that is, creep crack growth. Metals will exhibit creep at 
temperatures greater than about thirty percent of their absolute melting 
temperatures. Many components of gas turbines, fossil and nuclear power 
plants and aerospace structures are required to perform at service temper- 
atures in excess of the creep threshold temperature. On the other hand, 
substantial creep deformation in polymeric structures; for example, plastic 
piping components, can be observed at room temperature. In any case the 
service life of a structural component can be dictated by time-dependent crack 
growth. While the micromechanisms for creep crack growth in a polycrystal- 
line steel and an amorphous polymer may be quite different, there are 
similarities in the macroscopic crack growth behavior in each. 

There are two competing mechanisms involved in creep crack growth. 
The creep deformation is characterized by crack-tip blunting in the material 
ahead of the crack tip. This relaxes the crack-tip stress field and tends to retard 
crack growth. The other mechanism results in an accumulation of creep 
damage in the form of microcracks and voids that enhance crack growth as 
they coalesce. Whichever phenomenon dominates determines whether or not 
creep crack growth will take place. Steady-state crack growth will occur when 
an equilibrium between these two effects is attained. 

The time-dependent fracture considered in this chapter is due to creep crack 
growth. While environmentally assisted crack growth is important and at 
times is difficult to separate from creep crack growth, time-dependent fracture 
due solely to environmental effects is not treated here. 

This chapter begins with a study of the near stress and strain fields for a 
stationary crack tip under the influence of the different creep regimes. 
Appropriate load parameters are identified and estimates for the time intervals 
over which they are applicable are presented. This is then followed by a study 
of creep crack growth. Unlike other fields the crack-tip field for creep crack 
growth does not contain an undetermined parameter. The implication of this 

431 
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characteristic is discussed. Steady-state and transient creep crack growth 
within the confines of small-scale yielding are investigated. In Section 7.3 
creep crack growth correlations are presented. Viscoelastic crack growth is 
treated in Section 7.4. The chapter closes with a discussion of further research 
and problems that remain to be addressed. 

7.1 Stationary Crack-Tip Fields 

Macroscopic crack growth in a creeping material occurs by local failure 
resulting from nucleation and coalescence of microcavities in the highly 
strained region near the crack tip. These and other noncontinuum processes 
may be aided by environmental effects. When the fracture process zone can be 
considered small compared to the region over which the singular terms of the 
stress and strain fields dominate, then a detailed accounting of the fracture 
process is not essential. For whatever the fracture mechanism is within the 
zone, it must be dictated by the surrounding singular fields. Under such 
conditions the creep crack growth is governed by a time-dependent loading 
parameter that characterizes the geometry of the flawed body and its loading. 
The stress intensity factor, the crack-tip opening displacement rate, and the 
path-independent energy rate integral among others have been proposed as 
relevant loading parameters for creep crack growth. The appropriate para- 
meter can be determined from an analysis for the crack-tip stress and strain 
fields. Such analyses have been performed by Riedel(7.1-7.3) and Riedel and 
Rice (7.4) for stationary cracks. 

Consider the crack-tip fields for a stationary crack in a time-dependent 
material undergoing either plane stress or plane strain Mode I loading. The 
singular character of these fields can also be expected to be the same for plane 
problems subjected to either Mode I1 or Mode 111 loadings. Let the x,-x3 
plane contain the crack plane with the x,-axis parallel to the crack front. The 
dependent variables are independent of x3. The stress components a,, and the 
strain components E,, vanish as well as a,, and E,, for the plane stress and 
plane strain problems, respectively. 

7.1.1 Elastic- Secondary Creep 

We begin by considering the crack-tip fields in an elastic-secondary creeping 
material because of the close similarity of these fields to the ones for an elastic- 
plastic material. The uniaxial material law 

t = 6 / E  + Ban (7.1-1) 

is assumed. The total strain rate t is composed of the sum of an elastic 
component, &/E, and a nonlinear secondary creep component, Ba". In  
Equation (7.1-1), E is the modulus of elasticity and the creep exponent n and 
temperature-dependent coefficient B are material parameters for the power 
law creep. Material aging can be modeled by Equation (7.1-1) if B is further 
allowed to be a function of time t. The superposed dot is used to denote a time 
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derivative. The material described by Equation (7.1-1) is variously referred to 
as an elastic-power-law creep material, a Maxwell elastic-nonlinear viscous 
material, or simply an elastic-viscoplastic solid. It can also be considered as 
describing a creeping material with negligible primary and tertiary creep 
regimes. 

A generalization of Equation ( 7 . 1 - 1 )  to a multiaxial stress state is 

. l + v  1 - 2 v  
E i j  = - s, + - 2kkdij + 3 BZ"- S i j  E 3E 

where 

( 7 . 1 - 2 )  

(7.1-3) 

are, respectively, thg deviatoric stress components and effective stress. 
According to Equation (7.1-2) the creep component of the deformation is 
incompressible. For a small strain formulation Equation ( 7 . 1 - 2 )  must be 
supplemented by the equilibrium condition 

aa,,p = 0 (7.1-4) 

( 7 . 1 - 5 )  

and the compatibility relation 

&ap.ap - &aa,pp = 0 

for the plane problems. 
The equilibrium condition will be automatically satisfied when the stress 

components are expressed in terms of the Airy stress function Y defined by 

Cap = - y a u p  + ",yydap ( 7 . 1 - 6 )  

The combination of Equations (7.1-2), (7.1-5), and ( 7 . 1 - 6 )  provides the 
governingequation for the Airy stress function. For the plane stress problem it  
is 

( 7 . 1 - 7 )  
2 
E -v4y - B [ ( Y , y y d a p  - 3 Y , a p ) C " -  ' I , a p  = 0 

where 

0 = C 3 Y , d p % ,  - t Y b d Y p p I f  ( 7 . 1 - 8 )  

In Equation (7.1-7), V4( ) E ( 
The deviatoric stress component s,, can not be expressed simply in terms of 

Y for the plane strain problem. Nevertheless, it follows directly from the 
condition d,, = 0. Instead of a single equation we have the two coupled 
equations 

2- [V4Y + S33,aa]  - B([(Y.,, - s, , )dup - 2Y,ap]a"-1},ap = 0 ( 7 . 1 - 9 )  

is the biharmonic operator. 

1 - v  . 
E 
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and 
1 - 2 v  - 1 

3 E  E 
Y,aa -+ - i 3 3  + BIT-"-1S33 = 0 

where now 

(7.1 - 10) 

(7.1-1 1) 

For an incompressible material (v + i), Equation (7.1-10) implies that 
s33 = 0, which simplifies Equations (7.1-9) and (7.1-1 1). 

The crack-tip fields are anticipated to be singular at  the crack tip for the 
assumed material law of Equation (7.1-2). If it is further assumed that the 
creep exponent is greater than unity (i.e., n > l), then the creep strain rates will 
dominate the elastic rates near the crack tip. Consequently, sufficiently close to 
the crack tip the linear (elastic) terms in Equations (7.1-7) and (7.1-9) can be 
neglected. As Goldman and Hutchinson (7.5) noted the resulting equations 
have the same form as the equations governing the asymptotic behavior in a 
rate-insensitive, power law strain hardening material. Hence, the stress and 
strain singularities are of the HRR type (see Section 5.3). 

For a local polar coordinate system at the crack tip with 8 = 0 correspond- 
ing to the positive x 1  direction, the asymptotic fields can be written as 

(7.1 - 1 2) 

The time-dependent loading parameter C( t ) ,  which depends upon the applied 
loading and the geometry of the crack body, is defined as 

(7.1 - 1 3) 

The contour r, is a vanishingly small loop enclosing the crack tip and is 
traversed in a counterclockwise direction. The unit normal ni to is directed 
away from the crack tip. It is impossible to establish C ( t )  from only an 
asymptotic analysis. The angular dependence of oij and iij is the same as that 
for the HRR fields (see Figures 5.12 and 5.13). The factor I,, which depends 
upon the creep exponent, appears in Figure 5.14. It is clear from 
Equation (7.1-12) that C ( t )  is the loading parameter that determines the 
strength of the crack-tip singular fields. 

If the applied load remains fixed in time, then the constitutive relation, 
Equation (7.1-2), implies that the stress field becomes time-independent 
(bij + 0) as t + co for a stationary crack tip. The elastic strain rates vanish 
in this limit and secondary (steady-state) creep extends throughout the 
body. Under this condition of steady-state creep the material exhibits 
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nonlinear viscous flow. In this case C(t)-,C* as t - r  00, where C* is the 
path-independent integral 

in which 

W(i,) = j:’ okr dE,, 

(7. I - 14) 

(7.1-15) 

is the strain energy rate density and the contour I- is an arbitrary loop 
enclosing the crack tip and no other defect. Again, the integration is 
to be performed in a counterclockwise direction. The proof of the 
path-independence of C* follows along the same lines as that for path- 
independence of the J-integral. 

Alternatively, C* can be expressed as 

(7.1 - 16) 

where 

(7.1 - 1 7) 

is the rate of work done by the load P per unit thickness acting through the 
conjugate displacement rate A. In this respect the C*-integral can be viewed as 
a path-independent energy rate integral. 

The near-tip fields for steady-state creep are 

(7.1 - I 8) 

It follows that the C*-integral is the loading parameter that determines the 
strength of the crack-tip fields in a body undergoing steady-state creep. 

Under conditions of steady-statecreep, the material law of Equation (7.1-2) 
reduces to a nonlinear elastic stress-strain relationship [cf. Equation (5.3-7)] 
when the strain rates are replaced by strains. In a similar way the C*-integral 
becomes the J-integral if the rates tii and 1, are replaced by ui and qi, 
respectively. Conversely, the C*-integral can be obtained from expressions for 
the J-integral for power law hardening plastic (nonlinear elastic) materials by 
replacing a.+: by B. For example, Equation (5.4-5) becomes 

C* = Bbgl(i)hl(x. .>(?) n + l  
(7.1 - 1 9) 

where Po is the limit load for an equivalent perfectly plastic body having a yield 
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stress o,,. Therefore, the elastic-plastic handbook (7.6) (see Appendix A) can 
also be used to determine C*. In addition, the J-estimation techniques of the 
Rice-Paris-Merkle type (7.7) (see Section 5.5) can be used to approximate C* 
for large values of n by replacing the load point displacement A with its rate. 
While the crack opening rate is related to C*, i t  is easier to compute and to 
measure C* (7.8, 7.9). 

Steady-state creep can be viewed as the limiting process that occurs under 
constant load as t -+ co. Also of interest is the character of the crack-tip fields 
at the other end of the spectrum-that is, for short times after loading. 
According to Equation (7.1-2) the instantaneous response of the material to a 
suddenly applied load at time t = 0 is elastic. Subsequently, the initial elastic 
stress concentration at the crack tip is relaxed by creep deformation as creep 
strains grow in the crack-tip region. If the creep zone is viewed as a time- 
dependent plastic zone, then small-scale yielding is said to occur as long as the 
creep zone is small compared to the crack length and other relevant 
dimensions of the cracked body. Solutions for the time during which this 
condition exists are referred to as small-scale yielding solutions or short-time 
solutions since they describe the stress and strain fields for the period shortly 
after application of the load. Small-scale yielding solutions have been 
investigated by Riedel(7.2) for Mode 111 loading and by Riedel and Rice (7.4) 
for Mode I. 

For short times after application of the load, the stress field is a function of 
the independent variables r, 8, and t and the parameters K ,  E ,  B, v, and n. The 
Mode I stress intensity factor K is used for the load parameter in small-scale 
yielding. It is apparent from an examination of Equations (7.1-7), (7.1-9), and 
(7.1-10) that E ,  B, and t must occur as the product EBt.  Furthermore, 
( E B t ) -  ')has the dimensions of stress and, hence, K 2 / ( E B t ) - 2 / ( n - 1 )  has the 
units of length. Dimensional consistency requires that the stress field for plane 
strain, small-scale yielding have the form 

= - T -  ''w- ')Zi,(R, 0) (7.1-20) 
1 - v  

where Xij(R, 0) is a dimensionless function. The dimensionless radial coor- 
dinate R and dimensionless time T are defined by 

(7.1-2 1 )  

(7.1-22) 

The plane stress field oil is independent of v since it appears neither in 
Equation (7.1-7) nor in the prescribed traction boundary conditions. Hence, 
the factor 1 - v must be replaced by unity for plane stress. For aging materials 
where B is time-dependent, Bt is replaced everywhere by yo B(7) dT. 

Due to the complexity of the nonlinear Equations (7.1-7), (7.1-9), and 
(7.1-lo), a closed-form solution is not to be anticipated. In lieu of a numerical 
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solution an approximate description of the small-scale yielding stress and 
strain fields will be developed. It was previously shown that HRR singular 
fields exist near the crack tip for t > 0. Accordingly C i j ( R , 8 )  must exhibit a 
R-'I ("+' )  singularity as R + 0. Therefore, Equation (7.1-20) must have the 
asymptotic form 

(7.1-23) 

where a, is an unspecified amplitude factor that depends upon the creep 
exponent. For plane stress the factor 1 - v 2  is replaced by unity. The 
introduction of Equation (7.1-23) into Equation (7.1-2) and an integration 
with respect to time yield 

x [qe )y -  lzij(e) (7.1-24) 

In arriving at Equation (7.1-24) the elastic strain rates have been neglected 
compared to their creep counterparts. The combination of Equation (7.1-23) 
and (7.1-24) leads to 

Eij = $Bt (n  + l)rT"-'s, (7.1-25) 

The rigorous determination of a,, would require a numerical solution to the 
nonlinear partial differential Equations (7.1-7), (7.1-9), and (7.1-10). An 
estimate of an can be made by assuming the J-integral, which is generally path- 
dependent for creep problems, to be path-independent. Significant creep 
straining occurs mainly in the creep zone. Within this zone where the HRR 
fields are dominant, the stress-strain relation, Equation (7.1-29, is indepen- 
dent of r and 8. The existence of such a unique relationship implies that J is 
path-independent in the HRR region. On this basis Riedel and Rice (7.4) argue 
that the approximation of a path-independent J is reasonable. 

The form of Equation (7.1-25) is the same as that for power law hardening 
plasticity [cf. Equation (5.3-7)]. The J-integral for such a material law has 
been calculated in Section 5.3. For the present problem the near tip value of J 
is 

J, = (a,)"+'[(1 - v 2 ) K 2 / E ]  (7.1-26) 

Sufficiently removed from the crack tip the fields are elastic and the J-integral 
is 

J ,  = (1 - v 2 ) K 2 / E  (7.1-27) 

Again, the plane stress equivalents of Equations (7.1-26) and (7.1-27) are 
obtained by replacing 1 - v 2  by unity. The approximation that the J-integral 
is path-independent implies that Jo = J ,  and, hence, a,, = 1 for plane strain 
and plane stress. A comparison of the HRR fields expressed alternately by 
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Equations (7.1-12) and (7.1-23) with a,, = 1 reveals that 

J ,  C( t )  = - 
(n + 1)t 

(7.1-28) 

for small-scale yielding. 
It is apparent from Equations (7.1-23) and (7.1-24) that the strengths of the 

crack-tip fields are governed by the elastic stress intensity factor for short times 
under small-scale yielding. The asymptotic analysis indicates that K and C* 
are loading parameters for the extreme cases of small and large creep regions, 
respectively. Which case governs depends upon the size of the creep zone 
relative to the size of the body and the crack length. 

The creep zone boundary has been somewhat arbitrarily defined by Riedel 
(7.2) as the locus of points where the effective creep strain Ec, equals the effective 
elastic strain Ee.* The creep zone boundary rJ8, t )  can be approximated by 
using the HRR-creep strain field, Equation (7.1-24), and the remote elastic 
singular strain field. This leads to 

The angular function F,,(8) for plane strain and plane stress is shown in 
Figure 7.1. Alternatively, a boundary rl(O, t )  can be defined by equating the 
effective stresses of the crack-tip HRR field [Equation C7.1-23)] and the 
remote elastic singular field. This yields 

where 

(7.1-31) [(I  - 2 ~ ) ~  + 3sin2(8/2)]cos2(8/2) ( n + l ~ / ( n - l )  

[a'(@] I 
for plane strain. Replace 1 - 2v and 1 - v 2  by unity for plane stress. The 
function F,(8) is also shown in Figure 7.1. The difference between rct and r l  is 
only in the angular functions. The plane stress boundary extends beyond the 
plane strain boundary. A third measure of the creep-zone boundary is given by 
setting R = 1, which yields a circular zone. In any case all three measures 
indicate that the creep zone has a self-similar shape that expands as t 2 / ( , - l ) .  

The characteristic time for transition from small-scale yielding to extensive 
creep can be estimated by equating the intensities of the HRR fields for short 
times [Equation (7.1-23)] and long times [Equation (7.1-18)], For a, = 1 this 
transition time t ,  is 

J ,  

( n  + 1)C* 
t T  = (7.1-32) 

* The effective strain 6 = (2eijeij/3)*, where eu are the deviatoric strain components. 
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1 

Figure 7.1 Polar diagrams for angular variations of F,(O)(dashed curves) and &,((J)(solid curves) 
under conditions of plane strain (upper half) and plane stress (lower half) for I' = 0.3 and n = 3.5 ,  
13 (7.4). 

where J ,  is given by Equation (7.1-27). For times less than this transition time, 
small-scale yielding can be expected whereas extensive creep is to be 
anticipated for greater times. With Equations (5.4-5) and (7.1-19) the tran- 
sition time can be computed from 

(7.1-33) 

when h,(u/W,n) can be found in Appendix A or estimated. Equations (7.1-30) 
and (7.1-32) or (7.1-33) can be used to estimate the size of the creep zone at the 
transition time. For a center cracked panel Riedel and Rice (7.4) found the 
creep zone size at the transition time to be approximately a tenth of the half 
crack length. 

The approximate small-scale yielding solution can be compared with the 
plane strain finite element computations performed by Bassani and 
McClintock (7.10) for an edge crack in the elastic power law creep specimen 
illustrated in Figure 7.2. This configuration is meant to simulate an edge crack 
in a remotely loaded half space. At t = Oa constant nominal stress = nN is 
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Figure 7.2 Model of plane strain edge 
crack under constant nominal stress 
aZ2 = aN. 

applied to the circular boundary. The material law specified by Equation 
(7.1-2) is used in these computations. In the comparisons SC, = BoL repre- 
sents the nominal creep strain rate and t N  = o,/(EBo$) is the time for the creep 
strain to equal the elastic strain for a uniaxial stress oN. For the edge 
crack configuration tN x ( n  + 1 ) t T .  

Figure 7.3(a) compares the finite element computations for C ( t )  with the 
approximate small-scale yielding prediction of Equation (7.1-28) for n = 3. The 
transition time for this example corresponds to t T / t N  x 0.23. The agreement is 
very good for times less than approximately one-half of the transition time 
t T  and the numerical results seem to reproduce the l / t  decay of C(t) in 
Equation (7.1-28). For greater times the two solutions depart as the numeri- 
cally computed C(t )  approaches the nonzero asymptote C*. The numerical 
results are in agreement with the short- and long-term asymptotic analyses in 
that K is the relevant loading parameter for times small compared to the 
transition time; whereas, C* is the appropriate loading parameter for greater 
times. For intermediate times there is a smooth transition from K- to C*- 
controlled behavior or, equivalently, from small-scale yielding to extensive 
creep. Except near the transition time, an interpolation between the small- 
scale yielding and the extensive creep predictions provides an effective 
estimation. This figure also illustrates the rapid relaxation of the maximum 
effective stress gmaX. 
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Figure 7.3 Comparison of C(i )  computed from finite element analysis (-) and Equation (7.1- 
28) (--) for ow/& = &, Y = 0.3, (a) n = 3 and (b) n = 10 (7.10). 

Figure 7.3(b) is a similar comparison for n = 10. Again very good agreement 
is observed between the finite element and the small-scale yielding predictions. 
Morjaria and Mukherjee (7.1 1) found that the asymptotic results correlated 
well with the numerical computations for the relaxation of the stress 
concentration in a center cracked panel. 

The short-time creep zone boundaries for n = 3 and n = 10 are illustrated in 
Figure 7.4. These boundaries, which are reminiscent of the small-scale 
yielding zones for time-independent plasticity [e.g., see Shih (7.12)], expand 
approximately with a self-similar shape. They extend further ahead of the 
crack tip than the small-scale estimates depicted in Figure 7.1. The extent of 
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Figure 7.4 Short-time creep zones for a,/E = &, v = 0.3 and n = 3 (--) and n = 10 (-) 
(7.10). 

maximum creep occurs approximately along a 60 degree ray. For the same 
normalized time, t / t N ,  the maximum extent of the zone increases with in- 
creasing n. The maximum extent of the creep zone at the transition time is still 
less than the crack length. 

Ehlers and Riedel (7.13) have performed a finite element analysis of the 
transient creep in a compact tension specimen. Their numerical findings are 
very similar to those of Bassani and McClintock. The introduction of C(t) 
= C*(l + t,/t)-which has the correct short- and long-time limits-into 
Equation (7.1-12) yields to a good degree of precision the near-tip stress field 
for all time. In general, the numerical results support the findings- 
particularly, with respect to the relevance of K and C* as loading 
parameters-of the approximate small-scale yielding analysis based upon the 
assumed path-independence of the J-integral. Riedel (7.3) has performed 
similar small-scale yielding analyses to establish the appropriate loading 
parameters for other time-dependent material laws. 

7.1.2 Elastic- Primury Creep 

First consider the crack-tip fields for a body undergoing primary or tertiary 
creep. The material law for the creep component of the strain is assumed to 
have the Bailey-Norton form 

b.. Y = $Bz"- lZ-P Sij (7.1-34) 

where B, n, and p are material parameters and 5 and Eare the effective stress 
and creep strain, respectively. According to Equation (7.1-34) the creep 
deformation is incompressible. Depending upon the value of the exponent p, 
Equation (7.1-34) describes strain hardening primary creep (p  > 0), secondary 
creep (p  = 0), or tertiary creep (p < 0). When p = 2, Andrade's uniaxial 
primary creep law ( E  cc t f )  is recovered. 
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For time-dependent proportional loading the homogeneous nature of the 
material law [Equation (7.1-34)], the equilibrium equations [Equation 
(7.1-4)] and the compatibility condition [Equation (7. I -5)] permits writing the 
stress field as 

aij(r, 8, t )  = P(t)Zi j (r ,  0) (7.1-35) 

The time-dependent loading parameter is P(t) and Cij is a time-independent 
function of the coordinates r and 8 only. For proportional loading the time 
integration of Equation (7.1-34) yields the creep stress-strain relation 

When a unique stress-strain relationship, such as Equation (7.1-36), is 
independent of the spatial coordinates, then the J-integral is path- 
independent. The time-dependence of J and ~~~a~~ are identical. For example, 
J a c ~ ' ( ' + ~ )  for a constant applied load. It is convenient to introduce a path- 
independent integral that is also time-independent for a constant loading. 
Since the J-integral multiplied by an arbitrary function of time remains path- 
independent, then 

1/(1 + P )  

c,* = J(t)ICP(L)I"/j: CP(7)I" dT} (7.1-37) 

is also path-independent. The C,*-integral depends upon the current load as 
P'+n'(l+p' and is independent of the proportional loading history. In the 
limiting case of p = 0, C,* and C* are identical. However, there is a 
fundamental difference between C* and C,* for p # 0. The path independence 
of C,* demands that the loading be proportional. This is not the case for the 
C*-integral, which is independent of the loading path followed to the current 
state. There may be other effects-for example, elastic unloading-that 
would also limit its applicability. 

The C,*-integral offers the potential for measurement by using 
Equation (7.1-37) and 

J =  -(%) 
P.1 

where 

U = joA P dA 

(7.1-38) 

(7.1-39) 

is the work done by the applied load P per unit thickness acting through the 
conjugate load-point displacement A. The derivative, (dU/da),,,, can be 
formed by measuring the work done by the same loading history for two 
slightly different crack lengths in otherwise identical specimens. 

The stress-strain law of Equation (7.1-36) has the form of that for a power 
law hardening plastic material (nonlinear elastic material) [cf. Equation 
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(5.3-7)] but with a time-dependent coefficient. Consequently, Equation 
(7.1-37) and the fully plastic analyses for J can be used to determine C,*. For a 
constant load it is only necessary to replace a&,,/$ by [ B ( l  + p ) t ] ' / ( ' + P )  
in Equation (5.4-5) for J and Equation (7.1-37) becomes 

m +  1 

C,* = [B(1 + p ) ] ' / ( l + P ) b g ,  ( i ) h l  ( i ,m)(?)  (7.1-40) 

where m = n/(l + p) replaces the plastic strain hardening index n. Tabulated 
values of gl(a/W) and h,(u/W,m)  are available for a number of specimens in 
Appendix A. 

Extending this analogy an additional step one can write 

for the HRR stress field under extensive primary creep and proportional 
loading. The angular functions Zij(O, m) are normalized such that the 
maximum value of Z(0, m )  for a fixed m is unity. The primary creep stress field 
has a r- ' ' (m+l)  singularity at the crack tip. It is also apparent from 
Equation (7.1-41) that C,* is an appropriate loading parameter for extensive 
primary creep. 

Because creep deformation takes time to develop, elastic deformation can be 
significant for short times after a sudden application of the load. When the 
elastic strain rates are added to the creep rates of Equation (7.1-34), the 
isotropic material law becomes 

. l + v  1 - 2 v  
9 ,  + - 6 k k d i j  + 3 B Z n - ' E c ~ P S i j  Eij = - (7.1-42) 3E E 

where Ec, is the effective creep strain. 
For a suddenly applied constant load at t = 0, an approximate small-scale 

yielding anlysis in the spirit of that performed for secondary creep will be 
considered. The remote boundary condition for small-scale yielding or, 
equivalently, for short times is the asymptotic approach of the stress field to 
the elastic singular field. Mode I self-similar solutions that satisfy this 
condition, the constitutive relation Equation (7.1-42), equilibrium and com- 
patibility equations are 

Oij  = - E T-I / (n-p-I )c  ij( R , e )  (7.1-43) 
l - v  

The dimensionless radial coordinate R and dimensionless time Tare (7.3) 

and 

T =  - 2 - 1 (&k 

(7.1-44) 

(7.1-45) 
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for plane strain. For plane stress replace 1 - v by unity. Equations (7.1-43)- 
(7.1-45) can be compared to Equations (7.1-20)-(7.1-22) for secondary creep. 

Near the crack tip the creep strain rates will dominate the elastic rates if 
m = n/(l + p) > 1.  According to Equation (7.1-41) the dominant stress field 
has a r- ' / ( '"+')  singularity and, therefore, Xi, must have a singularity of the 
same order in R. This deduction and Equations (7.1-43)-(7.1-45) permit 
writing 

as r + 0 for plane strain and 1 - v 2  replaced by unity for plane stress. For 
p = 0 this equation reduces to Equation (7.1-23). The amplitude a(n,p) can 
be determined approximately by assuming as for secondary creep that the 
J-integral is path-independent. This approximation leads to a(n,p) = 1.  I t  
is clear from Equation (7.1-46) that the strength of the near tip fields under 
conditions of small-scale yielding is governed by the stress intensity factor. 
Hence, for short times K is the appropriate crack-tip loading parameter. With 
R = 1 as a measure of the characteristic size of the creep zone, Equation 
(7.1-44) predicts a self-similar growth of the zone with time as t 2 / ( " - P - ' ) .  

A time will come when the size of the creep zone will no longer be small 
compared to the relevant dimensions of specimen and small-scale yielding is 
inapplicable. After a longer period of time the creep strains will extend 
throughout the specimen. The near-tip stress field will be described by 
Equation (7.1-41) and C,* is the appropriate loading parameter. A character- 
istic time for transition from small-scale yielding to extensive creeping under 
constant load is determined by equating the stress fields of Equations (7.1-41) 
and (7.1-46). This transition time is 

P +  1 t ,  =--(") 1 
m + l  C,* 

(7.1-47) 

It is supposed that J ,  is related to K through Equation (7.1-27) and that C,* is 
attainable from a fully plastic analysis via Equation (7.1-40). In this case 
Equation (7.1-47) assumes the form 

which is convenient to use with fracture handbook values for h,(a/W,n). 

7.1.3 Primary-Secondary Creep 

Following the development of extensive primary creep in the body, a small 
secondary creep zone develops near the crack tip and grows. Typically, the 
elastic strain rates will be smaller than the creep rates and may be neglected. 
Under such conditions the material may be modeled by the constitutive 
relation 

dij = 4 @ , p - ' p S i j  + jgZ"-' sii (7.1-49) 
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where the right-hand side is the sum of the primary and secondary strain rates. 
In this case the primary creep stress field given by Equation (7.1-41) sets the 
remote boundary condition for the small-scale yielding solution. 

Provided p > 0 and n > n, / ( l  + p )  Riedel(7.3) found the stress field has the 
self-similar form 

(7.1-50) 

where now 

(7.1-52) 

and m = n l / ( l  + p ) .  In the secondary creep zone near the crack tip the stress 
field is known to have a r - ' / ( " + ' )  singularity. Hence, for r + 0 Equation 
(7.1-50) assumes the asymptotic form 

Once again a(n, n ,  , p )  = 1 if path-independence of J is assumed. 
As long as the secondary creep zone is small compared to the crack length 

and relevant dimensions of the specimen, the intensity of the primary creep 
field, C f ,  is the appropriate loading parameter. Setting R = 1 as a measure of 
the characteristic size of the secondary creep zone, one concludes that this 
zone grows as tP("+ ' ) / l n ( l  + p ) - n i l .  For times greater than the transition time 

1 2 = {  n + p +  1 C:}l+'/p 

( 1  + p ) ( n +  1 ) c *  
(7.1-54) 

obtained by equating Equations (7.1-18) and (7.1-53), extensive secondary 
creep of the body occurs and C* becomes the relevant loading parameter. 

I t  is now possible to describe the sequence of events when a constant load is 
suddenly applied to a body with a stationary crack. If the instantaneous 
response of the cracked body is essentially elastic except for possibly a small 
plastic zone at the crack tip, the stress intensity factor K governs the growth of 
the ensuing creep zone and the strength of the HRR field while the creep zone 
is small compared to the crack length and other relevant dimensions. If the 
material has a significant primary creep regime, extensive primary creep will 
occur for times greater than the transition time t, [Equation (7.1-47)]. The Cf- 
integral then controls the growth of the secondary creep zone and the 
amplitude of the near-tip fields. This secondary creep zone continues growing 
until after the transition time t ,  [Equation (7.1-54)] when it has virtually 
superceded the primary creep throughout the body. The C*-integral then 
becomes the appropriate loading parameter. If the primary creep regime of 
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c' * P -c* K c c,. 

- / 
/ primary creep zone 
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t (hr) 
Figure 7.5 Growth of primary and secondary creep zones in a center-cracked panel (7.3). (a, = 
80 MPa, E = 140 GPa, uv = 320 MPa, B ,  = 2.5 x hr-' 
MPa-', n, = 9, p = 2, n = 5, t ,  = 15 hr, t 2  = 500 hr) 

hr-' MPa-9, B = 5 x 

the material is insignificant or if the secondary creep zone overtakes the 
primary creep zone, then the C,*-controlled period is inconsequential. Instead, 
a transition from K- to C*-dominated behavior will occur at the transition 
time tT  [Equation (7.1-32)]. 

Figure 7.5 illustrates for a hypothetical material the development of the 
plane strain primary and secondary creep zones in a center-cracked panel 
subjected to a remotely applied stress CT,, = cm. The size rpl  of the 
instantaneous plastic zone is small compared to the half crack length 
a = 10 mm and ligament length b = 10 mm. The solid curves represent 
the small-scale yielding estimates for the creep zone size obtained from setting 
R = 1 in Equation (7.1-44) and (7.1-51). The dashed curves represent rough 
estimates presented by Riedel(7.3) for the creep zone size outside the small- 
scale yielding range. It is apparent that after the transition time t l  the accuracy 
of the small-scale yielding approximation for the size of the primary creep 
zone diminishes rapidly. Shortly after the time t ,  the primary creep zone has 
engulfed the remaining ligament and C,* commences to govern the near-tip 
fields. For times greater than t ,  the secondary creep zone extends over the 
entire ligament and C* is the controlling load parameter. 

7. I .4 Plastic- Primary Creep 

It may happen that a suddenly applied load to a cracked body is sufficient to 
produce an instantaneous fully plastic state rather than an elastic one. In this 
case the creep zone will begin growing not in an elastic region but in a plastic 
one. As long as the creep zone is small compared to the relevant dimensions, 
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the J-integral can be expected to control the near tip fields and the 
development of the creep zone. The material law 

(7.1 - 5 5 )  

models instantaneous power law hardening plasticity with superimposed 
creep. The coefficient Bo can be expressed in terms of the yield stress ay as 
uai- ' IN/E .  

Riedel(7.3) found that sufficiently strong strain-hardening, N > (1 + p)/nl, 
is required for the existence of a small-scale creep zone in a fully plastic 
specimen. When such a condition exists, the self-similar stress field has the 
form 

aij = B,NT-N("N-l-p)Cij(R,e) (7.1-56) 

where 

n N -  1 - p  Bt 
N + 1 B",N 

- T =  (7.1-58) 

Since the primary creep stress field has a r -  
of Equations (7.1-56)-(7.1-58) provides the creep dominated crack-tip field 

singularity, the combination 

where m = n/( 1 + p ) .  The assumption of approximate path-independence of J 
leads to a(n, p ,  N) = 1. 

Equating Equations (7.1-41) and (7.1-59) one obtains the transition time 

P +  1 l + P  
t3 = n + p + l ( i $ )  

(7.1-60) 

at which extensive creep replaces the initial plastic state. 
When the step loading of the cracked body produces a fully plastic state, the 

J-integral determines the strength of the near-tip fields and the initial 
development of the creep zone for 0 < t < t3 .  During this period the creep 
zone grows as t (N+l) / ("N-l -p)  [set R = 1 in Equation (7.1-57)]. When t > t 3 ,  
primary creep displaces the fully plastic state and C,* becomes the appropriate 
loading parameter. For even greater times ( t  > t 2 )  secondary creep pre- 
dominates and C* is the relevant loading parameter. In materials with a weak 
primary creep regime, a transition from J- to C*-controlled crack-tip fields 
occurs for t > t3  with p = 0 and C,* = C*. 

A criterion for crack extension necessary to predict the initiation time for 
crack growth is lacking. Riedel and Rice (7.4) have proposed that crack 
extension will occur when the effective creep strain at a small structural 
distance, r,, from the crack tip attains its critical value. Both the critical value 



Time-Dependent Fracture 455 

of the effective strain and the structural distance are considered material 
properties to be determined from experiments. Direct measurements of these 
quantities present formidable problems. While such a criterion may yield the 
proper qualitative behavior, it will likely yield unreliable quantitative 
predictions because the fracture process is more complicated than this simple 
criterion implies. Further research on the initiation of creep crack growth is 
necessary. 

7.1.5 Elastic-Exponential Law Creep 

The asymptotic fields for a stationary crack under Mode I11 loading have been 
investigated by Bassani (7.14,7.15) for the uniaxial material law 

E. = - 6 + i,[sinh(;)T 
E (7.1-61) 

where do and oo are normalizing parameters. At low stress levels the creep 
strain rate according to Equation (7.1-61) obeys a power law, h, = E . ( o / ~ ~ ) ~ ,  
whereas at high stress levels it follows the exponential law 

(7.1-62) 

where 2-" and n have been absorbed by ho and go, respectively. For high stress 
levels Bassani used the technique, employed by Hult and McClintock (7.16), 
and Rice (7.17), for the Mode I11 analysis of a crack in an elastic-plastic 
material (see Section 5.2), whereby the nonlinear equations are reduced to 
linear equations by taking the coordinates x 1  and x2 to be functions of the 
stress components. 

The elastic strain rates can be neglected compared to the creep rates near the 
crack tip. As r 0, the asymptotic stress field is expressed parametrically by 

(7.1-63) 

where A is an undetermined amplitude. The latter equations can be combined 
to yield 

(7.1-64) 

Because the left-hand side of Equation (7.1-64) is positive, the asymptotic 
behavior is limited to - x / 2  < 0 < x/2.  The loci of constant effective stress are 
circles centered on x2  = 0 ahead of the crack tip at distances equal to their 
radii. Note that these contours do not encompass the crack tip. The contours 
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of constant effective stress resemble the small-scale yielding elastic-perfectly 
plastic boundary for a stationary crack tip (cf. Figure 5.9 for n 4 co). 

For the creep law, Equation (7.1-62), it follows that 

A cos 8 
r 

(7.1-65) 

Letting < = (Acos 8)/r and taking the logarithm of Equation (7.1-64), one can 
write 

(7.1-66) 

Successive replacement of 5/a, on the right-hand side of Equation (7.1-66) 
leads to 

- 
d - = In{< In[< In(...)]} 

6 0  

from which the leading term as r -+ 0 is 

(7.1-67) 

The introduction of Equation (7.1-67) into Equation (7.1-65) yields as r -+ 0 

tc A cos 6 
do r ln[(A cos 6 ) / r ]  
- =  (7.1-68) 

The stress singularity of Equation (7.1-67) is weaker than the r-"("+')  
singularity for the power law creeping material. On the other hand, the strain 
rate singularity of Equation (7.1-68) is stronger than the r-"/("+ ') singularity 
of power law creep. Qualitatively, these singularities fall between the large n 
limit of power law creep and the nonhardening limit of time-independent 
plasticity (7.18). While analyses have not been performed yet for Mode I and 
Mode I1 loadings, the same kind of singularity is expected. This is certainly 
known to be the case for power law creep. Simiarly, the elastic stress intensity 
factor and the C*-integral are the relevant loading parameters for short-time 
(small-scale yielding) and long-time (extensive creep), respectively. 

In the foregoing treatments the fracture process zone has been assumed to 
be negligibly small compared to the crack-tip creep zone. However, the size of 
the process zone in a small specimen of a ductile material can be comparable 
to the length of the remaining ligament. Under such circumstances, the 
asymptotic analysis has no physical relevance. The stress and strain distribu- 
tions are likely to be more uniform in the ligament than predicted by such an 
analysis. In this case the net section stress or the reference stress would likely be 
the loading parameter that governs the life of the specimen. More will be said 
about the reference stress in Section 7.3. 
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7.1.6 The AT,-Integral 

Atluri (7.19) has developed a path-independent integral AT, that is amenable 
to numerical solution using the finite element method. Because it includes 
elasto-viscoplastic material behavior as a special case, it is informative to 
examine its relationship to other integrals introduced in this section. 

In its most general form AT,  includes finite deformation, material accelera- 
tion, and arbitrary traction and displacement conditions on the crack faces. 
In the absence of these complicating factors, AT, under quasi-static loading 
reduces for small strains and deformations to 

A T  = lim [ A  Wnk - (oij + Aoij)njAui,,] ds  (7. f -69) 
r.-o jrs 

where the incremental internal work density A W  in the time increment At  is 
given by 

A W  = (oij + $Aoij)AuiSj (7.1-70) 

The incremental components of the stress tensor and displacement vector in 
this interval are Aoij and Aui, respectively. The vanishingly small contour re 
encloses the crack tip. The retention of the second-order terms in 
Equations (7.1-69) and (7.1-70) can offer computational advantages. 

The following physical interpretation of AT, has been given by Atluri  (7.19). 
The increment AE of the total energy in the interval At is the sum of the 
incremental internal work and the incremental kinetic energy-the latter 
being zero for the problem under consideration-less the incremental work 
done by the external loading. Consider two bodies that are otherwise identical 
except that the crack in the second body has been extended infinitesimally by 
da, .  The loading history of both bodies is the same. It can be shown that 

where the subscripts 1 and 2 are used to identify energy increments belonging 
to the first and second body, respectively. Hence, A T d a i  represents the 
decrease in the incremental total energy of two bodies that are identical except 
for an infinitesimal crack length difference da, .  Therefore, AT,, can be given an 
incremental energy release rate interpretation. 

A7;dai = - (AE,  - A E , )  (7.1-71) 

For self-similar crack extension the relevant component of AT, is 
dAu. 

ATl = /!yo lrc A W d x ,  - (oij + Aoi j )n .  2 ds d x ,  

A W d x ,  - (ai, + Aoij)ni * d s  - A U , , ~  do, d A  (7.1-72) 
1 ax 1 

where A is the area enclosed by a contour r surrounding the crack tip and no 
other singularity. The latter representation for ATl follows from the former 
after the application of the divergence theorem for the region bounded by re, 
F and the crack faces. Equations (7.1-69) and (7.1-72) are valid under steady as 
well as nonsteady creep conditions and, also, in the presence of elastic strains. 
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Dividing Equation (7.1-72) by At and proceeding to the limit as At  -+ 0, one 
finds that 

(7.1-73) ari, 
a x  f 

Wdx, - QOnj - ds - 

(7.1-74) 

is the rate of internal-work (stress power) density. 

C(t) for a power law creeping material, it follows that 
When the first representation for f, is compared with Equation (7.1-13) for 

(7.1-75) 

Hence, fl characterizes the strength of the crack-tip fields. 
Under conditions of steady secondary creep, Equation (7.1-75) reduces to 

i;=c*+- (7.1-76) 

Equivalently, 

where a(e)/o, of the HRR field is given in Figures 5.12 and 5.13 for plane strain 
and plane stress, respectively. Stonesifer and Atluri (7.20) found that PI and C* 
differ by less than 2 percent for plane strain and less than 15 percent for plane 
stress. 

It is clear that C(t)  and C* are included in fl as special cases. Furthermore, 
since AT, also includes elastic behavior, i t  has the attractive feature that i t  can 
characterize the crack-tip fields from very localized creep behavior associated 
with short times after loading to steady-state creep attained after very long 
times. Hence, AT,  has the potential for rather wide applications as a crack-tip 
characterizing parameter. As Stonesifer and Atluri have demonstrated, it can 
be readily incorporated into a finite element method of analysis. Because AT, 
has an energy release rate interpretation, there exists the potential to extract it 
from measurements similar to those originally performed by Landes and 
Begley (7.8) for experimental determination of C*. 

7.2 Creep Crack Growth 

Creep fracture involves an incubation period followed by a period of crack 
growth that left unchecked can result in a loss of structural integrity. During 
the incubation period creep deformation develops in the creep zone emanating 
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from the crack tip until sufficient accumulative damage has occurred to 
produce crack growth. Crack-tip stress and strain fields and approximate 
small-scale yielding solutions for this period were presented in Section 7.1 for a 
number of material laws. The far more physically important and complicated 
problem of a quasi-statically growing crack in a creeping material will be 
addressed in this section. The asymptotic stress and strain fields for a crack 
growing in an elastic-power-law creeping material have been determined by 
Hui and Riedel (7.21). A small-scale yielding analysis of steady-state crack 
growth in this material has been performed by Hui (7.22). Approximate 
analyses of nonsteady growth have been conducted by Riedel and Wagner 
(7.23). 

7.2.1 Elastic-Secondary Creep Crack Fields 

The plane problem of symmetric (Mode I) loading of a crack extending in an 
elastic-power law creeping material with the constitutive relation of 
Equation (7.1-2) will be investigated. Again, it is expedient to use the Airy 
stress function Y to express the in-plane stress components. The Cartesian 
components are given by Equation (7.1- 16), whereas in polar coordinates 

1 a2v l a y  
a,, = - - +-- r 2  ae2 r dr 

(7.2-1) 

The plane stress and plane strain nonlinear equations governing the stress 
functions are given by Equations (7.1-7)-(7.1-11). 

For a Cartesian coordinate system attached to the crack tip the total time 
derivative of the stress function is 

N ay Y = -h ( t ) - -  + - ax ,  at 
(7.2-2) 

Under steady-state crack growth the deformation is time-independent when 
viewed by an observer fixed to the moving crack tip. Hence, Equation (7.2-2) 
reduces to 

Since 

a a I d  - = cos8- - sine-- 
ax 1 ar r ae 

(7.2-3) 

(7.2-4) 

the first term on the right-hand side of Equation (7.2-2) will give rise for Y oc rs  
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to a singularity as r -, 0 that is one order greater than that due to the second 
term. As a consequence, the asymptotic stress and strain fields as r + 0 are 
identical for steady and nonsteady crack growth. While the following 
asymptotic analysis is for steady crack growth, it is also applicable to 
nonsteady growth unless explicitly stated otherwise. 

For plane stress Equations (7.1-7), (7.1-8), and (7.2-3) combine to yield 

The solution to Equation (7.2-5) must satisfy the boundary condition that the 
crack faces be traction-free. It follows with Equation (7.2-1) that this condition 
in polar coordinates requires 

(7.2-6) 

For a stationary crack tip the elastic strain is negligible compared to the 
creep strain near the tip. Hence, as r --* 0 the nonlinear creep terms not only 
dominate the linear (elastic) terms in Equation (7.1-7), but also the con- 
tribution to the crack-tip stress and strain fields. The stress singularity is of the 
H R R  type;that i s , a a  r-l"n'l)or,equivalently,Y cc r (2n+1) / (n+ ' )as r - r0 .0n  
the other hand, the elastic strain rate can not be neglected for a growing crack. 
To do  so would imply that a H R R  singularity must exist at the crack tip. The 
introduction of Y a r(2n+1)/(n+1) into Equation (7.2-5) leads to a linear elastic 
contribution of the order (~i/.E)r-(~"'~"("' ') compared to a nonlinear creep 
contribution of the order Br-(3n+2)'(n" '). The higher-order singularity of the 
elastic term contradicts the original supposition and, therefore, the asymptotic 
field of a growing crack cannot be of the H R R  type. 

Suppose that the linear term of Equation (7.2-5) dominates the asymptotic 
behavior. In this case a linear elastic stress singularity would occur with Y a 
r3. The linear contribution to Equation (7.2-5) would be of the order 
(ci/E)r-t compared to the nonlinear contribution of the order BY-("' 4)/2 as 
r + 0. I f  n c 3, then the assumption that the elastic strain rate dominates the 
creep rate at the crack tip is valid. For n > 3, the nonlinear term has a stronger 
singularity and the assumption is contradicted. Consequently, the linear (elas- 
tic) and the nonlinear (creep) terms in Equation (7.2-5) play equally important 
roles in determining the asymptotic character of the near tip fields when 
n > 3. 

For n < 3 the asymptotic solution of Equation (7.2-5)-which satisfies the 
boundary conditions, Equation (7.2-6)-is 

= ,r*[cos(:) + +cos(y)] (7.2-7) 

The factor A cannot be determined from the asymptotic analysis but is 
determined from the complete solution to the problem. It depends upon the 
applied loading and the crack growth history. When small-scale yielding 
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conditions exist, the elastic strain will be dominant in the far field. However, for 
n < 3 the creep strain rate varies as i,, K r-”12 and the creep strain for steady- 
state crack growth varies as E,, cc r - (”-2)12 .  In the remote field ( r  -+ co) the 
creep strain field will dominate the elastic strain field which varies as 
E, cc r -  ‘ I 2 .  But, this is contradictory to the assumed small-scale yielding 
behavior. Therefore, steady-state crack growth cannot exist in an elastic- 
power-law creeping material when n < 3. Hart (7.24) has shown that steady- 
state crack extension is possible if the creep exponent depends upon the 
effective stress such that n > 3 as 5 3 0, but n < 3 as 5 --* cx). 

For n > 3 the stress function can be written as 

(7.2-8) 

near the crack tip. Equality of the order of the linear and nonlinear 
singularities in Equation (7.2-5) requires that 

s = (2n - 3)/(n - 1) (7.2-9) 

The introduction of Equation (7.2-8) into Equation (7.2-5) leads to the 
nonlinear differential equation (7.10) 

2 L ( f )  + n(2 - s) [q2 + (ns - 2n + l)q,] + q;’ + 6(ns - 2n + 1)q; = 0 

for the dimensionless function f(6,n). In Equation (7.2-10) a prime is used to 
denote a differentiation with respect to 6’ and 

(7.2- 10) 

~ ( f )  = (4 - s)k(B)cose + kf(e)sin8 

k(6) = f‘” + 2(s2 - 2s + 2)f” + S’(S - 2)’f 
p ( 6 )  = {[f” + ~ ( 3  - s)f/2I2 + 3(s - 1)’L-f’’ + (,~f/2)’]}(“-~”~ 

(7.2-1 1) 
q1(6) = P(8)Lf” + s(3 - 2SlSl 
4 2 ( @  = P ( W f ’ ’  + 4 3  - S l f l  
q 3 ( e )  = (s - I ) P ( W ’  

The boundary conditions on 6 = nand the symmetry conditions for Mode I 
on 8 = 0 require that 

f ( lr ,n)  = 0, 

f’(0,  n) = 0, 

f ‘ ( x , n )  = 0 

f”’(0, n) = 0 
(7.2- 12) 

The highest-(fifth-) order derivative of the linear operator L( ) is multiplied 
by sin 8. In order to avoid solutions that are singular at 6 = 0, the sum of the 
remaining terms in Equation (7.2-10) must vanish at 8 = 0. This regularity 
condition leads to the fifth boundary condition 

2(4 - s)k(O) + n(2 - s)[q2(0) + (ns  - 2n + l)q,(O)] 

+ q;(O) + 6(ns - 2n + l)q;(O) = 0 (7.2-1 3) 
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When Equations (7.2-1 1) and (7.2-12) are substituted into Equation (7.2-13), 
f'"(0, n) can be expressed in terms of f ( 0 ,  n) and f"(0, n). 

Equations (7.2-10)-(7.2-13) define a nonlinear two-point boundary value 
problem that can be solved by the shooting method. When trial values for 
f ( 0 ,  n) and f"(0, n) are assumed, the numerical integration can be performed 
by treating the problem as an initial value one. These trial values are adjusted 
systematically until the boundary conditions at 8 = n are satisfied. 

Having determined f ( 8 , n )  one can use Equations (7.2-8) and (7.1-6) or 
(7.2-1) to write the stress components as 

(7.2- 14) 

where an is a numerical factor that depends upon n. The angular distributions 
of the stress components are shown in Figure 7.6 for n = 4 and n = 6. In 
these representations the components Cap(8) have been normalized such that 
the maximum value of Z(8) is unity. The values of a,, are a4 = 0.815 and 
a6 = 1.064. 

The strain rate field can be determined, by introducing the stress field, 
Equation (7.2-14), into the material law, Equation (7.1-2). This rate field has a 
r - n ' ( n - l )  singularity at the crack tip. For steady-state crack growth i,, can be 
replaced by -riasUp/dx1. An xl-integration of the strain rate field leads to 

(7.2-15) 

where 

cap(e) = zgp(e) + cG'p(e) (7.2-16) 

is a dimensionless function of 8 and n. The elastic contributions to the angular 
distribution of the strain components are 

= (1 + v);ap(e) + (1 - 2v)zyy(e) s,,/3 (7.2- 1 7) 

where s^,p(8) is the deviatoric component of Zap(8). The creep contributions are 

To obtain Equation (7.2-18), Equation (7.2-4) has been used to replace the 
x,-integration with a &integration. The angular variation of the creep strain 
field is depicted in Figure 7.7 for n = 4 and n = 6. 

Unlike the plane stress problem, the stress function for plane strain depends 
upon Poisson's ratio. This dependence complicates the analysis by producing 
the coupled set of Equations (7.1-9)-(7.1-11). However, these equations 
simplify for incompressible materials (v  = 4) for which s33 = 0. In this instance 
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Figure 7.6 Mode I angular distribution of plane stress components for n = 4 and n = 6 (7.21). 

the governing equation for the stress function reduces to 

- i Y a a Y p , )  ( n  - 1 )/Z 1.sp = 0 (7.2- 19) 

The stress function must also satisfy Equation (7.2-6) for traction-free crack 
faces. 

Again the stress function for n > 3 can be taken in the form of 
Equations (7.2-8) and (7.2-9). The nonlinear differential equation for the 
angular distribution of the stress function is (7.19) 

L(f) + n(2 - s)(ns - 2n + 2)q,(B) + q;(B) 

+ 4(ns - 2n + l)q3(B) = 0 (7.2-20) 
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Figure 7.7 Mode I plane stress angular variation of creep strain components for n = 4 and n = 6 
(7.2 1). 

where L(f) is defined in Equation (7.2-1 1) and now 

(7.2-2 1) 

In addition to the boundary conditions, Equation (7.2-12), f (8, n) must also 
satisfy the regularity condition 

(4 - s)k(O) + n(2 - s)(ns - 2n + 2)4,(0) -t qY(0) 

The same numerical technique that was used to solve the plane stress problem 
may be used here. 

+ 4(ns - 2n + l)q3(0) = 0 (7.2-22) 

With the exception that 

(7.2-23) 

the stress and strain fields aregiven by Equations (7.2-14)-(7.2-18) with v = i. 
When the maximum value of Z(0) is normalized to unity, an has the values 
ct4 = 1.042 and c(6 = 1.237. The angular variations of the stress and creep 
strain components are illustrated in Figures 7.8 and 7.9 for n = 4 and n = 6. 
The dashed curve in Figure 7.8 is the angular dependence of the effective 
stress for steady crack extension in an elastic-ideally plastic material (7.25). 
The incompressibility condition implies that E,, = 0 for plane strain (i.e., 
Eee = --&,A. 
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Figure 7.8 Mode I plane strain angular variation of stress components Tor I I  = 4 and II = 6 (7.21). 

Figure 7.9 
n = 6 (7.21). 

n = 4 and 
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Unlike the HRR fields for a stationary crack, the stress and strain 
singularities for the growing crack are of the same order. In contrast to other 
asymptotic fields, the present ones contain no free parameter and are 
independent of the applied loading and the geometry of the body. Moreover, 
the strengths of these fields are independent of the prior crack history and 
depend only upon the material properties and the current crack speed. 
Consequently, any fracture criterion that involves only a combination of these 
fields will lead to a crack growth rate that is independent of the applied loading 
and that is universal for all flawed configurations of the same material. This is 
a physically untenable result that is contrary to observed behavior. The 
implication is that the load- and geometry-dependent nonsingular terms of the 
stress and strain fields play an important role in creep crack growth. 

7.2.2 Steady-State Crack Growth 

Steady-state crack growth under the conditions of small-scale yielding will be 
considered for Mode I. The equivalent problem for Mode I11 has been treated 
by Hui and Riedel (7.21). Small-scale yielding implies that the elastic field 

Gap = K ( 2 W * L p ( @  (7.2-24) 

establishes the remote boundary conditions for the solution to Equa- 
tions (7.2-5) and (7.2-19) for plane stress and incompressible plane strain, 
respectively. 

Dimensional analysis indicates that the stress field for small-scale yielding 
has the form 

where the dimensionless radial coordinate R is 
EBKn-1 -2 / (n-3)  

R = r (  ) (7.2-26) 

A measure of the characteristic length over which the asymptotic field, 
Equation (7.2-14), dominates is obtained by setting R equal to unity. For 
small-scale yielding this length must be small compared to the crack length, 
the remaining ligament and other relevant dimensions of the body. A 
comparison of Equation (7.2-25) with Equations (7.2-14) and (7.2-24) reveals 
that the asymptotic behavior of the dimensionless quantity &(R, 0) is 

(7.2-27). 
Zup(R --t 0,e) = anR-l ’ (n- l )  k p ( @  

Cap(R -+ a, 0) = (2nR)-*Lp(e) 
In order to relate the crack growth rate to the applied load a fracture 

criterion is required. To date no generally accepted criterion exists and is the 
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subject of ongoing research. A criterion that has received consideration 
requires the crack to extend in such a manner that the effective creep strain Ec, 
at a distance rc from the crack tip is at its critical value 8,. For plane stress r, is 
defined ahead of the crack tip (0 = 0), whereas for plane strain it is measured in 
the direction for which % ( R , 6 )  is a maximum. The critical strain criterion for 
crack growth may be an oversimplification. Hui (7.22) has introduced a more 
sophisticated criterion that attempts to model the void growth ahead of the 
crack tip. Qualitatively, the relationship between h and K is very similar 
regardless of which criterion is used. This is not surprising since both are 
deformation-based criteria. For the purpose of discussion here the plane stress 
problem with a critical strain criterion will be investigated. 

The combination of the stress field of Equation (7.2-25) and the material 
law of Equation (7.1-2) permits writing the effective creep strain rate as 

(7.2-28) 

With <, = -hdEc,/dr on 8 = 0, an integration of Equation (7.2-28) in from 
infinity where Ecr = 0 in the small-scale yielding limit leads to 

where 

and 

(7.2-29) 

(7.2-30) 

(7.2-31) 

To evaluate F ( R )  it is necessary to know the dimensionless effective stress 
, f ( R ,  0). The asymptotic character of F ( R )  can be determined using the limiting 
stress fields in Equation (7.2-27). This yields 

F ( R  -P 0) = ,$(n - 1)G"(0)R("-3)/2(n-1) (7.2-32) 

(7.2-33) 

Riedel and Wagner (7.23) proposed using 

z ( R ,  0) = [R(an6(0) ) '  - n  + ( 2 x R ) ( " -  ')I2] - I/("- (7.2-34) 

to interpolate between the near field stress represented by the first term within 
the brackets and the far field stress associated with the second term. Hui (7.22) 
found that a similar interpolation for C,,(R,O) agreed with plane strain finite. 
element computations to within 10 percent. Figure 7.10(a) shows for n = 5 the 
asymptotic behavior [Equations (7.2-32) and (7 .2-33)]  of F ( R )  (solid curves) 
along with F ( R )  based upon the interpolated stress (dashed curve). It is clear 
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Figure 7.10 Asymptotic (solid curve) and interpolated (dashed curve) representations 
and the variation of li with K for small-scale yielding (7.21). 

for F(R) 

from this figure that F(R)  will have a maximum F* at R = R*. Associated with 
this maximum is a minimum value of K, 

K , , , ~ ~  = EE,&F* (7.2-35) 

below which no solution to Equation (7.2-29) exists. Therefore, within the 
confines of small-scale yielding steady-state crack growth is not possible for 
K c Kmin. 

With F ( R )  known, Equations (7.2-29) and (7.2-31)can be viewed as a pair of 
parametric equations relating h to K .  For K > Kmin or, equivalently, F(R,)  
< F*, two values of R, and, hence, h satisfying Equation (7.2-29) exist. The 
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existence of two values of h for the same K produces the two branches depicted 
in Figure 7.1qb). The lower branch associated with R, c R* is unstable in the 
sense that a decrease of K gives rise to an increase in the crack speed; that is, 
dh/dK c 0. The upper branch (dh/dK > 0) for which R,  > R* is stable. From 
Equation (7.2-3 1) the mimimum steady crack speed possible under small-scale 
yielding conditions is found to be 

* ( n - 3 ) / 2  
dmin = (:) EBK;;: =R*("-3) /2E"r  c(F*r-l) 5 (7.2-36) 

It follows from setting R = 1 in Equation (7.2-26) that the size of the creep 
zone depends upon K " -  ' /c i .  On the upper branch ( R ,  > R*), ci must increase 
faster than K"-'  if Equation (7.2-29) is to be satisfied. Therefore, with 
increasing K the creep zone decreases from its maximum extent when 
K = Kmin. For K >> Kmin the elastic far field dominates the creep strain at 
x1 = rc .  It follows from Equations (7.2-29) and (7.2-33) that 

(7.2-37) 

That is, a and K obey a power law relationship under conditions of small-scale 
yielding. The void fracture model of Hui (7.22) also predicts ri K K" for high 
crack growth rates. 

7.2.3 Transient Crack Growth 

The problem of transient crack growth is considerably more difficult and only 
limited results exist. For this reason only an approximate analysis will be 
considered. Such an analysis is useful because it can be expected to describe 
qualitatively the behavior. The steady-state stress field, Equation (7.2-251, can 
be used to approximate a transient field under small-scale yielding provided 
that k and ti are, respectively, small compared to K and d while the crack tip 
traverses the region where the near-tip field dominates. For the approximation 
to be appropriate 

The critical strain criterion can be approximated by 

B5" r, a$, r, - _ -  - --- 
ci &, ax, E, 

(7.2-38) 

(7.2-39) 

(7.2-40) 

where 5 and aZc;,/axl are understood to be evaluated at x1 = rc .  Equa- 
tion (7.2-40) is exact for steady-state crack growth. 

The total creep strain is the sum of the strain accumulated while the crack is 
stationary and the strain while the crack is growing. The far field stress can be 
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used to approximate the creep strain while the crack is stationary. The creep 
strain, (Zc,)l, due to crack growth is given by 

(7.2-41) 

where the integral extends over all previous crack-tip positions and uo is the 
initial crack length. It is clear that depends upon the crack-tip history. 
The effective stress in Equations (7.2-40) and (7.2-41) is approximated by the 
steady-state field of Equation (7.2-25) with g ( R ,  0) interpolated by 
Equation (7.2-34). As a consequence the left-hand side of Equation (7.2-40) 
depends only upon the current crack growth rate whereas the right-hand side 
depends upon the prior crack history. 

Equation (7.2-40) has been solved numerically for d by Riedel and Wagner 
(7.23). Analogous to steady-state crack growth this equation, depending upon 
the value of K, yields two values of d or none. Two values exist if 

n n / ( n  - 1) 

2(n - 1) (a,$(O))"- 
EE,JZT(r, (7.2-42) n 

K > Kmjn = - 

Again the smaller crack speed is associated with the unstable branch whereas 
the larger crack speed belongs to the stable branch. If the stress intensity factor 
(K > Kmin) is held fixed and if the remaining ligament is sufficiently large, the 
crack growth rate increases and approaches asymptotically the steady-state 
rate. If after initiation of crack growth the stress intensity factor decreases 
continuously with the crack growth but within the restriction of 
Equation (7.2-39), the condition arises where Equation (7.2-40) can no longer 
be satisfied. When this occurs, the present model predicts an instantaneous 
drop to zero of the crack growth rate and crack arrest. This rapid drop in the 
crack speed would violate the restriction of Equation (7.2-38) and invalidate 
the model. In reality further nonsteady crack growth would likely occur before 
crack arrest. 

If the duration of the loading is sufficiently long that extensive creep engulfs 
the whole specimen, then the elastic strains can be neglected except in the zone 
near the extending tip where the fields of Equations(7.2-14) and (7.2-15) 
dominate. When this zone is small compared to the crack length and the 
remaining ligament, the bulk of the material according to the constitutive 
relation, Equation (7.1-2), will exhibit nonlinear viscous flow. In this case the 
HRR field of Equation (7.1-18) sets the remote boundary condition for the 
crack-tip zone. Under conditions of extensive creep the appropriate loading 
parameter is the C*-integral. 

Dimensional consistency requires that the steady-state stress field have the 
form 

(7.2-43) 
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where XC,,(R,8) and E(R,8)  are dimensionless functions of 8 and the 
dimensionless coordinate 

(7.2-44) 

The characteristic length of the crack-tip region in which the singular crack- 
tip field of Equation (7.2-14) can be expected to dominate is defined by setting 
R equal to unity. The present analysis requires that this length be small 
compared to the crack length and the remaining ligament. 

The steady-state stress field, Equation (7.2-43), is approximately valid if 
variations of Ci and C* are sufficiently small while the crack extends through 
the crack-tip region. Specifically, 

(7.2-45) 

A plausible interpolation between the near and far fields ahead of the crack 
tip is 

(7.2-46) 

From this point on the analysis proceeds as for small-scale yielding except 
that the HRR field, Equation (7.1-18), is used to determine the creep strain 
while the crack tip is stationary. However, contrary to the small-scale yielding 
analysis two solutions to Equation (7.2-40) for h exist only if (7.23) 

(7.2-47) 

otherwise, none exists. The smaller value of Ci is associated with the stable 
branch while the larger value belongs to the unstable branch. Under constant 
C*-loading the crack tip accelerates after initiation and never attains a 
constant speed according to the present model. When the crack speed exceeds 

(7.2-48) 

solutions to Equation (7.2-40) no longer exist and unstable crack growth 
follows. This instability is a consequence of the increased contribution of the. 
near-tip stress field, Equation (7.2-14), to the creep strain at .xl  = r, for the 
larger crack speeds. Not only the strength of this field, but also the size of the 
near-tip zone increases with the crack growth rate. At sufficiently large crack 
speeds the zone engulfs the point x1 = re .  A condition develops whereby a 
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further increase in ci produces a creep strain at x1 = r, that exceeds E,. When 
this happens, unstable crack growth occurs. It should be noted that the large 
crack-tip accelerations that develop as the point of instability is approached 
may invalidate the present theory due to the failure to satisfy Equation 

In the preceding development the crack growth is assumed to occur 
continuously. There is some evidence (7.26) to indicate that creep crack growth 
in some alloys does not proceed continuously but rather by a series of discrete 
steps. If the time t G  between increments Aa of discrete crack extension is large 
relative to the transient time tT  for the development of the secondary or 
steady-state creep, then most of the creep damage will occur in the steady-state 
crack-tip region while the tip is stationary. This means that the sequence of 
discrete crack advances will be controlled by C* if the secondary (steady-state) 
creep field can develop around the crack tip long before the next increment of 
crack growth. Consequently, the macroscopic crack growth rate for this kind 
of crack extension should correlate with C*. When the increment of crack 
growth carries the tip through and well beyond the crack-tip plastic zone, 
McMeeking and Leckie (7.27) estimate that 

(7.2-45). 

tT  3h[l - (2C*/3BAa)'/("+')] 
t G 4EBAao:-' 
_ -  - (7.2-49) 

When this ratio is small compared to unity(i.e., t ,  << t G ) ,  the C*-integral can be 
expected to be the loading parameter governing the rate of intermittent crack 
growth in a plastic-power-law creepingmaterial. On the other hand if the ratio 
is much greater than unity ( tT  >> tG) ,  the crack growth can be considered to be 
nearly continuous. 

A complete analysis of the stress field around a crack tip that starts from a 
stationary position and begins to grow after an incubation period has not been 
performed. Due to the inherent mathematical complexities associated with the 
different regimes of load and crack velocities, numerical methods will 
undoubtedly be required to carry out such an analysis. 

7.2.4 Elastic- Primary Creep Crack Fields 

It can be shown (7.28) that the crack-tip stress field belonging to an elastic- 
primary creep law of Equation (7.1-42) is 

(7.2-50) 

provided that n - p > 3. Otherwise, the fields have an elastic r - )  singularity. 
The numerical coefficient a(n, p )  depends upon the values of n and p as do the 
O-variations &,,(O,n,p) and 6(8,n,p). When p = 0, this stress field reduces to 
that of Equation (7.2-14). Like the latter field the strength of the present one is 
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independent of the loading and prior crack history and depends only upon the 
material properties and the current crack growth rate. Again, the implication 
is that the load- and geometry-dependent nonsingular fields have a vital role in 
creep crack growth. 

For steady-state crack growth the crack-tip strain field is 
a l I ( n - 1 - p )  

&up = G,(6, n, P) (7.2-51) 

where Sap(6,n,p) is a dimensionless function of 6, n, and p .  The elastic 
component of ZUp(O,n,p) is given by Equation (7.2-17) while the creep 
component has a form similar to that of Equation (7.2-18). The same method 
used to analyze crack growth in the secondary creep regime can also be used 
here. 

7.3 Creep Crack Growth Correlations 

Numerous experimental studies on creep crack growth at elevated temper- 
atures have been conducted for several structural alloys. Time-dependent 
crack growth can result from creep effects as well as environmental effects or 
from a combination of both. An oxidizing environment can accelerate the 
creep crack growth rate in superalloys by an order of magnitude or more. In 
many tests no attempt was made to separate the effects. This has made the 
interpretation and comparison of data difficult. Efforts have concentrated on 
trying to identify the loading parameter' with which the crack growth rate 
correlates. The most commonly employed loading parameters are the elastic 
stress intensity factor K, the energy rate integral C*, and the reference stress 

If a particular loading parameter is applicable, the crack growth rate 
should correlate with it regardless of the specimen's geometry. The number of 
correlation studies using several specimen geometries is limited. While more 
test results for different geometries are becoming available, i t  is not always 
possible to make comparisons because the influence of the environment is 
unknown. Some results of these correlation studies are presented in this 
section in order to attempt to establish the condition@) under which a specific 
loading parameter is applicable. Rather extensive reviews of crack growth 
studies at elevated temperatures under static, cyclic, and combined loading 
have been prepared by Sadananda and Shahinian (7.29, 7.30). 

Perhaps the most appealing aspect of the stress intensity factor as a 
correlating parameter is the ease with which it can be calculated. This is 
particularly advantageous when conducting creep crack growth tests at 
elevated temperatures since only the load and the crack length are required for 
its determination. The stress intensity factor has previously been shown to be 
the relevant loading parameter under conditions of small-scale yielding- that 
is, when the size of the plastic and/or creep zone attending the crack tip is 
small compared to the elastic K-dominant region. However, increasing the 
temperature of most materials is more conducive to plastic flow and creep, 
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which can ultimately limit the range of applicability of the stress intensity 
factor. If the plastic deformation is negligible compared to the creep 
deformation, the stress intensity factor can be expected to be applicable if the 
test duration over which the crack growth is observed is less than the 
transition time t l  given by Equation (7.1-47). When the primary creep is also 
insignificant, the creep crack growth rate can be expected to correlate with K if 
the test period is less than the transition time tT of Equation (7.1-32). These 
times are only estimates since the transition times t l  and t ,  were established for 
a stationary crack. Analogous transition times have not been determined for a 
growing crack. 

When the plastic deformation is negligible and the secondary creep is 
extensive, then the C*-integral is expected to be the relevant loading 
parameter. Landes and Begley (7.8) have developed an experimental technique 
for the determination of C* based upon the definition of Equation (7.1-16). In 
this method, shown schematically in Figure 7.1 1, multiple specimens are 
subjected to different constant displacement rates. The load P per unit crack 
plane thickness and the crack length are measured as a function of time as 

A=const. P =const. 

p-1. t fq t Step a’ 

P 
Step a 

Figure 7.1 1 Schematic for. extracting C* from experimental measurements. 
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depicted in Step a. These data are cross plotted to yield the load as a function 
of the displacement rate for fixed crack lengths, Step b, and the crack growth 
rate versus crack length, Step c. The area under the curves in Step b is the rate 
of work done V per unit of crack plane thickness. The latter is plotted against 
the crack length in Step d. According to Equation (7.1-16) the slope of the 
curve in Step d is C*. Finally, the curves of Step c permit plotting the crack 
growth rate as a function of C*, Step e. 

Normally creep tests are conducted under constant load. Sadananda and 
Shahinian (7.9) have modified the above procedure to accommodate the latter 
type of loading. In  this approach the load-point displacement and the crack 
length as a function of time are recorded as in Step a' in Figure 7.1 1 .  For a 
fixed crack length the load, displacement rate, and crack growth rate are 
determined from these plots. The data are used to prepare the plots in Step b 
and Step c. From here on the two procedures are identical. The crack length 
can be determined from measurements of the drop of the electrical potential 
across the crack when a current is applied to the specimen. 

Clearly, either approach to analyzing the data is more involved than simply 
computing the stress intensity factor from the applied load and crack length. 
On the other hand, when handbook values for h,(a/W, n) are available, 
Equation (7.1-19) can be used to compute C* for extensive creep in a power 
law creeping material. Alternatively, the estimation approaches used to 
determine J for elastic-plastic materials can be extended to establish C* from 
measured P-A curves. For example, assume, analogous to elastic-plastic 
fracture, that the generalized load P per crack tip and per unit  crack plane 
thickness and the conjugate displacement rate A are related by the separable 
form 

p = f(a)g(A) (7.3-1) 

where f ( a )  is a function of geometry only, whereas, g(A) is a function of A and 
independent of a. The combination of Equations (7.1-16),(7.1-17), and (7.3-1) 
yields 

where b is the remaining ligament and 

q = - - = - - p  dn A s ("'> 

(7.3-2) 

(7.3-3) 

is the creep analog of Turner's q-factor [cf. Equation (5.7-29)]. 
The problem of determining C* from a P-A curve reduces to establishing q. 

For a deeply cracked bend specimen q = 2. For a power law creeping material 
it is possible to write 

P A  (7.3 -4) 
n u = -  

n + l  
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It also follows from a generalization of Il'yushin's theorem that P cc All''. For 
a deeply cracked plane tension specimen (e.g., a center crack panel or a double- 
edge cracked plate) and for a large value of the creep exponent, dimensional 
analysis requires that 

P = Cb(A/b)"" (7.3-5) 

where C is a constant independent of b. The introduction of Equation (7.3-5) 
into Equation (7.3-3) yields 

and, hence, 

Harper and Ellison (7, 

n - 1  g=- 
n 

n -  1 PA 
n + l  b 

c *  =-- 

) found for Discaloy at 

(7.3-6) 

(7.3-7) 

50" C very good agreement 
between C* determined by the Landes-Begley method (Figure 7.1 1) and this 
estimation technique. On the other hand, Saxena (7.32) reported that the two 
methods yield values for C* that differ from 8 to 40 percent for Type 304 
stainless steel. 

Many materials when tested under conditions conducive to high ductile 
creep deformation are notch insensitive. Under these conditions no special 
significance can be attached to the singular crack-tip fields because of the large 
degree of crack-tip blunting. The reference stress method of analysis for 
creeping components is often used under these circumstances. The idea behind 
this method is to correlate the creep deformation in a body with the 
deformation in a simple creep specimen (7.33). The method is an approximate 
technique that has been employed successfully to predict creep rupture (7.34). 
The reference stress is defined as the stress in a component that when applied 
to a uniaxial specimen will result in the same deformation rate. For a tension 
specimen without bending-for example, a center cracked panel-the 
reference stress reduces to the net section stress. 

Williams and Price (7.35) have established reference stresses for a number of 
fracture specimens. They found that the reference stress is virtually indepen- 
dent of the creep exponent and is equivalent to the stress at the sketal point- 
the location within the body where the stress is nearly independent of n (7.36). 
Since the limiting solution for an infinite creep exponent corresponds to the 
solution for perfect plasticity, then the reference stress can be approximated by 

(7.3-8) 

where again Po is the limit load for the equivalent perfectly plastic structure 
and o,, is the yield stress. Ponter and Leckie (7.37) have shown that this 
approximation for the reference stress leads to an upper bound to the 
deformation. When Equation (7.3-8) is introduced into Equation (7.1-19), the 
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connection, 

(7.3-9) 

between C* and cref is obtained. 
Failure due to creep rupture is to be expected when sufficient crack-tip 

blunting relaxes the stress concentrations there. Assuming the crack tip blunts 
into a semi-circular arc, Ainsworth (7.38) obtained an estimate for the 
initiation time ti for crack growth in terms of the crack opening displacement 
ai at initiation. When the crack opening immediately after loading is negligible 
compared to di, then 

(7.3- 10) 

If the simple creep rupture criterion is adopted that failure occurs when a 
critical accumulated strain E, is attained, then for a constant stress the creep 
rupture time t,(a) for a power law creeping material is expressed by 

i(o)t,(a) = E, (7.3-1 1) 

The combination of Equations (7.3-9)-(7.3- 1 1)  leads to 

(7.3- 12) 

The time tr(brel) represents the life expectancy of a structure when crack-tip 
processes are unimportant and failure is governed by overall creep rupture 
mechanisms. 

Equation (7.3-12) forms the basis for deciding whether it is necessary to 
consider crack initiation and crack growth in determining the life of a 
structure or to take the creep rupture time tr(crrer) as the lifetime. When the 
right-hand side of Equation (7.3-12) is greater than or only slightly less than 
unity-that is, when no initiation of crack growth occurs or it  takes place only 
shortly before creep rupture-then failure is governed by creep rupture 
mechanisms and not by macroscopic crack growth. Under such conditions the 
reference stress will be the relevant loading parameter. At the other end of the 
time spectrum, ti/tr(qef) << 1, crack growth will play an important role in the 
failure. On the basis of Equation (7.3-12) this type of failure can be expected in 
materials that exhibit a small value for the crack opening displacement at 
initiation and/or large critical accumulated creep strain. 

Koterazawa and Mori (7.39) report results of a rather extensive study of 
creep crack growth in three heats of Type 304 stainless steel at 650" C. Center 
notched (CN), two different types of single edge notched (SEN), and three 
different sizes of double edge notched (DEN) specimens were used. Fracto- 
graphic examinations reveal the fracture process to be intergranular. Mea- 
sured crack growth rates in the DEN specimens of heat treatment A and C and 
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Figure 7.12 Crack growth rate in Type 304 stainless steel CN (*), DEN (dashed curves, 
A, 0 heat C), and NRB (solid curves) specimens versus the stress intensity factor (7.39). 

heat 

in the CN specimens with heat treatment C are plotted as a function of the 
stress intensity factor in Figure 7.12. Also shown are the results(dashed curves) 
from similar tests by Yokobori et al. (7.40) and Ohji et al. (7.41) on DEN and 
notched round bar (NRB) specimens together with the NRB results (solid 
curve) of Koterazawa and Iwata (7.42). For a fracture mechanics parameter to 
be applicable its correlation with crack growth rate must be independent of 
the specimen’s geometry. Clearly, the stress intensity factor does not satisfy 
this requirement for the loading levels used in these tests. However, it appears 
as though the results might be converging at the lower levels of the stress 
intensities. This is to be expected because at even lower stresses the creep 
deformation would be confined to the vicinity of the crack tip and its influence 
should be minimal. Therefore, the stress intensity factor could conceivably 
describe creep crack propagation if in addition the conditions for small-scale 
yielding are satisfied. That is, the stress intensity factor would be expected to be 
applicable for high strength-low ductility (creep-brittle) materials. 
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Figure 7.13 Crack growth rate in Type 304 stainless steel CN (+), DEN (dashed curves, 
A, 0 heat C), and NRB (solid curves) specimens versus the net section stress (7.39). 

heat 

In Figure 7.13 the crack growth rate in DEN, CN, and NRB specimens is 
plotted against the net section stress one(. For these types of tension specimens 
the net section stress represents an approximation to the reference stress. Here 
the correlation between the results from DEN and C N  specimens is much 
better than that in Figure 7.12. The growth rates tend to be greater in the wider 
specimens. The results for the NRB specimens are also much closer together 
but the crack growth rate in the latter for the same net section stress is 
generally several orders of magnitude smaller than in the CN and DEN 
specimens. The net section (reference) stress exhibits geometry dependence, 
but to a smaller degree than the stress intensity factor. 

The crack growth rate in CN specimens and in three different sizes of DEN 
specimens as a function of C* is shown in Figure 7.14. The scatter in the 
growth rates for a specific value of C* is less than four. This is considerably 
better than when either the stress intensity factor or the net section stress is 
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Figure 7.14 Crack propagation rates in Type 304 stainless steel CN (*)and DEN (0) specimens 
versus the C*-integral(7.39). 

used. Also, the measurements indicate that a linear relationship between the 
crack growth rate and C* exists. Of the three fracture mechanics parameters 
considered the crack propagation rate correlates best with C* for cr,,, > 
118 MPa. While the scatter band in Figure 7.15 is wider, the correlation of 
crack growth rates with C* for CN, CT, DEN, and NRB specimens is still 
judged quite good by present standards of comparison. Taira et al. (7.43) 
found an equally good correlation between the crack growth rate and C* for 
center notched cylinders (CNC) and NRB specimens of 0.16 percent carbon 
steel at 400" C. Again a linear relationship between Ci and C* was observed. 

When Equation (7.3-9) is rewritten as 

C* = cr,,fi(cr,,f) WH -, n (t: ) 
where 

(7.3- 1 3) 

(7.3- 14) 

it is clear that C* depends upon the width W of the specimen, the reference 
stress, and the geometry of the specimen through H(a/W, n). Since Ci appears to 
be proportional to C*, then the crack growth rate in geometrically similar 
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Figure 7.15 Correlation of crack growth rates in Type 304 stainless steel CN (*), DEN ( W), CT 
(A),  and NRB (4) specimens with the C*-integral(7.39). 

specimens of a power law creeping material should increase proportionally 
with the size of the specimen for the same reference stress. This prediction is 
consistent with the data in Figure 7.14. Furthermore, ci/W ought to correlate 
with the reference stress whenever ri varies linearly with C* and changes in 
H(u/ W, n) during crack growth in a power law creeping material are negligible. 
For example, H(u/W,n) = 1.21 & .07 for a DEN specimen in the range 
6 f u/W -= 3 and for n = 7, a representative value of the creep exponent 
for Type 304 stainless steel at  650" C. A similar argument for the correlation 
of ci/W with urer can be made for deeply cracked specimens on the basis of 
the estimation of Equation (7.3-7) for C* and Equations (7.3-5) and (7.3-8). 
Figure 7.16 demonstrates that the correlation of h/W with the net section 
stress, which is used to approximate the reference stress, for Type 304 stainless 
steel CN, DEN, and NRB specimens of different sizes is very good. The plot for 
the NRB specimens does not coincide with one for the DEN specimens 
because the respective H(u/W,n) is different-that is, because of the 
aforementioned geometry dependence of the net section (reference) stress. 

To assess the influence of environment and temperature on creep crack 
growth in 0.16 percent carbon steel, Taira et al. (7.43) conducted tests with 
CNC specimens at 400" C and 500" C in air and in a vacuum:When the crack 
growth rate is plotted against the net section stress as in Figure 7.17(a), a rather 
strong dependence of crack growth rate on temperature and environment 
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appears. However, when C* is used as the correlating load parameter in 
Figure 7.17b, the same data fall into a narrow band with slightly larger crack 
propagation rates occurring at 500" C. Again the crack growth rate is seen to 
be nearly proportional to C*. Similar behavior has been observed for Type 
304 stainless steel. 

While the preceding correlations have been for creep crack growth in 
metals, such growth in polymers is becoming a concern as these materials are 
being increasingly used in load carrying members-for example, natural gas 
pipelines. Figure 7.18 shows the results of a creep crack growth study in 
Phillips M 8000, a high density polyethylene, at room temperature (7.44). The 
stress intensity factor is seen to correlate with the creep crack growth rate in 
three-point bend and compact tension specimens. 

Because existing data are somewhat limited, it is difficult to quantify the 
conditions under which a loading parameter can be expected to be applicable. 
While conditions have been established for a stationary crack, analogous 
conditions for a growing crack remain to be developed. In the interim the 
conditions for a stationary crack may be used only as an approximate guide. 
Existing data indicate that for relatively ductile m'aterials the C*-integral is an 
appropriate loading parameter when the crack growth in the secondary creep 
regime is predominantly deformation controlled. The C*-integral appears to 
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Figure 7.17 Correlation of crack growth rate in 0.16 percent carbon steel CNC specimens at 
400"C(.)and 5WC(O) in  air and W C (  A)in vacuum with(a) the net section stressand (b) the 
C*-integral(7.39). 

be applicable for large values of the creep exponent (n > 5-6) and relatively 
small crack growth rates (7.45). The stress intensity factor may be more 
appropriate for creep-brittle materials and environmentally assisted creep 
crack growth wherein the creep zone is confined to the crack tip region. A 
confined creep zone can be expected for small values of the creep exponent 
(n < 3) and relatively large growth rates. 

It is clear from Equation (7.1-77) that fl will be an appropriate loading 
parameter for crack growth in the secondary creep regime whenever C* is. 
Moreover, because f1 and in general not C* can be given an energy 
interpretation, it appears that the experimentalist may be "measuring" $ 
rather thant C* when an energy approach is used (7.46). 
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Figure 7.18 Creep crack propagation rate in M 8000 polyethylene three-point bend (0, A) and 
compact tension (0, 0)  specimens versus the stress intensity factor. 

7.4 Viscoelastic Crack Growth 

While all solids under appropriate conditions will exhibit to various degrees 
viscoelastic behavior or rate sensitivity in their response to mechanical 
loadings, polymers appear particularly susceptible in even the most benign 
environment. Furthermore, polymers are finding more applications in which 
their load carrying capacity becomes an integral part of the performance of 
the structure-for example, plastic pipelines, binders in advanced composites, 
and adhesives to mention only a few. Consequently, time-dependent fracture 
plays an important role in determining the service life of polymeric as well as 
viscoelastic components. 

To date most of the fracture mechanics approaches to crack propagation in 
polymeric structures have modeled the material as being linear viscoelastic. 
Such behavior can be reasonably expected in a crosslinked polymer above the 
glass transition temperature. In the absence of a generally accepted nonlinear 
viscoelastic theory, the linear analysis may be viewed as a first-order 
approximation to be used qualitatively, if not quantitatively, to gain an 
appreciation and understanding of the importance of parameters in the time- 
dependent fracture phenomenon. The literature on crack growth in linear 
viscoelastic solids is extensive; for example, see references (7.47)-(7.50). 
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When an element of a linear viscoelastic material is subjected to a plane 
strain tension, as depicted in Figure 7.19, the strain due to a stepped stress oo 
can be written as 

~ ( t )  = C(t)oo (7.4-1) 

where C(t) is the plane strain creep compliance. The short- and long-time 
limits of the strain, when they exist, correspond to the instantaneous and long 
time elastic response with 

C(0) = (1 - v i ) / E , ,  C(a3) = ( 1  - v z , ) / E ,  (7.4-2) 

where vo, v, and Eo, E ,  are the corresponding values of Poisson's ratio and 
modulus of elasticity of the isotropic material. For plane stress loading replace 
1 - v i  and 1 - v i  by unity. 

The stress field in a plane viscoelastic body subjected only to prescribed 
tractions is the same as that in an elastic body of the same geometry and 
loading provided the resultant force on any closed boundary vanishes. It 
follows as a corollary that the stress intensity factors for similarly loaded 
linear elastic and viscoelastic bodies satisfying this condition are equal. 

Consider a linear viscoelastic material whose work of fracture 27 required 
to produce a unit of surface area is independent of the crack growth rate ci. For 
a very slowly growing crack (ci -+ 0') the material is expected to respond 
nearly elastically according to the long time compliance C(o0). Based upon the 
energy balance criterion of fracture, the stress intensity factor KO required for 
this growth rate is given by 

G = C ( a ) K ;  = 27, ci --+ 0' (7.4-3) 

). 

ii 
Figure 7.19 Typical viscoelastic behavior. 
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At the other extreme of a very rapidly propagating crack (6 + 00) the material 
is expected to respond nearly elastically according to its instantaneous 
properties. With the neglect of inertia effects the required stress intensity factor 
K satisfies 

G = C ( 0 ) K L  = 27, ci + 00 (7.4-4) 

The relationship between K and 6 for intermediate crack growth rates is 
depicted qualitatively in Figure 7.19. 

If the crack tip is modeled as a mathematically sharp one, then an entirely 
different behavior is predicted. Due to the unloading of the crack-tip elements 
produced by the advancing tip, the local crack opening displacement is 
governed by the instantaneous elastic properties. Based upon a local work 
argument or, equivalently, the crack closure integral [Equation (3.3- 1 5)], the 
energy balance criterion yields 

G = C ( 0 ) K Z  = 2jj (7.4-5) 

for all growth rates (7.51). This is in opposition to the anticipated behavior in 
Figure 7.19. The source of this apparent paradox is the neglect of the finite size 
crack-tip fracture process zone in the latter model (7.51,7.52). 

7.4.1 Cohesive. Fracture Model 

Recognizing the need to incorporate a fracture process zone in a time- 
dependent fracture model, Knauss et al. (7.53-7.55) and Schapery (7.56-7.58) 
extended the Dugdale model to include viscoelastic materials. The cohesive 
fracture model is depicted in Figure 7.20 for symmetric Mode I loading. The 
crack plane is defined by x2 = 0 and the crack front is parallel to the x3- 
axis and is located at x, = a(t)  relative to this fixed coordinate 
system. The coordinate r = a(t) - x1 is attached to the moving crack 
tip as is the coordinate r I .  In the spirit of Dugdale the cohesive fracture process 
zone in which the material may exhibit nonlinearity and viscosity is confined 
to the strip 0 < r c w. Outside of this strip the material is assumed to exhibit 
linear, isotropic viscoelastic behavior. 

When the solution for the equivalent elastic problem is known, the solution 
to the viscoelastic problem can be produced by means of the viscoelastic 
correspondence principle (see Section 2.5). This principle, which is generally 
valid for stationary cracks, is also applicable for growing cracks provided that 
in the equivalent elastic problem the stress oaZ on x2 = 0 is independent of E 
and v and that the crack plane displacements have the separable form v 
= f(E, v)g(r) (7.59,7.60). The first provision is met if the cohesive stress q ( r )  is 
prescribed a priori as in the Dugdale model. The second condition will be 
satisfied if the resultant force on any closed boundary vanishes. For other 
boundary conditions it may not be possible to express v in the separable form. 
However, if Poisson’s ratio is a constant, a condition approximately satisfied 
by many polymers, then the correspondence principle is still applicable even 
though v is not separable in the elastic solution. 
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Figure 7.20 Cohesive viscoelastic 
fracture model depicting cohesive zone 
and nonsingular crack plane stress 
distribution. 

If ui is the elastic displacement field for a unit value of the elastic material 
compliance that is, 1/E' = 1 -the corresponding viscoelastic displacement 
field is 

(7.4-6) 

The dependence of ui upon time stems from crack growth. If the material is 
thermorheologically simple, the influence of temperature on the viscoelastic 
compliance can be included through the time-temperature superposition 
principle. In this case C(t )  is replaced by C(t/a, (T)) ,  where a#)  is the shift 
function that depends upon the temperature T. 

The elastic displacement can be established by superposing: (1) the solution 
for a cracked body with traction-free crack faces subjected to the applied 
remote loading and (2) the solution for the same cracked configuration with no 
remote loading but with a cohesive stress oi2d = q ( r )  acting over 0 c r < w on 
x2 = 0. The crack plane stress oild and the crack face displacement u\') on x2 
= 0' from the first solution for Mode I loading [see Equations (3.1-38) and 
(3.1 -39)] are 

(7.4-7) 

and 

ui l )  = 4KH(r)(r/2n)f, r + 0 (7.4-8) 
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where H ( r )  is the Heaviside step function. Within the confines of small-scale 
yielding, w << a, these quantities for the second solution are (7.61) 

(7.4-9) 

and 

The condition that the total stress aZ2, the sum of Equations (7.4-7) and 
(7.4-9), be nonsingular at rl = 0 requires that 

(7.4-1 1 )  

For a prescribed cohesive stress Equation (7.4-1 1)  determines the length w of 
the cohesive zone. When the cohesive stress is written as a, = a,,,f(r), where a,,, 
is the maximum value of a, and when the change of variable q 2  = c/o is made, 
Equation (7.4-1 1 )  can be rewritten as 

II K 2  
8 oiD2 

0 = -- 

where 
1 

D = jo f(v2)dYI G 1 

For a constant cohesive stress, a, = a,,, D = 1, and 

(7.4-12) 

(7.4- 13) 

(7.4- 14) 

which is identical with the small-scale yielding result of Dugdale. Measured 
yielded zones in cracked sheets of the glassy polymers, polycarbonate, 
polysulfane, and polyvinylchloride, have been found to be in good agreement 
with predictions based upon the Dugdale model (7.62). 

The total crack face displacement u2 on x2 = O', the sum of Equations 
(7.4-8) and (7.4-lo), can be written with the aid of Equation (7.4-1 1 )  as 

The correspondence principle permits writing the crack opening displacement 
6 in the viscoelastic body as 
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when the cohesive stress is uniform. The lower limit of integration has been 
changed to t ,  since there is no crack opening displacement at the position x1 
= a(t , )  prior to the arrival of the crack tip. 

The work of fracture of an element in the cohesive zone from the time t ,  
when it begins to deform until time t ,  after having attained its maximum 
extension 6, at  rupture is 

(7.4-1 7) 

A more convenient form of Equation (7.4- 17) is obtainable for a growing crack 
if disconsidered to beafunctionof x, andr(x, ,?)  = a(r) - xl ,wherer(x, , r I )  
= 0. The left end (Y = o) of the cohesive zone will arrive at the point x1 = a(?, )  
at t = t ,  when the crack-tip opening displacement 6, is at its critical value 6,. 
Hence, Equation (7.4-17) becomes 

(7.4- 18) 

which reduces to 

27 = ay6, = av6, (7.4-19) 

for a constant cohesive strength. 
During the time interval t ,  - t ,  for the crack to extend an increment w, d 

and o are assumed to be constants; i.e., o = 4 t 2  - t , ) .  The combination of 
Equations(7.4-16)and(7.4-19)and thechangeof variables = d(t - t,)/olead 
to 

- -1 ds (7.4-20) .) I n l *  + JiT 
for the equation of motion of the crack tip. Equation (7.4-20) reduces to the 
anticipated limiting behavior of Equations (7.4-3) and (7.4-4). Furthermore, 
this equation of motion is universal in the sense that given two different 
cracked configurations in the same material the rate of crack growth in each 
will be identical if their stress intensity factors are equal. It is also apparent that 
the energy balance and the critical crack opening displacement fracture 
criteria are equivalent for a constant cohesive strength. For a given value of 
the work of fracture 27or, equivalently, the cohesive strength and the critical 
crack-tip opening displacement and the stress intensity factor of the cracked 
configuration, Equation (7.4-20) can be used to determine the crack growth 
rate. This rate can be further integrated to yield the history of crack growth. In 
the limit as ay + 00 and, consequently, o -+ 0, Equation (7.4-20) reduces to 
Equation (7.4-5) for a structureless crack-tip region. 

Until the time ti for initiation of crack growth the crack-tip opening 
displacment at  x1 = a,, where a. is the initial crack length, is given by 
Equation (7.4-16) with a( t )  - x, = O ( T )  and t ,  = 0. The combination of 
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Equations (7.4-14), (7.4-16) and (7.4-19) yields 

aK2( t )  
27 = oy6, = sd' C(ti - 7) - d.r 

a7 
(7.4-2 1 )  

for the initiation time. For a step loading with K ( t )  = K H ( t ) ,  Equation (7.4-21) 
reduces to the transcendental equation 

27 = oY 6, = K2C(ti) (7.4-22) 

for t i .  

of interest the creep compliance can be represented by 
As an illustration of the use of this theory assume that over the time period 

C( t )  = co + C,t" (7.4-23) 

where Co = C(O), C2 and m are positive quantitites. When this compliance is 
introduced into Equation (7.4-20), the crack growth rate is 

where 

(7.4-24) 

(7.4-25) 

and K, is given by Equation (7.4-4). Note that the growth rate becomes 
unbounded as K approaches K ,  from below. Within the confines of small- 
scale yielding, nonuniformity of the cohesive stress does not change the 
essential character of the kinetics of crack growth (7.58). One needs to only 
view o,, as an effective uniform cohesive stress; that is, oy = Do,. 

Based upon the observation that the second derivative of the logarithm of 
the creep compliance with respect to the logarithm of time for many 
viscoelastic materials is small, Schapery (7.58) has developed approximations 
to' Equation (7.4-20) and its equivalent for a nonuniform cohesive stress. 
McCartney (7.63-7.65) has also developed approximate crack growth laws 
based upon the character of the second derivative of the creep compliance. 
The cohesive model has been analyzed by Wnuk (7.66) using a final stretch 
fracture criterion. The final stretch criterion represents an adaptation of the 
critical strain criterion. It is postulated that just prior to decohesion the 
amount of deformation within the cohesive zone is invariant. 

7.4.2 Experimental Comparison 

Consider a remotely tensioned center cracked panel with an instantaneous 
crack length 2a much less than its width. The stress intensity factor can be 
approximated by 

K = o &  (7.4-26) 
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where u is the remotely applied step stress. When Equation (7.4-26) is 
introduced into Equation (7.4-24) and the integration performed, the crack 
history is given by 

where 2ao is the initial crack length. The crack length for which the crack 
propagation rate becomes unbounded is 

(7.4-28) 

Failure occurs at time tf when the crack has grown to a = am. After a change 
of integration variable Equation (7.4-27) yields 

Figure 7.21 shows measured failure times of a center cracked panel of 
Solithane 50/50, a crosslinked amorphous polyurethane rubber. The applied 
stress is normalized with respect to the minimum stress 

u, = [2~/IIaoC(m)]f (7.4-30) 

required to produce crack growth. The data for different temperatures have 
been reduced to the reference temperature of 0°C through the time- 
temperature superposition principle; that is, t is replaced by r/+( T) .  The 
reported values of the material parameters for Solithane are C(m) = 10-2.51 
psi-’ and 7 = 2.41 x lb/in. when adjusted for conditions of plane 
strain with v = 4 (7.53,7.54). With these values and a. = 0.125 in., Equation 
(7.4-30) yields urn = 8.40 psi for the critical stress. For the range of failure 

t,/a,(s) 

Figure 7.21 Comparison of measured and predicted [Equation (7.4-31)] failure times of 
Solithane S0/50 center-cracked panels at different temperatures as a function of the applied 
remote stress (7.54). 
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times of interest the creep compliance of Solithane can be fitted with the 
generalized power law of Equation (7.4-23) with C, = psi-', 
C 2 -  - lo-'.* psi-' min-*, and m = 3 at a reference temperature of 0°C. 

With rn = $, Equations (7.4-25) and (7.4-29) yields, respectively, I = 0.524 
and 

- 2 - a, - In(%)] (7.4-31) 
a0 

When a,/a, >> 1, this equation simplifies to 

(7.4-32) 

The data in Figure 7.21 indicates that tf = 10' sec when CJ = om. This result 
along with Equation (7.4-31) can be used to deduce a cohesive strength of o,, 
= 7.7 x lo3 psi. Now with all the material parameters established Equation 
(7.4-31) can be used to determine the failure time as a function of the applied 
stress, which is depicted by the solid curve in Figure 7.21. The agreement 
between the measured and predicted failure times is very good for the lower 
values of the applied stress. At the higher stress levels the theory underpredicts 
the failure time. This may be due to nonlinearities not included in the analysis 
that produce further blunting of the crack tip, and thereby contribute to an 
increased life by reducing the stress concentration and the damage ahead of 
the crack tip. 

Figure 7.22 compares predicted crack growth rates based upon Equation 
(7.4-24) and measured rates in Solithane strips at various temperatures. The 
clamped lateral boundaries are displaced normal to the crack plane to produce 
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Figure 7.22 Comparison of measured and predicted [Equation (7.4-24)] crack growth rates in 
Solithane 50/50 cracked strips at different temperatures (7.53). 
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a uniform strain, E~~ = E,  in the remote regions of the specimen. Again very 
good agreement between the predicted and measured crack propagation rates 
exists for the small levels of strain. For the larger strains where nonlinear 
effects may be significant the predicted rate underestimates the measured rate. 

Implicit in this development is the hypothesis that the intensity of the 
cohesive strength remains unchanged during crack growth. The implication of 
Equation (7.4-14) is that the length of the cohesive zone will change with K as 
the crack extends. The favorable comparisons of predicted and measured 
results are in agreement with this hypothesis. Kaminskii (7.49), on the other 
hand, observes that experiments using PMMA indicate that the crack-tip 
region for a growing crack does not depend upon the crack length; that is, the 
length of the cohesive zone remains invarjant. Consequently, according to 
Equation (7.4-14) the intensity of the cohesive stress must change with crack 
growth. Kaminskii presents comparisons of measured times to failure in 
Solithane panels and of predicted times for both a constant cohesive stress and 
an invariant length of the cohesive zone. In  general, the predictions based 
upon the latter premise agree better with the measured values. However, a 
number of approximations have been made to obtain these predictions. An 
essential one is equivalent to modeling the materials as a standard linear 
viscoelastic solid that is known to be an oversimplified model for the behavior 
of Solithane. To date the preponderance of experimental evidence seems to 
support a constant cohesive stress. 

7.5 Closure 

The analytical investigation of nonlinear creep crack growth is in its infancy 
and much remains to be learned and done. Because of the mathematical 
complexities, most of the studies have been confined to small-scale yielding for 
power law material behavior. Aside from those cases for which the latter 
conditions are satisfied, the understanding that these solutions afford is 
necessary in the pursuit of the study of creep crack growth under extensive 
creep and more general material laws. Progress is being made in modeling 
creep crack growth based upon grain-boundary diffusional cavity growth and 
coalescence in the highly strained crack-tip region (7.22,7.67-7.69). The 
cavities are assumed to be aligned ahead of the crack tip only and off-axis 
cavities remain to be included. For the purpose of mathematical simplicity the 
stress field ahead of the crack tip is determined independently of the cavitation 
process even though the stress analysis and the cavity growth are not separable 
problems. Rather strong coupling is to be expected during the latter stages of 
the coalescence of the cavity and the crack tip when the remaining ligament 
between the two is smaller than the cavity size. This coupled problem has yet 
to be addressed. Unfortunately, these studies do not indicate any simple 
correlation between the overall loading and the crack growth rate. There are 
indications that the mechanisms controlling cavity nucleation may influence 
the crack growth rate. 
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While the C*-integral has shown promise as a loading parameter to 
correlate crack growth rates, the question of what is the appropriate loading 
parameter is still unanswered. It is likely that there is no single all inclusive 
parameter, but instead the appropriate parameter probably depends, as for the 
stationary crack, upon the relative size of the creep zone. While the time 
periods for applicability of a parameter developed for a stationary crack can 
serve as a guide, there is a need to develop similar criteria, if they exist, for 
growing cracks. Because of its generality, the AT,-integral represents a 
potential correlating parameter that deserves further study. 

While analytical developments are being made, it is equally important that 
they be supplemented by experimental studies to aid the development and 
assessment of emerging mathematical models. Innovative experiments that 
are capable of furthering the understanding of diffusional cavity growth and 
coalescence associated with the fracture process are essential. There is also a 
need for better controlled creep crack growth tests that are capable of 
distinguishing the influence of environmental effects on crack growth. 

Models of crack growth in viscoelastic materials have been primarily 
limited to linear material behavior. These models have employed almost 
exclusively an extension of the Dugdale yielded strip model. Even though they 
have been used to treat plane strain problems, they are in reality limited to 
plane stress. A rigorous plane strain model is lacking. Because many 
viscoelastic materials exhibit rather pronounced nonlinearities, there is a 
growing need for a nonlinear viscoelastic crack growth theory, particularly, 
for the new generation of ductile, tough polymers and composites that are 
being developed and used. In this vein efforts (7.70,7.71) are underway to 
combine the correspondence principle and a generalized J-integral to form a 
nonlinear fracture theory. 

Finally, as progress is made in relaxing the many existing restrictions-for 
example, small-scale yielding, steady-state crack growth, simplified material 
laws, and so on-efficient numerical algorithms will have to be developed if 
time-dependent fracture mechanics is to have any practical application. 
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SOME NONLINEAR ASPECTS OF FATIGUE 
CRACK PROPAGATION 

Fatigue crack propagation is perhaps the most thoroughly studied area in all 
of fracture mechanics. A vast amount of data has been collected and the basic 
mechanisms have been identified. Yet, the theoretical relations that have been 
so far developed, which largely depend upon linear elastic fracture mechanics 
considerations, are not fully capable of treating the crack growth processes 
that occur in service. Specifically, while fatigue growth data are conventionally 
collected and correlated under constant amplitude cyclic loading, service 
conditions are generally characterized by nonuniform (spectrum) loading. As 
such, nonlinear effects play a key role. 

Most applications to predict fatigue crack growth are made by appealing to 
the concept of “similitude.” In essence, predictions are made from linear elastic 
fracture mechanics-based correlations of data obtained under conditions 
similar to those existing in the application area. In particular, similitude is 
achieved by matching the plastically deformed regions generated by the prior 
loading history. Because it is not possible to proceed in this way for the vast 
number of service conditions that exist, the development of reliable predictive 
relations for fatigue crack growth currently represents one of the most 
significant research opportunities in fracture mechanics. 

Reflecting the importance of fatigue crack propagation behavior to 
structural integrity, substantial information already exists in the literature. In 
fracture mechanics terms, the books of Barsom and Rolfe, Broek, and 
Hertzberg (see Chapter 9 for references) all contain comprehensive accounts 
of fatigue experimentation and applications. In addition, the book of 
Kocanda (8.1) and that edited by Fong (8.2) are of interest for their 
comprehensive reviews of fatigue mechanisms. Among many noteworthy 
review articles are those of Plumbridge (8.3), Nelson (8.4), and Weertman (8.5). 
Because a plethora of further information also exists, a complete treatment of 
the subject will not be attempted here. The focus instead will be placed on the 
nonlinear analysis methods that arecalled for in the resolution of three specific 
aspects of the subject: (1) crack growth following an overload, (2) the short 
crack problem, and (3) crack growth in welds. We begin by providing some 
perspective for these applications by reviewing the conventional analytical 
characterizations of fatigue crack growth. 
498 
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8.1 Basic Considerations in the Prediction of 
Fatigue Crack Propagation 

The research that first decisively revealed the key role of the stress intensity 
factor in fatigue crack growth is attributable to work performed at the Boeing 
Company around 1960-see Section 1.3.1 and Paris' reminiscent article (8.6). 
General acceptance of the idea followed from the 1963 publication of Paris 
and Erdogan (8.7). They analyzed crack growth data from center-cracked 
panels of a high strength aluminum alloy under two different types of loading 
conditions. One condition was a remote tension, the other a concentrated 
force acting on the crack surface. When the load is cycled between constant 
values, the first of these produces K values that increase with crack length, 
while the second gives K values that decrease with crack length. Thus, because 
the fatigue crack growth data reported by Paris and Erdogan could be 
consolidated by AK, the use of this parameter as the driving force for fatigue 
cracking was well on its way to being established.* 

8.1.1 Constant Amplitude Fatigue Csack Growth Relations 

It is significant that virtually all verifications of the applicability of LEFM in 
fatigue have been of a generally empirical nature. For example, it is widely 
recognized that fatigue crack growth rates can often be represented by a simple 
relation of the form 

du _ -  - C(AK)"' 
dN 

(8.1-1) 

where AK = K,,, - Kmin, these referring to the maximum and minimum 
values of the stress intensity factors in any given load cycle. But, effective data 
correlations over the complete range of AK values require a modification of 
this relation. Figure 8.1 illustrates data collected by Paris et al. (8.8) for A5339 
steel (room temperature, R = Kmin/KmaX = 0.1). which shows the three 
distinct types of behavior that occur in fatigue crack propagation. 

At one extreme, Figure 8.1 clearly shows a marked increase in growth at 
high AK values as K,,, approaches K,. This has led to the relation proposed 
by Forman et al. (8.9) 

da C(AK)" 
dN - ( 1  - R ) K ,  - AK 
-- (8.1-2) 

where K ,  is the fracture toughness of the material. At the opposite extreme, 
Figure 8.1 shows that Equation (8.1-1) is similarly violated due to the 
threshold behavior. In this regime Donahue et al. (8.10) have suggested a 

* It may be interesting to note that a key finding in the use of the K,, parameter for the arrest of 
rapid crack propagation was that crack arrest with K increasing with crack length could be 
predicted by using data taken from experiments with K decreasing; see Chapter 4. 
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Figure 8.1 Fatigue crack growth behavior in A533 steel at ambient temperature and R = 0.1. 

relation that can be generalized to 

da 
d N  - = C{AK - (AK),h}m (8.1-3) 

where (AK),, denotes the limiting or threshold value of the stress intensity 
factor range. Relations combining the departures from power law behavior at 
high and low AK values also exist; for example, the relation developed by 
Priddle (8.1 1) is 

(8.1-4) 

where the threshold stress intensity range is not a material constant but 
can depend upon R.  For example, as reported by Schijve (8.12), for steel 
(AK),,, = A ( l  - R)Y in which y is a constant that varies between 0.5 and 1.0 
depending upon the type of steel. 
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As another illustrative example of the diversity of relations that have been 
developed, the relation suggested by Walker (8.1 3) can be written as 

AK % = '((1 - R ) " )  (8.1-5) 

This exhibits a particularly strong dependence upon R .  Typical values that 
have been used are rn = 4 and n = 0.5. An extensive review of the effect of 
mean stress upon fatigue crack propagation has been given by Maddox (8.14). 

It is significant that none of the relations cited so far in this account 
(together with the many more that exist) has been developed from basic 
mechanics considerations. Each formula contains two or more disposable 
parameters that are evaluated from observed crack growth data. But, 
theoretical analyses to reduce the arbitrariness have also been made. One of 
the more notable efforts is that of McEvily and Groeger (8.15). Their relation 
can be written as 

AK ] (8.1-6) 
K,, - K,,,  

da  A 
d N  Ea, 
- = -(AK - (AK),h)2 

where A is an environment-sensitive material property with other symbols as 
commonly used. McEvily and his co-workers have introduced a further 
refinement by recognizing that the threshold stress intensity factor range is not 
really constant, but will generally depend upon the mean stress and the 
environment. They suggest that 

(8.1-7) 

where R = Kmin/KmaX and (AK), is an environment-dependent material 
constant. 

It  is worth noting here that the inverse dependence of the crack growth rate 
upon the yield stress, exemplified by Equation (8.1-6) and typical of many 
other theoretical formulations, appears to be at odds with the observed 
behavior. Figure 8.2 shows results of Imhoff and Barsom (8.16) for 4340 steel 
indicating that the trend can actually be the opposite. Petrak and Gallagher 
(8.17) similarly found that constant amplitude crack growth rates are affected 
by the yield strength of steel with the higher strength steel exhibiting the faster 
cracking rates. Their results show that the magnitude of retardation following 
an overload cycle is also influenced by the yield strength: the lower strength 
material displaying significantly more retardation. However, it should be 
recognized that such results can sometimes be misleading. By altering one 
metallurgical property such as the yield stress, other properties will generally 
also be changed at the same time. 

As a final example of the fatigue crack growth relations that exist, consider 
the general form suggested by Erdogan (8.18). This is 

(8.1-8) 
d~ 
d N  - 

C ( l  + p)"'(AK - (AK),h)" 
K, - ( 1  + p) AK 

_ -  
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Figure 8.2 ElTect of yield stress on 
fatigue crack growth rates in 4340 steel. 
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where 

K m a x  + K m i n  

K m a x  - K m i n  
P =  

This gives the sigmoidal response exhibited by the data shown in Figure 8.1. 
According to Erdogan, this relation can be made to fit data over a range from 
lo-* to lo-' in./cycle by proper choice of the constants. Note that this 
relation contains five such constants: m, n, C, K, and (AK),h. There is no 
theoretical basis for this relation. In fact, as Erdogan points out, despite the 
efforts that have been made (mostly by materials scientists) to prove the 
validity of any power law relation for fatigue, these relations remain mostly 
empirical. 

It has been suggested by a number of investigators that (AIQth must be 
related to the fatigue endurance limit of the material, u,, through the size of a 
dominant inherent crack. It follows from this that (AK) , ,  K ueu*, where 2u 
denotes the size of a characteristic natural flaw. This argument produces 
reasonable correlations. Nevertheless, the extent to which the threshold stress 
intensity range is a material property is currently an open issue. For example, 
see the recent article of Paris (8.6). This question is also intimately connected 
with the so-called "short crack" problem discussed in Section 8.2.3. 
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8.1.2 Load Interaction Efects 

All of the above relations are based upon fatigue crack growth under constant 
amplitude loading cycles. With all of these results, there is a problem of 
predicting crack length for a load spectrum that may not be uniform. The 
simplest approach is that originated by Miner (8.19), which ignores the effect 
of load interactions. This can be written most succinctly as 

$ := I 
1 -  1 

(8.1-9) 

where n, denotes the number of cyclic loads of a given intensity while Ni is the 
maximum number of load levels that could be experienced at that load level. 
In Equation (8.1-9), p is the number of distinct load levels in the load 
spectrum of interest. Unfortunately, this simple approach is not generally 
valid. The nonlinear effect of load intereactions is most clearly seen from the 
crack growth retardation that follows the imposition of a peak overload in a 
constant amplitude cyclic loading series. A particularly striking example, 
taken from von Euw et al. (8.20), is shown in Figure 8.3. Similar findings for 
other metals were reported by Jones (8.21) and by Matsuska and Tanaka 
(8.22). 

Two mechanical explanations have been suggested to explain retardation: 
residual compressive plastic stresses and crack closure. The semiempirical 
models of Wheeler (8.23) and of Willenborg et al. (8.24) exemplify those based 
upon the former mechanism while that of Elber (8.25) exemplifies the latter. It 
is more likely that both effects occur simultaneously and, as discussed later in 
this section, some models have been offered that recognize this. However, i t  
has not yet been possible to obtain closed-form relations such as those of 
Section 8.1.1 for conditions in which arbitrary load sequences occur. 
Nevertheless, as shown by Elber (8.26), Wood et al. (8.27), Broek and Smith 
(8.28), Schijve (8.29), and Johnson (8.30), acceptable crack growth predictions 
for service conditions can be made, albeit with some degree of empiricism. 

Other than Elber’s crack closure model, analyses of crack growth re- 
tardation following an overload have focused on the plastic deformation 
ahead of the crack tip and, in essence, the consequent difficulty experienced by 
the crack in forcing its way through it. One of the two most prominent models 
is that of Wheeler (8.23). His basic relations can be written as 

where 

(8.1 - 10) 

(8.1-1 1 )  
an + ry > a, 

Here, a,, is the crack length at the time that the overload is applied, ap is the 
current crack length, rY is the size of the plastic zone created by the 
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Figure 8.3 Crack growth retardation 

Number of Cycles, N 

- 
0 1 2 3 4  

following a peak overload. Distance from the peak load (mm) 

overload-for example, as estimated from Equation (1.4-2)-and rn is an 
empirically determined “shape-fitting” constant. It is significant that in will 
generally depend upon the material and the nature of the load spectrum that is 
under consideration. Consequently, accurate results can only be expected 
from Wheeler’s model if crack growth results are already available for load 
spectra similar to that for which a prediction is required. 

Unlike Wheeler’s model, the model advanced by Willenborg et al. (8.24) 
does not require an empirical parameter. I t  instead uses the material yield 
stress and is then used to calculate crack growth retardation according to the 
distance traveled into the overload plastic zone. Their basic equation can be 
expressed in terms of stress intensity factor in the form 

(8.1 - 1 2) 
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where (Kmsx)OL is the maximum stress intensity factor achieved during the 
overload cycle, Aa is the amount of crack growth since the overload cycle, and 
ZoL is the plastic zone radius associated with (KmaJOL.  It is of course assumed 
that when Aa 2 ZOL, Equation (8.1-12) no longer applies. As later developed 
by Johnson (8.30), KR is implemented via an effective R value defined as 

(8.1 - 1 3) Reff  = Kmin  - K R  
Kmax - K R  

whereupon Reff is used in place of R, for example, in the Foreman equation. 
Johnson further defines 

(8.1 - 14) 

where p, the plastic zone constraint factor, has a value of either one for plane 
stress or of three for plane strain. 

A detailed study of the plastic zones attending fatigue crack growth was 
conducted by Lankford et al. (8.3 1). Using the parameter a to relate the plastic 
zone size to the characteristic dimension (K /aY) ’ ,  they were able to establish 
values of a for a variety of materials and loading conditions. Of most 
significance, they found that while a in the range from .06 to .10 adequately 
characterizes the maximum plastic zone dimension under monotonic 
loading, a value of a = ,014 is needed for cyclic loading. Both the Wheeler and 
the Willenborg models just described depend upon an explicit dimension of 
the plastic zone. Commonly, these use the monotonic values that Lankford 
et at. show can be a substantial overestimate. Hence, their predictions must be 
somewhat suspect. 

8.1.3 The Crack CIosure Concept 

Although crack closure had long previously been recognized in fracture 
testing, use of the concept in fatigue awaited the work of Elber (8.25) in 1970. 
His was an empirical study based on observations revealing that the faces of 
fatigue cracks produced under zero-to-tension loading close during unloading 
whereupon large residual compressive stresses act on the crack surfaces at zero 
load. Consequently, the load at which the crack closes to preclude further 
propagation is tensile rather than zero or compressive. Figure 8.4 shows 
Elber’s conceptualization, which connects crack closure to the existence of a 
zone of plastically defomed material behind the crack tip having residual 
tensile strains. Figure 8.5 shows the measured results by which Elber was able 
to make the crack closure concept quantitative. 

Figure 8.5(a) shows the crack configuration and the gage location for the 
experiments conducted by Elber. Figure 8.5(b) shows a typical result for the 
applied stress as a function of the gage displacement. Of most significance, 
Elber observed that (1) the slope of the line between points A and B is linear 
and equal to that of the uncracked body, and (2) the slope of the line between 
points C and D is also linear but equal to that of the body having an open crack 
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crack 

Figure 8.4 Conceptual illustration of 
plastic zones attending a fatigue crack. 

Figure 8.5 Crack closure results for fatigue crack propagation: (a) experimental configuration, 
(b) typical load-displacement record. 

equal to the length of the fatigue crack. From this he concluded that the 
nonlinear line between points B and C corresponds to a transition between a 
fully open and a fully closed crack. Arguing that Crack propagation can only 
occur during the portion of the loading cycle in which the crack is fully open, 
Elber defined an effective stress intensity factor range as 

(8.1 - 1 5 )  

where K O ,  corresponds to the point at which the crack is fully open. 

the use of an erective stress intensity factor range ratio taken in the form 
Elber suggested that this concept could be most effectively utilized through 

(8.1-1 6) K m a x  - K o p  

K i a x  - K m i n  
U =  

whereupon existing fatigue crack growth relations could be utilized by simply 
replacing AK by U A K .  For example, using the effective stress range concept, 
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Equation (8.1-1) would become 

da -- - C ( U A K ) m  
d N  

(8.1-1 7)  

The dificulty here, of course, is to determine appropriate KO, values to obtain 
U for the materials and conditions of concern. To accomplish this, Elber (8.25) 
performed a series of constant amplitude loading tests for aluminum 2024-T3. 
The results are shown in Figure 8.6. 

Of some significance, the data of Figure 8.6 led Elber to conclude that U is 
independent of the crack length and of K,,,. The results show an approximate 
linear behavior that he expressed as 

U = 0.5 + 0.4R (8.1-18) 

in the range -0.1 < R < 0.7 covered by these experiments. Elber has also 
applied this concept to explain crack growth retardation and, while more 
complicated relations than those developed for constant amplitude loading 
would seem to be required, it is clear that crack closure is playing a key role in 
this process. Elber (8.26) subsequently applied an equivalent effective stress 
concept to predict crack growth under spectrum loading- that is, by choosing 
the maximum load and the crack opening load in the constant amplitude 
loading to be equal to those for the spectrum. 

The following subsection addresses some of the mathematical modeling 
techniques that have been developed to predict fatigue crack propagation 
under variable amplitude loading. But, before turning to these, it will be useful 
to report upon theempirical efforts to expand upon Equation (8.1-18). First, it 
should be recognized that this has been a source of considerable controversy. 
For example, Shih and Wei (8.32) have taken direct issue with Elber's findings 

'.O r 

-.2 o .2 .4 .o .a 1.0 
R 

Figure 8.6 Experimental crack closure results for fatigue crack propagation in 2023-T3 
aluminum alloy. 
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on the basis that many of Elber's specimens were under net section yielding 
conditions and, in addition, that his major conclusions were based upon a very 
limited set of data. Their experiments on TG6A1-4V titanium alloy indicated 
that, while crack closure does occur, the effective stress intensity range as 
developed by Elber may be over simplified. Hence, in claiming to account for 
delayed retardation and other aspects of fatigue crack growth, according to 
Shih and Wei, it may be over optimistic. 

Gomez et al. (8.33) came to Elber's defense, presenting data reputed to 
support Equation (8.1-18) except near the fatigue crack growth threshold. 
For their troubles they were rebuked by Shih and Wei (8.34) who reploted 
the data of reference (8.33) to show a definite K,,, dependence. These results 
are shown in Figure 8.7. Results demonstrating a lack of correlation with 
Equation (8.2-9) for 2219-7'851 aluminum have also been given by Unangst 
et al. (8.35). In contrast, Schijve (8.36) reported test results on 2024-7'3 
aluminum that not only confirm Elber's relation, but extend it to negative R 
ratios. His suggested relation is 

U = 0.55 + 0.33R + 0.12R2 (8.1 - 19) 

which is supposed to be valid for the range - 1.0 c R c 0.54. However, 

- 0 C 
0 

0 0  

U = 0.18 for  R = 0.70  0 - - 

U = 0.58 for R a 

0 - 

0 - 
A R = 0.20  

Q R I 0.45 

o R = 0 . 7 0  
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Km.xv M N I I I - ~ ' ~  

0 . 2 0  

D 

Figure 8.7 Experimental results showing systematic deviation from Equation (8.1-18). 
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Schijve did not address the possibility of the K,,, dependence raised by Shih 
and Wei. 

More recently, Chand and Garg (8.37) presented an empirical correlation 
for 6063-T6 aluminum alloy in the form 

U = Km,,(0.0088R + 0.006) + ’.3R + 0.2 (8.1-20) 

where K,,, is in kg/mmj. Such a result, albeit one that describes the data, is 
objectionable on esthetic grounds as U, by definition, must be dimensionless. 
Nonetheless, it does point up a conclusion reached earlier by Unangst et a1.- 
that U is a function of K,,,, R, and specimen thickness (or state of stress). 
However, they were unable to arrive at any sensible correlation and, on this 
basis, concluded that crack closure is a three-dimensional phenomenon that 
is not amenable to a simple treatment like that leading to Equation (8.1-18) 
et seq. 

To conclude this discussion, the somewhat contradictory work of Probst 
and Hillberry (8.38) and of Lindley and Richards (8.39) might be briefly 
touched upon. The former performed fatigue crack growth experiments in 
2024-T3 aluminum alloy and found fair agreement with Elber’s equation- 
that is, the combination of Equations (8.1-17) and (8.1-18). Then, by extending 
this concept in a semiempirical manner to describe the effects of single peak 
overloads, a good correlation with the number of delay cycles was obtained. 
This would appear to add substantiation to the crack closure concept. 
However, the experimental observations of Lindley and Richards did not 
support this view, at least in predominantly plane strain conditions. 

8.1.4 Closing Remarks 

Further discussion on the predictive ability of LEFM-based fatigue crack 
growth models is beyond the scope of this book. It will suffice at this point to 
remark that, just as the foregoing suggests, such models do not perfectly 
mirror even constant amplitude fatigue crack behavior. Conventional fatigue 
crack growth models work because, being semiempirical, experimental results 
can be predicted when similitude exists. This true despite the fact that the basic 
assumptions of LEFM are violated for fatigue. To understand this, consider 
the modern view of linear elastic fracture mechanics given in Chapter 3. As 
shown there, K-dominance exists only when the inelastic region can be 
contained within an annular region surrounding thecrack tip. Obviously, for a 
growing crack that leaves a wake of residual plasticity behind it, this condition 
cannot be satisfied. Thus, similitude is important in that fatigue crack growth 
predictions can at least be made from correlations of data observed under 
conditions similar to the application. Needless to say, when similitude does 
not exist, nonlinear methods are required. 

Most analysis work in fatigue crack propagation is empirical with the 
fatigue “laws” generally being relations containing enough disposable para- 
meters to give a reasonable representation of any given body of data. To 
further illustrate this, we note that Kocanda (8.1) lists nearly 100 different 
fatigue laws; see also Mogford (8.40), for example. As might be expected, 
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considerable controversy swirls about the research activity in the field. One 
key controversial area-crack closure-was briefly outlined in the above. 
Another, the so-called short crack problem, will be taken up in Section 8.2.3. 
What is important to recognize is not that such differences exist. All active 
developing research areas (e.g., dynamic fracture mechanics) will inevitably 
have their share of controversy. Rather, especially from the applied mechanics 
point of view, it is important to differentiate between what is established and 
what is at issue. 

In the area of crack closure, the fact that the crack faces can impinge upon 
each other prior to reaching the minimum load in the unloading portion of a 
fatigue load cycle is not in dispute. That contact between the crack faces alters 
the driving forces for crack advance in some way is also definitely agreed upon. 
Questions on the validity of the “crack closure concept” instead center on the 
particular characterization introduced by Elber via his effective stress intensity 
factor range parameter, (AK),,,, and, more specifically, upon the generality of 
the simple form given by Equation (8.1-18). 

Perhaps the most vociferous critics of this approach have been R. P. Wei 
and his associates. Their statement, even though written in 1977, would likely 
still be representative of the criticism that has been expressed. On the basis of 
their work with two different metals, they concluded that (8.32): 

No sensible correlation could be made between the fatigue crack growth kinetics 
and ( A Q r r  obtained from the crack closure studies. Hence, the effective stress 
intensity concept, based on crack closure, is not able to account for the various 
aspects of fatigue crack growth under constant amplitude loading. Its extension, 
in its present form, to the more complex problems of fatigue crack growth and 
fatigue life prediction under variable amplitude loading does not appear to be 
warranted. 

The final sentence is most damning. That is, it is precisely to cope with the 
variable amplitude loading that occurs in service that any new fatigue crack 
propagation approach is conceived and developed. Consequently, there 
would appear to be a need for more detailed analysis models. Some of the 
more prominent of those that have been offered are described next. 

8.2 Theoretical Models for Fatigue Crack Propagation 

Before describing the specific approaches in which nonlinear methods are 
needed for fatigue crack growth problems, one possibly useful finding of 
elastic-plastic fracture mechanics might be noted. This is the observation that 
stable crack propagation in ductile materials, after some initial transient, 
occurs with a virtually constant crack opening profile; see Chapter 5. It follows 
from these observations that the instantaneous crack-tip opening displace- 
ment (CTOD) must be very nearly a constant. While this fact is not directly 
related to subcritical crack growth, it does lend credence to the possibility that 
the CTOD can be an effective measure of the crack driving force for fatigue. 
Indeed, since under LEFM conditions K and CTOD are directly related, no 
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loss of generality arises from the use of CTOD. At the same time the intriguing 
possibility exists that it may offer the basis for a more broadly applicable 
elastic-plastic fatigue relation. 

8.2.1 The Model of Budiansky and Hutchinson 

Budiansky and Hutchinson (8.41) have presented a theoretical model for the 
explicit purpose of examining Elber's crack closure concept. They employed 
an ideally plastic Dugdale model to consider the steady-state growth of a long 
crack under small-scale yielding conditions. Their aim was to estimate closure 
contact stresses and the consequent reduced effective stress intensity factors. 
Consistent with the use of the Dugdale model, they considered plane stress 
conditions. The unique feature of their analysis was that, not only does plastic 
deformation occur when the stress on the crack line becomes equal to by, but 
compressive crushing is allowed at -by. Hence, through the use of residual 
plastic stretches left in the wake of a growing fatigue crack, crack closure can 
occur. An illustration of their exercise of this concept on a cycle of unloading 
from K,,, to zero with reloading to K,,, is shown in Figure 8.8. It can be seen 
that contact occurs well before the applied stress has reached its minimum 
value. 

The essence of the Budiansky-Hutchinson steady-state fatigue crack 
growth model is contained in two sets of assumptions. First, it is assumed that 
the crack line displacements at K,,, are the same as in the ordinary Dugdale 
model except that a wake of plastically stretched material remains appended 

Crack Closing Process (K=K,T;' K=O) Crack Opening Process (K = 04 K-K,,,) 

Figure 8.8 Use of a Dugdale model to account for crack closure in fatigue crack propagation: 
(a) crack closing process, (b) crack opening process. 
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to the upper and lower faces of the crack. The size of the stretched material 
denoted as 6&!. The second set of assumptions is that for the state at Kmin. 
These assumptions are that (1) the plastically stretched crack surfaces are in 
contact all along their lengths, (2) there is a region ahead of the crack tip that 
has gone into reverse plastic flow, and (3) beyond this region the plastic stretch 
that existed at K,,, remains unchanged. A consequence of this assumption, it 
might be noted, is that the crack-tip strain at Kmin is 6,. 

The analysis procedure used by Budiansky and Hutchinson is one 
employing the complex variable formulation of the theory of elasticity and 
parameters made nondimensional through the use of results from the 
stationary crack problem. For the convenience of the reader, the latter 
parameters can be expressed as follows. First, the plastic zone size is 

while the crack opening displacement is 

K 2  so = - 
EUY 

(8.2-1) 

(8.2-2) 

Second, the plastic zone displacements are given by 

d(x) = &g(x/l), 0 < x < I (8.2-3) 

where 

(8.2-4) 

We also note that, as shown by Rice (8.42), if the stationary crack is unloaded 
to Kmin = 0, reverse plastic flow under compressive stresses - f ly  will occur in 
the interval (0,1/4) while the plastic stretch in the remainder of the zone is 
unchanged. Hence, the plastic zone displacements become 

(8.2-5) 

It can readily be seen that the crack-tip stretch at  Kmin = 0 is reduced to half 
the value that it had at K,,,. 

Returning to the steady-state crack growth problem of Budiansky and 
Hutchinson, their modifications of the stationary crack problem result in the 
pair of integral integrations given by 

and (8.2-6) 
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where 

(8.2-7) 

and a denotes the ratio of the reverse plastic zone for the growing crack to that 
of the stationary crack. A numerical solution of Equations (8.2-6) gives 
ct = 0.09286 whereupon Budiansky and Hutchinson obtained 6, = 0.85626,. 
Thus, in contrast to the stationary crack where reverse plastic yielding occurs 
in a quarter of the plastic zone, the growing crack experiences reverse yielding 
in less than 10 percent of the zone. In contrast, the residual stretch is a 
somewhat surprising 86 percent of the maximum value while in the stationary 
crack it is only one-half the original value. 

Having determined the magnitude of the residual stretch, Budiansky and 
Hutchinson were then able to study the unloading and reloading process in 
detail. If there were no residual stretches, the crack opening displacement as a 
function of K ,  0 < K < K,,,, would be given by 

where 

(8.2-8) 

(8.2-9) 

Equation (8.2-8) has a local minimum very near to the crack tip. When the 
stretch 6,/2 is attached to the crack faces, the first contact upon unloading will 
occur there. Denoting the applied K value at this instant as K,,,,, it was found 
that 

(8.2- 10) 

As the load is reduced further from K,,,, the size of the contact zone will 
increase until complete closure occurs at K '= 0. 

In reloading from K = 0, the contact region begins to open from the center 
of the crack. The edge of the contact region moves progressively towards the 
crack tip as K increases until it vanishes at a level that can be denoted as Kop. It 
was found that 

-- - 0.56 
Kmax 

(8.2- 1 1 )  

As K is increased above Kopr the zone of plastic reloading spreads into the 
region ahead of the crack tip until the initial configuration is reasserted at 
K = Kmax. This process was illustrated in Figure 8.8. Figures 8.9 and 8.10 
provide further details of this calculational procedure. 

Figure 8.9 shows how the crack opening stretch varies during one loading 
cycle for the case of K,,, = 0. We note here that the actual process of crack 
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Figure 8.9 Calculated results for the 
crack-tip stretch during fatigue crack 
propagation. 

K 
K,.X 

Figure 8.10 Calculated results for the 0 m 2  -4 -8 1,o 
opening and contact load ratios during 
fatigue crack propagation. Kmax 

& !Lac 

growth, which presumably could have been inferred from the change in &, 
during a loading cycle, was ignored in this model. However, Budiansky and 
Hutchinson did use their results to provide indirect support for Elber’s crack 
closure effective stress intensity factor range. Figure 8.10 shows the calculated 
values of Kcon, and KO, as a function of R, results that compare favorably to 
Equation (8.1-18), which, when combined with Equation (8.1-16), can be 
written as (Elber’s result): 

3 = 0.5 + 0.1R + 0.4R2 (8.2- 1 2) 
L a x  

Next, they expressed the cyclic stretch at the crack tip in the approximate 
forms that can be expressed as 

and 

(8.2-13) 

(8.2- 13) 

Budiansky and Hutchinson, asserted that the crack growth rate for a 
particular material ought to be a function of the cyclic crack-tip stretch-that 
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(a) 

515 

Figure 8.1 1 Schematic representation 
of fatigue crack growth by dislocation 
slip at the crack tip: (a) to (e) represent 
one load cycle, (f) represents a stage in 
the following load cycle. 

is, of do - 6,. Consequently, on the basis of Equations (8.2-13), they would 
also expect i t  to be a function of (AK)eff = K,,, - Kop or (AK)eff = K,,, - 
K,,,,. As they point out, their model, like Elber’s, indicates that (AK)eff is 
independent of R .  

The contribution of Budiansky and Hutchinson is particularly noteworthy 
in that it provided for the first time a theoretical approach to evaluating the 
effect of crack closure in fatigue. But, as they recognized, their model suffers 
from three major shortcomings. First, as already noted, they do not include 
cyclic crack growth in their model. Second, use of the Dugdale model is not 
representative of the plane strain conditions that better characterize fatigue 
crack growth. Third, their work is confined to constant amplitude cyclic 
loading. However, Lo (8.43) has extended this approach to admit a step change 
in the load. He finds that the effect is significant only so long as the extent of 
crack growth is within about one plastic zone size. 

8.2.2 The Inclined Strip Yield Model 

As illustrated in Figures 8.1 1 and 8.12, the generally representative models of 
Laird and Smith (8.44) and Neumann (8.45) associate crack growth with 
inelastic sliding off processes that occur off the crack plane. These are not well 
accommodated by yielding that is confined to the crack plane as in the 

(d) (e 1 ( 1 )  

Figure 8.12 Geometric model for fatigue crack growth by shear sliding at the crack tip: (a) to (e) 
represent one load cycle, (f)  represents a number of repetitions of the mechanism. 
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Dugdale model used by Budiansky and Hutchinson. The effect of residual 
plastic deformation also cannot adequately be given by the Dugdale model. 
Accordingly, a plane strain analysis would appear to be needed. Such a model 
was developed by Kanninen and co-workers (8.46, 8.47). Their approach 
contains a number of highly desirable features. These include the ability of the 
model to predict the crack advance increment from micromechanical 
considerations and to automatically account for residual plasticity and crack 
closure in plane strain conditions with appropriate plastic yielding. 

The key element in the model is the simulation of the (symmetric) plastic 
field surrounding the crack tip by dislocation slip. This was originally 
developed by Bilby and Swinden (8.48) who introduced dislocation pileups on 
slip planes inclined at angles of k0 to the crack plane. However, the 
mathematics proved to be intractable. This led Atkinson and Kay (8.49) to 
replace each pileup by an aggregate “superdislocation.” This idea was carried 
to fatigue by Kanninen et al. (8.46) who considered multiple load cycles with a 
superdislocation pair generated and retained for each load cycle. Because of 
the complexity that this entailed, the basis for a simpler version was later 
developed by Atkinson and Kanninen (8.50). This led to the steady-state crack 
propagation model advanced by Kanninen and Atkinson (8.47) that is 
discussed next. 

Consider that a crack of length 2a exists in an infinite plane. A remote tensile 
loading B is applied in the direction normal to the crack line with a remote 
stress l a  applied parallel to the crack line. Because force equilibrium of the 
superdislocations is specified to obtain a solution, a key relation is one for 
the shear stress ‘I, acting along the slip plane at the position occupied by the 
nth superdislocation. For plane stress conditions this relation is 

E M  ~ , = a h , + ( l  - j + ~ s i n t l c o s t l + - x  bigj,, n =  1,2, ..., M ((8.2-15) 
8n j = l  

where the bj’s denote the superdislocation strengths with E and v, respectively, 
denoting the elastic modulus and Poisson’s ratio. The two remaining 
undefined quantities in Equation (8.2-15), h, and gjn ,  are rather involved 
functions of the complex variable representation of the superdislocation 
position given by 

Zj = aj + lieie, j = 1,2 ,... , M 

where 8is the angle between the crack plane and slip plane (a constant), ajis the 
crack length at the time that the j th dislocation was emitted, and ij is the 
distance from the crack tip along the slip plane to the jth dislocation. The 
complete expressions for these functions can be found in reference (8-50). They 
will not be repeated here as only the linearized versions given below are 
needed. 

I t  is supposed that the material provides an intrinsic friction stress that 
resists the movement of the superdislocation. This parameter can be taken as 
oY sin 0 cos 8, where 0,. is the tensile yield stress, as this will give rise to general 
yielding in the model when B = by. The equations of force equilibrium that are 
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the basis for the mathematical model are then formed by setting the right-hand 
side of Equation (8.2-15) equal to aysin8cos8 for each of the M super- 
dislocations in the problem. 

The second key relation involved in the Kanninen-Atkinson work is one for 
the crack-tip stress intensity factor. For the infinite medium under con- 
sideration here, this is 

(8.2- 16) 

where fj is a known function of position that represents the contribution of a 
dislocation of unit strength to the singular term. An expression for the crack- 
opening displacement is also needed. Again omitting the details, this result is 

40 M 
0 = -((a2 - x2)f + sin8 2 bjdj 

E j =  1 
(8.2-17) 

where u = u(x) is one half of the crack-opening displacement at a position on 
the crack face x < (a. In Equation (8.2-17), x is measured from the center of the 
crack and d j  is another known function of position given in reference (8.50). It 
gives the contribution of a dislocation of unit strength to the crack-tip 
displacement. 

The final step in the formulation of the fatigue problem is to formulate the 
crack growth rate. The length of new crack surface projected along the original 
crack plane from the nascent superdislocation is b y  cos 8, where bM is the 
strength of the dislocation emanating from the crack tip. By associating the 
crack advance increment with this length, and also taking account of 
environmental influences on the permanency of the new crack surface, this can 
be expressed as 

(8.2- 1 8) 

where k is taken to be an environment-material constant that could account 
for the “rewelding” of the crack surfaces. Because the extent to which 
rewelding occurs depends upon the environment, in benign environments, k 
would be expected to be small compared to unity while in aggressive 
environments it would approach unity. 

In the work reported in reference (8.46), fatigue crack growth computations 
were carried out using a “cycle-by-cycle” model- that is, one superdislocation 
pair to represent the crack-tip plasticity in each and every load cycle. In 
contrast to this complex approach, the calculations of reference (8.47) were 
performed using a much simpler two superdislocation model. The basic idea, 
partly supported by results obtained using the cycle-by-cycle model, is that 
one of the superdislocations left behind by the growing crack invariably 
dominates. Hence, a suitable model for steady-state crack growth under 
constant amplitude load cycles is one composed of one “residual” super- 
dislocation pair and a “nascent” superdislocation pair. This model is 
illustrated in Figure 8.13. 
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superdisloca tion 
representing residual 
crack-tip plasticity 

Figure 8.13 Superdislocation representation of crack-tip plastic zones in fatigue crack 
propagation. 

The equations governing the conditions at maximum load are for the force 
equilibrium of the nascent dislocation and for the cancellation of the 
singularity. The latter condition is based on the assumption that crack growth 
occurs on the increasing part of the load cycle and ceases when the crack 
driving force is just zero. The residual superdislocation is positioned to reflect 
the wake of plasticity resulting from a large number of load cycles between 
two fixed K values. 

Because only two superdislocation pairs will henceforth be considered, the 
subscript notation used in the general problem is unnecessary. Instead, the 
parameters B and b will be used to denote the strengths of the residual and 
the nascent superdislocations, respectively, while L and 1 will denote their 
distances from the crack tip along the slip plane. Consider for the moment that 
B and L are fixed by the prior load history and are known in some way. The 
variables to be determined then are b and 1. This is done by satisfying the 
equations for the equilibrium of the nascent superdislocation and for the 
cancellation of the singularity at the maximum load in the cycle. Thus, from 
Equations (8.2-15) and (8.2-1.6) 

Orsin OcosO = o,,,[h(l) + (1  - ),)sin OcosO] 
c 

(8.2-19) 
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and 

(8.2-20) E 
8n acmax = - Cbf(l) + Bf(L)l 

In small-scale yielding where 1 << a, the functions 
(8.2-19) and (8.2-20) are simply 

1 
g(1) = -- I 

appearing in Equations 

(8.2-21) 

(8.2-22) 

(8.2-23) 

An expression for the function g(L, I )  can be deduced by assuming that the 
distance between the two slip planes can be neglected and, further, that the 
superdislocations occupy positions such that a >> L >> 1. This is 

3 0 
( lL ) t  sin2 6cos2 - 

2 
g(L,I)= -- (8.2-24) 

Notice that g(1, L),  the function that would appear in the equilibrium equation 
for the residual superdislocation, is given by - I g ( L , f ) / L  for the same 
assumptions. Thus, the effect of the nascent superdislocation on the residual 
superdislocation is negligible, consistent with the assumption that the 
parameters B and L are independent of b and 1. 

For the conditions under consideration (i.e., an infinite medium under 
remote tensile loading normal to the crack plane), it is appropriate to set 

K m a x  = omax(na)* (8.2-25) 

Also, for convenience, a “residual plasticity stress intensity factor,” KR, can be 
defined as 

e 
8~ L* 2 K R  = (’>t sin Ocos - (8.2-26) 

Then, Kanninen and Atkinson found that 

(8.2-27) da (3 - sin-2 B C O S - ~  8/2) k (KmaX - KR)’ _ -  - 
d N  - 9 sin 8 EY(1 - (1 - A b m a x / o y )  

which expresses the steady-state crack growth rate for biaxial loading 
conditions. 

Further simplification is possible by replacing B and L as parameters 
governing the residual plasticity in favor of two dimensionless parameters. 
This can be done by setting B = pB0 and L = ?Lo,  where Bo and Lo refer to the 
values of B and L that would exist under the monotonic loading of a virgin 
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specimen to a given K,,, level. These can be evaluated by solving the 
equilibrium and singularity canceling equations corresponding to this situat- 
ion. Equation (8.2-27) then becomes 

where /? = P(R) and y = y(R) are dimensionless functions of R = Kmin/KmaX. 
It is to be expected that P < 1 while y 3 1 to take proper account of residual 
plasticity. 

The parameters P and y can be evaluated by employing the crack closure 
prediction capability of the model. The appropriate expression can be 
obtained by using a linearized version of the d j  function appearing in 
Equation (8.2-17). Assuming that c << L as well as L << a, this is 

d(L,a - c) = - 6 ( L y c o s -  e 
n L  2 

(8.2-29) 

where c denotes the distance between the crack tip and the point of 
intersection of the superdislocation slip plane and the crack face; that is, the 
point x = a - c. 

Substituting Equation (8.2-29) into Equation (8.2-17) gives an expression for 
the crack opening displacement at the potential point of contact between the 
two crack surfaces. Neglecting the influence of the nascent superdislocation 
gives - 

e 
n (f)’ 2 

40 
E 

u = - (2ac)* - - B - sin 8 cos - (8.2-30) 

where the load-dependent contribution has also been linearized for consis- 
tency. For a given B and L, the applied stress at which contact of the crack face 
will occur is simply the applied stress level at which the right-hand side of 
(8.2-30) vanishes. Call this ac. Then, defining K,,,, = oc(na)*, an expression for 
the stress intensity at crack closure can be obtained by setting u = 0. This is 

(8.2-31) 

It can be shown that Kcon, is just the same as KR. Thus, it would seem that 
whether one takes the point of view that residual stress or crack closure effects 
govern fatigue crack growth rates is irrelevant if, as these results suggest, both 
effects occur simultaneously. 

As an expedient to test the results of the model against experimental results, 
Kanninen and Atkinson introduced a degree of empiricism, via the experi- 
mental result of Elber, to set values of and y. Using Equations (8.1-16) and 
(8.1-18) and ignoring any difference between an “opening” and a “closing” 
level, it can be seen that if 

(8.2-32) P 
Y+ 
- = 0.5 + O.1R + 0.4R2 
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then the model will give a prediction of crack closure that is in exact agreement 
with Elber's observation. Taking this is to be appropriate, Equation (8.2-32) 
serves to define p and y (n.b., individual values are not needed). 

To specialize the above results, the particular angle 0 = cos-'(*), the 
angle that maximizes the extent of plastic yielding, can be chosen. Substitu- 
ting in Equation (8.1-28) then gives 

which, apart from the environment-dependent constant k, provides a crack 
growth prediction in terms only of load-history parameters and mechanical- 
material constants. 

The data used to test Equation (8.2-33) must include either explicit om,, or 
crack length values in addition to K,,, and R. Unfortunately, these are not 
often reported. Thus, a particularly useful set of experimental data is that of 
von Euw et al. (8.20) who obtained data on uniaxial loaded (A = 0) 76-mm- 
wide SEN specimens at  two different crack length to specimen width ratios; 
a lw  = 0.25 and 0.45. As they point out, the conventional view is that, for the 
same values of K,,, and Kmi,, the same crack growth rate should be obtained 
for all a lw  values. However, this was not the case. To determine if Equation 
(8.2-33) could account for their observed differences, the net section values 
in their experiments were calculated. Specifically, letting f ( a / w )  denote the 
finite width correction for the SEN specimen used by von Euw et al., then 
f(0.25) = 2.665 and f(0.45) = 4.294. For w = 76 mm, this procedure gives 
omax = Km,,/1.731 and Km,,/2.744 for a/w = 0.25 and 0.45, respectively. 
Other values used in the calculations are E = 7 x 104MN/m2 and 
oy = 362 MN/m2. 

Comparisons between the prediction of Equation (8.2-33) and the results of 
von Euw et al. for two different kinds of tests are shown in Figures 8.14 and 
8.15. These results were obtained by setting A = 0 in Equation (8.2-33) and 
using the experimental results to establish an empirical value of k = 0.7. In 
both figures it can be seen that the model provides an excellent prediction of 
the growth rates. Also, the difference between the results for the different a / w  
ratios is accounted for. The conventional Paris law formulations will not, of 
course, differentiate between the different crack lengths. 

The biaxial loading case gives a result that is conveniently written in the 
form 

(8.2-34) 

where (da /dN) ,  = o  denotes the result obtained under uniaxial loading. This 
form indicates that a tensile stress applied parallel to the crack line decreases 
the crack growth rate while a compressive stress increases it. Further, the 
change induced by a parallel applied stress will depend on its magnitude 
relative to the yield stress. The results are in quantitative agreement with the 
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Figure 8.14 Comparison of predicted and experimental fatigue crack growth results in 2024-T3 
aluminum alloy for R = 0. 

observations of the effect of biaxial loading reported in the literature. That is, 
compressive loadings acting parallel to the crack plane act to increase the 
growth rate while tensile loadings decrease it. Quantitatively, however, the 
predicted effect appears to be too large. The differences that some investigators 
have reported between cycling the parallel stress and holding it constant are 
also not reflected by Equation (8.2-34). 

The exhaustive data of Liu and Dittmer (8.51) on aluminum alloys 2024- 
T351 and 7075-T351 under multiaxial loading reveals that a constant 
amplitude fatigue crack will grow in a straight line so long as the stress 
component parallel to the crack does not exceed that normal to the crack (it 
will curve at higher values). Liu and Dittmer claim that the effect of the parallel 
stress component was negligible. While seemingly contradicting the predic- 
tions of the model developed in this paper, a close examination of their data 
does indicate a slight, but discernable, effect of 1 that is in qualitative 
agreement with Equation (8.2-34). Nevertheless, while the model predictions 
are again consistent with these observations, at the current level of develop- 
ment, the effect is exaggerated; see also Adams (8.52). 

A number of other research efforts have employed dislocation models to 
develop a general fatigue craok growth model. Included are the efforts of 
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Figure 8.15 Comparison of predicted and experimental fatigue crack growth results in 2024-T3 
aluminum alloy for AK = 9 ksi-in.* 

Sadananda and Shahinian (8.53), Swenson (8.54), Pook and Frost (8.55). 
Weertman (8.56), and Yokobori et al. (8.57). These all utilize either a simplified 
representation of the crack-tip plasticity, or incorporate a mechanism for the 
crack closure condition, or both. The essential differences between the work 
described in the foregoing and the work of others is that the latter are ap- 
parently not able to incorporate a crack growth criterion directly into their 
models nor is it possible to realistically model (and distinguish) the plastic 
deformation occurring in individual load cycles. The Kanninen-Atkinson 
model is capable of providing this key feature and, as a consequence, reliance 
on a postulated controlling mechanism (e.g., crack closure, residual plasticity) 
is avoided. These mechanisms are automatically included in this model and 
make their contribution in a natural way. 

It is clear that the parameters governing the residual plasticity in the wake 
of the crack must be determined without the expedient of using experimental 
observations as in the Kanninen-Atkinson model. One way to accomplish this 
is by calibration of the model with elastic-plastic finite element solutions, as 
Newman (8.58 to 8.61) has done. This avoids the uncertainty associated with 
crack closure observations. Figures 8.16 to 8.19 show his key results. 
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Figure 8.16 Calculated crack surface displacements and stress distributions along the crack line 
in fatigue crack propagation. 
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Figure 8.17 Calculated crack surface displacements and contact stresses in constant amplitude 
fatigue crack propgation. 

Figure 8.18 Calculated crack opening 

a function of R. R 
stresses in fatigue crack propagation as - 1  -.5 0 .5 1 
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8.2.3 The Short Crack Problem in Fatigue 

The short crack effect in fatigue results from the inability of linear elastic 
fracture mechanics procedures to predict the growth rate of physically small 
cracks. Several different possible reasons exist for this effect. It is entirely 
conceivable, for example, that very small cracks are influenced by micro- 
structural features of the material that are not addressed by the conventional 
continuum-based LEFM techniques. In addition, three-dimensional effects (as 
arise in conjunction with corner cracks) exist to compound the problem. 

In view of these difficulties, the development of predictive techniques to 
address the full range of crack lengths down to very small cracks is a 
formidable undertaking. Nonetheless, it is likely that an intermediate regime 
exists where progress can be made. The crack sizes for this regime lie just below 
the limit of validity for LEFM and above that where heterogeneity on the 
micro-mechanical scale strongly influences the crack growth process. In this 
regime an elastic-plastic fracture mechanics approach to fatigue can be 
effective. By pursuing such an approach, most investigators are not expecting 
to completely erase the short crack effect. Rather, they expect to shift the short 
crack demarcation point downwards to the limit of a continuum mechanics 
approach. 

Analysis approaches addressed to short cracks can be divided into two main 
categories. One includes those attempts that have incorporated some 
modification or correction into a conventional fracture mechanics formula- 
tion. These are generally semiempirical treatments. The second category 
includes the more rigorous approaches that attempt to treat short crack 
fatigue from first principles of continuum mechanics. More particularly, 
because the essence of the problem is the presence of plastic deformation, these 
lie within the domain of elastic-plastic fracture mechanics. 

El Haddad et al. (8.62, 8.63) have recognized that a generalization of 
conventional fatigue crack growth rate predictive techniques is necessary and 
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have chosen to provide one within the confines of deformation plasticity. 
Specifically, they have suggested the addition of a small pseudo crack length, 
I,, to the actual crack length. Because the material constant I. is small, long 
crack behavior is unchanged, as is essential in any such approach. However, 
for small crack lengths, the use of lo increases K. This escalates the crack 
growth rate, as required to match the short crack effect.* 

The approach of El Haddad et al. can be criticized on both fundamental and 
pragmatic grounds. They argue that lo can be related to the threshold stress 
intensity and the fatigue limit. If this interpretation is correct, the physical 
meaning of lo must be that of an inherent defect length in the material that 
dominates the specimen response when the artificial crack length is of the 
order of I,. But, it surely is disingenuous to suppose that such defects are both 
noninteracting and always located so as to increase the artificial crack length. 
While it would be permissible to limit the smallest crack length to be I,, it 
cannot then logically be incorporated as an additive term. 

On a practical basis, the approach of El Haddad et al. similarly appears to 
be wanting. For example, their approach fails to consolidate the short crack 
data for mild steel developed by Leis and Forte (8.64). This is shown in 
Figure 8.20. This version of the El Haddad et al. approach is based upon the 
use of the J-integral in an effort to formulate a plastic fracture mechanics 
formalism. But, the pseudo-crack-length concept, even when enhanced by the 
use of J ,  is not in correspondence with these data. Similar discouraging results 
for other J-based approaches have been reviewed by Leis et al. (8.65). On a 
theoretical basis, the argument given in Chapter 5 for the basis of J in  elastic- 
plastic fracture mechanics clearly shows why the substitution of J for K as the 
crack driving force parameter in fatigue is not necessarily an improvement. 

Worthy of note are the approaches using an extended version of the 
Dugdale (collinear) strip yield model and those using elastic-plastic finite 
elements models. In the former group are Kanninen and co-workers (8.66) and 
Fuhring and Seeger (8.67), while in the latter are Newman (8.61) and Trantina 
et al. (8.68). It might be noted that, while the use of an inclined strip yield model 
has yet to be applied to the short crack problem per se, as the work of 
Kanninen and Atkinson (8.50) shows, this approach offers an intriguing 
compromise between a realistic representation of plane strain plastic de- 
formation and computational convenience that may warrant serious con- 
sideration in future attempts. 

Work based upon the use of the Dugdale crack-tip plasticity model can be 
used to investigate the effectiveness of using a CTOD criterion for the growth 
of short fatigue cracks. Ordinarily, some key effects-e.g., crack closure-are 
thereby omitted. That this is not precluded through the adoption of a Dugdale 
model is clearly shown in the work performed by Newman (8.61) who has 
devised a “ligament model” generalization of the Dugdale model, via a finite 
element calibration. This work has recently been focused on the short crack 

* The similarity with the crack length adjustment approach in LEFM (see Section 1.4.1) and 
with that used by Waddoups et al. for fiber composite materials (see Section 6.2.1) is evident. 
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Figure 8.20 The short crack effect in fatigue crack propagation. 

problem by modifying the Dugdale model to leave plastically deformed 
material along the crack faces as the crack grows. His purpose was to study the 
related effects of small crack growth rates and of large cracks under the load 
reduction schemes used to determine threshold stress intensity values. 

Newman cites as the primary advantage of the Dugdale model that linear 
superposition is valid even when such obstensibly nonlinear effects as crack 
closure are included. This is true because the crack closure effects take place 
only from residual plasticity in the line of the crack. By leaving plastically 
deformed material behind the crack in this way, the crack surface displace- 
ments used to calculate contact (closure) stresses under cyclic loading are 
influenced by the plastic yielding both ahead and behind the crack tip. 
Specifically, bar elements, assumed to behave like rigid-perfectly plastic 
materials, are used. At any applied stress level, these elements are intact ahead 
of the crack tip or are broken to represent the residual plasticity behind the 
crack tip. 

It is important to recognize that the broken elements carry compressive 
loads only, and then only if they are in contact. Those elements that are not in 
contact apparently do not affect the calculation in any way. They are used 
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simply to calculate crack-opening stresses (both crack-tip closure and closure 
elsewhere on the crack edges can be handled) for use in determining an 
“effective” AK value in the manner suggested by Elber-that is, to determine 
AKeff, where 

(8.2-35) amax - 6 0  AK 
K f f  = 

amax - ‘Jmin 

where a. denotes the crack opening stress. Note that, although not specifically 
indicated here, Newman used plasticity corrected K values in his calculations. 
Newman’s calculations were made for a center-cracked tension panel and for 
cracks emanating from a hole. From these results, Newman concluded that the 
short crack effect is a result of the differences in the crack closure effect 
between long and short cracks. In particular, at equal K values, the applied 
stress needed to open a small crack is less than that required to open a large 
crack. Consequently, the effective stress range is greater for small cracks. This, 
in turn, gives rise to the higher crack growth rates that exemplify the short 
crack effect. Experimental results on the short crack effect are given by Hudak 
(8.69). 

8.2.4 Fatigue Crack Growth in Welds 

A significant proportion of all structural failures can be traced to cracks 
emanating in and around welds. Crack growth in welded regions would 
appear to involve three major effects: (1) the presence of thermoplastically 
deformed material in the crack path, (2) the attendant residual stresses, and 
(3) the possible change in microstructure. Fracture mechanics analysis 
procedures based on linear elastic conditions do  not usually treat these 
complications. The conventional rationale is that the Kmax values in fatigue are 
small enough that the plastic zones will be negligible. In addition, the presence 
of residual stresses will simply change the mean stress. Hence, particularly for 
those materials that exhibit a limited amount of R-dependence, LEFM fatigue 
crack growth relations established for the material condition of concern can 
be applied without modification to predict crack growth in or around a weld. 
However, recent work has been focused on eliminating these assumptions. 

Perhaps the leading contributor to the analysis of residual stresses in welds 
is Masubuchi; see reference (8.70). Early work in this area was also contributed 
by Jahsman and Field (8.71). The use of linear elastic fracture mechanics 
techniques with estimates of residual stress fields to obtain subcritical crack 
growth predictions has been pursued by many investigators. Recent work of 
note would include Glinka (8.72), Parker (8.73), Berge and Eide (8.74), Nelson 
(8.75), and de Koning (8.76). Generally, these approaches introduce the normal 
component of a residual stress state as a surface traction on the prospective 
crack plane with the component otherwise remaining linear elastic. Linear 
superposition is then used to obtain a stress intensity factor due to the 
combined effect of the applied stresses and the residual stresses.Note that this 
can be done for a range of selected crack lengths, whereupon Equation (8.1-1) 
or any of the alternatives can be used to compute the crack growth rate. 
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Elastic-plastic fracture mechanics analysis procedures have previously been 
applied to account only for crack-tip plasticity itself. Recently, a further step 
has been taken by Kanninen and co-workers (8.77-8-79) through the use of 
postulated elastic-plastic crack growth relations for crack growth in weld- 
induced plastic deformation fields. The objective of their work was to critically 
examine the assumptions of linear elastic material behavior commonly made 
in analyzing weld cracking problems. Fatigue crack growth in welded regions 
will be affected by the presence of the plastically deformed material indigenous 
to the welding process. Yet, the present-day analyses, based on linear elastic 
conditions, do not directly treat such complications. 

The analysis procedure followed in references (8.77)-(8.79) consisted of 
three main steps. First, the residual stress field induced in a welding process 
was computed using an incremental thermoplastic finite element analysis 
procedure. Second, crack growth was simulated by sequential node release 
along a pre-set crack plane with values of 6, the crack-tip opening 
displacement, being obtained. Third, a postulated elastic-plastic crack growth 
relation based on 6 was used to infer crack length as a function of loading 
history. A comparison with a commonly accepted linear approach was then 
made. This comparison allowed the significance of the linear elastic as- 
sumption and the essential neglect of residual plasticity inherent in such an 
approach to be assessed. 

The residual stress analysis procedure requires a thermal analysis to be 
made to obtain the time-temperature history for each point in the body for 
each individual welding pass. These histories provide the input to an 
incremental elastic-plastic finite element model. This determines the stress and 
deformation state of the weld and the base material as the weld is deposited. 
Because each welding pass is considered on an individual basis, the residual 
stress and strain state that exists at the completion of one weld pass constitutes 
the initial condition for the next. The final residual stress state is that which 
exists at the completion of all of the weld passes. 

Consider the butt-welded plate typical of the ship structure steel HY-80 
shown in Figure 8.21. Typical heat input values were assumed. Together with 
the weld pass and structure geometry, these sufficed to determine the residual 
stress distribution. The computed normal stresses acting on the prospective 
crack plane for the welded configuration are then shown in Figure 8.22. It can 
be seen that a high tensile stress exists near both surfaces. Thus, an edge crack 

Figure 8.21 Cross section of 18-pass weld typical of a HY-80 steel ship structure. 
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would be likely to grow, particularly when the residual stresses are abetted by 
a tensile applied stress. 

Starting from an assumed initial crack, crack growth was simulated in the 
finite element model by sequential node release along a line of double-noded 
elements. Each node pair was released by gradually diminishing the initial 
force that exists between them to zerci. This was typically done over from 
five to ten load increments. The value of 6 for a given crack length was then 
the value of the CTOD that existed when the load vanished. The results 
obtained from the finite element model for an assumed maximum load of 
0.670~ and a corresponding minimum load of zero are shown in Figure 8.23. 

Figure 8.23 Calculated crack-tip opening displacement for monotonic crack growth through the 
weld shown in Figure 8.21: (a) zero applied load, (b) applied load (= 0.67~7,). 
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Figure 8.23 contrasts the S values obtained by advancing the crack through 
the finite element model under two different conditions. First, the computed 
weld-induced plastic deformation was left unaltered and an incremental 
plasticity computation made. This is the elastic-plastic analysis. Second, a 
simplified approach was followed wherein, (1) only the normal component of 
the residual stress acting on the potential crack plane was retained, and 
(2) linear elastic behavior is assumed. This is denoted as the simple elastic 
analysis. It typifies that commonly used by others for this kind of problem. 

The equivalence between the crack-tip opening displacement and the stress 
intensity factor in small-scale yielding was described in Section 1.4. Recent 
progress in elastic-plastic fracture mechanics has further revealed the distinct- 
ive role played by the crack-tip opening displacement in crack initiation and 
stable growth in large-scale yielding conditions; see Chapter 5. Specifically, for 
the initiation of crack growth, the CTOD can be expressed as 

K 2  
a- small-scale yielding 

d, - deformation plasticity 
d_( b y  J (8.2-36) 

BY 

where a and d, are numerical constants on the order of unity. In addition, for 
extended stable crack growth, the CTOD appears to take on a constant value. 
While certainly not conclusive evidence that the CTOD is the controlling 
parameter for subcritical crack growth as well, for lack of an alternative, it can 
be so taken. Note that, because of the equivalence represented by Equation 
(1.4-23) this choice is not inferior to one based on either K or J in any event. 

Fatigue crack growth under a uniform cyclic loading can very often be 
adequately characterized in the form of Equation (8.1-1). That is, 

(8.2-37) 

where C and m are material constants. Introducing the CTOD from Equation 
(8.2-36) gives 

da 
d N  - = C'(Ska, - Ski")'" (8.2-38) 

where S,,, and Smi, are the CTOD values that would be attained under the 
maximum and minimum load levels, respectively. Consequently, the number 
of cycles required to achieve a given crack length can be found by integrating 
Equation (8.2-38). The results, using the CTOD values given in Figure 8.23, are 
shown in Figure 8.24. 

The computational results presented in Figure 8.24 show a wide disparity 
between the fatigue crack growth obtained using an elastic-plastic approach 
and that obtained in the more usual way. Perhaps surprisingly, this result 
indicates that the simple elastic analysis may be highly anticonservative. This 
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Figure 8.24 Calculated fatigue crack growth results for the weld shown in Figure 8.21 when 
subjected to uniform amplitude loading from 0.670, to zero. 

would appear to be a very significant finding in view of the great practical 
importance of such problems. 

The basic assumption that has been called into question here is the 
applicability of linear elastic fracture mechanics in the presence of weld- 
induced residual stress fields. This has been addressed by performing two 
parallel computations where this assumption has and has not been made. 
There are undeniably many aspects of the calculations that can be improved 
upon. But, because the two computations were otherwise performed on 
exactly the same basis, these cannot be of critical importance. Indeed, the 
comparison has revealed such wide disparities that neglect of the inelastic 
deformation accompanying welding would appear to be of serious practical 
concern. 
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SOURCES O F  INFORMATION I N  
FRACTURE MECHANICS 

According to Grogan (9,1), the information seeking habits of scientists and 
engineers are typified by the principle of least effort: information will be 
sought only when it is less troublesome and painful to obtain it than to not 
have it. He quotes a medical scientist as categorizing consumers of the 
technical literature as “generally speaking, arrogant, conservative, lazy and 
ignorant.” As this is clearly not true of engineers and others interested in 
fracture mechanics, we believe that it will be appropriate to provide a guide to 
sources of further information on fracture mechanics to facilitate further study 
and applications. 

We will adopt Grogan’s categorization to present a list of sources to the 
fracture mechanics literature. In descending order of freshness, these are: 
journals, conference proceedings, standards, dissertations, abstracting period- 
icals, progress reviews, handbooks, treatises, and textbooks. The best sources 
of fracture mechanics information in each category are summarized in this 
chapter. We hope that these will enable the reader both to find the more 
detailed information on fracture mechanics needed for applying the concepts 
given in this book, and to keep abreast of further developments in the 
continuing evolution of the subject. 

9.1 Technical Journals 

As should be evident from scanning the reference lists given at the end of each 
chapter of this book, a great many journals contain articles on fracture 
mechanics. Of this number, three are devoted exclusively to the subject. These 
are the International Journal of Fracture (originally, the Znternational Journal 
of Fracture Mechanics), published since 1965; Engineering Fracture 
Mechanics, published since 1968; and the International Journal of Fatigue, 
published since 1978. A reader generally looks to the first of these for the more 
theoretical articles and to the second for more applications-oriented articles. 
There are many exceptions, of course. The International Journal of Fracture 
also contains a special section on reports of work in progress that strives for 
quick publication of short articles highlighting current work. A fourth journal, 
Fracture Mechanics Technology, has begun to appear at the time of this 
writing. It will apparently be focused on very much more applied work than 
the three existing journals. 

For the convenience of the reader, a list of the journals that will likely be of 
most interest in the future is given as Table 9.1. These are grouped as being of 

5 3 1  
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Table 9. I Journals Containing Fracture Mechanics Analyses and Results 

Title Publisher Issues per Year 

Primary Interest 

Internatiortal Journal of Fracture 
Engineering Fracture Mechanics 
Intrrnational Journal of Fatigue 
Theoretical arid Applied Fracture 

Secondary Interest 

Experimental Mechanics 
Journal of Engineering Marerials and 

Journal of Pressure Vessel 

International Journal of Pressure 

Internotioncil Jortriio/ of Engineering 

Internalional Journal of Mechanical 

International Journal of Solids and 

Jouriitrl of Materials Science 
Journcil of Composite Materials 
Journal of Mechanics and Physics of 

Nuclear Engineering and Design 
Occasional Interest 

~ o u r n n l  of Applied Mechanics 

Journal of Applied Physics 
Philosophical Magazine 
A I A A  Journal 

Mechtrriics 

Technology 

Technology 

Vessels and Piping 

Science 

Sciences 

Structures 

Solids 

Journal of Biomechanics 
Standardization News 

A C ~ A  Metallttrgica 
Mechanics of Materials 
Journal of Computational 

and Applied Mathematics 

Martinus Nijhoff 
Pergamon 
Butterworths 
North Holland 

Society of Experimental Stress Analysis 
American Society of Mechanical 

Engineers 
American Society of Mechanical 

Engineers 
Applied Science 

Pergamon 

Pergamon 

Pergamon 

Chapman and Hall 
Technomic 
Pergamon 

North Holland 

American Society of Mechanical 

American Institute of Physics 
Taylor and Francis 
American Institute of Aeronautics 

and Astronautics 
Perganion 
American Society of Testing and 

Materials 
Pergamon 
North Holland 
North Holland 

Engineers 

12 
12 
12 
4 

12 
4 

4 

12 

12 

12 

12 

12 
6 
6 

4 

4 

12 
12 
12 

12 
12 

12 
4 
6 

primary interest- those being exclusively devoted to the subject; secondary 
interest-those in which one might look to one or more articles on the subject 
in each issue; and occasional interest-those in which articles of interest to 
fracture mechanics do appear, but with no regularity. 

Any of the journals listed in Table 9.1 will from time to time devote a 
substantial portion of an issue to collections of articles that bear on fracture 
mechanics in some way. For example, the Znternational Journal of Fracture 
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has published special issues of review articles on fatigue of nonmetals (9.2) and 
fatigue of metals (9.3), both edited by H. W. Liu. This journal has also 
published the compendium of sources to fracture toughness and fatigue crack 
growth data compiled by Hudson and Seward (9.4). The A S T M  Standardiza- 
tion News has presented a set of comprehensive review articles on nonde- 
structive testing techniques (9.5) that could be read with profit for the insight it 
brings to the precision that flaws can be detected. 

As a further example, a special issue of Wear, a journal on the science and 
technology of friction, lubrication and wear-a journal not ordinarily 
concerned with fracture mechanics-was devoted to delamination wear and 
ferrography (9.6). The articles, largely contributed by Nam P. Suh and his 
associates, made direct use of fracture mechanics concepts in an area that one 
might not consider to have any connection with fracture mechanics. However, 
because the appearance of special volumes such as these is not predictable, a 
researcher wishing to keep abreast of developments in fracture mechanics 
should make a habit of visiting a technical library. The journals listed in Table 
9.1 will cover most articles of interest. But, as this example should indicate, it 
will not include them all. 

The listing given in Table 9.1 is consistent with the general viewpoint taken 
throughout this book in that it has been compiled from the viewpoint of 
applied mechanics. A listing from a metallurgical point of view might well 
include some additional titles while omitting others. We also note that several 
journals well-represented in the reference lists of previous chapters are not 
listed; for example, Proceedings of the Roynl Society and the Journal of 
Applied Physics. While articles in such journals have greatly contributed to the 
development of fracture mechanics, based upon trends in evidence over the 
past several years, these would not appear to be fruitful repositories for future 
progress in this area. Conversely, journals such as the Journal of Pressure 
Vessel Technology and Nuclear Engineering and Design, which were not even 
in existence during the formative years of fracture mechanics, are rich in 
fracture mechanics applications articles. This shift most probably reflects the 
evolution of the subject from one of mainly scientific curiosity to one of 
intense practical interest. 

9.2 Conference Proceedings 

The second freshest source of information is conference proceedings. Of 
these the special technical publications of the American Society for Testing 
and Materials (ASTM, 1916 Race Street, Philadelphia, Pa. 19103) and 
the conference volumes of the American Society of Mechanical Engineers 
(ASME, 345 East 47th Street, New York, N.Y. 10017) are probably the most 
useful. While there is not likely to be a great deal of difference in the technical 
level between these and the proceedings of other conferences, the ASTM and 
ASME publications appear both frequently and with some degree of 
regularity. The proceedings of the annual ASTM National Symposium on 



540 Advanced Fracture Mechanics 

Fracture Mechanics, the most recent of which at the time of this writing was 
the Sixteenth Symposium held in Columbus, Ohio in August, 1983, are of 
particular interest. Unfortunately, the appearances of the published volumes 
have lately been delayed by 2 or more years. Specific references to articles 
appearing in the ASTM and ASME conference volumes are contained in every 
chapter of this book. 

Other conferences that produce proceedings containing significant 
amounts of fracture mechanics analyses and data would include the biennial 
Structural Mechanics in Reactor Technology (SMIRT) conference, which 
meets in odd-numbered years. The published proceedings are generally 
available in advance of the conference. The eighth of these conferences was 
held in Chicago in August 1983. The post-SMIRT conferences are also of 
interest, as are the associated CSNI workshops. They generally provide 
volumes that are focused on a single theme. An example is the CSNI specialist 
meeting on Leak-Before-Break in nuclear plant piping held following the 8th 
SMIRT conference. The proceedings, to be published by the U.S. Nuclear 
Regulatory Commission, will be edited by J. Strosnider of the NRC. Of a 
similar nature are the AGARD and NATO conferences, which usually also 
provide a proceedings volume. Finally, the quadrennial International 
Conference on Fracture produces a multi-volume set from each of its 
gatherings. These are available at the time of the meeting. The next of these 
from the time of this writing is scheduled to be held in New Delhi, India, in 
December 1984. 

The disadvantage of conference proceedings as a source of up-to-date 
information stems from their proliferation and their generally sporadic 
appearance. Because of the number and generally high prices of such books, 
few libraries (not to say individuals) will acquire them all. This makes perusal 
of them a sometime thing. These factors also tend to attract papers of 
somewhat lower quality-authors wishing to put their work before a larger 
audience will tend to favor a periodical. On the other hand, because conference 
proceedings tend to focus on specialized topics, merely keeping track of the 
titles can provide a good indication of just where the frontiers of research and 
application are at any time. An example is the multi-volume set on fracture 
mechanics of ceramics (9.7). We have not provided a compilation of 
conference proceedings to parallel Table 9.1 as5the reader could well do so on 
his own from the references that we have given, many of which have been taken 
from conference proceedings. 

9.3 Standards 

Whether or not one feels that standards reflect fresh information, no one will 
deny their importance to the technical community. Indeed, one could argue 
that no research in a subject like fracture mechanics has any value if it does not 
in some way eventually help a more realistic and reliable standard to be 
written. Having said this, it should also be said that no current standard is 
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based upon anything much more than linear elastic fracture mechanics. While 
advances in nonlinear and dynamic fracture mechanics will surely be reflected 
eventually, changes in regulatory standards are (and should be) made 
cautiously. 

The standards containing fracture mechanics contributions that are of most 
significance are those of the American Society of Mechanical Engineers, 
particularly Section 111, Appendix G, of the Boiler and Pressure Vessel Code, 
and Section XI, for nuclear components. The Code of Federal Regulations is 
also vital for applications to nuclear systems. In the United Kingdom, the 
British Standards Institution has provided rules on acceptance of defects in 
welds and on fracture toughness testing. 

For testing purposes, the American Society for Testing and Materials 
Annual Book of Standards should be consulted. Of most interest to fracture 
mechanics is Part 10: Metals-Mechanical, Fracture, and Corrosion Testing; 
Fatigue: Erosion and Wear; Eflects of Temperature, which contains a number 
of standards bearing on the subject. Of most importance are E338, for testing 
high strength sheet materials; E399, for determining the plane-strain fracture 
toughness of a metal; E561 for R-curve determinations; E604, for determining 
dynamic tearing energy; E647, for conducting fatigue crack growth rate 
studies; and E813, for determining J,, values. The reader should also be aware 
that a standard exists in regard to the definitions, symbols, and abbreviations 
that are used in fracture testing. These are given in E616, standard terminology 
relating to testing. Standards for crack arrest testing and for the determination 
of J resistance curves are currently being developed and should appear by 
1985. 

9.4 Dissertations 

University research has on many occasions provided new and vital in- 
formation in fracture mechanics. The work of Professor J. R. Rice with several 
of his Ph. D. students at  Brown University comes quickly to mind in this 
regard. These and other dissertations written at Universities in the United 
States can be obtained at a nominal cost from Xerox University Microfilms, 
Ann Arbor, Michigan. However, much the same reasons that make conference 
proceedings a difficult source of current information also apply to dis- 
sertations. It is also likely today that Ph. D. research will be quickly written up 
for publication in a technical journal or presented at a conference whereupon 
the dissertation itself will be of interest only for particular details. Hence, 
keeping track of dissertations is not likely to be an effective way to keep 
abreast of progress in fracture mechanics. 

9.5 Abstracting Periodicals 

In the category of abstracting periodicals, Applied Mechanics Reviews, a 
monthly publication issued under the auspices of the American Society of 
Mechanical Engineers, is clearly the most significant source of information. 
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While too expensive for most individuals to obtain personal copies, virtually 
all technical libraries subscribe to it. It offers critical capsulations of key 
articles and books in many areas of fracture mechanics. Unfortunately, 
probably because the reviews are signed, they tend to be bland. They also tend 
to lag behind the actual publication, sometimes by a year or more. 
Nevertheless, one could probably obtain a comprehensive look at an 
unfamiliar area in fracture mechanics expeditiously in no better way than to 
inspect AMR. Periodic perusal to reduce the chance of missing an important 
contribution is also recommended. Occasional review articles on fracture 
mechanics also appear in AMR-for example, that of Atkinson (9.8). 

9.6 Progress Reviews 

Review articles appear from time to time in most technical journals. The 
appearance of such articles is generally unpredictable. But, there are several 
book series that appear at regular intervals that occasionally contain an article 
on some aspect of fracture mechanics. These include the Annual Reviews of 
Materials Science, Advances in Applied Mechanics, and Mechanics Today. 
Other volumes also appear that have been commissioned by a technical 
society-for example, the book of Campbell, Gerberich, and Underwood 
published by the American Society for Metals (9.9). These reviews are usually 
much more lengthy than journal articles usually are and, thereby, a much 
more in-depth treatment is provided. A disadvantage is that writers are 
understandably most enamoured of their own work and often suffer from a 
considerable degree of myopia with regard to the subject as a whole. 

9.7 Handbooks 

Three fairly complete collections of linear elastic stress intensity factors exist 
in handbook form. These are the collections compiled by Tada, Paris, and 
Irwin (9.10), by Sih (9.1 I),  and by Rooke and Cartwright (9.12). In the elastic- 
plastic regime, the handbook developed by the General Electric Company 
under the auspices of the Electric Power Research Institute exists. This is 
described in Chapter 5 and Appendix A of this book. Corresponding 
compilations of materials fracture property data are more rare. One that is 
available is that put together by Battelle’s Metals and Ceramics Information 
Center, Columbus, Ohio (9.13); see also reference (9.4). 

9.8 Treatises 

A landmark effort in fracture mechanics was the seven volume treatise on 
fracture assembled by Professor Harold Liebowitz that appeared from 1968 to 
1972 (9.14). While some of the more applied articles are by now out of date, 
many more are timeless. In particular, Vol. 11, Mathematical Fundamentals, 
will likely always remain of value to an applied mechanics readership. No 
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textbook could hope to reproduce the wealth of detail that is contained in 
these articles. Any serious analyst is advised to secure a copy, if one can be 
found. Also of some interest to fracture mechanics is the seven-volume treatise 
on composite materials edited by Broutman and Krock that appeared in 1974 
(9.15). It contains several chapters on the fracture of composites. 

9.9 Textbooks 

Thirteen individual textbooks have appeared prior to the writing of this book. 
The honor of producing the first book on the subject probably belongs to 
Yokobori (9.16) with the book of Tetelman and McEvily (9.17) a close second. 
These two books appeared in 1964 (English translation) and 1967, re- 
spectively. Next came the books of Knott (9.18), Broek (9.19), Lawn and 
Wilshaw (9.20), Hertzberg (9.12), and Rolfe and Barsom (9.22). It might be 
noted that all of these generally excellent offerings were written by materials 
scientists and, while the analysis side of the subject is represented, they 
generally reflect the materials point of view. Broek’s book, which now appears 
in its third edition, and Hertzberg’s, now in its second edition, probably best 
complement the present book. 

Subsequently, new books have appeared that more directly reflect the point 
of view of applied mechanics. The first of these are the books by Parton and 
Morozov (9.23) and Cherepanov (9.24)- both of these by Soviet authors- 
and by Jayatilaka (9.25) and Parker (9.26). Recently appearing are the books 
written by Owen and Fawkes (9.27) and Hellan (9.28). These books do focus on 
the analysis aspects of the subject. However, much like those already listed, 
these newer offerings are almost exclusively concerned with linear elastic 
fracture mechanics. While this subject matter does indeed cover the bulk of 
current applications, extensions of the subject now rapidly coming to fruition 
are not treated completely in any of these books. Accordingly, the present text 
was undertaken to provide a treatment encompassing current and advanced 
nonlinear and dynamic fracture mechanics techniques from the applied 
mechanics viewpoint. 

Readers interested in the early (predominately metallurgical) views of the 
subject could consult the books of Gensamer et al. (9.29), Parker (9.30), or 
Tipper (9.31). Textbooks that address a specific area (e.g., composite materials) 
are given in the reference lists of other chapters. Textbooks covering areas of 
fracture mechanics that are not addressed in this book would include the 
important topic of failure analysis. In this area are the book of Thielsch (9.32), 
which addresses the origin of defects, and those of Engle and Klingele (9.33) 
and Boyer (9.34), which are concerned with post-mortem examination of 
failure surfaces. The collection of case studies compiled by Hutchings and 
Unterweiser (9.35) may be interest for the practical side of fracture. Finally, 
there have been a number of specialized texts written for specific audiences. An 
example is one on fracture mechanics for bridge design prepared by Roberts 
et al. (9.36). Another is that of Fisher (9.37). 
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Appendix A 
COMPILATION OF FULLY PLASTIC SOLUTIONS 

In the following, tabulated values of the functions h,(a/W,n), h,(a/W,n), and 
It,(a/W, n) for the fully plastic solutions in the engineering approach to plastic 
fracture of Section 5.4 are presented for a variety of laboratory fracture 
specimens and flawed structural components. The corresponding expressions 
for gi(a/W) are also given. The development of these functions was sponsored 
by the Electric Power Research Institute.* 

A.l Compact Tension Specimen 

For the standard ASTM compact tension specimen of Figure A . l ,  the limit 
load Po per unit thickness is 

Po = 1.455pbgy (A. 1 - 1)  
for plane strain and 

Po = 1.07lpboy (A.l-2) 

for plane stress wherein 

/3 = [(2a/b)’ + 4a/b + 2]* - 2a/b - 1 (A.l-3) 

Note that pis the positive root of Equation (5.5-19). For this specimen A is the 
crack opening displacement at the load line and 6 is the crack mouth opening 
displacement. For the tabulated functions h , , h , ,  and h3 in Table A.1 for plane 
strain and Table A.2 for plane stress, gi = 1. 

A.2 Center Cracked Panel 

The center cracked panel in Figure A.2 is loaded in tension by a uniform 
remote stress o = P/2W. The limit load Po per unit thickness is 

Po = 4boY/J5 (A.2-1) 

for plane strain and 

Po = 2boy (A.2-2) 

* Copyright @ 1981, Electric Power Research Institute. EPRI NP-1931, “An Engineering 
Approach for Elastic-Plastic Fracture Analysis.” Reprinted with permission. 

546 



Compilation of Fully Plastic Solutions 541 

1.25 W I 

[- 

7 1.2 w 

Figure A.1 Standard ASTM compact tension specimen. 

Table A.l Plane Strain h-Functions for Standard A S T M  Compact Tension Specimen 

n - 1  n = 2  n = 3  n = 5  n = 7  n = l O  n = 1 3  t l = 1 6  n = 2 0  

2.23 2.05 1.78 1.48 1.33 1.26 

9.85 8.51 8.17 7.77 7.71 7.92 

2.15 1.72 1.39 0.970 0.693 0.443 
12.6 8.18 6.52 4.32 2.97 1.79 
7.94 5.76 4.64 3.10 2.14 1.29 

1.94 1.51 1.24 0.919 0.685 , 0.461 
9.33 5.85 4.30 2.75 1.91 1.20 
6.41 4.27 3.16 2.02 1.41 0.888 

1.76 1.45 1.24 0.974 0.752 0.602 
7.61 4.57 3.42 2.36 1.81 1.32 
5.52 3.43 2.58 1.79 1.37 1.00 

1.71 1.42 1.26 1.033 0.864 0.717 
6.37 3.95 3.18 2.34 1.88 1.44 
4.86 3.05 2.46 1.81 1.45 1.11 

1.57 1.45 1.35 1.18 1.08 0.950 
5.39 3.74 3.09 2.43 2.12 1.80 
4.31 2.99 2.47 1.95 1.79 1.44 

17.9 12.5 11.7 10.8 10.5 10.7 
1.25 1.32 

8.52 9.31 

0.276 0.176 
1.10 0.686 
0.793 0.494 

0.314 0.216 
0.788 0.530 
0.585 0.393 

0.459 0.347 
0.983 0.749 
0.746 0.568 

0.575 0.448 
1.12 0.887 
0.869 0.686 

0.850 0.730 
1.57 1.33 
1.26 1.07 

11.5 12.6 
1.57 

14.6 
10.9 

0.098 
0.370 
0.266 

0.132 
0.3 17 
0.236 

0.248 
0.485 
0.368 

0.345 
0.665 
0.514. 

0.630 
1.14 
0.909 
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Table A.2 Plane Stress h-Functions for Standard ASTM Compact Tension Specimen 

n = l  n = 2  n = 3  n = 5  n = 7  n = l O  n = 1 3  n = 1 6  n = 2 0  

h ,  1.61 1.46 1.28 1.06 0.903 0.729 
alW = $ h, 17.6 12.0 10.7 8.74 7.32 5.74 

h, 9.67 8.00 7.21 5.94 5.00 3.95 

h ,  1.55 1.25 1.05 0.801 0.647 0.484 

h, 7.80 5.73 4.62 3.25 2.48 1.77 

h, 1.40 1.08 0.901 0.686 0.558 0.436 
a/W = 4 h, 9.16 5.67 4.21 2.80 2.12 1.57 

h3 6.29 4.15 3.11 2.09 1.59 1.18 

h ,  1.27 1.03 0.875 0.695 0.593 0.494 
alW = 4 h2 7.47 4.48 3.35 2.37 1.92 1.54 

h, 5.42 3.38 2.54 1.80 1.47 1.18 

h, 1.23 0.977 0.833 0.683 0.598 0.506 
alW = $ h ,  6.25 3.78 2.89 2.14 1.78 1.44 

h, 4.77 2.92 2.24 1.66 1.38 1.12 

h, 1.13 1.01 0.775 0.680 0.650 0.620 
a /W-  1 h, 5.29 3.54 2.41 1.91 1.73 1.59 

h, 4.23 2.83 1.93 1.52 1.39 1.27 

A/w = 3 h, 12.4 8.20 6.54 4.56 3.45 2.44 

0.60 1 
4.63 
3.19 

0.377 
1.83 
1.33 

0.356 
1.25 
0.938 

0.423 
1.29 
0.988 

0.43 1 
1.20 
0.936 

0.490 
1.23 
0.985 

0.51 1 
3.75 
2.59 

0.284 
1.36 
0.990 

0.298 
1.03 
0.774 

0.370 
1.12 
0.853 

0.373 
1.03 
0.800 

0.470 
1.17 
0.933 

0.395 
2.92 
2.023 

0.220 
1.02 
0.746 

0.238 
0.814 
0.614 

0.310 
0.928 
0.710 

0.3 14 
0.857 
0.666 

0.420 
1.03 
0.824 

Figure A.2 Center cracked panel in 
tension. 
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Table A.3 Plane Strain h-Functions for a Center-Cracked Panel - 
n = l  , 1 5 2  n = 3  n = 5  n = 7  n = l O  n = 1 3  n = 1 5  n = 2 0  __ 

h ,  2.80 3.61 4.06 4.35 4.33 4.02 3.56 3.06 2.46 
a/W = Q h ,  3.05 3.62 3.91 4.06 3.93 3.54 3.07 2.60 2.06 

/ I ,  0.303 0.574 0.840 1.30 1.63 1.95 2.03 1.96 1.77 

h,  2.54 3.01 3.21 3.29 3.18 2.92 2.63 2.34 2.03 
a/W = 4 h, 2.68 2.99 3.01 2.85 2.61 2.30 L97 1.71 1.45 

h, 0.536 0.91 1 1.22 1.64 1.84 1.85 1.80 1.64 1.43 

h ,  2.34 2.62 2.65 2.51 2.28 1.97 1.71 1.46 1.19 
a/W = d h, 2.35 2.39 2.23 1.88 1.58 1.28 1.07 0.890 0.715 

h, 0.699 1.06 1.28 1.44 1.40 1.23 1.05 0.888 0.719 

h ,  2.21 2.29 2.20 1.97 1.76 1.52 1.32 1.16 0.978 
a/W = f h, 2.03 1.86 1.60 1.23 1.00 0.799 0.664 0.564 0.466 

h, 0.803 1.07 1.16 1.10 0.968 0.796 0.665 0.565 0.469 

h ,  2.12 1.96 1.76 1.43 1.17 0.863 0.628 0.458 0.300 
A/W = 5 h ,  1.71 1.32 1.04 0.707 0.524 0.358 0.250 0.178 0.1 14 

k, 0.844 0.937 0.879 0.701 0.522 0.361 0.251 0.178 0.115 

h,  2.07 1.73 1.47 1.1 I 0.895 0.642 0.461 0.337 0.216 
A / W  = a h, 1.35 0.857 0.596 0.361 0.254 0.167 0.114 0.0810 0.05ll 

113 0.805 0.700 0.555 0.359 0.254 0.168 0.114 0.0813 0.0516 

h ,  2.08 1.64 1.40 1.14 0.987 0.814 0.688 0.573 0.461 
a/W = i h, 0.889 0.428 0.287 0.181 0.139 0.105 0.0837 0.0682 0.0533 

h, 0.632 0.400 0.291 0.182 0.140 0.106 0.0839 0.0683 0.0535 

Table A.4 Plane Stress h-Functions for a Center-Cracked Panel 

n = l  n = 2  n = 3  r 1 = 5  n = 7  n = l O  n = 1 3  n = 1 6  n = 2 0  

h ,  2.80 3.57 4.01 4.47 
a/W = h ,  3.53 4.09 4.43 4.74 

h, 0.350 0.661 0.997 1.55 

h ,  2.54 2.97 3.14 3.20 
n/W = 4 h, 3.10 3.29 3.30 3.15 

h ,  0.619 1.01 1.35 1.83 

h ,  2.34 2.53 2.52 2.35 

h ,  0.807 1.20 1.43 1.59 

h ,  2.21 2.20 2.06 1.81 
a/W = 4 h, 2.34 2.01 1.70 1.30 

h, 0.927 1.19 1.26 1.18 

h ,  2.12 1.91 1.69 1.41 
A/W = 8 h, 1.97 1.46 1.13 0.785 

h, 0.975 1.05 0.970 0.763 

h ,  2.07 1.71 1.46 1.21 
a/W = 2 h, 1.55 0.970 0.685 0.452 

h, 0.929 0.802 0.642 0.450 

h, 2.08 1.57 1.31 1.08 
a/W = /i2 1.03 0.485 0.310 0.196 

h3 0.730 0.452 0.313 0.198 

a/W = 4 h, 2.71 2.62 2.41 2.03 

4.65 
4.79 
2.05 

3.1 I 
2.93 
2.08 

2.17 
1.75 
1.57 

1.63 
1.07 
1.04 

I .22 
0.6 I 7  
0.620 

1.08 
0.36 I 
0.361 

0.972 
0.157 
0.157 

4.62 
4.63 
2.56 

2.86 
2.56 
2.19 

I .95 
1.47 
I .43 

1.43 
0.87 I 
0.867 

1.01 
0.474 
0.478 

0.867 
0.262 
0.263 

0.862 
0. I27 
0. I27 

4.4 I 
4.33 
2.83 

2.65 
2.29 
2.12 

I .77 
1.28 
1.27 

1.30 
0.757 
0.758 

0.853 
0.383 
0.386 

0.745 
0.216 
0.216 

0.778 
0.109 
0.109 

4.13 
4.00 
2.95 

2.47 
2.08 
2.01 

1.61 
1.13 
1.13 

1.17 
0.666 
0.668 

0.7 12 
0.313 
0.318 

0.646 
0. I83 
0.183 

0.7 I5 
0.097 I 
0.0973 

3.72 
3.55 
2.92 

2.20 
1.81 
1.79 

1.43 
0.988 
0.994 

1 .oo 
0.557 
0.560 

0.573 
0.256 
0.273 

0.532 
0.148 
0.149 

0.630 
0.0842 
0.0842 
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for plane stress. Here A is the average load-point displacement defined by 
1 P W  

(A.2-3) 

The crack opening displacement at the center of the crack is denoted by 6. 
With g1 = g4 = a/W and g2 = g3 = 1, the tabulated functions h , ,  h,, and h,  
for plane strain and plane stress appear in Tables A.3 and A.4, respectively. 

A.3 Single Edge Notched Specimen 

The limit load Po per unit thickness for a single edge notched specimen under a 
uniform remote tension o = P/W (Figure A.3) is 

Po = 1.455pb0, (A.3-1) 

for plane strain and 

Po = 1.072pb~, (A.3-2) 

for plane stress where now 

p = [ 1 + ( ~ / b ) ~ ] *  - a/b (A.3-3) 

For this specimen A is the load-point displacement at the centerline of the 
specimen and 6 is the crack mouth opening displacement. For the tabulated 
functions in Tables A S  and A.6 for plane strain and plane stress, respectively, 
g1 = g4 = a/W and g, = g3 = 1 .  

A.4 Double Edge Notched Specimen 

The double edge notched specimen in FigureA.4 is loaded by a uniform 
remote stress o = P/2 W. The corresponding limit load per unit thickness is 

Po = (0.72W + 1 . 8 2 6 ) ~ ~  (A.4-1) 

Figure A.3 Single edge notched tensile specimen. 
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Table A S  Plane Strain h-Functions for a Single Edge Notched Specimen 

h ,  4.95 6.93 8.57 11.5 

h, 26.6 25.8 25.2 24.2 

h ,  4.34 4.77 4.64 3.82 
a / W =  i h ,  4.76 4.56 4.28 3.39 

h3 10.3 7.64 5.87 3.70 

h,  3.88 3.25 2.63 1.68 
a/W = 4 h2 4.54 3.49 2.67 1.57 

h, 5.14 2.99 1.90 0.923 

h,  3.40 2.30 1.69 0.928 
a/W = f h, 4.45 2.77 1.89 0.954 

h3 3.15 1.54 0.912 0.417 

h,  2.86 1.80 1.30 0.697 

h3 2.31 1.08 0.681 0.329 

h,  2.34 1.61 1.25 0.769 

h, 2.02 1.10 0.765 0.435 

hl 1.91 1.57 1.37 1.10 
a/W = 3 h, 4.29 2.75 2.14 1.55 

a/W = 4 h, 5.25 6.47 7.56 9.46 

o / W =  4 h2 4.37 2.44 1.62 0.0806 

u/W = f h, 4.32 2.52 1.79 1.03 

h3 2.01 1.27 0.988 0.713 

13.5 
1 1 . 1  
23.6 

3.06 
2.64 
2.48 

I .06 
0.946 
0.515 

0.514 
0.507 
0.215 

0.378 
0.423 
0.171 

0.477 
0.619 
0.262 

0.925 
1.23 
0.564 

16.1 
12.9 
23.2 

2.17 
1.81 
I s o  
0.539 
0.458 
0.240 

0.213 
0.204 
0.085 

0.153 
0.167 
0.067 

0.233 
0.296 
0. I25 

0.702 
0.921 
0.424 

18.1 
14.4 
23.2 

I .55 
I .25 
0.970 

0.276 
0.229 
0.119 

0.0902 
0.0854 
0.0358 

0.0625 
0.0671 
0.0268 

0.1 I6 
0.146 
0.0617 

19.9 
15.7 
23.5 

1 . 1 1  
0.875 
0.654 

0.142 
0.116 
0.060 

0.0385 
0.0356 
0.0147 

0.0256 
0.0272 
0.0108 

0.059 
0.0735 
0.03 I 2  

21.2 
16.8 
23.7 

0.712 
0.552 
0.404 

0.0595 
0.048 
0.0246 

0.01 19 
0.01 10 
0.00448 

0.0078 
0.00823 
0.00326 

0.02 I5 
0.0267 
0.01 I3 

Table A.6 Plane Stress h-Functions for a Single Edge Notched Specimen 

n = l  n = 2  n = 3  n = 5  n = 7  n = l O  n = 1 3  n = 1 6  n = 2 0  

h ,  3.58 4.55 
alW = +  h, 5.15 5.43 

h3 26.1 21.6 

h, 3.14 3.26 
alW = 4 h, 4.67 4.30 

h ,  2.81 2.37 
alW = 4 h2 4.47 3.43 

h ,  2.46 1.67 
afW = 4 h, 4.37 2.73 

h3 10.1 6.49 

h3  5.05 2.65 

h3 3.10 1.43 

hi 2.07 1.41 
alW = 4 h, 4.30 2.55 

h, 1.70 1.14 
alW = f h2 4.24 2.47 

h3 2.27 1.13 

h3 1.98 1.09 

h, 1.38 1.11 
afW = 4 h, 4.22 2.68 

h3 1.97 1.25 

5.06 
6.05 

18.0 

2.92 
3.70 
4.36 

1.94 
2.63 
1.60 

1.25 
1.91 
0.871 

1.105 
1.84 
0.771 

0.910 
1.81 
0.784 

0.962 
2.08 
0.969 

5.30 4.96 4.14 
6.01 5.47 4.46 

12.7 9.24 5.98 

2.12 1.53 0.960 
2.53 1.76 1.05 
2.19 1.24 0.630 

1.37 1.01 0.677 
1.69 1.18 0.762 
0.812 0.525 0.328 

0.776 0.510 0.286 
1.09 0.694 0.380 
0.461 0.286 0.155 

0.755 0.551 0.363 
1.16 0.816 0.523 
0.478 0.336 0.215 

0.624 0.447 0.280 
1.15 0.798 0.490 
0.494 0.344 0.21 1 

0.792 0.677 0.574 
1.54 1.27 1.04 
0.716 0.591 0.483 

3.29 
3.48 
3.94 

0.6 15 
0.656 
0.362 

0.474 
0.524 
0.223 

0.164 
0.2 16 
0.088 

0.248 
0.353 
0.146 

0.181 
0.314 
0.136 

2.60 
2.74 
2.72 

0.400 
0.4 19 
0.224 

0.342 
0.372 
0.157 

0.0956 
0.124 
0.0506 

0.172 
0.242 
0.100 

0.118 
0.203 
0.0581 

1.92 
2.02 
2.0 

0.230 
0.237 
0.123 

0.226 
0.244 
0.102 

0.0469 
0.0607 
0.0247 

0.107 
0.150 
0.06 1 6 

0.0670 
0.1 15 
0.0496 
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P, A12 t 
T": 

Figure A.4 Double edge notched ten- 
sile specimen. 

for plane strain and 

Po = 4boyf& (A.4-2) 

for plane stress. Here A is the load-point displacement at the centerline of the 
specimen and 6 is the crack mouth opening displacement. Tabulated values of 
h , ,  h 2 ,  and h ,  are presented in Tables A.7 and A.8 for plane strain and plane 
stress, respectively. These values are associated with g1 = g4 = 1 and g2 = 
g3 = Wfa - 1. 

A.5 Axially Cracked Pressurized Cylinder 

Figure A S  depicts a long circular cylindrical pressure vessel containing a long 
axial crack. The crack front is parallel to the axis of the cylinder. The 
generalized load is the uniform internal pressure p. A lower bound for the limit 
pressure po is 

P o  = 2 b a , / ( f i R c )  (A.5-1) 

where R ,  = R i  + a is the radial distance from the axis of the cylinder to the. 
crack front. For g1 = a/W and g2 = 1 the functions hl  and h2 are tabulated in 
Tables A.9, A.lO, and A.11 for W / R i  = 4, &, and &, respectively. For this 
configuration 6 is the crack mouth opening displacement. 
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Table A.7 Plane Strain h-Functions for a Double Edge Notched Specimen 

n = l  n = 2  n = 3  n = 5  n = 7  n = l O  n = 1 3  n = 1 6  n = 2 0  

h i  0.572 0.772 0.922 1.13 1.35 
a / W = g  h2 0.732 0.852 0.961 1.14 1.29 

h, 0.063 0.126 0.200 0.372 0.571 

hl 1.10 1.32 1.38 1.65 1.75 
a / W  = h, 1.56 1.63 1.70 1.78 1.80 

h3 0.267 0.479 0.698 1 . 1 1  1.47 

h i  1.61 1.83 1.92 1.92 1.84 

h i  0.637 1.05 1.40 1.87 2.11 

h i  2.22 2.43 2.48 2.43 2.32 

h, 1.26 1.92 2.37 2.79 2.85 

h i  3.16 3.38 3.45 3.42 3.28 

h3 2.36 3.29 3.74 3.90 3.68 

a / W =  4 h2 2.51 2.41 2.35 2.15 1.94 

a / W =  f h, 3.73 3.40 3.15 2.71 2.37 

a / W  = 4 h, 5.57 4.76 4.23 3.46 2.97 

h, 5.24 6.29 7.17 8.44 9.46 
a / W =  2 h2 9.10 7.76 7.14 6.64 6.83 

h3 4.73 6.26 7.03 7.63 8.14 

h l  14.2 24.8 39.0 78.4 140.0 
a / W =  4 h2 20.1 19.4 22.7 36.1 58.9 

hi  12.7 18.2 24.1 40.4 65.8 

1.61 1.86 2.08 2.44 
1.50 1.70 1.94 2.17 
0.911 1.30 1.74 2.29 

1.82 1.86 1.89 1.92 
1.81 1.79 1.78 1.76 
1.92 2.25 2.49 2.73 

1.68 1.49 1.32 1.12 
1.68 1.44 1.25 1.05 
2.20 2 09 1.92 1.67 

2.12 1.91 1.60 1.51 
2.01 1.72 1.40 1.38 
2.68 2.40 1.99 1.94 

3.00 2.54 2.36 2.27 
2.48 2.02 1.82 1.66 
3.23 2.66 2.40 2.19 

10.9 11.9 11.3 174 
7.48 7.79 7.14 11.1 
9.04 9.40 8.58 13.5 

341.0 777.0 1570.0 3820.0 
133.0 294.0 585.0 1400.0 
149.0 327.0 650.0 1560.0 

Table A.8 Plane Stress h-Functions for a Double Edge Notched Specimen 

n = l  n = 2  n = 3  n = 5  n - 7  11-10 n = 1 3  n = 1 6  n = 2 0  

h, 0.583 0.825 1.02 1.37 1.71 2.24 2.84 
alW = h ,  0.853 1.05 1.23 1.55 1.87 2.38 2.96 

h, 1.01 1.23 1.36 1.48 1.54 1.58 1.59 
a/W = 4 h2 1.73 1.82 1.89 1.92 1.91 1.85 1.80 

h3 0.296 0.537 0.770 1.17 1.49 1.82 2.02 

h, 1.29 1.42 1.43 1.34 1.24 1.09 0.970 
a/W = 2 h, 2.59 2.39 2.22 1.86 1.59 1.28 1.07 

h, 0.658 1.04 1.30 1.52 1.55 1.41 1.23 

h ,  1.48 1.47 1.38 1.17 1.01 0.845 0.732 
alW = 4 h, 3.51 2.82 2.34 1.67 1.28 0.944 0.762 

h3 1.18 1.58 1.69 1.56 1.32 1.01 0.809 

h ,  1.59 1.45 1.29 1.04 0.882 0.737 0.649 
a/W = 4 h2 4.56 3.15 2.32 1.45 1.06 0.790 0.657 

h ,  1.93 2.14 1.95 1.44 1.09 0.809 0.665 

h ,  1.65 1.43 1.22 0.979 0.834 0.701 0.630 
a/W = h2 5.90 3.37 2.22 1.30 0.966 0.741 0.636 

h3 3.06 2.67 2.06 1.31 0.978 0.747 0.638 

hl  1.69 1.43 1.22 0.979 0.845 0.738 0.664 
a/W = a h2 8.02 3.51 2.14 1.27 0.971 0.775 0.663 

h3 0.0729 0.159 0.26 0.504 0.821 1.41 2.18 

h3 5.07 3.18 2.16 1.30 0.980 0.779 0.665 

3.54 
3.65 
3.16 

1.59 
1.75 
2.12 

0.873 
0.922 
1.07 

0.625 
0.630 
0.662 

0.466 
0.473 
0.487 

0.297 
0.312 
0.3 I 8  

0.6 I 4  
0.596 
0.597 

4.62 
4.70 
4.73 

1.59 
1.70 
2.20 

0.674 
0.709 
0.830 

0.208 
0.232 
0.266 

0.0202 
0.0277 
0.03 17 

0.562 
0.535 
0.538 
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Figure A S  Axially cracked pressuri- 
zed cylinder. 

Table A.9 h-Functions for an Internally Pressurized, Axially Cracked Cylinder with 
W/Ri = 4 

n = l  n = 2  n = 3  n = 5  n = 7  n = l O  

alw = h i  6.32 7.93 9.32 11.5 13.12 
h2 5.83 7.01 7.96 9.49 10.67 

= 4 h i  7.00 8.34 9.03 9.59 9.71 
h, 5.92 8.72 7.07 7.26 7.14 

= 4 h i  9.79 10.37 9.07 5.61 3.52 
h2 7.05 6.97 6.01 3.70 2.28 

alw = 3 hi 11.00 5.54 2.84 1.24 0.83 
h, 7.35 3.86 1.86 0.556 0.261 

14.94 
11.96 

9.45 
6.7 1 

2.1 1 
1.25 

0.493 
0.129 

Table A. 10 h-Functions for an Internally Pressurized, Axially Cracked Cylinder 
with W/R,  = & 

n = l  n = 2  n = 3  n = 5  n = 7  n = l O  

alw = h, 5.22 6.64 7.59 8.76 9.34 9.55 
h2 5.31 6.25 6.88 7.65 8.02 8.09 

6.16 7.49 7.96 8.08 7.78 6.98 a/w = t 
h, 5.56 6.31 6.52 6.40 6.01 5.27 

a/w = f h i  10.5 11.6 10.7 6.41 3.95 2.27 

a/W = 4 
h2 7.48 7.72 7.01 4.29 2.58 1.37 

h2 9.57 5.40 2.57 0.706 0.370 0.232 
h i  16.1 8.19 3.87 1.46' 1.05 0.787 
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Table A.ll h-Functions for an Internally Pressurized Axially Cracked Cylinder 
with W/Ri  = & 

h ,  4.50 5.79 6.62 7.65 8.07 7.75 
h2 4.96 5.71 6.20 6.82 7.02 6.66 

5.57 6.91 7.37 7.47 7.21 6.53 
4.93 h2 5.29 5.98 6.16 6.01 5.63 

10.8 12.8 12.8 8.16 4.88 2.62 
1.65 h2 7.66 8.33 8.13 5.33 3.20 

a/W = 4 

a / w  = 4 

a/W = t 23.1 13.1 5.87 1.90 1.23 0.883 
7.88 3.84 1.01 0.454 0.240 h2 12.1 

Table A.12 F and V, for Internally Pressurized Axially Cracked 
Cylinders 

a l W = d  a / W = t  a / w = f  a / W = t  

F 1.19 1.38 2.10 3.30 
v, 1.51 1.83 3.44 7.50 

F 1.20 1.44 2.36 4.23 
Vl 1.54 1.91 3.96 10.4 

F 1.20 1.45 2.51 5.25 
Vl 1.54 1.92 4.23 13.5 

W / R i  = f 

W/Ri  = i$, 

W/Ri  = fTj 

In the elastic range 

and 

(A.5-2) 

(A.5-3) 

where the dimensionless functions F and V, are presented in Table A.12. 

A.6 Circumferentially Cracked Cylinder 

An internally, circumferentially cracked circular cylinder subjected to a 
remote axial tension B = P/n(Ri - RZ) is depicted in Figure A.6. A lower 
bound to the limit axial load Po is 

Po = 2na,(Rg - R f ) / J S  (A.6-1) 

where R, = R i  + a is the radial distance from the axis of the cylinder to 
the crack front. Again 6 is the crack mouth opening displacement. For 
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Figure A.6 Circumferentially cracked 
cylinder. 

91 = 94 = a / w  
in Tables A.13, 

In the elastic 

and g, = g3 = 1, the functions h , ,  h, ,  and h3 are presented 
A.14, and A.15 for WfR,  = t ,  79, and &, respectively. 
range 

K, = a f i F ( a / W ,  Ri/Ro) (A.6-2) 

6, = 4aaVl(a/W,R,fRo)/E' (A.6-3) 

Ace = 4aaV,(a/W,RJR0)/E' (A.6-4) 

where the dimensionless functions F, V,, and V2 are tabulated in Table A.16. 

Table A.13 h-Functions for a Circumferentially Cracked Cylinder in Tension with 
W / R i  = 4 

n = l  n = 2  n = 3  n = 5  n = l  n=lO 

h ,  3.18 5.00 5.94 1.54 8.99 11.1 
a/W = 4 h ,  4.56 5.55 6.31 1.19 9.10 11.0 

h3 0.369 0.700 1.01 1.96 3.04 4.94 

h, 3.88 4.95 5.64 6.49 6.94 1.22 
a/W = h2 4.40 5.12 5.51 6.01 6.28 6.30 

h3 0.613 1.25 1.19 2.19 3.61 4.52 

h ,  4.40 4.18 4.59 3.79 3.07 2.34 
aJW = f h, 4.36 4.30 3.91 3.00 2.26 1.55 

h3 1.33 I .93 2.21 2.23 1.94 1.46 

h ,  4.12 3.03 2.23 1.546 1.30 1.1 1 
a/W = 2 h2 3.46 2.19 1.36 0.638 0.436 0.325 

h, 1.54 1.39 1.04 0.686 0.508 0.366 
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Table A. I4 h-Functions for a Circumferentially Cracked Cylinder in Tension with 
W/Ri  = i!j 

n = l  n = 2  n = 3  n = 5  n = 7  n = l O  

I t ,  4.00 5.13 6.09 7.69 9.09 11.1 
alW = 4 / I ,  4.71 5.63 6.45 7.85 9.09 10.9 

h, 0.548 0.733 1.13 2.07 3.16 5.07 

h, 4.17 5.35 6.09 6.93 7.30 7.41 
a/W = 4 h2 4.58 5.36 5.84 6.31 6.44 6.31 

h, 0.757 1.35 1.93 2.96 3.78 4.60 

h ,  5.40 5.90 5.63 4.51 3.49 2.47 
afW = f h, 4.99 5.01 4.59 3.48 2.56 I .67 

h, 1.555 2.26 2.59 2.57 2.18 1.56 

h, 5.18 3.78 2.57 1.59 1.31 1.10 
a/W = h, 4.22 2.79 1.67 0.725 0.48 0.300 

h3 1.86 1.73 1.26 0.775 0.561 0.360 

Table A.15 h-Functions for a Circumferentially Cracked Cylinder in Tension with 
WIRi = I$ 

n = l  n - 2  n = 3  n = 5  n = 7  n = l O  

h ,  4.04 5.23 6.22 7.82 9.19 11.1 
afW = 4 h, 4.82 5.69 6.52 7.90 9.1 1 10.8 

h, 0.680 0.759 1.17 2.13 3.23 5.12 

h ,  4.38 5.68 6.45 7.29 7.62 7.65 
a/W = 4 h 2  4.71 5.56 6.05 6.51 6.59 6.39 

h,  0.818 1.43 2.03 3.10 3.91 4.69 

h,  6.55 7.17 6.89 5.46 4.13 2.77 
alW = f h, 5.67 5.77 5.36 4.08 2.97 1.88 

h ,  1.80 2.59 2.99 2.98 2.50 I .74 

h ,  6.64 4.87 3.08 1.68 1.30 1.07 
alW = a h, 5.18 3.57 2.07 0.808 0.472 0.316 

h, 2.36 2.18 1.53 0.772 0.494 0.330 

Table A.16 F, V, , and V2 for a Circumferentially Cracked Cylinder in 
Tension 

F 1.16 1.26 
W/Ri  = f V,  1.49 1.67 

V2 0.117 0.255 

F 1.19 1.32 
WIR, = i?j V, 1.55 1.76 

V2 0.180 0.290 

F 1.22 1.36 
WIRi = &  V, 1.59 1.81 

v2 0.220 0.315 

1.61 2.15 
2.43 3.76 
0.743 1.67 

1.82 2.49 
2.84 4.72 
0.885 2.09 

2.03 2.89 
3.26 5.99 
I .04 2.74 
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Crack growth (continued) 
environmentally assisted. 24-26. 49-50 
stable. 184. 186, 188 
steady-state, 437, 466-69 

Crack initiation. 178, 186, 309 
Crack length adjustment models 

for composite materials, 407-8 
in fatigue, 525-26 
for plastic zone correction. See Irwin 
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Crack opening displacement (COD), 63-

67, 79, 167-68, 255-5.6. 283. 298, 
310-12.488-89,531 

Crack speed, 54-56, 196-202 
Crack tip blunting, 281, 332, 437. 476 
Crack tip fields 

creep 
elastic-exponential law creep, 455-56 
elastic-primary creep, 449-50 
elastic-secondary creep, 440 
plastic-primary creep, 454 
primary-secondary creep, 452 

dynamic, 232-33 
elastic, 138, 142, 145 
plastic, 308, 374-75 

Crack tip opening angle (CTOA), 77-79, 
367-72, 377, 386 

Cracks, origin of, 14 
Creep crack growth 

correlations, 473, 477-84 
steady-state, 466-69 
transient, 469-72 

Creep crack growth fields 
elastic-primary creep, 472-73 
elastic-secondary creep, 462 

Damage mechanics, 90 
Damage tolerance, 3, 24-26, 32 
Da Vinci fracture experiments, 3, 60-61 
Deformation theory of plasticity. See 

Plasticity theory 
Degraded piping, 84-86 
Dislocations, 33. 45, 139, 283 
Divergence theorem, 103 
Double cantilever beam (DCB) specimen, 

209-11' 240-46 
Double edge notched (DEN) specimen, 

335,477-82,550,552-53 
Double torsion (DT) specimen, 246-50 
Ductile fracture, 181, 342 
Dugdale model, 64-65, 167, 282-92. 511 
Dynamic crack arrest. See Crack arrest 
Dynamic crack propagation, 54-56, 196, 

469-72 

Index 

Effective crack length, 62, 17 4, 316, 407 
Effective strain 

creep, 448. 450 
plastic, 126, 128, 299 

Effective stress. 126, 299 
Effective stress intensity factor. See Crack 

closure 
Elastic-plastic fracture mechanics, 72-79 
Elastodynamic wave speeds, table of, 199 
Elastomeric materials, 51-53 
Elliptical crack, !53 
Energy balance, 34-35, !58, 163, 485, 

489 
Energy release rate 

anisotropic. 41, 397-99 
dynamic, 57, 212, 234-38 
elastic-plastic, 78, 312 
static, 38, 72, 159, 164 

Environmentally assisted crack growth, 24-
26.49-50 

Equations of motion, 104 
Equilibrium equations, I 03-4, II 0, 292, 

302, 439 
Estimation technique, 315-18 
Eta factor. 73-74, 346. 382, 475,476 
Evolution of structural design. 30-32 
Experimental comparisons, 14, 288-92, 

321' 330-31' 361' 365. 368, 380, 
490-93 

Factor of safety, use of, I 0-12, 285 
Failure assessment diagram, 284, 287, 318-

23 
Failure mechanisms in composites, 401-6 
Fatigue crack growth 

crack closure in. See Crack closure 
effect of yeild stress on, 501-2 
growth rate. 47-49 
growth in welds, 528-32 
load interaction effects in, 503-5 
retardation in, 503-4 
short crack problem in, 525-28 
threshold, 47 
use in damage tolerance assessments, 

24-26 
Fibrous composites, 50-51 
Finite element method, 53. 156-58 
Flaws. origin of, 14 
Foils, plastic zones revealed in, 69-70 
Forman equations, 48, 499 
Fracture 

brittle. 163 
cleavage, 17, 181, 387 
flat, 179, 181 
intergranular, 477 
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Fracture criterion, 146, 283, 309, 378 
crack arrest, 15 n, 57-58, 195 
linear elastic conditions, 15, 195 
rapid loading, 15 n, 194, 269-71 
rapid propagation, 57, 195 

Fracture examples in structural 
components, 5-10, 47, 80-86 

Fracture modes, 139 
Fracture process zone, 308, 334, 336. 438, 

486 
Fracture toughness 

definition of, 89 
dynamic. See Dynamic fracture 

toughness 
Oldfield's representation, 18 
plane strain. 16, 180, 331 
plane stress, 17, 182 
reference curves in ASME code, 29-30. 

82, 188 
thickness dependence of, 17, 178-

180 
yield stress dependence of. 16 

Fragmentation, 271-74 
Freund-Nilsson relation, 55 

Gas transmission pipelines. See Piping, gas 
transmission 

Griffith-Irwin fracture mechanics. See 
Linear elastic fracture mechanics 

Griffith theory, 4, 31-36, 68, !58 
Goodier-Field crack opening displacement 

relation, 65-66 
Goodier-Kanninen model, 44 

Handbooks, 542 
Heat affected zone (HAZ), 387 
Hilbert problem, 149 
Holomorphic function, 140-43, 148-49, 

!54 
HRR singularity, 4, 299, 308, 440 
Hutchinson-Paris w factor, 76, 340 
Hybrid method, 157, 172 
Hybrid models for fracture of composite 

materials, 417-23 
Hydrostatic pressure, 123, 129-31 

Illustrations of fracture, 6-9, 370 
Inclined strip yield model, 71-72, 515-

23 
Ingles paradox, 31, 91 
Inspection intervals, 26 
Invariant integrals. See Path independent 

integrals 
Irwin plastic zone correction, 62-63, 174, 

284, 294 
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J- controlled crack growth, 334, 338, 341-
42, 349. 366-67 

}-dominance, 309, 334, 336. 366-67 
}-integral, 4, 44. 67-68, 72-74, 77-79. 164-

68, 526, 531 
]-resistance curve, 75-76, 342 
Journals, fracture mechanics articles in, 

537-39 

K-dominance, 146, 473 
Kinematically admissible field, 112, 162 
Kinetic approach in dynamic fracture 

mechanics, 56-60 

Leak before break, 22, 86-89, 290 
Limit load. 298,314-15.361 
Limiting crack speed, 54-55, 59. 199-

202 
Linear elastic fracture mechanics (LEFM), 

12-31. 138,281 
Liquefied natural gas storage tank, failure 

of, 5-10 
Load control, 359 
Loading rate, effect of, 17 
Local heterogeneous zone (LHR), 418-21 
Loss of coolant accident, 80-84 

Million dollar curve. 29 
Miner's rule, 503 
Minimum complementary energy, 

principle of, 114 
Minimum potential energy, principle of, 

114, 157 
Mixed mode fracture. See Combined mode 

crack growth 
Mode of fracture, definition of, 139 
Mott's dynamic crack propagation result, 

54-55, 196-97 
Multiple specimen testing, 323, 474 

Net section stress, 287-88, 456, 476, 479, 
481-82 

Newman-Raju surface crack relation, 23-
24 

Nil ductility temperature, 17-18, 80-81, 
181 

Nondestructive evaluation, 25-26 
Numerical methods, 53-54, 153-58 

Oak Ridge National Laboratory (ORNL). 
See Thermal shock problem 

Oldfield's relation, 18 
Omega factor, 76. 340 
Opening mode, 139 
Origins of fracture mechanics, 3-4, 30-42, 
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Overload etlect. See Fatigue crack growth, 
load interaction effects in 

Paper, fracture of, 90 
Paris law, 24.47, 499 
Part through crack, 21-24, 289 
Path independent integrals 

C*. See C*-integral 
q,449 
G. See Energy release rate 
I, 171 
J. See }-integral 
J", 169 
J.., 169 
1., 169 
1*, 171 
j"' 170 
L, !69 
L.., 169 
M, 169 
t,. 458 
.n., 457-58, 494 

Penny-shaped crack, 35, 152 
Photoelastic analysis, 213-14, 263-64 
Piping, 289-92, 357-61 

gas transmission, 90, 250-53 
nuclear plant, 77, 84-89 

Plastic collapse, 291, 361 
Plastic constraint, 342, 366 
Plastic deformation rate, 133, 373 
Plastic work, 134 
Plastic zone, 172-82, 281, 294, 298 

plane strain, 62, 175-79 
plane stress, 62, 175-79, 282 

Plasticity theory, 122-32 
deformation, 127-28, 299, 308, 313, 337, 

386 
incremental, 124-27, 294, 335, 340 

Poe's unifying critical strain model, 409-10 
Polymers, 115, 437, 484, 488 
Potential energy, 113-15, 158-61, 164, 166 
Prandtl field, 370, 372. 381 
Prandtl-Reuss equations, 127, 373 
Pressure vessels, simple computations for, 

19-20 
Primary creep, 437, 448 
Probabilistic fracture mechanics, 60-61 
Process zone, 308, 309 
Proportional loading, 128, 299, 338. 340, 

449 

Rapid crack propagation. See Dynamic 
crack propagation 

Rayleigh wave speed, 204 
Reference stres.s. 456. 471. 476 

Index 

Reference temperature for nil-ductility 
transition, 18, 29 

Reflected waves in dynamic crack 
propagation, effect of, 214-19 

Relaxation, 116 
Residual stresses, 286, 387 
Resistance (R) curve, 182-88, 281, 338, 

342, 344, 351, 359, 363, 366-70 
Retardation, 503-5 
Roberts-Wells limiting crack speed, 54-55, 

197 
Robertson crack arrest temperature 

specimen, 258 
R-6 curve, 284, 318, 321 
Rubber, fracture mechanics of, 51-53 
Rubber elasticity, 111-12 

Safety, factor of, I 0-12, 285 
Secondary creep, 437-48 
Shadow optical technique. See Caustics, 

method of 
Shear lips, 179-82 
Short crack. See Fatigue crack growth, 

short crack problem in 
Similitude, 90 
Single edge notched (SEN) specimen, 152, 

154,477,550-51 
Single specimen testing, 323-31 
Size requirements 

for J~c testing, 332 
for K1c testing, 180 

Slip line field, 129-32, 303, 306, 334, 
373 

Small-scale yielding, 139, 146-47, 168, 172, 
281,293-94,442-54,473 

Sneddon-Radok equations, 254 
Standards, 180, 331, 540-41 
Statically admissible stress feild, 112-14 
Strain, 105-8 

deviatoric, 119, 123, 444 
effective, 126, 128, 299, 444 

Strain energy density, 108-9 
Strain energy density criterion, 51, 412 
Strain energy release rate, definition of, 38, 

160 
Strain hardening, 124, 127, 299, 318 
Strength of materials, analogy with fracture 

mechanics, I 0-11 
Stress, 100-105 

deviatoric, 119, 123, 299, 439 
effective, 126, 299, 439 
invariants, 105 
principal, 104-105, 124, 129 
residual, 387 

Stress historv. 116 
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Stress intensity factor, 39-42, 142, 145, 
147-53,442,478,484,486 

simple uses of, 19-21 
table of, 16 

Stress-strain relations, 109-10, 112; 119, 
127-28, 299,300, 321 

Strip yield models, 68-72, 255-57, 282, 
486, 515-23, 526 

Structural fracture, examples of, 5-10 
Surface cracks. See Part through crack 
Surface energy, 33-38, 42-46, 158, 

163 

Tearing instability theory, 74-76, 288, 
353-59, 365-66 

Tearing mode, definition of, 139 
Tearing modulus, 75-76, 342, 344, 383-

84 
Temperature effect 

on creep, 120, 437, 487 
on fracture toughness, 17-18, 26-30, 80-

82, 181 
Terminal ballistics, 271-74 
Textbooks, 192, 392, 543 
Theoretical material strength, 33, 36 
Thermal shock problem, 80-84, 223-24 
Thermorheologically simple materials, 120, 

487 
Thickness effect, 17, 177-80 
Three-point bend specimen, 154, 180-81, 

315-17,327,330,332,356 
Through-thickness deformation, 69-70, 

177 

563 

Time-temperature superposition principle. 
See Accelerated characterization 

Time-to-failure, 491 
Traction, definition of, 101, 102, Ill 
Transferability, 89 
Transition tempeature, 17-18, 80-82 
Transition time, 444-45, 451-52, 454,472 
Tresca yield criterion, 124, 292 
Triaxial constraint, 179, 312, 367 
Two-parameter criterion, 13, 370 

Unloading compliance, 332, 378 
Unstable crack growth. See Dynamic crack 

propagation 
Upper-shelf energy, 181 

Virtual work, principle of, 112, 165 
Viscoelasticity, 79, 115-22, 484-86 
Viscoplasticity, 132-36, 226-29 
Von Mises yield criterion, 124, 292 

Warm prestress effect, 83 
Weibull distribution, 61 
Weibull-Griffith fracture mechanics. See 

Probabilistic fracture mechanics 
Wheeler's model, 503 
Wide plate crack propagation specimen, 

259-62 
Willenborg model, 503 
Work hardening. See Strain hardening 

Yield criteria, 122-25 
Y offe's solution, 202-3 
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