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PREFACE

Soils and rocks in their natural state are among the most
variable of all engineering materials, and geotechnical en-
gineers must often “make do” with materials that present
themselves at a particular site. In a perfect world with no
economic constraints, we would drill numerous boreholes
and take multiple samples back to the laboratory for mea-
surement of standard soil properties such as permeability,
compressibility, and shear strength. Armed with all this in-
formation, we could then perform our design of a seepage
problem, foundation, or slope and be very confident of our
predictions. In reality we must usually deal with very lim-
ited site investigation data, and the traditional approach for
dealing with this uncertainty in geotechnical design has
been through the use of characteristic values of the soil
properties coupled with a generous factor of safety.

If we were to plot the multitude of data from the hy-
pothetical site investigation as a histogram for one of the
properties, we would likely see a broad range of values in
the form of a bell-shaped curve. The most likely values of
the property would be somewhere in the middle, but a sig-
nificant number of samples would display higher and lower
values too. This variability inherent in soils and rocks sug-
gests that geotechnical systems are highly amenable to a
statistical interpretation. This is quite a different philoso-
phy from the traditional approach mentioned above. In the
probabilistic approach, we input soil properties character-
ized in terms of their means and variances (first and second
moments) leading to estimates of the probability of failure
or reliability of a design. Specific examples might involve
estimation of the reliability of a slope design, the probabil-
ity of excessive foundation settlement, or the probability of
excessive leakage from a reservoir. When probabilities are
coupled with consequences of design failure, we can then
assess the risk associated with the design.

While the idea of using statistical concepts in geotechni-
cal engineering is not new, the use of these methodologies

has tended to be confined to high-tech projects, particu-
larly relating to seismic design and offshore engineering.
For example, the “hundred year” earthquake or wave is
based on statistical analysis of historical records. In recent
years, however, there has been a remarkable increase in ac-
tivity and interest in the use of probabilistic methodologies
applied to more traditional areas of geotechnical engineer-
ing. This growth has manifested itself in many forms and
spans both academe and practice within the geotechnical
engineering community, for example, more dedicated ses-
sions at conferences, short courses for practitioners, and
new journals and books.

The obvious question may then be, “why another book™?
There is certainly no shortage of texts on structural reli-
ability or general statistical methods for civil engineers,
but there is only one other textbook to our knowledge,
by Baecher and Christian (2003), specifically aimed at
geotechnical engineers. In this rapidly evolving field, how-
ever, a number of important recent developments (in par-
ticular random-field simulation techniques) have reached a
maturity and applicability that justify the current text. Our
target audience therefore includes students and practition-
ers who wish to become acquainted with the theory and
methodologies behind risk assessment in geotechnical en-
gineering ranging from established first-order methods to
the most recent numerical developments such as the random
finite-element method (RFEM).

An additional unique feature of the current text is that the
programs used in the geotechnical applications discussed in
the second half of the book are made freely available for
download from www.engmath.dal.ca/rfem.

The text is organized into two main parts with Part 1
devoted to theory and Part 2 to practice.

The first part of the book, (Chapters 1-7) describes
the theory behind risk assessment techniques in geotech-
nical engineering. These chapters contain over 100 worked

XV



Xvi PREFACE

examples to help the reader gain a detailed understanding
of the methods. Chapter 1 offers a review of probability
theory intended as a gentle introduction to readers who
may have forgotten most of their undergraduate “prob and
stats.” Chapters 2 and 3 offer a thorough description of both
discrete and continuous random processes, leading into the
theory of random fields used extensively in the practical ap-
plications described in Part 2. Chapter 4 describes how to
make best estimates of uncertain parameters given observa-
tions (samples) at nearby locations along with some theory
relating to how often we should expect to see exceptionally
high (or low) soil properties. Chapter 5 describes the ex-
isting techniques available to statistically analyze spatially
distributed soil data along with the shortcomings of each
technique and to decide on a distribution to use in model-
ing soil variability. Chapter 6 discusses simulation and in
particular lays out the underlying theory, associated algo-
rithms, and accuracy of a variety of common methods of
generating realizations of spatially variable random fields.
Chapter 7 addresses reliability-based design in geotechnical
engineering, which is currently an area of great activity both
in North America and internationally. The chapter considers
methods for choosing suitable load and resistance factors
in the context of a target reliability in geotechnical design.
The chapter also addresses some of the problems of im-
plementing a reliability-based design, such as the fact that
in frictional materials the load also contributes to the resis-
tance, so that load and resistance are not independent as is
commonly assumed in other reliability-based design codes.

The second part of the book, (Chapters 8—16) describes
the use of advanced probabilistic tools to several classical
geotechnical engineering applications. An emphasis in these

chapters has been to study problems that will be familiar
to all practicing geotechnical engineers. The examples use
the RFEM as developed by the authors and made avail-
able through the website mentioned previously, in which
random-field theory as described in Chapter 3 is com-
bined with the finite-element method. Chapters 8 and 9
describe steady seepage with random permeability in both
two and three dimensions. Both confined and unconfined
flow examples are demonstrated. Chapter 10 considers set-
tlements and differential settlements of strip and rectangular
footings on soils with random compressibility. Chapters 11
(bearing capacity), 13 (slope stability), 14 (earth pressure),
and 15 (mine pillar stability) describe limit analyses in
geotechnical engineering in which the shear strength pa-
rameters are treated as being spatially variable and possibly
cross-correlated. In all these cases, comparisons are made
between the probability of failure and the traditional fac-
tor of safety that might be obtained from characteristic
values of the shear strength parameters so that geotech-
nical engineers can get a sense for how traditional designs
relate to failure probabilities. The limit analyses also high-
light important deficiencies leading to unconservatism in
some of the simpler probabilistic tools (e.g., first order)
which are not able to properly account for spatial correla-
tion structures. These chapters particularly draw attention to
the important phenomenon of mechanisms of failure “seek-
ing out” critical paths through the soil when weak spatially
correlated zones dominate the solution. Chapter 12 consid-
ers probabilistic analysis of deep foundations such as piles
in soils modeled with random #—z springs. Chapter 16 uses
random-field models to quantify the probability of lique-
faction and its extent at a particular site.
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CHAPTER 1

Review of Probability Theory

1.1 INTRODUCTION

Probability theory provides a rational and efficient means of
characterizing the uncertainty which is prevalent in geotech-
nical engineering. This chapter summarizes the background,
fundamental axioms, and main results constituting modern
probability theory. Common discrete and continuous distri-
butions are discussed in the last sections of the chapter.

1.2 BASIC SET THEORY
1.2.1 Sample Spaces and Events

When a system is random and is to be modeled as such, the
first step in the model is to decide what all of the possible
states (outcomes) of the system are. For example, if the
load on a retaining wall is being modeled as being random,
the possible load can range anywhere from zero to infinity,
at least conceptually (while a zero load is entirely possible,
albeit unlikely, an infinite load is unlikely—we shall see
shortly that the likelihood of an infinite load can be set to
be appropriately small). Once the complete set of possible
states has been decided on, interest is generally focused on
probabilities associated with certain portions of the possible
states. For example, it may be of interest to determine the
probability that the load on the wall exceeds the sliding
resistance of the wall base, so that the wall slides outward.
This translates into determining the probability associated
with some portion, or subset, of the total range of possible
wall loads (we are assuming, for the time being, that the
base sliding resistance is known). These ideas motivate the
following definitions:

Definitions
Experiment: Any process that generates a set of data. The
experiment may be, for example, the monitoring of the

Risk Assessment in Geotechnical Engineering Gordon A. Fenton and D. V. Griffiths
Copyright © 2008 John Wiley & Sons, Inc. ISBN: 978-0-470-17820-1

volume of water passing through an earth dam in a unit
time. The volume recorded becomes the data set.

Sample Space: The set of all possible outcomes of an
experiment. The sample space is represented by the
symbol S.

Sample Point: An outcome in the sample space. For
example, if the experiment consists of monitoring the
volume of water passing through an earth dam per hour,
a sample point would be the observation 1.2 m?/h. An-
other would be the observation 1.41 m3/h.

Event: A subset of a sample space. Events will be denoted
using uppercase letters, such as A, B, .... For example,
we might define A to be the event that the flow rate
through an earth dam is greater than 0.01 m3/h.

Null Set: The empty set, having no elements, is used to
represent the impossible “event” and is denoted #. For
example, the event that the flow rate through an earth
dam is both less than 1 and greater than 5 m3/h is
impossible and so the event is the null set.

These ideas will be illustrated with some simple examples.

Example 1.1 Suppose an experiment consists of observ-
ing the results of two static pile capacity tests. Each test
is considered to be a success (1) if the pile capacity ex-
ceeds a certain design criterion and a failure (0) if not.
This is an experiment since a set of data is derived from it.
The actual data derived depend on what is of interest. For
example:

1. Suppose that only the number of successful pile tests
is of interest. The sample space would then be S =
{0,1,2}. The elements O, 1, and 2 of the set S are
sample points. From this sample space, the following
events (which may be of interest) can be defined; ¢,
{0}, {1}, {2}, {0,1}, {0,2}, {1,2}, and S = {0,1,2}
are possible events. The null set is used to denote
all impossible events (for example, the event that the
number of successful tests, out of two tests, is greater
than 2).

2. Suppose that the order of occurrence of the suc-
cesses and failures is of interest. The sample space
would then be § ={11,10,01,00}. Each outcome
is a doublet depicting the sequence. Thus, the ele-
ments 11, 10, 01, and 00 of § are sample points.
The possible events are @, {11}, {10}, {01}, {00},
{11,10}, {11,01}, {11,00}, {10,01}, {10, 00}, {01, 00},
{11,10,01}, {11, 10,00}, {11,01,00}, {10,01, 00}, and
{11, 10,01, 00}.

Note that the information in 1 could be recovered from
that in 2, but not vice versa, so it is often useful to

3
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define the experiment to be more general initially, when
possible. Other types of events can then be derived after
the experiment is completed.

Sample spaces may be either discrete or continuous:

Discrete Case: In this case, the sample space consists of a
sequence of discrete values (e.g., 0, 1,...). For example,
the number of blow counts in a standard penetration test
(SPT). Conceptually, this could be any integer number
from zero to infinity.

Continuous Case: In this case, the sample space is com-
posed of a continuum of sample points and the number of
sample points is effectively always infinite—for example,
the elastic modulus of a soil sample. This could be any
real number on the positive real line.

1.2.2 Basic Set Theory

The relationship between events and the corresponding
sample space can often be illustrated graphically by means
of a Venn diagram. In a Venn diagram the sample space
is represented as a rectangle and events are (usually)
drawn as circles inside the rectangle. For example, see
Figure 1.1, where A;, Ay, and Az are events in the sample
space S.

We are often interested in probabilities associated with
combinations of events; for example, the probability that
a cone penetration test (CPT) sounding has tip resistance
greater than x at the same time as the side friction is
less that y. Such events will be formed as subsets of the
sample space (and thus are sets themselves). We form these
subsets using set operators. The union, intersection, and
complement are set theory operators which are defined as
follows:

The union of two events
E and F is denoted
E U F.

A

Figure 1.1 Simple Venn diagram.

The intersection of two

s
events E and F is denoted E F
E N F.
The complement of an s

event E is denoted E°.

E°

Two events E and F are said to be mutually exclusive, or
disjoint, if E N F = (). For example, E and E€ are disjoint
events.

Example 1.2 Three piles are being statically loaded to
failure. Let A; denote the event that the ith pile has a
capacity exceeding specifications. Using only sets and set
theory operators (i.e., using only A;,i = 1,2,3,and N, U,
and ©), describe each of the following events. In each
case, also draw a Venn diagram and shade the region
corresponding to the event.

1. At least one pile has capacity exceeding the specifi-
cation.

2. All three piles have capacities exceeding the specifi-
cation.

3. Only the first pile has capacity exceeding the specifi-
cation.

4. Exactly one pile has capacity exceeding the specifica-
tion.

5. Either only the first pile or only both of the other piles
have capacities exceeding the specification.

SOLUTION
1.A; U Ay U Az A — — |5
| A —— 2
=
2.A1 N Ay N Az A A | S
1 2
Az




3.A N AS N AS

S
4. (A ﬁAE N A%) - A A S
U@ NAN Ag) \
U (Ai N A; N Az) !
504 NAS N Ag) S
@) (Acl‘ N A, N Aj)

It is clear from the Venn diagram that, for example, A} N
A5 N A§ and A] N Ay N Az are disjoint events, that is,
(A; NAS N A N (A] N Ay N A3) =1,

1.2.3 Counting Sample Points

Consider experiments which have a finite number of pos-
sible outcomes. For example, out of a group of piles, we
could have three failing to meet specifications but cannot
have 3.24 piles failing to meet specifications. That is, the
sample space, in this case, consists of only whole numbers.
Such sample spaces are called discrete sample spaces. We
are often interested in computing the probability associated
with each possible value in the sample space. For example,
we may want to be able to compute the probability that ex-
actly three piles fail to meet specifications at a site. While
it is not generally easy to assign probabilities to something
like the number of soft soil lenses at a site, some discrete
sample spaces consist of equi-likely outcomes, where all
possible outcomes have the same probability of occurrence.
In this case, we only need to know the total number of pos-
sible outcomes in order to assign probabilities to individual
outcomes (i.e., the probability of each outcome is equal to
1 over the total number of possible outcomes). Knowing
the total number of possible outcomes is often useful, so
some basic counting rules will be considered here.

Multiplication Rule The fundamental principle of count-
ing, often referred to as the multiplication rule, is:

BASIC SET THEORY 5

If an operation can be performed in ny ways, and if for each of
these, a second operation can be performed in ny ways, then the
two operations can be performed together in ny X ny different
ways.

Example 1.3 How many possible outcomes are there
when a soil’s relative density is tested twice and the
outcome of each test is either a pass or a fail? Assume
that you are interested in the order in which the tests pass
or fail.

SOLUTION On the first test, the test can proceed in
any one of n; =2 ways. For each of these, the second
test can proceed in any one of n, =2 ways. Therefore,
by the multiplication rule, there are n; x np, =2 x2 =4
possible test results. Consequently, there are four points in
the sample space. These are (P,P), (P,F), (F,P), and (F,F)
(see also Example 1.1).

The multiplication principle extends to k operations as
follows:

If an operation can be performed in ny ways, and if for each of
these a second operation can be performed in ny ways, and for
each of the first two a third operation can be performed in nsz
ways, and so forth, then the sequence of k operations can be
performed together in

n=mny Xny X--+Xng (1.])

different ways.

Example 1.4 Extending the previous example, suppose
that a relative-density test classifies a soil into five possible
states, ranging from “very loose” to “very dense.” Then if
four soil samples are tested, and the outcomes of the four
tests are the ordered list of their states, how many possible
ways can the tests proceed if the following conditions are
assumed to hold?

1. The first sample is either very loose or loose, and
all four tests are unique (i.e., all four tests result in
different densities).

2. The first sample is either very loose or loose, and tests
may yield the same results.

3. The first sample is anything but very loose, and tests
may yield the same results.

SOLUTION

1. 2x4x3x2=48
2. 2x5%x5x%x5=250
3.4 x5x%x5x5=500
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Permutations Frequently, we are interested in sample
spaces that contain, as elements, all possible orders or
arrangements of a group of objects. For example, we may
want to know the number of possible ways 6 CPT cones
can be selected from a collection of 20 cones of various
quality. Here are some examples demonstrating how this
can be computed.

Example 1.5 Six piles are being driven to bedrock and
the energy required to drive them will be recorded for
each. That is, our experiment consists of recording the six
measured energy levels. Suppose further that the pile results
will be ranked from the one taking the highest energy to
the one taking the lowest energy to drive. In how many
different ways could this ranked list appear?

SOLUTION The counting process can be broken up into
six simpler steps: (1) selecting the pile, out of the six, taking
the highest energy to drive and placing it at the top of the
list; (2) selecting the pile taking the next highest energy to
drive from the remaining five piles and placing it next on the
list, and so on for four more steps. Since we know in how
many ways each of these operations can be done, we can
apply the multiplicationrule:n =6 x5 x4 x3 x2x 1 =
720. Thus, there are 720 ways that the six piles could be
ranked according to driving energy.

In the above example, the number of possible arrange-
ments is 6!, where ! is the factorial operator. In general,

nl=nxm-1)x---x2x1 (1.2)

if n is a nonzero integer. Also 0! =1 by definition. The
reasoning of the above example will always prevail when
counting the number of possible ways of arranging all
objects in a sequence.

Definition A permutation is an arrangement, that is, an
ordered sequence, of all or part of a set of objects. If we
are looking for the number of possible ordered sequences
of an entire set, then

The number of permutations of n distinct objects is n!.

If only part of the set of objects is to be ordered, the
reasoning is similar to that proposed in Example 1.5, except
that now the number of “operations” is reduced. Consider
the following example.

Example 1.6 A company has six nuclear density meters,
labeled A through F. Because the company wants to keep
track of the hours of usage for each, they must each be
signed out. A particular job requires three of the meters to
be signed out for differing periods of time. In how many

ways can three of the meters be selected from the six if the
first is to be used the longest, the second for an intermediate
amount of time, and the third for the shortest time?

SOLUTION We note that since the three meters to be
signed out will be used for differing amounts of time, it
will make a difference if A is selected first, rather than
second, and so on. That is, the order in which the meters are
selected is important. In this case, there are six possibilities
for the first meter selected. Once this is selected, the second
meter is select from the remaining five meters, and so on.
So in total we have 6 x 5 x 4 = 120 ways.

The product 6 x 5 x 4 can be written as
6x5x4x3x2x1
3x2x1
so that the solution to the above example can be written as
6!
(6—3)!
In general, the number of permutations of r objects selected
from n distinct objects, where order counts, is

6x5x4=

n!
Pl = ——— (1.3)
(n—r)!
Combinations In other cases, interest is in the number of
ways of selecting r objects from n distinct objects without
regard to order.

Definition A combination is the number of ways that
objects can be selected without regard to order.

Question: If there is no regard to order, are there going
to be more or less ways of doing things?

Example 1.7 In how many ways can I select two letters
from A, B, and C if I do it (a) with regard to order and (b)
without regard to order?

SOLUTION
In Figure 1.2, we see that there are fewer combinations
than permutations. The number of combinations is reduced

With regard
to order

Without regard
to order

Figure 1.2 Selecting two letters from A, B, and C.



from the number of permutations by a factor of 2 x 1 = 2,
which is the number of ways the two selected letters can
be permuted among themselves.

In general we have:

The number of combinations of n distinct objects taken r at a

time is written
n n!
= — 1.4
<r) rl(n —r)! (1.4

Example 1.8 A geotechnical engineering firm keeps a list
of eight consultants. Not all consultants are asked to provide
a quote on a given request. Determine the number of ways
three consultants can be chosen from the list.

SOLUTION

8 8! 8xXTx6
3 315! 3x2x1

Sometimes, the multiplication rule, permutations, and/or
combinations must be used together to count the number of
points in a sample space.

Example 1.9 A company has seven employees specializ-
ing in laboratory testing and five employees specializing in
field testing. A job requires two employees from each area
of specialization. In how many ways can the team of four
be formed?

SOLUTION

1.3 PROBABILITY
1.3.1 Event Probabilities

The probability of an event A, denoted by P [A], is a number
satisfying
0<P[A] <1

Also, we assume that

P[4] =0, P[S]=1

Probabilities can sometimes be obtained using the counting
rules discussed in the previous section. For example, if
an experiment can result in any one of N different but
equally likely outcomes, and if exactly m of these outcomes
correspond to event A, then the probability of event A is
P[A] =m/N.
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Example 1.10 Sixty soil samples have been taken at a
site, 5 of which were taken of a liquefiable soil. If 2 of
the samples are selected at random from the 60 samples,
what is the probability that neither sample will be of the
liquefiable soil?

SOLUTION  We could solve this by looking at the number
of ways of selecting the 2 samples from the 55 nonlique-
fiable soil and dividing by the total number of ways of
selecting the 2 samples,
%) 99
P[0 i ble| = 222 = —
[ iquefia e] (620) e
Alternatively, we could solve this by considering the prob-
ability of selecting the “first” sample from the 55 nonliq-
uefiable samples and of selecting the second sample from
the remaining 54 nonliquefiable samples,

55 54 99

P[O llqueﬁable] =% X 59 = 118
Note, however, that we have introduced an “ordering” in
the second solution that was not asked for in the original
question. This ordering needs to be carefully taken account
of if we were to ask about the probability of having one
of the samples being of a liquefiable soil. See the next

example.

Example 1.11 Sixty soil samples have been taken at a
site, 5 of which were taken of a liquefiable soil. If 2 of
the samples are selected at random from the 60 samples,
what is the probability that exactly 1 sample will be of the
liquefiable soil?

SOLUTION  We could solve this by looking at the number
of ways of selecting one sample from the 5 liquefiable
samples and 1 sample from the 55 nonliquefiable samples
and dividing by the total number of ways of selecting the
two samples:

P[1 liquefiable] = (?()égs) _2 < % ) <% ) _ %

We could also solve it by considering the probability of
selecting the first sample from the 5 liquefiable samples and
the second from the 55 nonliquefiable samples. However,
since the question is only looking for the probability of
one of the samples being liquefiable, we need to add in the
probability that the first sample is nonliquefiable and the
second is liquefiable:

5 55 55
P[l liqueﬁable] = X 39 + %0 X 39

_, 5 55\ 55
T 7\60/)\59) " 354
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Figure 1.3  Venn diagram illustrating the union A U B.

1.3.2 Additive Rules

Often we must compute the probability of some event which
is expressed in terms of other events. For example, if A is
the event that company A requests your services and B is
the event that company B requests your services, then the
event that at least one of the two companies requests your
services is A U B. The probability of this is given by the
following relationship:

If A and B are any two events, then
P[A U B]=P[A]+P[B]—P[A N B] (1.5)

This relationship can be illustrated by the Venn diagram in
Figure 1.3. The desired quantity, P[A U B], is the area of
A U B which is shaded. If the shaded area is computed
as the sum of the area of A, P[A], plus the area of B,
P [B], then the intersection area, P[A N B], has been added
twice. It must then be removed once to obtain the correct
probability. Also,

If A and B are mutually exclusive, that is, are disjoint
and so have no overlap, then

P[A U B]=P[A]+P[B] (1.6)
If Aj,As, ..., A, are mutually exclusive, then
P[Ay U --- U A, ]=P[A1]+---+P[A,] (L.7)

Definition We say that A|,A,, ..., A, is a partition of the
sample space S if Aj,As,...,A, are mutually exclusive
and collectively exhaustive. Collectively exhaustive means
that Ay U Ay U ------ UA, =S.If Aj,A,...,A, is a
partition of the sample space S, then

P[A; U .- UA,]=P[A]+---+P[A,] =P[S]=1
(1.8)

The above ideas can be extended to the union of more than
two events. For example:

For any three events A, B, and C, we have

P[A U B U C]=P[A]+P[B]+P[C]—-P[A N B]
—P[ANC]-P[B N C]
+P[A N B N C] (1.9)

This can be seen by drawing a Venn diagram and keeping
track of the areas which must be added and removed in
order to get P[A U B U C]. Example 1.2 illustrates the
union of three events.

For the complementary events A and A, P[A] + P[A°] =
1. This is often used to compute P[A°] = 1 — P[A].

Example 1.12 A data-logging system contains two iden-
tical batteries, A and B. If one battery fails, the system
will still operate. However, because of the added strain, the
remaining battery is now more likely to fail than was orig-
inally the case. Suppose that the design life of a battery is
three years. If at least one battery fails before the end of the
battery design life in 7% of all systems and both batteries
fail during that three-year period in only 1% of all systems,
what is the probability that battery A will fail during the
battery design life?

SOLUTION Let F4 be the event that battery A fails and
Fp be the event that battery B fails. Then we are given that

P[F4s U Fp] =0.07, P[F4 N Fp] =0.01,
P[F4] =P[Fg]

and we are looking for P[F4]. The Venn diagram in
Figure 1.4 fills in the remaining probabilities. From this
diagram, the following result is straightforward: P [F4] =
0.03 4+ 0.01 = 0.04.

Example 1.13 Based upon past evidence, it has been de-
termined that in a particular region 15% of CPT soundings
encounter soft clay layers, 12% encounter boulders, and 8%
encounter both. If a sounding is selected at random:

1. What is the probability that it has encountered both a
soft clay layer and a boulder?

2. What is the probability that it has encountered at least
one of these two conditions?

Fy Fp

Figure 1.4 Venn diagram of battery failure events.



3. What is the probability that it has encountered neither
of these two conditions?

4. What is the probability that it has not encountered a
boulder?

5. What is the probability that it encounters a boulder
but not a soft clay layer?

SOLUTION Let C be the event that the sounding encoun-
tered a soft clay layer. Let B be the event that the sound-
ing encountered a boulder. We are given P[C] = 0.15,
P[B] =0.12,and P[C N B] = 0.08, from which the Venn
diagram in Figure 1.5 can be drawn:

1. P[C N B]=0.08
2. P[C U B]=P[C]+P[B]—-P[C N B]
=0.15+0.12 - 0.08
=0.19
3. P[C° n B°] =P[(C U B)]
=1-P[C U B]
=1-0.19
=0.81
4. P[B]=1-P[B]=1-0.12=0.88

5. P[B N C°]=0.04 (see the Venn diagram)

1.4 CONDITIONAL PROBABILITY

The probability of an event is often affected by the occur-
rence of other events and/or the knowledge of information
relevant to the event. Given two events, A and B, of an ex-
periment, P[B | A] is called the conditional probability of
B given that A has already occurred. It is defined by
P[A N B]
P[A]

That is, if we are given that event A has occurred, then A
becomes our sample space. The probability that B has also

occurred within this new sample space will be the ratio of
the “area” of B within A to the “area” of A.

P[B|A] = (1.10)

0.81

Figure 1.5 Venn diagram of CPT sounding events.
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Example 1.14 Reconsidering Example 1.12, what is the
probability that battery B will fail during the battery design
life given that battery A has already failed?

SOLUTION  We are told that F4 has occurred. This means
that we are somewhere inside the F4 circle of Figure 1.4,
which has “area” 0.04. We are asked to compute the
conditional probability that Fp occurs given that F4 has
occurred. This will be just the ratio of the area of Fp and
F, to the area of Fju,

P[F4 N Fg] 0.01

— =0.25

P[Fp|Fsl = PIF] - 0.04

Example 1.15 A single soil sample is selected at random
from a site. Three different toxic compounds, denoted A,
B, and C, are known to occur in samples at this site with
the following probabilities:
P[A] = 0.01,
P[A N B] = 0.0025,
P[A N B N C]=0.001,

P[B] =0.05

P[A N C]=10.003,
P[C] = 0.0075,
P[B N C]=0.002,

If both toxic compounds A and B occur in a soil sample, is
the toxic compound C more likely to occur than if neither
toxic compounds A nor B occur?

SOLUTION  From the given information we can draw the
Venn diagram in Figure 1.6.

We want to compare P[C|A N B] and P[C|A° N B¢],
where

P[C N AN B] 0001
P[A N B] ~ 0.0025

P[C|A N B] = 0.4

Figure 1.6 Venn diagram of toxic compound occurrence events.
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P[C N A° N B]
PIA° N B<]
0.0035

~ 0.939 + 0.0035

so the answer to the question is, yes, if both toxic com-
pounds A and B occur in a soil sample, then toxic com-
pound C is much more likely to also occur.

P[C|A° N B°] =

= 0.0037

Sometimes we know P[B|A] and wish to compute
P[A N B]. If the events A and B can both occur, then

P[A N B]=P[B|A]P[A] (1.11)
Example 1.16 A site is composed of 60% sand and 40%
silt in separate layers and pockets. At this site, 10% of sand
samples and 5% of silt samples are contaminated with trace
amounts of arsenic. If a soil sample is selected at random,
what is the probability that it is a sand sample and that it
is contaminated with trace amounts of arsenic?

SOLUTION Let A be the event that the sample is sand.
Let B be the event that the sample is silt. Let C be the
event that the sample is contaminated with arsenic. Given
P[A] =0.6, P[B] =04, P[C|A] =0.1, and P[C |B] =
0.05. We want to find P[A N C]:

P[A N C]1=P[A]P[C |A] = 0.6 x 0.1 =0.06

Two events A and B are independent if and only if
P[A N B] =P[A]P[B]. This also implies that P[A | B] =
P[A], that is, if the two events are independent, then
they do not affect the probability of the other occurring.
Note that independent events are not disjoint and disjoint
events are not independent! In fact, if two events are
disjoint, then if one occurs, the other cannot have oc-
curred. Thus, the occurrence of one of two disjoint events
has a severe impact on the probability of occurrence of
the other event (its probability of occurrence drops to
Z€ero).

If, in an experiment, the events A, A, ..
occur, then

., A can all
P[A; N Ay N -+ N Al
=P[AI]P[A2|A1]P[A3][A1 N A;]
'~'P[Ak|A1 n---nN Ak—l]
=P [A]P[Ar—1 | A]
- P[A| |Ax N -+

N As] (1.12)

On the right-hand side, we could have any ordering of the
A’s. If the events A, A»,...,A; are independent, then this

simplifies to

P[A; N Ay N - N Al =P[A]P[Az] - - P[A;]

(1.13)

Example 1.17 Four retaining walls, A, B, C, and D, are
constructed independently. If their probabilities of sliding
failure are estimated to be P[A] = 0.01, P[B] = 0.008,
P[C] = 0.005, and P[D] = 0.015, what is the probability
that none of them will fail by sliding?

SOLUTION Let A be the event that wall A will fail. Let
B be the event that wall B will fail. Let C be the event that
wall C will fail. Let D be the event that wall D will fail.
Given P[A] = 0.01,P[B] =0.008, P[C] = 0.005,P[D] =
0.015, and that the events A, B, C, and D are independent.
We want to find P[A N B N C¢ N D]

P[A° N B° N C° n D°]
= P[a7]p[B°]P[C*]P[D]
(since A, B, C, and D are independent)
= (1 =P[ADA =P[BDA = P[C](1 —P[D])
= (1-0.01)(1 —0.008)(1 — 0.005)(1 —0.015)
= 0.9625

1.4.1 Total Probability

Sometimes we know the probability of an event in terms
of the occurrence of other events and want to compute
the unconditional probability of the event. For example,
when we want to compute the fotal probability of failure
of a bridge, we can start by computing a series of simpler
problems such as:

1. Probability of bridge failure given a maximum static
load

2. Probability of bridge failure given a maximum dy-
namic traffic load

3. Probability of bridge failure given an earthquake

4. Probability of bridge failure given a flood

The total probability theorem can be used to combine the
above probabilities into the unconditional probability of
bridge failure. We need to know the above conditional prob-
abilities along with the probabilities that the “conditions”
occur (e.g., the probability that the maximum static load
will occur during the design life).

Example 1.18 A company manufactures cone penetration
testing equipment. Of the piezocones they use, 50% are



produced at plant A, 30% at plant B, and 20% at plant C.
It is known that 1% of plant A’s, 2% of plant B’s, and 3%
of plant C’s output are defective. What is the probability
that a piezocone chosen at random will be defective?

Setup

Let A be the event that the piezocone was produced at plant
A. Let B be the event that the piezocone was produced
at plant B. Let C be the event that the piezocone was
produced at plant C. Let D be the event that the piezocone
is defective. Given

P[A] = 0.50, P[D |A] = 0.01,
P[B] = 0.30, P[D|B] = 0.02,
P[C]1=020, P[D|C]=0.03

We want to find P[D]. There are at least two possible
approaches.

Approach 1

A Venn diagram of the sample space is given in Figure 1.7.
The information given in the problem does not allow the
Venn diagram to be easily filled in. It is easy to see the
event of interest, though, as it has been shaded in. Then

P[D]I=P[(D NA) UMD NB)U DN C)
=P[D N A]+P[D N B]+P[D N C]
sinceA N D,B N D,and C N D are disjoint
=P[D|A]-P[A]+P[D|B]-P[B]
+P[D|C]-P[C]
= 0.01(0.5) + 0.02(0.3) 4+ 0.03(0.2)
=0.017

Approach 2

Recall that when we only had probabilities like P [A],P [B],
..., that is, no conditional probabilities, we found it helpful
to represent the probabilities in a Venn diagram. Unfortu-
nately, there is no easy representation of the conditional
probabilities in a Venn diagram: (In fact, conditional prob-

Figure 1.7 Venn diagram of piezocone events.
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abilities are ratios of probabilities that appear in the Venn
diagram.) Conditional probabilities find a more natural
home on event trees. Event trees must be constructed care-
fully and adhere to certain rules if they are going to be
useful in calculations. Event trees consist of nodes and
branches. There is a starting node from which two or
more branches leave. At the end of each of these branches
there is another node from which more branches may leave
(and go to separate nodes). The idea is repeated from
the newer nodes as often as required to completely de-
pict all possibilities. A probability is associated with each
branch and, for all branches except those leaving the start-
ing node, the probabilities are conditional probabilities.
Thus, the event tree is composed largely of conditional
probabilities.

There is one other rule that event trees must obey:
Branches leaving any node must form a partition of the
sample space. That is, the events associated with each
branch must be disjoint—you cannot be on more than one
branch at a time—and must include all possibilities. The
sum of probabilities of all branches leaving a node must
be 1.0. Also keep in mind that an event tree will only be
useful if all the branches can be filled with probabilities.

The event tree for this example is constructed as follows.
The piezocone must first be made at one of the three plants,
then depending on where it was made, it could be defective
or not. The event tree for this problem is thus as given
in Figure 1.8. Note that there are six “paths” on the tree.
When a piezocone is selected at random, exactly one of
these paths will have been followed—we will be on one
of the branches. Recall that interest is in finding P[D].
The event D will have occurred if either the first, third,
or fifth path was followed. That is, the probability that the
first, third, or fifth path was followed is sought. If the first
path is followed, then the event A N D has occurred. This
has probability found by multiplying the probabilities along
the path,

P[A N D] =P[D |A]-P[A] =0.01(0.5) = 0.005

0.01 D

A
0.5 0.99 D¢
B
0.2 0.98 D¢
0.03 D
c
0.97 DC

Figure 1.8 Event tree for piezocone events.
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Looking back at the calculation performed in Approach 1,
P[D] was computed as

P[D]=P[D|A]-P[A]+P[D|B]-P[B]
+P[D|C]-P[C]
= 0.01(0.5) + 0.02(0.3) 4+ 0.03(0.2)
=0.017

which, in terms of the event tree, is just the sum of
all the paths that lead to the outcome that you desire,
D. Event trees make “total probability” problems much
simpler. They give a “picture” of what is going on and
allow the computation of some of the desired probabilities
directly.

The above is an application of the total probability
theorem, which is stated generally as follows:

Total Probability Theorem If the events B, B»,...,B;
constitute a partition of the sample space S (i.e., are disjoint
and collectively exhaustive), then for any event A in S

k k
P[A]:ZP[Bi N A]:ZP[A|B,~]P[B,~] (1.14)

i=1 i=1

1.4.2 Bayes’ Theorem

Sometimes we want to improve an estimate of a probability
in light of additional information. Bayes’ theorem allows
us to do this. It arises from the observation that P[A N B]
can be written in two ways:

P[A N B]=P[A|B]-P[B]

=P[B|A]-P[A] (1.15)
which implies that P[B |A] - P[A] = P[A|B] - P[B], or
_ P[A|B]-P[B]
P[B|A] = — P Al (1.16)

Example 1.19 Return to the manufacturer of piezocones
from above (Example 1.18). If a piezocone is selected at
random and found to be defective, what is the probability
that it came from plant A?

Setup
Same as before, except now the probability of interest is
P[A|D]. Again, there are two possible approaches.

Approach 1
The relationship
P[A N D]

P[A|D] = D]

s

Figure 1.9 Venn diagram of conditional piezocone events.

can be seen as a ratio of areas in the Venn diagram
in Figure 1.9, from which P[A|D] can be computed as
follows:

P[A|D]
P[A N D]
- PID]
P[A N D]
"P(AND)UBND)UC ND)
P[A N D]
“P[ANDI+P[B N DI+P[C N D]
sinceA N D,B N D,and C N D are disjoint
B P[D |A]P[A]
~ P[D|AIP[A]+P[D [BIP[B] +P[D|CIP[C]
0.01(0.5) 0.005
= (0.01)(0.5) + 0.02(0.3) + 0.03(0.2) _ 0.017
—0.294

Note that the denominator had already been calculated in
the previous question; however the computations have been
reproduced here for illustrative purposes.

Approach 2

The probability P[A | D] can be easily computed from the
event tree. We are looking for the probability that A has
occurred given that D has occurred. In terms of the paths
on the tree, we know that (since D has occurred) one
of the first, third, or fifth path has been taken. We want
the probability that the first path was taken out of the
three possible paths. Thus, we must compute the relative
probability of taking path 1 out of the three paths:

P[A|D]
B P[D |A]P[A]
~ P[D|A]P[A]+P[D|BIP[B]1+P[D|C]P[C]
0.01(0.5) 0.005
= (0.01)(0.5) + 0.02(0.3) + 0.03(0.2) _ 0.017
= 0.294

Event trees provide a simple graphical approach to solving
problems involving conditional probabilities.



The above is an application of Bayes’ Theorem, which
is stated formally as follows.

Bayes’ Theorem If the events By, B,...,B; constitute
a partition of the sample space S (i.e., are disjoint and
collectively exhaustive), then for any event A of S such
that P[A] # 0

P(B; N A
P[B;|A] = k[f—]
i P[B; N Al
__PlaB]P[B] _ P[AIB]P[B]
Y PIA|B;IP[B;] P[A]

(1.17)
foranyj =1,2,...,k.

Bayes’ theorem is useful for revising or updating prob-
abilities as more data and information become available.
In the previous example on piezocones, there was an initial
probability that a piezocone would have been manufactured
at plant A: P[A] = 0.5. This probability is referred to as the
prior probability of A. That is, in the absence of any other
information, a piezocone chosen at random has a probability
of having been manufactured at plant A of 0.5. However, if
a piezocone chosen at random is found to be defective (so
that there is now more information on the piezocone), then
the probability that it was manufactured at plant A reduces
from 0.5 to 0.294. This latter probability is referred to as the
posterior probability of A. Bayesian updating of probabili-
ties is a very powerful tool in engineering reliability-based
design.

For problems involving conditional probabilities, event
trees are usually the easiest way to proceed. However, event
trees are not always easy to draw, and the purely mathemat-
ical approach is sometimes necessary. As an example of a
tree which is not quite straightforward, see if you can draw
the event tree and answer the questions in the following
exercise. Remember that you must set up the tree in such
a way that you can fill in most of the probabilities on the
branches. If you are left with too many empty branches and
no other given information, you are likely to have confused
the order of the events; try reorganizing your tree.

Exercise When contracting out a site investigation, an
engineer will check companies A, B, and C in that sequence
and will hire the first company which is available to
do the work. From past experience, the engineer knows
that the probability that company A will be available is
0.2. However, if company A is not available, then the
probability that company B will be available is only 0.04. If
neither company A nor B is available, then the probability
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that company C will be available is 0.4. If none of the
companies are available, the engineer is forced to delay the
investigation to a later time.

(a) What is the probability that one of the companies A or
B will be available?

(b) What is the probability that the site investigation will
take place on time?

(c) If the site investigation takes place on time, what is the
probability that it was not investigated by company C?

Example 1.20 At a particular site, experience has shown
that piles have a 20% probability of encountering a soft
clay layer. Of those which encounter this clay layer, 60%
fail a static load test. Of the piles which do not encounter
the clay layer, only 10% fail a static load test.

1. What is the probability that a pile selected at random
will fail a static load test?

2. Supposing that a pile has failed a static load test, what
is the updated probability that it encountered the soft
clay layer?

SOLUTION For a pile, let C be the event that a soft
clay layer was encountered and let F be the event that
the static load test was failed. We are given P[C] = 0.2,
P[F|C]=0.6,and P[F |C¢] =0.1.

1. We have the event tree in Figure 1.10 and thus
P[F] =0.2(0.6) + 0.8(0.1) = 0.2.

2. From the above tree, we have

0.2 x 0.6

0.2

PIC|F]= 0.6

1.4.3 Problem-Solving Methodology

Solving real-life problems (i.e., “word problems”) is not
always easy. It is often not perfectly clear what is meant
by a worded question. Two things improve one’s chances
of successfully solving problems which are expressed using
words: (a) a systematic approach, and (b) practice. It is
practice that allows you to identify those aspects of the
question that need further clarification, if any. Below, a
few basic recommendations are outlined.

0.6 F
0.1 F
0.8 CF<
e

Figure 1.10 Event tree for pile encounter events.
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1.

2.

(a)

(b)

(©)
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Solving a word problem generally involves the com-
putation of some quantity. Clearly identify this quan-
tity at the beginning of the problem solution. Before
starting any computations, it is good practice to write
out your concluding sentence first. This forces you to
concentrate on the essentials.

In any problem involving the probability of events,
you should:

Clearly define your events. Use the following guide-

lines:

(i) Keep events as simple as possible.

(1) if your event definition includes the words and,
or, given, if, when, and so on, then it is NOT
a good event definition. Break your event into
two (or more, if required) events and use the
N, U, or | operators to express what you had
originally intended. The complement is also a
helpful operator, see (iii).

You do not need to define separate events for,
for example, “an accident occurs” and “an ac-
cident does not occur”. In fact, this will often
lead to confusion. Simply define A to be one
of the events and use A° when you want to re-
fer to the other. This may also give you some
hints as to how to proceed since you know that
P[A°]=1—-PI[A]

Once your events are defined, you need to go through
the worded problem to extract the given numerical
information. Write this information down in the
form of probabilities of the events that you defined
above. For example, P[A] = 0.23, P[B |A] = 0.6,
and so on. Note that the conditional probabilities, are
often difficult to unravel. For example, the following
phrases all translate into a probability statement of
the form P[A | B]:

(iii)

If ... occurs, the probability of ... doubles. . . .

In the event that ... occurs, the probability of ...
becomes 0.6.

When . .. occurs, the probability of . .. becomes 0.43.

Given that . .. occurs, the probability of ... is 0.3.

In this case, you will likely be using one of the
conditional probability relationship (P[A N B] =
P[B |A]P[A]), the total probability theorem, or
Bayes’ Theorem.

Now review the worded problem again and write
down the probability that the question is asking for
in terms of the events defined above. Although the
question may be in worded form, you should be
writing down something like P[A N B] or P[B | A].
Make sure that you can express the desired probabil-
ity in terms of the events you defined above. If you

cannot, then you need to revise your original event
definitions.

(d) Finally, use the rules of combining probabilities
(e.g., probabilities of unions or intersections, Bayes’
Theorem) to compute the desired probability.

1.5 RANDOM VARIABLES AND PROBABILITY
DISTRIBUTIONS

Although probability theory is based on the idea of events
and associated set theory, it becomes very unwieldy to
treat random events like “time to failure” using explicit
event definitions. One would conceivably have to define
a separate event for each possible time of failure and so
would soon run out of symbols for the various events.
For this reason, and also because they allow the use of a
wealth of mathematical tools, random variables are used to
represent a suite of possible events. In addition, since most
engineering problems are expressed in terms of numerical
quantities, random variables are particularly appropriate.

Definition Consider a sample space S consisting of a set
of outcomes {s1, 52, . ..}. If X is a function that assigns a real
number X (s) to every outcome s € S, then X is a random
variable. Random variables will be denoted with uppercase
letters.

Now what does this mean in plain English? Essentially
a random variable is a means of identifying events in
numerical terms. For example, if the outcome s; means
that an apple was selected and s, means that an orange
was selected, then X(s;) could be set equal to 1 and
X(s2) could be set equal to 0. Then X > 0 means that
an apple was selected. Now mathematics can be used on
X, that is, if the fruit-picking experiment is repeated n
times and x; = X;(s) is the outcome of the first experiment,
xp = Xo(s) the outcome of the second, and so on, then
the total number of apples picked is Y ;_, x;. Note that
mathematics could not be used on the actual outcomes
themselves; for example, picking an apple is a real event
which knows nothing about mathematics nor can it be used
in a mathematical expression without first mapping the
event to a number.

For each outcome s, there is exactly one value of x =
X (s), but different values of s may lead to the same x. We
will see examples of this shortly.

The above discussion illustrates in a rather simple way
one of the primary motivations for the use of random
variables—simply so that mathematics can be used. One
other thing might be noticed in the previous paragraph.
After the “experiment” has taken place and the outcome is
known, it is referred to using lowercase, x;. That is x; has
a known fixed value while X is unknown. In other words



x is a realization of the random variable X. This is a rather
subtle distinction, but it is important to remember that X is
unknown. The most that we can say about X is to specify
what its likelihoods of taking on certain values are—we
cannot say exactly what the value of X is.

Example 1.21 Two piles are to be randomly selected for
testing from a group of 60 piles. Five of the piles are 0.5 m
in diameter, the rest are 0.3 m in diameter. If X is the
number of 0.5-m-diameter piles selected for testing, then X
is a random variable that assigns a number to each outcome
in the sample space according to:

Sample Space X

NN 0
NL 1
LN 1
LL 2

The sample space is made up of pairs of possible outcomes,
where N represents a “normal” diameter pile (0.3 m) and L
represents a large -diameter pile (0.5 m). For example, LN
means that the first pile selected was large and the second
pile selected was normal. Notice that the outcomes {/NL}
and {LN} both lead to X = 1.

Sample spaces corresponding to random variables may
be discrete or continuous:

Discrete: A random variable is called a discrete random
variable if its set of possible outcomes is countable. This
usually occurs for any random variable which is a count
of occurrences or of items, for example, the number of
large-diameter piles selected in the previous example.

Continuous: A random variable is called a continuous
random variable if it can take on values on a continuous
scale. This is usually the case with measured data, such
as cohesion.

Example 1.22 A few examples:

1. Let X be the number of blows in a standard penetra-
tion test—X is discrete.

2. Let Y be the number of piles driven in one day—Y
is discrete.

3. Let Z be the time until consolidation settlement ex-
ceeds some threshold—Z is continuous.

4. Let W be the number of grains of sand involved in
a sand cone test—W is discrete but is often approxi-
mated as continuous, particularly since W can be very
large.
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1.5.1 Discrete Random Variables

Discrete random variables are those that take on only dis-
crete values {xi,xp,...}, that is, have a countable number
of outcomes. Note that countable just means that the out-
comes can be numbered 1,2, ..., however there could still
be an infinite number of them. For example, our experiment
might be to count the number of soil tests performed before
one yields a cohesion of 200 MPa. This is a discrete random
variable since the outcome is one of 0, 1, ..., but the num-
ber may be very large or even (in concept) infinite (implying
that a soil sample with cohesion 200 MPa was never found).

Discrete Probability Distributions As mentioned previ-
ously, we can never know for certain what the value of
a random variable is (if we do measure it, it becomes a
realization—presumably the next measurement is again un-
certain until it is measured, and so on). The most that we
can say about a random variable is what its probability is
of assuming each of its possible values. The set of prob-
abilities assigned to each possible value of X is called a
probability distribution. The sum of these probabilities over
all possible values must be 1.0.

Definition The set of ordered pairs (x, fx(x)) is the prob-
ability distribution of the discrete random variable X if, for
each possible outcome x,

L0=<fy(x) =<1
2. fo(x)zl

all x
3. PIX =x] =fx(x)

Here, fy(x) is called the probability mass function of X.
The subscript is used to indicate what random variable is
being governed by the distribution. We shall see when we
consider continuous random variables why we call this a
probability “mass” function.

Example 1.23 Recall Example 1.21. We can compute
the probability mass function of the number of large piles
selected by using the counting rules of Section 1.2.3.
Specifically,

0O
®)
( 0

)()

Jx(0) =P[X =0] =0.8390

—N

KA =PX =1]= =0.1554

(%)
fy=px =2 = D0)

60
2

= 0.0056
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and thus the probability mass function of the random
variable X is

X Sx(x)

0 0.8390
1 0.1554
2 0.0056

Discrete Cumulative Distributions An equivalent de-
scription of a random variable is the cumulative distribution
function (cdf), which is defined as follows:

Definition The cumulative distribution function Fy(x) of
a discrete random variable X with probability mass function
Jfx(x) is defined by

Fy(x)=P[X <x]= ) f(t)

1<x

(1.18)

We say that this is equivalent to the probability mass
function because one can be obtained from the other,

Je(xi) = Fx(xi) — Fx(xi-1) (1.19)

Example 1.24 In the case of an experiment involving
tossing a fair coin three times we can count the number
of heads which appear and assign that to the random vari-
able X. The random variable X can assume four values 0,
1, 2, and 3 with probabilities % %, % and % (do you know
how these probabilities were computed?). Thus, Fy(x) is
defined as

0 ifx<0

z if0<x <l
Fyx)={3§ ifl <x<2

% if2<x<3

1 if3<x

and a graph of Fyx(x) appears in Figure 1.11. The values of
Fx(x) atx =0,1,... are shown by the closed circles.

Discrete probability mass functions are often represented
using a bar plot, where the height of each bar is equal to the
probability that the random variable takes that value. For
example, the bar plot of the pile problem (Examples 1.21
and 1.23) would appear as in Figure 1.12.

1.5.2 Continuous Random Variables

Continuous random variables can take on an infinite number
of possible outcomes—generally X takes values from the
real line 9. To illustrate the changes involved when we

1
)

1

1

1

Fy(x)
1/8 2/8 3/8 4/8 5/8 6/8 7/8
Il

1

1

0

Figure 1.11 Cumulative distribution function for the three-coin
toss.

0.8390 4

f(x)

0.1554 4

0.0056 - n
0 1 2 X

Figure 1.12 Bar plot of fx(x) for number of large piles
selected, X.

go from the discrete to the continuous case, consider the
probability that a grain silo experiences a bearing capacity
failure at exactly 4.3673458212. .. years from when it is
installed. Clearly the probability that it fails at exactly that
instant in time is essentially zero. In general the probability
that it fails at any one instant in time is vanishingly small.
In order to characterize probabilities for continuous random
variables, we cannot use probabilities directly (since they
are all essentially zero); we must use relative likelihoods.
That is, we say that the probability that X lies in the small
interval between x and x + dx is fy(x) dx, or

Plx <X <x+dx]=fy(x)dx (1.20)

where fy(x) is now called the probability density function
(pdf) of the random variable X. The word density is used
because “density” must be multiplied by a length measure
in order to get a “mass.” Note that the above probability
is vanishingly small because dx is vanishingly small. The
function fy(x) is now the relative likelihood that X lies in a
very small interval near x. Roughly speaking, we can think
of this as P[X = x] = fx(x) dx.



Continuous Probability Distributions

Definition The function fx(x) is a probability density
function for the continuous random variable X defined over
the set of real numbers if

1. 0 < fx(x) < oo for all —oo <x < + o0,

o0
2. / fx(x) dx =1 (i.e., the area under the pdf is 1.0),
—00

and

b
3. Pla <X < b] =/ fx(x) dx (i.e., the area under

Jfx(x) between a anzi b).

Note: it is important to recognize that, in the continuous
case, fy(x) is no longer a probability. It has units of
probability per unit length. In order to get probabilities,
we have to find areas under the pdf, that is, sum values of

Jr(x) dx.

Example 1.25 Suppose that the time to failure, T in years,
of a clay barrier has the probability density function

—0.02t 5
F) = { 8.026 if >0

otherwise
This is called an exponential distribution and distributions
of this exponentially decaying form have been found to
well represent many lifetime-type problems. What is the
probability that 7 will exceed 100 years?

SOLUTION  The distribution is shown in Figure 1.13. If
we consider the more general case where

re M ift >0
1) = =
fr® { 0 otherwise

(=]
[
<
S
)
=
S
S £
5
w
sS4
S P[T > 100]
< T T T
0 50 100 150 200

t (years)

Figure 1.13 Exponential distribution illustrating P [T" > 100].
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then we get
oo
P[T > 100] =P[100 < T < 0] =/ re M dt
100
— |7 = _oon 1100k
100
— efIOO)L

For & = 0.02, as is the case in this problem,

P[T > 100] = ¢~ 100x0:02 — ,=2 — ().1353

Continuous Cumulative Distribution The cumulative
distribution function (cdf) for a continuous random variable
is basically defined in the same way as it is for a discrete
distribution (Figure 1.14).

Definition The cumulative distribution function Fy(x) of
a continuous random variable X having probability density
function fx(x) is defined by the area under the density
function to the left of x:

Fx(x)=P[XSX]=/X fx(@) dt (1.21)

As in the discrete case, the cdf is equivalent to the pdf
in that one can be obtained from the other. It is simply
another way of expressing the probabilities associated with
a random variable. Since the cdf is an integral of the pdf,
the pdf can be obtained from the cdf as a derivative:

dFX (.x)
Sx(x) = (1.22)
dx
- 0BG PIT < 100]
o0
S |
|
|
Ve :
; I
I !
O !
= |
|
o |
S |
|
|
|
< T T T
0 50 100 150 200
t (years)

Figure 1.14 Cumulative distribution function for the exponen-
tial distribution.
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Example 1.26 Note that we could also have used the
cumulative distribution in Example 1.25. The cumulative
distribution function of the exponential distribution is

t
Fr(t)=P[T <t] = / re Mdt=1—eM
0

and thus

P[T > 100] =1 —-P[T <100] =1 — F;(100)

=1— (1 _ 6—100)») — e—lOOk

1.6 MEASURES OF CENTRAL TENDENCY,
VARIABILITY, AND ASSOCIATION

A random variable is completely described, as well as
can be, if its probability distribution is specified. How-
ever, we will never know the precise distribution of any
natural phenomenon. Nature cares not at all about our
mathematical models and the “truth” is usually far more
complex than we are able to represent. So we very often
have to describe a random variable using less complete
but more easily estimated measures. The most important
of these measures are central tendency and variability.
Even if the complete probability distribution is known,
these quantities remain useful because they convey infor-
mation about the properties of the random variable that
are of first importance in practical applications. Also, the
parameters of the distribution are often derived as func-
tions of these quantities or they may be the parameters
themselves.

The most common measures of central tendency and
variability are the mean and the variance, respectively. In
engineering, the variability of a random quantity is often
expressed using the dimensionless coefficient of variation,
which is the ratio of the standard deviation over the mean.
Also, when one has two random variables X and Y, it is fre-
quently of interest to measure how strongly they are related
(or associated) to one another. A typical measure of the
strength of the relationship between two random variables
is their covariance. As we shall see, covariance depends on
the units of the random variables involved and their indi-
vidual variabilities, and so a more intuitive measure of the
strength of the relationship between two random variables
is the correlation coefficient, which is both dimensionless
and bounded. All of these characteristics will be covered in
this section.

1.6.1 Mean

The mean is the most important characteristic of a random
variable, in that it tells us about its central tendency. It is
defined mathematically as follows:

Definition Let X be a random variable with probability
density function f(x). The mean, or expected value, of X,
denoted iy, is defined by

ElX]=) xf(x)

X
if X is discrete

(1.23a)
Mx = 50
E[X] =/ xf(x) dx
if X i_socéontinuous (1.23b)

where the subscript on p, when present, denotes what u is
the mean of.

Example 1.27 Let X be a discrete random variable which
takes on the values listed in the table below with associated
probabilities:

X ) —1 0 1 2
1 1 1 1
J@) 7 6 k 3 i

1. Find the constant k£ such that fy(x) is a legitimate
probability mass function for the random variable X .
2. Find the mean (expected value) of X.

SOLUTION

1. We know that the sum of all possible probabilities
mustbe I, sothatk =1—(5+3+1+3) =1

L
2. BE[X] = (-2)(5) + (=D + 01 + 1(3)
+2(p = 3.

Expectation The notation E[X] refers to a mathemati-
cal operation called expectation. The expectation of any
random variable is a sum of all possible values of the ran-
dom variable weighted by the probability of each value
occurring. For example, if X is a random variable with
probability (mass or density) function fy(x), then the ex-
pected value of the random variable g(X), where g is any
function of X, is

E[g(X)] =) g@)fi(x)
if X is dxiscrete

E[g(X)] = / () () dx

if X is continuous

Hgx) = (1.24)

Example 1.28 A researcher is looking at fibers as a
means of reinforcing soil. The fibers being investigated are
nominally of radius 10 um. However, they actually have
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random radius R with probability density function (in units
of micrometers)

() =
O

otherwise
What is the expected area of a reinforcing fiber?

SOLUTION The area of a circle of radius R is 7 R2. Thus,

11 3
27 _ 27 _ 22711 = —r)?
E[nR]_nE[R]_n/9 P21 -0~ 2] ar

3 11
= Zn/g [—99r% +20r° — r*]ar

3 5411
e X T

4 51
3 /668 501
= =77 _— = —7T
4 5 5
=314.8 pm?

If we have a sample of observations xi,x2,...,Xx, of
some population X, then the population mean puy is es-
timated by the sample mean x, defined as

(1.25)

Example 1.29 Suppose X = {x1,x2,...,%x,} ={1,3,5,

7,9}.

(a) What is x?
(b) What happens to x if x = {1,3,5,7,79}?

SOLUTION In both cases, the sample size is n = 5.

@ ¥ =11+3+5+7+9)=5
(b) ¥ =11+3+5+7+79) =19

Notice that the one (possible erroneous) observation of 79
makes a big difference to the sample mean. An alternative
measure of central tendency, which enthusiasts of robust
statistics vastly prefer, is the median, discussed next.

1.6.2 Median

The median is another measure of central tendency. We
shall denote the median as fi. It is the point which divides
the distribution into two equal halves. Most commonly, [
is found by solving

Fx()) =P[X <] =05

for ji. For example, if fy(x) = Ae ™, then Fy(x) =1 —
e ™, and we get

In(0.5) 0.693
Y
While the mean is strongly affected by extremes in the

distribution, the median is largely unaffected.

In general, the mean and the median are not the same.
If the distribution is positively skewed (or skewed right,
which means a longer tail to the right than to the left), as
are most soil properties, then the mean will be to the right
of the median. Conversely, if the distribution is skewed
left, then the mean will be to the left of the median. If the
distribution is symmetric, then the mean and the median
will coincide.

If we have a sample of observations xi,xp,...,x, of
some population X, then the population median iy is esti-
mated by the sample median x. To define X, we must first
order the observations from smallest to largest, x(1) < x) <
-+ < X When we have done so, the sample median is
defined as

l—e™ =05 = jiy=

X(n+1)/2 if n is odd

5 (/2 + Xwany2) if s even

Example 1.30 Suppose x = {xi,x2,...,%,}={1,3,5,

7,9}.

(a) What is x?
(b) What happens to x if x = {1,3,5,7,79}?

SOLUTION In both cases, the sample size is odd with
n = 5. The central value is that value having the same
number of smaller values as larger values. In this case,

(a)
(b)

==

X3 5
X3 5

so that the (possibly erroneous) extreme value does not have
any effect on this measure of the central tendency.

Example 1.31 Suppose that in 100 samples of a soil at
a particular site, 99 have cohesion values of 1 kPa and 1
has a cohesion value of 3901 kPa (presumably this single
sample was of a boulder or an error). What are the mean
and median cohesion values at the site?

SOLUTION The mean cohesion is
¥=q5(1+ 1+ +1+3901)=40 kPa
The median cohesion is

X =1 kPa
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Clearly, in this case, the median is a much better rep-
resentation of the site. To design using the mean would
almost certainly lead to failure.

1.6.3 Variance

The mean (expected value) or median of the random vari-
able X tells where the probability distribution is “centered.”
The next most important characteristic of a random vari-
able is whether the distribution is “wide,” “narrow,” or
somewhere in between. This distribution “variability” is
commonly measured by a quantity call the variance of X.

Definition Let X be a random variable with probability
(mass or density) function fy(x) and mean ux. The variance
o} of X is defined by

ol = Var[X] = E[(X — ux)’]

D 6 — ) fex)
=1 (1.26)
/ (x — Mx)zfx(x) dx for continuous X

for discrete X

The variance of the random variable X is sometimes
more easily computed as

oy =E[X?] - B’X] =E[X?] — pj (1.27)

The variance o has units of X2. The square root of the
variance, oy, is called the standard deviation of X, which
is illustrated in Figure 1.15. Since the standard deviation
has the same units as X, it is often preferable to report the
standard deviation as a measure of variability.

Sfx(0)

20

Figure 1.15 Two distributions illustrating how the position and
shape change with changes in mean and variance.

Example 1.32 Recall Example 1.27. Find the variance
and standard deviation of X.

SOLUTION  Var[X] = E[X?] — E[X]
where

E[X?] = (=27 () + (— 1) + 0%(p)
+1PhH+22hH =14
Thus, Var[X] = E[XZ] —B[X] = % _ (%)2 _ % and

ox =/ Var[X] =/} =1.258

Even though the standard deviation has the same units
as the mean, it is often still not particularly informative.
For example, a standard deviation of 1.0 may indicate
significant variability when the mean is 1.0 but indicates
virtually deterministic behavior when the mean is one
million. For example, an error of 1 m on a 1-m survey
would be considered unacceptable, whereas an error of 1-
m on a 1000-km survey might be considered quite accurate.
A measure of variability which both is nondimensional and
delivers a relative sense of the magnitude of variability is
the coefficient of variation, defined as

v=2 (1.28)
n

Example 1.33 Recall Examples 1.27 and 1.29. What is
the coefficient of variation of X?

SOLUTION
JI9/12
1/2

or about 250%, which is a highly variable process.

=2.52

Vx =

Note that the coefficient of variation becomes undefined
if the mean of X is zero. It is, however, quite popular as
a way of expressing variability in engineering, particularly
for material property and load variability, which generally
have nonzero means.

1.6.4 Covariance

Often one must consider more than one random variable
at a time. For example, the two components of a drained
soil’s shear strength, tan(¢’) and ¢’, will vary randomly
from location to location in a soil. These two quantities can
be modeled by two random variables, and since they may
influence one another (or they may be jointly influenced
by some other factor), they are characterized by a bivariate
distribution. See Figure 1.16.
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Figure 1.16 Example bivariate probability density function,
Sy (e, p).

Properties of Bivariate Distribution

Discrete:  fyy(x,y) =P[X =x NY =y]
0<firtx,y)=1
Zall X Zall nyY(x’y) =1
Continuous: fyy(x,y) dx dy =Px <X <x
4+dx Ny<Y Sy—i-dy]
fry(x,y) > 0 for all (x,y) € W2

/OO foofxyoc,y) dx dy =1
P[

x1<X<x Ny <Y <y
2 a2

[ [ ey ava
Y1 X1

Definition Let X and Y be random variables with joint
probability distribution fyy(x,y). The covariance between
X and Y is defined by

Cov[X,Y]=E[(X — ux)(Y — puy)l
= ZZ(X — )y — my)fxr(x,y)
x oy

(1.29a)

(discrete case)

Z/ / (& — )y — g Mfar (v.y) dx dy

(continuous case) (1.29b)

The covariance between two random variables X and Y,
having means wy and uy, respectively, may also be com-
puted as

Cov[X,Y]=E[XY]-E[X]E[Y]=E[XY] — uxuy
(1.30)

Example 1.34 1In order to determine the frequency of
electrical signal transmission errors during a cone pen-
etration test, a special cone penetrometer is constructed
with redundant measuring and electrical systems. Using this
penetrometer, the number of errors detected in the trans-
mission of tip resistance during a typical cone penetration
test can be measured and will be called X and the num-
ber of errors detected in the transmission of side friction
will be called Y. Suppose that statistics are gathered us-
ing this penetrometer on a series of penetration tests and
the following joint discrete probability mass function is
estimated:

1
Jer(x,y) 0 1 Y (Szde) 3 4
0 | 024 0.13 004 0.03 0.01
X 1 | 016 0.10 0.05 0.04 0.01
(tip) | 2 | 0.08 0.05 0.01 0.00 0.00
3 10.02 002 0.01 0.00 0.00

Assuming that these numbers are correct, compute

1. The expected number of errors in the transmission of
the tip resistance

2. The expected number of errors in the transmission of
the side friction

3. The variance of the number of errors in the transmis-
sion of the tip resistance

4. The variance of the number of errors in the transmis-
sion of the side friction

5. The covariance between the number of errors in
the transmission of the tip resistance and the side
friction

SOLUTION We expand the table by summing rows and
columns to obtain the “marginal distributions” (i.e., uncon-
ditional distributions), fy(x) and fy (y), of X and Y:

y (side)
fXY(x’y) 0 1 2 3 4 fx(x)
0 | 024 0.13 004 003 0.01]| 045
X 1 |0.16 0.10 0.05 0.04 0.01 | 0.36
(tip) | 2 | 0.08 0.05 0.01 0.00 0.00 | 0.14
3 1002 002 001 000 0.00] 0.05

&) 0.50 0.30 0.11 0.07 0.02 | 1.00




22 1 REVIEW OF PROBABILITY THEORY

so that

1. E[X] = Z xfy(x) = 0(0.45) + 1(0.36)
4 2(0.14) 4 3(0.05) = 0.79
2. E[Y] = Zy yfy (y) = 0(0.50) + 1(0.30) 4+ 2(0.11)
+3(0.07) + 4(0.02) = 0.81
3. E[X?] =) x%i(x) = 0%(0.45) + 17(0.36)
+2%(0.14) + 3%(0.05) = 1.37
oy =E[X?] - E’[X] = 1.37 - 0.79* = 0.75
4. E[r?] = Z y2 fy(y) = 0%(0.50) + 1%(0.30)
y
+22(0.11) + 3%(0.07) + 4%(0.02) = 1.69
oy =E[V?] —E’[Y] = 1.69 — 0.81° = 1.03
SCEXYT=)_ ) xifer(x,y) = (0)(0)024)
+ (0)(1)(0.13) + - - - + (3)(2)(0.01) = 0.62
Cov[X,Y]=E[XY]—E[X]E[Y]
=0.62 — 0.79(0.81) = —0.02
Although the covariance between two random variables
does give information regarding the nature of the rela-

tionship, the magnitude of Cov[X, Y] does not indicate
anything regarding the strength of the relationship. This
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is because Cov[X, Y] depends on the units and variabil-
ity of X and Y. A quantity which is both normalized and
nondimensional is the correlation coefficient, to be dis-
cussed next.

1.6.5 Correlation Coefficient

Definition Let X and Y be random variables with joint
probability distribution fyy (x, y). The correlation coefficient
between X and Y is defined to be

Cov[X,Y]

OxOy

(1.31)

Pxy =

Figure 1.17 illustrates the effect that the correlation
coefficient has on the shape of a bivariate probability
density function, in this case for X and Y jointly normal.
If pxy = 0, then the contours form ovals with axes aligned
with the cartesian axes (if the variances of X and Y are
equal, then the ovals are circles). When pyxy > 0, the ovals
become stretched and the major axis has a positive slope.
What this means is that when Y is large X will also tend
to be large. For example, when pxy = 0.6, as shown on
the right plot of Figure 1.17, then when Y = 8, the most
likely value X will take is around 7, since this is the peak of
the distribution along the line ¥ = 8. Similarly, if pyy < 0,
then the ovals will be oriented so that the major axis has a
negative slope. In this case, large values of ¥ will tend to
give small values of X.

(=]
—

[ —0.01
pxy=|0.6

—~—
~—

)

4

T

T
(

=

Figure 1.17 Effect of correlation coefficient pxy on contours of a bivariate probability density
function fyy (x,y) having uxy = uy =5, ox = 1.5 and oy = 2.0.



We can show that —1 < pyy < 1 as follows: Consider
two random variables X and Y having variances o? and
o2, respectively, and correlation coefficient pyy. Then

Y
X Y o o}
Var — + — :—2+—2+
o oy

Ox Oy

2Cov [X,Y]

OxOy

X
2[1 + pxr]
>0

which implies that pyy > —1. Similarly,

X Y Z 2 Cov[X,Y
Var|:———:|=a—);+o—g—2M
Ox Oy OX O'Y OxOy
=2[1 - po]
>0

which implies that pyy < 1. Taken together, these imply
that —1 < pxy < 1.

The correlation coefficient is a direct measure of the
degree of linear dependence between X and Y. When
the two variables are perfectly linearly related, pyx, will
be either +1 or —1 (+1 if Y increases with X and —1
if Y decreases when X increases). When |pxy| < 1, the
dependence between X and Y is not completely linear;
however, there could still be a strong nonlinear depen-
dence. If two random variables X and Y are indepen-
dent, then their correlation coefficient will be zero. If the
correlation coefficient between two random variables X
and Y is 0, it does not mean that they are independent,
only that they are uncorrelated. Independence is a much
stronger statement than is pxy = 0, since the latter only
implies linear independence. For example, ¥ = X? may
be linearly independent of X (this depends on the range
of X), but clearly ¥ and X are completely (nonlinearly)
dependent.

Example 1.35 Recall Example 1.30.

1. Compute the correlation coefficient between the num-
ber of errors in the transmission of tip resistance and
the number of errors in the transmission of the side
friction.

2. Interpret the value you found in 1.

SOLUTION

—0.02

1. pxy = = —0023

. 1.03
2. With pyxy as small as —0.023, there is essentially no
linear dependence between the error counts.
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1.7 LINEAR COMBINATIONS OF RANDOM
VARIABLES

Consider the random variables X, X»,...,X,, and the con-

stants ay, as, . ..., a,. If
n
Y =aiXi +aXo + -+ anX, = ZaiX,- (1.32)
i=1

then Y is also a random variable, being a linear combination
of the random variables X, . .., X,,. Linear combinations of
random variables are common in engineering applications;
any sum is a linear combination. For example, the weight
of a soil mass is the sum of the weights of its constitutive
particles. The bearing strength of a soil is due to the sum
of the shear strengths along the potential failure surface.
This section reviews the basic results associated with linear
combinations.

1.7.1 Mean of Linear Combinations

The mean, or expectation, of a linear combination can
be summarized by noting that the expectation of a sum
is the sum of the expectations. Also, since constants can
be brought out in front of an expectation, we have the
following rules:

1. If a and b are constants, then
ElaX £b]=aE[X]£b (1.33)

2. If g and & are functions of the random variable X,
then

E[gX)+hX)|=E[gCO]£E[RX)] (1.34)
3. Similarly, for any two random variables X and Y,
E[sX)+h(Y)|=E[gCO)]£E[h(Y)] (1.35

Note that this means, for example, E[X £ Y] =
EX]+E[Y].

4. If X and Y are two uncorrelated random variables,
then

EXY]=E[X]E[Y] (1.36)

by virtue of the fact that Cov[X,Y]=E[XY]—
E[X]E[Y] =0when X and Y are uncorrelated. (This
actually has nothing to do with linear combinations
but often occurs in problems involving linear combi-
nations.)

In general, if

Y = ZaiXi (1.37)
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as in Eq. 1.32, then
E[Y]= Za,-E[Xi] (1.38)
i=1

1.7.2 Variance of Linear Combinations

The variance of a linear combination is complicated by
the fact that the X;’s in the combination may or may
not be correlated. If they are correlated, then the variance
calculation will involve the covariances between the X;’s.
In general, the following rules apply:

1. If a and b are constants, then

Var [aX + b] = Var [aX] + Var [b]
= a*Var[X] = a’0} (1.39)

that is, the variance of a constant is zero, and since
variance is defined in terms of squared deviations
from the mean, all quantities, including constants, are
squared. Variance has units of X? (which is why we
often prefer the standard deviation in practice).

2. If X and Y are random variables with joint probability
distribution fxy(x,y) and a and b are constants, then

Var[aX +bY] = a’0} 4 b*0? +2ab Cov[X,Y]
(1.40)
Note that the sign on the last term depends on the
sign of a and b but that the variance terms are always
positive. Note also that, if X and Y are uncorrelated,
then Cov[X,Y] =0, so that, in this case, the above
simplifies to

Var[aX + bY ]| = a’0} + b*c? (1.41)

If we consider the more general case where (as in

Eq. 1.37)
Y =Y "aX
i=1
then we have the following results:

3. If Xq,X5,...,X, are correlated, then
Var[Y]= )" "aia; Cov[X;,X;] (1.42)
i=1j=1

where we note that Cov [X;,X;] = Var[X;]. If n = 2,
the equation given in item 2 is obtained by replacing
X with X and X, with Y.

4. If X1,X,,...,X, are uncorrelated random variables,
then

Var[a X| + -+ + a, X, ]

n
2 2 2 2 2 2
=ajoy, +---+a0y = E a;ioy, (1.43)
i=1

which follows from item 3 by noting that, if X; and X;
are uncorrelated for all i # j, then Cov [X;,X;] =0
and we are left only with the Cov [X;, X;] = oy, terms
above. This means that, if the X’s are uncorrelated,
then the variance of a sum is the sum of the variances.
(However, remember that this rule only applies if the
X’s are uncorrelated.)

Example 1.36 Let X and Y be independent random
variables with E[X] =2, E[X?] =29, E[Y]=4, and
E [Yz] = 52. Consider the random variables W = X 4+ Y
and Z = 2X. The random variables W and Z are clearly
dependent since they both involve X. What is their covari-
ance? What is their correlation coefficient?

SOLUTION Given E[X]=2, E[X?] =29, E[Y] =4,
and E[Y?] =52; X and Y independent; and W = X + Y
and Z = 2X.

Thus,

Var[X] = E[X?] — E’[X] =29 — 2% =25
Var[Y]=E[Y?] —E[Y] =52—4* =36
E[W]=EX+Y]=2+4=6
Var[W] = Var[X + Y] = Var[X] + Var[Y]
=25+36=6l
(due to independence)
E[Z]=E[2X]=2(2) =4
Var[Z] = Var[2X] = 4Var [X] = 4(25) = 100
Cov[W,Z] =E[WZ] - E[W]E[Z]
E[WZ] =E[(X 4+ Y)(2X)] = E[2X? + 2XY |
=2E[X*] + 2E[X]E[Y]
=2(29) +2(2)(4) = 74

Cov[W,Z] =74 —-6(4) =50
50

5
owz = - —0.64
YT /61100 V61

1.8 FUNCTIONS OF RANDOM VARIABLES

In general, deriving the distribution of a function of ran-
dom variables [i.e., the distribution of Y where Y =
g(X1,X2,...)] can be quite a complex problem and exact
solutions may be unknown or impractical to find.



In this section, we will cover only relatively simple cases
(although even these can be difficult) and also look at some
approximate approaches.

1.8.1 Functions of a Single Variable
Consider the function

Y = g(X) (1.44)

and assume we know the distribution of X, that is, we
know fx(x). When X takes on a specific value, that is, when
X =x, we can compute ¥ =y = g(x). If we assume, for
now, that each value of x gives only one value of y and
that each value of y arises from only one value of x (i.e.,
that y = g(x) is a one-to-one function), then we must have
the probability that ¥ =y is just equal to the probability

that X = x. That is, for discrete X,
P[Y =y]=P[X =x]=P[X =g~ '(y)] (1.45)

where g ~!(y) is the inverse function, obtained by solving
y = g(x) for x, i.e. x = g7 '(y). Eq. 1.45 implies that

o =r (')

In terms of the discrete cumulative distribution function,

(1.46)

Fy(»)=P[Y <y]=Fx(g ') =P[X <g7'()]

= > flw)
xi<g~ly)
In the continuous case, the distribution of Y is obtained in
a similar fashion. Considering Figure 1.18, the probability
that X lies in a neighborhood of x; is the area A;. If
X lies in the shown neighborhood of x;, Y must lie
in a corresponding neighborhood of y; and will do so
with equal probability A;. Since the two probabilities are
equal, this defines the height of the distribution of Y
in the neighborhood of y;. Considering the situation in
the neighborhood of x;, we see that the height of the
distribution of Y near y, depends not only on A;, which
is the probability that X is in the neighborhood of x;, but
also on the slope of y = g(x) at the point x,. As the slope
flattens, the height of f(y) increases; that is, f(y) increases
as the slope decreases.
We will develop the theory by first considering the
continuous analog of the discrete cumulative distribution
function developed above,

(1.47)

')
Fy(y) =/ Se(x) dx

—0o0

Y d
= / FCa)) [d—g*(y)} dy (1.48)
—00 y
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y y

y =28

)

Figure 1.18 Deriving the distribution of ¥ = g(X) from the
distribution of X.

where we let x = g~!(y) to get the last result. To get the

probability density function of Y, we can differentiate,

d

dy
Note that the left-hand side here is found under the

assumption that y always increases with increasing x.

However, if y decreases with increasing x, then P[Y <y]
corresponds to P[X > x], leading to (see Eq. 1.47),

d
)= —FO) =fg ') [Eglcy)} (1.49)

Fy(y)=1—Fx(g™' )

d
) =fE o) [—d—gl(y)}
y

To handle both possibilities (and since probabilities are
always positive), we write
d
H0) = (s7'0) ‘Eg_l(”‘ (1.50)

In terms of Figure 1.18 we can leave x = g~!(y) in the
relationship and write our result as

Sr() =fx(x)

dx (1.51)
dy '

which means that fy(y) increases as the inverse of the
slope, |dx/dy|, increases, which agrees with what is seen
in Figure 1.18.

Example 1.37 Suppose that X has the following contin-
uous distribution:

. 1 1 (x—n 2
fX(x)_—o—meXp:_E( pn )}
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which is the normal distribution, which we will discuss
further in Section 1.10.4. If Z = (X — u)/o, then what is
f2(z)? (Note, we use Z intentionally here, rather than Y,
because as we shall see in Section 1.10.8, Z is the so-called
standard normal.)

SOLUTION In order to determine f,(z), we need to
know both fy(x) and dx/dz. We know fx(x) is the normal
distribution, as shown above. To compute dx/dz we need
an expression for x, which we can get by inverting the
given relationship for Z (note, for the computation of the
slope, we assume that both X and Z are known, and are
replaced by their lowercase equivalents):
x=g '@ =n+oz

which gives us

de| dg~'(2) _
dz | dz B
Putting these results together gives us

f2(2) = fx(x)

7o)
= ——expy—=2
2 P12
Notice that the parameters n and o have now disappeared
from the distribution of Z. As we shall see, Z is also

normally distributed with u, =0 and o, = 1.

dx
d—‘ =f(n+oz)o
Z

The question now arises as to what happens if the
function ¥ = g(X) is not one to one. The answer is that
the probabilities of all the X = x values which lead to each
y are added into the probability that ¥ = y. That is, if
g(x1),g(x2),... all lead to the same value of y, then

Fr () = fx(x1)

The number of terms on the right-hand-side generally
depends on y, so this computation over all y can be quite
difficult. For example, the function ¥ = a + bX 4 cX? +
dX? might have three values of x leading to the same value
of y over some ranges in y but only one value of x leading
to the same value of y on other ranges.

dXQ
d_ + ...

d
diyl‘ + fx(x2)

1.8.2 Functions of Two or More Random Variables

Here we consider functions of the form

Yi=gX1,Xa,...)

Y = g(X1,Xo,...) (1.52)

In the theory which follows, we require that the number
of equations above equals the number of random variables
X1,X>, ... and that the equations be independent so that a
unique inverse can be obtained. The theory will then give
us the joint distribution of Yy, Y>,... in terms of the joint
distribution of X, X, ...

More commonly, we only have a single function of the
form

Y1 =g1(X1,X2,...,Xn) (1.53)

in which case an additional n — 1 independent equations,
corresponding to Y,,...,Y,, must be arbitrarily added to
the problem in order to use the theory to follow. Once
these equations have been added and the complete joint
distribution has been found, the n — 1 arbitrarily added Y ’s
can be integrated out to obtain the marginal distribution of
Y1. For example, if Y7 = X; /X, and we want the pdf of ¥
given the joint pdf of (Xi, X»), then we must

1. choose some function Y, = g(Xj,X,) which will al-
low us to find an inverse—for example, if we choose
Y» = Xp, then we get X1 =YY, and X, = Y, as our
inverse;

2. obtain the joint pdf of (Y7, Y>) in terms of the joint
pdf of (X1,X>); and

3. obtain the marginal pdf of Y; by integrating fy y, over
all possible values of Y5.

In detail, suppose we start with the two-dimensional set
of equations

Y1 =g1(X1,Xy) }

X1 =hmh(Y1, Y2)
—
Y, = g(X1,X2) {

Xy =hy(Y1,Y2)

(1.54)
where the right-hand equations are obtained by inverting the
(given) left-hand equations. Recall that for one variable we
had fy(y) = fx(x) |dx/dy|. The generalization to multiple
variables is

fy.yz()myz) =fX1X2(h1’h2) |/ | (1.55)
where J is the Jacobian of the transformation,
ohy o
_ dyr 9y
J = det Ohy Oy (1.56)
dyr 9y

For more than two variables, the extension is

N =gX1,X2,....Xn)
Y2 = gZ(XI,XZ»« . "Xn)

Y, = g.(X1,X,....X,)



X1 =mh(Y1,Y2,....Y,)
Xo = (Y1,Ys,...,Y,)

= (1.57)

X, = hn(Yl’ Y2s-~-9Yn)

[Ohi Ol dh1 T
dyr  dy2 aVn
dhy Oy dhy
dyr  dy» OVn
Ohy  dhy dhy,

- ayl ay2 ayn -

and
Srivaern 1.2, -5 Y0)
Seixaexy (B, hoy oo hy) 1T
= for (yi,y2,...,y) €T (1.59)
0 otherwise

where T is the region in Y space corresponding to possible
values of x, specifically

T ={g1.82,...,8n: (X1,Xx2,...,Xx,) €S} (1.60)

and S is the region on which fy,x,..x, 1S nonzero.

Example 1.38 Assume X| and X, are jointly distributed
according to
_[4xixp forO<x;<land0<x <1
Py x) = {O otherwise
and that the following relationships exist between Y and X:

y, =X
1 X, = Y,
Y, = X1 X

What is the joint pdf of (Y1, ¥»)?

SOLUTION We first of all find the Jacobian,

dx; 1 [y axi 1 [n
v 2V’ a2V »m
dxo _ 1 [y dxo _ 1 1
a1 2y i’ a2 2\ iy
so that
I/ Lhn
2V y 2V y2 1
J = det = —

2 1 1 2y1

1
2\ yi 2V yin
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This gives us

fylyz()’l,yz) :fxlxz <\/YI)’ ’\/ij?> I/

2 1
- o B ()
yi \ 21l
2
_ 2 (1.61)
[v1l

We must still determine the range of y; and y, over which
this joint distribution is valid. We know that 0 < x; < 1 and
0 < xp < 1, so it must also be true that 0 < J/y1y2 < 1 and
0 < /y2/y1 < 1. Now, if x| lies between 0 and 1, then x?
must also lie between O and 1, so we can eliminate the
square root signs and write our constraints on y; and y, as

0< 2

V1
If we consider the lines generated by replacing the inequal-
ities above with equalities, we get the following bounding

relationships:

O<ymym <1 and

yiy2 =0, yiy2 =1
2 _ 0. 2 _
Y1 Y1

If we plot these bounding relationships, the shape of the
region, T, where fy,y, is defined by Eq. 1.61, becomes
apparent. This is illustrated in Figure 1.19.

We see from Figure 1.19 that the range, T, is defined by

O<y<l1 and yz<yl<i
Y2
Our joint distribution can now be completely specified as
@ for0<y2<1andyz<yl<l
SriraO0Ly2) =1 ¥ 2
0 otherwise

where we dropped the absolute value because y; is strictly
positive.

Example 1.39 Consider the relationship
X =A cos @

where A and @ are random variables with pdf fis(a, ¢).
Assume that A and & are independent, that A follows
a Rayleigh distribution with parameter s, and that ®
is uniformly distributed between O and 2w. What is the
distribution of X?

SOLUTION First we must define a second function, Y,
to give us a unique inverse relationship. Let us somewhat
arbitrarily take

Y =A sin &
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X

0 1
X1

Y2 =0~ Yy =1

nalyp =1

Figure 1.19 The ranges of (x1,x2) and (y1,y2) over which fx x, and fy,y, are defined.

Note that there is no particular requirement for the choice
of the second function so long as it leads to an inverse.
This choice leads to the inverse relationships

cosCD}

A=VX2+4+7Y?2
Y
® = tan~! (Y)ian’ k=0,1,...

where we have assumed that tan~!'(Y /X) gives a unique
value between 0 and 27—for this, we must make use of
the signs of ¥ and X in the determination of the angle.
Notice that & is not single valued for each X and Y.

In determining the Jacobian, we will revert to lower-
case letters to emphasize that the Jacobian is deterministic
(despite the fact that J itself is uppercase),

da X da y
dx /%2 +y2’ Ay 24 y2
¢ y ¢  x
ax  x24y% dy  x2+4y2
so that
da da
0x ay 1
J =det = —
99 99 VxZ+y?
ox ay

Since A and & are independent, their joint distribution is
just the product of their individual (marginal) distributions,
namely fio(a, @) = fi(a)fo(p). The joint distribution of X
and Y is thus

S (VA7) 0o (tan ™! (/) + 2k)

Sy (x,y) =
(1.62)

where the sum arises because @ takes on an infinite number
of possible values for each x and y—we must include the
probability of each in the joint probability of X and Y.

The Rayleigh distribution, which is discussed further in
Section 1.10.5, has probability density function

a a2
ﬂ(a):s—zexp{—m}, azo

while the uniform distribution is
fol@d) =
[ - 277: 0

Since @ has zero probability of being outside the interval
(0,27] and exactly one value of [tan~!(y/x) + 2km] will
lie inside that interval, then only one term in the infinite
sum is nonzero and the sum simplifies to

5o () raen) -

In this case, Eq. 1.62 becomes

Vx2 4+ y2/s%exp {—()c2 +y2)/2s2}
2w /x2 +y2

2 2
xp{—x +y } (1.63)

O0<¢p<2m

Sor(x,y) =

2s2

To find the marginal distribution of X (which was the
original aim), we must integrate over all possible values of
Y using the total probability theorem:

(e 1 x2 _I_y2
fi) = /_ ) —zmzexp{— N }d

2 2 2
_ e ey
2ms? Y

—00

T 272

1
- Jz_—e—xz/<2S2) (1.64)
s



To get the final result, we needed to use the fact that

/OO e/ dy = s/21
—00
We note that Eq. 1.64 is just the normal distribution with
mean zero and variance s2. In addition, we see that Eq. 1.63
is separable and can be written as fyy(x,y) = fx(x) - fy (),
so that X and Y must be independent. A similar computa-
tion as was carried out above will show that f, (y) is also a
lognormal distribution with mean zero and variance s°.

In summary, we see that if A is Rayleigh distributed with
parameter s> and ® is uniformly distributed between 0 and
27, then

X =A cos O, Y =A sin ®

will be a pair of identically normally distributed indepen-
dent random variables, each with mean zero and variance
s2. As we shall see in Chapter 6, the above results suggest
a very good approach to simulating normally distributed
random variables.

1.8.2.1 Linear Transformations Say we have the simul-
taneous system of equations

Yi =anXi +apXo + - +auX,
Yo = an Xy +anXs + -+ anX,

Yo = anXi + annXo + -+ amXy
which we can write using matrix notation as
Y = AX (1.65)

If this relationship holds, then X = A~'Y for nonsingular A
(implies a one-to-one transformation). The joint distribution
of Y is thus

L =fA""y) | (1.66)

where !

J =det[A™"] = Gt [A]

(1.67)

Example 1.40 Say that Y| = X; 4+ X, and that the joint

pdf of X is
—(tx)  f >0
e or xi, xp >
Srix,(X1,X2) = { ! ) z
otherwise
What is the distribution of Y;?

SOLUTION Choose Y, = X, as our second equation.
Then

Y =Xi+Xo X =Y1-"

Y, =X; } { Xo =T
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HE R

where we see from this that

PR R
0 1

so that J = det A=! = 1. This gives us

or

leYz(yl’y2) =fX1X2(yl - y29y2)(1)

— 01202 yi—y>>0and y; >0

—e, y1=20and 0 <y, <y

To find the distribution of Y,, we must integrate over all
possible values of Y} using the total probability theorem,

o I
fY](yl) = / fy]yz(yl,yz) dy2 = / e 1 dy2
—00 0

=y, 3 =0

In general, if ¥ = X; 4+ X, and X is independent of X,
[so that their joint distribution can be written as the product
Jxix, (X1, X2) = fx, (x1)fx, (x2)], then the distribution of ¥ can
be written as the convolution

fy(y)=/ Fo O = ) fia(6) dx

=/ Ja () fr, (v — x) dx (1.68)

1.8.3 Moments of Functions

In many cases the full distribution of a function of random
variables is difficult to obtain. So we would like to be
able to get at least the mean and variance (often the
central limit theorem, discussed later, can be relied upon
to suggest that the final distribution is either normal or
lognormal). Obtaining just the mean and variance, at least
approximately, is typically much easier than obtaining the
complete distribution. In the following we will consider
a function of the form Y = g(Xi,X5,...,X,) whose nth
moment is defined by

)= [ o[ e

X fx(x1, X2, . . (1.69)

L Xp) dxy dxy - - - dxy,

where X is the vector of X's; X = {X1,X>,...,X,}.
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1.8.3.1 Arbitrary Function of One Variable 1f g is an
arbitrary function of one variable, ¥ = g(X), then

E[r"] = / 8" (xX) fe(x) dx (1.70)

Various levels of approximations exist for this moment.
Consider a Taylor’s series expansion of g(X) about ey,

dg
Y =gX) =g+ X —px) -
nx

.. (1.71)

294

1 d?g
(X — 2295
+ 2( Mx) P

A first-order approximation to the moments uses just the
first two terms of the Taylor’s series expansion:

X uxi|
dg

dg
E[Y] 3E|:8(Mx)+(X — Ux) I
N
= Var[X] (d_

2
) (1.72b)
Xy

This approximation is often referred to as the first-order
second-moment (FOSM) method. Although it is generally
only accurate for small variability and small nonlinearity,
it is a widely used approximation because of its simplicity
(see the next section).

The second-order approximation uses the first three
terms of the Taylor’s series expansion and so is potentially
more accurate:

= g(ux) (1.72a)

dg
Var[Y ] > Var [g(ux) + X — py) I

1 d’g
E[Y] >~ g(uyx)+ 3 Var [X] (W

) (1.73a)
nx
2 2
1 d’g
— | = Var[X] -
1y 2 dx= |,y

)

2
) (1.73b)
x

Notice that the second-order approximation to the variance
of Y involves knowledge of the third and fourth moments
of X, which are generally difficult to estimate. Often, in
practice, the second-order estimate of the mean is used
along with the first-order estimate of the variance, since

(4
Var[Y] ~ Var[X] | —

dx

dg d’g
dx dx?

+E[X — 0’ (

2

1 d
+3 E[(X—Mx)4]< s

dx?

these both require no more than second-moment estimates
of X.

1.8.3.2 Arbitrary Function of Several Variables 1f Y
is an arbitrary function of several variables, ¥ = g(X1, X>,
..., Xy), then the corresponding Taylor’s series expan-
sion is

n
g
Y =g(ux1,ux2,...,uxn)+Z(Xi — Ux;) Py
i=1 A

1 n n aZg
+ EZZ(X’ — ux )Xj — 1ax;) M + -
i=1 j=1 13
(1.74)
where p is the vector of means, g = {ftx,, ihxys- -5 My, )

First-order approximations to the mean and variance of Y
are then

E[Y]~g(n) (1.75a)
n n ag ag
Var[Y] ~ ZZCOV [Xi.X] [g g } (1.75b)
i=1 j=1 n
Second-order approximations are
E[Y] =g+ 1&&% [, %;] e
- 2 L PN o dxg
i=1 j=1 2
(1.76a)
Var [Y] = (involves quadruple sums and
fourth-order moments) (1.76b)

Example 1.41 The average degree of consolidation, C,
under combined vertical and radial drainage is given by the
relationship (e.g., Craig, 2001)

C=R+V —-RV (1.77)

where R is the average degree of consolidation due to
horizontal (radial) drainage only and V is the average de-
gree of consolidation due to vertical drainage only. From
observations of a particular experiment which was re-
peated many times, suppose that we have determined the
following:

ug =E[R]=0.3,
py =E[V] =05,

o7 = Var[R] = 0.01
ol =Var[V]=0.04

Cov[R,V]=0.015, (pry = 0.75)



Estimate the mean u. and variance UCZ of the average
degree of consolidation.

SOLUTION  First, we will expand Eq. 1.77 in a Taylor’s
series about w = (g, 1y) as follows

C = (ug + by — prfy)

9>C
2
+ (R - MR)aR |,IL (R—MR) W'IL
1 2 92C
+(V — Mv) |,L+2(V w55 e

2

+R = p )V —wy) rc |
Mr My 3ROV wt

Truncating the approximation at second-order terms and
taking the expectation result in a second-order approxima-
tion to the mean:

e = (Ug + 1y — MRMV)

92C
9R? e
32C
V2

1
FER -l S, + SEIR — 1)’

9R |"

1
EE[(V — )] =5 lu

3°C
+E[IR — )V — )]l ——u

+E[V_MV]W|/L+

ROV
= (Ug + Ky — Uriy)
L1 28°C
27" gR2 " .
1 282C
*3 2 o 8V2|
+Cov[R,V] ——— 92C |
ROV
The partial derivatives are
OR? ov? dROV
so that
e = (Ug + v — pgity) — Cov[R, V]

= 0.3+ 0.5 —(0.3)(0.5) — 0.015 = 0.635

Note that since derivatives higher than second order dis-
appear, this result is exact and could have been obtained
directly:

E[C]=E[R+V —RV]

= g +uy —E[RV]

= g+ Uy — (Cov [R,V]+ umw)
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=03+05~-
=0.635

(0.015+0.3 x 0.5)

Can we also get an exact result for 02? If so, we would
need to find

E[C?] =E[(R+V —RV)’]

=E[R*+ V> +2RV —2R*V —2RV? + R*V?]

which involves third and fourth moments, which we do not
know. We must therefore approximate o2. The first-order
approximation involves just second-moment information,
which we were given, and appears as follows:

aC
o2 =~ Cov[R,R] x |M

+ 2 Cov|[R, V]<8C) <Z‘C/)|

Leoviv.vi( %€ 2|
v av )

where
aC
R =1-V]|p=1-u,=1-05=05
aC

Recalling that Cov [R,R] :aRz and Cov[V,V] :63,
we get

02 2 (0.01)(0.5)* 4+ 2(0.015)(0.5)(0.7)
+ (0.04)(0.7)> = 0.0326
and o, = 0.18.

1.8.4 First-Order Second-Moment Method

The FOSM method is a relatively simple method of in-
cluding the effects of variability of input variables on a
resulting dependent variable. It is basically a formalized
methodology based on a first-order Taylor series expan-
sion, as discussed in the previous section. Since it is a
commonly used method, it is worth describing it explicitly
in this section.

The FOSM method uses a Taylor series expansion of
the function to be evaluated. This expansion is truncated
after the linear term (hence “first order”). The modified
expansion is then used, along with the first two moments
of the random variable(s), to determine the values of the
first two moments of the dependent variable (hence “second
moment”).

Due to truncation of the Taylor series after first-order
terms, the accuracy of the method deteriorates if second
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and higher derivatives of the function are significant. Fur-
thermore, the method takes no account of the form of the
probability density function describing the random vari-
ables, using only their mean and standard deviation. The
skewness (third moment) and higher moments are ignored.

Another limitation of the traditional FOSM method is
that explicit account of spatial correlation of the random
variable is not typically done. For example, the soil prop-
erties at two geotechnical sites could have identical mean
and standard deviations; however, at one site the properties
could vary rapidly from point to point (“low” spatial cor-
relation length) and at another they could vary gradually
(“high spatial correlation length”).

Consider a function (X, Y) of two random variables X
and Y. The Taylor series expansion of the function about
the mean values (uy, y), truncated after first-order terms
from Eq. 1.74, gives

af af
SXY) = f(uy, uy) + (X — Mx)a— + —uy)—
X dy

(1.78)

where derivatives are evaluated at (uy, iLy).
To a first order of accuracy, the expected value of the
function is given by

E[fX,Y)]~f (EIX],E[Y]) (1.79)
and the variance by
a a
Var [f(X,Y)] ~ Var |:(X - ,U«x)% + (Y - MY)£J
(1.80)

Hence,

2 2
Var [f(X,Y)] ~ (%) Var [X] + (%) Var[Y]

+2%%C0v [X,Y] (1.81)
dx dy
If X and Y are uncorrelated,
2 2
Var [f(X, V)] ~ <§—f> Var [X] + <g—f) Var[Y]
X
(1.82)

In general, for a function of n uncorrelated random
variables, the FOSM method tells us that

n 2
Var[f(Xl,Xz,.-.,Xn)]%Z<i> Var[X;] (1.83)

; 0x;
i=1

where the first derivatives are evaluated at the mean values
(I’LXI ’I’LXz’ B I’LXn)'

1.9 COMMON DISCRETE PROBABILITY
DISTRIBUTIONS

Many engineered systems have the same statistical be-
havior: We generally only need a handful of probability
distributions to characterize most naturally occurring phe-
nomena. In this section, the most common discrete distri-
bution will be reviewed (the next section looks at the most
comment continuous distributions). These are the Bernoulli
Sfamily of distributions, since they all derive from the first:

Bernoulli
Binomial
Geometric
Negative binomial
Poisson
Exponential
Gamma

Nk v

The Poisson, exponential, and gamma are the continuous-
time analogs of the binomial, geometric, and negative bi-
nomial, respectively, arising when each instant in time is
viewed as an independent Bernoulli trial. In this section
we consider the discrete members of the Bernoulli fam-
ily, which are the first five members listed above, looking
briefly at the main characteristics of each of these distri-
butions and describing how they are most commonly used
in practice. Included with the statistical properties of each
distribution is the maximum-likelihood estimate (MLE) of
their parameters. We do not formally cover the maximum-
likelihood method until Section 5.2.1.2, but we present
these results along with their distributions to keep every-
thing together.

For a more complete description of these distributions,
the interested reader should consult an introductory text-
book on probability and statistics, such as Law and Kelton
(1991) or Devore (2003).

1.9.1 Bernoulli Trials

All of the discrete distributions considered in this section
(and the first two in the next section) are derived from the
idea of Bernoulli trials. A Bernoulli trial is an experiment
which has only two possible outcomes, success or failure
(or [1,0], or [true, false], or [< 5, > 5], etc). If a sequence
of Bernoulli trials are mutually independent with constant
(stationary) probability p of success, then the sequence is
called a Bernoulli process. There are many examples of
Bernoulli processes: One might model the failures of earth
dams using a Bernoulli process. The success or failure of
each of a sequence of bids made by a company might be a
Bernoulli process. The failure of piles to support the load
applied on them might be a Bernoulli process if it can



be assumed that the piles fail (or survive) independently
and with constant probability. However, if the failure of
one pile is dependent on the failure of adjacent piles, as
might be the case if the soil structures are similar and
load transfer takes place, the Bernoulli model may not be
appropriate and a more complex, “dependent,” model may
be required, for example, random field modeling of the soil
and finite-element analysis of the structural response within
a Monte Carlo simulation. Evidently, when we depart from
satisfying the assumptions underlying the simple models,
such as those required for the Bernoulli model, the required
models rapidly become very much more complicated. In
some cases, applying the simple model to the more complex
problem will yield a ballpark estimate, or at least a bound
on the probability, and so it may be appropriate to proceed
with a Bernoulli model taking care to treat the results as
approximate. The degree of approximation depends very
much on the degree of dependence between “trials” and
the “stationarity” of the probability of “success,” p.
If we let

X — { 1 if the jth trial results in a success
;=

0 if the jth trial results in a failure (1.84)

then the Bernoulli distribution, or probability mass function,
is given by

P(X;=1]=p (1.85)
P[X] =O]=1—p=q
forallj = 1,2,.... Note that we commonly denote 1 — p

as g for simplicity.
For a single Bernoulli trial the following results hold:

E[X]=2_i-P[x =]

=01 -p)+1p)=p
1
E[x] =307 P[X, = 1] = 0% p) + () = p
i=0
Var[X;] =E[X?] = E2[x] =p - p* = pg
For a sequence of trials, the assumption of independence
between the trials means that

(1.86a)

(1.86b)

P[Xlle N XQIJCQ n--- N X” =xn]
=P[X; =x]P[Xo =x2]---P[X, = x,]  (1.87)

The MLE of p is just the average of the set of observa-
tions, xi,Xx2,...,X,, of X,

p= 1 in (1.88)

n-
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Notice that we use a hat to indicate that this is just an
estimate of the true parameter p. Since the next set of
observations will likely give a different value for p, we
see that p is actually a random variable itself, rather than
the true population parameter, which is nonrandom. The
mean and variance of the sequence of p can be found by
considering the random P,

P:%in

i=1

(1.89)

obtained prior to observing the results of our Bernoulli
trials. We get

E[P]=E B lX::X:|

1 ¢ 1
=) ElXil=—(p)

n 4 n

i=1
=p (1.90)

which means that the estimator given by Eq. 1.88 is
unbiased (that is, the estimator is “aimed” at its desired
target on average).

The estimator variance is

Var [13] = Var |:% ZXC|
i=1

1 « 1
= — > VarlXil = —(npq)
i=1

_n
n

(1.91)

where we made use of the fact that the variance of a sum
is the sum of the variances if the random variables are
uncorrelated. We are assuming that, since this is a Bernoulli
process, not only are the random variables uncorrelated,
but also they are completely independent (the probability
of one occurring is not affected by the probability of other
occurrences).

Note that the estimator variance depends on the true
value of p on the right-hand-side of Eq. 1.91. Since we
are estimating p, we obviously do not know the true value.
The solution is to use our estimate of p to estimate its
variance, so that

2~
op ~

= |3

(1.92)

Once we have determined the estimator variance, we can
compute its standard error, which is commonly taken to
be equal to the standard deviation and which gives an
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indication of how accurate our estimate is,

op = |24 (1.93)
n

For example, if p = 0.01, then we would prefer o3 to be
quite a bit smaller than 0.01 and we can adjust the number
of observations n to achieve this goal.

In Part 2 of this book, we will be estimating the probabil-
ity of failure, pr, of various classic geotechnical problems
using a technique called Monte Carlo simulation. The stan-
dard error given by Eq. 1.93 will allow us to estimate the
accuracy of our failure probability estimates, assuming that
each “simulation” results in an independent failure/success
trial.

Applications The classic Bernoulli trial is the toss of a
coin, but many other experiments can lead to Bernoulli
trials under the above conditions. Consider the following
examples:

1. Soil anchors at a particular site have a 1% probability
of pulling out. When an anchor is examined, it is
classified as a success if it has not pulled out or a
failure if it has. This is a Bernoulli trial with p = 0.99
if the anchors fail independently and if the probability
of success remains constant from trial to trial.

2. Suppose that each sample of soil at a site has a
10% chance of containing significant amounts of
chromium. A sample is analyzed and classified as a
success if it does not contain significant amounts of
chromium and a failure if it does. This is a Bernoulli
trial with p = 0.90 if the samples are independent and
if the probability of success remains constant from
trial to trial.

3. A highway through a certain mountain range passes
below a series of steep rock slopes. It is estimated that
each rock slope has a 2% probability of failure (re-
sulting in some amount of rock blocking the highway)
over the next 10 years. If we define each rock slope
as a trial which is a success if it does not fail in the
next 10 years, then this can be modeled as a Bernoulli
trial with p = 0.98 (assuming rock slopes fail inde-
pendently, which might not be a good assumption if
they generally fail due to, e.g., earthquakes).

1.9.2 Binomial Distribution

Let N, be the number of successes in n Bernoulli trials,
each with probability of success p. Then N, follows a
binomial distribution where

P[N, = k] = (n)p"q"k,

r k=0,1,2,....,n (1.94)

The quantity p*g”~* is the probability of obtaining k
successes and n — k failures in n trials and (Z) is the
number of possible ways of arranging the k successes over
the n trials.

For example, consider eight trials which can be repre-
sented as a series of eight dashes:

One possible realization of three successes in eight trials
might be

F S F F S S F F

where successes are shown as S and failures as F. Another
possible realization might be

S F F S F F F S

and so on. Clearly these involve three successes, which have
probability p3, and five failures, which have probability ¢°.
Combining these two probabilities with the fact that three
successes in eight trials can be arranged in (§) different
ways leads to

P[Ns =3]= <§)p3q8‘3

which generalizes to the binomial distribution for n trials
and k successes given above. See Figure 1.20.

Properties In the following proofs, we make use of the
binomial theorem, which states that

n

n N\ i an—i $ n! i pn—i
wror =2 () =X s

i=0
(1.95)
o
=)
o
o
=
Il
=
=z
[=W
=
- 1
< T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10

Figure 1.20 Binomial distribution for n = 10 and p = 0.4.



The expected number of successes in n trials can be
found directly from the definition of the discrete-case ex-
pectation,

n

EN,] = Zi('j)p"q”"’

i—0

_Z (l'(n l)'>ptqn—t

(n — D! i—1 _n—i
pz(z —Dim - 1

(E) (n — D! i (n—1)—i
IR T

=np(p +q)""
= np (1.96)

since p +¢q = 1.
Alternatively, we could write

EN,J=E[Xi + X +---+X,]
=E[Xi]+E[Xa] + -+ E[X,]
=np
where X; is a Bernoulli random variable having expecta-

tion p.
To find the variance of N,,, we first need to find

_Z <'(n z)*)plqnl
—an(l +1)< o = )'l),>p’q” -
- {nié’ <i!(r(zn—_lli!i)!)piqn_l_i

i=
n—1

- (n — D! i n—l-i
+;(i!(n—1—i)!)pq }

0
=np{(n—1p+1}

= npq + n’p*

where for the first sum we made use of the result given by
Eq. 1.96. The variance is thus

Var [N,] = E[N,;] — E’[N,] = npq + n°p* — n*p* = npq

(1.97)
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The same result could have been obtained much more
easily by considering the variance of a sum of independent
random variables, since in this case the variance of a sum
is the sum of the variances:

Var [N, ] = Var [Z X,-]

i=1

n
= ZVar X; = npq
i=1

The MLE of p is
Na
n

p= (1.98)
if n is known, where N, is the average of the observed
values of N,. If both n and p are unknown, see Law and
Kelton (2000) for the MLE. This estimator is precisely
the same as that given by Eq. 1.89 since N, =Y\, X;,
and so its mean and standard error are discussed in the
previous section (with n replaced by the total number of
trials making up N,,).

Example 1.42 A manufacturer of geotextile sheets wishes
to control the quality of its product by rejecting any lot in
which the proportion of textile sheets having unacceptably
low tensile strength appears to be too high. To this end,
out of each large lot (1000 sheets), 25 will be selected and
tested. If 5 or more of these sheets have an unacceptably
low tensile strength, the entire lot will be rejected. What is
the probability that a lot will be rejected if

1. 5% of the sheets in the lot have unacceptably low
tensile strength?

2. 10% of the sheets in the lot have unacceptably low
tensile strength?

SOLUTION

1. Let Nys be the number of sheets that have unaccept-
ably low tensile strengths out of the 25 sampled.
If the sheets fail the tension test independently with
constant probability of failure, then Njs follows a bi-
nomial distribution with p = 0.05. We note that since
the number of low-strength sheets in a lot is fixed,
the probability of failure will change as sheets are
tested. For example, if 50 out of 1000 sheets are low
strength, then the probability of failure of the first
sheet tested is 0.05. The probability of failure of the
second sheet tested is either 49/999 or 50/999, de-
pending on whether the first sheet tested was low
strength or not. However, if the lot size (1000 in this
case) is large relative to the number selected for test-
ing (25 in this case), then the approximation that p
is constant is reasonable and will lead to fairly accu-
rate results. We will make this assumption here, so
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that

P[Nys = 5] =1—P[Nys < 4]
=1—P[Ny =0]—P[Ny5 =1]
— P[Nas =2] = P[Nys = 3]
—P[Nys =4]

=1- (25 )(0.05)0(0.95)25
(215 (0.05)1(0.95)**

(225 (0.05)%(0.95)%

(25

( (0.05)*(0.95)*!

3 )(0.05)3(0.95)22
25
)

= 0.00716

Thus, there is a very small probability of rejecting a
lot where 5% of the sheets have an unacceptably low
tensile strength.

2. Let N»s be the number of sheets that have unaccept-
ably low tensile strengths out of the 25 sampled.
Then N»s5 follows a binomial distribution with p =
0.10 (we will again assume sheets fail the test inde-
pendently and that the probability of this happening
remains constant from sheet to sheet):

P[Nys > 5] =1 —P[Nps < 4]
=1—P[Nss =0] — P[Nps = 1]
— P[Nys =2] — P[Nos = 3]
— P[Nys = 4]

=1- (25)(0.10)0(0.90)25

(215 (0.10)1(0.90)**

:
<

= 0.098

(0.10)%(0.90)%

N
)
93

(0.10)*(0.90)*!

)(o. 10)*(0.90)

3
25
4

There is now a reasonably high probability (about
10%) that a lot will be rejected if 10% of the sheets
have an unacceptably low tensile strength.

1.9.3 Geometric Distribution

Consider a Bernoulli process in which 77 is the number of
trials required to achieve the first success. Thus, if 7} = 3,
then we must have had two failures followed by a success
(the value of T fully prescribes the sequence of trials). This
has probability

P [T, = 3] = P [{failure, failure, success}] = qu
In general
PIT =kl=¢""p, k=12... (1.99)

Note that this is a valid probability mass function since

o0 o0
D SN
k=1 k=0 1 q

where we used the fact that for any o <1 (see, e.g.,
Gradshteyn and Ryzhik, 1980)

> 1
k_
ga_l—a

As an example, in terms of the actual sequence of trials,
the event that the first success occurs on the eighth trial
appears as

(1.100)

F F F F F F F S

That is, the single success always occurs on the last
trial. If 7; = 8, then we have had seven failures, having
probability ¢”, and one success, having probability p. Thus

P[Ty =8l=¢qp

Generalizing this for T} = k leads to the geometric distri-
bution shown in Figure 1.21.

Because trials are assumed independent, the geometric
distribution also models the number of trials between suc-
cesses in a Bernoulli process. That is, suppose we observe
the result of the Bernoulli process at trial number 1032.
We will observe either a success or failure, but whichever
is observed, it is now known. We can then ask a question
such as: What is the probability that the next success occurs
on trial 1040? To determine this, we start with trial 1032.
Because we have observed that there is no uncertainty asso-
ciated with trial 1032, it does not enter into the probability
problem. However, trials 1033, 1034, ..., 1040 are un-
known. We are asking for the probability that trial 1040 is
the first success after 1032. In order for this event to occur,
trials 1033-1039 must be failures. Thus, the eight trials,
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Figure 1.21 Geometric distribution for p = 0.4.

1033-1040, must involve seven failures (¢’) followed by
one success (p). The required probability is just the product

P[T, =8]1=¢"p

What this means is that the geometric distribution, by
virtue of the independence between trials, is memoryless.
It does not matter when you start looking at a Bernoulli
process, the number of trials to the next success is given
by the geometric distribution (and is independent of the trial
number).

Properties The mean of 7}, which is also sometimes
referred to as the return period or the mean recurrence time,
is determined as

o0 o0
E(T1]=) kpg* ' =p> kq*~"

k=1 k=1

_p_zq N di(lzq)

(71 )=
P\a=q2) " »p

where we used Eq. 1.100 to evaluate the final sum above.
We will use the second to last sum in the following
proof.

The variance of T is obtained from Var [T;] = E[T}] —
E?[Ty] as

| —

(1.101)

o0

p;—qqu"

k=1

[o.¢] [e.¢]
_ Zkzqu—l —p Zkzqk—l _
k=1 k=1
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_ i(#)
“Pag \ (1= ¢7

1 2q
p o p?
Thus

Var[T|] = E[T}] — E*[T}]
12 1
p o pr P
-z (1.102)

)4

As an aside, in engineering problems, we often reverse
the meaning of success and failure and use the geometric
distribution to model time to failure, where time is mea-
sured in discrete steps (trials).

The MLE of p is

—_

N n
pziz

Doyt 7

t, are n independent observations of 77.

(1.103)

where 11,1, ...,

Example 1.43 Recall the previous example where a man-
ufacturer of geotextile sheets wishes to control the quality
of its product by rejecting any lot in which the proportion
of textile sheets having unacceptably low tensile strength
appears to be too high. Suppose now that the sampling
scheme is changed and the manufacturer decides to only
sample geotextile sheets until one is encountered having an
unacceptably low tensile strength. If this occurs on or be-
fore the eighth sheet tested, the entire lot will be rejected.
What is the probability that a lot will be rejected if

1. 5% of the sheets in the lot have unacceptably low
tensile strengths?

2. 10% of the sheets in the lot have unacceptably low
tensile strengths?

If having 5% of the sheets in a lot with unacceptably
low tensile strength is detrimental to the manufacturer’s
image and such a lot should not be sent to market, it
appears that this control approach would work better than
that of Example 1.39. However, if the manufacturer is more
concerned with profit, this control approach is definitely
not to their advantage. What might be the disadvantage of
this approach from the point of view of the manufacturer?
Explain with the help of a numerical example.

SOLUTION

1. Let Ty be the trial number of the first sheet to have
an unacceptably low tensile strength. Then, assuming
independence between sheets and constant probability
of success, T follows a geometric distribution with
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p = 0.05 and

P[Ty <8]=P[T1 =1]+P[T| =2]
4+ +P[Ty =71+ P[T; = 8]
= 0.05 4 0.95(0.05)
+ -+ 4 0.95%(0.05) 4 0.957(0.05)
= 0.337

2. Let Ty be the trial number of the first sheet to have
an unacceptably low tensile strength. Then, under the
same assumptions as in item 1, 7' follows a geometric
distribution with p = 0.10 and

P[Ty <8]=P[T\ = 1]+P[T) =2]
+---+P[T1 =71+ P[T) = 8]
= 0.10 + 0.90(0.10)
+ -+ 4+ 0.90%0.10) + 0.907(0.10)
=0.570

3. The problem with this approach, from the point of

view of the manufacturer, is that a significant pro-
portion of lots with less than 5% unacceptably low-
strength sheets would be rejected (e.g., about a third).
In addition, consider what happens under this quality
control approach when only 2% of the sheets in the
lot have unacceptably low tensile strength. (We will
assume here that this is actually fairly good quality
control, although, in practice, the acceptable risks can
certainly vary.)
Let T be the trial number of the first sheet to have an
unacceptably low tensile strength. Then 7 follows a
geometric distribution, under the above assumptions,
with p = 0.02 and

P[Ty <8]=P[Ty = 1]+ P[T, =2]
+---+P[T1 =71 +P[T] =8]
=0.02 4 0.98(0.02) + - - - + 0.98°(0.02)
+0.987(0.02)
=0.149

so that there is still approximately a 15% chance
that such a “good” lot would be rejected. This test
does not sufficiently “resolve” the critical fraction of
defectives.

1.9.4 Negative Binomial Distribution

Suppose we wish to know the number of trials (time) in a
Bernoulli process until the mth success. Letting T, be the

number of trials until the mth success,

k—1
P[T, =k]l= <m— )pmqk_m fork =m,m+1,...

1
(1.104)
which is the negative binomial distribution. Whereas a bino-
mial distributed random variable is the number of successes
in a fixed number of trials, a negative binomial distributed
random variable is the number of trials for a fixed number
of successes. We note that the negative binomial is also
often used to model the number of failures before the mth
success, which results in a somewhat different distribution.
We prefer the interpretation that the negative binomial dis-
tribution governs the number of trials until the mth success
because it is a natural generalization of the geometric dis-
tribution and because it is then a discrete analog of the
gamma distribution considered in Section 1.10.2.
The name of the negative binomial distribution arises
from the negative binomial series

— (k-1
(EEEDY (m B l)qk""

k=m

(1.105)

which converges for |g| < 1. This series can be used to
show that the negative binomial distribution is a valid
distribution, since

0 0 k—1 o e
gP[Tﬁk]:Z(m_l)p q"

k=m
%)
k—1
=pm ( >qk—m
= \m — 1
=p"l-—q)"
—1 (1.106)

as expected.

We see that the geometric distribution is a special case of
the negative binomial distribution with m = 1. The negative
binomial distribution is often used to model ‘time to the
mth failure, where time is measured in discrete steps, or
trials. Consider one possible realization which has the third
success on the eighth trial:

F S S F F F F S

Another possible realization might be
_F F F S F S F S

In both cases, the number of successes is 3, having
probability p3, and the number of failures is 5, having
probability ¢°. In terms of ordering, if T3 = 8, then the third
success must occur on the eighth trial (as shown above).
Thus, the only other uncertainty is the ordering of the other
two successes. This can occur in (;) ways. The probability



that the third success occurs on the eighth trial is therefore

given by
—ar—("\,3,5
PITs =81= |, |r°q

Generalizing this for m successes and k trials leads to the
negative binomial distribution shown in Eq. 1.104.

Properties The mean is determined as

EU&]=§:ﬂﬂﬂn=j]=§:jc;_l>”q’m
j=m j=m
_.§3~ <___JZ;:llL___) mgi—m
~ =\ m=ng=m) "

— mpm - J' qj—m
m!(j —m)!

j=m

= mp™ |:1 +(m+ 1)g + ch

2!
2 1

+w+&m;>m+)f+“}
__mp"
- (1— q)m+1

m
= — (1.107)

p

which is just m times the mean of a single geometrically
distributed random variable 7}, as expected, since the
number of trials between successes follows a geometric
distribution. In fact, this observation leads to the following
alternative representation of 7,

Tm :Tl,l +T1,2+"'+T1,m (1108)

where T is the number of trials until the first success, T »
is the number of trials after the first success until the sec-
ond success, and so on. That is, the 7 ; terms are just the
times between successes. Since all trials are independent,
each of the 7; terms will be independent geometrically
distributed random variables, all having common probabil-
ity of success, p. This leads to the following much simpler
computation:
EEM:EUM]+EHMLP~+EHM]=%
(1.109)
since E[TU] =1/p for all i =1,2,...,m. The mean in
Figure 1.22 is 3/0.4 = 7.5.
To get the variance, Var[7,,], we again use Eq. 1.108.
Due to independence of the 7' ; terms, the variance of the
sum is the sum of the variances,

Var|[T,,] = Var [Tl,l] + Var [Tl,z] +---+ Var [Tl,m]
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Figure 1.22 Negative binomial distribution for 73 (i.e., m = 3)
and p = 0.4.

m Var [T}]
mq
P2
which is just m times the variance of a single geometrically

distributed random variable T;, as expected.
If m is known, then the MLE of p is

(1.110)

mn m

P=w— ==

Dimt i X

where x,x;,...,x, are n independent observations of T,,.

If m is unknown, see Law and Kelton (2000), although

beware of the fact that Law and Kelton define their negative

binomial as governing the number of failures prior to the

mth success, not as the number of trials until the mth
success, as is done here.

(1.111)

Example 1.44 Consider again the problem of the ten-
sile strength of geotextile sheets of the previous two
examples. If 10% of the sheets have unacceptably low ten-
sile strengths, what is the probability that on the next series
of tests the third sheet to fail the tensile test is the eighth
sheet tested?

SOLUTION Let T5 be the number of sheets tested when
the third sheet to fail the tensile test is encountered
(note, this includes the sheet being tested). Then we are
looking for

7 3 8-3
PU@:&:(J@J@«W) = 0.0124
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1.9.5 Poisson Distribution

If we now allow every instant in time (or space) to be
a Bernoulli trial, we get a family of three distributions:
the Poisson distribution, the exponential distribution, and
the gamma distribution. The latter two are continuous
distributions governing the time between trial successes and
are discussed in the next section. The Poisson distribution
is analogous to the binomial distribution: It is derived from
the binomial distribution by letting the number of trials
go to infinity (one trial for each instant) and governs the
number of successes in some time interval ¢. To see how
the Poisson distribution is derived, consider the following
example.

Example 1.45 Derivation from Binomial Distribution
Suppose that it is known that along a certain long highway
stretch an average of 1 slope subsidence occurs per year.
What is the probability that exactly 10 slope subsidences
will occur in the next 10-year interval?

SOLUTION If we attempt to model this using the bino-
mial distribution, we must first divide time up into a series
of intervals within each of which a slope can either subside
(success) or not (failure). As a starting point, let us assume
that at most one slope can subside in any half-year interval.
We make this assumption because a Bernoulli trial can only
have two outcomes, and if we wish to be able to count the
number of subsidences, we must make these two possible
outcomes either 1 (a single slope subsides) or 0 (no slopes
subside). If our trials are a half-year in duration, then we
have 20 trials in 10 years and the probability of a success (a
slope subsides) in each trial is the rate per year divided by
the number of trials per year: p = % In our 10-year interval
the probability we are looking for is

P10 subsidences in 10 years]
20
~ 0.5)1°(0.5)°-19 = 0.176

10
Of course, we know that two or more slope subsidences
could easily occur within any half-year interval. An im-
proved solution is obtained by using a shorter trial interval.
If 2-month intervals were to be used then we now have six
trials per year and the probability of a slope subsidence in
any interval becomes p = é. The number of trials in 10

120

years (120 months) becomes n = 5= = 60

P[10 subsidences in 10 years]

() ()=

which is quite a bit more accurate.

In general, if time interval ¢ is divided into n intervals

and the mean arrival rate is A, then
At
pP=—
n

and if N, is the number of subsidences in ¢ years,

n\ [ rt\F A
- () ()

where Ar is the mean number of subsidences (“arrivals™)
occurring in time interval 7. If arrivals are instantaneous
(so that no more than one can occur in any instant with
probability 1) and can occur at any instant in time, so that
each instant in time becomes a Bernoulli trial, then

(1.112)

o (n\ (A A\ K
P[N; =k] = lim — 1] ——
n—oo \ k n n
) [{n n—1 n—k+1}
= lim — .
n—o0o n n n
Ak Ar\" A\
W K AN M
k! n n
but since
fim {E.n—l'”n—k+l}:1
n—oo | n n n

, A\ 7k
lim (1 — —) =1
n—o00 n

A\"
lim (1 - —) =e M
n—o00 n

then our distribution simplifies to

k

which is the Poisson distribution. In other words, the
Poisson distribution is a limiting case of the binomial
distribution, obtained when the number of trials goes to
infinity, one for each instant in time, and p is replaced by
the mean rate .

For our problem A = 1 subsidence per year and ¢t = 10
years. The probability of exactly 10 subsidences in 10 years
using the Poisson distribution is

(10)]0
10!
and we see that the binomial model using 2-month trial
intervals gives a reasonably close result (with a relative
error of less than 10%).

We note that the Poisson model assumes independence
between arrivals. In the subsidence problem mentioned
above, there may be significant dependence between oc-
currences, if, for example, they are initiated by spatially

P[N; = k] =

P[Nyo = 10] = e 10=0.125




extended rainfall or freeze/thaw action. When dependence
exists between trials and some common outside influence
(e.g., weather), the model is complicated by the fact that
the rate of occurrence becomes dependent on time. One
possible solution is to apply different Poisson models for
different time periods (e.g., wet season vs. dry season) or
to investigate nonstationary Poisson models.

The Poisson distribution is often used to model arrival
processes. We shall see in Chapter 4 that it is also useful
to model “excursion” processes, for example, the num-
ber of weak pockets in a soil mass. For simplicity, we
will talk about Poisson processes in time, but recognize
that they can be equivalently applied over space simply
by replacing ¢ with a distance (or area, volume, etc.)
measure.

For any nonzero time interval we have an infinite number
of Bernoulli trials, since any time interval is made up of an
infinite number of instants. Thus, the probability of success,
p, in any one instant must go to zero (see Eq. 1.112);
otherwise we would have an infinite number of successes in
each time interval (np — oo as n — o0). This means that
we must abandon the probability of success, p, in favor of a
mean rate of success, A, which quantifies the mean number
of successes per unit time.

The basic assumption on which the Poisson distribution
rests is that each instant in time is a Bernoulli trial. Since
Bernoulli trials are independent and have constant probabil-
ity of success and only two possible outcomes, the Poisson
process enjoys the following properties:

1. Successes (arrivals) are independently and can occur
at any instant in time.

2. The mean arrival rate is constant.

3. Waiting times between arrivals are independent and
exponentially distributed.

4. The time to the kth arrival is gamma distributed.

In fact, if the first two or either of the last two properties
are known to hold for a sequence of arrivals, then the arrival
process belongs to the Poisson family.

As in the previous example, we will define NV, to be the
number of successes (arrivals or “occurrences”) occurring
in time ¢. If the above assumptions hold, then N, is governed
by the following distribution:

k
P[N, = k] = % e M

where A is the mean rate of occurrence (A has units of re-
ciprocal time). This distribution is illustrated in Figure 1.23

, k=0,1,2,... (1.113)
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Figure 1.23  Poisson distribution for t = 4.5 and A = 0.9.

Properties The mean is determined as

00 i o] i—1
At At
BN =3 B e = ey M
— ! ~ (-1
J= J=
oo
B a (AtY
Ate Z T
j=0
= At (1.114)

The mean of the distribution shown in Figure 1.23 is
E[N4s5] =0.9(4.5) = 4.05. To determine the variance, we
first need to find

>, ()Y > At
E[NtZ]Zij( ) e*)\tz)\’tef}\lz(j_i_l)( )
=0 J! j=0 J!
2 Y A (Y
= Me M j—( ,[)] + Z —( - Y
‘ j! ‘ j!
j=0 j=0
= (M)* + (A1)
Thus
Var [N,] = E[N}?] — E*[N;] = At (1.115)

That is, the mean and variance of a Poisson process are the
same.

The Poisson distribution is also often written in terms of
the single parameter v = Af,

k

PIN, = k] = %e-v, k=0,12... (L116)
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If x1,x2,...,x, are n independent observations of »,, then
the MLE of v is

D=

(1.117)

S| =

n
i=1
If ¢ is known, then A = D/t.

Example 1.46 Many research papers suggest that the
arrivals of earthquakes follow a Poisson process over time.
Suppose that the mean time between earthquakes is 50 years
at a particular location.

1. How many earthquakes can be expected to occur
during a 100-year period?

2. What is the probability that more than three earth-
quakes occur in a 100-year period?

3. How long must the time period be so that the proba-
bility that no earthquakes occur during that period is
at most 0.1?

4. Suppose that 50 years pass without any earthquakes
occurring. What is the probability that another 50
years will pass without any earthquakes occurring?

SOLUTION

1. Let N, be the number of earthquakes occurring over
t years. Then

At)F
P[N, = k] = (k') e M
where A = 51—0 = 0.02 per year is the mean rate of oc-

currence of earthquakes and # = 100 years. Using this,
we have E [Njgg] = 1001 = 100(0.02) = 2. Thus, we
can expect two earthquakes to occur during a 100-
year period, which makes sense since the mean time
between earthquakes is 50 years.

2. Since At = 0.02 x 100 = 2, we have

P[Njgo > 31 =1—P[Njp < 3]
=1- (P[Nloo = 0] +P[Nigo = 1]

+P[Nigo = 2]+ P[Nioo = 31)

=1 *21+2+22+23
- e 2 T3

=0.143

3. Let N; be the number of occurrences over the time
interval . We want to find ¢ such that P[N, = 0] =
e~ < 0.1. This gives us t > —1In(0.1)/A = — In(0.1)/
0.02 = 115 years.

4. Let N5o be the number of occurrences over the first
50 years and Njoo be the number of occurrences over
the first 100 years. Then, we have

P[Nigp=0 N N5y =0
P[Nigo =0|Nso =0] = Wioo 50 =0l

P[N5o = 0]
_ P[Nigg=0] !0
- P [N5y = 0] T e—50n
— pS0h -
=0.368

‘We note that due to the memorylessness of the Poisson
process (which is in turn due to the independence
between trials) this result is identical to the probability
of having no earthquakes in any 50-year period,

P[Nso =0] = e % =71 = 0.368

Now consider a Poisson process with arrival rate A.
If arrivals are retained randomly from this process with
probability p and rejected with probability ¢ = 1 — p, then
the resulting process of retained arrivals is also Poisson
with arrival rate pA [see Cinlar (1975) for a proof]. This is
illustrated by the following example.

Example 1.47 Earthquakes in a particular region occur
as a Poisson process with mean rate A = 3 per year. In
addition, it has been observed that every third earthquake,
on average, has magnitude exceeding 5.

(a) What is the probability of having two or more earth-
quakes of magnitude in excess of 5 in the next one
year?

(b) What is the probability that the next earthquake of
magnitude in excess of 5 will occur within the next
2 months?

SOLUTION We are told that earthquakes occur as a
Poisson process with A = 3 per year. This means that an
earthquake can occur at any instant in time but that on
average there are three “successes” each year. We are also
told that on average one in three of these earthquakes has
a higher magnitude (i.e., exceeding 5). The “on average”
part of this statement implies that each earthquake that does
occur has a % chance of having a higher magnitude. The
mean rate of occurrence of higher magnitude earthquakes
is thus A" = 1 per year.

(a) Let N, be the number of higher magnitude earthquakes
which occur in ¢ years. Under the above conditions,



N, follows a Poisson distribution and the desired prob-
ability is

P[N; >2]=1—P[N; =0l —P[N, = 1]
=1—e 1 +11]
=1—e "D+ 1(1)]
= 0.2643

(b) The number of higher magnitude earthquakes which
might occur in the next two months is Njs. The
question is “What is the probability that one or more
higher magnitude earthquakes will occur in the next
two months?”” which can be solved as follows:

P[N1/6 > 1] =1 —P[N1/6 :O] =1 —ef)‘/t
=1-¢0=0.1535

As mentioned above, and as we will see more of shortly,
the time to the next occurrence of a Poisson process
is exponentially distributed (compare the above re-
sult to the exponential distribution presented in Section
1.10.1).

The previous example seems to suggest that the distribu-
tion of every third occurrence is also Poisson, which is not
correct. This raises a rather subtle issue, but the distinction
lies between whether we are selecting every third occur-
rence or whether we are selecting occurrences randomly
with probability % of success. Here are the rules and the
reasoning for a process in which we are selecting every kth
occurrence on average or deterministically:

1. If we are selecting every kth occurrence on average,
and so randomly (i.e., the probability of selecting an
occurrence is 1/k), then the time until the next selec-
tion follows an exponential distribution (see Section
1.10.1) with mean rate A" = A /k, where X is the mean
occurrence rate of the original process. In this case,
the likelihood of having success in the next instant is
1/k, and the likelihood decreases exponentially there-
after. The resulting process is a Poisson process.

2. If we are selecting every kth occurrence nonrandomly
(e.g., every kth customer arriving at a website is asked
to fill out a survey), then the time between selections
follows a gamma distribution (see Section 1.10.2).
The main implication of having to have exactly k — 1
occurrences of the original process before a selection
is that the likelihood of a selection in the next k — 1
instants is zero. In other words, we expect the gamma
distribution to start at zero when ¢ = 0. The resulting
process is not Poisson.
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In the above the word “likelihood” is used loosely to denote
the relative probability of an occurrence in a vanishingly
small time interval (i.e., an instant), dp/dt.

1.10 COMMON CONTINUOUS PROBABILITY
DISTRIBUTIONS

Many naturally occurring and continuous random phenom-
ena can be well modeled by a relatively small number of
distributions. The following six continuous distributions are
particularly common in engineering applications:

Exponential
Gamma
Uniform
Weibull
Rayleigh
Normal
Lognormal

Nk wh -

As mentioned in the previous section, the exponential
and gamma distributions are members of the Bernoulli
family, deriving from the idea that each instant in time
constitutes an independent Bernoulli trial. These are the
continuous-time analogs of the geometric and negative
binomial distributions.

Aside from the above, there are certainly other contin-
uous distributions which may be considered. Distributions
which involve more than two parameters are generally dif-
ficult to justify because we rarely have enough data to
estimate even two parameters with much accuracy. From
a practical point of view what this means is that even if
a geotechnical researcher has large volumes of data at a
particular site and can accurately estimate, for example, a
modified six-parameter beta distribution, it is unlikely that
anyone else will be able to do so at other sites. Thus, com-
plex distributions, such as a six-parameter beta distribution,
are of questionable value at any site other than the site at
which it was estimated (see Chapter 4 for further discussion
of this issue).

As with the common discrete distributions, this section
looks briefly at the main characteristics of each of these
continuous distributions and describes how they are most
commonly used in practice. For a more complete descrip-
tion of these distributions, the interested reader should con-
sult an introductory textbook on probability and statistics,
such as Law and Kelton (1991) or Devore (2003).

1.10.1 Exponential Distribution

The exponential distribution is yet another distribution de-
rived from the Bernoulli family: It is the continuous analog
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of the geometric distribution. Recall that the geometric dis-
tribution governs the number of trials until the first success
(or to the next success). If we imagine that each instant in
time is now an independent trial, then the time until the
first (or next) success is given by the exponential distribu-
tion (the mathematics associated with this transition from
the geometric distribution involving “discrete” trials to a
“continuous” sequence of trials is similar to that shown pre-
viously for the transition from the binomial to the Poisson
distribution and will not be repeated here).

As with the geometric distribution, the exponential distri-
bution is often used to describe “time-to-failure” problems.
It also governs the time between arrivals of a Poisson pro-
cess. If Ty is the time to the occurrence (or failure) in
question and 77 is exponentially distributed, then its prob-

ability density function is (see Figure 1.24)
fri@®)=xre™,  1=0 (1.118)

where A is the mean rate of occurrence (or failure). Its
cumulative distribution function is

Fr()=P[T; <t]=1—e", t>0  (1.119)
Properties
1
E[T] = - (1.120a)
1
Var [T}] = = (1.120b)

That is, the mean and standard deviation of an exponentially
distributed random variable are equal.

o0
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Figure 1.24 Exponential distribution for A = 1.

Memoryless Property We will illustrate this property
with an example: Let 7] denote the time between oc-
currences of earthquakes in a particular region. Assume
that 77 has an exponential distribution with a mean of 4
months (i.e., on average, earthquakes in this region occur
once every 4 months). Thus, 77 has mean arrival rate of
A= % = 0.25 earthquakes per month. The probability that
an earthquake occurs within the next 2 weeks (half-month)
is thus

P[T, < 2 weeks] = P[T; < 0.5 months]
=1—¢ 0035 - 0.1175

Now, suppose that we set up a ground motion accelerometer
in this region and 8 months pass without an earthquake
occurring. What is the probability that an earthquake will
occur in the next half-month (i.e., between 8 and 8.5 months
from our setup time)? Because 8 months have gone by
without an earthquake occurring, you might feel that an
occurrence is overdue and therefore more likely. That is,
that the probability of an occurrence in the next half-month
should be greater than 0.1175. However, for the exponential
distribution, this is not the case, which is one of the features
of the exponential distribution—the past is ignored. Each
instant in time constitutes a trial which is independent of
all other trials. In fact,

P[8 < T, < 8.5]
P[T, > 8]
(1 — ¢=85%x025) _ (] _ o—8x0.25)

P[T) <85|T > 8] =

e—8x0.25

=0.1175

Thus, after 8 months without an occurrence, the probability
of an occurrence in the next half-month is the same as
the probability of an occurrence in any half-month interval.
We found this same property existed in the Poisson process;
indeed, the times between arrivals in the Poisson process
are exponentially distributed.

More generally, if T is exponentially distributed with
mean rate A, then the memoryless property means that the
probability that 7 is greater than ¢ + s, given that 7| > ¢,
is the same as the probability that 7 is greater than s with
no past history knowledge. In other words,

PITy>t+s NTH >t
PIT, >t+s|Ty >1t]= [ > 1+ 1>1]

P[T, > 1]
_P[Iy>1+s] e
P[T| > 1] e=M
=e—ks
=P[T| > 5] (1.121)



Link to Poisson It was mentioned above that the ex-
ponential distribution governs the time between the oc-
currences of a Poisson process. This can be clearly seen
through the following argument: Let N, be a Poisson dis-
tributed random variable with mean arrival rate A. We wish
to know the distribution of the time until the first arrival.
Let Ty be the time to the first arrival. Then,
0

P[T) > t]=P[N, =0] = %e“ =e M
and so

PIT) <tl=F,,(t)=1—e"

But 1 —e* is the cumulative distribution for the expo-
nential probability density function Ae /. Consequently,
T1 must follow an exponential distribution with mean rate
A; that is, the time to the first occurrence in a Poisson pro-
cess follows an exponential distribution with parameter A
which is equal to the Poisson rate A. The same holds for
the time between any occurrences of a Poisson process.

In many cases, the assumption of “independence” be-
tween trials at every instant in time makes sense (e.g.,
arrivals of customers at a bank, cars traveling along a
highway). However, earthquakes tend to occur only once
sufficient strain levels have developed between adjacent tec-
tonic plates, and that generally takes some time. Thus, the
times between measurable earthquake occurrences depend
on tectonic movement rates and interplate friction, which
will not generally lead to a constant probability of occur-
rence at each instant in time. The Poisson model is usually
more reasonable for moderate to high earthquake magni-
tudes (in Chapter 4 we discuss the fact that higher level
excursions tend to a Poisson process).

If x1,x2, . . . x,, are n independent observations of 77, then
the MLE of A is

A= (1.122)

n
E Xi =X
i=1

Example 1.48 Suppose the lifetime of a particular type of
nuclear density meter has an exponential distribution with
a mean of 28,700 h. Compute the probability of a density
meter of this type failing during its 8000-h warranty?

S| =

SOLUTION Let T; be the lifetime of this type of den-
sity meter. Then 7 is exponentially distributed with 1 =
1/28,700 per hour, and

P[T; < 8000] = F7,(8000)

8000
—l—expl— —0.243
xp { 28,700 }

Example 1.49 Let us assume that earthquakes in a certain
region occur on average once every 50 years and that

COMMON CONTINUOUS PROBABILITY DISTRIBUTIONS 45

the number of earthquakes in any time interval follows a
Poisson distribution. Under these conditions, what is the
probability that less than 30 years will pass before the next
earthquake occurs?

SOLUTION Let 7} be the time to the next earthquake.
Then, since the number of earthquakes follow a Poisson
distribution, the time between earthquakes follows an ex-
ponential distribution. Thus, 7' follows an exponential dis-
tribution with A = 1/50 = 0.02 earthquakes per year (on
average), and

P[T) <30 years| = 1 — e "0 = 0.549

We could also solve this using the Poisson distribution. Let
N3o be the number of earthquakes to occur in the next 30
years. Then the event that less than 30 years will pass before
the next earthquake is equivalent to the event that one or
more earthquakes will occur in the next 30 years. That is,

P[T) <30years| =P[N3 > 1] =1 —P[N3 < 1]
— 1 _ P[N3() — 0] — l _ 6—0.02X30
=0.549

1.10.2 Gamma Distribution

We consider here a particular form of the gamma distri-
bution which is a member of the Bernoulli family and is
the continuous-time analog of the negative binomial dis-
tribution. It derives from an infinite sequence of Bernoulli
trials, one at each instant in time, with mean rate of success
A, and governs the time between every kth occurrence of
successes in a Poisson process. Specifically, if 7j is de-
fined as the time to the kth success in a Poisson process,
then T is the sum of k independent exponentially dis-
tributed random variables E; each with parameter A. That is,
T, = Ey + E> + - - - 4+ E; and Ty has the probability density
function
VNS S
&k -1 ¢
which is called the gamma distribution (Figure 1.25). This
form of the gamma distribution (having integer k) is also
referred to as the k-Erlang distribution. Note that k = 1
gives the exponential distribution, as expected. The above
distribution can be generalized to noninteger k if (k — 1)!
is replaced by I'(k), which is the gamma function; see Law
and Kelton (2000) for more information on the general
gamma distribution. We also give a brief discussion of
noninteger k at the end of this section.

To derive the cumulative distribution function, we inte-
grate the above probability density function (by parts) to

Jr () = , 1>0 (1.123)
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Figure 1.25 Gamma probability density function for A = 1 and
k=3.

obtain, for integer k,

Fr,() =P[T; <t]=1 —e_MZ—
j=0

(1.124)

The cumulative distribution function can also be found by
recognizing that the event that the kth arrival occurs within
time ¢ (i.e., Ty < t) is equivalent to the event that there
are k or more arrivals within time ¢ (i.e., N; > k). In other
words,

Fr, (1) =P[Tx <t] =P[N; =z k] =1—-P[N, < k]
k—1

=l—e?)" @
FE
Properties
E[T;] = ; (: k E[E,-]) (1.1252)
Var[Y] = % (: k Var[E,-]) (1.125b)

If k is known and x1, x5, ..., X, are n independent obser-
vations of T, then the MLE of X is

nk
Do i

Example 1.50 As in the previous example, let us assume
that earthquakes in a certain region occur on average once
every 50 years and that the number of earthquakes in any
time interval follows a Poisson distribution. Under these

R k
A= = (1.126)
X

conditions, what is the probability that less than 150 years
will pass before two or more earthquakes occur?

SOLUTION Let 7, be the time to the occurrence of the
second earthquake. Then, since earthquakes occur accord-
ing to a Poisson process, 7, must follow a gamma distri-

bution with k =2 and A = 35 and

P[T, < 150] = Fy,(150)

150/50
=1 — ¢ 150/50 (1 + —/) =0.801

1!

Note that the same result is obtained by computing

P[Niso > 2] =1—P[Nys50 < 2]
=1—P[Ni50 =0] —P[Ni50 = 1]

| — o 150/50 _ 150/506—150/50
1!
= 0.801

The gamma distribution presented above is specialized
to the sum of k independent and identically exponentially
distributed random variables. It can be extended to other
types of problems, so long as k is (at least approximately)
a positive integer.

Example 1.51 Suppose that for clay type A the length
of time in years until achieving 80% of consolidation
settlement follows a gamma distribution with a mean of
4 and a variance of 8. Suppose also that for clay type B the
time required to achieve the same fraction of consolidation
settlement also follows a gamma distribution but with mean
4 and variance 16. Which clay type has a higher probability
of reaching 80% consolidation in less than one year?

SOLUTION Let X be the time required to achieve 80%
consolidation settlement for clay type A. Then X follows a
gamma distribution with 4 = k/A =4 and 0% = k/A*> = 8.
Solvilng these two equations for k and A gives us k = 2 and
A= 3.

Nowzlet Y be the time required to achieve 80% consolida-
tion settlement for clay type B. Then Y follows a gamma
distribution with s = k/A = 4 and 6> = k/A> = 16. Solv-
ing these two equations for k and A gives us k = 1 and
A= %' For clay type A we then have

P[X < 1] = Fp(1)
=1—e*1+2
=1-e 21+ 1)
= 0.0902



while for clay type B we have

P[Y < 1]=F;, (1)
A

=1—-e"
=1—e 4
=0.2212

Thus, we are more likely to achieve 80% consolidation in
under one year with clay type B.

Although the gamma distribution is not limited to integer
values of k, the interpretation of the gamma PDF as
the distribution of a sum of independent and identically
exponentially distributed random variables is lost if k is
not an integer. The more general gamma distribution has
the form

Qo

s x>0
k)

fbr) = (1.127)
which is valid for any £ >0 and A > 0. The gamma
function T'(k) for k > 0 is defined by the integral

o
I'k) = / xle™ dx (1.128)
0
Tabulations of the gamma function can be found in Abra-
mowitz and Stegun (1970), for example. When k is an
integer, ['(k) = (k — ).

1.10.3 Uniform Distribution

The continuous uniform distribution is the simplest of all
continuous distributions since its density function is con-
stant (over a range) (Figure 1.26). Its general definition is

1
f&x) =, a<x=<§p
B—«a
and its cumulative distribution is
X —a
F(x):P[Xfx]:ﬂ , a<x<pB (1.129)
-«

The uniform distribution is useful in representing random
variables which have known upper and lower bounds and
which have equal likelihood of occurring anywhere between
these bounds. Another way of looking at the uniform distri-
bution is that it is noninformative or nonpresumptive. That
is, if you know nothing else about the relative likelihood of
a random variable, aside from its upper and lower bounds,
then the uniform distribution is appropriate—it makes no
assumptions regarding preferential likelihood of the random
variable since all possible values are equally likely.
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Figure 1.26 Uniform distribution for « = 3 and g = 7.

Properties
P xd
E[X] = xde o +B
« B—« 2
(this is the midpoint) (1.130a)
B 2 )2
Var[X] = / g -y =2 (1130m)
o B—a 12
If x1,x2,...,x, are n independent observations of uni-

formly distributed X with minimum value xp;, and maxi-
mum value xnax, then the MLEs of « and 8 are

P

& = Xmin, B = Xmax

That is, the MLEs of the lower and upper bounds of the
uniform distribution are just equal to the observed minimum
and maximum values.

Example 1.52 The C function rand () returns numbers
uniformly distributed on the interval [0, RAND_MAX), which
includes zero but excludes RAND MAX. If X; is assigned
subsequent values returned by rand () /RAND_MAX, then
each X; is uniformly distributed on the interval [0, 1). If we

further define b
Y =« |:Z X,' - 6:|
i=1

then what is the mean and variance of Y ?

SOLUTION

12
E[Y] =« |:ZE[X,»]—6:| =« [12 E[X;] — 6]

i=1

a[12(3) — 6]
0
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12 12
Var[Y] = Var |:a (Zx - 6):| = Var |:a Zx}
i=1 i=1
12
= a? Var |:ZX,:|
i=1
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12
= o2 ZV&I‘ [X;]= 052(12)(%)
i=1

:(x2

1.10.4 Weibull Distribution

Often, engineers are concerned with the strength properties
of materials and the lifetimes of manufactured devices. The
Weibull distribution has become very popular in describing
these types of problems (Figure 1.27). One of the attractive
features of the Weibull distribution is that its cumulative
distribution function is quite simple.

If a continuous random variable X has a Weibull distri-
bution, then it has probability density function

fx)= g(xx)ﬂe*“)” for x > 0 (1.131)

having parameters A > 0 and B > 0. The Weibull has a
particularly simple cumulative distribution function

Foy=1—¢"%" ifx>0 (1.132)

Note that the exponential distribution is a special case
of the Weibull distribution (simply set 8 = 1). While the
exponential distribution has constant, memoryless failure
rate, the Weibull allows for a failure rate that decreases
with time (8 < 1) or a failure rate that increases with
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Figure 1.27 Weibull distribution.

time (8 > 1). This gives increased flexibility for modeling
lifetimes of systems that improve with time (e.g., a good
red wine might have B8 < 1) or degrade with time (e.g.,
reinforced concrete bridge decks subjected to salt might
have g > 1).

The mean and variance of a Weibull distributed random
variable are

_ (]
<=5 ()
, 1 2\ 1 N7

o* = a5 | <E>_E[F (E)] (1.133b)

where I is the gamma function, which is commonly tabu-
lated in math tables.

To find MLEs of A and 8, we must solve the following
two equations for the estimators % and 3 (Law and Kelton,
2000):

n B n n
Py 11 (1 ;
L L I <_2xﬁ)

n B B n n !
Dimt X i=1 i=1
(1.134)

The first equation involves only ﬁ , which can be solved for
numerically. Once j has been obtained, the second equation
can be solved directly for A. Thomas et al. (1969) provide
an efficient general recursive formula using Newton’s root-
finding method,

(1.133a)

~1/p

A+ (1/Bx) — Cr/Bx
(1/B) + (ByHy — C2)/B}?

Brs1 = B + (1.135)

where

1 n
A= Zlnxi
i=1
n N
Bk — inﬁk
i=1
n N
Cp = inﬁk Inx;
i=1

n
He =Y x/*(nx;)?
i=1

An appropriate initial starting point is given by Menon
(1963) and Thoman et al. (1969) to be

2
. 6 - 1 (<
IBO = 7(,1 — 1)n2 ;(lnxi)z — r_l (; 1nx,‘>

—1/2

(1.136)
See also Thoman et al. (1969) for confidence intervals on
the true A and S.



Example 1.53 The time to 90% consolidation of a sample
of a certain clay has a Weibull distribution with g = % A
significant number of tests have shown that 81% of clay
samples reach 90% consolidation in under 5516 h. What is

the median time to attain 90% consolidation?

SOLUTION Let X be the time until a clay sample reaches
90% consolidation. Then we are told that X follows a
Weibull distribution with 8 = 0.5. We first need to compute
the other Weibull parameter, A. To do this we make use
of the fact that we know P[X < 5516] = 0.81, and since
P[X < 5516] = F(5516), we have

F(5516) = 1 —exp {— (55161)°7} = 0.81
exp {— (55160} = 0.19

_ 1
A= 2000

We are now looking for the median, X, which is the point

which divides the distribution into half. That is, we want
to find X such that F(x) = 0.5,

1.10.5 Rayleigh Distribution

The Rayleigh distribution (Figure 1.28) is a nonnegative
distribution which finds application in the simulation of
normally distributed random processes (see Section 3.3 and
Chapter 6). In particular, consider the two orthogonal com-
ponents 71 and 1, of the vector T in two-dimensional space.
If the two components are independent and identically
normally distributed random variables with zero means
and common variance s2, then the vector length |t] =

VTt + 77 will be Rayleigh distributed with probability
density function

X x2
f(x)=s—26Xp 5[ x>0 (1.137)
and cumulative distribution function
F)=1—e 3% ifx >0 (1.138)

which is actually a special case of the Weibull distribution
(B=2and A = 1/(s</2)).

The mean and variance of a Rayleigh distributed random
variable are

u:s,/%n

o= 2- %Jr)s2
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Figure 1.28 Rayleigh distribution.

1.10.6 Student ¢-Distribution

If Z is a standard normal random variable, V is a chi-
square random variable with v degrees of freedom, and
Z and V are independent, then the random variable T
defined by

Z
T = e (1.139)

follows the Student 7-distribution with probability function

T+ 1)2] 2\ Th2
f<t)_7ﬁF(v/2)<l+7) , —00 <! <00
(1.140)

This distribution was discovered in 1908 by William Gos-
sett, who was working for the Guinness Brewing Com-
pany in Dublin, Ireland. The company considered the dis-
covery to be proprietary information and told Gossett he
could not publish it. Gossett published it anyway under the
pseudonym “Student.”

Table A.2 shows values of 7y, such that P[T > 1o, ] =
for commonly used values of «. We shall see more of
this distribution in Chapters 2 and 3. Figure 1.29 shows
some of the family of z-distributions. Notice that the -
distribution becomes wider in the tails as the number of
degrees of freedom v decreases. Conversely, as v increases,
the distribution narrows, becoming the standard normal
distribution as v — oo. Thus, the last line of Table A.2
corresponds to the standard normal distribution, which
is useful when finding z for given cumulative probabil-
ity. (Note that Table A.2 is in terms of areas to the
right.)

The mean and variance of a Student #-distributed random
variable are

forv > 2
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Figure 1.29 Student 7-distribution.

1.10.7 Chi-Square Distribution

If Z1,2,,...,7Z, are independent standard normal random
variables [i.e., each N (0, 1)], then the sum

XP=Z+Z+ -+ 2?2 (1.141)
has the probability density function
1 2-1 ,—x/2

fx)= mx“/ e™? forx>0  (1.142)

which is called a chi-square distribution with v degrees of
freedom (Figure 1.30). This is actually a special case of
the gamma distribution with k =v/2 and A = % To get
probabilities, we write

o0
P(xi = xax] =0 = /2 fQu) du (1.143)
Kok

and use standard chi-square tables. See Table A.3. For
example, P[x{) > 15.99] = 0.10, which is found by en-
tering the table with v = 10 degrees of freedom, looking
across for 15.99, and then reading up at the top of the table
for the associated probability. Note that both Tables A.2
and A.3 are in terms of area to the right and are used with
inverse problems where we want values on the horizontal
axis having area to the right specified by a given «.

N
S x? distribution, v =5
.................. x* distribution, v= 10
———— )’ distribution, v =20
= =
231\
S T~
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- | e | |
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Figure 1.30 Chi-square distribution.

The mean and variance of a chi-square distributed ran-
dom variable are

w=v, o2 =2y

1.10.8 Normal Distribution

The normal distribution is probably the single most impor-
tant distribution in use today (Figure 1.31). This is largely
because sums of random variables tend to a normal dis-
tribution, as was proven by the central limit theorem—a
theorem to be discussed shortly. Many natural “additive”
type phenomena, or phenomena involving many accumu-
lating factors, therefore tend to have a normal distribution.
For example, the cohesive strength of a soil is due to the
sum of a very large number of electrochemical interactions
taking place at the molecular level; thus, the normal distri-
bution has been widely used to represent the distribution of
cohesion (its main competitor as a representative distribu-
tion is the lognormal distribution, discussed next).

A random variable X follows a normal (or Gaussian)
distribution if its probability density function has the form

! e ! (x — M)z for —oo o0
X — = - <X <
o2 P172 o
(1.144)
The notation X ~ N (i, o%) will be used to mean that X

follows a normal distribution with mean & and variance o2.

Jx) =

Properties

1. The distribution is symmetric about the mean pu
(which means that u is also equal to the median).

2. The maximum point, or mode, of the distribution
occurs at .

3. The inflection points of f(x) occur at x = u £ o.

0.3

fx)
02 025
| |

0.1

0.05
|
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Figure 1.31 Normal distribution with 4 =5 and o = 2.



The mean and variance are given as
E(X] = u, Var[X] = o>

If x1,x2,...,x, are n independent observations of nor-
mally distributed X, then the MLEs of x and o are

1 i}
/L:;;xizx
1=

1 n
6%=—% (i—py
i=1

The more common estimator for o2 is slightly different,
having the form

(1.145a)

(1.145b)

1 n
D i =)’
n—1 =

The latter is an unbiased estimator (see Section 5.2.1),
which is generally more popular, especially for smaller .

S2=

(1.146)

Standard Normal Unfortunately, no closed-form solu-
tion exists for the integral of the normal probability density
function. Probabilities associated with the normal distribu-
tion must be obtained by numerical integration. Tradition-
ally, this has meant that normal probabilities have had to
be obtained by consulting tables presented in manuals and
textbooks. Of course, no book is big enough to contain the
complete set of tables necessary for all possible values of
and o, so some way of encapsulating the tables is necessary.
As it turns out, if the random variable X is transformed by
subtracting its mean and dividing by its standard deviation,
X—n
o

then the resulting random variable Z has mean zero and
unit variance (Figure 1.32). If a probability table is devel-
oped for Z, which is called the standard normal variate,
then probabilities for all other normally distributed random
variables can be obtained by performing the above normal-
izing transformation. That is, probabilities for any normally
distributed random variable can be obtained by perform-
ing the above transformation and then consulting the single
standard normal probability table.

The distribution of the standard normal Z is given the
special symbol ¢(z), rather than f(z), because of its impor-
tance in probability modeling and is defined by

7 =

(1.147)

¢(2) = e37 for —o0 < 7 < 00 (1.148)

1
V2r
The cumulative distribution function of the standard nor-
mal also has a special symbol, ®(z), rather than F(z),
again because of its importance. Tables of ®(z) are com-
monly included in textbooks, and one appears in Appendix
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Figure 1.32 Standard normal distribution.

A. Computing probabilities for any normally distributed
random variables proceeds by standardization, that is, by
subtracting the mean and dividing by the standard deviation
on both sides of the inequality in the following:

<

PX <x]=P[X_“ x_“}
o o

(1.149)
at which point, Table A.1 can be consulted, with z =

(x — p)/o, to obtain the desired probability.

Example 1.54 Suppose X is normally distributed with
mean 5 and standard deviation 2. Then, whatis P [X < 2.0]?

SOLUTION In order to use Table A.1, we standardize on
both sides of the inequality by subtracting the mean and
dividing by the standard deviation:

- Z—Mi|
<

o o

P[X <2.0] =P|:X

2-5
=P|:Z<—2 :|=P[Z<—1.5]

= O(—1.5)

Table A.1 does not include negative values, so we make
use of the symmetry of the standard normal. That is, the
area under the distribution to the left of z = —1.5 (see the
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figures below) is equal to the area under the distribution to
the right of z = 1.5. The table only gives areas to the left;
it is a cumulative distribution. This means that the area to
the right of a point must be obtained by subtracting the area
to the left from 1.0. This leaves us with

PIX <20]=1—-®(1.5) =1-0.93319 = 0.06681

Note, for increased precision, interpolation can be used
between table values, for example, if you are trying to
determine @(%). However, given the typical uncertainty in
the estimates of the mean and standard deviation, there is
probably little point in trying to obtain the final probability
too precisely.

The probability areas involved in this question are shown
below. The plot on the left illustrates the original P [X < 2]
while the plot on the right illustrates the transformed
standardized problem, P[Z < —1.5]. The shaded areas are
of equal size.

Example 1.55 The reliability of soil anchor cables against
tensile failure is to be assessed. Suppose that a particular
brand of cable has normally distributed tensile strength with
mean 35 kN and a standard deviation of 2 kN.

1. What is the probability that the tensile strength of a
randomly selected cable is less than 40 kN?

2. Approximately 10% of all sampled cables will have
a tensile strength stronger than which value?

3. Can you see any problems with modeling tensile

SOLUTION Let X be the tensile strength of the cable.
Then X is normally distributed with mean © = 35 kN and
standard deviation o = 2 kN.

X—n 40-35
1. P[X <40] =P < > =P[Z <2.5]
o
= 0.9938.
X—u x-=35
2. PIX>x]=0.10 — P > 5
o

= 0.10.
Since P[Z > 1.28] = 0.10, we have

1(x —35)=1.28 — x =37.56

so that 10% of all samples are stronger than 37.56 kN.
Note that in this solution we had to search through
Table A.1 for the probability as close as possible
to 1 —0.10 =0.9 and then read “outwards” to see
what value of z it corresponded to. A much simpler
solution is to look at the last line of Table A.2 under
the heading o = 0.10. As we saw previously, Table
A.2 is the inverse 7-distribution, and the z-distribution
collapsed to the standard normal when v — oo.

3. The normal distribution allows negative tensile
strengths, which are not physically meaningful. This
is a strong motivation for the lognormal distribution
covered in Section 1.10.9.

1.10.8.1 Central Limit Theorem 1f X{,X,...,X, are
independent random variables having arbitrary distribu-
tions, then the random variable

strength using a normal distribution? Y=X1+Xo+---+X, (1.150)
o
S
)
(=)
vy
(\]‘_
S < w=0
(=)
o n=3
S o=1
o=2 ]
22 S
= S o
<
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— (=)
=
8 =
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Probability plots for Example 1.54



has a normal distribution as n — oo if all the X’s have
about the same mean and variance (i.e., none is dominant).
See Papoulis (1991) for a proof of this theorem. In addition,
if the X’s are all normally distributed then Y is normally
distributed for any n.

Specifically we will find the following result useful. If

B 1<
X, =- X;
"

where X1, Xs,...,X, are independent samples taken from
population X having mean . and variance o> (any distri-
bution), then

lim P [M < xj| = d(x)

o = (1.151)

Implications

1. The sum of normal variates is normal (for any n) as
mentioned above.

2. If the distributions of the X’s are well behaved (almost
normal), Then n > 4 gives a good approximation to
the normal distribution.

3. If the distributions of the X’s are uniform (or almost
s0), then n > 6 yields a reasonably good approxima-
tion to the normal distribution (out to at least about
three standard deviations from the mean).

4. For poorly behaved distributions, you may need n >
100 before the distribution begins to look reasonably
normal. This happens, for example, with distributions
whose tails fall off very slowly.

Thus for n sufficiently large and X, X5, . .
and identically distributed (iid)

., X,, independent

Y =X + X+ +X,
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is approximately normally distributed with

iy =E[Y]=n E[X;]
oy = Var[Y] =n Var[X;]

(1.152a)
(1.152b)

If the X’s are not identically distributed but are still inde-
pendent, then

I ZE[Xi] (1.153a)
i=1

of =Y Var[X;] (1.153b)
i=1

1.10.8.2 Normal Approximation to Binomial By virtue
of the central limit theorem, the binomial distribution,
which as you will recall arises from the sum of a sequence
of Bernoulli random variables, can be approximated by the
normal distribution (Figure 1.33). Specifically, if N, is the
number of successes in 7 trials, then

N, = X”:X,-
i=1

where X; is the outcome of a Bernoulli trial (X; = 1 with
probability p, X; = 0 with probability ¢ = 1 — p). Since
N, is the sum of identically distributed random variables,
which are assumed independent, if n is large enough, the
central limit theorem says that N,, can be approximated by
a normal distribution. We generally consider this approx-
imation to be reasonably accurate when both np > 5 and
ng > 5. In this case, the normal distribution approximation
has mean and standard deviation

(1.154)

(1.155a)

o = Jpq (1.155b)

wy
S . .
Normal approximation
T~
S 7 74
—
=
=
v
0.7
S
< N B B B

T T T T T T T T T T T T
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
X

Figure 1.33 Normal approximation to binomial distribution.
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Of course, we know that N,, is discrete while the normal
distribution governs a continuous random variable. When
we want to find the approximate probability that N, is
greater than or equal to, say, k, using the normal distri-
bution, we should include all of the binomial mass at k.
This means that we should look at the normal probability
that (V, > k — %). For example, in Figure 1.33, the proba-
bility that N, > 20 is better captured by the area under the
normal distribution above 19.5.

In general, the following corrections apply. Similar cor-
rections apply for two-sided probability calculations.

k—05—
PIN, > k]~1— <7"> (1.156a)
o
k+05—
PIN, > k]~1—® (M) (1.156b)
o
k+05—
PN, <k]~ ® (u) (1.156¢)
o
k—05—pu
PIN, <k]~ & [ ~——2"H (1.156d)
o

Example 1.56 Suppose that in a certain region it is
equally likely for a soil sample to pass a particular soil
test as it is to fail it. If this is true, what is the probability
that more than 495 samples pass the test over the next 900
tests?

SOLUTION If we assume that soil tests pass or fail
independently with constant probability of passing the test,
then the number of tests passing, out of n tests, is N,,, which
follows a binomial distribution. The exact probability is
then given by

P [Nooo > 495] = P [Nggo = 496] + P [Nogp = 497]
+ -+« 4+ P [Nggop = 900]

_ 900 496 404 900 497 403
- <496)p 7 T 4070 1

900 900 0
ot (900)” 1

It is not practical to compute this with a simple hand
calculator, and even with a computer the calculations are
prone to numerical roundoff and overflow errors. The
normal approximation will give a very accurate result with
a fraction of the effort. We start by computing the mean
and variance of Nog:

E [Nogo] = 0 = np = (900)(0.5) = 450
Var [Nogo] = o> = npg = (900)(0.5)(0.5) = 225

so that 0 = /225 = 15. We now make the following ap-
proximation:

Nowo — 495 —
P[N900>495]=P|: LU “]

o o

495 4 0.5 — 450

=1—®(3.03)
= 0.00122

where, in the second line of the equation, we say that
(Nogp — )/ is approximately a standard normal, and,
at the same time, apply the half-interval correction for
increased accuracy. (Note that without the half-interval
correction we would get P [Nggp > 495] ~ 0.00135, a small
absolute difference but a 10% relative difference.)

1.10.8.3 Multivariate Normal Distribution The normal
distribution is also popular as a distribution governing
multiple random variables because it is simply defined
knowing only the mean and variance of each random
variable and the covariances acting between them. Consider
two random variables, X and Y ; these follow a bivariate
normal distribution if their joint distribution has the form

fer(x,y) =

1 . -1 <x — /LX)
Xp
ZJTO'Xo'y\/ 1-— ,02 2(1 - 102) Ox

2
iy (x—ux)(y—uy>+<y—uy> “ (1.157)
oy oy oy

for —oo < x,y < 0o, where p is the correlation coefficient
between X and Y and uy, py and oy, oy are the means and
standard deviations of X and Y, respectively. Figures 1.16
and 1.17 illustrate the bivariate normal distribution.

If X and Y follow a bivariate normal distribution, then
their marginal probability density functions, defined as

Sx(x) = / Sxr(x,y)dy (1.158a)

(o.¢]
) =/ Ser(x,y)dx (1.158b)
—00
are also normal distributions. For example, the marginal
distribution of X is a normal distribution with mean uy
and standard deviation oy, and similarly for the marginal
distribution of Y. That is,

. 1 1 (x — ux 2
fx(x)_axmexp:—5< p )} (1.159a)




1 1 (y—npy ?
)= expy—= < ) (1.159b)
W= p{ 2\,
Recall that the conditional probability of A given B is
P[A N B]
P[B]
From this, we get the following result for conditional
distributions:
fXY ()C, )’)

Q)

In particular, if X and Y follow a bivariate normal distri-
bution, then it can be shown that

P[A|B] =

Sepr(xly) = (1.160)

1
fx\Y(xD’)— m
2
1| x—puxy —p(y — uy)ox/oy
__ 1.161
X €exp =3 |: ol :| ( )

It can be seen from this that the conditional distribution
of X for a given Y =y also follows a normal distribution
with mean and standard deviation

— e}

x|y = iy + PO = Hr)ox (1.162a)
Oy

ox|y = oxy (1 — p?) (1.162b)

Example 1.57 Suppose that the load capacities of two
neighboring piles, X and Y, are jointly normally distributed
with correlation coefficient p = 0.7. Based on similar pile
capacities in the area, the following statistics have been
determined:

Ux = Uy = 2000, Oy = 0Oy = 500

What is the probability that the load capacity of pile X is
less than 1700 if nothing is known about the load capacity
of pile Y ? Alternatively, if the load capacity of pile ¥ has
been measured to be 1800, what is the probability that X
is less than 1700 in light of this information?

SOLUTION If nothing is known about the load capacity
of Y, then the probability that X is less than 1700 depends
only on the marginal distribution of X. That is,

1700 —
P[X < 1700] :P[z < 7“"}

Ox

1700 — 2000
=P|Z < ———
500

= &(—0.6)
—0.274
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If, however, we know that Y = 1800, then we are look-
ing for the probability that pile X < 1700 conditioned on
the fact that pile ¥ = 1800. The conditional mean of X
given Y = 1800 is
POy — iy)ox

Oy
0.7(1800 — 2000)(500)
500

Ux|y = Ux +

= 2000 +
= 1860

This is saying, as expected, that the conditional mean of
pile X is substantially reduced as a result of the fact that
the neighboring pile had a relatively low load capacity. The
conditional standard deviation of X given ¥ = 1800 is

Ox|y = Ox 1—p?

=500v/1—0.7%
= 357.07

This is reduced from the unconditional standard deviation
of 500 because the relatively high correlation with the
neighboring pile constrains the possible values of pile X.
For example, if the correlation between pile capacities were
1.0, then we would know that X = Y. In this case, once we
know Y, we would know X with certainty. That is, when
p = 1, the variance of X | Y falls to zero. When p =0, X
and Y will be uncorrelated, and thus independent, since they
are normally distributed, and the observation of ¥ will then
make no difference to the variability (and distribution) of X .

For our question, the desired conditional probability is

now
1700 —
P[X < 1700|Y = 1800] = @ <$>

Ox |y

— <1700 — 1860)
357.07
= $(—0.45)
=0.326
As expected, the observation of a low load capacity at a

neighboring pile has increased the probability of a low load
capacity at the pile of interest.

To extend the multivariate normal distribution to more
than two random variables, it is useful to use vector—matrix
notation. Define

123!
n2
"= ’ (1.163)

Hn
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to be the vector of means of the sequence of n random

variables X = {X},X>,...,X,} and
Ch Cp - - - Cyy
Cyp Cn - - - Oy
C = . . . : (1.164)
_Cn] Coo - - - Crm_

to be the matrix of covariances between X; and X;, i =
1,2,...,nandj = 1,2,...,n. Each element of the covari-
ance matrix is defined as

Cij = Cov [X,-,Xj] = 0;j0;0; ifi #j
= Var[X;] = o/ ifi =j

Note that if the X;’s are uncorrelated, then the covariance
matrix is diagonal:

ol 0 0

0 o} 0
C =

[0 0 o2

Using these definitions, the joint normal distribution of

X:{X],XZ,...,Xn}iS
f (X)_ ;
YT nyryic

x exp{—1(x—w'C'x— ) (1.165)
where |C] is the determinant of C and superscript T means
the transpose.

As in the bivariate case, all marginal distributions are
also normally distributed:

JED) L . l(xi_“i)2 (1.166)
X)) = X — = .
i oiN2mw P12 o]}

The conditional distributions may be obtained by partition-
ing the vector X into two parts (Vanmarcke, 1984): X, and

X, of size n, and n,, where n, + n, = n, that is,

X

X X
X = e b= { “ } (1.167)
Xna+1 Xp
X
having mean vectors
1231 Mng+1
ny = , my = (1.168)
Mng Hon

Using this partition, the covariance matrix can be split into

four submatrices:
C aa C a
Cra Cpp

where €, = C_,. Using these partitions, the conditional
mean of the vector X, given the vector X, can be obtained
from

(1.169)

oty = Mo +CarChy (X — ) (1.170)
Similarly, the conditional covariance matrix is
Calb =Cuy _Cabe_b]CZb (1.171)

With these results, the conditional distribution of X, given
Xb is

1
A 1x, X |Xp) = ———
% Qryal2 /ICq s

x exp{ =205 = ) €y =)} (1172)

1.10.9 Lognormal Distribution

From the point of view of modeling material properties
and loads in engineering, which are generally nonnegative,
the normal distribution suffers from the disadvantage of
allowing negative values. For example, if a soil’s elastic
modulus were to be modeled using a normal distribution,
then there would be a nonzero probability of obtaining a
negative elastic modulus. Since a negative elastic modulus
does not occur in practice, the normal cannot be its true
distribution.



As an approximation, the normal is nevertheless often
used to represent material properties. The error incurred
may be slight when the coefficient of variation v is small.
For example, if v < 0.3, then P[X < 0] < 0.0004, which
may be fine unless it is at these extremes that failure is ini-
tiated. A simple way to avoid such problems is to fit a non-
negative distribution to the population in question, and one
such candidate is the lognormal distribution (Figure 1.34).
The lognormal distribution arises from the normal distri-
bution through a simple, albeit nonlinear, transformation.
In particular, if G is a normally distributed random vari-
able, having range —oo0 < g < +00, then X = exp{G} will
have range 0 < x < oo. We say that the resulting random
variable X is lognormally distributed—note that its natural
logarithm is normally distributed.

The random variable X is lognormally distributed if
In (X) is normally distributed. If this is true, then X has
probability density function

1 1 /Inx — pnx \°
f)= ———F=exp{—= <7> ,
X0y~ 2T P 2 Olnx

0<x <o

(1.173)

Note that this distribution is strictly nonnegative and so
is popular as a distribution of nonnegative engineering
properties, such as cohesion, elastic modulus, the tangent
of the friction angle, and so on. The two parameters of the

distribution,
tinx =E[In X1,  of, = Var[ln X]

are the mean and variance of the underlying normally
distributed random variable, In X.

a
S
=
= ;
e Common mean, u =10
ol Medians
4 i
S|
/ o=10
| : |'|
0

25 30 35 40

Figure 1.34 Two lognormal distributions illustrating effect of
changing variance.
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Computing Probabilities In order to compute probabili-
ties from the lognormal distribution, we must make use of
the fact that In(X) is normally distributed so that we can
use the standard normal table. That is, in a probability ex-
pression, we take logarithms on both sides of the inequality,
then standardize by subtracting the mean and dividing by
the standard deviation of In X,

P[X <a] =P[In(X) < In(a)]
p [IH(X) — My In(a) — M]nx:|
= <

Olnx Olnx

—P |:Z < M}
Olnx

—® <1H(Cl) - Mlnx)
Olnx

where, as before, Z is the standard normal random variate.

(1.174)

Mean and Variance The mean and variance of X are ob-
tained by transforming the two parameters of the lognormal
distribution,

fty = E[X] = e/nx+3%x (1.175a)

02 = Var[X] = 12 (e“ﬁx - 1) (1.175b)

Alternatively, if you are given uy and o2, you can obtain
the parameters up,x and alfl . as follows:

2 f’)?
oty =In <1 + —2> (1.176a)
155%
finx = In(py) — S0 (1.176b)
Characteristics and Moments
Mode = einX ~inx (1.177a)
Median = e*inX (1.177b)
Mean = enX+3ix (1.177¢)
E [X"] = Frmx+3koq (1.177d)

Note that the mode < median < mean, and thus the
lognormal distribution has positive skew. A distribution is
skewed if one of its tails is longer than the other, and, by
tradition, the sign of the skew indicates the direction of the
longer tail.

Figure 1.35 illustrates the relative locations of the mode,
median, and mean for the nonsymmetric lognormal distri-
bution. Because of the positive-skewed, or “skewed-right,”
shape of the distribution, with the long distribution tail to
the right, realizations from the lognormal distribution will
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Figure 1.35 Location of mode, median, and mean in lognormal
distribution for uy = 10 and oy = 5.

have very large values every now and then. This results in
the mean being drawn to the right (e.g., the arithmetic aver-
age is affected by very large values in the sum). Often, for
the lognormal distribution, the median is actually viewed as
the primary characteristic of the distribution, since it divides
the distribution into equal halves.

It is worth digressing slightly at this point and consider
the median of a lognormal distribution in a bit more de-
tail, especially with respect to its estimation. Suppose that
we have taken several observations xp, x», ..., x, of a log-
normally distributed random variable X. An estimate of the
mean of In(X) is just the average of In(x), In(xy), . . ., In(x,),

1 n
[l = — In i
iy = ; ()

where the hat denotes that this is an estimate of (), x. From
this, an estimate of the median, X, is

3 . 1
% = exp{flnx} = exp {; Zln(xi)}
i=1

Alternatively, the geometric average x, of a sequence
of nonnegative numbers is defined as the nth root of the
product of the n observations,

(1.178)

(1.179)

1
Xg = (X122 -+ x) /"

= exp {ln ((x1x2 . -xn)l/”)}

= exp :% Zln(xi)}
i=1

which is identical to the equation for X, so we see that
the geometric average is an estimate of the median of a

(1.180)

lognormally distributed random variable. As we shall see in
Section 4.4, this also means that the median of a lognormal
distribution is preserved under geometric averaging.

Multiplicative Property If X =Y;Y,---Y, and each V;
are (positive) independent random variables of any distri-
bution having about the same “weight,” then

InX=InY,+InY,+---+InY, (1.181)
and by the central limit theorem InX tends to a normal
distribution with

(1.182a)

(1.182b)

Minx = Miny; + Miny, + -+ Uiny,
2 _ 2 2 2
Olnx = Oy, +U]nY2 + e +UlnY,,

Thus X tends to a lognormal distribution with parameters
Mmx and 01?1 - This is a useful property since it can be
used to approximate the distribution of many multiplicative
functions.

In particular, if X is any multiplicative function, say

AB
X=" | =

C InX =InA+InB—-InC

(1.183)
and A, B, and C are independent and lognormally dis-
tributed, then X is also lognormally distributed with

Hinx = Mina + Uing — Kinc
2 2 2 2
Olnx = Olna + Ohng + Onc

Recall that for variances the coefficient of —1 appearing
before the last term in Eq. 1.183 is squared, so that, in the
case of independence, the variance of a sum is literally the
sum of the variances. (If A, B, and C were correlated, then
the covariance terms which would have to be added in to
find 01121 + would have sign dependent on the signs appearing
in the original sum.)

Consider again the geometric average, this time for
random observations (i.e., before we have observed them),

X, = (X Xa- - X))V = X" x X" %o X

which is a product of n random variables. By the central
limit theorem, X, will tend to a lognormal distribution so
that

In(Xy) = In (X1 X2 - - X,)'/") = % > In(x;)
i=1

is normally distributed. As mentioned above, X, is an
estimate of the median of X if X is lognormally distributed.
However, even if X is not lognormally distributed, X, will
tend to have a lognormal distribution, by the central limit
theorem, if the X;’s are nonnegative. We shall see more of
this in Chapter 4 where we suggest that in a variety of cases



the lognormal distribution is a natural distribution for soil
properties according to the central limit theorem.

The MLEs for uj,y and ‘71%1 , are the same as for the
normal distribution except that In(X) is used in the esti-
mate. If xi,x;,...,x, are n independent observations of a
lognormally distributed random variable, then the MLEs are

1 n
0 = — In x; 1.184
Pnx =~ ; n x (1.184a)

1 n
Gy = . XI:(hl Xi — flmx)’ (1.184b)
1=
The more common estimator for alfl y 1s slightly different,
having the form

) 1 )
Gy = —— (0 xi — fimnx)* (1.185)
i=1

which is an unbiased estimator (see Section 5.2.1).

Example 1.58 The settlement § of a shallow foundation,
in meters, can be computed as

§=c—
E

where L is the footing load, E is the soil’s effective elastic
modulus, and ¢ is a constant which accounts for geometry
(footing area and aspect ratio, depth to bedrock, etc.) and
Poisson’s ratio. Assume that ¢ is nonrandom and equal to
0.15 m~! and that the load and elastic modulus are both
lognormally distributed with

e = 20,000.0 kN/m?,
ur = 1200.0 kN,

o = 4000.0 kN/m?
o = 300.0 kN
What is the probability that the footing settlement exceeds
0.025 m?
SOLUTION  First write In(§) = In(c) + In(L) — In(E), so
that
— 2 _ 2 2
Mins = In(c) + pine — Mine, Olns = Oz t Olng

where we assumed independence between In(L) and In(E)
when computing the variance of In(8) (so that the covari-
ance terms can be dropped). To compute the above, we
must first find the means and variances of In(L) and In(E):

2 2
) o 300
=hh(l+—=%)=h(l4+——=
oL n< +Hi) n( +12002
= 0.060625

fnz = In(ur) — Soi3 ;= In(1200) — £(0.060625)
= 7.059765
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2 2
5 o2 4000
=In(14+ % )=In(1+—— ) =0.039221
Oin “( U%;) “( " 20,0002
pine = In(ue) — Soih, = In(20,000) — £(0.039221)
= 9.883877
Thus,

fms = In(0.15) + 7.059765 — 9.883877 = —4.721232
o5 = 0.060625 + 0.039221 = 0.099846
Ons = /0.099846 = 0.315984

and

P[§ > 0.025] =1 — P[5 < 0.025]

—1_P [Z < ln(0.025) — M1n6:|

Olns
=1-P[Z <3.27]
=1-®@3.27) = 1 —0.9994622
= 0.00054

Most foundations are designed to have probability of failure
ranging from 0.001 to 0.0001 against ultimate limit states
(e.g., bearing capacity failure). This foundation would be
considered very safe with respect to settlement failure, es-
pecially since excessive settlement is generally considered
to be only a serviceability limit state issue.

1.10.9.1 Bivariate Lognormal Distribution Generally,
the multivariate lognormal distribution is handled by di-
rectly considering the underlying multivariate normal distri-
bution. That is, rather than considering the joint distribution
between the lognormally distributed variates X1, X», ..., we
consider the joint distribution between In X;, In X», . .. since
these are all normally distributed and the results presented
in the previous section can be used. However, we some-
times need to consider the lognormally distributed variates
directly. Here we will present some results for two lognor-
mally distributed random variables X; and X5.

If X; and X, are jointly lognormally distributed, then
their bivariate distribution is

1
fxlxz(X,y)I 2—
TTOIn X, Oln X, I'Xy
1
X exp {—ﬁ [WF =200 1201 W) + \1/22]} ,

x>0,y>0 (1.186)

where Wy = (Inx — pinx,)/0nx,, W2 =(ny — pinx,)/
Olnx,s 72 =1 — p? 15, and pp 12 is the correlation coefficient
between In X; and In X>.



60 1 REVIEW OF PROBABILITY THEORY

In general, the parameters fny,, Onx, can be obtained
using the transformation equations given in the previous
section from the parameters iy,, ox,, and so on. If we
happen to have an estimate for the correlation coefficient
p12 acting between X and X,, we can get pj, 2 from

In(1 + p12vx, vx,)
\/ln(l +v2)In(l +v2)

where vy, = oy, /Ly, is the coefficient of variation of X;.
We can also invert this relationship to obtain an expression
for p2,

Pin12 = (1.187)

eXp{On 1201 x,Onx,} — 1

\/(exp{alixl} — 1) (exp{al%lXZ} — 1)

1.10.10 Bounded tanh Distribution

P12 = (1.188)

The second half of this book is devoted to a variety of
traditional geotechnical problems which are approached
in a nontraditional way. In particular, the soil or rock is
treated as a spatially variable random field. We shall see in
Chapter 3 that a random field with a multivariate normal
distribution has the advantage of being fully specified by
only its mean and covariance structure. In addition, the
simulation of random fields is relatively straightforward
when the random field is normally distributed and more
complicated when it is not.

Unfortunately, the normal distribution is not appropriate
for many soil and rock properties. In particular, most ma-
terial properties are strictly nonnegative (e.g., elastic mod-
ulus). Since the normal distribution has range (—oo, +00),
it will always admit some possibility of negative values.
When one is simulating possibly millions of realizations of
a soil or rock property using the normal distribution, some
realizations will inevitably involve negative soil/rock prop-
erties, unless the coefficient of variation is quite small and
chance is on your side. The occurrence of negative proper-
ties often leads to fundamental modeling difficulties (e.g.,
what happens when Poisson’s ratio or the elastic modulus
becomes negative?).

In cases where the normal distribution is not appropriate,
there are usually two options: (1) choose a distribution
on the interval (0,400) (e.g., the lognormal distribution)
or (2) choose a distribution which is bounded both above
and below on some interval (a,b). The latter would be
appropriate for properties such as friction angle, Poisson’s
ratio, and void ratio.

As we saw above, the lognormal transformation X = e“,
where G is normally distributed, leads to a random variable
X which takes values on the interval (0, +o00). Thus, the
lognormal distribution derives from a simple transformation
of a normally distributed random variable or field. In the

case of a bounded distribution, using the transformation
G
X=a+ib-a [1 + tanh (m ;S )] (1.189)
T

leads to the random variable X being bounded on the in-
terval (a, b) if G is a standard normally distributed random
variable (or at least bounded distribution—we shall as-
sume that G is a standard normal here). The parameter
m is a location parameter. If m = 0, then the distribu-
tion of X is symmetric about the midpoint of the interval,
%(a + b). The parameter s is a scale parameter—the larger
s is, the more variable X is. The function tanh is de-
fined as

4 —Z
tanh(z) = ———
et t+e7?
In essence, Eq. 1.189 can be used to produce a random
variable with a distribution bounded on the interval (a, b),
which is a simple transformation of a normally distributed
random variable. Thus, a bounded property is easily sim-
ulated by first simulating the normally distributed random
variable G and then applying Eq. 1.189. Such a simula-
tion would require that the mean and covariance struc-
ture of the simulated normally distributed random pro-
cess be known. To this end, Eq. 1.189 can be inverted to

yield
X—a (1.191)
b—X '

(1.190)

m+sG=nln<

Since G is a standard normal (having mean zero and
unit variance), the parameters m and s are now seen
as the mean and standard deviation of the normally dis-
tributed random process (m + sG). These two parameters
can be estimated by observing a sequence of realizations
of X, that is, xi,x2,...,x,, transforming each accord-

ing to
| Xi —da
i = lIn
i b—x,

and then estimating the mean m and standard deviation s
using the traditional estimators,

m=%zyi

l n
— A 2
s = n—lél@’ m)
1=

In order to estimate the correlation structure, the spatial
location, X, of each observation must also be known, so
that our observations become x(x;), i = 1,2,...,n, and y;
also becomes a function of x;. The methods of estimating
the correlation function discussed in Sections 5.3.6 and
5.4.1.1 can then be applied to the transformed observations,

y(x;).

(1.192)

(1.193a)

(1.193b)



The probability density function of X is

V(b —a)
V2s(x —a)b — x)

2
x exp{—% [nln (2 :z> —m] } (1.194)

If m = 0, then the mean of X is at the midpoint, uy =
%(a + b). Since most bounded distributions are symmetric
about their midpoints, the remainder of this discussion will
be for m = 0.

Figure 1.36 illustrates how the distribution of X changes
as s changes for m = 0, a = 0, and b = 1. The distribution
shapes are identical for different choices in a and b, the
only change being that the horizontal axis scales with b — a
and the vertical axis scales with 1/(b — a). For example, if
a = 10 and b = 30, the s = 2 curve looks identical to that
shown in Figure 1.36 except that the horizontal axis runs
from 10 to 30 while the vertical axis runs from O to 0.3.
When s > 5, the distribution becomes U shaped, which is
not a realistic material property shape. Practically speaking,
values ranging from s = 0, which is nonrandom and equal
to the mean, to s = 5, which is almost uniformly distributed
between a and b, are reasonable.

The relationship between the parameter s and the stan-
dard deviation oy of X is also of interest. In the limit as
s — 00, the transformation given by Eq. 1.189 becomes a
Bernoulli distribution with p = 0.5 and X taking possible
values a or b. The standard deviation of X for s — oo must
therefore be 0.5(b — a). At the other extreme, as s — 0,
we end up with X = %(a + b), which is nonrandom. Thus,
when s — 0 the standard deviation of X is zero and when
s — oo the standard deviation of X is 0.5(b — a). We sug-
gest, therefore, that oy increases from zero when s = 0 to
0.5(b — a) when s — oo.

Se(x) =

Figure 1.36 Probability density function of X determined as
bounded transformation (Eq. 1.189) of normally distributed ran-
dom variable (m + sG) for m = 0 and various values of s.
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The following relationship between s and the variance of
X derives from a third-order Taylor series approximation to
tanh and a first-order approximation to the expectation:

o2 =(0.5%b —a)E [tanh2 (g)]
~ (0.5)2(17 _ a)2 E M
1+ [sG/2m)]

2

~ (0.5)%(b — a)? (1.195)

s
472 + 52
where E[Gz] =1 since G is a standard normal random
variable. Equation 1.195 slightly overestimates the true
standard deviation of X by 0% when s =0 to 11% when
s = 5. A much closer approximation over the entire range
0 < s <5 is obtained by slightly decreasing the 0.5 factor
to 0.46 (this is an empirical adjustment),

0.46(b — a)s
Oy ¥ ——————
. Van? + 52

The close agreement between Eq. 1.196 and a simulation-
based estimate is illustrated in Figure 1.37.

Equation 1.195 can be generalized to yield an approxi-
mation to the covariance between two random variables X;
and X;, each derived as tanh transformations of two stan-
dard normal variables G; and G; according to Eq. 1.189.
If G; and G; are correlated, with correlation coefficient p;;,
then

(1.196)

Cov [X;,X;] = (0.5%(b — a)*
x E |:tanh <SGi) tanh <ﬁ>i|
2 2

Simulated
................ 0.46(b — a) s / (4m2 + 51"

Ox

Figure 1.37 Relationship between ox and s derived from simu-
lation (100,000 realizations for each s) and Taylor’s series derived
approximation given by Eq. 1.196. The vertical scale corresponds
tob—a =20
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~ (0.5)%*(b — a)®

. [5G /2] [5G; /2)]
14(1/2) {[sG,- jem) + [st/(Zn)]z}
2
~ 2 — g2 P
~ 04620 —a) 57

where the empirical correction given in Eq. 1.196 was
introduced in the last step.

1.11 EXTREME-VALUE DISTRIBUTIONS

Most engineering systems fail only when extreme loads oc-
cur and failure tends to initiate at the weakest point. Thus, it
is of considerable interest to investigate the distribution of
extreme values. Consider a sequence of n random variables
X1,Xo, ..., X,. This could, for example, be the sequence of
tensile strengths of individual links in a chain, or the se-
quence of daily average soil moisture levels, or earthquake
intensities, and so on. Now define the extremes of this set
of random variables as

Y, = max(X;, X5, ..., X)) (1.197a)

Y] =min(X1,X2,...,X,,) (1197b)

so that if X; is the daily average soil moisture level, then
Y, is the maximum daily average soil moisture level over
n days. Similarly, if X; is the tensile strength of the ith
link in a chain, then Y; is the tensile strength of a chain
composed of n links.

1.11.1 Exact Extreme-Value Distributions

Let us first examine the behavior of the maximum, Y,. We
know that if the maximum is less than some number y,
then each X; must also be less than y. That is, the event
(Y, <y) must be equivalent to the event (X; <y N X, <
y N -+ N X, <y). In other words the exact distribution
of Y, is

P[Y,<y]=P[Xi=syNXo<y N - NX,<y]
(1.198)
If it can be further assumed that the X’s are independent
and identically distributed (iid) (if this is not the case, the
problem becomes very complex and usually only solved via

simulation), then

Fy,(») =P[Y, <y]
=P[X, <y|P[X> <y] --P[X, <]

= [Fx»]" (1.199)

where Fy is the cumulative distribution function of X. Tak-
ing the derivative gives us the probability density function

dFy,(y)
“dy =n[Fx()]

=n[FxO]" AO)

n—1 dFx(y)
dy

Jr, ) =
(1.200)

Example 1.59 Suppose that fissure lengths X in a rock

mass have an exponential distribution with fx(x) = e™".

What, then, does the distribution of the maximum fissure
length Y,, look like for n = 1, 5, 50 fissures?

SOLUTION If n =1, then Y, is the maximum of one
observed fissure, which of course is just the distribution of
the single fissure length. Thus, when n = 1, the distribution
of Y, is just the exponential distribution

) =f0)=e"”

When n = 5, we have

Fys(») =P[¥s <y]
=P[X, <y]P[X2 <y] - P[X5 <]
= [F0)]
=[1-eT

where we used the fact that Fy(x) =1—e¢™*. To find
the probability density function (which is usually more
informative graphically), we must differentiate:

dFvs) iy
fru) === =5 1= 7]

Similarly, when n = 50, we have
FYs()(y) = P[YSO = y]
=P[X; <y]P[X, <y]---P[Xs0 < y]
= [FX()’)
_ [1 _ e,y]SO

]50

and
dFy(y)

dy

Plots of these three distributions appear as in Figure 1.38.

fYSO(y) = = 50e™ [1 _ e—y]49

Example 1.60 Suppose that X follows an exponential
distribution with

fr(x) = re™™,

Then what is the probability that the largest from a sample
of five observations of X will exceed 3 times the mean?

x>0
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Figure 1.38 Distributions of maximum value of n observations
of exponentially distributed random variable.

SOLUTION For n =5, we have

Fys() =P[¥5 <y]
=P[X; <y]P[X; <y]---P[Xs <y]

= [FX()’)]S
—[1—e]

so that
P[rs>y]=1-[1—¢?7]

The mean of X is 1/A (see Eq. 1.120), so the probability
that Y5 exceeds 3 times the mean is

P |:Y5 > %] =1 [1— O]

=1-[1-¢]
— 0.14205

Now consider the distribution of the minimum out of n
samples, Y. If we proceed as we did for Y,,, then we would
look at the event Y < y. This event just means that X; <y
or X <y or..., that is,

PV, <y]=P[X;<syUX<y U UX, <y]
(1.201)
The union on the right expands into (}) + (3) + () + - +
(") terms—in other words potentially a ot of terms. A
better way to work out this distribution is to look at the

complement:

P[Y1>y]=P[X1>y N Xy >y ﬂ~-~ﬂX,,>y]
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:P[X1 >y]P[X2 >)’]"'P[Xn >y]

=[1-Fc»]" (1.202)
and since P[Y; > y] =1 — Fy (y) we get
Fr,0)=1-[1-Fm] (1.203)
and, taking the derivative,
fr) =n[l —Fx(y)]w1 FxO) (1.204)

Example 1.61 A series of five soil samples are taken at
a site and their shear strengths determined. Suppose that a
subsequent design is going to be based on the minimum
shear strength observed out of the five samples. If the
shear strengths of the individual samples are exponentially
distributed with parameter A = 0.025 m?/kN, then what is
the distribution of the design shear strength?

SOLUTION If we let Y| be the design shear strength,
where Y| is the minimum shear strength observed from the
n =5 samples, then

Fy,0)=1-[1=Fm]

where, for the exponential distribution, Fy(x) =1 — e~
Thus,

Ax

Fro)=1—-[1—(1—=e™)]

=1—e

From this we see that the extreme-value distribution of
the minimum of samples from an exponential distribu-
tion is also exponentially distributed with new parameter
A =ni =5(0.025) = 0.125. Notice that while the indi-
vidual samples have mean shear strength equal to 1/A =
1/0.025 = 40 kN/m?, the mean design shear strength is
one-fifth this value, 1/A’ = 1/0.125 = 8 kN/m?.

1.11.2 Asymptotic Extreme-Value Distributions

In cases where the cumulative distribution function Fy(x)
is not known explicitly (e.g., the normal or lognormal), the
exact distributions given above are of questionable value.
It turns out that if n is large enough and the sample is
random (i.e., composed of independent observations), then
the distribution of an extreme value tends toward one of
three “asymptotic” forms, which are explained as follows.
Thus, even if you do not know the precise form of the
distribution of X, the distribution of the extreme value
of Xi, X5, ..., X, can often be deduced, since there are
only three possibilities. The results presented below were
developed by Gumbel (1958).
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1.11.2.1 Type I Asymptotic Form If X has a distribu-
tion with an unlimited exponentially decaying tail in the
direction of the extreme under consideration, then the distri-
bution of the extreme will tend to the type I asymptotic form.
Examples of such distributions are the normal (in either
direction) and the exponential (in the positive direction).

In the case of the maximum, the type I extreme-value
distribution has the form

Fy,(y) = exp {—e 07} (1.205a)
fra@) = ay e 07 exp {—e 0} (1.205b)
where
u, = characteristic largest value of X
(-1
= mode of ¥, (1.206a)
o, = inverse measure of variance of Y,
= nfy(u,) (1.206b)

In particular, u, is defined as the value that X exceeds
with probability 1/n. It is found by solving P[X > u,] =
1/n for u,, giving the result shown above. If Fy'(p) is
not readily available, you will either have to consult the
literature or determine this extreme-value distribution via
simulation.

The mean and variance of the type I maximum asymp-
totic distribution are as follows:

E[Y,] =u, + L (1.207a)
273
JTZ
Var[v,] = ~— (1.207b)
6a?

where y = 0.577216. .. is Euler’s number.

Example 1.62 Suppose that a structure is supported by
n = 20 piles and that long-term pile settlements are dis-
tributed according to fy(x) = Ae™™ for x > 0 being the
settlement, where A = 0.2 mm~!. If we make the assump-
tion that the piles settle independently (probably a ques-
tionable assumption, so that the following results should
only be considered approximate), then find the asymptotic
parameters of the largest pile settlement, Y,,, out of the n
piles, assuming that n is large enough that the asymptotic
extreme-value distribution holds.

SOLUTION To find u,, we solve P[X > u,] = 1/n for
u, . For the exponential distribution,

1
PIX > uy] =e M ==
n

—\u, = —1In(n)
In(n) In(20)
Up = =
A 0.2
= 14.98 mm

and
oy = nfy(iy) = nae MO/A = 5
The parameter u, = 14.98 is the most probable largest
settlement out of the 20 piles (e.g., the mode of the
distribution).
The asymptotic extreme-value distribution is then

—e™ N
Fy,(y) = exp {—e 7"} = eXp{ }
n

The distribution of the minimum value, where the distri-
bution of X is exponentially decaying and unlimited in the
direction of the minimum, has the form

Fy, () =1—exp{—e 07} (1.208a)
fri0) =g e 10 Wexp {—e @0 (1.208b)
where

uy = characteristic smallest value of X

-5}

= mode of Y (1.209a)
o) = inverse measure of variance of Y

= nfx(uy) (1.209b)

In particular, u; is defined as the value that X has probabil-
ity 1/n of being below. It is found by solving P[X < u;] =
1/n for u;. The mean and variance of Y} are as follows:

14
EYi]=u — —
o

(1.210a)

2

Var[Y,] = =
! T 6ol

1

(1.210b)

Because of the mirror symmetry of the minimum and
maximum type I extreme-value distributions, the skewness
coefficient of Y, is 1.1414 whereas the skewness coefficient
of Yy is —1.1414. That is, the two distributions are mirror
images of one another.

1.11.2.2 Type II Asymptotic Form If X has a distribu-
tion with an unlimited polynomial tail, in the direction of
the extreme, then its extreme value will have a type II dis-
tribution. Examples of distributions with polynomial tails
are the lognormal (in the positive direction) and the Pareto



(in the positive direction) distributions, the latter of which
has the form
b o
Fx(x)=1—<—> forx > b

X

If the coefficient b is replaced by u, /n'/%, then we get

=1L (%)

n

for x > u,,/n]/”‘

The corresponding extreme-value distribution for the max-
imum, in the limit as n — 00, 1S

Fy,(y) =exp {— <”7> } fory>0  (1.211a)

a+1 o
fra ) = (;) (%) exp{—(“y—") } (1.211b)

u, = characteristic largest value of X

(-3
Fil(1-=
n

= mode of ¥, (1.212a)
« = shape parameter
= order of polynomial decay of Fy(x)
in direction of extreme (1.212b)

Note that although the lognormal distribution seems to
have an exponentially decaying tail in the direction of the
maximum, the distribution is actually a function of the form
aexp{—b(Inx)?}, which has a polynomial decay. Thus,
the extreme-value distribution of n lognormally distributed
random variables follows a type II distribution with

2 Inn

Olnx

o=

u, = expfu,}

.- [ln(ln n)+ 1n(47r)]
2y2Inn

The mean and variance of the type II maximum asymp-
totic distribution are as follows:

u, = opmxv2Inn —

+ Minx

1
E[Y,] =u,I' <l — —) ifa>1 (1.213a)

o

2
Var[Y,] = u>T (1 - —) —E’[Y,] ifa>2 (1.213b)
o

where I" is the gamma function (see Eq. 1.128).
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The distribution of the minimum for an unbounded poly-
nomial decaying tail can be found as the negative “reflec-
tion” of the maximum, namely as

ui

Fy.(y)=1—eXp{—<;) } y <0, u; <0(1.214a)

a+1 a
) =- (3) <ﬂ> exp {— <”—1) } (1.214b)
ur) \y y

where

uy; = characteristic smallest value of X

()

= mode of Y, (1.215a)
o = shape parameter
= order of polynomial decay of Fy(x)
in direction of extreme (1.215b)

The mean and variance of the type II minimum asymptotic
distribution are as follows:

1
E[Yl]zull"(l——) ifa>1 (1.216a)
o

2
Var[Y;] = ujT (1 — —) —E[Y,] ifa>2 (1.216b)
o

Example 1.63 Suppose that the pile settlements, X, dis-
cussed in the last example actually have the distribution

1
fx(x) = - for x > 1 mm
X

Determine the exact distribution of the maximum of a
random sample of size n and the asymptotic distribution
of the maximum.

SOLUTION We first need to find the cumulative distri-
bution function of X,
| 1

[—zdtzl—;, .le

Fy(x) =

The exact cumulative distribution function of the maximum
pile settlement, Y,,, is thus

Fy,(y) = [Fx()’)]” = [1 — %] fory > 1

and the exact probability density function of Y, is the
derivative of Fy,(y),

n 1 n—1
fyn(y)=—2|:1——:| fory > 1
y y
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For the asymptotic distribution, we need to find u, such
that Fy(u,) =1 — 1/n,
1 1
Fx(up)=1——=1—-—
uy, n
so that u, = n. The order of polynomial decay of Fy(x) in
the direction of the extreme (positive direction) is o = 1,
so that the asymptotic extreme-value distribution of the
maximum, Y, is

Fyn(y)zexp{—g} fory >0

n n
Frn ) = —zexp{——} for y = 0
y y

We see immediately that one result of the approximation is
that the lower bound of the asymptotic approximations is
y > 0, rather than y > 1 found in the exact distributions.
However, for n = 10, Figure 1.39 compares the exact and
asymptotic distributions, and they are seen to be very
similar.

1.11.2.3 Type III Asymptotic Form If the distribution of
X is bounded by a value, u, in the direction of the extreme,
then the asymptotic extreme-value distribution (as n — 00)
is the type III form. Examples are the lognormal and
exponential distributions toward the left and the beta and
uniform distributions in either direction. For the maximum,
the type III asymptotic form is

o
u—
Fy,(y) =exp|— Y fory <u (1.217)
U — uy

O
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Figure 1.39 Comparison of exact and asymptotic (type II)
extreme-value distributions for n = 10.

_ a—1 _ o
fyn(y)zuexp _(£=2 fory <u
(U — upy)® U — Uy
(1.217b)
where
u, = characteristic largest value of X
- 1
=F, (1—— (1.218a)
n
= mode of Y,
a = shape parameter
= order of polynomial decay of Fy(x)
in direction of extreme (1.218b)

The mean and variance of the type III maximum asymptotic
distribution are as follows:

ElY,l=u— (u —u,)l" (1 + é) (1.219a)

Var[Y,] = (u — uy)*

x [r (1 n 3) _r? (1 + 1)] (1.219b)
o o

In the case of the minimum, the asymptotic extreme-
value distribution is

Fy.(y)=1—exp{—<y u)} fory > u (1.220a)

_ oa—1 _ o
fy.(y)=uexp{—<y ”) } (1.220b)

(uy — u)® Uy —u

where

uy = characteristic smallest value of X

-1 ()

= mode of Y (1.221a)
« = shape parameter
= order of polynomial decay of Fy(x)
in direction of extreme (1.221b)

and « is the minimum bound on X. This distribution is also
a form of the Weibull distribution. The shape parameter «
is, as mentioned, the order of the polynomial Fy(x) in the
direction of the extreme. For example, if X is exponentially
distributed and we are looking at the distribution of the
minimum, then Fy(x) has Taylor’s series expansion for
small x of

Fx()=1—e™ ~1—(1—ix)=hx (1.222)



which has order 1 as x — 0. Thus, for the minimum of an
exponential distribution, o = 1.

The mean and variance of the type III maximum asymp-
totic distribution are as follows:

E[Y,] = u + (u; —u)l (1 + l) (1.223a)
o

Var[Y,] = () — u)?

(el) ()]
x| T\ 1+ =) -=T"(14+— (1.223b)
o o

Example 1.64 A series of 50 soil samples are taken at
a site and their shear strengths determined. Suppose that a
subsequent design is going to be based on the minimum
shear strength observed out of the 50 samples. If the
shear strengths of the individual samples are exponentially
distributed with parameter A = 0.025 m?/kN, then what is
the asymptotic distribution of the design shear strength (i.e.,
their minimum)? Assume that n is large enough that the
asymptotic extreme-value distributions hold.

SOLUTION If we let Y; be the design shear strength,
then Y; is the minimum shear strength observed among the
n = 50 samples. Since the shear strengths are exponentially
distributed, they are bounded by u# = 0 in the direction of
the minimum (to the left). This means that the asymptotic
extreme-value distribution of Y is type III. For this distri-
bution, we first need to find u; such that Fy(u;) = 1/n,

Fyx(u)=1—e =1/n
uy = —(1/2) In(1 —1/n)
so that u; = — In(0.98)/0.025 = 0.8081.

=

The order of polynomial decay of Fx(x) in the direction
of the extreme (toward X = 0) is « = 1, as determined by
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Eq. 1.222, so that the asymptotic extreme-value distribution
of the minimum, Y, is

Y
0.8081

fr) = ﬁexp{— (O.Syogl)} for y > 0

which is just an exponential distribution with parameter
A =1/0.8081 = 1.237. Note that the exact distribution
of the minimum is exponential with parameter A’ = nA =
50(0.025) = 1.25, so the asymptotic approximation is rea-
sonably close to the exact. Figure 1.40 illustrates the close
agreement between the two distributions.

Fyl(y)zl—exp{—( )} for y > 0

1.4

1.2

Exact
—————— Asymptotic type 1T

Figure 1.40 Comparison of exact and asymptotic (type III)
extreme-value distributions for n = 50.

1.12 SUMMARY

De Morgan (A U B) =A° N B¢, (A N B)Y=A°U B¢

Probability P[A U B]=P[A]+P[B]—-P[A N B]
P[A N B]=PI[A|B]-P[B] =P[B|A]-P[A]

P[E|A;]-P[A)]

P[4, |E] = _ _P[EW]-P[A]

Bayes’ theorem
P[E]

PDFs and CDFs Fx) = /x &) dE = f(x) = % Fx)

Yo PIEIA;]-P[A;]
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Variance

Covariance

Taylor’s series

Linear functions

Functions

Miscellaneous
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binomial

Poisson

Uniform

Exponential
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E[xn:/ f X3 fir (cy) dx dy

Var[X] =E[(X — p)*] = E[X?] -
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Y = g(X) = ¢ ds
=gX)=g(ux) +( —P«X)E

n n
Ify = Za,-X,- and Z = Zb,-X,-, then E[Y]

i=1 i=1
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CHAPTER 2

Discrete Random Processes

2.1 INTRODUCTION

We are surrounded in nature by spatially and temporally
varying phenomena, be it the height of the ocean’s surface,
the temperature of the air, the number of computational
cycles demanded of a CPU per second, or the cohesion
of a soil or rock. In this and subsequent chapters models
which allow the quantification of natural variability along
with our uncertainty about spatially varying processes will
be investigated. The models considered are called random
processes, or, more generally, random fields. To illustrate
the basic theory, processes which vary in discrete steps (in
either time or space) will be presented in this chapter. For
example, Figure 2.1 illustrates a SPT where the number
of blowcounts at each depth is a discrete number (i.e.,
0,1,2,...). This particular soil test can be modeled using a
discrete random process.

In theory a random process X(t), for all ¢ on the real
line, is a collection of random variables whose randomness
reflects our uncertainty. Once we have taken a sample of
X(t), such as we have done in Figure 2.1, there is no
longer any uncertainty in the observation, and our sample
is denoted x(¢). However, the blowcounts encountered by
a SPT at an adjacent location will not be the same as seen
in Figure 2.1, although it may be similar if the adjacent
test location is nearby. Before performing the test, the test
results will be uncertain: X(1) will be a discrete random
variable, as will X(2), X(3), and so on. The index ¢ refers
to a spatial position or time and we will often refer to
X(t) as the state of the process at position or time z.
For example, X (¢) might equal the number of piles which
have failed a static load test by time ¢ during the course
of substructure construction, where ¢ is measured in time.
Alternatively, X (¢) might be the depth to the water table,
rounded to the nearest meter, at the tth boring, where

Risk Assessment in Geotechnical Engineering Gordon A. Fenton and D. V. Griffiths
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t is now an index (might also be measured in distance
if borings are arranged along a line) giving the boring
number. For ease of understanding, the theory developed
in this chapter will largely interpret ¢ as time—the bulk
of the theory presented in this chapter has been developed
for time-varying random processes—but it is emphasized
that + can be measured along any one-dimensional line.
For geotechnical engineering, taking ¢ along a line in
space (e.g., depth) would probably be the most common
application.

When the index ¢ takes only a finite (or a countable) set
of possible values, for example ¢t = 0, 1,2,..., the process
X (t) is a discrete-time random process. In such cases, the
notation X, k =0, 1, ..., will be used to denote the random
process at each discrete time. Alternatively, if the index
t varies continuously along the real line, then the random
process is said to be a continuous-time process. In this case,
each instant in time can lead to a new random variable.

The state space of a random process is defined as the
set of all possible values that the random variable X (¢) can
assume. For example, we could have X (1) = 3, in which
case 3 is an element of the state space. In general, the
state space can be discrete or continuous. For example, if
X (t) is the number of SPT blows at depth ¢, then X (z)
has state space 1,2,.... Alternatively, if X(¢) is the soil’s
cohesion at depth 7, then X (¢) can take any nonnegative real
value; in this case the state space is continuous. Continuous
state spaces are somewhat more complicated to deal with
mathematically, so we will start by considering discrete
state spaces and save the continuous state spaces until the
next chapter.

Thus, a random process is a sequence of random vari-
ables that describe the evolution through time (or space) of
some (physical) process which, for the observer at least, is
uncertain or inherently random.

2.2 DISCRETE-TIME, DISCRETE-STATE
MARKOYV CHAINS

2.2.1 Transition Probabilities

We will first consider a random process X,, = X (t,) which
steps through time discretely. For example, a CPT sound-
ing will take readings at discrete depth intervals Xy =
X(0.000), X; = X(0.005),...,X, =X(nAz), and so on. In
addition, we will assume in this section that X, can only
assume a finite number of possible states (e.g., X, =
100, 200, . . . kPa). Unless otherwise noted, the set of pos-
sible states (i.e., a, b, . ..) of the random process X, will be
denoted by the positive integers i, = {1,...,m}. I[f X;, = iy,
then the process is said to be in state i, at time n.
Furthermore, suppose now that whenever the process X,,
is in state i,, there is a fixed probability that it will go to

71
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Figure 2.1 Standard penetration test: uncorrected blowcounts.

state j when we move to the next time step (n + 1). This
probability is denoted as p;;. Specifically, it is supposed that

Pij ZP[Xn+1 =j 1 Xy =in, Xu—1 =ln—1,---,
X, = i1, Xo = io] 2.1)

where the symbol | means “given that.” This equation
says the following: Given that the random process starts
in state ip and then progresses through states i1,i,... and
is currently in state i,, the probability that it will be in state
J in the next time step is given by p;;.

A closer look at the right-hand-side of Eq. 2.1 indicates
that there is a dependence not only on the current state
X,, = i, but also on past states X,,_, . ... Models of the fu-
ture which depend on not only the present but also the past
history are not uncommon. An example is creep strain in
concrete. However, such models are typically rather com-
plex and difficult to deal with, particularly mathematically.
As a result, almost all random process theories make use of
a simplifying assumption, namely that the future is depen-
dent only on the present and is not dependent on the past.

This is called the Markovian assumption or the Markov
property and this property allows Eq. 2.1 to be written much
more simply as

Pij =P[Xus1 =jI1X, =] (2.2)

The probability p;; is called the one-step transition prob-
ability.

The Markov property results in simple and thus popular
models. There are a great number of physical models in
which the future is predicted using only the current state;
for example, the future spatial position of a baseball can
be accurately predicted given its current position, veloc-
ity, wind velocity, drag coefficient, mass, center of gravity,
spin, rotational inertia, local gravity, relative location of
the sun and moon, and so on. In fact, it can be argued that
all mathematical models of the physical universe can be
represented as Markov models, dependent only on knowl-
edge of the complete current state to predict the future.
Of course, sometimes the level of detail required about the
current state, in order to accurately predict the future, is im-
practical (weather prediction being a classic example). This



lack of complete knowledge about the current state leads to
uncertainties in predictions, so that future states are most
naturally characterized using probabilities.

In addition to the assumption that the future depends only
on the present, a further simplification is often introduced,
namely that the one-step transition probabilities are station-
ary. This means that probabilities remain constant from step
to step. For example, the probability of going from state i
in step 3 to state j in step 4 is the same as the probability
of going from state i in step 276 to state j in step 277,
and so on. Mathematically, this can be realized by stating
that Eq. 2.2 remains true for any n =0, 1,..., that is, p;
is independent of the step n under consideration.

Furthermore, since probabilities are nonnegative and
since the process must make a transition into some state,
the following must also be true;

0<pj <1 forall1<i,j<m
m
Y opy=1 foralli=12,....m
j=1

which is to say that the sum of probabilities of going from
state i to any other state (including i) must be 1.0.

The probability p;; is really just an element of a one-step
transition probability matrix, which will be denoted as P.
Specifically, P is a nonsymmetric matrix whose rows sum
to 1.0. The one-step transition matrix for a random process
with m possible states appears as follows:

pi1 piz2 - - -+ Dim
p21 p2 - - DPm
P =
_pml Pm2 : : : pmm_

Example 2.1 Consider a sequence of piles arranged along
a line. The piles are load tested sequentially. Because of the
proximity of the piles, if one fails the load test there is a
40% probability that the next one in the sequence will also
fail the test. Conversely, if a pile passes the load test, the
probability that the next will also pass the load test is 70%.
What is the one-step transition probability matrix for this
problem?

SOLUTION Let state 1 be that the pile passes the load test
and state 2 be that the pile fails the load test. Then py; is the
probability of going from state 1 to state 1, which is to say
the probability that the next pile will pass the load test given
that the current pile has passed the load test. We are told
that p;; = 0.7. Similarly p;, = 0.4. Because rows sum to
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1.0, we must have p1p = 0.3 and p,; = 0.6, which gives us

p_| P l—p| |07 03
1—p p 06 04

Having established the probabilities associated with the
state in the next time step, it is natural to ask what the prob-
ability of going from state i to state j in two time steps will
be? What about three time steps? In general, the k-step tran-
sition probabilities pi(jk) can be defined to be the probability
that a process which is currently in state i will be in state
Jj in exactly k time steps. In this definition, the intervening
states assumed by the random process are of no interest, so
long as it arrives in state j after k time steps. Mathemati-
cally, this k-step transition probability is defined as

P =PXu =jlX, =i], nk=0, 0<ij<m

(2.3)
Again, only stationary k-step transition probabilities are
considered, in which pi(jk) is independent of the starting step
number, n. As with the one-step transition probabilities,
the k-step transition probabilities can be assembled into an

m X m matrix

PO = [p;]@] 2.4)

where
0sp’<l k=01.., i=12..m
j=12,...,m

and

m
Yopf=1k=01... i=12...m (25

j=1

Note that the zero-step transition matrix P© is just the iden-

tity matrix while the one-step transition matrix PV’ = P so
1

that pl(] ) = Dij -

Example 2.2 In any given day, a company undertakes
either zero, one, or two site investigations. The next day
the number of sites investigated can be either zero, one, or
two again, but there is some dependence from day to day.
This is a simple three-state, discrete-time Markov chain.
Suppose that the one-step transition matrix for this problem
appears as follows;

0.7 03 0.0
P=102 03 05
0.0 04 0.6

(Notice that rows must sum to 1.0 but columns need not.)
Figure 2.2 is called a transition diagram, which is a useful
graphical depiction of a Markov Chain. What is the two-
step transition matrix for this problem?
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0.3

0.6

Figure 2.2 Three-state transition diagram.

SOLUTION We will number our possible states 0, 1, and
2 to correspond with the number of sites investigated. Thus,
po1 1s the probability of going from no sites investigated on
day 1 to one site investigated on day 2 (pg; = 0.3 from the
above matrix).

Note that the numbering of the states is arbitrary. We
normally index the first state with a 1, the second with a 2,
and so on, up to m states (which is the usual matrix/vector
convention). However, when the first state is 0, the second
is 1, and so on, up to m — 1, it makes more sense to index
the states starting at O rather than at 1.

Let us start by computing the probability of going from
no sites investigated on day 1 to two sites investigated
on day 3. Clearly, since pp; = 0, the company cannot go
from zero to two sites in a single day (presumably this
never happens for the company, unfortunately). Thus, the
probability that the company goes from zero to two sites in
two days is just the probability that the company goes from
zero to one site in the next day times the probability that
the company goes from one to two sites in the second day:

p((é) = po1 - p12 = (0.3)(0.5) = 0.15

The probability that the company goes from zero to one site
in the next two days is a bit more complicated. In this case,
two paths can be followed: (a) the company starts with zero
sites, remains at zero sites in the next day, then investigates
one site in the second day or (b) the company starts with
zero sites, moves to one site in the next day, then remains
at one site in the second day. The desired probability now
involves a sum:

po; = poopor + porpin = (0.7)(0.3) + (0.3)(0.3) = 0.3

Similarly, going from one site investigated to one site in-
vestigated in two steps now involves three paths: (a) one
to zero and back to one, (b) one to one to one, or (c) one

to two and back to one. The probability of this is

P = propor + pupin + prapar = (0.2)(0.3) + (0.3)(0.3)
+ (0.5)(0.4) = 0.35

A closer look at the above equations reveals that in general
we can compute

2
2
pj(j) = E DikPkj
k=0

Using matrix notation, this can be expressed as

PP —p.p
so that
(0.7 03 00][07 03 00
PP =102 03 05|02 03 05
100 04 06][00 04 06

[0.55 030 0.15
=1020 035 045
1008 036 0.56

More generally, the Chapman—Kolmogorov equations
provide a method for computing the k-step transition prob-
abilities from the intermediate-step probabilities. These
equations are (reverting to the usual matrix indexing starting
from 1)

m

) _ W) _(k—v) i=12,...,m,
Py = 2 PPy i=12,...,m 26)
e=1
for any v =0,...,k. These equations are most easily un-

derstood by noting that pfz)pg_") represents the probability

that starting in state i the process will go to state j in k
transitions through a path that takes it into state £ at the
vth transition. Hence, summing over all possible interme-
diate states ¢ yields the probability that the process will
be in state j after k transitions. In terms of the transition
matrices, Eq. 2.6 is equivalent to

po = p» . phk= 2.7

where - represents matrix multiplication (see Eq. 2.6).
Hence, in particular,

PP =p.P=p?
and by induction
po = pk-l . p — pk (2.8)

That is, the k-step transition matrix may be obtained by
multiplying the matrix P by itself k times. Note that although



P® is the same as P*, the superscript (k) is retained to
ensure that the matrix components pi(jk) are not interpreted
as the component raised to the power k.

2.2.2 Unconditional Probabilities

So far, all of the probabilities we have considered are
conditional probabilities. For instance, pfjk) is the probability
that the state at time step k is j given that the initial state
at time step O is i. If the unconditional distribution of the
state at time step k is desired, we will first need to know
the probability distribution of the initial state. Let us denote
the initial probabilities by the row vector

70 ={mO O - O] 9

where the ith element in this vector, ;(0), is the probability
that the initial state is i, namely

7:(0) = P[Xo = i] (2.10)

for all 1 <i < m. Also, since the initial state must be one
of the possible states, the following must also be true:

im(O) =1
i=1

The desired unconditional probabilities at time step n may
be computed by using the total probability theorem (which
combines all possible ways of getting to a certain state),
that is,

2.11)

P[X, =j] = ZP[Xn =jlXo=i]P[Xo =i
i=1
= Py mi(0) (2.12)
i=1
If we define the n-step unconditional probabilities
n(n) = {mi(n), ..., tm(n)} (2.13)

with m;(n) = P[X, = i] being the probability of being in
state i at time step n, then w(n) can be found from

w(n) =mn()-P" (2.14)
Example 2.3 In an electronic load-measuring system,
under certain adverse conditions, the probability of an error
on each sampling cycle depends on whether or not it was
preceded by an error. We will define 1 as the error state and
2 as the nonerror state. Suppose the probability of an error
if preceded by an error is 0.75, the probability of an error if
preceded by a nonerror is 0.50, and thus the probability of a
nonerror if preceded by an error is 0.25, and the probability
of a nonerror if preceded by a nonerror is 0.50. This gives
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the one-step transition matrix
0.75 0.25
P =
0.50 0.50
The two-step, three-step, . .
are shown below:

P |:O.688 0.312} P |:0.672 0.328}

., seven-step transition matrices

0.625 0.375 0.656 0.344
ph_ 0.668 0.332 ps_ 0.667 0.333
0.664 0.336 0.666 0.334
pé _ 0.667 0.333 pl_ 0.667 0.333
0.667 0.333 0.667 0.333

If we know that initially the system is in the nonerror state,
then 71(0) = 0, 7(0) = 1, and m(n) = n(0) - P™. Thus,
for example, x(7) = {0.667,0.333}. Clearly either the load-
measuring system and/or the adverse conditions should be
avoided since the system is spending two-thirds of its time
in the error state.

Notice also that the above powers of P are tending
towards a “steady state.” These are called the steady-state
probabilities, which we will see more of later.

2.2.3 First Passage Times

The length of time (i.e., in this discrete case, the number
of steps) for the process to go from state i to state j for
the first time is called the first passage time Ny;. This is
important in engineering problems as it can represent the
recurrence time for a loading event, the time to (first) failure
of a system, and so on. If i = j, then this is the number of
steps needed for the process to return to state i for the first
time, and this is called the first return time or the recurrence
time for state i.

First passage times are random variables and thus have an
associated probability distribution function. The probability
that n steps will be needed to go from state i to j will be
denoted by fi](."). It can be shown (using simple results on
the union of two or more events) that

M _ M
fi =pj =Dy

@) @
fi7 =pi =1 b

) _ ) () =D @) =2 =D
fi - =pi —fy Py fi~ pj fi pi
(2.15)

The first equation, fij(.l), is just the one-step transition proba-

bility. The second equation, fl.j(.z), is the probability of going
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from state i to state j in two steps minus the probability of
going to state j in one time step—fij@ is the probability of
going from state i to j in two time steps for the first time, so
we must remove the probabilities associated with going to
state j prior to time step 2. Similarly, fi;S) is the probability
of going from state i to state j in three time steps minus
all probabilities which involve entering state j prior to the
third time step.

Equations 2.15 are solved recursively starting from the
one-step probabilities to finally obtain the probability of
taking n steps to go from state i to state j. The computations
are quite laborious; they are best solved using a computer
program.

Example 2.4 Using the one-step transition probabilities
presented in Example 2.3, the probability distribution gov-
erning the passage time n to go from state i = 1 to state
j=2is
W =pin=025

19 =0.312 - (0.25)(0.5) = 0.187

1 =0.328 — (0.25)(0.375) — (0.187)(0.5) = 0.141

£ =0.332 — (0.25)(0.344) — (0.187)(0.375)

—(0.141)(0.5) = 0.105

There are four such distributions, one for each (i,j) pair:
(1,1), (1,2) (as above), (2,1), and (2, 2).

Starting out in state 7, it is not always guaranteed that
state j will be reached at some time in the future. If it is
guaranteed, then the following must be true:

00

(n) _
20" =1
n=1

Alternatively, if there exists a possibility that state j will
never be reached when starting from state i, then

o0
(n)
D f" <1
n=1
This observation leads to two possible cases:

1. If the sum (above) is equal to 1, then the values fl.j(.")
for n = 1,2, ... represent the probability distribution
of the first passage time for specific states i and j, and
this passage will occur sooner or later. If i = j, then
the state i is called a recurrent state since, starting in

state i, the process will always return to i sooner or
later.

2. If the sum (above) is less than 1, a process in state
i may never reach state j. If i =, then the state i
is called a rransient state since there is a chance that
the process will never return to its starting state. (This
means that, sooner or later, the process will leave state
i forever.)

If p; =1 for some state i, then the state i is called an
absorbing state. Once this state is entered, it is never left.

Example 2.5 s state 0 of the three-state Example 2.2
transient or recurrent?

SOLUTION  Since all states in Example 2.2 “communi-
cate,” that is, state 0 can get to state 1, state 1 can get to
state 2, and vice versa, all of the states in Example 2.2 are
recurrent—they will all recur over and over with time.

Example 2.6 Considering the transition diagram in
Figure 2.3 for a three-state discrete-time Markov chain an-
swer the following questions:

(a) Is state 2 transient or recurrent?

(b) Compute the probabilities that, starting in state 0,
state 2 is reached for the first time in one, two, or
three time steps.

(c) Estimate (or make a reasonable guess at) the proba-
bility that state 2 is reached from state 0.

SOLUTION

(a) Since states 0 or 2 will eventually transit to state 1 (both
have nonzero probabilities of going to state 1) and since

0.3

Figure 2.3 Three-state discrete-time Markov chain.



state 1 is absorbing (stays there forever), both states 0
and 2 are transient. In other words, no matter where
this Markov chain starts, it will eventually end up in
state 1 forever.

(b) If we start in state O, the probability of going to state 2
in the next time step is 0.4. The probability of going to
state 2 in two time steps is equal to the probability
of staying in state O for the first time step (if we
ever go to state 1, we will never get to state 2) times
the probability of going to state 2 in the second time
step,

fo(zz) = poo po2 = (0.5)(0.4) = 0.2

The probability of going from state 0 to state 2 in three
time steps is equal to the probability of remaining in
state O for two time steps times the probability of going
to state 2,

1) = p2ypoz = (0.5)%(0.4) = 0.1

(c) The probability that state 2 is reached from state O is
equal to the probability that starting in state 0, state
2 is reached in any of time steps 1,2,.... This is
a union of the events that we reach state 2 in any
time step. Unfortunately, these events are not disjoint
(i.e., we could reach state 2 in both steps 2 and 4).
It is easier to compute this probability as 1 minus
the probability that we reach state 1 prior to reaching
state 2,

P [state 2 is reached]

=1- [Pm + poopo1 +P§ol?01 +-- ]

o
po1
=1-poi y_ph =1
k=0

T 1-poo
0.1

=1—- =
1-05

0.8

where each term represents the probability of remain-
ing in state O for k£ time steps and then going to state
1 in the (k + 1)th time step.

2.2.4 Expected First Passage Time

It is usually very difficult to calculate the first passage time
probabilities f;m for all n, especially considering the fact
that n goes to infinity. If one succeeds in calculating them
in some sort of functional form, then one could speak of
the expected first passage time of the process from state i
to state j, which is denoted p;;. In terms of the probabilities
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10

;i » the expected first passage time is given by

o
0, Zfi](.") <1
EN]=uy=1 _ "~ (2.16)
IBLTENDIVAES
n=1 n=1

andif ) 07, fij(-”) = 1, which is to say state j will eventually

be reached from state i, it can be shown that

wi =1+ Zpikukj
k#j

If i =, then the expected first passage time is called the
expected recurrence time (see Example 2.6). If u; = oo for
a recurrent state, it is called null; however, this can only
occur if there are an infinite number of possible states.
If u; < oo, then the state i is called nonnull or positive
recurrent. There are no null recurrent states in a finite-
state Markov chain. All of the states in such chains are
either positive recurrent or transient. Note that expected
recurrence times, u;;, are easily computed from the steady-
state probabilities, as discussed next.

2.17)

2.2.5 Steady-State Probabilities

As seen in Example 2.3, some Markov chains settle down
quite quickly into a steady state, where the unconditional
probability of being in a state becomes a constant. Only cer-
tain types of Markov chains have this property. Fortunately,
they are the most commonly occurring types of Markov
chains. To investigate the properties of such Markov chains,
a few more definitions are required, as follows:

1. A state is called periodic with period T > 1 if a return
is possible only in 7,27,37,... steps; this means that
pff) =0 for all values of n that are not divisible
by v > 1, and t is the smallest integer having this
property. Clearly the Markov chain in Figure 2.4 is
periodic (and not very interesting!).

2. State j is said to be accessible from state i if pi(j") >0
for some n > 0. What this means is that the process
can get to state j from state i sooner or later.

3. Two states i and j that are accessible to each other are
said to communicate, and this is denoted i <> j. Note
that, by definition, any state communicates with itself
since pfl.o) = 1. Also if state i communicates with state
j and state j communicates with state k, then state i
communicates with state k.

4. Two states that communicate are said to be in the same
class. Note that as a consequence of 1-3 above any
two classes of states are either identical or disjoint.
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0.0

Figure 2.4 Example of a periodic Markov chain.

5. A Markov chain is said to be irreducible if it contains
only one class, that is, if all states communicate with
each other.

6. If the state i in a class is aperiodic (i.e., not periodic)
and if the state is also positive recurrent, then the state
is said to be ergodic.

7. An irreducible Markov chain is ergodic if all of its
states are ergodic.

It is the irreducible ergodic Markov chain which settles
down to a steady state. For such Markov chains, the
unconditional state distribution

x(n) =mn(0)-P" (2.18)

converges as n — 00 to a constant vector, and the resulting
limiting distribution is independent of the initial proba-
bilities m(0). In general, for irreducible ergodic Markov
chains,

lim pi” = lim 7;(n) = 7
n—oo n—oo

and the m;’s are independent of i. The m;’s are called
the steady-state probabilities and they satisfy the following
state equations:

l.O<m <1foralj=12,...,m
2. Zj"nzlr[j :1
.= wiepy.j=12,....m

Using m = 3 as an example, item 3 can be reexpressed
using vector—matrix notation as

pu1 P12 P13
{m1 my w3} = {m1 w2 73} P21 P2 P23

P31 P32 P33

Since there are m 4 1 equations in items 2 and 3
above and there are m unknowns, one of the equations
is redundant. The redundancy arises because the rows of P
sum to 1 and are thus not independent. Choose m — 1 of
the m equations in 3 along with the equation in 2 to solve
for the steady-state probabilities.

Example 2.7 1In the case of the electronic load-measuring
system presented in Example 2.3, the state equations above
become

w1 = 0.75m; + 0.507,, l=m +m

Solving these for the steady-state probabilities yields
m=3 m=j3

which agrees with the emerging results of Example 2.3 as

n increases above about 5.

Note that steady-state probabilities and the mean recur-
rence times for irreducible ergodic Markov chains have a
reciprocal relationship:

1

Wi = —
v 7Tj’

j=12....m (2.19)

Thus, the mean recurrence time can be computed without
knowing the probability distribution of the first passage
time.

Example 2.8 A sequence of soil samples are taken along
the line of a railway. The samples are tested and classified
into three states:

1. Good
2. Fair (needs some remediation)
3. Poor (needs to be replaced)

After taking samples over a considerable distance, the
geotechnical engineer in charge notices that the soil classifi-
cations are well modeled by a three-state stationary Markov
chain with the transition probabilities

0.6 02 02
P=103 04 03
0.0 03 0.7

and the transition diagram in Figure 2.5.

(a) What are the steady-state probabilities?
(b) On average, how many samples must be taken until the
next sample to be classified as poor is encountered?



0.7

Figure 2.5 Transition diagram for railway example.

SOLUTION

(a) The following equations can be solved simultaneously:

w1 = 0.6 4+ 0.3 + 0.07r3
1w = 0.2 4+ 0.4m + 0.373
l=m +m +m3

to yield the steady-state probabilities

3 4 6

B T TTn
It appears that soil samples are most likely to be
classified as poor (twice as likely as being classified
as good).

(b) The mean number of samples required to return to state
3 (poor) is w33 (see Eq. 2.19) where

T =

M3z = i =2.17 samples
73

Example 2.9 The water table at a particular site may be
idealized into three states: low, moderate, and high. Because
of the probabilistic nature of rainfall patterns, irrigation
pumping, and evaporation, the water table level may shift
from one state to another between seasons as a Markov
chain. Suppose that the transition probabilities from one
state to another are as indicated in Figure 2.6, where low,
moderate, and high water table levels are denoted by states
1, 2, and 3, respectively.

(a) Derive the one-step transition matrix for this problem.
(b) Suppose that for season 1 you predict that there is an
80% probability the water table will be high at the
beginning of season 1 on the basis of extended weather
reports. Also if it is not high, the water table will be
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Figure 2.6 Transition diagram for water table problem.

three times as likely to be moderate as it is to be low.
On the basis of this prediction, what is the probability
that the water table will be high at the beginning of
season 2?

(c) What is the steady-state probability that the water table
will be high in any one season?

SOLUTION

(a) From Figure 2.6, the probability of going from low to
low (state 1 to 1) is 0.4, going from low to moderate
(1 to 2) is 0.5, and so on, leading to the following
one-step transition matrix:

04 05 0.1
P=103 03 04
0.1 0.7 02

(b) In this case, the initial state probabilities are w(0) =
{0.05 0.15 0.8}. Thus, at the beginning of season 2,
the unconditional state probabilities become

04 0.5 0.1
x(1)=1{0.05 0.15 0.8} {03 03 04
0.1 0.7 0.2

= {0.145 0.63 0.225}

Thus, the probability that the water table will be high
at the beginning of season 2 is 22.5%.

(c) To find the steady-state probabilities, we need to find
{mry 7 3} such that

0.4 0.5 0.1
{mp m m}={m m m}|03 03 04
0.1 0.7 0.2

and 7y + mp + w3 = 1.0. Using this and the first two
equations from above (since the third equation is
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linearly dependent on the other two), we have

w1 = 0.4m1 4+ 0.3m + 0.173
7wy = 0.571 4+ 0.3m + 0.773
1.0 =1.01 4+ 1.0 + 1.07r3

or
—-06 03 01| |m 0.0
05 =07 07| 3ym¢=140.0
1.0 1.0 1.0] |73 1.0

which has solution

Ty 0.275
my (= 10.461
3 0.265

so that the steady-state probability that the water table
will be high at the start of any one season is 26.5%.

Example 2.10 A bus arrives at its stops either early, on
time, or late. If the bus is late at a stop, its probabilities
of being early, on time, and late at the next stop are %, %,
and %, respectively. If the bus is on time at a stop, it is
equi-likely to be early, on time, or late at the next stop. If
it is early at a stop, it is twice as likely to be on time at the

next stop as either early or late, which are equi-likely.

(a) Why can this sequence of bus stops be modeled using
a Markov chain?

(b) Find the one-step transition matrix P.

(c) If the bus is early at the first stop, what is the probability
that it is still early at the third stop? What is this
probability at the fourth stop?

(d) If the controller estimates the bus to have probabilities
of 0.1, 0.7, and 0.2 of being early, on time, or late at
the first stop, what now is the probability that the bus
is early at the third stop?

(e) After many stops, at what fraction of stops is the bus
early on average?

SOLUTION

(a) Since the probabilities of being early, on time, or late at
any stop depend only on the state at the previous stop,
the sequence of stops can be modeled as a three-state
Markov chain.

(b) Define the states as 1 for early, 2 for on time, and 3 for
late. Then from the given information and making use
of the fact that each row of the transition matrix must

sum to 1.0, we get

Q= W= =
QAN W= KN
QN W= =

(c) For this question we need the two-step transition

matrix:
1 2 1 1 2 1
i 4 1 4 1 1
pPl=p.P=|1 1 1||1 1 1
3 3 3 3 3 3
1 2 3 1 2 3
6 6 6 6 6 6

0.271| 0.375 0.354

= 0.250 0.389 0.361
| 0.236  0.361 0.403

(note that all rows sum to 1.0, OK). This gives the
probability that it is still early at the third stop to be
0.271. For the next stop, we need to compute the three-
step transition matrix:

[0.271 0375 0354
P’=P?.P=|0250 038 036l
10236 0.361 0403

Q= W= =
QN W= KN
AW W= A=

so that the probability that the bus is early at the fourth
stop is 0.252.

(d) Now we have uncertainty about the initial state, and we
must multiply

0.271 0.375 0.354
{0.1 0.7 0.2}]0.250 0.389 0.361
0.236  0.361 0.403
= {0.249 0.382 0.369}
so that the probability that the bus is early at the third

stop is now 0.249.
(e) For the steady-state probabilities, we solve

1 1 1
T =z + 372 + g3
_ 1 1 1
T = 37 + 372 + 373

10=m 4+ m + m3



which gives us

Ty 0.250
m ( = 10.375
3 0.375

so that the steady-state probability of being early at a
stop is 0.25 (as suggested by the first column of the
matrices in part (c), which appear to be tending toward
0.25).

2.3 CONTINUOUS-TIME MARKOV CHAINS

The transition from the discrete-time Markov chain to the
continuous-time Markov chain is entirely analogous to the
transition from the binomial (number of “successes” in
n discrete trials) to the Poisson (number of successes in
time interval ). In fact, the Markov chain is really sim-
ply a generalization of the binomial and Poisson random
variables—rather than just success and “failure” as pos-
sible outcomes, the Markov chain allows any number of
possible “‘states” (m states have been considered in the
examples so far, where m can be any integer). In addi-
tion, the Markov chain allows for statistical dependence
between states from step to step. Nevertheless, a deeper
understanding of both discrete and continuous-time Markov
chains is possible through a more careful study of the bino-
mial and Poisson random variables. Recall that the binomial
random variable is characterized by p, the probability of
success. The Markov analogs are the set of state probabil-
ities (0) and transition probabilities p;;. However, when
time becomes continuous, the number of “trials” becomes
infinite (one at each instant in time), and it is no longer
meaningful to talk about the probability of success on an
individual trial. Rather, the Poisson distribution becomes
characterized by a mean rate of occurrence A. The mean
rate of occurrence can also be described as a mean intensity
which encourages “occurrences” over time. Higher intensi-
ties result in a larger number of occurrences over any time
interval.

In the continuous-time Markov chain, occurrences trans-
late into “state changes,” and each state has associated with
it an intensity which expresses the rate at which changes
into the state are likely to occur. State changes can be char-
acterized either by transition probabilities, which vary with
elapsed time and are difficult to compute, or by constant
intensities. The transition probability approach will be dis-
cussed first.

Continuous-time Markov chains are denoted X (¢), t > 0,
and the transition probability is now a function of elapsed
time (¢) since time zero. The continuous-time analog to the
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Chapman—Kolmogorov equations are

P =Y paWpyt —v), >0

(2.20)
k=1
for any 0 < v < t, where
pii(t) =P[X(1)=j1X(0) =i], i=1,2,....,m,
j=12,....m

Only stationary Markov chains are considered here, which
means that p;;(¢) depends only on the elapsed time, not on
the starting time, which was assumed to be zero above.
The property of stationarity has some implications that
are worth investigating further. Suppose that a continuous-
time Markov chain enters state i at some time, say time
t = 0, and suppose that the process does not leave state i
(that is, a transition does not occur) during the next 10 min.
What, then, is the probability that the process will not leave
state i during the following 5 min? Well, since the process
is in state i at time ¢ = 10, it follows, by the Markov and
stationarity properties, that the probability that it remains in
that state during the interval [10, 15] is just the same as the
probability that it stays in state i for at least 5 min to start
with. This is because the probabilities relating to states in
the future from ¢ = 10 are identical to those from # = 0,
given that the current state is known at time ¢. That is, if 7;
denotes the amount of time that the process stays in state i
before making the transition into a different state, then

P[T; > 15|T; > 10] = P[T; > 5]
or, in general, and by the same reasoning,
PIT; >t+s|T; >t]=P[T; > s]

for all s > 0, t > 0. Hence, the random variable T; is mem-
oryless and must thus (by results seen in Section 1.10.1) be
exponentially distributed. This is entirely analogous to the
Poisson process, as stated earlier in this section.

In other words, a continuous-time Markov chain is a
random process that moves from state to state in accordance
with a (discrete-time) Markov chain but is such that the
amount of time spent in each state, before proceeding to
the next state, is exponentially distributed. In addition, the
times the process spends in state i and in the next state
visited must be independent random variables.

In analogy with discrete-time Markov chains, the proba-
bility that a continuous-time Markov chain will be in state
j at time ¢ sometimes converges to a limiting value which
is independent of the initial state (see the discrete-time
Markov chain discussion for conditions under which this
occurs). The resulting 7;’s are once again called the steady-
state probabilities and are defined by

Jim i) =
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where 7; exists. Each 7; is independent of the initial state
probability vector w(0) and the steady-state probabilities
satisfy

I.O<m <1foralj=12,...,m

2. Z;nzlnj =1
3.0 =30 i pii(e) forj =1,2,...,m and t > 0

As an alternative to transition probabilities, the transition
intensities may be used. Intensities may be interpreted as
the mean rate of transition from one state to another. In this
sense, the intensity u; may be defined as the mean rate of
transition from state i into state j for any i not equal to
Jj. This has the following formal definition in terms of the
transition probability:

d
wj = - pij(Dli=o (2.21)

where the derivative exists.
The definition for u; is special—it is the intensity of
transition out of state j, with formal definition

d
wj = = Pii ®)li=0 (2.22)

Armed with these two definitions, the steady-state equations
can be rewritten as

Ty =y s
i#f
The above is a balance equation, that is, the “tendency” to
enter state j is equal to the tendency to exit state j, where
tendency is probability times mean transition rate.
Commonly the intensities u; are easier to find than
are the corresponding transition probabilities. An example
where this is the case follows.

j=12....m  (2.23)

Example 2.11 A university has two triaxial test machines.
Only one technician is available, so the test facility only
ever conducts one test at a time. If at least one test
machine is in proper repair, the test can proceed. If one
of the machines is out of order, it is sent to the university
machine shop for repair. The university machine shop has
the capacity to repair both machines simultaneously, if
necessary, although the actual repair time depends on the
problem. If both triaxial test machines are out of order, the
test facility becomes unavailable until one or the other test
machines have been repaired. The “system” here consists
of the two triaxial test machines and the repair shop. The
system states X (7) are defined as:

1. Both test machines operating

2. One test machine operating and one test machine in
repair

3. Two test machines in repair (testing unavailable)

The time to failure of a triaxial test machine has been found
to follow an exponential distribution,

re M >0
t — b p—
fr (@) {0’ £ 20

as does the repair time at the machine shop,

rr(t) = { pet, 120
0, t <0

Assuming that interfailure and interrepair times are in-
dependent, then X (¢) is a continuous-time, irreducible (i.e.,
no-absorbing-state) discrete-state Markov chain with transi-
tions only from a state to its neighbor states: | — 2,2 — 1,
2 — 3, and 3 — 2. Of course, there may be no state change
as well. (This chain is similar to that in Example 2.2 in that
state changes from first — last and from last — first are
not possible.)

In this problem, transition intensities can be obtained di-
rectly from the mean rates of the exponential distributions.
For example, the intensity u;; is just the transition rate
out of state 1. This is 2A since there are two machines
“waiting” to fail. The intensity u;;, the transition rate out
of state 2, is A + u, since either an additional failure or
a repair results in a move from state 2 (to either state 3
or state 1, respectively). Altogether, the transition inten-
sities are

upp =24, up = A+ u)
up =24, Uy = A
ui3 =0, u31 =0
U1 = U, uzy =2
uzz =2

The simplest way to view this system is to draw a transition
diagram (Figure 2.7), where, for the continuous-time prob-
lem, the arrows are labeled with the mean transition rates
rather than probabilities. Using this diagram, the balance
equations can be derived as follows:

1. For state 1 (both test machines operating), the ten-

dency to leave state 1 is 2A x m; and the tendency to

2\ A

u 2u

Figure 2.7 Continuous-time transition diagram for triaxial test
example.



enter state 1 is i X my, so the corresponding balance
equation is
QAT = Uiy

2. For state 2 (one test machine operating and one
in the repair shop), the tendency to leave state 2
is (A + wn) x mp and the tendency to enter state 2
is 21 x m; 4+ 2u x w3, so the corresponding balance
equation is

A+ )y = 207y + 2ums

3. For state 3 (both test machines in the repair shop), the
tendency to leave state 3 is 2 x w3 and the tendency
to enter state 3 is A X 71, which leads to the balance
equation

2;1,7'[ 3= )»7'[2

4. Finally, we know that the sum of the steady-state
probabilities must be equal to 1, so we have an
additional equation,

mtmta=1

We cannot use all four of the above equations, since
we have only three unknown steady-state probabili-
ties. In fact, the fourth equation tells us that the first
three equations are not linearly independent. Thus, us-
ing two of the first, second, or third equations along
with the fourth equation leads to the solution

u? 20 22
ot T arwr PT o2
The probability of test availability (that triaxial tests
can be performed) under steady-state conditions is
thus 1 minus the probability that the two machines
are both in the repair shop, namely,
22

A+ p)?

T

Availability = 1 —

2.3.1 Birth-and-Death Processes

As suggested by the name, birth-and-death processes have
traditionally been used to model population dynamics. The
basic idea is that the number of births and deaths in a
population depends on the current population. Small popu-
lations encourage high birth rates, while large populations
tend to have high death rates due to depletion of available
resources, competition, and so on. Birth-and-death pro-
cesses have found application in other areas. For example,
economists have traditionally used birth-and-death pro-
cesses to model the number of customers in a bank or a
store at any instant in time. The process can also be suc-
cessfully used to model the number of paying clients that
any business has at any point in time.
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Consider a system whose state at any time is the number
of customers in a store or bank. Suppose that if there are j
customers in the system, then:

1. New customer arrivals enter the system at a mean
rate A;.
2. Customers depart the system at a mean rate u;.

That is, if there are j customers in the system, then:

1. The time until the next arrival is exponentially dis-
tributed with mean 1/2;.

2. The time until the next arrival is independent of the
time until the next departure.

3. The time until the next departure is exponentially
distributed with mean 1/u;.

Such a system is called a birth-and-death process. The
parameters A; for j =0,1,... and p; for j =1,2,... are
called, respectively, the arrival (or birth) and departure
(or death) rates. Of course, wo =0 since the departure
rate when the population is zero must also be zero. In
this model, the arrival and departure rates are allowed to
depend on j, the number of people currently in the system.
As mentioned above, the dependence of birth and death
rates on the population size is quite realistic (e.g., limited
food resources mean higher death rates when the population
becomes too large).

In essence, a birth-and-death process is a continuous-time
Markov chain with states {0, 1,...} for which transitions
from state j may go only to either state j — 1 or state j + 1.
Thus, p;j(At) =0forj <i —1orj > i+ 1, where At is
the (infinitesimally small) time step increment. The matrix
of transition probabilities for time increment At may be
expressed as a tridiagonal matrix with the following form:

_I—AUAt Ao At . 0 0
nyAr =@y +ppar - - - 0 0
P =
0 0 =@y +uj—Ar hj—1At
L 0 0 e ujAt 1,()7. +uj)Ar_

The transition diagram for the birth-and-death process ap-
pears as in Figure 2.8. The steady-state equations are ob-
tained by applying Eq. 2.23. These give
K171 = AoTTo
Aotro + pomy = (Mg + @) - 7
My + pu3my = (A + o) - m2
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Ao A Ay Az Ay
My 22 "3 Mg Hs

Figure 2.8 Transition diagram for birth-and-death processes.

hj—o - mj—a+ w7 = (hj—1 + pj—1) - T

A7t + e = A + 1)) - 7

and Zfio m; = 1. Solving these equations yield

Ao
T =— -7
"1
Al Ao
Ty =— T = - 700
2 M2k
Ao Aadi Ao
M3=— - = —— 7
"3 M3pU2
and so on. In general,
A Aidiig---A
ﬂjH:_J.n._M.ﬂo (2.24)

Hivr T iy e
If the following is defined,

VY VI Y
G = i it S A (2.25)
Wil —1 -
then 7; = C; - mo, j = 1,2, ..., and since
o o0
erjzl or 7r0+an=1
Jj=0 j=1
o0
or 7o + 7o Z Ci=1
j=1
the final result becomes
1
)= —————— 2.26
0 TyE, G (2.26)

from which all the other steady-state probabilities can be
obtained using the equations shown above.

Note that the steady-state equations (and the solutions
that are derived from them) assume that the A; and p;

values are such that a steady state can be reached. This will
be true if

1. A; =0 for j > k, so that there is a finite number of
states, or

2. the mean arrival rate A; is less than the mean service
rate u; for all j.

Example 2.12 A very simple example of a birth-and-
death process (without a steady state) is the Poisson process.
The Poisson process has the following parameters:

my, =0 foralln >0
M =X foralln >0

This is a process in which departures never occur, and the
time between successive arrivals is exponential with mean
1/X. Hence, this is just a Poisson process which counts the
total number of arrivals.

Example 2.13 Suppose that a geotechnical engineer re-
ceives jobs at a mean rate of one every three days and takes
two days to complete each job, on average. What fraction
of the time does the engineer have two jobs waiting (i.e.,
three jobs “in the system™)?

SOLUTION This is a special kind of birth-and-death
process, where the birth (job arrival) rates and the death
(job completion) rates are constant. Specifically

A=A = =4,
where A = % arrival per day and p = % job completed per
day. In this case, because all birth and death rates are

constant, we have )
A J
(2

RN

00 if A>pu

Hi=pp=--=p

and

1+ C = - = .
j; J <:0<M) ifr<p

s
m

since (A/u)? = 1. Clearly, if the mean arrival rate of jobs
exceeds the mean rate at which jobs can be completed,



then the number of jobs waiting in the system will almost
certainly (i.e., sooner or later) grow to infinity. This result
gives, when A < u,

= s = L

2
Il
—
= >
~—
T
|
= >
~—

From this, we see that the probability that three jobs are in
the system (two waiting to be started) at any one time is just

=) (-3)-(3) (-
() ()

so that the engineer spends just under 10% of the time with
two more jobs waiting.

Example 2.14 Now suppose that the geotechnical engi-
neer of the last example has developed a policy of refusing
jobs once she has three jobs waiting (i.e., once she has four
jobs in the system—three waiting plus the one she is work-
ing on). Again the job arrival rate is one every three days
and jobs are completed in two days on average. What now is
the fraction of time that the engineer has two jobs waiting?
Also, what fraction of incoming jobs is the engineer having
to refuse (this is a measure of lost economic potential)?

SOLUTION In this case, the population (number of jobs)
is limited in size to 4. The states, 0—4, denote the number
of jobs she needs to accomplish. The transition diagram for
this problem appears as in Figure 2.9. For a limited popu-
lation size, the solution is only slightly more complicated.
Our arrival and departure rates are now

A=A = =Ay_1 =4, )\mz)\m+1:"':O

== =N
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Figure 2.9 Transition diagram for limited-queue problem.

where m = 4. This gives us

a~(2) =) ()

Cm+1=Cm+2:"':0
so that i
o0 m )\' J
Eo-£ ()
j=1 j=0 H
and
1
Ty =
m J
s (2)
()
T =\— )7
"
()
Ty = | — T
"

Using these results with m = 4, A = %, W= %, and A/p =
% gives
1
o = . . = 03839
1+(2/3) +(2/3)* +(2/3)° +(2/3)

(3)(0.3839) = 0.2559

]
m = (2)%(0.3839) = 0.1706
w5 = (2)%0.3839) = 0.1137
s = (2)%0.3839) = 0.0758

So the probability of having three jobs in the system
increases when the engineer has a limit to the number of
jobs waiting. This is perhaps as expected since the engineer
no longer spends any of her time in states 5,6,..., those
times are now divided among the states 0 to 4. We also
see that 7.58% of her time is spent in state 4. During this
fraction of time, incoming jobs are rejected. Thus, over the
course of, say, a year, the engineer loses 0.0758 x (%) X
365 = 9.2 jobs on average. It does not appear that it would
be worthwhile hiring another engineer to handle the lost
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jobs in this case (although this does depend on the value of
lost jobs).

2.4 QUEUEING MODELS

In this section, Markov chains are extended to include
models in which customers arrive in some random manner
at a service facility. In these models, arriving customers
are made to wait in a queue until it is their turn to be
served by one of s servers. When a server becomes free,
the next customer in the queue moves out of the queue to
the server and the server then takes a random amount of
time (often exponentially distributed) to serve the customer.
Once served the customer is generally assumed to leave the
system.

For queueing problems such as these, interest is usually
focused on one or more of the following quantities:

1. L= Zfio J - mj = expected number of customers in
system (including both queue and those being served)

2. L, = Zf;u —s)-m; = expected queue length (not

including those customers currently being served)

W = expected waiting time in system

4. W, = expected waiting time in queue (excluding
service time)

w

Several relationships between the above quantities exist.
For instance, if A is the mean arrival rate of customers
and A is constant (independent of the number of customers
in the system), then the expected number of customers in
the system is just the mean arrival rate times the expected
waiting time in the system:

L=AW (2.27)

that is, by the time the first customer in the system is leaving
the system, at time W on average, the number of customers
in the system has grown to A,W, on average. Note that
when there is a limit N on the number of customers in
the system, the arrival rate is the effective arrival rate
Ao = A1 — my), otherwise A, = A.

Similarly, the expected number of customers in the queue
itself is just the mean arrival rate times the expected waiting
time in the queue (again, using the effective arrival rate if
the queue size is limited):

L, =W, (2.28)

As with the birth-and-death model, queueing models may
be characterized by arrival rates A; and departure rates f;,
which are dependent on how many customers there are in
a queue (e.g., customers entering a bank with long queues
often decide to do their banking later). The major difference
from the birth-and-death model is that queueing models
allow for more than one server.

Queueing models differ from one another by the number
of servers and by the manner in which A; and u; vary
as a function j. Here are two different common queueing
models:

[M/M/1] Suppose that customers arrive at a single-server
service station according to a Poisson process
with mean arrival rate A. That is, the times be-
tween successive arrivals are independent ex-
ponentially distributed random variables having
mean 1/A. Upon arrival, each customer goes di-
rectly into service if the server is free, and if not,
then the customer joins the queue (i.e., waits in
line) and there is no limit to the size of the queue.
When the server finishes serving a customer, the
customer leaves the system and the next customer
in line, if any are waiting, enters the service. The
successive service times are assumed to be in-
dependent exponentially distributed random vari-
ables having mean 1/u.

This is called a M/M/1 queueing system because:

(a) The first M refers to the fact that the inter-
arrival process is Markovian (and thus times
between successive arrivals are independent
and exponentially distributed).

(b) The second M refers to the fact that the ser-
vice process is Markovian (and thus service
times are independent and exponentially dis-
tributed).

(c) The 1 refers to the fact that there is a single
server.

[M/M/s] Suppose that customers arrive at a multiple-server
service station, having s servers, according to a
Poisson process with mean arrival rate A. That is,
the times between successive arrivals are indepen-
dent exponentially distributed random variables
having mean 1/A. Upon arrival, each customer
goes directly into service if one or more of the s
servers is free, and if not, then the customer joins
the single queue (i.e., waits in a single line with
everybody else not being served). When one of
the servers finishes serving a customer, the cus-
tomer leaves the system and the next customer
in line, if any are waiting, enters the service of
the free server. For each server, the successive
service times are assumed to be independent ex-
ponentially distributed random variables having
mean 1/u. Also servers operate independently.

Table 2.1 presents mathematical results for four dif-
ferent queueing models. Of note is that a closed-form



Table 2.1 Quantities of Interest for Four Queueing Models
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Model 1 Model 2 Model 3 Model 4
Birth rates A=A =--=A A=-"=AN_] = A A=A =---=A A=A =--=A
AN =Ayp1=--=0
. ;<
Death rates H1 = uy = =u Ho="""=UN = nj = { Js Z gg;j = ”; Arbitrary with mean
1/u and variance o2
. T i M forj <s
Steady-state 7 =0-p)p =0 [1—pN+l] = é'p, . mo=1—p
probabilities  p = x/u, j = 0,1 S forj >
= »J =U L j=0,1,...,N :
A § 1 -1 A
P=u m=5 () + 5= p=i
— A —_ P
y pP=yu ¢ = 5
P I+p" (Np=N—-1)
L E I: (1—p)(1—pN+T) :I Lq + 1Y P +Lq
32 bop® 22624 p2
Ly (=) L—(1—mo) x!(lip)z 2(0—p)
1 L 1 1
w = =) Wo+ 3 Wot 3y
A L L L
W, W(—n) A(lfqmv) i i
Note:

Model 1 has a single server with constant birth-and-death rates and unlimited queue size (this is an M/M/1 model). If A > u, then the

queue grows to infinite size on average.
Model 2 has a single server with no more than N in the system.

Model 3 has s servers with unlimited queue size (this is an M/M/s model).
Model 4 has a single server, but service time has an arbitrary distribution with mean 1/u and variance o% (arrival times still exponentially

distributed with mean 1)

expression for the quantities of interest (e.g., steady-
state probabilities and L, L,, W, and W,) could be
obtained because these are really quite simple models.
If one deviates from these (and this is often necessary
in practice), closed-form solutions may be very diffi-
cult to find. So how does one get a solution in these
cases? One must simulate the queueing process. Thus,
simulation methods are essential for a practical treat-
ment of queueing models. They are studied in the next
chapter.

Example 2.15 Two laboratory technicians independently
process incoming soil samples. The samples arrive at a
mean rate of 40 per hour, during working hours, and each
technician takes approximately 2 min, on average, to per-
form the soil test for which they are responsible. Assume
that both the arrival and testing sequences are Poisson in
nature.

(a) For a soil sample arriving during working hours, what
is the chance that it will be immediately tested?

(b) What is the expected number of soil samples not yet
completed testing ahead of an arriving soil sample?

(c) Suppose that one technician is off sick and the other
is consequently having to work harder, processing ar-
riving soil samples at a rate of 50 per hour. In this
case, what is the expected time that an arriving sample
will take from the time of its arrival until it has been
processed?

SOLUTION Assume that the mean arrival rate is not
affected by the number of soil samples in the system.
Assume also that the interarrival and interservice times are
independent and exponentially distributed so that this is a
birth-and-death queueing process. If there are two or less
soil samples in the queueing system, the mean testing rate
will be proportional to the number of soil samples in the
system, whereas if there are more than two soil samples
in the system, both of the technicians will be busy and the
processing rate is limited to 60 per hour. Thus,

M=Al = =Ao=A=40
pmo =0, wp;=p=230,
Mo =3 ="+ = loo = 24 = 60

The transition diagram for this problem appears as in
Figure 2.10.
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40 40 40 40 40
30 60 60 60 60

Figure 2.10 Transition diagram for laboratory technician problem.

Using these parameters we get

1
Ty =

1+3772,G
A A(A) A(A)
=[14+=+=(=)+=(=) +-
| on m\2u m\2un
- —1
G G+
| n 2u 2u
~[+ () =)
T\ =02
_2p—A
C2u 4 A
=02
and A
A 0
7= =202 =0267
M1 30

(a) The event that an arriving soil sample is immediately
tested is equivalent to the event that there is zero or
one soil sample in the system (since if there are already
two soil samples in the system, the arriving sample will
have to wait). Hence, the pertinent probability is

mo +m =0.240.267 = 0.467

(b) The expected number of unfinished soil samples ahead
of an arriving soil sample is given by

A A A
L=1-Zmy+2-=|—|no
M n\2n
AL A2
+3- (=) mo+---
w\2p

P
B <%) W

= 2.403

That is, on average, an arriving soil sample can expect
two or three soil samples ahead of it in the system.
Note that the wording here is somewhat delicate. It is
assumed here that the arriving soil sample is not yet in
the system, so that the expected number of samples in
the system are what the arriving sample can expect to
“see.”

(c) This problem corresponds to model 1 of Table 2.1, so
that the expected waiting time W, including time in the
queue, is given by

W 11
T u—Ar 50—40

= 0.1 h (i.e., 6 min)

Example 2.16 Consider a geotechnical firm which em-
ploys four engineers. Jobs arrive once per day, on average.
Suppose that each engineer takes an average of two days
to complete a job. If all four engineers are busy, newly
arriving jobs are turned down.

(a) What fraction of time are all four engineers busy?

(b) What is the expected number of jobs being worked on
on any given day?

(c) By how much does the result of part (a) change if
arriving jobs are allowed/willing to wait in a queue (i.e.,
are not turned down if all four engineers are busy)?

SOLUTION This is a four-server model with limited
queue size (more specifically, the queue size cannot be
greater than zero), so it does not correspond to any of our
simplified models shown in Table 2.1. We must use the
basic equations with rates

mo=0, m=3% pm=% =3 w=43
|

which has the transition diagram shown in Figure 2.11:

1 1 1 1

12 2/2 3/2 4/2

Figure 2.11 Transition diagram for four-engineer problem.



(a) This gives us

A
c="=2

M1

A
Cr=—C =2

2

Ao 4
G=20==

M3 3

A3 2
Cy=—C3==

M4 3
Cs=Co=-=0

which yields probabilities

1
S 14+24+2+4/3+2/3
T = C17T0 = 0.2857

) = C27T() = 0.2857
T3 = C37T0 = 0.1905
Ty = C47T0 = 0.0952

= 0.1428

o

so that the four engineers are fully occupied w4 =
0.095, or 9.5%, of the time.
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(b) If N is the number of jobs being worked on on any day,

then the expected number of jobs on any one day is

E[N] = 0mg + 1wy + 2wy + 373 + 44 = 1.81

(c) Now we have queueing model 3, since the queue size

is unlimited, with p =2, s =4, and ¢ = % Then
1

T 12421473+ QAN —1/2)]
= 0.1304

70

The probability that the firm is fully occupied cor-
responds to the probability that the number of jobs
in the system is 4,5,.... The probability of this is
1 — (o + my + mp + m3), where

2! 22

= 70 = 20, Ty = oo = 20,
23 4

3 = 57‘[0 = §7T()

so that the desired probability is
1—(1+2+2+3)(0.1304) = 0.174

which is greater than the limited queue result of part (a).



CHAPTER 3

Random Fields

3.1 INTRODUCTION

In the previous chapter, we considered only discrete-state
Markov chains (with both discrete and continuous time).
We turn our attention in this chapter to continuous-state
processes where the random process X(¢#) can now take
on an infinite number of possible values at each point
t. As an example of a continuous-state random process,
Figure 3.1 illustrates the tip resistance measured during
a CPT. Aside from soil disturbance, measurement errors,
and problems with extracting engineering properties from
CPT data, Figure 3.1 presumably gives a reasonably good
idea about the soil properties at the location at which the
CPT was taken. However, what can be said about the soil
properties 10 (or 50) m away from the CPT sounding? The
data presented in Figure 3.1 could be used to characterize
the randomness (uncertainty) at locations which have not
been sampled. But how can the variability at one location
be used to represent the variability at other locations? Some
considerations involved in characterizing spatial variability
are as follows:

1. Variability at a Point: Pick a specific position t*. At
this point the process has a random value X (t*) = X*
which is governed by a probability density function
fy#(x). If we picked another position, say t’, then
X (t") = X' would have another, possibly different pdf,
Sfx'(x). That is, the pdf’s could evolve with position.
In practice, evolving pdf’s become quite difficult to
estimate for anything beyond a simple trend in the
mean or variance. An example where the point, or
marginal, distribution evolves with time is earthquake
ground motion where the motion variance increases
drastically during the strong motion portion of the
record.

Risk Assessment in Geotechnical Engineering Gordon A. Fenton and D. V. Griffiths
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2. Spatial Dependence: Consider again two positions #*
and 1’ separated by distance T = ¢/ — ¢*. Presumably,
the two random variables X (') and X (+*) will exhibit
some dependence on each other. For example, if X
is cohesion, then we would expect X (z') and X (¢*)
to be quite similar (i.e., highly dependent) when t
is small (e.g., a few centimeters) and possibly quite
dissimilar (i.e., largely independent) when t is large
(e.g., tens, hundreds, or thousands of meters). If X (+*)
and X(¢') are independent for any two positions with
separation T =1 — t* £ 0, then the process would
be infinitely rough—points separated by vanishingly
small lags could have quite different values. This is
not physically realistic for most natural phenomena.
Thus, X(¢*) and X(¢') generally have some sort of
dependence that often decreases with separation dis-
tance. This interdependence results in a smoothing
of the random process. That is, for small 7, nearby
states of X are preferential—the random field is con-
strained by its neighbors to be similar. We characterize
this interdependence using the joint bivariate distribu-
tion fyxy(x*,x") which specifies the probability that
X*=x* and X' =x’ at the same time. If we ex-
tend this idea to the consideration of any three, or
four, or five, ..., points, then the complete proba-
bilistic description of a random process is the infinite-
dimensional probability density function

fX1X2...(x1 5 X250t )

Such an infinite-dimensional pdf is difficult to use in
practice, not only mathematically, but also because its
parameters are difficult to estimate from real data.

To simplify the characterization problem, we introduce a
number of assumptions which are commonly made:

1. Gaussian Process: The joint pdf is a multivariate nor-
mally distributed random process. Such a process is
also commonly referred to as a Gaussian process. The
great advantage to the multivariate normal distribution
is that the complete distribution can be specified by
just the mean vector and the covariance matrix. As
we saw in Section 1.10.8, the multivariate normal pdf
has the form

1 1

Jxixoex (X1, X2, ) = WW
xexp {—3(x = w)'C7 (x — w)}

where p is the vector of mean values, one for each
X;, C is the covariance matrix between the X’s, and
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Figure 3.1 Tip resistance g.(z) measured over depth z by a cone
penetrometer.

|C| is its determinant. Specifically,

p=E[X]
C=E[X-mX-p']

where the superscript T means the transpose. The
covariance matrix C is a k x k symmetric, positive-
definite matrix. For a continuous random field, the
dimensions of g and C are still infinite, since the
random field is composed of an infinite number of
X’s, one for each point. To simplify things, we often
quantify p and C using continuous functions of space
based on just a few parameters. For example, in a
one-dimensional random field (or random process),
the mean may vary linearly:

wu(t) =a + bt

and the covariance matrix can be expressed in terms
of the standard deviations, which may vary with ¢,
and the correlation function p as in

C(t1,n) =o(to(t)p(t, 1)

which specifies the covariance between X(#;) and
X (). Because the mean and covariance can vary
with position, the resulting joint pdf is still difficult to
use in practice, both mathematically and to estimate
from real data, which motivates the following further
simplifications.

. Stationarity or Statistical Homogeneity: The joint pdf

is, independent of spatial position, that is, it depends
just on relative positions of the points. This assump-
tion implies that the mean, covariance, and higher
order moments are constant in time (or space) and
thus that the marginal, or point, pdf is also con-
stant in time (or space). So-called weak stationarity

or second-order stationarity just implies that the mean
and variance are constant in space.

3. Isotropy: In two- and higher dimensional random
fields, isotropy implies that the joint pdf is invariant
under rotation. This condition implies stationarity (al-
though stationarity does not imply isotropy). Isotropy
means that the correlation between two points only
depends on the distance between the two points, not
on their orientation relative to one another.

A random field X (¢) having nonstationary mean and vari-
ance can be converted to a random field which is stationary
in its mean and variance by the following transformation:

X (1) — u(t)
o(t)
The random field X’(¢) will now have zero mean and unit
variance everywhere. Also a nonstationary random field can
be produced from a stationary random field. For example,

if X(¢) is a standard Gaussian random field (having zero
mean and unit variance) and

Y(t) =2+ 3t + IViX ()

X't)= 3.

then Y (¢) is a nonstationary Gaussian random field with

E[Y ()] = py(1) =2+ 5t
Var[Y (1)] = UYZ(I) = %t

in which both the mean and variance increase with 7.

Note that a nonstationary correlation structure, where the
correlation coefficient between X (7) and X (¢ 4+ t) depends
on ¢, is not rendered stationary by Eq. 3.1. Equation 3.1
only renders the mean and variance stationary, not corre-
lation. At the moment, nonstationary correlation structures
are uncommon in geotechnical engineering because of the
prohibitive volumes of data required to estimate their pa-
rameters. Random-field models in geotechnical engineer-
ing are generally at most nonstationary in the mean. The
variance and covariance structure will almost always be as-
sumed to be stationary. We shall see more about why this is
so in Chapter 5 when we talk about ergodicity. The practi-
cal implications are that Eq. 3.1 can almost always be used
to transform a geotechnical random-field model into one
which is stationary.

Quite often soil properties are not well modeled by the
Gaussian (normal) distribution. For example, a normally
distributed elastic modulus is admitting that some fraction
of the soil has a negative elastic modulus, which is not phys-
ically meaningful. For such nonnegative soil properties the
normal distribution is not appropriate and a non-Gaussian
random field would be desired, such as the lognormal distri-
bution. Nevertheless, Gaussian random fields are desirable



because of their simple characterization and simple prob-
abilistic nature. Fortunately, we can retain a lot of these
desirable features, at least at some level, by using non-
Gaussian random fields which are derived as simple trans-
formations of a Gaussian random field. For example, the
random field Y (¢) defined by the transformation

Y () = eX® (3.2)

will have a lognormal distribution if X (#) is normally dis-
tributed. A note of caution here, however, is that the co-
variance structure of the resulting field is also nonlinearly
transformed. For example, if X (1) has correlation coeffi-
cient 0.2 with X (2), the same is no longer true of Y (1) and
Y (2). In fact, the correlation function of Y is now given by
(Vanmarcke, 1984)

exp{ogpx (1)} — 1
exp{o?} — 1

py(T) = (3.3)
for stationary processes, where px(t) is the correlation
coefficient between X (¢) and X (¢t + 7).

In this book, we will largely restrict ourselves to station-
ary Gaussian random fields and to fields derived through
simple transformations from Gaussian random fields (e.g.,
lognormally distributed random fields). Gaussian random
fields are completely specified by their mean and covari-
ance structure, that is, their first two moments. In practice,
we are sometimes able to reasonably accurately estimate the
mean, and sometimes a mean trend, of a soil property at a
site. Estimating the variance and covariance requires con-
siderably more data—we often need to resort to information
provided by the literature in order to specify the variance
and covariance structure. Because of this uncertainty in the
basic parameters of even the covariance, there is often lit-
tle point in adopting other joint distributions, which are
more complicated and depend on higher moments, to gov-
ern the random fields representing soil properties, unless
these distributions are suggested by mechanical or physical
theory.

Under the simplifying assumptions that the random field
is Gaussian and stationary, we need to know three things
in order to characterize the field:

1. The field mean uy
2. The field variance o2
3. How rapidly the field varies in space

The last is characterized by the second moment of the
field’s joint distribution, which is captured equivalently by
the covariance function, the spectral density function, or
the variance function. These functions are discussed in the
next few sections.
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3.2 COVARIANCE FUNCTION

The second-moment nature of a Gaussian random field can
be expressed by the covariance function,

C(t',1*) = Cov [X ('), X (1%)]
=E[ (X)) = me)) (X" = pxt)

= E[X()X ()] = px(t)px (1) 3.4

where uy(z) is the mean of X at the position 7. Since
the magnitude of the covariance depends on the size of
the variance of X (') and X (¢*), it tells us little about the
degree of linear dependence between X (¢') and X(¢*). A
more meaningful measure, in this sense, is the correlation
function,
I *
,o(t/,t*) — M (3.5)
ox(t)ox (1)

where oy() is the standard deviation of X at the posi-
tion 7. As seen in Chapter 1, —1 < p(¢/,¢*) < 1, and when
o(t', %) = 0, we say that X (¢') and X (¢+*) are uncorrelated.
When X is Gaussian, being uncorrelated also implies in-
dependence. If p(t/,t*) = £1, then X(¢') and X(¢*) are
perfectly linearly correlated, that is, X (t') can be expressed
in terms of X (¢*) as

X(t') = a £ bX (%)

Furthermore, if X (#’) and X (t*) are perfectly correlated and
the random field is stationary, then X(z') = X (¢*). The
sign to use is the same as the sign of p(¢’, t*).

For stationary random fields, the mean and covariance
are independent of position, so that

Ci,r)y=C{t' —t")=C(r) = Cov[X(1),X(t + )]
= Cov[X(0),X(0)] = EIX(OX(1)] — i (3.6)

and the correlation function becomes

C(t) C)

O~ of

Because C(t,t*) = C(¢*, "), we must have C(t) = C(—1)
when the field is stationary, and similarly p(7) = p(—71).

At this point, we can, in principle, describe a Gaussian
random field and ask probabilistic questions of it.

p(T) =

Example 3.1 Suppose that the total amount Q of toxic
waste which flows through a clay barrier of thickness
D in an interval of time is proportional to the average
hydraulic conductivity K,,. through the barrier (note that
the harmonic average is probably a better model for this
problem, but the arithmetic average is much easier to deal
with and so will be used here in this simple illustration).
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That is,
0 = cKyye

where ¢ is a constant. A one-dimensional idealization for
Kpe 18
1 D
Kive = D /0 K(x) dx

where K(x) is the point hydraulic conductivity, meaning
it expresses the hydraulic conductivity of the clay at the
point x. Assume that K (x) is a continuous-state stationary
Gaussian random process with mean 1, coefficient of vari-
ation 0.20, and correlation function p(t) = exp{—|t|/4}.
One possible realization of K (x) appears in Figure 3.2.

(a) Give expressions for the mean and variance of Q in
terms of the mean and variance of K (x).

(b) If the correlation function is actually p(7) = exp{—|t|},
will the variance of Q increase or decrease? Explain
your reasoning.

SOLUTION
(a) Since Q = cK 4., Wwe must have

c [P
Q:B,/o K(x) dx

Taking expectations of both sides gives the mean of Q,

c b c b
E[Q] =E[5/0 K(x) dx:| = 5/0 E[K(x)] dx

_ ¢ D(l)d_
—B/O X =C

1.4

1.2

K(x)
06 038
!

0.4

0.2

Figure 3.2 One possible realization of K (x).

while the variance is obtained as (recalling that the
square of a sum becomes a double sum)

Var[Q] = E[(Q — 10)’]
=E[(Q — ¢)*] = E[c*(Kave — 1)*]

2 1P ?
=c E[(B/O (K(x)— 1)dx> :|

C2 D D
=17E[/0 /O(K(E)—l)(K(n)—l)dsdn]

2 [P D
= —2/ / E[(K(&) — 1D)(K(m) — 1)] d&dn

D= Jo Jo
Recognizing that E[(K(&)— 1)(K(n) —1)] = 0,?

p(& — n) is just the covariance between the hydraulic
conductivities at the two points & and 7, we get

C20'2 D D
— /O /0 p(E — ) dE diy

2 2 D D _
ZCDOZK/O /0 exp{—|s4n|} dt dy

2c¢%02 [P T
= 5 D —-1) expi—z} dt
0

Var [Q]

D

which can be solved with the aid of a good integral
table. Note that the collapse of a two-dimensional
integral to a one-dimensional integral in the last step
was accomplished by taking advantage of the fact that
p(€ —n) is constant along diagonal lines through the
integration space. That is, we need only integrate along
a line perpendicular to these diagonally constant values
and multiply by the length of the diagonals (there are
some +/2 factors that cancel out). We shall illustrate the
details of this integration reduction in Section 3.4 (see,
e.g., Figure 3.7). The end result is

32 D D
vate) = (33) [ § +ew{ -5} 1]

where ox = 0.2ux = 0.2.

(b) Since the correlation function p(tr) = exp{—|z|} falls
more rapidly with 7 than does the correlation func-
tion used in part (a), the conductivity values become
more independent of one another through the clay bar-
rier. Since Q is an average of the conductivity values,
increasing independence between values serves to de-
crease the variance of Q. That is, the variability in K (x)
now tends to cancel out to a greater degree. We note
that in order to understand this somewhat counterin-
tuitive result that the variance of Q decreases as K (x)
becomes more independent (and thus more random), we
need to remember that we are talking about variability



over the ensemble of possible realizations. For strongly
correlated random fields, there is less variability within
each realization but more variability from realization to
realization. Conversely, for weakly correlated random
fields, there is more variability within each realization
but less variability between realizations (e.g., all real-
izations look similar). In the latter case, averages of
each realization are very similar (small variability).

This discussion illustrates the contrast between char-
acterizing an entire population (which is what we are
doing in this example) and characterizing a particular
realization (if we happen to know things about the par-
ticular realization). We shall discuss this issue at greater
length in Chapter 5.

Another property of the covariance function is that it is
positive definite. To illustrate this property, consider a linear
combination of n of the random variables in the process
X(1), say X; = X(#;) for any sequence of times f, 1, . .., f,

n
Y=aX +aXo+ -+ a,X, = ZaiXi
i=1
where aj,ay,...,a, are any set of coefficients. We saw in
Chapter 1 that the variance of a linear combination is
n n
Var[Y]=)""aia; Cov[X;.X;]

i=1 j=1

Since Var [Y ] is also defined as E[(Y — uy)?], it cannot be
negative. This means that the covariances between the X’s
must satisfy the following inequality for any a;:
n n

3> aia; Cov[Xi,X;] = 0 3.7)

i=1 j=1
which is the statement of positive definiteness. In the case
of a stationary process where Cov [X;, X; | = op(t; — ;) =
cr)?pij, we see that the correlation function is also positive
definite,

n

> > aiap; =0 (3.8)

i=1j=1

since o)? > 0.

One of the points of Egs. 3.7 and 3.8 is that not just any
covariance and correlation function can be used to charac-
terize the second moment of a random field. In particular,
the following properties of the covariance function must be
satisfied:

1. |Cov [X,-,Xj] | < Ox, 0% » which ensures that —1 <
pij <1

2. Cov [Xi,Xj] = Cov [X]X,]

3. 301 Y- aiaj Cov [X;,X;] >0
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For isotropic covariance functions in two and higher dimen-
sions, see also Section 3.7.6. If two covariance functions
C1(X;,X;) and C»(X;, X;) each satisfy the above conditions,
then their sum C(X;, X;) = C1(X;, X;) + Co(X;, X;) will also
satisfy the above conditions and be a valid covariance
function.

If the set of covariances Cov [X,Xj] is viewed as a
matrix C = [C;], with elements Cj; = Cov [X;,X;], then
one of the results of positive definiteness is that the square
root of C will be real. The square root will be defined here
as the lower triangular matrix L such that LLT = C, where
the superscript T denotes the matrix transpose. The lower
triangular matrix L has the form

i1 O 0
£y € O
L L l
I — 31 32 33 (3.9)
_Enl £n2 EnS . : : gnn i

which is generally obtained by Cholesky decomposition.
We shall see how this matrix can be used to simulate a
random field in Section 6.4.2.

A positive-definite covariance matrix can also be de-
composed into a matrix of eigenvectors @ and positive
eigenvalues W such that

Cc =0"vQ (3.10)

where W is a diagonal matrix whose elements are the
eigenvalues V1, ¥y, ..., ¥, of the covariance matrix C.

The eigenvectors composing each column of the matrix
Q make up an orthonormal basis, which is a set of unit
vectors which are mutually perpendicular. A property of
orthonormal vectors is that QT = Q~'. If we premultiply
and postmultiply Eq. 3.10 by Q and Q7, respectively, we
get

Yy 0 0
0 v, O
0O 0
ocogT—w—|" "V (3.11)
B 0 0 0 : : : wzz_
Now let us define the vector X = {X1, X», . .. ,Xn}T which

contains the sequence of X(¢) values discussed above,
having covariance matrix C = E [(X — pux)(X — uy)"]. If
we let

Z = 0X (3.12)



96 3 RANDOM FIELDS

be a sequence of random variables obtained by rotating
the vector X by the orthonormal basis Q, then Z is com-
posed of uncorrelated random variables having variances
Y1, ¥, ..., ¥,. We can show this by computing the co-
variance matrix of Z. For this we will assume, without loss
of generality and merely for simplicity, that E [X ()] = 0 so
that E[Z] = 0. (The end result for a nonzero mean is ex-
actly the same—it is just more complicated getting there.)
The covariance matrix of Z, in this case, is given by

C,=E[ZZ"]| =E[(@X)@QX)'] =E[0XX"Q"]
=Q E[XX"] Q"
=0CQ"
=V

so that the matrix of eigenvectors Q can be viewed as
a rotation matrix which transforms the set of correlated
random variables X, X5, ..., X, into a set of uncorrelated
random variables Z = {Z;,Z,...,Z,}" having variances

V1, V2, ..., ¥a, respectively.

3.2.1 Conditional Probabilities

We are often interested in conditional probabilities of the
form: Given that X(¢) has been observed to have some
value x at position ¢, what is the probability distribution of
X (¢t + s)? For example, if the cohesion at # = 4 m is known,
what is the conditional distribution of the cohesion att = 6
m (assuming that the cohesion field is stationary and that
we know the correlation coefficient between the cohesion
at t = 4 and the cohesion at r = 6 m)? If X (¢) is a station-
ary Gaussian process, then the conditional distribution of
X(t +s) given X(¢) = x is also normally distributed with
mean and variance

E[X( +5)|X(#) =x] = pux +(x — ux)p(s) (3.13a)
Var [X (1 +5) | X (1) = x] = 0 2(1 — p(s)) (3.13b)

where p(s) is the correlation coefficient between X (¢t 4 s)
and X (1).

3.3 SPECTRAL DENSITY FUNCTION

We now turn our attention to an equivalent second-moment
description of a stationary random process, namely its
spectral representation. We say “equivalent” because the
spectral representation, in the form of a spectral density
function, contains the same information as the covariance
function, just expressed in a different way. As we shall
see, the spectral density function can be obtained from
the covariance function and vice versa. The two forms are
merely transforms of one another.

Priestley (1981) shows that if X (¢) is a stationary random
process, with p(tr) continuous at r =0, then it can be
expressed as a sum of sinusoids with mutually independent
random amplitudes and phase angles,

N

X(1) = pux + Z C cos(wit + D)
k=—N

N
i+ Y [Ak cos(wxt) + By sin(wkt)] (3.14)
k=—N

where py is the process mean, Cy is a random amplitude,
and ®; is a random phase angle. The equivalent form
involving Ay and By, is obtained by setting Ay = Cy cos(Dy)
and By = —Cy sin(®Py). If the random amplitudes A; and
Bj are normally distributed with zero means, then X (¢)
will also be normally distributed with mean py. For this
to be true, C; must be Raleigh distributed and ®; must be
uniformly distributed on the interval [0, 277 ]. Note that X (¢)
will tend to a normal distribution anyhow, by virtue of the
central limit theorem, for wide-band processes, so we will
assume that X (¢) is normally distributed.

Consider the kth component of X(#) and ignore wuy for
the time being,

Xy (t) = Cy cos(wit + Dy) (3.15)

If Cy is independent of @y, then Xj(¢) has mean

E[X: ()] = E[Cy cos(wit + Py)]
= E[Ci]E[cos(wit + Pr)] =0

due to independence and the fact that, for any ¢, E [cos(wy?
+®;)] = 0 since Py is uniformly distributed on [0, 27].
The variance of X;(¢) is thus

Var [X(1)] = E[X?(1)] = E[C?] E [cos®(wit + ®y)]
=1 E[C?] (3.16)

Note that E[cos*(wit + ®¢)] = 4, which again uses the
fact that @y is uniformly distributed between 0 and 27.

Priestley also shows that the component sinusoids are
independent of one another, that is, that X (¢) is independent
of X;(¢) for all k # j. Using this property, we can put the
components back together to find the mean and variance of
X (),

N
EIX(0] = pux+ ) EXu)] = px (3.172)
k=—N
N N
Var[X()] = Y Var[X«()l= Y 3 E[C}] (3.17b)

k=—N k=—N
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Figure 3.3 Two-sided spectral density function S (w).

In other words, the prescribed mean of X (¢) is preserved
by the spectral representation and the variance of the sum
is the sum of the variances of each component frequency,
since the component sinusoids are independent. The amount
that each component frequency contributes to the overall
variance of X(¢) depends on the “power” in the sinusoid
amplitude, % E[C?]

Now define the two-sided spectral density function S (w)
such that

S(wr) Aw = Var[Xx(1)] = E[X7(1)] = § E[C?] (3.18)

Then the variance of X () can be written as

N
Var [X (1)] = Z S(wp) Aw (3.19)
k=—N
In the limit as Aw — 0 and N — oo, we get
o0
Var [X(1)] = of = / S(w) dw (3.20)

which is to say the variance of X (¢) is just the area under
the two-sided spectral density function (Figure 3.3).

3.3.1 Wiener-Khinchine Relations

We can use the spectral representation to express the co-
variance function C (7). Assuming that uy = 0 for the time
being to simplify the algebra (this is not a restriction, the
end results are the same even if uy # 0), we have

C (1) = Cov [X(0), X (7)]
=E| > X)) X(1)
k J
=) E[XO0X;()]
ko j

= ZE [Xx (0)Xk(t)] (due to independence)
k

Now, since X;(0) =
+ &), we get

(due to stationarity)

Cr cos(Py) and Xi(t) = Cy cos(wi T
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C(r) = ZE [CZ]E[cos(®y) cos(wy T + D]
= ZE C?E
= Z !

= > S(ax) cos(wpT) Aw
k

[{cos(@iT + 2®y) + cos(wy 1)} ]

Ck cos(wiT)

which in the limit as Aw — 0 gives

C(7) =/ S(w)cos(wt) dw (3.21)

—00
Thus, the covariance function C (7) is the Fourier transform
of the spectral density function S (w). The inverse transform
can be applied to find S(w) in terms of C(7),

S(w) = % /00 C(t)cos(wt) dt (3.22)

—0o0
so that knowing either C(tr) or S(w) allows the other
to be found (and hence these are equivalent in terms
of information). Also, since C(t) = C(—7), that is, the
covariance between one point and another is the same
regardless of which point you consider first, and since
cos(x) = cos(—x), we see that

S(@) = S(~w) (3.23)

In other words, the two-sided spectral density function is
an even function (see Figure 3.3). The fact that S(w) is
symmetric about w = 0 means that we need only know
the positive half in order to know the entire function. This
motivates the introduction of the one-sided spectral density
function G(w) defined as

G(w) =25 (w), >0 (3.24)

(See Figure 3.4). The factor of 2 is included to preserve
the total variance when only positive frequencies are con-
sidered. Now the Wiener—Khinchine relations become

C(r)= /oo G(w)cos(wt) dw (3.25a)
0
G(w) = l /00 C(t)cos(wt) dt (3.25b)
T J-00
2 o0
= —/ C(t)cos(wt) dt (3.25¢)
T Jo

and the variance of X (¢) is the area under G(w) (set T = 0
in Eq. 3.25a to see this),

2 =C(0)= /OO G(w) dow (3.26)
0

The spectral representation of a stationary Gaussian pro-
cess is primarily used in situations where the frequency
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G(w)
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W

Figure 3.4 One-sided spectral density function G(w) = 25 ()
corresponding to Figure 3.3.

domain is an integral part of the problem being consid-
ered. For example, earthquake ground motions are often
represented using the spectral density function because the
motions are largely sinusoidal with frequency content dic-
tated by resonance in the soil or rock through which the
earthquake waves are traveling. In addition, the response
of structures to earthquake motion is often performed using
Fourier response “modes,” each having its own resonance
frequency. Thus, if a structure has a 1-Hz primary response
mode (single mass-and-spring oscillation), then it is of in-
terest to see what power the input ground motion has at
1 Hz. This is given by G(wy) Aw at wy = 1 Hz.

In addition, the spectral representation provides a means
to simulate a stationary Gaussian process, namely to sim-
ulate independent realizations of C; and &, for k =0,
1,...,N and then recombine using the spectral representa-
tion. We shall see more of this in Chapter 6.

3.3.2 Spectral Density Function of Linear Systems

Let us consider a system which is excited by an input X (t)
and which has a response Y (t). If the system is linear,
then doubling the input X(¢) will double the response
Y (t). More generally, when the input is a sum, X(¢) =
X1() + Xo(t) + - - -, and Y; () is the response of the system
to each individual X; (7), the total response of a linear system
will be the sum Y (¢) = Y (t) + Y»(¢) + - - -. This is often
referred to as the principle of superposition, which is one
of the main features of a linear system.

Although there are many different types of linear sys-
tems, those described by linear differential equations are
most easily represented using the spectral density function,
as we shall see. A linear differential equation is one in
which a linear combination of derivatives of Y (¢) is set
equal to a linear combination of derivatives of X (¢),

dy n dy n—1 dy dx™
o | - cd =d,——
n g te Va1 toota dt +eoy dr™m
dx™m=! dx
+dmfldtm—_]+---+dlg+d0x (3.27)

In particular, the coefficients ¢; and d; are independent of
X, y,and t in a linear differential equation.

One of the features of a linear system is that when excited
by a sinusoidal input at a specific frequency w the response
will also be at the frequency w, possibly phase shifted
and amplified. That is, if the input is X () = cos(wt), then
the response will have the form Y (t) = a, cos(wt + ¢,),
where a,, is the output amplitude and ¢,, is a phase shift
between input and response, both at frequency w. We can
also write the response as

Y (t) = a, cos(wt + ¢,)
= a,,(cos wt cos ¢, — sin wrt sin ¢,,)
= A, coswt — B, sin wt (3.28)

where A, = a,, cos ¢, and B, = a,, Sin ¢,,.

It is convenient to solve linear differential equations in
the complex domain. To this end, we define the complex
input

X, (t) = ' = coswt +i sinwt (3.29)

where i = +/—1. Our actual input is X () = Re XC(t)>,
where Re(-) means “real part of.” Also, let us define the
transfer function

H(®) = A, + iB,, (3.30)

The complex response Y. (¢) to the complex input X.(¢) can
now be written as

Y.(t) = H(w)X.(t) = [A, + iBy,][cos wt + i sin wt]
= A, coswt — B, sinwt + i[A,, sinwt
+ B, cos wt] 3.31)

from which we can see that Y (r) = Re Yc(t)>. To see how
these results are used to solve a linear differential equation,
consider the following example.

Example 3.2 Suppose a system obeys the linear differen-
tial equation
cy+oay=x

where the overdot implies differentiation with respect to .
If x(¢#) = cos wit, what is the response y(t)?

SOLUTION We will first derive the complex response of
the system to complex input, then take the real part for
the solution. The complex response of the system to the



frequency wy is obtained by setting the input x.(r) and
output y.(¢) as follows:

xc(t) — eiwkt

Ye(t) = H(@0)xe(1) = H(wp)e ™!
Substitution of these into the system differential equation
gives

d it it it

CEH(a)k)e K+ aH (wy)e' P = e'“k

or
(icwy + a)H (wy)e' k" = e' k!

which can be solved for the transfer function to give

1

icop +a

H(wy)

o — icwy

a? + czw,%

o ) coy
S [N I, S
a? + cZa),% a? + cza),%

The magnitude of the transfer function tells us how much
the input signal is amplified,

Vol + ctof 1
|H ()| = =
Vol + cof

2
o2 + 2wy

Recalling that H (w) = A, + iB,, we must have

o _ Cwi

% L, = — ok
a? + cza),%’ k a? + cza),%

Ay, =

The complex response y.(t) to the complex input x.(¢) =
e'®! is thus y.(t) = H (wy)e' ", which expands into

ye(t) = [a cos wit + cwy sin wyt

a? + czw,%
+ i(a sinwit — cwy cos a)kt)]

The real response to the real input x(#) = cos wyt is there-
fore

¥(0) = Re(ye(0))

1 .
= 72[01 COS wit + cwy SIn wkt]

o + 2wy
/ 2
a’ + clwy 1 [Cwk
=|—F—55 |cos (a)kt -+ tan (—))
o+ c2w; o
1
= ——" cos(wit + ¢r)

‘/az—l—cQa),%
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= |H (wy)| cos(wyt + ¢r) (3.32)

where ¢ = tan~!(cwy /) is the phase shift.

The transfer function H(w) gives the steady-state re-
sponse of a linear system to a sinusoidal input at frequency
w. If we make use of the superposition principle of lin-
ear systems, then we could compute a series of transfer
functions H(w;), H(wy), ... corresponding to sinusoidal
excitations at frequencies w;, w», .... The overall system
response would be the sum of all the individual responses.

To determine the spectral density function Sy(w) of the
system response Y (¢), we start by assuming that the input
X (t) is equal to the sinusoidal component given by Eq. 3.15,

Xi(t) = Cy cos(wit + Dy) (3.33)

where ®; is uniformly distributed between 0 and 27 and
independent of Cy. Assuming that the spectral density
function of X(r), Sx(w), is known, we select C; to be
random with

E[C}] = 28x(wn)Aw

so that Eq. 3.18 holds. Equation 3.32 tells us that the
random response Y;(¢) will be amplified by |H (w)| and
phase shifted by ¢, from the random input Xj(¢),

Yi(t) = |H (wy)|Cy cos(wit + Py + Pr)

The spectral density of Y (?) is obtained in exactly the same
way as the spectral density of X (#) was found in Eq. 3.18,

Sy(@) Aw = Var [Yi()] = E[Y](1)]
= E[|H (@0)C{ cos* (@it + i + )]
= |H (00)* E[C?]E [cos*(wit + Px + ¢)]
= |H (o) |*(2Sx (@) Aw) (5)
= |H (o)|*Sx () Aw

Generalizing this to any input frequency leads to one of the
most important results in random vibration theory, namely
that the response spectrum is a simple function of the input
spectrum,

Sy(@) = |H(@)|*Sx(@)

3.3.3 Discrete Random Processes

So far in the discussion of spectral representation we have
been considering only processes that vary continuously in
time. Consider now a process which varies continuously but
which we have only sampled at discrete points in time. The
upper plot of Figure 3.5 illustrates what we might observe
if we sample X(¢) at a series of points separated by Ar.
When we go to represent X (#) as a sum of sinusoids, we
need to know which component sinusoids to use and what
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\n
- X(t) sampled at At =1.25 spacing
7 u u
Us)
s
S o
>< u u
v
S
1
— L}
I
wy
— T T T I I I
"o 1 2 3 4 5 6
t
(@)
‘1
Us)
S
-~ ©
=
S
1
T
wy
—Ii I I I I I I
0 1 2 3 4 5 6

(b)

Figure 3.5 (a) Observations of X (¢) at spacing Ar. (b) Several
frequencies each of which could result in the same sequence of
observations.

their amplitudes are. When X (¢) varies continuously and
is known for all time, there is a unique set of sinusoids
composing X (¢). However, as seen in the lower plot of
Figure 3.5, there exist many sinusoidal waves each of
which could have produced the sampled values. Thus, when
X (t) is only known discretely, we can no longer uniquely
determine its frequency components.

Frequencies which are indistinguishable from each other
when sampled discretely are called aliases of one another.
In fact, all frequencies having wavelength shorter than 2Az
will have an alias with a frequency which is longer than
2At. We call the frequency corresponding to this critical
wavelength the Nyquist frequency wy, where

_7'[
At

Each frequency in the range 0 < w < wy has aliases at
2wy — w, 2wy + w, 4oy — w, 4oy + w, and so on. We call
the low-frequency (long-wavelength) components, where
0 < w < wy, the principal aliases. In Figure 3.5, wy =
/At =m/1.25 =2.5, and two aliases of the principal
alias w = 1 are 2wy —w = 2(2.5) — 1 =4 and 2wy + w =
225)+1=6.

(3.34)

wy

Just as a bicycle wheel appears to be turning more slowly
when “sampled” by a stroboscope, the high-frequency
aliases appear to the viewer to be the low-frequency prin-
cipal alias. For example, if X (¢) consists of just a single si-
nusoidal component having frequency 2.5wy, it will appear
after sampling to be a sinusoid having frequency 0.5wy.
That is, the power of the frequencies above wy are folded
into the power of the frequencies below wy. This compli-
cates the estimation of G(w) whenever X (¢) has significant
power above wy. We shall see more of this in Chapter 5.

The discrete observations, X; = X(t;) = X (i At) for i =
0,1,...,n can be fully represented by sinusoids having fre-
quencies between zero and the Nyquist frequency wy. That
is, frequencies above wy are not needed to reproduce X;.
In fact, only the frequencies below wy are uniquely de-
fined by X;. This means that the spectral density function
of X; should be taken as zero beyond wy = 7 /At. For such
discrete processes, the covariance function can be obtained
from the spectral density function through a slight modifi-
cation of the Wiener—Khinchine relationship as follows:

/At
C(r)= / G(w)cos(wt) dw (3.35)
0

for |[t| = kAt, k =0,1,...,n.

3.4 VARIANCE FUNCTION

Virtually all engineering properties are actually properties
of a local average of some sort. For example, the hydraulic
conductivity of a soil is rarely measured at a point since, at
the point level, we are either in a void having infinite con-
ductivity or in a solid having negligible conductivity. Just as
we rarely model soils at the microscopic, or particle, level
for use in designs at the macroscopic level, the hydraulic
conductivity is generally estimated using a laboratory sam-
ple of some volume, supplying a differential total head, and
measuring the quantity of water which passes through the
sample in some time interval. The paths that the water takes
to migrate through the sample are not considered individu-
ally; rather it is the sum of these paths that are measured.
This is a “local average” over the laboratory sample. (As
we shall see later there is more than one possible type of
average to take, but for now we shall concentrate on the
more common arithmetic average.)

Similarly, when the compressive strength of a material is
determined, a load is applied to a finite-sized sample until
failure occurs. Failure takes place when the shear/tensile
resistances of a large number of bonds are broken—the
failure load is then a function of the average bond strength
throughout the failure region.

Thus, it is of considerable engineering interest to inves-
tigate how averages of random fields behave. Consider the



local average defined as

1 t+T/2
Xi(0= / X (&) d& (3.36)
t

-T2
which is a “moving” local average. That is, X;(¢) is the
local average of X () over a window of width T centered
at . As this window is moved along in time, the local
average Xr(t) changes more slowly (see Figure 3.6).

For example, consider the boat-in-the-water example: If
the motion of a piece of sawdust on the surface of the ocean
is tracked, it is seen to have considerable variability in its
elevation. In fact, it will have as much variability as the
waves themselves. Now, replace the sawdust with an ocean
liner. The liner does not bounce around with every wave,
but rather it “averages” out the wave motion over the area
of the liner. Its vertical variability is drastically reduced.

In this example, it is also worth thinking about the
spectral representation of the ocean waves. The piece of
sawdust sees all of the waves, big and small, whereas the
local averaging taking place over the ocean liner damps
out the high-frequency components leaving just the long-
wavelength components (wavelengths of the order of the
size of the ship and longer). Thus, local averaging is a low-
pass filter. If the ocean waves on the day that the sawdust
and ocean liner are being observed are composed of just
long-wavelength swells, then the variability of the sawdust
and liner will be the same. Conversely, if the ocean surface
is just choppy without any swells, then the ocean liner may
hardly move up and down at all. Both the sawdust and
the ocean liner will have the same mean elevation in all
cases.
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Figure 3.6 Effect of local averaging on variance; T is the
moving window length over which the top plot is averaged to
get the lower plot.
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The two main effects of local averaging are to reduce
the variance and to damp the contribution from the high-
frequency components. The amount of variance reduction
increases with increasing high-frequency content in the
random field. An increased high-frequency content corre-
sponds to increasing independence in the random field, so
that another way of putting this is that variance reduction
increases when the random field consists of more “indepen-
dence.” This is illustrated in Figure 3.6. A random process
is shown in the upper plot, which is then averaged within
a moving window of width 7 to obtain the lower plot.
Notice that averaging both smooths the process and reduces
its variance.

Let us look in more detail at the moments of X7 (7). Its
mean is

1 t+T/2
E X, (1] =E[; / X&) ds}

-T2

t+7/2
- / E[X(£)] dé
T2

=E[X] (3.37)

for stationary X(¢). That is, local arithmetic averaging
preserves the mean of the random field (the mean of an
arithmetic average is just the mean of the process). Now
consider the variance,

Var [X7(1)] = E [(Xr () — px,)*]

where, since jix, = x,

(3.38)

1 t+71/2
Xr — Mxy = ?/ ) X&) dé — uy
—

1 t+T/2
- / (X() — py] de
(=T)2

so that (due to stationarity, the bounds of the integral can
be changed to any domain of length 7" without changing the
expectation; we will use the domain [0, T'] for simplicity)

Var [X7(1)]

1 T 1 T
ZE[?/O [X() — py] de ;/0 X(n) — px] dn]

1 T T
= _2/ / E[(X(§) — nx)(X () — nx)] d& dn
T=Jo Jo

1 T T
=ﬁfo /O Cy(E — n) dE dy

0.2 T T
=T—X2/O /0 px(& —n) d& dn

= oy y(T) (3.39)
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where Cy(7) is the covariance function of X () and px(7) is
the correlation function of X (¢) such that Cy(t) = 3px(r).
In the final expression, y(T") is the so-called variance
function, which gives the amount that the variance is
reduced when X(¢) is averaged over the length 7. The
variance function has value 1.0 when 7 = 0, which is to
say that X;(t) = X(¢) when T = 0, and so the variance is
not at all reduced. As T increases, the variance function
decreases toward zero. It has the mathematical definition

1 T T
y(T) = —2/ / px(& —mn) d§ dn (3.40)
T=Jo Jo

The variance function can be seen, in Eq. 3.40, to be
an average of the correlation coefficient between every pair
of points on the interval [0, T]. If the correlation function
falls off rapidly, so that the correlation between pairs of
points becomes rapidly smaller with separation distance,
then y(T) will be small. On the other hand, if all points on
the interval [0, T'] are perfectly correlated, having p(t) = 1
for all 7, then y(T) will be 1.0. Such a field displays no
variance reduction under local averaging. [In fact, if the
field is stationary, all points will have the same random
value, X (1) = X .]

The integral in Eq. 3.40 is over the square region [0, T'] x
[0, 7] in (£, n) space. Considering Figure 3.7, one sees that
px (& — n) is constant along diagonal lines where & — n =
const. The length of the main diagonal, where & = 1, is
V2T, and the other diagonal lines decrease linearly in
length to zero in the corners. The double integral can be
collapsed to a single integral by integrating in a direction

A
N N Q
n 7 & 2
A , A
i Lo KN
Tk . .
dt
1] //m,
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Figure 3.7 Reduction of two-dimensional integral of p(¢§ — )
to a one-dimensional integral.

perpendicular to the diagonals; each diagonal differential
area has length «/E(T — |z|), width dt/«/i, and height
equal to px(& — n) = px(tr). The integral can therefore be
written as

1 T T
v =75 [ [ pete = g an

1 0 d‘L’1
== [/_T VAT~ fn vt

+/Tf2(T—|r|) (r)@}
A 21)Px 2\/5

1 T
=72 [T(T —lthpx(7) dt (3.41)

Furthermore, since px(7) = px(—7), the integrand is
even, which results in the additional simplification

T
y(T) = %/0 (T — D)px(r) dt (3.42)

Figure 3.8 shows two typical variance functions, the solid
line corresponding to an exponentially decaying correla-
tion function (the Markov model, see Section 3.6.5) and
the dashed line corresponding to the Gaussian correlation
function (Section 3.6.6). The variance function is another
equivalent second-moment description of a random field,
since it can be obtained through knowledge of the corre-
lation function, which in turn can be obtained from the
spectral density function. The inverse relationship between
y(T) and p(7) is obtained by differentiation:

1 d?

p(t) = Eﬁ“zy(’” (3.43)

w | p()=exp{-2171/6}
ST N\NLY . p(v)=exp{ -7 12/ 6%)
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Figure 3.8 Typical variance function (0 = 0.4).



The variance function can also be obtained from the spectral
density function (Vanmarcke, 1984):

_ [® G(o) [sinT/2)]?
y(T) = fo 5 [ T2 } do (3.44)

Ox

Example 3.3 In Figure 3.6, a process having the Markov
covariance function

2 27|
C(t)=0" exp e

has been observed (upper plot). For this process, o = 0.5
and the correlation length (to be discussed in the next
section) is 8 = 0.3. The process X () is averaged over the
length T = 0.93 at each ¢, that is,

1 t+7/2
Xr(1) = ?/ /2 X(§) d§

and this is shown in the lower plot of Figure 3.6. What is
the standard deviation of X;(¢)?

SOLUTION Let o, be the standard deviation of X (z).
We know that

or =0o+/y(T)

(TT2 = ozy(T) -

where

y(T)

2 T

ﬁ/o (T —t)px(7) dr

2 T(T ) 2|7 J
ﬁ/o -7 eXp{—T} T

6% [2|T] N 2|T| |
= — —_— X —_— —
2|6 TP

So, for T =0.93 and 6 = 0.3, we get

v(0.93) = 0.2707

The standard deviation of X;(¢) is therefore
or = 0.54/0.2707 = 0.26

The averaging in this case approximately halves the stan-
dard deviation of the original field.

3.5 CORRELATION LENGTH

A convenient measure of the variability of a random field
is the correlation length 6, also sometimes referred to as
the scale of fluctuation. Loosely speaking 6 is the distance
within which points are significantly correlated (i.e., by
more than about 10%). Conversely, two points separated
by a distance more than 6 will be largely uncorrelated.
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Mathematically, 6 is defined here as the area under the
correlation function (Vanmarcke, 1984),

o0 oo
0 = / p(r)dt = 2/ p(t) dt (3.45)
—00 0
The correlation length is sometimes defined without the
factor of 2 shown on the right-hand side of Eq. 3.45 (see,
e.g., Journel and Huijbregts, 1978)

Equation 3.45 implies that if 6 is to be finite then p(7)
must decrease sufficiently quickly to zero as t increases.
Not all correlation functions will satisfy this criterion,
and for such random processes, & = co. An example of a
process with infinite correlation length is a fractal process
(see Section 3.6.7).

In addition, the correlation length is really only mean-
ingful for strictly nonnegative correlation functions. Since
—1 < p < 1, one could conceivably have an oscillatory cor-
relation function whose integrated area is zero but which
has significant correlations (positive or negative) over sig-
nificant distances. An example of such a correlation func-
tion might be that governing wave heights in a body of
water.

The correlation length can also be defined in terms of the
spectral density function,

20,2 00
G(w) = —/ p(t) cos(wt) dt (3.46)
7T Jo
since, when w = 0,
20_2 00 0,2
G(0) = —/ p(t)dt = —6 (3.47)
T 0 T
which means that G0
=" ; ) (3.48)
o

What this means is that if the spectral density function is
finite at the origin, then 6 will also be finite. In practice
G(0) is quite difficult to estimate, since it requires data
over an infinite distance (w = 0 corresponds to an infinite
wavelength). Thus, Eq. 3.48 is of limited value in estimating
the correlation length from real data. This is our first hint
that 6 is fundamentally difficult to estimate and we will
explore this further in Chapter 5.

The correlation length can also be defined in terms of the
variance function as a limit (Vanmarcke, 1984):

0= lim Ty(T) (3.49)
T—o0

This implies that if the correlation length is finite, then the
variance function has the following limiting form as the
averaging region grows very large:

, 0
Jim ()= (3.50)
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Figure 3.9 Variance function corresponding to three different
correlation models.

which in turn means that 6/T can be used as an approxima-
tion for y(T) when T >> 6. A more extensive approxima-
tion for y(T), useful when the precise correlation structure
of a random field is unknown but for which 6 is known (or
estimated), is

y(T) ~ (3.51)

0+ I|T|
which has the correct limiting form for 7 >> 6 and which
has value 1.0 when 7 =0, as expected. The correlation
function corresponding to Eq. 3.51 is
3

O +1)
which is illustrated in Figure 3.9.
Some comments about what effect the correlation length
has on a random field are in order. When the correlation
length is small, the field tends to be somewhat “rough.”
In the limit, when 6 — 0, all points in the field become
uncorrelated and the field becomes infinitely rough, which

is physically unrealizable. Such a field is called white
noise (see Section 3.6.1). Conversely, when the correlation
length becomes large, the field becomes smoother. In cer-
tain cases, such as under the Markov correlation function
(see Section 3.6.5), the random field becomes completely
uniform when 6 — oco—different from realization to real-
ization but each realization is composed of a single random
value. Traditional soil variability models, where the entire
soil mass is represented by a single random variable, are
essentially assuming 6 = oo.

Figure 3.10 shows two random-field realizations. The
field on the left has a small correlation length (6 = 0.04)
and can be seen to be quite rough. The field on the right
has a large correlation length (6§ = 2) and can be seen to
be more slowly varying.

3.6 SOME COMMON MODELS
3.6.1 Ideal White Noise

The simplest type of random field is one in which X (¢) is
composed of an infinite sequence of iid random variables,
one for each t. That is, X| = X(t;), X» = X(p), ..., each
have marginal distribution fx(x), and, since they are inde-
pendent, their joint distribution is just the product of their
marginal distributions,

fxlxz...(x],xz, o) =)k ()

The covariance between any two points, X (¢1) and X (1), is

C(h.n)=C(ln —n) =C(1) = {"2 rr=0

0 ift#0
In practice, the simulation of white noise processes pro-
ceeds using the above results; that is, simply simulate a
sequence of iid random variables. However, the above also
implies that two points arbitrarily close to one another will
have independent values, which is not very realistic—the

field would be infinitely rough at the microscale.

The nature of ideal white noise for continuous ¢ can
be illustrated by considering two equispaced sequences of

Figure 3.10 Sample realizations of X(¢) for two different correlation lengths.



observations of averages of an ideal white noise process.
The first sequence, X (0), X(Atf), X(2At), ..., is taken by
averaging the white noise process over adjacent intervals
of width A¢. Now, suppose that n successive values of the
series X (1) are averaged to produce another sequence X, ().
That is X,(0) is an average of X(0), X(Af), ..., X((n —
1)At), and X, (At,) is an average of X (nAt), X((n + 1)At),
..., X({(2n — 1)Ar), and so on,

n—1
X,(0) = %ZX(iAt)
i =0

2n—1

1
X, (At) = — E XAt
a(Aty) N — (iAt)

where Af, = nAt. Because averaging preserves the mean,
the mean of both sequences is identical. However, if o2 is
the variance of the sequence X () and 03 is the variance of
the sequence X, (), then classical statistics tells us that the
average of n independent observations will have variance

oy = — (3.53)
Noting that n = At,/At, Eq. 3.53 can be reexpressed as

02At, =*At = 1G, (3.54)

That is, the product o2 At is a constant which we will set
equal to 7G,, where G, is the white noise intensity. The
factor of 7 arises here so that we can let the white noise
spectral density function G(w) equal G,, as we shall see
shortly. Equation 3.54 can also be rearranged to give the
variance of local averages of white noise in terms of the
white noise intensity,

7G,
2= ~ (3.55)

For ideal white noise, At goes to zero so that o> goes to
infinity. Another way of understanding why the variance
of white noise must be infinite is to reconsider Eq. 3.53.
For the continuous white noise case, any interval Az will
consist of an infinite number of independent random vari-
ables (n = 00). Thus, if the white noise variance o2 were
finite, then o> = o2/n would be zero for any nonzero av-
eraging region. That is, a white noise having finite variance
would appear, at all practical averaging resolutions, to be a
deterministic constant equal to the mean.

As the name suggests, white noise has spectral density
function which is constant, implying equal power in all
frequencies (and hence the analogy with “white” light), as
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G(w)

()

Figure 3.11 One-sided spectral density function for white noise.

shown in Figure 3.11,

G(w) =G, (3.56)

The primary, and attractive, feature of a white noise random
process is that all points in the field are uncorrelated,
1 ift=0

p(T) = 0 otherwise
If the random field is also Gaussian, then all points are also
independent, which makes probability calculations easier.
White noise is often used as input to systems to simplify the
computation of probabilities relating to the system response.

The covariance function corresponding to white noise is

C(t) =7G,8(1) (3.58)

(3.57)

where 6(t) is Dirac delta function, which is zero every-
where except at T = 0, where it assumes infinite height,
zero width, but unit area. The Dirac delta function has the
following useful property in integrals:

/ f(x)3(x —a) dx = f(a)

That is, the delta function acts to extract a single value of
the integrand at the point where the delta function argument
becomes zero. We can use this property to test if Eq. 3.58
is in fact the covariance function corresponding to white
noise, since we know that white noise should have constant
spectrum, Eq. 3.56. Considering Eq. 3.25b,

G(w) = %/-oo C(t)cos(wt) dt

[ee]

G, [
= / 8(t)cos(wt) dt
T J_

o0

= G, cos(0)
=G,

as expected. This test also illustrates why the constant
appears in Eq. 3.58. We could not directly use the one-
sided Eq. 3.25c in the above test, since the doubling of
the area from Eq. 3.25b assumes only a vanishingly small
contribution from C(t) at t = 0, which is not the case for
white noise. To double the contribution of C(t) at 7 =0
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Figure 3.12 One-sided spectral density function and corresponding covariance function of band-limited white noise.

would be an error (which is one example of why white
noise can be mathematically difficult).

The troublesome thing about white noise is that the area
under the spectral density function is infinite,

o0 oo
02=/ G(w)dw:/ G, dw =0
0 0

so that the process has infinite variance. Ideal white noise
is “infinitely rough,” which is physically unrealizable. For
problems where a continuous white noise process must
actually be simulated, it is usually a band-limited form of
the white noise that is actually employed. The band-limited
white noise has a flat spectral density function which is
truncated at some upper frequency, wi,
Glw) = {Go f0r0§w§w1
0  otherwise
where G, is some intensity constant. In this case, the
variance of the process is finite and equal to G,w;. The
covariance and correlation functions corresponding to band-
limited white noise are

(3.59)

sinw| T

C(t)=G, (3.60a)
sinw| T
p(t) = (3.60b)
w1 T

Figure 3.12 illustrates the fact that, as w; — oo, C(7) ap-

proaches the infinite-height Dirac delta function of Eq. 3.58.
The variance function can be obtained by integrating the

correlation function, Eq. 3.60b (see also Eq. 3.42),

2
y(T) = — [wlTSi(a)lT) + cos(anT) — 1] (3.61)
wiT?
where Si is the sine integral, defined by

. o1l gin ¢
Si(wT) = — dt
0 1

See Abramowitz and Stegun (1970) for more details. For
large T,

T 2cos(wT)
T —»> —+ ———
y(T) o7+ T

since limy,, 700 Si(1T) — 7/2.

The correlation length of band-limited white noise may
be obtained by using Eq. 3.48. Since G(0) = G, and 0% =
G,w1, we get

g — 7G(0) . G, T

3.6.2 Triangular Correlation Function

One of the simplest correlation functions is triangular, as
illustrated in Figure 3.13,

11zl if|r| <6
p(r)_{o if 7] > 0

where 0 is the correlation length.

One common process having a triangular correlation
function is the moving average of white noise. Suppose
that W (¢) is an ideal white noise process with intensity G,
(see the previous section) and we define

(3.62)

| e
X(0) = - / W) di (3.63)
0 Ji—op

to be a moving average of the white noise. Then X (r) will
be stationary with variance (we can take uy = puy = 0 and
t = 6/2 in the following for simplicity)



0 ro
oy =E[X?] =E[9i2/ / W ()W (1) ds dt]
0 Jo
1 0 pro
= 9_2/0 /0 E[W ()W (1)] ds dt

1 4 6

= — 1G,8(t —s) ds dt

62 /0 0
0

G,
=—/ 1 dt
0% Jo

7G,
= 3.64
7 (3.64)

Alternatively, if 03 is known, we can use this to compute
the required white noise intensity, G, = 8o 2/x.
The covariance function of X(¢) is

ol(1—|t|/0) if |t <6

Cx(r) = {O if [ > 0 (3.65)

The spectral density function of X (¢) is the spectral density
of an average of white noise and so reflects the transfer
function of a low-pass filter,

sin(wd/2) 77
G =G, | ——| ., >0 3.66
x(w) [ w02 ] w (3.66)
where the filter transfer function amplitude is
sin(wf /2)
|H ()| = ————
w62

Finally, the variance function of X(¢) is

T
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3.6.3 Polynomial Decaying Correlation Function

A simple correlation function which may be useful if little is
known about the characteristics of a random field’s spatial
variability is

03
= 3.68
p(T) @11y (3.68)
which has the variance function
0
T)= —— 3.69
y(T) 0T (3.69)

This variance function has the correct theoretical limiting
values, namely y(0) = 1 and limy_ y(T)=6/T.

The correlation function of Eq. 3.68 is compared to two
other correlation functions in Figure 3.9.

3.6.4 Autoregressive Processes

A class of popular one-dimensional random fields are the
autoregressive processes. These are simple to simulate and,
because they derive from linear differential equations ex-
cited by white noise, represent a wide variety of engineering
problems. Consider a first-order linear differential equation
of the form discussed in Example 3.2,

dX (1)

07 +aX(@)=W(@) (3.70)

where ¢ and « are constants and W (¢) is an ideal white
noise input with mean zero and intensity G,. In physics,
the steady-state solution, X (), to this equation is called the
Ornstein—Uhlenbeck process, which is a classical Brownian
motion problem.

The numerical finite-difference approximation to the

1 - — ifT <6
36 ne= derivative in Eq. 3.70 is
=10 (3.67)
] [1 _ _} £T >0 dX()) _ X(i+AD) =X (@0) 371
T r dt At
O 3 S
U 6] =~
2 2 2
e f ! 2 T T T 2 T T T 1
-2 -1 1 2 0 5 10 15 20 0 5 10 15 20
w (rad) T

Figure 3.13 Triangular correlation function for & = 1.0, corresponding spectral density function

G(w) for G, = 1, and variance function y (7).
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If we let At =1, then dX(¢)/dt ~X (@ + 1) — X(¢) and
Eq. 3.70 can be approximated by the finite-difference
equation

Xt + 1) — X(O)] + aX(t) = Wy(t) (3.72)

where, since X(f) is now a discrete process, Wj(f) is a
band-limited white noise process having constant intensity
G, up to the Nyquist frequency, 7 /At,

_[G, if0<w<m/At

Gy (@) = i 0  otherwise

Equation 3.72 can now be rearranged to allow the compu-
tation of the future, X (t + 1), given the present, X(¢), and
the band-limited white noise input, W (1),

(3.73)

X4 1) = (c —a)X(£)+ Wi (1)

=<£:ﬁ)nn+(l>mw> (3.74)
C C

This is a first-order autoregressive process in which the
future, X (¢ + 1), is expressed as a linear regression on the
present, X (¢), with Wy, (¢) playing the role of the regression
error. We can simulate a first-order autoregressive process
in one dimension using Eq. 3.74. We need only assume an
initial value, X (0), which can be taken to be the process
mean. Subsequent values of X are obtained by generating
a series of realizations of the random white noise, W (0),
Wy (1), ..., and then repeatedly applying Eq. 3.74,

1

X(1) = (1 _ %)X(O) + (;) W, (0)
1

X(2) = (1 - %)X(l) + (E) Wy (1)

As indicated in Example 3.2, the transfer function corre-
sponding to the continuous X (¢), Eq. 3.70, is

H(w) =

3.75
icowo+ ( )

so that the spectral density function corresponding to the
solution of Eq. 3.70 is

G,
_ 3.76
20? + a2 ( )
The covariance function of the continuous X(f) can be
obtained by using Eq. 3.25a, giving

Gx(w) = |H(@)]*Gy (w) =

Cx(t) = ofe@lTle (3.77)
where the variance cr)% is the area under Gy(w),
o G G,
2 4 0
= do = 3.78
x /0 2o +a2 T 2ac (3.78)

Note that Eq. 3.77 is a Markov correlation function, which
will be covered in more detail in the next section.
Although Eq. 3.72, via Eq. 3.74, is popular as a means
of simulating the response of a linear differential equation
to white noise input, it is nevertheless only an approxi-
mation to its defining differential equation, Eq. 3.70. The
approximation can be improved by taking At to be smaller;
however, At =1 is commonly used and so will be used
here. Figures 3.14 and 3.15 compare the spectral density
functions and covariance functions of the exact differential
equation (Eq. 3.70) and its finite difference approximation

Differential equation
---------------------- Finite-difference equation

w (rad)

Figure 3.14 Comparison of spectral density functions of exact
differential equation, Eq. 3.70, and its finite-difference approxi-
mation, Eq. 3.72, forc =2, « = 0.8, G, = 1, and Ar = 1.

1.5

Differential equation
---------------------- Finite-difference equation

C(v)

Figure 3.15 Comparison of covariance functions of exact differ-
ential equation, Eq. 3.70, and its finite-difference approximation,
Eq.3.72, forc =2, 0 = 0.8, G, =1, and At = 1.



(Eq. 3.72). As we shall see next, the mean and covariance
structure of the discrete process (Eq. 3.74) can be found,
so that the coefficients ¢ and o can always be adjusted to
get the desired discrete behavior.

It is informative to compare the second-moment charac-
teristics of the differential equation and its finite-difference
approximation. So long as E[W(#)] = E[W,(z)] = 0, the
mean (first moment) of both the differential equation re-
sponse and the finite difference response is zero.

The actual spectral density function of Eq. 3.72 can be
obtained in a number of ways, but one approach is to
first obtain its transfer function. Letting W, (t) = ¢/’ and
the steady-state response X(¢) = H(w)W,(t) = H (w)e'*",
Eq. 3.72 becomes

C[H(w)eiw(t-l-l) _H(w)eiwf:l +aH(w)eiwt — eia)t

which we can solve for H (w),
1 1

H(w) = . = . 3.79
(@) a+tce®—=1) —(c—a)+ce® ©-79)
The squared magnitude of H (w) is
2 1
|H (w)|” = (3.80)

(c —a)*> —2c(c —a)cosw + c2

The spectral density function of Eq. 3.72 is therefore (for
At =1)

Gx(®) = |H(@)]* Gy, ()
j— GO
" (o — )+ 2c(a —c)cosw + ¢2’

O<w<m

(3.81)

Note that these results assume that a steady state exists for
the response, X (¢). The system will reach a steady state if
a < ¢ and we will assume this to be the case.

The variance of the approximate discrete process,
Eq. 3.72, is

dw

T G
2 4
oy =
/0 (¢ —c)? +2c(e —c)cosw + c2
7G,
=—7 3.82
20c — a? (3.82)
Note that the integral has been truncated at wy = /At =
7 because Eq. 3.72 is a discrete process with A = 1. The
covariance function and correlation functions are

7G, c—a\
C =
) 2ac — a? ( c )

c—a Izl
p(T) = ( )
C

for 7| =0,1,... and a < c.

(3.83)

(3.84)
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Autoregressive models can be extended to higher order
processes. Consider, for example, the second-order differ-
ential equation

d*X (1) dX (1)
2 +a7 + BX(t) = W(t)
The spectral density function of X(¢) can be found by
setting

(3.85)

W(t) = e

X(1) = H(w)e'™

X(1) = H(w)iwe'™

X(t) = —H (w)w’e'
where the overdots indicate differentiation with respect to
time. Substituting these into Eq. 3.85 gives

H()e'" [—w? +iaw + B] = '

which yields
N
B—-—wH)+iaw
The spectral density function corresponding to Eq. 3.85 is
thus

H(w) = (3.86)

G,
G ra 8

Making use of the following numerical approximations
to the derivatives,

Gx(w) = |H()]*Gy (w) =

d*°X(1) _ X(t+ A1) —2X(0) + X(t — A1)

a2 A2
dX(t) _ X(t+ A —X(1 = A1)
d 2At

where we used the more accurate central difference ap-
proximation for the first derivative, allows Eq. 3.85 to be
approximated (and simulated) as the regression

X(t+1)=a;X(t) +aX(t — 1)+ €@)

where

_2-8

R )
1—a/2

a) = —

1+a/2

Wy (1)

= —2"_

“O=1ran

The latter means that €(z) is a band-limited white noise
process, from w =0 to w = &, having intensity G, /(1 +
a/2)%.
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Because higher dimensions do not have a well-defined
“direction” (e.g., future), the autoregressive processes are
not commonly used in two and higher dimensions.

3.6.5 Markov Correlation Function

The Markov correlation function is very commonly used
because of its simplicity. Part of its simplicity is due to the
fact that it renders a process where the “future” is depen-
dent only on the “present” and not on the past. Engineering
models which depend on the entire past history are rela-
tively rare, but creep strains in concrete and masonry are
one example. Most engineering models, however, allow the
future to be predicted given only knowledge of the present
state, and so the Markov property is quite applicable to
such models. In terms of probabilities, the Markov prop-
erty states that the conditional probability of the future state
depends only on the current state (see Chapter 2), that is,

K000 4 KX 00 0]
=P [X(tn+1) <x |X(t")]

which generally leads to simplified probabilistic models.
More generally, the Markov property states that the future
depends only on the most recently known state. So, for
example, if we want to know a conditional probability relat-
ing to X (#,+1) and we only know X (#,_3), X (t,,—4), . . ., then

P X (tys1) < X[ X(14-3), X (tn—a), .. .]
=P [X(tn+l) =x |X(tn—3)]

The Markov correlation function has the form

2|7|
p(t) = exp 5 (3.88)
where 6 is the correlation length. This correlation func-

tion governs the solution to the first-order differential

1.2

<
(=]

1
J

p(7)

0 02 04 06 0.8
| |
G(w)
02 03
|

equation 3.70, the Ornstein—Uhlenbeck process. The param-

eter 6 can be interpreted as the separation distance beyond

which the random field is largely uncorrelated. For example,

Eq. 3.88 says that when two points in the field are separated

by 7 = 6, their correlation has dropped to e~ = 0.13.
The Markov process has variance function

_~ 0% [2|T| 2|7 . 380
v( )—ﬁ T+eXp _T - (3.89)

and “one-sided” spectral density function
o%0
7 [1+ (0w/2)?]

which are illustrated in Figure 3.16. Although simple, the
Markov correlation function is not mean square differen-
tiable, which means that its derivative is discontinuous and
infinitely variable, a matter which is discussed in more de-
tail in Chapter 4. The lack of a finite variance derivative
tends to complicate some things, such as the computation
of level excursion statistics.

G(w) = (3.90)

3.6.6 Gaussian Correlation Function

If a random process X(¢) has a Gaussian correlation func-
tion, then its correlation function has the form
T

p(T) =exp{—7t <5>2} (3.91)

where 6 is the correlation length. The corresponding vari-
ance function is

6% [x|T| NZav aT?
y(T)_nTz[ 5 erf{ 2 }+exp{—6—2}—1:|

(3.92)

where erf(x) = 2<I>(«/§x) — 1 is the error function and ®(z)
is the standard normal cumulative distribution function. The

r(T)
0 02 04 06 08 1 12
| | ] J

! !
6 8 10 0 2 4 6 8 10

w (rad) T

Figure 3.16 Markov correlation function for 6 = 1.0, corresponding spectral density function

G(w) for oy = 1, and variance function y (7).
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Figure 3.17 Gaussian correlation function for 6 = 1.0, corresponding spectral density function

G(w) for oy = 1, and variance function y (7).

spectral density function is exponentially decaying,

G(a))—02 <g> ex {_ﬁ}
= Oy p
T V%

as illustrated in Figure 3.17.

One advantage, at least mathematically, to the Gaussian
correlation function is that it is mean square differentiable.
That is, its derivative has finite variance and so level
excursion statistics are more easily computed, as will be
seen in Chapter 4. Mean square differentiable processes
have correlation function with slope zero at the origin, and
we can see that for this process p(r) flattens out at the
origin. From the point of view of simulation, one potential
disadvantage to the Gaussian correlation function is that at
larger correlation lengths the correlation between nearby
points can become very close to 1 and so difficult to
deal with numerically. If any off-diagonal value becomes
1.0, the correlation matrix loses its positive definiteness.
A correlation matrix with all 1’s off diagonal becomes
singular. So, although the zero slope at T = 0 leads to mean
square differentiable processes, it can also lead to numerical
difficulties in simulation for large correlation lengths.

(3.93)

3.6.7 Fractal Processes

A random-field model which has gained some acceptance
in a wide variety of applications is the fractal model,
also known as statistically self-similar, long memory, or
1/f noise. This model has an infinite correlation length
and correlations remain high over very large distances. An
example of such a process is shown in Figure 3.18.
Notice, in Figure 3.18, that the samples remain statisti-
cally similar, regardless of viewing resolution, under suit-
able scaling of the vertical axis. Such processes are often
described by the (one-sided) spectral density function

G,
Gw) = — (3.94)

in which the parameter y controls how the spectral power
is partitioned from the low to the high frequencies and G,
can be viewed as a spectral intensity (white noise intensity
when y = 0). In particular, the case where 0 <y < 1
corresponds to infinite high-frequency power and results
in a stationary random process called fractional Gaussian
noise (Mandelbrot and van Ness, 1968), assuming a normal
marginal distribution. When y > 1, the spectral density
falls off more rapidly at high frequencies, but grows more
rapidly at low frequencies so that the infinite power is
now in the low frequencies. This then corresponds to a
nonstationary random process called fractional Brownian
motion. Both cases are infinite-variance processes which
are physically unrealizable. Their spectral densities must
be truncated in some fashion to render them stationary with
finite variance.

Self-similarity for fractional Gaussian noise is expressed
by saying that the process X (z) has the same distribution as
the scaled process a' = X (az) for some a > 0 and some H
lying between 0.5 and 1. Alternatively, self-similarity for
fractional Brownian motion means that X (z) has the same
distribution as @ X(az), where the different exponent
on a is due to the fact that fractional Gaussian noise is
the derivative of fractional Brownian motion. Figure 3.18
shows a realization of fractional Gaussian noise with H =
0.95 produced using the local average subdivision method
(Fenton, 1990). The uppermost plot is of length n = 65,536.
Each plot in Figure 3.18 zooms in by a factor of a = 8§,
so that each lower plot has its vertical axis stretched by
a factor of 8%0° = 1.11 to appear statistically similar to
the next higher plot. The reason the scale expands as we
zoom in is because less averaging is being performed. The
variance is increasing without bound.

Probably the best way to envisage the spectral density in-
terpretation of a random process is to think of the random
process as being composed of a number of sinusoids each
with random amplitude (power). The fractal model is saying
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Figure 3.18 Example of a fractal process (fractional Gaussian noise with H = 0.95) at three resolutions.

that these random processes are made up of high-amplitude
long-wavelength (low-frequency) sinusoids added to suc-
cessively less powerful short-wavelength sinusoids. The
long-wavelength components provide for what are seen as
trends when viewed over a finite interval. As one “zooms”
out and views progressively more of the random process,
even longer wavelength (scale) sinusoids become apparent.
Conversely, as one zooms in, the short-wavelength com-
ponents dominate the (local) picture. This is the nature of
self-similarity attributed to fractal processes—realizations
of the process look the same (statistically) at any viewing
scale.

By locally averaging the fractional Gaussian noise (0 <
y < 1) process over some distance §, Mandelbrot and van

Ness (1968) render fractional Gaussian noise (fGn) physi-
cally realizable (i.e., having finite variance). The resulting
correlation function is

1
P(0) = S| [T + 61 =2 +1x —5P"]  (3.95)

where H = %(y + 1) is called the Hurst or self-similarity
coefficient with % < H < 1. The case H = % gives white
noise, while H =1 corresponds to perfect correlation [all
X(z) = X in the stationary case]. The spectral density func-
tion corresponding to fractional Gaussian noise is approxi-
mately (Mandelbrot and van Ness, 1968)

G(w) = (3.96)

o
w2H -1



where 5
_ ofHQH — 1H)(2rs)*
" I'(2—2H) cos[n(l —H)]
which is valid for small dw and where I'(x) is the gamma
function tabulated in, for example, Abramowitz and Stegun
(1970). If we know the spectral density function, Eq. 3.97
can be inverted to determine the process variance
sz _ G,I'(2—2H) cos [n(i — H)]
HQH — 1)(2m8§)>—2H

which goes to infinity as the local averaging distance § goes
to zero, as expected for a fractal process. Local averaging
is effectively a low-pass filter, damping out high-frequency
contributions, so that Mandelbrot’s approach essentially
truncates the spectral density function at the high end. Both
the tail behavior of the spectral density function and the
variance of the process thus depends on the choice of §,
which makes it a quite important parameter even though it
is largely ignored in the literature (it is generally taken to
equal 1 arbitrarily). Because of the local averaging, Eq. 3.94
can only be considered approximate for fractional Gaussian
noise, the accuracy improving as § — 0.

The variance function corresponding
Gaussian noise is given by

|T + 8|2H+2 _ 2|T|2H+2 + |T _ 8|2H+2 _ 282H+2
T2QH + D)(2H + 2)82H

(3.97)

o

to fractional

y(T) =
(3.98)
Because the fractional Gaussian noise has, for § — 0,
an infinite variance, its use in practice is limited (any
desired variance can be obtained simply by modifying §).
The nature of the process is critically dependent on H
and §, and these parameters are quite difficult to estimate
from real data (for § we need to know the behavior at the
microscale while for H we need to know the behavior at
the macroscale).
Notice in Figure 3.19 that the correlation function re-
mains very high (and, hence, so does the variance function
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since highly correlated random variables do not provide
much variance reduction when averaged). This is one of the
main features of fractal processes and one of the reasons
they are also called long-memory processes.

3.7 RANDOM FIELDS IN HIGHER DIMENSIONS

Figure 3.20 illustrates a two-dimensional random field
X(t1, 1) where X varies randomly in two directions, rather
than just along a line. The elevation of a soil’s surface and
the thickness of a soil layer at any point on the plan area of
a site are examples of two-dimensional random fields. The
cohesion of the soil at plan location (#1,#,) and depth #3 is
an example of a three-dimensional random field X (¢1, 2, 13).
The coordinate labels ¢, #,, and 3 are often replaced by the
more common Cartesian coordinates x, y, and z. We shall
keep the current notation to remain consistent with that
developed in the one-dimensional case.

In this section, we will concentrate predominately on
two-dimensional random fields, the three-dimensional case
generally just involving adding another coordinate. As in
the one-dimensional case, a random field is characterized
by the following:

1. Its first moment, or mean, wu(t,), which may vary
in space. If the random field is stationary, then the
mean does not change with position; wu(ty, ) = u.

2. Its second moment, or covariance structure, C (t]’,tl*,
15, 13), which gives the covariance between two points
in the field, X(z[,#}) and X(¢/,z). If the field is
stationary, then the covariance structure remains the
same regardless of where the axis origin is located,
that is, the covariance function becomes a function
of just the difference, (t' —t*), that is, C(f] — ¢,
) —1).

3. Its higher order moments. If the field is Gaussian, it
is completely characterized by its first two moments.

o - — o
_ - -
o0 o0
S 7 e ST
O 3 g o
SO 35 X <o
g “7 <+ _|
[« [«
[\l — — o™
S ST

e T T T T 1 e T T T T 1 e T T T T 1

0 10 20 30 40 50 0 1 2 3 4 5 0 10 20 30 40 50

T w (rad) T

Figure 3.19 Correlation function, approximate spectral density function, and variance function
for fractional Gaussian noise (with H = 0.95, § = 0.1).
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Figure 3.20 Realization of two-dimensional random field.

We will restrict our attention to just the first two moments of
a random field. For simplicity, we will mostly concentrate
on stationary random fields since any random field X’ can
be converted to a random field which is stationary in its
mean and variance, X (with zero mean and unit variance),
through the transformation
X'()— W
o'(t)

where t is a vector denoting spatial position (in two di-
mensions, t has components #; and #;) and /(t) and o’(t)
are the mean and standard deviation of X’ at the spatial
location t.

In the following sections we investigate various ways
that the second-moment characteristics of a random field
can be expressed.

X(t) = (3.99)

3.7.1 Covariance Function in Higher Dimensions

The covariance function gives the covariance between two
points in the field, X’ = X(t') and X* = X(t*). Since the
covariance between X’ and X* is the same as the covari-
ance between X* and X’ (i.e., it does not matter which way
you look at the pair), then C (1,1, 1;,25) = C (1}, 15, 1], ).
If the random field is stationary, this translates into the
requirement that C(t) = C(—7), where T =t — t* is the
spatial lag vector having components 7| =1t —t{, T =
t, — t;. For example, for a two-dimensional stationary ran-
dom field C(t —1tf,t; =) =C(t] —1],t5 —15), or
C(t1,2) = C(—11, —T2).

In two dimensions, the correlation function is defined as

Cov [X',X*] _ C(n.)

o'o* o'o*

p(T1, ) = (3.100)

p(t), )

(323
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Figure 3.21 Two-dimensional correlation function p(7y,12)
given by Eq. 3.102 for 6; = 6, = 1.

where o’ and o* are the standard deviations of X' = X (t')
and X* = X(t*), respectively. Since we are assuming the
random field is stationary, then ¢’ =o¢* = o, and the
correlation function becomes

C(t1,12)

p(T1,12) = 5 (3.101)
o

Figure 3.21 illustrates the two-dimensional correlation
function

2
p(T1, T2) = exp {—g(lnl + Ile)}

2|t 2|y
=expi— o exp —? (3.102)

which is Markovian in each coordinate direction. Note that
even if the directional correlation lengths 6; and 6, are
equal, this function is not isotropic, as seen Figure 3.21.

3.7.2 Spectral Density Function in Higher Dimensions

In two dimensions, the spectral representation of a station-
ary random field, X (7, 1), is the double sum

N M
X(tn)=px+ Y, Y Cy cos(wit +wytr + Dy)
i=—Nj j=—N

(3.103)
where, as in the one-dimensional case, C; is a random
amplitude and ®; a random phase angle. The variance of
X(t1, 1) is obtained by assuming the random variables Cj;
and ®;; are all mutually independent,

Ny Mo
a%:E[(X(I],tz)—Mx)z]z Z Z EE[Cuz]

i=—Np j=—N
(3.104)



We define the two-dimensional spectral density function
S (w1, wy) such that
S(i.03) Aoy Awy =} E[C]]

1

(3.105)

Figure 3.22 illustrates a two-dimensional spectral density
function. Note that if the correlation function is separable,
as is Eq. 3.102, then both the spectral density and the
variance functions will also be of separable form (although
in the case of the spectral density function the variance does
not appear more than once in the product). In the case of
Figure 3.22 the spectral density function is obtained directly
from Eq. 3.90 as

020,65
72 [1+ (0101/2)*] [1 + (02/2)]
= 4S (a)l, a)z)

G(wy,w) =

(3.106)

In the limit as both Aw; and Aw, go to zero, we can express
the variance of X as the volume under the spectral density
function,

o o
ol = / / S(w1, @) doy da
—00 J —00

In the two-dimensional case, the Wiener—Khinchine rela-
tionships become

cm,zz):/ / S(1,0)

(3.107)

X cos(wT] + ) dwy dwy (3.108a)
1 o0 o0
S(wl,w2)=—/ / C(t1,2)
Qr)? ) oo Joo
X cos(w T + wrm) dty d1p (3.108b)
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Figure 3.22 Two-dimensional spectral density function
S(wy,wy) corresponding to Eq. 3.102 for # = 1 and o = 1.
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If we express the components of spatial lag and fre-
quency using vectors, T = {7, )T and @ = {w|, w7,
where superscript T denotes the transpose, then the Wiener—
Khinchine relationships can be written for n dimensions
succinctly as

C(t) = /00 S(w)cos(w - 7) dw (3.109a)
S(w) = /oo C(t)cos(w-T)dT (3.109b)
@)t J -

where it is understood that we have a double integral for
two dimensions, a triple integral for three dimensions, and
so forth. The centered dot denotes the vector dot product,
for example, ® - T = w111 + W T5.

3.7.3 Variance Function in Higher Dimensions

In two dimensions, we can define the moving local average
of a random field, X(z;,%,), over an area of dimension
A =T, x T, to be

1 [n+N/2 po+Ta)2
=5 [ [ @ deas
AJi—r2 -2
(3.110)
Figure 3.23 illustrates a moving local average field for
Ty x T, =2 x 2. To determine the statistics of X,, we
will first assume that the random field X (t) is stationary,
so that we can choose to find the mean and variance of
X, = Xu(T1/2,T,/2) as representative,

1 T, T
X, = —/ / X(t1, 1) dty dty
Ao Jo

The mean of X, is

(3.111)

1 T, T
Ux, = X/ / E[X(t1,1)] dty dty = py
o Jo

Assuming that the random field X (¢, #;) has “point” mean
uyx = 0 and variance oy, then the variance of X, is

Var [X,] = o} = E[X}]

1 T, Ty T p)
=E 0 /0 /0 /0 E[X (11, )X (£1.6)]

X d.‘;—'z dt, dél dt

1 T T T b
- / / / / Cov [X (11, 1), X (51, £2)]
0 0 0 0

X d.‘;—'z dt, dél dt

0_2 T, T, b p)
=-2 / / / plty — &1, — &)
A2y Jo Jo Jo

X dég dn d%‘] dt
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Figure 3.23 The field X, on the right is a moving local average over a window of size T} x T, of the field X on the left.

The same result would have been obtained even if uy # 0
(at the expense of somewhat more complicated algebra).

Making use of the fact that, for stationary random fields,
p is constant along diagonal lines where | — & and #, — &
are constant, we can reduce the fourfold integral to a double
integral (see Eq. 3.41 and Figure 3.7), so that

0_2 T T>
Var [X,] = A_);/ AT = 11 DAT2] = |72
=Ty J-T>

x p(11,T2) dto d
=oly(T1,T2)
where, since A = T T, the variance function is defined by

1 T T
y(T1,Ty) = ﬁ/ Ty = lm1 DAT2] = [T2])
Tl Tz =T J-T>

x p(t1, ) dtpy d1} (3.112)

Some additional simplification is possible if p(t], 72) =
p(—11, 1) = p(t1, —12) = p(—11, — 1) (this is called quad-
rant symmetry, which will be discussed shortly), in which
case

4 I rh
y(T,Th) = —/ Ty = w)(T2| — 2)
213 Jo Jo

x p(t1, 1) dty d1} (3.113)

The variance function corresponding to the separable
Markov correlation function of Eq. 3.102 is shown in
Figure 3.24. Although y (T, T5) is perhaps questionably de-
fined when 7 or 7, is negative, we shall assume that an
averaging area of size —2 x 3 is the same as an averaging
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Figure 3.24 Two-dimensional variance function y (T, T>) cor-
responding to Eq. 3.102 for 0 = 1.



area of size 2 x 3, the sign only arising because 7 is mea-
sured in opposite directions. By this assumption, y (7}, T>)
is automatically quadrant symmetric, as will be discussed
next.

Figure 3.24 illustrates the separable two-dimensional
variance function corresponding to Eq. 3.102, which is

T T5) 076037 T2IT)| N A1)
s = exp 4y — —
VAR E e [Te TP e

[2IT2| } }
X + exp -1

)
3.74 Quadrant Symmetric Correlation Structure

{—2|T2| (3.114)

Figure 3.25 shows three points in a two-dimensional plane.
If we say that X* = X(0,0), then, when X' = X(2,4),
the covariance between X* and X" is C (1] —1],15 — 1) =
C(2,4). Alternatively, when X' = X(—2,4), the covari-
ance between X* and X’ is C(—2,4). If these two co-
variances are equal, then we say that the random field
is quadrant symmetric (Vanmarcke, 1984). Since also
C(t) = C(—1), quadrant symmetry implies that C(2,4) =
C(—2,4) = C(—2,—4) = C(2,—4). One of the simplifica-
tions that arises from this condition is that we only need
to know the covariances in the first quadrant (r; > 0 and
t» > 0) in order to know the entire covariance structure. A
quadrant-symmetric random process is also stationary, at
least up to the second moment.

If the covariance function C(t) is quadrant symmetric,
then its spectral density function S (w) will also be quadrant
symmetric. In this case, we need only know the spectral
power over the first quadrant and can define

Gw)=2"S(w), w >0 (3.115)
153
X(-2,4) X(12,4)
C(-2,4) Cc2,4)
X(0,0)
L

Figure 3.25 Three points on a plane and their covariances.
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where n is the number of dimensions. For example, if

n = 2, then G(w) is defined as
G(wy, w) =4S (w1, @) (3.116)

and the two-dimensional Wiener—Khinchine relationships,
defined in terms of the first quadrant only, become

o0 o0
C(11,12) =/ / G(wy,w2) cos w| T
o Jo

X COSwaTr dwy dwy (3.117a)
2 2 po0 poo
G(wr,w) = <—> / / C(11,T2) COs | T)
T 0 Jo
X COS waTr d11 dTp (3.117b)

and similarly in higher dimensions. We get Eq. 3.117b by
starting with Eq. 3.108b,

S(wy, w2)

1 o0 o0
= —2/ / C(t1, ) cos(w 7] + wrtp) dty dTy
2r) J - J -0

1 o0 o0
=mf0 /0 {ICRSITCRS

+ C(t, — )V (11, — 1) + C (=11, )V (—T1, —T2)
+ C—n,—n)W(—n, —) |dn do

where we introduced and used the short form W (7, 0) =
cos(w 7] + wy ). Since C is quadrant symmetric, so that
C(r1,) = C(11,—12) = C(—71,2) = C(—711, —T2), then
the above simplifies to

S (w1, w7)
1

= W/o /0 C(TI’TZ){‘IJ(Tl’TZ)—F‘I/(‘cl,—-,,-z)

+ W(=1,—12) + W(—11, —Tz)} dty do

4 [z oo
= 2n)? / / C(t1,72) oS @ T COSwTod T1dT)
0 0

In the last step we used the trigonometric identities relating
to cosines of sums of angles to simplify the expression.
Writing G(w;, ws) = 225 (wy, w,) gives us Eq. 3.117b.

The n-dimensional quadrant-symmetric Wiener—Khin-
chine relationships are

o0
C(1) :/ G(w)coswiTy - COSw, T, dT
0

2\" [*®
G(w) = <;) / C(t)coswity---CcOSw, T, dw
0

Since the variance function y (T}, T») is a function of |77 |
and |T»|, it is automatically quadrant symmetric.
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3.7.5 Separable Correlation Structure

One of the simplest forms that the multidimensional corre-
lation function can take is as the product of the directional
one-dimensional correlation functions, that is,

Pty 17, 15, 15) = pi(ty, 1) p2(t3, 15) (3.118)

If the random field is also stationary, then only the dif-
ferences in position are important, so that the separable
correlation function becomes

o111, 15, 15) = pi(ty — 1) pa(ty — 1) = p1(T1)p2(12)

(3.119)
Because p(t) = p(—1), a separable correlation function is
also quadrant symmetric and thus also at least second-
moment stationary. That is, p(1],172) = p(—71,12) =
p(t1, —12) = p(—11, —12). Figures 3.21, 3.22, and 3.24
are illustrations of a separable Markov process having
01 =6, = 1 and o = 1. Clearly, the processes shown in
Figures 3.21, 3.22, and 3.24 are not isotropic, even though
their directional correlation lengths are equal. As we shall
see in the next section, it is only when p(t1, 72) can be writ-

ten as a function of ,/ r12 + r22 that we can have an isotropic
correlation structure.

The covariance function corresponding to a separable
process is

C(t1, ) = 0 p1(11)pa(12) (3.120)

If the correlation structure is separable, then the spectral
density and variance functions will also be separable. The
variance function can be written as

y(T1,T7) = yi(T)y(T?)

The separable spectral density must be written in terms of
the product of the variance and unit-area (i.e., unit-variance)
density functions,

(3.121)

G(wi, ) = 02g1(®1)g2(w2)

The unit-area spectral density functions g;(w1) and g2(wy)
are analogous to the normalized correlation functions p;(t)
and py(12). That is, gi(w;) = Gi(w))/0? and gy(w)) =
Ga(wy)/o?. They can also be defined by replacing C(7)
with p(7) in the Wiener—Khinchine relationship,

2 o0
Gion == / p(m) cosorm dr (3.122)
0

Example 3.4 If the covariance function of a two-dimen-
sional random field X (#1,1,) is given by

C(t1,mp) = o)% exp§—2 @ + @
0, 0>

then what are the corresponding spectral density and vari-
ance functions?

SOLUTION We note that C(t;, 7) can be written as

2 71 |72
C(t1,12) =0y €Xpy—2— 1 exp)—2——
01 0>

= o2p1(t)pa(12)

where

2‘L’,’
pi(Ti) = exp o (3.123)
Evidently, the correlation structure is separable and each
directional correlation function is Markovian (see Sec-
tion 3.6.5). The spectral density function corresponding to
a (directional) Markov process is given by Eq. 3.90,

Gi(w) i
i(wi) =
7 [1+ (00 /2)*]

so that the directional unit-area spectral density functions
are obtained from G;(w;)/o} as

@)= T 2]
02
g2(w) =

7 [1+ (6202/2)7]

The desired spectral density function is thus

G(w1, ) = o7 g1(w1)ga(w2)
_ 0)391092
- w214 Gro1/2°][1 + (6202/2)°]

The variance function corresponding to a (directional)
Markov process is given by Eq. 3.89 as

1= 2 [ATL AT
(T)) = exp |- -

so that y(T1, T>) = y1(T)y(T») is

TLTy) 0767 [2|T1| N { 2|T1|} 1}
S = exp § — -
T o TR )

2|T>| 2|T,|
- — -1
X |: o + exp o

3.7.6 Isotropic Correlation Structure

If the correlation between two points depends only on
the absolute distance between the points, and not on their
orientation, then we say that the correlation structure is
isotropic. In this case, the correlation between X (1, 1) and
X (2,1) is the same as the correlation coefficient between
X(1,1) and any of X(1,2), X(0,1), and X(1,0) or, for
that matter, any of the other points on the circle shown
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X(1,2)

X0, 1) e X(1,1) X(2,1)

|

Figure 3.26 Isotropy implies that the correlation coefficient
between X (1, 1) and any point on the circle are all the same.

in Figure 3.26. If a process is isotropic, it must also be
quadrant symmetric and thus also at least second-moment
stationary. The dependence only on distance implies that

p(T1,12) = p (\/ TP+ 122)

For example, the isotropic two-dimensional Markov corre-
lation function is given by

p(T) = exp {—g\/ 7 + 7722} = exp {-%} (3.125)

which is illustrated in Figure 3.27, where |t| = /77 + 5.
The Gaussian correlation function can be both isotropic, if
0, = 0, = 6, and separable, for example,

2 2
T 153
€X —7JT — €X —7JT —
P (91> P <92)
T
exp {—ﬁ (zf + 722)}

2
exp |~ (,/Tfﬂg)
expy—m It ’

0

which is isotropic since it is a function of |7| =,/ r12 + 122.

(3.124)

(11, 12)
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Figure 3.27 Isotropic Markov process in two dimensions.

Not all functions of |t| = ,/rlz + r% are acceptable as
isotropic correlation functions. Matern (1960) showed that
for an n-dimensional isotropic field the correlation function
must satisfy

o(7) > ! (3.126)
n

which can be shown by considering n + 1 equidistant
points, for example, an equilateral triangle in n =2 di-
mensions or a tetrahedron in n = 3 dimensions, combined
with the requirement that the correlation function be posi-
tive definite (see Eq. 3.8),

n+1 n+1

ZZaiaJ-p,j >0

i=1 j=1

(3.127)

where p;; is the correlation coefficient between the ith and
jth points. Since the points are equidistant and the field is
isotropic, we must have

pijz{pm ifi#)

1.0 ifi=j
where 7 is the distance between points. If we also set the
coefficients @; to 1.0, that is, aj =a, =--- =a,+1 =1,

then Eq. 3.127 becomes
(n+ 1D+ +1)> =+ Dlp(x) = 0
which leads to Eq. 3.126.

Example 3.5 Suppose
o(t) = exp{—%r} cos(271)
for ¢ > 0. Can this function be used as an isotropic corre-

lation function in n = 3 dimensions?

SOLUTION For n = 3 dimensions we require that p(t) >
—%. The minimum value of p occurs when 7 reaches
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the first root of dp/dt = 0 in the positive direction. For
generality, we write

p(t) = exp{—art} cos(wr)
where, in our problem, a = % and w = 2. The derivative is

dp .
— = exp{—at}[—a CcOS wT — w Sin a)r]
dt

so that setting dp/dt = 0 leads to the root

1 _1 a 1 i /a
o = Lran! (- 4) =~ Lt (2)
w w w w

But we want the first positive root, so we shift to the right
by 7, that is,

7 —tan"! (a/w)
Tmin =
w

Substituting this into our correlation function gives us the
minimum value the correlation function will take on

)= S Can—1 &
P(Tin) = €Xp { > (71 tan w>} cos (71 tan w>
For a/w = 0.5/2 = 0.25 we get

p(Tmin) = exp {—0.25(t —tan™" 0.25)}
X COS (n — tan™! 0.25) = —0.47

But —0.47 < —%, so that this is not an acceptable isotropic
correlation function in three dimensions. It would lead to
a covariance structure which is not positive definite. We
require the ratio a/w > 0.37114 in order for this function
to be used as an isotropic correlation function in three

dimensions.

If the random field is isotropic, then its spectral density
function can be specified by a radial function (Vanmarcke,
1984). In two dimensions, the isotropic radial spectral
density function has the form

G(w1, ) =G’ (,/w% - wg) =G (w)

where o = ‘/a)f +a)§ is the absolute distance between
the origin and any point in the frequency domain. A
complication with the radial spectral density function is
that the area beneath it is no longer equal to the variance
of the random field, o2. To obtain the variance from the
radial spectral density function, we must integrate over the
original (w1, w;) space both radially and circumferentially.
For n = 2 dimensions, the end result is

(3.128)

T o
o’ = —/ oG’ (w) dw (3.129)
2 Jo
while for n = 3 dimensions
o0
2_ T 2 r
o= 5/ 0 G (w) dw (3.130)
0

The variance function is defined as the variance reduction
factor after averaging the field over a rectangle of size
T, x T, (or T} x T, x T3 in three dimensions). Since the
rectangle is not isotropic, even if the random field being
averaged is isotropic, the variance function does not have
an isotropic form. An isotropic form would be possible if
the variance function was defined using a circular averaging
window, but this option will not be pursued further here.

3.7.7 Ellipsoidal Correlation Structure

If an isotropic random field is stretched in either or both
coordinate directions, then the resulting field will have an
ellipsoidal correlation structure. Stretching the axes results
in a scaling of the distances 71 and t; to, for example, 71 /a;
and 1, /a, so that the correlation becomes a function of the
effective distance 7,

()

in n dimensions.

(3.131)

Example 3.6 Suppose we have simulated a random field
X’ in two dimensions which has isotropic correlation func-

tion
() = exp 2l
4
where [t'| = /(7])> + (15)*>. We wish to transform the

simulated field into one which has correlation lengths in
the #; (horizontal) and t, (vertical) directions of 0; = 8 and
6, = 2, respectively. How can we transform our simulation
to achieve the desired directional correlation lengths?

SOLUTION The simulated random field is isotropic with
0] =6, =4 (see, e.g., Eq. 3.88). What this means is that
the X’ random field is such that when the distance between
points in the #; or f, direction exceeds 4 the correlation
between the two points becomes negligible. If we first
consider the #; direction, we desire a correlation length
of 8 in the f#; (horizontal) direction. If we stretch the
distance in the horizontal direction by a factor of 2, then,
in the stretched field, it is only when points are separated
by more than 8 that their correlation becomes negligible.
Similarly, if we “stretch” the field in the vertical direction
by a factor of %, then, in the stretched field it is only
when points are separated by more than %(4) = 2 that their
correlation becomes negligible. In other words, an isotropic
field with correlation length & = 4 can be converted into an
ellipsoidally correlated field with scales 6; = 8 and 6, = 2
by stretching the field in the #; by a factor of 2 and
shrinking the field in the #, direction by a factor of % This
is illustrated in Figure 3.28.
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Figure 3.28 Ellipsoidal correlation function: after stretching the ¢ axes to the ¢ axes, all points

on the ellipse have equal correlation with the origin.

The resulting correlation function of the stretched
field is

2 2
p(t) = exp {—2 (g71) + (372) }
When the effective distance between points is ellipsoidal,

that is,
2 2
T#(z) b (2)
aq ay

then the spectral density function will be a function of the
effective frequency

o= V(@2 + -+ (@pwn)? (3.132)

We shall give specific examples of the ellipsoidal spectral
density function in Section 3.7.10.

3.7.8 Anisotropic Correlation Structure

If the correlation function depends on direction, we say
that the field is anisotropic. The ellipsoidal correlation func-
tion just discussed is a special case of anisotropy, as were
most of the separable correlation functions considered in
Section 3.7.5. Figures 3.21, 3.22, and 3.24 are illustra-
tions of separable Markov processes having 6; =6, = 1
and o2 = 1. Despite the equivalence in the directional cor-
relation lengths, the anisotropy arising from the separability
is clearly evident.

Another possible form for an anisotropic correlation
function is to express p as a function of the interpoint

distance, |t| = ,/ 112 + ‘L’22, and the angle of the vector from
point 1 to point 2, ¢. (In three and higher dimensions,
additional angles are needed.) For example, Ewing (1969)
suggests an anisotropic correlation function of the form

p(t,$) = p(t) cos* (¢ — ¢,) (3.133)

to model the spatial dependence of ocean wave heights,
where ¢, gives the orientation of the waves. Notice that

this model assumes correlation along an individual wave
crest to decay with p(t) but gives zero correlation in a
direction perpendicular to the waves, that is, from crest to
crest.

Most commonly, anisotropic random fields are of ei-
ther separable or ellipsoidal form. This may be due largely
to simplicity, since the separable and ellipsoidal forms
are generally parameterized by directional correlation
lengths.

3.7.9 Cross-Correlated Random Fields

Often different soil properties will be correlated with one
another. For example, Holtz and Krizek (1971) suggest that
liquid limit and water content have a cross-correlation co-
efficient of 0.67 [they present a much more extensive list
of soil property cross-correlations; see also Baecher and
Christian (2003) for a summary]. As another example, both
Cherubini (2000) and Wolff (1985) suggest that cohesion
and friction angle are reasonably strongly negatively corre-
lated, with cross-correlation coefficients as large as —0.7.

Consider two soil properties, X(t) and Y (t), both of
which are spatially random fields, where t = {t1,5,...,1,}
is the spatial position in n dimensions. If X and Y are cross-
correlated, then the complete specification of the correlation
structure involves three correlation functions:

px(t,t') = correlations between X (t) and X (t')
for all t and t/

py(t,t') = correlations between Y (t) and Y (t)
for all t and t’

pxy (t, t) = cross-correlations between X (t) and Y (t)
for all t and t’

The corresponding covariance structures are

Cx(t, t/) = oxoy px(t, t/)
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Cy(t, t/) = oyoy py(t, t/)

Cyy(t, t/) = ox0oy pxy(t, t/)

where o2 = Var [X(t)], a}?, = Var [X t )], and similarly for
Y. If the fields are both stationary, the correlation and
covariance structures simplify to

Cx(T) = 0 px(T)
Cy () = 07 py(T)
Cxy(T) = GXUYPXY(T)

where T =t — t'. When t = 0, Cxy(0) gives the covariance
between X and Y at a point.
The covariance structure can be expressed in matrix

form as
c_ [cx cxy}
CYX CY

where Cyy is the transpose of Cxy (equal, except that X
and Y are interchanged).

The cross-spectral density function can be derived from
the following transform pair (for stationary fields):

Cyy(T) = / Syy(@)cos(w - 7) dw (3.134a)
Sxy(w) = /00 Cyy(t)cos(w-T)dt  (3.134b)
Q) )

The estimation of the complete cross-correlation structure
between soil properties requires a large amount of spatially
distributed data and, preferably, multiple statistically iden-
tical realizations of a soil site. It is unlikely for the latter
to happen, since each soil site is unique, and the former
can be quite expensive. In practice, the complete cross-
correlation structure will rarely be known, although it may
be assumed. For example, the cross-correlation between co-
hesion and friction angle given by Cherubini (2000) ranges
from —0.24 to —0.7, indicating a high degree of uncertainty
in this particular cross-correlation. (As an aside, this uncer-
tainty may, in large part, be due to difficulty in discerning
between the cohesion and friction angle contributions to the
measured shear strength.)

In general, the cross-correlation between soil properties
is estimated by taking a number of samples assumed to
be from the same population and statistically comparing
their properties by pairs (the formula used to estimate
the cross-correlation is given in Chapter 5). Any resulting
estimate is then assumed to be the correlation between a
pair of properties in any one sample or between a pair of
properties at any point in the soil site. We will refer to this
as a pointwise cross-correlation between pairs of properties,
ignoring for the time being the distinction between a “point”

and a finite-volume lab sample (we will investigate this
distinction a little more closely in Chapter 5).

If we consider the available published information on
soil property cross-correlations appearing in geotechnical
engineering journals, we find that only pointwise cross-
correlations are reported, that is, the correlation between
X (t) and Y (t). See, for example, Holtz and Krizek (1971),
Cherubini (2000), and Wolff (1985). In the event that
only pointwise cross-correlations are known, the cross-
correlation function pyy (t, t') becomes a function only of t,
pxy (t). If the field is stationary, the cross-correlation func-
tion simplifies further to just the constant py,. Stationary
pointwise correlated fields are thus specified by the correla-
tion functions px(7) and py(7) and by the cross-correlation
pxy- We shall see how this information can be used to sim-
ulate pointwise cross-correlated random fields in Chapter 6.

3.7.10 Common Higher Dimensional Models

3.7.10.1 White Noise and Triangular Correlation
Function Consider an n-dimensional stationary white
noise process W (t) having spectral density function

Cy(r)=n"G, §(7) (3.135)

where §(t) is the n-dimensional Dirac delta function de-
fined by

3(t) = 8(11)8(12) - - - 8(T10)

The Dirac delta function §(z) has value zero everywhere
except at T =0 (1) = 1o =---=0), where it assumes
infinite height but unit (n-dimensional) volume.

Because 6(t;) = 8(—1;) for all i =1,2,...,n, white
noise is quadrant symmetric and its spectral density func-
tion can be expressed in terms of the “one-sided” spectral
density function

(3.136)

Gy(@) =2"S (@) =

2)1 o0
)y Kw Cy(t)cos(w- 1) dt

1 o0
= / 7" G,8(t)cos(w - T) dt
—00

_ﬁ

=G, /"0 5(Tn)"'/oo d(ry) cos(wrty + - - -

o0 oo

+ w,t,) dty - dt,
=G,

as expected.
If we average W (t) over an n-dimensional “rectangular”
region of size 01 X 6y X - -+ X O,

t+6/2

1
XO = /t_o/z W) dt

(3.137)



and assume, for simplicity, that the white noise has mean
zero, then X (t) will also have mean zero. The variance of
X (t) is then computed as

(7)? = E[Xz]
tH8/2 pt46/2
[WEWm)] d& dny
(9192 t-9/2 /t0/2 ]
"G, t+60/2 pt+6/2
8§ —m)d§ dy
T (0106, t-9/2 /t0/2
neG t+60/2
- ”72/ 1dy
(01602---60,)° Ji—a)2
_ "G,
6166,

So far as the variance is concerned, the end result is
identical even if the mean of W is not zero. Assuming
the mean is zero just simplifies the algebra.

The covariance function of X(t) is triangular in shape,
but in multiple dimensions

]_[ 'T’ Gl <6, i=1,...n
CX(T): 9 1 i 1 9.

0, otherwise.
(3.138)
where || means product of (analogous to ) meaning sum

of). If we write

|7
pi(ti) = :(1_9_,- for || <6

0 otherwise

(3.139)
then Eq. 3.138 can be expressed as

Cx(v) =of [[pi@) =07 [m(n )(T) - pn(fn)]

= (3.140)
which demonstrates that Cx(t) is separable and thus also
quadrant symmetric. The latter allows the associated spec-
tral density function to be expressed using the one-sided
Gy (w), which is also separable,

Gr(@) = ]_[[Sln(w’e/z)] . @0

00,2 (3.141)

The relationship Gy (@) = 2" Sy(w) can be used if the two-
sided spectral density function Sx(®) is desired.

The variance function, which gives the variance reduc-
tion factor when X (t) is itself averaged over an “area” of
size Ty x Tp x -+ x T, is also separable,

T) =[] v (3.142)

i=1

y(T1,Ts,. ..,
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where the individual “directional” variance functions come
from Eq. 3.67:

T; .
l—g lfT', 501
vi(Ty) = 0 ! 0.
1 1 .
— |1 ——| if T; > 6
T; 3T;

Note that X(t) does not have an isotropic correlation
structure even if 6y =6, = --- =0,. This is because the
averaging region is an n-dimensional rectangle, which is an
anisotropic shape. If an n-dimensional spherical averaging
region were used, then the resulting correlation function
would be isotropic.

3.7.10.2 Markov Correlation Function In higher di-
mensions, the Markovian property—where the future is
dependent only on the most recently known past—is lost
because higher dimensions do not have a clear definition of
“past.” As a result, the two models presented here are not
strictly Markovian, but we shall refer to them as such since
they derive from one-dimensional Markov models.

Separable Markov Model If the correlation function is
separable and equal to the product of directional Markovian
correlation functions, for example,

p(T) = p1(t1)p2(72) - - - Pu(Th) (3.143)
where, according to Eq. 3.88,
2|7
pi(t;) =exp{— o (3.144)

then the spectral density function is also separable and thus
quadrant symmetric,

w>0 (3.145)

G(w) = 02g1(@1)g2(@2) - - gn(@n)s

The individual unit-variance spectral density functions are
obtained by dividing Eq. 3.90 by o2,

0
7 [+ Giwi/2)*]

The variance function associated with the separable Markov
model of Eq. 3.143 is also separable and is given by

y(T) = yi(T)ya(12) - - yu(Ty)

where the one-dimensional variance functions are given by
Eq. 3.89,

oy BT [ AT
(T:) = ex — —
J/l ] 2 ].}2 0,' p 91_

gi(w) = (3.146)

(3.147)
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Ellipsoidal Markov Model The Markov correlation func-
tion, Eq. 3.88, can be extended to multiple dimensions by
replacing t by the lag |T|,

27|

o =2

; (3.148)

where |T| :,/112~|—~~~+r,%. In this case, the field is

isotropic with correlation length equal to 6 in any direction.
Equation 3.148 can be further generalized to an ellipsoidal
correlation structure by expressing || as the scaled lag

2‘[1 2 2Tn 2
o= () G

so that the correlation function becomes ellipsoidal,

21y 2 21, 2
p(t) =exp 4 — (0—> + + ( ) ) (3.150)
1 n

If 6, =6,=---=46,, we regain the isotropic model of
Eq. 3.148.

According to Eq. 3.132, the ellipsoidal Markov
spectral ~ density  function is a  function  of
VO101/2)? + -+ (6,0, /2)%. In particular, for n =2
dimensions

(3.149)

20,0
G(w) = — —5 (15D
21 [14 B101/2)* + (B202/2)*]
while for n = 3 dimensions
026,6,0
Glo) = 2 — 2 212
72 [1+ (0101/2)* + (6202/2)* + (B303/2)7]
(3.152)

A closed-form expression for the variance function does not
exist for the higher dimensional ellipsoidal Markov model.
If needed, it can be obtained by numerically integrating
Eq. 3.112,

1 T, Ty
y(T, 1) = —/ (T1| = It DUT2| = |2
T12T22 =T J-T»

x p(11,T2) dto dry

in the two-dimensional case or

(T, 1>, T3)

1 T, Ty, T
=—— (T1| = 1t DUT2| = |2
T12T22T32 /—TI /;Tz =13
x (|T3] = |t3Dp(z1, 12, 13) d13 dTo d7y (3.153)

in three dimensions.

Example 3.7 Suppose a three-dimensional soil mass has
a random elastic modulus field with mean 30 kPa, standard
deviation 6 kPa, and correlation function

\/ 27 2 27, 2 213 2
pm=exp) = <91) +<92) +<93>

(3.154)
where 6 = 6, = 4 and 63 = 1 (assume that 65 is the corre-
lation length in the vertical direction). Suppose further that
settlement of a foundation on this soil has been found to
depend on the average elastic modulus over a volume of

size V=T x Tr x T3 =2 x 3 x 8. What is the mean and
standard deviation of this average?

SOLUTION Suppose that the elastic modulus field is
denoted by X (#1,1%,13), where (11,1, 13) is the spatial po-
sition with 73 measured vertically. Let our average elastic
modulus be X, defined by

1 8 3 2
Xy = X(ty,t,13) dt; dtr dtz  (3.155
v 2(3)(8)/0 /(; /(; (t1, 12, 13) dty dtr dtz ( )

where we have placed our origin at one corner of the
averaging domain, with f3 positive downward. (Since the
field is stationary, we can place the origin wherever we
want—stationarity is suggested by the fact that the mean
and variance are not dependent on position, and Eq. 3.154
is a function of 7 rather than position.)

The mean of Xy is obtained by taking expectations:

1 8 p3 p2
E[Xy]=E |:2(3)(8) /(‘) /(‘) /(‘) X(t1,t, 13) dt; dtr dt3i|
1 8 p3 2
= 2(3)(8)/0 /0 /0 E[X(t1,1,13)] dt; dt, dt;

| 8 3 2
= / / / 30 dt; dty dts
23)8) Jo Jo Jo

=30

so we see that the mean is preserved by averaging (as
expected). That is, puy, = uy = 30.
To obtain the variance we write, for V = 2(3)(8),

Var [Xy] = E[(Xy — 11x,)?]

1 83 g2 2
=E |:<—/ / / X(t1, 12, 13) — puy) dty di dl3> i|
Vo Jo Jo
1 (8 3 2 8 32
=E| — X s 12, - MX
[VZ/O/O/O/O/O/O(UMN:Q )

X (X (s1,82,83) — py) dty dtr dt3 dsy dsy ds3]



1 8 p3 p2 p8 p3 p2
= — E[(X(t;,t2,13) — iy
VZ/O/O/O/O/O/O[“‘“)’”

X(X(s1,52,83) — pux)] dty dty dtz dsy dsy ds3

1 8 3 2 8 3 2
_2//////COV[XU1,I2,I3),

X(Sl,SQ,Sg) dty dty dts dsy dsy ds3

////// plty = 1,12 = 52,13 — 53)

X dt; dty dty dsy dsy ds3
= 077(2,3,8)

(Aside: The last three expressions would also have been
obtained if we had first assumed py, = uy =0, which
would have made the earlier expressions somewhat simpler;
however, this is only a trick for computing variance and
must be used with care, i.e., the mean is not actually zero,
but it may be set to zero for the purposes of this calculation.)

The variance function y (T, Tz, T3) is nominally defined,
as above, by a sixfold integration. Since the correlation
function p(#; — 51,1 — $2,13 — $3) is constant along diago-
nal lines where t; — sy, t» — 52, and 13 — s3 are constants,
the sixfold integration can be reduced to a threefold inte-
gration (see, e.g., Eq. 3.112):

y(T1, Tz, Ta)

[T1 Tsz / /

x (|T3] — |t3|),0(fl,fz,73) dty dty d3

(IT1| — [uD(T2] = |z2])

(3.156)

Since the given correlation function, Eq. 3.154, is quadrant
symmetric, that is, since p(ty, 2, 73) = p(—71, T2, T3) =
p(ty, —12,73) = - - - = p(—11, — T2, —T3), the variance func-
tion can be further simplified to

y(T,T>,T3)

8 T3 1> T
- T — t)(|Ta| — T
[T1T2T3]2/0 /0 | (AT = (T2 — 2)

x (IT3] = i3)p(t1, 72, 13) d7y dT2 d73 (3.157)

Thus, to find the variance of X, we must evaluate Eq. 3.157
for T) =2, T, =3, and T3 = 8. For this, we will use
Gaussian quadrature [see Griffiths and Smith (2006) or
Press et al. (1997) and Appendices B and C],

T1,T5,T3) >~
y(T,1,,T3) T ToTs

g g g
x Y wy Zw,{Zw,-fm,-,rz,-,mk)} (3.158)
k=1 j=1 i=1
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where
S, vy, tar) = (Th | — 1) T2 — 1) T3] — T3k)

x p(T1i, T2j, T3k)

T,

T = 7(1 +zi)
1

Ty = ?(1 +3z)
T3

T3 = 7(1 + 2x)

and where w; and z; are the weights and evaluation points
of Gaussian quadrature and 7, is the number of evaluation
points to use. The accuracy of Gaussian quadrature is about
the same as obtained by fitting a (2n)th-order polynomial
to the integrand. The weights and evaluation points are
provided in Appendix B for a variety of n, values. Using
ng = 20, we get

y(2,3,8) ~ 0.878

Note that when n, =5 the Gaussian quadrature approxi-
mation gives y(2,3,8) >~ 0.911, a 4% relative error.
The variance of the 2 x 3 x 8 average is thus

Var [Xy] = 02y(2,3,8) ~ (6)*(0.878) = 31.6
so that oy, = +/31.6 =5.6.

3.7.10.3 Gaussian Correlation Function The Gaussian
correlation function, in higher dimensions, is both separable
(thus quadrant symmetric) and ellipsoidal,

T1 2 Tn 2
p(r)=exp{—n|:<a) +-~-+<6—) :H
B {_nrlz} {_nrnz}

If all of the directional correlation lengths are equal, then
the field is isotropic. Because the Gaussian model is sep-
arable, the higher dimensional spectral density and vari-
ance functions are simply products of their one-dimensional
forms:

0,0 O
G =of (H22)

1
X exp{ e (Qlwl

Y (D) = yi(T)ya(T2) - - - ya(Th)

where the one-dimensional variance functions are given by

Eq. 3.92,
JTTI-Z

(3.159)

St eﬁwﬁ)} (3.160)

(3.161)

yi(T;) =

67 [mmerf{mm}
7TTi2 0; 0;



CHAPTER 4

Best Estimates, Excursions,
and Averages

4.1 BEST LINEAR UNBIASED ESTIMATION

We often want some way of best estimating “future” events
given “past” observations or, perhaps more importantly, of
estimating unobserved locations given observed locations.
Suppose that we have observed Xi,X»,...,X, and we
want to estimate the optimal (in some sense) value for
X,+1 using this information. For example, we could have
observed the capacities of a series of piles and want to
estimate the capacity of the next pile. One possibility is to
write our estimate of X,; as a linear combination of our
observations:

n
K1 = a1 + ) B — i) (4.1)
k=1

where the hat indicates that this is an estimate of X1
and py is the mean of X; (the mean may vary with po-
sition). Note that we need to know the means in order
to form this estimate. Equation 4.1 is referred to as the
best linear unbiased estimator (BLUE) for reasons we shall
soon see.

The question now is, what is the optimal vector of
coefficients, $? We can define “optimal” to be that which
produces the minimum expected error between our estimate
X,,H and the true (but unknown) X,, 1. This estimator error
is given by

n
Xyt — X1 = Xog1 — Hns1 — Z,Bk(xk —up)  (4.2)
k=1

To make this error as small as possible, its mean should

be zero and its variance minimized. The first criterion is
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automatically satisfied by the above formulation since

E[Xy11 —Xut1] =E |:Xn+l = Mnt1 — Zﬂk(Xk - Mk)]
k=1

n
= Mntl — Mntl — Zﬂk E[X; — ]
k=1

== Bk — i)

k=1
=0
We say that the estimator, Eq. 4.1, is unbiased because its
mean is the same as the quantity being estimated.
Now we want to minimize the estimator’s variance. Since

the mean estimator error is zero, the variance is just the
expectation of the squared estimator error,

N N 2
Var [Xn+l _Xn+1] =E |:(Xn+l _Xn+l) i|

=E [sz2+1 — 22Xy 1K1 +an+1]

To simplify the following algebra, we will assume that
wi =0fori =1,2,...,n+ 1. The final results, expressed
in terms of covariances, will be the same even if the means
are nonzero. For zero means, our estimator simplifies to

Ko=) BiXe (4.3)
k=1

and the estimator error variance becomes

n
Var [X,41 = R ] = B[X7 ] =2 B B[ Xur1X4]
k=1

+Y ) BB E[XiX] (4.4)

k=1 j=1

To minimize this with respect to our unknown coefficients

B1, B2, ..., Bn, we set the following derivatives to zero:
d A
—Var[X,,+1 —X,,+1] =0 fort=1,2,...,n
98¢
which gives us n equations in n unknowns. Now
d
—E[X?,]=0
3,3£ [ ﬂ+]]

8 n
% > Bt E[Xu1Xk] = E [Xup1Xe]

o 2 Bl E[X] =23 BIXi)

k=1 j=1 k=1

127



128 4 BEST ESTIMATES, EXCURSIONS, AND AVERAGES

which gives us

0 N
- Var [Xy i1 = Xup1] = =2 E[ X1 Xe]
9B

n
+2) B EIXeXe] =0
k=1
This means that

n
E[X, 11X ] =) B E[XeXi] (4.5)
k=1
for £ =1,2,...,n. If we define the matrix and vector
components

Cor = E[XeXi] = Cov [ Xy, X ]
by = E [X¢Xy11] = Cov [Xe, Xus1]

then Eq. 4.5 can be written as

n
by = Z Cox Bk
k=1

or, in matrix notation,
b=CB (4.6)

which has solution
B=C"'p 4.7)

These are the so-called Yule—Walker equations and they can
be solved by, for example, Gaussian elimination. Notice
that B does not depend on spatial position, as a linear
regression would. It is computed strictly from covariances.
It is better to use covariances, if they are known, since this
reflects not only distance but also the effects of differing
geologic units. For example, two observation points may
be physically close together, but if they are in different and
largely independent soil layers, then their covariance will
be small. Using only distances to evaluate the weights (8)
would miss this effect.

As the above discussion suggests, there is some simi-
larity between best linear unbiased estimate and regression
analysis. The primary difference is that regression ignores
correlations between data points. However, the primary
drawback to BLUE is that the means and covariances must
be known a priori.

Example 4.1 Suppose that ground-penetrating radar sug-
gests that the mean depth to bedrock p in meters shows a
slow increase with distance s in meters along the proposed
line of a roadway, as illustrated in Figure 4.1, that is,

u(s) =204 0.3s

Ground surface
30 /

] S

Bog peat

Bedrock - nu=204+03s

Figure 4.1 Depth to bedrock.

Furthermore suppose that a statistical analysis of bedrock
depth at a similar site has given the following covariance
function which is assumed to also hold at the current site,

C(7) =o§ exp{—%}

where oy =5 m and where 7 is the separation distance
between points. We want to estimate the bedrock depth X3
at s = 30 m given the following observations of X; and X»,
at s = 10 m and s = 20 m, respectively,

x1=213m ats =10
Xy =232m ats =20

SOLUTION We start by finding the components of the
covariance matrix and vector;

o |CoVIXLXT| s e~ 20/40
Cov [Xa, X3] ¥ | e—10r40
C— Cov [X1,X;] Cov[X],X5]
Cov [X2,X1] Cov[Xz, X5]

5 1 e—10/40
= O'X
e—10/40 1
Substituting these into Eq. 4.6 gives
5 1 6710/40 ’31 ) 6720/40
oy = oy
o—10/40 1 B o—10/40

Notice that the variance cancels out, which is typical when
the variance is constant with position. We now get

Al 1 o—10/40 ! ¢—20/40 B 0
B, | p-10/40 1 e—10/40 | | ,—10/40



Thus, the optimal linear estimate of X3 is

3 = p(30) + ey — u(20)]
= [20.0 + 0.3(30)] 4+ ¢~ '%40[23.2 — 20.0 — 0.3(20)]
=29.0 — 2.8¢10/40
=268 m

Notice that, because of the Markovian nature of the covari-
ance function used in this example, the prediction of the
future depends only on the most recent past. The prediction
is independent of observations further in the past. This is
typical of the Markov correlation function in one dimension
(in higher dimensions, it is not so straightforward).

4.1.1 Estimator Error

Once the best linear unbiased estimate has been determined,
it is of interest to ask how confident are we in our estimate?
Can we assess the variability of our estimator? To inves-
tigate these questions, let us again consider a zero-mean
process so that our estimator can be simply written as

n
Ru1 =) BiXe (4.8)
k=1

In this case, the variance is simply determined as

Var [X,41] = Var [Z ﬁkxk] 4.9)

k=1
= Var [81X] + B2 Xo + - - - + B, X, ]

The variance of a sum is the sum of the variances only if
the terms are independent. In this case, the X’s are not in-
dependent, so the variance of a sum becomes a double sum
of all of the possible covariance pairs (see Section 1.7.2),

n n
Var [X, 1] =07 =YY BB Cov[Xi. X;] = BCPB
k=1 j=1
(4.10)
where T means transpose.

However, the above estimator variance is often of limited
value. We are typically more interested in asking questions
such as: What is the probability that the true value of
X,+1 exceeds our estimate, XH 1, by a certain amount. For
example, we may want to compute

P[Xys1 > Xus1 +b] =P [Xup1 — Xyt > D]

where b is some constant. Evidently, this would involve
finding the distribution of the estimator error £ = (X, 4| —
Xn+1).- The variance of the estimator error can be found
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from Eq. 4.4 as follows:

of = Var [X41 — X1 ]

=E[X;,,]-2 Z Bk E[Xn+1Xk]
k=1

+Y > BB E[xiX;]

k=1 j=1
=02+ BTCB —2B"b (rearranging terms)

=ol+0;—28"b 4.11)

So we see that the variance of the estimator error (often
referred to directly as the estimator error) is the sum of
the variance in X and the variance in X less a term which
depends on the degree of correlation between X, and the
observations. As the correlation between the observations
and the point being estimated increases, it becomes less
and less likely that the true value of X, ; will stray very
far from its estimate. So for high correlations between the
observations and the estimated point, the estimator error
becomes small. This can be seen more clearly if we simplify
the estimator error equation. To do this, we note that 8 has
been determined such that C 8 = b, or, putting it another
way, C —b = 0 (where 0 is a vector of zeros). Now we
write

ol =02 +BTCB -2
=o; +B7CB—B"b—BD
=07 +BT(CB—b)— B
=02 — B (4.12)

which is a much simpler way of computing o> and more
clearly demonstrates the variance reduction due to correla-
tion with observations.

The estimator )A(,,H is also the conditional mean of X,
given the observations. That is,

E[Xo1 [ X1. X0, ... X0 ] = Xt (4.13)
The conditional variance of X, is UEZ,
Var (X111 X1, X2, ..., Xu | = 0 (4.14)

Generally questions regarding the probability that the true
Xn+1 lies in some region should employ the conditional
mean and variance of X,.;, since this would then make
use of all of the information at hand.

Example 4.2 Consider again Example 4.1. What is the
variance of the estimator and the estimator error? Estimate
the probability that X3 exceeds X3 by more than 4 m.
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SOLUTION We had

so that

—10/40
of = Var[X3] = (5)° io 6710/40} ! em¥
X ¢—10/40 1

0 —
X : 10/40} = (5)7 ¢
e

which gives o¢ = 5¢71%/40 = 3.894 m.
For the covariance vector found in Example 4.1,

~20/40
e
b =0}

e—10/40
the estimator error is computed as

CTEZ = Var[X3 —)?3] = U)? — ﬂTb

2 2 10/40 e~20/40
=0y —0o,{0e” }
¢—10/40

— (5)2 (1 _ 3_20/40)

The standard deviation of the estimator error is thus oz =
541 —¢=20/40 = 3,136 m. Note that this is less than the
variability of the estimator itself and significantly less
than the variability of X, due to the restraining effect of
correlation between points.

To compute the required probability, we need to assume
a distribution for the random variable (X3 — X3). Let us
suppose that X is normally distributed. Since the estimate X
is simply a sum of X’s, it too must be normally distributed,
which in turn implies that the quantity X3 — X3 is normally
distributed. We need only specify its mean and standard
deviation, then, to fully describe its distribution.

We saw above that )?3 is an unbiased estimate
of X3,

E[X; —X;]=0

so that up = 0. We have just computed the standard devi-
ation of X3 — X3 as o = 3.136 m. Thus,

3.136
=1 — &(1.28) = 0.1003

P[X3—X3>4]=P[Z> ﬂ]

4.1.2 Geostatistics: Kriging

Danie G. Krige’s empirical work to evaluate mineral re-
sources (1951) was formalize by Matheron (1962) into a
statistical approach now commonly referred to as “Kriging”
and normally used in geostatistics. Kriging is basically best
linear unbiased estimation with the added ability to estimate
certain aspects of the mean trend. We will give the theory
for Kriging in this section, recognizing that some concepts
will be repeated from best linear unbiased estimation. The
application will be to a settlement problem in geotechnical
engineering.

The purpose of Kriging is to provide a best estimate
of a random field between known data. The basic idea
is to estimate X(x) at any point using a weighted linear
combination of the values of X at each observation point.
Suppose that X1, X5, ..., X, are observations of the random
field X (x) at the points Xj, Xy, ..., X,, that is, X; = X (x;).
Then the Kriged estimated of X (x) at x is given by

n

Xx) =) BXi (4.15)

k=1

where the n unknown weights B, are to be determined to
find the best estimate at the point x. It seems reasonable that
if the point x is particularly close to one of the observations,
say X;, then the weight §; associated with X; would be high.
However, if X(x) and X; are in different (independent) soil
layers, for example, then perhaps §; should be small. Rather
than using distance to determine the weights in Eq. 4.15,
it is better to use covariance (or correlation) between the
two points since this reflects not only distance but also, for
example, the effects of differing geologic units.

In Kriging, it is assumed that the mean can be expressed
as in a regression analysis,

ux() =Y a;igi(x) (4.16)
i=1

where a; is an unknown coefficient (which, as it turns out,
need never be estimated) and g;(x) is a specified function
of x. Usually g;(x) =1, g2(x) =x, g3(x) =x2, and so
on in one dimension—similarly in higher dimensions. As
in a regression analysis, the functions g;(x), g»(x),---
should be (largely) linearly independent over the domain
of the regression (i.e., the site domain). In order for the
estimator (Eq. 4.15) to be unbiased, we require that the
mean difference between the estimate X(x) and the true
(but random) value X (x) be zero,

E[Xx) -X®]=E[X®]-EX®]=0 4.17)



where

E[Xw]=E [Z ﬂkxk} =Y B (Z aig,-(xk)>
k=1

k=1 i=1

EXX)] =) a;gi(x)

i=1

The unbiased condition of Eq. 4.17 becomes

> a {Zﬂkgxxk) - g,-<x)} =0 (418

i=1 k=1
Since this must be true for any coefficients g;, the unbiased
condition reduces to

D Brgi(xk) = gi(x) (4.19)

k=1

which is independent of the unknown regression weights a; .
The unknown Kriging weights 8 are obtained by min-

imizing the variance of the error, £ = (X x)—X (x)),
which reduces the solution to the matrix equation

KB =M (4.20)

where K and M depend on the covariance structure,

n Cia -+ Ciyp g1xp & - - - gm(xy)

(&3] Cypn - - - Gy g1(x) gkx) - - - gm(xp)

K _ Cul Cu2 o Cnn g1(xn) g2xn) - - - gm(Xn)
g1(x1)  g1(x) 21(xn) 0 0 P 0
g(x1) gk - - - g(xn) 0 0 e 0

Lem(x)) gm(xp) - - - gm(xn) 0 0 e 0o _|

in which Cj; is the covariance between X; and X; and

B1 Cix

B2 Co,

ﬁ — ﬂn , M — CnX
- g1(x)

- 82(x)
—Nm gm(x)
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The quantities n; are a set of Lagrangian parameters used
to solve the variance minimization problem subject to the
unbiased conditions of Eq. 4.19. Beyond allowing for a
solution to the above system of equations, their actual
values can be ignored. The covariance C;, appearing in the
vector on the right-hand side (RHS), M, is the covariance
between the ith observation point and the point x at which
the best estimate is to be calculated.

Note that the matrix K is purely a function of the
observation point locations and their covariances; thus it
can be inverted once and then Eqs. 4.20 and 4.15 used
repeatedly at different spatial points to build up the field
of best estimates (for each spatial point, the RHS vector M
changes, as does the vector of weights, ).

The Kriging method depends upon two things: (1) knowl-
edge of how the mean varies functionally with position, that
is, g1, &2, - - . need to be specified, and (2) knowledge of the
covariance structure of the field. Usually, assuming a mean
which is either constant (m =1, g;(x) =1, a; = ux) or
linearly varying is sufficient. The correct form of the mean
trend can be determined by

1. plotting the results and visually checking the mean
trend,

2. performing a regression analysis, or

3. performing a more complex structural analysis; see,
for example, Journel and Huijbregts (1978) for more
details.

The covariance structure can be estimated by the methods
discussed in Chapter 5 if sufficient data are available and
used directly in Eq. 4.20 to define K and M (with, perhaps
some interpolation for covariances not directly estimated).
In the absence of sufficient data, a simple functional form
for the covariance function is often assumed. A typical
model is the Markovian in which the covariance decays
exponentially with separation distance 7;; = |x; — X;|:

2|
C;j = o} exp{—%}

As mentioned in Chapter 3, the parameter 6 is called the
correlation length. Such a model now requires only the esti-
mation of two parameters, oy and 6, but assumes that the
field is isotropic and statistically stationary. Nonisotropic
models are readily available and often appropriate for soils
which display layering.

4.1.2.1 Estimator Error Associated with any estimate
of a random process derived from a finite number of
observations is an estimator error. This error can be used
to assess the accuracy of the estimate.
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The Kriging estimate is unbiased, so that
us(®) = E[X®] = E[X(®)] = pux(x)
Defining the error as the difference between the estimate
X (x) and its true (but unknown and random) value X (x),
E = X(x) — X(x), the mean and variance of the estimator
error are given by

pe =E[Xx) —X®)]=0 (4.21a)

ol =E [(X(x) = ff(x))z] = 07+ BT (K 1 n B, —2M,)
(4.21b)

where B, and M,, are the first n elements of 8 and M and
K, ., is the n x n upper left submatrix of K containing
the covariances. Note that X (x) can also be viewed as the
conditional mean of X(x) at the point x. The conditional
variance at the point x would then be o2.

Example 4.3 Foundation Consolidation Settlement
Consider the estimation of consolidation settlement under
a footing at a certain location given that soil samples/tests
have been obtained at four neighboring locations. Figure 4.2
shows a plan view of the footing and sample locations. The
samples and local stratigraphy are used to estimate the soil
parameters C,, ¢,, H, and p, appearing in the consolidation
settlement equation

C. Po+ Ap)
S =N H lo —_ 4.22
<1 n ) gm( » 4.22)

€o o
Each of these four parameters is then treated as spatially
varying and random between observation points. It is as-
sumed that the estimation error in obtaining the parameters
from the samples is negligible compared to field variabil-
ity, and so this source of uncertainty will be ignored. The

1 2
-7 O [¢]
O Observation point
O Footing
35m
50 ml;
15m
U 3
= O [¢]

|—20m—-|-—30mﬁ|
I 50m

Figure 4.2 Consolidation settlement plan view with sample
points.

model error parameter N is assumed an ordinary random
variable (not a random field) with mean 1.0 and standard
deviation 0.1. The increase in pressure at middepth of the
clay layer, Ap, depends on the load applied to the foot-
ing. We will assume that E [Ap] = 25 kPa with standard
deviation 5 kPa.

The task now is to estimate the mean and standard
deviation of C., e¢,, H, and p, at the footing location
using the neighboring observations. Table 4.1 lists the soil
settlement properties obtained at each of the four sample
points.

In Table 4.1, we have assumed that all four random fields
are stationary, with spatially constant mean and variance,
the limited data not clearly indicating otherwise. In order to
obtain a Kriging estimate at the footing location, we need
to establish a covariance structure for the field. Obviously
four sample points are far too few to yield even a rough
approximation of the variance and covariance between
samples, especially in two dimensions. We have assumed
that experience with similar sites and similar materials leads
us to estimate the coefficients of variation, v, shown in
the table and a correlation length of about 60 m using an
exponentially decaying correlation function. That is, we
assume that the correlation structure is reasonably well
approximated by

P(X;,X;) = exp {—%|x,- - Xj|}

In so doing, we are assuming that the clay layer is
horizontally isotropic, also a reasonable assumption. This
yields the following correlation matrix between sample
points:

1.000 0.189 0.095 0.189
0.189 1.000 0.189 0.095
0.095 0.189 1.000 0.189
0.189 0.095 0.189 1.000

Furthermore, it is reasonable to assume that the same cor-
relation length applies to all four soil properties. Thus, the
covariance matrix associated with the property C. between

Table 4.1 Derived Soil Sample Settlement Properties

Sample H Do
Point C. e, (m) (kPa)
1 0.473 1.42 4.19 186.7
2 0.328 1.08 4.04 181.0
3 0.489 1.02 4.55 165.7
4 0.295 1.24 4.29 179.1
I 0.396 1.19 4.27 178.1
v 0.25 0.15 0.05 0.05




sample points is just agcp = (0.25 x 0.396)%6. Similarly,
the covariance matrix associated with e, is its variance
[%20 = (0.15 x 1.19)> = 0.03186] times the correlation ma-
trix, and so on.

In the following, we will obtain Kriging estimates from
each of the four random fields [C.(X), e,(x), H(x), and
Po(x)] independently. Note that this does not imply that the
estimates will be independent, since if the sample properties
are themselves correlated, which they most likely are, then
the estimates will also be correlated. It is believed that this
is a reasonably good approximation given the level of avail-
able data. If more complicated cross-correlation structures
are known to exist and have been estimated, the method of
co-Kriging can be applied; this essentially amounts to the
use of a much larger covariance (Kriging) matrix and the
consideration of all four fields simultaneously. Co-Kriging
also has the advantage of also ensuring that the error vari-
ance is properly minimized. However, co-Kriging is not
implemented here, since the separate Kriging preserves
reasonably well any existing pointwise cross-correlation be-
tween the fields and since little is generally known about
the actual cross-correlation structure.

The Kriging matrix associated with the clay layer thick-
ness H is then obtained by multiplying o2 = (0.05 x 4.27)

by p:

0.04558  0.00861 0.00432 0.00861 1
0.00861 0.04558 0.00861 0.00432 1
Ky =[0.00432 0.00861 0.04558 0.00861 1
0.00861 0.00432 0.00861 0.04558 1
1 1 1 1 0]

where, since we assumed stationarity, m = 1 and g(x) = 1
in Eq. 4.16. Placing the coordinate axis origin at sample
location 4 gives the footing coordinates x = (20, 15). Thus,
the RHS vector M is

ol p(x1,X) (0.04558)(0.2609)

o2 p(x2,X) (0.04558)(0.2151)

My = 02p(x3,x) { = | (0.04558)(0.3269)

o2 0(X4,X) (0.04558)(0.4346)
1 1

0.01189

0.00981

= 10.01490

0.01981
1
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Solving the matrix equation K 8,, = My, gives the follow-
ing four weights (ignoring the Lagrange parameter):

0.192

0.150

0.265

0.393

By =

in which we can see that the samples which are closest to
the footing are most heavily weighted (more specifically,
the samples which are most highly correlated with the
footing location are the most heavily weighted), as would
be expected.

Since the underlying correlation matrix is identical for
all four soil properties, the weights will be identical for all
four properties; thus the best estimates at the footing are

C. = (0.192)(0.473) + (0.150)(0.328)

=+ (0.265)(0.489) + (0.393)(0.295) = 0.386
&, = (0.192)(1.42) + (0.150)(1.08)

=+ (0.265)(1.02) 4 (0.393)(1.24) = 1.19
H = (0.192)(4.19) + (0.150)(4.04)

=+ (0.265)(4.55) 4 (0.393)(4.29) = 4.30
Po = (0.192)(186.7) 4 (0.150)(181.0)

4 (0.265)(165.7) 4+ (0.393)(179.1) = 177.3

The estimation errors are given by the equation
0f = 0 + By (KuxnBy — 2M,)

Since the n x n submatrix of K is just the correlation matrix
times the appropriate variance, and similarly M, is the
correlation vector (between samples and footing) times the
appropriate variance, the error can be rewritten as

of = 0§<1 +Br(pB, — 2px))

where p, is the vector of correlation coefficients between
the samples and the footing (see the calculation of My
above). For the Kriging weights and given correlation
structure, this yields

o2 =02(0.719)
which gives the following individual estimation errors:
chc = (0.009801)(0.719) = 0.00705 — o, = 0.0839
020 = (0.03204)(0.719) = 0.0230 — o, = 0.152
o} = (0.04558)(0.719) = 0.0328 — o, = 0.181
020 = (79.31)(0.719) =57.02 — =755

O'Pr)
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In summary, then, the variables entering the consolida-
tion settlement formula have the following statistics based
on the preceding Kriged estimates:

Variable Mean Standard Deviation (SD) v

N 1.0 0.1 0.1

C. 0.386 0.0839 0.217
eo 1.19 0.152 0.128
H (m) 4.30 0.181 0.042
po (kPa)  177.3 7.55 0.043
Ap (kPa)  25.0 5.0 0.20

where v is the coefficient of variation.
A first-order approximation to the settlement, via
Eq. 4.22, is thus

o (293 Y o) 1 177.3 425
ts =D\ T 119 ) 2% 0810\ 7773

=0.0429 m

To estimate the settlement variance, a first-order approxi-
mation yields

=3 ()
Oy = —— Oy
2 \ag),
where the subscript p© on the derivative implies that it
is evaluated at the mean of all random variables and the
variable X; is replaced by each of N, C., ... in turn.
Evaluation of the derivatives at the mean leads to the
following table:

2
X oy (38/0X), oy [0S/9X)ox]
N 1.000  0.04342  0.1000  1.885x107°
C. 0.386  0.11248  0.0889  8.906x10~°
e 1.19  —0.01983 0.1520  0.908x10~?
H 4.30 0.01010  0.1810  0.334x107
po 1773 —0.00023  7.5500  0.300x107°
Ap 250 0.00163  5.0000  6.618x107
so that

s\
2 __ _ -5 .2
0= ; (a_X,-UXf’)M =18.952x 10 m

Hence oy = 0.0138 and the coefficient of variation of the
settlement at the footing is vy = 0.0138/0.0429 = 0.322.
This is roughly a 10% decrease from the coefficient of
variation of settlement obtained without the benefit of any
neighboring observations (0.351). Although this does not
seem significant in light of the increased complexity of
the above calculations, it needs to be remembered that

the contribution to overall uncertainty coming from N
and Ap amounts to over 40%. Thus, the coefficient of
variation vsy will decrease toward its minimum (barring
improved information about N and/or Ap) of 0.213 as more
observations are used and/or observations are taken closer
to the footing. For example, if a fifth sample were taken
midway between the other four samples (at the center of
Figure 4.2), then the variance of each estimator decreases
by a factor of 0.46 from the point variance (rather than the
factor of 0.719 found above) and the settlement vy becomes
0.285. Note that the reduction in variance can be found prior
to actually performing the sampling since the estimator
variance depends only on the covariance structure and the
assumed functional form for the mean. Thus, the Kriging
technique can also be used to plan an optimal sampling
scheme—sample points are selected so as to minimize the
estimator error.

Once the random-field model has been defined for a site,
there are ways of analytically obtaining probabilities associ-
ated with design criteria, such as the probability of failure.
For example, by assuming a normal or lognormal distri-
bution for the footing settlement in this example, one can
easily estimate the probability that the footing will exceed
a certain settlement given its mean and standard deviation.
Assuming the footing settlement to be normally distributed
with mean 0.0429 m and standard deviation 0.0138, then
the probability that the settlement will exceed 0.075 m is

0.075 — 0.0429
P[S >0.075]=1-®| ———

0.0138
=1 — ®(2.33) = 0.01

4.2 THRESHOLD EXCURSIONS IN ONE
DIMENSION

In both design and analysis contexts, the extremes of
random processes are typically of considerable interest.
Many reliability problems are defined in terms of threshold
excursions—for example, when load exceeds a safe thresh-
old (e.g., the strength). Most theories governing extremal
statistics of random fields deal with excursion regions, re-
gions in which the process X exceeds some threshold, and
the few exact results that exist usually only apply asymp-
totically when the threshold level approaches infinity. A
large class of random functions are not amenable to ex-
isting extrema theory at all, and for such processes the
analysis of a sequence of realizations is currently the only
way to obtain their extrema statistics. In this section we
will investigate the basic theory of threshold excursions for
one-dimensional processes. Since the statistics of threshold
excursions depend heavily on the slope variance, we will
begin by looking at the derivative, or slope, process.



4.2.1 Derivative Process

Consider a stationary random field X (¢). Its derivative is
dX (1) X(t+ At) — X (1)
= lim —— =

dt At—0 At

We will concentrate on the finite-difference form of the
derivative and write

X() =

(4.23)

X() = X+ At) — X(t) @.24)
At

with the limit being understood. The mean of the derivative
process can be obtained by taking expectations of Eq. 4.24,
E[X(t)] — oy = E[X(t+ AD] - E[X(®)]

At
since E[X(t + At)] = E[X ()] due to stationarity. Before
computing the variance of the derivative process, it is useful
to note that the (centered) finite-difference form of the
second derivative of the covariance function of X, Cx(1),
att=01s

d*Cy (1)
dt?

=0 425

Cx(AT) —2Cx(0) + Cx(—AT)
At?

= Cx (O) =
=0
] (4.26)
The variance of the derivative process, X (¢), is thus ob-
tained as

o =E[X*] = ﬁ{ZE [X*(1)] -2 E[X()X(t + Az)]}
_ 2[Cx(0) = Cx(AD)]

At?
_ Cx(A) = 2Cx(0) + Cx (= A1)
o Ar2
d*Cy (1)
_ 4.27
d‘L’2 =0 ( )

where, due to stationarity, E[X?(r + Ar)] = E[X?*(t)] and,
due to symmetry in the covariance function, we can write
2Cx(At) = Cx(At) 4+ Cx(—At). From this we see that the
derivative process will exist (i.e., will have finite variance)
if the second derivative of Cy(t) is finite at T =0. A
necessary and sufficient condition for X(¢) to be mean
square differentiable (i.e., for the derivative process to have
finite variance) is that the first derivative of Cy(t) at the
origin be equal to zero,

dCx(7)
drt =0

If Cy(0) exists, it must be zero due to the symmetry in
Cx (7). Equation 4.28 is then equivalent to saying that Cy(0)
exists if the equation is satisfied. In turn, if CX(O) =0,
then, because Cx(t) < Cx(0) so that Cx(0) is a maximum,
the second derivative, C'X(O), must be finite and negative.
This leads to a finite and positive derivative variance, o2,
according to Eq. 4.27.

= Cx(0)=0 (4.28)
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For simplicity we will now assume that E [X ()] = 0, so
that the covariance function becomes

Cx(t) =E[X®X(t +1)] (4.29)

There is no loss in generality by assuming E [X ()] = 0. A
nonzero mean does not affect the covariance since the basic
definition of covariance subtracts the mean in any case; see
Eq. 1.29a or 3.4. The zero-mean assumption just simplifies
the algebra. Differentiating Cy(t) with respect to T gives
(the derivative of an expectation is the expectation of the
derivative, just as the derivative of a sum is the sum of the
derivatives)

Cx() = E[X(OX (1 +1)]

Since X (¢) is stationary, we can replace ¢ by (+ — 1) (i.e., the
statistics of X are the same at any point in time), which now
gives

Cx() =E[X(t — X ®)]

Differentiating yet again with respect to t gives
Cx(t) = —E[X(t — DX ()] = —Cx(1)

In other words, the covariance function of the slope, X (1),
is just equal to the negative second derivative of the
covariance function of X (7),

Ci(1) = —Cx(1) (4.30)
This result can also be used to find the variance of X (1),
Ci(0) = —Cx(0)
which agrees with Eq. 4.27.
' The cross-covariance between X (¢) and its derivative,
X(t), can be obtained by considering (assuming, without
loss in generality, that uy = 0)

Con [, ] = E[xX] =& | x(o (X0 X0

At
_E |:<X(t)X(t + Atf) — X2(r)>]
At
Cx(At) — Cx(0)
=
= Cx(0)

Thus, if X exists [i.e., CX(O) = 0], it will be uncorrelated
with X.

A perhaps more physical understanding of why some
processes are not mean square differentiable comes if we
consider the Brownian motion problem, whose solution
possesses the Markov correlation function (the Ornstein—
Uhlenbeck process—see Section 3.6.5). The idea in the
Brownian motion model is that the motion of a particle
changes randomly in time due to impulsive impacts by other
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(perhaps smaller) particles. At the instant of the impact, the
particle velocity changes, and these changes are discontinu-
ous. Thus, at the instant of each impact, the velocity deriva-
tive becomes infinite and so its variance becomes infinite.

Example 4.4 Show that a process having a Markov co-
variance function is not mean square differentiable, whereas
a process having a Gaussian covariance function is.
SOLUTION The Markov covariance function is given by
2 27|
C(t)=0" exp Y 4.31)

which is shown in Figure 4.3. The derivative of C(7) is

2
<2L> exp{z—r} ift <0
. d 0 0
CO=7C=) 2
— (—) exp{——} ift>0
0 0
(4.32)

which is undefined at v = 0. This is clearly evident in
Figure 4.3. Thus, since C(0) % 0, the Markov process is
not mean square differentiable.

The Gaussian covariance function is

el
which is shown in Figure 4.4. The derivative of C(7) is
now

2 w1
C(t)=0" exp {— } (4.33)

. T ) w2
C(r) = —21 (ﬁ) o2 expl - (4.34)
and since C(O) =0, as can be seen in Figure 4.4, a pro-

cess having Gaussian covariance function is mean square
differentiable.

Vanmarcke (1984) shows that even a small amount of lo-
cal averaging will convert a non—mean square differentiable
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Figure 4.3 Typical Markov correlation function.
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Figure 4.4 Typical Gaussian correlation function.

process into one which is mean square differentiable (i.e.,
which possesses a finite variance derivative). In fact, all
local average processes will be mean square differentiable.
Suppose we define the local arithmetic average process, as
usual, to be

1 t+T/2
=g [ xeds (435)
T Ji—tp
The covariance function of X, (¢) is [where we assume X (¢)
has mean zero for simplicity in the interim step]

Cxr (1) = E[Xr (X7 (1 + 7))

1 T +T
= /O/ Ce(e —n)dnde  (436)

where Cy(7) is the covariance function of X (z).

If X7(#) is mean square differentiable, then CXT(O) =0.
We can show this will be true for any averaging region
T > 0 as follows:

. d 1 T d +T

Cyr(0) = ECXT(T) = ﬁ/o E/f Cx(§ —m)dndg
4.37)

Noting that

d +T
E/ gmdn=g(x+T)—g() (4.38)

we see that

. 1 [T
Cx, (1) = ﬁ/ [Cx(§ —1—T)—Cx(§ —1)] d§
0 (4.39)
At T =0, where we make use of the fact that Cy(—§&) =
Cx(8),

) 1 [T
Cyx, (0) = ﬁ/o [Cx(§ —T)—Cx(5)] d§

1 0 T
~ {/T Cx(€) de —/0 Cx(®) dé‘}



T
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so that Xr(¢) is mean square differentiable according to the
condition given by Eq. 4.28.
Applying Eq. 4.38 to Eq. 4.35 gives

. 1 t+T/2
Xr(t) = =— X(&)d
(1) Tdi )1 (é) d§
_X+T/2) ;X(t o)) 4.40)

For stationary X (), the mean of X;(r) is zero and its
variance can be found as follows:

o, ~eligo] = 1| (x (1) -x (- 5)) |
_ %{2E[X2]—2E[X <f+§>x<"§)]}

202
F [1— px(1)]

(4.41)

since E [X*(t + T/2)] = E[X?(t — T/2)] = E[X*(t)] due
to stationarity. .
In summary, if Cx(0) = 0, then:

1. The derivative process X (¢) has finite variance.
2. The derivative process X () i's uncorrelated witl} X(1).
3. The covariance function of X (¢) is equal to —Cx(7).

If Cx(0) = 0 we say that X (¢) is mean square differentiable.

If X(¢) is not mean square differentiable, that is, Cx(0)
# 0, then any amount of local averaging will result in
a process Xr(f) which is mean square differentiable. The
derivative of X;(¢) has the following properties:

L - Xt +T/2)—X(t—T/2)

, T
2. ug;, =E[X:(0)] =0
2 ; 20¢
3. op = Var[X;(1)] = 2 = ox(D)]

A possibly fundamental difficulty with locally averaging
in order to render a process mean square differentiable is
that o, then depends on the averaging size T and any stan-
dard deviation can be obtained simply by adjusting 7. Since
the above equations give no guidance on how T should be
selected, its size must come from physical considerations
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of the process being modeled and the matching of the vari-
ance 0> = o2y(T) to what is observed. For example, CPT
measurements represent a local average of soil properties
over some “deformation region” that the cone imposes on
the surrounding soil. This region might have radius of about
0.2 m (we have no reference for this estimate, this is just an
engineering judgment regarding the amount of material dis-

placed in the vicinity of a cone being forced through a soil).

4.2.2 Threshold Excursion Rate

The mean rate v, at which a stationary random process
X (t) crosses a threshold b was determined by Rice (1954)
to be

o0
Vp :/ |x fxx (b, X) dx 4.42)

—00
where fyy(x,x) is the joint probability density function
of X(r) and its derivative X(¢). As we saw in the last
section, if X(¢) is stationary, then X(¢#) and X (1) are
uncorrelated. If X(¢) is normally distributed, then, since
X(t) = (X(t 4+ At) — X(¢))/ At is just a sum of normals,
X (t) must also be normally distributed. Since uncorrelated
normally distributed random variables are also independent,
this means that X (¢) and X (t) are independent and their joint
distribution can be written as a product of their marginal
distributions,

Jxx (D, x) = fe(b)fy (%)

in which case Eq. 4.42 becomes

Vb =/ [ (b)f (x) dx =fx(b)/ Ui (¥) dx

= fx(OE[IX]] (4.43)

If X is normally distributed, with mean zero, then the
mean of its absolute value is E[|X|] = ox+/2/7. Since
X is normally distributed with mean zero, then E [|X |] =

ox+/2/m, and we get

2 1oy b2
Vp =fx(b)0'x ; = ;0'_ exXp —P
X X

where we substituted in the normal distribution for fx ().
We are often only interested in the upcrossings of the
threshold b [i.e., where X (¢) crosses the threshold b with
positive slope]. Since every upcrossing is followed by a
downcrossing, then the mean upcrossing rate v,;" is equal

to the mean downcrossing rate v,

(4.44)

(4.45)
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4.2.3 Time to First Upcrossing: System Reliability

A classic engineering reliability problem is that of assessing
the probability that the time to system failure exceeds some
target lifetime. For example, if X (¢) is the load on a system
and b is the system resistance, then the system will fail
when X (¢) first exceeds b. If this occurs at some time prior
to the design system lifetime, then the design has failed.
The objective in design, then, is to produce a system having
resistance b so that the time to failure 7y has sufficiently
small probability of being less than the design lifetime.

We can use the mean upcrossing rates to solve this
problem if we can determine the distribution of the time
between upcrossings. Note that the previous section only
gave the mean upcrossing rate, not the full distribution
of times between upcrossings. Cramer (1966) showed that
if X(¢) is stationary and Gaussian, then the time between
upcrossings tends to a Poisson process for large thresholds
(b >> oy). Let N; be the number of upcrossings in time
interval ¢ and let Ty be the time to the first upcrossing. If N;
is a Poisson process, then it is parameterized by the mean
upcrossing rate v; . Using the results of Section 1.9.5, we
know that the probability that 7; exceeds some prescribed
time ¢ is

P[Ty > 1] =P[N, = 0] = exp(—vj1}  (4.46)

4.2.4 Extremes

The largest or smallest values in a random sequence are
also of considerable interest in engineering. For example,
it is well known that failure tends to initiate at the low-
est strength regions of a material. The tensile strength of a
chain is a classic example. In geotechnical engineering, we
know that shear failures (e.g., bearing capacity, slope sta-
bility) will tend to occur along surfaces which pass through
regions where the ratio of shear strength to developed shear
stress is a minimum.

The classic treatment of extremes (see Section 1.11)
assumes that the random variables from which the extreme
is being selected are mutually independent. When the set
of random variables, X(¢), is correlated with correlation
function px (), then the distribution of the extreme becomes
considerably more complicated.

For example, if px(t) = 1 for all T and X(¢) is station-
ary, then X(#r) =X for all ¢. That is, the random pro-
cess becomes equal to a single random variable at all
points in time—each realization of X (¢) is completely uni-
form. If we observe a realization of X(#) at a sequence
of times X;,X»,...,X,, then we will observe that all
X1,X2,...,X, are identical and equal to X. In this case,
Y, = max!_, X; = X, and the distribution of the maximum,
Y,, is just equal to the distribution of X,

Fy,(y) = Fx(y) (4.47)

Contrast this result with that obtained when X;, X5, ..., X,
are independent, where, according to Eq. 1.199,

Fy,,()’) = [Fx()’)]n

Apparently, in the case of a correlated sequence of X;’s,
the distribution of the maximum could be written as

Fy,(v) = [Fx()]™" (4.48)

where neg is the effective number of independent X;’s.
When the X;’s are independent, n.fr = n. When the X;’s are
completely correlated, nesr = 1. The problem is determining
the value of neg for intermediate magnitudes of correlation.
Although determining n.s remains an unsolved problem at
the time of writing, Eqs. 4.47 and 4.48 form useful bounds;
they also provide some guidelines, given knowledge about
the correlation, for the judgmental selection of 7.

Consider a stationary Gaussian process X (¢) and let Y be
the maximum value that X (¢) takes over some time interval
[0,2;]. Davenport (1964) gives the mean and standard
deviation of Y to be [see also Leadbetter et al. (1983) and
Berman (1992)]

ly = [y + Oy (a + Z) (4.492)
a
oy = oy (4.49b)
6a

where y = 0.577216 is Euler’s number, and for time inter-

val [0, 1],
a=,/2 In v0+t1 (4.50)

and where var is the mean upcrossing rate of the threshold
b=0, |
+ 0%
= —— 4.51
VO 27T Ox ( )
If Y is the minimum value that X () takes over time interval
[0,#], then the only thing which changes is the sign in

Eq. 4.49a,
Y
=y —ox (a+ ) (4.52)
a

Although these formulas do not give the entire distribution,
they are often useful for first- or second-order Taylor series
approximations. It should also be noted that they are only
accurate for large var t; >> 1. In particular Davenport’s
results assume asymptotic independence between values of
X (1), that is, it is assumed that #; >> 6.

4.3 THRESHOLD EXCURSIONS IN TWO
DIMENSIONS

In two and higher dimensions, we are often interested in
asking questions regarding aspects such as the total area of
a random field which exceeds some threshold, the number
of excursion regions, and how clustered the excursion



regions are. Unfortunately, theoretical results are not well
advanced in two and higher dimensions for thresholds
of practical interest (i.e., not of infinite height). In this
section, some of the existing theory is presented along
with some simulation-based estimates of the statistics of
threshold excursions and extrema. The treatment herein is
limited to the two-dimensional case, although the procedure
is easily extended to higher dimensions. Seven quantities
having to do with threshold excursions and extrema of two-
dimensional random fields are examined:

1. The number of isolated excursion regions (V)

2. The area of isolated excursion regions (A,)

3. The total area of excursion regions within a given
domain (A, = YN, A,,)

4. The number of holes appearing in excursion
regions (Np)

5. An integral geometric characteristic defined by Adler
(1981) (I')

6. A measure of “clustering” defined herein (V)

7. The distribution of the global maxima

These quantities will be estimated for a single class of
random functions, namely Gaussian processes with Marko-
vian covariance structure (Gauss—Markov processes), over
a range of correlation lengths and threshold heights. In the
following, the threshold height is expressed as boy, that is,
b is now in units of the standard deviation of the random
field.

Within a given domain ¥V = [0, T,] x [0, T] of area Ay,
the total excursion area A, can be defined by

Ab = /IV<X(t)—b(TX) dt
Vv

where boy is the threshold of interest, ov)? being the variance
of the random field, and Iy(-) is an indicator function
defined on V,

(4.53)

1 ifr>0
() = { (4.54)
0 ifr<0
For a stationary process, the expected value of A is simply
E[Ap] = Ar P[X(0) > boy] (4.55)
which, for a zero-mean Gaussian process, yields
E[Ap] = A7 [1 — ©(D)] (4.56)

where & is the standard normal distribution function. The
total excursion area A, is made up of the areas of isolated
(disjoint) excursions A, as follows:

Np
Ap =) Ad
i=1

(4.57)
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for which the isolated excursion regions can be defined
using a point set representation:

A ={teV : X(t) > boy, t¢ A, Vj # i}

Aei = L(Aei) (4.58)

where L£(A,;) denotes the Lebesque measure (area) of the
point set A,;. Given this definition, Vanmarcke (1984)
expresses the expected area of isolated excursions as a
function of the second-order spectral moments

L Febo)\* |\ _ip
E[A.] =27 <f(b0x)) [Anl

in which F¢ is the complementary distribution function
[for a Gaussian process, F¢(boy) =1 — ®(b)], f is the
corresponding probability density function, and A is the
matrix of second-order spectral moments with determinant
|A]|, where

(4.59)

(4.60)

Equation 4.59 assumes that the threshold is sufficiently
high so that the pattern of occurrence of excursions tends
toward a two-dimensional Poisson point process. The joint
spectral moments A, can be obtained either by integrating
the spectral density function,
o oo
Mo = / / ol Sy(w), w,) dwy dw, (4.61)
o oo

or through the partial derivatives of the covariance function
evaluated at the origin,

3k ZC T
)\, P X( )
=0

4.62
otk atf ( )

The above relations presume the existence of the second-
order spectral moments of X(t), which is a feature of
a mean square differentiable process. A necessary and
sufficient condition for mean square differentiability is (see
Section 4.2.1)

I:BCX(I)1| _ |:3C(r)i| _ 0
at' =0 B afz =0 B

A quick check of the Gauss—Markov process whose covari-
ance function is given by

(4.63)

2
B(r):ozexp{—§|r|} (4.64)
verifies that it is not mean square differentiable. Most of the
existing theories governing extrema or excursion regions
of random fields depend on this property. Other popular
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models which are not mean square differentiable and so
remain intractable in this respect are:

1. Ideal white noise process
2. Moving average of ideal white noise
3. Fractal processes

4.3.1 Local Average Processes

One of the major motivations for the development of local
average theory for random processes is to convert random
functions which are not mean square differentiable into pro-
cesses which are. Vanmarcke (1984) shows that even a very
small amount of local averaging will produce finite co-
variances of the derivative process. For a two-dimensional
local average process X, (t) formed by averaging X (t) over
D =T, x T,, Vanmarcke presents the following relation-
ships for the variance of the derivative process X, in the
two coordinate directions:

. 2
Var[$"] = Soty @l - iyl @465)
T;
var [X] = 2 2Tl = p(TIT)] (466)
D T22
where,
0= Lxo0. @) =y.0),

dt;
y(T2) = y(0,T3)

1 T;
T;|\T) = ———— T; — |t ) Cx(T;,17) dt;
p(Ti|T) szaz)/(Tj)/T_,-( = 15D Cx(Th, 7)) d;

(4.67)
Furthermore, Vanmarcke shows that the joint second-order
spectral moment of the local average process is always zero
for D > 0, that is,

Cov [xgb,xgb] =0, VD >0 (4.68)
This result implies that the determinant of the second-order
spectral moment matrix for the local average process can be
expressed as the product of the two directional derivative
process variances,

1/2
ol =, = (it 7)) ao

Since the theory governing statistics of threshold excur-
sions and extrema for mean square differentiable random
functions is reasonably well established for high thresholds
[see, e.g., Cramer and Leadbetter (1967), Adler (1981), and
Vanmarcke (1984)], attention will now be focused on an
empirical and theoretical determination of similar measures
for processes which are not mean square differentiable. This

will be accomplished through the use of a small amount of
local averaging employing the results just stated. In partic-
ular, the seven quantities specified at the beginning of this
section will be evaluated for the two-dimensional isotropic
Markov process

2
Cy(11,1,) = 02 exp {—5,/15 + 122} (4.70)

realizations of which will be generated using the two-
dimensional local average subdivision (LAS) method de-
scribed in Section 6.4.6. Since the LAS approach auto-
matically involves local averaging of the non—mean square
differentiable point process (4.70), the realizations will in
fact be drawn from a mean square differentiable process.
The subscript D will be used to stress the fact that the re-
sults will be for the local average process and Z, denotes
a realization of the local average process.

4.3.2 Analysis of Realizations

Two-dimensional LAS-generated realizations of stationary,
zero-mean, isotropic, Gaussian processes are to be analyzed
individually to determine various properties of the discrete
binary field, Y, defined by

ij,v = IV(ij,D - bO'D) 4.71)

where subscripts j and k indicate spatial position (ti;, t2x) =
(j At1,kAt) and o) is the standard deviation of the local
average process. The indicator function /y, is given by (4.54)
and so Y;(x) has value 1 where the function Z; exceeds the
threshold and O elsewhere. In the following, each discrete
value of Y p will be referred to as a pixel which is “on” if
Yip =1 and “off” if Yy p, = 0. A space-filling algorithm
was devised and implemented to both determine the area
of each simply connected isolated excursion region, A p,
according to (4.58), and find the number of “holes” in these
regions. In this case, the Lebesque measure is simply

Acip =L(Awip) =) Meip (4.72)

where
AAcip =14, p (ZD(X) — boD) AA 4.73)

is just the incremental area of each pixel which is on within
the discrete set of points A,; , constituting the ith simply
connected region. In practice, the sum is performed only
over those pixels which are elements of the set A, p.
Note that the area determined in this fashion is typically
slightly less than that obtained by computing the area within
a smooth contour obtained by linear interpolation. The
difference, however, is expected to be minor at a suitably
fine level of resolution.
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Figure 4.5 Examples of weakly surrounded holes: (a) and (b)
are found to be holes while (c¢) and (d) are not.

A hole is defined as a set of one or more contiguous off
pixels which are surrounded by on pixels. With reference
to Figure 4.5, it can be seen that situations arise in which
the hole is only “weakly” surrounded by on pixels. The
algorithm was devised in such a way that only about
half of these weakly surrounded regions are determined
to be holes. In addition, if an off region intersects with
the boundary of the domain, then it is not classified as
a hole even if it is surrounded on all other sides by on
regions. The fields to be generated will have resolution
128 x 128 and physical size 5 x 5. This gives a fairly
small averaging domain having edge sizes of T} = T, = 1%
for which the variance function corresponding to Eq. 4.70
ranges in value from 0.971 to 0.999 for 6 = % tof =4.In
all cases, 02 = 1 in Eq. 4.70 so that o2 equals the variance
function.

Figure 4.6 shows a typical realization of the binary field
Y obtained by determining the » = 1 excursion regions of
Z for a correlation length 6 = % Also shown in Figure 4.6
are the b = 1 contours which follow very closely the on
regions. The centroid of each excursion is marked with a
darker pixel.

In the sections to follow, trial functions are matched
to the observed data and their parameters estimated. All
curve fitting was performed by visual matching since it
was found that existing least squares techniques for fitting
complex nonlinear functions were in general unsatisfactory.
In most cases the statistics were obtained as averages from
400 realizations.

4.3.3 Total Area of Excursion Regions

Since an exact relationship for the expected total area of
excursion regions within a given domain, (4.56), is known
for a Gaussian process, an estimation of this quantity from
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Figure 4.6 Sample function of binary field ¥ (Eq. 4.71). Re-
gions shown in gray represent regions of Z which exceed the
threshold b = lop, where Z is generated via the two-dimensional
LAS algorithm according to Eq. 4.70 with § = % Since Z is nor-
mally distributed, the gray regions on average occupy about 16%
of the field.

a series of realizations represents a further check on the
accuracy of the simulation method. Figure 4.7 shows the
normalized average total area of excursions, Kb,D /Ar, for
A; = 25. Here and to follow, the overbar denotes the
quantity obtained by averaging over the realizations. The
estimated area ratios show excellent agreement with the
exact relationship.

4.3.4 Expected Number of Isolated Excursions

Figure 4.8 shows the average number of isolated excursion
regions observed within the domain, N ».0, as a function of
scale and threshold. Here the word “observed” will be used
to denote the average number of excursion regions seen in
the individual realizations. A similar definition will apply to
other quantities of interest in the remainder of the chapter.
The observed N, is seen in Figure 4.8 to be a relatively
smooth function defined all the way out to thresholds in
excess of 30p.

An attempt can be made to fit the theoretical results
which describe the mean number of excursions of a local
average process above a relatively high threshold to the data
shown in Figure 4.8. As we shall see, the theory for high
thresholds is really only appropriate for high thresholds,
as expected, and does not match well the results at lower
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Figure 4.7 Average total area of excursion ratio, Kb,D /Ar, as a function of threshold b.
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Figure 4.8 Average number of isolated excursions, N ».p, estimated from 400 realizations of the
locally averaged two-dimensional Gauss—Markov process (Eq. 4.70).

thresholds. At high thresholds, the expected number of
excursions is predicted by (Vanmarcke, 1984)

Arfy(boy)

E|\Npp|= 7770
[No.o] 27 Fé(bop) 2
in which f, and Fj; are the pdf and complementary cdf
of the local average process, respectively, and 62-2 is
the geometric average of the directional variances of the
derivative process as defined by Eq. 4.69. For the Gaussian

process, Eq. 4.74 becomes

4.74)

_p2
Are 2

= o,
4205 [1 — D(b)] 2P

To determine O'Z»ZD the functions p(T;|T3) and p(7T,|T;) must

first be calculated using Eq. 4.67. Consider p(7|T5) for the

E[Np»] (4.75)

quadrant-symmetric Gauss—Markov process

2 T2
T, = —— T, — )BT, 1) drt
p(TiIT) Tzazym)/o (T, - ©) BT, ) drs

2 "2 2 /2, 22
%/0 (T — ) exp{—5yIT + 1} dos
2

Making the substitution r?> = T2 + 2 gives
VTEHTS
~2r/6
2z / Lre P | g
rrotym) J | -1t
1

o(T|T,) =

To avoid trying to numerically integrate a function with a
singularity at its lower bound, the first term in the integrand



can be evaluated as follows:

[724 72
Tl +T2

T, re=21/0
L > dr
r2 —T;
T
/oo T, ro=2r/9 /OO T, re=2/ .
= r— r
T, r2 —T? r2 —T?
JTHT32
a
T, re=2/0
= T2T|K1 (%) —_ / 2 r
r2 —T?

The second integral on the RHS can now be evaluated
numerically, and for a chosen sufficiently large, the last
integral has the simple approximation %QTZ exp{—2a/0}.
The function K, is the modified Bessel function of or-
der 1. Unfortunately, for small T}, the evaluation of this
integral is extremely delicate as it involves the small dif-
ferences of very large numbers. An error of only 0.1% in
the estimation of either K; or the integrals on the RHS
can result in a drastic change in the value of UZZD, particu-
larly at larger correlation lengths. The results in Table 4.2
were obtained using T, =T, = 1578, for which o(T,|T,) =
p(T|T;), and a 20-point Gaussian quadrature integration
scheme.

Using these variances, Eq. 4.74 was plotted against the
observed N, , in Figure 4.9. The relatively poor agreement
achieved may be as a result of the combination of the dif-
ficulty in accurately determining 02-20 for small averaging
dimensions and the fact that Eq. 4.74 is an asymptotic re-
lationship, valid only for b — oco. A much better fit in the
tails (b > 1.5) was obtained using the empirically deter-
mined values of O'Z-ZD shown in Table 4.3 (see page 146),
which are typically about one-half to one-third those shown

Table 4.2 Computed Variances of Local Average
Derivative Process

Scale o(T)|T») aZ.ZD

0.5 0.8482 196.18
1.0 0.9193 105.18
2.0 0.9592 53.32
3.0 0.9741 33.95
4.0 0.9822 23.30
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in Table 4.2. Using these values, the fit is still relatively
poor at lower thresholds.

An alternative approach to the description of N, in-
volves selecting a trial function and determining its param-
eters. A trial function of the form

Ny = Ar (a, + a, b) exp{—1 b?) (4.76)

where the symbol = is used to denote an empirical rela-
tionship, was chosen, and a much closer fit to the observed
data, as shown in Figure 4.10, was obtained using the coef-
ficients shown in Table 4.3. The functional form of Eq. 4.76
was chosen so that it exhibits the correct trends beyond the
range of thresholds for which its coefficients were derived.

4.3.5 Expected Area of Isolated Excursions

Within each realization, the average area of isolated excur-
sions, Ze,D, is obtained by dividing the total excursion area
by the number of isolated areas. Further averaging over the
400 realizations leads to the mean excursion areas shown
in Figure 4.11 which are again referred to as the observed
results. The empirical relationship of the previous section,
Eq. 4.76, can be used along with the theoretically expected
total excursion area (Eq. 4.56) to obtain the semiempirical
relationship

- [ —®®)er”
App oo
a; + a, b
which is compared to the observed data in Figure 4.12
and is seen to show very good agreement. For relatively
high thresholds, dividing (4.56) by (4.75) and assuming

independence between the number of regions and their total
size yield the expected area to be

4.77)

o2

E[Acp] = 4n7[1 — @) " (—ZD (4.78)

oO*
Zp

Again the use of o2 , as calculated from Eq. 4.69, gives
a rather poor fit. Usllpng the empirically derived variances
shown in Table 4.3 improves the fit in the tails, as shown
in Figure 4.13, but loses accuracy at lower thresholds for
most scales.

4.3.6 Expected Number of Holes Appearing in
Excursion Regions

In problems such as liquefaction or slope stability, we might
be interested in determining how many strong regions ap-
pear in the site to help prevent global failure (see, e.g.,
Chapter 16). If excursion regions correspond to soil failure
(in some sense), then holes in the excursion field would
correspond to higher strength soil regions which do not fail
and which help resist global failure. In this section, we look
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Figure 4.9 Comparison of theoretical fit by Eq. 4.75 with the observed average number of isolated excursions obtained by simulation.

at the number of holes (off regions surrounded by on re-
gions) appearing in excursion regions. Since the data are
being gathered via simulation, an empirical measure relat-
ing the average number of holes, N n.p, with the threshold
height and the correlation length is derived here. The esti-
mated N, curves, obtained by finding the number of holes
in each realization and averaging over 400 realizations, are

shown in Figure 4.14. The empirical model used to fit these
curves is
]\_]h,l) = Ar(hy + hy b)[1 — ©(b)] 4.79)

where the parameters giving the best fit are shown in
Table 4.4 and the comparison is made in Figure 4.15.
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Figure 4.10 Comparison of empirical fit by Eq. 4.76 with the observed average number of isolated excursions obtained by simulation.

4.3.7 Integral Geometric Characteristic
of Two-Dimensional Random Fields

In his thorough treatment of the geometric properties of
random fields, Adler (1981) developed a so-called inte-
gral geometric (IG) characteristic I'(Ap ) as a statistical
measure of two-dimensional random fields. The definition

of I'(App) will be shown here specifically for the two-
dimensional case, although a much more general definition
is given by Adler. First, using a point set representation,
the excursion set Ap 5 can be defined as the set of points
in YV =1[0,T,] x [0,T,] for which Z,(x) > bop,

App ={teV : Zyt) > bop} (4.80)
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Table 4.3 Empirically Determined Parameters
of Eq. 4.76 and Variances of Derivative Process

Scale a, a, UZ-ZD
0.5 3.70 5.20 90.0
1.0 2.05 1.90 40.0
2.0 1.18 0.65 17.5
3.0 0.81 0.41 11.3
4.0 0.66 0.29 8.5

The Hadwiger characteristic of Ap p, ¢(App), is equal to
the number of connected components of A, 5, (the number
of isolated excursion regions) minus the number of holes
in Ap . Finally, if V is defined as the edges of V which
pass through the origin (the coordinate axes), then the IG
characteristic is formally defined as

T(App) = ¢(App) — ¢(App N V) (4.81)

Essentially, I'(Ap p) is equal to the number of isolated ex-
cursion areas which do not intersect the coordinate axes
minus the number of holes in them. Figure 4.16 shows the
average value of the IG characteristic, F(Ab,u), obtained
from the locally averaged Gauss—Markov process realiza-
tions.

Adler presented an analytic result for the expected value
of I'(4pp) which has been modified here to account for
local averaging of a Gaussian process,

bA 1
E[T(App)] = m exp {_EbZ} oy (4.82)

Figure 4.17 shows the comparison between Eq. 4.82 and

the observed data using the empirically estimated variances

GZ'ZD shown in Table 4.3. The fit at higher thresholds appears

to be quite reasonable. Using a function of the same form
as Eq. 4.76,

T(App) = Ar(g) + g:b) exp{—1 %}, (4.83)

yields a much closer fit over the entire range of thresholds
by using the empirically determined parameters shown in
Table 4.5. Figure 4.18 illustrates the comparison.

4.3.8 Clustering of Excursion Regions

Once the total area of an excursion and the number of com-
ponents which make it up have been determined, a natural
question to ask is how the components are distributed: Do
they tend to be clustered together or are they more uni-
formly distributed throughout the domain? When liquefiable
soil pockets tend to occur well separated by stronger soil re-
gions, the risk of global failure is reduced. However, if the
liquefiable regions are clustered together, the likelihood of
a large soil region liquefying is increased. Similarly, weak
zones in a soil slope or under a footing do not necessarily
represent a problem if they are evenly distributed through-
out a stronger soil matrix; however, if the weak zones are
clustered together, then they could easily lead to a failure
mechanism.

It would be useful to define a measure, herein called
W, which varies from O to 1 and denotes the degree
of clustering, 0 corresponding to a uniform distribution
and larger values corresponding to denser clustering. The
determination of such a measure involves first defining
a reference domain within which the measure will be
calculated. This is necessary since a stationary process over
infinite space always has excursion regions throughout the
space. On such a scale, the regions will always appear
uniformly distributed (unless the correlation length also
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Figure 4.11 Average area of isolated excursion regions estimated from 400 realizations of the
locally averaged two-dimensional Gauss—Markov process.
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Figure 4.12 Comparison of semiempirical fit by Eq. 4.77 with the observed average area of isolated excursions obtained by simulation.

approaches infinity). For example, at scales approaching
the boundaries of the known universe, the distribution of
galaxies appears very uniform. It is only when attention is
restricted to smaller volumes of space that one begins to
see the local clustering of stars. Thus an examination of
the tendency of excursions to occur in groups must involve
a comparison within the reference domain of the existing

pattern of excursions against the two extremes of uniform
distribution and perfect clustering.

A definition for W which satisfies these criteria can be
stated as

Ju—J,
g (4.84)
Ju—J.
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Figure 4.14 Average number of holes appearing in excursion regions.

where Jj, is the polar moment of inertia of the excursion
areas about their combined centroid, J, is the polar moment
of inertia of all the excursion areas concentrated within a
circle, and J,, is the polar moment of inertia about the same
centroid if the excursion area were distributed uniformly
throughout the domain. Specifically

Np.p
To = Jei +AeinXp — %I (4.85)
i
Joi =Y Aheipl%i — x| (4.86)
j
A
J, = b / X, — x|? dx (4.87)
AT v
AZ
= 2P (4.88)
2

where J,; is the polar moment of inertia of the ith excursion
region of area A, about its own centroid, X;; AA, p i
as defined by Eq. 4.73 and X, is the centroid of all the
excursion regions. The second moment of area was used in
the definition since it is invariant under rotations. It can be
easily seen that this definition will result in & = 0 when the
excursion regions are uniformly distributed over the space
Jp = J,) and W — 1 when the excursion regions are
clustered within a small region (J, — J,.). It is also possible
for W to take negative values, indicating the occurrence of
two local clusters at opposite sides of the domain. This
information is just as valuable as positive values for W but
in practice has not been observed to occur on average.

All that remains is to define W in the limiting cases.
Equation 4.84 ensures that W will be quite close to 1
in the case of only a single excursion region. It seems
natural then to take W =1 if no excursions occur. At the
other extreme, as Ap, — Ay, both the denominator and
numerator of Eq. 4.84 become very small. Although the
limit for noncircular domains is zero, it appears that the
measure becomes somewhat unstable as A, , — Ar. This
situation is of limited interest since the cluster measure
of a domain which entirely exceeds a threshold has little
meaning. It is primarily a measure of the scatter of isolated
excursions.

Individual realizations were analyzed to determine the
cluster measure W and then averaged over 200 realiza-
tions to obtain the results shown in Figure 4.19. Definite,
relatively smooth trends both with correlation length and
threshold height are evident, indicating that the measure
might be useful in categorizing the degree of clustering.

4.3.9 Extremes in Two Dimensions

Extracting the maximum value from each realization of the
random field, Z,, allows the estimation of its corresponding
probability density function (or equivalently the cumulative
distribution) with reasonable accuracy given a sufficient
number of realizations. A total of 2200 realizations of the
locally averaged Gauss—Markov process were generated for
each correlation length considered. Conceptually it is not
unreasonable to expect the cumulative distribution of the
global maximum Fpx(b) to have the form of an extreme-
value distribution for a Gaussian process

Frnax (D) = [@(B)]"" (4.89)
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Figure 4.15 Comparison of empirical fit by Eq. 4.79 with observed average number of holes obtained by simulation.

where neg is the effective number of independent sam-
ples in each realization estimated by fitting Eq. 4.89 to the
empirical cumulative distribution function at its midpoint.
As the correlation length approaches zero, neg should ap-
proach the total number of field points (128 x 128), and

as the scale becomes much larger than the field size, neg
is expected to approach 1 (when the field becomes to-
tally correlated). Except at the shortest correlation length
considered, 8 = 0.5, the function defined by Eq. 4.89 was
disappointing in its match with the cdf obtained from the



Table 4.4 Empirically Determined Parameters of
Eq. 4.79 Based on Observed Average Number of Holes
Obtained by Simulation

Correlation

Length h, h,
0.5 4.45 —2.00
1.0 2.49 —0.55
2.0 1.39 0.06
3.0 0.97 0.25
4.0 0.80 0.28

realizations. Figure 4.20 illustrates the comparison for the
empirically determined values of nes shown in Table 4.6.
The better fit at the smallest correlation length is to be ex-
pected since at very small scales the field consists of a set
of (almost) independent random variables and thus satisfies
the conditions under which Eq. 4.89 theoretically applies.
Not surprisingly, an improved match is obtained using a
two-parameter type I extreme-value distribution having the
double-exponential form

Fax(b) = exp{—e *"~1} (4.90)

where the parameters o and p, estimated by an order
statistics method developed by Leiblein (1954) using the
simulation data, are presented in Table 4.6 for each corre-
lation length. The comparison between the simulation-based
cumulative distribution and that predicted by the type I
extreme-value distribution is shown in Figure 4.21.
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We often wish to characterize random fields by averag-
ing them over certain domains. For example, when arriv-
ing at characteristic soil properties for use in design (see
Chapter 7), we usually collect field data and then use some
sort of (possibly factored) average of the data as the rep-
resentative value in the design process. The representative
value has traditionally been based on the arithmetic aver-
age. However, two other types of averages have importance
in geotechnical engineering: geometric and harmonic aver-
ages. All three averages are discussed next.

4.4.1 Arithmetic Average

The classical estimate of the central tendency of a random
process is the arithmetic average, which is defined as

1 n

1
T / X(x) dx (continuous data)
T

(discrete data)

X, = 4.91)

where T is the domain over which the continuous data
are collected. The arithmetic average has the following
properties:

1. X, is an unbiased estimate of the true mean, wy. That
is, E[Xs] = px.

2. X, tends to have a normal distribution by the central
limit theorem (see Section 1.10.8.1).

3. All observations are weighted equally, that is, are
assumed to be equi-likely. Note that the true mean

=
)
—

100

r'A,p)

50

Threshold b (o)

Figure 4.16  Average values of Adler’s IG characteristic T obtained from 400 realizations of the

locally averaged Gauss—Markov process.
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Table 4.5 Empirically Determined Parameters of
Eq. 4.83 Based on Observed Average IG Characteristic
I' Obtained by Simulation

Scale g1 o

0.5 2.70 5.10
1.0 1.50 1.80
2.0 0.87 0.58
3.0 0.61 0.32
4.0 0.50 0.22

is defined as a weighted average

Mx Z/ X fx(x) dx
all x

so that X, is simply saying that the true distribution is
unknown and assumed to be uniform. This assumption
also means that low and high values are weighted
equally and tend to cancel one another out (which is
why X, is an unbiased estimate of 1y).

4. The variance of X, depends on the degree of cor-
relation between all the X(x) values going into the
average. As discussed in Section 3.4, the variance of
X, can be expressed as

Var [X,] = o2y(T)

where y(T) is the variance reduction function defined
by Egs. 3.40-3.42.

4.4.2 Geometric Average

The geometric average is defined as the nth root of
the product of n (nonnegative) random variables. Us-
ing this definition, the discrete set of random variables
X1,Xo, ..., X, has geometric average

Xe = (X1 Xz X,)'/" (4.92)

This average is not well defined if the X’s can be negative
since the sign then becomes dependent on the number of
negative values in the product, which may also be random.
In this case, the geometric average may become imaginary.
Thus, its use should be restricted to nonnegative random
fields, as are most geotechnical properties.

The natural logarithm of X; is

1 n
In X; = " Zln X; (4.93)
i=1

which is the average of the In X values. Taking expectations
gives the mean of In X; to be

Elln X¢] = um x5 = i x

In other words, the geometric average preserves the mean
of In X (just as the arithmetic average preserves the mean
of X).

If Eq. 4.93 is made a power of e, we get an alternative
way of computing the geometric average,

1 n
Xg :expi;Zln X,-}
i=1

This latter expression is useful if X is a continuously vary-
ing spatial (and/or temporal) random field being averaged
over some domain 7, in which case the geometric average
becomes its continuous equivalent,

X6 :exp{%/ln X(x) dx}
T

Some properties of the geometric average are as follows:

(4.94)

(4.95)

1. X weights low values more heavily than high values
(low value dominated). This can be seen by con-
sidering what happens to the geometric average, see
Eq. 4.92, if even a single X; value is zero—X; will
become zero. Notice that X, would be only slightly
affected by a zero value. This property of being low-
value dominated makes the geometric average useful
in situations where the system behavior is dominated
by low-strength regions in a soil (e.g., settlement,
bearing capacity, seepage).

2. X; tends to a lognormal distribution by the central
limit theorem. To see this, notice that In X is a sum
of random variables, as seen in Eq. 4.93, which the
central limit theorem tells us will tend to a normal
distribution. If In X is (at least approximately) nor-
mally distributed, then X is (at least approximately)
lognormally distributed.

3. if X is lognormally distributed, then its geometric
average X; is also lognormally distributed with the
same median.

The second property is important since it says that low-
strength-dominated geotechnical problems, which can be
characterized using a geometric average, will tend to follow
a lognormal distribution. This may explain the general
success of the lognormal distribution in modeling soil
properties.

If X; is lognormally distributed, its mean and variance
are found by first finding the mean and variance of In X,
where in the continuous case

1
In X; = ?/ In X(x) dx (4.96)
T

Assuming that X (x) is stationary, then taking expectations
of both sides of the above equation leads to

Minxg = Minx 4.97)
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Figure 4.17 Comparison of theoretically predicted IG characteristic (Eq. 4.82) with observed average values obtained by simulation.

We note that since the median of a lognormally distributed
random variable, X, is exp {umx}, we see that the median
of X; is equal to the median of X. In other words, geomet-
ric averaging of a lognormally distributed random field, X,
preserves both the type of the distribution and its median
(this is analogous to arithmetic averaging of a normally dis-
tributed random field; the result is also normally distributed

with the mean preserved). The preservation of the median
of X is equivalent to the preservation of the mean of In X.
The variance of In X;; is given by

aﬁxG = o, y(T) (4.98)

where y(T) is the variance reduction function defined for
the In X random field when arithmetically averaged over
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Figure 4.18 Comparison of empirically predicted IG characte:

the domain 7. For example, if 6,x is the correlation
length of the In X field and pi, x(T; O1nx) is its correlation
structure, then, from Eq. 3.40, we get

1

y(T) = W

f / piax (€ — 15 Oux) dE dy (4.99)
TJT

Threshold b (o)

ristic (Eq. 4.83) with observed average values obtained by simulation.

where 7 may be a multidimensional domain and |T| is
its volume. The correlation length 6,y can be estimated
from observations X;,X>,...,X, taken from the random
field X (x) simply by first converting all of the observations
to InX;,In X, ...,InX, and performing the required statis-
tical analyses (see Chapter 5) on the converted data set.
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Figure 4.19 Average values of cluster measure W estimated from 200 realizations of locally averaged Gauss—Markov process.

Table 4.6 Empirically Determined Effective Number
of Independent Samples nes and Parameters of Type I
Extreme Distribution (Eq. 4.90)

Scale Neff o nw

0.5 2900 3.14 3.41
1.0 900 2.49 3.05
2.0 180 2.05 2.52
3.0 70 1.78 2.15
4.0 35 1.62 1.86

Finally, the correlation function in logarithmic space can
be converted to a correlation function in real space using
Eq. 3.3,

exp {0 pnx (D)} = 1
exp {ojp, } — 1
For most random fields, the two correlation functions are

quite similar and 6y >~ Oy, x.

Once the mean and variance of In X; have been com-
puted, using Eqgs. 4.97 and 4.98, lognormal transformations
(Eq. 1.175) can be used to find the mean and variance of X;;:

px(T) = (4.100)

I
Ixg = exp {mx + 305, ¥ (1)} = X —
(14v3) 4
(4.101a)
(1)
056 = ,u}z(G [exp {U]]ZU()/(T)} - 1] = M)Z(G [(1 + v)z()y ]
(4.101b)

where vy = ox/uy is the coefficient of variation of X. No-
tice that the mean of the geometric average decreases as

vy increases. As the correlation length 6y, increases, rel-
ative to the size of the averaging domain, 7', the value
of y(T) increases towards 1 (there is less independence
between random variables in domain T, so there is less
variance reduction). For strongly correlated random fields,
then, the mean of the geometric average tends toward the
global mean py. At the other end of the scale, for poorly
correlated random fields, where 6y, xy << T, the variance re-
duction function y(T) — 0 and the mean of the geometric
average tends towards the median.

4.4.3 Harmonic Average

The harmonic average is particularly important in geotech-
nical engineering because it can be shown to be the exact
average to use for several common geotechnical problems.
Examples are (a) the settlement of a perfectly horizontally
layered soil mass subject to uniform surface loading and
(b) one-dimensional seepage through a soil. The harmonic
average is defined by

-1
1 1
|:_ Z —:| (discrete case) (4.102a)
n “ Xi
Xy = i=l

1 dx 7! .
— / — (continuous case) (4.102b)
T Jr X(x)

Example 4.5 Consider the layered soil shown in Fig-
ure 4.22 subjected to a surface stress o. The elastic modulus
of the ith layer is E;. If the total settlement § is expressed as

oH
E

S =

derive Ey.
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Figure 4.20 Observed cumulative distribution of global maximum of each realization compared
to one-parameter extreme-value distribution given by Eq. 4.89.
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o

Figure 4.22 Settlement of perfectly horizontally layered soil.

SOLUTION We will assume that the load is uniformly
distributed over a much wider area than seen in Figure 4.22,
so that we can assume that the stress remains constant with
depth. In this case, the settlement of the ith layer is

o Az
E;

The total settlement is the sum of individual layer settle-
ments,

8 =

n

SZZGEAiZi

i=1

Equating this to 0 H /E. gives us

1 «— Az
Eeffz EZI Ei

Finally, if the layer thicknesses are equal, then H = n Az
and
1 & 1
Ep=|— —
’ n ; El

which is the harmonic average (discrete case) defined
above.

We can see from Eq. 4.102 that if any of the X values
are zero, the harmonic average becomes zero. In fact,
the harmonic average is even more strongly low-value
dominated than is the geometric average. Unfortunately,
the harmonic average is difficult to deal with from a
probabilistic point of view since it has no known limiting
distribution and its mean and variance are difficult to
compute. When X is lognormally distributed, the lognormal
distribution has been found to provide a reasonably good fit
to the harmonic average for common types of random fields.
Figure 4.23 illustrates the agreement between the frequency
density plot of realizations of the harmonic average and a
fitted lognormal distribution.

Frequency density
RiEin IR — i x =—0.204, 0y, x = 0.187, p-value = 0.44

Figure 4.23 Frequency density plot of harmonic averages over
area T2 for vy = 0.5 and 6j,x = 0.5T along with fitted lognormal
distribution.

O X,

Hin x,

o0 —

10!

Figure 424 Mean and standard deviation of log-harmonic av-
erages estimated from 5000 realizations (uy = 1.0).
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Figure 4.25 Sample two-dimensional random field having mean
1.0 and correlation length 6 = 0.2

Assuming that the harmonic average is at least ap-
proximately lognormally distributed, all that remains is to
determine its two parameters, [iinx, and oy, x, . The authors
have not found analytical approaches (beyond first order)
to determine these quantities. Figure 4.24 illustrates how
the mean and standard deviation of the harmonic average
change with changing coefficient of variation and correla-
tion length. These plots were obtained by simulating 5000
realizations of random fields of dimension T x T and com-
puting their harmonic averages. Notice how the mean drops
rapidly with increasing variability.

4.4.4 Comparison

Consider a two-dimensional random field of size 1 x 1,
as illustrated in Figure 4.25. If we compute the average
of the field shown in Figure 4.25 using the arithmetic,
geometric, and harmonic averages, we will get three dif-
ferent values. As the variability of the random field is
increased, the typical distance between the highs and lows
increases. In turn, both the geometric and harmonic aver-
ages will decrease, since these are dominated by the low
values.
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Figure 4.26 Comparison of arithmetic, geometric, and harmonic
averages taken over a 1 x 1 random field with 6 = 0.2

Figure 4.26 illustrates how the means of the arithmetic,
geometric, and harmonic averages change as the variance
of the random field is increased. Both the geometric and
harmonic averages fall quite rapidly, particularly when the
coefficient of variation rises above about 0.2.

The harmonic average is the most strongly dominated
by low values in the sample being averaged and the ge-
ometric average lies between the harmonic and arithmetic
averages.

We conclude by commenting on the fact that these are
not the only possible averages that can be used to character-
ize the behavior of soil masses. Other particularly important
possibilities include averages which are distance weighted
(i.e., soil properties close to a footing are more heavily
weighted than those far away). Even better characteriza-
tions are obtained using averages which are weighted by
correlations (i.e., soil properties more strongly correlated
to the area of interest are weighted more heavily). The lat-
ter type of averaging is captured by a methodology called
best linear unbiased estimate, a variant of which is called
Kriging, as discussed in Section 4.1.



CHAPTER 5

Estimation

5.1 INTRODUCTION

The reliability assessment of geotechnical projects has been
receiving increased attention from regulatory bodies in re-
cent years. In order to provide a rational reliability analysis
of a geotechnical system, there is a need for realistic random
soil models which can then be used to assess probabilities
relating to the design. Unfortunately, little research on the
nature of soil spatial variability is available, and this ren-
ders reliability analyses using spatial variability suspect. In
an attempt to remedy this situation, this chapter lays out
the theory and discusses the analysis and estimation tools
needed to analyze spatially distributed soil data statistically.
Because of the complexity of the problem, the concentra-
tion herein is largely on the one-dimensional case. That is,
the overall goal is to establish reasonable models for vari-
ability along a line. In order to achieve this goal, existing
tools and estimators need to be critically reviewed to as-
sess their performance for both large and small geotechnical
data sets. The concentration on the one-dimensional case is
reasonable, even when applied in a three-dimensional en-
vironment, because the directional “linear” statistics can be
used to characterize separable models in higher dimensions.

Conceptually, at least, soils are basically deterministic.
We could excavate an entire site and establish fairly closely
the engineering properties of the soil throughout the site.
Although such an undertaking would relieve us of having
to deal with uncertainty, we would also be left with nothing
upon which to found our structure, not to mention the cost.
We must therefore live with uncertainty and attempt to
quantify it rationally.

Although, traditionally, estimates of only the mean and
variance have been largely sufficient for reliability esti-
mates (via single random variable models), clients are now
demanding full reliability studies. These studies require

Risk Assessment in Geotechnical Engineering Gordon A. Fenton and D. V. Griffiths
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more sophisticated spatially variable models which involve
knowledge of the spatial correlation structure of a soil. We
now are asking questions such as: Knowing that soil proper-
ties are spatially correlated, what is a reasonable correlation
function to use? Are soils best represented using fractal
models or finite-scale models? What is the difference? How
can this question be answered? Once a correlation function
has been decided upon, how can its parameters be esti-
mated? These are questions that this chapter addresses by
looking at a number of tools which aid in selecting ap-
propriate stochastic models. These tools include the sample
covariance, spectral density, variance function, variogram,
and wavelet variance functions. Common correlation func-
tions, corresponding to finite-scale and fractal models, are
investigated and estimation techniques discussed.

In general, statistical analyses can be separated into
two areas which can be thought of as descriptive and
inferential in nature. In the former, the goal is to best
describe a particular data set with a view toward in-
terpolating within the data set. For example, this com-
monly occurs when geotechnical data are obtained at a
site for which a design is destined. Common descrip-
tive statistics are the classic mean and variance estimates.
The more advanced descriptive techniques most often
used are those of regression using an appropriate poly-
nomial which explains most of the variability, or best
linear unbiased estimation (BLUE). Regression is purely
geometry and observation based, while BLUE incorpo-
rates also the covariance structure between the data. Thus,
the BLUE techniques require an a priori estimate of the
covariance function governing the soil’s spatial variabil-
ity; this is often obtained by inference from other sites
since it generally requires a very large data set to estimate
reliably.

In general, inference occurs whenever one estimates
properties at any unobserved spatial location. Here, the
word inference will be taken to mean the estimation of
stochastic model parameters which allow one to make prob-
abilistic statements about an entire site for which data
are limited or not available. This may be necessary, for
example, in preliminary designs, in designs involving a
future state, or in designs where a large site is to be char-
acterized on the basis of a small test region. This chapter
discusses inferential statistics for several reasons: (1) de-
scriptive statistics are already reasonably well established
and understood, (2) statistical results quoted in the literature
must be inferential (unless you happen to be the author),
(3) a priori knowledge of the second-moment (covariance)
structure of soil properties is essential for BLUE estimators
and Bayesian updating, and (4) site investigations are often
not complete enough to even begin a spatial covariance esti-
mation with any accuracy at all. Thus, most reliability-based
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designs will benefit from a database of inferred second-
order soil statistics.

The difference between inferential and descriptive statis-
tics becomes a critical issue in the interpretation of the
estimates. This distinction can perhaps be best seen by ask-
ing yourself the following two questions, only one of which
will be commonly true, prior to the statistical analysis of a
data set:

1. Are the estimates being used to characterize the site
at which the data are obtained (descriptive statistics)?
If so, then estimator errors decrease with increasing
correlation between experimental observations. That
is, when a random field is highly correlated, only
a few observations may be required to accurately
characterize the field. For most practicing engineers,
the answer to this question will be yes.

2. Are the estimates being used to characterize the soil
“population” (inference)? That is, are the collected
data being used to say something about all (simi-
lar?) soil sites? If so, then estimator errors increase
with increasing correlation between observations. For
example, when a random field is highly correlated,
it does not matter how many observations one takes
of the field, one will only see a small fraction of the
distribution of possible values. The estimate could be
quite in error (e.g., trying to make comments about the
natural variability of cohesion by taking many sam-
ples in a gravel pit). For code developers, researchers,
or anyone attempting to make statements about gen-
eral a priori soil property statistics, the answer to this
question will be yes.

Most practitioners are able to answer yes to question 1.
However, most researchers publishing in the literature and
anyone working on the development of a reliability-based
geotechnical design code must answer yes to question 2.
The site characterization problem (question 1) tends to be
significantly simpler than the population characterization
problem (question 2).

This chapter begins by looking at the problem of select-
ing a marginal distribution (i.e., a point distribution) and
testing how well it fits the data. Then the simpler classical
estimators of the mean, variance, and covariance struc-
ture, largely in the context of geotechnical engineering, are
investigated. Some of the basic concepts of random-field
theory, initially seen in Chapter 3, are elaborated on here
for clarification. Where appropriate, we will distinguish be-
tween how the estimates apply to the characterization of
a site (descriptive) and of the population (inference). The
latter part of this chapter looks at more advanced meth-
ods of estimating the second-moment structure (i.e., the

covariance structure) of a random field. Only the one-
dimensional case is considered.

5.2 CHOOSING A DISTRIBUTION

When data have been collected on an input random variable
of interest, the data can be used in one of three ways to
specify a distribution:

1. The data values themselves are used directly in the
simulation. This is sometimes called trace-driven sim-
ulation. This is the least preferable way to use the
data since, in this case, the simulation can only re-
produce what has happened historically and/or at the
observation locations. There is seldom enough data
to capture all the possible future, and/or spatial vari-
ability. This approach is most commonly reserved
for earthquake ground motion simulation, where past
recorded motions are used as system input to assess
seismic response.

2. The data values are used to define an empirical
distribution function directly. Random simulation then
involves random samples drawn from the empirical
distribution function. This is usually referred to as
sampling from the empirical distribution. This method
is better than the first as it is not constrained in the
amount of data that can be simulated; however it still
has drawbacks. Most notably, only observations in
the range of the observed data can be simulated. This
does not allow for the extremes which often control a
design.

3. A reasonable distribution is fitted to the data. Now,
random samples can be drawn from the fitted distri-
bution in, for example, a Monte Carlo simulation. If
a theoretical distribution that fits the observed data
reasonably well can be found, then this is usually
the preferred method. There are numerous advantages,
most notably:

(a) The “irregularities” in the empirical distribution
are smoothed out with a fitted distribution. Since
the irregularities are almost certainly due to the
fact that only a finite sample is used, this is a
desirable feature of the fitted distribution.

(b) The fitted distribution can generate values outside
the range of the observed sample. This means that
extremes can be represented in a reasonable way.

(c) Sometimes there are compelling physical reasons
to have a given distributional form.

(d) This is a more compact way to represent data.
That is, most fitted distributions will have one or
two parameters whereas the empirical distribution
requires the storage of 2n values (n locations and
n corresponding cumulative probabilities).



We will concentrate only on the fitting of a distribution
to the data and we start by considering how to select the
distribution governing the random field. Commonly, this
will be a marginal distribution governing the distribution
of a stationary random field at any point in the field, fx(x).
We will rarely have enough information to prescribe a full
joint distribution fy x,...(x1, X2, .. .), except in the case of the
normal distribution, so will not dwell on how to do this for
the general case.

The first step in choosing a distribution is to consider
what is physically reasonable for the soil property you are
trying to model. The normal distribution is a very popu-
lar choice. This is particularly true when the soil property
is a random field, since the full joint normal distribution
is completely specified by only the mean and covariance
structure. The one major disadvantage to the normal dis-
tribution is that its range is from —oo to +o00. For most
soil properties, for example, cohesion or elastic modulus,
negative values do not have a physical meaning. Thus, for
nonnegative soil properties, the normal distribution cannot
be the true distribution, and other nonnegative distributions
should be considered (e.g., lognormal, gamma, Weibull,
or one of the extreme-value distributions). However, if
the probability of obtaining a negative property value is
small enough, the normal distribution is a reasonable ap-
proximation. For example, if the coefficient of variation,
v = o/u, of the soil property is less than about 30%, then
the probability of obtaining a negative soil property value
is only

2Tl <)
PIX <0]=P|Z < —|=P|Z < —
o/u 0.3

= ®(—3.33) = 0.0004

The difference between v = o/u of 0.3 and 1.0 is illus-
trated in Figure 5.1. Clearly, if v is as large as 1.0, then a
fairly large proportion of possible realizations of X will be
negative.

Given the advantages of the normal distributions (e.g.,
its ease of use and simple multivariate form), it may be
desirable to use it when the coefficient of variation is
acceptably small. However, in the example given above,
if the target failure probability for a design is around 0.001
and if failure tends to occur in low-strength regions, then
a model error as large as 0.0004 may not be acceptable.
Overall, it is probably best to use a distribution which is
physically reasonable where possible.

In geotechnical engineering, there are a number of soil
properties which are bounded both above and below. This
is another physical attribute of the property which should
be considered when selecting a distribution. For example,
friction angle (0-90°), porosity (0-1), degree of saturation
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Figure 5.1 Comparison of probability that X < 0, where X is
normally distributed, for two different coefficients of variation,
v=0/1.

(0-1), and relative density (0—1) are all bounded both above
and below. Arguments may be made for bounding other soil
properties, such as unit weight, both above and below. In
the case of unit weight, we know that it cannot exceed
the unit weight of the heaviest element but, practically
speaking, is unlikely to exceed the unit weight of silicon,
or perhaps calcium, or maybe even iron. Unfortunately, as
with many soil properties that one might expect to have an
upper bound, the upper bound is often arbitrarily selected
and not precisely known. For example, an upper bound on
a soil’s unit weight might be assumed to be 26 kN/m? and
this may yield a quite reasonable distribution. However, can
it be said, with absolute certainty, that the unit weight will
never exceed 26 kN/m3? If not, then perhaps an unbounded
distribution is more physically correct, so long as the
likelihood of exceeding, say, 26 kN/m?, is sufficiently
small. We will never have enough information to state
precisely which distribution is the true distribution for any
soil property. Distributions should be selected that best
satisfy the following guidelines:

1. If sufficient data are available, select the distribution
which best fits the histogram of the data (see next
section).

2. Ensure that the distribution is (at least approximately)
physically reasonable. That is, if the soil property is
strictly nonnegative, such as elastic modulus, then
the normal distribution is not physically reasonable
since it allows negative values. It may, however,
be approximately reasonable if the probability of
negative values is sufficiently small.
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The second step in choosing a distribution is to read the
literature; find out what other people have found to be
successful probabilistic models for the soil/rock property
in question.

The third step is to take whatever data are available,
estimate the distribution parameters (see next section), and
then see how well the distribution(s) you have selected
actually match the data. If sufficient data are available
(generally, at least 20 observations), the most common way
to compare the data to the assumed distribution is by using
a histogram. Histograms act as graphical estimates of the
density function, as will be discussed shortly.

Finally, the selected distribution should be as simple
as possible while still reflecting the basic nature of the
variability. Distributions which involve more than two
parameters are generally difficult to justify because we
rarely have enough data to estimate even two parameters
with any accuracy. There is little point in trying to match,
say, a six-parameter distribution to the detailed erratic
fluctuations in a histogram, even if the histogram is based
on a large number of data. Many of the detailed fluctuations
in a histogram will change if a different data set is collected
or even if the histogram interval sizes are changed. Only
the average (smoothed) behavior of the histogram should
be matched in a fitted distribution.

5.2.1 Estimating Distribution Parameters

Once we have decided on a distribution to fit to the data
that we have collected, the next step is to estimate the
parameters of the distribution from the data. If we look
at Sections 1.9 and 1.10, we will see that each distribution
is characterized by one or more parameters. For example,
the exponential distribution has one parameter, A, while
the lognormal distribution has two parameters, upx and
Olnx-

In this section, we look at how these distribution param-
eters are estimated from our data. We call our parameter
estimates point estimates because they consist of a single
“best” value rather than a range. For example, we might
say that a point estimate of the mean is 10.2. We obtain
our point estimate by using an estimator, such as x (see
Eq. 1.25).

There are basically two ways of obtaining point estimates
in common usage. The simplest is the method