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PREFACE

Soils and rocks in their natural state are among the most
variable of all engineering materials, and geotechnical en-
gineers must often “make do” with materials that present
themselves at a particular site. In a perfect world with no
economic constraints, we would drill numerous boreholes
and take multiple samples back to the laboratory for mea-
surement of standard soil properties such as permeability,
compressibility, and shear strength. Armed with all this in-
formation, we could then perform our design of a seepage
problem, foundation, or slope and be very confident of our
predictions. In reality we must usually deal with very lim-
ited site investigation data, and the traditional approach for
dealing with this uncertainty in geotechnical design has
been through the use of characteristic values of the soil
properties coupled with a generous factor of safety.

If we were to plot the multitude of data from the hy-
pothetical site investigation as a histogram for one of the
properties, we would likely see a broad range of values in
the form of a bell-shaped curve. The most likely values of
the property would be somewhere in the middle, but a sig-
nificant number of samples would display higher and lower
values too. This variability inherent in soils and rocks sug-
gests that geotechnical systems are highly amenable to a
statistical interpretation. This is quite a different philoso-
phy from the traditional approach mentioned above. In the
probabilistic approach, we input soil properties character-
ized in terms of their means and variances (first and second
moments) leading to estimates of the probability of failure
or reliability of a design. Specific examples might involve
estimation of the reliability of a slope design, the probabil-
ity of excessive foundation settlement, or the probability of
excessive leakage from a reservoir. When probabilities are
coupled with consequences of design failure, we can then
assess the risk associated with the design.

While the idea of using statistical concepts in geotechni-
cal engineering is not new, the use of these methodologies

has tended to be confined to high-tech projects, particu-
larly relating to seismic design and offshore engineering.
For example, the “hundred year” earthquake or wave is
based on statistical analysis of historical records. In recent
years, however, there has been a remarkable increase in ac-
tivity and interest in the use of probabilistic methodologies
applied to more traditional areas of geotechnical engineer-
ing. This growth has manifested itself in many forms and
spans both academe and practice within the geotechnical
engineering community, for example, more dedicated ses-
sions at conferences, short courses for practitioners, and
new journals and books.

The obvious question may then be, “why another book”?
There is certainly no shortage of texts on structural reli-
ability or general statistical methods for civil engineers,
but there is only one other textbook to our knowledge,
by Baecher and Christian (2003), specifically aimed at
geotechnical engineers. In this rapidly evolving field, how-
ever, a number of important recent developments (in par-
ticular random-field simulation techniques) have reached a
maturity and applicability that justify the current text. Our
target audience therefore includes students and practition-
ers who wish to become acquainted with the theory and
methodologies behind risk assessment in geotechnical en-
gineering ranging from established first-order methods to
the most recent numerical developments such as the random
finite-element method (RFEM).

An additional unique feature of the current text is that the
programs used in the geotechnical applications discussed in
the second half of the book are made freely available for
download from www.engmath.dal.ca/rfem.

The text is organized into two main parts with Part 1
devoted to theory and Part 2 to practice.

The first part of the book, (Chapters 1–7) describes
the theory behind risk assessment techniques in geotech-
nical engineering. These chapters contain over 100 worked

xv
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examples to help the reader gain a detailed understanding
of the methods. Chapter 1 offers a review of probability
theory intended as a gentle introduction to readers who
may have forgotten most of their undergraduate “prob and
stats.” Chapters 2 and 3 offer a thorough description of both
discrete and continuous random processes, leading into the
theory of random fields used extensively in the practical ap-
plications described in Part 2. Chapter 4 describes how to
make best estimates of uncertain parameters given observa-
tions (samples) at nearby locations along with some theory
relating to how often we should expect to see exceptionally
high (or low) soil properties. Chapter 5 describes the ex-
isting techniques available to statistically analyze spatially
distributed soil data along with the shortcomings of each
technique and to decide on a distribution to use in model-
ing soil variability. Chapter 6 discusses simulation and in
particular lays out the underlying theory, associated algo-
rithms, and accuracy of a variety of common methods of
generating realizations of spatially variable random fields.
Chapter 7 addresses reliability-based design in geotechnical
engineering, which is currently an area of great activity both
in North America and internationally. The chapter considers
methods for choosing suitable load and resistance factors
in the context of a target reliability in geotechnical design.
The chapter also addresses some of the problems of im-
plementing a reliability-based design, such as the fact that
in frictional materials the load also contributes to the resis-
tance, so that load and resistance are not independent as is
commonly assumed in other reliability-based design codes.

The second part of the book, (Chapters 8–16) describes
the use of advanced probabilistic tools to several classical
geotechnical engineering applications. An emphasis in these

chapters has been to study problems that will be familiar
to all practicing geotechnical engineers. The examples use
the RFEM as developed by the authors and made avail-
able through the website mentioned previously, in which
random-field theory as described in Chapter 3 is com-
bined with the finite-element method. Chapters 8 and 9
describe steady seepage with random permeability in both
two and three dimensions. Both confined and unconfined
flow examples are demonstrated. Chapter 10 considers set-
tlements and differential settlements of strip and rectangular
footings on soils with random compressibility. Chapters 11
(bearing capacity), 13 (slope stability), 14 (earth pressure),
and 15 (mine pillar stability) describe limit analyses in
geotechnical engineering in which the shear strength pa-
rameters are treated as being spatially variable and possibly
cross-correlated. In all these cases, comparisons are made
between the probability of failure and the traditional fac-
tor of safety that might be obtained from characteristic
values of the shear strength parameters so that geotech-
nical engineers can get a sense for how traditional designs
relate to failure probabilities. The limit analyses also high-
light important deficiencies leading to unconservatism in
some of the simpler probabilistic tools (e.g., first order)
which are not able to properly account for spatial correla-
tion structures. These chapters particularly draw attention to
the important phenomenon of mechanisms of failure “seek-
ing out” critical paths through the soil when weak spatially
correlated zones dominate the solution. Chapter 12 consid-
ers probabilistic analysis of deep foundations such as piles
in soils modeled with random t–z springs. Chapter 16 uses
random-field models to quantify the probability of lique-
faction and its extent at a particular site.
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CHAPTER 1

Review of Probability Theory

1.1 INTRODUCTION

Probability theory provides a rational and efficient means of
characterizing the uncertainty which is prevalent in geotech-
nical engineering. This chapter summarizes the background,
fundamental axioms, and main results constituting modern
probability theory. Common discrete and continuous distri-
butions are discussed in the last sections of the chapter.

1.2 BASIC SET THEORY

1.2.1 Sample Spaces and Events

When a system is random and is to be modeled as such, the
first step in the model is to decide what all of the possible
states (outcomes) of the system are. For example, if the
load on a retaining wall is being modeled as being random,
the possible load can range anywhere from zero to infinity,
at least conceptually (while a zero load is entirely possible,
albeit unlikely, an infinite load is unlikely—we shall see
shortly that the likelihood of an infinite load can be set to
be appropriately small). Once the complete set of possible
states has been decided on, interest is generally focused on
probabilities associated with certain portions of the possible
states. For example, it may be of interest to determine the
probability that the load on the wall exceeds the sliding
resistance of the wall base, so that the wall slides outward.
This translates into determining the probability associated
with some portion, or subset, of the total range of possible
wall loads (we are assuming, for the time being, that the
base sliding resistance is known). These ideas motivate the
following definitions:

Definitions
Experiment: Any process that generates a set of data. The

experiment may be, for example, the monitoring of the

volume of water passing through an earth dam in a unit
time. The volume recorded becomes the data set.

Sample Space: The set of all possible outcomes of an
experiment. The sample space is represented by the
symbol S .

Sample Point: An outcome in the sample space. For
example, if the experiment consists of monitoring the
volume of water passing through an earth dam per hour,
a sample point would be the observation 1.2 m3/h. An-
other would be the observation 1.41 m3/h.

Event: A subset of a sample space. Events will be denoted
using uppercase letters, such as A, B , . . . . For example,
we might define A to be the event that the flow rate
through an earth dam is greater than 0.01 m3/h.

Null Set: The empty set, having no elements, is used to
represent the impossible “event” and is denoted ∅. For
example, the event that the flow rate through an earth
dam is both less than 1 and greater than 5 m3/h is
impossible and so the event is the null set.

These ideas will be illustrated with some simple examples.

Example 1.1 Suppose an experiment consists of observ-
ing the results of two static pile capacity tests. Each test
is considered to be a success (1) if the pile capacity ex-
ceeds a certain design criterion and a failure (0) if not.
This is an experiment since a set of data is derived from it.
The actual data derived depend on what is of interest. For
example:

1. Suppose that only the number of successful pile tests
is of interest. The sample space would then be S =
{0, 1, 2}. The elements 0, 1, and 2 of the set S are
sample points. From this sample space, the following
events (which may be of interest) can be defined; ∅,
{0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, and S = {0, 1, 2}
are possible events. The null set is used to denote
all impossible events (for example, the event that the
number of successful tests, out of two tests, is greater
than 2).

2. Suppose that the order of occurrence of the suc-
cesses and failures is of interest. The sample space
would then be S = {11, 10, 01, 00}. Each outcome
is a doublet depicting the sequence. Thus, the ele-
ments 11, 10, 01, and 00 of S are sample points.
The possible events are ∅, {11}, {10}, {01}, {00},
{11, 10}, {11, 01}, {11, 00}, {10, 01}, {10, 00}, {01, 00},
{11, 10, 01}, {11, 10, 00}, {11, 01, 00}, {10, 01, 00}, and
{11, 10, 01, 00}.

Note that the information in 1 could be recovered from
that in 2, but not vice versa, so it is often useful to
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4 1 REVIEW OF PROBABILITY THEORY

define the experiment to be more general initially, when
possible. Other types of events can then be derived after
the experiment is completed.

Sample spaces may be either discrete or continuous:

Discrete Case: In this case, the sample space consists of a
sequence of discrete values (e.g., 0, 1, . . .). For example,
the number of blow counts in a standard penetration test
(SPT). Conceptually, this could be any integer number
from zero to infinity.

Continuous Case: In this case, the sample space is com-
posed of a continuum of sample points and the number of
sample points is effectively always infinite—for example,
the elastic modulus of a soil sample. This could be any
real number on the positive real line.

1.2.2 Basic Set Theory

The relationship between events and the corresponding
sample space can often be illustrated graphically by means
of a Venn diagram. In a Venn diagram the sample space
is represented as a rectangle and events are (usually)
drawn as circles inside the rectangle. For example, see
Figure 1.1, where A1, A2, and A3 are events in the sample
space S .

We are often interested in probabilities associated with
combinations of events; for example, the probability that
a cone penetration test (CPT) sounding has tip resistance
greater than x at the same time as the side friction is
less that y . Such events will be formed as subsets of the
sample space (and thus are sets themselves). We form these
subsets using set operators. The union, intersection, and
complement are set theory operators which are defined as
follows:

The union of two events
E and F is denoted
E ∪ F .

FE
S

A2

A3

A1
S

Figure 1.1 Simple Venn diagram.

The intersection of two
events E and F is denoted
E ∩ F .

FE
S

The complement of an
event E is denoted E c .

S

E
Ec

Two events E and F are said to be mutually exclusive, or
disjoint, if E ∩ F = ∅. For example, E and E c are disjoint
events.

Example 1.2 Three piles are being statically loaded to
failure. Let Ai denote the event that the i th pile has a
capacity exceeding specifications. Using only sets and set
theory operators (i.e., using only Ai , i = 1, 2, 3, and ∩ , ∪ ,
and c), describe each of the following events. In each
case, also draw a Venn diagram and shade the region
corresponding to the event.

1. At least one pile has capacity exceeding the specifi-
cation.

2. All three piles have capacities exceeding the specifi-
cation.

3. Only the first pile has capacity exceeding the specifi-
cation.

4. Exactly one pile has capacity exceeding the specifica-
tion.

5. Either only the first pile or only both of the other piles
have capacities exceeding the specification.

SOLUTION

1. A1 ∪ A2 ∪ A3
A2

A3

A1
S

2. A1 ∩ A2 ∩ A3
A2

A3

A1
S
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3. A1 ∩ Ac
2 ∩ Ac

3 A2

A3

A1
S

4. (A1 ∩ Ac
2 ∩ Ac

3)
∪ (Ac

1 ∩ A2 ∩ Ac
3)

∪ (Ac
1 ∩ Ac

2 ∩ A3)

A2

A3

A1
S

5. (A1 ∩ Ac
2 ∩ Ac

3)
∪ (Ac

1 ∩ A2 ∩ A3)
A2

A3

A1
S

It is clear from the Venn diagram that, for example, A1 ∩
Ac

2 ∩ Ac
3 and Ac

1 ∩ A2 ∩ A3 are disjoint events, that is,
(A1 ∩ Ac

2 ∩ Ac
3) ∩ (Ac

1 ∩ A2 ∩ A3) = ∅.

1.2.3 Counting Sample Points

Consider experiments which have a finite number of pos-
sible outcomes. For example, out of a group of piles, we
could have three failing to meet specifications but cannot
have 3.24 piles failing to meet specifications. That is, the
sample space, in this case, consists of only whole numbers.
Such sample spaces are called discrete sample spaces. We
are often interested in computing the probability associated
with each possible value in the sample space. For example,
we may want to be able to compute the probability that ex-
actly three piles fail to meet specifications at a site. While
it is not generally easy to assign probabilities to something
like the number of soft soil lenses at a site, some discrete
sample spaces consist of equi-likely outcomes, where all
possible outcomes have the same probability of occurrence.
In this case, we only need to know the total number of pos-
sible outcomes in order to assign probabilities to individual
outcomes (i.e., the probability of each outcome is equal to
1 over the total number of possible outcomes). Knowing
the total number of possible outcomes is often useful, so
some basic counting rules will be considered here.

Multiplication Rule The fundamental principle of count-
ing, often referred to as the multiplication rule, is:

If an operation can be performed in n1 ways, and if for each of
these, a second operation can be performed in n2 ways, then the
two operations can be performed together in n1 × n2 different
ways.

Example 1.3 How many possible outcomes are there
when a soil’s relative density is tested twice and the
outcome of each test is either a pass or a fail? Assume
that you are interested in the order in which the tests pass
or fail.

SOLUTION On the first test, the test can proceed in
any one of n1 = 2 ways. For each of these, the second
test can proceed in any one of n2 = 2 ways. Therefore,
by the multiplication rule, there are n1 × n2 = 2 × 2 = 4
possible test results. Consequently, there are four points in
the sample space. These are (P,P), (P,F), (F,P), and (F,F)
(see also Example 1.1).

The multiplication principle extends to k operations as
follows:

If an operation can be performed in n1 ways, and if for each of
these a second operation can be performed in n2 ways, and for
each of the first two a third operation can be performed in n3

ways, and so forth, then the sequence of k operations can be
performed together in

n = n1 × n2 × · · · × nk (1.1)

different ways.

Example 1.4 Extending the previous example, suppose
that a relative-density test classifies a soil into five possible
states, ranging from “very loose” to “very dense.” Then if
four soil samples are tested, and the outcomes of the four
tests are the ordered list of their states, how many possible
ways can the tests proceed if the following conditions are
assumed to hold?

1. The first sample is either very loose or loose, and
all four tests are unique (i.e., all four tests result in
different densities).

2. The first sample is either very loose or loose, and tests
may yield the same results.

3. The first sample is anything but very loose, and tests
may yield the same results.

SOLUTION

1. 2 × 4 × 3 × 2 = 48
2. 2 × 5 × 5 × 5 = 250
3. 4 × 5 × 5 × 5 = 500
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Permutations Frequently, we are interested in sample
spaces that contain, as elements, all possible orders or
arrangements of a group of objects. For example, we may
want to know the number of possible ways 6 CPT cones
can be selected from a collection of 20 cones of various
quality. Here are some examples demonstrating how this
can be computed.

Example 1.5 Six piles are being driven to bedrock and
the energy required to drive them will be recorded for
each. That is, our experiment consists of recording the six
measured energy levels. Suppose further that the pile results
will be ranked from the one taking the highest energy to
the one taking the lowest energy to drive. In how many
different ways could this ranked list appear?

SOLUTION The counting process can be broken up into
six simpler steps: (1) selecting the pile, out of the six, taking
the highest energy to drive and placing it at the top of the
list; (2) selecting the pile taking the next highest energy to
drive from the remaining five piles and placing it next on the
list, and so on for four more steps. Since we know in how
many ways each of these operations can be done, we can
apply the multiplication rule: n = 6 × 5 × 4 × 3 × 2 × 1 =
720. Thus, there are 720 ways that the six piles could be
ranked according to driving energy.

In the above example, the number of possible arrange-
ments is 6!, where ! is the factorial operator. In general,

n! = n × (n − 1) × · · · × 2 × 1 (1.2)

if n is a nonzero integer. Also 0! = 1 by definition. The
reasoning of the above example will always prevail when
counting the number of possible ways of arranging all
objects in a sequence.

Definition A permutation is an arrangement, that is, an
ordered sequence, of all or part of a set of objects. If we
are looking for the number of possible ordered sequences
of an entire set, then

The number of permutations of n distinct objects is n!.

If only part of the set of objects is to be ordered, the
reasoning is similar to that proposed in Example 1.5, except
that now the number of “operations” is reduced. Consider
the following example.

Example 1.6 A company has six nuclear density meters,
labeled A through F. Because the company wants to keep
track of the hours of usage for each, they must each be
signed out. A particular job requires three of the meters to
be signed out for differing periods of time. In how many

ways can three of the meters be selected from the six if the
first is to be used the longest, the second for an intermediate
amount of time, and the third for the shortest time?

SOLUTION We note that since the three meters to be
signed out will be used for differing amounts of time, it
will make a difference if A is selected first, rather than
second, and so on. That is, the order in which the meters are
selected is important. In this case, there are six possibilities
for the first meter selected. Once this is selected, the second
meter is select from the remaining five meters, and so on.
So in total we have 6 × 5 × 4 = 120 ways.

The product 6 × 5 × 4 can be written as

6 × 5 × 4 × 3 × 2 × 1

3 × 2 × 1

so that the solution to the above example can be written as

6 × 5 × 4 = 6!

(6 − 3)!

In general, the number of permutations of r objects selected
from n distinct objects, where order counts, is

Pn
r = n!

(n − r)!
(1.3)

Combinations In other cases, interest is in the number of
ways of selecting r objects from n distinct objects without
regard to order.

Definition A combination is the number of ways that
objects can be selected without regard to order.

Question: If there is no regard to order, are there going
to be more or less ways of doing things?

Example 1.7 In how many ways can I select two letters
from A, B, and C if I do it (a) with regard to order and (b)
without regard to order?

SOLUTION
In Figure 1.2, we see that there are fewer combinations
than permutations. The number of combinations is reduced

to order

AC
BA
BC
CA
CB

BC

AC

AB

Without regard
to order

AB

With regard

Figure 1.2 Selecting two letters from A, B, and C.
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from the number of permutations by a factor of 2 × 1 = 2,
which is the number of ways the two selected letters can
be permuted among themselves.

In general we have:

The number of combinations of n distinct objects taken r at a
time is written (

n

r

)
= n!

r!(n − r)!
(1.4)

Example 1.8 A geotechnical engineering firm keeps a list
of eight consultants. Not all consultants are asked to provide
a quote on a given request. Determine the number of ways
three consultants can be chosen from the list.

SOLUTION (
8

3

)
= 8!

3!5!
= 8 × 7 × 6

3 × 2 × 1
= 56

Sometimes, the multiplication rule, permutations, and/or
combinations must be used together to count the number of
points in a sample space.

Example 1.9 A company has seven employees specializ-
ing in laboratory testing and five employees specializing in
field testing. A job requires two employees from each area
of specialization. In how many ways can the team of four
be formed?

SOLUTION (
7

2

)
×
(

5

2

)
= 210

1.3 PROBABILITY

1.3.1 Event Probabilities

The probability of an event A, denoted by P [A], is a number
satisfying

0 ≤ P [A] ≤ 1

Also, we assume that

P [∅] = 0, P [S ] = 1

Probabilities can sometimes be obtained using the counting
rules discussed in the previous section. For example, if
an experiment can result in any one of N different but
equally likely outcomes, and if exactly m of these outcomes
correspond to event A, then the probability of event A is
P [A] = m/N .

Example 1.10 Sixty soil samples have been taken at a
site, 5 of which were taken of a liquefiable soil. If 2 of
the samples are selected at random from the 60 samples,
what is the probability that neither sample will be of the
liquefiable soil?

SOLUTION We could solve this by looking at the number
of ways of selecting the 2 samples from the 55 nonlique-
fiable soil and dividing by the total number of ways of
selecting the 2 samples,

P
[
0 liquefiable

] =
(55

2

)
(60

2

) = 99

118

Alternatively, we could solve this by considering the prob-
ability of selecting the “first” sample from the 55 nonliq-
uefiable samples and of selecting the second sample from
the remaining 54 nonliquefiable samples,

P
[
0 liquefiable

] = 55

60
× 54

59
= 99

118
Note, however, that we have introduced an “ordering” in
the second solution that was not asked for in the original
question. This ordering needs to be carefully taken account
of if we were to ask about the probability of having one
of the samples being of a liquefiable soil. See the next
example.

Example 1.11 Sixty soil samples have been taken at a
site, 5 of which were taken of a liquefiable soil. If 2 of
the samples are selected at random from the 60 samples,
what is the probability that exactly 1 sample will be of the
liquefiable soil?

SOLUTION We could solve this by looking at the number
of ways of selecting one sample from the 5 liquefiable
samples and 1 sample from the 55 nonliquefiable samples
and dividing by the total number of ways of selecting the
two samples:

P
[
1 liquefiable

] =
(5

1

)(55
1

)
(60

2

) = 2

(
5

60

)(
55

59

)
= 55

354

We could also solve it by considering the probability of
selecting the first sample from the 5 liquefiable samples and
the second from the 55 nonliquefiable samples. However,
since the question is only looking for the probability of
one of the samples being liquefiable, we need to add in the
probability that the first sample is nonliquefiable and the
second is liquefiable:

P
[
1 liquefiable

] = 5

60
× 55

59
+ 55

60
× 5

59

= 2

(
5

60

)(
55

59

)
= 55

354
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BA
S

Figure 1.3 Venn diagram illustrating the union A ∪ B .

1.3.2 Additive Rules

Often we must compute the probability of some event which
is expressed in terms of other events. For example, if A is
the event that company A requests your services and B is
the event that company B requests your services, then the
event that at least one of the two companies requests your
services is A ∪ B . The probability of this is given by the
following relationship:

If A and B are any two events, then

P [A ∪ B] = P [A] + P [B] − P [A ∩ B] (1.5)

This relationship can be illustrated by the Venn diagram in
Figure 1.3. The desired quantity, P [A ∪ B], is the area of
A ∪ B which is shaded. If the shaded area is computed
as the sum of the area of A, P [A], plus the area of B ,
P [B], then the intersection area, P [A ∩ B], has been added
twice. It must then be removed once to obtain the correct
probability. Also,

If A and B are mutually exclusive, that is, are disjoint
and so have no overlap, then

P [A ∪ B] = P [A] + P [B] (1.6)

If A1, A2, . . . , An are mutually exclusive, then

P [A1 ∪ · · · ∪ An ] = P [A1] + · · · + P [An ] (1.7)

Definition We say that A1, A2, . . . , An is a partition of the
sample space S if A1, A2, . . . , An are mutually exclusive
and collectively exhaustive. Collectively exhaustive means
that A1 ∪ A2 ∪ · · · · · · ∪ An = S . If A1, A2, . . . , An is a
partition of the sample space S , then

P [A1 ∪ · · · ∪ An ] = P [A1] + · · · + P [An ] = P [S ] = 1
(1.8)

The above ideas can be extended to the union of more than
two events. For example:

For any three events A, B , and C , we have

P [A ∪ B ∪ C ] =P [A] + P [B] + P [C ] − P [A ∩ B]

− P [A ∩ C ] − P [B ∩ C ]

+ P [A ∩ B ∩ C ] (1.9)

This can be seen by drawing a Venn diagram and keeping
track of the areas which must be added and removed in
order to get P [A ∪ B ∪ C ]. Example 1.2 illustrates the
union of three events.

For the complementary events A and Ac , P [A] + P [Ac] =
1. This is often used to compute P [Ac] = 1 − P [A].

Example 1.12 A data-logging system contains two iden-
tical batteries, A and B. If one battery fails, the system
will still operate. However, because of the added strain, the
remaining battery is now more likely to fail than was orig-
inally the case. Suppose that the design life of a battery is
three years. If at least one battery fails before the end of the
battery design life in 7% of all systems and both batteries
fail during that three-year period in only 1% of all systems,
what is the probability that battery A will fail during the
battery design life?

SOLUTION Let FA be the event that battery A fails and
FB be the event that battery B fails. Then we are given that

P [FA ∪ FB ] = 0.07, P [FA ∩ FB ] = 0.01,

P [FA] = P [FB ]

and we are looking for P [FA]. The Venn diagram in
Figure 1.4 fills in the remaining probabilities. From this
diagram, the following result is straightforward: P [FA] =
0.03 + 0.01 = 0.04.

Example 1.13 Based upon past evidence, it has been de-
termined that in a particular region 15% of CPT soundings
encounter soft clay layers, 12% encounter boulders, and 8%
encounter both. If a sounding is selected at random:

1. What is the probability that it has encountered both a
soft clay layer and a boulder?

2. What is the probability that it has encountered at least
one of these two conditions?

0.01 0.030.03

FBFA

Figure 1.4 Venn diagram of battery failure events.
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3. What is the probability that it has encountered neither
of these two conditions?

4. What is the probability that it has not encountered a
boulder?

5. What is the probability that it encounters a boulder
but not a soft clay layer?

SOLUTION Let C be the event that the sounding encoun-
tered a soft clay layer. Let B be the event that the sound-
ing encountered a boulder. We are given P [C ] = 0.15,
P [B] = 0.12, and P [C ∩ B] = 0.08, from which the Venn
diagram in Figure 1.5 can be drawn:

1. P [C ∩ B] = 0.08

2. P [C ∪ B] = P [C ] + P [B] − P [C ∩ B]
= 0.15 + 0.12 − 0.08
= 0.19

3. P
[
C c ∩ Bc] = P

[
(C ∪ B)c]

= 1 − P [C ∪ B]
= 1 − 0.19
= 0.81

4. P [Bc] = 1 − P [B] = 1 − 0.12 = 0.88

5. P [B ∩ C c] = 0.04 (see the Venn diagram)

1.4 CONDITIONAL PROBABILITY

The probability of an event is often affected by the occur-
rence of other events and/or the knowledge of information
relevant to the event. Given two events, A and B , of an ex-
periment, P [B | A] is called the conditional probability of
B given that A has already occurred. It is defined by

P [B | A] = P [A ∩ B]

P [A]
(1.10)

That is, if we are given that event A has occurred, then A
becomes our sample space. The probability that B has also
occurred within this new sample space will be the ratio of
the “area” of B within A to the “area” of A.

0.81

S
BC

0.08 0.040.07

Figure 1.5 Venn diagram of CPT sounding events.

Example 1.14 Reconsidering Example 1.12, what is the
probability that battery B will fail during the battery design
life given that battery A has already failed?

SOLUTION We are told that FA has occurred. This means
that we are somewhere inside the FA circle of Figure 1.4,
which has “area” 0.04. We are asked to compute the
conditional probability that FB occurs given that FA has
occurred. This will be just the ratio of the area of FB and
FA to the area of FA,

P [FB |FA] = P [FA ∩ FB ]

P [FA]
= 0.01

0.04
= 0.25

Example 1.15 A single soil sample is selected at random
from a site. Three different toxic compounds, denoted A,
B , and C , are known to occur in samples at this site with
the following probabilities:

P [A] = 0.01, P [A ∩ C ] = 0.003,

P [A ∩ B] = 0.0025, P [C ] = 0.0075,

P [A ∩ B ∩ C ] = 0.001, P [B ∩ C ] = 0.002,

P [B] = 0.05

If both toxic compounds A and B occur in a soil sample, is
the toxic compound C more likely to occur than if neither
toxic compounds A nor B occur?

SOLUTION From the given information we can draw the
Venn diagram in Figure 1.6.

We want to compare P [C |A ∩ B] and P [C |Ac ∩ Bc],
where

P [C | A ∩ B] = P [C ∩ A ∩ B]

P [A ∩ B]
= 0.001

0.0025
= 0.4

S

A
B

C

0.0055

0.002
0.001

0.0035

0.0465

0.939

0.0015

0.001

Figure 1.6 Venn diagram of toxic compound occurrence events.
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P
[
C | Ac ∩ Bc] = P [C ∩ Ac ∩ Bc]

P [Ac ∩ Bc]

= 0.0035

0.939 + 0.0035
= 0.0037

so the answer to the question is, yes, if both toxic com-
pounds A and B occur in a soil sample, then toxic com-
pound C is much more likely to also occur.

Sometimes we know P [B | A] and wish to compute
P [A ∩ B]. If the events A and B can both occur, then

P [A ∩ B] = P [B | A] P [A] (1.11)

Example 1.16 A site is composed of 60% sand and 40%
silt in separate layers and pockets. At this site, 10% of sand
samples and 5% of silt samples are contaminated with trace
amounts of arsenic. If a soil sample is selected at random,
what is the probability that it is a sand sample and that it
is contaminated with trace amounts of arsenic?

SOLUTION Let A be the event that the sample is sand.
Let B be the event that the sample is silt. Let C be the
event that the sample is contaminated with arsenic. Given
P [A] = 0.6, P [B] = 0.4, P [C | A] = 0.1, and P [C | B] =
0.05. We want to find P [A ∩ C ]:

P [A ∩ C ] = P [A] P [C | A] = 0.6 × 0.1 = 0.06

Two events A and B are independent if and only if
P [A ∩ B] = P [A] P [B]. This also implies that P [A | B] =
P [A], that is, if the two events are independent, then
they do not affect the probability of the other occurring.
Note that independent events are not disjoint and disjoint
events are not independent! In fact, if two events are
disjoint, then if one occurs, the other cannot have oc-
curred. Thus, the occurrence of one of two disjoint events
has a severe impact on the probability of occurrence of
the other event (its probability of occurrence drops to
zero).

If, in an experiment, the events A1, A2, . . . , Ak can all
occur, then

P [A1 ∩ A2 ∩ · · · ∩ Ak ]

= P [A1] P [A2 | A1] P [A3 | A1 ∩ A2]

· · · P
[
Ak | A1 ∩ · · · ∩ Ak−1

]
= P [Ak ] P

[
Ak−1 | Ak

]
· · · P [A1 | Ak ∩ · · · ∩ A2] (1.12)

On the right-hand side, we could have any ordering of the
A’s. If the events A1, A2, . . . , Ak are independent, then this

simplifies to

P [A1 ∩ A2 ∩ · · · ∩ Ak ] = P [A1] P [A2] · · · P [Ak ]
(1.13)

Example 1.17 Four retaining walls, A, B, C, and D, are
constructed independently. If their probabilities of sliding
failure are estimated to be P [A] = 0.01, P [B] = 0.008,
P [C ] = 0.005, and P [D] = 0.015, what is the probability
that none of them will fail by sliding?

SOLUTION Let A be the event that wall A will fail. Let
B be the event that wall B will fail. Let C be the event that
wall C will fail. Let D be the event that wall D will fail.
Given P [A] = 0.01, P [B] = 0.008, P [C ] = 0.005, P [D] =
0.015, and that the events A, B , C , and D are independent.
We want to find P [Ac ∩ Bc ∩ C c ∩ Dc]:

P
[
Ac ∩ Bc ∩ C c ∩ Dc]

= P
[
Ac]P

[
Bc] P

[
C c]P

[
Dc]

(since A, B , C , and D are independent)

= (1 − P [A])(1 − P [B])(1 − P [C ])(1 − P [D])

= (1 − 0.01)(1 − 0.008)(1 − 0.005)(1 − 0.015)

= 0.9625

1.4.1 Total Probability

Sometimes we know the probability of an event in terms
of the occurrence of other events and want to compute
the unconditional probability of the event. For example,
when we want to compute the total probability of failure
of a bridge, we can start by computing a series of simpler
problems such as:

1. Probability of bridge failure given a maximum static
load

2. Probability of bridge failure given a maximum dy-
namic traffic load

3. Probability of bridge failure given an earthquake
4. Probability of bridge failure given a flood

The total probability theorem can be used to combine the
above probabilities into the unconditional probability of
bridge failure. We need to know the above conditional prob-
abilities along with the probabilities that the “conditions”
occur (e.g., the probability that the maximum static load
will occur during the design life).

Example 1.18 A company manufactures cone penetration
testing equipment. Of the piezocones they use, 50% are
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produced at plant A, 30% at plant B, and 20% at plant C.
It is known that 1% of plant A’s, 2% of plant B’s, and 3%
of plant C’s output are defective. What is the probability
that a piezocone chosen at random will be defective?

Setup
Let A be the event that the piezocone was produced at plant
A. Let B be the event that the piezocone was produced
at plant B . Let C be the event that the piezocone was
produced at plant C . Let D be the event that the piezocone
is defective. Given

P [A] = 0.50, P [D | A] = 0.01,

P [B] = 0.30, P [D | B] = 0.02,

P [C ] = 0.20, P [D | C ] = 0.03

We want to find P [D]. There are at least two possible
approaches.

Approach 1
A Venn diagram of the sample space is given in Figure 1.7.
The information given in the problem does not allow the
Venn diagram to be easily filled in. It is easy to see the
event of interest, though, as it has been shaded in. Then

P [D] = P [(D ∩ A) ∪ (D ∩ B) ∪ (D ∩ C )]

= P [D ∩ A] + P [D ∩ B] + P [D ∩ C ]

since A ∩ D , B ∩ D , and C ∩ D are disjoint

= P [D | A] · P [A] + P [D | B] · P [B]

+ P [D | C ] · P [C ]

= 0.01(0.5) + 0.02(0.3) + 0.03(0.2)

= 0.017

Approach 2
Recall that when we only had probabilities like P [A] , P [B] ,
. . . , that is, no conditional probabilities, we found it helpful
to represent the probabilities in a Venn diagram. Unfortu-
nately, there is no easy representation of the conditional
probabilities in a Venn diagram: (In fact, conditional prob-

A B C

D

S

Figure 1.7 Venn diagram of piezocone events.

abilities are ratios of probabilities that appear in the Venn
diagram.) Conditional probabilities find a more natural
home on event trees. Event trees must be constructed care-
fully and adhere to certain rules if they are going to be
useful in calculations. Event trees consist of nodes and
branches. There is a starting node from which two or
more branches leave. At the end of each of these branches
there is another node from which more branches may leave
(and go to separate nodes). The idea is repeated from
the newer nodes as often as required to completely de-
pict all possibilities. A probability is associated with each
branch and, for all branches except those leaving the start-
ing node, the probabilities are conditional probabilities.
Thus, the event tree is composed largely of conditional
probabilities.

There is one other rule that event trees must obey:
Branches leaving any node must form a partition of the
sample space. That is, the events associated with each
branch must be disjoint—you cannot be on more than one
branch at a time—and must include all possibilities. The
sum of probabilities of all branches leaving a node must
be 1.0. Also keep in mind that an event tree will only be
useful if all the branches can be filled with probabilities.

The event tree for this example is constructed as follows.
The piezocone must first be made at one of the three plants,
then depending on where it was made, it could be defective
or not. The event tree for this problem is thus as given
in Figure 1.8. Note that there are six “paths” on the tree.
When a piezocone is selected at random, exactly one of
these paths will have been followed—we will be on one
of the branches. Recall that interest is in finding P [D].
The event D will have occurred if either the first, third,
or fifth path was followed. That is, the probability that the
first, third, or fifth path was followed is sought. If the first
path is followed, then the event A ∩ D has occurred. This
has probability found by multiplying the probabilities along
the path,

P [A ∩ D] = P [D | A] · P [A] = 0.01(0.5) = 0.005

A

B

C

D

D

D

Dc

Dc

Dc

0.01

0.99
0.02

0.98
0.03

0.97

0.5

0.3

0.2

Figure 1.8 Event tree for piezocone events.
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Looking back at the calculation performed in Approach 1,
P [D] was computed as

P [D] = P [D | A] · P [A] + P [D | B] · P [B]

+ P [D | C ] · P [C ]

= 0.01(0.5) + 0.02(0.3) + 0.03(0.2)

= 0.017

which, in terms of the event tree, is just the sum of
all the paths that lead to the outcome that you desire,
D . Event trees make “total probability” problems much
simpler. They give a “picture” of what is going on and
allow the computation of some of the desired probabilities
directly.

The above is an application of the total probability
theorem, which is stated generally as follows:

Total Probability Theorem If the events B1, B2, . . . , Bk

constitute a partition of the sample space S (i.e., are disjoint
and collectively exhaustive), then for any event A in S

P [A] =
k∑

i=1

P [Bi ∩ A] =
k∑

i=1

P [A | Bi ] P [Bi ] (1.14)

1.4.2 Bayes’ Theorem

Sometimes we want to improve an estimate of a probability
in light of additional information. Bayes’ theorem allows
us to do this. It arises from the observation that P [A ∩ B]
can be written in two ways:

P [A ∩ B] = P [A | B] · P [B]

= P [B | A] · P [A] (1.15)

which implies that P [B | A] · P [A] = P [A | B] · P [B], or

P [B | A] = P [A | B] · P [B]

P [A]
(1.16)

Example 1.19 Return to the manufacturer of piezocones
from above (Example 1.18). If a piezocone is selected at
random and found to be defective, what is the probability
that it came from plant A?

Setup
Same as before, except now the probability of interest is
P [A | D]. Again, there are two possible approaches.

Approach 1
The relationship

P [A | D] = P [A ∩ D]

P [D]

A B C

D

Figure 1.9 Venn diagram of conditional piezocone events.

can be seen as a ratio of areas in the Venn diagram
in Figure 1.9, from which P [A | D] can be computed as
follows:

P [A | D]

= P [A ∩ D]

P [D]

= P [A ∩ D]

P [(A ∩ D) ∪ (B ∩ D) ∪ (C ∩ D)]

= P [A ∩ D]

P [A ∩ D] + P [B ∩ D] + P [C ∩ D]

since A ∩ D , B ∩ D , and C ∩ D are disjoint

= P [D | A] P [A]

P [D | A] P [A] + P [D | B] P [B] + P [D | C ] P [C ]

= 0.01(0.5)

(0.01)(0.5) + 0.02(0.3) + 0.03(0.2)
= 0.005

0.017

= 0.294

Note that the denominator had already been calculated in
the previous question; however the computations have been
reproduced here for illustrative purposes.

Approach 2
The probability P [A | D] can be easily computed from the
event tree. We are looking for the probability that A has
occurred given that D has occurred. In terms of the paths
on the tree, we know that (since D has occurred) one
of the first, third, or fifth path has been taken. We want
the probability that the first path was taken out of the
three possible paths. Thus, we must compute the relative
probability of taking path 1 out of the three paths:

P [A | D]

= P [D | A] P [A]

P [D | A] P [A] + P [D | B] P [B] + P [D | C ] P [C ]

= 0.01(0.5)

(0.01)(0.5) + 0.02(0.3) + 0.03(0.2)
= 0.005

0.017

= 0.294

Event trees provide a simple graphical approach to solving
problems involving conditional probabilities.
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The above is an application of Bayes’ Theorem, which
is stated formally as follows.

Bayes’ Theorem If the events B1, B2, . . . , Bk constitute
a partition of the sample space S (i.e., are disjoint and
collectively exhaustive), then for any event A of S such
that P [A] �= 0

P
[
Bj | A

] = P
[
Bj ∩ A

]
∑k

i=1 P [Bi ∩ A]

= P
[
A | Bj

]
P
[
Bj
]

∑k
i=1 P [A | Bi ] P [Bi ]

= P
[
A | Bj

]
P
[
Bj
]

P [A]

(1.17)

for any j = 1, 2, . . . , k .

Bayes’ theorem is useful for revising or updating prob-
abilities as more data and information become available.
In the previous example on piezocones, there was an initial
probability that a piezocone would have been manufactured
at plant A: P [A] = 0.5. This probability is referred to as the
prior probability of A. That is, in the absence of any other
information, a piezocone chosen at random has a probability
of having been manufactured at plant A of 0.5. However, if
a piezocone chosen at random is found to be defective (so
that there is now more information on the piezocone), then
the probability that it was manufactured at plant A reduces
from 0.5 to 0.294. This latter probability is referred to as the
posterior probability of A. Bayesian updating of probabili-
ties is a very powerful tool in engineering reliability-based
design.

For problems involving conditional probabilities, event
trees are usually the easiest way to proceed. However, event
trees are not always easy to draw, and the purely mathemat-
ical approach is sometimes necessary. As an example of a
tree which is not quite straightforward, see if you can draw
the event tree and answer the questions in the following
exercise. Remember that you must set up the tree in such
a way that you can fill in most of the probabilities on the
branches. If you are left with too many empty branches and
no other given information, you are likely to have confused
the order of the events; try reorganizing your tree.

Exercise When contracting out a site investigation, an
engineer will check companies A, B , and C in that sequence
and will hire the first company which is available to
do the work. From past experience, the engineer knows
that the probability that company A will be available is
0.2. However, if company A is not available, then the
probability that company B will be available is only 0.04. If
neither company A nor B is available, then the probability

that company C will be available is 0.4. If none of the
companies are available, the engineer is forced to delay the
investigation to a later time.

(a) What is the probability that one of the companies A or
B will be available?

(b) What is the probability that the site investigation will
take place on time?

(c) If the site investigation takes place on time, what is the
probability that it was not investigated by company C?

Example 1.20 At a particular site, experience has shown
that piles have a 20% probability of encountering a soft
clay layer. Of those which encounter this clay layer, 60%
fail a static load test. Of the piles which do not encounter
the clay layer, only 10% fail a static load test.

1. What is the probability that a pile selected at random
will fail a static load test?

2. Supposing that a pile has failed a static load test, what
is the updated probability that it encountered the soft
clay layer?

SOLUTION For a pile, let C be the event that a soft
clay layer was encountered and let F be the event that
the static load test was failed. We are given P [C ] = 0.2,
P [F | C ] = 0.6, and P [F | C c] = 0.1.

1. We have the event tree in Figure 1.10 and thus
P [F ] = 0.2(0.6) + 0.8(0.1) = 0.2.

2. From the above tree, we have

P [C | F ] = 0.2 × 0.6

0.2
= 0.6

1.4.3 Problem-Solving Methodology

Solving real-life problems (i.e., “word problems”) is not
always easy. It is often not perfectly clear what is meant
by a worded question. Two things improve one’s chances
of successfully solving problems which are expressed using
words: (a) a systematic approach, and (b) practice. It is
practice that allows you to identify those aspects of the
question that need further clarification, if any. Below, a
few basic recommendations are outlined.

0.2

0.8

0.6

0.4

0.1

0.9

F

Fc

F

Fc
Cc

C

Figure 1.10 Event tree for pile encounter events.
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1. Solving a word problem generally involves the com-
putation of some quantity. Clearly identify this quan-
tity at the beginning of the problem solution. Before
starting any computations, it is good practice to write
out your concluding sentence first. This forces you to
concentrate on the essentials.

2. In any problem involving the probability of events,
you should:

(a) Clearly define your events. Use the following guide-
lines:

(i) Keep events as simple as possible.
(ii) if your event definition includes the words and,

or, given, if, when, and so on, then it is NOT
a good event definition. Break your event into
two (or more, if required) events and use the
∩ , ∪ , or | operators to express what you had
originally intended. The complement is also a
helpful operator, see (iii).

(iii) You do not need to define separate events for,
for example, “an accident occurs” and “an ac-
cident does not occur”. In fact, this will often
lead to confusion. Simply define A to be one
of the events and use Ac when you want to re-
fer to the other. This may also give you some
hints as to how to proceed since you know that
P [Ac] = 1 − P [A].

(b) Once your events are defined, you need to go through
the worded problem to extract the given numerical
information. Write this information down in the
form of probabilities of the events that you defined
above. For example, P [A] = 0.23, P [B | A] = 0.6,
and so on. Note that the conditional probabilities, are
often difficult to unravel. For example, the following
phrases all translate into a probability statement of
the form P [A | B]:

If . . . occurs, the probability of . . . doubles. . . .
In the event that . . . occurs, the probability of . . .

becomes 0.6.
When . . . occurs, the probability of . . . becomes 0.43.
Given that . . . occurs, the probability of . . . is 0.3.

In this case, you will likely be using one of the
conditional probability relationship (P [A ∩ B] =
P [B | A] P [A]), the total probability theorem, or
Bayes’ Theorem.

(c) Now review the worded problem again and write
down the probability that the question is asking for
in terms of the events defined above. Although the
question may be in worded form, you should be
writing down something like P [A ∩ B] or P [B | A].
Make sure that you can express the desired probabil-
ity in terms of the events you defined above. If you

cannot, then you need to revise your original event
definitions.

(d) Finally, use the rules of combining probabilities
(e.g., probabilities of unions or intersections, Bayes’
Theorem) to compute the desired probability.

1.5 RANDOM VARIABLES AND PROBABILITY
DISTRIBUTIONS

Although probability theory is based on the idea of events
and associated set theory, it becomes very unwieldy to
treat random events like “time to failure” using explicit
event definitions. One would conceivably have to define
a separate event for each possible time of failure and so
would soon run out of symbols for the various events.
For this reason, and also because they allow the use of a
wealth of mathematical tools, random variables are used to
represent a suite of possible events. In addition, since most
engineering problems are expressed in terms of numerical
quantities, random variables are particularly appropriate.

Definition Consider a sample space S consisting of a set
of outcomes {s1, s2, . . .}. If X is a function that assigns a real
number X (s) to every outcome s ∈ S , then X is a random
variable. Random variables will be denoted with uppercase
letters.

Now what does this mean in plain English? Essentially
a random variable is a means of identifying events in
numerical terms. For example, if the outcome s1 means
that an apple was selected and s2 means that an orange
was selected, then X (s1) could be set equal to 1 and
X (s2) could be set equal to 0. Then X > 0 means that
an apple was selected. Now mathematics can be used on
X , that is, if the fruit-picking experiment is repeated n
times and x1 = X1(s) is the outcome of the first experiment,
x2 = X2(s) the outcome of the second, and so on, then
the total number of apples picked is

∑n
i=1 xi . Note that

mathematics could not be used on the actual outcomes
themselves; for example, picking an apple is a real event
which knows nothing about mathematics nor can it be used
in a mathematical expression without first mapping the
event to a number.

For each outcome s , there is exactly one value of x =
X (s), but different values of s may lead to the same x . We
will see examples of this shortly.

The above discussion illustrates in a rather simple way
one of the primary motivations for the use of random
variables—simply so that mathematics can be used. One
other thing might be noticed in the previous paragraph.
After the “experiment” has taken place and the outcome is
known, it is referred to using lowercase, xi . That is xi has
a known fixed value while X is unknown. In other words



RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS 15

x is a realization of the random variable X . This is a rather
subtle distinction, but it is important to remember that X is
unknown. The most that we can say about X is to specify
what its likelihoods of taking on certain values are—we
cannot say exactly what the value of X is.

Example 1.21 Two piles are to be randomly selected for
testing from a group of 60 piles. Five of the piles are 0.5 m
in diameter, the rest are 0.3 m in diameter. If X is the
number of 0.5-m-diameter piles selected for testing, then X
is a random variable that assigns a number to each outcome
in the sample space according to:

Sample Space X

NN 0
NL 1
LN 1
LL 2

The sample space is made up of pairs of possible outcomes,
where N represents a “normal” diameter pile (0.3 m) and L
represents a large -diameter pile (0.5 m). For example, LN
means that the first pile selected was large and the second
pile selected was normal. Notice that the outcomes {NL}
and {LN } both lead to X = 1.

Sample spaces corresponding to random variables may
be discrete or continuous:

Discrete: A random variable is called a discrete random
variable if its set of possible outcomes is countable. This
usually occurs for any random variable which is a count
of occurrences or of items, for example, the number of
large-diameter piles selected in the previous example.

Continuous: A random variable is called a continuous
random variable if it can take on values on a continuous
scale. This is usually the case with measured data, such
as cohesion.

Example 1.22 A few examples:

1. Let X be the number of blows in a standard penetra-
tion test—X is discrete.

2. Let Y be the number of piles driven in one day—Y
is discrete.

3. Let Z be the time until consolidation settlement ex-
ceeds some threshold—Z is continuous.

4. Let W be the number of grains of sand involved in
a sand cone test—W is discrete but is often approxi-
mated as continuous, particularly since W can be very
large.

1.5.1 Discrete Random Variables

Discrete random variables are those that take on only dis-
crete values {x1, x2, . . .}, that is, have a countable number
of outcomes. Note that countable just means that the out-
comes can be numbered 1, 2, . . . , however there could still
be an infinite number of them. For example, our experiment
might be to count the number of soil tests performed before
one yields a cohesion of 200 MPa. This is a discrete random
variable since the outcome is one of 0, 1, . . . , but the num-
ber may be very large or even (in concept) infinite (implying
that a soil sample with cohesion 200 MPa was never found).

Discrete Probability Distributions As mentioned previ-
ously, we can never know for certain what the value of
a random variable is (if we do measure it, it becomes a
realization—presumably the next measurement is again un-
certain until it is measured, and so on). The most that we
can say about a random variable is what its probability is
of assuming each of its possible values. The set of prob-
abilities assigned to each possible value of X is called a
probability distribution. The sum of these probabilities over
all possible values must be 1.0.

Definition The set of ordered pairs (x , fX (x )) is the prob-
ability distribution of the discrete random variable X if, for
each possible outcome x ,

1. 0 ≤ fX (x ) ≤ 1

2.
∑
all x

fX (x ) = 1

3. P [X = x ] = fX (x )

Here, fX (x ) is called the probability mass function of X .
The subscript is used to indicate what random variable is
being governed by the distribution. We shall see when we
consider continuous random variables why we call this a
probability “mass” function.

Example 1.23 Recall Example 1.21. We can compute
the probability mass function of the number of large piles
selected by using the counting rules of Section 1.2.3.
Specifically,

fX (0) = P [X = 0] =
(5

0

)(55
2

)
(60

2

) = 0.8390

fX (1) = P [X = 1] =
(5

1

)(55
1

)
(60

2

) = 0.1554

fX (2) = P [X = 2] =
(5

2

)(55
0

)
(60

2

) = 0.0056
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and thus the probability mass function of the random
variable X is

x fX (x )

0 0.8390
1 0.1554
2 0.0056

Discrete Cumulative Distributions An equivalent de-
scription of a random variable is the cumulative distribution
function (cdf), which is defined as follows:

Definition The cumulative distribution function FX (x ) of
a discrete random variable X with probability mass function
fX (x ) is defined by

FX (x ) = P [X ≤ x ] =
∑
t≤x

fX (t) (1.18)

We say that this is equivalent to the probability mass
function because one can be obtained from the other,

fX (xi ) = FX (xi ) − FX (xi−1) (1.19)

Example 1.24 In the case of an experiment involving
tossing a fair coin three times we can count the number
of heads which appear and assign that to the random vari-
able X . The random variable X can assume four values 0,
1, 2, and 3 with probabilities 1

8 , 3
8 , 3

8 , and 1
8 (do you know

how these probabilities were computed?). Thus, FX (x ) is
defined as

FX (x ) =




0 if x < 0

1
8 if 0 ≤ x < 1

4
8 if 1 ≤ x < 2

7
8 if 2 ≤ x < 3

1 if 3 ≤ x

and a graph of FX (x ) appears in Figure 1.11. The values of
FX (x ) at x = 0, 1, . . . are shown by the closed circles.

Discrete probability mass functions are often represented
using a bar plot, where the height of each bar is equal to the
probability that the random variable takes that value. For
example, the bar plot of the pile problem (Examples 1.21
and 1.23) would appear as in Figure 1.12.

1.5.2 Continuous Random Variables

Continuous random variables can take on an infinite number
of possible outcomes—generally X takes values from the
real line �. To illustrate the changes involved when we

0 1 2 3 4 5
x

0
1/

8
2/

8
3/

8
4/

8
5/

8
6/

8
7/

8
1

F
X

(x
)

Figure 1.11 Cumulative distribution function for the three-coin
toss.

x1 20

0.1554

0.0056

0.8390

f(
x)

Figure 1.12 Bar plot of fX (x ) for number of large piles
selected, X .

go from the discrete to the continuous case, consider the
probability that a grain silo experiences a bearing capacity
failure at exactly 4.3673458212. . . years from when it is
installed. Clearly the probability that it fails at exactly that
instant in time is essentially zero. In general the probability
that it fails at any one instant in time is vanishingly small.
In order to characterize probabilities for continuous random
variables, we cannot use probabilities directly (since they
are all essentially zero); we must use relative likelihoods.
That is, we say that the probability that X lies in the small
interval between x and x + dx is fX (x ) dx , or

P [x < X ≤ x + dx ] = fX (x ) dx (1.20)

where fX (x ) is now called the probability density function
(pdf) of the random variable X . The word density is used
because “density” must be multiplied by a length measure
in order to get a “mass.” Note that the above probability
is vanishingly small because dx is vanishingly small. The
function fX (x ) is now the relative likelihood that X lies in a
very small interval near x . Roughly speaking, we can think
of this as P [X = x ] = fX (x ) dx .
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Continuous Probability Distributions

Definition The function fX (x ) is a probability density
function for the continuous random variable X defined over
the set of real numbers if

1. 0 ≤ fX (x ) < ∞ for all −∞ < x < + ∞,

2.
∫ ∞

−∞
fX (x ) dx = 1 (i.e., the area under the pdf is 1.0),

and

3. P [a < X < b] =
∫ b

a
fX (x ) dx (i.e., the area under

fX (x ) between a and b).

Note: it is important to recognize that, in the continuous
case, fX (x ) is no longer a probability. It has units of
probability per unit length. In order to get probabilities,
we have to find areas under the pdf, that is, sum values of
fX (x ) dx .

Example 1.25 Suppose that the time to failure, T in years,
of a clay barrier has the probability density function

fT (t) =
{

0.02e−0.02t if t ≥ 0
0 otherwise

This is called an exponential distribution and distributions
of this exponentially decaying form have been found to
well represent many lifetime-type problems. What is the
probability that T will exceed 100 years?

SOLUTION The distribution is shown in Figure 1.13. If
we consider the more general case where

fT (t) =
{

λe−λt if t ≥ 0
0 otherwise

0 50 100 150 200
t (years)

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

f T
 (

t)

P[T > 100]

Figure 1.13 Exponential distribution illustrating P [T > 100].

then we get

P [T > 100] = P [100 < T < ∞] =
∫ ∞

100
λe−λt dt

= −e−λt
∣∣∣∞
100

= −e−∞λ + e−100λ

= e−100λ

For λ = 0.02, as is the case in this problem,

P [T > 100] = e−100×0.02 = e−2 = 0.1353

Continuous Cumulative Distribution The cumulative
distribution function (cdf) for a continuous random variable
is basically defined in the same way as it is for a discrete
distribution (Figure 1.14).

Definition The cumulative distribution function FX (x ) of
a continuous random variable X having probability density
function fX (x ) is defined by the area under the density
function to the left of x :

FX (x ) = P [X ≤ x ] =
∫ x

−∞
fX (t) dt (1.21)

As in the discrete case, the cdf is equivalent to the pdf
in that one can be obtained from the other. It is simply
another way of expressing the probabilities associated with
a random variable. Since the cdf is an integral of the pdf,
the pdf can be obtained from the cdf as a derivative:

fX (x ) = dFX (x )

dx
(1.22)

0 50 100 150 200

t (years)

0
0.

2
0.

4
0.

6
0.

8
1

F
T

 (t
) 

= 
P[

T
 ≤

 t]

P[T ≤ 100]0.8647

Figure 1.14 Cumulative distribution function for the exponen-
tial distribution.
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Example 1.26 Note that we could also have used the
cumulative distribution in Example 1.25. The cumulative
distribution function of the exponential distribution is

FT (t) = P [T ≤ t] =
∫ t

0
λe−λt dt = 1 − e−λt

and thus

P [T > 100] = 1 − P [T ≤ 100] = 1 − FT (100)

= 1 − (1 − e−100λ) = e−100λ

1.6 MEASURES OF CENTRAL TENDENCY,
VARIABILITY, AND ASSOCIATION

A random variable is completely described, as well as
can be, if its probability distribution is specified. How-
ever, we will never know the precise distribution of any
natural phenomenon. Nature cares not at all about our
mathematical models and the “truth” is usually far more
complex than we are able to represent. So we very often
have to describe a random variable using less complete
but more easily estimated measures. The most important
of these measures are central tendency and variability.
Even if the complete probability distribution is known,
these quantities remain useful because they convey infor-
mation about the properties of the random variable that
are of first importance in practical applications. Also, the
parameters of the distribution are often derived as func-
tions of these quantities or they may be the parameters
themselves.

The most common measures of central tendency and
variability are the mean and the variance, respectively. In
engineering, the variability of a random quantity is often
expressed using the dimensionless coefficient of variation,
which is the ratio of the standard deviation over the mean.
Also, when one has two random variables X and Y , it is fre-
quently of interest to measure how strongly they are related
(or associated) to one another. A typical measure of the
strength of the relationship between two random variables
is their covariance. As we shall see, covariance depends on
the units of the random variables involved and their indi-
vidual variabilities, and so a more intuitive measure of the
strength of the relationship between two random variables
is the correlation coefficient, which is both dimensionless
and bounded. All of these characteristics will be covered in
this section.

1.6.1 Mean

The mean is the most important characteristic of a random
variable, in that it tells us about its central tendency. It is
defined mathematically as follows:

Definition Let X be a random variable with probability
density function f (x ). The mean, or expected value, of X ,
denoted µX , is defined by

µX =




E [X ] =
∑

x

xf (x )

if X is discrete (1.23a )

E [X ] =
∫ ∞

−∞
xf (x ) dx

if X is continuous (1.23b )

where the subscript on µ, when present, denotes what µ is
the mean of.

Example 1.27 Let X be a discrete random variable which
takes on the values listed in the table below with associated
probabilities:

x −2 −1 0 1 2

f (x ) 1
12

1
6 k 1

3
1
4

1. Find the constant k such that fX (x ) is a legitimate
probability mass function for the random variable X .

2. Find the mean (expected value) of X .

SOLUTION

1. We know that the sum of all possible probabilities
must be 1, so that k = 1 − ( 1

12 + 1
6 + 1

3 + 1
4 ) = 1

6 .

2. E [X ] = (−2)( 1
12 ) + (−1)( 1

6 ) + 0( 1
6 ) + 1( 1

3 )
+ 2( 1

4 ) = 1
2 .

Expectation The notation E [X ] refers to a mathemati-
cal operation called expectation. The expectation of any
random variable is a sum of all possible values of the ran-
dom variable weighted by the probability of each value
occurring. For example, if X is a random variable with
probability (mass or density) function fX (x ), then the ex-
pected value of the random variable g(X ), where g is any
function of X , is

µg(X ) =




E
[
g(X )

] =
∑

x

g(x )fX (x )

if X is discrete

E
[
g(X )

] =
∫ ∞

−∞
g(x )fX (x ) dx

if X is continuous

(1.24)

Example 1.28 A researcher is looking at fibers as a
means of reinforcing soil. The fibers being investigated are
nominally of radius 10 µm. However, they actually have
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random radius R with probability density function (in units
of micrometers)

fR(r) =
{

3
4

[
1 − (10 − r)2

]
if 9 ≤ r ≤ 11

0 otherwise

What is the expected area of a reinforcing fiber?

SOLUTION The area of a circle of radius R is πR2. Thus,

E
[
πR2] = πE

[
R2] = π

∫ 11

9
r2 3

4

[
1 − (10 − r)2] dr

= 3

4
π

∫ 11

9

[−99r2 + 20r3 − r4] dr

= 3

4
π

[
−33r3 + 5r4 − r5

5

]11

9

= 3

4
π

(
668

5

)
= 501

5
π

= 314.8 µm2

If we have a sample of observations x1, x2, . . . , xn of
some population X , then the population mean µX is es-
timated by the sample mean x̄ , defined as

x̄ = 1

n

n∑
i=1

xi (1.25)

Example 1.29 Suppose x = {x1, x2, . . . , xn} = {1, 3, 5,
7, 9}.

(a) What is x̄?
(b) What happens to x̄ if x = {1, 3, 5, 7, 79}?

SOLUTION In both cases, the sample size is n = 5.

(a) x̄ = 1
5 (1 + 3 + 5 + 7 + 9) = 5

(b) x̄ = 1
5 (1 + 3 + 5 + 7 + 79) = 19

Notice that the one (possible erroneous) observation of 79
makes a big difference to the sample mean. An alternative
measure of central tendency, which enthusiasts of robust
statistics vastly prefer, is the median, discussed next.

1.6.2 Median

The median is another measure of central tendency. We
shall denote the median as µ̃. It is the point which divides
the distribution into two equal halves. Most commonly, µ̃

is found by solving

FX (µ̃) = P
[
X ≤ µ̃

] = 0.5

for µ̃. For example, if fX (x ) = λe−λx , then FX (x ) = 1 −
e−λx , and we get

1 − e−λµ̃ = 0.5 =⇒ µ̃X = − ln(0.5)

λ
= 0.693

λ

While the mean is strongly affected by extremes in the
distribution, the median is largely unaffected.

In general, the mean and the median are not the same.
If the distribution is positively skewed (or skewed right,
which means a longer tail to the right than to the left), as
are most soil properties, then the mean will be to the right
of the median. Conversely, if the distribution is skewed
left, then the mean will be to the left of the median. If the
distribution is symmetric, then the mean and the median
will coincide.

If we have a sample of observations x1, x2, . . . , xn of
some population X , then the population median µ̃X is esti-
mated by the sample median x̃ . To define x̃ , we must first
order the observations from smallest to largest, x(1) ≤ x(2) ≤
· · · ≤ x(n). When we have done so, the sample median is
defined as

x̃ =
{

x(n+1)/2 if n is odd

1
2

(
x(n/2) + x(n+1)/2

)
if n is even

Example 1.30 Suppose x = {x1, x2, . . . , xn} = {1, 3, 5,
7, 9}.

(a) What is x̃?
(b) What happens to x̃ if x = {1, 3, 5, 7, 79}?

SOLUTION In both cases, the sample size is odd with
n = 5. The central value is that value having the same
number of smaller values as larger values. In this case,

(a) x̃ = x3 = 5
(b) x̃ = x3 = 5

so that the (possibly erroneous) extreme value does not have
any effect on this measure of the central tendency.

Example 1.31 Suppose that in 100 samples of a soil at
a particular site, 99 have cohesion values of 1 kPa and 1
has a cohesion value of 3901 kPa (presumably this single
sample was of a boulder or an error). What are the mean
and median cohesion values at the site?

SOLUTION The mean cohesion is

x̄ = 1
100 (1 + 1 + · · · + 1 + 3901) = 40 kPa

The median cohesion is

x̃ = 1 kPa
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Clearly, in this case, the median is a much better rep-
resentation of the site. To design using the mean would
almost certainly lead to failure.

1.6.3 Variance

The mean (expected value) or median of the random vari-
able X tells where the probability distribution is “centered.”
The next most important characteristic of a random vari-
able is whether the distribution is “wide,” “narrow,” or
somewhere in between. This distribution “variability” is
commonly measured by a quantity call the variance of X .

Definition Let X be a random variable with probability
(mass or density) function fX (x ) and mean µX . The variance
σ 2

X of X is defined by

σ 2
X = Var [X ] = E

[
(X − µX )2]

=




∑
x

(x − µX )2fX (x ) for discrete X

∫ ∞

−∞
(x − µX )2fX (x ) dx for continuous X

(1.26)

The variance of the random variable X is sometimes
more easily computed as

σ 2
X = E

[
X 2]− E2[X ] = E

[
X 2]− µ2

X (1.27)

The variance σ 2
X has units of X 2. The square root of the

variance, σX , is called the standard deviation of X , which
is illustrated in Figure 1.15. Since the standard deviation
has the same units as X , it is often preferable to report the
standard deviation as a measure of variability.
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s = 3
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Figure 1.15 Two distributions illustrating how the position and
shape change with changes in mean and variance.

Example 1.32 Recall Example 1.27. Find the variance
and standard deviation of X .

SOLUTION Var [X ] = E
[
X 2
]− E2[X ]

where

E
[
X 2] = (−2)2( 1

12 ) + (−1)2( 1
6 ) + 02( 1

6 )

+ 12( 1
3 ) + 22( 1

4 ) = 11
6

Thus, Var [X ] = E
[
X 2
]− E2[X ] = 11

6 − ( 1
2 )2 = 19

12 and

σX =
√

Var [X ] =
√

19
12 = 1.258

Even though the standard deviation has the same units
as the mean, it is often still not particularly informative.
For example, a standard deviation of 1.0 may indicate
significant variability when the mean is 1.0 but indicates
virtually deterministic behavior when the mean is one
million. For example, an error of 1 m on a 1-m survey
would be considered unacceptable, whereas an error of 1-
m on a 1000-km survey might be considered quite accurate.
A measure of variability which both is nondimensional and
delivers a relative sense of the magnitude of variability is
the coefficient of variation, defined as

v = σ

µ
(1.28)

Example 1.33 Recall Examples 1.27 and 1.29. What is
the coefficient of variation of X ?

SOLUTION

vX =
√

19/12

1/2
= 2.52

or about 250%, which is a highly variable process.

Note that the coefficient of variation becomes undefined
if the mean of X is zero. It is, however, quite popular as
a way of expressing variability in engineering, particularly
for material property and load variability, which generally
have nonzero means.

1.6.4 Covariance

Often one must consider more than one random variable
at a time. For example, the two components of a drained
soil’s shear strength, tan(φ′) and c′, will vary randomly
from location to location in a soil. These two quantities can
be modeled by two random variables, and since they may
influence one another (or they may be jointly influenced
by some other factor), they are characterized by a bivariate
distribution. See Figure 1.16.
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Figure 1.16 Example bivariate probability density function,
fX Y (x , y).

Properties of Bivariate Distribution

Discrete: fX Y (x , y) = P
[
X = x ∩ Y = y

]
0 ≤ fX Y (x , y) ≤ 1∑

all x

∑
all y

fX Y (x , y) = 1

Continuous: fX Y (x , y) dx dy = P [x < X ≤ x

+ dx ∩ y < Y ≤ y + dy
]

fX Y (x , y) ≥ 0 for all (x , y) ∈ �2

∫ ∞

−∞

∫ ∞

−∞
fX Y (x , y) dx dy = 1

P
[
x1 < X ≤ x2 ∩ y1 < Y ≤ y2

]

=
∫ y2

y1

∫ x2

x1

fX Y (x , y) dx dy

Definition Let X and Y be random variables with joint
probability distribution fX Y (x , y). The covariance between
X and Y is defined by

Cov [X , Y ] = E [(X − µX )(Y − µY )] (1.29a)

=
∑

x

∑
y

(x − µX )(y − µY )fX Y (x , y)

(discrete case)

=
∫ ∞

−∞

∫ ∞

−∞
(x − µX )(y − µY )fX Y (x , y) dx dy

(continuous case) (1.29b)

The covariance between two random variables X and Y ,
having means µX and µY , respectively, may also be com-
puted as

Cov [X , Y ] = E [XY ] − E [X ] E [Y ] = E [XY ] − µX µY

(1.30)

Example 1.34 In order to determine the frequency of
electrical signal transmission errors during a cone pen-
etration test, a special cone penetrometer is constructed
with redundant measuring and electrical systems. Using this
penetrometer, the number of errors detected in the trans-
mission of tip resistance during a typical cone penetration
test can be measured and will be called X and the num-
ber of errors detected in the transmission of side friction
will be called Y . Suppose that statistics are gathered us-
ing this penetrometer on a series of penetration tests and
the following joint discrete probability mass function is
estimated:

y (side)
fX Y (x , y) 0 1 2 3 4

0 0.24 0.13 0.04 0.03 0.01
x 1 0.16 0.10 0.05 0.04 0.01

(tip) 2 0.08 0.05 0.01 0.00 0.00
3 0.02 0.02 0.01 0.00 0.00

Assuming that these numbers are correct, compute

1. The expected number of errors in the transmission of
the tip resistance

2. The expected number of errors in the transmission of
the side friction

3. The variance of the number of errors in the transmis-
sion of the tip resistance

4. The variance of the number of errors in the transmis-
sion of the side friction

5. The covariance between the number of errors in
the transmission of the tip resistance and the side
friction

SOLUTION We expand the table by summing rows and
columns to obtain the “marginal distributions” (i.e., uncon-
ditional distributions), fX (x ) and fY (y), of X and Y :

y (side)
fX Y (x , y) 0 1 2 3 4 fX (x )

0 0.24 0.13 0.04 0.03 0.01 0.45
x 1 0.16 0.10 0.05 0.04 0.01 0.36

(tip) 2 0.08 0.05 0.01 0.00 0.00 0.14
3 0.02 0.02 0.01 0.00 0.00 0.05

fY (y) 0.50 0.30 0.11 0.07 0.02 1.00
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so that

1. E [X ] =
∑

x
xfX (x ) = 0(0.45) + 1(0.36)

+ 2(0.14) + 3(0.05) = 0.79

2. E [Y ] =
∑

y
yfY (y) = 0(0.50) + 1(0.30) + 2(0.11)

+ 3(0.07) + 4(0.02) = 0.81

3. E
[
X 2] =

∑
x

x 2fX (x ) = 02(0.45) + 12(0.36)

+ 22(0.14) + 32(0.05) = 1.37

σ 2
X = E

[
X 2]− E2[X ] = 1.37 − 0.792 = 0.75

4. E
[
Y 2] =

∑
y

y2 fY (y) = 02(0.50) + 12(0.30)

+ 22(0.11) + 32(0.07) + 42(0.02) = 1.69

σ 2
Y = E

[
Y 2]− E2[Y ] = 1.69 − 0.812 = 1.03

5. E [XY ] =
∑

x

∑
y

xyfX Y (x , y) = (0)(0)(0.24)

+ (0)(1)(0.13) + · · · + (3)(2)(0.01) = 0.62

Cov [X , Y ] = E [XY ] − E [X ] E [Y ]

= 0.62 − 0.79(0.81) = −0.02

Although the covariance between two random variables
does give information regarding the nature of the rela-
tionship, the magnitude of Cov [X , Y ] does not indicate
anything regarding the strength of the relationship. This

is because Cov [X , Y ] depends on the units and variabil-
ity of X and Y . A quantity which is both normalized and
nondimensional is the correlation coefficient, to be dis-
cussed next.

1.6.5 Correlation Coefficient

Definition Let X and Y be random variables with joint
probability distribution fX Y (x , y). The correlation coefficient
between X and Y is defined to be

ρX Y = Cov [X , Y ]

σX σY

(1.31)

Figure 1.17 illustrates the effect that the correlation
coefficient has on the shape of a bivariate probability
density function, in this case for X and Y jointly normal.
If ρX Y = 0, then the contours form ovals with axes aligned
with the cartesian axes (if the variances of X and Y are
equal, then the ovals are circles). When ρX Y > 0, the ovals
become stretched and the major axis has a positive slope.
What this means is that when Y is large X will also tend
to be large. For example, when ρX Y = 0.6, as shown on
the right plot of Figure 1.17, then when Y = 8, the most
likely value X will take is around 7, since this is the peak of
the distribution along the line Y = 8. Similarly, if ρX Y < 0,
then the ovals will be oriented so that the major axis has a
negative slope. In this case, large values of Y will tend to
give small values of X .
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Figure 1.17 Effect of correlation coefficient ρX Y on contours of a bivariate probability density
function fXY (x , y) having µX = µY = 5, σX = 1.5 and σY = 2.0.
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We can show that −1 ≤ ρX Y ≤ 1 as follows: Consider
two random variables X and Y having variances σ 2

X and
σ 2

Y , respectively, and correlation coefficient ρX Y . Then

Var

[
X

σX

+ Y

σY

]
= σ 2

X

σ 2
X

+ σ 2
Y

σ 2
Y

+ 2
Cov [X , Y ]

σX σY

= 2
[
1 + ρX Y ]

≥ 0

which implies that ρX Y ≥ −1. Similarly,

Var

[
X

σX

− Y

σY

]
= σ 2

X

σ 2
X

+ σ 2
Y

σ 2
Y

− 2
Cov [X , Y ]

σX σY

= 2
[
1 − ρX Y ]

≥ 0

which implies that ρX Y ≤ 1. Taken together, these imply
that −1 ≤ ρX Y ≤ 1.

The correlation coefficient is a direct measure of the
degree of linear dependence between X and Y . When
the two variables are perfectly linearly related, ρX Y will
be either +1 or −1 (+1 if Y increases with X and −1
if Y decreases when X increases). When |ρX Y | < 1, the
dependence between X and Y is not completely linear;
however, there could still be a strong nonlinear depen-
dence. If two random variables X and Y are indepen-
dent, then their correlation coefficient will be zero. If the
correlation coefficient between two random variables X
and Y is 0, it does not mean that they are independent,
only that they are uncorrelated. Independence is a much
stronger statement than is ρX Y = 0, since the latter only
implies linear independence. For example, Y = X 2 may
be linearly independent of X (this depends on the range
of X ), but clearly Y and X are completely (nonlinearly)
dependent.

Example 1.35 Recall Example 1.30.

1. Compute the correlation coefficient between the num-
ber of errors in the transmission of tip resistance and
the number of errors in the transmission of the side
friction.

2. Interpret the value you found in 1.

SOLUTION

1. ρXY = −0.02√
0.75

√
1.03

= −0.023

2. With ρXY as small as −0.023, there is essentially no
linear dependence between the error counts.

1.7 LINEAR COMBINATIONS OF RANDOM
VARIABLES

Consider the random variables X1, X2, . . . , Xn and the con-
stants a1, a2, . . . ., an . If

Y = a1X1 + a2X2 + · · · + anXn =
n∑

i=1

ai Xi (1.32)

then Y is also a random variable, being a linear combination
of the random variables X1, . . . , Xn . Linear combinations of
random variables are common in engineering applications;
any sum is a linear combination. For example, the weight
of a soil mass is the sum of the weights of its constitutive
particles. The bearing strength of a soil is due to the sum
of the shear strengths along the potential failure surface.
This section reviews the basic results associated with linear
combinations.

1.7.1 Mean of Linear Combinations

The mean, or expectation, of a linear combination can
be summarized by noting that the expectation of a sum
is the sum of the expectations. Also, since constants can
be brought out in front of an expectation, we have the
following rules:

1. If a and b are constants, then

E [aX ± b] = aE [X ] ± b (1.33)

2. If g and h are functions of the random variable X ,
then

E
[
g(X ) ± h(X )

] = E
[
g(X )

]± E [h(X )] (1.34)

3. Similarly, for any two random variables X and Y ,

E
[
g(X ) ± h(Y )

] = E
[
g(X )

]± E [h(Y )] (1.35)

Note that this means, for example, E [X ± Y ] =
E [X ] ± E [Y ].

4. If X and Y are two uncorrelated random variables,
then

E [XY ] = E [X ] E [Y ] (1.36)

by virtue of the fact that Cov [X , Y ] = E [XY ] −
E [X ] E [Y ] = 0 when X and Y are uncorrelated. (This
actually has nothing to do with linear combinations
but often occurs in problems involving linear combi-
nations.)

In general, if

Y =
n∑

i=1

ai Xi (1.37)
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as in Eq. 1.32, then

E [Y ] =
n∑

i=1

ai E [Xi ] (1.38)

1.7.2 Variance of Linear Combinations

The variance of a linear combination is complicated by
the fact that the Xi ’s in the combination may or may
not be correlated. If they are correlated, then the variance
calculation will involve the covariances between the Xi ’s.
In general, the following rules apply:

1. If a and b are constants, then

Var [aX + b] = Var [aX ] + Var [b]

= a2Var [X ] = a2σ 2
X (1.39)

that is, the variance of a constant is zero, and since
variance is defined in terms of squared deviations
from the mean, all quantities, including constants, are
squared. Variance has units of X 2 (which is why we
often prefer the standard deviation in practice).

2. If X and Y are random variables with joint probability
distribution fX Y (x , y) and a and b are constants, then

Var [aX + bY ] = a2σ 2
X + b2σ 2

Y + 2ab Cov [X , Y ]
(1.40)

Note that the sign on the last term depends on the
sign of a and b but that the variance terms are always
positive. Note also that, if X and Y are uncorrelated,
then Cov [X , Y ] = 0, so that, in this case, the above
simplifies to

Var [aX + bY ] = a2σ 2
X + b2σ 2

Y (1.41)

If we consider the more general case where (as in
Eq. 1.37)

Y =
n∑

i=1

ai Xi

then we have the following results:

3. If X1, X2, . . . , Xn are correlated, then

Var [Y ] =
n∑

i=1

n∑
j=1

ai aj Cov
[
Xi , Xj

]
(1.42)

where we note that Cov [Xi , Xi ] = Var [Xi ]. If n = 2,
the equation given in item 2 is obtained by replacing
X1 with X and X2 with Y .

4. If X1, X2, . . . , Xn are uncorrelated random variables,
then

Var [a1X1 + · · · + anXn ]

= a2
1σ 2

X 1
+ · · · + a2

nσ 2
X n

=
n∑

i=1

a2
i σ 2

Xi
(1.43)

which follows from item 3 by noting that, if Xi and Xj

are uncorrelated for all i �= j , then Cov
[
Xi , Xj

] = 0
and we are left only with the Cov [Xi , Xi ] = σ 2

X i
terms

above. This means that, if the X ’s are uncorrelated,
then the variance of a sum is the sum of the variances.
(However, remember that this rule only applies if the
X ’s are uncorrelated.)

Example 1.36 Let X and Y be independent random
variables with E [X ] = 2, E

[
X 2
] = 29, E [Y ] = 4, and

E
[
Y 2
] = 52. Consider the random variables W = X + Y

and Z = 2X . The random variables W and Z are clearly
dependent since they both involve X . What is their covari-
ance? What is their correlation coefficient?

SOLUTION Given E [X ] = 2, E
[
X 2
] = 29, E [Y ] = 4,

and E
[
Y 2
] = 52; X and Y independent; and W = X + Y

and Z = 2X .
Thus,

Var [X ] = E
[
X 2]− E2[X ] = 29 − 22 = 25

Var [Y ] = E
[
Y 2]− E2[Y ] = 52 − 42 = 36

E [W ] = E [X + Y ] = 2 + 4 = 6

Var [W ] = Var [X + Y ] = Var [X ] + Var [Y ]

= 25 + 36 = 61

(due to independence)

E [Z ] = E [2X ] = 2(2) = 4

Var [Z ] = Var [2X ] = 4Var [X ] = 4(25) = 100

Cov [W , Z ] = E [WZ ] − E [W ] E [Z ]

E [WZ ] = E [(X + Y )(2X )] = E
[
2X 2 + 2XY

]
= 2E

[
X 2]+ 2E [X ] E [Y ]

= 2(29) + 2(2)(4) = 74

Cov [W , Z ] = 74 − 6(4) = 50

ρWZ = 50√
61

√
100

= 5√
61

= 0.64

1.8 FUNCTIONS OF RANDOM VARIABLES

In general, deriving the distribution of a function of ran-
dom variables [i.e., the distribution of Y where Y =
g(X1, X2, . . .)] can be quite a complex problem and exact
solutions may be unknown or impractical to find.
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In this section, we will cover only relatively simple cases
(although even these can be difficult) and also look at some
approximate approaches.

1.8.1 Functions of a Single Variable

Consider the function

Y = g(X ) (1.44)

and assume we know the distribution of X , that is, we
know fX (x ). When X takes on a specific value, that is, when
X = x , we can compute Y = y = g(x ). If we assume, for
now, that each value of x gives only one value of y and
that each value of y arises from only one value of x (i.e.,
that y = g(x ) is a one-to-one function), then we must have
the probability that Y = y is just equal to the probability
that X = x . That is, for discrete X ,

P
[
Y = y

] = P [X = x ] = P
[
X = g−1(y)

]
(1.45)

where g−1(y) is the inverse function, obtained by solving
y = g(x ) for x , i.e. x = g−1(y). Eq. 1.45 implies that

fY (y) = fX

(
g−1(y)

)
(1.46)

In terms of the discrete cumulative distribution function,

FY (y) = P
[
Y ≤ y

] = FX (g−1(y)) = P
[
X ≤ g−1(y)

]
=

∑
xi ≤g−1(y)

fX (xi ) (1.47)

In the continuous case, the distribution of Y is obtained in
a similar fashion. Considering Figure 1.18, the probability
that X lies in a neighborhood of x1 is the area A1. If
X lies in the shown neighborhood of x1, Y must lie
in a corresponding neighborhood of y1 and will do so
with equal probability A1. Since the two probabilities are
equal, this defines the height of the distribution of Y
in the neighborhood of y1. Considering the situation in
the neighborhood of x2, we see that the height of the
distribution of Y near y2 depends not only on A2, which
is the probability that X is in the neighborhood of x2, but
also on the slope of y = g(x ) at the point x2. As the slope
flattens, the height of f (y) increases; that is, f (y) increases
as the slope decreases.

We will develop the theory by first considering the
continuous analog of the discrete cumulative distribution
function developed above,

FY (y) =
∫ g−1(y)

−∞
fX (x ) dx

=
∫ y

−∞
fX (g−1(y))

[
d

dy
g−1(y)

]
dy (1.48)
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fY(y)
fX(x)

y = g(x)

Figure 1.18 Deriving the distribution of Y = g(X ) from the
distribution of X .

where we let x = g−1(y) to get the last result. To get the
probability density function of Y , we can differentiate,

fY (y) = d

dy
FY (y) = fX (g−1(y))

[
d

dy
g−1(y)

]
(1.49)

Note that the left-hand side here is found under the
assumption that y always increases with increasing x .
However, if y decreases with increasing x , then P

[
Y ≤ y

]
corresponds to P [X > x ], leading to (see Eq. 1.47),

FY (y) = 1 − FX (g−1(y))

fY (y) = fX (g−1(y))

[
− d

dy
g−1(y)

]

To handle both possibilities (and since probabilities are
always positive), we write

fY (y) = fX

(
g−1(y)

) ∣∣∣∣ d

dy
g−1(y)

∣∣∣∣ (1.50)

In terms of Figure 1.18 we can leave x = g−1(y) in the
relationship and write our result as

fY (y) = fX (x )

∣∣∣∣dx

dy

∣∣∣∣ (1.51)

which means that fY (y) increases as the inverse of the
slope, |dx/dy |, increases, which agrees with what is seen
in Figure 1.18.

Example 1.37 Suppose that X has the following contin-
uous distribution:

fX (x ) = 1

σ
√

2π
exp

{
−1

2

(
x − µ

σ

)2
}
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which is the normal distribution, which we will discuss
further in Section 1.10.4. If Z = (X − µ)/σ , then what is
fZ (z )? (Note, we use Z intentionally here, rather than Y ,
because as we shall see in Section 1.10.8, Z is the so-called
standard normal.)

SOLUTION In order to determine fZ (z ), we need to
know both fX (x ) and dx/dz . We know fX (x ) is the normal
distribution, as shown above. To compute dx/dz we need
an expression for x , which we can get by inverting the
given relationship for Z (note, for the computation of the
slope, we assume that both X and Z are known, and are
replaced by their lowercase equivalents):

x = g−1(z ) = µ + σ z

which gives us ∣∣∣∣dx

dz

∣∣∣∣ =
∣∣∣∣dg−1(z )

dz

∣∣∣∣ = σ

Putting these results together gives us

fZ (z ) = fX (x )

∣∣∣∣dx

dz

∣∣∣∣ = fX (µ + σ z ) σ

= 1√
2π

exp

{
−1

2
z 2
}

Notice that the parameters µ and σ have now disappeared
from the distribution of Z . As we shall see, Z is also
normally distributed with µZ = 0 and σZ = 1.

The question now arises as to what happens if the
function Y = g(X ) is not one to one. The answer is that
the probabilities of all the X = x values which lead to each
y are added into the probability that Y = y . That is, if
g(x1), g(x2), . . . all lead to the same value of y , then

fY (y) = fX (x1)

∣∣∣∣dx1

dy

∣∣∣∣+ fX (x2)

∣∣∣∣dx2

dy

∣∣∣∣+ · · ·
The number of terms on the right-hand-side generally
depends on y , so this computation over all y can be quite
difficult. For example, the function Y = a + bX + cX 2 +
dX 3 might have three values of x leading to the same value
of y over some ranges in y but only one value of x leading
to the same value of y on other ranges.

1.8.2 Functions of Two or More Random Variables

Here we consider functions of the form

Y1 = g1(X1, X2, . . .)

Y2 = g2(X1, X2, . . .) (1.52)

.

.

.

In the theory which follows, we require that the number
of equations above equals the number of random variables
X1, X2, . . . and that the equations be independent so that a
unique inverse can be obtained. The theory will then give
us the joint distribution of Y1, Y2, . . . in terms of the joint
distribution of X1, X2, . . .

More commonly, we only have a single function of the
form

Y1 = g1(X1, X2, . . . , Xn ) (1.53)

in which case an additional n − 1 independent equations,
corresponding to Y2, . . . , Yn , must be arbitrarily added to
the problem in order to use the theory to follow. Once
these equations have been added and the complete joint
distribution has been found, the n − 1 arbitrarily added Y ’s
can be integrated out to obtain the marginal distribution of
Y1. For example, if Y1 = X1/X2 and we want the pdf of Y1

given the joint pdf of (X1, X2), then we must

1. choose some function Y2 = g(X1, X2) which will al-
low us to find an inverse—for example, if we choose
Y2 = X2, then we get X1 = Y1Y2 and X2 = Y2 as our
inverse;

2. obtain the joint pdf of (Y1, Y2) in terms of the joint
pdf of (X1, X2); and

3. obtain the marginal pdf of Y1 by integrating fY 1Y 2 over
all possible values of Y2.

In detail, suppose we start with the two-dimensional set
of equations

Y1 = g1(X1, X2)
Y2 = g2(X1, X2)

}
⇐⇒

{
X1 = h1(Y1, Y2)
X2 = h2(Y1, Y2)

(1.54)
where the right-hand equations are obtained by inverting the
(given) left-hand equations. Recall that for one variable we
had fY (y) = fX (x ) |dx/dy |. The generalization to multiple
variables is

fY 1Y 2 (y1, y2) = fX 1X 2 (h1, h2) |J | (1.55)

where J is the Jacobian of the transformation,

J = det




∂h1

∂y1

∂h1

∂y2

∂h2

∂y1

∂h2

∂y2


 (1.56)

For more than two variables, the extension is

Y1 = g1(X1, X2, . . . , Xn )
Y2 = g2(X1, X2, . . . , Xn )

.

.

.

.

.

.
Yn = gn (X1, X2, . . . , Xn )



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⇐⇒




X1 = h1(Y1, Y2, . . . , Yn )
X2 = h2(Y1, Y2, . . . , Yn )

.

.

.
Xn = hn (Y1, Y2, . . . , Yn )

(1.57)

J = det




∂h1

∂y1

∂h1

∂y2
· · · ∂h1

∂yn

∂h2

∂y1

∂h2

∂y2
· · · ∂h2

∂yn

.

.

.

.

.

.

.
.

.

.

.

.

∂hn

∂y1

∂hn

∂y2
· · · ∂hn

∂yn




(1.58)

and

fY 1Y 2···Y n (y1, y2, . . . , yn )

=
{

fX 1X 2···X n (h1, h2, . . . , hn ) |J |
for (y1, y2, . . . , yn ) ∈ T

0 otherwise
(1.59)

where T is the region in Y space corresponding to possible
values of x, specifically

T = {g1, g2, . . . , gn : (x1, x2, . . . , xn ) ∈ S } (1.60)

and S is the region on which fX 1X 2···X n is nonzero.

Example 1.38 Assume X1 and X2 are jointly distributed
according to

fX 1X 2 (x1, x2) =
{

4x1x2 for 0 < x1 < 1 and 0 < x2 < 1
0 otherwise

and that the following relationships exist between Y and X:

Y1 = X1

X2
Y2 = X1X2

}
⇐⇒




X1 =
√

Y1Y2

X2 =
√

Y2

Y1

What is the joint pdf of (Y1, Y2)?

SOLUTION We first of all find the Jacobian,

∂x1

∂y1
= 1

2

√
y2

y1
,

∂x1

∂y2
= 1

2

√
y1

y2

∂x2

∂y1
= −1

2

√
y2

y3
1

,
∂x2

∂y2
= 1

2

√
1

y1y2

so that

J = det




1

2

√
y2

y1

1

2

√
y1

y2

−1

2

√
y2

y3
1

1

2

√
1

y1y2


 = 1

2y1

This gives us

fY 1Y 2 (y1, y2) = fX 1X 2

(√
y1y2,

√
y2

y1

)
|J |

= 4
√

y1y2

√
y2

y1

(
1

2|y1|
)

= 2y2

|y1| (1.61)

We must still determine the range of y1 and y2 over which
this joint distribution is valid. We know that 0 < x1 < 1 and
0 < x2 < 1, so it must also be true that 0 <

√
y1y2 < 1 and

0 <
√

y2/y1 < 1. Now, if x1 lies between 0 and 1, then x 2
1

must also lie between 0 and 1, so we can eliminate the
square root signs and write our constraints on y1 and y2 as

0 < y1y2 < 1 and 0 <
y2

y1
< 1

If we consider the lines generated by replacing the inequal-
ities above with equalities, we get the following bounding
relationships:

y1y2 = 0, y1y2 = 1
y2

y1
= 0,

y2

y1
= 1

If we plot these bounding relationships, the shape of the
region, T , where fY 1Y 2 is defined by Eq. 1.61, becomes
apparent. This is illustrated in Figure 1.19.

We see from Figure 1.19 that the range, T , is defined by

0 < y2 < 1 and y2 < y1 <
1

y2

Our joint distribution can now be completely specified as

fY 1Y 2 (y1, y2) =



2y2

y1
for 0 < y2 < 1 and y2 < y1 <

1

y2

0 otherwise
where we dropped the absolute value because y1 is strictly
positive.

Example 1.39 Consider the relationship

X = A cos �

where A and � are random variables with pdf fA�(a , φ).
Assume that A and � are independent, that A follows
a Rayleigh distribution with parameter s2, and that �

is uniformly distributed between 0 and 2π . What is the
distribution of X ?

SOLUTION First we must define a second function, Y ,
to give us a unique inverse relationship. Let us somewhat
arbitrarily take

Y = A sin �
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0 1
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x 2

S
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y1

0
1

2
3

4

y 2

T

y1y2 = 1y1y2 = 0

y2/y1 = 1

y2/y1 = 0

Figure 1.19 The ranges of (x1, x2) and (y1, y2) over which fX1X 2 and fY 1Y 2 are defined.

Note that there is no particular requirement for the choice
of the second function so long as it leads to an inverse.
This choice leads to the inverse relationships

X = A cos �

Y = A sin �

}

⇐⇒



A = √
X 2 + Y 2

� = tan−1

(
Y

X

)
± 2kπ , k = 0, 1, . . .

where we have assumed that tan−1(Y /X ) gives a unique
value between 0 and 2π—for this, we must make use of
the signs of Y and X in the determination of the angle.
Notice that � is not single valued for each X and Y .

In determining the Jacobian, we will revert to lower-
case letters to emphasize that the Jacobian is deterministic
(despite the fact that J itself is uppercase),

∂a

∂x
= x√

x 2 + y2
,

∂a

∂y
= y√

x 2 + y2

∂φ

∂x
= − y

x 2 + y2
,

∂φ

∂y
= x

x 2 + y2

so that

J = det




∂a

∂x

∂a

∂y
∂φ

∂x

∂φ

∂y


 = 1√

x 2 + y2

Since A and � are independent, their joint distribution is
just the product of their individual (marginal) distributions,
namely fA�(a , φ) = fA(a)f�(φ). The joint distribution of X
and Y is thus

fX Y (x , y) =
fA

(√
x 2 + y2

)∑∞
k=−∞ f�

(
tan−1(y/x ) + 2kπ

)
√

x 2 + y2

(1.62)

where the sum arises because � takes on an infinite number
of possible values for each x and y—we must include the
probability of each in the joint probability of X and Y .

The Rayleigh distribution, which is discussed further in
Section 1.10.5, has probability density function

fA(a) = a

s2
exp

{
− a2

2s2

}
, a ≥ 0

while the uniform distribution is

f�(φ) = 1

2π
, 0 < φ ≤ 2π

Since � has zero probability of being outside the interval
(0, 2π ] and exactly one value of [tan−1(y/x ) + 2kπ ] will
lie inside that interval, then only one term in the infinite
sum is nonzero and the sum simplifies to

∞∑
k=−∞

f�
(

tan−1
(y

x

)
+ 2kπ

)
= 1

2π

In this case, Eq. 1.62 becomes

fX Y (x , y) =
√

x 2 + y2/s2 exp
{−(x 2 + y2)/2s2

}
2π
√

x 2 + y2

= 1

2πs2
exp

{
−x 2 + y2

2s2

}
(1.63)

To find the marginal distribution of X (which was the
original aim), we must integrate over all possible values of
Y using the total probability theorem:

fX (x ) =
∫ ∞

−∞

1

2πs2
exp

{
−x 2 + y2

2s2

}
dy

= e−x2/(2s2)

2πs2

∫ ∞

−∞
e−y2/(2s2) dy

= 1√
2π s

e−x2/(2s2) (1.64)
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To get the final result, we needed to use the fact that∫ ∞

−∞
e−y2/(2s2) dy = s

√
2π

We note that Eq. 1.64 is just the normal distribution with
mean zero and variance s2. In addition, we see that Eq. 1.63
is separable and can be written as fX Y (x , y) = fX (x ) · fY (y),
so that X and Y must be independent. A similar computa-
tion as was carried out above will show that fY (y) is also a
lognormal distribution with mean zero and variance s2.

In summary, we see that if A is Rayleigh distributed with
parameter s2 and � is uniformly distributed between 0 and
2π , then

X = A cos �, Y = A sin �

will be a pair of identically normally distributed indepen-
dent random variables, each with mean zero and variance
s2. As we shall see in Chapter 6, the above results suggest
a very good approach to simulating normally distributed
random variables.

1.8.2.1 Linear Transformations Say we have the simul-
taneous system of equations

Y1 = a11X1 + a12X2 + · · · + a1nXn

Y2 = a21X1 + a22X2 + · · · + a2nXn

.

.

.

Yn = an1X1 + an2X2 + · · · + annXn

which we can write using matrix notation as

Y = AX (1.65)

If this relationship holds, then X = A−1Y for nonsingular A
(implies a one-to-one transformation). The joint distribution
of Y is thus

fY (y) = fX (A−1y) |J | (1.66)

where
J = det

[
A−1] = 1

det [A]
(1.67)

Example 1.40 Say that Y1 = X1 + X2 and that the joint
pdf of X is

fX 1X 2 (x1, x2) =
{

e−(x1+x2) for x1, x2 ≥ 0

0 otherwise
What is the distribution of Y1?

SOLUTION Choose Y2 = X2 as our second equation.
Then

Y1 = X1 + X2

Y2 = X2

}
⇐⇒

{
X1 = Y1 − Y2

X2 = Y2

or {
X1

X2

}
=
[

1 −1

0 1

]{
Y1

Y2

}

where we see from this that

A−1 =
[

1 −1

0 1

]

so that J = det A−1 = 1. This gives us

fY 1Y 2 (y1, y2) = fX 1X 2 (y1 − y2, y2)(1)

= e−(y1−y2)−y2 , y1 − y2 ≥ 0 and y2 ≥ 0

= e−y1 , y1 ≥ 0 and 0 ≤ y2 ≤ y1

To find the distribution of Y2, we must integrate over all
possible values of Y1 using the total probability theorem,

fY 1 (y1) =
∫ ∞

−∞
fY 1Y 2 (y1, y2) dy2 =

∫ y1

0
e−y1 dy2

= y1e−y1 , y1 ≥ 0

In general, if Y = X1 + X2 and X1 is independent of X2

[so that their joint distribution can be written as the product
fX 1X 2 (x1, x2) = fX 1 (x1)fX 2 (x2)], then the distribution of Y can
be written as the convolution

fY (y) =
∫ ∞

−∞
fX 1 (y − x ) fX 2 (x ) dx

=
∫ ∞

−∞
fX 1 (x ) fX 2 (y − x ) dx (1.68)

1.8.3 Moments of Functions

In many cases the full distribution of a function of random
variables is difficult to obtain. So we would like to be
able to get at least the mean and variance (often the
central limit theorem, discussed later, can be relied upon
to suggest that the final distribution is either normal or
lognormal). Obtaining just the mean and variance, at least
approximately, is typically much easier than obtaining the
complete distribution. In the following we will consider
a function of the form Y = g(X1, X2, . . . , Xn ) whose nth
moment is defined by

E
[
Y n] =

∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞
gn (x1, x2, . . . , xn)

× fx(x1, x2, . . . , xn ) dx1 dx2 · · · dxn (1.69)

where X is the vector of X ′s ; X = {X1, X2, . . . , Xn}.
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1.8.3.1 Arbitrary Function of One Variable If g is an
arbitrary function of one variable, Y = g(X ), then

E
[
Y n] =

∫ ∞

−∞
gn (x ) fX (x ) dx (1.70)

Various levels of approximations exist for this moment.
Consider a Taylor’s series expansion of g(X ) about µX ,

Y = g(X ) = g(µX ) + (X − µX )
dg

dx

∣∣∣∣
µX

+ 1

2
(X − µX )2 d 2g

dx 2

∣∣∣∣
µX

+ · · · (1.71)

A first-order approximation to the moments uses just the
first two terms of the Taylor’s series expansion:

E [Y ] � E

[
g(µX ) + (X − µX )

dg

dx

∣∣∣∣
µX

]

= g(µX ) (1.72a)

Var [Y ] � Var

[
g(µX ) + (X − µX )

dg

dx

∣∣∣∣
µX

]

= Var [X ]

(
dg

dx

∣∣∣∣
µX

)2

(1.72b)

This approximation is often referred to as the first-order
second-moment (FOSM) method. Although it is generally
only accurate for small variability and small nonlinearity,
it is a widely used approximation because of its simplicity
(see the next section).

The second-order approximation uses the first three
terms of the Taylor’s series expansion and so is potentially
more accurate:

E [Y ] � g(µX ) + 1

2
Var [X ]

(
d 2g

dx 2

∣∣∣∣
µX

)
(1.73a)

Var [Y ] � Var [X ]

(
dg

dx

∣∣∣∣
µX

)2

−
(

1

2
Var [X ]

d 2g

dx 2

∣∣∣∣
µX

)2

+ E
[
(X − µX )3]

(
dg

dx

d 2g

dx 2

∣∣∣∣
µX

)

+ 1

4
E
[
(X − µX )4]

(
d 2g

dx 2

∣∣∣∣
µX

)2

(1.73b)

Notice that the second-order approximation to the variance
of Y involves knowledge of the third and fourth moments
of X , which are generally difficult to estimate. Often, in
practice, the second-order estimate of the mean is used
along with the first-order estimate of the variance, since

these both require no more than second-moment estimates
of X .

1.8.3.2 Arbitrary Function of Several Variables If Y
is an arbitrary function of several variables, Y = g(X1, X2,
. . . , Xn ), then the corresponding Taylor’s series expan-
sion is

Y = g(µX 1 , µX2 , . . . , µXn ) +
n∑

i=1

(Xi − µX i )
∂g

∂xi

∣∣∣∣
µ

+ 1

2

n∑
i=1

n∑
j=1

(Xi − µX i )(Xj − µX j )
∂2g

∂xi ∂xj

∣∣∣∣
µ

+ · · ·

(1.74)

where µ is the vector of means, µ = {µX 1 , µX2 , . . . , µXn }.
First-order approximations to the mean and variance of Y
are then

E [Y ] � g(µ) (1.75a)

Var [Y ] �
n∑

i=1

n∑
j=1

Cov
[
Xi , Xj

] [ ∂g

∂xi
· ∂g

∂xj

∣∣∣∣
µ

]
(1.75b)

Second-order approximations are

E [Y ] � g(µ) + 1

2

n∑
i=1

n∑
j=1

Cov
[
Xi , Xj

] ( ∂2g

∂xi ∂xj

∣∣∣∣
µ

)

(1.76a)

Var [Y ] = (involves quadruple sums and

fourth-order moments) (1.76b)

Example 1.41 The average degree of consolidation, C ,
under combined vertical and radial drainage is given by the
relationship (e.g., Craig, 2001)

C = R + V − RV (1.77)

where R is the average degree of consolidation due to
horizontal (radial) drainage only and V is the average de-
gree of consolidation due to vertical drainage only. From
observations of a particular experiment which was re-
peated many times, suppose that we have determined the
following:

µR = E [R] = 0.3, σ 2
R = Var [R] = 0.01

µV = E [V ] = 0.5, σ 2
V = Var [V ] = 0.04

Cov [R, V ] = 0.015, (ρRV = 0.75)
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Estimate the mean µC and variance σ 2
C of the average

degree of consolidation.

SOLUTION First, we will expand Eq. 1.77 in a Taylor’s
series about µ = (µR , µV ) as follows

C = (µR + µV − µRµV )

+ (R − µR)
∂C

∂R
|µ + 1

2
(R − µR)2 ∂2C

∂R2
|µ

+ (V − µV )
∂C

∂V
|µ + 1

2
(V − µV )2 ∂2C

∂V 2
|µ

+ (R − µR)(V − µV )
∂2C

∂R∂V
|µ + · · ·

Truncating the approximation at second-order terms and
taking the expectation result in a second-order approxima-
tion to the mean:

µC � (µR + µV − µRµV )

+ E [R − µR]
∂C

∂R
|µ + 1

2
E
[
(R − µR)2] ∂2C

∂R2
|µ

+ E [V − µV ]
∂C

∂V
|µ + 1

2
E
[
(V − µV )2] ∂2C

∂V 2
|µ

+ E [(R − µR)(V − µV )]
∂2C

∂R∂ V
|µ

= (µR + µV − µRµV )

+ 1

2
σ 2

R

∂2C

∂R2
|µ

+ 1

2
σ 2

V

∂2C

∂V 2
|µ

+ Cov [R, V ]
∂2C

∂R∂ V
|µ

The partial derivatives are

∂2C

∂R2
= 0,

∂2C

∂V 2
= 0,

∂2C

∂R∂ V
= −1

so that

µC = (µR + µV − µRµV ) − Cov [R, V ]

= 0.3 + 0.5 − (0.3)(0.5) − 0.015 = 0.635

Note that since derivatives higher than second order dis-
appear, this result is exact and could have been obtained
directly:

E [C ] = E [R + V − RV ] = µR + µV − E [RV ]

= µR + µV −
(

Cov [R, V ] + µRµV

)

= 0.3 + 0.5 − (0.015 + 0.3 × 0.5)

= 0.635

Can we also get an exact result for σ 2
C ? If so, we would

need to find

E
[
C 2] = E

[
(R + V − RV )2]

= E
[
R2 + V 2 + 2RV − 2R2V − 2RV 2 + R2V 2]

which involves third and fourth moments, which we do not
know. We must therefore approximate σ 2

C . The first-order
approximation involves just second-moment information,
which we were given, and appears as follows:

σ 2
C � Cov [R, R]

(
∂C

∂R

)2

|µ

+ 2 Cov [R, V ]

(
∂C

∂R

)(
∂C

∂V

)
|µ

+ Cov [V , V ]

(
∂C

∂V

)2

|µ
where

∂C

∂R
= 1 − V |µ = 1 − µV = 1 − 0.5 = 0.5

∂C

∂V
= 1 − R|µ = 1 − µR = 1 − 0.3 = 0.7

Recalling that Cov [R, R] = σ 2
R and Cov [V , V ] = σ 2

V ,
we get

σ 2
C � (0.01)(0.5)2 + 2(0.015)(0.5)(0.7)

+ (0.04)(0.7)2 = 0.0326

and σC = 0.18.

1.8.4 First-Order Second-Moment Method

The FOSM method is a relatively simple method of in-
cluding the effects of variability of input variables on a
resulting dependent variable. It is basically a formalized
methodology based on a first-order Taylor series expan-
sion, as discussed in the previous section. Since it is a
commonly used method, it is worth describing it explicitly
in this section.

The FOSM method uses a Taylor series expansion of
the function to be evaluated. This expansion is truncated
after the linear term (hence “first order”). The modified
expansion is then used, along with the first two moments
of the random variable(s), to determine the values of the
first two moments of the dependent variable (hence “second
moment”).

Due to truncation of the Taylor series after first-order
terms, the accuracy of the method deteriorates if second
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and higher derivatives of the function are significant. Fur-
thermore, the method takes no account of the form of the
probability density function describing the random vari-
ables, using only their mean and standard deviation. The
skewness (third moment) and higher moments are ignored.

Another limitation of the traditional FOSM method is
that explicit account of spatial correlation of the random
variable is not typically done. For example, the soil prop-
erties at two geotechnical sites could have identical mean
and standard deviations; however, at one site the properties
could vary rapidly from point to point (“low” spatial cor-
relation length) and at another they could vary gradually
(“high spatial correlation length”).

Consider a function f (X , Y ) of two random variables X
and Y . The Taylor series expansion of the function about
the mean values (µX , µY ), truncated after first-order terms
from Eq. 1.74, gives

f (X , Y ) ≈ f (µX , µY ) + (X − µX )
∂f

∂x
+ (Y − µY )

∂f

∂y
(1.78)

where derivatives are evaluated at (µX , µY ).
To a first order of accuracy, the expected value of the

function is given by

E
[
f (X , Y )

] ≈ f (E [X ] , E [Y ]) (1.79)

and the variance by

Var
[
f (X , Y )

] ≈ Var

[
(X − µX )

∂f

∂x
+ (Y − µY )

∂f

∂y

]

(1.80)
Hence,

Var
[
f (X , Y )

] ≈
(

∂f

∂x

)2

Var [X ] +
(

∂f

∂y

)2

Var [Y ]

+ 2
∂f

∂x

∂f

∂y
Cov [X , Y ] (1.81)

If X and Y are uncorrelated,

Var
[
f (X , Y )

] ≈
(

∂f

∂x

)2

Var [X ] +
(

∂f

∂y

)2

Var [Y ]

(1.82)
In general, for a function of n uncorrelated random

variables, the FOSM method tells us that

Var
[
f (X1, X2, . . . , Xn )

] ≈
n∑

i=1

(
∂f

∂xi

)2

Var [Xi ] (1.83)

where the first derivatives are evaluated at the mean values
(µX1

,µX2
, . . . , µXn ).

1.9 COMMON DISCRETE PROBABILITY
DISTRIBUTIONS

Many engineered systems have the same statistical be-
havior: We generally only need a handful of probability
distributions to characterize most naturally occurring phe-
nomena. In this section, the most common discrete distri-
bution will be reviewed (the next section looks at the most
comment continuous distributions). These are the Bernoulli
family of distributions, since they all derive from the first:

1. Bernoulli
2. Binomial
3. Geometric
4. Negative binomial
5. Poisson
6. Exponential
7. Gamma

The Poisson, exponential, and gamma are the continuous-
time analogs of the binomial, geometric, and negative bi-
nomial, respectively, arising when each instant in time is
viewed as an independent Bernoulli trial. In this section
we consider the discrete members of the Bernoulli fam-
ily, which are the first five members listed above, looking
briefly at the main characteristics of each of these distri-
butions and describing how they are most commonly used
in practice. Included with the statistical properties of each
distribution is the maximum-likelihood estimate (MLE) of
their parameters. We do not formally cover the maximum-
likelihood method until Section 5.2.1.2, but we present
these results along with their distributions to keep every-
thing together.

For a more complete description of these distributions,
the interested reader should consult an introductory text-
book on probability and statistics, such as Law and Kelton
(1991) or Devore (2003).

1.9.1 Bernoulli Trials

All of the discrete distributions considered in this section
(and the first two in the next section) are derived from the
idea of Bernoulli trials. A Bernoulli trial is an experiment
which has only two possible outcomes, success or failure
(or [1, 0], or [true, false], or [< 5, ≥ 5], etc). If a sequence
of Bernoulli trials are mutually independent with constant
(stationary) probability p of success, then the sequence is
called a Bernoulli process. There are many examples of
Bernoulli processes: One might model the failures of earth
dams using a Bernoulli process. The success or failure of
each of a sequence of bids made by a company might be a
Bernoulli process. The failure of piles to support the load
applied on them might be a Bernoulli process if it can
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be assumed that the piles fail (or survive) independently
and with constant probability. However, if the failure of
one pile is dependent on the failure of adjacent piles, as
might be the case if the soil structures are similar and
load transfer takes place, the Bernoulli model may not be
appropriate and a more complex, “dependent,” model may
be required, for example, random field modeling of the soil
and finite-element analysis of the structural response within
a Monte Carlo simulation. Evidently, when we depart from
satisfying the assumptions underlying the simple models,
such as those required for the Bernoulli model, the required
models rapidly become very much more complicated. In
some cases, applying the simple model to the more complex
problem will yield a ballpark estimate, or at least a bound
on the probability, and so it may be appropriate to proceed
with a Bernoulli model taking care to treat the results as
approximate. The degree of approximation depends very
much on the degree of dependence between “trials” and
the “stationarity” of the probability of “success,” p.

If we let

Xj =
{

1 if the j th trial results in a success
0 if the j th trial results in a failure

(1.84)

then the Bernoulli distribution, or probability mass function,
is given by

P
[
Xj = 1

] = p (1.85)

P
[
Xj = 0

] = 1 − p = q

for all j = 1, 2, . . . . Note that we commonly denote 1 − p
as q for simplicity.

For a single Bernoulli trial the following results hold:

E
[
Xj
] =

1∑
i=0

i · P
[
Xj = i

]

= 0(1 − p) + 1(p) = p (1.86a)

E
[
X 2

j

]
=

1∑
i=0

i 2 · P
[
Xj = i

] = 02(1 − p) + 12(p) = p

Var
[
Xj
] = E

[
X 2

j

]
− E2[Xj

] = p − p2 = pq (1.86b)

For a sequence of trials, the assumption of independence
between the trials means that

P [X1 = x1 ∩ X2 = x2 ∩ · · · ∩ Xn = xn ]

= P [X1 = x1] P [X2 = x2] · · · P [Xn = xn ] (1.87)

The MLE of p is just the average of the set of observa-
tions, x1, x2, . . . , xn , of X ,

p̂ = 1

n

n∑
i=1

xi (1.88)

Notice that we use a hat to indicate that this is just an
estimate of the true parameter p. Since the next set of
observations will likely give a different value for p̂, we
see that p̂ is actually a random variable itself, rather than
the true population parameter, which is nonrandom. The
mean and variance of the sequence of p̂ can be found by
considering the random P̂ ,

P̂ = 1

n

n∑
i=1

Xi (1.89)

obtained prior to observing the results of our Bernoulli
trials. We get

E
[
P̂
] = E

[
1

n

n∑
i=1

Xi

]

= 1

n

n∑
i=1

E [Xi ] = 1

n
(np)

= p (1.90)

which means that the estimator given by Eq. 1.88 is
unbiased (that is, the estimator is “aimed” at its desired
target on average).

The estimator variance is

Var
[
P̂
] = Var

[
1

n

n∑
i=1

Xi

]

= 1

n2

n∑
i=1

Var [Xi ] = 1

n2
(npq)

= pq

n
(1.91)

where we made use of the fact that the variance of a sum
is the sum of the variances if the random variables are
uncorrelated. We are assuming that, since this is a Bernoulli
process, not only are the random variables uncorrelated,
but also they are completely independent (the probability
of one occurring is not affected by the probability of other
occurrences).

Note that the estimator variance depends on the true
value of p on the right-hand-side of Eq. 1.91. Since we
are estimating p, we obviously do not know the true value.
The solution is to use our estimate of p to estimate its
variance, so that

σ 2
P̂

� p̂q̂

n
(1.92)

Once we have determined the estimator variance, we can
compute its standard error, which is commonly taken to
be equal to the standard deviation and which gives an
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indication of how accurate our estimate is,

σP̂ �
√

p̂q̂

n
(1.93)

For example, if p̂ = 0.01, then we would prefer σP̂ to be
quite a bit smaller than 0.01 and we can adjust the number
of observations n to achieve this goal.

In Part 2 of this book, we will be estimating the probabil-
ity of failure, pf , of various classic geotechnical problems
using a technique called Monte Carlo simulation. The stan-
dard error given by Eq. 1.93 will allow us to estimate the
accuracy of our failure probability estimates, assuming that
each “simulation” results in an independent failure/success
trial.

Applications The classic Bernoulli trial is the toss of a
coin, but many other experiments can lead to Bernoulli
trials under the above conditions. Consider the following
examples:

1. Soil anchors at a particular site have a 1% probability
of pulling out. When an anchor is examined, it is
classified as a success if it has not pulled out or a
failure if it has. This is a Bernoulli trial with p = 0.99
if the anchors fail independently and if the probability
of success remains constant from trial to trial.

2. Suppose that each sample of soil at a site has a
10% chance of containing significant amounts of
chromium. A sample is analyzed and classified as a
success if it does not contain significant amounts of
chromium and a failure if it does. This is a Bernoulli
trial with p = 0.90 if the samples are independent and
if the probability of success remains constant from
trial to trial.

3. A highway through a certain mountain range passes
below a series of steep rock slopes. It is estimated that
each rock slope has a 2% probability of failure (re-
sulting in some amount of rock blocking the highway)
over the next 10 years. If we define each rock slope
as a trial which is a success if it does not fail in the
next 10 years, then this can be modeled as a Bernoulli
trial with p = 0.98 (assuming rock slopes fail inde-
pendently, which might not be a good assumption if
they generally fail due to, e.g., earthquakes).

1.9.2 Binomial Distribution

Let Nn be the number of successes in n Bernoulli trials,
each with probability of success p. Then Nn follows a
binomial distribution where

P [Nn = k ] =
(

n

k

)
pk qn−k , k = 0, 1, 2, . . . , n (1.94)

The quantity pk qn−k is the probability of obtaining k
successes and n − k failures in n trials and

(n
k

)
is the

number of possible ways of arranging the k successes over
the n trials.

For example, consider eight trials which can be repre-
sented as a series of eight dashes:

One possible realization of three successes in eight trials
might be

F S F F S S F F

where successes are shown as S and failures as F. Another
possible realization might be

S F F S F F F S

and so on. Clearly these involve three successes, which have
probability p3, and five failures, which have probability q5.
Combining these two probabilities with the fact that three
successes in eight trials can be arranged in

(8
3

)
different

ways leads to

P [N8 = 3] =
(

8

3

)
p3q8−3

which generalizes to the binomial distribution for n trials
and k successes given above. See Figure 1.20.

Properties In the following proofs, we make use of the
binomial theorem, which states that

(α + β)n =
n∑

i=0

(
n

i

)
αi βn−i =

n∑
i=0

n!

i !(n − i )!
αi βn−i

(1.95)

0 1 2 3 4 5 6 7 8 9 10

k

0
0.

1
0.

2
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3

P[
N

10
 =

 k
]

Figure 1.20 Binomial distribution for n = 10 and p = 0.4.
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The expected number of successes in n trials can be
found directly from the definition of the discrete-case ex-
pectation,

E [Nn ] =
n∑

i=0

i

(
n

i

)
pi qn−i

=
n∑

i=0

i

(
n!

i !(n − i )!

)
pi qn−i

= np
n∑

i=1

(n − 1)!

(i − 1)!(n − i )!
pi−1qn−i

= np
(n−1)∑
i=0

(n − 1)!

i !((n − 1) − i )!
pi q (n−1)−i

= np(p + q)n−1

= np (1.96)

since p + q = 1.
Alternatively, we could write

E [Nn ] = E [X1 + X2 + · · · + Xn ]

= E [X1] + E [X2] + · · · + E [Xn ]

= np

where Xi is a Bernoulli random variable having expecta-
tion p.

To find the variance of Nn , we first need to find

E
[
N 2

n

] =
n∑

i=0

i 2
(

n

i

)
pi qn−i =

n∑
i=1

i 2
(

n!

i !(n − i )!

)
pi qn−i

= np
n∑

i=1

i

(
(n − 1)!

(i − 1)!(n − i )!

)
pi−1qn−i

= np
n−1∑
i=0

(i + 1)

(
(n − 1)!

i !(n − 1 − i )!

)
pi qn−1−i

= np

{
n−1∑
i=0

i

(
(n − 1)!

i !(n − 1 − i )!

)
pi qn−1−i

+
n−1∑
i=0

(
(n − 1)!

i !(n − 1 − i )!

)
pi qn−1−i

}

= np {(n − 1)p + 1}
= npq + n2p2

where for the first sum we made use of the result given by
Eq. 1.96. The variance is thus

Var [Nn ] = E
[
N 2

n

]− E2[Nn ] = npq + n2p2 − n2p2 = npq
(1.97)

The same result could have been obtained much more
easily by considering the variance of a sum of independent
random variables, since in this case the variance of a sum
is the sum of the variances:

Var [Nn ] = Var

[
n∑

i=1

Xi

]
=

n∑
i=1

Var Xi = npq

The MLE of p is

p̂ = N̄n

n
(1.98)

if n is known, where N̄n is the average of the observed
values of Nn . If both n and p are unknown, see Law and
Kelton (2000) for the MLE. This estimator is precisely
the same as that given by Eq. 1.89 since Nn =∑n

i=1 Xi ,
and so its mean and standard error are discussed in the
previous section (with n replaced by the total number of
trials making up N̄n ).

Example 1.42 A manufacturer of geotextile sheets wishes
to control the quality of its product by rejecting any lot in
which the proportion of textile sheets having unacceptably
low tensile strength appears to be too high. To this end,
out of each large lot (1000 sheets), 25 will be selected and
tested. If 5 or more of these sheets have an unacceptably
low tensile strength, the entire lot will be rejected. What is
the probability that a lot will be rejected if

1. 5% of the sheets in the lot have unacceptably low
tensile strength?

2. 10% of the sheets in the lot have unacceptably low
tensile strength?

SOLUTION

1. Let N25 be the number of sheets that have unaccept-
ably low tensile strengths out of the 25 sampled.
If the sheets fail the tension test independently with
constant probability of failure, then N25 follows a bi-
nomial distribution with p = 0.05. We note that since
the number of low-strength sheets in a lot is fixed,
the probability of failure will change as sheets are
tested. For example, if 50 out of 1000 sheets are low
strength, then the probability of failure of the first
sheet tested is 0.05. The probability of failure of the
second sheet tested is either 49/999 or 50/999, de-
pending on whether the first sheet tested was low
strength or not. However, if the lot size (1000 in this
case) is large relative to the number selected for test-
ing (25 in this case), then the approximation that p
is constant is reasonable and will lead to fairly accu-
rate results. We will make this assumption here, so
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that

P [N25 ≥ 5] = 1 − P [N25 ≤ 4]

= 1 − P [N25 = 0] − P [N25 = 1]

− P [N25 = 2] − P [N25 = 3]

− P [N25 = 4]

= 1 −
(

25

0

)
(0.05)0(0.95)25

−
(

25

1

)
(0.05)1(0.95)24

−
(

25

2

)
(0.05)2(0.95)23

−
(

25

3

)
(0.05)3(0.95)22

−
(

25

4

)
(0.05)4(0.95)21

= 0.00716

Thus, there is a very small probability of rejecting a
lot where 5% of the sheets have an unacceptably low
tensile strength.

2. Let N25 be the number of sheets that have unaccept-
ably low tensile strengths out of the 25 sampled.
Then N25 follows a binomial distribution with p =
0.10 (we will again assume sheets fail the test inde-
pendently and that the probability of this happening
remains constant from sheet to sheet):

P [N25 ≥ 5] = 1 − P [N25 ≤ 4]

= 1 − P [N25 = 0] − P [N25 = 1]

− P [N25 = 2] − P [N25 = 3]

− P [N25 = 4]

= 1 −
(

25

0

)
(0.10)0(0.90)25

−
(

25

1

)
(0.10)1(0.90)24

−
(

25

2

)
(0.10)2(0.90)23

−
(

25

3

)
(0.10)3(0.90)22

−
(

25

4

)
(0.10)4(0.90)21

= 0.098

There is now a reasonably high probability (about
10%) that a lot will be rejected if 10% of the sheets
have an unacceptably low tensile strength.

1.9.3 Geometric Distribution

Consider a Bernoulli process in which T1 is the number of
trials required to achieve the first success. Thus, if T1 = 3,
then we must have had two failures followed by a success
(the value of T1 fully prescribes the sequence of trials). This
has probability

P [T1 = 3] = P [{failure, failure, success}] = q2p

In general

P [T1 = k ] = qk−1p, k = 1, 2, . . . (1.99)

Note that this is a valid probability mass function since
∞∑

k=1

qk−1p = p
∞∑

k=0

qk = p

1 − q
= 1

where we used the fact that for any α < 1 (see, e.g.,
Gradshteyn and Ryzhik, 1980)

∞∑
k=0

αk = 1

1 − α
(1.100)

As an example, in terms of the actual sequence of trials,
the event that the first success occurs on the eighth trial
appears as

F F F F F F F S

That is, the single success always occurs on the last
trial. If T1 = 8, then we have had seven failures, having
probability q7, and one success, having probability p. Thus

P [T1 = 8] = q7p

Generalizing this for T1 = k leads to the geometric distri-
bution shown in Figure 1.21.

Because trials are assumed independent, the geometric
distribution also models the number of trials between suc-
cesses in a Bernoulli process. That is, suppose we observe
the result of the Bernoulli process at trial number 1032.
We will observe either a success or failure, but whichever
is observed, it is now known. We can then ask a question
such as: What is the probability that the next success occurs
on trial 1040? To determine this, we start with trial 1032.
Because we have observed that there is no uncertainty asso-
ciated with trial 1032, it does not enter into the probability
problem. However, trials 1033, 1034, . . . , 1040 are un-
known. We are asking for the probability that trial 1040 is
the first success after 1032. In order for this event to occur,
trials 1033–1039 must be failures. Thus, the eight trials,
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Figure 1.21 Geometric distribution for p = 0.4.

1033–1040, must involve seven failures (q7) followed by
one success (p). The required probability is just the product

P [T1 = 8] = q7p

What this means is that the geometric distribution, by
virtue of the independence between trials, is memoryless.
It does not matter when you start looking at a Bernoulli
process, the number of trials to the next success is given
by the geometric distribution (and is independent of the trial
number).

Properties The mean of T1, which is also sometimes
referred to as the return period or the mean recurrence time,
is determined as

E [T1] =
∞∑

k=1

kpqk−1 = p
∞∑

k=1

kqk−1

= p
d

dq

∞∑
k=1

qk = p
d

dq

(
q

1 − q

)

= p

(
1

(1 − q)2

)
= 1

p
(1.101)

where we used Eq. 1.100 to evaluate the final sum above.
We will use the second to last sum in the following
proof.

The variance of T1 is obtained from Var [T1] = E
[
T 2

1

]−
E2[T1] as

E
[
T 2

1

] =
∞∑

k=1

k 2pqk−1 = p
∞∑

k=1

k 2qk−1 = p
d

dq

∞∑
k=1

kqk

= p
d

dq

(
q

(1 − q)2

)

= 1

p
+ 2q

p2

Thus
Var [T1] = E

[
T 2

1

]− E2[T1]

= 1

p
+ 2q

p2
− 1

p2

= q

p2
(1.102)

As an aside, in engineering problems, we often reverse
the meaning of success and failure and use the geometric
distribution to model time to failure, where time is mea-
sured in discrete steps (trials).

The MLE of p is

p̂ = n∑n
i=1 ti

= 1

t̄
(1.103)

where t1, t2, . . . , tn are n independent observations of T1.

Example 1.43 Recall the previous example where a man-
ufacturer of geotextile sheets wishes to control the quality
of its product by rejecting any lot in which the proportion
of textile sheets having unacceptably low tensile strength
appears to be too high. Suppose now that the sampling
scheme is changed and the manufacturer decides to only
sample geotextile sheets until one is encountered having an
unacceptably low tensile strength. If this occurs on or be-
fore the eighth sheet tested, the entire lot will be rejected.
What is the probability that a lot will be rejected if

1. 5% of the sheets in the lot have unacceptably low
tensile strengths?

2. 10% of the sheets in the lot have unacceptably low
tensile strengths?

If having 5% of the sheets in a lot with unacceptably
low tensile strength is detrimental to the manufacturer’s
image and such a lot should not be sent to market, it
appears that this control approach would work better than
that of Example 1.39. However, if the manufacturer is more
concerned with profit, this control approach is definitely
not to their advantage. What might be the disadvantage of
this approach from the point of view of the manufacturer?
Explain with the help of a numerical example.

SOLUTION

1. Let T1 be the trial number of the first sheet to have
an unacceptably low tensile strength. Then, assuming
independence between sheets and constant probability
of success, T1 follows a geometric distribution with
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p = 0.05 and

P [T1 ≤ 8] = P [T1 = 1] + P [T1 = 2]

+ · · · + P [T1 = 7] + P [T1 = 8]

= 0.05 + 0.95(0.05)

+ · · · + 0.956(0.05) + 0.957(0.05)

= 0.337

2. Let T1 be the trial number of the first sheet to have
an unacceptably low tensile strength. Then, under the
same assumptions as in item 1, T1 follows a geometric
distribution with p = 0.10 and

P [T1 ≤ 8] = P [T1 = 1] + P [T1 = 2]

+ · · · + P [T1 = 7] + P [T1 = 8]

= 0.10 + 0.90(0.10)

+ · · · + 0.906(0.10) + 0.907(0.10)

= 0.570

3. The problem with this approach, from the point of
view of the manufacturer, is that a significant pro-
portion of lots with less than 5% unacceptably low-
strength sheets would be rejected (e.g., about a third).
In addition, consider what happens under this quality
control approach when only 2% of the sheets in the
lot have unacceptably low tensile strength. (We will
assume here that this is actually fairly good quality
control, although, in practice, the acceptable risks can
certainly vary.)
Let T1 be the trial number of the first sheet to have an
unacceptably low tensile strength. Then T1 follows a
geometric distribution, under the above assumptions,
with p = 0.02 and

P [T1 ≤ 8] = P [T1 = 1] + P [T1 = 2]

+ · · · + P [T1 = 7] + P [T1 = 8]

= 0.02 + 0.98(0.02) + · · · + 0.986(0.02)

+ 0.987(0.02)

= 0.149

so that there is still approximately a 15% chance
that such a “good” lot would be rejected. This test
does not sufficiently “resolve” the critical fraction of
defectives.

1.9.4 Negative Binomial Distribution

Suppose we wish to know the number of trials (time) in a
Bernoulli process until the mth success. Letting Tm be the

number of trials until the mth success,

P [Tm = k ] =
(

k − 1

m − 1

)
pm qk−m for k = m , m + 1, . . .

(1.104)
which is the negative binomial distribution. Whereas a bino-
mial distributed random variable is the number of successes
in a fixed number of trials, a negative binomial distributed
random variable is the number of trials for a fixed number
of successes. We note that the negative binomial is also
often used to model the number of failures before the mth
success, which results in a somewhat different distribution.
We prefer the interpretation that the negative binomial dis-
tribution governs the number of trials until the mth success
because it is a natural generalization of the geometric dis-
tribution and because it is then a discrete analog of the
gamma distribution considered in Section 1.10.2.

The name of the negative binomial distribution arises
from the negative binomial series

(1 − q)−m =
∞∑

k=m

(
k − 1

m − 1

)
qk−m (1.105)

which converges for |q | < 1. This series can be used to
show that the negative binomial distribution is a valid
distribution, since

∞∑
k=m

P [Tm = k ] =
∞∑

k=m

(
k − 1

m − 1

)
pm qk−m

= pm
∞∑

k=m

(
k − 1

m − 1

)
qk−m

= pm (1 − q)−m

= 1 (1.106)

as expected.
We see that the geometric distribution is a special case of

the negative binomial distribution with m = 1. The negative
binomial distribution is often used to model ‘time to the
mth failure, where time is measured in discrete steps, or
trials. Consider one possible realization which has the third
success on the eighth trial:

F S S F F F F S

Another possible realization might be

F F F S F S F S

In both cases, the number of successes is 3, having
probability p3, and the number of failures is 5, having
probability q5. In terms of ordering, if T3 = 8, then the third
success must occur on the eighth trial (as shown above).
Thus, the only other uncertainty is the ordering of the other
two successes. This can occur in

(7
2

)
ways. The probability
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that the third success occurs on the eighth trial is therefore
given by

P [T3 = 8] =
(

7

2

)
p3q5

Generalizing this for m successes and k trials leads to the
negative binomial distribution shown in Eq. 1.104.

Properties The mean is determined as

E [Tm ] =
∞∑

j=m

j P
[
Tm = j

] =
∞∑

j=m

j

(
j − 1

m − 1

)
pm qj−m

=
∞∑

j=m

j

(
(j − 1)!

(m − 1)!(j − m)!

)
pm qj−m

= mpm
∞∑

j=m

(
j !

m!(j − m)!

)
qj−m

= mpm
[

1 + (m + 1)q + (m + 2)(m + 1)

2!
q2

+ (m + 3)(m + 2)(m + 1)

3!
q3 + · · ·

]

= mpm

(1 − q)m+1

= m

p
(1.107)

which is just m times the mean of a single geometrically
distributed random variable T1, as expected, since the
number of trials between successes follows a geometric
distribution. In fact, this observation leads to the following
alternative representation of Tm ,

Tm = T1,1 + T1,2 + · · · + T1,m (1.108)

where T1,1 is the number of trials until the first success, T1,2

is the number of trials after the first success until the sec-
ond success, and so on. That is, the T1,i terms are just the
times between successes. Since all trials are independent,
each of the T1,i terms will be independent geometrically
distributed random variables, all having common probabil-
ity of success, p. This leads to the following much simpler
computation:

E [Tm ] = E
[
T1,1
]+ E

[
T1,2
]+ · · · + E

[
T1,m

] = m

p
(1.109)

since E
[
T1,i
] = 1/p for all i = 1, 2, . . . , m . The mean in

Figure 1.22 is 3/0.4 = 7.5.
To get the variance, Var [Tm ], we again use Eq. 1.108.

Due to independence of the T1,i terms, the variance of the
sum is the sum of the variances,

Var [Tm ] = Var
[
T1,1
]+ Var

[
T1,2
]+ · · · + Var

[
T1,m

]
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Figure 1.22 Negative binomial distribution for T3 (i.e., m = 3)
and p = 0.4.

= m Var [T1]

= mq

p2
(1.110)

which is just m times the variance of a single geometrically
distributed random variable T1, as expected.

If m is known, then the MLE of p is

p̂ = mn∑n
i=1 xi

= m

x̄
(1.111)

where x1, x2, . . . , xn are n independent observations of Tm .
If m is unknown, see Law and Kelton (2000), although
beware of the fact that Law and Kelton define their negative
binomial as governing the number of failures prior to the
mth success, not as the number of trials until the mth
success, as is done here.

Example 1.44 Consider again the problem of the ten-
sile strength of geotextile sheets of the previous two
examples. If 10% of the sheets have unacceptably low ten-
sile strengths, what is the probability that on the next series
of tests the third sheet to fail the tensile test is the eighth
sheet tested?

SOLUTION Let T3 be the number of sheets tested when
the third sheet to fail the tensile test is encountered
(note, this includes the sheet being tested). Then we are
looking for

P [T3 = 8] =
(

7

2

)
(0.10)3(0.9)8−3 = 0.0124
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1.9.5 Poisson Distribution

If we now allow every instant in time (or space) to be
a Bernoulli trial, we get a family of three distributions:
the Poisson distribution, the exponential distribution, and
the gamma distribution. The latter two are continuous
distributions governing the time between trial successes and
are discussed in the next section. The Poisson distribution
is analogous to the binomial distribution: It is derived from
the binomial distribution by letting the number of trials
go to infinity (one trial for each instant) and governs the
number of successes in some time interval t . To see how
the Poisson distribution is derived, consider the following
example.

Example 1.45 Derivation from Binomial Distribution
Suppose that it is known that along a certain long highway
stretch an average of 1 slope subsidence occurs per year.
What is the probability that exactly 10 slope subsidences
will occur in the next 10-year interval?

SOLUTION If we attempt to model this using the bino-
mial distribution, we must first divide time up into a series
of intervals within each of which a slope can either subside
(success) or not (failure). As a starting point, let us assume
that at most one slope can subside in any half-year interval.
We make this assumption because a Bernoulli trial can only
have two outcomes, and if we wish to be able to count the
number of subsidences, we must make these two possible
outcomes either 1 (a single slope subsides) or 0 (no slopes
subside). If our trials are a half-year in duration, then we
have 20 trials in 10 years and the probability of a success (a
slope subsides) in each trial is the rate per year divided by
the number of trials per year: p = 1

2 . In our 10-year interval
the probability we are looking for is

P
[
10 subsidences in 10 years

]

�
(

20

10

)
(0.5)10(0.5)20−10 = 0.176

Of course, we know that two or more slope subsidences
could easily occur within any half-year interval. An im-
proved solution is obtained by using a shorter trial interval.
If 2-month intervals were to be used then we now have six
trials per year and the probability of a slope subsidence in
any interval becomes p = 1

6 . The number of trials in 10
years (120 months) becomes n = 120

2 = 60

P
[
10 subsidences in 10 years

]

�
(

60

10

)(
1

6

)10 (5

6

)50

= 0.137

which is quite a bit more accurate.

In general, if time interval t is divided into n intervals
and the mean arrival rate is λ, then

p = λt

n
(1.112)

and if Nt is the number of subsidences in t years,

P [Nt = k ] =
(

n

k

)(
λt

n

)k (
1 − λt

n

)n−k

where λt is the mean number of subsidences (“arrivals”)
occurring in time interval t . If arrivals are instantaneous
(so that no more than one can occur in any instant with
probability 1) and can occur at any instant in time, so that
each instant in time becomes a Bernoulli trial, then

P [Nt = k ] = lim
n→∞

(
n

k

)(
λt

n

)k (
1 − λt

n

)n−k

= lim
n→∞

[{
n

n
· n − 1

n
· · · n − k + 1

n

}

× (λt)k

k !

(
1 − λt

n

)n (
1 − λt

n

)−k
]

but since

lim
n→∞

{
n

n
· n − 1

n
· · · n − k + 1

n

}
= 1

lim
n→∞

(
1 − λt

n

)−k

= 1

lim
n→∞

(
1 − λt

n

)n

= e−λt

then our distribution simplifies to

P [Nt = k ] = (λt)k

k !
e−λt

which is the Poisson distribution. In other words, the
Poisson distribution is a limiting case of the binomial
distribution, obtained when the number of trials goes to
infinity, one for each instant in time, and p is replaced by
the mean rate λ.

For our problem λ = 1 subsidence per year and t = 10
years. The probability of exactly 10 subsidences in 10 years
using the Poisson distribution is

P [N10 = 10] = (10)10

10!
e−10 = 0.125

and we see that the binomial model using 2-month trial
intervals gives a reasonably close result (with a relative
error of less than 10%).

We note that the Poisson model assumes independence
between arrivals. In the subsidence problem mentioned
above, there may be significant dependence between oc-
currences, if, for example, they are initiated by spatially
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extended rainfall or freeze/thaw action. When dependence
exists between trials and some common outside influence
(e.g., weather), the model is complicated by the fact that
the rate of occurrence becomes dependent on time. One
possible solution is to apply different Poisson models for
different time periods (e.g., wet season vs. dry season) or
to investigate nonstationary Poisson models.

The Poisson distribution is often used to model arrival
processes. We shall see in Chapter 4 that it is also useful
to model “excursion” processes, for example, the num-
ber of weak pockets in a soil mass. For simplicity, we
will talk about Poisson processes in time, but recognize
that they can be equivalently applied over space simply
by replacing t with a distance (or area, volume, etc.)
measure.

For any nonzero time interval we have an infinite number
of Bernoulli trials, since any time interval is made up of an
infinite number of instants. Thus, the probability of success,
p, in any one instant must go to zero (see Eq. 1.112);
otherwise we would have an infinite number of successes in
each time interval (np → ∞ as n → ∞). This means that
we must abandon the probability of success, p, in favor of a
mean rate of success, λ, which quantifies the mean number
of successes per unit time.

The basic assumption on which the Poisson distribution
rests is that each instant in time is a Bernoulli trial. Since
Bernoulli trials are independent and have constant probabil-
ity of success and only two possible outcomes, the Poisson
process enjoys the following properties:

1. Successes (arrivals) are independently and can occur
at any instant in time.

2. The mean arrival rate is constant.
3. Waiting times between arrivals are independent and

exponentially distributed.
4. The time to the k th arrival is gamma distributed.

In fact, if the first two or either of the last two properties
are known to hold for a sequence of arrivals, then the arrival
process belongs to the Poisson family.

As in the previous example, we will define Nt to be the
number of successes (arrivals or “occurrences”) occurring
in time t . If the above assumptions hold, then Nt is governed
by the following distribution:

P [Nt = k ] = (λt)k

k !
e−λt , k = 0, 1, 2, . . . (1.113)

where λ is the mean rate of occurrence (λ has units of re-
ciprocal time). This distribution is illustrated in Figure 1.23
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Figure 1.23 Poisson distribution for t = 4.5 and λ = 0.9.

Properties The mean is determined as

E [Nt ] =
∞∑

j=0

j
(λt)j

j !
e−λt = λte−λt

∞∑
j=1

(λt)j−1

(j − 1)!

= λte−λt
∞∑

j=0

(λt)j

j !

= λt (1.114)

The mean of the distribution shown in Figure 1.23 is
E [N4.5] = 0.9(4.5) = 4.05. To determine the variance, we
first need to find

E
[
N 2

t

] =
∞∑

j=0

j 2 (λt) j

j !
e−λt = λte−λt

∞∑
j=0

(j + 1)
(λt) j

j !

= λte−λt


 ∞∑

j=0

j
(λt)j

j !
+

∞∑
j=0

(λt)j

j !




= (λt)2 + (λt)

Thus

Var [Nt ] = E
[
N 2

t

]− E2[Nt ] = λt (1.115)

That is, the mean and variance of a Poisson process are the
same.

The Poisson distribution is also often written in terms of
the single parameter ν = λt ,

P [Nt = k ] = νk

k !
e−ν , k = 0, 1, 2, . . . (1.116)
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If x1, x2, . . . , xn are n independent observations of Nt , then
the MLE of ν is

ν̂ = 1

n

n∑
i=1

xi = x̄ (1.117)

If t is known, then λ̂ = ν̂/t .

Example 1.46 Many research papers suggest that the
arrivals of earthquakes follow a Poisson process over time.
Suppose that the mean time between earthquakes is 50 years
at a particular location.

1. How many earthquakes can be expected to occur
during a 100-year period?

2. What is the probability that more than three earth-
quakes occur in a 100-year period?

3. How long must the time period be so that the proba-
bility that no earthquakes occur during that period is
at most 0.1?

4. Suppose that 50 years pass without any earthquakes
occurring. What is the probability that another 50
years will pass without any earthquakes occurring?

SOLUTION

1. Let Nt be the number of earthquakes occurring over
t years. Then

P [Nt = k ] = (λt)k

k !
e−λt

where λ = 1
50 = 0.02 per year is the mean rate of oc-

currence of earthquakes and t = 100 years. Using this,
we have E [N100] = 100λ = 100(0.02) = 2. Thus, we
can expect two earthquakes to occur during a 100-
year period, which makes sense since the mean time
between earthquakes is 50 years.

2. Since λt = 0.02 × 100 = 2, we have

P [N100 > 3] = 1 − P [N100 ≤ 3]

= 1 −
(

P [N100 = 0] + P [N100 = 1]

+ P [N100 = 2] + P [N100 = 3]
)

= 1 − e−2
[

1 + 2 + 22

2
+ 23

3!

]

= 0.143

3. Let Nt be the number of occurrences over the time
interval t . We want to find t such that P [Nt = 0] =
e−λt ≤ 0.1. This gives us t ≥ − ln(0.1)/λ = − ln(0.1)/
0.02 = 115 years.

4. Let N50 be the number of occurrences over the first
50 years and N100 be the number of occurrences over
the first 100 years. Then, we have

P [N100 = 0 | N50 = 0] = P [N100 = 0 ∩ N50 = 0]

P [N50 = 0]

= P [N100 = 0]

P [N50 = 0]
= e−100λ

e−50λ

= e−50λ = e−1

= 0.368

We note that due to the memorylessness of the Poisson
process (which is in turn due to the independence
between trials) this result is identical to the probability
of having no earthquakes in any 50-year period,

P [N50 = 0] = e−50λ = e−1 = 0.368

Now consider a Poisson process with arrival rate λ.
If arrivals are retained randomly from this process with
probability p and rejected with probability q = 1 − p, then
the resulting process of retained arrivals is also Poisson
with arrival rate pλ [see Cinlar (1975) for a proof]. This is
illustrated by the following example.

Example 1.47 Earthquakes in a particular region occur
as a Poisson process with mean rate λ = 3 per year. In
addition, it has been observed that every third earthquake,
on average, has magnitude exceeding 5.

(a) What is the probability of having two or more earth-
quakes of magnitude in excess of 5 in the next one
year?

(b) What is the probability that the next earthquake of
magnitude in excess of 5 will occur within the next
2 months?

SOLUTION We are told that earthquakes occur as a
Poisson process with λ = 3 per year. This means that an
earthquake can occur at any instant in time but that on
average there are three “successes” each year. We are also
told that on average one in three of these earthquakes has
a higher magnitude (i.e., exceeding 5). The “on average”
part of this statement implies that each earthquake that does
occur has a 1

3 chance of having a higher magnitude. The
mean rate of occurrence of higher magnitude earthquakes
is thus λ′ = 1 per year.

(a) Let Nt be the number of higher magnitude earthquakes
which occur in t years. Under the above conditions,
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Nt follows a Poisson distribution and the desired prob-
ability is

P [N1 ≥ 2] = 1 − P [N1 = 0] − P [N1 = 1]

= 1 − e−λ′t [1 + λ′t]

= 1 − e−1(1)[1 + 1(1)]

= 0.2643

(b) The number of higher magnitude earthquakes which
might occur in the next two months is N1/6. The
question is “What is the probability that one or more
higher magnitude earthquakes will occur in the next
two months?” which can be solved as follows:

P
[
N1/6 ≥ 1

] = 1 − P
[
N1/6 = 0

] = 1 − e−λ′t

= 1 − e−1/6 = 0.1535

As mentioned above, and as we will see more of shortly,
the time to the next occurrence of a Poisson process
is exponentially distributed (compare the above re-
sult to the exponential distribution presented in Section
1.10.1).

The previous example seems to suggest that the distribu-
tion of every third occurrence is also Poisson, which is not
correct. This raises a rather subtle issue, but the distinction
lies between whether we are selecting every third occur-
rence or whether we are selecting occurrences randomly
with probability 1

3 of success. Here are the rules and the
reasoning for a process in which we are selecting every k th
occurrence on average or deterministically:

1. If we are selecting every k th occurrence on average,
and so randomly (i.e., the probability of selecting an
occurrence is 1/k ), then the time until the next selec-
tion follows an exponential distribution (see Section
1.10.1) with mean rate λ′ = λ/k , where λ is the mean
occurrence rate of the original process. In this case,
the likelihood of having success in the next instant is
1/k , and the likelihood decreases exponentially there-
after. The resulting process is a Poisson process.

2. If we are selecting every k th occurrence nonrandomly
(e.g., every k th customer arriving at a website is asked
to fill out a survey), then the time between selections
follows a gamma distribution (see Section 1.10.2).
The main implication of having to have exactly k − 1
occurrences of the original process before a selection
is that the likelihood of a selection in the next k − 1
instants is zero. In other words, we expect the gamma
distribution to start at zero when t = 0. The resulting
process is not Poisson.

In the above the word “likelihood” is used loosely to denote
the relative probability of an occurrence in a vanishingly
small time interval (i.e., an instant), dp/dt .

1.10 COMMON CONTINUOUS PROBABILITY
DISTRIBUTIONS

Many naturally occurring and continuous random phenom-
ena can be well modeled by a relatively small number of
distributions. The following six continuous distributions are
particularly common in engineering applications:

1. Exponential
2. Gamma
3. Uniform
4. Weibull
5. Rayleigh
6. Normal
7. Lognormal

As mentioned in the previous section, the exponential
and gamma distributions are members of the Bernoulli
family, deriving from the idea that each instant in time
constitutes an independent Bernoulli trial. These are the
continuous-time analogs of the geometric and negative
binomial distributions.

Aside from the above, there are certainly other contin-
uous distributions which may be considered. Distributions
which involve more than two parameters are generally dif-
ficult to justify because we rarely have enough data to
estimate even two parameters with much accuracy. From
a practical point of view what this means is that even if
a geotechnical researcher has large volumes of data at a
particular site and can accurately estimate, for example, a
modified six-parameter beta distribution, it is unlikely that
anyone else will be able to do so at other sites. Thus, com-
plex distributions, such as a six-parameter beta distribution,
are of questionable value at any site other than the site at
which it was estimated (see Chapter 4 for further discussion
of this issue).

As with the common discrete distributions, this section
looks briefly at the main characteristics of each of these
continuous distributions and describes how they are most
commonly used in practice. For a more complete descrip-
tion of these distributions, the interested reader should con-
sult an introductory textbook on probability and statistics,
such as Law and Kelton (1991) or Devore (2003).

1.10.1 Exponential Distribution

The exponential distribution is yet another distribution de-
rived from the Bernoulli family: It is the continuous analog
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of the geometric distribution. Recall that the geometric dis-
tribution governs the number of trials until the first success
(or to the next success). If we imagine that each instant in
time is now an independent trial, then the time until the
first (or next) success is given by the exponential distribu-
tion (the mathematics associated with this transition from
the geometric distribution involving “discrete” trials to a
“continuous” sequence of trials is similar to that shown pre-
viously for the transition from the binomial to the Poisson
distribution and will not be repeated here).

As with the geometric distribution, the exponential distri-
bution is often used to describe “time-to-failure” problems.
It also governs the time between arrivals of a Poisson pro-
cess. If T1 is the time to the occurrence (or failure) in
question and T1 is exponentially distributed, then its prob-
ability density function is (see Figure 1.24)

fT 1 (t) = λe−λt , t ≥ 0 (1.118)

where λ is the mean rate of occurrence (or failure). Its
cumulative distribution function is

FT 1 (t) = P [T1 ≤ t] = 1 − e−λt , t ≥ 0 (1.119)

Properties

E [T1] = 1

λ
(1.120a)

Var [T1] = 1

λ2
(1.120b)

That is, the mean and standard deviation of an exponentially
distributed random variable are equal.
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Figure 1.24 Exponential distribution for λ = 1.

Memoryless Property We will illustrate this property
with an example: Let T1 denote the time between oc-
currences of earthquakes in a particular region. Assume
that T1 has an exponential distribution with a mean of 4
months (i.e., on average, earthquakes in this region occur
once every 4 months). Thus, T1 has mean arrival rate of
λ = 1

4 = 0.25 earthquakes per month. The probability that
an earthquake occurs within the next 2 weeks (half-month)
is thus

P [T1 < 2 weeks] = P [T1 < 0.5 months]

= 1 − e−0.5×0.25 = 0.1175

Now, suppose that we set up a ground motion accelerometer
in this region and 8 months pass without an earthquake
occurring. What is the probability that an earthquake will
occur in the next half-month (i.e., between 8 and 8.5 months
from our setup time)? Because 8 months have gone by
without an earthquake occurring, you might feel that an
occurrence is overdue and therefore more likely. That is,
that the probability of an occurrence in the next half-month
should be greater than 0.1175. However, for the exponential
distribution, this is not the case, which is one of the features
of the exponential distribution—the past is ignored. Each
instant in time constitutes a trial which is independent of
all other trials. In fact,

P [T1 < 8.5 | T1 > 8] = P [8 < T1 < 8.5]

P [T1 > 8]

= (1 − e−8.5×0.25) − (1 − e−8×0.25)

e−8×0.25

= 0.1175

Thus, after 8 months without an occurrence, the probability
of an occurrence in the next half-month is the same as
the probability of an occurrence in any half-month interval.
We found this same property existed in the Poisson process;
indeed, the times between arrivals in the Poisson process
are exponentially distributed.

More generally, if T1 is exponentially distributed with
mean rate λ, then the memoryless property means that the
probability that T1 is greater than t + s , given that T1 > t ,
is the same as the probability that T1 is greater than s with
no past history knowledge. In other words,

P [T1 > t + s | T1 > t] = P [T1 > t + s ∩ T1 > t]

P [T1 > t]

= P [T1 > t + s]

P [T1 > t]
= e−λ(t+s)

e−λt

= e−λs

= P [T1 > s] (1.121)
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Link to Poisson It was mentioned above that the ex-
ponential distribution governs the time between the oc-
currences of a Poisson process. This can be clearly seen
through the following argument: Let Nt be a Poisson dis-
tributed random variable with mean arrival rate λ. We wish
to know the distribution of the time until the first arrival.
Let T1 be the time to the first arrival. Then,

P [T1 > t] = P [Nt = 0] = (λt)0

0!
eλt = e−λt

and so
P [T1 ≤ t] = FT 1 (t) = 1 − e−λt

But 1 − e−λt is the cumulative distribution for the expo-
nential probability density function λe−λt . Consequently,
T1 must follow an exponential distribution with mean rate
λ; that is, the time to the first occurrence in a Poisson pro-
cess follows an exponential distribution with parameter λ

which is equal to the Poisson rate λ. The same holds for
the time between any occurrences of a Poisson process.

In many cases, the assumption of “independence” be-
tween trials at every instant in time makes sense (e.g.,
arrivals of customers at a bank, cars traveling along a
highway). However, earthquakes tend to occur only once
sufficient strain levels have developed between adjacent tec-
tonic plates, and that generally takes some time. Thus, the
times between measurable earthquake occurrences depend
on tectonic movement rates and interplate friction, which
will not generally lead to a constant probability of occur-
rence at each instant in time. The Poisson model is usually
more reasonable for moderate to high earthquake magni-
tudes (in Chapter 4 we discuss the fact that higher level
excursions tend to a Poisson process).

If x1, x2, . . . xn are n independent observations of T1, then
the MLE of λ is

λ̂ = 1

n

n∑
i=1

xi = x̄ (1.122)

Example 1.48 Suppose the lifetime of a particular type of
nuclear density meter has an exponential distribution with
a mean of 28,700 h. Compute the probability of a density
meter of this type failing during its 8000-h warranty?

SOLUTION Let T1 be the lifetime of this type of den-
sity meter. Then T1 is exponentially distributed with λ =
1/28,700 per hour, and

P [T1 < 8000] = FT 1 (8000)

= 1 − exp

{
− 8000

28,700

}
= 0.243

Example 1.49 Let us assume that earthquakes in a certain
region occur on average once every 50 years and that

the number of earthquakes in any time interval follows a
Poisson distribution. Under these conditions, what is the
probability that less than 30 years will pass before the next
earthquake occurs?

SOLUTION Let T1 be the time to the next earthquake.
Then, since the number of earthquakes follow a Poisson
distribution, the time between earthquakes follows an ex-
ponential distribution. Thus, T1 follows an exponential dis-
tribution with λ = 1/50 = 0.02 earthquakes per year (on
average), and

P
[
T1 < 30 years

] = 1 − e−0.02×30 = 0.549

We could also solve this using the Poisson distribution. Let
N30 be the number of earthquakes to occur in the next 30
years. Then the event that less than 30 years will pass before
the next earthquake is equivalent to the event that one or
more earthquakes will occur in the next 30 years. That is,

P
[
T1 < 30 years

] = P [N30 ≥ 1] = 1 − P [N30 < 1]

= 1 − P [N30 = 0] = 1 − e−0.02×30

= 0.549

1.10.2 Gamma Distribution

We consider here a particular form of the gamma distri-
bution which is a member of the Bernoulli family and is
the continuous-time analog of the negative binomial dis-
tribution. It derives from an infinite sequence of Bernoulli
trials, one at each instant in time, with mean rate of success
λ, and governs the time between every k th occurrence of
successes in a Poisson process. Specifically, if Tk is de-
fined as the time to the k th success in a Poisson process,
then Tk is the sum of k independent exponentially dis-
tributed random variables Ei each with parameter λ. That is,
Tk = E1 + E2 + · · · + Ek and Tk has the probability density
function

fT k (t) = λ (λt)k−1

(k − 1)!
e−λt , t ≥ 0 (1.123)

which is called the gamma distribution (Figure 1.25). This
form of the gamma distribution (having integer k ) is also
referred to as the k-Erlang distribution. Note that k = 1
gives the exponential distribution, as expected. The above
distribution can be generalized to noninteger k if (k − 1)!
is replaced by �(k ), which is the gamma function; see Law
and Kelton (2000) for more information on the general
gamma distribution. We also give a brief discussion of
noninteger k at the end of this section.

To derive the cumulative distribution function, we inte-
grate the above probability density function (by parts) to
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Figure 1.25 Gamma probability density function for λ = 1 and
k = 3.

obtain, for integer k,

FT k (t) = P [Tk ≤ t] = 1 − e−λt
k−1∑
j=0

(λt) j

j !
(1.124)

The cumulative distribution function can also be found by
recognizing that the event that the k th arrival occurs within
time t (i.e., Tk < t) is equivalent to the event that there
are k or more arrivals within time t (i.e., Nt ≥ k ). In other
words,

FT k (t) = P [Tk ≤ t] = P [Nt ≥ k ] = 1 − P [Nt < k ]

= 1 − e−λt
k−1∑
j=0

(λt) j

j !

Properties

E [Tk ] = k

λ

(
= k E [Ei ]

)
(1.125a)

Var [Y ] = k

λ2

(
= k Var [Ei ]

)
(1.125b)

If k is known and x1, x2, . . . , xn are n independent obser-
vations of Tk , then the MLE of λ is

λ̂ = nk∑n
i=1 xi

= k

x̄
(1.126)

Example 1.50 As in the previous example, let us assume
that earthquakes in a certain region occur on average once
every 50 years and that the number of earthquakes in any
time interval follows a Poisson distribution. Under these

conditions, what is the probability that less than 150 years
will pass before two or more earthquakes occur?

SOLUTION Let T2 be the time to the occurrence of the
second earthquake. Then, since earthquakes occur accord-
ing to a Poisson process, T2 must follow a gamma distri-
bution with k = 2 and λ = 1

50 and

P [T2 < 150] = FT 2 (150)

= 1 − e−150/50
(

1 + 150/50

1!

)
= 0.801

Note that the same result is obtained by computing

P [N150 ≥ 2] = 1 − P [N150 < 2]

= 1 − P [N150 = 0] − P [N150 = 1]

= 1 − e−150/50 − 150/50

1!
e−150/50

= 0.801

The gamma distribution presented above is specialized
to the sum of k independent and identically exponentially
distributed random variables. It can be extended to other
types of problems, so long as k is (at least approximately)
a positive integer.

Example 1.51 Suppose that for clay type A the length
of time in years until achieving 80% of consolidation
settlement follows a gamma distribution with a mean of
4 and a variance of 8. Suppose also that for clay type B the
time required to achieve the same fraction of consolidation
settlement also follows a gamma distribution but with mean
4 and variance 16. Which clay type has a higher probability
of reaching 80% consolidation in less than one year?

SOLUTION Let X be the time required to achieve 80%
consolidation settlement for clay type A. Then X follows a
gamma distribution with µ = k/λ = 4 and σ 2 = k/λ2 = 8.
Solving these two equations for k and λ gives us k = 2 and
λ = 1

2 .
Now let Y be the time required to achieve 80% consolida-
tion settlement for clay type B . Then Y follows a gamma
distribution with µ = k/λ = 4 and σ 2 = k/λ2 = 16. Solv-
ing these two equations for k and λ gives us k = 1 and
λ = 1

4 . For clay type A we then have

P [X < 1] = FT 2 (1)

= 1 − e−λ(1 + λ)

= 1 − e−1/2(1 + 1
2 )

= 0.0902
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while for clay type B we have

P [Y < 1] = FT 1 (1)

= 1 − e−λ

= 1 − e−1/4

= 0.2212

Thus, we are more likely to achieve 80% consolidation in
under one year with clay type B.

Although the gamma distribution is not limited to integer
values of k , the interpretation of the gamma PDF as
the distribution of a sum of independent and identically
exponentially distributed random variables is lost if k is
not an integer. The more general gamma distribution has
the form

fX (x ) = λ (λx )k−1

�(k )
e−λx , x ≥ 0 (1.127)

which is valid for any k > 0 and λ > 0. The gamma
function �(k ) for k > 0 is defined by the integral

�(k ) =
∫ ∞

0
x k−1e−x dx (1.128)

Tabulations of the gamma function can be found in Abra-
mowitz and Stegun (1970), for example. When k is an
integer, �(k ) = (k − 1)!.

1.10.3 Uniform Distribution

The continuous uniform distribution is the simplest of all
continuous distributions since its density function is con-
stant (over a range) (Figure 1.26). Its general definition is

f (x ) = 1

β − α
, α ≤ x ≤ β

and its cumulative distribution is

F (x ) = P [X ≤ x ] = x − α

β − α
, α ≤ x ≤ β (1.129)

The uniform distribution is useful in representing random
variables which have known upper and lower bounds and
which have equal likelihood of occurring anywhere between
these bounds. Another way of looking at the uniform distri-
bution is that it is noninformative or nonpresumptive. That
is, if you know nothing else about the relative likelihood of
a random variable, aside from its upper and lower bounds,
then the uniform distribution is appropriate—it makes no
assumptions regarding preferential likelihood of the random
variable since all possible values are equally likely.
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Figure 1.26 Uniform distribution for α = 3 and β = 7.

Properties

E [X ] =
∫ β

α

x dx

β − α
= α + β

2

(this is the midpoint) (1.130a)

Var [X ] =
∫ β

α

x 2

β − α
dx − E2[X ] = (β − α)2

12
(1.130b)

If x1, x2, . . . , xn are n independent observations of uni-
formly distributed X with minimum value xmin and maxi-
mum value xmax, then the MLEs of α and β are

α̂ = xmin, β̂ = xmax

That is, the MLEs of the lower and upper bounds of the
uniform distribution are just equal to the observed minimum
and maximum values.

Example 1.52 The C function rand() returns numbers
uniformly distributed on the interval [0,RAND MAX), which
includes zero but excludes RAND MAX. If Xi is assigned
subsequent values returned by rand()/RAND MAX, then
each Xi is uniformly distributed on the interval [0, 1). If we
further define

Y = α

[
12∑

i=1

Xi − 6

]

then what is the mean and variance of Y ?

SOLUTION

E [Y ] = α

[
12∑

i=1

E [Xi ] − 6

]
= α [12 E [Xi ] − 6]

= α
[
12( 1

2 ) − 6
]

= 0
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Var [Y ] = Var

[
α

(
12∑

i=1

Xi − 6

)]
= Var

[
α

12∑
i=1

Xi

]

= α2 Var

[
12∑

i=1

Xi

]

= α2
12∑

i=1

Var [Xi ] = α2(12)( 1
12 )

= α2

1.10.4 Weibull Distribution

Often, engineers are concerned with the strength properties
of materials and the lifetimes of manufactured devices. The
Weibull distribution has become very popular in describing
these types of problems (Figure 1.27). One of the attractive
features of the Weibull distribution is that its cumulative
distribution function is quite simple.

If a continuous random variable X has a Weibull distri-
bution, then it has probability density function

f (x ) = β

x
(λx )βe−(λx )β for x > 0 (1.131)

having parameters λ > 0 and β > 0. The Weibull has a
particularly simple cumulative distribution function

F (x ) = 1 − e−(λx )β if x ≥ 0 (1.132)

Note that the exponential distribution is a special case
of the Weibull distribution (simply set β = 1). While the
exponential distribution has constant, memoryless failure
rate, the Weibull allows for a failure rate that decreases
with time (β < 1) or a failure rate that increases with
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Figure 1.27 Weibull distribution.

time (β > 1). This gives increased flexibility for modeling
lifetimes of systems that improve with time (e.g., a good
red wine might have β < 1) or degrade with time (e.g.,
reinforced concrete bridge decks subjected to salt might
have β > 1).

The mean and variance of a Weibull distributed random
variable are

µ = 1

λβ
�

(
1

β

)
(1.133a)

σ 2 = 1

λ2β

{
2�

(
2

β

)
− 1

β

[
�

(
1

β

)]2
}

(1.133b)

where � is the gamma function, which is commonly tabu-
lated in math tables.

To find MLEs of λ and β, we must solve the following
two equations for the estimators λ̂ and β̂ (Law and Kelton,
2000):

∑n
i=1 x β̂

i ln xi∑n
i=1 x β̂

i

− 1

β̂
= 1

n

n∑
i=1

ln xi λ̂ =
(

1

n

n∑
i=1

x β̂

i

)−1/β̂

(1.134)
The first equation involves only β̂, which can be solved for
numerically. Once β̂ has been obtained, the second equation
can be solved directly for λ̂. Thomas et al. (1969) provide
an efficient general recursive formula using Newton’s root-
finding method,

β̂k+1 = β̂k + A + (1/β̂k ) − Ck /Bk

(1/β̂2
k ) + (Bk Hk − C 2

k )/B2
k

(1.135)

where

A = 1

n

n∑
i=1

ln xi

Bk =
n∑

i=1

x β̂k
i

Ck =
n∑

i=1

x β̂k
i ln xi

Hk =
n∑

i=1

x β̂k
i (ln xi )

2

An appropriate initial starting point is given by Menon
(1963) and Thoman et al. (1969) to be

β̂0 =



6

(n − 1)π2


 n∑

i=1

(ln xi )
2 − 1

n

(
n∑

i=1

ln xi

)2





−1/2

(1.136)
See also Thoman et al. (1969) for confidence intervals on
the true λ and β.
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Example 1.53 The time to 90% consolidation of a sample
of a certain clay has a Weibull distribution with β = 1

2 . A
significant number of tests have shown that 81% of clay
samples reach 90% consolidation in under 5516 h. What is
the median time to attain 90% consolidation?

SOLUTION Let X be the time until a clay sample reaches
90% consolidation. Then we are told that X follows a
Weibull distribution with β = 0.5. We first need to compute
the other Weibull parameter, λ. To do this we make use
of the fact that we know P [X < 5516] = 0.81, and since
P [X < 5516] = F (5516), we have

F (5516) = 1 − exp
{− (5516λ)0.5} = 0.81

exp
{− (5516λ)0.5} = 0.19

λ = 1
2000

We are now looking for the median, x̃ , which is the point
which divides the distribution into half. That is, we want
to find x̃ such that F (x̃ ) = 0.5,

1 − exp

{
−
(

x̃

2000

)0.5
}

= 0.5

exp

{
−
(

x̃

2000

)0.5
}

= 0.5

x̃ = 960.9 h

1.10.5 Rayleigh Distribution

The Rayleigh distribution (Figure 1.28) is a nonnegative
distribution which finds application in the simulation of
normally distributed random processes (see Section 3.3 and
Chapter 6). In particular, consider the two orthogonal com-
ponents τ1 and τ2 of the vector τ in two-dimensional space.
If the two components are independent and identically
normally distributed random variables with zero means
and common variance s2, then the vector length |τ | =√

τ 2
1 + τ 2

2 will be Rayleigh distributed with probability
density function

f (x ) = x

s2
exp

{
− x 2

2s2

}
, x ≥ 0 (1.137)

and cumulative distribution function

F (x ) = 1 − e− 1
2 (x/s)2

if x ≥ 0 (1.138)

which is actually a special case of the Weibull distribution
(β = 2 and λ = 1/(s

√
2)).

The mean and variance of a Rayleigh distributed random
variable are

µ = s
√

1
2π σ 2 = (2 − 1

2π )s2
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Figure 1.28 Rayleigh distribution.

1.10.6 Student t-Distribution

If Z is a standard normal random variable, V is a chi-
square random variable with ν degrees of freedom, and
Z and V are independent, then the random variable T
defined by

T = Z√
V /ν

(1.139)

follows the Student t-distribution with probability function

f (t) = �[(ν + 1)/2]√
πν �(ν/2)

(
1 + t2

ν

)−(ν+1)/2

, −∞ < t < ∞
(1.140)

This distribution was discovered in 1908 by William Gos-
sett, who was working for the Guinness Brewing Com-
pany in Dublin, Ireland. The company considered the dis-
covery to be proprietary information and told Gossett he
could not publish it. Gossett published it anyway under the
pseudonym “Student.”

Table A.2 shows values of tα,ν such that P
[
T > tα,ν

] = α

for commonly used values of α. We shall see more of
this distribution in Chapters 2 and 3. Figure 1.29 shows
some of the family of t-distributions. Notice that the t-
distribution becomes wider in the tails as the number of
degrees of freedom ν decreases. Conversely, as ν increases,
the distribution narrows, becoming the standard normal
distribution as ν → ∞. Thus, the last line of Table A.2
corresponds to the standard normal distribution, which
is useful when finding z for given cumulative probabil-
ity. (Note that Table A.2 is in terms of areas to the
right.)

The mean and variance of a Student t-distributed random
variable are

µ = 0, σ 2 = ν

ν − 2
for ν > 2
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Figure 1.29 Student t -distribution.

1.10.7 Chi-Square Distribution

If Z1, Z2, . . . , Zν are independent standard normal random
variables [i.e., each N (0, 1)], then the sum

χ2
k = Z 2

1 + Z 2
2 + · · · + Z 2

ν (1.141)

has the probability density function

f (x ) = 1

2ν/2�( ν
2 )

x ν/2−1 e−x/2 for x > 0 (1.142)

which is called a chi-square distribution with ν degrees of
freedom (Figure 1.30). This is actually a special case of
the gamma distribution with k = ν/2 and λ = 1

2 . To get
probabilities, we write

P
[
χ2

k ≥ χ2
α,k

] = α =
∫ ∞

χ2
α,k

f (u) du (1.143)

and use standard chi-square tables. See Table A.3. For
example, P

[
χ2

10 ≥ 15.99
] = 0.10, which is found by en-

tering the table with ν = 10 degrees of freedom, looking
across for 15.99, and then reading up at the top of the table
for the associated probability. Note that both Tables A.2
and A.3 are in terms of area to the right and are used with
inverse problems where we want values on the horizontal
axis having area to the right specified by a given α.

0 10 20 30 40
x

0
0.

1
0.

2

f(
x)

c2 distribution, n = 5

c2 distribution, n = 10

c2 distribution, n = 20

Figure 1.30 Chi-square distribution.

The mean and variance of a chi-square distributed ran-
dom variable are

µ = ν, σ 2 = 2ν

1.10.8 Normal Distribution

The normal distribution is probably the single most impor-
tant distribution in use today (Figure 1.31). This is largely
because sums of random variables tend to a normal dis-
tribution, as was proven by the central limit theorem—a
theorem to be discussed shortly. Many natural “additive”
type phenomena, or phenomena involving many accumu-
lating factors, therefore tend to have a normal distribution.
For example, the cohesive strength of a soil is due to the
sum of a very large number of electrochemical interactions
taking place at the molecular level; thus, the normal distri-
bution has been widely used to represent the distribution of
cohesion (its main competitor as a representative distribu-
tion is the lognormal distribution, discussed next).

A random variable X follows a normal (or Gaussian)
distribution if its probability density function has the form

f (x ) = 1

σ
√

2π
exp

[
−1

2

(
x − µ

σ

)2
]

for −∞ < x < ∞
(1.144)

The notation X ∼ N (µ, σ 2) will be used to mean that X
follows a normal distribution with mean µ and variance σ 2.

Properties

1. The distribution is symmetric about the mean µ

(which means that µ is also equal to the median).
2. The maximum point, or mode, of the distribution

occurs at µ.
3. The inflection points of f (x ) occur at x = µ ± σ .
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Figure 1.31 Normal distribution with µ = 5 and σ = 2.
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The mean and variance are given as

E [X ] = µ, Var [X ] = σ 2

If x1, x2, . . . , xn are n independent observations of nor-
mally distributed X , then the MLEs of µ and σ 2 are

µ̂ = 1

n

n∑
i=1

xi = x̄ (1.145a)

σ̂ 2 = 1

n

n∑
i=1

(xi − µ̂)2 (1.145b)

The more common estimator for σ 2 is slightly different,
having the form

s2 = 1

n − 1

n∑
i=1

(xi − µ̂)2 (1.146)

The latter is an unbiased estimator (see Section 5.2.1),
which is generally more popular, especially for smaller n .

Standard Normal Unfortunately, no closed-form solu-
tion exists for the integral of the normal probability density
function. Probabilities associated with the normal distribu-
tion must be obtained by numerical integration. Tradition-
ally, this has meant that normal probabilities have had to
be obtained by consulting tables presented in manuals and
textbooks. Of course, no book is big enough to contain the
complete set of tables necessary for all possible values of µ

and σ , so some way of encapsulating the tables is necessary.
As it turns out, if the random variable X is transformed by
subtracting its mean and dividing by its standard deviation,

Z = X − µ

σ
(1.147)

then the resulting random variable Z has mean zero and
unit variance (Figure 1.32). If a probability table is devel-
oped for Z , which is called the standard normal variate,
then probabilities for all other normally distributed random
variables can be obtained by performing the above normal-
izing transformation. That is, probabilities for any normally
distributed random variable can be obtained by perform-
ing the above transformation and then consulting the single
standard normal probability table.

The distribution of the standard normal Z is given the
special symbol φ(z ), rather than f (z ), because of its impor-
tance in probability modeling and is defined by

φ(z ) = 1√
2π

e− 1
2 z 2

for −∞ < z < ∞ (1.148)

The cumulative distribution function of the standard nor-
mal also has a special symbol, �(z ), rather than F (z ),
again because of its importance. Tables of �(z ) are com-
monly included in textbooks, and one appears in Appendix
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Figure 1.32 Standard normal distribution.

A. Computing probabilities for any normally distributed
random variables proceeds by standardization, that is, by
subtracting the mean and dividing by the standard deviation
on both sides of the inequality in the following:

P [X < x ] = P

[
X − µ

σ
<

x − µ

σ

]

= P

[
Z <

x − µ

σ

]

= �

(
x − µ

σ

)

= �(z ) (1.149)

at which point, Table A.1 can be consulted, with z =
(x − µ)/σ , to obtain the desired probability.

Example 1.54 Suppose X is normally distributed with
mean 5 and standard deviation 2. Then, what is P [X < 2.0]?

SOLUTION In order to use Table A.1, we standardize on
both sides of the inequality by subtracting the mean and
dividing by the standard deviation:

P [X < 2.0] = P

[
X − µ

σ
<

2 − µ

σ

]

= P

[
Z <

2 − 5

2

]
= P [Z < −1.5]

= �(−1.5)

Table A.1 does not include negative values, so we make
use of the symmetry of the standard normal. That is, the
area under the distribution to the left of z = −1.5 (see the
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figures below) is equal to the area under the distribution to
the right of z = 1.5. The table only gives areas to the left;
it is a cumulative distribution. This means that the area to
the right of a point must be obtained by subtracting the area
to the left from 1.0. This leaves us with

P [X < 2.0] = 1 − �(1.5) = 1 − 0.93319 = 0.06681

Note, for increased precision, interpolation can be used
between table values, for example, if you are trying to
determine �( 2

3 ). However, given the typical uncertainty in
the estimates of the mean and standard deviation, there is
probably little point in trying to obtain the final probability
too precisely.

The probability areas involved in this question are shown
below. The plot on the left illustrates the original P [X < 2]
while the plot on the right illustrates the transformed
standardized problem, P [Z < −1.5]. The shaded areas are
of equal size.

Example 1.55 The reliability of soil anchor cables against
tensile failure is to be assessed. Suppose that a particular
brand of cable has normally distributed tensile strength with
mean 35 kN and a standard deviation of 2 kN.

1. What is the probability that the tensile strength of a
randomly selected cable is less than 40 kN?

2. Approximately 10% of all sampled cables will have
a tensile strength stronger than which value?

3. Can you see any problems with modeling tensile
strength using a normal distribution?

SOLUTION Let X be the tensile strength of the cable.
Then X is normally distributed with mean µ = 35 kN and
standard deviation σ = 2 kN.

1. P [X < 40] = P

[
X − µ

σ
<

40 − 35

2

]
= P [Z < 2.5]

= 0.9938.

2. P [X > x ] = 0.10 → P

[
X − µ

σ
>

x − 35

2

]

= 0.10.
Since P [Z > 1.28] = 0.10, we have

1
2 (x − 35) = 1.28 =⇒ x = 37.56

so that 10% of all samples are stronger than 37.56 kN.
Note that in this solution we had to search through
Table A.1 for the probability as close as possible
to 1 − 0.10 = 0.9 and then read “outwards” to see
what value of z it corresponded to. A much simpler
solution is to look at the last line of Table A.2 under
the heading α = 0.10. As we saw previously, Table
A.2 is the inverse t-distribution, and the t-distribution
collapsed to the standard normal when ν → ∞.

3. The normal distribution allows negative tensile
strengths, which are not physically meaningful. This
is a strong motivation for the lognormal distribution
covered in Section 1.10.9.

1.10.8.1 Central Limit Theorem If X1, X2, . . . , Xn are
independent random variables having arbitrary distribu-
tions, then the random variable

Y = X1 + X2 + · · · + Xn (1.150)
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has a normal distribution as n → ∞ if all the X ’s have
about the same mean and variance (i.e., none is dominant).
See Papoulis (1991) for a proof of this theorem. In addition,
if the X ’s are all normally distributed then Y is normally
distributed for any n .

Specifically we will find the following result useful. If

X n = 1

n

n∑
i=1

Xi

where X1, X2, . . . , Xn are independent samples taken from
population X having mean µ and variance σ 2 (any distri-
bution), then

lim
n→∞ P

[
(X n − µ)

σ/
√

n
≤ x

]
= �(x ) (1.151)

Implications
1. The sum of normal variates is normal (for any n) as

mentioned above.
2. If the distributions of the X ’s are well behaved (almost

normal), Then n ≥ 4 gives a good approximation to
the normal distribution.

3. If the distributions of the X ’s are uniform (or almost
so), then n ≥ 6 yields a reasonably good approxima-
tion to the normal distribution (out to at least about
three standard deviations from the mean).

4. For poorly behaved distributions, you may need n >

100 before the distribution begins to look reasonably
normal. This happens, for example, with distributions
whose tails fall off very slowly.

Thus for n sufficiently large and X1, X2, . . . , Xn independent
and identically distributed (iid)

Y = X1 + X2 + · · · + Xn

is approximately normally distributed with

µY = E [Y ] = n E [Xi ] (1.152a)

σ 2
Y = Var [Y ] = n Var [Xi ] (1.152b)

If the X ’s are not identically distributed but are still inde-
pendent, then

µY =
n∑

i=1

E [Xi ] (1.153a)

σ 2
Y =

n∑
i=1

Var [Xi ] (1.153b)

1.10.8.2 Normal Approximation to Binomial By virtue
of the central limit theorem, the binomial distribution,
which as you will recall arises from the sum of a sequence
of Bernoulli random variables, can be approximated by the
normal distribution (Figure 1.33). Specifically, if Nn is the
number of successes in n trials, then

Nn =
n∑

i=1

Xi (1.154)

where Xi is the outcome of a Bernoulli trial (Xi = 1 with
probability p, Xi = 0 with probability q = 1 − p). Since
Nn is the sum of identically distributed random variables,
which are assumed independent, if n is large enough, the
central limit theorem says that Nn can be approximated by
a normal distribution. We generally consider this approx-
imation to be reasonably accurate when both np ≥ 5 and
nq ≥ 5. In this case, the normal distribution approximation
has mean and standard deviation

µ = np (1.155a)

σ = √
npq (1.155b)
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Figure 1.33 Normal approximation to binomial distribution.
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Of course, we know that Nn is discrete while the normal
distribution governs a continuous random variable. When
we want to find the approximate probability that Nn is
greater than or equal to, say, k , using the normal distri-
bution, we should include all of the binomial mass at k .
This means that we should look at the normal probability
that (Nn > k − 1

2 ). For example, in Figure 1.33, the proba-
bility that Nn ≥ 20 is better captured by the area under the
normal distribution above 19.5.

In general, the following corrections apply. Similar cor-
rections apply for two-sided probability calculations.

P [Nn ≥ k ] � 1 − �

(
k − 0.5 − µ

σ

)
(1.156a)

P [Nn > k ] � 1 − �

(
k + 0.5 − µ

σ

)
(1.156b)

P [Nn ≤ k ] � �

(
k + 0.5 − µ

σ

)
(1.156c)

P [Nn < k ] � �

(
k − 0.5 − µ

σ

)
(1.156d)

Example 1.56 Suppose that in a certain region it is
equally likely for a soil sample to pass a particular soil
test as it is to fail it. If this is true, what is the probability
that more than 495 samples pass the test over the next 900
tests?

SOLUTION If we assume that soil tests pass or fail
independently with constant probability of passing the test,
then the number of tests passing, out of n tests, is Nn , which
follows a binomial distribution. The exact probability is
then given by

P [N900 > 495] = P [N900 = 496] + P [N900 = 497]

+ · · · + P [N900 = 900]

=
(

900

496

)
p496q404 +

(
900

497

)
p497q403

+ · · · +
(

900

900

)
p900q0

It is not practical to compute this with a simple hand
calculator, and even with a computer the calculations are
prone to numerical roundoff and overflow errors. The
normal approximation will give a very accurate result with
a fraction of the effort. We start by computing the mean
and variance of N900:

E [N900] = µ = np = (900)(0.5) = 450

Var [N900] = σ 2 = npq = (900)(0.5)(0.5) = 225

so that σ = √
225 = 15. We now make the following ap-

proximation:

P [N900 > 495] = P

[
N900 − µ

σ
>

495 − µ

σ

]

� P

[
Z >

495 + 0.5 − 450

15

]

= 1 − �(3.03)

= 0.00122

where, in the second line of the equation, we say that
(N900 − µ)/σ is approximately a standard normal, and,
at the same time, apply the half-interval correction for
increased accuracy. (Note that without the half-interval
correction we would get P [N900 > 495] � 0.00135, a small
absolute difference but a 10% relative difference.)

1.10.8.3 Multivariate Normal Distribution The normal
distribution is also popular as a distribution governing
multiple random variables because it is simply defined
knowing only the mean and variance of each random
variable and the covariances acting between them. Consider
two random variables, X and Y ; these follow a bivariate
normal distribution if their joint distribution has the form

fX Y (x , y) = 1

2πσX σY

√
1 − ρ2

exp

{
−1

2(1 − ρ2)

[(
x − µX

σX

)2

−2ρ

(
x − µX

σX

)(
y − µY

σY

)
+
(

y − µY

σY

)2
]}

(1.157)

for −∞ < x , y < ∞, where ρ is the correlation coefficient
between X and Y and µX , µY and σX , σY are the means and
standard deviations of X and Y , respectively. Figures 1.16
and 1.17 illustrate the bivariate normal distribution.

If X and Y follow a bivariate normal distribution, then
their marginal probability density functions, defined as

fX (x ) =
∫ ∞

−∞
fX Y (x , y) dy (1.158a)

fY (y) =
∫ ∞

−∞
fX Y (x , y) dx (1.158b)

are also normal distributions. For example, the marginal
distribution of X is a normal distribution with mean µX

and standard deviation σX , and similarly for the marginal
distribution of Y . That is,

fX (x ) = 1

σX

√
2π

exp

{
−1

2

(
x − µX

σX

)2
}

(1.159a)
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fY (y) = 1

σY

√
2π

exp

{
−1

2

(
y − µY

σY

)2
}

(1.159b)

Recall that the conditional probability of A given B is

P [A | B] = P [A ∩ B]

P [B]

From this, we get the following result for conditional
distributions:

fX | Y (x | y) = fX Y (x , y)

fY (y)
(1.160)

In particular, if X and Y follow a bivariate normal distri-
bution, then it can be shown that

fX | Y (x | y) = 1

σX

√
1 − ρ2

√
2π

× exp


−1

2

[
x − µX − ρ(y − µY )σX /σY

σX

√
1 − ρ2

]2

 (1.161)

It can be seen from this that the conditional distribution
of X for a given Y = y also follows a normal distribution
with mean and standard deviation

µX | Y = µX + ρ(y − µY )σX

σY

(1.162a)

σX | Y = σX

√
(1 − ρ2) (1.162b)

Example 1.57 Suppose that the load capacities of two
neighboring piles, X and Y , are jointly normally distributed
with correlation coefficient ρ = 0.7. Based on similar pile
capacities in the area, the following statistics have been
determined:

µX = µY = 2000, σX = σY = 500

What is the probability that the load capacity of pile X is
less than 1700 if nothing is known about the load capacity
of pile Y ? Alternatively, if the load capacity of pile Y has
been measured to be 1800, what is the probability that X
is less than 1700 in light of this information?

SOLUTION If nothing is known about the load capacity
of Y , then the probability that X is less than 1700 depends
only on the marginal distribution of X . That is,

P [X < 1700] = P

[
Z <

1700 − µX

σX

]

= P

[
Z <

1700 − 2000

500

]

= �(−0.6)

= 0.274

If, however, we know that Y = 1800, then we are look-
ing for the probability that pile X < 1700 conditioned on
the fact that pile Y = 1800. The conditional mean of X
given Y = 1800 is

µX | Y = µX + ρ(y − µY )σX

σY

= 2000 + 0.7(1800 − 2000)(500)

500
= 1860

This is saying, as expected, that the conditional mean of
pile X is substantially reduced as a result of the fact that
the neighboring pile had a relatively low load capacity. The
conditional standard deviation of X given Y = 1800 is

σX | Y = σX

√
1 − ρ2

= 500
√

1 − 0.72

= 357.07

This is reduced from the unconditional standard deviation
of 500 because the relatively high correlation with the
neighboring pile constrains the possible values of pile X .
For example, if the correlation between pile capacities were
1.0, then we would know that X = Y . In this case, once we
know Y , we would know X with certainty. That is, when
ρ = 1, the variance of X | Y falls to zero. When ρ = 0, X
and Y will be uncorrelated, and thus independent, since they
are normally distributed, and the observation of Y will then
make no difference to the variability (and distribution) of X .

For our question, the desired conditional probability is
now

P [X < 1700 | Y = 1800] = �

(
1700 − µX | Y

σX | Y

)

= �

(
1700 − 1860

357.07

)

= �(−0.45)

= 0.326

As expected, the observation of a low load capacity at a
neighboring pile has increased the probability of a low load
capacity at the pile of interest.

To extend the multivariate normal distribution to more
than two random variables, it is useful to use vector–matrix
notation. Define

µ =




µ1

µ2

.

.

.

µn




(1.163)
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to be the vector of means of the sequence of n random
variables X = {X1, X2, . . . , Xn} and

C =




C11 C12 · · · C1n

C21 C22 · · · C2n

.

.

.

.

.

.

.
.

.

.

.

.

Cn1 Cn2 · · · Cnn




(1.164)

to be the matrix of covariances between Xi and Xj , i =
1, 2, . . . , n and j = 1, 2, . . . , n . Each element of the covari-
ance matrix is defined as

Cij = Cov
[
Xi , Xj

] = ρij σi σj if i �= j

= Var [Xi ] = σ 2
i if i = j

Note that if the Xi ’s are uncorrelated, then the covariance
matrix is diagonal:

C =




σ 2
1 0 · · · 0

0 σ 2
2 · · · 0

.

.

.

.

.

.

.
.

.

.

.

.

0 0 · · · σ 2
n




Using these definitions, the joint normal distribution of
X = {X1, X2, . . . , Xn} is

fX(x) = 1

(2π )n/2
√|C |

× exp
{− 1

2 (x − µ)TC −1(x − µ)
}

(1.165)

where |C | is the determinant of C and superscript T means
the transpose.

As in the bivariate case, all marginal distributions are
also normally distributed:

fX i (xi ) = 1

σi
√

2π
exp

{
−1

2

(
xi − µi

σi

)2
}

(1.166)

The conditional distributions may be obtained by partition-
ing the vector X into two parts (Vanmarcke, 1984): Xa and

Xb of size na and nb , where na + nb = n , that is,

X =




X1

.

.

.

Xna

Xna+1
.
.
.

Xn




=
{

Xa

Xb

}
(1.167)

having mean vectors

µa =




µ1
.
.
.

µna




, µb =




µna+1
.
.
.

µn




(1.168)

Using this partition, the covariance matrix can be split into
four submatrices:

C =
(

C aa C ab

C ba C bb

)
(1.169)

where C ba = C T
ab . Using these partitions, the conditional

mean of the vector Xa given the vector Xb can be obtained
from

µa | b = µa + C abC −1
bb (Xb − µb) (1.170)

Similarly, the conditional covariance matrix is

C a | b = C aa − C abC −1
bb C T

ab (1.171)

With these results, the conditional distribution of Xa given
Xb is

fXa | Xb (xa | xb) = 1

(2π )na/2
√|C a | b |

× exp
{
− 1

2 (xa − µa | b)T C −1
a | b (xa − µa | b )

}
(1.172)

1.10.9 Lognormal Distribution

From the point of view of modeling material properties
and loads in engineering, which are generally nonnegative,
the normal distribution suffers from the disadvantage of
allowing negative values. For example, if a soil’s elastic
modulus were to be modeled using a normal distribution,
then there would be a nonzero probability of obtaining a
negative elastic modulus. Since a negative elastic modulus
does not occur in practice, the normal cannot be its true
distribution.
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As an approximation, the normal is nevertheless often
used to represent material properties. The error incurred
may be slight when the coefficient of variation v is small.
For example, if v ≤ 0.3, then P [X < 0] ≤ 0.0004, which
may be fine unless it is at these extremes that failure is ini-
tiated. A simple way to avoid such problems is to fit a non-
negative distribution to the population in question, and one
such candidate is the lognormal distribution (Figure 1.34).
The lognormal distribution arises from the normal distri-
bution through a simple, albeit nonlinear, transformation.
In particular, if G is a normally distributed random vari-
able, having range −∞ < g < +∞, then X = exp{G} will
have range 0 ≤ x < ∞. We say that the resulting random
variable X is lognormally distributed—note that its natural
logarithm is normally distributed.

The random variable X is lognormally distributed if
ln (X ) is normally distributed. If this is true, then X has
probability density function

f (x ) = 1

xσln X

√
2π

exp

{
−1

2

(
ln x − µln X

σln X

)2
}

,

0 ≤ x < ∞ (1.173)

Note that this distribution is strictly nonnegative and so
is popular as a distribution of nonnegative engineering
properties, such as cohesion, elastic modulus, the tangent
of the friction angle, and so on. The two parameters of the
distribution,

µln X = E [ln X ] , σ 2
ln X = Var [ln X ]

are the mean and variance of the underlying normally
distributed random variable, ln X .
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Figure 1.34 Two lognormal distributions illustrating effect of
changing variance.

Computing Probabilities In order to compute probabili-
ties from the lognormal distribution, we must make use of
the fact that ln(X ) is normally distributed so that we can
use the standard normal table. That is, in a probability ex-
pression, we take logarithms on both sides of the inequality,
then standardize by subtracting the mean and dividing by
the standard deviation of ln X ,

P [X ≤ a] = P [ln(X ) < ln(a)]

= P

[
ln(X ) − µln X

σln X

<
ln(a) − µln X

σln X

]

= P

[
Z <

ln(a) − µln X

σln X

]

= �

(
ln(a) − µln X

σln X

)
(1.174)

where, as before, Z is the standard normal random variate.

Mean and Variance The mean and variance of X are ob-
tained by transforming the two parameters of the lognormal
distribution,

µX = E [X ] = eµln X + 1
2 σ 2

ln X (1.175a)

σ 2
X = Var [X ] = µ2

X

(
eσ 2

ln X − 1
)

(1.175b)

Alternatively, if you are given µX and σ 2
X , you can obtain

the parameters µln X and σ 2
ln X as follows:

σ 2
ln X = ln

(
1 + σ 2

X

µ2
X

)
(1.176a)

µln X = ln(µX ) − 1
2σ 2

ln X (1.176b)

Characteristics and Moments

Mode = eµln X −σ 2
ln X (1.177a)

Median = eµln X (1.177b)

Mean = eµln X + 1
2 σ 2

ln X (1.177c)

E
[
X k
]

= ekµln X + 1
2 k2σ 2

ln X (1.177d)

Note that the mode < median < mean, and thus the
lognormal distribution has positive skew. A distribution is
skewed if one of its tails is longer than the other, and, by
tradition, the sign of the skew indicates the direction of the
longer tail.

Figure 1.35 illustrates the relative locations of the mode,
median, and mean for the nonsymmetric lognormal distri-
bution. Because of the positive-skewed, or “skewed-right,”
shape of the distribution, with the long distribution tail to
the right, realizations from the lognormal distribution will
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Figure 1.35 Location of mode, median, and mean in lognormal
distribution for µX = 10 and σX = 5.

have very large values every now and then. This results in
the mean being drawn to the right (e.g., the arithmetic aver-
age is affected by very large values in the sum). Often, for
the lognormal distribution, the median is actually viewed as
the primary characteristic of the distribution, since it divides
the distribution into equal halves.

It is worth digressing slightly at this point and consider
the median of a lognormal distribution in a bit more de-
tail, especially with respect to its estimation. Suppose that
we have taken several observations x1, x2, . . . , xn of a log-
normally distributed random variable X . An estimate of the
mean of ln(X ) is just the average of ln(x1), ln(x2), . . . , ln(xn ),

µ̂ln X = 1

n

n∑
i=1

ln(xi ) (1.178)

where the hat denotes that this is an estimate of µln X . From
this, an estimate of the median, x̃ , is

x̃ = exp{µ̂ln X } = exp

{
1

n

n∑
i=1

ln(xi )

}
(1.179)

Alternatively, the geometric average xg of a sequence
of nonnegative numbers is defined as the nth root of the
product of the n observations,

xg = (x1x2 · · · xn)1/n

= exp
{
ln
(
(x1x2 · · · xn )1/n)}

= exp

{
1

n

n∑
i=1

ln(xi )

}
(1.180)

which is identical to the equation for x̃ , so we see that
the geometric average is an estimate of the median of a

lognormally distributed random variable. As we shall see in
Section 4.4, this also means that the median of a lognormal
distribution is preserved under geometric averaging.

Multiplicative Property If X = Y1Y2 · · · Yn and each Yi

are (positive) independent random variables of any distri-
bution having about the same “weight,” then

ln X = ln Y1 + ln Y2 + · · · + ln Yn (1.181)

and by the central limit theorem ln X tends to a normal
distribution with

µln X = µln Y 1 + µln Y 2 + · · · + µln Y n (1.182a)

σ 2
ln X = σ 2

ln Y 1
+ σ 2

ln Y 2
+ · · · + σ 2

ln Y n
(1.182b)

Thus X tends to a lognormal distribution with parameters
µln X and σ 2

ln X . This is a useful property since it can be
used to approximate the distribution of many multiplicative
functions.

In particular, if X is any multiplicative function, say

X = AB

C
=⇒ ln X = ln A + ln B − ln C

(1.183)
and A, B , and C are independent and lognormally dis-
tributed, then X is also lognormally distributed with

µln X = µln A + µln B − µln C

σ 2
ln X = σ 2

ln A + σ 2
ln B + σ 2

ln C

Recall that for variances the coefficient of −1 appearing
before the last term in Eq. 1.183 is squared, so that, in the
case of independence, the variance of a sum is literally the
sum of the variances. (If A, B , and C were correlated, then
the covariance terms which would have to be added in to
find σ 2

ln X would have sign dependent on the signs appearing
in the original sum.)

Consider again the geometric average, this time for
random observations (i.e., before we have observed them),

Xg = (X1X2 · · · Xn)1/n = X 1/n
1 × X 1/n

2 × · · · × X 1/n
n

which is a product of n random variables. By the central
limit theorem, Xg will tend to a lognormal distribution so
that

ln(Xg ) = ln
(
(X1X2 · · · Xn )1/n) = 1

n

n∑
i=1

ln(Xi )

is normally distributed. As mentioned above, Xg is an
estimate of the median of X if X is lognormally distributed.
However, even if X is not lognormally distributed, Xg will
tend to have a lognormal distribution, by the central limit
theorem, if the Xi ’s are nonnegative. We shall see more of
this in Chapter 4 where we suggest that in a variety of cases



COMMON CONTINUOUS PROBABILITY DISTRIBUTIONS 59

the lognormal distribution is a natural distribution for soil
properties according to the central limit theorem.

The MLEs for µln X and σ 2
ln X are the same as for the

normal distribution except that ln(X ) is used in the esti-
mate. If x1, x2, . . . , xn are n independent observations of a
lognormally distributed random variable, then the MLEs are

µ̂ln X = 1

n

n∑
i=1

ln xi (1.184a)

σ̂ 2
ln X = 1

n

n∑
i=1

(ln xi − µ̂ln X )2 (1.184b)

The more common estimator for σ 2
ln X is slightly different,

having the form

σ̂ 2
ln X = 1

n − 1

n∑
i=1

(ln xi − µ̂ln X )2 (1.185)

which is an unbiased estimator (see Section 5.2.1).

Example 1.58 The settlement δ of a shallow foundation,
in meters, can be computed as

δ = c
L

E
where L is the footing load, E is the soil’s effective elastic
modulus, and c is a constant which accounts for geometry
(footing area and aspect ratio, depth to bedrock, etc.) and
Poisson’s ratio. Assume that c is nonrandom and equal to
0.15 m−1 and that the load and elastic modulus are both
lognormally distributed with

µE = 20, 000.0 kN/m2, σE = 4000.0 kN/m2

µL = 1200.0 kN, σL = 300.0 kN

What is the probability that the footing settlement exceeds
0.025 m?

SOLUTION First write ln(δ) = ln(c) + ln(L) − ln(E ), so
that

µln δ = ln(c) + µln L − µln E , σ 2
ln δ = σ 2

ln L + σ 2
ln E

where we assumed independence between ln(L) and ln(E )
when computing the variance of ln(δ) (so that the covari-
ance terms can be dropped). To compute the above, we
must first find the means and variances of ln(L) and ln(E ):

σ 2
ln L = ln

(
1 + σ 2

L

µ2
L

)
= ln

(
1 + 3002

12002

)

= 0.060625

µln L = ln(µL) − 1
2σ 2

ln L = ln(1200) − 1
2 (0.060625)

= 7.059765

σ 2
ln E = ln

(
1 + σ 2

E

µ2
E

)
= ln

(
1 + 40002

20,0002

)
= 0.039221

µln E = ln(µE ) − 1
2σ 2

ln E = ln(20,000) − 1
2 (0.039221)

= 9.883877

Thus,

µln δ = ln(0.15) + 7.059765 − 9.883877 = −4.721232

σ 2
ln δ = 0.060625 + 0.039221 = 0.099846

σln δ =
√

0.099846 = 0.315984

and

P [δ > 0.025] = 1 − P [δ ≤ 0.025]

= 1 − P

[
Z ≤ ln(0.025) − µln δ

σln δ

]

= 1 − P [Z ≤ 3.27]

= 1 − �(3.27) = 1 − 0.9994622

= 0.00054

Most foundations are designed to have probability of failure
ranging from 0.001 to 0.0001 against ultimate limit states
(e.g., bearing capacity failure). This foundation would be
considered very safe with respect to settlement failure, es-
pecially since excessive settlement is generally considered
to be only a serviceability limit state issue.

1.10.9.1 Bivariate Lognormal Distribution Generally,
the multivariate lognormal distribution is handled by di-
rectly considering the underlying multivariate normal distri-
bution. That is, rather than considering the joint distribution
between the lognormally distributed variates X1, X2, . . . , we
consider the joint distribution between ln X1, ln X2, . . . since
these are all normally distributed and the results presented
in the previous section can be used. However, we some-
times need to consider the lognormally distributed variates
directly. Here we will present some results for two lognor-
mally distributed random variables X1 and X2.

If X1 and X2 are jointly lognormally distributed, then
their bivariate distribution is

fX 1X 2 (x , y) = 1

2πσln X1σln X2rxy

× exp

{
− 1

2r2

[
�2

1 − 2ρln 12�1�2 + �2
2

]}
,

x ≥ 0, y ≥ 0 (1.186)

where �1 = (ln x − µln X 1 )/σln X 1 , �2 = (ln y − µln X 2 )/
σln X 2 , r2 = 1 − ρ2

ln 12, and ρln 12 is the correlation coefficient
between ln X1 and ln X2.
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In general, the parameters µln X 1 , σln X 1 can be obtained
using the transformation equations given in the previous
section from the parameters µX 1 , σX 1 , and so on. If we
happen to have an estimate for the correlation coefficient
ρ12 acting between X1 and X2, we can get ρln 12 from

ρln 12 = ln(1 + ρ12vX 1vX 2 )√
ln(1 + v2

X 1
) ln(1 + v2

X 2
)

(1.187)

where vX i = σXi /µX i is the coefficient of variation of Xi .
We can also invert this relationship to obtain an expression
for ρ12,

ρ12 = exp{ρln 12σln X 1σln X 2} − 1√(
exp{σ 2

ln X 1
} − 1

)(
exp{σ 2

ln X 2
} − 1

) (1.188)

1.10.10 Bounded tanh Distribution

The second half of this book is devoted to a variety of
traditional geotechnical problems which are approached
in a nontraditional way. In particular, the soil or rock is
treated as a spatially variable random field. We shall see in
Chapter 3 that a random field with a multivariate normal
distribution has the advantage of being fully specified by
only its mean and covariance structure. In addition, the
simulation of random fields is relatively straightforward
when the random field is normally distributed and more
complicated when it is not.

Unfortunately, the normal distribution is not appropriate
for many soil and rock properties. In particular, most ma-
terial properties are strictly nonnegative (e.g., elastic mod-
ulus). Since the normal distribution has range (−∞, +∞),
it will always admit some possibility of negative values.
When one is simulating possibly millions of realizations of
a soil or rock property using the normal distribution, some
realizations will inevitably involve negative soil/rock prop-
erties, unless the coefficient of variation is quite small and
chance is on your side. The occurrence of negative proper-
ties often leads to fundamental modeling difficulties (e.g.,
what happens when Poisson’s ratio or the elastic modulus
becomes negative?).

In cases where the normal distribution is not appropriate,
there are usually two options: (1) choose a distribution
on the interval (0, +∞) (e.g., the lognormal distribution)
or (2) choose a distribution which is bounded both above
and below on some interval (a , b). The latter would be
appropriate for properties such as friction angle, Poisson’s
ratio, and void ratio.

As we saw above, the lognormal transformation X = eG ,
where G is normally distributed, leads to a random variable
X which takes values on the interval (0, +∞). Thus, the
lognormal distribution derives from a simple transformation
of a normally distributed random variable or field. In the

case of a bounded distribution, using the transformation

X = a + 1
2 (b − a)

[
1 + tanh

(
m + sG

2π

)]
(1.189)

leads to the random variable X being bounded on the in-
terval (a , b) if G is a standard normally distributed random
variable (or at least bounded distribution—we shall as-
sume that G is a standard normal here). The parameter
m is a location parameter. If m = 0, then the distribu-
tion of X is symmetric about the midpoint of the interval,
1
2 (a + b). The parameter s is a scale parameter—the larger
s is, the more variable X is. The function tanh is de-
fined as

tanh(z ) = ez − e−z

ez + e−z
(1.190)

In essence, Eq. 1.189 can be used to produce a random
variable with a distribution bounded on the interval (a , b),
which is a simple transformation of a normally distributed
random variable. Thus, a bounded property is easily sim-
ulated by first simulating the normally distributed random
variable G and then applying Eq. 1.189. Such a simula-
tion would require that the mean and covariance struc-
ture of the simulated normally distributed random pro-
cess be known. To this end, Eq. 1.189 can be inverted to
yield

m + sG = π ln

(
X − a

b − X

)
(1.191)

Since G is a standard normal (having mean zero and
unit variance), the parameters m and s are now seen
as the mean and standard deviation of the normally dis-
tributed random process (m + sG). These two parameters
can be estimated by observing a sequence of realizations
of X , that is, x1, x2, . . . , xn , transforming each accord-
ing to

yi = π ln

(
xi − a

b − xi

)
(1.192)

and then estimating the mean m and standard deviation s
using the traditional estimators,

m = 1

n

∑
yi (1.193a)

s =
√√√√ 1

n − 1

n∑
i=1

(yi − m)2 (1.193b)

In order to estimate the correlation structure, the spatial
location, x, of each observation must also be known, so
that our observations become x (xi ), i = 1, 2, . . . , n , and yi

also becomes a function of xi . The methods of estimating
the correlation function discussed in Sections 5.3.6 and
5.4.1.1 can then be applied to the transformed observations,
y(xi ).
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The probability density function of X is

fX (x ) =
√

π(b − a)√
2s(x − a)(b − x )

× exp

{
− 1

2s2

[
π ln

(
x − a

b − x

)
− m

]2
}

(1.194)

If m = 0, then the mean of X is at the midpoint, µX =
1
2 (a + b). Since most bounded distributions are symmetric
about their midpoints, the remainder of this discussion will
be for m = 0.

Figure 1.36 illustrates how the distribution of X changes
as s changes for m = 0, a = 0, and b = 1. The distribution
shapes are identical for different choices in a and b, the
only change being that the horizontal axis scales with b − a
and the vertical axis scales with 1/(b − a). For example, if
a = 10 and b = 30, the s = 2 curve looks identical to that
shown in Figure 1.36 except that the horizontal axis runs
from 10 to 30 while the vertical axis runs from 0 to 0.3.
When s > 5, the distribution becomes U shaped, which is
not a realistic material property shape. Practically speaking,
values ranging from s = 0, which is nonrandom and equal
to the mean, to s = 5, which is almost uniformly distributed
between a and b, are reasonable.

The relationship between the parameter s and the stan-
dard deviation σX of X is also of interest. In the limit as
s → ∞, the transformation given by Eq. 1.189 becomes a
Bernoulli distribution with p = 0.5 and X taking possible
values a or b. The standard deviation of X for s → ∞ must
therefore be 0.5(b − a). At the other extreme, as s → 0,
we end up with X = 1

2 (a + b), which is nonrandom. Thus,
when s → 0 the standard deviation of X is zero and when
s → ∞ the standard deviation of X is 0.5(b − a). We sug-
gest, therefore, that σX increases from zero when s = 0 to
0.5(b − a) when s → ∞.

0 0.2 0.4 0.6 0.8 1
x

0
2

4
6

f X
(x

)

s = 1.0
s = 2.0
s = 5.0

Figure 1.36 Probability density function of X determined as
bounded transformation (Eq. 1.189) of normally distributed ran-
dom variable (m + sG) for m = 0 and various values of s .

The following relationship between s and the variance of
X derives from a third-order Taylor series approximation to
tanh and a first-order approximation to the expectation:

σ 2
X = (0.5)2(b − a)2 E

[
tanh2

(
sG

2π

)]

� (0.5)2(b − a)2 E

[ [
sG/(2π )

]2
1 + [sG/(2π )

]2
]

� (0.5)2(b − a)2 s2

4π2 + s2
(1.195)

where E
[
G2
] = 1 since G is a standard normal random

variable. Equation 1.195 slightly overestimates the true
standard deviation of X by 0% when s = 0 to 11% when
s = 5. A much closer approximation over the entire range
0 ≤ s ≤ 5 is obtained by slightly decreasing the 0.5 factor
to 0.46 (this is an empirical adjustment),

σX � 0.46(b − a)s√
4π2 + s2

(1.196)

The close agreement between Eq. 1.196 and a simulation-
based estimate is illustrated in Figure 1.37.

Equation 1.195 can be generalized to yield an approxi-
mation to the covariance between two random variables Xi

and Xj , each derived as tanh transformations of two stan-
dard normal variables Gi and Gj according to Eq. 1.189.
If Gi and Gj are correlated, with correlation coefficient ρij ,
then

Cov
[
Xi , Xj

] = (0.5)2(b − a)2

× E

[
tanh

(
sGi

2π

)
tanh

(
sGj

2π

)]

0 1 2 3 4 5
s

0
2

4
6
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10

s
X

Simulated
0.46(b − a) s / (4p2 + s2)½

Figure 1.37 Relationship between σX and s derived from simu-
lation (100,000 realizations for each s) and Taylor’s series derived
approximation given by Eq. 1.196. The vertical scale corresponds
to b − a = 20◦.
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� (0.5)2(b − a)2

× E




[
sGi /(2π )

] [
sGj /(2π )

]
1 + (1/2)

{[
sGi /(2π )

]2 + [sGj /(2π )
]2}



� (0.46)2(b − a)2 s2ρij

4π2 + s2

where the empirical correction given in Eq. 1.196 was
introduced in the last step.

1.11 EXTREME-VALUE DISTRIBUTIONS

Most engineering systems fail only when extreme loads oc-
cur and failure tends to initiate at the weakest point. Thus, it
is of considerable interest to investigate the distribution of
extreme values. Consider a sequence of n random variables
X1, X2, . . . , Xn . This could, for example, be the sequence of
tensile strengths of individual links in a chain, or the se-
quence of daily average soil moisture levels, or earthquake
intensities, and so on. Now define the extremes of this set
of random variables as

Yn = max(X1, X2, . . . , Xn ) (1.197a)

Y1 = min(X1, X2, . . . , Xn ) (1.197b)

so that if Xi is the daily average soil moisture level, then
Yn is the maximum daily average soil moisture level over
n days. Similarly, if Xi is the tensile strength of the i th
link in a chain, then Y1 is the tensile strength of a chain
composed of n links.

1.11.1 Exact Extreme-Value Distributions

Let us first examine the behavior of the maximum, Yn . We
know that if the maximum is less than some number y ,
then each Xi must also be less than y . That is, the event
(Yn ≤ y) must be equivalent to the event (X1 ≤ y ∩ X2 ≤
y ∩ · · · ∩ Xn ≤ y). In other words the exact distribution
of Yn is

P
[
Yn ≤ y

] = P
[
X1 ≤ y ∩ X2 ≤ y ∩ · · · ∩ Xn ≤ y

]
(1.198)

If it can be further assumed that the X ’s are independent
and identically distributed (iid) (if this is not the case, the
problem becomes very complex and usually only solved via
simulation), then

FY n (y) = P
[
Yn ≤ y

]
= P

[
X1 ≤ y

]
P
[
X2 ≤ y

] · · · P
[
Xn ≤ y

]
= [FX (y)

]n
(1.199)

where FX is the cumulative distribution function of X . Tak-
ing the derivative gives us the probability density function

fY n (y) = dFY n (y)

dy
= n

[
FX (y)

]n−1 dFX (y)

dy

= n
[
FX (y)

]n−1
fX (y) (1.200)

Example 1.59 Suppose that fissure lengths X in a rock
mass have an exponential distribution with fX (x ) = e−x .
What, then, does the distribution of the maximum fissure
length Yn look like for n = 1, 5, 50 fissures?

SOLUTION If n = 1, then Yn is the maximum of one
observed fissure, which of course is just the distribution of
the single fissure length. Thus, when n = 1, the distribution
of Yn is just the exponential distribution

fY 1 (y) = fX (y) = e−y

When n = 5, we have

FY 5 (y) = P
[
Y5 ≤ y

]
= P

[
X1 ≤ y

]
P
[
X2 ≤ y

] · · · P
[
X5 ≤ y

]
= [FX (y)

]5
= [1 − e−y]5

where we used the fact that FX (x ) = 1 − e−x . To find
the probability density function (which is usually more
informative graphically), we must differentiate:

fY 5 (y) = dFY 5 (y)

dy
= 5e−y [1 − e−y]4

Similarly, when n = 50, we have

FY 50 (y) = P
[
Y50 ≤ y

]
= P

[
X1 ≤ y

]
P
[
X2 ≤ y

] · · · P
[
X50 ≤ y

]
= [FX (y)

]50

= [1 − e−y]50

and

fY 50 (y) = dFY 50 (y)

dy
= 50e−y [1 − e−y]49

Plots of these three distributions appear as in Figure 1.38.

Example 1.60 Suppose that X follows an exponential
distribution with

fX (x ) = λe−λx , x ≥ 0

Then what is the probability that the largest from a sample
of five observations of X will exceed 3 times the mean?
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Figure 1.38 Distributions of maximum value of n observations
of exponentially distributed random variable.

SOLUTION For n = 5, we have

FY 5 (y) = P
[
Y5 ≤ y

]
= P

[
X1 ≤ y

]
P
[
X2 ≤ y

] · · · P
[
X5 ≤ y

]
= [FX (y)

]5
= [1 − e−λy]5

so that
P
[
Y5 > y

] = 1 − [1 − e−λy]5
The mean of X is 1/λ (see Eq. 1.120), so the probability

that Y5 exceeds 3 times the mean is

P

[
Y5 >

3

λ

]
= 1 − [1 − e−λ(3/λ)]5

= 1 − [1 − e−3]5
= 0.14205

Now consider the distribution of the minimum out of n
samples, Y1. If we proceed as we did for Yn , then we would
look at the event Y1 ≤ y . This event just means that X1 ≤ y
or X2 ≤ y or . . . , that is,

P
[
Y1 ≤ y

] = P
[
X1 ≤ y ∪ X2 ≤ y ∪ · · · ∪ Xn ≤ y

]
(1.201)

The union on the right expands into
(n

1

)+ (n2)+ (n3)+ · · · +(n
n

)
terms—in other words potentially a lot of terms. A

better way to work out this distribution is to look at the
complement:

P
[
Y1 > y

] = P
[
X1 > y ∩ X2 > y ∩ · · · ∩ Xn > y

]

= P
[
X1 > y

]
P
[
X2 > y

] · · · P
[
Xn > y

]
= [1 − FX (y)

]n
(1.202)

and since P
[
Y1 > y

] = 1 − FY 1 (y) we get

FY 1 (y) = 1 − [1 − FX (y)
]n

(1.203)

and, taking the derivative,

fY 1 (y) = n
[
1 − FX (y)

]n−1
fX (y) (1.204)

Example 1.61 A series of five soil samples are taken at
a site and their shear strengths determined. Suppose that a
subsequent design is going to be based on the minimum
shear strength observed out of the five samples. If the
shear strengths of the individual samples are exponentially
distributed with parameter λ = 0.025 m2/kN, then what is
the distribution of the design shear strength?

SOLUTION If we let Y1 be the design shear strength,
where Y1 is the minimum shear strength observed from the
n = 5 samples, then

FY 1 (y) = 1 − [1 − FX (y)
]5

where, for the exponential distribution, FX (x ) = 1 − e−λx .
Thus,

FY 1 (y) = 1 − [1 − (1 − e−λy)]5
= 1 − e−5λy

From this we see that the extreme-value distribution of
the minimum of samples from an exponential distribu-
tion is also exponentially distributed with new parameter
λ′ = nλ = 5(0.025) = 0.125. Notice that while the indi-
vidual samples have mean shear strength equal to 1/λ =
1/0.025 = 40 kN/m2, the mean design shear strength is
one-fifth this value, 1/λ′ = 1/0.125 = 8 kN/m2.

1.11.2 Asymptotic Extreme-Value Distributions

In cases where the cumulative distribution function FX (x )
is not known explicitly (e.g., the normal or lognormal), the
exact distributions given above are of questionable value.
It turns out that if n is large enough and the sample is
random (i.e., composed of independent observations), then
the distribution of an extreme value tends toward one of
three “asymptotic” forms, which are explained as follows.
Thus, even if you do not know the precise form of the
distribution of X , the distribution of the extreme value
of X1, X2, . . . , Xn can often be deduced, since there are
only three possibilities. The results presented below were
developed by Gumbel (1958).
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1.11.2.1 Type I Asymptotic Form If X has a distribu-
tion with an unlimited exponentially decaying tail in the
direction of the extreme under consideration, then the distri-
bution of the extreme will tend to the type I asymptotic form.
Examples of such distributions are the normal (in either
direction) and the exponential (in the positive direction).

In the case of the maximum, the type I extreme-value
distribution has the form

FY n (y) = exp
{−e−αn (y−un )} (1.205a)

fY n (y) = αn e−αn (y−un ) exp
{−e−αn (y−un )} (1.205b)

where

un = characteristic largest value of X

= F−1
X

(
1 − 1

n

)

= mode of Yn (1.206a)

αn = inverse measure of variance of Yn

= nfX (un ) (1.206b)

In particular, un is defined as the value that X exceeds
with probability 1/n . It is found by solving P [X > un ] =
1/n for un , giving the result shown above. If F−1

X (p) is
not readily available, you will either have to consult the
literature or determine this extreme-value distribution via
simulation.

The mean and variance of the type I maximum asymp-
totic distribution are as follows:

E [Yn ] = un + γ

αn
(1.207a)

Var [Yn ] = π2

6α2
n

(1.207b)

where γ = 0.577216 . . . is Euler’s number.

Example 1.62 Suppose that a structure is supported by
n = 20 piles and that long-term pile settlements are dis-
tributed according to fX (x ) = λe−λx for x ≥ 0 being the
settlement, where λ = 0.2 mm−1. If we make the assump-
tion that the piles settle independently (probably a ques-
tionable assumption, so that the following results should
only be considered approximate), then find the asymptotic
parameters of the largest pile settlement, Yn , out of the n
piles, assuming that n is large enough that the asymptotic
extreme-value distribution holds.

SOLUTION To find un , we solve P [X > un ] = 1/n for
un . For the exponential distribution,

P [X > un ] = e−λun = 1

n

−λun = − ln(n)

un = ln(n)

λ
= ln(20)

0.2
= 14.98 mm

and
αn = nfX (un ) = nλe−λ ln(n)/λ = λ

The parameter un = 14.98 is the most probable largest
settlement out of the 20 piles (e.g., the mode of the
distribution).

The asymptotic extreme-value distribution is then

FY n (y) = exp
{−e−λy−ln(n)} = exp

{−e−λy

n

}

The distribution of the minimum value, where the distri-
bution of X is exponentially decaying and unlimited in the
direction of the minimum, has the form

FY 1 (y) = 1 − exp
{−e−α1(y−u1)} (1.208a)

fY 1 (y) = α1 e−α1(y−u1) exp
{−e−α1(y−u1)} (1.208b)

where

u1 = characteristic smallest value of X

= F−1
X

(
1

n

)

= mode of Y1 (1.209a)

α1 = inverse measure of variance of Y1

= nfX (u1) (1.209b)

In particular, u1 is defined as the value that X has probabil-
ity 1/n of being below. It is found by solving P [X ≤ u1] =
1/n for u1. The mean and variance of Y1 are as follows:

E [Y1] = u1 − γ

α1
(1.210a)

Var [Y1] = π2

6α2
1

(1.210b)

Because of the mirror symmetry of the minimum and
maximum type I extreme-value distributions, the skewness
coefficient of Yn is 1.1414 whereas the skewness coefficient
of Y1 is −1.1414. That is, the two distributions are mirror
images of one another.

1.11.2.2 Type II Asymptotic Form If X has a distribu-
tion with an unlimited polynomial tail, in the direction of
the extreme, then its extreme value will have a type II dis-
tribution. Examples of distributions with polynomial tails
are the lognormal (in the positive direction) and the Pareto
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(in the positive direction) distributions, the latter of which
has the form

FX (x ) = 1 −
(

b

x

)α

for x ≥ b

If the coefficient b is replaced by un/n1/α , then we get

FX (x ) = 1 − 1

n

(un

x

)α

for x ≥ un/n1/α

The corresponding extreme-value distribution for the max-
imum, in the limit as n → ∞, is

FY n (y) = exp

{
−
(

un

y

)α}
for y ≥ 0 (1.211a)

fY n (y) =
(

α

un

)(
un

y

)α+1

exp

{
−
(

un

y

)α}
(1.211b)

un = characteristic largest value of X

= F−1
X

(
1 − 1

n

)

= mode of Yn (1.212a)

α = shape parameter

= order of polynomial decay of FX (x )

in direction of extreme (1.212b)

Note that although the lognormal distribution seems to
have an exponentially decaying tail in the direction of the
maximum, the distribution is actually a function of the form
a exp{−b(ln x )2}, which has a polynomial decay. Thus,
the extreme-value distribution of n lognormally distributed
random variables follows a type II distribution with

α =
√

2 ln n

σln X

un = exp{u ′
n}

u ′
n = σln X

√
2 ln n −

σln X

[
ln(ln n) + ln(4π )

]

2
√

2 ln n
+ µln X

The mean and variance of the type II maximum asymp-
totic distribution are as follows:

E [Yn ] = un�

(
1 − 1

α

)
if α > 1 (1.213a)

Var [Yn ] = u2
n�

(
1 − 2

α

)
− E2[Yn ] if α > 2 (1.213b)

where � is the gamma function (see Eq. 1.128).

The distribution of the minimum for an unbounded poly-
nomial decaying tail can be found as the negative “reflec-
tion” of the maximum, namely as

FY 1 (y) = 1 − exp

{
−
(

u1

y

)α}
, y ≤ 0, u1 < 0 (1.214a)

fY 1 (y) = −
(

α

u1

)(
u1

y

)α+1

exp

{
−
(

u1

y

)α}
(1.214b)

where

u1 = characteristic smallest value of X

= F−1
X

(
1

n

)

= mode of Y1 (1.215a)

α = shape parameter

= order of polynomial decay of FX (x )

in direction of extreme (1.215b)

The mean and variance of the type II minimum asymptotic
distribution are as follows:

E [Y1] = u1�

(
1 − 1

α

)
if α > 1 (1.216a)

Var [Y1] = u2
1�

(
1 − 2

α

)
− E2[Y1] if α > 2 (1.216b)

Example 1.63 Suppose that the pile settlements, X , dis-
cussed in the last example actually have the distribution

fX (x ) = 1

x 2
for x ≥ 1 mm

Determine the exact distribution of the maximum of a
random sample of size n and the asymptotic distribution
of the maximum.

SOLUTION We first need to find the cumulative distri-
bution function of X ,

FX (x ) =
∫ x

1

1

t2
dt = 1 − 1

x
, x ≥ 1

The exact cumulative distribution function of the maximum
pile settlement, Yn , is thus

FY n (y) = [FX (y)
]n =

[
1 − 1

y

]n

for y ≥ 1

and the exact probability density function of Yn is the
derivative of FY n (y),

fY n (y) = n

y2

[
1 − 1

y

]n−1

for y ≥ 1
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For the asymptotic distribution, we need to find un such
that FX (un ) = 1 − 1/n ,

FX (un ) = 1 − 1

un
= 1 − 1

n

so that un = n . The order of polynomial decay of FX (x ) in
the direction of the extreme (positive direction) is α = 1,
so that the asymptotic extreme-value distribution of the
maximum, Yn , is

FY n (y) = exp

{
−n

y

}
for y ≥ 0

fY n (y) = n

y2
exp

{
−n

y

}
for y ≥ 0

We see immediately that one result of the approximation is
that the lower bound of the asymptotic approximations is
y ≥ 0, rather than y ≥ 1 found in the exact distributions.
However, for n = 10, Figure 1.39 compares the exact and
asymptotic distributions, and they are seen to be very
similar.

1.11.2.3 Type III Asymptotic Form If the distribution of
X is bounded by a value, u , in the direction of the extreme,
then the asymptotic extreme-value distribution (as n → ∞)
is the type III form. Examples are the lognormal and
exponential distributions toward the left and the beta and
uniform distributions in either direction. For the maximum,
the type III asymptotic form is

FY n (y) = exp

{
−
(

u − y

u − un

)α}
for y ≤ u (1.217a)

0
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Figure 1.39 Comparison of exact and asymptotic (type II)
extreme-value distributions for n = 10.

fY n (y) = α(u − y)α−1

(u − un )α
exp

{
−
(

u − y

u − un

)α}
for y ≤ u

(1.217b)

where

un = characteristic largest value of X

= F−1
X

(
1 − 1

n

)
(1.218a)

= mode of Yn

α = shape parameter

= order of polynomial decay of FX (x )

in direction of extreme (1.218b)

The mean and variance of the type III maximum asymptotic
distribution are as follows:

E [Yn ] = u − (u − un )�

(
1 + 1

α

)
(1.219a)

Var [Yn ] = (u − un )2

×
[
�

(
1 + 2

α

)
− �2

(
1 + 1

α

)]
(1.219b)

In the case of the minimum, the asymptotic extreme-
value distribution is

FY 1 (y) = 1 − exp

{
−
(

y − u

u1 − u

)α}
for y ≥ u (1.220a)

fY 1 (y) = α(y − u)α−1

(u1 − u)α
exp

{
−
(

y − u

u1 − u

)α}
(1.220b)

where

u1 = characteristic smallest value of X

= F−1
X

(
1

n

)

= mode of Y1 (1.221a)

α = shape parameter

= order of polynomial decay of FX (x )

in direction of extreme (1.221b)

and u is the minimum bound on X . This distribution is also
a form of the Weibull distribution. The shape parameter α

is, as mentioned, the order of the polynomial FX (x ) in the
direction of the extreme. For example, if X is exponentially
distributed and we are looking at the distribution of the
minimum, then FX (x ) has Taylor’s series expansion for
small x of

FX (x ) = 1 − e−λx � 1 − (1 − λx ) = λx (1.222)
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which has order 1 as x → 0. Thus, for the minimum of an
exponential distribution, α = 1.

The mean and variance of the type III maximum asymp-
totic distribution are as follows:

E [Yn ] = u + (u1 − u)�

(
1 + 1

α

)
(1.223a)

Var [Yn ] = (u1 − u)2

×
[
�

(
1 + 2

α

)
− �2

(
1 + 1

α

)]
(1.223b)

Example 1.64 A series of 50 soil samples are taken at
a site and their shear strengths determined. Suppose that a
subsequent design is going to be based on the minimum
shear strength observed out of the 50 samples. If the
shear strengths of the individual samples are exponentially
distributed with parameter λ = 0.025 m2/kN, then what is
the asymptotic distribution of the design shear strength (i.e.,
their minimum)? Assume that n is large enough that the
asymptotic extreme-value distributions hold.

SOLUTION If we let Y1 be the design shear strength,
then Y1 is the minimum shear strength observed among the
n = 50 samples. Since the shear strengths are exponentially
distributed, they are bounded by u = 0 in the direction of
the minimum (to the left). This means that the asymptotic
extreme-value distribution of Y1 is type III. For this distri-
bution, we first need to find u1 such that FX (u1) = 1/n ,

FX (u1) = 1 − e−λu1 = 1/n

=⇒ u1 = −(1/λ) ln(1 − 1/n)

so that u1 = − ln(0.98)/0.025 = 0.8081.

The order of polynomial decay of FX (x ) in the direction
of the extreme (toward X = 0) is α = 1, as determined by

Eq. 1.222, so that the asymptotic extreme-value distribution
of the minimum, Y1, is

FY 1 (y) = 1 − exp
{
−
( y

0.8081

)}
, for y ≥ 0

fY 1 (y) = 1

0.8081
exp

{
−
( y

0.8081

)}
for y ≥ 0

which is just an exponential distribution with parameter
λ′ = 1/0.8081 = 1.237. Note that the exact distribution
of the minimum is exponential with parameter λ′ = nλ =
50(0.025) = 1.25, so the asymptotic approximation is rea-
sonably close to the exact. Figure 1.40 illustrates the close
agreement between the two distributions.
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Figure 1.40 Comparison of exact and asymptotic (type III)
extreme-value distributions for n = 50.

1.12 SUMMARY

De Morgan (A ∪ B )c = Ac ∩ Bc , (A ∩ B )c = Ac ∪ Bc

Probability P [A ∪ B ] = P [A] + P [B ] − P [A ∩ B ]

P [A ∩ B ] = P [A|B ] · P [B ] = P [B |A] · P [A]

Bayes’ theorem P
[
Aj | E

] = P
[
E |Aj

] · P
[
Aj
]

P [E ]
= P

[
E |Aj

] · P
[
Aj
]

∑n
i=1 P [E |Ai ] · P [Ai ]

PDFs and CDFs F (x ) =
∫ x

−∞
f (ξ ) dξ ⇐⇒ f (x ) = d

dx
F (x )
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Expectations E [X ] =
∫ ∞

−∞
xfX dx , E

[
X 2
] =

∫ ∞

−∞
x2fX dx

E
[
g(X )

] =
∫ ∞

−∞
g(x ) fX dx , E [a + bX ] = a + bE [X ]

E [XY ] =
∫ ∞

−∞

∫ ∞

−∞
xy fXY (x , y) dx dy

Variance Var [X ] = E
[
(X − µ)2

] = E
[
X 2
]− E2[X ] = σ 2

Var [a + bX ] = b2 Var [X ]

Covariance Cov [X , Y ] = E [(X − µX )(Y − µY )] = E [XY ] − E [X ] E [Y ] , ρX Y = Cov [X , Y ]

σX σY

Taylor’s series Y = g(X ) = g(µX ) + (X − µX )
dg

dx

∣∣∣∣
µX

+ 1

2!
(X − µX )2 d2g

dx2

∣∣∣∣
µX

+ · · ·

Linear functions If Y =
n∑

i=1

ai Xi and Z =
n∑

i=1

bi Xi , then E [Y ] =
n∑

i=1

ai E [Xi ]

Var [Y ] =
n∑

i=1

n∑
j=1

ai aj Cov
[
Xi , Xj

]
, Cov [Y , Z ] =

n∑
i=1

n∑
j=1

ai bj Cov
[
Xi , Xj

]

Functions If Y = g(X ) is one to one, then fY (y) = fX (x )

∣∣∣∣dx

dy

∣∣∣∣

Miscellaneous X̄ = 1

n

n∑
i=1

Xi , S 2 = 1

n − 1

n∑
i=1

(Xi − X̄ )2 = 1

n − 1

{
n∑

i=1

X 2
i − nX̄ 2

}

(
n

k

)
= n!

k !(n − k )!
, �(r ) = (r − 1)! (r integer)

Binomial P [Nn = k ] =
(

n

k

)
pk qn−k for 0 ≤ k ≤ n

E [Nn ] = np Var [Nn ] = npq

Geometric P [T1 = k ] = pqk−1 for k ≥ 1

E [T1] = 1

p
Var [T1] = q

p2

Negative
binomial

P [Tk = m] =
(

m − 1

k − 1

)
pk qm−k for m ≥ k

E [Tk ] = k

p
Var [Tk ] = kq

p2

Poisson P [Nt = k ] = (λt)k

k !
e−λt for k ≥ 0

E [Nt ] = λt Var [Nt ] = λt

Uniform f (x ) = 1

β − α
F (x ) = x − α

β − α
for α ≤ x ≤ β

E [X ] = 1
2 (α + β) Var [X ] = 1

12 (β − α)2

Exponential f (t) = λe−λt F (t) = 1 − e−λt for t ≥ 0

E [T ] = 1

λ
Var [T ] = 1

λ2
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Gamma f (x ) = λ

(k − 1)!
(λx )k−1e−λx F (x ) = 1 − e−λx

k−1∑
j=0

(λx )j

j !
k integer

E [X ] = k

λ
Var [X ] = k

λ2

Normal f (x ) = 1

σ
√

2π
exp

{
− 1

2

(
x − µ

σ

)2
}

F (x ) = �

(
x − µ

σ

)
for −∞ < x < ∞

E [X ] = µ Var [X ] = σ 2

P [X ≤ x ] = P

[
Z ≤ x − µ

σ

]
= �

(
x − µ

σ

)

Lognormal f (x ) = 1

xσln X
√

2π
exp

[
− 1

2

(
ln x − µln X

σln X

)2
]

F (x ) = �

(
ln x − µln X

σln X

)
for 0 ≤ x < ∞

E [X ] = µX = eµln X + 1
2 σ2

ln X Var [X ] = σ 2
X = µ2

X

(
eσ2

ln X − 1

)

σ 2
ln X = ln

(
1 + σ 2

X

µ2
X

)
µln X = ln(µX ) − 1

2 σ 2
ln X

Weibull f (x ) = β

x
(λx )βe−(λx )β F (x ) = 1 − e−(λx )β for x ≥ 0

E [X ] = 1

λβ
�

(
1

β

)
Var [X ] = 1

λ2β

{
2�

(
2

β

)
− 1

β

[
�

(
1

β

)]2
}

Extreme Value Distributions:

Type I FY n (y) = exp{−e−αn (y−un )} un = F−1
X

(
1 − 1

n

)
αn = nfX (un )

FY 1 (y) = 1 − exp{−e−α1(y−u1)} u1 = F−1
X

(
1

n

)
α1 = nfX (u1)

Type II FY n (y) = exp

{
−
(

un

y

)α}
un = F−1

X

(
1 − 1

n

)
α = polynomial order

FY 1 (y) = 1 − exp

{
−
(

u1

y

)α}
u1 = F−1

X

(
1

n

)

Type III FY n (y) = exp

{
−
(

u − y

u − un

)α}
un = F−1

X

(
1 − 1

n

)
α = polynomial order

FY 1 (y) = 1 − exp

{
−
(

y − u

u1 − u

)α}
u1 = F−1

X

(
1

n

)
u = bound value



CHAPTER 2

Discrete Random Processes

2.1 INTRODUCTION

We are surrounded in nature by spatially and temporally
varying phenomena, be it the height of the ocean’s surface,
the temperature of the air, the number of computational
cycles demanded of a CPU per second, or the cohesion
of a soil or rock. In this and subsequent chapters models
which allow the quantification of natural variability along
with our uncertainty about spatially varying processes will
be investigated. The models considered are called random
processes, or, more generally, random fields. To illustrate
the basic theory, processes which vary in discrete steps (in
either time or space) will be presented in this chapter. For
example, Figure 2.1 illustrates a SPT where the number
of blowcounts at each depth is a discrete number (i.e.,
0, 1, 2, . . .). This particular soil test can be modeled using a
discrete random process.

In theory a random process X (t), for all t on the real
line, is a collection of random variables whose randomness
reflects our uncertainty. Once we have taken a sample of
X (t), such as we have done in Figure 2.1, there is no
longer any uncertainty in the observation, and our sample
is denoted x (t). However, the blowcounts encountered by
a SPT at an adjacent location will not be the same as seen
in Figure 2.1, although it may be similar if the adjacent
test location is nearby. Before performing the test, the test
results will be uncertain: X (1) will be a discrete random
variable, as will X (2), X (3), and so on. The index t refers
to a spatial position or time and we will often refer to
X (t) as the state of the process at position or time t .
For example, X (t) might equal the number of piles which
have failed a static load test by time t during the course
of substructure construction, where t is measured in time.
Alternatively, X (t) might be the depth to the water table,
rounded to the nearest meter, at the t th boring, where

t is now an index (might also be measured in distance
if borings are arranged along a line) giving the boring
number. For ease of understanding, the theory developed
in this chapter will largely interpret t as time—the bulk
of the theory presented in this chapter has been developed
for time-varying random processes—but it is emphasized
that t can be measured along any one-dimensional line.
For geotechnical engineering, taking t along a line in
space (e.g., depth) would probably be the most common
application.

When the index t takes only a finite (or a countable) set
of possible values, for example t = 0, 1, 2, . . . , the process
X (t) is a discrete-time random process. In such cases, the
notation Xk , k = 0, 1, . . . , will be used to denote the random
process at each discrete time. Alternatively, if the index
t varies continuously along the real line, then the random
process is said to be a continuous-time process. In this case,
each instant in time can lead to a new random variable.

The state space of a random process is defined as the
set of all possible values that the random variable X (t) can
assume. For example, we could have X (1) = 3, in which
case 3 is an element of the state space. In general, the
state space can be discrete or continuous. For example, if
X (t) is the number of SPT blows at depth t , then X (t)
has state space 1, 2, . . . . Alternatively, if X (t) is the soil’s
cohesion at depth t , then X (t) can take any nonnegative real
value; in this case the state space is continuous. Continuous
state spaces are somewhat more complicated to deal with
mathematically, so we will start by considering discrete
state spaces and save the continuous state spaces until the
next chapter.

Thus, a random process is a sequence of random vari-
ables that describe the evolution through time (or space) of
some (physical) process which, for the observer at least, is
uncertain or inherently random.

2.2 DISCRETE-TIME, DISCRETE-STATE
MARKOV CHAINS

2.2.1 Transition Probabilities

We will first consider a random process Xn = X (tn ) which
steps through time discretely. For example, a CPT sound-
ing will take readings at discrete depth intervals X0 =
X (0.000), X1 = X (0.005), . . . , Xn = X (n�z ), and so on. In
addition, we will assume in this section that Xn can only
assume a finite number of possible states (e.g., Xn =
100, 200, . . . kPa). Unless otherwise noted, the set of pos-
sible states (i.e., a , b, . . .) of the random process Xn will be
denoted by the positive integers in = {1, . . . , m}. If Xn = in ,
then the process is said to be in state in at time n .

Furthermore, suppose now that whenever the process Xn

is in state in , there is a fixed probability that it will go to
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Figure 2.1 Standard penetration test: uncorrected blowcounts.

state j when we move to the next time step (n + 1). This
probability is denoted as pij . Specifically, it is supposed that

pij = P
[
Xn+1 = j | Xn = in , Xn−1 = in−1, . . . ,

X1 = i1, X0 = i0
]

(2.1)

where the symbol | means “given that.” This equation
says the following: Given that the random process starts
in state i0 and then progresses through states i1, i2, . . . and
is currently in state in , the probability that it will be in state
j in the next time step is given by pij .

A closer look at the right-hand-side of Eq. 2.1 indicates
that there is a dependence not only on the current state
Xn = in but also on past states Xn−1, . . . . Models of the fu-
ture which depend on not only the present but also the past
history are not uncommon. An example is creep strain in
concrete. However, such models are typically rather com-
plex and difficult to deal with, particularly mathematically.
As a result, almost all random process theories make use of
a simplifying assumption, namely that the future is depen-
dent only on the present and is not dependent on the past.

This is called the Markovian assumption or the Markov
property and this property allows Eq. 2.1 to be written much
more simply as

pij = P
[
Xn+1 = j |Xn = i

]
(2.2)

The probability pij is called the one-step transition prob-
ability.

The Markov property results in simple and thus popular
models. There are a great number of physical models in
which the future is predicted using only the current state;
for example, the future spatial position of a baseball can
be accurately predicted given its current position, veloc-
ity, wind velocity, drag coefficient, mass, center of gravity,
spin, rotational inertia, local gravity, relative location of
the sun and moon, and so on. In fact, it can be argued that
all mathematical models of the physical universe can be
represented as Markov models, dependent only on knowl-
edge of the complete current state to predict the future.
Of course, sometimes the level of detail required about the
current state, in order to accurately predict the future, is im-
practical (weather prediction being a classic example). This
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lack of complete knowledge about the current state leads to
uncertainties in predictions, so that future states are most
naturally characterized using probabilities.

In addition to the assumption that the future depends only
on the present, a further simplification is often introduced,
namely that the one-step transition probabilities are station-
ary. This means that probabilities remain constant from step
to step. For example, the probability of going from state i
in step 3 to state j in step 4 is the same as the probability
of going from state i in step 276 to state j in step 277,
and so on. Mathematically, this can be realized by stating
that Eq. 2.2 remains true for any n = 0, 1, . . . , that is, pij

is independent of the step n under consideration.
Furthermore, since probabilities are nonnegative and

since the process must make a transition into some state,
the following must also be true;

0 ≤ pij ≤ 1 for all 1 ≤ i , j ≤ m
m∑

j=1

pij = 1 for all i = 1, 2, . . . , m

which is to say that the sum of probabilities of going from
state i to any other state (including i ) must be 1.0.

The probability pij is really just an element of a one-step
transition probability matrix, which will be denoted as P.
Specifically, P is a nonsymmetric matrix whose rows sum
to 1.0. The one-step transition matrix for a random process
with m possible states appears as follows:

P =











p11 p12 · · · p1m

p21 p22 · · · p2m

.

.

.

.

.

.

.
.

.

.

.

.

pm1 pm2 · · · pmm











Example 2.1 Consider a sequence of piles arranged along
a line. The piles are load tested sequentially. Because of the
proximity of the piles, if one fails the load test there is a
40% probability that the next one in the sequence will also
fail the test. Conversely, if a pile passes the load test, the
probability that the next will also pass the load test is 70%.
What is the one-step transition probability matrix for this
problem?

SOLUTION Let state 1 be that the pile passes the load test
and state 2 be that the pile fails the load test. Then p11 is the
probability of going from state 1 to state 1, which is to say
the probability that the next pile will pass the load test given
that the current pile has passed the load test. We are told
that p11 = 0.7. Similarly p22 = 0.4. Because rows sum to

1.0, we must have p12 = 0.3 and p21 = 0.6, which gives us

P =
[

p 1 − p

1 − p p

]

=
[

0.7 0.3

0.6 0.4

]

Having established the probabilities associated with the
state in the next time step, it is natural to ask what the prob-
ability of going from state i to state j in two time steps will
be? What about three time steps? In general, the k -step tran-
sition probabilities p(k )

ij can be defined to be the probability
that a process which is currently in state i will be in state
j in exactly k time steps. In this definition, the intervening
states assumed by the random process are of no interest, so
long as it arrives in state j after k time steps. Mathemati-
cally, this k -step transition probability is defined as

p(k )
ij = P

[
Xn+k = j |Xn = i

]
, n , k ≥ 0, 0 ≤ i , j ≤ m

(2.3)
Again, only stationary k -step transition probabilities are
considered, in which p(k )

ij is independent of the starting step
number, n . As with the one-step transition probabilities,
the k -step transition probabilities can be assembled into an
m × m matrix

P (k ) =
[
p(k )

ij

]
(2.4)

where

0 ≤ p(k )
ij ≤ 1, k = 0, 1, . . . , i = 1, 2, . . . , m ,

j = 1, 2, . . . , m

and
m∑

j=1

p(k )
ij = 1 k = 0, 1, . . . , i = 1, 2, . . . , m (2.5)

Note that the zero-step transition matrix P (0) is just the iden-
tity matrix while the one-step transition matrix P (1) = P so
that p(1)

ij = pij .

Example 2.2 In any given day, a company undertakes
either zero, one, or two site investigations. The next day
the number of sites investigated can be either zero, one, or
two again, but there is some dependence from day to day.
This is a simple three-state, discrete-time Markov chain.
Suppose that the one-step transition matrix for this problem
appears as follows;

P =






0.7 0.3 0.0

0.2 0.3 0.5

0.0 0.4 0.6






(Notice that rows must sum to 1.0 but columns need not.)
Figure 2.2 is called a transition diagram, which is a useful
graphical depiction of a Markov Chain. What is the two-
step transition matrix for this problem?



74 2 DISCRETE RANDOM PROCESSES

0.3

0.50.0

0.6

0.4
0.0

0.2

0.3  0.7

2

10

Figure 2.2 Three-state transition diagram.

SOLUTION We will number our possible states 0, 1, and
2 to correspond with the number of sites investigated. Thus,
p01 is the probability of going from no sites investigated on
day 1 to one site investigated on day 2 (p01 = 0.3 from the
above matrix).

Note that the numbering of the states is arbitrary. We
normally index the first state with a 1, the second with a 2,
and so on, up to m states (which is the usual matrix/vector
convention). However, when the first state is 0, the second
is 1, and so on, up to m − 1, it makes more sense to index
the states starting at 0 rather than at 1.

Let us start by computing the probability of going from
no sites investigated on day 1 to two sites investigated
on day 3. Clearly, since p02 = 0, the company cannot go
from zero to two sites in a single day (presumably this
never happens for the company, unfortunately). Thus, the
probability that the company goes from zero to two sites in
two days is just the probability that the company goes from
zero to one site in the next day times the probability that
the company goes from one to two sites in the second day:

p(2)
02 = p01 · p12 = (0.3)(0.5) = 0.15

The probability that the company goes from zero to one site
in the next two days is a bit more complicated. In this case,
two paths can be followed: (a) the company starts with zero
sites, remains at zero sites in the next day, then investigates
one site in the second day or (b) the company starts with
zero sites, moves to one site in the next day, then remains
at one site in the second day. The desired probability now
involves a sum:

p(2)
01 = p00p01 + p01p11 = (0.7)(0.3) + (0.3)(0.3) = 0.3

Similarly, going from one site investigated to one site in-
vestigated in two steps now involves three paths: (a) one
to zero and back to one, (b) one to one to one, or (c) one

to two and back to one. The probability of this is

p(2)
11 = p10p01 + p11p11 + p12p21 = (0.2)(0.3) + (0.3)(0.3)

+ (0.5)(0.4) = 0.35

A closer look at the above equations reveals that in general
we can compute

p(2)
ij =

2∑

k=0

pik pkj

Using matrix notation, this can be expressed as

P (2) = P · P

so that

P (2) =







0.7 0.3 0.0

0.2 0.3 0.5

0.0 0.4 0.6













0.7 0.3 0.0

0.2 0.3 0.5

0.0 0.4 0.6







=







0.55 0.30 0.15

0.20 0.35 0.45

0.08 0.36 0.56







More generally, the Chapman–Kolmogorov equations
provide a method for computing the k -step transition prob-
abilities from the intermediate-step probabilities. These
equations are (reverting to the usual matrix indexing starting
from 1)

p(k )
ij =

m∑

�=1

p(ν)
i� p(k−ν)

�j ,
i = 1, 2, . . . , m ,
j = 1, 2, . . . , m

(2.6)

for any ν = 0, . . . , k . These equations are most easily un-
derstood by noting that p(ν)

i� p(k−ν)
�j represents the probability

that starting in state i the process will go to state j in k
transitions through a path that takes it into state � at the
νth transition. Hence, summing over all possible interme-
diate states � yields the probability that the process will
be in state j after k transitions. In terms of the transition
matrices, Eq. 2.6 is equivalent to

P (k ) = P (ν) · P (k−ν) (2.7)

where · represents matrix multiplication (see Eq. 2.6).
Hence, in particular,

P (2) = P · P = P2

and by induction

P (k ) = P k−1 · P = P k (2.8)

That is, the k-step transition matrix may be obtained by
multiplying the matrix P by itself k times. Note that although
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P (k ) is the same as P k , the superscript (k ) is retained to
ensure that the matrix components p(k )

ij are not interpreted
as the component raised to the power k .

2.2.2 Unconditional Probabilities

So far, all of the probabilities we have considered are
conditional probabilities. For instance, p(k )

ij is the probability
that the state at time step k is j given that the initial state
at time step 0 is i . If the unconditional distribution of the
state at time step k is desired, we will first need to know
the probability distribution of the initial state. Let us denote
the initial probabilities by the row vector

π (0) =
{
π1(0) π2(0) · · · πm (0)

}
(2.9)

where the i th element in this vector, πi (0), is the probability
that the initial state is i , namely

πi (0) = P [X0 = i ] (2.10)

for all 1 ≤ i ≤ m . Also, since the initial state must be one
of the possible states, the following must also be true:

m∑

i=1

πi (0) = 1 (2.11)

The desired unconditional probabilities at time step n may
be computed by using the total probability theorem (which
combines all possible ways of getting to a certain state),
that is,

P
[
Xn = j

] =
m∑

i=1

P
[
Xn = j |X0 = i

]
P [X0 = i ]

=
m∑

i=1

p(n)
ij πi (0) (2.12)

If we define the n-step unconditional probabilities

π (n) = {π1(n), ..., πm(n)} (2.13)

with πi (n) = P [Xn = i ] being the probability of being in
state i at time step n , then π(n) can be found from

π (n) = π(0) · Pn (2.14)

Example 2.3 In an electronic load-measuring system,
under certain adverse conditions, the probability of an error
on each sampling cycle depends on whether or not it was
preceded by an error. We will define 1 as the error state and
2 as the nonerror state. Suppose the probability of an error
if preceded by an error is 0.75, the probability of an error if
preceded by a nonerror is 0.50, and thus the probability of a
nonerror if preceded by an error is 0.25, and the probability
of a nonerror if preceded by a nonerror is 0.50. This gives

the one-step transition matrix

P =
[

0.75 0.25

0.50 0.50

]

The two-step, three-step, . . . , seven-step transition matrices
are shown below:

P2 =
[

0.688 0.312

0.625 0.375

]

, P3 =
[

0.672 0.328

0.656 0.344

]

,

P4 =
[

0.668 0.332

0.664 0.336

]

, P5 =
[

0.667 0.333

0.666 0.334

]

,

P6 =
[

0.667 0.333

0.667 0.333

]

, P7 =
[

0.667 0.333

0.667 0.333

]

If we know that initially the system is in the nonerror state,
then π1(0) = 0, π2(0) = 1, and π(n) = π(0) · P (n). Thus,
for example, π (7) = {0.667, 0.333}. Clearly either the load-
measuring system and/or the adverse conditions should be
avoided since the system is spending two-thirds of its time
in the error state.

Notice also that the above powers of P are tending
towards a “steady state.” These are called the steady-state
probabilities, which we will see more of later.

2.2.3 First Passage Times

The length of time (i.e., in this discrete case, the number
of steps) for the process to go from state i to state j for
the first time is called the first passage time Nij . This is
important in engineering problems as it can represent the
recurrence time for a loading event, the time to (first) failure
of a system, and so on. If i = j , then this is the number of
steps needed for the process to return to state i for the first
time, and this is called the first return time or the recurrence
time for state i .

First passage times are random variables and thus have an
associated probability distribution function. The probability
that n steps will be needed to go from state i to j will be
denoted by f (n)

ij . It can be shown (using simple results on
the union of two or more events) that

f (1)
ij = p(1)

ij = pij

f (2)
ij = p(2)

ij − f (1)
ij · pjj

.

.

.

f (n)
ij = p(n)

ij − f (1)
ij · p(n−1)

jj − f (2)
ij · p(n−2)

jj − · · · − f (n−1)
ij pjj

(2.15)
The first equation, f (1)

ij , is just the one-step transition proba-

bility. The second equation, f (2)
ij , is the probability of going
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from state i to state j in two steps minus the probability of
going to state j in one time step—f (2)

ij is the probability of
going from state i to j in two time steps for the first time, so
we must remove the probabilities associated with going to
state j prior to time step 2. Similarly, f (3)

ij is the probability
of going from state i to state j in three time steps minus
all probabilities which involve entering state j prior to the
third time step.

Equations 2.15 are solved recursively starting from the
one-step probabilities to finally obtain the probability of
taking n steps to go from state i to state j . The computations
are quite laborious; they are best solved using a computer
program.

Example 2.4 Using the one-step transition probabilities
presented in Example 2.3, the probability distribution gov-
erning the passage time n to go from state i = 1 to state
j = 2 is

f (1)
12 = p12 = 0.25

f (2)
12 = 0.312 − (0.25)(0.5) = 0.187

f (3)
12 = 0.328 − (0.25)(0.375) − (0.187)(0.5) = 0.141

f (4)
12 = 0.332 − (0.25)(0.344) − (0.187)(0.375)

− (0.141)(0.5) = 0.105

.

.

.

There are four such distributions, one for each (i , j ) pair:
(1, 1), (1, 2) (as above), (2, 1), and (2, 2).

Starting out in state i , it is not always guaranteed that
state j will be reached at some time in the future. If it is
guaranteed, then the following must be true:

∞∑

n=1

f (n)
ij = 1

Alternatively, if there exists a possibility that state j will
never be reached when starting from state i , then

∞∑

n=1

f (n)
ij < 1

This observation leads to two possible cases:

1. If the sum (above) is equal to 1, then the values f (n)
ij

for n = 1, 2, . . . represent the probability distribution
of the first passage time for specific states i and j , and
this passage will occur sooner or later. If i = j , then
the state i is called a recurrent state since, starting in

state i , the process will always return to i sooner or
later.

2. If the sum (above) is less than 1, a process in state
i may never reach state j . If i = j , then the state i
is called a transient state since there is a chance that
the process will never return to its starting state. (This
means that, sooner or later, the process will leave state
i forever.)

If pii = 1 for some state i , then the state i is called an
absorbing state. Once this state is entered, it is never left.

Example 2.5 Is state 0 of the three-state Example 2.2
transient or recurrent?

SOLUTION Since all states in Example 2.2 “communi-
cate,” that is, state 0 can get to state 1, state 1 can get to
state 2, and vice versa, all of the states in Example 2.2 are
recurrent—they will all recur over and over with time.

Example 2.6 Considering the transition diagram in
Figure 2.3 for a three-state discrete-time Markov chain an-
swer the following questions:

(a) Is state 2 transient or recurrent?
(b) Compute the probabilities that, starting in state 0,

state 2 is reached for the first time in one, two, or
three time steps.

(c) Estimate (or make a reasonable guess at) the proba-
bility that state 2 is reached from state 0.

SOLUTION

(a) Since states 0 or 2 will eventually transit to state 1 (both
have nonzero probabilities of going to state 1) and since

0.1

0.00.5
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Figure 2.3 Three-state discrete-time Markov chain.
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state 1 is absorbing (stays there forever), both states 0
and 2 are transient. In other words, no matter where
this Markov chain starts, it will eventually end up in
state 1 forever.

(b) If we start in state 0, the probability of going to state 2
in the next time step is 0.4. The probability of going to
state 2 in two time steps is equal to the probability
of staying in state 0 for the first time step (if we
ever go to state 1, we will never get to state 2) times
the probability of going to state 2 in the second time
step,

f (2)
02 = p00 p02 = (0.5)(0.4) = 0.2

The probability of going from state 0 to state 2 in three
time steps is equal to the probability of remaining in
state 0 for two time steps times the probability of going
to state 2,

f (3)
02 = p2

00 p02 = (0.5)2(0.4) = 0.1

(c) The probability that state 2 is reached from state 0 is
equal to the probability that starting in state 0, state
2 is reached in any of time steps 1, 2, . . . . This is
a union of the events that we reach state 2 in any
time step. Unfortunately, these events are not disjoint
(i.e., we could reach state 2 in both steps 2 and 4).
It is easier to compute this probability as 1 minus
the probability that we reach state 1 prior to reaching
state 2,

P [state 2 is reached]

= 1 −
[
p01 + p00p01 + p2

00p01 + · · ·
]

= 1 − p01

∞∑

k=0

pk
00 = 1 − p01

1 − p00

= 1 − 0.1

1 − 0.5
= 0.8

where each term represents the probability of remain-
ing in state 0 for k time steps and then going to state
1 in the (k + 1)th time step.

2.2.4 Expected First Passage Time

It is usually very difficult to calculate the first passage time
probabilities f (n)

ij for all n , especially considering the fact
that n goes to infinity. If one succeeds in calculating them
in some sort of functional form, then one could speak of
the expected first passage time of the process from state i
to state j , which is denoted µij . In terms of the probabilities

f (n)
ij , the expected first passage time is given by

E
[
Nij
] = µij =






∞,
∞∑

n=1

f (n)
ij < 1

∞∑

n=1

nf (n)
ij ,

∞∑

n=1

f (n)
ij = 1

(2.16)

and if
∑∞

n=1 f (n)
ij = 1, which is to say state j will eventually

be reached from state i , it can be shown that

µij = 1 +
∑

k �=j

pik µkj (2.17)

If i = j , then the expected first passage time is called the
expected recurrence time (see Example 2.6). If µii = ∞ for
a recurrent state, it is called null; however, this can only
occur if there are an infinite number of possible states.
If µii < ∞, then the state i is called nonnull or positive
recurrent. There are no null recurrent states in a finite-
state Markov chain. All of the states in such chains are
either positive recurrent or transient. Note that expected
recurrence times, µii , are easily computed from the steady-
state probabilities, as discussed next.

2.2.5 Steady-State Probabilities

As seen in Example 2.3, some Markov chains settle down
quite quickly into a steady state, where the unconditional
probability of being in a state becomes a constant. Only cer-
tain types of Markov chains have this property. Fortunately,
they are the most commonly occurring types of Markov
chains. To investigate the properties of such Markov chains,
a few more definitions are required, as follows:

1. A state is called periodic with period τ > 1 if a return
is possible only in τ , 2τ , 3τ , . . . steps; this means that
p(n)

ii = 0 for all values of n that are not divisible
by τ > 1, and τ is the smallest integer having this
property. Clearly the Markov chain in Figure 2.4 is
periodic (and not very interesting!).

2. State j is said to be accessible from state i if p(n)
ij > 0

for some n ≥ 0. What this means is that the process
can get to state j from state i sooner or later.

3. Two states i and j that are accessible to each other are
said to communicate, and this is denoted i ↔ j . Note
that, by definition, any state communicates with itself
since p(0)

ii = 1. Also if state i communicates with state
j and state j communicates with state k , then state i
communicates with state k .

4. Two states that communicate are said to be in the same
class. Note that as a consequence of 1–3 above any
two classes of states are either identical or disjoint.



78 2 DISCRETE RANDOM PROCESSES

1.0

1.01.0

0.0

0.0
0.0

0.0

0.0  0.0

2

10

Figure 2.4 Example of a periodic Markov chain.

5. A Markov chain is said to be irreducible if it contains
only one class, that is, if all states communicate with
each other.

6. If the state i in a class is aperiodic (i.e., not periodic)
and if the state is also positive recurrent, then the state
is said to be ergodic.

7. An irreducible Markov chain is ergodic if all of its
states are ergodic.

It is the irreducible ergodic Markov chain which settles
down to a steady state. For such Markov chains, the
unconditional state distribution

π (n) = π(0) · Pn (2.18)

converges as n → ∞ to a constant vector, and the resulting
limiting distribution is independent of the initial proba-
bilities π(0). In general, for irreducible ergodic Markov
chains,

lim
n→∞ p(n)

ij = lim
n→∞ πj (n) = πj

and the πj ’s are independent of i . The πj ’s are called
the steady-state probabilities and they satisfy the following
state equations:

1. 0 < πj < 1 for all j = 1, 2, . . . , m

2.
∑m

j=1 πj = 1

3. πj = ∑m
i=1 πi · pij , j = 1, 2, . . . , m

Using m = 3 as an example, item 3 can be reexpressed
using vector–matrix notation as

{π1 π2 π3} = {π1 π2 π3}






p11 p12 p13

p21 p22 p23

p31 p32 p33






Since there are m + 1 equations in items 2 and 3
above and there are m unknowns, one of the equations
is redundant. The redundancy arises because the rows of P
sum to 1 and are thus not independent. Choose m − 1 of
the m equations in 3 along with the equation in 2 to solve
for the steady-state probabilities.

Example 2.7 In the case of the electronic load-measuring
system presented in Example 2.3, the state equations above
become

π1 = 0.75π1 + 0.50π2, 1 = π1 + π2

Solving these for the steady-state probabilities yields

π1 = 2
3 , π2 = 1

3

which agrees with the emerging results of Example 2.3 as
n increases above about 5.

Note that steady-state probabilities and the mean recur-
rence times for irreducible ergodic Markov chains have a
reciprocal relationship:

µjj = 1

πj
, j = 1, 2, . . . , m (2.19)

Thus, the mean recurrence time can be computed without
knowing the probability distribution of the first passage
time.

Example 2.8 A sequence of soil samples are taken along
the line of a railway. The samples are tested and classified
into three states:

1. Good
2. Fair (needs some remediation)
3. Poor (needs to be replaced)

After taking samples over a considerable distance, the
geotechnical engineer in charge notices that the soil classifi-
cations are well modeled by a three-state stationary Markov
chain with the transition probabilities

P =






0.6 0.2 0.2

0.3 0.4 0.3

0.0 0.3 0.7






and the transition diagram in Figure 2.5.

(a) What are the steady-state probabilities?
(b) On average, how many samples must be taken until the

next sample to be classified as poor is encountered?
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Figure 2.5 Transition diagram for railway example.

SOLUTION

(a) The following equations can be solved simultaneously:

π1 = 0.6π1 + 0.3π2 + 0.0π3

π2 = 0.2π1 + 0.4π2 + 0.3π3

1 = π1 + π2 + π3

to yield the steady-state probabilities

π1 = 3

13
, π2 = 4

13
, π3 = 6

13
It appears that soil samples are most likely to be
classified as poor (twice as likely as being classified
as good).

(b) The mean number of samples required to return to state
3 (poor) is µ33 (see Eq. 2.19) where

µ33 = 1

π3
= 2.17 samples

Example 2.9 The water table at a particular site may be
idealized into three states: low, moderate, and high. Because
of the probabilistic nature of rainfall patterns, irrigation
pumping, and evaporation, the water table level may shift
from one state to another between seasons as a Markov
chain. Suppose that the transition probabilities from one
state to another are as indicated in Figure 2.6, where low,
moderate, and high water table levels are denoted by states
1, 2, and 3, respectively.

(a) Derive the one-step transition matrix for this problem.

(b) Suppose that for season 1 you predict that there is an
80% probability the water table will be high at the
beginning of season 1 on the basis of extended weather
reports. Also if it is not high, the water table will be

3
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0.4

0.7

0.2  0.4

0.3
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Figure 2.6 Transition diagram for water table problem.

three times as likely to be moderate as it is to be low.
On the basis of this prediction, what is the probability
that the water table will be high at the beginning of
season 2?

(c) What is the steady-state probability that the water table
will be high in any one season?

SOLUTION

(a) From Figure 2.6, the probability of going from low to
low (state 1 to 1) is 0.4, going from low to moderate
(1 to 2) is 0.5, and so on, leading to the following
one-step transition matrix:

P =






0.4 0.5 0.1

0.3 0.3 0.4

0.1 0.7 0.2






(b) In this case, the initial state probabilities are π(0) =
{0.05 0.15 0.8}. Thus, at the beginning of season 2,
the unconditional state probabilities become

π(1) = {0.05 0.15 0.8}







0.4 0.5 0.1

0.3 0.3 0.4

0.1 0.7 0.2







= {0.145 0.63 0.225}
Thus, the probability that the water table will be high
at the beginning of season 2 is 22.5%.

(c) To find the steady-state probabilities, we need to find
{π1 π2 π3} such that

{π1 π2 π3} = {π1 π2 π3}






0.4 0.5 0.1

0.3 0.3 0.4

0.1 0.7 0.2






and π1 + π2 + π3 = 1.0. Using this and the first two
equations from above (since the third equation is
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linearly dependent on the other two), we have

π1 = 0.4π1 + 0.3π2 + 0.1π3

π2 = 0.5π1 + 0.3π2 + 0.7π3

1.0 = 1.0π1 + 1.0π2 + 1.0π3

or 




−0.6 0.3 0.1

0.5 −0.7 0.7

1.0 1.0 1.0











π1

π2

π3





=






0.0

0.0

1.0






which has solution





π1

π2

π3





=






0.275

0.461

0.265






so that the steady-state probability that the water table
will be high at the start of any one season is 26.5%.

Example 2.10 A bus arrives at its stops either early, on
time, or late. If the bus is late at a stop, its probabilities
of being early, on time, and late at the next stop are 1

6 , 2
6 ,

and 3
6 , respectively. If the bus is on time at a stop, it is

equi-likely to be early, on time, or late at the next stop. If
it is early at a stop, it is twice as likely to be on time at the
next stop as either early or late, which are equi-likely.

(a) Why can this sequence of bus stops be modeled using
a Markov chain?

(b) Find the one-step transition matrix P .
(c) If the bus is early at the first stop, what is the probability

that it is still early at the third stop? What is this
probability at the fourth stop?

(d) If the controller estimates the bus to have probabilities
of 0.1, 0.7, and 0.2 of being early, on time, or late at
the first stop, what now is the probability that the bus
is early at the third stop?

(e) After many stops, at what fraction of stops is the bus
early on average?

SOLUTION

(a) Since the probabilities of being early, on time, or late at
any stop depend only on the state at the previous stop,
the sequence of stops can be modeled as a three-state
Markov chain.

(b) Define the states as 1 for early, 2 for on time, and 3 for
late. Then from the given information and making use
of the fact that each row of the transition matrix must

sum to 1.0, we get

P =







1
4

2
4

1
4

1
3

1
3

1
3

1
6

2
6

3
6







(c) For this question we need the two-step transition
matrix:

P2 = P · P =







1
4

2
4

1
4

1
3

1
3

1
3

1
6

2
6

3
6













1
4

2
4

1
4

1
3

1
3

1
3

1
6

2
6

3
6







=







0.271 0.375 0.354

0.250 0.389 0.361

0.236 0.361 0.403







(note that all rows sum to 1.0, OK). This gives the
probability that it is still early at the third stop to be
0.271. For the next stop, we need to compute the three-
step transition matrix:

P3 = P2 · P =







0.271 0.375 0.354

0.250 0.389 0.361

0.236 0.361 0.403













1
4

2
4

1
4

1
3

1
3

1
3

1
6

2
6

3
6







=







0.252 · ·
· · ·
· · ·







so that the probability that the bus is early at the fourth
stop is 0.252.

(d) Now we have uncertainty about the initial state, and we
must multiply

{0.1 0.7 0.2}







0.271 0.375 0.354

0.250 0.389 0.361

0.236 0.361 0.403







= {0.249 0.382 0.369}
so that the probability that the bus is early at the third
stop is now 0.249.

(e) For the steady-state probabilities, we solve

π1 = 1
4π1 + 1

3π2 + 1
6π3

π2 = 1
2π1 + 1

3π2 + 1
3π3

1.0 = π1 + π2 + π3
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which gives us





π1

π2

π3





=






0.250

0.375

0.375






so that the steady-state probability of being early at a
stop is 0.25 (as suggested by the first column of the
matrices in part (c), which appear to be tending toward
0.25).

2.3 CONTINUOUS-TIME MARKOV CHAINS

The transition from the discrete-time Markov chain to the
continuous-time Markov chain is entirely analogous to the
transition from the binomial (number of “successes” in
n discrete trials) to the Poisson (number of successes in
time interval t). In fact, the Markov chain is really sim-
ply a generalization of the binomial and Poisson random
variables—rather than just success and “failure” as pos-
sible outcomes, the Markov chain allows any number of
possible “states” (m states have been considered in the
examples so far, where m can be any integer). In addi-
tion, the Markov chain allows for statistical dependence
between states from step to step. Nevertheless, a deeper
understanding of both discrete and continuous-time Markov
chains is possible through a more careful study of the bino-
mial and Poisson random variables. Recall that the binomial
random variable is characterized by p, the probability of
success. The Markov analogs are the set of state probabil-
ities π(0) and transition probabilities pij . However, when
time becomes continuous, the number of “trials” becomes
infinite (one at each instant in time), and it is no longer
meaningful to talk about the probability of success on an
individual trial. Rather, the Poisson distribution becomes
characterized by a mean rate of occurrence λ. The mean
rate of occurrence can also be described as a mean intensity
which encourages “occurrences” over time. Higher intensi-
ties result in a larger number of occurrences over any time
interval.

In the continuous-time Markov chain, occurrences trans-
late into “state changes,” and each state has associated with
it an intensity which expresses the rate at which changes
into the state are likely to occur. State changes can be char-
acterized either by transition probabilities, which vary with
elapsed time and are difficult to compute, or by constant
intensities. The transition probability approach will be dis-
cussed first.

Continuous-time Markov chains are denoted X (t), t ≥ 0,
and the transition probability is now a function of elapsed
time (t) since time zero. The continuous-time analog to the

Chapman–Kolmogorov equations are

pij (t) =
m∑

k=1

pik (ν)pkj (t − ν), t ≥ 0 (2.20)

for any 0 ≤ ν ≤ t , where

pij (t) = P
[
X (t) = j | X (0) = i

]
, i = 1, 2, . . . , m ,

j = 1, 2, . . . , m

Only stationary Markov chains are considered here, which
means that pij (t) depends only on the elapsed time, not on
the starting time, which was assumed to be zero above.

The property of stationarity has some implications that
are worth investigating further. Suppose that a continuous-
time Markov chain enters state i at some time, say time
t = 0, and suppose that the process does not leave state i
(that is, a transition does not occur) during the next 10 min.
What, then, is the probability that the process will not leave
state i during the following 5 min? Well, since the process
is in state i at time t = 10, it follows, by the Markov and
stationarity properties, that the probability that it remains in
that state during the interval [10, 15] is just the same as the
probability that it stays in state i for at least 5 min to start
with. This is because the probabilities relating to states in
the future from t = 10 are identical to those from t = 0,
given that the current state is known at time t . That is, if Ti

denotes the amount of time that the process stays in state i
before making the transition into a different state, then

P [Ti > 15|Ti > 10] = P [Ti > 5]

or, in general, and by the same reasoning,

P [Ti > t + s |Ti > t] = P [Ti > s]

for all s ≥ 0, t ≥ 0. Hence, the random variable Ti is mem-
oryless and must thus (by results seen in Section 1.10.1) be
exponentially distributed. This is entirely analogous to the
Poisson process, as stated earlier in this section.

In other words, a continuous-time Markov chain is a
random process that moves from state to state in accordance
with a (discrete-time) Markov chain but is such that the
amount of time spent in each state, before proceeding to
the next state, is exponentially distributed. In addition, the
times the process spends in state i and in the next state
visited must be independent random variables.

In analogy with discrete-time Markov chains, the proba-
bility that a continuous-time Markov chain will be in state
j at time t sometimes converges to a limiting value which
is independent of the initial state (see the discrete-time
Markov chain discussion for conditions under which this
occurs). The resulting πj ’s are once again called the steady-
state probabilities and are defined by

lim
t→∞ pij (t) = πj
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where πj exists. Each πj is independent of the initial state
probability vector π(0) and the steady-state probabilities
satisfy

1. 0 < πj < 1 for all j = 1, 2, . . . , m
2.
∑m

j=1 πj = 1
3. πj = ∑m

i=1 πi · pij (t) for j = 1, 2, . . . , m and t ≥ 0

As an alternative to transition probabilities, the transition
intensities may be used. Intensities may be interpreted as
the mean rate of transition from one state to another. In this
sense, the intensity uij may be defined as the mean rate of
transition from state i into state j for any i not equal to
j . This has the following formal definition in terms of the
transition probability:

uij = d

dt
pij (t)|t=0 (2.21)

where the derivative exists.
The definition for ujj is special—it is the intensity of

transition out of state j , with formal definition

ujj = − d

dt
pjj (t)|t=0 (2.22)

Armed with these two definitions, the steady-state equations
can be rewritten as

πj · ujj =
∑

i �=j

πi · uij , j = 1, 2, . . . , m (2.23)

The above is a balance equation, that is, the “tendency” to
enter state j is equal to the tendency to exit state j , where
tendency is probability times mean transition rate.

Commonly the intensities uij are easier to find than
are the corresponding transition probabilities. An example
where this is the case follows.

Example 2.11 A university has two triaxial test machines.
Only one technician is available, so the test facility only
ever conducts one test at a time. If at least one test
machine is in proper repair, the test can proceed. If one
of the machines is out of order, it is sent to the university
machine shop for repair. The university machine shop has
the capacity to repair both machines simultaneously, if
necessary, although the actual repair time depends on the
problem. If both triaxial test machines are out of order, the
test facility becomes unavailable until one or the other test
machines have been repaired. The “system” here consists
of the two triaxial test machines and the repair shop. The
system states X (t) are defined as:

1. Both test machines operating
2. One test machine operating and one test machine in

repair
3. Two test machines in repair (testing unavailable)

The time to failure of a triaxial test machine has been found
to follow an exponential distribution,

fT (t) =
{

λe−λt , t ≥ 0
0, t < 0

as does the repair time at the machine shop,

rT (t) =
{

µe−µt , t ≥ 0
0, t < 0

Assuming that interfailure and interrepair times are in-
dependent, then X (t) is a continuous-time, irreducible (i.e.,
no-absorbing-state) discrete-state Markov chain with transi-
tions only from a state to its neighbor states: 1 → 2, 2 → 1,
2 → 3, and 3 → 2. Of course, there may be no state change
as well. (This chain is similar to that in Example 2.2 in that
state changes from first → last and from last → first are
not possible.)

In this problem, transition intensities can be obtained di-
rectly from the mean rates of the exponential distributions.
For example, the intensity u11 is just the transition rate
out of state 1. This is 2λ since there are two machines
“waiting” to fail. The intensity u22, the transition rate out
of state 2, is λ + µ, since either an additional failure or
a repair results in a move from state 2 (to either state 3
or state 1, respectively). Altogether, the transition inten-
sities are

u11 = 2λ, u22 = (λ + µ)

u12 = 2λ, u23 = λ

u13 = 0, u31 = 0

u21 = µ, u32 = 2µ

u33 = 2µ

The simplest way to view this system is to draw a transition
diagram (Figure 2.7), where, for the continuous-time prob-
lem, the arrows are labeled with the mean transition rates
rather than probabilities. Using this diagram, the balance
equations can be derived as follows:

1. For state 1 (both test machines operating), the ten-
dency to leave state 1 is 2λ × π1 and the tendency to

1 2 3

2l l

m 2m

Figure 2.7 Continuous-time transition diagram for triaxial test
example.
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enter state 1 is µ × π2, so the corresponding balance
equation is

2λπ1 = µπ2

2. For state 2 (one test machine operating and one
in the repair shop), the tendency to leave state 2
is (λ + µ) × π2 and the tendency to enter state 2
is 2λ × π1 + 2µ × π3, so the corresponding balance
equation is

(λ + µ)π2 = 2λπ1 + 2µπ3

3. For state 3 (both test machines in the repair shop), the
tendency to leave state 3 is 2µ × π3 and the tendency
to enter state 3 is λ × π2, which leads to the balance
equation

2µπ3 = λπ2

4. Finally, we know that the sum of the steady-state
probabilities must be equal to 1, so we have an
additional equation,

π1 + π2 + π3 = 1

We cannot use all four of the above equations, since
we have only three unknown steady-state probabili-
ties. In fact, the fourth equation tells us that the first
three equations are not linearly independent. Thus, us-
ing two of the first, second, or third equations along
with the fourth equation leads to the solution

π1 = µ2

(λ + µ)2
, π2 = 2λµ

(λ + µ)2
, π3 = λ2

(λ + µ)2

The probability of test availability (that triaxial tests
can be performed) under steady-state conditions is
thus 1 minus the probability that the two machines
are both in the repair shop, namely,

Availability = 1 − λ2

(λ + µ)2

2.3.1 Birth-and-Death Processes

As suggested by the name, birth-and-death processes have
traditionally been used to model population dynamics. The
basic idea is that the number of births and deaths in a
population depends on the current population. Small popu-
lations encourage high birth rates, while large populations
tend to have high death rates due to depletion of available
resources, competition, and so on. Birth-and-death pro-
cesses have found application in other areas. For example,
economists have traditionally used birth-and-death pro-
cesses to model the number of customers in a bank or a
store at any instant in time. The process can also be suc-
cessfully used to model the number of paying clients that
any business has at any point in time.

Consider a system whose state at any time is the number
of customers in a store or bank. Suppose that if there are j
customers in the system, then:

1. New customer arrivals enter the system at a mean
rate λj .

2. Customers depart the system at a mean rate µj .

That is, if there are j customers in the system, then:

1. The time until the next arrival is exponentially dis-
tributed with mean 1/λj .

2. The time until the next arrival is independent of the
time until the next departure.

3. The time until the next departure is exponentially
distributed with mean 1/µj .

Such a system is called a birth-and-death process. The
parameters λj for j = 0, 1, . . . and µj for j = 1, 2, . . . are
called, respectively, the arrival (or birth) and departure
(or death) rates. Of course, µ0 = 0 since the departure
rate when the population is zero must also be zero. In
this model, the arrival and departure rates are allowed to
depend on j , the number of people currently in the system.
As mentioned above, the dependence of birth and death
rates on the population size is quite realistic (e.g., limited
food resources mean higher death rates when the population
becomes too large).

In essence, a birth-and-death process is a continuous-time
Markov chain with states {0, 1, . . .} for which transitions
from state j may go only to either state j − 1 or state j + 1.
Thus, pij (�t) = 0 for j < i − 1 or j > i + 1, where �t is
the (infinitesimally small) time step increment. The matrix
of transition probabilities for time increment �t may be
expressed as a tridiagonal matrix with the following form:

P =










1 − λ0�t λ0�t · · · 0 0

µ1�t 1 − (λ1 + µ1)�t · · · 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 · · · 1 − (λj−1 + µj−1)�t λj−1�t

0 0 · · · µj �t 1 − (λj + µj )�t










The transition diagram for the birth-and-death process ap-
pears as in Figure 2.8. The steady-state equations are ob-
tained by applying Eq. 2.23. These give

µ1π1 = λ0π0

λ0π0 + µ2π2 = (λ1 + µ1) · π1

λ1π1 + µ3π3 = (λ2 + µ2) · π2
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m1 m2 m3 m4 m5

4

l0 l1 l2 l3 l4

0 1 2 3

Figure 2.8 Transition diagram for birth-and-death processes.

.

.

.

λj−2 · πj−2 + µj · πj = (λj−1 + µj−1) · πj−1

λj−1πj−1 + µj+1πj+1 = (λj + µj ) · πj

.

.

.

and
∑∞

j=0 πj = 1. Solving these equations yield

π1 = λ0

µ1
· π0

π2 = λ1

µ2
· π1 = λ1λ0

µ2µ1
· π0

π3 = λ2

µ3
· π2 = λ2λ1λ0

µ3µ2µ1
· π0

and so on. In general,

πj+1 = λj

µj+1
· πj = λj λj−1 · · ·λ0

µj+1µj · · · µ1
· π0 (2.24)

If the following is defined,

Cj = λj−1λj−2 · · · λ0

µj µj−1 · · ·µ1
(2.25)

then πj = Cj · π0, j = 1, 2, . . . , and since

∞∑

j=0

πj = 1 or π0 +
∞∑

j=1

πj = 1

or π0 + π0

∞∑

j=1

Cj = 1

the final result becomes

π0 = 1

1 +∑∞
j=1 Cj

(2.26)

from which all the other steady-state probabilities can be
obtained using the equations shown above.

Note that the steady-state equations (and the solutions
that are derived from them) assume that the λj and µj

values are such that a steady state can be reached. This will
be true if

1. λj = 0 for j > k , so that there is a finite number of
states, or

2. the mean arrival rate λj is less than the mean service
rate µj for all j .

Example 2.12 A very simple example of a birth-and-
death process (without a steady state) is the Poisson process.
The Poisson process has the following parameters:

µn = 0 for all n ≥ 0

λn = λ for all n ≥ 0

This is a process in which departures never occur, and the
time between successive arrivals is exponential with mean
1/λ. Hence, this is just a Poisson process which counts the
total number of arrivals.

Example 2.13 Suppose that a geotechnical engineer re-
ceives jobs at a mean rate of one every three days and takes
two days to complete each job, on average. What fraction
of the time does the engineer have two jobs waiting (i.e.,
three jobs “in the system”)?

SOLUTION This is a special kind of birth-and-death
process, where the birth (job arrival) rates and the death
(job completion) rates are constant. Specifically

λ0 = λ1 = · · · = λ, µ1 = µ2 = · · · = µ

where λ = 1
3 arrival per day and µ = 1

2 job completed per
day. In this case, because all birth and death rates are
constant, we have

Cj =
(

λ

µ

)j

and

1 +
∞∑

j=1

Cj =
∞∑

j=0

(
λ

µ

)j

=






∞ if λ ≥ µ

1

1 − λ
µ

if λ < µ

since (λ/µ)0 = 1. Clearly, if the mean arrival rate of jobs
exceeds the mean rate at which jobs can be completed,
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then the number of jobs waiting in the system will almost
certainly (i.e., sooner or later) grow to infinity. This result
gives, when λ < µ,

π0 = 1

1 +∑∞
j=1 cj

= 1 − λ

µ

π1 =
(

λ

µ

)(
1 − λ

µ

)

π2 =
(

λ

µ

)2 (
1 − λ

µ

)

·
·
·

πj =
(

λ

µ

)j (
1 − λ

µ

)

·
·
·

From this, we see that the probability that three jobs are in
the system (two waiting to be started) at any one time is just

π3 =
(

λ

µ

)3 (
1 − λ

µ

)
=
(

1/3

1/2

)3 (
1 − 1/3

1/2

)

=
(

2

3

)3 (1

3

)
= 0.0988

so that the engineer spends just under 10% of the time with
two more jobs waiting.

Example 2.14 Now suppose that the geotechnical engi-
neer of the last example has developed a policy of refusing
jobs once she has three jobs waiting (i.e., once she has four
jobs in the system—three waiting plus the one she is work-
ing on). Again the job arrival rate is one every three days
and jobs are completed in two days on average. What now is
the fraction of time that the engineer has two jobs waiting?
Also, what fraction of incoming jobs is the engineer having
to refuse (this is a measure of lost economic potential)?

SOLUTION In this case, the population (number of jobs)
is limited in size to 4. The states, 0–4, denote the number
of jobs she needs to accomplish. The transition diagram for
this problem appears as in Figure 2.9. For a limited popu-
lation size, the solution is only slightly more complicated.
Our arrival and departure rates are now

λ0 = λ1 = · · · = λm−1 = λ, λm = λm+1 = · · · = 0

µ1 = µ2 = · · · = µ

m m m m

4

l l l l

0 1 2 3

Figure 2.9 Transition diagram for limited-queue problem.

where m = 4. This gives us

C1 =
(

λ

µ

)
, C2 =

(
λ

µ

)2

, . . . , Cm =
(

λ

µ

)m

Cm+1 = Cm+2 = · · · = 0

so that

1 +
∞∑

j=1

Cj =
m∑

j=0

(
λ

µ

)j

and

π0 = 1
∑m

j=0

(
λ
µ

)j

π1 =
(

λ

µ

)
π0

π2 =
(

λ

µ

)2

π0

.

.

.

Using these results with m = 4, λ = 1
3 , µ = 1

2 , and λ/µ =
2
3 gives

π0 = 1

1 + (2/3) + (2/3)2 + (2/3)3 + (2/3)4
= 0.3839

π1 = ( 2
3

)
(0.3839) = 0.2559

π2 = ( 2
3

)2
(0.3839) = 0.1706

π3 = ( 2
3

)3
(0.3839) = 0.1137

π4 = ( 2
3

)4
(0.3839) = 0.0758

So the probability of having three jobs in the system
increases when the engineer has a limit to the number of
jobs waiting. This is perhaps as expected since the engineer
no longer spends any of her time in states 5, 6, . . . , those
times are now divided among the states 0 to 4. We also
see that 7.58% of her time is spent in state 4. During this
fraction of time, incoming jobs are rejected. Thus, over the
course of, say, a year, the engineer loses 0.0758 × ( 1

3 ) ×
365 = 9.2 jobs on average. It does not appear that it would
be worthwhile hiring another engineer to handle the lost
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jobs in this case (although this does depend on the value of
lost jobs).

2.4 QUEUEING MODELS

In this section, Markov chains are extended to include
models in which customers arrive in some random manner
at a service facility. In these models, arriving customers
are made to wait in a queue until it is their turn to be
served by one of s servers. When a server becomes free,
the next customer in the queue moves out of the queue to
the server and the server then takes a random amount of
time (often exponentially distributed) to serve the customer.
Once served the customer is generally assumed to leave the
system.

For queueing problems such as these, interest is usually
focused on one or more of the following quantities:

1. L = ∑∞
j=0 j · πj = expected number of customers in

system (including both queue and those being served)
2. Lq = ∑∞

j=s (j − s) · πj = expected queue length (not
including those customers currently being served)

3. W = expected waiting time in system
4. Wq = expected waiting time in queue (excluding

service time)

Several relationships between the above quantities exist.
For instance, if λ is the mean arrival rate of customers
and λ is constant (independent of the number of customers
in the system), then the expected number of customers in
the system is just the mean arrival rate times the expected
waiting time in the system:

L = λaW (2.27)

that is, by the time the first customer in the system is leaving
the system, at time W on average, the number of customers
in the system has grown to λaW , on average. Note that
when there is a limit N on the number of customers in
the system, the arrival rate is the effective arrival rate
λa = λ(1 − πN ), otherwise λa = λ.

Similarly, the expected number of customers in the queue
itself is just the mean arrival rate times the expected waiting
time in the queue (again, using the effective arrival rate if
the queue size is limited):

Lq = λaWq (2.28)

As with the birth-and-death model, queueing models may
be characterized by arrival rates λj and departure rates µj ,
which are dependent on how many customers there are in
a queue (e.g., customers entering a bank with long queues
often decide to do their banking later). The major difference
from the birth-and-death model is that queueing models
allow for more than one server.

Queueing models differ from one another by the number
of servers and by the manner in which λj and µj vary
as a function j . Here are two different common queueing
models:

[M/M/1] Suppose that customers arrive at a single-server
service station according to a Poisson process
with mean arrival rate λ. That is, the times be-
tween successive arrivals are independent ex-
ponentially distributed random variables having
mean 1/λ. Upon arrival, each customer goes di-
rectly into service if the server is free, and if not,
then the customer joins the queue (i.e., waits in
line) and there is no limit to the size of the queue.
When the server finishes serving a customer, the
customer leaves the system and the next customer
in line, if any are waiting, enters the service. The
successive service times are assumed to be in-
dependent exponentially distributed random vari-
ables having mean 1/µ.

This is called a M/M/1 queueing system because:
(a) The first M refers to the fact that the inter-

arrival process is Markovian (and thus times
between successive arrivals are independent
and exponentially distributed).

(b) The second M refers to the fact that the ser-
vice process is Markovian (and thus service
times are independent and exponentially dis-
tributed).

(c) The 1 refers to the fact that there is a single
server.

[M/M/s] Suppose that customers arrive at a multiple-server
service station, having s servers, according to a
Poisson process with mean arrival rate λ. That is,
the times between successive arrivals are indepen-
dent exponentially distributed random variables
having mean 1/λ. Upon arrival, each customer
goes directly into service if one or more of the s
servers is free, and if not, then the customer joins
the single queue (i.e., waits in a single line with
everybody else not being served). When one of
the servers finishes serving a customer, the cus-
tomer leaves the system and the next customer
in line, if any are waiting, enters the service of
the free server. For each server, the successive
service times are assumed to be independent ex-
ponentially distributed random variables having
mean 1/µ. Also servers operate independently.

Table 2.1 presents mathematical results for four dif-
ferent queueing models. Of note is that a closed-form
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Table 2.1 Quantities of Interest for Four Queueing Models

Model 1 Model 2 Model 3 Model 4

Birth rates λ0 = λ1 = · · · = λ λ0 = · · · = λN −1 = λ λ0 = λ1 = · · · = λ λ0 = λ1 = · · · = λ
λN = λN +1 = · · · = 0

Death rates µ1 = µ2 = · · · = µ µ0 = · · · = µN = µ µj =
{

j · µ for j ≤ s
s · µ for j > s Arbitrary with mean

1/µ and variance σ 2

Steady-state
probabilities

πj = (1 − ρ)ρj

ρ = λ/µ, j = 0, 1, . . .

πj = ρj
[

1−ρ

1−ρN +1

]

j = 0, 1, . . . , N

πj =
{

π0ρj

j ! for j ≤ s
π0ρj

s!sj−s for j > s
π0 = 1 − ρ

ρ = λ
µ

π0 =
[

ρs

s!

(
1

1−φ

)
+∑s−1

j=0
ρj

j !

]−1

ρ = λ
µ

φ = ρ

s

ρ = λ
µ

L ρ

1−ρ
ρ
[

1+ρN (N ρ−N −1)
(1−ρ)(1−ρN +1)

]
Lq + ρ ρ + Lq

Lq
λ2

µ(µ−λ) L − (1 − π0) φπ0ρs

s!(1−φ)2
λ2σ 2+ρ2

2(1−ρ)

W 1
µ−λ

L
λ(1−πN ) Wq + 1

µ
Wq + 1

µ

Wq
λ

µ(µ−λ)
Lq

λ(1−πN )
Lq
λ

Lq
λ

Note:
Model 1 has a single server with constant birth-and-death rates and unlimited queue size (this is an M/M/1 model). If λ > µ, then the
queue grows to infinite size on average.
Model 2 has a single server with no more than N in the system.
Model 3 has s servers with unlimited queue size (this is an M/M/s model).
Model 4 has a single server, but service time has an arbitrary distribution with mean 1/µ and variance σ 2 (arrival times still exponentially
distributed with mean λ)

expression for the quantities of interest (e.g., steady-
state probabilities and L, Lq , W , and Wq ) could be
obtained because these are really quite simple models.
If one deviates from these (and this is often necessary
in practice), closed-form solutions may be very diffi-
cult to find. So how does one get a solution in these
cases? One must simulate the queueing process. Thus,
simulation methods are essential for a practical treat-
ment of queueing models. They are studied in the next
chapter.

Example 2.15 Two laboratory technicians independently
process incoming soil samples. The samples arrive at a
mean rate of 40 per hour, during working hours, and each
technician takes approximately 2 min, on average, to per-
form the soil test for which they are responsible. Assume
that both the arrival and testing sequences are Poisson in
nature.

(a) For a soil sample arriving during working hours, what
is the chance that it will be immediately tested?

(b) What is the expected number of soil samples not yet
completed testing ahead of an arriving soil sample?

(c) Suppose that one technician is off sick and the other
is consequently having to work harder, processing ar-
riving soil samples at a rate of 50 per hour. In this
case, what is the expected time that an arriving sample
will take from the time of its arrival until it has been
processed?

SOLUTION Assume that the mean arrival rate is not
affected by the number of soil samples in the system.
Assume also that the interarrival and interservice times are
independent and exponentially distributed so that this is a
birth-and-death queueing process. If there are two or less
soil samples in the queueing system, the mean testing rate
will be proportional to the number of soil samples in the
system, whereas if there are more than two soil samples
in the system, both of the technicians will be busy and the
processing rate is limited to 60 per hour. Thus,

λ0 = λ1 = · · · = λ∞ = λ = 40

µ0 = 0, µ1 = µ = 30,

µ2 = µ3 = · · · = µ∞ = 2µ = 60

The transition diagram for this problem appears as in
Figure 2.10.
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30 60 60 60 60
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40 40 40 40 40

0 1 2 3

Figure 2.10 Transition diagram for laboratory technician problem.

Using these parameters we get

π0 = 1

1 +∑∞
j=1 Cj

=
[

1 + λ

µ
+ λ

µ

(
λ

2µ

)
+ λ

µ

(
λ

2µ

)2

+ · · ·
]−1

=
[

1 +
(

λ

µ

){

1 +
(

λ

2µ

)
+
(

λ

2µ

)2

+ · · ·
}]−1

=
[

1 +
(

λ

µ

)
1

1 − (λ/2µ)

]−1

= 2µ − λ

2µ + λ

= 0.2

and

π1 = λ0

µ1
π0 = 40

30
0.2 = 0.267

(a) The event that an arriving soil sample is immediately
tested is equivalent to the event that there is zero or
one soil sample in the system (since if there are already
two soil samples in the system, the arriving sample will
have to wait). Hence, the pertinent probability is

π0 + π1 = 0.2 + 0.267 = 0.467

(b) The expected number of unfinished soil samples ahead
of an arriving soil sample is given by

L = 1 · λ

µ
π0 + 2 · λ

µ

(
λ

2µ

)
π0

+ 3 · λ

µ

(
λ

2µ

)2

π0 + · · ·

=
(

λ

µ

)
π0

(
1 − λ

(2µ)

)2

=
(

40

30

)
0.2

(
1 − 40

60

)2

= 2.403

That is, on average, an arriving soil sample can expect
two or three soil samples ahead of it in the system.
Note that the wording here is somewhat delicate. It is
assumed here that the arriving soil sample is not yet in
the system, so that the expected number of samples in
the system are what the arriving sample can expect to
“see.”

(c) This problem corresponds to model 1 of Table 2.1, so
that the expected waiting time W , including time in the
queue, is given by

W = 1

µ − λ
= 1

50 − 40
= 0.1 h (i.e., 6 min)

Example 2.16 Consider a geotechnical firm which em-
ploys four engineers. Jobs arrive once per day, on average.
Suppose that each engineer takes an average of two days
to complete a job. If all four engineers are busy, newly
arriving jobs are turned down.

(a) What fraction of time are all four engineers busy?
(b) What is the expected number of jobs being worked on

on any given day?
(c) By how much does the result of part (a) change if

arriving jobs are allowed/willing to wait in a queue (i.e.,
are not turned down if all four engineers are busy)?

SOLUTION This is a four-server model with limited
queue size (more specifically, the queue size cannot be
greater than zero), so it does not correspond to any of our
simplified models shown in Table 2.1. We must use the
basic equations with rates

λ0 = λ1 = λ2 = λ3 = 1, λ4 = λ5 = · · · = 0

µ0 = 0, µ1 = 1
2 , µ2 = 2

2 , µ3 = 3
2 , µ4 = 4

2

which has the transition diagram shown in Figure 2.11:

1/2 2/2 3/2 4/2

4

1 1 1 1

0 1 2 3

Figure 2.11 Transition diagram for four-engineer problem.
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(a) This gives us

C1 = λ0

µ1
= 2

C2 = λ1

µ2
C1 = 2

C3 = λ2

µ3
C2 = 4

3

C4 = λ3

µ4
C3 = 2

3

C5 = C6 = · · · = 0

which yields probabilities

π0 = 1

1 + 2 + 2 + 4/3 + 2/3
= 0.1428

π1 = C1π0 = 0.2857

π2 = C2π0 = 0.2857

π3 = C3π0 = 0.1905

π4 = C4π0 = 0.0952

so that the four engineers are fully occupied π4 =
0.095, or 9.5%, of the time.

(b) If N is the number of jobs being worked on on any day,
then the expected number of jobs on any one day is

E [N ] = 0π0 + 1π1 + 2π2 + 3π3 + 4π4 = 1.81

(c) Now we have queueing model 3, since the queue size
is unlimited, with ρ = 2, s = 4, and φ = 1

2 . Then

π0 = 1

1 + 2 + 2 + 4/3 + (24/4!)[1/(1 − 1/2)]

= 0.1304

The probability that the firm is fully occupied cor-
responds to the probability that the number of jobs
in the system is 4, 5, . . . . The probability of this is
1 − (π0 + π1 + π2 + π3), where

π1 = 21

1!
π0 = 2π0, π2 = 22

2!
π0 = 2π0,

π3 = 23

3!
π0 = 4

3
π0

so that the desired probability is

1 − (
1 + 2 + 2 + 4

3

)
(0.1304) = 0.174

which is greater than the limited queue result of part (a).



CHAPTER 3

Random Fields

3.1 INTRODUCTION

In the previous chapter, we considered only discrete-state
Markov chains (with both discrete and continuous time).
We turn our attention in this chapter to continuous-state
processes where the random process X (t) can now take
on an infinite number of possible values at each point
t . As an example of a continuous-state random process,
Figure 3.1 illustrates the tip resistance measured during
a CPT. Aside from soil disturbance, measurement errors,
and problems with extracting engineering properties from
CPT data, Figure 3.1 presumably gives a reasonably good
idea about the soil properties at the location at which the
CPT was taken. However, what can be said about the soil
properties 10 (or 50) m away from the CPT sounding? The
data presented in Figure 3.1 could be used to characterize
the randomness (uncertainty) at locations which have not
been sampled. But how can the variability at one location
be used to represent the variability at other locations? Some
considerations involved in characterizing spatial variability
are as follows:

1. Variability at a Point: Pick a specific position t∗. At
this point the process has a random value X (t∗) = X ∗
which is governed by a probability density function
fX∗(x ). If we picked another position, say t ′, then
X (t ′) = X ′ would have another, possibly different pdf,
fX ′(x ). That is, the pdf’s could evolve with position.
In practice, evolving pdf’s become quite difficult to
estimate for anything beyond a simple trend in the
mean or variance. An example where the point, or
marginal, distribution evolves with time is earthquake
ground motion where the motion variance increases
drastically during the strong motion portion of the
record.

2. Spatial Dependence: Consider again two positions t∗
and t ′ separated by distance τ = t ′ − t∗. Presumably,
the two random variables X (t ′) and X (t∗) will exhibit
some dependence on each other. For example, if X
is cohesion, then we would expect X (t ′) and X (t∗)
to be quite similar (i.e., highly dependent) when τ

is small (e.g., a few centimeters) and possibly quite
dissimilar (i.e., largely independent) when τ is large
(e.g., tens, hundreds, or thousands of meters). If X (t∗)
and X (t ′) are independent for any two positions with
separation τ = t ′ − t∗ �= 0, then the process would
be infinitely rough—points separated by vanishingly
small lags could have quite different values. This is
not physically realistic for most natural phenomena.
Thus, X (t∗) and X (t ′) generally have some sort of
dependence that often decreases with separation dis-
tance. This interdependence results in a smoothing
of the random process. That is, for small τ , nearby
states of X are preferential—the random field is con-
strained by its neighbors to be similar. We characterize
this interdependence using the joint bivariate distribu-
tion fX∗X ′ (x∗, x ′) which specifies the probability that
X ∗ = x∗ and X ′ = x ′ at the same time. If we ex-
tend this idea to the consideration of any three, or
four, or five, . . . , points, then the complete proba-
bilistic description of a random process is the infinite-
dimensional probability density function

fX 1X 2...(x1, x2, . . .)

Such an infinite-dimensional pdf is difficult to use in
practice, not only mathematically, but also because its
parameters are difficult to estimate from real data.

To simplify the characterization problem, we introduce a
number of assumptions which are commonly made:

1. Gaussian Process: The joint pdf is a multivariate nor-
mally distributed random process. Such a process is
also commonly referred to as a Gaussian process. The
great advantage to the multivariate normal distribution
is that the complete distribution can be specified by
just the mean vector and the covariance matrix. As
we saw in Section 1.10.8, the multivariate normal pdf
has the form

fX 1X 2···X k (x1, x2, . . . , xk ) = 1

(2π )k/2

1

|C |1/2

× exp
{− 1

2 (x − µ)TC −1(x − µ)
}

where µ is the vector of mean values, one for each
Xi , C is the covariance matrix between the X ’s, and

91Risk Assessment in Geotechnical Engineering   Gordon A. Fenton  and  D. V. Griffiths

Copyright © 2008 John Wiley & Sons, Inc. ISBN: 978-0-470-17820-1



92 3 RANDOM FIELDS

0 5 10 15 20 25 30

Depth, z (m)

0
10

20
30

q c
(z

) 
(M

Pa
)

Figure 3.1 Tip resistance qc(z ) measured over depth z by a cone
penetrometer.

|C | is its determinant. Specifically,

µ = E [X]

C = E
[
(X − µ)(X − µ)T]

where the superscript T means the transpose. The
covariance matrix C is a k × k symmetric, positive-
definite matrix. For a continuous random field, the
dimensions of µ and C are still infinite, since the
random field is composed of an infinite number of
X ’s, one for each point. To simplify things, we often
quantify µ and C using continuous functions of space
based on just a few parameters. For example, in a
one-dimensional random field (or random process),
the mean may vary linearly:

µ(t) = a + bt

and the covariance matrix can be expressed in terms
of the standard deviations, which may vary with t ,
and the correlation function ρ as in

C (t1, t2) = σ (t1)σ (t2)ρ(t1, t2)

which specifies the covariance between X (t1) and
X (t2). Because the mean and covariance can vary
with position, the resulting joint pdf is still difficult to
use in practice, both mathematically and to estimate
from real data, which motivates the following further
simplifications.

2. Stationarity or Statistical Homogeneity: The joint pdf
is, independent of spatial position, that is, it depends
just on relative positions of the points. This assump-
tion implies that the mean, covariance, and higher
order moments are constant in time (or space) and
thus that the marginal, or point, pdf is also con-
stant in time (or space). So-called weak stationarity

or second-order stationarity just implies that the mean
and variance are constant in space.

3. Isotropy: In two- and higher dimensional random
fields, isotropy implies that the joint pdf is invariant
under rotation. This condition implies stationarity (al-
though stationarity does not imply isotropy). Isotropy
means that the correlation between two points only
depends on the distance between the two points, not
on their orientation relative to one another.

A random field X (t) having nonstationary mean and vari-
ance can be converted to a random field which is stationary
in its mean and variance by the following transformation:

X ′(t) = X (t) − µ(t)

σ (t)
(3.1)

The random field X ′(t) will now have zero mean and unit
variance everywhere. Also a nonstationary random field can
be produced from a stationary random field. For example,
if X (t) is a standard Gaussian random field (having zero
mean and unit variance) and

Y (t) = 2 + 1
2 t + 1

4

√
tX (t)

then Y (t) is a nonstationary Gaussian random field with

E [Y (t)] = µY (t) = 2 + 1
2 t

Var [Y (t)] = σ 2
Y (t) = 1

2 t

in which both the mean and variance increase with t .
Note that a nonstationary correlation structure, where the

correlation coefficient between X (t) and X (t + τ ) depends
on t , is not rendered stationary by Eq. 3.1. Equation 3.1
only renders the mean and variance stationary, not corre-
lation. At the moment, nonstationary correlation structures
are uncommon in geotechnical engineering because of the
prohibitive volumes of data required to estimate their pa-
rameters. Random-field models in geotechnical engineer-
ing are generally at most nonstationary in the mean. The
variance and covariance structure will almost always be as-
sumed to be stationary. We shall see more about why this is
so in Chapter 5 when we talk about ergodicity. The practi-
cal implications are that Eq. 3.1 can almost always be used
to transform a geotechnical random-field model into one
which is stationary.

Quite often soil properties are not well modeled by the
Gaussian (normal) distribution. For example, a normally
distributed elastic modulus is admitting that some fraction
of the soil has a negative elastic modulus, which is not phys-
ically meaningful. For such nonnegative soil properties the
normal distribution is not appropriate and a non-Gaussian
random field would be desired, such as the lognormal distri-
bution. Nevertheless, Gaussian random fields are desirable
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because of their simple characterization and simple prob-
abilistic nature. Fortunately, we can retain a lot of these
desirable features, at least at some level, by using non-
Gaussian random fields which are derived as simple trans-
formations of a Gaussian random field. For example, the
random field Y (t) defined by the transformation

Y (t) = eX (t) (3.2)

will have a lognormal distribution if X (t) is normally dis-
tributed. A note of caution here, however, is that the co-
variance structure of the resulting field is also nonlinearly
transformed. For example, if X (1) has correlation coeffi-
cient 0.2 with X (2), the same is no longer true of Y (1) and
Y (2). In fact, the correlation function of Y is now given by
(Vanmarcke, 1984)

ρY (τ ) = exp{σ 2
X ρX (τ )} − 1

exp{σ 2
X } − 1

(3.3)

for stationary processes, where ρX (τ ) is the correlation
coefficient between X (t) and X (t + τ ).

In this book, we will largely restrict ourselves to station-
ary Gaussian random fields and to fields derived through
simple transformations from Gaussian random fields (e.g.,
lognormally distributed random fields). Gaussian random
fields are completely specified by their mean and covari-
ance structure, that is, their first two moments. In practice,
we are sometimes able to reasonably accurately estimate the
mean, and sometimes a mean trend, of a soil property at a
site. Estimating the variance and covariance requires con-
siderably more data—we often need to resort to information
provided by the literature in order to specify the variance
and covariance structure. Because of this uncertainty in the
basic parameters of even the covariance, there is often lit-
tle point in adopting other joint distributions, which are
more complicated and depend on higher moments, to gov-
ern the random fields representing soil properties, unless
these distributions are suggested by mechanical or physical
theory.

Under the simplifying assumptions that the random field
is Gaussian and stationary, we need to know three things
in order to characterize the field:

1. The field mean µX

2. The field variance σ 2
X

3. How rapidly the field varies in space

The last is characterized by the second moment of the
field’s joint distribution, which is captured equivalently by
the covariance function, the spectral density function, or
the variance function. These functions are discussed in the
next few sections.

3.2 COVARIANCE FUNCTION

The second-moment nature of a Gaussian random field can
be expressed by the covariance function,

C (t ′, t∗) = Cov
[
X (t ′), X (t∗)

]

= E
[(

X (t ′) − µX (t ′)
)(

X (t∗) − µX (t∗)
)]

= E
[
X (t ′)X (t∗)

]− µX (t ′)µX (t∗) (3.4)

where µX (t) is the mean of X at the position t . Since
the magnitude of the covariance depends on the size of
the variance of X (t ′) and X (t∗), it tells us little about the
degree of linear dependence between X (t ′) and X (t∗). A
more meaningful measure, in this sense, is the correlation
function,

ρ(t ′, t∗) = C (t ′, t∗)

σX (t ′)σX (t∗)
(3.5)

where σX (t) is the standard deviation of X at the posi-
tion t . As seen in Chapter 1, −1 ≤ ρ(t ′, t∗) ≤ 1, and when
ρ(t ′, t∗) = 0, we say that X (t ′) and X (t∗) are uncorrelated.
When X is Gaussian, being uncorrelated also implies in-
dependence. If ρ(t ′, t∗) = ±1, then X (t ′) and X (t∗) are
perfectly linearly correlated, that is, X (t ′) can be expressed
in terms of X (t∗) as

X (t ′) = a ± bX (t∗)

Furthermore, if X (t ′) and X (t∗) are perfectly correlated and
the random field is stationary, then X (t ′) = ±X (t∗). The
sign to use is the same as the sign of ρ(t ′, t∗).

For stationary random fields, the mean and covariance
are independent of position, so that

C (t ′, t∗) = C (t ′ − t∗) = C (τ ) = Cov [X (t), X (t + τ )]

= Cov [X (0), X (τ )] = E [X (0)X (τ )] − µ2
X (3.6)

and the correlation function becomes

ρ(τ ) = C (τ )

C (0)
= C (τ )

σ 2
X

Because C (t ′, t∗) = C (t∗, t ′), we must have C (τ ) = C (−τ )
when the field is stationary, and similarly ρ(τ ) = ρ(−τ ).

At this point, we can, in principle, describe a Gaussian
random field and ask probabilistic questions of it.

Example 3.1 Suppose that the total amount Q of toxic
waste which flows through a clay barrier of thickness
D in an interval of time is proportional to the average
hydraulic conductivity Kave through the barrier (note that
the harmonic average is probably a better model for this
problem, but the arithmetic average is much easier to deal
with and so will be used here in this simple illustration).
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That is,

Q = cKave

where c is a constant. A one-dimensional idealization for
Kave is

Kave = 1

D

∫ D

0
K (x ) dx

where K (x ) is the point hydraulic conductivity, meaning
it expresses the hydraulic conductivity of the clay at the
point x . Assume that K (x ) is a continuous-state stationary
Gaussian random process with mean 1, coefficient of vari-
ation 0.20, and correlation function ρ(τ ) = exp{−|τ |/4}.
One possible realization of K (x ) appears in Figure 3.2.

(a) Give expressions for the mean and variance of Q in
terms of the mean and variance of K (x ).

(b) If the correlation function is actually ρ(τ ) = exp{−|τ |},
will the variance of Q increase or decrease? Explain
your reasoning.

SOLUTION

(a) Since Q = cKave , we must have

Q = c

D

∫ D

0
K (x ) dx

Taking expectations of both sides gives the mean of Q ,

E [Q] = E

[
c

D

∫ D

0
K (x ) dx

]
= c

D

∫ D

0
E [K (x )] dx

= c

D

∫ D

0
(1) dx = c
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Figure 3.2 One possible realization of K (x ).

while the variance is obtained as (recalling that the
square of a sum becomes a double sum)

Var [Q] = E
[
(Q − µQ )2]

= E
[
(Q − c)2] = E

[
c2(Kave − 1)2]

= c2 E

[(
1

D

∫ D

0
(K (x ) − 1) dx

)2
]

= c2

D2
E

[∫ D

0

∫ D

0
(K (ξ ) − 1)(K (η) − 1) dξ dη

]

= c2

D2

∫ D

0

∫ D

0
E [(K (ξ ) − 1)(K (η) − 1)] dξdη

Recognizing that E [(K (ξ ) − 1)(K (η) − 1)] = σ 2
K

ρ(ξ − η) is just the covariance between the hydraulic
conductivities at the two points ξ and η, we get

Var [Q] = c2σ 2
K

D2

∫ D

0

∫ D

0
ρ(ξ − η) dξ dη

= c2σ 2
K

D2

∫ D

0

∫ D

0
exp

{
−|ξ − η|

4

}
dξ dη

= 2c2σ 2
K

D2

∫ D

0
(D − τ ) exp

{
−τ

4

}
dτ

which can be solved with the aid of a good integral
table. Note that the collapse of a two-dimensional
integral to a one-dimensional integral in the last step
was accomplished by taking advantage of the fact that
ρ(ξ − η) is constant along diagonal lines through the
integration space. That is, we need only integrate along
a line perpendicular to these diagonally constant values
and multiply by the length of the diagonals (there are
some

√
2 factors that cancel out). We shall illustrate the

details of this integration reduction in Section 3.4 (see,
e.g., Figure 3.7). The end result is

Var [Q] = c2σ 2
K

(
32

D2

)[
D

4
+ exp

{
−D

4

}
− 1

]

where σK = 0.2µK = 0.2.
(b) Since the correlation function ρ(τ ) = exp{−|τ |} falls

more rapidly with τ than does the correlation func-
tion used in part (a), the conductivity values become
more independent of one another through the clay bar-
rier. Since Q is an average of the conductivity values,
increasing independence between values serves to de-
crease the variance of Q . That is, the variability in K (x )
now tends to cancel out to a greater degree. We note
that in order to understand this somewhat counterin-
tuitive result that the variance of Q decreases as K (x )
becomes more independent (and thus more random), we
need to remember that we are talking about variability



COVARIANCE FUNCTION 95

over the ensemble of possible realizations. For strongly
correlated random fields, there is less variability within
each realization but more variability from realization to
realization. Conversely, for weakly correlated random
fields, there is more variability within each realization
but less variability between realizations (e.g., all real-
izations look similar). In the latter case, averages of
each realization are very similar (small variability).

This discussion illustrates the contrast between char-
acterizing an entire population (which is what we are
doing in this example) and characterizing a particular
realization (if we happen to know things about the par-
ticular realization). We shall discuss this issue at greater
length in Chapter 5.

Another property of the covariance function is that it is
positive definite. To illustrate this property, consider a linear
combination of n of the random variables in the process
X (t), say Xi = X (ti ) for any sequence of times t1, t2, . . . , tn ,

Y = a1X1 + a2X2 + · · · + anXn =
n∑

i=1

ai Xi

where a1, a2, . . . , an are any set of coefficients. We saw in
Chapter 1 that the variance of a linear combination is

Var [Y ] =
n∑

i=1

n∑

j=1

ai aj Cov
[
Xi , Xj

]

Since Var [Y ] is also defined as E
[
(Y − µY )2

]
, it cannot be

negative. This means that the covariances between the X ’s
must satisfy the following inequality for any ai :

n∑

i=1

n∑

j=1

ai aj Cov
[
Xi , Xj

] ≥ 0 (3.7)

which is the statement of positive definiteness. In the case
of a stationary process where Cov

[
Xi , Xj

] = σ 2
X ρ(ti − tj ) =

σ 2
X ρij , we see that the correlation function is also positive

definite,
n∑

i=1

n∑

j=1

ai aj ρij ≥ 0 (3.8)

since σ 2
X ≥ 0.

One of the points of Eqs. 3.7 and 3.8 is that not just any
covariance and correlation function can be used to charac-
terize the second moment of a random field. In particular,
the following properties of the covariance function must be
satisfied:

1. |Cov
[
Xi , Xj

] | ≤ σX i σX j , which ensures that −1 ≤
ρij ≤ 1

2. Cov
[
Xi , Xj

] = Cov
[
Xj , Xi

]

3.
∑n

i=1

∑n
j=1 ai aj Cov

[
Xi , Xj

] ≥ 0

For isotropic covariance functions in two and higher dimen-
sions, see also Section 3.7.6. If two covariance functions
C1(Xi , Xj ) and C2(Xi , Xj ) each satisfy the above conditions,
then their sum C (Xi , Xj ) = C1(Xi , Xj ) + C2(Xi , Xj ) will also
satisfy the above conditions and be a valid covariance
function.

If the set of covariances Cov
[
Xi , Xj

]
is viewed as a

matrix C = [Cij ], with elements Cij = Cov
[
Xi , Xj

]
, then

one of the results of positive definiteness is that the square
root of C will be real. The square root will be defined here
as the lower triangular matrix L such that LLT = C , where
the superscript T denotes the matrix transpose. The lower
triangular matrix L has the form

L =













�11 0 0 · · · 0

�21 �22 0 · · · 0

�31 �32 �33 · · · 0
.
.
.

.

.

.

.

.

.

.
.

.

.

.

.

�n1 �n2 �n3 · · · �nn













(3.9)

which is generally obtained by Cholesky decomposition.
We shall see how this matrix can be used to simulate a
random field in Section 6.4.2.

A positive-definite covariance matrix can also be de-
composed into a matrix of eigenvectors Q and positive
eigenvalues � such that

C = QT�Q (3.10)

where � is a diagonal matrix whose elements are the
eigenvalues ψ1, ψ2, . . . , ψn of the covariance matrix C .

The eigenvectors composing each column of the matrix
Q make up an orthonormal basis, which is a set of unit
vectors which are mutually perpendicular. A property of
orthonormal vectors is that QT = Q−1. If we premultiply
and postmultiply Eq. 3.10 by Q and QT, respectively, we
get

QC QT = � =












ψ1 0 0 · · · 0

0 ψ2 0 · · · 0

0 0 ψ3 · · · 0
.
.
.

.

.

.

.

.

.

.
.

.

.

.

.

0 0 0 · · · ψn












(3.11)

Now let us define the vector X = {X1, X2, . . . , Xn}T which
contains the sequence of X (t) values discussed above,
having covariance matrix C = E

[
(X − µX )(X − µX )T

]
. If

we let
Z = QX (3.12)
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be a sequence of random variables obtained by rotating
the vector X by the orthonormal basis Q , then Z is com-
posed of uncorrelated random variables having variances
ψ1, ψ2, . . . , ψn . We can show this by computing the co-
variance matrix of Z. For this we will assume, without loss
of generality and merely for simplicity, that E [X (t)] = 0 so
that E [Z] = 0. (The end result for a nonzero mean is ex-
actly the same—it is just more complicated getting there.)
The covariance matrix of Z, in this case, is given by

C Z = E
[
ZZT] = E

[
(QX)(QX)T] = E

[
QXXTQT]

= Q E
[
XXT]QT

= QC QT

= �

so that the matrix of eigenvectors Q can be viewed as
a rotation matrix which transforms the set of correlated
random variables X1, X2, . . . , Xn into a set of uncorrelated
random variables Z = {Z1, Z2, . . . , Zn}T having variances
ψ1, ψ2, . . . , ψn , respectively.

3.2.1 Conditional Probabilities

We are often interested in conditional probabilities of the
form: Given that X (t) has been observed to have some
value x at position t , what is the probability distribution of
X (t + s)? For example, if the cohesion at t = 4 m is known,
what is the conditional distribution of the cohesion at t = 6
m (assuming that the cohesion field is stationary and that
we know the correlation coefficient between the cohesion
at t = 4 and the cohesion at t = 6 m)? If X (t) is a station-
ary Gaussian process, then the conditional distribution of
X (t + s) given X (t) = x is also normally distributed with
mean and variance

E [X (t + s) | X (t) = x ] = µX + (x − µX )ρ(s) (3.13a)

Var [X (t + s) | X (t) = x ] = σ 2
X (1 − ρ2(s)) (3.13b)

where ρ(s) is the correlation coefficient between X (t + s)
and X (t).

3.3 SPECTRAL DENSITY FUNCTION

We now turn our attention to an equivalent second-moment
description of a stationary random process, namely its
spectral representation. We say “equivalent” because the
spectral representation, in the form of a spectral density
function, contains the same information as the covariance
function, just expressed in a different way. As we shall
see, the spectral density function can be obtained from
the covariance function and vice versa. The two forms are
merely transforms of one another.

Priestley (1981) shows that if X (t) is a stationary random
process, with ρ(τ ) continuous at τ = 0, then it can be
expressed as a sum of sinusoids with mutually independent
random amplitudes and phase angles,

X (t) = µX +
N∑

k=−N

Ck cos(ωk t + 
k )

= µX +
N∑

k=−N

[
Ak cos(ωk t) + Bk sin(ωk t)

]
(3.14)

where µX is the process mean, Ck is a random amplitude,
and 
k is a random phase angle. The equivalent form
involving Ak and Bk is obtained by setting Ak = Ck cos(
k )
and Bk = −Ck sin(
k ). If the random amplitudes Ak and
Bk are normally distributed with zero means, then X (t)
will also be normally distributed with mean µX . For this
to be true, Ck must be Raleigh distributed and 
k must be
uniformly distributed on the interval [0, 2π ]. Note that X (t)
will tend to a normal distribution anyhow, by virtue of the
central limit theorem, for wide-band processes, so we will
assume that X (t) is normally distributed.

Consider the k th component of X (t) and ignore µX for
the time being,

Xk (t) = Ck cos(ωk t + 
k ) (3.15)

If Ck is independent of 
k , then Xk (t) has mean

E [Xk (t)] = E [Ck cos(ωk t + 
k )]

= E [Ck ] E [cos(ωk t + 
k )] = 0

due to independence and the fact that, for any t , E [cos(ωk t
+
k )] = 0 since 
k is uniformly distributed on [0, 2π ].
The variance of Xk (t) is thus

Var [Xk (t)] = E
[
X 2

k (t)
] = E

[
C 2

k

]
E
[
cos2(ωk t + 
k )

]

= 1
2 E
[
C 2

k

]
(3.16)

Note that E
[
cos2(ωk t + 
k )

] = 1
2 , which again uses the

fact that 
k is uniformly distributed between 0 and 2π .
Priestley also shows that the component sinusoids are

independent of one another, that is, that Xk (t) is independent
of Xj (t) for all k �= j . Using this property, we can put the
components back together to find the mean and variance of
X (t),

E [X (t)] = µX +
N∑

k=−N

E [Xk (t)] = µX (3.17a)

Var [X (t)] =
N∑

k=−N

Var [Xk (t)] =
N∑

k=−N

1
2 E
[
C 2

k

]
(3.17b)
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Figure 3.3 Two-sided spectral density function S (ω).

In other words, the prescribed mean of X (t) is preserved
by the spectral representation and the variance of the sum
is the sum of the variances of each component frequency,
since the component sinusoids are independent. The amount
that each component frequency contributes to the overall
variance of X (t) depends on the “power” in the sinusoid
amplitude, 1

2 E
[
C 2

k

]
.

Now define the two-sided spectral density function S (ω)
such that

S (ωk ) �ω = Var [Xk (t)] = E
[
X 2

k (t)
] = 1

2 E
[
C 2

k

]
(3.18)

Then the variance of X (t) can be written as

Var [X (t)] =
N∑

k=−N

S (ωk ) �ω (3.19)

In the limit as �ω → 0 and N → ∞, we get

Var [X (t)] = σ 2
X =

∫ ∞

−∞
S (ω) dω (3.20)

which is to say the variance of X (t) is just the area under
the two-sided spectral density function (Figure 3.3).

3.3.1 Wiener–Khinchine Relations

We can use the spectral representation to express the co-
variance function C (τ ). Assuming that µX = 0 for the time
being to simplify the algebra (this is not a restriction, the
end results are the same even if µX �= 0), we have

C (τ ) = Cov [X (0), X (τ )] (due to stationarity)

= E




∑

k

Xk (0)
∑

j

Xj (τ )





=
∑

k

∑

j

E
[
Xk (0)Xj (τ )

]

=
∑

k

E [Xk (0)Xk (τ )] (due to independence)

Now, since Xk (0) = Ck cos(
k ) and Xk (τ ) = Ck cos(ωkτ

+ 
k ), we get

C (τ ) =
∑

k

E
[
C 2

k

]
E [cos(
k ) cos(ωkτ + 
k )]

=
∑

k

E
[
C 2

k

]
E
[ 1

2 {cos(ωk τ + 2
k ) + cos(ωkτ )}]

=
∑

k

1
2 E
[
C 2

k

]
cos(ωkτ )

=
∑

k

S (ωk ) cos(ωk τ ) �ω

which in the limit as �ω → 0 gives

C (τ ) =
∫ ∞

−∞
S (ω) cos(ωτ ) dω (3.21)

Thus, the covariance function C (τ ) is the Fourier transform
of the spectral density function S (ω). The inverse transform
can be applied to find S (ω) in terms of C (τ ),

S (ω) = 1

2π

∫ ∞

−∞
C (τ ) cos(ωτ ) dτ (3.22)

so that knowing either C (τ ) or S (ω) allows the other
to be found (and hence these are equivalent in terms
of information). Also, since C (τ ) = C (−τ ), that is, the
covariance between one point and another is the same
regardless of which point you consider first, and since
cos(x ) = cos(−x ), we see that

S (ω) = S (−ω) (3.23)

In other words, the two-sided spectral density function is
an even function (see Figure 3.3). The fact that S (ω) is
symmetric about ω = 0 means that we need only know
the positive half in order to know the entire function. This
motivates the introduction of the one-sided spectral density
function G(ω) defined as

G(ω) = 2S (ω), ω ≥ 0 (3.24)

(See Figure 3.4). The factor of 2 is included to preserve
the total variance when only positive frequencies are con-
sidered. Now the Wiener–Khinchine relations become

C (τ ) =
∫ ∞

0
G(ω) cos(ωτ ) dω (3.25a)

G(ω) = 1

π

∫ ∞

−∞
C (τ ) cos(ωτ ) dτ (3.25b)

= 2

π

∫ ∞

0
C (τ ) cos(ωτ ) dτ (3.25c)

and the variance of X (t) is the area under G(ω) (set τ = 0
in Eq. 3.25a to see this),

σ 2
X = C (0) =

∫ ∞

0
G(ω) dω (3.26)

The spectral representation of a stationary Gaussian pro-
cess is primarily used in situations where the frequency
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Dw

w
wk

G(w)

G(wk) Dw = E[C2
k ]

Figure 3.4 One-sided spectral density function G(ω) = 2S (ω)
corresponding to Figure 3.3.

domain is an integral part of the problem being consid-
ered. For example, earthquake ground motions are often
represented using the spectral density function because the
motions are largely sinusoidal with frequency content dic-
tated by resonance in the soil or rock through which the
earthquake waves are traveling. In addition, the response
of structures to earthquake motion is often performed using
Fourier response “modes,” each having its own resonance
frequency. Thus, if a structure has a 1-Hz primary response
mode (single mass-and-spring oscillation), then it is of in-
terest to see what power the input ground motion has at
1 Hz. This is given by G(ωk ) �ω at ωk = 1 Hz.

In addition, the spectral representation provides a means
to simulate a stationary Gaussian process, namely to sim-
ulate independent realizations of Ck and 
k for k = 0,
1, . . . , N and then recombine using the spectral representa-
tion. We shall see more of this in Chapter 6.

3.3.2 Spectral Density Function of Linear Systems

Let us consider a system which is excited by an input X (t)
and which has a response Y (t). If the system is linear,
then doubling the input X (t) will double the response
Y (t). More generally, when the input is a sum, X (t) =
X1(t) + X2(t) + · · · , and Yi (t) is the response of the system
to each individual Xi (t), the total response of a linear system
will be the sum Y (t) = Y1(t) + Y2(t) + · · · . This is often
referred to as the principle of superposition, which is one
of the main features of a linear system.

Although there are many different types of linear sys-
tems, those described by linear differential equations are
most easily represented using the spectral density function,
as we shall see. A linear differential equation is one in
which a linear combination of derivatives of Y (t) is set
equal to a linear combination of derivatives of X (t),

cn
dyn

dtn
+ cn−1

dyn−1

dtn−1
+ · · · + c1

dy

dt
+ c0y = dm

dx m

dtm

+ dm−1
dx m−1

dtm−1
+ · · · + d1

dx

dt
+ d0x (3.27)

In particular, the coefficients ci and dj are independent of
x , y , and t in a linear differential equation.

One of the features of a linear system is that when excited
by a sinusoidal input at a specific frequency ω the response
will also be at the frequency ω, possibly phase shifted
and amplified. That is, if the input is X (t) = cos(ωt), then
the response will have the form Y (t) = aω cos(ωt + φω),
where aω is the output amplitude and φω is a phase shift
between input and response, both at frequency ω. We can
also write the response as

Y (t) = aω cos(ωt + φω)

= aω(cos ωt cos φω − sin ωt sin φω)

= Aω cos ωt − Bω sin ωt (3.28)

where Aω = aω cos φω and Bω = aω sin φω.
It is convenient to solve linear differential equations in

the complex domain. To this end, we define the complex
input

Xc(t) = eiωt = cos ωt + i sin ωt (3.29)

where i = √−1. Our actual input is X (t) = Re
(

Xc(t)
)

,
where Re(·) means “real part of.” Also, let us define the
transfer function

H (ω) = Aω + iBω (3.30)

The complex response Yc(t) to the complex input Xc(t) can
now be written as

Yc(t) = H (ω)Xc(t) = [Aω + iBω][cos ωt + i sin ωt]

= Aω cos ωt − Bω sin ωt + i [Aω sin ωt

+ Bω cos ωt] (3.31)

from which we can see that Y (t) = Re
(

Yc(t)
)

. To see how
these results are used to solve a linear differential equation,
consider the following example.

Example 3.2 Suppose a system obeys the linear differen-
tial equation

cẏ + αy = x

where the overdot implies differentiation with respect to t .
If x (t) = cos ωk t , what is the response y(t)?

SOLUTION We will first derive the complex response of
the system to complex input, then take the real part for
the solution. The complex response of the system to the
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frequency ωk is obtained by setting the input xc(t) and
output yc(t) as follows:

xc(t) = eiωk t

yc(t) = H (ωk )xc(t) = H (ωk )eiωk t

Substitution of these into the system differential equation
gives

c
d

dt
H (ωk )eiωk t + αH (ωk )eiωk t = eiωk t

or
(icωk + α)H (ωk )eiωk t = eiωk t

which can be solved for the transfer function to give

H (ωk ) = 1

icωk + α

= α − icωk

α2 + c2ω2
k

=
(

α

α2 + c2ω2
k

)

− i

(
cωk

α2 + c2ω2
k

)

The magnitude of the transfer function tells us how much
the input signal is amplified,

|H (ωk )| =
√

α2 + c2ω2
k

α2 + c2ω2
k

= 1
√

α2 + c2ω2
k

Recalling that H (ω) = Aω + iBω, we must have

Aωk = α

α2 + c2ω2
k

, Bωk = − cωk

α2 + c2ω2
k

The complex response yc(t) to the complex input xc(t) =
eiωk t is thus yc(t) = H (ωk )eiωk t , which expands into

yc(t) = 1

α2 + c2ω2
k

[
α cos ωk t + cωk sin ωk t

+ i (α sin ωk t − cωk cos ωk t)
]

The real response to the real input x (t) = cos ωk t is there-
fore

y(t) = Re
(

yc(t)
)

= 1

α2 + c2ω2
k

[
α cos ωk t + cωk sin ωk t

]

=






√
α2 + c2ω2

k

α2 + c2ω2
k




 cos

(
ωk t + tan−1

(cωk

α

))

= 1
√

α2 + c2ω2
k

cos(ωk t + φk )

= |H (ωk )| cos(ωk t + φk ) (3.32)

where φk = tan−1(cωk /α) is the phase shift.

The transfer function H (ω) gives the steady-state re-
sponse of a linear system to a sinusoidal input at frequency
ω. If we make use of the superposition principle of lin-
ear systems, then we could compute a series of transfer
functions H (ω1), H (ω2), . . . corresponding to sinusoidal
excitations at frequencies ω1, ω2, . . . . The overall system
response would be the sum of all the individual responses.

To determine the spectral density function SY (ω) of the
system response Y (t), we start by assuming that the input
X (t) is equal to the sinusoidal component given by Eq. 3.15,

Xk (t) = Ck cos(ωk t + 
k ) (3.33)

where 
k is uniformly distributed between 0 and 2π and
independent of Ck . Assuming that the spectral density
function of X (t), SX (ω), is known, we select Ck to be
random with

E
[
C 2

k

] = 2SX (ωk )�ω

so that Eq. 3.18 holds. Equation 3.32 tells us that the
random response Yk (t) will be amplified by |H (ωk )| and
phase shifted by φk from the random input Xk (t),

Yk (t) = |H (ωk )|Ck cos(ωk t + 
k + φk )

The spectral density of Yk (t) is obtained in exactly the same
way as the spectral density of Xk (t) was found in Eq. 3.18,

SY (ωk ) �ω = Var [Yk (t)] = E
[
Y 2

k (t)
]

= E
[|H (ωk )|2C 2

k cos2(ωk t + 
k + φk )
]

= |H (ωk )|2 E
[
C 2

k

]
E
[
cos2(ωk t + 
k + φk )

]

= |H (ωk )|2(2SX (ωk )�ω)
( 1

2

)

= |H (ωk )|2SX (ωk )�ω

Generalizing this to any input frequency leads to one of the
most important results in random vibration theory, namely
that the response spectrum is a simple function of the input
spectrum,

SY (ω) = |H (ω)|2SX (ω)

3.3.3 Discrete Random Processes

So far in the discussion of spectral representation we have
been considering only processes that vary continuously in
time. Consider now a process which varies continuously but
which we have only sampled at discrete points in time. The
upper plot of Figure 3.5 illustrates what we might observe
if we sample X (t) at a series of points separated by �t .
When we go to represent X (t) as a sum of sinusoids, we
need to know which component sinusoids to use and what
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Figure 3.5 (a) Observations of X (t ) at spacing �t . (b) Several
frequencies each of which could result in the same sequence of
observations.

their amplitudes are. When X (t) varies continuously and
is known for all time, there is a unique set of sinusoids
composing X (t). However, as seen in the lower plot of
Figure 3.5, there exist many sinusoidal waves each of
which could have produced the sampled values. Thus, when
X (t) is only known discretely, we can no longer uniquely
determine its frequency components.

Frequencies which are indistinguishable from each other
when sampled discretely are called aliases of one another.
In fact, all frequencies having wavelength shorter than 2�t
will have an alias with a frequency which is longer than
2�t . We call the frequency corresponding to this critical
wavelength the Nyquist frequency ωN , where

ωN = π

�t
(3.34)

Each frequency in the range 0 ≤ ω ≤ ωN has aliases at
2ωN − ω, 2ωN + ω, 4ωN − ω, 4ωN + ω, and so on. We call
the low-frequency (long-wavelength) components, where
0 ≤ ω ≤ ωN , the principal aliases. In Figure 3.5, ωN =
π/�t = π/1.25 = 2.5, and two aliases of the principal
alias ω = 1 are 2ωN − ω = 2(2.5) − 1 = 4 and 2ωN + ω =
2(2.5) + 1 = 6.

Just as a bicycle wheel appears to be turning more slowly
when “sampled” by a stroboscope, the high-frequency
aliases appear to the viewer to be the low-frequency prin-
cipal alias. For example, if X (t) consists of just a single si-
nusoidal component having frequency 2.5ωN , it will appear
after sampling to be a sinusoid having frequency 0.5ωN .
That is, the power of the frequencies above ωN are folded
into the power of the frequencies below ωN . This compli-
cates the estimation of G(ω) whenever X (t) has significant
power above ωN . We shall see more of this in Chapter 5.

The discrete observations, Xi = X (ti ) = X (i�t) for i =
0, 1, . . . , n can be fully represented by sinusoids having fre-
quencies between zero and the Nyquist frequency ωN . That
is, frequencies above ωN are not needed to reproduce Xi .
In fact, only the frequencies below ωN are uniquely de-
fined by Xi . This means that the spectral density function
of Xi should be taken as zero beyond ωN = π/�t . For such
discrete processes, the covariance function can be obtained
from the spectral density function through a slight modifi-
cation of the Wiener–Khinchine relationship as follows:

C (τ ) =
∫ π/�t

0
G(ω) cos(ωτ ) dω (3.35)

for |τ | = k�t , k = 0, 1, . . . , n .

3.4 VARIANCE FUNCTION

Virtually all engineering properties are actually properties
of a local average of some sort. For example, the hydraulic
conductivity of a soil is rarely measured at a point since, at
the point level, we are either in a void having infinite con-
ductivity or in a solid having negligible conductivity. Just as
we rarely model soils at the microscopic, or particle, level
for use in designs at the macroscopic level, the hydraulic
conductivity is generally estimated using a laboratory sam-
ple of some volume, supplying a differential total head, and
measuring the quantity of water which passes through the
sample in some time interval. The paths that the water takes
to migrate through the sample are not considered individu-
ally; rather it is the sum of these paths that are measured.
This is a “local average” over the laboratory sample. (As
we shall see later there is more than one possible type of
average to take, but for now we shall concentrate on the
more common arithmetic average.)

Similarly, when the compressive strength of a material is
determined, a load is applied to a finite-sized sample until
failure occurs. Failure takes place when the shear/tensile
resistances of a large number of bonds are broken—the
failure load is then a function of the average bond strength
throughout the failure region.

Thus, it is of considerable engineering interest to inves-
tigate how averages of random fields behave. Consider the



VARIANCE FUNCTION 101

local average defined as

XT (t) = 1

T

∫ t+T/2

t−T/2
X (ξ ) dξ (3.36)

which is a “moving” local average. That is, XT (t) is the
local average of X (t) over a window of width T centered
at t . As this window is moved along in time, the local
average XT (t) changes more slowly (see Figure 3.6).

For example, consider the boat-in-the-water example: If
the motion of a piece of sawdust on the surface of the ocean
is tracked, it is seen to have considerable variability in its
elevation. In fact, it will have as much variability as the
waves themselves. Now, replace the sawdust with an ocean
liner. The liner does not bounce around with every wave,
but rather it “averages” out the wave motion over the area
of the liner. Its vertical variability is drastically reduced.

In this example, it is also worth thinking about the
spectral representation of the ocean waves. The piece of
sawdust sees all of the waves, big and small, whereas the
local averaging taking place over the ocean liner damps
out the high-frequency components leaving just the long-
wavelength components (wavelengths of the order of the
size of the ship and longer). Thus, local averaging is a low-
pass filter. If the ocean waves on the day that the sawdust
and ocean liner are being observed are composed of just
long-wavelength swells, then the variability of the sawdust
and liner will be the same. Conversely, if the ocean surface
is just choppy without any swells, then the ocean liner may
hardly move up and down at all. Both the sawdust and
the ocean liner will have the same mean elevation in all
cases.
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Figure 3.6 Effect of local averaging on variance; T is the
moving window length over which the top plot is averaged to
get the lower plot.

The two main effects of local averaging are to reduce
the variance and to damp the contribution from the high-
frequency components. The amount of variance reduction
increases with increasing high-frequency content in the
random field. An increased high-frequency content corre-
sponds to increasing independence in the random field, so
that another way of putting this is that variance reduction
increases when the random field consists of more “indepen-
dence.” This is illustrated in Figure 3.6. A random process
is shown in the upper plot, which is then averaged within
a moving window of width T to obtain the lower plot.
Notice that averaging both smooths the process and reduces
its variance.

Let us look in more detail at the moments of XT (t). Its
mean is

E [XT (t)] = E

[
1

T

∫ t+T/2

t−T/2
X (ξ ) dξ

]

= 1

T

∫ t+T/2

t−T/2
E [X (ξ )] dξ

= E [X ] (3.37)

for stationary X (t). That is, local arithmetic averaging
preserves the mean of the random field (the mean of an
arithmetic average is just the mean of the process). Now
consider the variance,

Var [XT (t)] = E
[
(XT (t) − µX T )2] (3.38)

where, since µX T = µX ,

XT − µX T = 1

T

∫ t+T/2

t−T/2
X (ξ ) dξ − µX

= 1

T

∫ t+T/2

t−T/2
[X (ξ ) − µX ] dξ

so that (due to stationarity, the bounds of the integral can
be changed to any domain of length T without changing the
expectation; we will use the domain [0, T ] for simplicity)

Var [XT (t)]

= E

[
1

T

∫ T

0
[X (ξ ) − µX ] dξ

1

T

∫ T

0
[X (η) − µX ] dη

]

= 1

T 2

∫ T

0

∫ T

0
E [(X (ξ ) − µX )(X (η) − µX )] dξ dη

= 1

T 2

∫ T

0

∫ T

0
CX (ξ − η) dξ dη

= σ 2
X

T 2

∫ T

0

∫ T

0
ρX (ξ − η) dξ dη

= σ 2
X γ (T ) (3.39)
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where CX (τ ) is the covariance function of X (t) and ρX (τ ) is
the correlation function of X (t) such that CX (τ ) = σ 2

X ρX (τ ).
In the final expression, γ (T ) is the so-called variance
function, which gives the amount that the variance is
reduced when X (t) is averaged over the length T . The
variance function has value 1.0 when T = 0, which is to
say that XT (t) = X (t) when T = 0, and so the variance is
not at all reduced. As T increases, the variance function
decreases toward zero. It has the mathematical definition

γ (T ) = 1

T 2

∫ T

0

∫ T

0
ρX (ξ − η) dξ dη (3.40)

The variance function can be seen, in Eq. 3.40, to be
an average of the correlation coefficient between every pair
of points on the interval [0, T ]. If the correlation function
falls off rapidly, so that the correlation between pairs of
points becomes rapidly smaller with separation distance,
then γ (T ) will be small. On the other hand, if all points on
the interval [0, T ] are perfectly correlated, having ρ(τ ) = 1
for all τ , then γ (T ) will be 1.0. Such a field displays no
variance reduction under local averaging. [In fact, if the
field is stationary, all points will have the same random
value, X (t) = X .]

The integral in Eq. 3.40 is over the square region [0, T ] ×
[0, T ] in (ξ , η) space. Considering Figure 3.7, one sees that
ρX (ξ − η) is constant along diagonal lines where ξ − η =
const. The length of the main diagonal, where ξ = η, is√

2T , and the other diagonal lines decrease linearly in
length to zero in the corners. The double integral can be
collapsed to a single integral by integrating in a direction

   2
 (T
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Figure 3.7 Reduction of two-dimensional integral of ρ(ξ − η)
to a one-dimensional integral.

perpendicular to the diagonals; each diagonal differential
area has length

√
2(T − |τ |), width dτ/

√
2, and height

equal to ρX (ξ − η) = ρX (τ ). The integral can therefore be
written as

γ (T ) = 1

T 2

∫ T

0

∫ T

0
ρX (ξ − η) dξ dη

= 1

T 2

[∫ 0

−T

√
2(T − |τ1|)ρX (τ1)

dτ1√
2

+
∫ T

0

√
2(T − |τ2|)ρX (τ2)

dτ2√
2

]

= 1

T 2

∫ T

−T
(T − |τ |)ρX (τ ) dτ (3.41)

Furthermore, since ρX (τ ) = ρX (−τ ), the integrand is
even, which results in the additional simplification

γ (T ) = 2

T 2

∫ T

0
(T − τ )ρX (τ ) dτ (3.42)

Figure 3.8 shows two typical variance functions, the solid
line corresponding to an exponentially decaying correla-
tion function (the Markov model, see Section 3.6.5) and
the dashed line corresponding to the Gaussian correlation
function (Section 3.6.6). The variance function is another
equivalent second-moment description of a random field,
since it can be obtained through knowledge of the corre-
lation function, which in turn can be obtained from the
spectral density function. The inverse relationship between
γ (T ) and ρ(τ ) is obtained by differentiation:

ρ(τ ) = 1

2

d2

dτ 2
[τ 2γ (τ )] (3.43)

0 1 2 3 4 5 6 7 8 9 10

T/q

0
0.

2
0.

4
0.

6
0.

8
1

g
 (

T
)

r (t) = exp{−2 | t | / q}

r (t) = exp{ −p t2 / q2}

Figure 3.8 Typical variance function (θ = 0.4).
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The variance function can also be obtained from the spectral
density function (Vanmarcke, 1984):

γ (T ) =
∫ ∞

0

G(ω)

σ 2
X

[
sin(ωT/2)

ωT/2

]2

dω (3.44)

Example 3.3 In Figure 3.6, a process having the Markov
covariance function

C (τ ) = σ 2 exp

{
−2|τ |

θ

}

has been observed (upper plot). For this process, σ = 0.5
and the correlation length (to be discussed in the next
section) is θ = 0.3. The process X (t) is averaged over the
length T = 0.93 at each t , that is,

XT (t) = 1

T

∫ t+T/2

t−T/2
X (ξ ) dξ

and this is shown in the lower plot of Figure 3.6. What is
the standard deviation of XT (t)?

SOLUTION Let σT be the standard deviation of XT (t).
We know that

σ 2
T = σ 2γ (T ) =⇒ σT = σ

√
γ (T )

where

γ (T ) = 2

T 2

∫ T

0
(T − τ )ρX (τ ) dτ

= 2

T 2

∫ T

0
(T − τ ) exp

{
−2|τ |

θ

}
dτ

= θ2

2T 2

[
2|T |
θ

+ exp

{
−2|T |

θ

}
− 1

]

So, for T = 0.93 and θ = 0.3, we get

γ (0.93) = 0.2707

The standard deviation of XT (t) is therefore

σT = 0.5
√

0.2707 = 0.26

The averaging in this case approximately halves the stan-
dard deviation of the original field.

3.5 CORRELATION LENGTH

A convenient measure of the variability of a random field
is the correlation length θ , also sometimes referred to as
the scale of fluctuation. Loosely speaking θ is the distance
within which points are significantly correlated (i.e., by
more than about 10%). Conversely, two points separated
by a distance more than θ will be largely uncorrelated.

Mathematically, θ is defined here as the area under the
correlation function (Vanmarcke, 1984),

θ =
∫ ∞

−∞
ρ(τ ) dτ = 2

∫ ∞

0
ρ(τ ) dτ (3.45)

The correlation length is sometimes defined without the
factor of 2 shown on the right-hand side of Eq. 3.45 (see,
e.g., Journel and Huijbregts, 1978)

Equation 3.45 implies that if θ is to be finite then ρ(τ )
must decrease sufficiently quickly to zero as τ increases.
Not all correlation functions will satisfy this criterion,
and for such random processes, θ = ∞. An example of a
process with infinite correlation length is a fractal process
(see Section 3.6.7).

In addition, the correlation length is really only mean-
ingful for strictly nonnegative correlation functions. Since
−1 ≤ ρ ≤ 1, one could conceivably have an oscillatory cor-
relation function whose integrated area is zero but which
has significant correlations (positive or negative) over sig-
nificant distances. An example of such a correlation func-
tion might be that governing wave heights in a body of
water.

The correlation length can also be defined in terms of the
spectral density function,

G(ω) = 2σ 2

π

∫ ∞

0
ρ(τ ) cos(ωτ ) dτ (3.46)

since, when ω = 0,

G(0) = 2σ 2

π

∫ ∞

0
ρ(τ ) dτ = σ 2

π
θ (3.47)

which means that

θ = πG(0)

σ 2
(3.48)

What this means is that if the spectral density function is
finite at the origin, then θ will also be finite. In practice
G(0) is quite difficult to estimate, since it requires data
over an infinite distance (ω = 0 corresponds to an infinite
wavelength). Thus, Eq. 3.48 is of limited value in estimating
the correlation length from real data. This is our first hint
that θ is fundamentally difficult to estimate and we will
explore this further in Chapter 5.

The correlation length can also be defined in terms of the
variance function as a limit (Vanmarcke, 1984):

θ = lim
T→∞

Tγ (T ) (3.49)

This implies that if the correlation length is finite, then the
variance function has the following limiting form as the
averaging region grows very large:

lim
T→∞

γ (T ) = θ

T
(3.50)
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Figure 3.9 Variance function corresponding to three different
correlation models.

which in turn means that θ/T can be used as an approxima-
tion for γ (T ) when T >> θ . A more extensive approxima-
tion for γ (T ), useful when the precise correlation structure
of a random field is unknown but for which θ is known (or
estimated), is

γ (T ) 
 θ

θ + |T | (3.51)

which has the correct limiting form for T >> θ and which
has value 1.0 when T = 0, as expected. The correlation
function corresponding to Eq. 3.51 is

ρ(τ ) = θ3

(θ + τ )3
(3.52)

which is illustrated in Figure 3.9.
Some comments about what effect the correlation length

has on a random field are in order. When the correlation
length is small, the field tends to be somewhat “rough.”
In the limit, when θ → 0, all points in the field become
uncorrelated and the field becomes infinitely rough, which

is physically unrealizable. Such a field is called white
noise (see Section 3.6.1). Conversely, when the correlation
length becomes large, the field becomes smoother. In cer-
tain cases, such as under the Markov correlation function
(see Section 3.6.5), the random field becomes completely
uniform when θ → ∞—different from realization to real-
ization but each realization is composed of a single random
value. Traditional soil variability models, where the entire
soil mass is represented by a single random variable, are
essentially assuming θ = ∞.

Figure 3.10 shows two random-field realizations. The
field on the left has a small correlation length (θ = 0.04)
and can be seen to be quite rough. The field on the right
has a large correlation length (θ = 2) and can be seen to
be more slowly varying.

3.6 SOME COMMON MODELS

3.6.1 Ideal White Noise

The simplest type of random field is one in which X (t) is
composed of an infinite sequence of iid random variables,
one for each t . That is, X1 = X (t1), X2 = X (t2), . . . , each
have marginal distribution fX (x ), and, since they are inde-
pendent, their joint distribution is just the product of their
marginal distributions,

fX 1X 2...(x1, x2, . . .) = fX (x1)fX (x2) · · ·
The covariance between any two points, X (t1) and X (t2), is

C (t1, t2) = C (|t1 − t2|) = C (τ ) =
{

σ 2 if τ = 0
0 if τ �= 0

In practice, the simulation of white noise processes pro-
ceeds using the above results; that is, simply simulate a
sequence of iid random variables. However, the above also
implies that two points arbitrarily close to one another will
have independent values, which is not very realistic—the
field would be infinitely rough at the microscale.

The nature of ideal white noise for continuous t can
be illustrated by considering two equispaced sequences of
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Figure 3.10 Sample realizations of X (t ) for two different correlation lengths.
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observations of averages of an ideal white noise process.
The first sequence, X (0), X (�t), X (2�t), . . . , is taken by
averaging the white noise process over adjacent intervals
of width �t . Now, suppose that n successive values of the
series X (t) are averaged to produce another sequence Xa (t).
That is Xa (0) is an average of X (0), X (�t), . . . , X ((n −
1)�t), and Xa (�ta ) is an average of X (n�t), X ((n + 1)�t),
. . . , X ((2n − 1)�t), and so on,

Xa (0) = 1

n

n−1∑

i=0

X (i�t)

Xa (�ta ) = 1

n

2n−1∑

i=n

X (i�t)

...

where �ta = n�t . Because averaging preserves the mean,
the mean of both sequences is identical. However, if σ 2 is
the variance of the sequence X (t) and σ 2

a is the variance of
the sequence Xa (t), then classical statistics tells us that the
average of n independent observations will have variance

σ 2
a = σ 2

n
(3.53)

Noting that n = �ta/�t , Eq. 3.53 can be reexpressed as

σ 2
a �ta = σ 2�t = πGo (3.54)

That is, the product σ 2�t is a constant which we will set
equal to πGo , where Go is the white noise intensity. The
factor of π arises here so that we can let the white noise
spectral density function G(ω) equal Go , as we shall see
shortly. Equation 3.54 can also be rearranged to give the
variance of local averages of white noise in terms of the
white noise intensity,

σ 2 = πGo

�t
(3.55)

For ideal white noise, �t goes to zero so that σ 2 goes to
infinity. Another way of understanding why the variance
of white noise must be infinite is to reconsider Eq. 3.53.
For the continuous white noise case, any interval �t will
consist of an infinite number of independent random vari-
ables (n = ∞). Thus, if the white noise variance σ 2 were
finite, then σ 2

a = σ 2/n would be zero for any nonzero av-
eraging region. That is, a white noise having finite variance
would appear, at all practical averaging resolutions, to be a
deterministic constant equal to the mean.

As the name suggests, white noise has spectral density
function which is constant, implying equal power in all
frequencies (and hence the analogy with “white” light), as

w

G(w)

Go

s2 = ∞

Figure 3.11 One-sided spectral density function for white noise.

shown in Figure 3.11,

G(ω) = Go (3.56)

The primary, and attractive, feature of a white noise random
process is that all points in the field are uncorrelated,

ρ(τ ) =
{

1 if τ = 0
0 otherwise

(3.57)

If the random field is also Gaussian, then all points are also
independent, which makes probability calculations easier.
White noise is often used as input to systems to simplify the
computation of probabilities relating to the system response.

The covariance function corresponding to white noise is

C (τ ) = πGoδ(τ ) (3.58)

where δ(τ ) is Dirac delta function, which is zero every-
where except at τ = 0, where it assumes infinite height,
zero width, but unit area. The Dirac delta function has the
following useful property in integrals:

∫ ∞

−∞
f (x )δ(x − a) dx = f (a)

That is, the delta function acts to extract a single value of
the integrand at the point where the delta function argument
becomes zero. We can use this property to test if Eq. 3.58
is in fact the covariance function corresponding to white
noise, since we know that white noise should have constant
spectrum, Eq. 3.56. Considering Eq. 3.25b,

G(ω) = 1

π

∫ ∞

−∞
C (τ ) cos(ωτ ) dτ

= πGo

π

∫ ∞

−∞
δ(τ ) cos(ωτ ) dτ

= Go cos(0)

= Go

as expected. This test also illustrates why the constant π

appears in Eq. 3.58. We could not directly use the one-
sided Eq. 3.25c in the above test, since the doubling of
the area from Eq. 3.25b assumes only a vanishingly small
contribution from C (τ ) at τ = 0, which is not the case for
white noise. To double the contribution of C (τ ) at τ = 0
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Figure 3.12 One-sided spectral density function and corresponding covariance function of band-limited white noise.

would be an error (which is one example of why white
noise can be mathematically difficult).

The troublesome thing about white noise is that the area
under the spectral density function is infinite,

σ 2 =
∫ ∞

0
G(ω) dω =

∫ ∞

0
Go dω = ∞

so that the process has infinite variance. Ideal white noise
is “infinitely rough,” which is physically unrealizable. For
problems where a continuous white noise process must
actually be simulated, it is usually a band-limited form of
the white noise that is actually employed. The band-limited
white noise has a flat spectral density function which is
truncated at some upper frequency, ω1,

G(ω) =
{

Go for 0 ≤ ω ≤ ω1

0 otherwise
(3.59)

where Go is some intensity constant. In this case, the
variance of the process is finite and equal to Goω1. The
covariance and correlation functions corresponding to band-
limited white noise are

C (τ ) = Go
sin ω1τ

τ
(3.60a)

ρ(τ ) = sin ω1τ

ω1τ
(3.60b)

Figure 3.12 illustrates the fact that, as ω1 → ∞, C (τ ) ap-
proaches the infinite-height Dirac delta function of Eq. 3.58.

The variance function can be obtained by integrating the
correlation function, Eq. 3.60b (see also Eq. 3.42),

γ (T ) = 2

ω2
1T 2

[
ω1T Si(ω1T ) + cos(ω1T ) − 1

]
(3.61)

where Si is the sine integral, defined by

Si(ω1T ) =
∫ ω1T

0

sin t

t
dt

See Abramowitz and Stegun (1970) for more details. For
large ω1T ,

γ (T ) → π

ω1T
+ 2 cos(ω1T )

ω2
1T 2

since limω1T→∞ Si(ω1T ) → π/2.
The correlation length of band-limited white noise may

be obtained by using Eq. 3.48. Since G(0) = Go and σ 2 =
Goω1, we get

θ = πG(0)

σ 2
= πGo

Goω1
= π

ω1

3.6.2 Triangular Correlation Function

One of the simplest correlation functions is triangular, as
illustrated in Figure 3.13,

ρ(τ ) =
{

1 − |τ |/θ if |τ | ≤ θ

0 if |τ | > θ
(3.62)

where θ is the correlation length.
One common process having a triangular correlation

function is the moving average of white noise. Suppose
that W (t) is an ideal white noise process with intensity Go

(see the previous section) and we define

X (t) = 1

θ

∫ t+θ/2

t−θ/2
W (ξ ) dξ (3.63)

to be a moving average of the white noise. Then X (t) will
be stationary with variance (we can take µX = µW = 0 and
t = θ/2 in the following for simplicity)
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σ 2
X = E

[
X 2] = E

[
1

θ2

∫ θ

0

∫ θ

0
W (s)W (t) ds dt

]

= 1

θ2

∫ θ

0

∫ θ

0
E [W (s)W (t)] ds dt

= 1

θ2

∫ θ

0

∫ θ

0
πGoδ(t − s) ds dt

= πGo

θ2

∫ θ

0
1 dt

= πGo

θ
(3.64)

Alternatively, if σ 2
X is known, we can use this to compute

the required white noise intensity, Go = θσ 2
X /π .

The covariance function of X (t) is

CX (τ ) =
{

σ 2
X (1 − |τ |/θ ) if |τ | ≤ θ

0 if |τ | > θ
(3.65)

The spectral density function of X (t) is the spectral density
of an average of white noise and so reflects the transfer
function of a low-pass filter,

GX (ω) = Go

[
sin(ωθ/2)

ωθ/2

]2

, ω ≥ 0 (3.66)

where the filter transfer function amplitude is

|H (ω)| = sin(ωθ/2)

ωθ/2

Finally, the variance function of X (t) is

γ (T ) =






1 − T

3θ
if T ≤ θ

θ

T

[
1 − θ

3T

]
if T > θ

(3.67)

3.6.3 Polynomial Decaying Correlation Function

A simple correlation function which may be useful if little is
known about the characteristics of a random field’s spatial
variability is

ρ(τ ) = θ3

(θ + τ )3
(3.68)

which has the variance function

γ (T ) = θ

θ + T
(3.69)

This variance function has the correct theoretical limiting
values, namely γ (0) = 1 and limT→∞ γ (T ) = θ/T .

The correlation function of Eq. 3.68 is compared to two
other correlation functions in Figure 3.9.

3.6.4 Autoregressive Processes

A class of popular one-dimensional random fields are the
autoregressive processes. These are simple to simulate and,
because they derive from linear differential equations ex-
cited by white noise, represent a wide variety of engineering
problems. Consider a first-order linear differential equation
of the form discussed in Example 3.2,

c
dX (t)

dt
+ αX (t) = W (t) (3.70)

where c and α are constants and W (t) is an ideal white
noise input with mean zero and intensity Go . In physics,
the steady-state solution, X (t), to this equation is called the
Ornstein–Uhlenbeck process, which is a classical Brownian
motion problem.

The numerical finite-difference approximation to the
derivative in Eq. 3.70 is

dX (t)

dt

 X (t + �t) − X (t)

�t
(3.71)
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Figure 3.13 Triangular correlation function for θ = 1.0, corresponding spectral density function
G(ω) for Go = 1, and variance function γ (T ).
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If we let �t = 1, then dX (t)/dt 
 X (t + 1) − X (t) and
Eq. 3.70 can be approximated by the finite-difference
equation

c[X (t + 1) − X (t)] + αX (t) = Wb(t) (3.72)

where, since X (t) is now a discrete process, Wb(t) is a
band-limited white noise process having constant intensity
Go up to the Nyquist frequency, π/�t ,

GW b (ω) =
{

Go if 0 ≤ ω ≤ π/�t
0 otherwise

(3.73)

Equation 3.72 can now be rearranged to allow the compu-
tation of the future, X (t + 1), given the present, X (t), and
the band-limited white noise input, Wb(t),

X (t + 1) = (c − α)X (t) + Wb(t)

c

=
(

c − α

c

)
X (t) +

(
1

c

)
Wb(t) (3.74)

This is a first-order autoregressive process in which the
future, X (t + 1), is expressed as a linear regression on the
present, X (t), with Wb(t) playing the role of the regression
error. We can simulate a first-order autoregressive process
in one dimension using Eq. 3.74. We need only assume an
initial value, X (0), which can be taken to be the process
mean. Subsequent values of X are obtained by generating
a series of realizations of the random white noise, Wb(0),
Wb (1), . . . , and then repeatedly applying Eq. 3.74,

X (1) =
(

1 − α

c

)
X (0) +

(
1

c

)
Wb(0)

X (2) =
(

1 − α

c

)
X (1) +

(
1

c

)
Wb(1)

...

As indicated in Example 3.2, the transfer function corre-
sponding to the continuous X (t), Eq. 3.70, is

H (ω) = 1

icω + α
(3.75)

so that the spectral density function corresponding to the
solution of Eq. 3.70 is

GX (ω) = |H (ω)|2GW (ω) = Go

c2ω2 + α2
(3.76)

The covariance function of the continuous X (t) can be
obtained by using Eq. 3.25a, giving

CX (τ ) = σ 2
X e−α|τ |/c (3.77)

where the variance σ 2
X is the area under GX (w),

σ 2
X =

∫ ∞

0

Go

c2ω2 + α2
dω = πGo

2αc
(3.78)

Note that Eq. 3.77 is a Markov correlation function, which
will be covered in more detail in the next section.

Although Eq. 3.72, via Eq. 3.74, is popular as a means
of simulating the response of a linear differential equation
to white noise input, it is nevertheless only an approxi-
mation to its defining differential equation, Eq. 3.70. The
approximation can be improved by taking �t to be smaller;
however, �t = 1 is commonly used and so will be used
here. Figures 3.14 and 3.15 compare the spectral density
functions and covariance functions of the exact differential
equation (Eq. 3.70) and its finite difference approximation
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Figure 3.14 Comparison of spectral density functions of exact
differential equation, Eq. 3.70, and its finite-difference approxi-
mation, Eq. 3.72, for c = 2, α = 0.8, Go = 1, and �t = 1.
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Figure 3.15 Comparison of covariance functions of exact differ-
ential equation, Eq. 3.70, and its finite-difference approximation,
Eq. 3.72, for c = 2, α = 0.8, Go = 1, and �t = 1.
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(Eq. 3.72). As we shall see next, the mean and covariance
structure of the discrete process (Eq. 3.74) can be found,
so that the coefficients c and α can always be adjusted to
get the desired discrete behavior.

It is informative to compare the second-moment charac-
teristics of the differential equation and its finite-difference
approximation. So long as E [W (t)] = E [Wb(t)] = 0, the
mean (first moment) of both the differential equation re-
sponse and the finite difference response is zero.

The actual spectral density function of Eq. 3.72 can be
obtained in a number of ways, but one approach is to
first obtain its transfer function. Letting Wb(t) = eiωt and
the steady-state response X (t) = H (ω)Wb (t) = H (ω)eiωt ,
Eq. 3.72 becomes

c
[
H (ω)eiω(t+1) − H (ω)eiωt

]
+ αH (ω)eiωt = eiωt

which we can solve for H (ω),

H (ω) = 1

α + c(eiω − 1)
= 1

−(c − α) + ceiω
(3.79)

The squared magnitude of H (ω) is

|H (ω)|2 = 1

(c − α)2 − 2c(c − α) cos ω + c2
(3.80)

The spectral density function of Eq. 3.72 is therefore (for
�t = 1)

GX (ω) = |H (ω)|2GW b (ω)

= Go

(α − c)2 + 2c(α − c) cos ω + c2
,

0 ≤ ω ≤ π (3.81)

Note that these results assume that a steady state exists for
the response, X (t). The system will reach a steady state if
α < c and we will assume this to be the case.

The variance of the approximate discrete process,
Eq. 3.72, is

σ 2
X =

∫ π

0

Go

(α − c)2 + 2c(α − c) cos ω + c2
dω

= πGo

2αc − α2
(3.82)

Note that the integral has been truncated at ωN = π/�t =
π because Eq. 3.72 is a discrete process with �t = 1. The
covariance function and correlation functions are

C (τ ) = πGo

2αc − α2

(
c − α

c

)|τ |
(3.83)

ρ(τ ) =
(

c − α

c

)|τ |
(3.84)

for |τ | = 0, 1, . . . and α < c.

Autoregressive models can be extended to higher order
processes. Consider, for example, the second-order differ-
ential equation

d2X (t)

dt2
+ α

dX (t)

dt
+ βX (t) = W (t) (3.85)

The spectral density function of X (t) can be found by
setting

W (t) = eiωt

X (t) = H (ω)eiωt

Ẋ (t) = H (ω)iωeiωt

Ẍ (t) = −H (ω)ω2eiωt

where the overdots indicate differentiation with respect to
time. Substituting these into Eq. 3.85 gives

H (ω)eiωt [−ω2 + iαω + β] = eiωt

which yields

H (ω) = 1

(β − ω2) + iαω
(3.86)

The spectral density function corresponding to Eq. 3.85 is
thus

GX (ω) = |H (ω)|2GW (ω) = Go

(β − ω2)2 + α2ω2
(3.87)

Making use of the following numerical approximations
to the derivatives,

d2X (t)

dt2

 X (t + �t) − 2X (t) + X (t − �t)

�t2

dX (t)

dt

 X (t + �t) − X (t − �t)

2�t

where we used the more accurate central difference ap-
proximation for the first derivative, allows Eq. 3.85 to be
approximated (and simulated) as the regression

X (t + 1) = a1X (t) + a2X (t − 1) + ε(t)

where

a1 = 2 − β

1 + α/2

a2 = −1 − α/2

1 + α/2

ε(t) = Wb(t)

1 + α/2

The latter means that ε(t) is a band-limited white noise
process, from ω = 0 to ω = π , having intensity Go/(1 +
α/2)2.
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Because higher dimensions do not have a well-defined
“direction” (e.g., future), the autoregressive processes are
not commonly used in two and higher dimensions.

3.6.5 Markov Correlation Function

The Markov correlation function is very commonly used
because of its simplicity. Part of its simplicity is due to the
fact that it renders a process where the “future” is depen-
dent only on the “present” and not on the past. Engineering
models which depend on the entire past history are rela-
tively rare, but creep strains in concrete and masonry are
one example. Most engineering models, however, allow the
future to be predicted given only knowledge of the present
state, and so the Markov property is quite applicable to
such models. In terms of probabilities, the Markov prop-
erty states that the conditional probability of the future state
depends only on the current state (see Chapter 2), that is,

P
[
X (tn+1) ≤ x | X (tn ), X (tn−1), X (tn−2, . . .

]

= P
[
X (tn+1) ≤ x | X (tn )

]

which generally leads to simplified probabilistic models.
More generally, the Markov property states that the future
depends only on the most recently known state. So, for
example, if we want to know a conditional probability relat-
ing to X (tn+1) and we only know X (tn−3), X (tn−4), . . . , then

P
[
X (tn+1) ≤ x | X (tn−3), X (tn−4), . . .

]

= P
[
X (tn+1) ≤ x | X (tn−3)

]

The Markov correlation function has the form

ρ(τ ) = exp

{
−2|τ |

θ

}
(3.88)

where θ is the correlation length. This correlation func-
tion governs the solution to the first-order differential

equation 3.70, the Ornstein–Uhlenbeck process. The param-
eter θ can be interpreted as the separation distance beyond
which the random field is largely uncorrelated. For example,
Eq. 3.88 says that when two points in the field are separated
by τ = θ , their correlation has dropped to e−2 = 0.13.

The Markov process has variance function

γ (T ) = θ2

2T 2

[
2|T |
θ

+ exp

{
−2|T |

θ

}
− 1

]
(3.89)

and “one-sided” spectral density function

G(ω) = σ 2θ

π
[
1 + (θω/2)2] (3.90)

which are illustrated in Figure 3.16. Although simple, the
Markov correlation function is not mean square differen-
tiable, which means that its derivative is discontinuous and
infinitely variable, a matter which is discussed in more de-
tail in Chapter 4. The lack of a finite variance derivative
tends to complicate some things, such as the computation
of level excursion statistics.

3.6.6 Gaussian Correlation Function

If a random process X (t) has a Gaussian correlation func-
tion, then its correlation function has the form

ρ(τ ) = exp

{
−π

(τ

θ

)2
}

(3.91)

where θ is the correlation length. The corresponding vari-
ance function is

γ (T ) = θ2

πT 2

[
π |T |

θ
erf

{√
π |T |
θ

}
+ exp

{
−πT 2

θ2

}
− 1

]

(3.92)

where erf(x ) = 2
(
√

2x ) − 1 is the error function and 
(z )
is the standard normal cumulative distribution function. The
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Figure 3.16 Markov correlation function for θ = 1.0, corresponding spectral density function
G(ω) for σX = 1, and variance function γ (T ).
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Figure 3.17 Gaussian correlation function for θ = 1.0, corresponding spectral density function
G(ω) for σX = 1, and variance function γ (T ).

spectral density function is exponentially decaying,

G(ω) = σ 2
X

(
θ

π

)
exp

{
−θ2ω2

4π

}
(3.93)

as illustrated in Figure 3.17.
One advantage, at least mathematically, to the Gaussian

correlation function is that it is mean square differentiable.
That is, its derivative has finite variance and so level
excursion statistics are more easily computed, as will be
seen in Chapter 4. Mean square differentiable processes
have correlation function with slope zero at the origin, and
we can see that for this process ρ(τ ) flattens out at the
origin. From the point of view of simulation, one potential
disadvantage to the Gaussian correlation function is that at
larger correlation lengths the correlation between nearby
points can become very close to 1 and so difficult to
deal with numerically. If any off-diagonal value becomes
1.0, the correlation matrix loses its positive definiteness.
A correlation matrix with all 1’s off diagonal becomes
singular. So, although the zero slope at τ = 0 leads to mean
square differentiable processes, it can also lead to numerical
difficulties in simulation for large correlation lengths.

3.6.7 Fractal Processes

A random-field model which has gained some acceptance
in a wide variety of applications is the fractal model,
also known as statistically self-similar, long memory, or
1/f noise. This model has an infinite correlation length
and correlations remain high over very large distances. An
example of such a process is shown in Figure 3.18.

Notice, in Figure 3.18, that the samples remain statisti-
cally similar, regardless of viewing resolution, under suit-
able scaling of the vertical axis. Such processes are often
described by the (one-sided) spectral density function

G(ω) = Go

ωγ
(3.94)

in which the parameter γ controls how the spectral power
is partitioned from the low to the high frequencies and Go

can be viewed as a spectral intensity (white noise intensity
when γ = 0). In particular, the case where 0 ≤ γ < 1
corresponds to infinite high-frequency power and results
in a stationary random process called fractional Gaussian
noise (Mandelbrot and van Ness, 1968), assuming a normal
marginal distribution. When γ > 1, the spectral density
falls off more rapidly at high frequencies, but grows more
rapidly at low frequencies so that the infinite power is
now in the low frequencies. This then corresponds to a
nonstationary random process called fractional Brownian
motion. Both cases are infinite-variance processes which
are physically unrealizable. Their spectral densities must
be truncated in some fashion to render them stationary with
finite variance.

Self-similarity for fractional Gaussian noise is expressed
by saying that the process X (z ) has the same distribution as
the scaled process a1−H X (az ) for some a > 0 and some H
lying between 0.5 and 1. Alternatively, self-similarity for
fractional Brownian motion means that X (z ) has the same
distribution as a−H X (az ), where the different exponent
on a is due to the fact that fractional Gaussian noise is
the derivative of fractional Brownian motion. Figure 3.18
shows a realization of fractional Gaussian noise with H =
0.95 produced using the local average subdivision method
(Fenton, 1990). The uppermost plot is of length n = 65,536.
Each plot in Figure 3.18 zooms in by a factor of a = 8,
so that each lower plot has its vertical axis stretched by
a factor of 80.05 = 1.11 to appear statistically similar to
the next higher plot. The reason the scale expands as we
zoom in is because less averaging is being performed. The
variance is increasing without bound.

Probably the best way to envisage the spectral density in-
terpretation of a random process is to think of the random
process as being composed of a number of sinusoids each
with random amplitude (power). The fractal model is saying
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Figure 3.18 Example of a fractal process (fractional Gaussian noise with H = 0.95) at three resolutions.

that these random processes are made up of high-amplitude
long-wavelength (low-frequency) sinusoids added to suc-
cessively less powerful short-wavelength sinusoids. The
long-wavelength components provide for what are seen as
trends when viewed over a finite interval. As one “zooms”
out and views progressively more of the random process,
even longer wavelength (scale) sinusoids become apparent.
Conversely, as one zooms in, the short-wavelength com-
ponents dominate the (local) picture. This is the nature of
self-similarity attributed to fractal processes—realizations
of the process look the same (statistically) at any viewing
scale.

By locally averaging the fractional Gaussian noise (0 <

γ < 1) process over some distance δ, Mandelbrot and van

Ness (1968) render fractional Gaussian noise (fGn) physi-
cally realizable (i.e., having finite variance). The resulting
correlation function is

ρ(τ ) = 1

2δ2H

[
|τ + δ|2H − 2|τ |2H + |τ − δ|2H

]
(3.95)

where H = 1
2 (γ + 1) is called the Hurst or self-similarity

coefficient with 1
2 ≤ H < 1. The case H = 1

2 gives white
noise, while H = 1 corresponds to perfect correlation [all
X (z ) = X in the stationary case]. The spectral density func-
tion corresponding to fractional Gaussian noise is approxi-
mately (Mandelbrot and van Ness, 1968)

G(ω) = Go

ω2H −1
(3.96)



RANDOM FIELDS IN HIGHER DIMENSIONS 113

where

Go = σ 2
X H (2H − 1)(2πδ)2−2H

�(2 − 2H ) cos [π (1 − H )]
(3.97)

which is valid for small δω and where �(x ) is the gamma
function tabulated in, for example, Abramowitz and Stegun
(1970). If we know the spectral density function, Eq. 3.97
can be inverted to determine the process variance

σ 2
X = Go�(2 − 2H ) cos [π (1 − H )]

H (2H − 1)(2πδ)2−2H

which goes to infinity as the local averaging distance δ goes
to zero, as expected for a fractal process. Local averaging
is effectively a low-pass filter, damping out high-frequency
contributions, so that Mandelbrot’s approach essentially
truncates the spectral density function at the high end. Both
the tail behavior of the spectral density function and the
variance of the process thus depends on the choice of δ,
which makes it a quite important parameter even though it
is largely ignored in the literature (it is generally taken to
equal 1 arbitrarily). Because of the local averaging, Eq. 3.94
can only be considered approximate for fractional Gaussian
noise, the accuracy improving as δ → 0.

The variance function corresponding to fractional
Gaussian noise is given by

γ (T ) = |T + δ|2H +2 − 2|T |2H +2 + |T − δ|2H +2 − 2δ2H +2

T 2(2H + 1)(2H + 2)δ2H

(3.98)
Because the fractional Gaussian noise has, for δ → 0,

an infinite variance, its use in practice is limited (any
desired variance can be obtained simply by modifying δ).
The nature of the process is critically dependent on H
and δ, and these parameters are quite difficult to estimate
from real data (for δ we need to know the behavior at the
microscale while for H we need to know the behavior at
the macroscale).

Notice in Figure 3.19 that the correlation function re-
mains very high (and, hence, so does the variance function

since highly correlated random variables do not provide
much variance reduction when averaged). This is one of the
main features of fractal processes and one of the reasons
they are also called long-memory processes.

3.7 RANDOM FIELDS IN HIGHER DIMENSIONS

Figure 3.20 illustrates a two-dimensional random field
X (t1, t2) where X varies randomly in two directions, rather
than just along a line. The elevation of a soil’s surface and
the thickness of a soil layer at any point on the plan area of
a site are examples of two-dimensional random fields. The
cohesion of the soil at plan location (t1, t2) and depth t3 is
an example of a three-dimensional random field X (t1, t2, t3).
The coordinate labels t1, t2, and t3 are often replaced by the
more common Cartesian coordinates x , y , and z . We shall
keep the current notation to remain consistent with that
developed in the one-dimensional case.

In this section, we will concentrate predominately on
two-dimensional random fields, the three-dimensional case
generally just involving adding another coordinate. As in
the one-dimensional case, a random field is characterized
by the following:

1. Its first moment, or mean, µ(t1, t2), which may vary
in space. If the random field is stationary, then the
mean does not change with position; µ(t1, t2) = µ.

2. Its second moment, or covariance structure, C (t ′
1, t∗

1 ,
t ′
2, t∗

2 ), which gives the covariance between two points
in the field, X (t ′

1, t ′
2) and X (t∗

1 , t∗
2 ). If the field is

stationary, then the covariance structure remains the
same regardless of where the axis origin is located,
that is, the covariance function becomes a function
of just the difference, ( t′ − t∗), that is, C (t ′

1 − t∗
1 ,

t ′
2 − t∗

2 ).
3. Its higher order moments. If the field is Gaussian, it

is completely characterized by its first two moments.
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Figure 3.19 Correlation function, approximate spectral density function, and variance function
for fractional Gaussian noise (with H = 0.95, δ = 0.1).
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Figure 3.20 Realization of two-dimensional random field.

We will restrict our attention to just the first two moments of
a random field. For simplicity, we will mostly concentrate
on stationary random fields since any random field X ′ can
be converted to a random field which is stationary in its
mean and variance, X (with zero mean and unit variance),
through the transformation

X (t) = X ′( t) − µ′( t)
σ ′( t)

(3.99)

where t is a vector denoting spatial position (in two di-
mensions, t has components t1 and t2) and µ′( t) and σ ′( t)
are the mean and standard deviation of X ′ at the spatial
location t.

In the following sections we investigate various ways
that the second-moment characteristics of a random field
can be expressed.

3.7.1 Covariance Function in Higher Dimensions

The covariance function gives the covariance between two
points in the field, X ′ = X ( t′) and X ∗ = X ( t∗). Since the
covariance between X ′ and X ∗ is the same as the covari-
ance between X ∗ and X ′ (i.e., it does not matter which way
you look at the pair), then C (t ′

1, t∗
1 , t ′

2, t∗
2 ) = C (t ′

2, t∗
2 , t ′

1, t∗
1 ).

If the random field is stationary, this translates into the
requirement that C (τ ) = C (−τ ), where τ = t′ − t∗ is the
spatial lag vector having components τ1 = t ′

1 − t∗
1 , τ2 =

t ′
2 − t∗

2 . For example, for a two-dimensional stationary ran-
dom field C (t ′

1 − t∗
1 , t ′

2 − t∗
2 ) = C (t∗

1 − t ′
1, t∗

2 − t ′
2), or

C (τ1, τ2) = C (−τ1, −τ2).
In two dimensions, the correlation function is defined as

ρ(τ1, τ2) = Cov
[
X ′, X ∗]

σ ′σ ∗ = C (τ1, τ2)

σ ′σ ∗ (3.100)
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Figure 3.21 Two-dimensional correlation function ρ(τ1, τ2)
given by Eq. 3.102 for θ1 = θ2 = 1.

where σ ′ and σ ∗ are the standard deviations of X ′ = X (t′)
and X ∗ = X (t∗), respectively. Since we are assuming the
random field is stationary, then σ ′ = σ ∗ = σ , and the
correlation function becomes

ρ(τ1, τ2) = C (τ1, τ2)

σ 2
(3.101)

Figure 3.21 illustrates the two-dimensional correlation
function

ρ(τ1, τ2) = exp

{
−2

θ
(|τ1| + |τ2|)

}

= exp

{
−2|τ1|

θ1

}
exp

{
−2|τ2|

θ2

}
(3.102)

which is Markovian in each coordinate direction. Note that
even if the directional correlation lengths θ1 and θ2 are
equal, this function is not isotropic, as seen Figure 3.21.

3.7.2 Spectral Density Function in Higher Dimensions

In two dimensions, the spectral representation of a station-
ary random field, X (t1, t2), is the double sum

X (t1, t2) = µX +
N1∑

i=−N1

N2∑

j=−N2

Cij cos(ω1i t1 + ω2j t2 + 
ij )

(3.103)
where, as in the one-dimensional case, Cij is a random
amplitude and 
ij a random phase angle. The variance of
X (t1, t2) is obtained by assuming the random variables Cij

and 
ij are all mutually independent,

σ 2
X = E

[
(X (t1, t2) − µX )2] =

N1∑

i=−N1

N2∑

j=−N2

1

2
E
[
C 2

ij

]

(3.104)
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We define the two-dimensional spectral density function
S (ω1, ω2) such that

S (ω1i , ω2j ) �ω1 �ω2 = 1
2 E
[
C 2

ij

]
(3.105)

Figure 3.22 illustrates a two-dimensional spectral density
function. Note that if the correlation function is separable,
as is Eq. 3.102, then both the spectral density and the
variance functions will also be of separable form (although
in the case of the spectral density function the variance does
not appear more than once in the product). In the case of
Figure 3.22 the spectral density function is obtained directly
from Eq. 3.90 as

G(ω1, ω2) = σ 2θ1θ2

π2
[
1 + (θ1ω1/2)2] [1 + (θ2ω2/2)2]

= 4S (ω1, ω2) (3.106)

In the limit as both �ω1 and �ω2 go to zero, we can express
the variance of X as the volume under the spectral density
function,

σ 2
X =

∫ ∞

−∞

∫ ∞

−∞
S (ω1, ω2) dω1 dω2 (3.107)

In the two-dimensional case, the Wiener–Khinchine rela-
tionships become

C (τ1, τ2) =
∫ ∞

−∞

∫ ∞

−∞
S (ω1, ω2)

× cos(ω1τ1 + ω2τ2) dω1 dω2 (3.108a)

S (ω1, ω2) = 1

(2π )2

∫ ∞

−∞

∫ ∞

−∞
C (τ1, τ2)

× cos(ω1τ1 + ω2τ2) dτ1 dτ2 (3.108b)
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Figure 3.22 Two-dimensional spectral density function
S (ω1, ω2) corresponding to Eq. 3.102 for θ = 1 and σ = 1.

If we express the components of spatial lag and fre-
quency using vectors, τ = {τ1, τ2}T and ω = {ω1, ω2}T,
where superscript T denotes the transpose, then the Wiener–
Khinchine relationships can be written for n dimensions
succinctly as

C (τ ) =
∫ ∞

−∞
S (ω) cos(ω · τ ) dω (3.109a)

S (ω) = 1

(2π )n

∫ ∞

−∞
C (τ ) cos(ω · τ ) dτ (3.109b)

where it is understood that we have a double integral for
two dimensions, a triple integral for three dimensions, and
so forth. The centered dot denotes the vector dot product,
for example, ω · τ = ω1τ1 + ω2τ2.

3.7.3 Variance Function in Higher Dimensions

In two dimensions, we can define the moving local average
of a random field, X (t1, t2), over an area of dimension
A = T1 × T2 to be

XA(t1, t2) = 1

A

∫ t1+T1/2

t1−T 1/2

∫ t2+T2/2

t2−T2/2
X (ξ1, ξ2) dξ2 dξ1

(3.110)
Figure 3.23 illustrates a moving local average field for
T1 × T2 = 2 × 2. To determine the statistics of XA, we
will first assume that the random field X (t) is stationary,
so that we can choose to find the mean and variance of
XA = XA(T1/2, T2/2) as representative,

XA = 1

A

∫ T1

0

∫ T2

0
X (t1, t2) dt2 dt1 (3.111)

The mean of XA is

µX A = 1

A

∫ T1

0

∫ T2

0
E [X (t1, t2)] dt2 dt1 = µX

Assuming that the random field X (t1, t2) has “point” mean
µX = 0 and variance σX , then the variance of XA is

Var [XA] = σ 2
A = E

[
X 2

A

]

=2 1

A2

∫ T1

0

∫ T1

0

∫ T2

0

∫ T2

0
E [X (t1, t2)X (ξ1, ξ2)]

× dξ2 dt2 dξ1 dt1

= 1

A2

∫ T1

0

∫ T1

0

∫ T2

0

∫ T2

0
Cov [X (t1, t2), X (ξ1, ξ2)]

× dξ2 dt2 dξ1 dt1

= σ 2
X

A2

∫ T1

0

∫ T1

0

∫ T2

0

∫ T2

0
ρ(t1 − ξ1, t2 − ξ2)

× dξ2 dt2 dξ1 dt1
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Figure 3.23 The field XA on the right is a moving local average over a window of size T1 × T2 of the field X on the left.

The same result would have been obtained even if µX �= 0
(at the expense of somewhat more complicated algebra).

Making use of the fact that, for stationary random fields,
ρ is constant along diagonal lines where t1 − ξ1 and t2 − ξ2

are constant, we can reduce the fourfold integral to a double
integral (see Eq. 3.41 and Figure 3.7), so that

Var [XA] = σ 2
X

A2

∫ T1

−T1

∫ T2

−T2

(|T1| − |τ1|)(|T2| − |τ2|)

× ρ(τ1, τ2) dτ2 dτ1

= σ 2
X γ (T1, T2)

where, since A = T1T2, the variance function is defined by

γ (T1, T2) = 1

T 2
1 T 2

2

∫ T1

−T1

∫ T2

−T2

(|T1| − |τ1|)(|T2| − |τ2|)

× ρ(τ1, τ2) dτ2 dτ1 (3.112)

Some additional simplification is possible if ρ(τ1, τ2) =
ρ(−τ1, τ2) = ρ(τ1, −τ2) = ρ(−τ1, −τ2) (this is called quad-
rant symmetry, which will be discussed shortly), in which
case

γ (T1, T2) = 4

T 2
1 T 2

2

∫ T1

0

∫ T2

0
(|T1| − τ1)(|T2| − τ2)

× ρ(τ1, τ2) dτ2 dτ1 (3.113)

The variance function corresponding to the separable
Markov correlation function of Eq. 3.102 is shown in
Figure 3.24. Although γ (T1, T2) is perhaps questionably de-
fined when T1 or T2 is negative, we shall assume that an
averaging area of size −2 × 3 is the same as an averaging

−8
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T 1

−8

0

8

T
2

0
1

γ(
T

1,
 T

2)

Figure 3.24 Two-dimensional variance function γ (T1, T2) cor-
responding to Eq. 3.102 for θ = 1.
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area of size 2 × 3, the sign only arising because T1 is mea-
sured in opposite directions. By this assumption, γ (T1, T2)
is automatically quadrant symmetric, as will be discussed
next.

Figure 3.24 illustrates the separable two-dimensional
variance function corresponding to Eq. 3.102, which is

γ (T1, T2) = θ2
1 θ2

2

4T 2
1 T 2

2

[
2|T1|
θ1

+ exp

{
−2|T1|

θ1

}
− 1

]

×
[

2|T2|
θ2

+ exp

{
−2|T2|

θ2

}
− 1

]
(3.114)

3.7.4 Quadrant Symmetric Correlation Structure

Figure 3.25 shows three points in a two-dimensional plane.
If we say that X ∗ = X (0, 0), then, when X ′ = X (2, 4),
the covariance between X ∗ and X ′ is C (t ′

1 − t∗
1 , t ′

2 − t∗
2 ) =

C (2, 4). Alternatively, when X ′ = X (−2, 4), the covari-
ance between X ∗ and X ′ is C (−2, 4). If these two co-
variances are equal, then we say that the random field
is quadrant symmetric (Vanmarcke, 1984). Since also
C (τ ) = C (−τ ), quadrant symmetry implies that C (2, 4) =
C (−2, 4) = C (−2, −4) = C (2, −4). One of the simplifica-
tions that arises from this condition is that we only need
to know the covariances in the first quadrant (t1 ≥ 0 and
t2 ≥ 0) in order to know the entire covariance structure. A
quadrant-symmetric random process is also stationary, at
least up to the second moment.

If the covariance function C (τ ) is quadrant symmetric,
then its spectral density function S (ω) will also be quadrant
symmetric. In this case, we need only know the spectral
power over the first quadrant and can define

G(ω) = 2nS (ω), ω > 0 (3.115)

X(−2,4) X(2,4)

X(0,0)
t1

t2

C(2,4)C(−2,4)

Figure 3.25 Three points on a plane and their covariances.

where n is the number of dimensions. For example, if
n = 2, then G(ω) is defined as

G(ω1, ω2) = 4S (ω1, ω2) (3.116)

and the two-dimensional Wiener–Khinchine relationships,
defined in terms of the first quadrant only, become

C (τ1, τ2) =
∫ ∞

0

∫ ∞

0
G(ω1, ω2) cos ω1τ1

× cos ω2τ2 dω1 dω2 (3.117a)

G(ω1, ω2) =
(

2

π

)2 ∫ ∞

0

∫ ∞

0
C (τ1, τ2) cos ω1τ1

× cos ω2τ2 dτ1 dτ2 (3.117b)

and similarly in higher dimensions. We get Eq. 3.117b by
starting with Eq. 3.108b,

S (ω1, ω2)

= 1

(2π )2

∫ ∞

−∞

∫ ∞

−∞
C (τ1, τ2) cos(ω1τ1 + ω2τ2) dτ1 dτ2

= 1

(2π )2

∫ ∞

0

∫ ∞

0

{
C (τ1, τ2)�(τ1, τ2)

+ C (τ1, −τ2)�(τ1, −τ2) + C (−τ1, τ2)�(−τ1, −τ2)

+ C (−τ1, −τ2)�(−τ1, −τ2)
}

dτ1 dτ2

where we introduced and used the short form �(τ1, τ2) =
cos(ω1τ1 + ω2τ2). Since C is quadrant symmetric, so that
C (τ1, τ2) = C (τ1, −τ2) = C (−τ1, τ2) = C (−τ1, −τ2), then
the above simplifies to

S (ω1, ω2)

= 1

(2π )2

∫ ∞

0

∫ ∞

0
C (τ1, τ2)

{
�(τ1, τ2) + �(τ1, −τ2)

+ �(−τ1, −τ2) + �(−τ1, −τ2)
}

dτ1 dτ2

= 4

(2π )2

∫ ∞

0

∫ ∞

0
C (τ1, τ2) cos ω1τ1 cos ω2τ2dτ1dτ2

In the last step we used the trigonometric identities relating
to cosines of sums of angles to simplify the expression.
Writing G(ω1, ω2) = 22S (ω1, ω2) gives us Eq. 3.117b.

The n-dimensional quadrant-symmetric Wiener–Khin-
chine relationships are

C (τ ) =
∫ ∞

0
G(ω) cos ω1τ1 · · · cos ωnτn dτ

G(ω) =
(

2

π

)n ∫ ∞

0
C (τ ) cos ω1τ1 · · · cos ωnτn dω

Since the variance function γ (T1, T2) is a function of |T1|
and |T2|, it is automatically quadrant symmetric.
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3.7.5 Separable Correlation Structure

One of the simplest forms that the multidimensional corre-
lation function can take is as the product of the directional
one-dimensional correlation functions, that is,

ρ(t ′
1, t∗

1 , t ′
2, t∗

2 ) = ρ1(t ′
1, t∗

1 )ρ2(t ′
2, t∗

2 ) (3.118)

If the random field is also stationary, then only the dif-
ferences in position are important, so that the separable
correlation function becomes

ρ(t ′
1, t∗

1 , t ′
2, t∗

2 ) = ρ1(t ′
1 − t∗

1 )ρ2(t ′
2 − t∗

2 ) = ρ1(τ1)ρ2(τ2)
(3.119)

Because ρ(τ ) = ρ(−τ ), a separable correlation function is
also quadrant symmetric and thus also at least second-
moment stationary. That is, ρ(τ1, τ2) = ρ(−τ1, τ2) =
ρ(τ1, −τ2) = ρ(−τ1, −τ2). Figures 3.21, 3.22, and 3.24
are illustrations of a separable Markov process having
θ1 = θ2 = 1 and σ 2

X = 1. Clearly, the processes shown in
Figures 3.21, 3.22, and 3.24 are not isotropic, even though
their directional correlation lengths are equal. As we shall
see in the next section, it is only when ρ(τ1, τ2) can be writ-

ten as a function of
√

τ 2
1 + τ 2

2 that we can have an isotropic
correlation structure.

The covariance function corresponding to a separable
process is

C (τ1, τ2) = σ 2ρ1(τ1)ρ2(τ2) (3.120)

If the correlation structure is separable, then the spectral
density and variance functions will also be separable. The
variance function can be written as

γ (T1, T2) = γ1(T1)γ2(T2) (3.121)

The separable spectral density must be written in terms of
the product of the variance and unit-area (i.e., unit-variance)
density functions,

G(ω1, ω2) = σ 2g1(ω1)g2(ω2)

The unit-area spectral density functions g1(ω1) and g2(ω2)
are analogous to the normalized correlation functions ρ1(τ )
and ρ2(τ2). That is, g1(ω1) = G1(ω1)/σ 2 and g2(ω2) =
G2(ω2)/σ 2. They can also be defined by replacing C (τ )
with ρ(τ ) in the Wiener–Khinchine relationship,

g1(ω1) = 2

π

∫ ∞

0
ρ1(τ1) cos ω1τ1 dτ1 (3.122)

Example 3.4 If the covariance function of a two-dimen-
sional random field X (t1, t2) is given by

C (τ1, τ2) = σ 2
X exp

{
−2

( |τ1|
θ1

+ |τ2|
θ2

)}

then what are the corresponding spectral density and vari-
ance functions?

SOLUTION We note that C (τ1, τ2) can be written as

C (τ1, τ2) = σ 2
X exp

{
−2

|τ1|
θ1

}
exp

{
−2

|τ2|
θ2

}

= σ 2
X ρ1(τ1)ρ2(τ2)

where

ρi (τi ) = exp

{
−2τi

θi

}
(3.123)

Evidently, the correlation structure is separable and each
directional correlation function is Markovian (see Sec-
tion 3.6.5). The spectral density function corresponding to
a (directional) Markov process is given by Eq. 3.90,

Gi (ωi ) = σ 2
i θi

π
[
1 + (θi ωi /2)2]

so that the directional unit-area spectral density functions
are obtained from Gi (ωi )/σ 2

i as

g1(ω1) = θ1

π
[
1 + (θ1ω1/2)2]

g2(ω2) = θ2

π
[
1 + (θ2ω2/2)2]

The desired spectral density function is thus

G(ω1, ω2) = σ 2
X g1(ω1)g2(ω2)

= σ 2
X θ1θ2

π2
[
1 + (θ1ω1/2)2] [1 + (θ2ω2/2)2]

The variance function corresponding to a (directional)
Markov process is given by Eq. 3.89 as

γi (Ti ) = θ2
i

2T 2
i

[
2|Ti |
θi

+ exp

{
−2|Ti |

θi

}
− 1

]

so that γ (T1, T2) = γ1(T1)γ (T2) is

γ (T1, T2) = θ2
1 θ2

2

4T 2
1 T 2

2

[
2|T1|
θ1

+ exp

{
−2|T1|

θ1

}
− 1

]

×
[

2|T2|
θ2

+ exp

{
−2|T2|

θ2

}
− 1

]

3.7.6 Isotropic Correlation Structure

If the correlation between two points depends only on
the absolute distance between the points, and not on their
orientation, then we say that the correlation structure is
isotropic. In this case, the correlation between X (1, 1) and
X (2, 1) is the same as the correlation coefficient between
X (1, 1) and any of X (1, 2), X (0, 1), and X (1, 0) or, for
that matter, any of the other points on the circle shown



RANDOM FIELDS IN HIGHER DIMENSIONS 119

X(2, 1)

X(1, 2)

X(0, 1) X(1, 1)

X(1, 0)
t1

t2

Figure 3.26 Isotropy implies that the correlation coefficient
between X (1, 1) and any point on the circle are all the same.

in Figure 3.26. If a process is isotropic, it must also be
quadrant symmetric and thus also at least second-moment
stationary. The dependence only on distance implies that

ρ(τ1, τ2) = ρ

(√
τ 2

1 + τ 2
2

)
(3.124)

For example, the isotropic two-dimensional Markov corre-
lation function is given by

ρ(τ ) = exp

{
−2

θ

√
τ 2

1 + τ 2
2

}
= exp

{
−2|τ |

θ

}
(3.125)

which is illustrated in Figure 3.27, where |τ | =
√

τ 2
1 + τ 2

2 .
The Gaussian correlation function can be both isotropic, if
θ1 = θ2 = θ , and separable, for example,

ρ(τ1, τ2) = exp

{

−π

(
τ1

θ1

)2
}

exp

{

−π

(
τ2

θ2

)2
}

= exp
{
− π

θ2

(
τ 2

1 + τ 2
2

)}

= exp

{

− π

θ2

(√
τ 2

1 + τ 2
2

)2
}

= exp

{

−π

( |τ |
θ

)2
}

which is isotropic since it is a function of |τ | =
√

τ 2
1 + τ 2

2 .
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Figure 3.27 Isotropic Markov process in two dimensions.

Not all functions of |τ | =
√

τ 2
1 + τ 2

2 are acceptable as
isotropic correlation functions. Matern (1960) showed that
for an n-dimensional isotropic field the correlation function
must satisfy

ρ(τ ) ≥ − 1

n
(3.126)

which can be shown by considering n + 1 equidistant
points, for example, an equilateral triangle in n = 2 di-
mensions or a tetrahedron in n = 3 dimensions, combined
with the requirement that the correlation function be posi-
tive definite (see Eq. 3.8),

n+1∑

i=1

n+1∑

j=1

ai aj ρij ≥ 0 (3.127)

where ρij is the correlation coefficient between the i th and
j th points. Since the points are equidistant and the field is
isotropic, we must have

ρij =
{

ρ(τ ) if i �= j
1.0 if i = j

where τ is the distance between points. If we also set the
coefficients ai to 1.0, that is, a1 = a2 = · · · = an+1 = 1,
then Eq. 3.127 becomes

(n + 1) + [(n + 1)2 − (n + 1)]ρ(τ ) ≥ 0

which leads to Eq. 3.126.

Example 3.5 Suppose

ρ(τ ) = exp{− 1
2τ } cos(2τ )

for τ ≥ 0. Can this function be used as an isotropic corre-
lation function in n = 3 dimensions?

SOLUTION For n = 3 dimensions we require that ρ(τ ) ≥
− 1

3 . The minimum value of ρ occurs when τ reaches
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the first root of dρ/dτ = 0 in the positive direction. For
generality, we write

ρ(τ ) = exp{−aτ } cos(ωτ )

where, in our problem, a = 1
2 and ω = 2. The derivative is

dρ

dτ
= exp{−aτ }

[
−a cos ωτ − ω sin ωτ

]

so that setting dρ/dτ = 0 leads to the root

τmin = 1

ω
tan−1

(
− a

ω

)
= − 1

ω
tan−1

( a

ω

)

But we want the first positive root, so we shift to the right
by π , that is,

τmin = π − tan−1 (a/ω)

ω

Substituting this into our correlation function gives us the
minimum value the correlation function will take on

ρ(τmin ) = exp
{
− a

ω

(
π − tan−1 a

ω

)}
cos
(
π − tan−1 a

ω

)

For a/ω = 0.5/2 = 0.25 we get

ρ(τmin ) = exp
{−0.25(π − tan−1 0.25)

}

× cos
(
π − tan−1 0.25

) = −0.47

But −0.47 < − 1
3 , so that this is not an acceptable isotropic

correlation function in three dimensions. It would lead to
a covariance structure which is not positive definite. We
require the ratio a/ω ≥ 0.37114 in order for this function
to be used as an isotropic correlation function in three
dimensions.

If the random field is isotropic, then its spectral density
function can be specified by a radial function (Vanmarcke,
1984). In two dimensions, the isotropic radial spectral
density function has the form

G(ω1, ω2) = Gr
(√

ω2
1 + ω2

2

)
= Gr (ω) (3.128)

where ω =
√

ω2
1 + ω2

2 is the absolute distance between
the origin and any point in the frequency domain. A
complication with the radial spectral density function is
that the area beneath it is no longer equal to the variance
of the random field, σ 2. To obtain the variance from the
radial spectral density function, we must integrate over the
original (ω1, ω2) space both radially and circumferentially.
For n = 2 dimensions, the end result is

σ 2 = π

2

∫ ∞

0
ωGr (ω) dω (3.129)

while for n = 3 dimensions

σ 2 = π

2

∫ ∞

0
ω2Gr (ω) dω (3.130)

The variance function is defined as the variance reduction
factor after averaging the field over a rectangle of size
T1 × T2 (or T1 × T2 × T3 in three dimensions). Since the
rectangle is not isotropic, even if the random field being
averaged is isotropic, the variance function does not have
an isotropic form. An isotropic form would be possible if
the variance function was defined using a circular averaging
window, but this option will not be pursued further here.

3.7.7 Ellipsoidal Correlation Structure

If an isotropic random field is stretched in either or both
coordinate directions, then the resulting field will have an
ellipsoidal correlation structure. Stretching the axes results
in a scaling of the distances τ1 and τ2 to, for example, τ1/a1

and τ2/a2 so that the correlation becomes a function of the
effective distance τ ,

τ =
√(

τ1

a1

)2

+ · · · +
(

τn

an

)2

(3.131)

in n dimensions.

Example 3.6 Suppose we have simulated a random field
X ′ in two dimensions which has isotropic correlation func-
tion

ρ′(τ ′) = exp

{
−2|τ ′|

4

}

where |τ ′| = √(τ ′
1)2 + (τ ′

2)2. We wish to transform the
simulated field into one which has correlation lengths in
the t1 (horizontal) and t2 (vertical) directions of θ1 = 8 and
θ2 = 2, respectively. How can we transform our simulation
to achieve the desired directional correlation lengths?

SOLUTION The simulated random field is isotropic with
θ ′

1 = θ ′
2 = 4 (see, e.g., Eq. 3.88). What this means is that

the X ′ random field is such that when the distance between
points in the t1 or t2 direction exceeds 4 the correlation
between the two points becomes negligible. If we first
consider the t1 direction, we desire a correlation length
of 8 in the t1 (horizontal) direction. If we stretch the
distance in the horizontal direction by a factor of 2, then,
in the stretched field, it is only when points are separated
by more than 8 that their correlation becomes negligible.
Similarly, if we “stretch” the field in the vertical direction
by a factor of 1

2 , then, in the stretched field it is only
when points are separated by more than 1

2 (4) = 2 that their
correlation becomes negligible. In other words, an isotropic
field with correlation length θ = 4 can be converted into an
ellipsoidally correlated field with scales θ1 = 8 and θ2 = 2
by stretching the field in the t1 by a factor of 2 and
shrinking the field in the t2 direction by a factor of 1

2 . This
is illustrated in Figure 3.28.
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r = exp{−2}
r = exp{−2}

t ′2 t2

t ′1 t1
t = 4

Figure 3.28 Ellipsoidal correlation function: after stretching the t ′ axes to the t axes, all points
on the ellipse have equal correlation with the origin.

The resulting correlation function of the stretched
field is

ρ(τ ) = exp

{
−2
√( 1

8τ1
)2 + ( 1

2τ2
)2
}

When the effective distance between points is ellipsoidal,
that is,

τ =
√(

τ1

a1

)2

+ · · · +
(

τn

an

)2

then the spectral density function will be a function of the
effective frequency

ω =
√

(a1ω1)2 + · · · + (anωn )2 (3.132)

We shall give specific examples of the ellipsoidal spectral
density function in Section 3.7.10.

3.7.8 Anisotropic Correlation Structure

If the correlation function depends on direction, we say
that the field is anisotropic. The ellipsoidal correlation func-
tion just discussed is a special case of anisotropy, as were
most of the separable correlation functions considered in
Section 3.7.5. Figures 3.21, 3.22, and 3.24 are illustra-
tions of separable Markov processes having θ1 = θ2 = 1
and σ 2

X = 1. Despite the equivalence in the directional cor-
relation lengths, the anisotropy arising from the separability
is clearly evident.

Another possible form for an anisotropic correlation
function is to express ρ as a function of the interpoint

distance, |τ | =
√

τ 2
1 + τ 2

2 , and the angle of the vector from
point 1 to point 2, φ. (In three and higher dimensions,
additional angles are needed.) For example, Ewing (1969)
suggests an anisotropic correlation function of the form

ρ(τ , φ) = ρ(τ ) cos2(φ − φo) (3.133)

to model the spatial dependence of ocean wave heights,
where φo gives the orientation of the waves. Notice that

this model assumes correlation along an individual wave
crest to decay with ρ(τ ) but gives zero correlation in a
direction perpendicular to the waves, that is, from crest to
crest.

Most commonly, anisotropic random fields are of ei-
ther separable or ellipsoidal form. This may be due largely
to simplicity, since the separable and ellipsoidal forms
are generally parameterized by directional correlation
lengths.

3.7.9 Cross-Correlated Random Fields

Often different soil properties will be correlated with one
another. For example, Holtz and Krizek (1971) suggest that
liquid limit and water content have a cross-correlation co-
efficient of 0.67 [they present a much more extensive list
of soil property cross-correlations; see also Baecher and
Christian (2003) for a summary]. As another example, both
Cherubini (2000) and Wolff (1985) suggest that cohesion
and friction angle are reasonably strongly negatively corre-
lated, with cross-correlation coefficients as large as −0.7.

Consider two soil properties, X (t) and Y (t), both of
which are spatially random fields, where t = {t1, t2, . . . , tn}
is the spatial position in n dimensions. If X and Y are cross-
correlated, then the complete specification of the correlation
structure involves three correlation functions:

ρX (t, t′) = correlations between X (t) and X (t′)
for all t and t′

ρY (t, t′) = correlations between Y (t) and Y (t′)
for all t and t′

ρX Y (t, t′) = cross-correlations between X (t) and Y (t′)
for all t and t′

The corresponding covariance structures are

CX (t, t′) = σX σX ′ρX (t, t′)
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CY (t, t′) = σY σY ′ρY (t, t′)

CX Y (t, t′) = σX σY ′ρX Y (t, t′)

where σ 2
X = Var [X (t)], σ 2

X ′ = Var
[
X (t′)

]
, and similarly for

Y . If the fields are both stationary, the correlation and
covariance structures simplify to

CX (τ ) = σ 2
X ρX (τ )

CY (τ ) = σ 2
Y ρY (τ )

CXY (τ ) = σX σY ρX Y (τ )

where τ = t − t′. When τ = 0, CX Y (0) gives the covariance
between X and Y at a point.

The covariance structure can be expressed in matrix
form as

C =
[

C X C X Y

C Y X C Y

]

where C Y X is the transpose of C X Y (equal, except that X
and Y are interchanged).

The cross-spectral density function can be derived from
the following transform pair (for stationary fields):

CX Y (τ ) =
∫ ∞

−∞
SX Y (ω) cos(ω · τ ) dω (3.134a)

SX Y (ω) = 1

(2π )n

∫ ∞

−∞
CX Y (τ ) cos(ω · τ ) dτ (3.134b)

The estimation of the complete cross-correlation structure
between soil properties requires a large amount of spatially
distributed data and, preferably, multiple statistically iden-
tical realizations of a soil site. It is unlikely for the latter
to happen, since each soil site is unique, and the former
can be quite expensive. In practice, the complete cross-
correlation structure will rarely be known, although it may
be assumed. For example, the cross-correlation between co-
hesion and friction angle given by Cherubini (2000) ranges
from −0.24 to −0.7, indicating a high degree of uncertainty
in this particular cross-correlation. (As an aside, this uncer-
tainty may, in large part, be due to difficulty in discerning
between the cohesion and friction angle contributions to the
measured shear strength.)

In general, the cross-correlation between soil properties
is estimated by taking a number of samples assumed to
be from the same population and statistically comparing
their properties by pairs (the formula used to estimate
the cross-correlation is given in Chapter 5). Any resulting
estimate is then assumed to be the correlation between a
pair of properties in any one sample or between a pair of
properties at any point in the soil site. We will refer to this
as a pointwise cross-correlation between pairs of properties,
ignoring for the time being the distinction between a “point”

and a finite-volume lab sample (we will investigate this
distinction a little more closely in Chapter 5).

If we consider the available published information on
soil property cross-correlations appearing in geotechnical
engineering journals, we find that only pointwise cross-
correlations are reported, that is, the correlation between
X (t) and Y (t). See, for example, Holtz and Krizek (1971),
Cherubini (2000), and Wolff (1985). In the event that
only pointwise cross-correlations are known, the cross-
correlation function ρX Y (t, t′) becomes a function only of t,
ρX Y (t). If the field is stationary, the cross-correlation func-
tion simplifies further to just the constant ρX Y . Stationary
pointwise correlated fields are thus specified by the correla-
tion functions ρX (τ ) and ρY (τ ) and by the cross-correlation
ρX Y . We shall see how this information can be used to sim-
ulate pointwise cross-correlated random fields in Chapter 6.

3.7.10 Common Higher Dimensional Models

3.7.10.1 White Noise and Triangular Correlation
Function Consider an n-dimensional stationary white
noise process W (t) having spectral density function

CW (τ ) = πnGo δ(τ ) (3.135)

where δ(τ ) is the n-dimensional Dirac delta function de-
fined by

δ(τ ) = δ(τ1)δ(τ2) · · · δ(τn ) (3.136)

The Dirac delta function δ(τ ) has value zero everywhere
except at τ = 0 (τ1 = τ2 = · · · = 0), where it assumes
infinite height but unit (n-dimensional) volume.

Because δ(τi ) = δ(−τi ) for all i = 1, 2, . . . , n , white
noise is quadrant symmetric and its spectral density func-
tion can be expressed in terms of the “one-sided” spectral
density function

GW (ω) = 2nS (ω) = 2n

(2π )n

∫ ∞

−∞
CW (τ ) cos(ω · τ ) dτ

= 1

πn

∫ ∞

−∞
πnGoδ(τ ) cos(ω · τ ) dτ

= Go

∫ ∞

∞
δ(τn ) · · ·

∫ ∞

∞
δ(τ1) cos(ω1τ1 + · · ·

+ ωnτn ) dτ1 · · · dτn

= Go

as expected.
If we average W (t) over an n-dimensional “rectangular”

region of size θ1 × θ2 × · · · × θn ,

X (t) = 1

θ1θ2 · · · θn

∫ t+θ/2

t−θ/2
W (ξ ) dξ (3.137)
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and assume, for simplicity, that the white noise has mean
zero, then X (t) will also have mean zero. The variance of
X (t) is then computed as

σ 2
X = E

[
X 2]

= 1

(θ1θ2 · · · θn )2

∫ t+θ/2

t−θ/2

∫ t+θ/2

t−θ/2
E
[
W (ξ )W (η)

]
dξ dη

= πnGo

(θ1θ2 · · · θn )2

∫ t+θ/2

t−θ/2

∫ t+θ/2

t−θ/2
δ(ξ − η) dξ dη

= πnGo

(θ1θ2 · · · θn )2

∫ t+θ/2

t−θ/2
1 dη

= πnGo

θ1θ2 · · · θn

So far as the variance is concerned, the end result is
identical even if the mean of W is not zero. Assuming
the mean is zero just simplifies the algebra.

The covariance function of X (t) is triangular in shape,
but in multiple dimensions

CX (τ ) =




σ 2

X

n∏

i=1

(
1 − |τi |

θi

)
, |τi | ≤ θi , i = 1, . . . n

0, otherwise.
(3.138)

where
∏

means product of (analogous to
∑

meaning sum
of). If we write

ρi (τi ) =
{(

1 − |τi |
θi

)
for |τi | ≤ θi

0 otherwise
(3.139)

then Eq. 3.138 can be expressed as

CX (τ ) = σ 2
X

n∏

i=1

ρi (τi ) = σ 2
X

[
ρ1(τ1)ρ2(τ2) · · · ρn (τn )

]

(3.140)
which demonstrates that CX (τ ) is separable and thus also
quadrant symmetric. The latter allows the associated spec-
tral density function to be expressed using the one-sided
GX (ω), which is also separable,

GX (ω) = Go

n∏

i=1

[
sin(ωi θi /2)

ωi θi /2

]2

, ω ≥ 0 (3.141)

The relationship GX (ω) = 2nSX (ω) can be used if the two-
sided spectral density function SX (ω) is desired.

The variance function, which gives the variance reduc-
tion factor when X (t) is itself averaged over an “area” of
size T1 × T2 × · · · × Tn , is also separable,

γ (T1, T2, . . . , Tn ) =
n∏

i=1

γi (Ti ) (3.142)

where the individual “directional” variance functions come
from Eq. 3.67:

γi (Ti ) =






1 − Ti

3θi
if Ti ≤ θi

θi

Ti

[
1 − θi

3Ti

]
if Ti > θi

Note that X (t) does not have an isotropic correlation
structure even if θ1 = θ2 = · · · = θn . This is because the
averaging region is an n-dimensional rectangle, which is an
anisotropic shape. If an n-dimensional spherical averaging
region were used, then the resulting correlation function
would be isotropic.

3.7.10.2 Markov Correlation Function In higher di-
mensions, the Markovian property—where the future is
dependent only on the most recently known past—is lost
because higher dimensions do not have a clear definition of
“past.” As a result, the two models presented here are not
strictly Markovian, but we shall refer to them as such since
they derive from one-dimensional Markov models.

Separable Markov Model If the correlation function is
separable and equal to the product of directional Markovian
correlation functions, for example,

ρ(τ ) = ρ1(τ1)ρ2(τ2) · · ·ρn (τn ) (3.143)

where, according to Eq. 3.88,

ρi (τi ) = exp

{
−2|τi |

θi

}
(3.144)

then the spectral density function is also separable and thus
quadrant symmetric,

G(ω) = σ 2g1(ω1)g2(ω2) · · · gn (ωn ), ω ≥ 0 (3.145)

The individual unit-variance spectral density functions are
obtained by dividing Eq. 3.90 by σ 2,

gi (ωi ) = θi

π
[
1 + (θi ωi /2)2] (3.146)

The variance function associated with the separable Markov
model of Eq. 3.143 is also separable and is given by

γ (T) = γ1(T1)γ2(T2) · · · γn (Tn ) (3.147)

where the one-dimensional variance functions are given by
Eq. 3.89,

γi (Ti ) = θ2
i

2T 2
i

[
2|Ti |
θi

+ exp

{
−2|Ti |

θi

}
− 1

]
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Ellipsoidal Markov Model The Markov correlation func-
tion, Eq. 3.88, can be extended to multiple dimensions by
replacing τ by the lag |τ |,

ρ(τ ) = exp

{
−2|τ |

θ

}
(3.148)

where |τ | =
√

τ 2
1 + · · · + τ 2

n . In this case, the field is
isotropic with correlation length equal to θ in any direction.
Equation 3.148 can be further generalized to an ellipsoidal
correlation structure by expressing |τ | as the scaled lag

|τ | =
√(

2τ1

θ1

)2

+ · · · +
(

2τn

θn

)2

(3.149)

so that the correlation function becomes ellipsoidal,

ρ(τ ) = exp





−
√(

2τ1

θ1

)2

+ · · · +
(

2τn

θn

)2




(3.150)

If θ1 = θ2 = · · · = θn , we regain the isotropic model of
Eq. 3.148.

According to Eq. 3.132, the ellipsoidal Markov
spectral density function is a function of√

(θ1ω1/2)2 + · · · + (θnωn/2)2. In particular, for n = 2
dimensions

G(ω) = σ 2θ1θ2

2π
[
1 + (θ1ω1/2)2 + (θ2ω2/2)2]3/2 (3.151)

while for n = 3 dimensions

G(ω) = σ 2θ1θ2θ3

π2
[
1 + (θ1ω1/2)2 + (θ2ω2/2)2 + (θ3ω3/2)2]2

(3.152)
A closed-form expression for the variance function does not
exist for the higher dimensional ellipsoidal Markov model.
If needed, it can be obtained by numerically integrating
Eq. 3.112,

γ (T1, T2) = 1

T 2
1 T 2

2

∫ T1

−T1

∫ T2

−T2

(|T1| − |τ1|)(|T2| − |τ2|)

× ρ(τ1, τ2) dτ2 dτ1

in the two-dimensional case or

γ (T1, T2, T3)

= 1

T 2
1 T 2

2 T 2
3

∫ T1

−T1

∫ T2

−T2

∫ T3

−T3

(|T1| − |τ1|)(|T2| − |τ2|)

× (|T3| − |τ3|)ρ(τ1, τ2, τ3) dτ3 dτ2 dτ1 (3.153)

in three dimensions.

Example 3.7 Suppose a three-dimensional soil mass has
a random elastic modulus field with mean 30 kPa, standard
deviation 6 kPa, and correlation function

ρ(τ ) = exp





−
√(

2τ1

θ1

)2

+
(

2τ2

θ2

)2

+
(

2τ3

θ3

)2





(3.154)
where θ1 = θ2 = 4 and θ3 = 1 (assume that θ3 is the corre-
lation length in the vertical direction). Suppose further that
settlement of a foundation on this soil has been found to
depend on the average elastic modulus over a volume of
size V = T1 × T2 × T3 = 2 × 3 × 8. What is the mean and
standard deviation of this average?

SOLUTION Suppose that the elastic modulus field is
denoted by X (t1, t2, t3), where (t1, t2, t3) is the spatial po-
sition with t3 measured vertically. Let our average elastic
modulus be XV , defined by

XV = 1

2(3)(8)

∫ 8

0

∫ 3

0

∫ 2

0
X (t1, t2, t3) dt1 dt2 dt3 (3.155)

where we have placed our origin at one corner of the
averaging domain, with t3 positive downward. (Since the
field is stationary, we can place the origin wherever we
want—stationarity is suggested by the fact that the mean
and variance are not dependent on position, and Eq. 3.154
is a function of τ rather than position.)

The mean of XV is obtained by taking expectations:

E [XV ] = E

[
1

2(3)(8)

∫ 8

0

∫ 3

0

∫ 2

0
X (t1, t2, t3) dt1 dt2 dt3

]

= 1

2(3)(8)

∫ 8

0

∫ 3

0

∫ 2

0
E [X (t1, t2, t3)] dt1 dt2 dt3

= 1

2(3)(8)

∫ 8

0

∫ 3

0

∫ 2

0
30 dt1 dt2 dt3

= 30

so we see that the mean is preserved by averaging (as
expected). That is, µX V = µX = 30.

To obtain the variance we write, for V = 2(3)(8),

Var [XV ] = E
[
(XV − µX V )2]

= E

[(
1

V

∫ 8

0

∫ 3

0

∫ 2

0
(X (t1, t2, t3) − µX ) dt1 dt2 dt3

)2
]

= E

[
1

V 2

∫ 8

0

∫ 3

0

∫ 2

0

∫ 8

0

∫ 3

0

∫ 2

0
(X (t1, t2, t3) − µX )

× (X (s1, s2, s3) − µX ) dt1 dt2 dt3 ds1 ds2 ds3

]
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= 1

V 2

∫ 8

0

∫ 3

0

∫ 2

0

∫ 8

0

∫ 3

0

∫ 2

0
E [(X (t1, t2, t3) − µX )

×(X (s1, s2, s3) − µX )] dt1 dt2 dt3 ds1 ds2 ds3

= 1

V 2

∫ 8

0

∫ 3

0

∫ 2

0

∫ 8

0

∫ 3

0

∫ 2

0
Cov [X (t1, t2, t3),

X (s1, s2, s3)] dt1 dt2 dt3 ds1 ds2 ds3

= σ 2
X

V 2

∫ 8

0

∫ 3

0

∫ 2

0

∫ 8

0

∫ 3

0

∫ 2

0
ρ(t1 − s1, t2 − s2, t3 − s3)

× dt1 dt2 dt3 ds1 ds2 ds3

= σ 2
X γ (2, 3, 8)

(Aside: The last three expressions would also have been
obtained if we had first assumed µX V = µX = 0, which
would have made the earlier expressions somewhat simpler;
however, this is only a trick for computing variance and
must be used with care, i.e., the mean is not actually zero,
but it may be set to zero for the purposes of this calculation.)

The variance function γ (T1, T2, T3) is nominally defined,
as above, by a sixfold integration. Since the correlation
function ρ(t1 − s1, t2 − s2, t3 − s3) is constant along diago-
nal lines where t1 − s1, t2 − s2, and t3 − s3 are constants,
the sixfold integration can be reduced to a threefold inte-
gration (see, e.g., Eq. 3.112):

γ (T1, T2, T3)

= 1

[T1T2T3]2

∫ T3

−T3

∫ T2

−T2

∫ T1

−T1

(|T1| − |τ1|)(|T2| − |τ2|)

× (|T3| − |τ3|)ρ(τ1, τ2, τ3) dτ1 dτ2 dτ3 (3.156)

Since the given correlation function, Eq. 3.154, is quadrant
symmetric, that is, since ρ(τ1, τ2, τ3) = ρ(−τ1, τ2, τ3) =
ρ(τ1, −τ2, τ3) = · · · = ρ(−τ1, −τ2, −τ3), the variance func-
tion can be further simplified to

γ (T1, T2, T3)

= 8

[T1T2T3]2

∫ T3

0

∫ T2

0

∫ T1

0
(|T1| − τ1)(|T2| − τ2)

× (|T3| − τ3)ρ(τ1, τ2, τ3) dτ1 dτ2 dτ3 (3.157)

Thus, to find the variance of XV , we must evaluate Eq. 3.157
for T1 = 2, T2 = 3, and T3 = 8. For this, we will use
Gaussian quadrature [see Griffiths and Smith (2006) or
Press et al. (1997) and Appendices B and C],

γ (T1, T2, T3) 
 1

T1T2T3

×
ng∑

k=1

wk




ng∑

j=1

wj

{ ng∑

i=1

wi f (τ1i , τ2j , τ3k )

}

 (3.158)

where
f (τ1i , τ2j , τ3k ) = (|T1| − τ1i )(|T2| − τ2j )(|T3| − τ3k )

× ρ(τ1i , τ2j , τ3k )

τ1i = T1

2
(1 + zi )

τ2j = T2

2
(1 + zj )

τ3k = T3

2
(1 + zk )

and where wi and zi are the weights and evaluation points
of Gaussian quadrature and ng is the number of evaluation
points to use. The accuracy of Gaussian quadrature is about
the same as obtained by fitting a (2n)th-order polynomial
to the integrand. The weights and evaluation points are
provided in Appendix B for a variety of ng values. Using
ng = 20, we get

γ (2, 3, 8) 
 0.878

Note that when ng = 5 the Gaussian quadrature approxi-
mation gives γ (2, 3, 8) 
 0.911, a 4% relative error.

The variance of the 2 × 3 × 8 average is thus

Var [XV ] = σ 2
X γ (2, 3, 8) 
 (6)2(0.878) = 31.6

so that σX V = √
31.6 = 5.6.

3.7.10.3 Gaussian Correlation Function The Gaussian
correlation function, in higher dimensions, is both separable
(thus quadrant symmetric) and ellipsoidal,

ρ(τ ) = exp

{

−π

[(
τ1

θ1

)2

+ · · · +
(

τn

θn

)2
]}

= exp

{
−πτ 2

1

θ2
1

}
· · · exp

{
−πτ 2

n

θ2
n

}
(3.159)

If all of the directional correlation lengths are equal, then
the field is isotropic. Because the Gaussian model is sep-
arable, the higher dimensional spectral density and vari-
ance functions are simply products of their one-dimensional
forms:

G(ω) = σ 2
X

(
θ1θ2 · · · θn

πn

)

× exp

{
− 1

4π

(
θ2

1 ω2
1 + · · · + θ2

n ω2
n

)
}

(3.160)

γ (T) = γ1(T1)γ2(T2) · · · γn (Tn ) (3.161)

where the one-dimensional variance functions are given by
Eq. 3.92,

γi (Ti ) = θ2
i

πT 2
i

[
π |Ti |

θi
erf

{√
π |Ti |
θi

}
+ exp

{
−πT 2

i

θ2
i

}
− 1

]



CHAPTER 4

Best Estimates, Excursions,
and Averages

4.1 BEST LINEAR UNBIASED ESTIMATION

We often want some way of best estimating “future” events
given “past” observations or, perhaps more importantly, of
estimating unobserved locations given observed locations.
Suppose that we have observed X1, X2, . . . , Xn and we
want to estimate the optimal (in some sense) value for
Xn+1 using this information. For example, we could have
observed the capacities of a series of piles and want to
estimate the capacity of the next pile. One possibility is to
write our estimate of Xn+1 as a linear combination of our
observations:

X̂n+1 = µn+1 +
n∑

k=1

βk (Xk − µk ) (4.1)

where the hat indicates that this is an estimate of Xn+1

and µk is the mean of Xk (the mean may vary with po-
sition). Note that we need to know the means in order
to form this estimate. Equation 4.1 is referred to as the
best linear unbiased estimator (BLUE) for reasons we shall
soon see.

The question now is, what is the optimal vector of
coefficients, β? We can define “optimal” to be that which
produces the minimum expected error between our estimate
X̂n+1 and the true (but unknown) Xn+1. This estimator error
is given by

Xn+1 − X̂n+1 = Xn+1 − µn+1 −
n∑

k=1

βk (Xk − µk ) (4.2)

To make this error as small as possible, its mean should
be zero and its variance minimized. The first criterion is

automatically satisfied by the above formulation since

E
[
Xn+1 − X̂n+1

] = E

[
Xn+1 − µn+1 −

n∑

k=1

βk (Xk − µk )

]

= µn+1 − µn+1 −
n∑

k=1

βk E [Xk − µk ]

= −
n∑

k=1

βk (µk − µk )

= 0

We say that the estimator, Eq. 4.1, is unbiased because its
mean is the same as the quantity being estimated.

Now we want to minimize the estimator’s variance. Since
the mean estimator error is zero, the variance is just the
expectation of the squared estimator error,

Var
[
Xn+1 − X̂n+1

] = E

[(
Xn+1 − X̂n+1

)2
]

= E
[
X 2

n+1 − 2Xn+1X̂n+1 + X̂ 2
n+1

]

To simplify the following algebra, we will assume that
µi = 0 for i = 1, 2, . . . , n + 1. The final results, expressed
in terms of covariances, will be the same even if the means
are nonzero. For zero means, our estimator simplifies to

X̂n+1 =
n∑

k=1

βk Xk (4.3)

and the estimator error variance becomes

Var
[
Xn+1 − X̂n+1

] = E
[
X 2

n+1

]− 2
n∑

k=1

βk E
[
Xn+1Xk

]

+
n∑

k=1

n∑

j=1

βkβj E
[
Xk Xj

]
(4.4)

To minimize this with respect to our unknown coefficients
β1, β2, . . . , βn , we set the following derivatives to zero:

∂

∂β�

Var
[
Xn+1 − X̂n+1

] = 0 for � = 1, 2, . . . , n

which gives us n equations in n unknowns. Now

∂

∂β�

E
[
X 2

n+1

] = 0

∂

∂β�

n∑

k=1

βk E
[
Xn+1Xk

] = E
[
Xn+1X�

]

∂

∂β�

n∑

k=1

n∑

j=1

βk βj E
[
Xk Xj

] = 2
n∑

k=1

βk E [X�Xk ]
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which gives us

∂

∂β�

Var
[
Xn+1 − X̂n+1

] = −2 E
[
Xn+1X�

]

+ 2
n∑

k=1

βk E [X�Xk ] = 0

This means that

E
[
Xn+1X�

] =
n∑

k=1

βk E [X�Xk ] (4.5)

for � = 1, 2, . . . , n . If we define the matrix and vector
components

C�k = E [X�Xk ] = Cov [X�, Xk ]

b� = E
[
X�Xn+1

] = Cov
[
X�, Xn+1

]

then Eq. 4.5 can be written as

b� =
n∑

k=1

C�k βk

or, in matrix notation,

b = C β (4.6)

which has solution
β = C −1b (4.7)

These are the so-called Yule–Walker equations and they can
be solved by, for example, Gaussian elimination. Notice
that β does not depend on spatial position, as a linear
regression would. It is computed strictly from covariances.
It is better to use covariances, if they are known, since this
reflects not only distance but also the effects of differing
geologic units. For example, two observation points may
be physically close together, but if they are in different and
largely independent soil layers, then their covariance will
be small. Using only distances to evaluate the weights (β)
would miss this effect.

As the above discussion suggests, there is some simi-
larity between best linear unbiased estimate and regression
analysis. The primary difference is that regression ignores
correlations between data points. However, the primary
drawback to BLUE is that the means and covariances must
be known a priori.

Example 4.1 Suppose that ground-penetrating radar sug-
gests that the mean depth to bedrock µ in meters shows a
slow increase with distance s in meters along the proposed
line of a roadway, as illustrated in Figure 4.1, that is,

µ(s) = 20 + 0.3s

s

21.3 m 23.2 m
? m

m = 20 + 0.3 sBedrock

Ground surface
0 10

Bog peat

20 30

Figure 4.1 Depth to bedrock.

Furthermore suppose that a statistical analysis of bedrock
depth at a similar site has given the following covariance
function which is assumed to also hold at the current site,

C (τ ) = σ 2
X exp

{
−|τ |

40

}

where σX = 5 m and where τ is the separation distance
between points. We want to estimate the bedrock depth X3

at s = 30 m given the following observations of X1 and X2,
at s = 10 m and s = 20 m, respectively,

x1 = 21.3 m at s = 10

x2 = 23.2 m at s = 20

SOLUTION We start by finding the components of the
covariance matrix and vector;

b =
{

Cov [X1, X3]

Cov [X2, X3]

}
= σ 2

X

{
e−20/40

e−10/40

}

C =
[

Cov [X1, X1] Cov [X1, X2]

Cov [X2, X1] Cov [X2, X2]

]

= σ 2
X

[
1 e−10/40

e−10/40 1

]

Substituting these into Eq. 4.6 gives

σ 2
X

[
1 e−10/40

e−10/40 1

]{
β1

β2

}
= σ 2

X

{
e−20/40

e−10/40

}

Notice that the variance cancels out, which is typical when
the variance is constant with position. We now get
{

β1

β2

}
=
[

1 e−10/40

e−10/40 1

]−1 {
e−20/40

e−10/40

}
=
{

0

e−10/40

}
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Thus, the optimal linear estimate of X3 is

x̂3 = µ(30) + e−10/40[x2 − µ(20)]

= [20.0 + 0.3(30)] + e−10/40[23.2 − 20.0 − 0.3(20)]

= 29.0 − 2.8e−10/40

= 26.8 m

Notice that, because of the Markovian nature of the covari-
ance function used in this example, the prediction of the
future depends only on the most recent past. The prediction
is independent of observations further in the past. This is
typical of the Markov correlation function in one dimension
(in higher dimensions, it is not so straightforward).

4.1.1 Estimator Error

Once the best linear unbiased estimate has been determined,
it is of interest to ask how confident are we in our estimate?
Can we assess the variability of our estimator? To inves-
tigate these questions, let us again consider a zero-mean
process so that our estimator can be simply written as

X̂n+1 =
n∑

k=1

βk Xk (4.8)

In this case, the variance is simply determined as

Var
[
X̂n+1

] = Var

[
n∑

k=1

βk Xk

]
(4.9)

= Var [β1X1 + β2X2 + · · · + βnXn ]

The variance of a sum is the sum of the variances only if
the terms are independent. In this case, the X ’s are not in-
dependent, so the variance of a sum becomes a double sum
of all of the possible covariance pairs (see Section 1.7.2),

Var
[
X̂n+1

] = σ 2
X̂

=
n∑

k=1

n∑

j=1

βkβj Cov
[
Xk , Xj

] = βTC β

(4.10)
where T means transpose.

However, the above estimator variance is often of limited
value. We are typically more interested in asking questions
such as: What is the probability that the true value of
Xn+1 exceeds our estimate, X̂n+1, by a certain amount. For
example, we may want to compute

P
[
Xn+1 > X̂n+1 + b

] = P
[
Xn+1 − X̂n+1 > b

]

where b is some constant. Evidently, this would involve
finding the distribution of the estimator error E = (Xn+1 −
X̂n+1). The variance of the estimator error can be found

from Eq. 4.4 as follows:

σ 2
E = Var

[
Xn+1 − X̂n+1

]

= E
[
X 2

n+1

]− 2
n∑

k=1

βk E
[
Xn+1Xk

]

+
n∑

k=1

n∑

j=1

βk βj E
[
Xk Xj

]

= σ 2
X + βTC β − 2βTb (rearranging terms)

= σ 2
X + σ 2

X̂
− 2βTb (4.11)

So we see that the variance of the estimator error (often
referred to directly as the estimator error) is the sum of
the variance in X and the variance in X̂ less a term which
depends on the degree of correlation between Xn+1 and the
observations. As the correlation between the observations
and the point being estimated increases, it becomes less
and less likely that the true value of Xn+1 will stray very
far from its estimate. So for high correlations between the
observations and the estimated point, the estimator error
becomes small. This can be seen more clearly if we simplify
the estimator error equation. To do this, we note that β has
been determined such that C β = b, or, putting it another
way, Cβ − b = 0 (where 0 is a vector of zeros). Now we
write

σ 2
E = σ 2

X + βTCβ − 2βTb

= σ 2
X + βTCβ − βTb − βTb

= σ 2
X + βT(C β − b) − βTb

= σ 2
X − βTb (4.12)

which is a much simpler way of computing σ 2
E and more

clearly demonstrates the variance reduction due to correla-
tion with observations.

The estimator X̂n+1 is also the conditional mean of Xn+1

given the observations. That is,

E
[
Xn+1 | X1, X2, . . . , Xn

] = X̂n+1 (4.13)

The conditional variance of Xn+1 is σ 2
E ,

Var
[
Xn+1 | X1, X2, . . . , Xn

] = σ 2
E (4.14)

Generally questions regarding the probability that the true
Xn+1 lies in some region should employ the conditional
mean and variance of Xn+1, since this would then make
use of all of the information at hand.

Example 4.2 Consider again Example 4.1. What is the
variance of the estimator and the estimator error? Estimate
the probability that X3 exceeds X̂3 by more than 4 m.
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SOLUTION We had

C = σ 2
X

[
1 e−10/40

e−10/40 1

]
= (5)2

[
1 e−10/40

e−10/40 1

]

and

β =
{

0

e−10/40

}

so that

σ 2
X̂

= Var
[
X̂3
] = (5)2

{
0 e−10/40

}[ 1 e−10/40

e−10/40 1

]

×
{

0

e−10/40

}
= (5)2 e−20/40

which gives σX̂ = 5e−10/40 = 3.894 m.
For the covariance vector found in Example 4.1,

b = σ 2
X

{
e−20/40

e−10/40

}

the estimator error is computed as

σ 2
E = Var

[
X3 − X̂3

] = σ 2
X − βTb

= σ 2
X − σ 2

X {0 e−10/40}
{

e−20/40

e−10/40

}

= (5)2 (1 − e−20/40)

The standard deviation of the estimator error is thus σE =
5
√

1 − e−20/40 = 3.136 m. Note that this is less than the
variability of the estimator itself and significantly less
than the variability of X , due to the restraining effect of
correlation between points.

To compute the required probability, we need to assume
a distribution for the random variable (X3 − X̂3). Let us
suppose that X is normally distributed. Since the estimate X̂
is simply a sum of X ’s, it too must be normally distributed,
which in turn implies that the quantity X3 − X̂3 is normally
distributed. We need only specify its mean and standard
deviation, then, to fully describe its distribution.

We saw above that X̂3 is an unbiased estimate
of X3,

E
[
X3 − X̂3

] = 0

so that µE = 0. We have just computed the standard devi-
ation of X3 − X̂3 as σE = 3.136 m. Thus,

P
[
X3 − X̂3 > 4

] = P

[
Z >

4 − 0

3.136

]

= 1 − �(1.28) = 0.1003

4.1.2 Geostatistics: Kriging

Danie G. Krige’s empirical work to evaluate mineral re-
sources (1951) was formalize by Matheron (1962) into a
statistical approach now commonly referred to as “Kriging”
and normally used in geostatistics. Kriging is basically best
linear unbiased estimation with the added ability to estimate
certain aspects of the mean trend. We will give the theory
for Kriging in this section, recognizing that some concepts
will be repeated from best linear unbiased estimation. The
application will be to a settlement problem in geotechnical
engineering.

The purpose of Kriging is to provide a best estimate
of a random field between known data. The basic idea
is to estimate X (x) at any point using a weighted linear
combination of the values of X at each observation point.
Suppose that X1, X2, . . . , Xn are observations of the random
field X (x) at the points x1, x2, . . . , xn , that is, Xk = X (xk ).
Then the Kriged estimated of X (x) at x is given by

X̂ (x) =
n∑

k=1

βk Xk (4.15)

where the n unknown weights βk are to be determined to
find the best estimate at the point x. It seems reasonable that
if the point x is particularly close to one of the observations,
say Xj , then the weight βj associated with Xj would be high.
However, if X (x) and Xj are in different (independent) soil
layers, for example, then perhaps βj should be small. Rather
than using distance to determine the weights in Eq. 4.15,
it is better to use covariance (or correlation) between the
two points since this reflects not only distance but also, for
example, the effects of differing geologic units.

In Kriging, it is assumed that the mean can be expressed
as in a regression analysis,

µX (x) =
m∑

i=1

ai gi (x) (4.16)

where ai is an unknown coefficient (which, as it turns out,
need never be estimated) and gi (x) is a specified function
of x. Usually g1(x ) = 1, g2(x ) = x , g3(x ) = x 2, and so
on in one dimension—similarly in higher dimensions. As
in a regression analysis, the functions g1(x), g2(x), · · ·
should be (largely) linearly independent over the domain
of the regression (i.e., the site domain). In order for the
estimator (Eq. 4.15) to be unbiased, we require that the
mean difference between the estimate X̂ (x) and the true
(but random) value X (x) be zero,

E
[
X̂ (x) − X (x)

] = E
[
X̂ (x)

]− E [X (x)] = 0 (4.17)



BEST LINEAR UNBIASED ESTIMATION 131

where

E
[
X̂ (x)

] = E

[
n∑

k=1

βk Xk

]
=

n∑

k=1

βk

(
m∑

i=1

ai gi (xk )

)

E [X (x)] =
m∑

i=1

ai gi (x)

The unbiased condition of Eq. 4.17 becomes
m∑

i=1

ai

{
n∑

k=1

βk gi (xk ) − gi (x)

}
= 0 (4.18)

Since this must be true for any coefficients ai , the unbiased
condition reduces to

n∑

k=1

βk gi (xk ) = gi (x) (4.19)

which is independent of the unknown regression weights ai .
The unknown Kriging weights β are obtained by min-

imizing the variance of the error, E =
(

X (x) − X̂ (x)
)

,
which reduces the solution to the matrix equation

K β = M (4.20)

where K and M depend on the covariance structure,

K =





C11 C12 · · · C1n g1(x1) g2(x1) · · · gm (x1)

C21 C22 · · · C2n g1(x2) g2(x2) · · · gm (x2)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Cn1 Cn2 · · · Cnn g1(xn ) g2(xn ) · · · gm (xn )

g1(x1) g1(x2) · · · g1(xn ) 0 0 · · · 0

g2(x1) g2(x2) · · · g2(xn ) 0 0 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

gm (x1) gm (x2) · · · gm (xn ) 0 0 · · · 0





in which Cij is the covariance between Xi and Xj and

β =






β1

β2

.

.

.

βn

−η1

−η2

.

.

.

−ηm






, M =






C1x

C2x

.

.

.

Cnx

g1(x)

g2(x)
.
.
.

gm (x)






The quantities ηi are a set of Lagrangian parameters used
to solve the variance minimization problem subject to the
unbiased conditions of Eq. 4.19. Beyond allowing for a
solution to the above system of equations, their actual
values can be ignored. The covariance Cix appearing in the
vector on the right-hand side (RHS), M, is the covariance
between the i th observation point and the point x at which
the best estimate is to be calculated.

Note that the matrix K is purely a function of the
observation point locations and their covariances; thus it
can be inverted once and then Eqs. 4.20 and 4.15 used
repeatedly at different spatial points to build up the field
of best estimates (for each spatial point, the RHS vector M
changes, as does the vector of weights, β).

The Kriging method depends upon two things: (1) knowl-
edge of how the mean varies functionally with position, that
is, g1, g2, . . . need to be specified, and (2) knowledge of the
covariance structure of the field. Usually, assuming a mean
which is either constant (m = 1, g1(x) = 1, a1 = µX ) or
linearly varying is sufficient. The correct form of the mean
trend can be determined by

1. plotting the results and visually checking the mean
trend,

2. performing a regression analysis, or
3. performing a more complex structural analysis; see,

for example, Journel and Huijbregts (1978) for more
details.

The covariance structure can be estimated by the methods
discussed in Chapter 5 if sufficient data are available and
used directly in Eq. 4.20 to define K and M (with, perhaps
some interpolation for covariances not directly estimated).
In the absence of sufficient data, a simple functional form
for the covariance function is often assumed. A typical
model is the Markovian in which the covariance decays
exponentially with separation distance τij = |xi − xj |:

Cij = σ 2
X exp

{
−2|τij |

θ

}

As mentioned in Chapter 3, the parameter θ is called the
correlation length. Such a model now requires only the esti-
mation of two parameters, σX and θ , but assumes that the
field is isotropic and statistically stationary. Nonisotropic
models are readily available and often appropriate for soils
which display layering.

4.1.2.1 Estimator Error Associated with any estimate
of a random process derived from a finite number of
observations is an estimator error. This error can be used
to assess the accuracy of the estimate.
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The Kriging estimate is unbiased, so that

µX̂ (x) = E
[
X̂ (x)

] = E [X (x)] = µX (x)

Defining the error as the difference between the estimate
X̂ (x) and its true (but unknown and random) value X (x),
E = X (x) − X̂ (x), the mean and variance of the estimator
error are given by

µE = E
[
X (x) − X̂ (x)

] = 0 (4.21a)

σ 2
E = E

[(
X (x) − X̂ (x)

)2
]

= σ 2
X + βT

n (K n×nβn − 2Mn )

(4.21b)

where βn and Mn are the first n elements of β and M and
K n×n is the n × n upper left submatrix of K containing
the covariances. Note that X̂ (x) can also be viewed as the
conditional mean of X (x) at the point x. The conditional
variance at the point x would then be σ 2

E .

Example 4.3 Foundation Consolidation Settlement
Consider the estimation of consolidation settlement under
a footing at a certain location given that soil samples/tests
have been obtained at four neighboring locations. Figure 4.2
shows a plan view of the footing and sample locations. The
samples and local stratigraphy are used to estimate the soil
parameters Cc , eo , H , and po appearing in the consolidation
settlement equation

S = N

(
Cc

1 + eo

)
H log10

(
po + 	p

po

)
(4.22)

Each of these four parameters is then treated as spatially
varying and random between observation points. It is as-
sumed that the estimation error in obtaining the parameters
from the samples is negligible compared to field variabil-
ity, and so this source of uncertainty will be ignored. The

30 m

50 m

50 m

Footing

Observation point

1 2

34
15 m

35 m

20 m

Figure 4.2 Consolidation settlement plan view with sample
points.

model error parameter N is assumed an ordinary random
variable (not a random field) with mean 1.0 and standard
deviation 0.1. The increase in pressure at middepth of the
clay layer, 	p, depends on the load applied to the foot-
ing. We will assume that E

[
	p
] = 25 kPa with standard

deviation 5 kPa.
The task now is to estimate the mean and standard

deviation of Cc , eo , H , and po at the footing location
using the neighboring observations. Table 4.1 lists the soil
settlement properties obtained at each of the four sample
points.

In Table 4.1, we have assumed that all four random fields
are stationary, with spatially constant mean and variance,
the limited data not clearly indicating otherwise. In order to
obtain a Kriging estimate at the footing location, we need
to establish a covariance structure for the field. Obviously
four sample points are far too few to yield even a rough
approximation of the variance and covariance between
samples, especially in two dimensions. We have assumed
that experience with similar sites and similar materials leads
us to estimate the coefficients of variation, v, shown in
the table and a correlation length of about 60 m using an
exponentially decaying correlation function. That is, we
assume that the correlation structure is reasonably well
approximated by

ρ(xi , xj ) = exp
{− 2

60 |xi − xj |
}

In so doing, we are assuming that the clay layer is
horizontally isotropic, also a reasonable assumption. This
yields the following correlation matrix between sample
points:

ρ =





1.000 0.189 0.095 0.189

0.189 1.000 0.189 0.095

0.095 0.189 1.000 0.189

0.189 0.095 0.189 1.000





Furthermore, it is reasonable to assume that the same cor-
relation length applies to all four soil properties. Thus, the
covariance matrix associated with the property Cc between

Table 4.1 Derived Soil Sample Settlement Properties

Sample H po
Point Cc eo (m) (kPa)

1 0.473 1.42 4.19 186.7
2 0.328 1.08 4.04 181.0
3 0.489 1.02 4.55 165.7
4 0.295 1.24 4.29 179.1

µ 0.396 1.19 4.27 178.1

v 0.25 0.15 0.05 0.05
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sample points is just σ 2
C c

ρ = (0.25 × 0.396)2ρ. Similarly,
the covariance matrix associated with eo is its variance
[σ 2

eo
= (0.15 × 1.19)2 = 0.03186] times the correlation ma-

trix, and so on.
In the following, we will obtain Kriging estimates from

each of the four random fields [Cc(x), eo(x), H (x), and
po(x)] independently. Note that this does not imply that the
estimates will be independent, since if the sample properties
are themselves correlated, which they most likely are, then
the estimates will also be correlated. It is believed that this
is a reasonably good approximation given the level of avail-
able data. If more complicated cross-correlation structures
are known to exist and have been estimated, the method of
co-Kriging can be applied; this essentially amounts to the
use of a much larger covariance (Kriging) matrix and the
consideration of all four fields simultaneously. Co-Kriging
also has the advantage of also ensuring that the error vari-
ance is properly minimized. However, co-Kriging is not
implemented here, since the separate Kriging preserves
reasonably well any existing pointwise cross-correlation be-
tween the fields and since little is generally known about
the actual cross-correlation structure.

The Kriging matrix associated with the clay layer thick-
ness H is then obtained by multiplying σ 2

H = (0.05 × 4.27)2

by ρ:

K H =





0.04558 0.00861 0.00432 0.00861 1

0.00861 0.04558 0.00861 0.00432 1

0.00432 0.00861 0.04558 0.00861 1

0.00861 0.00432 0.00861 0.04558 1

1 1 1 1 0





where, since we assumed stationarity, m = 1 and g1(x) = 1
in Eq. 4.16. Placing the coordinate axis origin at sample
location 4 gives the footing coordinates x = (20, 15). Thus,
the RHS vector M is

MH =






σ 2
H ρ(x1, x)

σ 2
H ρ(x2, x)

σ 2
H ρ(x3, x)

σ 2
H ρ(x4, x)

1






=






(0.04558)(0.2609)

(0.04558)(0.2151)

(0.04558)(0.3269)

(0.04558)(0.4346)

1






=






0.01189

0.00981

0.01490

0.01981

1






Solving the matrix equation K H βH = MH gives the follow-
ing four weights (ignoring the Lagrange parameter):

βH =






0.192

0.150

0.265

0.393






in which we can see that the samples which are closest to
the footing are most heavily weighted (more specifically,
the samples which are most highly correlated with the
footing location are the most heavily weighted), as would
be expected.

Since the underlying correlation matrix is identical for
all four soil properties, the weights will be identical for all
four properties; thus the best estimates at the footing are

Ĉc = (0.192)(0.473) + (0.150)(0.328)

+ (0.265)(0.489) + (0.393)(0.295) = 0.386

êo = (0.192)(1.42) + (0.150)(1.08)

+ (0.265)(1.02) + (0.393)(1.24) = 1.19

Ĥ = (0.192)(4.19) + (0.150)(4.04)

+ (0.265)(4.55) + (0.393)(4.29) = 4.30

p̂o = (0.192)(186.7) + (0.150)(181.0)

+ (0.265)(165.7) + (0.393)(179.1) = 177.3

The estimation errors are given by the equation

σ 2
E = σ 2

X + βT
n (K n×nβn − 2Mn )

Since the n × n submatrix of K is just the correlation matrix
times the appropriate variance, and similarly Mn is the
correlation vector (between samples and footing) times the
appropriate variance, the error can be rewritten as

σ 2
E = σ 2

X

(
1 + βT

n (ρβn − 2ρx )
)

where ρx is the vector of correlation coefficients between
the samples and the footing (see the calculation of MH

above). For the Kriging weights and given correlation
structure, this yields

σ 2
E = σ 2

X (0.719)

which gives the following individual estimation errors:

σ 2
Cc

= (0.009801)(0.719) = 0.00705 → σCc = 0.0839

σ 2
eo

= (0.03204)(0.719) = 0.0230 → σeo = 0.152

σ 2
H = (0.04558)(0.719) = 0.0328 → σH = 0.181

σ 2
po

= (79.31)(0.719) = 57.02 → σpo = 7.55
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In summary, then, the variables entering the consolida-
tion settlement formula have the following statistics based
on the preceding Kriged estimates:

Variable Mean Standard Deviation (SD) v

N 1.0 0.1 0.1
Cc 0.386 0.0839 0.217
eo 1.19 0.152 0.128
H (m) 4.30 0.181 0.042
po (kPa) 177.3 7.55 0.043
	p (kPa) 25.0 5.0 0.20

where v is the coefficient of variation.
A first-order approximation to the settlement, via

Eq. 4.22, is thus

µS = (1.0)

(
0.386

1 + 1.19

)
(4.30) log10

(
177.3 + 25

177.3

)

= 0.0429 m

To estimate the settlement variance, a first-order approxi-
mation yields

σ 2
S =

m∑

j=1

(
∂S

∂Xj
σXj

)2

µ

where the subscript µ on the derivative implies that it
is evaluated at the mean of all random variables and the
variable Xj is replaced by each of N , Cc , . . . in turn.
Evaluation of the derivatives at the mean leads to the
following table:

Xj µXj

(
∂S /∂Xj

)
µ

σXj

[
(∂S /∂Xj )σX j

]2
µ

N 1.000 0.04342 0.1000 1.885×10−5

Cc 0.386 0.11248 0.0889 8.906×10−5

eo 1.19 −0.01983 0.1520 0.908×10−5

H 4.30 0.01010 0.1810 0.334×10−5

po 177.3 −0.00023 7.5500 0.300×10−5

	p 25.0 0.00163 5.0000 6.618×10−5

so that

σ 2
S =

m∑

j=1

(
∂S

∂Xj
σX j

)2

µ

= 18.952 × 10−5 m2

Hence σS = 0.0138 and the coefficient of variation of the
settlement at the footing is vS = 0.0138/0.0429 = 0.322.
This is roughly a 10% decrease from the coefficient of
variation of settlement obtained without the benefit of any
neighboring observations (0.351). Although this does not
seem significant in light of the increased complexity of
the above calculations, it needs to be remembered that

the contribution to overall uncertainty coming from N
and 	p amounts to over 40%. Thus, the coefficient of
variation vS will decrease toward its minimum (barring
improved information about N and/or 	p) of 0.213 as more
observations are used and/or observations are taken closer
to the footing. For example, if a fifth sample were taken
midway between the other four samples (at the center of
Figure 4.2), then the variance of each estimator decreases
by a factor of 0.46 from the point variance (rather than the
factor of 0.719 found above) and the settlement vS becomes
0.285. Note that the reduction in variance can be found prior
to actually performing the sampling since the estimator
variance depends only on the covariance structure and the
assumed functional form for the mean. Thus, the Kriging
technique can also be used to plan an optimal sampling
scheme—sample points are selected so as to minimize the
estimator error.

Once the random-field model has been defined for a site,
there are ways of analytically obtaining probabilities associ-
ated with design criteria, such as the probability of failure.
For example, by assuming a normal or lognormal distri-
bution for the footing settlement in this example, one can
easily estimate the probability that the footing will exceed
a certain settlement given its mean and standard deviation.
Assuming the footing settlement to be normally distributed
with mean 0.0429 m and standard deviation 0.0138, then
the probability that the settlement will exceed 0.075 m is

P [S > 0.075] = 1 − �

(
0.075 − 0.0429

0.0138

)

= 1 − �(2.33) = 0.01

4.2 THRESHOLD EXCURSIONS IN ONE
DIMENSION

In both design and analysis contexts, the extremes of
random processes are typically of considerable interest.
Many reliability problems are defined in terms of threshold
excursions—for example, when load exceeds a safe thresh-
old (e.g., the strength). Most theories governing extremal
statistics of random fields deal with excursion regions, re-
gions in which the process X exceeds some threshold, and
the few exact results that exist usually only apply asymp-
totically when the threshold level approaches infinity. A
large class of random functions are not amenable to ex-
isting extrema theory at all, and for such processes the
analysis of a sequence of realizations is currently the only
way to obtain their extrema statistics. In this section we
will investigate the basic theory of threshold excursions for
one-dimensional processes. Since the statistics of threshold
excursions depend heavily on the slope variance, we will
begin by looking at the derivative, or slope, process.
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4.2.1 Derivative Process

Consider a stationary random field X (t). Its derivative is

Ẋ (t) = dX (t)

dt
= lim

	t→0

X (t + 	t) − X (t)

	t
(4.23)

We will concentrate on the finite-difference form of the
derivative and write

Ẋ (t) = X (t + 	t) − X (t)

	t
(4.24)

with the limit being understood. The mean of the derivative
process can be obtained by taking expectations of Eq. 4.24,

E
[
Ẋ (t)

] = µẊ = E [X (t + 	t)] − E [X (t)]

	t
= 0 (4.25)

since E [X (t + 	t)] = E [X (t)] due to stationarity. Before
computing the variance of the derivative process, it is useful
to note that the (centered) finite-difference form of the
second derivative of the covariance function of X , CX (τ ),
at τ = 0 is

d2CX (τ )

dτ 2

∣∣∣
τ=0

= C̈X (0) = CX (	τ ) − 2CX (0) + CX (−	τ )

	τ 2
(4.26)

The variance of the derivative process, Ẋ (t), is thus ob-
tained as

σ 2
Ẋ = E

[
Ẋ 2] = 1

	t2

{
2E
[
X 2(t)

]− 2 E [X (t)X (t + 	t)]
}

= 2[CX (0) − CX (	t)]

	t2

= −CX (	t) − 2CX (0) + CX (−	t)

	t2

= −d2CX (τ )

dτ 2

∣∣∣
τ=0

(4.27)

where, due to stationarity, E
[
X 2(t + 	t)

] = E
[
X 2(t)

]
and,

due to symmetry in the covariance function, we can write
2CX (	t) = CX (	t) + CX (−	t). From this we see that the
derivative process will exist (i.e., will have finite variance)
if the second derivative of CX (τ ) is finite at τ = 0. A
necessary and sufficient condition for X (t) to be mean
square differentiable (i.e., for the derivative process to have
finite variance) is that the first derivative of CX (τ ) at the
origin be equal to zero,

dCX (τ )

dτ

∣∣∣
τ=0

= ĊX (0) = 0 (4.28)

If ĊX (0) exists, it must be zero due to the symmetry in
CX (τ ). Equation 4.28 is then equivalent to saying that ĊX (0)
exists if the equation is satisfied. In turn, if ĊX (0) = 0,
then, because CX (τ ) ≤ CX (0) so that CX (0) is a maximum,
the second derivative, C̈X (0), must be finite and negative.
This leads to a finite and positive derivative variance, σ 2

Ẋ
,

according to Eq. 4.27.

For simplicity we will now assume that E [X (t)] = 0, so
that the covariance function becomes

CX (τ ) = E [X (t)X (t + τ )] (4.29)

There is no loss in generality by assuming E [X (t)] = 0. A
nonzero mean does not affect the covariance since the basic
definition of covariance subtracts the mean in any case; see
Eq. 1.29a or 3.4. The zero-mean assumption just simplifies
the algebra. Differentiating CX (τ ) with respect to τ gives
(the derivative of an expectation is the expectation of the
derivative, just as the derivative of a sum is the sum of the
derivatives)

ĊX (τ ) = E
[
X (t)Ẋ (t + τ )

]

Since X (t) is stationary, we can replace t by (t − τ ) (i.e., the
statistics of X are the same at any point in time), which now
gives

ĊX (τ ) = E
[
X (t − τ )Ẋ (t)

]

Differentiating yet again with respect to τ gives

C̈X (τ ) = −E
[
Ẋ (t − τ )Ẋ (t)

] = −CẊ (τ )

In other words, the covariance function of the slope, Ẋ (t),
is just equal to the negative second derivative of the
covariance function of X (t),

CẊ (τ ) = −C̈X (τ ) (4.30)

This result can also be used to find the variance of Ẋ (t),

CẊ (0) = −C̈X (0)

which agrees with Eq. 4.27.
The cross-covariance between X (t) and its derivative,

Ẋ (t), can be obtained by considering (assuming, without
loss in generality, that µX = 0)

Cov
[
X , Ẋ

] = E
[
X Ẋ
] = E

[
X (t)

(
X (t + 	t) − X (t)

	t

)]

= E

[(
X (t)X (t + 	t) − X 2(t)

	t

)]

= CX (	t) − CX (0)

	t

= ĊX (0)

Thus, if Ẋ exists [i.e., ĊX (0) = 0], it will be uncorrelated
with X .

A perhaps more physical understanding of why some
processes are not mean square differentiable comes if we
consider the Brownian motion problem, whose solution
possesses the Markov correlation function (the Ornstein–
Uhlenbeck process—see Section 3.6.5). The idea in the
Brownian motion model is that the motion of a particle
changes randomly in time due to impulsive impacts by other
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(perhaps smaller) particles. At the instant of the impact, the
particle velocity changes, and these changes are discontinu-
ous. Thus, at the instant of each impact, the velocity deriva-
tive becomes infinite and so its variance becomes infinite.

Example 4.4 Show that a process having a Markov co-
variance function is not mean square differentiable, whereas
a process having a Gaussian covariance function is.

SOLUTION The Markov covariance function is given by

C (τ ) = σ 2 exp

{
−2|τ |

θ

}
(4.31)

which is shown in Figure 4.3. The derivative of C (τ ) is

Ċ (τ ) = d

dτ
C (τ ) =






(
2σ 2

θ

)
exp

{
2τ

θ

}
if τ < 0

−
(

2σ 2

θ

)
exp

{
−2τ

θ

}
if τ > 0

(4.32)
which is undefined at τ = 0. This is clearly evident in
Figure 4.3. Thus, since Ċ (0) �= 0, the Markov process is
not mean square differentiable.

The Gaussian covariance function is

C (τ ) = σ 2 exp

{
−πτ 2

θ2

}
(4.33)

which is shown in Figure 4.4. The derivative of C (τ ) is
now

Ċ (τ ) = −2τ
( π

θ2

)
σ 2 exp

{
−πτ 2

θ2

}
(4.34)

and since Ċ (0) = 0, as can be seen in Figure 4.4, a pro-
cess having Gaussian covariance function is mean square
differentiable.

Vanmarcke (1984) shows that even a small amount of lo-
cal averaging will convert a non–mean square differentiable
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Figure 4.3 Typical Markov correlation function.
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Figure 4.4 Typical Gaussian correlation function.

process into one which is mean square differentiable (i.e.,
which possesses a finite variance derivative). In fact, all
local average processes will be mean square differentiable.
Suppose we define the local arithmetic average process, as
usual, to be

XT (t) = 1

T

∫ t+T/2

t−T/2
X (ξ ) dξ (4.35)

The covariance function of XT (t) is [where we assume X (t)
has mean zero for simplicity in the interim step]

CX T (τ ) = E [XT (t)XT (t + τ )]

= 1

T 2

∫ T

0

∫ τ+T

τ

CX (ξ − η) dη dξ (4.36)

where CX (τ ) is the covariance function of X (t).
If XT (t) is mean square differentiable, then ĊX T (0) = 0.

We can show this will be true for any averaging region
T > 0 as follows:

ĊX T (τ ) = d

dτ
CX T (τ ) = 1

T 2

∫ T

0

d

dτ

∫ τ+T

τ

CX (ξ − η) dη dξ

(4.37)
Noting that

d

dτ

∫ τ+T

τ

g(η) dη = g(τ + T ) − g(τ ) (4.38)

we see that

ĊX T (τ ) = 1

T 2

∫ T

0
[CX (ξ − τ − T ) − CX (ξ − τ )] dξ

(4.39)
At τ = 0, where we make use of the fact that CX (−ξ ) =
CX (ξ ),

ĊX T (0) = 1

T 2

∫ T

0
[CX (ξ − T ) − CX (ξ )] dξ

= 1

T 2

{∫ 0

−T
CX (ξ ) dξ −

∫ T

0
CX (ξ ) dξ

}
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= 1

T 2

∫ T

0
[CX (−ξ ) − CX (ξ )] dξ

= 0

T 2

= 0

so that XT (t) is mean square differentiable according to the
condition given by Eq. 4.28.

Applying Eq. 4.38 to Eq. 4.35 gives

ẊT (t) = 1

T

d

dt

∫ t+T/2

t−T/2
X (ξ ) dξ

= X (t + T/2) − X (t − T/2)

T
(4.40)

For stationary X (t), the mean of ẊT (t) is zero and its
variance can be found as follows:

σ 2
Ẋ T

= E
[
Ẋ 2

T (t)
] = 1

T 2
E

[(
X

(
t + T

2

)
− X

(
t − T

2

))2
]

= 1

T 2

{
2E
[
X 2]− 2E

[
X

(
t + T

2

)
X

(
t − T

2

)]}

= 2σ 2
X

T 2
[1 − ρX (T )] (4.41)

since E
[
X 2(t + T/2)

] = E
[
X 2(t − T/2)

] = E
[
X 2(t)

]
due

to stationarity.
In summary, if ĊX (0) = 0, then:

1. The derivative process Ẋ (t) has finite variance.
2. The derivative process Ẋ (t) is uncorrelated with X (t).
3. The covariance function of Ẋ (t) is equal to −C̈X (τ ).

If ĊX (0) = 0 we say that X (t) is mean square differentiable.
If X (t) is not mean square differentiable, that is, ĊX (0)

�= 0, then any amount of local averaging will result in
a process XT (t) which is mean square differentiable. The
derivative of XT (t) has the following properties:

1. ẊT (t) = X (t + T/2) − X (t − T/2)

T
2. µẊ T = E

[
ẊT (t)

] = 0

3. σ 2
ẊT

= Var
[
ẊT (t)

] = 2σ 2
X

T 2
[1 − ρX (T )]

A possibly fundamental difficulty with locally averaging
in order to render a process mean square differentiable is
that σẊ T then depends on the averaging size T and any stan-
dard deviation can be obtained simply by adjusting T . Since
the above equations give no guidance on how T should be
selected, its size must come from physical considerations

of the process being modeled and the matching of the vari-
ance σ 2

T = σ 2
X γ (T ) to what is observed. For example, CPT

measurements represent a local average of soil properties
over some “deformation region” that the cone imposes on
the surrounding soil. This region might have radius of about
0.2 m (we have no reference for this estimate, this is just an
engineering judgment regarding the amount of material dis-
placed in the vicinity of a cone being forced through a soil).

4.2.2 Threshold Excursion Rate

The mean rate νb at which a stationary random process
X (t) crosses a threshold b was determined by Rice (1954)
to be

νb =
∫ ∞

−∞
|ẋ |fX Ẋ (b, ẋ ) dẋ (4.42)

where fX Ẋ (x , ẋ ) is the joint probability density function
of X (t) and its derivative Ẋ (t). As we saw in the last
section, if X (t) is stationary, then X (t) and Ẋ (t) are
uncorrelated. If X (t) is normally distributed, then, since
Ẋ (t) = (X (t + 	t) − X (t))/	t is just a sum of normals,
Ẋ (t) must also be normally distributed. Since uncorrelated
normally distributed random variables are also independent,
this means that X (t) and Ẋ (t) are independent and their joint
distribution can be written as a product of their marginal
distributions,

fX Ẋ (b, ẋ ) = fX (b)fẊ (ẋ )

in which case Eq. 4.42 becomes

νb =
∫ ∞

−∞
|ẋ |fX (b)fẊ (ẋ ) dẋ = fX (b)

∫ ∞

−∞
|ẋ |fẊ (ẋ ) dẋ

= fX (b)E
[|Ẋ |] (4.43)

If X is normally distributed, with mean zero, then the
mean of its absolute value is E [|X |] = σX

√
2/π . Since

Ẋ is normally distributed with mean zero, then E
[|Ẋ |] =

σẊ

√
2/π , and we get

νb = fX (b)σẊ

√
2

π
= 1

π

σẊ

σX

exp

{
− b2

2σ 2
X

}
(4.44)

where we substituted in the normal distribution for fX (b).
We are often only interested in the upcrossings of the

threshold b [i.e., where X (t) crosses the threshold b with
positive slope]. Since every upcrossing is followed by a
downcrossing, then the mean upcrossing rate ν+

b is equal
to the mean downcrossing rate ν−

b ,

ν+
b = ν−

b = νb

2
= 1

2π

σẊ

σX

exp

{
− b2

2σ 2
X

}
(4.45)
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4.2.3 Time to First Upcrossing: System Reliability

A classic engineering reliability problem is that of assessing
the probability that the time to system failure exceeds some
target lifetime. For example, if X (t) is the load on a system
and b is the system resistance, then the system will fail
when X (t) first exceeds b. If this occurs at some time prior
to the design system lifetime, then the design has failed.
The objective in design, then, is to produce a system having
resistance b so that the time to failure Tf has sufficiently
small probability of being less than the design lifetime.

We can use the mean upcrossing rates to solve this
problem if we can determine the distribution of the time
between upcrossings. Note that the previous section only
gave the mean upcrossing rate, not the full distribution
of times between upcrossings. Cramer (1966) showed that
if X (t) is stationary and Gaussian, then the time between
upcrossings tends to a Poisson process for large thresholds
(b >> σX ). Let Nt be the number of upcrossings in time
interval t and let Tf be the time to the first upcrossing. If Nt

is a Poisson process, then it is parameterized by the mean
upcrossing rate ν+

b . Using the results of Section 1.9.5, we
know that the probability that Tf exceeds some prescribed
time t is

P
[
Tf > t

] = P [Nt = 0] = exp{−ν+
b t} (4.46)

4.2.4 Extremes

The largest or smallest values in a random sequence are
also of considerable interest in engineering. For example,
it is well known that failure tends to initiate at the low-
est strength regions of a material. The tensile strength of a
chain is a classic example. In geotechnical engineering, we
know that shear failures (e.g., bearing capacity, slope sta-
bility) will tend to occur along surfaces which pass through
regions where the ratio of shear strength to developed shear
stress is a minimum.

The classic treatment of extremes (see Section 1.11)
assumes that the random variables from which the extreme
is being selected are mutually independent. When the set
of random variables, X (t), is correlated with correlation
function ρX (τ ), then the distribution of the extreme becomes
considerably more complicated.

For example, if ρX (τ ) = 1 for all τ and X (t) is station-
ary, then X (t) = X for all t . That is, the random pro-
cess becomes equal to a single random variable at all
points in time—each realization of X (t) is completely uni-
form. If we observe a realization of X (t) at a sequence
of times X1, X2, . . . , Xn , then we will observe that all
X1, X2, . . . , Xn are identical and equal to X . In this case,
Yn = maxn

i=1 Xi = X , and the distribution of the maximum,
Yn , is just equal to the distribution of X ,

FY n (y) = FX (y) (4.47)

Contrast this result with that obtained when X1, X2, . . . , Xn

are independent, where, according to Eq. 1.199,

FY n (y) = [FX (y)]n

Apparently, in the case of a correlated sequence of Xi ’s,
the distribution of the maximum could be written as

FY n (y) = [FX (y)]neff (4.48)

where neff is the effective number of independent Xi ’s.
When the Xi ’s are independent, neff = n . When the Xi ’s are
completely correlated, neff = 1. The problem is determining
the value of neff for intermediate magnitudes of correlation.
Although determining neff remains an unsolved problem at
the time of writing, Eqs. 4.47 and 4.48 form useful bounds;
they also provide some guidelines, given knowledge about
the correlation, for the judgmental selection of neff.

Consider a stationary Gaussian process X (t) and let Y be
the maximum value that X (t) takes over some time interval
[0, t1]. Davenport (1964) gives the mean and standard
deviation of Y to be [see also Leadbetter et al. (1983) and
Berman (1992)]

µY = µX + σX

(
a + γ

a

)
(4.49a)

σY = σX

π

6a
(4.49b)

where γ = 0.577216 is Euler’s number, and for time inter-
val [0, t1],

a =
√

2 ln ν+
0 t1 (4.50)

and where ν+
0 is the mean upcrossing rate of the threshold

b = 0,

ν+
0 = 1

2π

σẊ

σX

(4.51)

If Y is the minimum value that X (t) takes over time interval
[0, t1], then the only thing which changes is the sign in
Eq. 4.49a,

µY = µX − σX

(
a + γ

a

)
(4.52)

Although these formulas do not give the entire distribution,
they are often useful for first- or second-order Taylor series
approximations. It should also be noted that they are only
accurate for large ν+

0 t1 >> 1. In particular Davenport’s
results assume asymptotic independence between values of
X (t), that is, it is assumed that t1 >> θ .

4.3 THRESHOLD EXCURSIONS IN TWO
DIMENSIONS

In two and higher dimensions, we are often interested in
asking questions regarding aspects such as the total area of
a random field which exceeds some threshold, the number
of excursion regions, and how clustered the excursion
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regions are. Unfortunately, theoretical results are not well
advanced in two and higher dimensions for thresholds
of practical interest (i.e., not of infinite height). In this
section, some of the existing theory is presented along
with some simulation-based estimates of the statistics of
threshold excursions and extrema. The treatment herein is
limited to the two-dimensional case, although the procedure
is easily extended to higher dimensions. Seven quantities
having to do with threshold excursions and extrema of two-
dimensional random fields are examined:

1. The number of isolated excursion regions (Nb)
2. The area of isolated excursion regions (Ae)
3. The total area of excursion regions within a given

domain (Ab =∑Nb
i=1 Aei )

4. The number of holes appearing in excursion
regions (Nh )

5. An integral geometric characteristic defined by Adler
(1981) (�)

6. A measure of “clustering” defined herein (�)
7. The distribution of the global maxima

These quantities will be estimated for a single class of
random functions, namely Gaussian processes with Marko-
vian covariance structure (Gauss–Markov processes), over
a range of correlation lengths and threshold heights. In the
following, the threshold height is expressed as bσX , that is,
b is now in units of the standard deviation of the random
field.

Within a given domain V = [0, T1] × [0, T2] of area AT ,
the total excursion area Ab can be defined by

Ab =
∫

V
IV

(
X (t) − bσX

)
d t (4.53)

where bσX is the threshold of interest, σ 2
X being the variance

of the random field, and IV(·) is an indicator function
defined on V ,

IV(t) =
{

1 if t ≥ 0

0 if t < 0
(4.54)

For a stationary process, the expected value of Ab is simply

E [Ab] = AT P [X (0) ≥ bσX ] (4.55)

which, for a zero-mean Gaussian process, yields

E [Ab ] = AT [1 − �(b)] (4.56)

where � is the standard normal distribution function. The
total excursion area Ab is made up of the areas of isolated
(disjoint) excursions Ae as follows:

Ab =
Nb∑

i=1

Aei (4.57)

for which the isolated excursion regions can be defined
using a point set representation:

Aei = {t ∈ V : X (t) ≥ bσX , t �∈ Aej ∀j �= i }
Aei = L(Aei ) (4.58)

where L(Aei ) denotes the Lebesque measure (area) of the
point set Aei . Given this definition, Vanmarcke (1984)
expresses the expected area of isolated excursions as a
function of the second-order spectral moments

E [Aei ] = 2π

(
F c(bσX )

f (bσX )

)2

|�11|−1/2 (4.59)

in which F c is the complementary distribution function
[for a Gaussian process, F c(bσX ) = 1 − �(b)], f is the
corresponding probability density function, and �11 is the
matrix of second-order spectral moments with determinant
|�11|, where

�11 =
[
λ20 λ11

λ11 λ02

]
(4.60)

Equation 4.59 assumes that the threshold is sufficiently
high so that the pattern of occurrence of excursions tends
toward a two-dimensional Poisson point process. The joint
spectral moments λk� can be obtained either by integrating
the spectral density function,

λk� =
∫ ∞

∞

∫ ∞

∞
ωk

1 ω�
2 SX (ω1, ω2) dω1 dω2 (4.61)

or through the partial derivatives of the covariance function
evaluated at the origin,

λk� = −
[
∂k+�CX (τ )

∂τ k
1 ∂τ �

2

]

τ= 0

(4.62)

The above relations presume the existence of the second-
order spectral moments of X (t), which is a feature of
a mean square differentiable process. A necessary and
sufficient condition for mean square differentiability is (see
Section 4.2.1)

[
∂CX (τ )

∂τ1

]

τ= 0
=
[

∂C (τ )

∂τ2

]

τ= 0
= 0 (4.63)

A quick check of the Gauss–Markov process whose covari-
ance function is given by

B(τ ) = σ 2 exp

{
−2

θ
|τ |
}

(4.64)

verifies that it is not mean square differentiable. Most of the
existing theories governing extrema or excursion regions
of random fields depend on this property. Other popular
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models which are not mean square differentiable and so
remain intractable in this respect are:

1. Ideal white noise process
2. Moving average of ideal white noise
3. Fractal processes

4.3.1 Local Average Processes

One of the major motivations for the development of local
average theory for random processes is to convert random
functions which are not mean square differentiable into pro-
cesses which are. Vanmarcke (1984) shows that even a very
small amount of local averaging will produce finite co-
variances of the derivative process. For a two-dimensional
local average process XD (t) formed by averaging X (t) over
D = T1 × T2, Vanmarcke presents the following relation-
ships for the variance of the derivative process ẊD in the
two coordinate directions:

Var
[
Ẋ (1)

D

]
= 2

T 2
1

σ 2γ (T2)[1 − ρ(T1|T2)] (4.65)

Var
[
Ẋ (2)

D

]
= 2

T 2
2

σ 2γ (T1)[1 − ρ(T2|T1)] (4.66)

where,

Ẋ (i )
D = ∂

∂ti
XD (t), γ (T1) = γ (T1, 0),

γ (T2) = γ (0, T2)

ρ(Ti |Tj ) = 1

T 2
j σ 2γ (Tj )

∫ Tj

−Tj

(Tj − |τj |) CX (Ti , τj ) dτj

(4.67)
Furthermore, Vanmarcke shows that the joint second-order
spectral moment of the local average process is always zero
for D > 0, that is,

Cov
[
Ẋ (1)

D , Ẋ (2)
D

]
= 0, ∀D > 0 (4.68)

This result implies that the determinant of the second-order
spectral moment matrix for the local average process can be
expressed as the product of the two directional derivative
process variances,

|�11,D |1/2 = σ 2
ẊD

=
(

Var
[
Ẋ (1)

D

]
Var
[
Ẋ (2)

D

])1/2

(4.69)

Since the theory governing statistics of threshold excur-
sions and extrema for mean square differentiable random
functions is reasonably well established for high thresholds
[see, e.g., Cramer and Leadbetter (1967), Adler (1981), and
Vanmarcke (1984)], attention will now be focused on an
empirical and theoretical determination of similar measures
for processes which are not mean square differentiable. This

will be accomplished through the use of a small amount of
local averaging employing the results just stated. In partic-
ular, the seven quantities specified at the beginning of this
section will be evaluated for the two-dimensional isotropic
Markov process

CX (τ1, τ2) = σ 2
X exp

{
−2

θ

√
τ 2

1 + τ 2
2

}
(4.70)

realizations of which will be generated using the two-
dimensional local average subdivision (LAS) method de-
scribed in Section 6.4.6. Since the LAS approach auto-
matically involves local averaging of the non–mean square
differentiable point process (4.70), the realizations will in
fact be drawn from a mean square differentiable process.
The subscript D will be used to stress the fact that the re-
sults will be for the local average process and ZD denotes
a realization of the local average process.

4.3.2 Analysis of Realizations

Two-dimensional LAS-generated realizations of stationary,
zero-mean, isotropic, Gaussian processes are to be analyzed
individually to determine various properties of the discrete
binary field, Y , defined by

Yjk ,D = IV

(
Zjk ,D − bσD

)
(4.71)

where subscripts j and k indicate spatial position (t1j , t2k ) =
(j	t1, k	t2) and σD is the standard deviation of the local
average process. The indicator function IV is given by (4.54)
and so YD (x) has value 1 where the function ZD exceeds the
threshold and 0 elsewhere. In the following, each discrete
value of Yjk ,D will be referred to as a pixel which is “on” if
Yjk ,D = 1 and “off” if Yjk ,D = 0. A space-filling algorithm
was devised and implemented to both determine the area
of each simply connected isolated excursion region, Aei ,D ,
according to (4.58), and find the number of “holes” in these
regions. In this case, the Lebesque measure is simply

Aei ,D = L(Aei ,D ) =
∑

	Aei ,D (4.72)

where

	Aei ,D = IAei ,D

(
ZD (x) − bσD

)
	A (4.73)

is just the incremental area of each pixel which is on within
the discrete set of points Aei ,D constituting the i th simply
connected region. In practice, the sum is performed only
over those pixels which are elements of the set Aei ,D .
Note that the area determined in this fashion is typically
slightly less than that obtained by computing the area within
a smooth contour obtained by linear interpolation. The
difference, however, is expected to be minor at a suitably
fine level of resolution.
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(a) (b)

(c) (d)

Figure 4.5 Examples of weakly surrounded holes: (a) and (b)
are found to be holes while (c) and (d) are not.

A hole is defined as a set of one or more contiguous off
pixels which are surrounded by on pixels. With reference
to Figure 4.5, it can be seen that situations arise in which
the hole is only “weakly” surrounded by on pixels. The
algorithm was devised in such a way that only about
half of these weakly surrounded regions are determined
to be holes. In addition, if an off region intersects with
the boundary of the domain, then it is not classified as
a hole even if it is surrounded on all other sides by on
regions. The fields to be generated will have resolution
128 × 128 and physical size 5 × 5. This gives a fairly
small averaging domain having edge sizes of T1 = T2 = 5

128
for which the variance function corresponding to Eq. 4.70
ranges in value from 0.971 to 0.999 for θ = 1

2 to θ = 4. In
all cases, σ 2

X = 1 in Eq. 4.70 so that σ 2
D equals the variance

function.
Figure 4.6 shows a typical realization of the binary field

Y obtained by determining the b = 1 excursion regions of
Z for a correlation length θ = 1

2 . Also shown in Figure 4.6
are the b = 1 contours which follow very closely the on
regions. The centroid of each excursion is marked with a
darker pixel.

In the sections to follow, trial functions are matched
to the observed data and their parameters estimated. All
curve fitting was performed by visual matching since it
was found that existing least squares techniques for fitting
complex nonlinear functions were in general unsatisfactory.
In most cases the statistics were obtained as averages from
400 realizations.

4.3.3 Total Area of Excursion Regions

Since an exact relationship for the expected total area of
excursion regions within a given domain, (4.56), is known
for a Gaussian process, an estimation of this quantity from

0 1 2 3 4 5
x

0
1

2
3

4
5

y

Figure 4.6 Sample function of binary field Y (Eq. 4.71). Re-
gions shown in gray represent regions of Z which exceed the
threshold b = 1σD , where Z is generated via the two-dimensional
LAS algorithm according to Eq. 4.70 with θ = 1

2 . Since Z is nor-
mally distributed, the gray regions on average occupy about 16%
of the field.

a series of realizations represents a further check on the
accuracy of the simulation method. Figure 4.7 shows the
normalized average total area of excursions, Ab,D/AT , for
AT = 25. Here and to follow, the overbar denotes the
quantity obtained by averaging over the realizations. The
estimated area ratios show excellent agreement with the
exact relationship.

4.3.4 Expected Number of Isolated Excursions

Figure 4.8 shows the average number of isolated excursion
regions observed within the domain, N b,D , as a function of
scale and threshold. Here the word “observed” will be used
to denote the average number of excursion regions seen in
the individual realizations. A similar definition will apply to
other quantities of interest in the remainder of the chapter.
The observed N b,D is seen in Figure 4.8 to be a relatively
smooth function defined all the way out to thresholds in
excess of 3σD .

An attempt can be made to fit the theoretical results
which describe the mean number of excursions of a local
average process above a relatively high threshold to the data
shown in Figure 4.8. As we shall see, the theory for high
thresholds is really only appropriate for high thresholds,
as expected, and does not match well the results at lower
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Figure 4.7 Average total area of excursion ratio, Ab,D/AT , as a function of threshold b.
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Figure 4.8 Average number of isolated excursions, N b,D , estimated from 400 realizations of the
locally averaged two-dimensional Gauss–Markov process (Eq. 4.70).

thresholds. At high thresholds, the expected number of
excursions is predicted by (Vanmarcke, 1984)

E
[
Nb,D

] = AT f 2
D (bσD )

2π F c
D (bσD )

σ 2
ŻD

(4.74)

in which fD and F c
D are the pdf and complementary cdf

of the local average process, respectively, and σ 2
ŻD

is
the geometric average of the directional variances of the
derivative process as defined by Eq. 4.69. For the Gaussian
process, Eq. 4.74 becomes

E
[
Nb,D

] = AT e−b2

4π2σ 2
D [1 − �(b)]

σ 2
ŻD

(4.75)

To determine σ 2
ŻD

the functions ρ(T1|T2) and ρ(T2|T1) must
first be calculated using Eq. 4.67. Consider ρ(T1|T2) for the

quadrant-symmetric Gauss–Markov process

ρ(T1|T2) = 2

T 2
2 σ 2γ (T2)

∫ T2

0
(T2 − τ2) B(T1, τ2) dτ2

= 2

T 2
2 γ (T2)

∫ T2

0
(T2 − τ2) exp{− 2

θ

√
T 2

1 + τ 2
2 } dτ2

Making the substitution r2 = T 2
1 + τ 2

2 gives

ρ(T1|T2) = 2

T 2
2 σ 2γ (T2)

√
T 2

1 +T 2
2∫

T1

[
T2 re−2r/θ

√
r2 − T 2

1

− re−2r/θ

]
dr

To avoid trying to numerically integrate a function with a
singularity at its lower bound, the first term in the integrand
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can be evaluated as follows:

√
T 2

1 +T 2
2∫

T1

T2 re−2r/θ

√
r2 − T 2

1

dr

=
∫ ∞

T1

T2 re−2r/θ

√
r2 − T 2

1

dr −
∞∫

√
T 2

1 +T 2
2

T2 re−2r/θ

√
r2 − T 2

1

dr

= T2T1K1

(
2T1
θ

)
−

a∫

√
T 2

1 +T 2
2

T2 re−2r/θ

√
r2 − T 2

1

dr

−
∫ ∞

a

T2 re−2r/θ

√
r2 − T 2

1

dr

The second integral on the RHS can now be evaluated
numerically, and for a chosen sufficiently large, the last
integral has the simple approximation 1

2θT2 exp{−2a/θ}.
The function K1 is the modified Bessel function of or-
der 1. Unfortunately, for small T1, the evaluation of this
integral is extremely delicate as it involves the small dif-
ferences of very large numbers. An error of only 0.1% in
the estimation of either K1 or the integrals on the RHS
can result in a drastic change in the value of σ 2

ŻD
, particu-

larly at larger correlation lengths. The results in Table 4.2
were obtained using T1 = T2 = 5

128 , for which ρ(T1|T2) =
ρ(T2|T1), and a 20-point Gaussian quadrature integration
scheme.

Using these variances, Eq. 4.74 was plotted against the
observed N b,D in Figure 4.9. The relatively poor agreement
achieved may be as a result of the combination of the dif-
ficulty in accurately determining σ 2

ŻD
for small averaging

dimensions and the fact that Eq. 4.74 is an asymptotic re-
lationship, valid only for b → ∞. A much better fit in the
tails (b > 1.5) was obtained using the empirically deter-
mined values of σ 2

ŻD
shown in Table 4.3 (see page 146),

which are typically about one-half to one-third those shown

Table 4.2 Computed Variances of Local Average
Derivative Process

Scale ρ(T1|T2) σ 2
ŻD

0.5 0.8482 196.18
1.0 0.9193 105.18
2.0 0.9592 53.32
3.0 0.9741 33.95
4.0 0.9822 23.30

in Table 4.2. Using these values, the fit is still relatively
poor at lower thresholds.

An alternative approach to the description of N b,D in-
volves selecting a trial function and determining its param-
eters. A trial function of the form

N b,D � AT (a1 + a2 b) exp{− 1
2 b2} (4.76)

where the symbol � is used to denote an empirical rela-
tionship, was chosen, and a much closer fit to the observed
data, as shown in Figure 4.10, was obtained using the coef-
ficients shown in Table 4.3. The functional form of Eq. 4.76
was chosen so that it exhibits the correct trends beyond the
range of thresholds for which its coefficients were derived.

4.3.5 Expected Area of Isolated Excursions

Within each realization, the average area of isolated excur-
sions, Ae,D , is obtained by dividing the total excursion area
by the number of isolated areas. Further averaging over the
400 realizations leads to the mean excursion areas shown
in Figure 4.11 which are again referred to as the observed
results. The empirical relationship of the previous section,
Eq. 4.76, can be used along with the theoretically expected
total excursion area (Eq. 4.56) to obtain the semiempirical
relationship

Ae,D � [1 − �(b)] e
1
2 b2

a1 + a2 b
(4.77)

which is compared to the observed data in Figure 4.12
and is seen to show very good agreement. For relatively
high thresholds, dividing (4.56) by (4.75) and assuming
independence between the number of regions and their total
size yield the expected area to be

E
[
Ae,D

] = 4π2[1 − �(b)]2 eb2

(
σ 2

D

σ 2
ŻD

)
(4.78)

Again the use of σ 2
ŻD

, as calculated from Eq. 4.69, gives
a rather poor fit. Using the empirically derived variances
shown in Table 4.3 improves the fit in the tails, as shown
in Figure 4.13, but loses accuracy at lower thresholds for
most scales.

4.3.6 Expected Number of Holes Appearing in
Excursion Regions

In problems such as liquefaction or slope stability, we might
be interested in determining how many strong regions ap-
pear in the site to help prevent global failure (see, e.g.,
Chapter 16). If excursion regions correspond to soil failure
(in some sense), then holes in the excursion field would
correspond to higher strength soil regions which do not fail
and which help resist global failure. In this section, we look
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Figure 4.9 Comparison of theoretical fit by Eq. 4.75 with the observed average number of isolated excursions obtained by simulation.

at the number of holes (off regions surrounded by on re-
gions) appearing in excursion regions. Since the data are
being gathered via simulation, an empirical measure relat-
ing the average number of holes, N h,D , with the threshold
height and the correlation length is derived here. The esti-
mated N h,D curves, obtained by finding the number of holes
in each realization and averaging over 400 realizations, are

shown in Figure 4.14. The empirical model used to fit these
curves is

N h,D � AT (h1 + h2 b)[1 − �(b)] (4.79)

where the parameters giving the best fit are shown in
Table 4.4 and the comparison is made in Figure 4.15.
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Figure 4.10 Comparison of empirical fit by Eq. 4.76 with the observed average number of isolated excursions obtained by simulation.

4.3.7 Integral Geometric Characteristic
of Two-Dimensional Random Fields

In his thorough treatment of the geometric properties of
random fields, Adler (1981) developed a so-called inte-
gral geometric (IG) characteristic �(Ab,D) as a statistical
measure of two-dimensional random fields. The definition

of �(Ab,D ) will be shown here specifically for the two-
dimensional case, although a much more general definition
is given by Adler. First, using a point set representation,
the excursion set Ab,D can be defined as the set of points
in V = [0, T1] × [0, T2] for which ZD (x) ≥ bσD ,

Ab,D = {t ∈ V : ZD (t) ≥ bσD} (4.80)
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Table 4.3 Empirically Determined Parameters
of Eq. 4.76 and Variances of Derivative Process

Scale a1 a2 σ 2
ŻD

0.5 3.70 5.20 90.0
1.0 2.05 1.90 40.0
2.0 1.18 0.65 17.5
3.0 0.81 0.41 11.3
4.0 0.66 0.29 8.5

The Hadwiger characteristic of Ab,D , ϕ(Ab,D ), is equal to
the number of connected components of Ab,D (the number
of isolated excursion regions) minus the number of holes
in Ab,D . Finally, if V̂ is defined as the edges of V which
pass through the origin (the coordinate axes), then the IG
characteristic is formally defined as

�(Ab,D) = ϕ(Ab,D ) − ϕ(Ab,D ∩ V̂) (4.81)

Essentially, �(Ab,D ) is equal to the number of isolated ex-
cursion areas which do not intersect the coordinate axes
minus the number of holes in them. Figure 4.16 shows the
average value of the IG characteristic, �(Ab,D ), obtained
from the locally averaged Gauss–Markov process realiza-
tions.

Adler presented an analytic result for the expected value
of �(Ab,D ) which has been modified here to account for
local averaging of a Gaussian process,

E
[
�(Ab,D)

] = bAT

(2π )3/2 σ 2
D

exp

{
−1

2
b2
}

σ 2
ŻD

(4.82)

Figure 4.17 shows the comparison between Eq. 4.82 and
the observed data using the empirically estimated variances
σ 2

ŻD
shown in Table 4.3. The fit at higher thresholds appears

to be quite reasonable. Using a function of the same form
as Eq. 4.76,

�(Ab,D ) � AT (g1 + g2b) exp{− 1
2 b2}, (4.83)

yields a much closer fit over the entire range of thresholds
by using the empirically determined parameters shown in
Table 4.5. Figure 4.18 illustrates the comparison.

4.3.8 Clustering of Excursion Regions

Once the total area of an excursion and the number of com-
ponents which make it up have been determined, a natural
question to ask is how the components are distributed: Do
they tend to be clustered together or are they more uni-
formly distributed throughout the domain? When liquefiable
soil pockets tend to occur well separated by stronger soil re-
gions, the risk of global failure is reduced. However, if the
liquefiable regions are clustered together, the likelihood of
a large soil region liquefying is increased. Similarly, weak
zones in a soil slope or under a footing do not necessarily
represent a problem if they are evenly distributed through-
out a stronger soil matrix; however, if the weak zones are
clustered together, then they could easily lead to a failure
mechanism.

It would be useful to define a measure, herein called
�, which varies from 0 to 1 and denotes the degree
of clustering, 0 corresponding to a uniform distribution
and larger values corresponding to denser clustering. The
determination of such a measure involves first defining
a reference domain within which the measure will be
calculated. This is necessary since a stationary process over
infinite space always has excursion regions throughout the
space. On such a scale, the regions will always appear
uniformly distributed (unless the correlation length also
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Figure 4.11 Average area of isolated excursion regions estimated from 400 realizations of the
locally averaged two-dimensional Gauss–Markov process.
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Figure 4.12 Comparison of semiempirical fit by Eq. 4.77 with the observed average area of isolated excursions obtained by simulation.

approaches infinity). For example, at scales approaching
the boundaries of the known universe, the distribution of
galaxies appears very uniform. It is only when attention is
restricted to smaller volumes of space that one begins to
see the local clustering of stars. Thus an examination of
the tendency of excursions to occur in groups must involve
a comparison within the reference domain of the existing

pattern of excursions against the two extremes of uniform
distribution and perfect clustering.

A definition for � which satisfies these criteria can be
stated as

� = Ju − Jb

Ju − Jc
(4.84)
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Figure 4.13 Comparison of fit by Eq. 4.78 using empirically derived variances σ 2
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with observed
average area of isolated excursions obtained by simulation.
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Figure 4.14 Average number of holes appearing in excursion regions.

where Jb is the polar moment of inertia of the excursion
areas about their combined centroid, Jc is the polar moment
of inertia of all the excursion areas concentrated within a
circle, and Ju is the polar moment of inertia about the same
centroid if the excursion area were distributed uniformly
throughout the domain. Specifically

Jb =
Nb,D∑

i

Jei + Aei ,D |xb − xi |2 (4.85)

Jei =
∑

j

	Aei ,D |xi − xj |2 (4.86)

Ju = Ab,D

AT

∫

V
|xb − x|2 dx (4.87)

Jc = A2
b,D

2π
(4.88)

where Jei is the polar moment of inertia of the i th excursion
region of area Aei about its own centroid, xi ; 	Aei ,D is
as defined by Eq. 4.73 and xb is the centroid of all the
excursion regions. The second moment of area was used in
the definition since it is invariant under rotations. It can be
easily seen that this definition will result in � = 0 when the
excursion regions are uniformly distributed over the space
(Jb → Ju ) and � → 1 when the excursion regions are
clustered within a small region (Jb → Jc). It is also possible
for � to take negative values, indicating the occurrence of
two local clusters at opposite sides of the domain. This
information is just as valuable as positive values for � but
in practice has not been observed to occur on average.

All that remains is to define � in the limiting cases.
Equation 4.84 ensures that � will be quite close to 1
in the case of only a single excursion region. It seems
natural then to take � = 1 if no excursions occur. At the
other extreme, as Ab,D → AT , both the denominator and
numerator of Eq. 4.84 become very small. Although the
limit for noncircular domains is zero, it appears that the
measure becomes somewhat unstable as Ab,D → AT . This
situation is of limited interest since the cluster measure
of a domain which entirely exceeds a threshold has little
meaning. It is primarily a measure of the scatter of isolated
excursions.

Individual realizations were analyzed to determine the
cluster measure � and then averaged over 200 realiza-
tions to obtain the results shown in Figure 4.19. Definite,
relatively smooth trends both with correlation length and
threshold height are evident, indicating that the measure
might be useful in categorizing the degree of clustering.

4.3.9 Extremes in Two Dimensions

Extracting the maximum value from each realization of the
random field, ZD , allows the estimation of its corresponding
probability density function (or equivalently the cumulative
distribution) with reasonable accuracy given a sufficient
number of realizations. A total of 2200 realizations of the
locally averaged Gauss–Markov process were generated for
each correlation length considered. Conceptually it is not
unreasonable to expect the cumulative distribution of the
global maximum Fmax(b) to have the form of an extreme-
value distribution for a Gaussian process

Fmax(b) = [�(b)]neff (4.89)



150 4 BEST ESTIMATES, EXCURSIONS, AND AVERAGES

q = 0.5

q = 1.0

q = 2.0

q = 3.0

q = 4.0

0 1 2 3 4

Threshold  b (s)

0
10

20

Observed
Fitted

0 1 2 3 4

Threshold  b (s)

0
10

20

Observed
Fitted

0 1 2 3 4

Threshold  b (s)

0
10

20

Observed
Fitted

0 1 2 3 4

Threshold  b (s)

0
20

40

Observed
Fitted

0 1 2 3 4

Threshold  b (s)

0
30

60

Observed
Fitted

N
h,

D
N

h,
D

N
h,

D
N

h,
D

N
h,

D

Figure 4.15 Comparison of empirical fit by Eq. 4.79 with observed average number of holes obtained by simulation.

where neff is the effective number of independent sam-
ples in each realization estimated by fitting Eq. 4.89 to the
empirical cumulative distribution function at its midpoint.
As the correlation length approaches zero, neff should ap-
proach the total number of field points (128 × 128), and

as the scale becomes much larger than the field size, neff

is expected to approach 1 (when the field becomes to-
tally correlated). Except at the shortest correlation length
considered, θ = 0.5, the function defined by Eq. 4.89 was
disappointing in its match with the cdf obtained from the
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Table 4.4 Empirically Determined Parameters of
Eq. 4.79 Based on Observed Average Number of Holes
Obtained by Simulation

Correlation
Length h1 h2

0.5 4.45 −2.00
1.0 2.49 −0.55
2.0 1.39 0.06
3.0 0.97 0.25
4.0 0.80 0.28

realizations. Figure 4.20 illustrates the comparison for the
empirically determined values of neff shown in Table 4.6.
The better fit at the smallest correlation length is to be ex-
pected since at very small scales the field consists of a set
of (almost) independent random variables and thus satisfies
the conditions under which Eq. 4.89 theoretically applies.
Not surprisingly, an improved match is obtained using a
two-parameter type I extreme-value distribution having the
double-exponential form

Fmax(b) = exp{−e−α(b−µ)} (4.90)

where the parameters α and µ, estimated by an order
statistics method developed by Leiblein (1954) using the
simulation data, are presented in Table 4.6 for each corre-
lation length. The comparison between the simulation-based
cumulative distribution and that predicted by the type I
extreme-value distribution is shown in Figure 4.21.

4.4 AVERAGES

We often wish to characterize random fields by averag-
ing them over certain domains. For example, when arriv-
ing at characteristic soil properties for use in design (see
Chapter 7), we usually collect field data and then use some
sort of (possibly factored) average of the data as the rep-
resentative value in the design process. The representative
value has traditionally been based on the arithmetic aver-
age. However, two other types of averages have importance
in geotechnical engineering: geometric and harmonic aver-
ages. All three averages are discussed next.

4.4.1 Arithmetic Average

The classical estimate of the central tendency of a random
process is the arithmetic average, which is defined as

XA =






1

n

n∑

i=1

Xi (discrete data)

1

T

∫

T
X (x) dx (continuous data)

(4.91)

where T is the domain over which the continuous data
are collected. The arithmetic average has the following
properties:

1. XA is an unbiased estimate of the true mean, µX . That
is, E [XA] = µX .

2. XA tends to have a normal distribution by the central
limit theorem (see Section 1.10.8.1).

3. All observations are weighted equally, that is, are
assumed to be equi-likely. Note that the true mean
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Figure 4.16 Average values of Adler’s IG characteristic � obtained from 400 realizations of the
locally averaged Gauss–Markov process.
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Table 4.5 Empirically Determined Parameters of
Eq. 4.83 Based on Observed Average IG Characteristic
� Obtained by Simulation

Scale g1 g2

0.5 2.70 5.10
1.0 1.50 1.80
2.0 0.87 0.58
3.0 0.61 0.32
4.0 0.50 0.22

is defined as a weighted average

µX =
∫

all x
x fX (x ) dx

so that XA is simply saying that the true distribution is
unknown and assumed to be uniform. This assumption
also means that low and high values are weighted
equally and tend to cancel one another out (which is
why XA is an unbiased estimate of µX ).

4. The variance of XA depends on the degree of cor-
relation between all the X (x) values going into the
average. As discussed in Section 3.4, the variance of
XA can be expressed as

Var [XA] = σ 2
X γ (T )

where γ (T ) is the variance reduction function defined
by Eqs. 3.40–3.42.

4.4.2 Geometric Average

The geometric average is defined as the nth root of
the product of n (nonnegative) random variables. Us-
ing this definition, the discrete set of random variables
X1, X2, . . . , Xn has geometric average

XG = (X1X2 · · · Xn)1/n (4.92)

This average is not well defined if the X ’s can be negative
since the sign then becomes dependent on the number of
negative values in the product, which may also be random.
In this case, the geometric average may become imaginary.
Thus, its use should be restricted to nonnegative random
fields, as are most geotechnical properties.

The natural logarithm of XG is

ln XG = 1

n

n∑

i=1

ln Xi (4.93)

which is the average of the ln X values. Taking expectations
gives the mean of ln XG to be

E [ln XG ] = µln XG = µln X

In other words, the geometric average preserves the mean
of ln X (just as the arithmetic average preserves the mean
of X ).

If Eq. 4.93 is made a power of e, we get an alternative
way of computing the geometric average,

XG = exp

{
1

n

n∑

i=1

ln Xi

}
(4.94)

This latter expression is useful if X is a continuously vary-
ing spatial (and/or temporal) random field being averaged
over some domain T , in which case the geometric average
becomes its continuous equivalent,

XG = exp

{
1

T

∫

T
ln X (x) dx

}
(4.95)

Some properties of the geometric average are as follows:

1. XG weights low values more heavily than high values
(low value dominated). This can be seen by con-
sidering what happens to the geometric average, see
Eq. 4.92, if even a single Xi value is zero—XG will
become zero. Notice that XA would be only slightly
affected by a zero value. This property of being low-
value dominated makes the geometric average useful
in situations where the system behavior is dominated
by low-strength regions in a soil (e.g., settlement,
bearing capacity, seepage).

2. XG tends to a lognormal distribution by the central
limit theorem. To see this, notice that ln XG is a sum
of random variables, as seen in Eq. 4.93, which the
central limit theorem tells us will tend to a normal
distribution. If ln XG is (at least approximately) nor-
mally distributed, then XG is (at least approximately)
lognormally distributed.

3. if X is lognormally distributed, then its geometric
average XG is also lognormally distributed with the
same median.

The second property is important since it says that low-
strength-dominated geotechnical problems, which can be
characterized using a geometric average, will tend to follow
a lognormal distribution. This may explain the general
success of the lognormal distribution in modeling soil
properties.

If XG is lognormally distributed, its mean and variance
are found by first finding the mean and variance of ln XG ,
where in the continuous case

ln XG = 1

T

∫

T
ln X (x) dx (4.96)

Assuming that X (x) is stationary, then taking expectations
of both sides of the above equation leads to

µln X G = µln X (4.97)
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Figure 4.17 Comparison of theoretically predicted IG characteristic (Eq. 4.82) with observed average values obtained by simulation.

We note that since the median of a lognormally distributed
random variable, X , is exp {µln X }, we see that the median
of XG is equal to the median of X . In other words, geomet-
ric averaging of a lognormally distributed random field, X ,
preserves both the type of the distribution and its median
(this is analogous to arithmetic averaging of a normally dis-
tributed random field; the result is also normally distributed

with the mean preserved). The preservation of the median
of X is equivalent to the preservation of the mean of ln X .

The variance of ln XG is given by

σ 2
ln X G

= σ 2
ln X γ (T ) (4.98)

where γ (T ) is the variance reduction function defined for
the ln X random field when arithmetically averaged over
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Figure 4.18 Comparison of empirically predicted IG characteristic (Eq. 4.83) with observed average values obtained by simulation.

the domain T . For example, if θln X is the correlation
length of the ln X field and ρln X (τ ; θln X ) is its correlation
structure, then, from Eq. 3.40, we get

γ (T ) = 1

|T |2
∫

T

∫

T
ρln X (ξ − η; θln X ) dξ dη (4.99)

where T may be a multidimensional domain and |T | is
its volume. The correlation length θln X can be estimated
from observations X1, X2, . . . , Xn taken from the random
field X (x) simply by first converting all of the observations
to ln X1, ln X2, . . . , ln Xn and performing the required statis-
tical analyses (see Chapter 5) on the converted data set.
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Figure 4.19 Average values of cluster measure � estimated from 200 realizations of locally averaged Gauss–Markov process.

Table 4.6 Empirically Determined Effective Number
of Independent Samples neff and Parameters of Type I
Extreme Distribution (Eq. 4.90)

Scale neff α µ

0.5 2900 3.14 3.41
1.0 900 2.49 3.05
2.0 180 2.05 2.52
3.0 70 1.78 2.15
4.0 35 1.62 1.86

Finally, the correlation function in logarithmic space can
be converted to a correlation function in real space using
Eq. 3.3,

ρX (τ ) = exp
{
σ 2

ln X ρln X (τ )
}− 1

exp
{
σ 2

ln X

}− 1
(4.100)

For most random fields, the two correlation functions are
quite similar and θX 
 θln X .

Once the mean and variance of ln XG have been com-
puted, using Eqs. 4.97 and 4.98, lognormal transformations
(Eq. 1.175) can be used to find the mean and variance of XG :

µX G = exp
{
µln X + 1

2σ 2
ln X γ (T )

} = µX√(
1 + v2

X

)1−γ (T )

(4.101a)

σ 2
X G

= µ2
X G

[
exp

{
σ 2

ln X γ (T )
}− 1

]
= µ2

X G

[(
1 + v2

X

)γ (T )
]

(4.101b)

where vX = σX /µX is the coefficient of variation of X . No-
tice that the mean of the geometric average decreases as

vX increases. As the correlation length θln X increases, rel-
ative to the size of the averaging domain, T , the value
of γ (T ) increases towards 1 (there is less independence
between random variables in domain T , so there is less
variance reduction). For strongly correlated random fields,
then, the mean of the geometric average tends toward the
global mean µX . At the other end of the scale, for poorly
correlated random fields, where θln X << T , the variance re-
duction function γ (T ) → 0 and the mean of the geometric
average tends towards the median.

4.4.3 Harmonic Average

The harmonic average is particularly important in geotech-
nical engineering because it can be shown to be the exact
average to use for several common geotechnical problems.
Examples are (a) the settlement of a perfectly horizontally
layered soil mass subject to uniform surface loading and
(b) one-dimensional seepage through a soil. The harmonic
average is defined by

XH =






[
1

n

n∑

i=1

1

Xi

]−1

(discrete case) (4.102a)

[
1

T

∫

T

dx
X (x)

]−1

(continuous case) (4.102b)

Example 4.5 Consider the layered soil shown in Fig-
ure 4.22 subjected to a surface stress σ . The elastic modulus
of the i th layer is Ei . If the total settlement δ is expressed as

δ = σH

Eeff

derive Eeff .
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Figure 4.20 Observed cumulative distribution of global maximum of each realization compared
to one-parameter extreme-value distribution given by Eq. 4.89.
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Figure 4.21 Observed cumulative distribution of global maximum of each realization compared to type I distribution given by Eq. 4.90.
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Figure 4.22 Settlement of perfectly horizontally layered soil.

SOLUTION We will assume that the load is uniformly
distributed over a much wider area than seen in Figure 4.22,
so that we can assume that the stress remains constant with
depth. In this case, the settlement of the i th layer is

δi = σ 	zi

Ei

The total settlement is the sum of individual layer settle-
ments,

δ =
n∑

i=1

σ 	zi

Ei

Equating this to σH /Eeff gives us

Eeff =
[

1

H

n∑

i=1

	zi

Ei

]−1

Finally, if the layer thicknesses are equal, then H = n 	z
and

Eeff =
[

1

n

n∑

i=1

1

Ei

]−1

which is the harmonic average (discrete case) defined
above.

We can see from Eq. 4.102 that if any of the X values
are zero, the harmonic average becomes zero. In fact,
the harmonic average is even more strongly low-value
dominated than is the geometric average. Unfortunately,
the harmonic average is difficult to deal with from a
probabilistic point of view since it has no known limiting
distribution and its mean and variance are difficult to
compute. When X is lognormally distributed, the lognormal
distribution has been found to provide a reasonably good fit
to the harmonic average for common types of random fields.
Figure 4.23 illustrates the agreement between the frequency
density plot of realizations of the harmonic average and a
fitted lognormal distribution.
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Figure 4.23 Frequency density plot of harmonic averages over
area T 2 for vX = 0.5 and θln X = 0.5T along with fitted lognormal
distribution.

10−1
2 4 6 8

100
2 4 6 8

101

s/m

−4
−3

−2
−1

0

m
ln

 X
h

s
ln

 X
h

q =  0.1
q =  0.2
q =  0.5
q =  1.0
q =  2.0
q =  5.0
q = 10.0

0
0.

5
1

1.
5

2

q =  0.10
q =  0.20
q =  0.50
q =  1.00
q =  2.00
q =  5.00
q = 10.00

10−1
2 4 6 8

100
2 4 6 8

101

s/m

Figure 4.24 Mean and standard deviation of log-harmonic av-
erages estimated from 5000 realizations (µX = 1.0).



AVERAGES 159

0

0.5

1

x10

0.5

1

x
2

−2
.0

2.
0

X
(x

1,
 x

2)

Figure 4.25 Sample two-dimensional random field having mean
1.0 and correlation length θ = 0.2

Assuming that the harmonic average is at least ap-
proximately lognormally distributed, all that remains is to
determine its two parameters, µln X H and σln X H . The authors
have not found analytical approaches (beyond first order)
to determine these quantities. Figure 4.24 illustrates how
the mean and standard deviation of the harmonic average
change with changing coefficient of variation and correla-
tion length. These plots were obtained by simulating 5000
realizations of random fields of dimension T × T and com-
puting their harmonic averages. Notice how the mean drops
rapidly with increasing variability.

4.4.4 Comparison

Consider a two-dimensional random field of size 1 × 1,
as illustrated in Figure 4.25. If we compute the average
of the field shown in Figure 4.25 using the arithmetic,
geometric, and harmonic averages, we will get three dif-
ferent values. As the variability of the random field is
increased, the typical distance between the highs and lows
increases. In turn, both the geometric and harmonic aver-
ages will decrease, since these are dominated by the low
values.
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Figure 4.26 Comparison of arithmetic, geometric, and harmonic
averages taken over a 1 × 1 random field with θ = 0.2

Figure 4.26 illustrates how the means of the arithmetic,
geometric, and harmonic averages change as the variance
of the random field is increased. Both the geometric and
harmonic averages fall quite rapidly, particularly when the
coefficient of variation rises above about 0.2.

The harmonic average is the most strongly dominated
by low values in the sample being averaged and the ge-
ometric average lies between the harmonic and arithmetic
averages.

We conclude by commenting on the fact that these are
not the only possible averages that can be used to character-
ize the behavior of soil masses. Other particularly important
possibilities include averages which are distance weighted
(i.e., soil properties close to a footing are more heavily
weighted than those far away). Even better characteriza-
tions are obtained using averages which are weighted by
correlations (i.e., soil properties more strongly correlated
to the area of interest are weighted more heavily). The lat-
ter type of averaging is captured by a methodology called
best linear unbiased estimate, a variant of which is called
Kriging, as discussed in Section 4.1.



CHAPTER 5

Estimation

5.1 INTRODUCTION

The reliability assessment of geotechnical projects has been
receiving increased attention from regulatory bodies in re-
cent years. In order to provide a rational reliability analysis
of a geotechnical system, there is a need for realistic random
soil models which can then be used to assess probabilities
relating to the design. Unfortunately, little research on the
nature of soil spatial variability is available, and this ren-
ders reliability analyses using spatial variability suspect. In
an attempt to remedy this situation, this chapter lays out
the theory and discusses the analysis and estimation tools
needed to analyze spatially distributed soil data statistically.
Because of the complexity of the problem, the concentra-
tion herein is largely on the one-dimensional case. That is,
the overall goal is to establish reasonable models for vari-
ability along a line. In order to achieve this goal, existing
tools and estimators need to be critically reviewed to as-
sess their performance for both large and small geotechnical
data sets. The concentration on the one-dimensional case is
reasonable, even when applied in a three-dimensional en-
vironment, because the directional “linear” statistics can be
used to characterize separable models in higher dimensions.

Conceptually, at least, soils are basically deterministic.
We could excavate an entire site and establish fairly closely
the engineering properties of the soil throughout the site.
Although such an undertaking would relieve us of having
to deal with uncertainty, we would also be left with nothing
upon which to found our structure, not to mention the cost.
We must therefore live with uncertainty and attempt to
quantify it rationally.

Although, traditionally, estimates of only the mean and
variance have been largely sufficient for reliability esti-
mates (via single random variable models), clients are now
demanding full reliability studies. These studies require

more sophisticated spatially variable models which involve
knowledge of the spatial correlation structure of a soil. We
now are asking questions such as: Knowing that soil proper-
ties are spatially correlated, what is a reasonable correlation
function to use? Are soils best represented using fractal
models or finite-scale models? What is the difference? How
can this question be answered? Once a correlation function
has been decided upon, how can its parameters be esti-
mated? These are questions that this chapter addresses by
looking at a number of tools which aid in selecting ap-
propriate stochastic models. These tools include the sample
covariance, spectral density, variance function, variogram,
and wavelet variance functions. Common correlation func-
tions, corresponding to finite-scale and fractal models, are
investigated and estimation techniques discussed.

In general, statistical analyses can be separated into
two areas which can be thought of as descriptive and
inferential in nature. In the former, the goal is to best
describe a particular data set with a view toward in-
terpolating within the data set. For example, this com-
monly occurs when geotechnical data are obtained at a
site for which a design is destined. Common descrip-
tive statistics are the classic mean and variance estimates.
The more advanced descriptive techniques most often
used are those of regression using an appropriate poly-
nomial which explains most of the variability, or best
linear unbiased estimation (BLUE). Regression is purely
geometry and observation based, while BLUE incorpo-
rates also the covariance structure between the data. Thus,
the BLUE techniques require an a priori estimate of the
covariance function governing the soil’s spatial variabil-
ity; this is often obtained by inference from other sites
since it generally requires a very large data set to estimate
reliably.

In general, inference occurs whenever one estimates
properties at any unobserved spatial location. Here, the
word inference will be taken to mean the estimation of
stochastic model parameters which allow one to make prob-
abilistic statements about an entire site for which data
are limited or not available. This may be necessary, for
example, in preliminary designs, in designs involving a
future state, or in designs where a large site is to be char-
acterized on the basis of a small test region. This chapter
discusses inferential statistics for several reasons: (1) de-
scriptive statistics are already reasonably well established
and understood, (2) statistical results quoted in the literature
must be inferential (unless you happen to be the author),
(3) a priori knowledge of the second-moment (covariance)
structure of soil properties is essential for BLUE estimators
and Bayesian updating, and (4) site investigations are often
not complete enough to even begin a spatial covariance esti-
mation with any accuracy at all. Thus, most reliability-based
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designs will benefit from a database of inferred second-
order soil statistics.

The difference between inferential and descriptive statis-
tics becomes a critical issue in the interpretation of the
estimates. This distinction can perhaps be best seen by ask-
ing yourself the following two questions, only one of which
will be commonly true, prior to the statistical analysis of a
data set:

1. Are the estimates being used to characterize the site
at which the data are obtained (descriptive statistics)?
If so, then estimator errors decrease with increasing
correlation between experimental observations. That
is, when a random field is highly correlated, only
a few observations may be required to accurately
characterize the field. For most practicing engineers,
the answer to this question will be yes.

2. Are the estimates being used to characterize the soil
“population” (inference)? That is, are the collected
data being used to say something about all (simi-
lar?) soil sites? If so, then estimator errors increase
with increasing correlation between observations. For
example, when a random field is highly correlated,
it does not matter how many observations one takes
of the field, one will only see a small fraction of the
distribution of possible values. The estimate could be
quite in error (e.g., trying to make comments about the
natural variability of cohesion by taking many sam-
ples in a gravel pit). For code developers, researchers,
or anyone attempting to make statements about gen-
eral a priori soil property statistics, the answer to this
question will be yes.

Most practitioners are able to answer yes to question 1.
However, most researchers publishing in the literature and
anyone working on the development of a reliability-based
geotechnical design code must answer yes to question 2.
The site characterization problem (question 1) tends to be
significantly simpler than the population characterization
problem (question 2).

This chapter begins by looking at the problem of select-
ing a marginal distribution (i.e., a point distribution) and
testing how well it fits the data. Then the simpler classical
estimators of the mean, variance, and covariance struc-
ture, largely in the context of geotechnical engineering, are
investigated. Some of the basic concepts of random-field
theory, initially seen in Chapter 3, are elaborated on here
for clarification. Where appropriate, we will distinguish be-
tween how the estimates apply to the characterization of
a site (descriptive) and of the population (inference). The
latter part of this chapter looks at more advanced meth-
ods of estimating the second-moment structure (i.e., the

covariance structure) of a random field. Only the one-
dimensional case is considered.

5.2 CHOOSING A DISTRIBUTION

When data have been collected on an input random variable
of interest, the data can be used in one of three ways to
specify a distribution:

1. The data values themselves are used directly in the
simulation. This is sometimes called trace-driven sim-
ulation. This is the least preferable way to use the
data since, in this case, the simulation can only re-
produce what has happened historically and/or at the
observation locations. There is seldom enough data
to capture all the possible future, and/or spatial vari-
ability. This approach is most commonly reserved
for earthquake ground motion simulation, where past
recorded motions are used as system input to assess
seismic response.

2. The data values are used to define an empirical
distribution function directly. Random simulation then
involves random samples drawn from the empirical
distribution function. This is usually referred to as
sampling from the empirical distribution. This method
is better than the first as it is not constrained in the
amount of data that can be simulated; however it still
has drawbacks. Most notably, only observations in
the range of the observed data can be simulated. This
does not allow for the extremes which often control a
design.

3. A reasonable distribution is fitted to the data. Now,
random samples can be drawn from the fitted distri-
bution in, for example, a Monte Carlo simulation. If
a theoretical distribution that fits the observed data
reasonably well can be found, then this is usually
the preferred method. There are numerous advantages,
most notably:
(a) The “irregularities” in the empirical distribution

are smoothed out with a fitted distribution. Since
the irregularities are almost certainly due to the
fact that only a finite sample is used, this is a
desirable feature of the fitted distribution.

(b) The fitted distribution can generate values outside
the range of the observed sample. This means that
extremes can be represented in a reasonable way.

(c) Sometimes there are compelling physical reasons
to have a given distributional form.

(d) This is a more compact way to represent data.
That is, most fitted distributions will have one or
two parameters whereas the empirical distribution
requires the storage of 2n values (n locations and
n corresponding cumulative probabilities).
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We will concentrate only on the fitting of a distribution
to the data and we start by considering how to select the
distribution governing the random field. Commonly, this
will be a marginal distribution governing the distribution
of a stationary random field at any point in the field, fX (x ).
We will rarely have enough information to prescribe a full
joint distribution fX 1X 2...(x1, x2, . . .), except in the case of the
normal distribution, so will not dwell on how to do this for
the general case.

The first step in choosing a distribution is to consider
what is physically reasonable for the soil property you are
trying to model. The normal distribution is a very popu-
lar choice. This is particularly true when the soil property
is a random field, since the full joint normal distribution
is completely specified by only the mean and covariance
structure. The one major disadvantage to the normal dis-
tribution is that its range is from −∞ to +∞. For most
soil properties, for example, cohesion or elastic modulus,
negative values do not have a physical meaning. Thus, for
nonnegative soil properties, the normal distribution cannot
be the true distribution, and other nonnegative distributions
should be considered (e.g., lognormal, gamma, Weibull,
or one of the extreme-value distributions). However, if
the probability of obtaining a negative property value is
small enough, the normal distribution is a reasonable ap-
proximation. For example, if the coefficient of variation,
v = σ/µ, of the soil property is less than about 30%, then
the probability of obtaining a negative soil property value
is only

P [X < 0] = P

[
Z <

0 − 1

σ/µ

]
= P

[
Z <

−1

0.3

]

= �(−3.33) = 0.0004

The difference between v = σ/µ of 0.3 and 1.0 is illus-
trated in Figure 5.1. Clearly, if v is as large as 1.0, then a
fairly large proportion of possible realizations of X will be
negative.

Given the advantages of the normal distributions (e.g.,
its ease of use and simple multivariate form), it may be
desirable to use it when the coefficient of variation is
acceptably small. However, in the example given above,
if the target failure probability for a design is around 0.001
and if failure tends to occur in low-strength regions, then
a model error as large as 0.0004 may not be acceptable.
Overall, it is probably best to use a distribution which is
physically reasonable where possible.

In geotechnical engineering, there are a number of soil
properties which are bounded both above and below. This
is another physical attribute of the property which should
be considered when selecting a distribution. For example,
friction angle (0–90◦), porosity (0–1), degree of saturation
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Figure 5.1 Comparison of probability that X < 0, where X is
normally distributed, for two different coefficients of variation,
v = σ/µ.

(0–1), and relative density (0–1) are all bounded both above
and below. Arguments may be made for bounding other soil
properties, such as unit weight, both above and below. In
the case of unit weight, we know that it cannot exceed
the unit weight of the heaviest element but, practically
speaking, is unlikely to exceed the unit weight of silicon,
or perhaps calcium, or maybe even iron. Unfortunately, as
with many soil properties that one might expect to have an
upper bound, the upper bound is often arbitrarily selected
and not precisely known. For example, an upper bound on
a soil’s unit weight might be assumed to be 26 kN/m3 and
this may yield a quite reasonable distribution. However, can
it be said, with absolute certainty, that the unit weight will
never exceed 26 kN/m3? If not, then perhaps an unbounded
distribution is more physically correct, so long as the
likelihood of exceeding, say, 26 kN/m3, is sufficiently
small. We will never have enough information to state
precisely which distribution is the true distribution for any
soil property. Distributions should be selected that best
satisfy the following guidelines:

1. If sufficient data are available, select the distribution
which best fits the histogram of the data (see next
section).

2. Ensure that the distribution is (at least approximately)
physically reasonable. That is, if the soil property is
strictly nonnegative, such as elastic modulus, then
the normal distribution is not physically reasonable
since it allows negative values. It may, however,
be approximately reasonable if the probability of
negative values is sufficiently small.
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The second step in choosing a distribution is to read the
literature; find out what other people have found to be
successful probabilistic models for the soil/rock property
in question.

The third step is to take whatever data are available,
estimate the distribution parameters (see next section), and
then see how well the distribution(s) you have selected
actually match the data. If sufficient data are available
(generally, at least 20 observations), the most common way
to compare the data to the assumed distribution is by using
a histogram. Histograms act as graphical estimates of the
density function, as will be discussed shortly.

Finally, the selected distribution should be as simple
as possible while still reflecting the basic nature of the
variability. Distributions which involve more than two
parameters are generally difficult to justify because we
rarely have enough data to estimate even two parameters
with any accuracy. There is little point in trying to match,
say, a six-parameter distribution to the detailed erratic
fluctuations in a histogram, even if the histogram is based
on a large number of data. Many of the detailed fluctuations
in a histogram will change if a different data set is collected
or even if the histogram interval sizes are changed. Only
the average (smoothed) behavior of the histogram should
be matched in a fitted distribution.

5.2.1 Estimating Distribution Parameters

Once we have decided on a distribution to fit to the data
that we have collected, the next step is to estimate the
parameters of the distribution from the data. If we look
at Sections 1.9 and 1.10, we will see that each distribution
is characterized by one or more parameters. For example,
the exponential distribution has one parameter, λ, while
the lognormal distribution has two parameters, µln X and
σln X .

In this section, we look at how these distribution param-
eters are estimated from our data. We call our parameter
estimates point estimates because they consist of a single
“best” value rather than a range. For example, we might
say that a point estimate of the mean is 10.2. We obtain
our point estimate by using an estimator, such as x̄ (see
Eq. 1.25).

There are basically two ways of obtaining point estimates
in common usage. The simplest is the method of moments
(MM) and this is probably the most common approach.
A somewhat more difficult approach is the maximum-
likelihood (ML) method. The ML estimates have some
desirable statistical properties that sometimes make the
extra effort well worth it.

In either case, when we consider our parameter esti-
mates, there are four measures by which we judge their

performance:

1. Unbiasedness −→ E [estimator] = parameter
2. Consistency −→ limn→∞ estimator =

parameter
3. Efficiency −→ Var [estimator] large or

small?
4. Sufficiency −→ utilizes all pertinent informa-

tion?

5.2.1.1 Method of Moments For many of the distribu-
tions we have looked at, the parameters of the distribution
are simply related to the moments; for example, for a nor-
mal distribution we have

E [X ] = µ, E
[
X 2] = σ 2 + µ2

while for the exponential distribution

E [X ] = 1

λ
, E

[
X 2] = 2

λ2

(for the latter, we need only the first moment to find λ). We
can use sample moments to replace the left-hand sides in the
above and then solve for the parameter on the right. Sample
moments are obtained by approximating the expectation
integrals by a summation over equi-likely samples, each
weighted by 1/n rather than f (x ) dx ,

E [X ] � X̄ = 1

n

n∑
i=1

Xi

=⇒ x̄ = 1

n

n∑
i=1

xi (sample mean)

Var [X ] � S 2 = 1

n

n∑
i=1

(Xi − X̄ )2

=⇒ s2 = 1

n

n∑
i=1

(xi − x̄ )2 (sample variance)

Assuming that the sample Xi comes from the selected
distribution, it follows that E [Xi ] = µ and that E

[
X 2

i

]−
E2[Xi ] = σ 2. The bias associated with the above sample
moments can be determined by checking to see if the
expectations of X̄ and S 2 are in fact equal to µX and σ 2

X :

E
[
X̄
] = 1

n

n∑
i=1

E [Xi ] = µ (OK, unbiased)

E
[
S 2] = 1

n

n∑
i=1

E
[
(Xi − X̄ )2]

= 1

n

n∑
i=1

E
[
X 2

i − 2Xi X̄ + X̄ 2]
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= 1

n

n∑
i=1

E


X 2

i − 2Xi


 1

n

n∑
j=1

Xj




+ 1

n2

n∑
j=1

n∑
k=1

Xj Xk




= 1

n

n∑
i=1


E
[
X 2

i

]− 2

n

n∑
j=1

E
[
Xi Xj
]

+ 1

n2

n∑
j=1

n∑
k=1

E
[
Xj Xk
]



Due to independence between samples, the expectation
E
[
Xi Xj
]

becomes

E
[
Xi Xj
] =
{

E [Xi ] E
[
Xj
]

if i �= j

E
[
X 2

i

]
if i = j

so that we get

E
[
S 2] = 1

n

n∑
i=1

{
E
[
X 2]− 2

n

(
E
[
X 2]+ (n − 1)E2[X ]

)

+ 1

n2

(
nE [X ] + (n2 − n)E2[X ]

)}

= 1

n
· n

{(
1 − 1

n

)
E
[
X 2]−

(
n − 1

n

)
E2[X ]

}

=
(

n − 1

n

)(
E
[
X 2]− E2[X ]

)

=
(

n − 1

n

)
σ 2

Since E
[
S 2
] �= σ 2, the estimator for σ 2, as given above, is

a biased estimator. To eliminate this bias, we must write

S 2 = 1

n − 1

n∑
i=1

(Xi − X̄ )2

which is unbiased since now E
[
S 2
] = σ 2. This is the

common form of the estimator S 2 of σ 2.
The steps taken to compute point estimates of a distribu-

tion’s parameters by the MM are as follows:

1. Decide on a distribution and identify its parameters.
2. Using the distribution’s theoretical pdf, compute as

many moments as there are unknown parameters
(these moments are generally in terms of the param-
eters). Call these the model moments.

3. Compute the same number of sample moments.
4. Equate model and sample moments to find the param-

eter estimates.

Comments
• The MM can lead to large errors, especially when

higher moments are involved. This is exacerbated if
there are outliers in the data.

• The MM sometimes leads to biased estimators.

Example 5.1 Suppose we have the following set of 20
measurements on the lengths of fissures in a rock mass:

0.808, 1.005, 0.806, 0.661, 6.681, 0.057, 0.123, 9.372,
0.902, 0.764, 0.286, 0.764, 0.558, 1.813, 2.025, 6.559,
1.600, 3.014, 3.814, 4.503

Assuming that this data follows an exponential distribu-
tion, use the MM to fit the distribution to the data.

SOLUTION

1. We have been told what distribution we are to be
fitting. The exponential pdf has the form (see Section
1.10.1)

fX (x ) = λe−λx (5.1)

where X is the fissure length and λ is the distribution
parameter that we must find by the MM.

2. We have one unknown parameter, λ, so we must
calculate the first moment from the theoretical dis-
tribution,

E [X ] = 1

λ
(5.2)

3. Compute the first sample moment:

x̄ = 1

n

n∑
i=1

= 1

20
(0.808 + 1.005 + · · · + 4.503)

= 2.306 (5.3)

4. Equate model and sample moments:

1

λ̂
= x̄ =⇒ λ̂ = 1

x̄
= 1

2.306
= 0.434

(5.4)
where λ̂ = 0.434 is an estimate of the true distribution
parameter λ (which remains unknown).

Note the use of the caret to denote the fact that this is just
an estimate of the parameter and is not the parameter itself.
This is an important distinction since estimates are in fact
random variables, changing from sample set to sample set,
whereas the parameter itself is deterministic. In general, the
parameter is only known exactly when an infinite number
of samples is taken.

Example 5.2 Say we have a set of data (observations)
on the settlement of piles at various sites throughout a
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Figure 5.2 Histogram of pile settlements.

city, x1, x2, . . . , xn . A histogram of the data appears as in
Figure 5.2. Use the MM to fit a distribution to the data.

SOLUTION

1. We first have to decide on an appropriate distribution
to fit the data. A variety of common distributions have
the positive right-skewed shape seen in Figure 5.2; in
particular, any of the lognormal, gamma, Rayleigh, or
chi-square distributions could be used. Suppose that
we choose to fit a gamma distribution to this data set
(we shall see later how we can formally compare the
fits arising from various possible distributions). The
gamma distribution has the general form

fX (x ) = λ (λx )k−1

�(k )
e−λx , x ≥ 0 (5.5)

which has two parameters, λ and k (see Section
1.10.2).

2. Since the assumed distribution (gamma) has two un-
known parameters, we need to compute the first two
moments from the theoretical distribution. Section
1.10.2 gives

E [X ] = k

λ
(5.6a)

Var [X ] = k

λ2
(5.6b)

3. We need two sample moments:

x̄ = 1

n

n∑
i=1

xi (5.7a)

s2 = 1

n − 1

n∑
i=1

(xi − x̄ )2 (5.7b)

4. Equate model and sample moments:

k̂

λ̂
= x̄

k̂

λ̂2
= s2




⇐⇒




k̂ = x̄ 2

s2

λ̂ = x̄

s2

Whether or not the gamma distribution is really the best
choice of model for this particular data set must be deter-
mined by further testing. In general, the above procedure
would be repeated for each candidate distribution. Then the
various fitted distributions superimposed on the histogram
and the best fit could be determined visually. This and a
number of quantitative tests will be discussed shortly.

5.2.1.2 Maximum-Likelihood Estimators Another ap-
proach to estimating the parameters of a distribution is to
find those parameters which yield the highest likelihood
of actually observing the data. For example, suppose we
have observed three values of X to be 1.2, 1.8, and 0.6.
The probability of seeing the observations {1.2, 1.8, 0.6} is
vanishingly small if µX = 300 and σX = 1. On the other
hand, the probability of seeing {1.2, 1.8, 0.6} is reasonably
high if µX = 1.2 and σX = 0.4. It is clear that there exists
a combination of µX and σX which yields the highest like-
lihood of seeing the data. These optimum parameters are
called maximum-likelihood estimators (MLEs). In general,
maximum-likelihood estimators are preferred over method
of moment estimators simply because they maximize the
probability of observing the data. They also tend to yield
estimators having minimum variance. One potential draw-
back to MLEs is that they can be biased. For example, the
MLE of σ 2 is

S 2 = 1

n

n∑
i=1

(Xi − X̄ )2

which is biased since

E
[
S 2] =

(
n − 1

n

)
σ 2

as was shown in the previous section.
The maximum likelihood (ML) method finds the distri-

bution parameters that best explain the data collected. That
is, the method finds estimators which maximize the like-
lihood of observing the data given the distribution. The
ML technique generally has better properties that the MM
(i.e., less bias, higher efficiency, etc.) but is somewhat less
intuitive.

To illustrate the method, let us start with a simple
example. Suppose that we have a random sample X1, X2,
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. . . , Xn which comes from a population governed by fX =
λe−λx , the exponential distribution. Since this is a random
sample, the X ’s are independent. The probability of observ-
ing any particular xi is

P [Xi = xi ] = fX (xi ) dx = λe−λxi dx (5.8)

[note that we are abusing calculus slightly in the above
by replacing the event (xi < Xi ≤ xi + dx ) with the event
(Xi = xi ) for simplicity] so that the probability of observing
the set of values x = {x1, x2, . . . , xn} is the joint intersection,

P [X1 = x1 ∩ X2 = x2 ∩ · · · ∩ Xn = xn ]

=
(

fX (x1) dx
)(

fX (x2) dx
)

· · ·
(

fX (xn ) dx
)

=
n∏

i=1

fX (xi ) dx

=
(

n∏
i=1

λe−λxi

)
(dx)n (5.9)

where we made use of independence to write the proba-
bility as a product. Ignoring the constant (dx )n (which is
very small), we can define the relative-likelihood function
L(λ | x) to be

L(λ | x) =
n∏

i=1

fX (xi ) =
n∏

i=1

λe−λxi

= λn exp

{
−λ

n∑
i=1

xi

}
(5.10)

This is the relative likelihood of observing x = {x1, x2, . . . ,
xn} as a function of the unknown parameter λ. To find
the maximum likelihood, we maximize this function with
respect to λ, that is, we set

∂L(λ | x)

∂λ
= 0 (5.11)

Now

∂L(λ | x)

∂λ
=
(

nλn−1 − λn
n∑

i=1

xi

)
e−λ

∑n
i=1 xi

so that

nλn−1 − λn
n∑

i=1

xi = 0 =⇒ λ̂ = n∑n
i=1 xi

= 1

x̄

Note that in this case the ML and MM estimators are the
same. This is not always true.

Since L(·) is always positive, the maximum of L(·) will
occur in exactly the same location as the maximum of
ln L(·). Often it is easier to compute the derivative of ln L
than it is to compute the derivative of L itself. In the above

example,

ln
(

L(λ | x)
)

= n ln(λ) − λ

n∑
i=1

xi (5.12)

and setting the derivative of this to zero gives

∂

∂λ
ln
(

L(λ | x)
)

= n

λ
−

n∑
i=1

xi = 0 (5.13)

yielding the same result, λ̂ = 1/x̄ , with somewhat less
effort.

Example 5.3 Let X be a discrete random variable with
a geometric distribution having parameter p (see Section
1.9.3). Find the MLE of p based on a random sample of
size n .

SOLUTION If we have a random sample of size n , then
we have observed independently x = {x1, x2, . . . , xn}. We
now want a MLE of p. The probability of observing xi

comes from the geometric distribution (see Section 1.9.3),

P [Xi = xi ] = pqxi −1, i = 1, 2, . . . n (5.14)

where q = 1 − p. The likelihood function is thus

L(p | x) = P [X1 = x1 ∩ X2 = x2 ∩ · · · ∩ Xn = xn ]

=
n∏

i=1

pqxi −1

= pn
n∏

i=1

(1 − p)xi −1 (5.15)

while its logarithm is

ln(L) = n ln p +
n∑

i=1

(xi − 1) ln(1 − p)

= n ln p + ln(1 − p)
n∑

i=1

(xi − 1)

We now set the derivative of ln(L) to zero:

∂ ln L

∂p
= n

p
−
∑n

i=1(xi − 1)

1 − p
= 0

Solving this for p, which we will now call p̂, gives us

p̂ = n∑n
i=1 xi

= 1

x̄

where x̄ is just the average of our observations.

Chapter 1 includes the MLEs for most of the common
distributions covered (see also Law and Kelton, 2000).
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5.2.2 Goodness of Fit

Once a distribution has been selected and then fit (by esti-
mating its parameters) to the collected data, the fit must be
assessed. That is, how well does the fitted distribution repre-
sent the true underlying distribution for our data? There are
two commonly used approaches to answering this question:

1. Heuristic procedures
2. Goodness-of-fit tests

First, note that no fitted distribution will be an exact fit. But
is the fitted distribution reasonable enough for its intended
purpose? This issue is considered in the following sections.

5.2.2.1 Heuristic Procedures
Frequency Comparisons Frequency comparisons are
made by plotting the observed frequency of occurrence
against that predicted by the fitted theoretical distribution.
A plot of the observed occurrence frequency is called a
histogram. If the random variable is discrete, then the his-
togram is drawn as a bar graph, where the height of each
bar is just equal to the number of times each discrete value
occurs. When comparing the bar graph to the fitted distri-
bution, the bar graph must be normalized, so that the sum
of normalized frequencies becomes equal to 1.0, to agree
with the sum of probabilities being unity. The normaliza-
tion is performed by dividing the height of each bar by the
total number of observations times the bar width, which, in
the discrete case, is 1.0.

Example 5.4 Suppose that, just after construction, a series
of 50 randomly selected 1-km-long sections of highway
through a hilly region were selected to evaluate the annual
probability of slope failure under the existing design code.
The number of years until an observable slope failure
occurred within each 1-km length, ti , was recorded, with
the following results:

3, 2, 8, 9, 10, 4, 4, 2, 7, 7, 1, 14, 2, 1, 8, 3, 4, 5, 4, 2,
10, 2, 1, 7, 8, 4, 3, 3, 21, 1, 3, 9, 1, 4, 5, 1, 4, 1, 4, 3, 5,
3, 1, 9, 1, 6, 3, 5, 12, 11

An analysis of similar data suggests that the annual
probability of observable slope failure in each 1-km section
of highway is 0.2. Assuming that sections fail independently
and that each year constitutes an independent trial, how
reasonable does this hypothesis appear to be?

SOLUTION If sections fail independently, and each year
is also independent, then we have 50 independent observa-
tions of the “number of trials” (i.e., years) to first failure of
a 1-km section. Under the given assumptions, the number

of trials “to first failure” follows a geometric distribution.
According to Section 1.9.3, the mean of the geometric dis-
tribution is

E [T1] = 1

p
or p = 1

E [T1]
(5.16)

where T1 is the number of trials (years) until first failure in
a 1-km section. By the MM, where the arithmetic average
of the observations, t̄ , is assumed to approximate E [T1],
we get the estimate p̂ of the failure probability p to be

p̂ = 1

t̄
(5.17)

For our particular observations,

t̄ = 1

50

∑
ti

= 3 + 2 + · · · + 11

50
= 5.02

so that
p̂ = 1

5.02
= 0.199

Apparently the estimate of the annual probability of slope
failure of 0.2 is in very close agreement with this data set.

The histogram is most easily formed by first sorting the
observations from smallest to largest:

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9,
10, 10, 11, 12, 14, 21

from which we see that we have nine 1-km sections
which had slope failures in the first year, five in the second
year, and so on. Dividing each of these frequencies by
n = 50 gives us a normalized frequency of 0.18 for the
first year, 0.1 for the second year, and so on. This leads to
the normalized histogram in Figure 5.3.

Figure 5.3 compares the histogram of the observed failure
times, normalized to have unit area, with the fitted geomet-
ric distribution using p̂ = 0.199. At least visually, the fit
appears to be reasonable. The observed histogram is some-
what erratic, but this is to be expected from such a small
data set. If we were able to repeat the set of observations
at another similar length of highway, we would presum-
ably see a similarly shaped histogram but having different
details. It is possible that, on average, the two histograms
would agree.

Since the estimated value of p agrees well with that
hypothesized and since the histogram appears to be rea-
sonably well fit by the geometric distribution, we conclude
that the distribution hypothesis appears reasonable. One of
the primary assumptions underlying the assumed distribu-
tion is that sections fail independently and whether this is
true or not has not been tested in this solution; in order
to do so, we would typically need both spatial location in-
formation as well as more data. From an intuitive point



CHOOSING A DISTRIBUTION 169

(a )

(b)

0 5 10 15 20 25
t

0
0.

05
0.

1
0.

15
0.

2
0.

25

f T
1(t

)
Normalized observed frequency

Fitted geometric, p = 0.199, p-value = 0.072

0 0.2 0.4 0.6 0.8 1

Empirical cdf

0
0.

5
1

Fi
tte

d 
cd

f

Figure 5.3 (a) Normalized histogram of discrete failure time
data and associated fitted geometric distribution using p̂ = 0.199.
(b) The probability–probability plot compares the empirical cu-
mulative distribution with the fitted cumulative geometric distri-
bution.

of view, it appears unlikely that sections will actually be
completely independent. For one thing, ground tremors, if
they occur, might encourage several sections to fail simul-
taneously—similarly with intense periods of rainfall in a
region. However, a fully cross-correlated random field of
slope failure times would be difficult to characterize using
just these 50 observations (although an a priori model based
on other information could be partially validated by these
data). In general the assumption of independence is made
by necessity and the resulting model must be viewed with
caution. Actual failure probabilities would lie somewhere

between those obtained using this independent model and
a completely dependent model (which would be a single
random variable).

Although the comparison between the observed and fitted
histograms appears reasonable in Figure 5.3, we wonder if
there is some better, or at least alternative, way to test the
agreement. There are a number of quantitative goodness-
of-fit tests available and one of the easiest of these to
implement is the chi-square test, which will be discussed
shortly. Another way to visually assess the appropriateness
of a fitted distribution is to plot the empirical cumula-
tive distribution against the fitted cumulative distribution.
This type of comparison was shown in the lower plot of
Figure 5.3 and will be discussed in more detail shortly.

When the data come from a continuous distribution, the
histogram is obtained by breaking up the range of values
covered by the data into k intervals [a0, a1), . . . , [ak−1, ak )
and counting the frequency of occurrence of the data within
each interval. The frequency count is then plotted. The
main difficulty is in choosing a “good” number of intervals,
which may involve some trial and error. Unfortunately, at
least for small data sets, different numbers of intervals may
yield significantly different distribution shapes. The authors
commonly take k to be about 5–20% of the number of
observations, n . We normally aim to have at least five
observations occurring in each interval (as we shall see
later, the chi-square goodness-of-fit test requires this), but
there is a trade-off between obtaining a sufficient number
of observations occurring in each interval and discerning
the distribution shape. For example, if n = 20, we will
probably have at least five observations in each interval
if only k = 2 intervals are selected. However, it will be
very difficult to discern the distribution shape with only
two intervals. Admittedly, with only 20 observations, it is
unlikely that we will be able to decide on a distribution in
any case. However, the authors suggest a minimum of five
intervals if the histogram is to be of any use in selecting a
distribution.

For continuous data, the normalized histogram can again
be compared with the fitted distribution. The histogram
is normalized by dividing each frequency value by n �x ,
where �x is the interval width associated with each fre-
quency. This results in a unit area lying under the histogram.
The resulting plot is also often called a frequency density
plot.

Example 5.5 Suppose that 50 clay samples have been
tested and the measured cohesion of each has been recorded
as follows (in kilopascals):

16.24, 16.13, 39.11, 30.40, 23.52, 9.07, 9.49, 25.92,
17.35, 5.83, 10.06, 39.25, 12.49, 8.71, 16.99, 20.74,
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17.82, 32.96, 20.83, 18.10, 9.09, 22.94, 36.87, 17.11,
18.88, 14.89, 27.38, 16.59, 19.51, 29.82, 15.93, 21.27,
16.07, 42.06, 18.74, 16.00, 21.92, 13.33, 10.27, 27.30,
17.85, 18.15, 14.45, 14.82, 29.45, 17.76, 14.08, 14.55,
15.19, 36.15

In that cohesion is a nonnegative soil property, it is
suggested that an appropriate distribution for cohesion is
the lognormal, since the lognormal is also nonnegative (see
Section 1.10.9). Is this suggestion supported by the above
data?

SOLUTION The best way to determine the form of a dis-
tribution suggested by some data set is to plot a histogram.
For this, it is useful to sort the data from smallest to largest:

5.83, 8.71, 9.07, 9.09, 9.49, 10.06, 10.27, 12.49, 13.33,
14.08, 14.45, 14.55, 14.82, 14.89, 15.19, 15.93, 16.00,
16.07, 16.13, 16.24, 16.59, 16.99, 17.11, 17.35, 17.76,
17.82, 17.85, 18.10, 18.15, 18.74, 18.88, 19.51, 20.74,
20.83, 21.27, 21.92, 22.94, 23.52, 25.92, 27.30, 27.38,
29.45, 29.82, 30.40, 32.96, 36.15, 36.87, 39.11, 39.25,
42.06

Suppose that we choose k = 10 intervals. We could sub-
divide the observed range evenly into 10 intervals between
5.83 and 42.06. This yields the histogram in Figure 5.4,
whose shape is reasonably similar to that of a lognormal
distribution.

Because a lognormal distribution is skewed to the right,
observed values from this distribution will sometimes be
quite large. When an exceptionally large observation occurs
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Figure 5.4 Histogram of cohesion data using 10 intervals be-
tween xmin = 5.83 and xmax = 42.06.

in a data set, subdividing the histogram evenly between xmin

and xmax may not produce a very useful histogram, since
many of the rightmost intervals (except the last) may be
empty. To avoid this, it is generally better to subdivide the
histogram range in the space of ln(x ), henceforth called
log space, rather than x itself. That is, we now choose
to have 10 intervals evenly dividing the interval between
ln(5.83) = 1.763 and ln(42.06) = 3.739. Each interval is of
width (3.739 − 1.763)/10 = 0.198 in log space. To count
the number of occurrences in each interval, we need to
first transform our observations by taking their natural
logarithms:

1.763, 2.164, 2.205, 2.207, 2.250, 2.309, 2.329, 2.525,
2.590, 2.645, 2.671, 2.677, 2.696, 2.701, 2.721, 2.768,
2.773, 2.777, 2.781, 2.788, 2.809, 2.833, 2.839, 2.854,
2.877, 2.880, 2.882, 2.896, 2.899, 2.930, 2.938, 2.971,
3.032, 3.036, 3.057, 3.088, 3.133, 3.158, 3.255, 3.307,
3.310, 3.383, 3.395, 3.415, 3.495, 3.587, 3.607, 3.666,
3.670, 3.739

The first histogram interval goes from 1.763 to 1.763 +
0.198 = 1.961 and contains just one observation, ln(5.83) =
1.763. The second interval goes from 1.961 to 1.961 +
0.198 = 2.159 and contains zero observations. The third
interval goes from 2.159 to 2.357 and contains six obser-
vations, and so on.

To plot the resulting histogram in real space, we must
convert the intervals back to real space. Thus, the first in-
terval goes from e1.763 = 5.83 to e1.961 = 7.11, the second
interval goes from 7.11 to e2.159 = 8.66, and so on.

The only remaining complication occurs if we want to
normalize the histogram so that it encloses unit area. In
this case we must divide each frequency count by n �xi ,
where n = 50 and �x1 = 7.11 − 5.83 = 1.28 for the first
interval. Thus, the normalized height of the first interval
is 1/(50 × 1.28) = 0.0156. The second interval has width
�x2 = 8.66 − 7.11 = 1.55, while the third interval has
width �x3 = e2.357 − e2.159 = 10.56 − 8.66 = 1.90. Notice
that the intervals get gradually wider as we move to the
right. The normalized height of the third interval is therefore
6/(50 × 1.90) = 0.0632. The resulting histogram appears
as in Figure 5.5.

First of all we notice that Figures 5.4 and 5.5 are quite
different. This emphasizes the fact that the shape of a
histogram is often very dependent on the number and size
of the selected intervals. In the case of this particular data
set, the even spacing of intervals in real space appears to
give a smoother and more lognormal-looking histogram.

Although the fairly erratic histogram shown in Figure 5.5
does not appear strongly lognormally shaped, we shall see
later that the Anderson–Darling goodness-of-fit test does
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Figure 5.5 Frequency density plot of the 50 observed cohesion
values with fitted lognormal distribution.

not reject the hypothesis that it does in fact come from
a lognormal distribution. To illustrate the comparison, we
have superimposed a lognormal distribution curve (solid
line) having estimated parameters

µ̂ln X = 1

n

n∑
i=1

ln xi

= 1

50
(1.763 + 2.164 + · · · + 3.739)

= 2.91

σ̂ln X =
√√√√ 1

n − 1

n∑
i=1

(
ln xi − µ̂ln X

)2

= 0.43

In either the continuous or discrete case, there should be
good agreement between the empirical (i.e., observed) and
the fitted functions. The degree of agreement between the
functions is sometimes difficult to assess, particularly for
small n , but the following types of probability plots should
help.

Probability Plots The idea with probability plots is to
compare the empirical with the fitted cdf. Recall that the cdf
is defined as F (x ) = P [X ≤ x ]. The fitted or hypothesized
cdf will be denoted as F̂ (x ), since it is based on estimated
parameters, such as x̄ , s2, λ̂, . . . .

Let X(i ) be the i th smallest of the Xj ’s, that is, X(1) is the
smallest, X(2) is the second smallest, and so on; then X(i ) is
called the ith order statistic of the Xj ’s. The empirical cdf,

denoted F̃n (x ), is then defined as

F̃n (X(i )) = i − 0.5

n
for i = 1, . . . , n

Note that this particular form of the empirical cdf, which
is shifted by a factor of 1

2 , allows some probability for the
random variable X to lie outside the range of the data. For
example, suppose we observe n = 4 samples and they are
{4.3, 5.6, 7.2, 8.3}. If we had defined F̃n (X(i )) = i/n , then
F̃n (X(4)) = F̃n (8.3) = 4

4 = 1 and we would essentially be
saying P [X > 8.3] = 0, which does not seem likely. Sim-
ilarly, if we defined F̃n (X(i )) = (i − 1)/n , then F̃n (X(1)) =
0
4 = 0 and we would be saying P [X ≤ 4.3] = 0. With the
current definition, we are admitting P [X < 4.3] = 1/2n
and P [X > 8.3] = 1/2n , which is reasonable.

To compare F̃n (x ) and F̂ (x ), one could plot both on
a graph versus x . However, looking for differences or
similarities in two S-shaped curves is quite difficult. There
are two more commonly used ways to compare the two
cumulative distribution functions:

1. Quantile–Quantile Plots: Let qi = (i − 0.5)/n , i =
1, . . . , n . If we plot x̂ = F̂−1(qi ) against F̃−1

n (qi ) =
X(i ), then we get what we call a quantile–quantile plot,
or just QQ plot for short. The value x̂ = F̂−1(qi ) is
the quantile corresponding to cumulative probability
qi , that is, x̂ is the value such that P [X ≤ x̂ ] = qi .

If F̂ (x ) and F̃ (x ) both approximate the true under-
lying F (x ), then they should be approximately equal.
If this is the case, then the QQ plot will be approx-
imately a straight line with an intercept of 0 and a
slope 1. For small sample sizes, departures from a
straight line can be expected, but one would hope that
the plot would approach a diagonal line on average.

The construction of a QQ plot requires the calcula-
tion of the inverse, F̂−1(qi ). Unfortunately, the inverse
cdf is not easily computed for some distributions.
For example, there is no closed-form inverse for the
normal distribution and numerical procedures must
be used. For this reason, the probability–probability
plots are typically more popular, as discussed next. If
one intends to write a program to produce QQ plots
for mathematically more difficult distributions, special
numerical procedures are available (see, e.g., Odeh
and Evans, 1975).

2. Probability–Probability Plots: Plotting the fitted cdf,
F̂ (X(i )), versus the empirical cdf, F̃n (X(i )) = qi , for
i = 1, . . . , n , yields a probability–probability plot, or
PP plot for short. Again, if F̂ (x ) and F̃ (x ) both
approximate the underlying F (x ), and if the sample
size n is large, then the PP plot will be approximately
a straight diagonal line with an intercept of 0 and a
slope 1. Figure 5.3 illustrated a PP plot.
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Each plot has its own strengths. The QQ plot will
amplify differences that exist between the tails of the
model distribution function, F̂ (x ), and the tails of the
sample distribution function, F̃n (x ), whereas the PP plot
will amplify differences between the middle of F̂ (x ) and
the middle of F̃n (x ).

These plots are built into most popular statistical pack-
ages, for example, Minitab, so that constructing both QQ
and PP plots is straightforward using these packages.

5.2.2.2 Goodness-of-Fit Tests Suppose a set of obser-
vations X1, X2, . . . , Xn are to be taken at a site and a distri-
bution fit is to be made to these observations. A goodness-
of-fit test is a test of the following hypotheses:

Ho : the X1, X2, . . . , Xn ’s are governed by the fitted

distribution function F̂ .

Ha : they are not.

Typical of any hypothesis test, the null or default hy-
pothesis Ho is only rejected if the data are “sufficiently
far” from Ho . For example, suppose that Ho states that the
data follow a normal distribution with mean 10 and standard
deviation 3. This hypothesis will probably be rejected if the
collected data are {121, 182, 173} since the data are so far
away from the null. Alternatively, if the collected data are
{11, 13, 12}, then the null hypothesis will probably not be
rejected, since these values are quite likely to be seen under
the null distribution. The fact that all three observations are
above 10 is slightly suspicious but not that uncommon for
only three observations. If the next 20 observations are all
above 10, then it is more likely that Ho will be rejected.

One shortcoming of quantitative goodness-of-fit tests is
that Ho tends to be rejected for large sample sizes. That
is, the distribution assumed under Ho is almost certainly
not the true distribution. For example, the true mean might
be 10.0001, rather than 10, or the distribution shape might
be slightly different than assumed, and so on. When the
sample size is very large, these small discrepancies become
significant and Ho is rejected. In this case, when Ho is
rejected, the test is saying little about how reasonable
the distribution is. For this reason, it is generally good
practice to combine quantitative tests with a simple visual
comparison of the distribution fit and employ engineering
judgment. That is, goodness-of-fit tests are often overly
“critical” and offer no advice on what might be a better
fit. Since we are usually mostly interested in a distribution
which is reasonable, but which might not fit every variation
in the empirical distribution, it is important to exercise a
healthy skepticism in the interpretation of these tests. They
are tools in the selection process and are often best used

in a comparative sense to compare a variety of candidate
distributions.

It should also be emphasized that failure to reject Ho

does not mean that Ho has been proven. For example, if
Ho states that the mean is 10 and standard deviation is 3
and our observations are {11, 13, 12}, then we may not reject
Ho , but we certainly cannot say that these three observations
prove that the mean is 10 and standard deviation is 3. They
just are not far enough away from a mean of 10 (where
“distance” is measured in standard deviations) to warrant
rejecting Ho . Failure to reject Ho simply means that the
assumed (default) distribution is reasonable.

5.2.2.3 Chi-Square Test The chi-square test is essen-
tially a numerical comparison of the observed histogram
and the predicted histogram. We accomplish this by first
constructing a histogram: the range over which the data
lie is divided into k adjacent intervals [a0, a1), [a1, a2), . . . ,
[ak−1, ak ). The idea is to then compare the number of obser-
vations falling within each interval to that which is expected
under the fitted distribution.

Suppose that X1, X2, . . . , Xn are our observations. Let

Nj = number of Xi ’s in the j th interval [aj−1, aj )

for j = 1, 2, . . . , k . Thus, Nj is the height of the j th box
in a histogram of the observations. We then compute the
expected proportion pj of the Xi ’s that would fall in the j th
interval if a sample was drawn from the fitted distribution
f̂ (x ):

• In the continuous case,

pj =
∫ aj

aj−1

f̂ (x ) dx (5.18)

where f̂ is the fitted pdf.
• For discrete data,

pj =
∑

aj−1≤xj ≤aj

p̂(xi ) (5.19)

where p̂ is the fitted probability mass function.

Finally, we compute the test statistic

χ2 =
k∑

j=1

(Nj − npj )2

npj
(5.20)

and reject Ho if χ2 is too large. How large is too large? That
depends on the number of intervals, k and the number of
parameters in the fitted distribution that required estimation
from the data. If m parameters were estimated from the
data, then Chernoff and Lehmann (1954) showed that the
rejection region lies asymptotically somewhere between
χ2

α,k−1 and χ2
α,k−m−1. The precise rejection point is difficult
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to find, and so m is typically set to 0 and Ho rejected any
time that

χ2 > χ2
α,k−1 (5.21)

since this is conservative (the actual probability of rejecting
Ho when it is true is at least as small as that claimed by the
value of α). The critical values χ2

α,ν for given type I error
probability α and number of degrees of freedom ν = k − 1
are shown in Table A.3 (Appendix A).

Unfortunately, the chi-square test tends to be overly sen-
sitive to the number (and size) of the intervals selected; in
fact, the test can fail to reject Ho for one choice of k and
yet reject Ho for a different choice of k . No general pre-
scription for the choice of intervals exists, but the following
two guidelines should be adhered to when possible:

• Try to choose intervals such that p1 = p2 = · · · = pk .
This is called the equiprobable approach.

• Seek k ≥ 3 and expected frequency npj ≥ 5 for all j .

Despite this drawback of being sensitive to the interval
choice, the chi-square test is very popular for at least two
reasons: It is very simple to implement and understand and
it can be applied to any hypothesized distribution. As we
shall see, this is not true of all goodness-of-fit tests.

Example 5.6 A geotechnical company owns 12 CPT test
rigs. On any given day, N12 of the test rigs will be out
in the field and it is believed that N12 follows a binomial
distribution. By randomly selecting 500 days over the last
5 years, the company has compiled the following data on
the test rig usage frequency:

Number in Field Frequency
0 37
1 101
2 141
3 124
4 57
5 27
6 11
7 2
8 0
9 0

10 0
11 0
12 0

Test the hypothesis that N12 follows a binomial distribution
and report a p-value.

SOLUTION Clearly some of the intervals will have to be
combined since they have very small expectation (recall,
we want each interval to have expected frequency of at

least 5). First of all, we can compute the estimate of p by
using the fact that E [Nn ] = np, so that p̂ = N̄n/n (this is
also the MLE of p; see Section 1.9.2). By noting that the
above table indicates that N12 was equal to 0 on 37 out of
the 500 days and equal to 1 on 101 of the 500 days, and
so on, then the value of N̄12 can be computed as

N̄12 = 1

500

500∑
i=1

N12i

= 0(37) + 1(101) + 2(141) + · · · + 12(0)

500
= 2.396

so that
p̂ = 2.396

12
= 0.1997

Using the probability mass function for the binomial,

P [Nn = k ] =
(

n

k

)
pk (1 − p)n−k

we can develop the following table:

k Observed Probability Expected (Nj − npj )2/npj

0 37 6.9064e − 02 34.53 1.7640e − 01
1 101 2.0676e − 01 103.38 5.4794e − 02
2 141 2.8370e − 01 141.85 5.1119e − 03
3 124 2.3593e − 01 117.96 3.0891e − 01
4 57 1.3243e − 01 66.21 1.2828e + 00
5 27 5.2863e − 02 26.43 1.2234e − 02
6 11 1.5386e − 02 7.69 1.4215e + 00
7 2 3.2902e − 03 1.64 7.6570e − 02
8 0 5.1302e − 04 0.25 2.5651e − 01
9 0 5.6883e − 05 0.028 2.8442e − 02

10 0 4.2574e − 06 0.002 2.1287e − 03
11 0 1.9311e − 07 0.031 9.6557e − 05
12 0 4.0148e − 09 0.052 2.0074e − 06

We must combine the last seven intervals to achieve a sin-
gle interval with expected number of 9.635 (greater than 5),
leaving us with k = 7 intervals altogether. The correspond-
ing number of observations in the last “combined” interval
is 13. This gives us a chi-square statistic of

χ2 = 0.1764 + 0.05479 + 0.005112 + 0.3089 + 1.283

+ 0.01223 + (13 − 9.6253)2

9.6253
= 3.02

At the α = 0.05 significance level, our critical chi-square
value is seen from Table A.3 to be

χ2
0.05,7−1 = χ2

0.05,6 = 12.592

and since 3.02 does not exceed the critical value, we
cannot reject the hypothesis that the data follow a binomial
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distribution with p = 0.1997. That is, the assumed binomial
distribution is reasonable.

The p-value (which is not to be confused with the
parameter p) is the smallest value of α at which Ho would
be rejected, so if the selected value of α is greater than
the p-value, then Ho is rejected. The p-value for the above
goodness-of-fit test is about 0.8 (obtained by reading along
the chi-square table at six degrees-of-freedom until we find
something near 3.02), which indicates that there is very
little evidence in the sample against the null hypothesis
(large p-values support the null hypothesis).

5.2.2.4 Kolmogorov–Smirnov Test The Kolmogorov–
Smirnov (KS) test is essentially a numerical test of the em-
pirical cumulative distribution function F̃ against the fitted
cumulative distribution function F̂ . The KS test has the
following advantages and disadvantages:

Advantages
• It does not require any grouping of the data (i.e., no

information is lost and interval specification is not
required).

• The test is valid (exactly) for any sample size n in the
all-parameters-known case.

• The test tends to be more powerful than chi-Square
tests against many alternatives (i.e., when the true
distribution is some other theoretical distribution than
that which is hypothesized under Ho , the KS test is
better at identifying the difference).

Disadvantages
• It has a limited range of applicability since tables of

critical values have only been developed for certain
distributions.

• The critical values are not readily available for discrete
data.

• The original form of the KS test is valid only if all the
parameters of the hypothesized distribution are known
a priori. When parameters are estimated from the data,
this “extended” KS test is conservative.

The KS test seeks to see how close the empirical distri-
bution F̃ is to F̂ (after all, if the fitted distribution F̂ is
good, the two distributions should be very similar). Thus,
the KS statistic Dn is simply the largest (vertical) distance
between F̃n (x ) and F̂ (x ) across all values of x and is defined
as

Dn = max{D+
n , D−

n }
where

D+
n = max

1≤i≤n

{
i

n
− F̂ (X(i ))

}
,

0 X(i)

x

0
0.

5
1

F
X

(x
)

Dn
+

Dn
−

F(x)

Fn(x)
~

i/n

(i-1) /n

Figure 5.6 Illustration of D+
n and D−

n .

D−
n = max

1≤i≤n

{
F̂ (X(i )) − i − 1

n

}

In the KS test, the empirical distribution is taken as
F̃n (X(i )) = i/n . At each X(i ), the empirical distribution
jumps from (i − 1)/n to i/n . Thus, the maximum dif-
ference between F̂ (x ) and F̃ (x ) at the point x = X(i ) is
obtained by looking “backward” to the previous level of
F̃ (x ) = (i − 1)/n and “forward” to the next level of F̃ (x ) =
i/n and choosing the largest. This forward and backward
looking is performed in the calculation of D+

n and D−
n and

is illustrated in Figure 5.6. If Dn is excessively large, then
the null hypothesis Ho that the data come from the fitted
distribution F̂ is rejected.

Prior to comparing Dn to the critical rejection value, a
correction factor is applied to Dn to account for the behavior
of different distributions. These scaled versions of Dn are
referred to as the adjusted KS test statistics. Critical values
for the adjusted KS test statistics for the all-parameters-
known, the normal, and the exponential cases are given
in Table 5.1. Critical values for the Weibull are given in
Table 5.2. If the computed adjusted KS statistic is greater
than the critical value given in the table, then the null
hypothesis (that the distribution fits the data) is rejected,
and an alternative distribution may be more appropriate.

5.2.2.5 Anderson–Darling Test The idea behind the
Anderson–Darling (AD) test is basically the same as that
behind the KS, but the AD is designed to better detect dis-
crepancies in the tails and has higher power than the KS
test (i.e., it is better able to discern differences between the
hypothesized distribution and the actual distribution).
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Table 5.1 Critical values for Adjusted KS Test Statistic

1 − α

Case Adjusted Test Statistic 0.850 0.900 0.950 0.975 0.990

All parameters known

(√
n + 0.12 + 0.11√

n

)
Dn 1.138 1.224 1.358 1.480 1.628

N(X̄ (n), S 2(n))

(√
n − 0.01 + 0.85√

n

)
Dn 0.775 0.819 0.895 0.955 1.035

exponential(X̄ (n))

(
Dn − 0.2

n

)(√
n + 0.26 + 0.5√

n

)
0.926 0.990 1.094 1.190 1.308

Table 5.2 Critical Values for Adjusted KS Test
Statistic

√
nDn for Weibull Distribution

1 − α

n 0.900 0.950 0.975 0.990

10 0.760 0.819 0.880 0.944
20 0.779 0.843 0.907 0.973
50 0.790 0.856 0.922 0.988
∞ 0.803 0.874 0.939 1.007

The AD statistic A2
n has formal definition

A2
n = n

∫ ∞

∞

[
F̃n (x ) − F̂ (x )

]2
ψ(x )f̂ (x ) dx (5.22)

where

ψ(x ) = 1

F̂ (x )[1 − F̂ (x )]

is a weight function such that both tails are more heavily
weighted than the middle of the distribution. In practice,
the statistic A2

n is calculated as

A2
n =
(

− 1

n

{
n∑

i=1

(2i − 1)[ln Zi + ln (1 − Zn+1−i )]

})
− n

(5.23)
where Zi = F̂ (X(i )) for i = 1, 2, .., n . Since A2

n is a
(weighted) distance between cumulatives (as in the KS test),

the null hypothesis will again be rejected if the statistic is
too large. Again, just like with the KS test, a scaling is
required to form the actual test statistic. The scaled A2

n is
called the adjusted test statistic, and critical values for the
all-parameters-known, the normal, the exponential, and the
Weibull are given in Table 5.3. When it can be applied, the
AS statistic is preferred over the KS.

Example 5.7 Suppose that the permeability of a set of
100 small-scale soil samples randomly selected from a site
are tested and yield the following results (in units of 10−6

cm/s):

0 0 0 0 0 1 1 3 4 4
4 6 7 7 9 9 11 12 13 13

15 16 17 19 21 21 21 24 25 26
29 30 30 31 32 33 33 33 33 33
34 35 36 36 37 37 38 39 39 42
42 43 45 45 45 48 49 50 54 54
55 56 56 58 59 60 62 64 71 73
76 78 80 81 81 84 100 105 105 108

108 110 120 125 134 136 139 146 147 150
161 171 175 182 184 200 211 229 256 900

The data have been sorted from smallest to largest for
convenience. Permeabilities of zero correspond to samples
which are essentially rock, having extremely low perme-
abilities. As part of the distribution-fitting exercise, we want

Table 5.3 Critical Values for Adjusted AD Test Statistic

1 − α

Case Adjusted Test Statistic 0.900 0.950 0.975 0.990

All parameters known A2
n for n ≥ 5 1.933 2.492 3.070 3.857

N(X̄ (n), S 2(n))

(
1 + 4

n
− 25

n2

)
A2

n 0.632 0.751 0.870 1.029

exponential(X̄ (n))

(
1 + 0.6

n

)
A2

n 1.070 1.326 1.587 1.943

Weibull(α̂, β̂)

(
1 + 0.2√

n

)
A2

n 0.637 0.757 0.877 1.038
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Figure 5.7 Histogram of permeability data using 18 intervals
between xmin = 0 and xmax = 900.

to investigate how well the exponential distribution fits this
particular data set. Test for goodness of fit of the exponen-
tial distribution using the chi-square, KS, and AD tests at
a significance level of α = 5%.

SOLUTION We can start by computing some basic statis-
tics. Let X be the permeability of a sample. Then the sample
mean and variance are

x̄ = 1
100 (0 + 0 + · · · + 900) = 69.7

s =
√

1
99

(
(0 − 69.7)2 + · · · + (900 − 69.7)2 = 101.8

For the exponential distribution, the mean and standard
deviation are the same. While x̄ and s are not extremely
different, they are different enough that one would not
immediately guess an exponential distribution on the basis
of this information only.

It is instructive to look at a histogram of the data, as
shown in Figure 5.7. Judging by the shape of the histogram,
the bulk of the data appear to be quite well modeled by
an exponential distribution. The suspicious thing about this
data set is the single extremely large permeability of 900.
Perhaps this is not part of the same population. For example,
if someone misrecorded a measurement, writing down 900
instead of 90, then this one value is an error, rather than
an observed permeability. Such a value is called an outlier.
Special care needs to be taken to review outliers to ensure
that they are actually from the population being studied. A
common approach taken when the source of outliers is un-
known is to consider the data set both with and without the
outliers, to see how much influence the outliers have on the
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Figure 5.8 (a) PP and (b) QQ plots of exponential distribution
fitted to 100 permeability observations.

fitted distribution. For example, if we recompute the sam-
ple mean and variance using just the first 99 observations,
that is, without the largest 900 observation, we get

x̄ = 1
99 (0 + 0 + · · · + 256) = 61.3

s =
√

1
98

(
(0 − 69.7)2 + · · · + (256 − 69.7)2 = 58.1

Now the mean and standard deviation are almost identical,
as would be expected for the exponential distribution.

Figure 5.8 shows the PP and QQ plots for the original
data set. The PP plot indicates that the exponential fit is
pretty good for the bulk of the data. Recall that the PP
emphasizes differences near the middle of the distribution,
and even there, the PP plot stays pretty close to the target
diagonal line. The QQ plot, on the other hand, emphasizes
differences near the tails of the distribution. For this data
set, the single observation (900) at the extreme right tail
of the distribution clearly does not belong to this fitted
exponential distribution. However, up to that single point,
the QQ plot remains reasonably close to the target diagonal,
indicating again that the exponential is reasonable for the
bulk of the data.

To illustrate the effect that the single outlier (900) has on
the QQ plot, it is repeated in Figure 5.9 for just the lower
99 observations. Evidently, for these 99 observations, the
exponential distribution is appropriate. Now, let’s see how
our goodness-of-fit tests fare with the original 100 observa-
tions. For this data set, x̄ = 69.7, so our fitted exponential
distribution has estimated parameter λ̂ = 1/69.7. Thus, the
hypotheses that will be tested in each of the goodness-of-fit
tests are as follows:

Ho : the X1, X2, . . . , X100’s are random variables with cdf
F̂ (x ) = 1 − e−x/69.7.
Ha : they are not.
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Figure 5.9 (a) PP and (b) QQ plots of exponential distribution
fitted to lower 99 permeability observations.

Chi-Square Test
We want each interval to contain at least five observations,
so, for n = 100, we should have at most k ≤ 20 intervals.
We try k = 10 intervals. We will select the interval widths
so that each encloses an equal probability of 0.1 under the
fitted distribution (see Figure 5.10). Our fitted distribution is
F̂ (x ) = 1 − e−x/69.7, so our first interval boundary is where
F̂ (x ) = 0.1:

1 − e−x/69.7 = 0.1 =⇒ x = −69.7 ln(1 − 0.1)

In general, our interval boundaries are at

x = −69.7 ln(1 − p), p = 0.1, 0.2, . . . , 0.9, 1.0
(5.24)

Note that the last interval goes from x = −69.7 ln(1 −
0.9) = 160.49 to ∞. Using Eq. 5.24, and counting the
number of permeability observations occurring in each
interval yield the following table:

Interval Observed Expected
(Nj − npj )2

npj(Nj ) (npj )

0–7.34 14 10 1.6
7.34–15.55 7 10 0.9

15.55–24.86 7 10 0.9
24.86–35.60 14 10 1.6
35.60–48.31 14 10 1.6
48.31–63.87 11 10 0.1
63.87–83.92 8 10 0.4
83.92–112.18 7 10 0.9

112.18–160.49 8 10 0.4
160.49–∞ 10 10 0.0∑ = 8.4

We reject Ho if χ2 = 8.4 exceeds χ2
α,k−1 = χ2

0.05,9 = 16.92.
Since 8.4 < 16.92 we fail to reject Ho . Thus, the chi-square
test does not reject the hypothesis that the data follow an
exponential distribution with λ = 1/69.7.
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Figure 5.10 Dividing the fitted exponential distribution up into
equal probability intervals. Each interval has probability 0.1.

Kolmolgorov–Smirnov Test
Figure 5.11 compares F̂ (x ) = 1 − e−x/69.7 and F̃n (x ) =
i/n . The largest difference is shown. In detail

D+
n = 0.083, D−

n = 0.040

and so Dn = 0.083. The adjusted Dn value is

Dn,adj =
(

Dn − 0.2

n

)(√
n + 0.26 + 0.5√

n

)
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Figure 5.11 Empirical and fitted cumulative distribution func-
tions of permeability data.
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=
(

0.0828 − 0.2

100

)(√
100 + 0.26 + 0.5√

100

)

= 0.835

For α = 0.05, the critical value is seen in Table 5.1 to be
1.094. Since Dn,adj is 0.835, which is less than 1.094, we
cannot reject the null hypothesis that the data follow an
exponential distribution with λ = 1/69.7.

Anderson–Darling Test
We compute the AD test statistic from Eq. 5.23,

A2
n =
(

− 1

n

{
n∑

i=1

(2i − 1)[ln Zi + ln (1 − Zn+1−i )]

})
− n

where Zi = F̂ (X(i )) for i = 1, 2, . . . , n . Since the AD em-
phasizes discrepancies in the tails of the distribution, we
expect that our outlier of 900 will significantly affect the
test. However, we see that in fact it is at the other end
of the distribution where we really run into trouble. We
observed several zero permeability values, or, rather, we
recorded several zero permeability values, possibly because
we rounded the data or did not run the test carefully enough
to determine a more precise value of permeability. The
problem with this is that F̂ (0) = 0 and ln(0) = −∞. That
is, the AD test statistic will turn out to be infinite due to
our sloppy experimental/recording practices! We note that
if, in fact, some permeabilities were zero, then they cannot
follow an exponential distribution. Since the exponential
distribution has F (0) = P [X ≤ 0] = 0, the probability of
observing a zero value under the exponential distribution is
zero. In other words, if zero values really were observed, the
AD statistic would be quite correctly infinite, and the null
hypothesis that the data follow an exponential distribution
would be resoundingly rejected.

Common practice in such a situation is to either repeat the
experiment for the low-permeability cases or estimate their
actual permeabilities from judgment. Suppose we decide
that the five zero permeabilities we recorded actually corre-
spond to permeabilities {0.001, 0.01, 0.1, 0.2, 0.4}, then the
AD statistic becomes

A2
n = 1.386

and the adjusted AD statistic is

A2
n,adj =

(
1 + 0.6

n

)
A2

n =
(

1 + 0.6

100

)
(1.386) = 1.394

From Table 5.3, we see that our critical statistic is 1.326,
and since A2

n,adj > 1.326, we reject Ho and conclude, on the
basis of this test, that the data do not follow an exponential
distribution with λ = 1/69.7. This result does not agree
with the chi-Square and KS tests but is due to the fact that
the AD test is sensitive to discrepancies in the tails. If we

repeat the test without the outlying 900, we get a significant
reduction in the test statistic:

A2
n = 1.021, A2

n,adj = 1.027

and since 1.027 < 1.326, we would now deem the exponen-
tial distribution to be reasonable. This result is still sensitive
to our decision about what to do with the recorded zeros.
If we remove both the zeros and the outlying 900, so that
n = 94 now, we get

A2
n = 0.643, A2

n,adj = 0.647

In conclusion, the AD test suggests that the exponential
distribution is quite reasonable for the bulk of the data
but is not appropriate if the zeros and the 900 are to be
acceptably modeled.

5.3 ESTIMATION IN PRESENCE
OF CORRELATION

The classical estimators given in the previous sections all
assume a random sample, that is, that all observations are
statistically independent. When observations are dependent,
as is typically the case at a single site, the estimation
problem becomes much more complicated—all estimators
known to the authors depend on asymptotic independence.
Without independence between a significant portion of the
sample, any estimate we make is doomed to be biased to an
unknown extent. Another way of putting it is if our sample
is composed of dependent observations, our estimates may
say very little about the nature of the global population.
This is a fundamental problem to which the only solution
is to collect more data.

Correlation between data can, however, be beneficial if
one is only trying to characterize the site from which the
data are obtained (as is often the case). It all depends
on what one is using the estimates for. To illustrate the
two aspects of this issue, suppose that the soil friction
angle at a site has been carefully measured along a line
10 km in length, as shown in Figure 5.12. Clearly there
is a high degree of correlation between adjacent friction
angle measurements. That is, if a measurement has a certain
value, the next measurement will likely be similar—the
“random field” is constrained against changing too rapidly
by the high degree of spatial correlation.

Forget for the moment that we know the friction angle
variation along our 10-km line and imagine that we have
hired a geotechnical engineer to estimate the average fric-
tion angle for the entire site. The engineer may begin at
x = 0 taking samples and accumulating friction angle data.
After the engineer has traveled approximately 0.75 km, tak-
ing samples every few meters, the engineer might notice
that the measurements are quite stable, with friction angles
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Figure 5.12 Friction angles measured at a site along a 10-km
line.

lying consistently between 52◦ and 56◦. Because of this
stability, the engineer may decide that these measurements
are representative and discontinue testing. If this is the case,
the engineer will obtain a “sitewide” average friction angle
estimate of 54.6◦ with standard deviation 1.5◦.

While 54.6◦ is actually a very good estimate of the
friction angle over the first 0.75 km, it is a very poor
estimate of the sitewide average friction angle, which is
almost 20◦ below the estimate. If we look at the actual
friction angle variation shown in Figure 5.12, we see that
there are only three locations where we could take samples
over 0.75 km and get a good estimate of the global average
(these would be in the regions where the trend intersects
the average line). If we pick our sampling region randomly,
we are almost certainly going to get a poor estimate of
the global average unless we sample over a much larger
distance (e.g., same number of samples, but much more
spread out). It is also to be noted that the 10-km average
shown in Figure 5.12 might be quite different from the
100-km, or 1000-km, average, and so on.

In general, the estimated sitewide average will be inac-
curate when the sampling domain is too small. Even worse,
the estimated standard deviation can be vastly in error, and
unconservatively so. Positive correlation between samples
reduces the standard deviation estimate, leading to a false
sense of security at the global scale. For example, the fric-
tion angle standard deviation estimated over the first 0.75
km is only 1.5◦, whereas the standard deviation over the
10 km is 11◦, almost an order of magnitude different.

Why do we care about the global average and variance?
If we are only designing foundations in the first 0.75 km
of our site, then we do not care about the global statis-
tics; in fact, using the global values would be an error.

The estimated mean (54.6◦) and standard deviation (1.5◦)
give us an accurate description of the 0.75-km site. In
this case, the high correlation reduces the chance that we
will get any excessively weak zones in the 0.75-km re-
gion. Alternatively, if we are trying to assess the risk of
slope failure along a long run of highway and we only
have access to data in a relatively small domain, then
correlation between data may lead to significant errors
in our predictions. For example, the high friction angle
with low variability estimated over the first 0.75 km of
Figure 5.12 will not reflect the considerably larger risk of
slope failure in those regions where the friction angle de-
scends below 20◦. In this case, the correlation between data
tends to hide the statistical nature of the soil that we are
interested in.

In contrast, consider what happens when soil properties
are largely independent, as is typically assumed under
classical estimation theory. An example of such a field is
shown in Figure 5.13, which might represent friction angles
along a 10-km line where the soil properties at one point
are largely independent of the soil properties at all other
points. In this case, the average of observations over the
first 0.75 km is equal to 37.2◦. Thus, while the 0.75-km
site is much more variable when correlation is not present,
statistics taken over this site are much more representative
of the global site, both in the mean and variance.

In summary, strong correlation tends to be beneficial
if we only want to describe the site at which the data
were taken (interpolation). Conversely, strong correlation
is detrimental if we wish to describe the random nature
of a much bigger site than that over which the data were
gathered (extrapolation).
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Figure 5.13 Friction angles measured at a site along a 10-km
line where soil properties are largely spatially independent.
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5.3.1 Ergodicity and Stationarity

As mentioned above, classical statistics are generally de-
fined assuming independent observations. One way of
achieving this in practice is to design an experiment that
can be repeated over and over such that each outcome is
independent of all others. The resulting observations can be
assumed to be independent and used to accurately estimate
the mean, variance, and so on, of the assumed distribution.
Coming up with statistics in this fashion is called aver-
aging over the ensemble of realizations. An ensemble is a
collection of realizations of the random experiment and a
realization is a particular single outcome of an experiment.

In geotechnical engineering, we generally only have one
“experiment”—our planet as we see it. Rather than showing
variability over an ensemble, our one realization shows
variability over space. So the question is, how do we use
classical statistics to estimate distribution parameters when
we only have one spatially variable realization (experiment)
from which to draw our observation?

Probabilists have answered this question by coming up
with a concept called ergodicity. Ergodicity essentially says
that, under certain conditions, averaging over the ensemble
can be replaced by averaging over space. That is, if a
stationary random process is ergodic, then its mean and
covariance function can be found from a single realization
of infinite extent,

µX = E [X (t)] = lim
|D |→∞

1

|D |
∫

D
X (t) d t (5.25)

CX (τ ) + µ2
X = E [X (t + τ )X (t)]

= lim
|D |→∞

1

|D |
∫

D
X (t + τ ) X (t) d t (5.26)

where D is the size of the domain over which our observa-
tions have been drawn and CX (τ ) is the covariance function
of X . In order to guarantee the validity of the above rela-
tionships, two conditions must be imposed on the stationary
random field X (t). For Gaussian processes these conditions
are

lim
|D |→∞

1

|D |
∫

D
CX (τ ) dτ = 0 (5.27a)

lim
|D |→∞

1

|D |
∫

D
|CX (τ )|2 dτ = 0 (5.27b)

which are clearly met if

lim
τ→∞ CX (τ ) = 0 (5.28)

Thus, ergodicity implies that the correlation coefficients
between points separated by a large distances are negligible.
In turn, this implies that the correlation length is much less
than the observation domain, θ � D .

A realization obtained from a particular algorithm is said
to be ergodic if the desired mean and correlation structure
can be obtained using Eqs. 5.25 and 5.26, respectively. Of
course, realizations of infinite extent are never produced and
so one cannot expect a finite realization to be ergodic (the
word loses meaning in this context) any more than one can
expect the average of a set of n independent observations
to precisely equal the population mean. In fact, for finite-
domain realizations, averaging must be performed over an
ensemble of realizations in order to exactly calculate µX and
CX (τ ). Although some algorithms may produce realizations
which more closely approximate the desired statistics when
averaged over a fixed (small) number of realizations than
others, this becomes a matter of judgment. There is also the
argument that since most natural processes are generally far
from ergodic over a finite scale, why should a simulation
of the process over a similar scale be ergodic?

The property of ergodicity cannot be proved or disproved
from a single realization of finite extent. Typically, if a
strong trend is seen in the data, this is indicative that the
soil site is nonergodic. On the other hand, if the same
strong trend is seen at every (similar) site, then the soil
site may very well be ergodic. Since we never have soil
property measurements over an infinite extent, we cannot
say for sure whether our soil property realization is ergodic.
Ergodicity in practice, then, is an assumption which allows
us to carry on and compute statistics with an assumed
confidence.

Consider a site from which a reasonably large set of
soil samples has been gathered. Assume that the goal is
to make statements using this data set about the stochastic
nature of the soil at a different, although presumed similar,
site. The collected data are a sample extracted over some
sampling domain of extent D from a continuously varying
soil property field. An example may be seen in Figure 5.14,
where the solid line could represent the known, sampled,
undrained shear strength of the soil and the dashed lines
represent just two possibilities that the unknown shear
strengths may take outside the sampling domain.

?

?

D
z

Figure 5.14 Soil sampled over a finite sampling domain.
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Clearly this sample exhibits a strong spatial trend and
would classically be represented by an equation of the form

Su (z ) = m(z ) + ε(z ) (5.29)

where m(z ) is a deterministic function giving the mean soil
property at z and ε(z ) is a random residual. If the goal were
purely descriptive, then m(z ) would likely be selected so
as to allow optimally accurate (minimum-variance) interpo-
lation of Su between observations. This generally involves
letting m(z ) be a polynomial trend in z with coefficients
selected to render ε mean zero with small variance.

However, if the data shown in Figure 5.14 are to be
used to characterize another site, then the trend must be
viewed with considerable caution. In particular one must
ask if a similar trend is expected to be seen at the site being
characterized and, if so, where the axis origin is to be lo-
cated. In some cases, where soil properties vary predictably
with depth, the answer to this question is affirmative. For
example, undrained shear strength is commonly thought to
increase with depth (but not always!). In cases where the
same trend is not likely to reappear at the other site, then
removal of the trend from the data and dealing with just
the residual ε(z ) has the following implications:

1. The covariance structure of ε(z ) is typically drasti-
cally different than that of Su (z )— it shows more
spatial independence and has reduced variance.

2. The reintroduction of the trend to predict the deter-
ministic part of the soil properties at the target site
may be grossly in error.

3. The use of only the residual process, ε(z ), at the other
site will considerably underestimate the soil variabil-
ity—the reported statistics will be unconservative. In
fact, the more variability accounted for by m(z ), the
less variable is ε(z ).

From these considerations, it is easily seen that trends which
are not likely to reappear, that is, trends which are not
physically (or empirically) based and predictable, must not
be removed prior to performing an inferential statistical
analysis (e.g., to be used at other, similar, sites). The trend
itself is part of the uncertainty to be characterized and
removing it leads to unconservative reported statistics.

It should be pointed out at this time that one of the rea-
sons for “detrending” the data is precisely to render the
residual process largely spatially independent (removal of
trends removes correlation). This is desirable because virtu-
ally all classical statistics are based on the idea that samples
are composed of independent and identically distributed ob-
servations. Alternatively, when observations are dependent,
the distributions of the estimators become very difficult to
establish. This is compounded by the fact that the actual

dependence structure is unknown. Only a limited number
of asymptotic results are available to provide insight into
the spatially dependent problem (Beran, 1994); simulation
techniques are proving very useful in this regard (Cressie,
1993).

Another issue to be considered is that of the level of in-
formation available at the target site. Generally, a design
does not proceed in the complete absence of site informa-
tion. The ideal case involves gathering enough data to allow
the main characteristics, say the mean and variance, of the
soil property to be established with reasonable confidence.
Then, inferred statistics regarding the spatial correlation
(where correlation means correlation coefficient) structure
can be used to complete the uncertainty picture and allow
a reasonable reliability analysis or internal linear estima-
tion. Under this reasoning, it makes sense to concentrate on
statistics relating to the spatial correlation structure of a soil.
Although the mean and variance will be obtained along the
way as part of the estimation process, these results tend to
be specifically related to, and affected by, the soil type—this
is true particularly of the mean. The correlation structure
is believed to be more related to the formation process of
the soil; that is, the correlation between soil properties at
two disjoint points will be related to where the materials
making up the soil at the two points originated, to the com-
mon weathering processes experienced at the two points,
geological deposition processes, and so on. Thus, the ma-
jor factors influencing a soil’s correlation structure can be
thought of as being “external,” that is, related to transport
and weathering rather than to chemical and mechanical de-
tails of the soil particles themselves, common to most soil
properties and types.

While it is undoubtedly true that many exceptions to the
idea of an externally created correlation structure exist,
the idea nevertheless gives some possible generality to
estimates of the correlation obtained from a particular site
and soil property. That is, it allows the correlation structure
derived from a random field of a specific soil property to
be used without change as a reasonable a priori correlation
structure for other soil properties of interest and for other
similar sites (although changes in the mean and possibly
variance may, of course, be necessary).

Fundamental to the following statistical analysis is the as-
sumption that the soil is spatially statistically homogeneous.
This means that the mean, variance, correlation structure,
and higher order moments are independent of position (and
thus are the same from any reference origin). In the general
case, isotropy is not usually assumed. That is, the verti-
cal and horizontal correlation structures are allowed to be
quite different. However, this is not an issue in this chapter
since we will be restricting our attention to estimates of the
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correlation structure along a line in space, that is, in one
dimension.

The assumption of spatial homogeneity does not imply
that the process is relatively uniform over any finite domain.
It allows apparent trends in the mean, variance, and higher
order moments as long as those trends are just part of a
larger scale random fluctuation; that is, the mean, variance,
and so on, need only be constant over infinite space, not
when viewed over a finite distance (Figure 5.14 may be
viewed as an example of a homogeneous random field
which appears nonstationary when viewed locally). Thus,
this assumption does not preclude large-scale variations,
such as often found in natural soils, although the statistics
relating to the large scale fluctuations are generally harder
to estimate reliably from a finite sampling domain.

The assumption of spatial homogeneity does, however,
seem to imply that the site over which the measurements are
taken is fairly uniform in geological makeup (or soil type).
Again, this assumption relates to the level of uncertainty
about the site for which the random model is aimed. Even
changing geological units may be viewed as simply part
of the overall randomness or uncertainty, which is to be
characterized by the random model. The more that is known
about a site, the less random the site model should be.
However, the initial model that is used before significant
amounts of data are explicitly gathered should be consistent
with the level of uncertainty at the target site at the time the
model is applied. Bayesian updating can be used to improve
a prior model under additional site data.

With these thoughts in place, an appropriate inferential
analysis proceeds as follows:

1. An initial regression analysis may be performed to
determine if a statistically significant spatial trend is
present. Since a trend with, for example, depth may
have some physical basis and may be expected to
occur identically at other sites, it may make sense
to predict this trend and assume it to hold at the
target site. If so, the remainder of the analysis is per-
formed on the detrended data, ε(x) = Su (x) − m(x),
for example, and the trend and residual statistics must
both be reported for use at the target site since they are
intimately linked and cannot be considered separately.
Using just the residual statistics leads to a stochastic
model which is likely to be grossly in error.

2. Establish the second-moment behavior of the data set
over space. Here interest may specifically focus on
whether the soil is best modeled by a finite-scale
stochastic model having limited spatial correlation
or by a fractal model having significant lingering
correlation over very large distances. These terms are
discussed in more detail later.

3. For a selected spatial correlation function, estimate
any required parameters from the data set.

Once the parameters of the random field model have been
estimated, how the random field can be used depends on
the questions being asked and the type of data available. In
particular, the issue of whether or not data are available at
the site being investigated has a significant impact on how
the random-field model is defined and used. Two possible
scenarios are as follows:

1. Data are gathered at the site in question over its entire
domain:
– A random field is being modeled whose values are

known at the data site locations and no attempt will
be made to extrapolate the field beyond the range
of the data.

– A representative random field model can always
be estimated; estimates for µX , σX , and correlation
structure are “local” and can be considered to be
reasonably accurate for the purposes of modeling
the site.

– Best estimates of the random field between points at
which data have been collected should be obtained
using best linear unbiased estimation or kriging.

– Probability estimates should be obtained using the
conditioned random field. One possible approach is
to use conditional simulation (all realizations pass
through the known data but are random between
the data sites).

2. Data are gathered at a similar site or over a limited
portion of the site to be modeled:
– There is much greater uncertainty in applying the

statistics obtained from one site to that of another
or in extending the results to a larger domain. Typ-
ically some assumptions need to be made about the
“representativeness” of the sample. This situation
typically arises in the preliminary phases of a de-
sign problem, before the site has been cleared, for
example.

– If the statistics can be considered representative,
probability estimates can be made either analyti-
cally or through Monte Carlo simulations. BLUE or
Kriging are not options since data are not available
over the domain in question.

– The treatment of trends in the data needs to be
more carefully considered. If the trend seems to
have some physical basis (such as an increase in
certain soil properties with depth), then it may be
reasonable to assume that the same trend exists at
the site in question. However, if the trend has no
particular physical basis, then it is entirely possible
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that quite a different trend will be seen at the site
in question. The random-field model should be able
to accommodate this uncertainty.

5.3.2 Point versus Local Average Statistics

Random fields are characterized by their point statistics,
that is, the mean, variance, marginal distribution, and so on,
at each point in the random field. However, soil properties
are rarely measured at a point. For example, porosity is ill-
defined at the point level: At a particular point, the porosity
is either 100% if the point happens to lie in a void or
0% if the point happens to lie inside a soil particle. The
very definition of porosity (ratio of volume of voids to
volume of soil) implies an average over the volume under
consideration. Similarly, elastic modulus, friction angle,
Poisson’s ratio, consolidation ratio, and shear modulus are
all ill-defined at the point scale (a point is one dimensional,
so how can Poisson’s ratio be defined?). Soil property
measurements are generally averages over a volume (or
possibly an area in the case of a shear box test).

So how do we relate local (possibly geometric) average
measurements to the point-scale characteristics of our the-
oretical random field? The simple answer is that in practice
so far we do not. Little work has been done in this area,
and as we shall see, the theoretical backfiguring from the
local average measurement to the point-scale statistic de-
pends on knowledge of the pointwise correlation structure.
In addition, the random-field models generally considered
in this book are also continuum models, where the random
field varies continuously. At the point scale, such models
are not realistic, since soils are actually highly discontinu-
ous at the microscale (solid to void or void to solid occurs
at an interface not over some extended semisolid region).

Nevertheless, the continuum random-field models are
useful so long as values derived from them for use in our
soil models are local averages of some sort. To derive the
point statistics associated with local average measurements,
we need to know the following:

1. The size of the sample over which the measurement
represents an average. For laboratory samples, this
may be relatively easy to estimate depending on the
test: For porosity, elastic, and hydraulic parameter
tests, the size will be the laboratory sample volume.
For laboratory shear tests, the “size” will probably be
the shear plane area. For in situ tests, such as CPT,
shear vane, and so on, one would have to estimate the
volume of soil involved in the measurement; that is,
a CPT cone may be averaging the soil resistance in a
bulb of size about 100–200 mm radius in the vicinity
of the cone.

2. The correlation coefficient between all points in the
idealized continuum model. This is usually specified
as a function of distance between points.

3. The type of averaging that the observations represent.
Arithmetic averaging is appropriate if the quantity be-
ing measured is not dominated by low values. Porosity
might be an example of a property which is simply an
arithmetic average (sum of pore volumes divided by
the total volume). Geometric averaging is appropriate
for soil properties which are dominated by low values.
Reasonable examples are hydraulic conductivity, elas-
tic modulus, cohesion, and friction angle. Harmonic
averaging is appropriate for soil properties which
are strongly dominated by low values. Examples are
the elastic modulus of horizontally layered soils and
hydraulic conductivity in one-dimensional flow (i.e.,
through a pipe).

Assuming that each soil sample observation corresponds
to an average over a volume of approximately D and that
the correlation function is known, the relationship between
the statistics of the observations (which will be discussed
shortly) and the ideal random-field point statistics are as
follows: Suppose that the following series of independent
observations of XD have been taken: XD1 , XD2 , . . . , XDn . The
sample mean of XD is

µ̂X D = 1

n

n∑
i=1

XDi (5.30)

and the sample variance is

σ̂X D = 1

n − 1

n∑
i=1

(XDi − µ̂X D )2 (5.31)

If each soil sample is deemed to be an arithmetic average,
XD , of the idealized continuous soil property over volume
D , that is,

XD = 1

D

∫
D

X (x) dx (5.32)

then the sample point mean and variance of the random
field X (x) are obtained from the sample mean and variance
of XD as follows:

µ̂X = µ̂X D (5.33a)

σ̂ 2
X = σ̂XD

γX (D)
(5.33b)

where γX (D) is the variance reduction function (see Section
3.4) corresponding to the continuous random field, X (x).

However, if each soil sample is deemed to be a geometric
average, XD , of the idealized continuous soil property over
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volume D , that is,

XD = exp

{
1

D

∫
D

ln X (x) dx
}

(5.34)

then the sample point mean and variance of the random
field X (x) are obtained from the sample mean and variance
of XD as follows:

µ̂X = µ̂X D exp

{
ln
(
1 + v̂2

X D

) [1 − γln X (D)

2γln X (D)

]}
(5.35a)

σ̂ 2
X = µ̂2

X

[
exp

{
ln
(
1 + v̂2

XD

)
γln X (D)

}
− 1

]
(5.35b)

where v̂X D = σ̂X D /µ̂X D is the sample coefficient of variation
of XD and γln X (D) is the variance reduction function (see
Section 3.4) corresponding to the continuous random field
ln X (x).

If the soil sample represents a harmonic average of
the random field X (x), the relationship between the point
statistics and harmonic average statistics will have to be
determined by simulation on a case by case basis. See
Section 4.4.3 for some guidance.

5.3.3 Estimating the Mean

Consider the classical sample estimate of the mean:

µ̂X = 1

n

n∑
i=1

Xi (5.36)

If the field can be considered stationary, so that each Xi

has the same mean, then E [µ̂X ] = µX and this estimator is
considered to be unbiased (i.e., it is “aimed” at the quantity
to be estimated). It should be recognized that if a new set
of observations of X is collected, the estimated mean will
change. That is, µ̂X is itself a random variable. If the Xi ’s
are independent, then the variance of µ̂X decreases as n

increases. Specifically,

Var [µ̂X ] = σ 2
X

n
which goes to zero as the number of independent observa-
tions, n , goes to infinity.

Now consider what happens to our estimate when the
Xi ’s are completely correlated. In this case, X1 = X2 =
· · · = Xn for a stationary process and

µ̂X = 1

n

n∑
i=1

Xi = X1

and Var [µ̂X ] = σ 2
X , that is, there is no reduction in the

variability of the estimator µ̂X as n increases. This means
that µ̂X will be a poor estimate of µX if the observations
are highly correlated.

The true variance of the estimator µ̂X will lie somewhere
between σ 2

X and σ 2
X /n . In detail

Var [µ̂X ] = 1

n2

n∑
i=1

n∑
j=1

Cov
[
Xi , Xj

]

=

 1

n2

n∑
i=1

n∑
j=1

ρij


 σ 2

X � γ (D)σ 2
X

where ρij is the correlation coefficient between Xi and Xj

and γ (D) is call the variance function (see Section 3.4).
The variance function lies between 0 and 1 and gives the
amount of variance reduction that takes place when X is
averaged over the sampling domain D = n �x . For highly
correlated fields, the variance function tends to remain close
to 1, while for poorly correlated fields, the variance function
tends toward �x/D = 1/n . Figure 5.15 shows examples of
a process X (t) superimposed by its average over a width
D = 0.2, XD (t), for poorly and highly correlated processes.
When the process is poorly correlated, the variability of
the average, XD (t), tends to be much smaller than that of
the original X (t), while if the process is highly correlated,
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Figure 5.15 Effect of averaging on variance: (a) poorly correlated field; (b) highly correlated field.
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Figure 5.16 Local estimates of mean and standard deviation
over sampling domain T .

the average XD (t) tends to follow X (t) closely with little
variance reduction.

The implications of this discussion are as follows: While
the mean is typically estimated using Eq. 5.36, it is impor-
tant to remember that, in the case of random fields with
significant spatial correlation, this estimator may itself be
highly variable and increasing the number of samples within
a fixed domain may not decrease its variability (it would
be better to increase the sampling domain size). See, for
example, Figure 5.16.

On the other hand, the fact that the mean estimator may
remain highly variable is really only important when the
estimator is going to be used to model a random soil
property at another site. If the data are being gathered at
the site in question, then increasing the number of samples
does reduce the uncertainty at the site, even if the true mean
of the soil property in general remains questionable.

5.3.4 Estimating the Variance

Consider the traditional estimator of the variance:

σ̂ 2
X = 1

n − 1

n∑
i=1

(Xi − µ̂X )2 (5.37)

If the observations Xi are independent, then this estimator
is unbiased with

E
[
σ̂ 2

X

] = σ 2
X (5.38)

If the observations Xi are (at least approximately) nor-
mally distributed, then the quantity (n − 1)σ̂ 2

X /σ 2
X follows

a chi-square distribution with n − 1 degrees of freedom.
It follows from the fact that a chi-square distributed ran-
dom variable with n − 1 degrees of freedom has variance
2(n − 1) (see Section 1.10.7) that the variance of σ̂ 2

X is

Var
[
σ̂ 2

X

] = 2σ 4
X

n − 1
(5.39)

When the observations Xi are correlated, it can be shown
that the MLE

σ̂ 2
X = 1

n

n∑
i=1

(Xi − µ̂X )2 (5.40)

is a biased estimator with expectation

E
[
σ̂ 2

X

] = σ 2
X

(
1 − γ (D)

)
(5.41)

In the presence of correlation, σ̂ 2
X < σ 2

X , on average, since
γ (D) lies between 0 and 1. In fact, σ̂ 2

X → 0 as the field
becomes increasingly correlated [since γ (D) → 1 in this
case]. This situation is illustrated in Figure 5.16 where a
slowly varying (highly correlated) soil property is sampled
over a relatively short distance D . In this case, the estimated
variance is much smaller than the true variance and the
estimated mean is considerably different than the true mean.
In the case where the Xi ’s are independent, γ (D) tends
towards 1/n so that Eq. 5.40 is seen to be still biased.
In most cases the unbiased estimator given by Eq. 5.37 is
preferred when the data are independent.

It can be seen that the estimate given by Eq. 5.40 tends
to become quite uncertain as the field becomes increasingly
correlated. However, this is again only important if a good
estimate of the true variance is being sought—if D denotes
the site in question, then the data will accurately reflect
that site (but cannot be used to extrapolate). In general
the only way to get a good estimate of the variance is to
increase the size of the sampling domain—the sampling
domain size should be many times the correlation length θ .
The difficulty with such a statement is that θ is generally
unknown and might very well be infinite (as in fractal
fields).

5.3.5 Trend Analysis

In the preceding sections, a stationary random field was
implicitly assumed, having spatially constant mean and
variance. In many cases this is not so, at least not apparently
so, over the sampling domain. Often distinct trends in the
mean can be seen, and sometimes the variance also clearly
changes with position. We reiterate that if such trends are
not physically based, that is, if there is no reason to suspect
that identical trends would be repeated at another site, then
their direct estimation depends on whether the data are
being used to characterize this site or another. If the data
are collected at the site to be estimated, then the direct
estimation of the trends is worthwhile, otherwise probably
not. If unexplainable trends are encountered during an
exploration and the results are to be used to characterize
another site, then probably a larger sampling domain needs
to be considered.

Assume that the data are collected at the site to be char-
acterized. In such a case, the task is to obtain estimates of
µX (x) and σ 2

X (x), both as functions of position. Trends in the
variance typically require significant amounts of data to es-
timate accurately. The sampling domain is subdivided into
small regions within each of which the variance is assumed
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spatially constant. This allows a “blockwise” estimation of
the variance which may then be used to estimate a trend.
Thus the estimation of a nonstationary variance is simply a
reiteration of the stationary variance estimation procedure
discussed earlier. Since often there are insufficient data to
allow such a sophisticated analysis, the variance is usually
assumed globally stationary.

Trends in the mean, in the case of stationary variance, can
be obtained by least squares regression techniques. Here it
is assumed that the mean can be described by a function of
the form

µ̂X (x) =
M∑

k=1

ak gk (x) (5.42)

where ak are the unknown coefficients to be solved for and
gk (x) are prespecified functions of spatial position x. In
that complicated functions are often unjustifiable, usually
the mean trend is taken to be linear so that, in one dimen-
sion, g1(x ) = 1, g2(x ) = x , and M = 2. In two dimensions,
the corresponding mean function would be bilinear, with
g1(x) = 1, g2(x) = x1, g3(x) = x2, and g4(x) = x1x2. The
coefficients ak may be obtained by solving the so-called
normal equations:

GTGa = GTy (5.43)

where y is the vector of observations (the measured values
of the soil property in question), a is the vector of unknown
coefficients in Eq. 5.42 and G is a matrix made up of
the specified functions gk (xi ) evaluated at each of the
observation locations xi :

G =




g1(x1) g2(x1) · · · gM (x1)

g1(x2) g2(x2) · · · gM (x2)
.
.
.

.

.

.

.
.

.

.

.

.

g1(xn ) g2(xn ) · · · gM (xn )




Although the matrix G is of size n × M , the normal
equations boil down to just M equations in the M unknown
coefficients of a. As a word of caution, however, the normal
equations often tend to be nearly singular, particularly for
large data sets, and more advanced regression techniques
may be required [such as the QR algorithm (see, e.g., Press
et al., 1997)].

With this estimate of the mean, the process X (x) can be
converted into a mean stationary process X ′(x) = X (x) −
µ̂X (x). The deviation or residual process X ′ is now approx-
imately mean zero. If a plot of X ′(x) over space seems to
indicate a nonstationary variance, then the variance σ 2

X (x)
can be estimated by subdividing the sampling domain into
small regions as discussed above. Otherwise an unbiased

estimate of the stationary variance is

σ̂ 2
X = 1

n − M

n∑
i=1

(
Xi − µ̂X (xi )

)2

where M is the number of terms in Eq. 5.42.
If a nonstationary variance is detected and estimated, an

approximately stationary field in both mean and variance
can be produced through the transformation

X ′(x) = X (x) − µ̂X (x)

σ̂X (x)

In addition, such a transformation implies that X ′ has zero
mean and unit variance (at least in approximation).

5.3.6 Estimating the Correlation Structure

An estimator of the correlation structure of a one-
dimensional random field will be developed here. The ex-
tension to the multidimensional case is only slightly more
complicated.

Consider the sequence of random variables {X1, X2, . . . ,
Xn} sampled from X (x ) at a sequence of locations separated
by distance �x . For the following estimator, it is essential
that the data be equispaced. An unbiased estimator for the
covariance, C ( j�x ), between any two random variables
along x separated by the distance j �x for j = 0, 1, . . . ,
n − M − 1 is given by

Ĉ ( j �x ) = 1

n − M − j

×
n−j∑
i=1

(
Xi − µ̂X (xi )

)(
Xi+j − µ̂X (xi+j )

)

where M is the number of unknowns used to estimate
µX (x ). The correlation coefficient is then estimated as

ρ̂X ( j �x ) = Ĉ ( j �x )

σ̂ 2
X

where σ̂ 2
X = Ĉ (0) is the estimated variance.

In two dimensions, the estimator for the covariance at
lag τ = { j �x1, k �x2} involves a sum over all data pairs
separated by the lag τ—similarly in higher dimensions. The
normalizing factor 1/(n − M − j ) becomes 1/(Nτ − M ),
where Nτ is the total number of data pairs separated by
τ in the data set.

5.3.7 Example: Statistical Analysis
of Permeability Data

Consider a set of permeability measurements made by
an infiltrometer on 0.5 m × 0.5 m cells extracted from a
rectangular test pad of poorly compacted clay, as shown in
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Table 5.4 Permeability Data over 4-m Square Clay Test Pad

x2 x1 (m)
(m) 0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75
0.25 53.69 61.94 82.38 65.49 49.71 17.85 42.83 14.71
0.75 98.42 46.87 109.41 99.40 7.01 16.71 20.70 1.88
1.25 41.81 6.32 20.75 31.51 6.11 26.88 33.71 13.48
1.75 149.19 11.47 0.63 14.88 8.84 73.17 40.83 29.96
2.25 140.93 30.31 1.04 0.92 2.81 34.85 3.31 0.24
2.75 105.74 1.27 10.58 0.21 0.04 0.57 2.92 7.09
3.25 99.05 12.11 0.12 0.97 5.09 6.90 0.65 1.29
3.75 164.42 7.38 13.35 10.88 8.53 2.22 3.26 0.73

Table 5.4. The test pad is of dimension 4 m × 4 m and the
(x1, x2) coordinates shown in the table correspond to the
center of each 0.5-m square cell. All values are in units of
10−7 cm/s. A quick review of the data reveals first that it
is highly variable with Kmax/Kmin > 4000 and second that
it tends from very high values at the left edge (x1 = 1)
to small values as x1 increases. There also appears to be
a similar but somewhat less pronounced trend in the x2

direction, at least for larger values of x1.
The high variability is typical of permeability data, since

a boulder will have permeability approaching zero while an
airspace will have permeability approaching infinity—soils
typically contain both at some scale. Since permeability is
bounded below by zero, a natural distribution to use in a
random model of permeability is the lognormal. If K is log-
normally distributed, then ln K will be normally distributed.
In fact, the parameters of the lognormal distribution are
just the mean and variance of ln K (see Section 1.10.9).
Adopting the lognormal hypothesis, it is appropriate, be-
fore proceeding, to convert the data listed in Table 5.4 into
ln K data, as shown in Table 5.5.
Two cases will be considered in this example:

1. The data are to be used to characterize other similar
clay deposits. This is the more likely scenario for this
particular sampling program.

2. The site to be characterized is the 4-m2 test area
(which may be somewhat hypothetical since it has
been largely removed for laboratory testing).

Starting with case 1, any apparent trends in the data are
treated as simply part of a longer scale fluctuation—the field
is assumed to be stationary in mean and variance. Using
Eqs. 5.36 and 5.37 the mean and variance are estimated as

µ̂ln K = −13.86, σ̂ 2
ln K = 3.72

To estimate the correlation structure, a number of assump-
tions can be made:

(a) Assume that the clay bed is isotropic, which appears
physically reasonable. Hence an isotropic correlation
structure would be adopted which can be estimated by
averaging over the lag τ in any direction. For example,
when τ = 0.5 m the correlation can be estimated by
averaging over all samples separated by 0.5 m in any
direction.

(b) Assume that the principal axes of anisotropy are aligned
with the x1 and x2 coordinate axes and that the
correlation function is separable. Now ρ̂ln K (τ1, τ2) =
ρ̂ln K (τ1)ρ̂ln K (τ2) is obtained by averaging in the two
coordinate directions separately and lag vectors not
aligned with the coordinates need not be considered.

Table 5.5 Log Permeability Data over 4-m Square Clay Test Pad

x2 x1 (m)
(m) 0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75
0.25 −12.13 −11.99 −11.71 −11.94 −12.21 −13.24 −12.36 −13.43
0.75 −11.53 −12.27 −11.42 −11.52 −14.17 −13.30 −13.09 −15.49
1.25 −12.38 −14.27 −13.09 −12.67 −14.31 −12.83 −12.60 −13.52
1.75 −11.11 −13.68 −16.58 −13.42 −13.94 −11.83 −12.41 −12.72
2.25 −11.17 −12.71 −16.08 −16.20 −15.08 −12.57 −14.92 −17.55
2.75 −11.46 −15.88 −13.76 −17.68 −19.34 −16.68 −15.05 −14.16
3.25 −11.52 −13.62 −18.24 −16.15 −14.49 −14.19 −16.55 −15.86
3.75 −11.02 −14.12 −13.53 −13.73 −13.97 −15.32 −14.94 −16.43
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Because of the reduced number of samples contribut-
ing to each estimate, the estimates themselves will be
more variable.

(c) Assume that the correlation structure is more generally
anisotropic. Lags in any direction must be considered
separately and certain directions and lags will have very
few data pairs from which to derive an estimate. This
typically requires a large amount of data.

Assumption (a) is preferred, but (b) will also be exam-
ined to judge the applicability of the first assumption. In
assumption (b), the directional estimators are given by

ρ̂ln K ( j�τ1) = 1

σ̂ 2
ln K (n2(n1 − j ) − 1)

×
n2∑

k=1

n1−j∑
i=1

(X ′
ik )(X ′

i+j,k ), j = 0, 1, . . . , n1 − 1

ρ̂ln K ( j�τ2) = 1

σ̂ 2
ln K (n1(n2 − j ) − 1)

×
n1∑

k=1

n2−j∑
i=1

(X ′
ki )(X

′
k ,i+j ), j = 0, 1, . . . , n2 − 1

where X ′
ik = ln Kik − µ̂ln K is the deviation in ln K about

the mean, n1 and n2 are the number of samples in the x1

and x2 directions, respectively, and �τ1 = �τ2 = 0.5 m
in this example. The subscripts on X ′ or ln K index first
the x1 direction and second the x2 direction. The isotropic
correlation estimator of assumption (a) is obtained using

ρ̂ln K (j �τ )

= 1

σ̂ 2
ln K (n2(n1 − j ) + n1(n2 − j ) − 1)

×



n2∑
k=1

n1−j∑
i=1

(X ′
ik )(X ′

i+j ,k ) +
n1∑

k=1

n2−j∑
i=1

(X ′
ki )(X

′
k ,i+j )


 ,

j = 0, 1, . . . , max(n1, n2) − 1

in which, if n1 �= n2, then the ni − j appearing in the
denominator must be treated specially. Specifically for any
j > ni , the ni − j term is set to zero.

Figure 5.17 shows the estimated directional and isotropic
correlation functions for the ln K data. Note that at higher
lags the curves become quite erratic. This is typical since
they are based on fewer sample pairs as the lag increases.
Also shown on the plot is a fitted exponentially decaying
correlation function. The correlation length θ is estimated
to be about θ̂ = 1.3 m in this case. This was obtained
simply by finding θ̂ which resulted in the fitted correlation
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Figure 5.17 Estimated and fitted correlation function for ln K
data.

function passing through the estimated correlation(s) at lag
τ = 0.5 m.

It is important to point out that the estimated scale is quite
sensitive to the mean. For example, if the mean of ln K is
known to be −12.0 rather than −13.86, then the estimated
scale jumps to θ̂ = 3.75 m. In effect, the estimated scale
is quite uncertain; it is best used to characterize the site
at which the data were taken. Unfortunately, significantly
better scale estimators have yet to be developed.

For case 2, where the data are being used to characterize
the site from which it was sampled, the task is to estimate
the trend in the mean. This can be done in a series of
steps starting with simple functions for the mean (i.e.,
constant) and progressing to more complicated functions
(e.g., bilinear, biquadratic), monitoring the residual variance
for each assumed form. The form which accounts for a
significant portion of the variance without being overly
complex would be preferable.

Performing a least squares regression with a bilinear
mean function on the data in Table 5.5 gives

µ̂ln K (x) = −11.88 − 0.058x1 − 0.102x2 − 0.011x1x2

with corresponding residual variance of 2.58 (was 3.72 for
the constant mean case). If a biquadratic mean function is
considered, the regression yields

µ̂ln K (x) = − 12.51 + 0.643x1 + 0.167x2 − 0.285x1x2

− 0.0501x 2
1 − 0.00604x 2

2 + 0.0194x 2
1 x2

+ 0.0131x1x 2
2 − 0.000965x 2

1 x 2
2

with a residual variance of 2.18. Since there is not much
of a reduction in variance using the more complicated
biquadratic function, the bilinear form is selected. For
simplicity, only two functional forms were compared here.
In general, one might want to consider all the possible
combinations of monomials to select the best form.
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Table 5.6 Log Permeability Residuals

x2 x1 (m)
(m) 0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75
0.25 −0.077 0.203 0.623 0.533 0.403 −0.487 0.533 −0.397
0.75 0.749 0.192 1.225 1.308 −1.159 −0.106 0.288 −1.929
1.25 0.124 −1.539 −0.133 0.513 −0.900 0.806 1.262 0.569
1.75 1.620 −0.681 −3.311 0.118 −0.132 2.247 1.937 1.896
2.25 1.785 0.558 −2.499 −2.307 −0.874 1.949 −0.088 −2.406
2.75 1.721 −2.343 0.133 −3.432 −4.736 −1.720 0.266 1.512
3.25 1.886 0.185 −4.036 −1.547 0.513 1.212 −0.749 0.340
3.75 2.612 −0.046 0.986 1.229 1.431 0.523 1.346 0.298
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Figure 5.18 Estimated and fitted correlation function for ln K −
µ̂ln K data.

Adopting the bilinear mean function, the residuals
ln K ′ = ln K − µ̂ln K are shown in Table 5.6. Figure 5.18
illustrates the estimated correlation structure of the residu-
als. Notice that the fitted correlation length has decreased
to about 0.76 m. This reduction is typical since subtracting
the mean tends to reduce the correlation between residuals.
The estimated mean, variance, and correlation function (in
particular the correlation length) can now be used confi-
dently to represent the random field of log permeabilities
at the site.

Comments The use of random-field models is not without
its difficulties. This is particularly evident when estimat-
ing their parameters since random-field parameters must
often be derived from a single realization (the site being
explored). The interpretation of trends in the data as true
trends in the mean or simply as large-scale fluctuations is
a question which currently can only be answered by engi-
neering judgment. The science of estimation in the presence
of correlation between samples is not at all well developed.

As a result, the statistical parameters used to model a
random field are generally uncertain and statements regard-
ing probabilities are equally uncertain. That is, because

of the uncertainty in estimates of mean properties, state-
ments regarding the probability of failure of a slope, for
example, cannot be regarded as absolute. However, they
often yield reasonable approximations based on a very ra-
tional approach to the problem. In addition, probabilities
can be used effectively in a relative sense; for example,
the probability of failure of design A is less than that of
design B. Since relative probabilities are less sensitive to
changes in the underlying random-field parameters, they
can be more confidently used in making design choices.

5.4 ADVANCED ESTIMATION TECHNIQUES

This section takes a qualitative look at a number of tools
which tell something about the second-moment behavior
of a one-dimensional random process. The intent in this
section is to evaluate these tools with respect to their ability
to discern between finite-scale and fractal behavior. In the
following section, various maximum-likelihood approaches
to the estimation of the parameters for the finite-scale and
fractal models are given. Finally the results are summarized
with a view toward their use in developing a priori soil
statistics from a large geotechnical database.

5.4.1 Second-Order Structural Analysis

Attention is now turned to the stochastic characterization
of the spatial correlation structure. In the following it is
assumed that the data, xi , i = 1, 2, . . . , n , are collected
at a sequence of equispaced points along a line and that
the best stochastic model along that line is to be found.
Note that the xi may be some suitable transformation of
the actual data derived from the samples. In the following,
xi is an observation of the random process Xi = X (zi ),
where z is an index (commonly depth) and zi = (i − 1) �z ,
i = 1, 2, . . . , n . A variety of tools will be considered in this
section and their ability to identify the most appropriate
stochastic model for Xi will be discussed. In particular,
interest focuses on whether the process X (z ) is finite scaled



190 5 ESTIMATION

or fractal in nature. The performance of the various tools
in answering this question will be evaluated via simulation
employing 2000 realizations of finite scale (Markov, see
Section 3.6.5) and fractal (see Section 3.6.7) processes.
Each simulation is of length 20.48 with �z = 0.02, so
that n = 1024 and realizations are produced via covariance
matrix decomposition (see Section 6.4.2), a method which
follows from a Cholesky decomposition. Unfortunately,
large covariance matrices are often nearly singular and
so are hard to decompose correctly. Since the covariance
matrix for a one-dimensional equispaced random field is
symmetric and Toeplitz (the entire matrix is known if
only the first column is known—all elements along each
diagonal are equal), the decomposition is done using the
numerically more accurate Levinson–Durbin algorithm [see
Marple (1987) and Brockwell and Davis (1987)].

5.4.1.1 Sample Correlation Function The classical
sample average of xi is computed as

µ̂X = 1

n

n∑
i=1

Xi (5.44)

and the sample variance as

σ̂ 2
X = 1

n

n∑
i=1

(Xi − µ̂X )2 (5.45)

The variance estimator is biased, since it is not divided by
n − 1 as is usually seen. (A biased estimator is one whose
expected value is not equal to the parameter it purports to
estimate.) The use of a biased estimator here is for three
reasons:

1. The expected error variance is smaller than that for
the biased case (slightly).

2. The biased estimator, when estimating covariances,
leads to a tractable nonnegative definite covariance
matrix.

3. It is currently the most popular variance estimator in
time series analysis (Priestley, 1981).

Probably the main reason for its popularity is due to its
nonnegative definiteness. The covariance C (τ ) between
X (z ) and X (z + τ ) is estimated, using a biased estimator
for reasons discussed above, as

Ĉ (τj ) = 1

n

n−j+1∑
i=1

(Xi − µ̂X )(Xi+j−1 − µ̂X ),

j = 1, 2, . . . , n (5.46)

where the lag τj = (j − 1) �z . Notice that Ĉ (0) is the same
as the estimated variance σ̂ 2

X . The sample correlation is

obtained by normalizing,

ρ̂(τj ) = Ĉ (τj )

Ĉ (0)
(5.47)

One of the major difficulties with the sample correlation
function resides in the fact that it is heavily dependent on
the estimated mean µ̂X . When the soil shows significant
long-scale dependence, characterized by long-scale fluctu-
ations (see, e.g., Figure 5.14), µ̂X is almost always a poor
estimate of the true mean. In fact, it is not too difficult to
show that although the mean estimator (Eq. 5.44) is unbi-
ased, its variance is given by

Var [µ̂X ] =

 1

n2

n∑
i=1

n∑
j=1

ρ(τi−j )


 σ 2

X = γnσ 2
X � γ (D)σ 2

X

(5.48)
In this equation, D = (n − 1) �z is the sampling domain
size (interpreted as the region defined by n equisized
“cells,” each of width �z centered on an observation) and
γ (D) is the so-called variance function (Vanmarcke, 1984)
which gives the variance reduction due to averaging over
the length D ,

γ (D) = 1

D2

∫ D

0

∫ D

0
ρ(τ − s) dτ ds

= 2

D2

∫ D

0
(T − τ ) ρ(τ ) dτ (5.49)

The discrete approximation to the variance function, de-
noted γn above, approaches γ (D) as n becomes large.
For highly correlated soil samples (over the sampling do-
main), γ (D) remains close to 1.0, so that µ̂X remains highly
variable, almost as variable as X (z ) itself. Notice that the
variance of µ̂X is unknown since it depends on the unknown
correlation structure of the process.

In addition, it can be shown that Ĉ (τj ) is biased accord-
ing to (Vanmarcke, 1984)

E
[
Ĉ (τj )

] � σ 2
X

(
n − j + 1

n

) [
ρ(τj ) − γ (D)

]
(5.50)

where, again, the approximation improves as n increases.
From this it can be seen that

E
[
ρ̂(τj )
] � E

[
Ĉ (τj )

]
E
[
Ĉ (0)
] �
(

n − j + 1

n

)(
ρ(τj ) − γ (D)

1 − γ (D)

)

(5.51)
using a first-order approximation. For soil samples which
show considerable serial correlation, γ (D) may remain
close to 1 and generally the term [ρ(τj ) − γ (D)] will
become negative for all j ∗ ≤ j ≤ n for some j ∗ < n . What
this means is that the estimator ρ̂(τ ) will typically dip
below zero even when the field is actually highly positively
correlated.
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Figure 5.19 Covariance estimator on strongly dependent finite
sample.

Another way of looking at this problem is as follows:
Consider again the sample shown in Figure 5.14 and assume
that the apparent trend is in fact just part of a long-scale
fluctuation. Clearly Figure 5.14 is then a process with a
very large correlation length compared to D . The local
average µ̂X is estimated and shown by the dashed line
in Figure 5.19. Now, for any τ greater than about half
of the sampling domain, the product of the deviations
from µ̂X in Eq. 5.46 will be negative. This means that
the sample correlation function will decrease rapidly and
become negative somewhere before τ = 1

2 D even though
the true correlation function may remain much closer to 1.0
throughout the sample.

It should be noted that if the sample does in fact come
from a short-scale process, with θ � D , the variability of
Eq. 5.48 and the bias of Eq. 5.51 largely disappear because
γ (D) � 0. This means that the sample correlation function
is a good estimator of short-scale processes as long as θ �
D . However, if the process does in fact have long-scale
dependence, then the correlation function cannot identify
this and in fact continues to illustrate short-scale behavior.
In essence, the estimator is analogous to a self-fulfilling
prophecy: It always appears to justify its own assumptions.

Figures 5.20 and 5.21 illustrate the situation graphically
using simulations from finite-scale and fractal processes.
The max/min lines show the maximum and minimum corre-
lations observed at each lag over the 2000 realizations. The
finite-scale (θ = 3) simulation shows reasonable agreement
between ρ̂(τ ) and the true correlation because θ � D � 20.
However, for the fractal process (H = 0.95) there is a very
large discrepancy between the estimated average and true
correlation functions. Clearly the sample correlation func-
tion fails to provide any useful information about large-
scale or fractal processes.

5.4.1.2 Sample Semivariogram The semivariogram,
V (τ ), which is one-half of the variogram, as defined by
Matheron (1962), gives essentially the same information as

0 5 10 15 20 25
Lag, t (m)

−1
−0

.5
0

0.
5

1

r
(t

)

True
Average
Maximum
Minimum

Figure 5.20 Correlation function estimates from a finite-scale
process (θ = 3).
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Figure 5.21 Correlation function estimates from a fractal pro-
cess (H = 0.95).

the correlation function since, for stationary processes, they
are related according to

V (τj ) = 1
2 E
[
(Xi+j − Xi )

2] = σ 2
X

(
1 − ρ(τj )

)
(5.52)

The sample semivariogram is defined by

V̂ (τj ) = 1

2(n − j )

n−j∑
i=1

(Xi+j − Xi )
2, j = 0, 1, . . . , n − 1

(5.53)
The major difference between V̂ (τj ) and ρ̂(τj ) is that the
semivariogram does not depend on µ̂X . This is a clear
advantage since many of the troubles of the correlation
function relate to this dependence. In fact, it is easily
shown that the semivariogram is an unbiased estimator with
E
[
V̂ (τj )

] = 1
2 E
[
(Xi+j − Xi )2

]
. Figures 5.22 and 5.23 show
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Figure 5.22 Semivariogram estimates from a finite-scale pro-
cess (θ = 3).
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Figure 5.23 Semivariogram estimates from a fractal process
(H = 0.95).

how this estimator behaves for finite-scale and fractal pro-
cesses. Notice that the finite-scale semivariogram rapidly
increases to its limiting value (the variance) and then flat-
tens out whereas the fractal process leads to a semivari-
ogram that continues to increase gradually throughout. This
behavior can indicate the underlying process type and allow
identification of a suitable correlation model. Note, how-
ever, the very wide range between the observed minimum
and maximum (the maximum going off the plot, but having
maximum values in the range from 5 to 10 in both cases).
The high variability in the semivariogram may hinder its
use in discerning between model types unless sufficient av-
eraging can be performed.

The semivariogram finds its primary use in mining geo-
statistics applications [see, e.g., Journel and Huijbregts
(1978)]. Cressie (1993) discusses some of its distributional

characteristics along with robust estimation issues, but little
is known about the distribution of the semivariogram when
X (z ) is spatially dependent. Without the estimator distri-
bution, the semivariogram cannot easily be used to test
rigorously between competing model types (as in fractal
vs. finite scale), nor can it be used to fit model parameters
using the maximum-likelihood method.

5.4.1.3 Sample Variance Function The variance func-
tion measures the decrease in the variance of an average
as an increasing number of sequential random variables are
included in the average. If the local average of a random
process XD is defined by

XD = 1

D

∫ D

0
X (z ) dz (5.54)

then the variance of XD is just γ (D)σ 2
X . In the discrete case,

which will be used here, this becomes

X̄ = µ̂X = 1

n

n∑
i=1

X (zi ) = 1

n

n∑
i=1

Xi (5.55)

where Var
[
X̄
] = γnσ 2

X and γn , defined by Eq. 5.48, is
the discrete approximation of γ (D). If the Xi values are
independent and identically distributed, then γn = 1/n ,
while if X1 = X2 = · · · = Xn , then the X ’s are completely
correlated and γn = 1 so that averaging does not lead to
any variance reduction. In general, for correlation functions
which remain nonnegative, 1/n ≤ γn ≤ 1.

Conceptually, the rate at which the variance of an
average decreases with averaging size tells about the spatial
correlation structure. In fact, these are equivalent since in
the one-dimensional (continuous) case

γ (D) = 2

D2

∫ D

0
(D − τ )ρ(τ ) dτ

⇐⇒ ρ(τ ) = 1

2

∂2

∂τ 2
[τ 2γ (τ )] (5.56)

Given a sequence of n equispaced observations over a
sampling domain of size D = (n − 1) �z , the sample
(discrete) variance function is estimated to be

γ̂i = 1

σ̂ 2
X (n − i + 1)

n−i+1∑
j=1

(Xi ,j − µ̂X )2, i = 1, 2, . . . , n

(5.57)
where Xi ,j is the local average

Xi ,j = 1

i

j+i−1∑
k=j

Xk , j = 1, 2, . . . n − i + 1 (5.58)

Note that γ̂1 = 1 since the sum in Eq. 5.57 is the same
as that used to find σ̂ 2

X when i = 1. Also when i = n the
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sample variance function γ̂n = 0 since Xn,j = Xn,1 = µ̂X .
Thus, the sample variance function always connects the
points γ̂1 = 1 and γ̂n = 0.

Unfortunately, the sample variance function is biased
and its bias depends on the degree of correlation between
observations. Specifically it can be shown that

E
[
γ̂i
] � γi − γn

1 − γn
(5.59)

using a first-order approximation. This becomes unbiased
as n → ∞ only if D = (n − 1) �z → ∞ and γ (D) → 0
as well. What this means is that we need both the averaging
region to grow large and the correlation function to decrease
sufficiently rapidly within the averaging region in order for
the sample variance function to become unbiased.

Figures 5.24 and 5.25 show sample variance functions
averaged over 2000 simulations of finite-scale and fractal
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Figure 5.24 Variance function estimates from a finite-scale
process (θ = 1).

0 5 10 15 20 25

Averaging size, T (m)

0
0.

5
1

g
(T

)

True
Average
Maximum
Minimum
Ideal sample

Figure 5.25 Variance function estimates from a fractal process
(H = 0.98).

random processes. There is very little difference between
the estimated variance function in the two plots, despite
the fact that they come from quite different processes.
Clearly, the estimate of the variance function in the fractal
case is highly biased. Thus, the variance function plot
appears not to be a good identification tool and is really
only a useful estimate of second-moment behavior for
finite-scale process with θ � D . In the plots T = i �z for
i = 1, 2, . . . n .

5.4.1.4 Wavelet Coefficient Variance The wavelet basis
has attracted much attention in recent years in areas of sig-
nal analysis, image compression, and, among other things,
fractal process modeling (Wornell, 1996). It can basically
be viewed as an alternative to Fourier decomposition ex-
cept that sinusoids are replaced by “wavelets” which act
only over a limited domain. In one dimension, wavelets
are usually defined as translations along the real axis and
dilations (scalings) of a “mother wavelet,” as in

ψm
j (z ) = 2m/2ψ(2m z − j ) (5.60)

where m and j are dilation and translation indices,
respectively. The appeal to using wavelets to model fractal
processes is that they are both self-similar in nature—as
with fractal processes, all wavelets look the same when
viewed at the appropriate scale (which, in the above def-
inition, is some power of 2). The random process X (z ) is
then expressed as a linear combination of various scalings,
translations, and dilations of a common “shape.” Specifi-
cally,

X (z ) =
∑

m

∑
j

X m
j ψm

j (z ) (5.61)

If the wavelets are suitably selected so as to be orthonormal,
then the coefficients can be found through the inversion

X m
j =

∫ ∞

−∞
X (z )ψm

j (z ) dz (5.62)

for which highly efficient numerical solution algorithms
exist. The details of the wavelet decomposition will not
be discussed here. The interested reader should see, for
example, Strang and Nguyen (1996).

A theorem by Wornell (1996) states that, under reason-
ably general conditions, if the coefficients X m

j are mutually
uncorrelated, zero-mean random variables with variances

σ 2
m = Var

[
X m

j

]
= σ 22−γ m (5.63)

then X (z ) obtained through Eq. 5.61 will have a spectrum
which is very nearly fractal. Furthermore, Wornell makes
theoretical and simulation-based arguments showing that
the converse is also approximately true; namely that if
X (z ) is fractal with spectral density proportional to ω−γ ,
then the coefficients X m

j will be approximately uncorrelated
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with variance given by Eq. 5.63. If this is the case, then
a plot of ln(Var

[
X m

j

]
) versus the scale index m will be a

straight line.
Using a fifth-order Daubechies wavelet basis,

Figures 5.26 and 5.27 show plots of the estimated wavelet
coefficient variances σ̂ 2

m , where

σ̂ 2
m = 1

2m−1

2m−1∑
j=1

(x m
j )2 (5.64)

against the scale index m for the finite-scale and fractal sim-
ulation cases. In Eq. 5.64, x m

j is an estimate of X m
j , obtained

using observations in Eq. 5.62. The fractal simulations in
Figure 5.27 yield a straight line, as expected, while the
finite-scale simulations in Figure 5.26 show a slight flatten-
ing of the variance at lower values of m (larger scales). The
lowest value of m = 1 is not plotted because the variance
of this estimate is very large and it appears to suffer from
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Figure 5.26 Wavelet coefficient variance estimates from a finite-
scale process (θ = 3).
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Figure 5.27 Wavelet coefficient variance estimates from a frac-
tal process (H = 0.95).

the same bias as estimates of the spectral density function
at ω = 0 (as discussed later). On the basis of Figures 5.26
and 5.27, it appears that the wavelet coefficient variance
plot may have some potential in identifying an appropriate
stochastic model, although the difference in the plots is re-
ally quite small. Confident conclusions will require a large
data set.

If it turns out that X (z ) is fractal and Gaussian, then the
coefficients X m

j are also Gaussian and (largely) uncorrelated
as discussed above. This means that a maximum-likelihood
estimation can be performed to evaluate the spectral expo-
nent γ by looking at the likelihood of the computed set of
coefficients x m

j .

5.4.1.5 Sample Spectral Density Function The sample
spectral density function, referred to here also as the peri-
odogram despite its slightly nonstandard form, is obtained
by first computing the Fourier transform of the data,

χ (ωj ) = 1

n

n−1∑
k=0

Xk+1e−iωj k (5.65)

for each Fourier frequency ωj = 2π j/D , j = 0, 1, . . . , (n −
1)/2. This is efficiently achieved using the fast Fourier
transform. The periodogram is then given by the squared
magnitude of the complex Fourier coefficients according to

Ĝ(ωj ) = D

π
|χ (ωj )|2 (5.66)

where D = n �z (note the slight change in definition for
D , which is now equal to the period of the sequence). For
stationary processes with finite variance, the periodogram
estimates as defined here are independent and exponentially
distributed with means equal to the true one-sided spec-
tral density G(ωj ) (see Beran, 1994). Vanmarcke (1984)
shows that the periodogram itself has a nonzero correla-
tion length when D = n �z is finite, equal to 2π/D . This
suggests the presence of serial correlation between peri-
odogram estimators. However, because the periodogram es-
timates at Fourier frequencies are separated by 2π/D , they
are approximately independent, according to the physical
interpretation of the correlation length distance. The inde-
pendence and distribution have also been shown by Yajima
(1989) to hold for both fractal and finite-scale processes.
Armed with this distribution on the periodogram estimates,
one can perform maximum-likelihood estimation as well
as (conceptually) hypothesis tests. If the periodogram is
smoothed using some sort of smoothing window, as dis-
cussed by Priestley (1981), the smoothing may lead to loss
of independence between estimates at sequential Fourier
frequencies so that likelihood approaches become compli-
cated. In this sense, it is best to smooth the periodogram
(which is notoriously rough) by averaging over an ensemble
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of periodogram estimates taken from a sequence of realiza-
tions of the random process, where available.

Note that the periodogram estimate at ω = 0 is not a good
estimator of G(0) and so it should not be included in the
periodogram plot. In fact, the periodogram estimate at ω =
0 is biased with E

[
Ĝ(0)
] = G(0) + nµ2

X /(2π ) (Brockwell
and Davis, 1987). Recalling that µX is unknown and its
estimate is highly variable when strong correlation exists,
the estimate Ĝ(0) should not be trusted. In addition, its
distribution is no longer a simple exponential.

Certainly the easiest way to determine whether the data
are fractal in nature is to look directly at a plot of the
periodogram. Fractal processes have spectral density func-
tions of the form G(ω) ∝ ω−γ for γ > 0. Thus, ln G(ω) =
c − γ ln ω for some constant c, so that a log-log plot of
the sample spectral density function of a fractal process
will be a straight line with slope −γ . Figures 5.28 and 5.29
illustrate how the periodogram behaves when averaged over
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Figure 5.28 Periodogram estimates from a finite-scale process
(θ = 3).
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Figure 5.29 Periodogram estimates from a fractal process
(H = 0.95).

both finite-scale and fractal simulations. The periodogram
is a straight line with negative slope in the fractal case and
becomes more flattened at the origin in the finite-scale case,
as was observed for the wavelet variance plot. Again, the
difference is only slight, so that a fairly large data set is
required in order to decide on a model with any degree of
confidence.

5.4.2 Estimation of First- and Second-Order
Statistical Parameters

Upon deciding on whether a finite-scale or fractal model
is more appropriate in representing the soil data, the next
step is to estimate the pertinent parameters. In the case
of the finite-scale model, the parameter of interest is the
correlation length θ . For fractal models, the parameter of
interest is the spectral exponent γ or, equivalently for
0 ≤ γ < 1, the self-similarity parameter H = 1

2 (γ + 1).

5.4.2.1 Finite-Scale Model If the process is deemed to
be finite scale in nature, then a variety of techniques are
available to estimate θ :

1. Directly compute the area under the sample corre-
lation function. This is a nonparametric approach,
although it assumes that the scale is finite and that
the correlation function is monotonic. The area is usu-
ally taken to be the area up to when the function first
becomes negative (the correlation length is not well
defined for oscillatory correlation functions, other pa-
rameters may be more appropriate if this is the case).
Also note that correlation estimates lying within the
band ±2n−1/2 are commonly deemed to be not signif-
icantly different than zero (see Priestley, 1981, p. 340;
Brockwell and Davis, 1987, Chapter 7).

2. Use regression to fit a correlation function to ρ̂(τ ) or a
semivariogram to V̂ (τ ). For certain assumed correla-
tion or semivariogram functions, this regression may
be nonlinear in θ .

3. If the sampling domain D is deemed to be much
larger than the correlation length, then the scale can be
estimated from the variance function using an iterative
technique such as that suggested by Vanmarcke (1984,
p. 337).

4. Assuming a joint distribution for X (tj ) with corre-
sponding correlation function model, estimate un-
known parameters (µX , σ 2

X , and correlation function
parameters) using ML in the space domain.

5. Using the established results regarding the joint distri-
bution for periodogram estimates at the set of Fourier
frequencies, an assumed spectral density function can
be “fit” to the periodogram using ML.
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Because of the reasonably high bias in the sample correla-
tion (or covariance) function estimates, even for finite-scale
processes, using the sample correlation directly to estimate
θ will not be pursued here. The variance function tech-
niques have not been found by the authors to be particularly
advantageous over, for example, the ML approaches and are
also prone to error due to their high bias in long-scale or
fractal cases. Here, the MLE in the space domain will be
discussed briefly. The MLE in the frequency domain will
be considered later.

It will be assumed that the data are normally distributed
or have been transformed from their raw state into some-
thing that is at least approximately normally distributed. For
example, many soil properties are commonly modeled us-
ing the lognormal distribution, often primarily because this
distribution is strictly nonnegative. To convert lognormally
distributed data to a normal distribution, it is sufficient
merely to take the natural logarithm of the data prior to
further statistical analysis. It should be noted that the nor-
mal model is commonly used for at least two reasons: It is
analytically tractable in many ways and it is completely de-
fined through knowledge of the first two moments, namely
the mean and covariance structure. Since other distribu-
tions commonly require higher moments and since higher
moments are generally quite difficult to estimate accurately,
particularly in the case of geotechnical samples which are
typically limited in size, the use of other distributions is
often difficult to justify. The normal assumption can be
thought of as a minimum-knowledge assumption which suc-
cinctly expresses the first two moments of the random field,
where it is hoped that even these can be estimated with
some confidence.

Since the data are assumed to be jointly normally dis-
tributed, the space domain MLEs are obtained by maxi-
mizing the likelihood of observing the spatial data under
the assumed joint distribution. The likelihood of observing
the sequence of observations xT = {x1, x2, . . . , xn} (super-
script T denotes the vector or matrix transpose) given the
distributional parameters φT = {µX , σ 2

X , θ} is

L(x|φ) = 1

(2π )n/2|C |1/2
exp
{− 1

2 (x − µ)TC −1(x − µ)
}

(5.67)
where C is the covariance matrix between the observations,
C ij = E

[
(Xi − µi )(Xj − µj )

]
, |C | is the determinant of

C , and µ is the vector of means corresponding to each
observation location. In the following, the data are assumed
to be modeled by a stationary random field, so that the mean
is spatially constant and µ = µX 1 where 1 is a vector of
1’s. Again, if this assumption is not deemed warranted,
a deterministic trend in the mean and variance can be
removed from the data prior to the following statistical

analysis through the transformation

x ′(z ) = x (z ) − m(z )

s(z )

where m(z ) and s(z ) are deterministic spatial trends in
the mean and standard deviation, possibly obtained by
regression analysis of the data. Recall, however, that this is
generally only warranted if the same trends are expected at
the target site.

Also due to the stationarity assumption, the covariance
matrix can be written in terms of the correlation matrix ρ

as
C = σ 2

X ρ (5.68)

where ρ is a function only of the unknown correlation
function parameter θ . If the correlation function has more
than one parameter, then θ is treated as a vector of unknown
parameters and the ML will generally be found via a
gradient or grid search in these parameters. With Eq. 5.68,
the likelihood function of Eq. 5.67 can be written as

L(x|φ) = 1

(2πσ 2
X )n/2|ρ|1/2

exp


−

(x − µ)Tρ−1(x − µ)

2σ 2
X




(5.69)

Since the likelihood function is strictly nonnegative, max-
imizing L(x|φ) is equivalent to maximizing its logarithm,
which, ignoring constants, is given by

L(x|φ) = −1

2
ln σ 2

X − 1

2
ln |ρ| − (x − µ)Tρ−1(x − µ)

2σ 2
X

(5.70)
The maximum of Eq. 5.70 can in principle be found by
differentiating with respect to each unknown parameter µX ,
σ 2

X , and θ in turn and setting the results to zero. This gives
three equations in three unknowns. The partial derivative
of L with respect to µX , when set equal to zero, leads to
the following estimator for the mean:

µ̂X = 1Tρ−1x

1Tρ−11
(5.71)

Since this estimator still involves the unknown correlation
matrix, it should be viewed as the value of µX which
maximizes the likelihood function for a given value of
the correlation parameter θ . If the two vectors r and s are
solutions of the two systems of equations

ρ r = x (5.72a)

ρ s = 1 (5.72b)

then the estimator for the mean can be written as

µ̂X = 1Tr

1Ts
(5.73)
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Note that this estimator is generally not very different
from the usual estimator obtained by simply averaging the
observations (Beran, 1994). Note also that 1Tr = xTs so
that really only s needs to be found in order to compute µ̂X ,
However, r will be needed in the following, so it should
be found anyhow.

The partial derivative of L with respect to σ 2
X , when set

equal to zero, leads to the following estimator for σ 2
X :

σ̂ 2
X = 1

n
(x − µ̂X 1)Tr (5.74)

which is also implicitly dependent on the correlation func-
tion parameter through µ̂X and r.

Thus, both the mean and variance estimators can be
expressed in terms of the unknown parameter θ . Using these
results, the maximization problem simplifies to finding the
maximum of

L(x|φ) = − 1
2 ln σ̂ 2

X − 1
2 ln |ρ| (5.75)

where the last term in Eq. 5.70 became simply n/2 and was
dropped from Eq. 5.75 since it does not affect the location
of the maximum.

In principle, Eq. 5.75 need now only be differentiated
with respect to θ and the result set to zero to yield the opti-
mal estimate θ̂ and subsequently σ̂ 2

X and µ̂X . Unfortunately,
this involves differentiating the determinant of the correla-
tion matrix, and closed-form solutions do not always exist.
Solution of the MLEs may therefore proceed by iteration
as follows:

1. Guess at an initial value for θ .
2. Compute the corresponding correlation matrix ρij =

ρ(|zi − zj |), which in the current equispaced one-
dimensional case is both symmetric and Toeplitz
(elements along each diagonal are equal).

3. Solve Eqs. 5.72 for vectors r and s.
4. Solve for the determinant of ρ (because this is often

vanishing, it is usually better to compute the log
determinant directly to avoid numerical underflow).

5. Compute the mean and variance estimates using
Eqs. 5.74 and 5.73.

6. Compute the log-likelihood value L using Eq. 5.75.
7. Guess at a new value for θ and repeat steps 2–7 until

the global maximum value of L is found.

Guesses for θ can be arrived at simply by stepping dis-
cretely through a likely range (and the speed of modern
computers make this a reasonable approach), increasing the
resolution in the region of located maxima. Alternatively
more sophisticated techniques may be employed which
look also at the magnitude of the likelihood in previous
guesses. One advantage to the brute-force approach of step-
ping along at predefined increments is that it is more likely

to find the global maximum in the event that multiple local
maxima are present. With the speed of modern computers,
this approach has been found to be acceptably fast for a low
number of unknown parameters, less than, say, four, and
where bounds on the parameters are approximately known.

For large samples, the correlation matrix ρ can become
nearly singular, so that numerical calculations become un-
stable. In the one-dimensional case, Durbin–Levinson re-
cursion, taking full advantage of the Toeplitz character of
ρ, yields a faster and more accurate decomposition and al-
lows the direct computation of the log determinant as part
of the solution (see, e.g., Marple, 1987).

One finite-scale model which has a particularly simple
ML formulation is the jointly normal distribution with the
Markov correlation function (see Section 3.6.5),

ρ(τ ) = exp

{
−2|τ |

θ

}
(5.76)

When observations are equispaced, the correlation matrix
has a simple closed-form determinant and a tridiagonal
inverse,

|ρ| = (1 − q2)n−1 (5.77)

ρ−1 =
(

1

1 − q2

)

×




1 −q 0 0 · · · 0 0
−q 1 + q2 −q 0 · · · 0 0
0 −q 1 + q2 −q · · · 0 0
0 0 −q 1 + q2 · · · 0 0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 0 0 · · · 1 + q2 −q
0 0 0 0 · · · −q 1




(5.78)

where q = exp{−2 �z/θ} for observations spaced �z
apart. Using these results, the ML estimation of q reduces
to finding the root of the cubic equation,

f (q) = b0 + b1q + b2q2 + b3q3 = 0 (5.79)

on the interval q ∈ (0, 1), where

b0 = nR1 (5.80a)

b1 = −(R0 + nR′
0) (5.80b)

b2 = −(n − 2)R1 (5.80c)

b3 = (n − 1)R′
0 (5.80d)

R0 =
n∑

i=1

(xi − µ̂X )2 (5.80e)

R′
0 = R0 − (x1 − µ̂X )2 − (xn − µ̂X )2 (5.80f)
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R1 =
n−1∑
i=1

(xi − µ̂X )(xi+1 − µ̂X ) (5.80g)

For given q , the corresponding MLEs of µX and σ 2
X are

µ̂X = Qn − q(Qn + Q ′
n ) + q2Q ′

n

n − 2q(n − 1) + q2(n − 2)
(5.81a)

σ̂ 2
X = R0 − 2qR1 + q2R′

0

n(1 − q2)
(5.81b)

where

Qn =
n∑

i=1

xi (5.82a)

Q ′
n = Qn − x1 − xn (5.82b)

According to Anderson (1971), Eq. 5.79 will have one root
between 0 and 1 (for positive R1, which is n times the lag
1 covariance and should be positive under this model) and
two roots outside the interval (−1, 1). The root of interest
is the one lying between 0 and 1 and it can be efficiently
found using Newton–Raphson iterations with starting point
q = R1/R′

0 as long as that starting point lies within (0, 1)
(if not, use starting point q = 0.5).

Since the coefficients of the cubic depend on µ̂X , which
in turn depends on q , the procedure actually involves a
global iteration outside the Newton–Raphson root-finding
iterations. However, µ̂X changes only slightly with chang-
ing q , so global convergence is rapid if it is bothered with
at all. Once the root q of Eq. 5.79 has been determined, the
MLE of the correlation length is determined from

θ̂ = −2 �z

ln q
(5.83)

In general, estimates of the variances of the MLEs
derived above are also desirable. One of the features of the
ML approach is that asymptotic bounds on the covariance
matrix C θ̂ between the estimators θ̂

T = {µ̂X , σ̂ 2
X , θ̂} can be

found. This covariance matrix is called the Cramer–Rao
bound, and the bound has been shown to hold asymptoti-
cally for both finite-scale and fractal processes (Dahlhaus,
1989; Beran, 1994)—in both cases for both n and the
domain size going to infinity. If we let θT = {µX , σ 2

X , θ}
be the vector of unknown parameters and define the vector

L′ = ∂

∂θj
L (5.84)

where L is the log-likelihood function defined by Eq. 5.70,
then the matrix C θ̂ is given by the inverse of the Fisher
information matrix,

C −1
θ̂

= E
[

[L′][L′]T] (5.85)

where the superscript T denotes the transpose and the
expectation is over all possible values of X using its joint
distribution (see Eq. 5.67) with parameters θ̂ . The above
expectation is generally computed numerically since it is
quite complex analytically. For the Gauss–Markov model
the vector L′ is given by

L′ =




1
σ 2

X
1Tρ−1(X − µ)

1
2σ 4

X
(X − µ)Tρ−1(X − µ) − n

2σ 2
X

2 �z (n−1)q2

θ2(1−q2)
− 1

2σ 2
X

(X − µ)TR (X − µ)




(5.86)

where R is the partial derivative of ρ−1 with respect to the
correlation length θ .

5.4.2.2 Fractal Model The use of a fractal model is
considerably more delicate than that of the finite-scale
model. This is because the fractal model, with G(ω) ∝
ω−γ , has infinite variance. When 0 ≤ γ < 1, the infinite-
variance contribution comes from the high frequencies so
that the process is stationary but physically unrealizable.
Alternatively, when γ > 1, the infinite variance comes from
the low frequencies which yields a nonstationary (fractional
Brownian motion) process. In the latter case, the infinite
variance basically arises from the gradual meandering of
the process over increasingly large distances as one looks
over increasingly large scales. While nonstationarity is
an interesting mathematical concept, it is not particularly
useful or practical in soil characterization. It does, however,
emphasize the dependence of the overall soil variation on
the size of the region considered. This explicit emphasis on
domain size is an important feature of the fractal model.

To render the fractal model physically useful for the
case when 0 ≤ γ < 1, Mandelbrot and van Ness (1968)
introduced a distance δ over which the fractal process is
averaged to smooth out the high-frequencies and eliminate
the high-frequency (infinite) variance contribution. The
resulting correlation function is given by (Section 3.6.7)

ρ(τ ) = 1

2δ2H

[
|τ + δ|2H − 2|τ |2H + |τ − δ|2H

]
(5.87)

Unfortunately, the rather arbitrary nature of δ renders Man-
delbrot’s model of questionable practical value, particularly
from an estimation point of view. If δ is treated as known,
then one finds that the parameter H can be estimated to
be any value desired simply by manipulating the size of δ.
Alternatively, if both δ and H are estimated simultaneously
via ML in the space domain (see previous section), then
one finds that the likelihood surface has many local max-
ima, making it difficult to find the global maximum. Even
when it has been found with reasonable confidence, it is
the authors’ experience that the global maximum tends to
correspond to unreasonably large values of δ corresponding
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to overaveraging and thus far too smooth a process. Why
this is so is yet to be determined.

A better approach to the fractal model is to employ the
spectral representation, with G(ω) = Go/ω

γ , and apply an
upper frequency cutoff in the event that 0 ≤ γ̂ < 1 or a
lower frequency cutoff in the event that γ̂ > 1. Both of
these approaches render the process both stationary and
having finite variance. When γ = 1, the infinite-variance
contribution appears at both ends of the spectrum and both
an upper and lower cutoff are needed. The appropriate
cutoff frequencies should be selected on the basis of the
following:

1. A minimum descriptive scale, in the case 0 ≤ γ̂ < 1,
below which details of the process are of no interest.
For example, if the random process is intended to be
soil permeability, then the minimum scale of interest
might correspond to the laboratory sample scale d at
which permeability tests are carried out. The upper
frequency cutoff might then be selected such that this
laboratory scale corresponds to, say, one wavelength,
ωu = 2π/d .

2. For the case γ̂ > 1, the lower bound cutoff frequency
must be selected on the basis of the dimension of
the site under consideration. Since the local mean
will be almost certainly estimated by collecting some
observations at the site, one can eliminate frequencies
with wavelengths large compared to the site dimen-
sion. This issue is more delicate than that of an upper
frequency cutoff discussed above because there is no
natural lower frequency bound corresponding to a cer-
tain finite scale (whereas there is an upper bound
corresponding to a certain finite-sampling resolution).
If the frequency bound is made to be too high, then the
resulting process may be missing the apparent long-
scale trends seen in the original data set. As a tentative
recommendation, the authors suggest using a lower
cutoff frequency equal to the least nonzero Fourier
frequency ωo = 2π/D , where D is the site dimension
in the direction of the model.

The parameter γ is perhaps best estimated directly in the
frequency domain via ML. There are at least two possible
approaches, but here only the wavelet and periodogram
MLEs will be discussed.

In the case of the wavelet basis representation, the ap-
proach is as follows (from Wornell, 1996). For an observed
Gaussian process, x (ti ), i = 1, 2, . . . , n , the wavelet co-
efficients x m

j , m = 1, 2, . . . , M , j = 1, 2, . . . , 2m−1, where
n = 2M , can be obtained via Eq. 5.62 (preferably using an
efficient wavelet decomposition algorithm). Since the input
is assumed to be Gaussian, the wavelet coefficients will

also be Gaussian. Wornell has shown that they are mean
zero and largely independent if X (z ) comes from a frac-
tal process so that the likelihood of obtaining the set of
coefficients x m

j is given by

L(x; γ ) =
M∏

m=1

2m−1∏
j=1

1√
2πσ 2

m

exp

{
− (x m

j )2

2σ 2
m

}
(5.88)

where σ 2
m = σ 22−γ m is the model variance for some un-

known intensity σ 2. The log-likelihood function is thus

L = −1

2

M∑
m=1

(2m−1) ln(σ 2
m ) − 1

2

M∑
m=1

(
1

σ 2
m

) 2m−1∑
j=1

(x m
j )2

(5.89)
(discarding constant terms) which must be maximized with
respect to σ 2 and γ . See Wornell (1996, Section 4.3) for
details on a relatively efficient algorithm to maximize L.

An alternative approach to estimating γ is via the peri-
odogram. In the authors’ opinion, the periodogram approach
is somewhat superior to that of the wavelet because the two
methods have virtually the same ability to discern between
finite-scale and fractal processes and the periodogram has
a vast array of available theoretical results dealing with its
use and interpretation. While the wavelet basis may war-
rant further detailed study, its use in geotechnical analysis
seems unnecessarily complicated at this time.

Since the periodogram has been shown to consist of
approximately independent exponentially distributed esti-
mates at the Fourier frequencies for a wide variety of ran-
dom processes, including fractal, it leads easily to a MLE
for γ . In terms of the one-sided spectral density function
G(ω), the fractal process is defined by

G(ω) = Go

|ω|γ , 0 ≤ ω < ∞ (5.90)

The likelihood of seeing the periodogram estimates Ĝj =
Ĝ(ωj ), j = 1, 2, . . . , k , where k = 1

2 (n − 1) and ωj =
2π j/D , is just

L(Ĝ; θ) =
k∏

j=1

(
ω

γ

j

Go

)
exp

{
−ω

γ

j

Go
Ĝj

}
(5.91)

and its logarithm is

L = −k ln Go + γ

k∑
j=1

ln ωj − 1

Go

k∑
j=1

ω
γ

j Ĝj (5.92)

which is maximized with respect to Go and γ . The spectral
intensity parameter Go is not necessarily of primary interest
since it may have to be adjusted anyhow to ensure that the
area under G(ω) is equal to σ̂ 2

X after the cutoff frequency
discussed above is employed (or, alternatively, the cutoff
frequency adjusted for fixed Go).
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Differentiating Eq. 5.92 with respect to Go and setting
the result to zero yield

Ĝo = 1

k

k∑
j=1

Ĝj ω
γ

j (5.93)

In turn, differentiating Eq. 5.92 with respect to γ and
setting the result to zero lead to the following root-finding
problem in γ :∑k

j=1 Ĝj ω
γ

j ln ωj∑k
j=1 Ĝj ω

γ

j

−
k∑

j=1

ln ωj = 0 (5.94)

For almost all common processes, 0 ≤ γ ≤ 3, so that
Eq. 5.94 can be solved efficiently via bisection.

The Fisher information matrix, and thus the covariance
matrix between the unknown parameters Go and γ , is
especially simple to compute for the periodogram MLE
since, asymptotically, the estimator Ĝo is independent of
γ̂ . The estimated variances of each estimated parameter
can be found from

σ 2
Ĝo

� Ĝ2
o(∑k

i=1 ω
1−γ̂

i − k
)2 −∑k

i=1 ω
2(1−γ̂ )
i

(5.95)

σ 2
γ̂ � 1(∑k

i=1 ln ωi − k
)2 + k

(5.96)

However, it should be pointed out that these variances are
only achieved asymptotically as the sample length increases
to infinity. In practice, this is not possible, so that estimates
of γ and Go will show much greater variability from sample
to sample than suggested by the above bounds. What this
means is that the uncertainty in the estimates of γ and Go

are best obtained via simulation or by considering a large
number of sampling domains.

5.4.3 Summary

When attempting to identify which of a suite of stochastic
models is best suited to represent a soil property, a variety
of data transforms are available. Most commonly these are
the sample correlation or covariance function, the semivar-
iogram, the sample variance function, the sample wavelet
coefficient variance function, and the periodogram. In trying
to determine whether the soil property best follows a finite-
scale model or a fractal 1/f-type noise, the periodogram,
wavelet variance, and semivariogram plots were found to
be the most discriminating. In this sense, the periodogram
is perhaps preferable due to the fact that it has been ex-
tensively studied, particularly in the context of time series
analysis, and because it has a nice physical interpretation
relating to the distribution of power to various component
frequencies.

It is recognized that these data transforms have been
evaluated by averaging over an ensemble of realizations.
In many real situations only one or a few data sets will be
available. Judging from the min/max curves shown on the
plots of Figures 5.20–5.29, it may be difficult to assess the
true nature of the process if little or no averaging can be
performed. This is, unfortunately, a fundamental issue in
all statistical analyses—confidence in the results decreases
as the number of independent observations decreases. All
that can really be said about the tools discussed above, for
example, the periodogram, is that on average it shows a
straight line with negative slope for fractal processes and
flattens out at the origin for finite -scale processes. Because
the periodogram ordinates are exponentially distributed and
the ability to distinguish between process types depends on
just the first few (low-frequency) ordinates, the use of only
a single sample set may not lead to a firm conclusion. For
this, special large-scale soil investigations, yielding a large
number of soil samples, may be necessary.

The sample correlation or covariance functions are ac-
ceptable measures of second-moment structure when the
correlation length of the process is small relative to the
sampling domain, implying that many of the observations
in the sample are effectively independent. However, these
sample functions become severely biased when the sam-
ple shows strong dependence, preventing them from be-
ing useful to discern between finite-scale and fractal-type
processes. Since the level of dependence is generally not
known a priori, inferences based on the sample covariance
and correlation functions are not generally reliable. Like-
wise, the sample variance function is heavily biased in the
presence of strong dependence, rendering its use question-
able unless the soil property is known to be finite scale with
θ � D .

Once a class of stochastic models has been determined
using the periodogram, the periodogram can again be used
to estimate the parameters of an assumed spectral density
function via maximum likelihood. This method can be
applied to either finite-scale or fractal processes, requiring
only an assumption on the functional form of the spectral
density function. The ML approach is preferred over other
estimation techniques such as regression because of the
many available results dealing with the distribution of ML
estimates (see, e.g., Beran, 1994; DeGroot and Baecher,
1993).

If the resulting class of models is deemed to be fractal
with 0 ≤ γ̂ < 1, then the Mandelbrot model of Eq. 5.87 can
also be fitted using ML in the space domain (preferably with
δ taken to be some assumed small averaging length, below
which details of the random soil property process are of
no interest). For γ > 1, the fitted spectral density function
G(ω) = Go/ω

γ is still of limited use because it corresponds
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to infinite variance. It must be truncated at some appropriate
upper or lower bound (depending on whether γ is below
or above 1.0) to render the model physically useful. The
choice of truncation point needs additional investigation,
although some rough guidelines were suggested above.

In the finite-scale case, generally only a single parameter,
the correlation length, needs to be estimated to provide a
completely usable stationary stochastic model. However,
indications are that soil properties are fractal in nature,
exhibiting significant correlations over very large distances.
This proposition is reasonable if one thinks about the
formation processes leading to soil deposits—the transport

of soil particles by water, ice, or air often takes place
over hundreds if not thousands of kilometers. There may,
however, still be a place for finite-scale models in soil
models. The major strength of the fractal model lies in its
emphasis on the relationship between the soil variability and
the size of the domain being considered. Once a site has
been established, however, there may be little difference
between a properly selected finite-scale model and the
real fractal model over the finite domain. The relationship
between such an “effective” finite-scale model and the true
but finite-domain fractal model can be readily established
via simulation.



CHAPTER 6

Simulation

6.1 INTRODUCTION

Stochastic problems are often very complicated, requiring
overly simplistic assumptions in order to obtain closed-
form (or exact) solutions. This is particularly true of many
geotechnical problems where we do not even have exact an-
alytical solutions to the deterministic problem. For example,
multidimensional seepage problems, settlement under rigid
footings, and pile capacity problems often lack exact ana-
lytical solutions, and discussion is ongoing about the var-
ious approximations which have been developed over the
years. Needless to say, when spatial randomness is added
to the problem, even the approximate solutions are often
unwieldy, if they can be found at all. For example, one
of the simpler problems in geotechnical engineering is that
of Darcy’s law seepage through a clay barrier. If the bar-
rier has a large area, relative to its thickness, and flow
is through the thickness, then a one-dimensional seepage
model is appropriate. In this case, a closed-form analytical
solution to the seepage problem is available. However, if
the clay barrier has spatially variable permeability, then the
one-dimensional model is no longer appropriate (flow lines
avoid low-permeability regions), and even the deterministic
problem no longer has a simple closed-form solution. Prob-
lems of this type, and most other geotechnical problems, are
best tackled through simulation. Simulation is the process
of producing reasonable replications of the real world in
order to study the probabilistic nature of the response to
the real world. In particular, simulations allow the investi-
gation of more realistic geotechnical problems, potentially
yielding entire probability distributions related to the out-
put quantities of interest. A simulation basically proceeds
by the following steps:

1. By taking as many observations from the “real world”
as are feasible, the stochastic nature of the real-world
problem can be estimated. From the raw data, his-
togram(s), statistical estimators, and goodness-of-fit
tests, a distribution with which to model the problem
is decided upon. Pertinent parameters, such as the
mean, variance, correlation length, occurrence rate,
and so on, may be of interest in characterizing the
randomness (see Chapter 5).

2. A random variable or field, following the distribution
decided upon in the previous step, is defined.

3. A realization of the random variable/field is gener-
ated using a pseudo-random-number generator or a
random-field generator.

4. The response of the system to the random input
generated in the previous step is evaluated.

5. The above algorithm is repeated from step 3 for as
many times as are feasible, recording the responses
and/or counting the number of occurrences of a par-
ticular response observed along the way.

This process is called Monte Carlo simulation, after the
famed randomness of the gambling houses of Monte Carlo.
The probability of any particular system response can now
be estimated by dividing the number of occurrences of
that particular system response by the total number of
simulations. In fact, if all of the responses are retained in
numerical form, then a histogram of the responses forms
an estimate of the probability distribution of the system
response. Thus, Monte Carlo simulations are a powerful
means of obtaining probability distribution estimates for
very complex problems. Only the response of the system
to a known, deterministic, input needs to be computed at
each step during the simulation. In addition, the above
methodology is easily extended to multiple independent
random variables or fields—in this case the distribution
of each random variable or field needs to be determined
in step 1 and a realization for each generated in step 3. If
the multiple random variables or fields are not independent,
then the process is slightly more complicated and will be
considered in the context of random fields in the second
part of this chapter.

Monte Carlo simulations essentially replicate the exper-
imental process and are representative of the experimental
results. The accuracy of the representation depends entirely
on how accurately the fitted distribution matches the ex-
perimental process (e.g., how well the distribution matches
the random field of soil properties). The outcomes of the
simulations can be treated statistically, just as any set of
observations can be treated. As with any statistic, the ac-
curacy of the method generally increases as the number of
simulations increases.
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In theory, simulation methods can be applied to large and
complex systems, and often the rigid idealizations and/or
simplifications necessary for analytical solutions can be re-
moved, resulting in more realistic models. However, in prac-
tice, Monte Carlo simulations may be limited by constraints
of economy and computer capability. Moreover, solutions
obtained from simulations may not be amenable to general-
ization or extrapolation. Therefore, as a general rule, Monte
Carlo methods should be used only as a last resort: that is,
when and if analytical solution methods are not available or
are ineffective (e.g., because of gross idealizations). Monte
Carlo solutions are also often a means of verifying or vali-
dating approximate analytical solution methods.

One of the main tasks in Monte Carlo simulation is the
generation of random numbers having a prescribed prob-
ability distribution. Uniformly distributed random-number
generation will be studied in Section 6.2. Some techniques
for generating random variates from other distributions will
be seen in Section 6.3. Techniques of generating random
fields are considered starting in Section 6.4, and Section 6.6
elaborates in more detail about Monte Carlo simulation.

6.2 RANDOM-NUMBER GENERATORS

6.2.1 Common Generators

Recall that the U (0, 1) distribution is a continuous uniform
distribution on the interval from zero to one. Any one number
in the range is just as likely to turn up as any other number
in the range. For this reason, the continuous uniform distri-
bution is the simplest of all continuous distributions. While
techniques exist to generate random variates from other dis-
tributions, they all employ U (0, 1) random variates. Thus,
if a good uniform random-number generator can be devised,
its output can also be used to generate random numbers from
other distributions (e.g., exponential, Poisson, normal, etc.),
which can be accomplished by an appropriate transformation
of the uniformly distributed random numbers.

Most of the best and most commonly used uniform
random-number generators are so-called arithmetic genera-
tors. These employ sequential methods where each number
is determined by one or several of its predecessors accord-
ing to a fixed mathematical formula. If carefully designed,
such generators can produce numbers that appear to be in-
dependent random variates from the U (0, 1) distribution,
in that they pass a series of statistical tests (to be dis-
cussed shortly). In the sense that sequential numbers are
not truly random, being derived from previous numbers in
some deterministic fashion, these generators are often called
pseudo-random-number generators.

A “good” arithmetic uniform random-number generator
should possess several properties:

1. The numbers generated should appear to be indepen-
dent and uniformly distributed.

2. The generator should be fast and not require large
amounts of storage.

3. The generator should have the ability to reproduce a
given stream of random numbers exactly.

4. The generator should have a very long period.

The ability to reproduce a given stream of random num-
bers is useful when attempting to compare the responses
of two different systems (or designs) to random input. If
the input to the two systems is not the same, then their re-
sponses will be naturally different, and it is more difficult
to determine how the two systems actually differ. Being
able to “feed” the two systems the same stream of ran-
dom numbers allows the system differences to be directly
studied.

The most popular arithmetic generators are linear con-
gruential generators (LCGs) first introduced by Lehmer
(1951). In this method, a sequence of integers Z1, Z2, . . .
are defined by the recursive formula

Zi = (aZi−1 + c)(mod m) (6.1)

where mod m means the whole remainder of aZi−1 + c
after dividing it by m . For example, (15)(mod 4) is 3 and
(17)(mod 4) is 1. In Eq. 6.1 m is the modulus, a is a
multiplier, c is an increment, and all three parameters are
positive integers. The result of Eq. 6.1 is an integer between
0 and m − 1 inclusive. The sequence starts by computing
Z1 using Z0, where Z0 is a positive integer seed or starting
value. Since the resulting Zi must be a number from 0 to
m − 1, we can obtain a [0, 1) uniformly distributed Ui by
setting Ui = Zi /m . The [0, 1) notation means that Ui can
be 0 but cannot be 1. The largest value that Ui can take is
(m − 1)/m , which can be quite close to 1 if m is large. Also,
because Zi can only take on m different possible values,
Ui can only take on m possible values between 0 and 1.
Namely, Ui can have values 0, 1/m , 2/m , . . . , (m − 1)/m .
In order for Ui to appear continuously uniformly distributed
on [0, 1), then, m should be selected to be a large number.
In addition a , c, and Z0 should all be less than m .

One sees immediately from Eq. 6.1 that the sequence of
Zi are completely dependent; Z1 is obtained from Z0, Z2 is
obtained from Z1, and so on. For fixed values of a , c, and
m , the same sequence of Zi values will always be produced
for the same starting seed, Z0. Thus, Eq. 6.1 can reproduce a
given stream of pseudo–random numbers exactly, so long
as the starting seed is known. It also turns out that the
sequence of Ui values will appear to be independent and
uniformly distributed if the parameters a , c, and m are
correctly selected.

One may also notice that if Z0 = 3 produces Z1 = 746,
then whenever Zi−1 = 3, the next generated value will
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be Zi = 746. This property results in a very undesirable
phenomenon called periodicity that quite a number of rather
common random-number generators suffer from. Suppose
that you were unlucky enough to pick a starting seed, say
Z0 = 83 on one of these poor random-number generators
that just happened to yield remainder 83 when 83a + c is
divided by m. Then Z1 = 83. In fact, the resulting sequence
of “random” numbers will be {83, 83, 83, 83, . . .}. We say
that this particular stream of random variates has periodicity
equal to one.

Why is periodicity to be avoided? To answer this ques-
tion, let us suppose we are estimating an average sys-
tem response by simulation. The simulated random inputs
U1, U2, . . . , Un result in system responses X1, X2, . . . , Xn .
The average system response is then given by

X̄ = 1

n

n∑

i=1

Xi (6.2)

and statistical theory tell us that the standard error on this
estimate (± one standard deviation) is

sX̄ = s√
n

(6.3)

where

s2 = 1

n − 1

n∑

i=1

(Xi − X̄ )2 (6.4)

From this, we see that the standard error (Eq. 6.3) reduces
toward zero as n increases, so long as the Xi ’s are in-
dependent. Now, suppose that we set n = 1,000,000 and
pick a starting seed Z0 = 261. Suppose further that this
particular seed results in Zi , i = 1, 2, . . . 106, being the se-
quence {94, 4832, 325, 94, 4832, 325, . . .} with periodicity 3.
Then, instead of 1,000,000 independent input values, as as-
sumed, we actually only have 3 “independent” values, each
repeated 333,333 times. Not only have we wasted a lot
of computer time, but our estimate of the average system
response might be very much in error – we assume that
its standard error is s/

√
106 = 0.001s , whereas it is ac-

tually s/
√

3 = 0.6s , 600 times less accurate than we had
thought!

Example 6.1 What are the first three random numbers
produced by the LCG

Zi = (25Zi−1 + 55)(mod 96)

for starting seed Z0 = 21?

SOLUTION Since the modulus is 96, the interval [0, 1)
will be subdivided into at most 96 possible random values.
Normally, the modulus is taken to be much larger to give
a fairly fine resolution on the unit interval. However, with

Z0 = 21 we get

Z1 = [25(21) + 55](mod 96)

= 580(mod 96)

= 4

Z2 = [25(4) + 55](mod 96)

= 155(mod 96)

= 59

Z3 = [25(59) + 55](mod 96)

= 1530(mod 96)

= 90

so that U1 = 4
96 = 0.042, U2 = 59

96 = 0.615, and U3 =
90
96 = 0.938.

The maximum periodicity an LCG such as Eq. 6.1 can
have is m , and this will occur only if a , c, and m are se-
lected very carefully. We say that a generator has full period
if its period is m . A generator which is full period will pro-
duce exactly one of each possible value, {0, 1, . . . , m − 1},
in each cycle. If the generator is good, all of these possible
values will appear to occur in random order.

To help us choose the values of m , a , and c so that the
generator has full period, the following theorem, proved by
Hull and Dobell (1962), is valuable.

Theorem 6.1 The LCG defined by Eq. 6.1 has full period
if and only if the following three conditions hold:

(a) The only positive integer that exactly divides both m
and c is 1.

(b) If q is a prime number (divisible only by itself and 1)
that exactly divides m , then q exactly divides a − 1.

(c) If 4 exactly divides m , then 4 exactly divides a − 1.

Condition (b) must be true of all prime factors of m .
For example, m = 96 has two prime factors, 2 and 3, not
counting 1. If a = 25, then a − 1 = 24 is divisible by both
2 and 3, so that condition (b) is satisfied. In fact, it is easily
shown that the LCG Zi = (25Zi−1 + 55)(mod 96) used in
the previous example is a full-period generator.

Park and Miller (1988) proposed a “minimal standard”
(MS) generator with constants

a = 75 = 16,807,

c = 0, m = 231 − 1 = 2,147,483,647

which has a periodicity of m − 1 or about 2 × 109. The
only requirement is that the seed 0 must never be used.
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This form of the LCG, that is, having c = 0, is called a
multiplicative LCG:

Zi+1 = aZi (mod m) (6.5)

which has a small efficiency advantage over the general
LCG of Eq. 6.1 since the addition of c is no longer
needed. However, most modern CPUs are able to do a
vector multiply and add simultaneously, so this efficiency
advantage is probably nonexistent. Multiplicative LCGs can
no longer be full period because m now exactly divides both
m and c = 0. However, a careful choice of a and m can
lead to a period of m − 1, and only zero is excluded from
the set of possible Zi values—in fact, if zero is not excluded
from the set of possible results of Eq. 6.5, then the generator
will eventually just return zeroes. That is, once Zi = 0 in
Eq. 6.5, it remains zero forever. The constants selected by
Park and Miller (1988) for the MS generator achieves a
period of m − 1 and excludes zero. Possible values for Ui

using the MS generator are {1/m , 2/m , . . . , (m − 1)/m} and
so both of the endpoints, 0 and 1, are excluded. Excluding
the endpoints is useful for the generation of random variates
from those other distributions which involve taking the
logarithm of U or 1 − U [since ln(0) = −∞].

When implementing the MS generator on computers
using 32-bit integers, the product aZi will generally result
in an integer overflow. In their RAN0 function, Press et al.
(1997) provide a 32-bit integer implementation of the MS
generator using a technique developed by Schrage (1979).

One of the main drawbacks to the MS generator is
that there is some correlation between successive values.
For example, when Zi is very small, the product aZi

will still be very small (relative to m). Thus, very small
values are always followed by small values. For example,
if Zi = 1, then Zi+1 = 16, 807, Zi+2 = 282,475,249. The
corresponding sequence of Ui is 4.7 × 10−10, 7.8 × 10−6,
and 0.132. Any time that Ui is less than 1 × 10−6, the next
value will be less than 0.0168.

To remove the serial correlation in the MS generator
along with this problem of small values following small
values, a technique suggested by Bays and Durham and
reported by Knuth (1981) is to use two LCGs; one an MS
generator and the second to randomly shuffle the output
from the first. In this way, Ui+1 is not returned by the
algorithm immediately after Ui but rather at some random
time in the future. This effectively removes the problem
of serial correlation. In their second edition of Numerical
Recipes, Press et al. (1997) present a further improvement,
due to L’Ecuyer (1988), which involves combining two
different pseudorandom sequences, with different periods,
as well as applying the random shuffle. The resulting
sequence has a period which is the least common multiple

of the two periods, which in Press et al.’s implementation is
about 2.3 × 1018. See Press et al.’s RAN2 function, which
is what the authors of this book use as their basic random-
number generator.

6.2.2 Testing Random-Number Generators

Most computers have a “canned” random-number generator
as part of the available software. Before such a generator is
actually used in simulation, it is strongly recommended that
one identify exactly what kind of generator it is and what
its numerical properties are. Typically, you should choose
a generator that is identified (and tested) somewhere in the
literature as being good (e.g., Press et al., 1997; the random-
number generators given in the first edition of Numerical
Recipes are not recommended by the authors, however).
Before using other generators, such as those provided with
computer packages (e.g., compilers), they should be subject
to (at least) the empirical tests discussed below.

Theoretical Tests The best known theoretical tests are
based on the rather upsetting observation by Marsaglia
(1968) that LCG “random numbers fall mainly in the
planes.” That is, if U1, U2, . . . is a sequence of random
numbers generated by an LCG, the overlapping d -tuples
(U1, U2, . . . , Ud ), (U2, U3, . . . , Ud+1), . . . will all fall on a
relatively small number of (d − 1)-dimensional hyperplanes
passing through the d -dimensional unit hypercube [0, 1]d .
For example, if d = 2, the pairs (U1, U2), (U2, U3), . . . will
be arranged in lattice fashion along several families of
parallel lines going through the unit square. The main
problem with this is that it indicates that there will be
regions within the hypercube where points will never occur.
This can lead to bias or incomplete coverage in a simulation
study.

Figure 6.1 illustrates what happens when the pairs
(Ui , Ui+1) are plotted for the simple LCG of Example 6.1,
Zi+1 = (25Zi + 55)(mod 96) on the left and Press et al.’s
RAN2 generator on the right. The planes along which the
pairs lie are clearly evident for the simpler LCG, and there
are obviously large regions in the unit square that the gen-
erated pairs will never occupy. The RAN2 generator, on
the other hand, shows much more random and complete
coverage of the unit square, which is obviously superior.

Thus, one generator test would be to plot the d = 2
pairs of sequential pairs of generated values and look for
obvious “holes” in the coverage. For higher values of d ,
the basic idea is to test the algorithm for gaps in [0, 1]d

that cannot contain any d-tuples. The theory for such a test
is difficult. However, if there is evidence of gaps, then the
generator being tested exhibits poor behavior, at least in d
dimensions. Usually, these tests are applied separately for
each dimension from d = 2 to as high as d = 10.
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Figure 6.1 Plots of d = 2 pairs of generated values using simple LCG of Example 6.1 on left
and Press et al.’s RAN2 generator on right.

Empirical Tests Empirically, it can be said that the gener-
ator performs adequately if it gives no evidence that gener-
ated random variates are not U (0, 1). That is, the following
hypotheses are tested:

Ho : X1, X2, . . . are independent random variables uniformly
distributed on (0, 1)

Ha : X1, X2, . . . are not independent random variables uni-
formly distributed on (0, 1)

and the goodness-of-fit methods discussed in Section 5.2.2
can be applied to complete the test. Since the null hy-
pothesis assumes independence, and this is a desirable
feature of the random variates (at least, so far as classi-
cal statistical estimates are concerned), this should also be
checked.

A direct test of the independence between ran-
dom variates is the runs test which proceeds as
follows:

1. We examine our sequence of n Ui ’s for subse-
quences in which the Ui ’s continue to increase (or
decrease—we shall concentrate our attention here on
runs up, which are the increasing subsequences). For
example, suppose we generate U1, U2, . . . , U10 and
get the sequence 0.29, 0.25, 0.09, 0.61, 0.90, 0.20,
0.46, 0.94, 0.13, 0.42. Then our runs up are as
follows:

0.29 is a run up of length 1.
0.25 is a run up of length 1.
0.09, 0.61, 0.90 is a run up of length 3.
0.20, 0.46, 0.94 is a run up of length 3.
0.13, 0.42 is a run up of length 2.

2. Count the number of runs up of length 1, 2, 3, 4, 5,
and 6 or more and define

ri =






number of runs for i = 1, 2, 3, 4, 5
up of length i

number of runs for i = 6
up of length ≥ 6

(6.6)
For the 10 generated Ui values given above, we have
r1 = 2, r2 = 1, r3 = 2, and r4 = r5 = r6 = 0.

3. Compute the test statistic

R = 1

n

6∑

i=1

6∑

j=1

aij (ri − nbi )(rj − nbj ) (6.7)

where aij is the (i , j )th element (e.g., i th row, j th
column) of the symmetric matrix (Knuth, 1981)




4,529.4 9,044.9 13,568 18,091 22,615 27,892

9,044.0 18,097 27,139 36,187 45,234 55,789

13,568 27,139 40,721 54,281 67,852 83,685

18,091 36,187 54,281 72,414 90,470 111,580

22,615 45,234 67,852 90,470 113,262 139,476

27,892 55,789 83,685 111,580 139,476 172,860





and

{b1, b2, . . . , b6} = { 1
6 , 5

24 , 11
120 , 19

720 , 29
5040 , 1

840

}

4. For large n (Knuth recommends n ≥ 4000), R is
approximately chi-square distributed with 6 DOFs.
Thus, we would reject the null hypothesis that the
Ui ’s are independent if R exceeds the critical value
χ2

α,6, for some assumed significance level α.

One potential disadvantage of empirical tests is that they are
only local; that is, only that segment of a cycle that was
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actually used to generate the Ui ’s for the test is examined.
Thus, the tests cannot say anything about how the generator
might perform in other segments of the cycle. A big
advantage, however, is that the actual random numbers that
will be later used can be tested.

Note: Recall how statistical tests work. One would expect
that even a “perfect” random-number generator would oc-
casionally produce an “unacceptable” test statistic. In fact,
unacceptable results should occur with probability α (which
is just the type I error). Thus, it can be argued that hand-
picking of segments to avoid “bad” ones is in fact a poor
idea.

6.3 GENERATING NONUNIFORM RANDOM
VARIABLES

6.3.1 Introduction

The basic ingredient needed for all common methods of
generating random variates or random processes (which are
sequences of random variables) from any distribution is a
sequence of U (0, 1) random variates. It is thus important
that the basic random-number generator be good. This issue
was covered in the previous section, and standard “good”
generators are readily available.

For most common distributions, efficient and exact gen-
eration algorithms exist that have been thoroughly tested
and used over the years. Less common distributions may
have several alternative algorithms available. For these,
there are a number of issues that should be considered be-
fore choosing the best algorithm:

1. Exactness: Unless there is a significant sacrifice in
execution time, methods which reproduce the desired
distribution exactly, in the limit as n → ∞, are prefer-
able. When only approximate algorithms are avail-
able, those which are accurate over the largest range
of parameter values are preferable.

2. Execution Time: With modern computers, setup time,
storage, and time to generate each variate are not
generally a great concern. However, if the number
of realizations is to be very large, execution time may
be a factor which should be considered.

3. Simplicity: Algorithms which are difficult to under-
stand and implement generally involve significant de-
bug time and should be avoided. All other factors
being similar, the simplest algorithm is preferable.

Here, the most important general approaches for the gen-
eration of random variates from arbitrary distributions
will be examined. A few examples will be presented
and the relative merits of the various approaches will be
discussed.

6.3.2 Methods of Generation

The most common methods used to generate random vari-
ates are:

1. Inverse transform
2. Convolution
3. Acceptance–rejection

Of these, the inverse transform and convolution meth-
ods are exact, while the acceptance–rejection method is
approximate.

6.3.2.1 Inverse Transform Method Consider a contin-
uous random variable X that has cumulative distribution
function FX (x ) that is strictly increasing. Most common
continous distributions have strictly increasing FX (x ) (e.g.,
uniform, exponential, Weibull, Rayleigh, normal, lognor-
mal, etc.) with increasing x . This assumption is invoked to
ensure that there is only one value of x for each FX (x ). In
this case, the inverse transform method generates a random
variate from F as follows:

1. Generate u ∼ U (0, 1).
2. Return x = F−1(u).

Note that F−1(u) will always be defined under the above
assumptions since u lies between 0 and 1. Figure 6.2
illustrates the idea graphically. Since a randomly generated
value of U , in this case 0.78, always lies between 0 and
1, the cdf plot can be entered on the vertical axis, read
across to where it intersects F (x ), then read down to obtain
the appropriate value of x , in this case 0.8. Repetition
of this process results in x being returned in proportion
to its density, since more “hits” are obtained where the
cdf is the steepest (highest derivative, and, hence, highest
density).

−4 −3 −2 −1 0 1 2 3 4

x = F−1(u)

0
0.

2
0.

4
0.

6
0.

8
1

F
(x

) 
= 

u

Figure 6.2 Inverse transform random-number generation.
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The inverse transform method is the best method when
the cumulative of the distribution function for generation
can be easily “inverted.” This includes a number of
common distributions, such as the uniform, exponential,
Weibull, and Rayleigh (unfortunately, the normal distribu-
tion has no closed-form inverse).

Example 6.2 Suppose that undersea slopes in the Baltic
Sea fail at a mean rate of one every 400 years. Suppose also
that times between failures are exponentially distributed
and independent. Generate randomly two possible times
between slope failures from this distribution.

SOLUTION We start by generating randomly two re-
alizations of a uniformly distributed random variable on
the interval (0, 1): say u1 = 0.27, and u2 = 0.64. Now, we
know that for the exponential distribution,

F (x ) = 1 − e−λx

where λ = 1/400 in this case. Setting u = F (x ) and invert-
ing this relationship gives

x = − ln(1 − u)

λ

Note that since 1 − U is distributed identically to U , then
this can be simplified to

x = − ln(u)

λ

Admittedly, this leads to a different set of values in the
realization, but the ensemble of realizations has the same
distribution, and that is all that is important. This formula-
tion may also be slightly more efficient since one operation
has been eliminated. However, which form should be used
also depends on the nature of the pseudo-random-number
generator. Most generators omit either the 0 or the 1, at one
of the endpoints of the distribution. Some generators omit
both. However, if a generator allows a 0 to occur occasion-
ally, then the form with ln(1 − u) should be used to avoid
numerical exceptions [ln(0) = −∞]. Similarly, if a gener-
ator allows 1 to occur occasionally, then ln(u) should be
used. If both can appear, then the algorithm should specif-
ically guard against an error using if-statements.

Using the ln(u) form gives the first two realizations of
interfailure times to be

x1 = − ln(u1)

λ
= −400 ln(0.27) = 523 years

x2 = − ln(u2)

λ
= −400 ln(0.64) = 179 years

The inverse transform approach can also be used on
discrete random variates, but with a slightly modified
algorithm:

1. Generate u from the distribution U (0, 1).
2. Determine the smallest xi such that F (xi ) ≥ u , and

return x = xi .

Another way of stating this algorithm is as follows: Since
the random variable is discrete, the unit interval can be split
up into adjacent subintervals, the first having width equal to
P [X = x1], the second having width P [X = x2], and so on.
Then assign x according to whichever of these subintervals
contains the generated u . There is a computational issue
of how to look for the subinterval that contains a given u ,
and some approaches are better than others. In particular
if xj , j = 1, 2, . . . , m , are equi-likely outcomes, then i =
int(1.0 + mu), where int(·) means integer part. This also
assumes u can never quite equal 1.0, that is, the generator
excludes 1.0. If 1.0 is possible, then add 0.999999 instead
of 1.0 to mu . Now the discrete realization is x = xi .

Both the continuous and discrete versions of the inverse
transform method can be combined, at least formally, to
deal with distributions which are mixed, that is, having
both continuous and discrete components, as well as for
continuous distribution functions with flat spots.

Over and above its intuitive appeal, there are three other
main advantages to the inverse transform method:

1. It can easily be modified to generate from truncated
distributions.

2. It can be modified to generate order statistics (useful
in reliability, or lifetime, applications).

3. It facilitates variance–reduction techniques (where
portions of the cdf are “polled” more heavily than
others, usually in the tails of the distribution, and then
resulting statistics corrected to account for the biased
polling).

The inverse transform method requires a formula for
F−1. However, closed-form expressions for the inverse are
not known for some distributions, such as the normal, the
lognormal, the gamma, and the beta. For such distributions,
numerical methods are required to return the inverse. This
is the main disadvantage of the inverse transform method.
There are other techniques specifically designed for some
of these distributions, which will be discussed in the follow-
ing. In particular, the gamma distribution is often handled
by convolution (see next section), whereas a simple trigono-
metric transformation can be used to generate normally
distributed variates (and further raising e to the power of the
normal variate produces a lognormally distributed random
variate).

6.3.2.2 Convolution The method of convolution can be
applied when the random variable of interest can be ex-
pressed as a sum of other random variables. This is the case
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for many important distributions—most notably, recall that
the gamma distribution, with integer k, can be expressed
as the sum of k exponentially distributed and independent
random variables.

For the convolution method, it is assumed that there are
i.i.d. random variables Y1, Y2, . . . , Yk (for fixed k ), each
with distribution F (y) such that Y1 + Y2 + · · · + Yk has the
same distribution as X . Hence, X can be expressed as

X = Y1 + Y2 + · · · + Yk

For the method to work efficiently, it is further assumed
that random variates for the Yj ’s can be generated more
readily than X itself directly (otherwise one would not
bother with this approach). The convolution algorithm is
then quite intuitive:

1. Generate Y1, Y2, . . . , Yk i.i.d. each with distribution
FY (y).

2. Return X = Y1 + · · · + Yk .

Note that some other generation method, for example,
inverse transform, is required to execute step 1.

6.3.2.3 Acceptance–Rejection The acceptance–rejection
method is less direct (and less intuitive) than the two pre-
vious methods; however, it can be useful when the other
(direct) methods fail or are inefficient.

The acceptance–rejection method requires that a function
t(x ) be specified that majorizes the density f (x ); that is,
t(x ) ≥ f (x ) for all x . Now, t(x ) will not, in general, be a
density since

c =
∫ ∞

−∞
t(x ) dx ≥

∫ ∞

−∞
f (x ) dx = 1

but the function r(x ) = t(x )/c clearly is a density [since
the area under r(x ) is now 1.0]. Assume t(x ) must be such
that c < ∞ and, in fact, efficiency is improved as c ap-
proaches 1.0. Now, the function t is selected arbitrarily
but so that random variables, say Y , having density func-
tion r(y) = t(y)/c are easily simulated [e.g., R(y) is easily
inverted]. In this case, the general acceptance–rejection al-
gorithm for simulating X having density f (x ) is as follows:

1. Generate y having density r(y).
2. Generate u ∼ U (0, 1) independently of Y .
3. If u ≤ f (y)/t(y), return x = y . Otherwise, go back to

step 1 and try again.

There are two main things to consider in this algorithm:

1. Finding a suitable function r(y), so that Y is simple
to generate, may not be an easy task.

2. The probability of acceptance in step 3 can be shown
to be 1/c. This means that the method becomes very
inefficient as c increases. For example, if c = 100,
then only about 1 in 100 realizations are retained.
This, combined with the fact that two random num-
bers must be generated for each trial random vari-
ate, makes the method quite inefficient under many
circumstances.

6.3.3 Generating Common Continuous
Random Variates

Uniform on (a, b) Solving u = F (x ) for x yields, for
0 ≤ u ≤ 1,

x = F−1(u) = a + (b − a)u

and the inverse transform method can be applied as
follows:

1. Generate u ∼ U (0, 1).
2. Return x = a + (b − a)u .

Exponential Solving u = F (x ) for x yields, for 0 ≤
u ≤ 1,

x = F−1(u) = − ln(1 − u)

λ

d= − ln(u)

λ

where
d= implies equivalence in distribution. Now the

inverse transform method can be applied as follows:

1. Generate u ∼ U (0, 1).
2. Return x = − ln(u)/λ.

Gamma Considering the particular form of the gamma
distribution discussed in Section 1.10.3,

fT k (t) = λ (λt)k−1

(k − 1)!
e−λt , t ≥ 0 (6.8)

where Tk is the sum of k -independent exponentially dis-
tributed random variables, each with mean rate λ. In this
case, the generation of random values of Tk proceeds as
follows:

1. Generate k -independent exponentially distributed ran-
dom variables, X1, X2, . . . , Xk , using the algorithm
given above.

2. Return Tk = X1 + X2 + · · · + Xk .

For the more general gamma distribution, where k is
not integer, the interested reader is referred to Law and
Kelton (2000).
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Weibull Solving u = F (x ) for a Weibull distribution
yields, for 0 ≤ u ≤ 1,

x = F−1(u) = 1

λ
[− ln (1 − u)]1/β d= 1

λ
(− ln u)1/β

and the inverse transform method can be applied to give

1. Generate u ∼ U (0, 1).
2. Return x = (− ln u)1/β /λ.

Normal Since neither the normal distribution function nor
its inverse has a simple closed-form expression, one must
use a laborious numerical method to apply the inverse trans-
form method. However, the following radial transformation
method suggested by Box and Muller (1958) is exact, sim-
ple to use, and thus much more popular.

If X is normally distributed with mean µX and standard
deviation σX , then realizations of X can be generated as
follows:

1. Generate u1 ∼ U (0, 1) and u2 ∼ U (0, 1).
2. Form g1 = √−2 ln u1 cos(2πu2) and

g2 = √−2 ln u1 sin(2πu2).
3. Form x1 = µX + σX g1 and x2 = µX + σX g2.
4. Return x1 on this call to the algorithm and x2 on the

next call (so that the whole algorithm is run only on
every second call).

The above method generates realizations of X1 and X2,
which are independent N (µX , σ 2

X ) random variates.

Example 6.3 Generate two independent realizations of
a normally distributed random variable X having mean
µX = 12 and standard deviation σX = 4.

SOLUTION Using a random-number generator, such as
Press et al.’s (1997) RAN2 routine (most spreadsheet pro-
grams also include random-number generators), two ran-
dom numbers uniformly distributed between 0 and 1 are
generated. The following are just two possibilities:

u1 = 0.89362, u2 = 0.42681

First, compute g1 and g2, which are realizations of a stan-
dard normal random variable (having mean 0 and standard
deviation 1):

g1 =
√

−2 ln u1 cos(2πu2)

=
√

−2 ln(0.89362) cos[2π (0.42681)] = −0.42502

g2 =
√

−2 ln u1 sin(2πu2)

=
√

−2 ln(0.89362) sin[2π (0.42681)] = 0.21050

Now compute the desired realizations of X :

x1 = µX + σX g1 = 12 + 4(−0.42502) = 10.29992

x2 = µX + σX g1 = 12 + 4(0.21050) = 12.84200

Lognormal If X is lognormally distributed with mean µX

and standard deviation σX , then ln X is normally distributed
with mean µln X and standard deviation σln X . The generation
of lognormally distributed X proceeds by first generating a
normally distributed ln X as follows:

1. Generate normally distributed ln X with mean µln X

and variance σ 2
ln X (see previous algorithm).

2. Return X = eln X .

Empirical Sometimes a theoretical distribution that fits
the data cannot be found. In this case, the observed data
may be used directly to specify (in some sense) a usable
distribution called an empirical distribution.

For continuous random variables, the type of empiri-
cal distribution that can be defined depends on whether
the actual values of the individual original observations
x1, x2, . . . , xn are available or only the number of xi ’s that
fall into each of several specified intervals. We will consider
the case where all of the original data are available.

Using all of the available observations, a continuous,
piecewise-linear distribution function F can be defined by
first sorting the xi ’s from smallest to largest. Let x(i ) denote
the i th smallest of the xj ’s, so that x(1) ≤ x(2) ≤ · · · ≤ x(n).
Then F is defined by

F (x )

=






0 if x < x(1)

i − 1

n − 1
+ x − x(i )

(n − 1)(x(i+1) − x(i ))
if x(i ) ≤ x < x(i+1)

1 if x(n) ≤ x

for i = 1, 2, . . . , n − 1

Since the function F (x ) is a series of steps of height 0,
1/(n − 1), 2/(n − 1), . . ., (n − 2)/(n − 1), 1 the generation
conceptually involves generating u ∼ U (0, 1), figuring out
the index i of the step closest to u , and returning x(i ).
We will interpolate between the step below u and the step
above. The following algorithm results:

1. Generate u ∼ U (0, 1), let r = (n − 1)u , and let i =
int(r) + 1 where int(·) means integer part.

2. Return x = x(i ) + (r − i + 1)(x(i+1) − x(i )).

6.3.3.1 Generating Discrete Random Variates The dis-
crete inverse transform methods may also be applied to
generate random variables from the more common discrete
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probability distributions. The fact that these methods use
the inverse transform is not always evident; however, in
most cases they do.

Bernoulli If the probability of “success” is p, then:

1. Generate u ∼ U (0, 1).
2. If u ≤ p, return x = 1. Otherwise, return x = 0.

Discrete Uniform

1. Generate u ∼ U (0, 1).
2. Return x = i + int

(
(j − i + 1)u

)
, where i and j are

the upper and lower discrete bounds and int(·) means
the integer part.

Binomial To generate a binomial distributed random vari-
ate with parameters n and p:

1. Generate y1, y2, . . . , yn independent Bernoulli random
variates, each with parameter p.

2. Return x = y1 + y2 + · · · + yn .

Geometric

1. Generate u ∼ U (0, 1).
2. Return x = int (ln u/ ln(1 − p)).

Negative Binomial If Tm is the number of trials until
the m’th success, and Tm follows a negative binomial
distribution with parameter p, then Tm can be written as
the sum of m geometric distributed random variables. The
generation thus proceeds by convolution:

1. Generate y1, y2, . . . , ym independent geometric ran-
dom variates, each with parameter p.

2. Return Tm = y1 + y2 + · · · + ym .

Poisson If Nt follows a Poisson distribution with param-
eter r = λt , then Nt is the number of “arrivals” in time
interval of length t , where arrivals arrive with mean rate
λ. Since interarrival times are independent and exponen-
tially distributed for a Poisson process, we could proceed
by generating a series of k exponentially distributed random
variables, each with parameter λ, until their sum just ex-
ceeds t . Then the realization of Nt is k − 1; that is, k − 1
arrivals occurred within time t , the k th arrival was after
time t .

An equivalent and more efficient algorithm was derived
by Law and Kelton (2000) by essentially working in the
logarithm space to be as follows:

1. Let a = e−r , b = 1, and i = 0, where r = λt .
2. Generate ui+1 ∼ U (0, 1) and replace b by bui+1. If

b < a , return Nt = i .
3. Replace i by i + 1 and go back to step 2.

6.3.3.2 Generating Arrival Process Times

Poisson Process Arrival Times The stationary Poisson
process with rate λ > 0 has the property that the interarrival
times, say Ti = ti − ti−1 for i = 1, 2, . . . are independent
exponentially distributed random variables with common
rate λ. Thus, the ti ’s can be generated recursively as
follows:

1. Generate u ∼ U (0, 1):
2. Return ti = ti−1 − (ln u)/λ.

Usually, t0 is taken as zero.

6.3.4 Queueing Process Simulation

Most queueing simulations proceed by generating two
streams of random variates: one for the interarrival times
and the other for the service times. For common queue-
ing models, these times have exponential distributions with
means 1/λ and 1/µ for the interarrival and service times,
respectively, and are readily simulated using the results of
the previous section. Using these quantities, the time of ar-
rival of each customer, the time each spends in the queue,
and the time being served, can be constructed. The algo-
rithm requires a certain amount of bookkeeping, but it is
reasonably straightforward.

Algorithms to simulate the arrivals and departures of cus-
tomers in M/M/1 and M/M/k queueing systems are given
in the following discussion. These algorithms may be used
with any distribution of interarrival times and any distri-
bution of service times, not just exponential distributions.
Thus, the algorithms easily allow for simulating more gen-
eral queueing processes than the M/M/k queue.

Both algorithms provide for the statistical estimation of
the mean time in the system (W ) and the mean time waiting
in the queue Wq . They must be modified, however, if one
wishes to estimate the fraction of time spent in a particular
state.

Simulation of an M/M/1 Queueing Process From Higgins
and Keller-McNulty (1995).

Variables

n = customer number
Nmax = maximum number of arriving customers
A(n) = interarrival time of the nth customer, the time lapse

between the (n − 1)th and the nth customers
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S (n) = time it takes to service the nth customer
T (n) = time that the nth customer arrives
B(n) = time that nth customer begins being served
D(n) = time that the nth customer leaves the system
W (n) = time that the nth customer spends in the system

Wq (n) = time that the nth customer spends waiting in
the queue

Initialization

n = 0
T (0) = 0
D(0) = 0
Nmax = determined from the user

λ = mean arrival rate, determined from the user, λ

must be less than µ

µ = mean service rate, determined from the user

Algorithm Repeat the following steps for n = 1 to Nmax:

1. Generate values for A(n) and S (n), that is, simulate
exponentially distributed random values for interar-
rival and service times.

2. Set T (n) = T (n − 1) + A(n). That is, the arrival time
of the nth customer is the arrival time of the (n − 1)th
customer plus the nth customer’s interarrival time.

3. Set B(n) = max(D(n − 1), T (n)). That is, if the ar-
rival time of the nth customer occurs before the de-
parture time of customer (n − 1), the service time for
the nth customer begins when the previous customer
departs; otherwise, the nth customer begins service at
the time of arrival.

4. Set D(n) = B(n) + S (n). That is, add the service time
to the time service begins to determine the time of
departure of the nth customer.

5. Set Wq (n) = B(n) − T (n). That is, the time spent in
the queue is the difference between the time service
begins and the arrival time.

6. Set W (n) = D(n) − T (n). That is, the time spent in
the system is the difference between the departure and
arrival times.

Statistical Analysis The above algorithm really only sup-
ports the statistical estimation of the mean waiting time in
the queue:

W̄q = 1

n

Nmax∑

n=1

Wq (n)

and the mean time in the system:

W̄ = 1

n

Nmax∑

n=1

W (n)

Be sure to run the simulation for a long enough period
that the estimates are reasonably accurate (Nmax must be

increased as λ approaches µ). To test if you have selected
a large enough Nmax, try a number of different values (say
Nmax = 1000 and Nmax = 5000, and see if the estimated
mean times change significantly—if so, you need to choose
an even larger Nmax).

Simulation of an M/M/k Queueing Process From Higgins
and Keller-McNulty (1995).

Variables

n = customer number
Nmax = maximum number of arriving customers
A(n) = interarrival time of the nth customer, the time

lapse between the (n − 1)th and the nth
customers

S (n) = time it takes to service the nth customer
T (n) = time that the nth customer arrives

j = server number, j = 1, 2, . . . , k
F (j ) = departure time of the customer most recently

served by the j th server
Jmin = server for which F (j ) is smallest, that is, the

server with the earliest of the most recent
departure times (e.g., if all servers are occupied,
this is the server that will become free first)

B(n) = time that nth customer begins being served
D(n) = time that the nth customer leaves the system
W (n) = time that the nth customer spends in the system

Wq (n) = time that the nth customer spends waiting in
the queue

Initialization

n = 0
T (0) = 0
D(0) = 0
F (j ) = 0 for each j = 1, 2, . . . , k

k = number of servers, determined from the user
Nmax = determined from the user

λ = mean arrival rate, determined from the user
µ = mean service rate, determined from the user

Note that λ must be less than kµ.

Algorithm Repeat the following steps for n = 1 to Nmax:

1. Generate values for A(n) and S (n), that is, simulate
exponentially distributed random values for interar-
rival and service times.

2. Set T (n) = T (n − 1) + A(n). That is, the arrival time
of the nth customer is the arrival time of the (n − 1)th
customer plus the nth customer’s interarrival time.

3. Find Jmin, that is, find the smallest of the F (j ) values
and set Jmin to its index (j ). In case of a tie, choose
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Jmin to be the smallest of the tying indices. For
example, if F (2) and F (4) are equal and both the
smallest out of the other F (j )’s, then choose Jmin = 2.

4. Set B(n) = max(F (Jmin), T (n)). That is, if the arrival
time of the nth customer occurs before any of the
servers are free (T (n) < F (Jmin), then the service time
for the nth customer begins when the (Jmin)th server
becomes free; otherwise, if T (n) > F (Jmin), then a
server is free and the nth customer begins service at
the time of arrival.

5. Set D(n) = B(n) + S (n). That is, add the service time
to the time service begins to determine the time of
departure of the nth customer.

6. Set F (Jmin) = D(n). That is, the departure time for
the server which handles the nth customer is updated.

7. Set Wq (n) = B(n) − T (n). That is, the time spent in
the queue is the difference between the time service
begins and the arrival time.

8. Set W (n) = D(n) − T (n). That is, the time spent in
the system is the difference between the departure and
arrival times.

Statistical Analysis The above algorithm really only sup-
ports the statistical estimation of the mean waiting time in
the queue:

W̄q = 1

n

Nmax∑

n=1

Wq (n)

and the mean time in the system:

W̄ = 1

n

Nmax∑

n=1

W (n)

Be sure to run the simulation for a long enough period
that the estimates are reasonably accurate (Nmax must be
increased as λ approaches µ). To test if you have selected
a large enough Nmax, try a number of different values (say
Nmax = 1000 and Nmax = 5000, and see if the estimated
mean times change significantly—if so, you need to choose
an even larger Nmax).

6.4 GENERATING RANDOM FIELDS

Random-field models of complex engineering systems hav-
ing spatially variable properties are becoming increasingly
common. This trend is motivated by the widespread accep-
tance of reliability methods in engineering design and is
made possible by the increasing power of personal com-
puters. It is no longer sufficient to base designs on best
estimate or mean values alone. Information quantifying
uncertainty and variability in the system must also be in-
corporated to allow the calculation of failure probabilities
associated with various limit state criteria. To accomplish

this, a probabilistic model is required. In that most engineer-
ing systems involve loads and materials spread over some
spatial extent, their properties are appropriately represented
by random fields. For example, to estimate the failure prob-
ability of a highway bridge, a designer may represent both
concrete strength and input earthquake ground motion using
independent random fields, the latter time varying. Subse-
quent analysis using a Monte Carlo approach and a dynamic
finite-element package would lead to the desired statistics.

In the remainder of this chapter, a number of different
algorithms which can be used to produce scalar multidimen-
sional random fields are evaluated in light of their accuracy,
efficiency, ease of implementation, and ease of use. Many
different random-field generator algorithms are available of
which the following are perhaps the most common:

1. Moving-average (MA) methods
2. Covariance matrix decomposition
3. Discrete Fourier transform (DFT) method
4. Fast Fourier transform (FFT) method
5. Turning-bands method (TBM)
6. Local average subdivision (LAS) method

In all of these methods, only the first two moments of the
target field may be specified, namely the mean and co-
variance structure. Since this completely characterizes a
Gaussian field, attention will be restricted in the follow-
ing to such fields. Non-Gaussian fields may be created
through nonlinear transformations of Gaussian fields; how-
ever, some care must be taken since the mean and covari-
ance structure will also be transformed. In addition, only
weakly homogeneous fields, whose first two moments are
independent of spatial position, will be considered here.

The FFT, TBM, and LAS methods are typically much
more efficient than the first three methods discussed above.
However, the gains in efficiency do not always come
without some loss in accuracy, as is typical in numerical
methods. In the next few sections, implementation strategies
for these methods are presented, and the types of errors
associated with each method and ways to avoid them will
be discussed in some detail. Finally, the methods will be
compared and guidelines as to their use suggested.

6.4.1 Moving-Average Method

The moving-average technique of simulating random pro-
cesses is a well-known approach involving the expression
of the process as an average of an underlying white noise
process. Formally, if Z (x) is the desired zero mean process
(a nonzero mean can always be added on later), then

Z (x) =
∫ ∞

−∞
f (ξ ) dW (x + ξ ) (6.9a)
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or, equivalently,

Z (x) =
∫ ∞

−∞
f (ξ − x) dW (ξ ) (6.9b)

in which dW (ξ ) is the incremental white noise process at
the location ξ with statistical properties:

E
[
dW (ξ )

] = 0

E
[
dW (ξ )2] = dξ (6.10)

E
[
dW (ξ ) dW (ξ ′)

] = 0 if ξ �= ξ ′,

and f (ξ ) is a weighting function determined from the
desired second-order statistics of Z (x):

E [Z (x) Z (x + τ )] =
∫ ∞

−∞

∫ ∞

−∞
f (ξ − x) f (ξ ′ − x − τ )

× E
[
dW (ξ ) dW (ξ ′)

]

=
∫ ∞

−∞
f (ξ − x) f (ξ − x − τ ) dξ (6.11)

If Z (x) is homogeneous, then the dependence on x disap-
pears, and Eq. 6.11 can be written in terms of the covariance
function (note by Eq. 6.10 that E [Z (x)] = 0)

C (τ ) =
∫ ∞

−∞
f (ξ ) f (ξ − τ ) dξ (6.12)

Defining the Fourier transform pair corresponding to f (ξ )
in n dimensions to be

F (ω) = 1

(2π )n

∫ ∞

−∞
f (ξ )e−iω·ξ dξ (6.13a)

f (ξ ) =
∫ ∞

−∞
F (ω)eiω·ξ dω (6.13b)

then by the convolution theorem Eq. 6.12 can be
expressed as

C (τ ) = (2π )n
∫ ∞

−∞
F (ω) F (−ω) e−iω·τ dω (6.14)

from which a solution can be obtained from the Fourier
transform of C (τ )

F (ω) F (−ω) = 1

(2π )2n

∫ ∞

−∞
C (τ ) e−iω·τ dτ (6.15)

Note that the symmetry in the left-hand side of Eq. 6.15
comes about due to the symmetry C (τ ) = C (−τ ). It is still
necessary to assume something about the relationship be-
tween F (ω) and F (−ω) in order to arrive at a final solution
through the inverse transform. Usually, the function F (ω)
is assumed to be either even or odd.

Weighting functions corresponding to several common
one-dimensional covariance functions have been deter-
mined by a number of authors, notably Journel and Hui-
jbregts (1978) and Mantoglou and Wilson (1981). In higher

dimensions, the calculation of weighting functions becomes
quite complex and is often done numerically using FFTs.
The nonuniqueness of the weighting function and the diffi-
culty in finding it, particularly in higher dimensions, renders
this method of questionable value to the user who wishes
to be able to handle arbitrary covariance functions.

Leaving this issue for the moment, the implementation
of the MA method is itself a rather delicate problem.
For a discrete process in one dimension, Eq. 6.9a can be
written as

Zi =
∞∑

j=−∞
fj Wi ,j (6.16)

where Wi ,j is a discrete white noise process taken to have
zero mean and unit variance. To implement this in practice,
the sum must be restricted to some range p, usually chosen
such that f±p is negligible:

Zi =
p∑

j=−p

fj Wi ,j (6.17)

The next concern is how to discretize the underlying white
noise process. If �x is the increment of the physical process
such that Zi = Z ((i − 1)�x ) and �u is the incremental
distance between points of the underlying white noise
process, such that

Wi ,j = W ((i − 1)�x + j�u) (6.18)

then fj = f (j�u) and �u should be chosen such that the
quotient r = �x/�u is an integer for simplicity. Figure 6.3
illustrates the relationship between Zi and the discrete
white noise process. For finite �u , the discrete approxi-
mation (Eq. 6.17) will introduce some error into the esti-
mated covariance of the realization. This error can often be
removed through a multiplicative correction factor, as
shown by Journel and Huijbregts (1978), but in general
is reduced by taking �u as small as practically possible
(and thus p as large as possible).

Z
Zi−1 Zi Zi+1

Dx

W
Wi,−2 Wi,−1 Wi,0 Wi,1 Wi,2

Du

X

Weighting function f (x)

f−2 f−1 f0 f1 f2

Figure 6.3 Moving-average process in one dimension.
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Once the discretization of the underlying white noise
process and the range p have been determined, the imple-
mentation of Eq. 6.17 in one dimension is quite straight-
forward and usually quite efficient for reasonable val-
ues of p. In higher dimensions, the method rapidly be-
comes cumbersome. Figure 6.4 shows a typical portion of
a two-dimensional discrete process Zij , marked by ×’s,
and the underlying white noise field, marked by dots.
The entire figure represents the upper right corner of a
two-dimensional field. The process Zij is now formed by
the double summation

Zij =
p1∑

k=−p1

p2∑

�=−p2

fk� Wi ,j ,k ,� (6.19)

where fk� is the two-dimensional weighting function and
Wi ,j ,k ,� is the discrete white noise process centered at the
same position as Zij . The i and j subscripts on W are for
bookkeeping purposes so that the sum is performed over a
centered neighborhood of discrete white noise values.

In the typical example illustrated in Figure 6.4, the
discretization of the white noise process is such that r =
�u/�x = 3, and a relatively short correlation length was
used so that p = 6. This means that if a K1 × K2 field is to
be simulated, the total number of white noise realizations
to be generated must be

NW = [
1 + 2p1 + r1(K1 − 1)

] [
1 + 2p2 + r2(K2 − 1)

]

(6.20)
or about (rK )2 for a square field. This can be contrasted
immediately with the FFT approach which requires the

Zij

Figure 6.4 Two-dimensional MA process; Zij is formed by sum-
ming the contributions from the underlying white noise process
in the shaded region.

generation of about 1
2 K 2 random values for a quadrant

symmetric process (note that the factor of one-half is a
consequence of the periodicity of the generated field). When
r = 3, some 18 times as many white noise realizations
must be generated for the MA algorithm as for the FFT
method. Also the construction of each field point requires a
total of (2p + 1)2 additions and multiplications which, for
the not unreasonable example given above, is 132 = 169.
This means that the entire field will be generated using
K 2(2p + 1)2 or about 11 million additions and multiplica-
tions for a 200 × 200 field. Again this can be contrasted
to the two-dimensional FFT method (radix-2, row–column
algorithm) which requires some 4K 2 log2 K or about 2
million multiply–adds. In most cases, the moving-average
approach in two dimensions was found to run at least 10
times slower than the FFT approach. In three dimensions,
the MA method used to generate a 64 × 64 × 64 field with
p = 6 was estimated to run over 100 times slower than the
corresponding FFT approach. For this reason, and since
the weighting function is generally difficult to find, the
moving-average method as a general method of produc-
ing realizations of multidimensional random fields is only
useful when the MA representation is particularly desired.

It can be noted in passing that the two-dimensional au-
toregressive MA (ARMA) model suggested by Naganum
et al. (1987) requires about 50–150 multiply–adds (de-
pending on the type of covariance structure modeled)
for each field point. This is about 2–6 times slower
than the FFT approach. While this is quite competitive
for certain covariance functions, the corresponding run
speeds for three-dimensional processes are estimated to be
15–80 times slower than the FFT approach depending on
the choice of parameters p and r . Also, in a sequence of
two studies, Mignolet and Spanos (1992) and Spanos and
Mignolet (1992) discuss in considerable detail the MA, au-
toregressive (AR), and ARMA approaches to simulating
two-dimensional random fields. In their examples, they ob-
tain accurate results at the expense of running about 10 or
more times slower than the fastest of the methods to be
considered later in this chapter.

6.4.2 Covariance Matrix Decomposition

Covariance matrix decomposition is a direct method of
producing a homogeneous random field with prescribed
covariance structure C (xi − xj ) = C (τ ij ), where xi , i =
1, 2, . . . , n , are discrete points in the field and τ ij is the
lag vector between the points xi and xj . If C is a positive-
definite covariance matrix with elements Cij = C (τ ij ), then
a mean zero discrete process Zi = Z (xi ) can be produced
(using vector notation) according to

Z = LU (6.21)
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where L is a lower triangular matrix satisfying LLT = C
(typically obtained using Cholesky decomposition), and U
is a vector of n-independent mean zero, unit-variance Gaus-
sian random variables. Although appealing in its simplicity
and accuracy, this method is only useful for small fields. In
two dimensions, the covariance matrix of a 128 × 128 field
would be of size 16,384 × 16,384, and the Cholesky de-
composition of such a matrix would be both time consum-
ing and prone to considerable round-off error (particularly
since covariance matrices are often poorly conditioned and
easily become numerically singular).

6.4.3 Discrete Fourier Transform Method

The discrete Fourier transform method is based on the spec-
tral representation of homogeneous mean square continuous
random fields Z (x), which can be expressed as (Yaglom,
1962)

Z (x) =
∫ ∞

−∞
eix·ω W (dω) (6.22)

where W (dω) is an interval white noise process with
mean zero and variance S (ω) dω. This representation is in
terms of the physically meaningful spectral density function
S (ω), and so is intuitively attractive. In practice, the n-
dimensional integral becomes an n-dimensional sum which
is evaluated separately at each point x. Although poten-
tially accurate, the method is computationally slow for rea-
sonable field sizes and typical spectral density functions—
the DFT is generally about as efficient as the MA discussed
above. Its major advantage over the MA approach is that
the spectral density function is estimated in practice using
standard techniques.

In n dimensions, for real Z (x), the DFT can be
written as

Z (x) =
N1∑

k1=−N1

N2∑

k2=−N2

· · ·
Nn∑

kn=−Nn

Ck1k2...kn

× cos
(
ωk1x1 + ωk2 x2 + · · · + ωkn xn + 
k1k2...kn

)

where 
k1k2...kn is a random phase angle uniformly dis-
tributed on [0, 2π ], and Ck1k2...kn is a random amplitude
having Rayleigh distribution if Z is Gaussian. An alterna-
tive way of writing the DFT is

Z (x) =
N1∑

k1=−N1

N2∑

k2=−N2

· · ·
Nn∑

kn=−Nn

Ak1k2...kn

× cos(ωk1 x1 + ωk2 x2 + · · · + ωkn xn )

+ Bk1k2...kn sin(ωk1 x1 + ωk2 x2 + · · · + ωkn xn )

where, for a stationary normally distributed Z (x), the A
and B coefficients are mutually independent and normally

distributed with zero means and variances given by

E
[
A2

k1k2...kn

]
= E

[
B2

k1k2...kn

]
= S (ωk) �ω

In this equation, ωk = {ωk1 , ωk2 , . . . , ωkn }, and S (ωk) �ω

is the area under the spectral density function in an incre-
mental region centered on ωk.

As mentioned above, the sum is composed of (2N + 1)n

terms (if N1 = N2 = · · · = N ), where 2N + 1 is the number
of discrete frequencies taken in each dimension. Depending
on the shape of the spectral density function, N might easily
be of the order of 100, so that in three dimensions roughly
8 million terms must be summed for each spatial position
desired in the generated field (thus, in three dimensions,
a 20 × 20 × 20 random field would involve roughly 128
billion evaluations of sin or cosine).

This approach is really only computationally practical in
one dimension where the DFT reduces to

Z (x ) =
N∑

k=−N

Ak cos(ωk x ) + Bk sin(ωk x )

where

E [Ak ] = E [Bk ] = 0

E
[
A2

k

] = E
[
B2

k

] = S (ωk ) �ω

and where the A and B coefficients are mutually inde-
pendent of all other A’s and B’s. If the symmetry in the
spectral density function is taken advantage of, namely that
S (ω) = S (−ω), then the sum can be written

Z (x ) =
N∑

k=0

Ak cos(ωk x ) + Bk sin(ωk x ) (6.23)

where now the variances of the A and B coefficients are
expressed in terms of the one-sided spectral density function

E
[
A2

k

] = E
[
B2

k

] = G(ωk )�ωk (6.24)

and where �ω0 = 1
2 (ω1 − ω0) and �ωk = 1

2 (ωk+1

− ωk−1).
Simulation proceeds as follows:

1. Decide on how to discretize the spectral density
(i.e., on N and �ω).

2. Generate mean zero, normally distributed, realizations
of Ak and Bk for k = 0, 1, . . . , N each having variance
given by Eq. 6.24.

3. For each value of x desired in the final random
process, compute the sum given by Eq. 6.23.

6.4.4 Fast Fourier Transform Method

If both space and frequency are discretized into a series of
equispaced points, then the fast Fourier transform method
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developed by Cooley and Tukey (1965) can be used to
compute Eq. 6.22. The FFT is much more computationally
efficient than the DFT. For example, in one dimension
the DFT requires N 2 operations, whereas the FFT requires
only N log2 N operations. If N = 215 = 32,768, then the
FFT will be approximately 2000 times faster than the
DFT. For the purposes of this development, only the one-
dimensional case will be considered and multidimensional
results will be stated subsequently. For real and discrete
Z (xj ), j = 1, 2, . . . , N , Eq. 6.22 becomes

Z (xj ) =
∫ π

−π

eixj ω W (dω)

= lim
K→∞

K∑

k=−K

eixj ωk W (�ωk )

= lim
K→∞

K∑

k=−K

{
A(�ωk ) cos(xj ωk )

+ B(�ωk ) sin(xj ωk )
}

(6.25)

where ωk = kπ/K , �ωk is an interval of length π/K
centered at ωk , and the last step in Eq. 6.25 follows
from the fact that Z is real. The functions A(�ωk ) and
B(�ωk ) are i.i.d. random interval functions with mean zero
and E [A(�ωk )A(�ωm )] = E [B(�ωk )B(�ωm )] = 0 for all
k �= m in the limit as �ω → 0. At this point, the simulation
involves generating realizations of Ak = A(�ωk ) and Bk =
B(�ωk ) and evaluating Eq. 6.25. Since the process is real,
S (ω) = S (−ω), and the variances of Ak and Bk can be
expressed in terms of the one-sided spectral density function
G(ω) = 2S (ω), ω ≥ 0. This means that the sum in Eq. 6.25
can have lower bound k = 0. Note that an equivalent way
of writing Eq. 6.25 is

Z (xj ) =
K∑

k=0

Ck cos(xj ωk + 
k ) (6.26)

where 
k is a random phase angle uniformly distributed
on [0, 2π ] and Ck follows a Rayleigh distribution. Shi-
nozuka and Jan (1972) take Ck = √

G(ωk ) �ω to be de-
terministic, an approach not followed here since it gives
an upper bound on Z over the space of outcomes of
Z ≤ ∑K

k=0

√
G(ωk ) �ω, which may be an unrealistic re-

striction, particularly in reliability calculations which could
very well depend on extremes.

Next, the process Zj = Z (xj ) is assumed to be peri-
odic, Zj = ZK+j , with the same number of spatial and
frequency discretization points (N = K ). As will be shown
later, the periodicity assumption leads to a symmetric co-
variance structure which is perhaps the major disadvan-
tage to the DFT and FFT approaches. If the physical

length of the one-dimensional process under consideration
is D and the space and frequency domains are discretized
according to

xj = j�x = jD

K − 1
(6.27)

ωj = j�ω = 2π j (K − 1)

KD
(6.28)

for j = 0, 1, . . . , K − 1, then the Fourier transform

Zj =
K∑

k=0

X k ei (2π jk/K ) (6.29)

can be evaluated using the FFT algorithm. The Fourier
coefficients, Xk = Ak − iBk , have the following symmetries
due to the fact that Z is real:

Ak = 1

K

K−1∑

j=0

Zj cos 2π
jk

K
= AK−k (6.30)

Bk = 1

K

K−1∑

j=0

Zj sin 2π
jk

K
= −BK−k (6.31)

which means that Ak and Bk need only be generated ran-
domly for k = 0, 1, . . . , K /2 and that B0 = BK/2 = 0. Note
that if the coefficients at K − k are produced independently
of the coefficients at k , the resulting field will display alias-
ing (see Section 3.3.3). Thus, there is no advantage to taking
Z to be complex, generating all the Fourier coefficients ran-
domly, and attempting to produce two independent fields
simultaneously (the real and imaginary parts), or in just
ignoring the imaginary part.

As far as the simulation is concerned, all that remains
is to specify the statistics of Ak and Bk so that they can
be generated randomly. If Z is a Gaussian mean zero
process, then so are Ak and Bk . The variance of Ak can be
computed in a consistent fashion by evaluating E

[
A2

k

]
using

Eq. 6.30:

E
[
A2

k

] = 1

K 2

K−1∑

j=0

K−1∑

�=0

E
[
Zj Z�

]
cos 2π

jk

K
cos 2π

lk

K

(6.32)

This result suggests using the covariance function directly
to evaluate the variance of Ak ; however, the implementa-
tion is complex and no particular advantage in accuracy is
attained. A simpler approach involves the discrete approx-
imation to the Wiener–Khinchine relationship:

E
[
Zj Z�

] 	 �ω

K−1∑

m=0

G(ωm ) cos 2π
m(j − l )

K
(6.33)



GENERATING RANDOM FIELDS 219

which when substituted into Eq. 6.32 leads to

E
[
A2

k

] = �ω

K 2

K−1∑

j=0

K−1∑

�=0

K−1∑

m=0

G(ωm ) cos 2π
m(j − �)

K Ckj Ck�

= �ω

K 2

K−1∑

m=0

G(ωm )
K−1∑

j=0

Cmj Ckj

K−1∑

�=0

Cm�Ck�

+ �ω

K 2

K−1∑

m=0

G(ωm )
K−1∑

j=0

Smj Ckj

K−1∑

�=0

Sm�Ck�, (6.34)

where Ckj = cos 2π (kj/K ) and Skj = sin 2π (kj/K ).
To reduce Eq. 6.34 further, use is made of the following

two identities:

1.
K−1∑

k=0

sin 2π
mk

K
cos 2π

jk

K
= 0

2.
K−1∑

k=0

cos 2π
mk

K
cos 2π

jk

K
=





0 if m �= j
1
2 K if m = j , K − j

K if m = j = 0, or 1
2 K

By identity 1, the second term of Eq. 6.34 is zero. The
first term is also zero, except when m = k or m = K − k ,
leading to the results

E
[
A2

k

] =






1
2 G(ωk ) �ω if k = 0

1
4

{
G(ωk ) + G(ωK−k )

}
�ω if k = 1, . . . , 1

2 K − 1

G(ωk ) �ω if k = 1
2 K

(6.35)

remembering that for k = 0 the frequency interval is 1
2 �ω.

An entirely similar calculation leads to

E [Bk ]2 =
{

0 if k = 0, 1
2 K

1
4

{
G(ωk ) + G(ωK−k )

}
�ω if k = 1, . . . , 1

2 K − 1

(6.36)

Thus the simulation process is as follows:

1. Generate independent normally distributed realiza-
tions of Ak and Bk having mean zero and variance
given by Eqs. 6.35 and 6.36 for k = 0, 1, . . . , K /2
and set B0 = BK/2 = 0.

2. Use the symmetry relationships, Eqs. 6.30 and 6.31,
to produce the remaining Fourier coefficients for k =
1 + K /2, . . . , K − 1.

3. Produce the field realization by FFT using Eq. 6.29.

In higher dimensions a similar approach can be taken.
To compute the Fourier sum over nonnegative frequencies
only, the spectral density function S (ω) is assumed to be
even in all components of ω (quadrant symmetric) so that

the “one-sided” spectral density function, G(ω) = 2nS (ω)
∀ωi ≥ 0, in n-dimensional space, can be employed. Us-
ing L = K1 − �, M = K2 − m , and N = K3 − n to denote
the symmetric points in fields of size K1 × K2 in two di-
mensions or K1 × K2 × K3 in three dimensions, the Fourier
coefficients yielding a real two-dimensional process must
satisfy

ALM = A�m , BLM = −B�m (6.37)
A�M = ALm , B�M = −BLm

for �, m = 0, 1, . . . , 1
2 Kα where Kα is either K1 or K2

appropriately. Note that these relationships are applied
modulo Kα, so that AK 1−0,m ≡ A0,m , for example. In two
dimensions, the Fourier coefficients must be generated
over two adjacent quadrants of the field, the rest of the
coefficients obtained using the symmetry relations. In three
dimensions, the symmetry relationships are

ALMN = A�mn , BLMN = −B�mn

A�MN = ALmn , B�MN = −BLmn (6.38)
ALmN = A�Mn , BLmN = −B�Mn

A�mN = ALMn , B�mN = −BLMn

for �, m , n = 0, 1, . . . , 1
2 Kα . Again, only half the Fourier

coefficients are to be generated randomly.
The variances of the Fourier coefficients are found in a

manner analogous to the one-dimensional case, resulting in

E
[
A2

�m

] = 1
8δA

�m �ω

(
Gd

�m + Gd
�N + Gd

Ln + Gd
LN

)
(6.39)

E
[
B2

�m

] = 1
8δB

�m �ω

(
Gd

�m + Gd
�N + Gd

Ln + Gd
LN

)
(6.40)

for two dimensions and

E [A�mn ]2 = 1
16 δA

�mn �ω

(
Gd

�mn + Gd
�mN + Gd

�Mn + Gd
Lmn

+ Gd
�MN + Gd

LmN + Gd
LMn + Gd

LMN

)
(6.41)

E [B�mn ]2 = 1
16 δB

�mn �ω

(
Gd

�mn + Gd
�mN + Gd

�Mn + Gd
Lmn

+ Gd
�MN + Gd

LmN + Gd
LMn + Gd

LMN

)
(6.42)

in three dimensions, where for three dimensions

�ω =
3∏

i=1

�ωi (6.43)

Gd
lmn = G(ωl , ωm , ωn )

2d
(6.44)
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and d is the number of components of ω = (ω1, ω2, ω3)
which are equal to zero. The factors δA

�mn and δB
�mn are

given by

δA
�mn =






2 if l = 0 or 1
2 K1, m = 0 or 1

2 K2,

n = 0 or 1
2 K3

1 otherwise

(6.45)

δB
�mn =






0 if l = 0 or 1
2 K1, m = 0 or 1

2 K2,

n = 0 or 1
2 K3

1 otherwise

(6.46)

(ignoring the index n in the case of two dimensions). Thus,
in higher dimensions, the simulation procedure is almost
identical to that followed in the one-dimensional case—
the only difference being that the coefficients are generated
randomly over the half plane (two-dimensional) or the half
volume (three-dimensional) rather than the half line of the
one-dimensional formulation.

It is appropriate at this time to investigate some of the
shortcomings of the method. First of all, can be shown
that regardless of the desired target covariance function, the
covariance function Ĉk = Ĉ (k�x ) of the real FFT process
is always symmetric about the midpoint of the field. In
one dimension, the covariance function is given by (using
complex notation for the time being)

Ĉk = E
[
Z�+k Z�

]

= E




K−1∑

j=0

Xj exp
{

i
(

2π(� + k )j
K

)}

×
K−1∑

m=0

Xm × exp
{
−i

(
2π�m

K

)}]

=
K−1∑

j=0

E
[
XjXj

]
exp

{
i
(

2πj k
K

)}
(6.47)

where use was made of the fact that E
[
XjXm

] = 0 for
j �= m (overbar denotes the complex conjugate). Similarly
one can derive

ĈK−k =
K−1∑

j=0

E
[
XjXj

]
exp

{
−i

(
2πj k

K

)}

= Ĉk (6.48)

since E
[
XjXj

]
is real. The covariance function of a real,

process is also real in which case (6.48) becomes simply

ĈK−k = Ĉk (6.49)

In one dimension, this symmetry is illustrated by Figure 6.5.
Similar results are observed in higher dimensions. In
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Figure 6.5 Mean, variance, and covariance of one-dimensional
128-point Gauss–Markov process estimated over ensemble of
2000 realizations generated by FFT.

general, this deficiency can be overcome by generating a
field twice as long as required in each coordinate direction
and keeping only the first quadrant of the field. Figure 6.5
also compares the covariance, mean, and variance fields
of the LAS method to that of the FFT method (the TBM
method is not defined in one dimension). The two methods
give satisfactory performance with respect to the variance
and mean fields, while the LAS method shows superior
performance with respect to the covariance structure.

The second problem with the FFT method relates pri-
marily to its ease of use. Because of the close relation-
ship between the spatial and frequency discretization, con-
siderable care must be exercised when initially defining
the spatial field and its discretization. First of all, the
physical length of the field D must be large enough that
the frequency increment �ω = 2π (K − 1)/KD 	 2π/D
is sufficiently small. This is necessary if the sequence
1
2 G(ω0)�ω, G(ω1)�ω, . . . is to adequately approximate
the target spectral density function. Figure 6.6 shows
an example where the frequency discretization is overly
coarse. Second, the physical resolution �x must be selected
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Figure 6.6 Example of overly coarse frequency discretization
resulting in poor estimation of point variance (D = 5, θ = 4).

so that the spectral density above the frequency 2π/�x is
negligible. Failure to do so will result in an underestima-
tion of the total variance of the process. In fact the FFT
formulation given above folds the power corresponding to
frequencies between π/�x and 2π/�x into the power at
frequencies below the Nyquist limit π/�x . This results in
the point variance of the simulation being more accurate
than if the power above the Nyquist limit were ignored;
however, it leads to a nonuniqueness in that a family of
spectral density functions, all having the same value of
G(ωk ) + G(ωK−k ), yield the same process. In general, it
is best to choose �x so that the power above the Nyquist
limit is negligible. The second term involving the symmet-
ric frequency G(ωK−k ) is included here because the point
variance is the most important second-order characteristic.

Unfortunately, many applications dictate the size and
discretization of the field a priori or the user may want
to have the freedom to easily consider other geometries
or spectral density functions. Without careful thought and
analysis, the FFT approach can easily yield highly erro-
neous results.

A major advantage of the FFT method is that it can
easily handle anisotropic fields with no sacrifice in effi-
ciency. The field need not be square, although many im-
plementations of the FFT require the number of points
in the field in any coordinate direction to be a power of
2. Regarding efficiency, it should be pointed out that the
time to generate the first realization of the field is gener-
ally much longer than that required to generate subsequent
realizations. This is because the statistics of the Fourier
coefficients must be calculated only once (see Eqs. 6.35
and 6.36).

The FFT method is useful for the generation of fractal
processes, which are most naturally represented by the

spectral density function. In fact the covariance function
does not exist since the variance of a fractal process is
ideally infinite. In practice, for such a process, the spectral
density is truncated above and below to render a finite
variance realization.

6.4.5 Turning-Bands Method

The turning-bands method, as originally suggested by
Matheron (1973), involves the simulation of random fields
in two- or higher dimensional space by using a sequence
of one-dimensional processes along lines crossing the do-
main. With reference to Figure 6.7, the algorithm can be
described as follows:

1. Choose an arbitrary origin within or near the domain
of the field to be generated.

2. Select a line i crossing the domain having a direction
given by the unit vector ui , which may be chosen
either randomly or from some fixed set.

3. Generate a realization of a one-dimensional process,
Zi (ξi ), along the line i having zero mean and covari-
ance function C1(τi ) where ξi and τi are measured
along line i .

4. Orthogonally project each field point xk onto the line
i to define the coordinate ξki (ξki = xk · ui in the case
of a common origin) of the one-dimensional process
value Zi (ξki ).

5. Add the component Zi (ξki ) to the field value Z (xk )
for each xk .

Z(xk)

u1

u2

Z1(xk1)

Z2(xk2)

Figure 6.7 Turning-bands method. Contributions from the line
process Zi (ξi ) at the closest point are summed into the field process
Z (x) at xk .
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6. Return to step 2 and generate a new one-dimensional
process along a subsequent line until L lines have been
produced.

7. Normalize the field Z (xk ) by dividing through by the
factor

√
L.

Essentially, the generating equation for the zero-mean pro-
cess Z (x) is given by

Z (xk ) = 1√
L

L∑

i=1

Zi (xk · ui ) (6.50)

where, if the origins of the lines and space are not com-
mon, the dot product must be replaced by some suitable
transform. This formulation depends on knowledge of the
one-dimensional covariance function, C1(τ ). Once this is
known, the line processes can be produced using some ef-
ficient one-dimensional algorithm. The last point means that
the TBM is not a fundamental generator—it requires an ex-
isting one-dimensional generator (e.g., FFT or LAS, to be
discussed next).

The covariance function C1(τ ) is chosen such that
the multidimensional covariance structure Cn (τ ) in n-
dimensional space is reflected over the ensemble. For two-
dimensional isotropic processes, Mantoglou and Wilson
(1981) give the following relationship between C2(τ ) and
C1(η) for r = |τ |:

C2(r) = 2

π

∫ r

0

C1(η)
√

r2 − η2
dη (6.51)

which is an integral equation to be solved for C1(η). In three
dimensions, the relationship between the isotropic C3(r)
and C1(η) is particularly simple:

C1(η) = d

dη
[η C3(η)] (6.52)

Mantoglou and Wilson supply explicit solutions for either
the equivalent one-dimensional covariance function or the
equivalent one-dimensional spectral density function for a
variety of common multidimensional covariance structures.

In this implementation of the TBM, the line processes
were constructed using a one-dimensional FFT algorithm,
as discussed in the previous section. The LAS method
was not used for this purpose because the local averaging
introduced by the method would complicate the resulting
covariance function of Eg. 6.51. Line lengths were chosen
to be twice that of the field diagonal to avoid the symmetric
covariance problem inherent with the FFT method. To
reduce errors arising due to overly coarse discretization
of the lines, the ratio between the incremental distance
along the lines, �ξ , and the minimum incremental distance
in the field along any coordinate, �x , was selected to be
�ξ/�x = 1

2 .

Figure 6.8 Sample function of two-dimensional field via TBM
using 16 lines.

Figure 6.8 represents a realization of a two-dimensional
process. The finite number of lines used, in this case 16,
results in a streaked appearance of the realization. A number
of origin locations were experimented with to mitigate the
streaking, the best appearing to be the use of all four corners
as illustrated in Figure 6.7 and as used in Figure 6.8. The
corner selected as an origin depends on which quadrant
the unit vector ui points into. If one considers the spectral
representation of the one-dimensional random processes
along each line (see Eq. 6.22), it is apparent that the streaks
are a result of constructive/destructive interference between
randomly oriented traveling plane waves. The effect will be
more pronounced for narrow-band processes and for a small
number of lines. For this particular covariance function
(Markov), the streaks are still visible when 32 lines are
used, but, as shown in Figure 6.9, are negligible when using
64 lines (the use of number of lines which are powers
of 2 is arbitrary). While the 16-line case runs at about
the same speed as the two-dimensional LAS approach, the
elimination of the streaks in the realization comes at a price
of running about four times slower. The streaks are only
evident in an average over the ensemble if nonrandom
line orientations are used, although they still appear in
individual realizations in either case. Thus, with respect to
each realization, there is no particular advantage to using
random versus nonrandom line orientations.

Since the streaks are present in the field itself, this
type of error is generally more serious than errors in the
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Figure 6.9 Sample function of two-dimensional field via TBM
using 64 lines.

variance or covariance field. For example, if the field is
being used to represent soil permeability, then the streaks
could represent paths of reduced resistance to flow, a fea-
ture which may not be desirable in a particular study.
Crack propagation studies may also be very sensitive to
such linear correlations in the field. For applications such
as these, the TBM should only be used with a sufficiently
large number of lines. This may require some preliminary
investigation for arbitrary covariance functions. In addi-
tion, the minimum number of lines in three and higher
dimensions is difficult to determine due to visualization
problems.

Note that the TBM does not suffer from the symmetric
covariance structure that is inherent in the FFT approach.
The variance field and covariance structure are also well
preserved. However, the necessity of finding an equiva-
lent one-dimensional covariance or spectral density function
through an integral equation along with the streaked appear-
ance of the realization when an insufficient number of lines
are used makes the method less attractive. Using a larger
number of lines, TBM is probably the most accurate of the
three methods considered, at the expense of decreased effi-
ciency, as long as the one-dimensional generator is accurate.
TBM can be extended to anisotropic fields, although there is
an additional efficiency penalty associated with such an ex-
tension since the one-dimensional process statistics must be
recalculated for each new line orientation (see Mantoglou
and Wilson, 1981, for details).

6.4.6 Local Average Subdivision Method

Of the three approximate methods considered, the local av-
erage subdivision (LAS) method (Fenton and Vanmarcke,
1990) is probably the most difficult to implement but the
easiest to use. The local average subdivision method is a
fast and generally accurate method of producing realiza-
tions of a discrete “local average” random process. The
motivation for the method arose out of a need to properly
account for the fact that most engineering measurements
are actually local averages of the property in question. For
example, soil porosity is ill-defined at the microscale—it is
measured in practice using samples of finite volume, and
the measured value is an average of the porosity through
the sample. The same can be said of strength measurements,
say triaxial tests on laboratory volumes, or CPT measure-
ments which record the effects of deforming a bulb of soil
around the cone. The variance of the average is strongly
affected by the size of the sample. Depending on the dis-
tribution of the property being measured, the mean of the
average may also be affected by the sample size—this is
sometimes called the scale effect. These effects are rela-
tively easily incorporated into a properly defined random
local average process.

Another advantage to using local averages is that they are
ideally suited to stochastic finite-element modeling using
efficient, low-order, interpolation functions. Each discrete
local average given by a realization becomes the average
property within each discrete element. As the element size
is changed, the statistics of the random property mapped
to the element will also change in a statistically consis-
tent fashion. This gives finite-element modelers the free-
dom to change mesh resolution without losing stochastic
accuracy.

The concept behind the LAS approach derived from
the stochastic subdivision algorithm described by Carpen-
ter (1980) and Fournier et al. (1982). Their method was
limited to modeling power spectra having a ω−β form and
suffered from problems with aliasing and “creasing.” Lewis
(1987) generalized the approach to allow the modeling of
arbitrary power spectra without eliminating the aliasing.
The stochastic subdivision is a midpoint displacement al-
gorithm involving recursively subdividing the domain by
generating new midpoint values randomly selected accord-
ing to some distribution. Once chosen, the value at a point
remains fixed, and at each stage in the subdivision only
half the points in the process are determined (the others
created in previous iterations). Aliasing arises because the
power spectral density is not modified at each stage to re-
flect the increasing Nyquist frequency associated with each
increase in resolution. Voss (in Peitgen and Saupe, 1988,
Chapter 1) attempted to eliminate this problem with con-
siderable success by adding randomness to all points at
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each stage in the subdivision in a method called successive
random additions. However, the internal consistency eas-
ily achieved by the midpoint displacement methods (their
ability to return to previous states while decreasing resolu-
tion through decimation) is largely lost with the successive
random additions technique. The property of internal con-
sistency in the midpoint displacement approaches implies
that certain points retain their value throughout the subdivi-
sion, and other points are created to remain consistent with
them with respect to correlation. In the LAS approach, inter-
nal consistency implies that the local average is maintained
throughout the subdivision.

The LAS method solves the problems associated with
the stochastic subdivision methods and incorporates into it
concepts of local averaging theory. The general concept and
procedure is presented first for a one-dimensional stationary
process characterized by its second-order statistics. The
algorithm is illustrated by a Markov process, having a
simple exponential correlation function (see Section 3.6.5),
as well as by a fractional Gaussian noise process as defined
by Mandelbrot and van Ness (1968)—see Section 3.6.7.
The simulation procedure in two and three dimensions is
then described. Finally, some comments concerning the
accuracy and efficiency of the method are made.

6.4.6.1 One-Dimensional Local Average Subdivision
The construction of a local average process via LAS essen-
tially proceeds in a top-down recursive fashion as illustrated
in Figure 6.10. In stage 0, a global average is generated for
the process. In stage 1, the domain is subdivided into two
regions whose “local” averages must in turn average to the
global (or parent) value. Subsequent stages are obtained by
subdividing each “parent” cell and generating values for the
resulting two regions while preserving upwards averaging.
Note that the global average remains constant throughout
the subdivision, a property that is ensured merely by requir-
ing that the average of each pair generated is equivalent to
the parent cell value. This is also a property of any cell
being subdivided. We note that the local average subdivi-
sion can be applied to any existing local average field. For
example, the stage 0 shown in Figure 6.10 might simply be

Stage 0

Stage 1

Stage 2

Stage 3

Stage 4

Z1
0

Z1
1 Z2

1

Z1
2

Z1
3 Z2

3 Z3
3 Z4

3 Z5
3 Z6

3 Z7
3 Z8

3

Z2
2 Z3

2 Z4
2

Figure 6.10 Top-down approach to LAS construction of local
average random process.

one local average cell in a much larger field. The algorithm
proceeds as follows:

1. Generate a normally distributed global average (la-
beled Z 0

1 in Figure 6.10) with mean zero and vari-
ance obtained from local averaging theory (see
Section 3.4).

2. Subdivide the field into two equal parts.
3. Generate two normally distributed values, Z 1

1 and Z 1
2 ,

whose means and variances are selected so as to
satisfy three criteria:
(a) they show the correct variance according to local

averaging theory
(b) they are properly correlated with one another
(c) they average to the parent value, 1

2 (Z 1
1 + Z 1

2 ) =
Z 0

1
That is, the distributions of Z 1

1 and Z 1
2 are conditioned

on the value of Z 0
1 .

4. Subdivide each cell in stage 1 into two equal parts.
5. Generate two normally distributed values, Z 2

1 and Z 2
2 ,

whose means and variances are selected so as to
satisfy four criteria:
(a) they show the correct variance according to local

averaging theory
(b) they are properly correlated with one another
(c) they average to the parent value, 1

2 (Z 2
1 + Z 2

2 ) =
Z 1

1
(d) they are properly correlated with Z 2

3 and Z 2
4

The third criterion implies conditioning of the distri-
butions of Z 2

1 and Z 2
2 on the value of Z 1

1 . The fourth
criterion will only be satisfied approximately by con-
ditioning their distributions also on Z 1

2 .

And so on in this fashion. The approximations in the algo-
rithm come about in two ways: First, the correlation with
adjacent cells across parent boundaries is accomplished
through the parent values (which are already known having
been previously generated). Second, the range of parent
cells on which to condition the distributions will be lim-
ited to some neighborhood. Much of the remainder of this
section is devoted to the determination of these conditional
Gaussian distributions at each stage in the subdivision and
to an estimation of the algorithmic errors. In the following,
the term “parent cell” refers to the previous stage cell be-
ing subdivided, and “within-cell” means within the region
defined by the parent cell.

To determine the mean and variance of the stage 0 value,
Z 0

1 , consider first a continuous stationary scalar random
function Z (t) in one dimension, a sample of which may
appear as shown in Figure 6.11, and define a domain of
interest (0, D] within which a realization is to be produced.
Two comments should be made at this point: First, as it
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0 D

0 t

Figure 6.11 Realization of continuous random function Z with
domain of interest (0, D] shown.

is currently implemented, the LAS method is restricted
to stationary processes fully described by their second-
order statistics (mean, variance, and correlation function or,
equivalently, spectral density function). This is not a severe
restriction since it leaves a sufficiently broad class of func-
tions to model most natural phenomena (Lewis, 1987); also,
there is often insufficient data to substantiate more com-
plex probabilistic models. Besides, a nonstationary mean
and variance can be easily added to a stationary process.
For example, Y (t) = µ(t) + σ (t)X (t) will produce a non-
stationary Y (t) from stationary X (t) if µ(t) and/or σ (t) vary
with t (e.g., CPT soundings often show increases in both
µ and σ with depth). Second, the subdivision procedure
depends on the physical size of the domain being defined
since the dimension over which local averaging is to be per-
formed must be known. The process Z beyond the domain
(0, D] is ignored.

The average of Z (t) over the domain (0, D] is given by

Z 0
1 = 1

D

∫ D

0
Z (ξ ) dξ (6.53)

where Z 0
1 is a random variable whose statistics

E
[
Z 0

1

] = E [Z ] (6.54)

E
[
(Z 0

1 )2] = 1

D2

∫ D

0

∫ D

0
E
[
Z (ξ ) Z (ξ ′)

]
dξ dξ ′

= E [Z ]2 + 2

D2

∫ D

0
(D − τ ) C (τ ) dτ (6.55)

can be found by making use of stationarity and the fact
that C (τ ), the covariance function of Z (t), is an even
function of lag τ . Without loss in generality, E [Z ] will
henceforth be taken as zero. If Z (t) is a Gaussian random
function, Eqs. 6.54 and 6.55 give sufficient information to
generate a realization of Z 0

1 , which becomes stage 0 in the
LAS method. If Z (t) is not Gaussian, then the complete

probability distribution function for Z 0
1 must be determined

and a realization generated according to such a distribution.
We will restrict our attention to Gaussian processes.

Consider now the general case where stage i is known
and stage i + 1 is to be generated. In the following the
superscript i denotes the stage under consideration. Define

Di = D

2i
, i = 0, 1, 2, . . . , L (6.56)

where the desired number of subintervals in the final
realization is N = 2L, and define Z i

k to be the average
of Z (t) over the interval (k − 1)Di < t ≤ kDi centered at
tk = (k − 1

2 )Di , that is,

Z i
k = 1

Di

∫ kDi

(k−1)Di
Z (ξ ) dξ (6.57)

where E
[
Z i

k

] = E [Z ] = 0. The target covariance between
local averages separated by lag mDi between centers is

E
[
Z i

k Z i
k+m

]

= E

[(
1

Di

)2 ∫ kDi

(k−1)Di

∫ (k+m)Di

(k+m−1)Di
Z (ξ ) Z (ξ ′) dξ dξ ′

]

=
(

1

Di

)2∫ Di

0

∫ (m+1)Di

mDi
C (ξ − ξ ′) dξ dξ ′

=
(

1

Di

)2∫ mDi

(m−1)Di

[
ξ − (m − 1)Di ]C (ξ ) dξ

+
(

1

Di

)2∫ (m+1)Di

mDi

[
(m + 1)Di − ξ

]
B(ξ ) dξ

(6.58)

which can be evaluated relatively simply using Gaussian
quadrature as

E
[
Z i

k Z i
k+m

] 	 1

4

ng∑

ν=1

wν

[
(1 + zν))C (rν) + (1 − zν)C (sν)

]

(6.59)

where rν = Di
(

m − 1
2 (1 − zν)

)
, sν = Di

(
m + 1

2 (1 + zν)
)

,
and the weights, wν , and positions zν can be found in
Appendix B for ng Gauss points.

With reference to Figure 6.12, the construction of stage
i + 1 given stage i is obtained by estimating a mean
for Z i+1

2j and adding a zero mean discrete white noise
ci+1 U i+1

j having variance (ci+1)2

Z i+1
2j = M i+1

2j + ci+1 U i+1
j (6.60)

The best linear estimate for the mean M i+1
2j can be deter-

mined by a linear combination of stage i (parent) values in
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j j + 1

2j − 1 2j 2j + 1 2j + 2

Figure 6.12 One-dimensional LAS indexing for stage i (top)
and stage i + 1 (bottom).

some neighborhood j − n , . . . , j + n ,

M i+1
2j =

j+n∑

k=j−n

ai
k−j Z i

k (6.61)

Multiplying Eq. 6.60 through by Z i
m , taking expectations,

and using the fact that U i+1
j is uncorrelated with the stage

i values allows the determination of the coefficients a in
terms of the desired covariances,

E
[
Z i+1

2j Z i
m

]
=

j+n∑

k=j−n

ai
k−j E

[
Z i

k Z i
m

]
(6.62)

a system of equations (m = j − n , . . . , j + n) from which
the coefficients ai

�, � = −n , . . . , n , can be solved. The co-
variance matrix multiplying the vector {ai

�} is both symmet-
ric and Toeplitz (elements along each diagonal are equal).
For U i+1

j ∼ N (0, 1) the variance of the noise term is
(ci+1)2 which can be obtained by squaring Eq. 6.60, taking
expectations and employing the results of Eq. 6.62:

(ci+1)2 = E
[
(Z i+1

2j )2
]

−
j+n∑

k=j−n

ai
k−j E

[
Z i+1

2j Z i
k

]
(6.63)

The adjacent cell, Z i+1
2j−1, is determined by ensuring that

upwards averaging is preserved—that the average of each
stage i + 1 pair equals the value of the stage i parent:

Z i+1
2j−1 = 2Z i

j − Z i+1
2j (6.64)

which incidentally gives a means of evaluating the cross-
stage covariances:

E
[
Z i+1

2j Z i
m

]
= 1

2 E
[
Z i+1

2j Z i+1
2m−1

]
+ 1

2 E
[
Z i+1

2j Z i+1
2m

]

(6.65)

which are needed in Eq. 6.62. All the expectations in
Eqs. 6.62–6.65 are evaluated using Eq. 6.58 or 6.59 at the
appropriate stage.

For stationary processes, the set of coefficients {ai
�} and

ci are independent of position since the expectations in Eqs.
6.62 and 6.63 are just dependent on lags. The generation
procedure can be restated as follows:

1. For i = 0, 1, 2, . . . , L compute the coefficients {ai
�},

� = −n , . . . , n using Eq. 6.62 and ci+1 using Eq. 6.63.
2. Starting with i = 0, generate a realization for the

global mean using Eqs. 6.54 and 6.55.

3. Subdivide the domain.
4. For each j = 1, 2, 3, . . . , 2i , generate realizations for

Z i+1
2j and Z i+1

2j−1 using Eqs. 6.60 and 6.64.
5. Increment i and, if not greater than L, return to

step 3.

Notice that subsequent realizations of the process need only
start at step 2, and so the overhead involved with setting
up the coefficients becomes rapidly negligible.

Because the LAS procedure is recursive, obtaining stage
i + 1 values using the previous stage, it is relatively easy
to condition the field by specifying the values of the local
averages at a particular stage. So, for example, if the global
mean of a process is known a priori, then the stage 0 value
can be set to this mean and the LAS procedure started at
stage 1. Similarly, if the resolution is to be refined in a
certain region, then the values in that region become the
starting values and the subdivision resumed at the next
stage.

Although the LAS method yields a local average process,
when the discretization size becomes small enough, it is
virtually indistinguishable from the limiting continuous
process. Thus, the method can be used to approximate
continuous functions as well.

Accuracy It is instructive to investigate how closely the
algorithm approximates the target statistics of the process.
Changing notation slightly, denote the stage i + 1 algorith-
mic values, given the stage i values, as

Ẑ i+1
2j = ci+1 U i+1

j +
j+n∑

k=j−n

ai
k−j Z i

k (6.66)

Ẑ i+1
2j−1 = 2 Z i

j − Ẑ i+1
2j (6.67)

It is easy to see that the expectation of Ẑ is still zero, as
desired, while the variance is

E
[
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2j )2
]

= E


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+
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k−j E
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2j Z i
k

]

= E
[
(Z i+1

2j )2
]

(6.68)
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in which the coefficients ci+1 and ai
� were calculated using

Eqs. 6.62 and 6.63 as before. Similarly, the within-cell
covariance at lag Di+1 is

E
[
Ẑ i+1

2j−1 Ẑ i+1
2j

]
= E




(

2 Z i
j − ci+1 U i+1

j −
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k−j Z i

k

)

×
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�
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= 2
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2j )2
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j

]
− E

[
(Z i+1

2j )2
]

= E
[
Z i+1

2j−1 Z i+1
2j

]
(6.69)

using the results of Eq. 6.68 along with Eq. 6.65. Thus, the
covariance structure within a cell is preserved exactly by
the subdivision algorithm. Some approximation does occur
across cell boundaries as can be seen by considering

E
[
Ẑ i+1

2j Ẑ i+1
2j+1

]

= E




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]
(6.70)

The algorithmic error in this covariance comes from the
last two terms. The discrepancy between Eq. 6.70 and the
exact covariance is illustrated numerically in Figure 6.13
for a zero mean Markov process having covariance and
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Figure 6.13 Comparison of algorithmic and exact correlation
between adjacent cells across a parent cell boundary for varying
effective cell dimension 2T/θ .

variance functions:

C (τ ) = σ 2 exp

{
−2|τ |

θ

}
(6.71)

γ (T ) = θ2

2 T 2

[
2|T |
θ

+ exp

{−2|T |
θ

}
− 1

]
(6.72)

where T is the averaging dimension (in Figure 6.13, T =
Di+1) and θ is the correlation length of the process. The
exact covariance is determined by Eq. 6.58 (for m = 1) us-
ing the variance function in Eq. 6.72. Although Figure 6.13
shows a wide range in the effective cell sizes, 2T/θ , the
error is typically very small.

To address the issue of errors at larger lags and the pos-
sibility of errors accumulating from stage to stage, it is
useful to look at the exact versus estimated statistics of the
entire process. Figure 6.14 illustrates this comparison for
the Markov process. It can be seen from this example, and
from the fractional Gaussian noise example to come, that
the errors are self-correcting, and the algorithmic correla-
tion structure tends to the exact correlation function when
averaged over several realizations. Spectral analysis of real-
izations obtained from the LAS method show equally good
agreement between estimated and exact covariance func-
tions (Fenton, 1990). The within-cell rate of convergence
of the estimated statistic to the exact is 1/nsim, where nsim is
the number of realizations. The overall rate of convergence
is about the same.

Boundary Conditions and Neighborhood Size When
the neighborhood size 2n + 1 is greater than 1 (n > 0), the
construction of values near the boundary may require values
from the previous stage which lie outside the boundary.
This problem is handled by assuming that what happens
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Figure 6.14 Comparison of exact and estimated covariance
functions (averaged over 200 realizations) of Markov process with
σ = 1 and θ = 4.

outside the domain (0, D] is of no interest and uncorrelated
with what happens within the domain. The generating
relationship (Eq. 6.60) near either boundary becomes

Z i+1
2j = ci+1 U i+1

j +
j+q∑

k=j−p

ai
k−j Z i

k (6.73)

where p = min(n , j − 1), q = min(n , 2i − j ), and the coef-
ficients ai

� need only be determined for � = −p, . . . , q . The
periodic boundary conditions mentioned by Lewis (1987)
are not appropriate if the target covariance structure is to
be preserved since they lead to a covariance which is sym-
metric about lag D/2 (unless the desired covariance is also
symmetric about this lag).

In the implementation described in this section, a neigh-
borhood size of 3 was used (n = 1), the parent cell plus its
two adjacent cells. Because of the top-down approach, there
seems to be little justification to using a larger neighborhood
for processes with covariance functions which decrease
monotonically or which are relatively smooth. When the
covariance function is oscillatory, a larger neighborhood
is required in order to successfully approximate the func-
tion. In Figure 6.15 the exact and estimated covariances are
shown for a damped oscillatory process with

C (τ ) = σ 2 cos(ωτ ) e−2τ/θ (6.74)

Considerable improvement in the model is obtained when
a neighborhood size of 5 is used (n = 2). This improve-
ment comes at the expense of taking about twice as long to
generate the realizations. Many practical models of natural
phenomena employ monotonically decreasing covariance
functions, often for simplicity, and so the n = 1 implemen-
tation is usually preferable.

Fractional Gaussian Noise As a further demonstration
of the LAS method, a self-similar process called fractional
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Figure 6.15 Effect of neighborhood size for (a) n = 1 and (b)
n = 2 for damped oscillatory noise (Eq. 6.74).

Gaussian noise (see Section 3.6.7) was simulated, as shown
in Figure 6.16. Fractional Gaussian noise (fGn) is defined
by Mandelbrot and Van Ness (1968) to be the derivative
of fractional Brownian motion (fBm) and is obtained by
averaging the fBm over a small interval δ.

The resulting process has covariance and variance func-
tions

C (τ ) = σ 2

2δ2H

[
|τ + δ|2H − 2|τ |2H + |τ − δ|2H

]
(6.75)

γ (T ) = |T + δ|2H +2 − 2|T |2H +2 + |T − δ|2H +2 − 2δ2H +2

T 2(2H + 1)(2H + 2)δ2H

(6.76)

defined for 0 < H < 1. The case H = 0.5 corresponds to
white noise and H → 1 gives perfect correlation. In prac-
tice, δ is taken to be equal to the smallest lag between
field points (δ = D/2L) to ensure that when H = 0.5 (white
noise), C (τ ) becomes zero for all τ ≥ D/2L. A sam-
ple function and its corresponding ensemble statistics are
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Figure 6.16 (a) LAS-generated sample function of fractional
Gaussian noise for H = 0.95. (b) Corresponding estimated (aver-
aged over 200 realizations) and exact covariance functions.

shown in Figure 6.16 for fGn with H = 0.95. The self-
similar-type processes have been demonstrated by Mandel-
brot (1982), Voss (1985), and many others [Mohr (1981),
Peitgen and Saupe (1988), Whittle (1956), to name a few] to
be representative of a large variety of natural forms and pat-
terns, for example, music, terrains, crop yields, and chaotic
systems. Fenton (1999b) demonstrated the presence of frac-
tal behavior in CPT logs taken in Norway.

6.4.6.2 Multidimensional Local Average Subdivision
The two-dimensional LAS method involves a subdivision
process in which a parent cell is divided into four equal
sized cells. In Figure 6.17, the parent cells are denoted Z i

l ,
l = 1, 2, . . . , and the subdivided, or child cells, are denoted
Z i+1

j , j = 1, 2, 3, 4. Although each parent cell is eventually
subdivided in the LAS process, only Z i

5 is subdivided in
Figure 6.17 for simplicity. Using vector notation, the values
of the column vector Zi+1 = {Z i+1

1 , Z i+1
2 , Z i+1

3 , Z i+1
4 } are

Z i
1
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Figure 6.17 Local average subdivision in two dimensions.

obtained by adding a mean term to a random component.
The mean term derives from a best linear unbiased estimate
using a 3 × 3 neighborhood of the parent values, in this case
the column vector Zi = {Z i

1 , . . . , Z i
9 }. Specifically

Zi+1 = AT Zi + LU (6.77)

where U is a random vector with independent N (0, 1)
elements. This is essentially an ARMA model in which
the “past” is represented by the previous coarser resolution
stages. Defining the covariance matrices

R = E
[
Zi Zi T

]
(6.78a)

S = E
[
Zi Zi+1T

]
(6.78b)

B = E
[
Zi+1Zi+1T

]
(6.78c)

then the matrix A is determined by

A = R−1 S (6.79)

while the lower triangular matrix L satisfies

LLT = B − S TA (6.80)

The covariance matrices R, S and B must be computed as
the covariances between local averages over the domains
of the parent and child cells. This can be done using
the variance function, although direct Gaussian quadrature
of the covariance function has been found to give better
numerical results. See Appendices B and C.

Note that the matrix on the right-hand side of Eq. 6.80
is only rank 3, so that the 4 × 4 matrix L has a special
form with columns summing to zero (thus L44 = 0). While
this results from the fact that all the expectations used in
Eqs. 6.78 are derived using local average theory over the
cell domains, the physical interpretation is that upwards
averaging is preserved, that is, that P5 = 1

4 (Q1 + Q2 +
Q3 + Q4). This means that one of the elements of Q is
explicitly determined once the other three are known. In
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detail, Eq. 6.77 is carried out as follows:

Z i+1
1 =

9∑

l=1

Al1Z i
l + L11U1 (6.81a)

Z i+1
2 =

9∑

l=1

Al2Z i
l + L21U1 + L22U2 (6.81b)

Z i+1
3 =

9∑

l=1

Al3Z i
l + L31U1 + L32U2 + L33U3 (6.81c)

Z i+1
4 = 4Z i

5 − Z i+1
1 − Z i+1

2 − Z i+1
3 (6.81d)

where Ui are a set of three independent standard normally
distributed random variables. Subdivisions taking place near
the field boundaries are handled in much the same manner
as in the one-dimensional case by assuming that conditions
outside the field are uncorrelated with those inside the field.

The assumption of homogeneity vastly decreases the
number of coefficients that need to be calculated and stored
since the matrices A and L become independent of position.
As in the one-dimensional case, the coefficients need only
be calculated prior to the first realization—they can be
reused in subsequent realizations reducing the effective cost
of their calculation.

A sample function of a Markov process having isotropic
covariance function

C (τ1, τ2) = σ 2 exp

{
−2

θ

√
τ 2

1 + τ 2
2

}
(6.82)

Figure 6.18 An LAS-generated two-dimensional sample func-
tion with θ = 0.5. The field shown is 5 × 5 in size.

was generated using the two-dimensional LAS algorithm
and is shown in Figure 6.18. The field, which is of di-
mension 5 × 5, was subdivided eight times to obtain a
256 × 256 resolution giving relatively small cells of size

5
256 × 5

256 . The estimated covariances along three different
directions are seen in Figure 6.19 to show very good agree-
ment with the exact. The agreement improves (as 1/nsim)
when the statistics are averaged over a larger number of
simulations. Notice that the horizontal axis on Figure 6.19
extends beyond a lag of 5 to accommodate the estimation of
the covariance along the diagonal (which has length 5

√
2).

In three dimensions, the LAS method involves recur-
sively subdividing rectangular parallelepipeds into eight
equal volumes at each stage. The generating relationships
are essentially the same as in the two-dimensional case ex-
cept now seven random noises are used in the subdivision
of each parent volume at each stage

Z i+1
s =

27∑

l=1

Als Z i
l +

s∑

r=1

Lsr Ur , s = 1, 2, . . . , 7 (6.83)

Z i+1
8 = 8Z i

14 −
7∑

s=1

Z i+1
s (6.84)

in which Z i+1
s denotes a particular octant of the subdivided

cell centered at Z i
14. Equation 6.83 assumes a neighborhood

size of 3 × 3 × 3, and the subdivided cell is Z i
14 at the center

of the neighborhood.
Figure 6.20 compares the estimated and exact covariance

of a three-dimensional first-order Markov process having
isotropic covariance

C (τ1, τ2, τ3) = σ 2 exp

{
−2

θ

√
τ 2

1 + τ 2
2 + τ 2

3

}
(6.85)
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Figure 6.19 Comparison of exact and estimated covariance
functions (averaged over 100 realizations) of two-dimensional
isotropic Markov process with σ = 1 and θ = 0.5.
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Figure 6.20 Comparison of exact and estimated covariance
functions (averaged over 50 realizations) of three-dimensional
isotropic Markov process with σ = 1 and θ = 0.5. Dashed lines
show covariance estimates in various directions through the field.

The physical field size of 5 × 5 × 5 was subdivided
six times to obtain a resolution of 64 × 64 × 64 and the
covariance estimates were averaged over 50 realizations.

6.4.6.3 Implementation and Accuracy To calculate
stage i + 1 values, the values at stage i must be known.
This implies that in the one-dimensional case, storage must
be provided for at least 1.5N values where N = 2L is the
desired number of intervals of the process. If rapid “zoom-
ing out” of the field is desired, it is useful to store all
previous stages. This results in a storage requirement of
2N − 1 in one dimension, 4

3 (N × N ) in two dimensions,
and 8

7 (N × N × N ) in three dimensions. The coefficients
A and the lower triangular elements of L, which must also
be stored, can be efficiently calculated using Gaussian elim-
ination and Cholesky decomposition, respectively.

In two and higher dimensions, the LAS method, as pre-
sented above with a neighborhood size of 3 in each direc-
tion, is incapable of preserving anisotropy in the covariance
structure. The directional correlation lengths tend toward
the minimum for the field. To overcome this problem, the
LAS method can be mixed with the covariance matrix de-
composition (CMD) method (see Eq. 6.21). As mentioned
in Section 6.4.2, the CMD method requires large amounts
of storage and is prone to numerical error when the field to
be simulated is not small. However, the first several stages
of the local average field could be produced directly by the
CMD method and then refined by LAS in subsequent stages
until the desired field resolution is obtained. The resulting
field would have anisotropy preserved at the large scale.

Specifically, in the one-dimensional case, a positive inte-
ger k1 is found so that the total number of cells, N1, desired
in the final field can be expressed as

N1 = k1(2m ) (6.86)

where m is the number of subdivisions to perform and
k1 is as large as possible with k1 ≤ kmax. The choice of
the upper bound kmax depends on how large the initial
covariance matrix used in Eq. 6.21 can be. If kmax is too
large, the Cholesky decomposition of the initial covariance
matrix will be prone to numerical errors and algorithmic
nonpositive definiteness (which means that the Cholesky
decomposition will fail). The authors suggest kmax ≤ 256.

In two dimensions, two positive integers k1 and k2 are
found such that k1k2 ≤ kmax and the field dimensions can
be expressed as

N1 = k1(2m ) (6.87a)

N2 = k2(2m ) (6.87b)

from which the first k1 × k2 lattice of cell values are
simulated directly using covariance matrix decomposition
(Eg. 6.21). Since the number of subdivisions, m , is com-
mon to the two parameters, one is not entirely free to
choose N1 and N2 arbitrarily. It does, however, give a
reasonable amount of discretion in generating nonsquare
fields, as is also possible with both the FFT and TBM
methods.

Although Figure 6.5 illustrates the superior performance
of the LAS method over the FFT method in one dimen-
sion with respect to the covariance, a systematic bias in
the variance field is observed in two dimensions (Fen-
ton, 1994). Figure 6.21 shows a gray scale image of the

Figure 6.21 Two-dimensional LAS-generated variance field (av-
eraged over 200 realizations).
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estimated cell variance in a two-dimensional field obtained
by averaging over the ensemble. There is a pattern in the
variance field—the variance tends to be lower near the
major cell divisions, that is, at the 1

2 , 1
4 , 1

8 , . . . points
of the field. This is because the actual diagonal, or vari-
ance, terms of the 4 × 4 covariance matrix corresponding
to a subdivided cell are affected by the truncation of the
parent cell influence to a 3 × 3 neighborhood. The er-
ror in the variance is compounded at each subdivision
stage and cells close to “older” cell divisions show more
error than do “interior” cells. The magnitude of this er-
ror varies with the number of subdivisions, the correla-
tion length, and type of covariance function governing the
process.

Figure 6.22 depicts the estimated variances along a line
through the plane for both the LAS and TBM methods.
Along any given line, the pattern in the LAS estimated
variance seen in Figure 6.21 is not particularly noticeable,
and the values are about what would be expected for
an estimate over the ensemble. Figure 6.23 compares the
estimated covariance structure in the vertical and horizontal
directions, again for the TBM (64 lines) and LAS methods.
In this respect, both the LAS and the TBM methods are
reasonably accurate.

Figure 6.24 illustrates how well the LAS method com-
bined with CMD preserves anisotropy in the covariance
structure. In this figure the horizontal correlation length is
θx = 10 while the vertical correlation length is θy = 1. As
mentioned earlier the LAS algorithm, using a neighbor-
hood size of 3, is incapable of preserving anisotropy. The
anisotropy seen in Figure 6.24 is due to the initial CMD.
The loss of anisotropy at very small lags (at the smaller
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Figure 6.22 Variance along horizontal line through two-
dimensional LAS and TBM fields estimated over 200 realizations.
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Figure 6.23 Covariance structure of LAS and TBM two-
dimensional random fields estimated over 200 realizations.
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Figure 6.24 Exact and estimated covariance structure of
anisotropic LAS-produced field with θx = 10 and θy = 1. The
estimation is over 500 realizations.

scales where the subdivision is taking place) can be seen
in the figure—that is, the estimated horizontal covariance
initially drops too rapidly at small lags.

It may be possible to improve the LAS covariance
approximations by extending the size of the parent cell
neighborhood. A 3 × 3 neighborhood is used in the current
implementation of the two-dimensional LAS algorithm, as
shown in Figure 6.17, but any odd-sized neighborhood
could be used to condition the statistics of the subdivided
cells. Larger neighborhoods have not been tested in two and
higher dimensions, although in one dimension increasing
the neighborhood size to five cells resulted in a more
accurate covariance function representation, as would be
expected.
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6.4.7 Comparison of Methods

The choice of a random-field generator to be used for a
particular problem or in general depends on many issues.
Table 6.1 shows the relative run times of the three algo-
rithms to produce identically sized fields. The times have
been normalized with respect to the FFT method so that
a value of 2 indicates that the method took twice as long
as did the FFT. If efficiency alone were the selection cri-
teria, then either the TBM with a small number of lines
or the LAS methods would be selected, with probably the
LAS a better choice if streaking is not desired. However,
efficiency of the random-field generator is often not an over-
riding concern—in many applications, the time taken to
generate the field is dwarfed by the time taken to subse-
quently process or analyze the field by, for example, using
the finite-element method. Substantial changes in generator
efficiency may be hardly noticed by the user.

As a further comparison of the accuracy of the FFT,
TBM, and LAS methods, a set of 200 realizations of a
128 × 128 random field were generated using the Markov
covariance function with a correlation length θ = 2 and
a physical field size of 5 × 5. The mean and variance
fields were calculated by estimating these quantities at each
point in the field (averaging over the ensemble) for each
algorithm. The upper and lower 90th percentiles are listed
in Table 6.2 along with those predicted by theory under a
normal distribution. To obtain these numbers, the mean and
variance fields were first estimated, then upper and lower
bounds were found such that 5% of the field exceeded the
bounds above and below, respectively. Thus, 90% of the
field is observed to lie between the bounds. It can be seen
that all three methods yield very good results with respect

Table 6.1 Comparison of Run Times of FFT, TBM,
and LAS Algorithms in One and Two Dimensions

TBM
Dimension FFT LAS 16 Lines 64 Lines

One 1.0 0.70 – –
Two 1.0 0.55 0.64 2.6

Table 6.2 Upper and Lower 90th Percentiles of
Estimated Mean and Variance Fields for FFT, TBM,
and LAS Methods (200 realizations)

Algorithm Mean Variance

FFT (−0.06, 0.12) (0.87, 1.19)
TBM (−0.11, 0.06) (0.83, 1.14)
LAS (−0.12, 0.09) (0.82, 1.13)
Theory (−0.12, 0.12) (0.84, 1.17)

to the expected mean and variance quantiles. The TBM
results were obtained using 64 lines. Although these results
are strictly only valid for the particular covariance function
used, they are believed to be generally true over a wider
variety of covariance functions and correlation lengths.

Purely on the basis of accuracy in the mean, variance,
and covariance structures, the best algorithm of those con-
sidered here is probably the TBM method using a large
number of lines. The TBM method is also one of the easiest
to implement once an accurate one-dimensional genera-
tor has been implemented. Unfortunately, there is no clear
rule regarding the minimum number of lines to be used to
avoid streaking. In two dimensions using the Markov co-
variance function, it appears that at least 50 lines should be
employed. However, as mentioned, narrow-band processes
may require more. In three dimensions, no such statements
can be made due to the difficulty in studying the streaking
phenomena off a plane. Presumably one could use a “den-
sity” of lines similar to that used in the two-dimensional
case, perhaps subtending similar angles, as a guide. The
TBM method is reasonably easy to use in practice as long
as the equivalent one-dimensional covariance or spectral
density function can be found.

The FFT method suffers from symmetry in the covari-
ance structure of the realizations. This can be overcome by
generating fields twice as large as required in each coor-
dinate direction and ignoring the surplus. This correction
results in slower run times (a factor of 2 in one dimen-
sion, 4 in two dimensions, etc.). The FFT method is also
relatively easy to implement and the algorithm is similar
in any dimension. Its ability to easily handle anisotropic
fields makes it the best choice for such problems. Care
must be taken when selecting the physical field dimension
and discretization interval to ensure that the spectral den-
sity function is adequately approximated. This latter issue
makes the method more difficult to use in practice. How-
ever, the fact that the FFT approach employs the spectral
density function directly makes it an intuitively attractive
method, particularly in time-dependent applications.

The LAS method has a systematic bias in the variance
field, in two and higher dimensions, which is not solvable
without increasing the parent neighborhood size. However,
the error does not result in values of variance that lie outside
what would be expected from theory—it is primarily the
pattern of the variance field which is of concern. Of the
three methods considered, the LAS method is the most
difficult to implement. It is, however, one of the easiest
to use once coded since it requires no decisions regarding
its parameters, and it is generally the most efficient. If the
problem at hand requires or would benefit from a local
average representation, then the LAS method is the logical
choice.
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6.5 CONDITIONAL SIMULATION
OF RANDOM FIELDS

When simulation is being used to investigate the probabilis-
tic nature of a particular site, we often have experimental
information available at that site that should be reflected in
the simulations. For example, suppose we are investigating
the response of a soil site to loading from a structure, and
we have four soil property measurements taken at spatial
locations x1, x2, x3, and x4. Since we now know the soil
properties at these four locations, it makes sense for any
simulated soil property field to have the known values at
these points in every simulation. The soil properties should
only be random between the measured locations, becom-
ing increasingly random with distance from the measured
locations.

A random field which takes on certain known values at
specific points in the field is called a conditional random
field. This section seeks to produce simulations of a condi-
tional random field, Zc(x), which takes on specific values
z (xα) at the measurement locations xα , α = 1, 2, . . . , nk ,
where nk is the number of measurement locations. Mathe-
matically,

Zc(x) = {Z (x) | z (xα), α = 1, 2, . . . , nk } (6.88)

To accomplish the conditional simulation, the random
field will be separated into two parts spatially: (1) xα ,
α = 1, 2, . . . , nk , being those points at which measurements
have been taken, and at which the random field takes on de-
terministic values z (xα), and (2) xη, η = 1, 2, . . . , N − nk ,
being those points at which the random field is still random
and at which we wish to simulate realizations of their pos-
sible random values. That is, the subscript α will denote
known values, while the subscript η will denote unknown
values which are to be simulated. N is the total number of
points in the field to be simulated.

The conditional random field is simply formed from three
components:

Zc(x) = Zu (x) + [Zk (x) − Zs (x)] (6.89)

where,

Zc(x) = desired conditional simulation

Zu (x) = unconditional simulation

Zk (x) = best linear unbiased estimate of field based on
known (measured) values at xα

Zs (x) = best linear unbiased estimate of field based on
unconditional simulation values at xα

The BLUE is discussed in more detail in Section 4.1.
However, the best estimate at the measurement points, xα ,
is just equal to the value at the measurement points. In other

words, at each xα , Zk (xα) = z (xα), while Zs (xα) = Zu (xα).
Thus, at each measurement point, xα , Eq. 6.89 becomes

Zc(xα) = Zu (xα) + [Zk (xα) − Zs (xα)]

= Zu (xα) + [z (xα) − Zu (xα)] = z (xα) (6.90)

which is the measured value, as desired.
The unconditional simulation Zu can be produced using

one of the methods discussed in the previous sections.
The BLUE of the field is obtained using the methodology
presented in Section 4.1. In particular, the BLUE field based
on the measured values, Zk (x), is determined by

Zk (xη) = µη +
nk∑

α=1

βα

(
z (xα) − µα

)
(6.91)

for η = 1, 2, . . . , N − nk , where µη is the unconditional
field mean at xη, µα is the unconditional field mean at xα ,
z (xα) is the measured value at xα , and βα is a weighting
coefficient to be discussed shortly.

Similarly, the BLUE field of the simulation, Zs (x), is
determined by

Zs (xη) = µη +
nk∑

α=1

βα

(
Zu (xα) − µα

)
(6.92)

for η = 1, 2, . . . , N − nk . The only substantial difference
between Zk (x) and Zs (x) is that the former is based on
observed values, z (xα), while the latter is based on uncon-
ditional simulation values at the same locations, Zu (xα).
The difference appearing in Eq. 6.89 can be computed more
efficiently and directly as

Zk (xη) − Zs (xη) =
nk∑

α=1

βα

(
z (xα) − Zu (xα)

)
(6.93)

for η = 1, 2, . . . , N − nk .
The weighting coefficients, βα , are determined from

β = C −1b (6.94)

where β is the vector of weighting coefficients, βα, and C
is the nk × nk matrix of covariances between the uncondi-
tional random field values at the known points. The matrix
C has components

Cij = Cov
[
Zu (xi ), Zu (xj )

]
(6.95)

for i , j = 1, 2, . . . , nk . Finally, b is a vector of length
nk containing the covariances between the unconditional
random field values at the known points and the prediction
point, Zu (xη). It has components

bα = Cov
[
Zu (xη), Zu (xα)

]
(6.96)

for α = 1, 2, . . . , nk .
Since C is dependent on the covariances between the

known points, it only needs to be inverted once and can be
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used repeatedly in Eq. 6.94 to produce the vector of weights
β for each of the N − nk best linear unbiased estimates
(Eq. 6.93).

The conditional simulation of a random field proceeds in
the following steps:

1. Partition the field into the known (α) and unknown
(η) points.

2. Form the covariance matrix C between the known
points (Eq. 6.95) and invert it to determine C −1 (in
practice, this will more likely be an LU decomposi-
tion, rather than a full inversion),

3. Simulate the unconditional random field, Zu (x), at all
points in the field.

4. for each unknown point, η = 1, 2, . . . , N − nk :
(a) Form the vector b of covariances between the

target point, xη and each of the known points
(Eq. 6.96).

(b) Solve Eq. 6.94 for the weighting coefficients βα ,
α = 1, 2, . . . , nk .

(c) Compute the difference Zk (xη) − Zs (xη) by
Eq. 6.93.

(d) Form the conditioned random field by Eq. 6.89
at each xη.

6.6 MONTE CARLO SIMULATION

One of the primary goals of simulation is to estimate
means, variances, and probabilities associated with the
response of complex systems to random inputs. While it
is generally preferable to evaluate these response statistics
and/or probabilities analytically, where possible, we are
often interested in systems which defy analytical solutions.
For such systems, simulation techniques are ideal since they
are simple and lead to direct results. The main disadvantage
of simulation-derived moments or probabilities is that they
do not lead to an understanding of how the probabilities or
moments will change with changes in the system or input
parameters. If the system is changed, the simulation must
be repeated in order to determine the effect on response
statistics and probabilities.

Consider the problem of determining the probability of
failure of a system which has two random inputs, X1 and
X2. The response of the system to these inputs is some
function g(X1, X2) which is also random because the inputs
are random. For example, X1 could be live load acting on
a footing, X2 could be dead load, and g(X1, X2) would
be the amount that the footing settles under these loads
(in this example, we are assuming that the soil properties
are nonrandom, which is unlikely—more likely that g is a
function of a large number of random variables including
the soil).

Now assume that system failure will occur whenever
g(X1, X2) > gcrit. In the space of (X1, X2) values, there will
be some region in which g(X1, X2) > gcrit, as illustrated
in Figure 6.25, and the problem boils down to assessing
the probability that the particular (X1, X2) which actually
occurs will fall into the failure region. Mathematically, we
are trying to determine the probability pf , where

pf = P
[
g(X1, X2) > gcrit

]
(6.97)

Let us further suppose, for example, that X1 and X2 follow a
bivariate lognormal distribution (see Section 1.10.9.1) with
mean well within the safe region and correlation coefficient
between X1 and X2 of ρ = −0.6 (a negative correlation im-
plies that as X1 increases, X2 tends to decrease—this is just
an example). The distribution is illustrated in Figure 6.26.
In terms of this joint distribution, the probability of failure

g(X1,X2) > gcrit

Failure region

F

g(X1,X2) < gcrit

Safe region

X1

X
2

Figure 6.25 Failure and safe regions on the (X1, X2) plane.

X1

X
2

f(
X

1,
X

2)

Figure 6.26 Example bivariate probability density function of
X1 and X2.
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can be expressed in terms of the joint probability density
function, fX 1X 2 (x1, x2):

pf =
∫

x2∈F

∫

x1∈F
fX 1X 2 (x1, x2) dx1 dx2 (6.98)

in which F denotes the failure region. Unfortunately, the
lognormal distribution has no closed-form integral and so
Eq. 6.98 must be evaluated numerically. One approach is
to use some sort of numerical integration rule (such as
Gaussian quadrature, see Appendix B). For nonrectangular
failure regions, numerical integration algorithms may be
quite difficult to implement.

An alternative and quite simple approach to evaluating
Eq. 6.98 is to randomly simulate a sequence of realizations
of X1 and X2, evaluate g(X1, X2) for each, and check to
see if g(X1, X2) is greater than gcrit or not. This is called a
Monte Carlo simulation. In detail, if x1i and x2i are the i th
realizations of X1 and X2, respectively, for i = 1, 2, . . . , n ,
and we define

Ii =
{

1 if g(x1i , x2i ) > gcrit

0 otherwise
(6.99)

for each i , then our estimate of pf is simply

p̂f = 1

n

n∑

i=1

Ii (6.100)

Or, in other words, the estimated probability of failure is
equal to the number of realizations which failed divided by
the total number of realizations.

Figure 6.27 illustrates the Monte Carlo simulation con-
cept. Each circle represents a particular realization of
(X1, X2) simulated from its joint distribution (Figure 6.26).
Each plot shows 1000 realizations of (X1, X2). If a his-
togram of these realizations were to be constructed, one
would obtain an estimate of the joint pdf of (X1, X2) shown
in Figure 6.26. That is, Monte Carlo simulation allows the
entire pdf to be estimated, not just the mean, variance, and
exceedance probabilities.

Since none of the realizations in the left plot of
Figure 6.27 lead to g(x1, x2) > gcrit (i.e., fall in the fail-
ure region F ), our estimate of pf from this particular set of
1000 realizations is

p̂f = 0

1000
= 0

We know that this result cannot be correct since the lognor-
mal distribution is unbounded in the positive direction (i.e.,
there will always be some nonzero probability that X will
be greater than any number if X is lognormally distributed).
In other words, sooner or later one or more realizations of
(X1, X2) will appear in the failure region.

In the right plot of Figure 6.27, which is another 1000
realizations using a different starting seed, two of the
realizations do fall in the failure region. In this case

p̂f = 2

1000
= 0.002

Figure 6.27 illustrates a fundamental issue relating to the
accuracy of a probability estimate obtained from a Monte
Carlo simulation. From these two plots, the true probability
of failure could be anywhere between pf = 0 to somewhat
in excess of pf = 0.002. If the target probability of failure
is pf = 1/10,000 = 0.0001, then clearly 1000 realizations
are not sufficient to resolve this probability since one is
unlikely to see a single failure from among the 1000
realizations. The question is: How many realizations should
be performed in order to estimate pf to within some
acceptable accuracy? This question is reasonably easily
answered by recognizing that Ii is a Bernoulli random
variable so that we can make use of the statistical theory
presented in Chapter 1. The standard deviation of p̂f is,
approximately,

σp̂f 	
√

p̂f q̂f

n
(6.101)

where the estimate of pf is used (since pf is unknown) and
q̂f = 1 − p̂f . The two-sided (1 − α) confidence interval,

Failure Region
F

X1

X
2

Failure Region
F

X1

X
2

Figure 6.27 Two typical 1000-realization Monte Carlo simulations of (X1, X2). Points appearing
within the failure region correspond to system failure.
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[L, U ], on pf is

[L, U ]1−α = p̂f ± zα/2

√
p̂f q̂f

n
(6.102)

where zα/2 is the point on the standard normal distribution
satisfying P

[
Z > zα/2

] = α/2 (see the last line of Table
A.2) and L and U are the lower and upper bounds of the
confidence interval, respectively. This confidence interval
makes use of the normal approximation to the binomial and
is only valid if npf and nqf are large enough (see Section
1.10.8.2).

For example, if α = 0.05, and p̂f = 0.002, based on the
right plot of Figure 6.27 where n = 1000, then a 95% two-
sided confidence interval on the true pf is

[L, U ]0.95 = 0.002 ± z0.05

√
0.002(0.998)

1000
= 0.002 ± (1.960)(0.001413)

= [−0.00077, 0.0048]

This is a pretty wide confidence interval, which suggests
that 1000 realizations is insufficient to properly resolve
the true probability of failure in this case. Note also that
the confidence interval includes a negative lower bound,
which implies also that n is not large enough for this
confidence interval to be properly found using a normal
approximation to the binomial (the probability of failure
cannot be negative).

The confidence interval idea can be used to prescribe the
required number of realizations to attain a certain accuracy
at a certain confidence level. For example, suppose we wish
to estimate pf to within 0.0005 with confidence 90%. The
confidence interval [L, U ]1−α basically says that we are
(1 − α) confident that the true value of pf lies between L
and U . Since L and U are centered on p̂f , another way of
putting this is that we are (1 − α) confident that the true pf

is within zα/2σp̂f of p̂f , since zα/2σp̂f is half the confidence
interval width.

We can use this interpretation to solve for the required
value of n: Our desired maximum error on pf is 0.0005 at
confidence 90% (α = 0.10), so we solve

0.0005 = zα/2σp̂f = zα/2

√
p̂f q̂f

n

for n . This gives

n = p̂f q̂f

( zα/2

0.0005

)2 = 0.002(0.998)

(
1.645

0.0005

)2

= 21,604

which, as expected, is much larger than the 1000 realiza-
tions used in Figure 6.27.

In general, if the maximum error on pf is e at confidence
1 − α, then the required number of realizations is

n = p̂f q̂f

( zα/2

e

)2
(6.103)

Figure 6.28 illustrates 100,000 realizations of (X1, X2). We
now see that 49 of those realizations fell into the failure
region, so that our improved estimate of pf is

p̂f = 49

100,000
= 0.00049

which is quite different than suggested by the other attempts
in Figure 6.27. If we want to refine this estimate and
calculate it to within an error of 0.0001 (i.e., having a
confidence interval [0.00039, 0.00059]) at confidence level
90%, we will need

n = (0.00049)(0.99951)

(
1.645

0.0001

)2

= 132,530

In other words, the 100,000 realizations used in Figure 6.28
gives us slightly less than 0.0001 accuracy on pf with 90%
confidence.

We note that we are often interested in estimating
very small failure probabilities—most civil engineering
works have target failure probabilities between 1/1000 and
1/100,000. As we saw above, estimating failure proba-
bilities accurately in this range typically requires a very
large number of realizations. Since the system response
g(X1, X2, . . .) sometimes takes a long time to compute for
each combination of (X1, X2, . . .), for example, when g in-
volves a nonlinear finite-element analysis, large numbers of
realizations may not be practical.

Failure region
F

X1

X
2

X1

Figure 6.28 100,000 Monte Carlo simulations of (X1, X2). Points
appearing within the failure region correspond to system failure.
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There are at least three possible solutions when a large
number (e.g., hundreds of thousands or millions) of real-
izations are impractical:

1. Perform as many realizations as practical, form a his-
togram of the response, and fit a distribution to the
histogram. The fitted distribution is then used to pre-
dict failure probabilities. The assumption here is that
the distribution of the system response continues to be
modeled by the fitted distribution in the tails of the
distribution. This is often believed to be a reasonable
assumption. In order to produce a reasonably accurate
histogram, the number of realizations should still be
reasonably large (e.g., 500 or more).

2. Develop an analytical model for the probability
of failure by determining the distribution of g(X1,
X2, . . .); see Section 1.8. If the analytical model
involves approximations, as they often do, some sim-
ulations should be performed to validate the model.
The analytical model is then used to predict failure
probabilities.

3. Employ variance reduction techniques to reduce the
required number of realizations to achieve a desired
accuracy. In the context of random fields, these tech-
niques tend to be difficult to implement and will not
be pursued further in this book. The interested reader
is referred to Law and Kelton (2000) or Lewis and
Orav (1989).

Monte Carlo simulations can also be used to estimate the
moments of the response, g(X1, X2, . . .). If (X1i , X2i , . . .) is
the i th realization, then the mean of g is estimated from

µ̂g = 1

n

n∑

i=1

g(X1i , X2i , . . .) (6.104)

and the variance of g is estimated from

σ̂ 2
g = 1

n − 1

n∑

i=1

(
g(X1i , X2i , . . .) − µ̂g

)2
(6.105)

The error in the estimate of the mean, µ̂g , decreases as the
number of simulations n increases. The standard deviation
of the estimate of the mean, sometimes called the standard
error, is

σµ̂g = σg√
n

	 σ̂g√
n

(6.106)

and a 1 − α confidence interval on the true mean, µg , is
[assuming g(X1, X2, . . .) is at least approximately
normal]:

[L, U ]1−α = µ̂g ± tα/2,n−1
σ̂g√

n
(6.107)

where tα/2,n−1 is a percentile of the Student t-distribution;
see Appendix A.2 for t-values using ν = n − 1. If the
number of degrees of freedom, ν = n − 1, is large enough
(e.g., larger than 100), the t-value can be replaced by zα/2, in
which case the confidence interval can be used to determine
the required number of simulations to achieve a certain level
of accuracy on the mean estimate. For example, if we want
to estimate the mean to within an error of e with confidence
(1 − α) we solve

n 	
(

zα/2σ̂g

e

)2

(6.108)

The standard deviation (standard error) of the estimate of
the variance, σ̂ 2

g , is

σσ̂ 2
g

	 σ̂ 2
g

√
2

n − 1
(6.109)

which assumes that g(X1, X2, . . .) is at least approximately
normally distributed. Under the same assumption, the con-
fidence interval on σ 2

g is

[L, U ]1−α =
[

(n − 1)σ̂ 2
g

χ2
α/2,n−1

,
(n − 1)σ̂ 2

g

χ2
1−α/2,n−1

]
(6.110)

where χ2
α,ν are quantiles of the chi-square distribution. See

Appendix A.3 for values.



CHAPTER 7

Reliability-Based Design

7.1 ACCEPTABLE RISK

Before we talk about reliability-based design in geotechni-
cal engineering, it is worth investigating the levels of risk
that a reliability-based design is aiming to achieve. In many
areas of design, particularly in civil engineering, the design
is evaluated strictly in terms of the probability of failure,
rather than by assessing both the probability of failure and
the cost or consequences of failure. This is probably mostly
due to the fact that the value of human life is largely un-
defined and a subject of considerable political and social
controversy. For example, the failure of a bridge or struc-
ture may result in loss of life. How is this loss quantified? If
we are to define risk as the probability of failure times the
failure loss (as is commonly done), then we need a number
to represent failure loss. In that this is difficult to quantify,
many engineering designs proceed by considering only the
probability of failure directly. Consequences are considered
as an “add-on.” For example, the National Building Code
of Canada has an importance factor which can be set to 0.8
if the collapse of a structure is not likely to cause injury
or serious consequence (such as might be the case for an
unstaffed weather station located in the arctic)—in all other
cases, the importance factor is taken as 1.0.

We note that the differing definitions of risk as either

1. the probability of failure or
2. the product of the probability of failure and the cost

of failure

is a significant source of confusion and complicates the de-
termination of what is an acceptable risk. We will consider
“acceptable risk” here to mean “acceptable probability of

failure,” up to Section 7.6, but will bear in mind that this ac-
ceptable probability of failure will change with the severity
of the consequences.

Most civil engineering structures are currently designed
so that individual elements making up the structure have
a “nominal” probability of failure of about 1 in 1000, and
the same might be said about an individual geotechnical
element such as a footing or pile. More specifically, we
might say that for a random load L on an element with
random resistance R we design such that

P [L > R] � 1
1000

In fact, building codes are a bit vague on the issue of
acceptable risk, partly because of the difficulty in assessing
overall failure probabilities for systems as complex as entire
buildings. The above failure probability is based on the loss
of load-carrying capacity of a single building element, such
as a beam or pile, but the codes also ensure a much lower
probability of collapse by:

1. Ensuring that the system has many redundancies (if
one element fails, its load is picked up by other
elements)

2. Erring on the safe side in parameter estimates entering
the probability estimate

So, in general, the number of failures resulting in loss of
life is a good deal less than 1 in 1000 (perhaps ignoring
those failures caused by deliberate sabotage or acts of war,
which buildings are not generally designed against).

Another problem in determining acceptable risk lies in
defining precisely what is meant by “failure”? Is this un-
acceptable deformations, which are unsightly, or complete
destruction resulting in possible loss of life? Although the
target probability of failure of about 1/1000 per element
is deemed an acceptable risk, presumably this acceptable
risk should change with the severity of the consequences.
In other words, it is difficult to separate acceptable risk and
consequence, nor should we.

In order to decide if a design is adequate, some idea of
acceptable risk is necessary. Unfortunately, acceptable risk
is also related to perceived risk. Consider the following two
examples:

1. A staircase at an art gallery is suspended from two
25-mm cables, which are more than adequate to sup-
port the staircase. The staircase has a very small
probability of failure. However, patrons are unwill-
ing to use the staircase and so its utility is lost. Why?
The patrons view the cables as being unsubstantial.
Solution: Enclose the cables with fake pillars.

2. Safety standards for air travel are much higher than for
travel by car, so annual loss of life in car accidents far
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exceed that in airplane accidents. Why is there such
a difference in acceptable risk levels? Presumably
people are just more concerned about being suspended
several thousand meters in the air with no visible
means of support.

Acceptable risk has, at least, the following components:

1. Public Opinion: This is generally felt as public pres-
sure on politicians, who in turn influence regulatory
bodies, who in turn write the design codes.

2. Failure Probability versus Cost Trade-off: We ac-
cept higher risks in automobile travel partly because
the alternatives are enormously expensive (at this
time) and difficult to implement. Improved safety
features such as air bags, antilock brakes, and roll
bars are, however, an indication that our risk toler-
ance is decreasing. Unfortunately, cost is not always
easy to determine (e.g., what is the value of human
life?) so that this trade-off is sometimes somewhat
irrational.

3. Perceived Risk: Some things just look like a disas-
ter waiting to happen (as in our staircase example
above), and we become unwilling to risk them de-
spite their actual safety. The strict safety measures
imposed on the airline industry may have a lot to
do with our inherent fear of heights, as suggested
above.

As Whipple (1986, p. 30) notes:

Traditionally, acceptable risk has been judged in engineer-
ing by whether good engineering practice has been followed,
both in the application of appropriate design standards and
in the analysis that results in engineering decisions where no
standards apply precisely. Similarly, the courts rely on tradition-
based standards in tort law to define a risk maker’s responsi-
bility to avert risk and a risk bearer’s right to be free from
significant risk impositions. A substantially different perspec-
tive holds in welfare economics, where risk is viewed as a social
cost, and where acceptability depends to a significant degree
on the costs of avoiding risk. Behind these professional per-
spectives is an evolving public opinion about which risks are
too high and which are of little concern. One needs only note
the ongoing toughening of laws concerning drunk driving and
smoking in public places to see that the public definition of
acceptable risk is dynamic.

One way to determined whether a risk is acceptable or
not is to compare it to other common risks. For example,
“the risk is the same as that of having a car accident
while driving home today.” As Whipple (1986) notes, the
use of comparisons for judging the acceptability of risk
is controversial. One criticism concerns the comparison of

dissimilar risks, as Smith (1980 quoted by Whipple, 1986,
p. 33) states:

A risk assessment procedure must demonstrate the relevance
of the comparison. If tonsillectomies, for illustration, are less
dangerous per hour than open-heart operations, it doesn’t nec-
essarily mean that the latter are too risky and that hospitals
should be encouraged to remove more tonsils and to open fewer
hearts. Nor does it mean that a particular energy system is
acceptable merely because it is less dangerous than a tonsil-
lectomy. The social benefits of these activities are so different
that direct comparisons of their risks are nearly meaningless.

Nevertheless, comparisons are valuable, particularly if one
is concentrating only on the probability of failure, and
not on consequences and/or benefits. Some acceptable risk
levels as suggested by Whipple (1986) are as follows:

Short-term risks, for example, recreational activities,
< 10−6/h

Occupational risks, < 10−3/year, for example:
Logging, 1.4 × 10−3/year
Coal mining, 6.4 × 10−4/year
Heavy construction, 4.2 × 10−4/year
All occupations, 1.1 × 10−4/year
Safe occupations, 5 × 10−5/year

Public risks, for example, living below a dam and involun-
tary exposure, < 10−4/year

Risks are frequently ignored (and thus “accepted”) when
individual risks fall below 10−6–10−7 per year.

One needs to be careful comparing risks in the above list.
For example, some recreational activities which are quite
risky on an hourly basis (e.g., scuba diving or parachuting)
do not amount to a significant risk annually if few hours
are spent over the year pursuing these activities.

Some individual risks per year in the United States are
as follows (Whipple, 1986):

Accident death rate: 5 × 10−4/year
Motor vehicle death rate: 2 × 10−4/year
Fire and burns accident death rate: 4 × 10−5/year
Accidental deaths from electric current: 5 × 10−6/year
Accidental deaths from lightning, tornadoes, and hurri-

canes: 1 × 10−6/year

Whipple compares human-caused disasters and natural dis-
asters in Figures 7.1 and 7.2. Note that the occurrence
frequency falls off with the severity of the disaster, as they
should.
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Figure 7.1 Frequency of human-caused events resulting in
fatalities (Whipple, 1986).

7.2 ASSESSING RISK

Once an acceptable risk has been associated with a de-
sign, the next step is to assess the risk of failure. Many
alternative approaches exist, ranging from exact analyti-
cal formulations (see Chapter 1), to approximate analytical
methods (see FOSM in Section 1.8.4), to simulation meth-
ods. Chapter 6 was devoted to simulation methods. Here
we will briefly discuss two popular approaches to estimat-
ing the probability of failure of a design. The first is called
the Hasover–Lind first-order reliability method (FORM),
and the second is the point estimate method (PEM).

7.2.1 Hasofer–Lind First-Order Reliability Method

The major drawback to the FOSM method (Section 1.8.4)
when used to compute probabilities relating to failure, as
pointed out by Ditlevson (1973), is that it can give differ-
ent failure probabilities for the same problem when stated
in equivalent, but different, ways. See also Madsen et al.
(1986) and Baecher and Christian (2003) for detailed com-
parisons of the FOSM and FORM methods. A short dis-
cussion of the nonuniqueness of FOSM in the computation
of failure probability is worth giving here, since it is this
nonuniqueness that motivated Hasofer and Lind (1974) to
develop an improved approach.
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Figure 7.2 Frequency of natural disasters resulting in fatalities
(Whipple, 1986).

A key quantity of interest following an analysis using
FOSM or FORM is the determination of the reliability
index β for a given safety margin M . One classical civil
engineering safety margin is

M = R − L (7.1)

where R is the resistance and L is the load. Failure occurs
when R < L, or, equivalently, when M < 0. The reliability
index β, as defined by Cornell (1969), is

β = E [M ]√
Var [M ]

(7.2)

which measures how far the mean of the safety margin
M is from zero (assumed to be the failure point) in units
of number of standard deviations. Interest focuses on the
probability that failure, M < 0, occurs. Since owners and
politicians do not like to hear about probabilities of failure,
this probability is often codified using the rather more ob-
scure reliability index. There is, however, a unique relation-
ship between the reliability index (β) and the probability
of failure (pf ) given by

pf = 1 − �(β) (7.3)
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where � is the standard normal cumulative distribu-
tion function. Equation 7.3 assumes that M is normally
distributed.

The point, line, or surface in higher dimensions, defined
by M = 0, is generally called the failure surface. A similar
concept was discussed in Section 6.6 where the line sepa-
rating the “failure” and “safe” regions was used in a Monte
Carlo analysis.

Consider the safety margin, M = R − L. If R is inde-
pendent of L, then the FOSM method gives (see Eqs. 1.79
and 1.82)

E [M ] = E [R] − E [L] = µR − µL (7.4)

and

Var [M ] =
(

∂M

∂R

)2

Var [R] +
(

∂M

∂L

)2

Var [L]

= Var [R] + Var [L] = σ 2
R + σ 2

L (7.5)

(note that because the safety margin is linear in this case,
the first-order mean and variance of M are exact) so that

β = µR − µL√
σ 2

R + σ 2
L

(7.6)

For nonnegative resistance and loads, as is typically the case
in civil engineering, the safety margin could alternatively
be defined as

M = ln

(
R

L

)
= ln(R) − ln(L) (7.7)

so that failure occurs if M < 0, as before. In this case, to
first order,

E [M ] � ln(µR) − ln(µL)

which is clearly no longer the same as before, and

Var [M ] �
(

∂M

∂R

)2

Var [R] +
(

∂M

∂L

)2

Var [L]

= Var [R]

µ2
R

+ Var [L]

µ2
L

= v2
R + v2

L (7.8)

where the derivatives are evaluated at the means and where
vR and vL are the coefficients of variation of R and L,
respectively. This gives a different reliability index:

β = ln(µR) − ln(µL)√
v2

R + v2
L

(7.9)

The nonuniqueness of the FOSM method is due to the
fact that different functional representations may have dif-
ferent mean estimates and different first derivatives. What
the FOSM method is doing is computing the distance from
the mean point to the failure surface in the direction of the
gradient at the mean point. Hasofer and Lind (1974) solved
the nonuniqueness problem by looking for the overall

minimum distance between the mean point and the failure
surface, rather than looking just along the gradient direction.

In the general case, suppose that the safety margin M
is a function of a sequence of random variables XT =
{X1, X2, . . .}, that is,

M = f (X1, X2, . . .) (7.10)

and that the random variables X1, X2, . . . have covari-
ance matrix C. Then the Hasofer–Lind reliability index is
defined by

β = min
M = 0

√
(x − E [X])TC −1(x − E [X]) (7.11)

which is the minimum distance between the failure surface
(M = 0) and the mean point (E [X]) in units of number
of standard deviations—for example, if M = f (X ), then
Eq. 7.11 simplifies to β = minx (x − µX )/σX . Finding β

under this definition is iterative; choose a value of x0

which lies on the curve M = 0 and compute β0, choose
another point x1 on M = 0 and compute β1, and so on.
The Hasofer–Lind reliability index is the minimum of all
such possible values of βi .

In practice, there are a number of sophisticated opti-
mization algorithms, generally involving the gradient of
M , which find the point where the failure surface is per-
pendicular to the line to the origin. The distance between
these two points is β. Many spreadsheet programs now
include such algorithms, and the user need only specify
the minimization equation (see above) and the constraints
on the solution (i.e., that x is selected from the curve
M = 0 in this case). Unfortunately, nonlinear failure sur-
faces can sometimes have multiple local minima, with
respect to the mean point, which further complicates the
problem. In this case, techniques such as simulated anneal-
ing (see, e.g., Press et al, 1997) may be necessary, but
which still do not guarantee finding the global minimum.
Monte Carlo simulation is an alternative means of comput-
ing failure probabilities which is simple in concept, which
is not limited to first order, and which can be extended eas-
ily to very difficult failure problems with only a penalty
in computing time to achieve a high level of accuracy
(see Section 6.6).

7.2.2 Point Estimate Method

The PEM is a simple, approximate way of determining the
first three moments (the mean µ, variance σ 2, and skewness
ν) of a variable that depends on one or more random input
variables. Like FOSM (see Section 1.8.4) and FORM (see
previous section), PEM does not require knowledge of the
particular form of the probability density function of the
input, nor does it typically explicitly account for spatial
correlation.
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The PEM is essentially a weighted average method
reminiscent of numerical integration formulas involving
“sampling points” and “weighting parameters.” The PEM
reviewed here will be the two point estimate method devel-
oped by Rosenblueth (1975, 1981) and also described by
Harr (1987).

The PEM seeks to replace a continuous probability den-
sity function with a discrete function having the same first
three central moments.

Steps for Implementing PEM

1. Determine the relationship between the dependent
variable, W , and random input variables, X , Y , . . . ,

W = f (X , Y , . . .) (7.12)

2. Compute the locations of the two sampling points for
each input variable. For a single random variable X
with skewness νX the sampling points are given by

ξX+ = 1
2νX +

√
1 + ( 1

2νX

)2
(7.13)

and

ξX− = ξX+ − νX (7.14)

where ξX+ and ξX− are standard deviation units giving
the locations of the sampling points to the right
and left of the mean, respectively. Figure 7.3 shows
these sampling points located at µX + ξX+σX and
µX − ξX−σX . If the function depends on n variables,
there will be 2n sampling points corresponding to
all combinations of the two sampling points for each
variable. Figure 7.4 shows the locations of sampling
points for a distribution of two random variables X

XmX

mX − xX−
sX mX + xX+

sX

PX−

PX+

f X
(X

)

Figure 7.3 New PEM distribution.

and Y . Since n = 2, there are four sampling points
given by

(µX + ξX+σX , µY + ξY +σY )

(µX + ξX+σX , µY − ξY −σY )

(µX − ξX−σX , µY + ξY +σY )

(µX − ξX−σX , µY − ξY −σY )

If skewness is ignored or assumed to equal zero, from
Eqs. 7.13 and 7.14,

ξX+ = ξX− = ξY + = ξY − = 1 (7.15)

Each random variable then has point locations that are
plus and minus one standard deviation from the mean.

3. Determine the weights Pi to give each of the 2n

point estimates. Just as a probability density function
encloses an “area” of unity, so the probability weights
must also sum to unity. The weights can also take
into account correlation between two or more random
variables. For a single random variable X , the weights
are given by PX+ = ξX−

ξX+ + ξX−
(7.16a)

PX− = 1 − PX+ (7.16b)

For n random variables with no skewness, Christian
and Baecher (1999) have presented a general expres-
sion for finding the weights, which takes into account
the correlation coefficient ρij between the ith and jth
variables as follows:

Ps1 s2,..., sn = 1

2n


1 +

n−1∑
i=1

n∑
j=i+1

si sj ρij


 (7.17)

where ρij is the correlation coefficient between Xi

and Xj and where si = +1 for points greater than the
mean, and si = −1 for points smaller than the mean.
The subscripts of the weight P indicate the location
of the point that is being weighted. For example,
for a point evaluated at (x1, y1) = (µX + σX , µY − σY ),
s1 = +1 and s2 = −1 resulting in a negative product
with a weight denoted by P+−. For multiple random
variables where skewness cannot be disregarded, the
computation of weights is significantly more compli-
cated. Rosenblueth (1981) presents the weights for the
case of n = 2 to be the following:

Ps1s2 =PXs1 PY s2

+ s1s2

[ ρX Y√(
1 + (νX /2)3) (1 + (νY /2)3)

]

(7.18)
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Figure 7.4 Point estimates for two random variables.

The notation is the same as for the previous equation
with PXsi and PYsj being the weights for variables X
and Y , respectively (see Eqs. 7.16). Here, νX is the
skewness coefficient of X and νY is the skewness
coefficient of Y . For a lognormal distribution, the
skewness coefficient ν can be calculated from the
coefficient of variation v as follows (e.g., Benjamin
and Cornell 1970):

ν = 3 ∗ v + v3 (7.19)

4. Determine the value of the dependent variable at each
point. Let these values be denoted by WX (+ or −),
Y(+ or −),..., depending upon the point at which W
is being evaluated. For n random input variables, W
is evaluated at 2n points.

5. In general, the PEM enables us to estimate the ex-
pected values of the first three moments of the depen-
dent variable using the following summations. Here,
the Pi and Wi are the weight and the value of the
dependent variable associated with some point loca-
tion i where i ranges from 1 to 2n . Pi is some Psi , sj

calculated in step 3 and Wi is the Wsi , sj value of the
dependent variable evaluated at the specified location
from step 4 above.

First moment:

µW = E [W ] �
2n∑

i=1

Pi Wi (7.20)

Second moment:

σ 2
W = E

[
(W − µW )2] �

2n∑
i=1

Pi (Wi − µW )2

=
2n∑

i=1

Pi W
2
i − µ2

W (7.21)

Third moment:

νW = E
[
(W − µW )3

]
σ 3

W

� 1

σ 3
W

2n∑
i=1

Pi (Wi − µW )3

= 1

σ 3
W

2n∑
i=1

Pi W
3

i − 3µW Pi W
2
i + 2µ3

W (7.22)

Example 7.1 Unconfined Triaxial Compression of a
c′, φ′ Soil (n = 2) The unconfined (σ ′

3 = 0) compres-
sive strength of a drained c′, φ′ soil is given from the
Mohr–Coulomb equation as

qu = 2c′ tan(45 + 1
2φ′) (7.23)

Considering the classical Coulomb shear strength law:

τf = σ ′ tan φ′ + c′ (7.24)

it is more fundamental to deal with tan φ′ (rather than φ′)
as the random variable. Thus, Eq. 7.23 can be rearranged as

qu = 2c′[tan φ′ + (1 + tan2 φ′)1/2] (7.25)
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Assuming, µc′ = 100 kPa, µtan φ′ = tan 30◦ = 0.577, and
vc′ = vtan φ′ = 0.5, find the mean, variance, and skewness
coefficient of qu .

Following the steps discussed above for implementing
PEM:

1. The function to be evaluated is Eq. 7.25.
2. It is assumed that the random shear strength variables

c′ and tan φ′ are uncorrelated and lognormally dis-
tributed. Thus, from Eqs. 7.13 and 7.14,

ξc′+ = ξtan φ′+ = 2.10, ξc′− = ξtan φ′− = 0.48

3. The weights are determined for the four sampl-
ing points from Eq. 7.18 using Eqs. 7.16 as follows:

Pc′+ = Ptan φ′+ = 0.185, Pc′− = Ptan φ′− = 0.815

Therefore, from Eq. 7.18 with ρij = 0, the sampling
point weights are

P++ = 0.034

P+− = P−+ = 0.151

P– = 0.665

4. The dependent variable qu is evaluated at each
of the points. Table 7.1 summarizes the values of
the weights, the sampling points, and qu for this
case:

5. The first three moments of qu can now be evaluated
from Eqs. 7.20, 7.21, and 7.22 as follows:

µqu = 0.034(1121.0) + 0.151(628.5) + 0.151(416.6)

+ 0.665(233.5)

= 350.9 kPa

σ 2
qu

= 0.034(1121.0 − µqu )2 + 0.151(628.5 − µqu )2

+ 0.151(416.6 − µqu )2 + 0.665(233.5 − µqu )2

= 41657.0 kPa2

Table 7.1 Weights, Sampling Points, and qu Values
for PEM

c’ qu±±
P±± (kPa) tan φ′ (kPa)

0.034 205.0 1.184 1121.0
0.151 205.0 0.440 628.5
0.151 76.2 1.184 416.6
0.665 76.2 0.440 233.5

Table 7.2 Statistics of qu Predicted Using PEM

σqu µqu

vc′, tan φ′ νqu (kPa) (kPa) vqu

0.1 0.351 38.8 346.6 0.11
0.3 1.115 118.5 348.2 0.34
0.5 2.092 204.1 350.9 0.58
0.7 3.530 298.8 353.6 0.85
0.9 5.868 405.0 355.5 1.14

νqu = 1

σ 3
qu

[
0.034(1121.0 − µqu )3

+ 0.151(628.5 − µqu )3 + 0.151(416.6 − µqu )3

+ 0.665(233.5 − µqu )3)
]

= 2.092

Rosenblueth (1981) notes that for the multiple random
variable case, skewness can only be reliably calculated if
the variables are independent.

A summary of results for different coefficients of varia-
tion of c′ and tan φ′, vc′ , tan φ′ , is presented in Table 7.2. For
this example problem, FOSM and PEM give essentially the
same results.

7.3 BACKGROUND TO DESIGN
METHODOLOGIES

For over 100 years, working stress design (WSD), also re-
ferred to as allowable stress design (ASD), has been the
traditional basis for geotechnical design relating to settle-
ments or failure conditions. Essentially, WSD ensures that
the characteristic load acting on a foundation or structure
does not exceed some allowable limit. Characteristic values
of either loads or soil properties are also commonly referred
to as nominal, working, or design values. We will stick to
the word characteristic to avoid confusion.

In WSD, the allowable limit is often based on a simple
elastic analysis. Uncertainty in loads, soil strength, con-
struction quality, and model accuracy is taken into account
through a nominal factor of safety Fs , defined as the ratio
of the characteristic resistance to the characteristic load:

Fs = characteristic resistance

characteristic load
= R̂

L̂
= R̂∑n

i=1 L̂i
(7.26)

In general, the characteristic resistance R̂ is computed by
geotechnical formulas using conservative estimates of the
soil properties while the characteristic load L̂ is the sum
of conservative unfactored estimates of characteristic load
actions, L̂i , acting on the system (see Section 7.4.2 for
further definitions of both terms). The load L̂ is sometimes
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Figure 7.5 Load and resistance distributions.

taken as an upper percentile (i.e., a load only exceeded by
a certain small percentage of loads in any one year), as
illustrated in Figure 7.5, while R̂ is sometimes taken as a
cautious estimate of the mean resistance.

A geotechnical design proceeds by solving Eq. 7.26 for
the characteristic resistance, leading to the following design
requirement:

R̂ = Fs

∑
i

L̂i (7.27)

where L̂i is the i th characteristic load effect. For example,
L̂1 might be the characteristic dead load, L̂2 might be
the characteristic live load, L̂3 might be the characteristic
earthquake load, and so on. Although Eq. 7.26 is the
formal definition of Fs , Fs is typically selected using
engineering judgment and experience and then used in
Eq. 7.27 to determine the required characteristic resistance
(e.g., footing dimension).

There are a number of well-known problems with the
WSD approach:

1. All uncertainty is lumped into the single factor of
safety Fs .

2. The choice of Fs , although guided to some extent by
geotechnical handbooks and codes, is left largely up
to the engineer doing the design. Since engineering
judgment is an essential component of design (see,
e.g., Vick, 2002), the freedom to make this judgment
is quite appropriate. However, just stating that the
factor of safety should lie between 2 and 3 does not
provide any guidance available from current research
into the effects of spatial variability and level of site
understanding on the probability of failure. The state
of current knowledge should be available to designers.

3. The classic argument made against the use of a
single factor of safety is that two soils with the
same characteristic strength and characteristic load
will have the same Fs value regardless of the actual
variabilities in load and strength. This is true when
the characteristic values are equal to the means, that
is, when the factor of safety is defined in terms of the
means, for example,

Fs = mean resistance

mean load
(7.28)

as it commonly is. The mean Fs was illustrated in
Figure 7.5. Figure 7.6 shows how different geotech-
nical systems, having the same mean factor of safety,
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same mean factor of safety and yet vastly different probabilities
of failure, P [L > R].
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can have vastly different probabilities of failure. In
other words, the mean factor of safety does not ade-
quately reflect the actual design safety.

When the factor of safety is defined in terms of character-
istic values, as is suggested in Eq. 7.26, and the characteris-
tic values are taken as percentiles of the load and resistance
distributions (e.g., Lc is that load exceeded only 2% of the
time, R̂ is that resistance exceeded 90% of the time), then
changes in the variability of the load and resistance will
result in a change in the factor of safety. However, in prac-
tice the use of clearly defined percentiles for characteristic
values has rarely been done historically. This is to a great
extent due to the fact that the distribution of the geotech-
nical “resistance” is different at every site and is rarely
known. Usually, only enough samples to estimate the mean
resistance are taken, and so the characteristic resistance is
generally taken to be a “cautious estimate of the mean”
[this is currently just one of the definitions of a character-
istic value given by Eurocode 7: Geotechnical Design (EN
1997–1, 2003), Clause 2.4.3(6)]. In turn, this means that the
mean factor of safety (perhaps using a cautious estimate of
the mean in practice) has been traditionally used, despite
the deficiencies illustrated in Figure 7.6.

It should also be noted that the evolution from WSD
to more advanced reliability-based design methodologies is
entirely natural. For at least the first half of the 20th century
little was understood about geotechnical loads and resis-
tances beyond their most important characteristics—their
means. So it was appropriate to define a design code largely
in terms of means and some single global factor of safety.
In more recent years, as our understanding of the load and
resistance distributions improve, it makes sense to turn our
attention to somewhat more sophisticated design method-
ologies which incorporate these distributions.

The working stress approach to geotechnical design has
nevertheless been quite successful and has led to many
years of empirical experience. The primary impetus to
moving away from WSD toward reliability-based design
is to allow a better feel for the actual reliability of a system
and to harmonize with structural codes which have been
reliability based for some time now.

Most current reliability-based design codes start with an
approach called limit states design. The “limit states” are
those conditions in which the system ceases to fulfill the
function for which it was designed. Those states concern-
ing safety are called ultimate limit states, which include
exceeding the load-carrying capacity (e.g., bearing fail-
ure), overturning, sliding, and loss of stability. Those states
which restrict the intended use of the system are called
serviceability limit states, which include deflection, perma-
nent deformation, and cracking.

In 1943, Terzaghi’s classic book Theoretical Soil Me-
chanics divided geotechnical design into two problems:
stability, which is an ultimate limit state, and elasticity,
which is a serviceability limit state. As a result, geotechnical
engineers have led the civil engineering profession in limit
states design. The basic idea is that any geotechnical system
must satisfy at least two design criteria—the system must
be designed against serviceability failure (e.g., excessive
settlement) as well as against ultimate failure (e.g., bearing
capacity failure).

At the ultimate limit state, the factor of safety assumes
a slightly different definition:

Fs = ultimate resistance

characteristic load
(7.29)

However, the ultimate resistance has traditionally been
found using conservative or cautious estimates of the mean
soil properties so that Eq. 7.29 is still essentially a mean
factor of safety.

Typical factors of safety for ultimate limit states are
shown in Table 7.3. Notice that failures that involve
weakest-link mechanisms, where the failure follows the
weakest path through the soil (e.g., bearing capacity, which
is a shearing-type failure of foundations, and piping) have
the highest factors of safety. Failures that involve average
soil properties (e.g., earthworks, retaining walls, deep foun-
dations, and uplift) have lower factors of safety due to the
reduction in variance that averaging results in.

In the late 1940s and early 1950s, several researchers
(Taylor, 1948; Freudenthal, 1956; Hansen, 1953, 1956) be-
gan suggesting that the single factor of safety Fs be replaced
by a set of partial safety factors acting on individual compo-
nents of resistance and load. The basic idea was to attempt
to account for the different degrees of uncertainty that exist
for various load types and material properties (as we be-
gan to understand them). In principle, this allows for better
quantification of the various sources of uncertainty in a de-
sign. The partial safety factors are selected so as to achieve
a target reliability of the constructed system. That is, the
safety factors for the components of load and resistance are

Table 7.3 Typical Factors of Safety in Geotechnical
Design

Failure Type Item Factor of Safety

Shearing Earthworks 1.3–1.5
Retaining walls 1.5–2.0

Foundations 2.0–3.0
Seepage Uplift, heave 1.5–2.0

Gradient, piping 3.0–5.0
Ultimate pile Load tests 1.5–2.0

loads Dynamic formula 3.0

Source: Terzaghi and Peck (1967).
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selected by considering the distributions of the load and
resistance components in such a way that the probability of
system failure becomes acceptably small. This basic ideol-
ogy led to the load and resistance factor design approach
currently popular in most civil engineering codes, discussed
in more detail in the next section.

7.4 LOAD AND RESISTANCE FACTOR DESIGN

Once the limit states have been defined for a particular
problem, the next step is to develop design relationships for
each of the limit states. The selected relationships should
yield a constructed system having a target reliability or,
conversely, an acceptably low probability of failure. A
methodology which at least approximately accomplishes
this goal and which has gained acceptance among the
engineering community is the load and resistance factor
design (LRFD) approach. In its simplest form, the load and
resistance factor design for any limit state can be expressed
as follows: Design the system such that its characteristic
resistance R̂ satisfies the following inequality:

φg R̂ ≥ γ L̂ (7.30)

where φg is a resistance factor acting on the (geotechnical)
characteristic resistance R̂ and γ is a load factor acting on
the characteristic load L̂. Typically, the resistance factor φg

is less than 1.0—it acts to reduce the characteristic resis-
tance to a less likely factored resistance, having a suitably
small probability of occurrence. Since, due to uncertainty,
this smaller resistance may nevertheless occur in some
small fraction of all similar design situations, it is the resis-
tance assumed to exist in the design process. Similarly, the
load factor γ is typically greater than 1.0 (unless the load
acts in favor of the resistance). It increases the characteris-
tic load to a factored load, which may occur in some (very)
small fraction of similar design situations. It is this higher,
albeit unlikely, load which must be designed against.

A somewhat more general form for the LRFD relation-
ship appears as follows:

φg R̂ ≥ η

m∑
i=1

γi L̂i (7.31)

where we apply separate load factors, γi , to each of m
types of characteristic loads L̂i . For example, L̂1 might
be the sustained or dead load, L̂2 might be the maximum
lifetime dynamic or live load, L̂3 might be a load due to
thermal expansion, and so on. Each of these load types
will have their own distribution, and so their corresponding
load factors can be adjusted to match their variability. The
parameter η is an importance factor which is increased for
important structures (e.g., structures which provide essential
services after a disaster, such as hospitals). Some building
codes, such as the National Building Code of Canada

(National Research Council, 2005) adjust the load factors
individually to reflect building importance, rather than use
a single global importance factor.

The load, resistance, and importance factors are derived
and adjusted to account for:

• Variability in load and material properties
• Variability in construction
• Model error (e.g., approximations in design relation-

ships, failure to consider three dimensions and spatial
variability, etc.)

• Failure consequences (e.g., the failure of a dam up-
stream of a community has much higher failure con-
sequences than does a backyard retaining wall)

In geotechnical engineering, there are two common resis-
tance factor implementations:

1. Total Resistance Factor: A single resistance factor
is applied to the final computed soil resistance. This
is the form that Eqs. 7.30 and 7.31 take.

2. Partial Resistance Factors: Multiple resistance fac-
tors are applied to the components of soil strength
(e.g. tan φ′ and c′) separately. This is also known as
factored strength and multiple resistance factor design
(MRFD).

There are advantages and disadvantages to both approaches
and design codes are about equally divided on the choice
of approach (some codes, such as the Eurocode 7, allow
both approaches). The following comments can be made
regarding the use of partial resistance factors:

1. Since the different components of soil strength will
likely have different distributions, the individual resis-
tance factors can be tailored to reflect the uncertainty
in each strength component. For example, friction
angle is generally determined more accurately than
cohesion, and this can be reflected by using different
resistance factors.

2. The partial factors only explicitly consider uncertain-
ties due to material strength parameters—they do not
include construction uncertainties, model error, and
failure consequences. Additional factors would be re-
quired to consider these other sources of uncertainty.

3. When the failure mechanism is sensitive to changes
in material strengths, then adjusting the material prop-
erties may lead to a different failure mechanism than
expected.

4. The use of myriad partial factors in order to account
separately for all sources of uncertainty can lead to
confusion and loss of the understanding of the real soil
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behavior. In addition, the estimation and calibration
of multiple resistance factors is difficult and prone to
significant statistical error. We may not be currently
at a sufficient level of understanding of geotechnical
variability to properly implement the partial resistance
factor approach.

The following comments can be made on the use of a
total resistance factor:

1. The geotechnical resistance is computed as in the
WSD approach. Not only does this lead to a better
representation of the actual failure mechanism, it also
involves no fundamental change in how the practicing
geotechnical engineer understands and computes the
soil resistance. The engineer works with “real” num-
bers until the last step where the result is factored
and the last factoring step is very similar to applying
a factor of safety, except that the factor is specifi-
cally applied to the resistance. The total resistance
factor approach allows for a smoother transition from
WSD to LRFD. The only change is that loads are now
separately factored.

2. The single soil resistance factor is consistent with
structural codes, where each material has its own
single resistance factor and soil is viewed as an engi-
neering material. For example, concrete has a single
resistance factor (φc), as does steel (φs ). In this ap-
proach, soil will have a single “geotechnical” resis-
tance factor (φg ). Unlike concrete and steel, however,
the variability (and understanding) of soil can be quite
different at different sites, so the value of φg should
depend on how well the site is understood.

3. The single resistance factor is used to account for
all sources of uncertainty in the resistance. These
include uncertainties in material properties (natural
ground variability), site investigation, model errors
(e.g., method of analysis and design), and construction
errors.

4. A single resistance factor is much simpler to estimate
from real data, from simulations, or to calibrate from
existing design approaches (e.g., WSD).

Since there are little data on the true distributions of
the individual components of geotechnical resistance, it
makes sense at this time to keep the approach as simple
as possible, while still harmonizing with the structural
codes. At the moment, the simplest and easiest approach to
implement is the total resistance factor. As more experience
is gained with geotechnical uncertainties in the years to
come, the multiple resistance factor approach may become
more accurate.

7.4.1 Calibration of Load and Resistance Factors

All early attempts at producing geotechnical LRFD codes
do so by calibration with WSD codes. This is perfectly
reasonable since WSD codes capture over 100 years of ex-
perience and represent the current status of what society
sees as acceptable risk. If the total resistance factor ap-
proach is used, then one factor of safety, Fs , becomes a set
of load factors and a single resistance factor. Since the load
factors are typically dictated by structural codes, the factor
of safety can be simply translated into a single resistance
factor to at least assure that the WSD level of safety is
translated into the LRFD implementation. It is to be noted,
however, that calibration of LRFD from WSD in this way
leads to a code whose only advantage over WSD is that
it is now consistent with structural LRFD codes. In order
to achieve some of the other benefits of a reliability-based
design, the resistance factor(s) must be based on more ad-
vanced statistical and probabilistic analyses.

The calibration of a single resistance factor from WSD
is straightforward if the load factors are known a priori,
for example, as given by associated structural codes or by
statistical analysis of loads. Consider the WSD and LRFD
design criteria:

R̂ ≥ Fs

m∑
i=1

L̂i (WSD) (7.32a)

φg R̂ ≥
m∑

i=1

γi L̂i (LRFD) (7.32b)

Solving Eq. 7.32b using the equality and substituting in
Eq. 7.32a, also at the equality, gives the calibrated geotech-
nical resistance factor:

φg =
∑m

i=1 γi L̂i

Fs
∑m

i=1 L̂i
(7.33)

Notice that the resistance factor is dependent on the choice
of load factors—one must ensure in any design that com-
patible factors are used. Clearly, if any of the factors are
arbitrarily changed, then the resulting design will not have
the same safety as under WSD.

Once the resistance factor has been obtained by calibra-
tion from WSD, it can then be used in Eq. 7.32b to produce
the design. However, both Eqs. 7.32 are defined in terms
of characteristic (nominal) loads (L̂i ) and resistance (R̂).
As we shall see later, when we study the resistance factor
from a more theoretical viewpoint, the precise definition of
the characteristic values also affects the values of the load
and resistance factors. This dependence can also be seen in
Eqs. 7.32. For example, a designer is likely to choose a
larger factor of safety, Fs , if the characteristic resistance is
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selected at the mean than if it is selected at the 5th per-
centile. A larger Fs value corresponds to a lower resistance
factor, φg , so when the characteristic resistance is evaluated
at the mean, we would expect the resistance factor to be
lower.

Table 7.4 lists the load and resistance factors used in
a variety of geotechnical design codes from around the
world. The table is by no means complete—it is merely
an attempt to show the differences between the codes for
some common cases. Where the code suggests several
different or a range of factors, only the range is presented
(this would occur, e.g., when the factor used depends on
the degree of uncertainty)—the actual load and resistance
factors tend to be more intricately specified than suggested
by the table. The table simply presents a range when
several values are given by the code but does not attempt
to explain the circumstances leading to the range. For
this level of detail, the reader will have to consult the
original code. This table is to be used mainly to get a
general idea of where the various codes stand relative
to one another and to see how the LRFD provisions are
implemented (e.g., total resistance factor versus partial
resistance factors).

To assess the relative conservatism of the various codes,
the required area of a spread footing designed against
bearing failure (ultimate limit state) using a dead load of
3700 kN, a live load of 1000 kN, c′ = 100 kN/m2, and
φ′ = 30◦ is computed using each code and shown in the
rightmost column. The codes are ranked from the most
conservative (requiring the largest area) at the top to the

least conservative (smallest area) at the bottom. The load
and resistance factors specified by the code were used in the
computation of the required footing area. In cases where a
range in load or resistance factors is given by the code, the
midpoint of the range was used in the design computations.
Again, it needs to be pointed out that this assignment of
conservatism will not apply to all aspects of the codes—this
is just a rough comparison.

Note that the codes either specify the partial factors act-
ing separately on tan φ′ and c′ or they specify the total
resistance factor acting on the ultimate bearing (or slid-
ing) capacity in Table 7.4. The codes are about equally
split on how to implement the resistance factors. For
example, the two Canadian codes listed—Canadian Foun-
dation Engineering Manual [CFEM; Canadian Geotechni-
cal Society (CGS), 1992] and Canadian Highway Bridge
Design Code [CHBDC; Canadian Standards Association
(CSA), 2000a]—implement the resistance factors in dif-
ferent ways (the 2006 CFEM is now in agreement with
CHBDC). The same is true of the two Australian stan-
dards listed, AS 5100 and AS 4678. The Eurocode 7
actually has three models, but only two different mod-
els for the cases considered in Table 7.4 and these two
cases correspond to the partial factor and total factor ap-
proaches.

7.4.2 Characteristic Values

Becker (1996a) notes that while there has been consider-
able attention paid in the literature to determining appro-
priate load and resistance factors, little has been paid to

Table 7.4 Comparative Values of Load and Resistance Factors

Code Dead Load Live Load tan φ′ c′ Bearing Sliding Area

CFEM 1992 1.25 1.5 0.8 0.5–0.65 — — 5.217
NCHRP 343 1991 1.3 2.17 — — 0.35–0.6 0.8–0.9 4.876
NCHRP12–55 2004 1.25 1.75 — — 0.45 0.8 4.700
Denmark 1965 1.0 1.5 0.8 0.57 — — 4.468
B. Hansen 1956 1.0 1.5 0.83 0.59 — — 4.145
CHBDC 2000 1.25 1.5 — — 0.5 0.8 4.064
AS 5100 2004 1.2 1.5 — — 0.35–0.65 0.35–0.65 3.942
AS 4678 2002 1.25 1.5 0.75–0.95 0.5–0.9 — — 3.892
Eurocode 7 Model 1 1.0 1.3 0.8 0.8 — — 3.061
Eurocode 7 Model 2 1.35 1.5 — — 0.71 0.91 3.035
ANSI A58 1980 1.2–1.4 1.6 — — 0.67–0.83 — 2.836

Notes:
CFEM = Canadian Foundation Engineering Manual
NCHRP = National Cooperative Highway Research Program
CHBDC = Canadian Highway Bridge Design Code
AS = Australian Standard
ANSI = American National Standards Institute
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defining the characteristic loads and resistances used in the
design, despite the fact that how the characteristic values
are defined is of critical importance to the overall relia-
bility. For example, using the same load and resistance
factors with characteristic values defined at the 5th per-
centile or with characteristic values defined at the mean
will yield designs with drastically differing failure proba-
bilities.

In any reliability-based design, uncertain quantities such
as load and resistance are represented by random variables
having some distribution. Distributions are usually charac-
terized by their mean, standard deviation, and some shape
(e.g., normal or lognormal). In some cases, the characteris-
tic values used in design are defined to be the means, but
they can be more generally defined in terms of the means
as (see Figure 7.5)

L̂ = kLµL (7.34a)

R̂ = kRµR (7.34b)

where kL is the ratio of the characteristic to the mean load,
L̂/µL, and kR is the ratio of the characteristic to the mean
resistance, R̂/µR . Normally, kL is selected to be greater than
or equal to 1.0, while kR is selected to be less than or equal
to 1.0.

The load acting on a foundation is typically composed
of dead loads, which are largely static, and live loads,
which are largely dynamic. Dead loads are relatively well
defined and can be computed by multiplying volumes
by characteristic unit weights. The mean and variance of
dead loads are reasonably well known. Dynamic, or live,
loads, on the other hand are more difficult to characterize
probabilistically. A typical definition of a live load is
the extreme dynamic load (e.g., bookshelves, wind loads,
vehicle loads, etc.) that a structure will experience during its
design life. We will denote this load as LLe , the subscript
e implying an extreme (maximum) load over some time
span. This definition implies that the live load distribution
will change with the target design life so that both µLe and
its corresponding kLe become dependent on the design life.

Most geotechnical design codes recommend that the
characteristic resistance be based on “a cautious estimate
of the mean soil properties.” In geotechnical practice, the
choice of a characteristic value depends very much on the
experience and risk tolerance of the engineer performing
the design. An experienced engineer may pick a value based
on the mean. Engineers more willing to take risks may use a
value larger than the mean, trusting in the resistance factor
to “make up the difference,” while a risk-averse engineer
may choose a resistance based on the minimum suggested
by soil samples. Obviously, the resulting designs will have
highly different reliabilities and costs.

Eurocode 7 has the following definitions for the charac-
teristic value:

Clause 2.4.3(5): The characteristic value of a soil or rock
parameter shall be selected as a cautious estimate of the
value affecting the occurrence of the limit state.

Clause 2.4.3(6): The governing parameter is often a mean
value over a certain surface or volume of the ground. The
characteristic value is a cautious estimate of this mean
value.

Clause 2.4.3(7): Characteristic values may be lower values,
which are less than the most probable values, or upper
values, which are greater. For each calculation, the most
unfavorable combination of lower and upper values for
independent parameters shall be used.

Lower values are typically used for the resistance (e.g.,
for cohesion) while upper values are typically used for load
effects (e.g., live load). Unfortunately, the word cautious
can mean quite different things to different engineers. For
example, suppose that the true mean friction angle of a
soil is 30◦, and that a series of 10 soil samples result in
estimated friction angles of (in descending order) 46◦, 40◦,
35◦, 33◦, 30◦, 28◦, 26◦, 22o, 20◦, and 18◦. An estimate of
the characteristic friction angle might be the actual average
of these observations, 29.8◦, perhaps rounded to 30◦. A
“cautious” estimate of the characteristic friction angle might
be the median, which is (30 + 28)/2 = 29◦. However, there
are obviously some low strength regions in this soil, and a
more cautious engineer might choose a characteristic value
of 20◦ or 18◦. The codes give very little guidance on this
choice, even though the choice makes a large difference to
the reliability of the final design.

The interpretations of “lower” and “upper” in clause
2.4.3(7) are not defined. To add to the confusion, Eurocode
1 (Basis of Design and Actions on Structures) has the
following definition under clause 5 (Material Properties):

Unless otherwise stated in ENVs 1992 to 1999, the char-
acteristic values should be defined as the 5% fractile for
strength parameters and as the mean value for stiffness
parameters.

For strength parameters (e.g., c and φ) a 5th percentile
is very cautious. In the above example, the empirical 5th
percentile would lie between 18◦ and 20◦. A design based
on this percentile could be considerably more conservative
than a design based on, say, the median (29◦), especially if
the same resistance factors were used. The User’s Guide to
the National Building Code of Canada [National Research
Council (NRC), 2006] states that characteristic geotechni-
cal design values shall be based on the results of field and
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laboratory tests and take into account factors such as ge-
ological information, inherent variabilities, extent of zone
of influence, quality of workmanship, construction effects,
presence of fissures, time effects, and degree of ductil-
ity. Commentary K, Clause 12, states: “In essence, the
characteristic value corresponds to the geotechnical engi-
neer’s best estimate of the most appropriate likely value
for geotechnical properties relevant for the limit states in-
vestigated. A cautious estimate of the mean value for the
affected ground (zone of influence) is generally considered
as a logical value to use as the characteristic value.”

A clearly defined characteristic value is a critical com-
ponent to a successful load and resistance factor design.
Without knowing where the characteristic value is in the
resistance distribution, one cannot assess the reliability of a
design, and so one cannot develop resistance factors based
on a target system reliability. In other words, if a reliability-
based geotechnical design code is to be developed, a clear
definition of characteristic values is essential. As Becker
(1996a) comments, it is not logical to apply resistance fac-
tors to poorly defined characteristic resistance values.

The use of the median as the characteristic geotechnical
value may be reasonable since the median has a number of
attractive probabilistic features:

1. When the geotechnical property being estimated is
lognormally distributed, the median is less than the
mean. This implies that the sample median can be
viewed as a “cautious estimate of the mean.”

2. The sample median can be estimated either by the
central value of an ordered set of observations (see
Section 1.6.2) or by computing the geometric average,
XG , of the observations, X1, X2, . . . , Xn (so long as all
observations are positive):

XG = [X1X2, . . . , Xn ]1/n = exp

{
1

n

n∑
i=1

ln Xi

}

(7.35)
3. If the sample median is estimated by Eq. 7.35, and

all observations are positive, then the sample median
tends to have a lognormal distribution by the central
limit theorem. If the observations come from a lognor-
mal distribution, then the sample median will also be
lognormally distributed. This result means that prob-
abilities of events (e.g., failure) which are defined in
terms of the sample median are relatively easily cal-
culated.

There is some concern in the geotechnical engineering
profession that defining the characteristic value will result
in the loss of the ability of engineers to apply their judgment
and experience to designs. As Mortensen (1983) notes, the
explicit definition of characteristic values is not intended

to undermine the importance of engineering judgment.
Engineering judgment will still be essential in deciding
which data are appropriate in determining the characteristic
value (e.g., choice of soils in the zone of influence, weaker
layers, etc.), as it has always been. The only difference is
that all geotechnical engineers would now be aiming for
a characteristic value at the same point in the resistance
distribution. Ideally, this would mean that given the same
site, investigation results, and design problem, two different
engineers would arrive at very similar designs, and that both
designs would have an acceptable reliability. The end result
of a more clear definition should be improved guidance to
and consistency among the profession, particularly among
junior engineers.

As mentioned above, the resistance factor is intimately
linked to the definition of the characteristic value. What
was not mentioned is the fact that the resistance factor is
also intimately linked to the uncertainty associated with the
characteristic value. For example, if a single soil sample is
taken at a site and the characteristic value is set equal to the
strength property derived from that sample, then obviously
there is a great deal of uncertainty about that characteristic
value. Alternatively, if 100 soil samples are taken within the
zone of influence of a foundation being designed, then the
characteristic value used in the design will be known with
a great deal of certainty. The resistance factor employed
clearly depends on the level of certainty one has about the
characteristic value. This is another area where engineering
judgment and experience plays an essential role—namely
in assessing what resistance factor should be used, which
is analogous to the selection of a factor of safety.

The dependence of the resistance factor on how well the
characteristic value is known is also reflected in structural
codes. For example, the resistance factor for steel reinforce-
ment is higher than that for concrete because steel properties
are both better known and more easily controlled. Quality
control of the materials commonly employed in structural
engineering allows resistance factors that remain relatively
constant. That is, a 30-MPa concrete ordered in London
will be very similar in distribution to a 30-MPa concrete
ordered in Ottawa, and so similar resistance factors can be
used in both locations.

As an example of the dependence of the resistance
factor on the certainty of the characteristic value, the
Australian standard 5100.3–2004, Bridge Design, Part 3
(2004), defines ranges on the geotechnical resistance factor
as given in Tables 7.5 and 7.6. The Australian standard
further provides guidance on how to choose the resistance
factor from within the range given in Table 7.5. Essentially,
the choice of resistance factor value depends on how well
the site is understood, on the design sophistication, level of
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Table 7.5 Range of Values of Geotechnical Resistance
Factor (φg ) for Shallow Footings According to
Australian Standard 5100.3–2004, Bridge Design, Part
3 (2004), Table 10.3.3(A)

Assessment Method of
Ultimate Geotechnical Strength Range of φg

Analysis using geotechnical parameters
based on appropriate advanced in situ
tests

0.50–0.65

Analysis using geotechnical parameters
from appropriate advanced laboratory
tests

0.45–0.60

Analysis using CPT tests 0.40–0.50
Analysis using SPT tests 0.35–0.40

construction control, and failure consequences, as specified
in the Table 7.6.

Example 7.2 Suppose that we are performing a prelim-
inary design of a strip footing, as shown in Figure 7.7,
against bearing capacity failure (ultimate limit state). For
simplicity, the soil is assumed to be weightless so that the
ultimate bearing stress capacity, qu , is predicted to be

qu = cNc (7.36)

where c is the cohesion and Nc is the bearing capacity
factor:

Nc = tan2 (π/4 + φ/2) exp {π tan φ} − 1

tan φ
(7.37)

Table 7.6 Guide for Choice of Geotechnical
Resistance Factor (φg ) for Shallow Footings According
to Australian Standard 5100.3–2004, Bridge Design,
Part 3 (2004), Table 10.3.3(B)

Lower End of Range Upper End of Range

Limited site investigation Comprehensive site
investigation

Simple methods of
calculation

More sophisticated design
method

Limited construction control Rigorous construction
control

Severe failure consequences Less severe failure
consequences

Significant cyclic loading Mainly static loading
Foundations for permanent

structures
Foundations for temporary

structures
Use of published correlations

for design parameters
Use of site-specific

correlations for design
parameters

B

L (kN/m)

Figure 7.7 Strip footing of width B founded on a weightless
soil.

for φ measured in radians. The footing is to support random
live and dead loads having means µLe = 300 kN/m and
µD = 900 kN/m, respectively. Suppose further that three
soil samples are available, yielding the results shown in
Table 7.7. Determine the design footing width, B , using
a traditional WSD approach as well as a LRFD approach
based on a total resistance factor, φg .

SOLUTION The first step is to determine characteristic
values of the cohesion and internal friction angle to be used
in the design. The arithmetic averages of the soil samples
are

c̄ = 1

n

n∑
i=1

ci = 1
3 (91.3 + 101.5 + 113.2) = 102.0 kN/m2

φ̄ = 1

n

n∑
i=1

φi = 1
3 (21.8 + 25.6 + 29.1) = 25.5◦

The geometric averages of the soil samples are

cG =
[

n∏
i=1

ci

]1/n

= [91.3 × 101.5 × 113.2]1/3

= 101.6 kN/m2

φG =
[

n∏
i=1

ci

]1/n

= [21.8 × 25.6 × 29.1]1/3 = 25.3◦

These averages are all shown in Table 7.7. The geometric
average is an estimate of the median in cases where the

Table 7.7 Cohesion and Internal Friction Angle
Estimates from Three Soil Samples

Soil Sample c (kN/m2) φ (deg)

1 91.3 21.8
2 101.5 25.6
3 113.2 29.1

Arithmetic average 102.0 25.5
Geometric average 101.6 25.3
Characteristic value 100.0 25.0



254 7 RELIABILITY-BASED DESIGN

soil property is (at least approximately) lognormally dis-
tributed. In the case of the cohesion, which is often taken
to be lognormally distributed, the geometric average and
the sample median almost coincide. The internal friction
angle is not lognormally distributed (it possesses an upper
bound), although the lognormal might be a reasonable ap-
proximation, and the geometric average is slightly lower
than the sample median (25.3 vs. 25.6). The difference is
negligible and is to be expected even if the property is
lognormally distributed because of the differences in the
way the median is estimated (one by using the central
value, the other by using a geometric average of all of
the values).

The characteristic value is conveniently rounded down
from the geometric average slightly to a reasonable whole
number, so that we will use ĉ = 100 kN/m2 and φ̂ = 25◦

as our characteristic design values.
Using φ̂ = 25◦ = 0.4363 rad in Eq. 7.37 gives us Nc =

20.7 so that

qu = cNc = (100)(20.7) = 2070 kN/m2

The third edition of the Canadian Foundation Engineering
Manual (CGS, 1992) recommends a factor of safety, Fs , of
3. Using this, the allowable WSD bearing stress is

qa = qu

Fs
= 2070

3
= 690 kN/m2

In order to find the required footing width using WSD,
we need to know the characteristic load. It is probably
reasonable to take the characteristic dead load equal to
the mean dead load, µD = 900 kN/m, since dead load
is typically computed by multiplying mean unit weights
times volumes, for example. Live loads are more difficult
to define since they are time varying by definition. For
example, the commentaries to the National Building Code
of Canada (NRC, 2006) specifies that snow and wind
loads be taken as those with only a 1-in-50 probability
of exceedance in any one year, while the exceedance
probability of characteristic use and occupancy loads is not
defined. We shall assume that the live load mean of µLe =
300 kN/m (the subscript e denotes extreme) specified in
this problem is actually the mean of the 50-year maximum
live load (where the 50 years is the design life span of the
supported structure). In other words, if we were to observe
the maximum live load seen over 50 years at a large number
of similar structures, the mean of those observations would
be 300 kN/m (and coefficient of variation would be 30%).
Our characteristic live load is thus taken to equal the mean,
in this case 300 kN/m.

We can now compute the required design footing
width as

B = µLe + µD

qa
= 300 + 900

690
= 1.74 m

If we have more certainty about the soil properties, which
may be the case if we had more soil samples, and loads,
then a reduced factor of safety may be sometimes used.
For illustrative purposes, and for comparison to the LRFD
computations to come, Table 7.8 lists the required design
footing widths for three different factors of safety. The load
and resistance factor design of the same footing proceeds
as follows:

1. Define the characteristic load: Allen (1975) and
Becker (1996a) suggest that the characteristic load
values are obtained as multiples of the mean values
(see Section 11.2):

L̂L = kLe µLe = 1.41(300) = 423 kN/m

L̂D = kDµD = 1.18(900) = 1062 kN/m

2. Choose a resistance factor. The following table is an
example of the choices that might be available:

Resistance
Level of Understanding Factor, φg

Soil samples taken directly under
footing

0.7

Soil samples taken near footing
(<4 m)

0.6

Soil properties inferred from similar
sites or by experience

0.54

3. Compute the ultimate soil capacity: We will again
use the geometric average (or median) soil properties
as the characteristic soil properties, rounded down
to convenient whole numbers: ĉ = 100 kN/m2 and
φ̂ = 25◦. This gives us (as before)

qu = cNc = (100)(20.7) = 2070 kN/m2

and our characteristic resistance is

R̂ = Bqu

Table 7.8 Required Working Stress Design Footing
Widths for Three Factors of Safety

Factor of Safety Design Footing Width (m)

3.0 1.74
2.5 1.45
2.0 1.16
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Note that we are taking our characteristic resistance at
the median rather than as some multiple of the mean
(as in Eq. 7.34b).

4. Solve the LRFD equation

φg R̂ = γD L̂D + γLL̂L

for the required design footing width:

B = γD L̂D + γLL̂L

φg qu

5. If the soil samples are taken directly under the footing,
so that we have a high level of understanding of the
soil supporting the footing, then φg = 0.7, according
to the above example table, and we get the required
design footing width to be

B = 1.25(1062) + 1.5(429)

0.7(2070)

= 1.36 m (Fs � 2.3)

where the Fs value is the factor of safety one would
have to have used in the WSD approach to get the
same footing width.

6. If the soil samples are taken near the footing, within
about 4 m, so that we have an “average” level of
site understanding according to the above table, then
φg = 0.6 and

B = 1.25(1062) + 1.5(429)

0.6(2070)

= 1.59 m (Fs � 2.7)

7. If the soil properties are inferred by samples from
similar sites, or through experience, then the above
table suggests that φg = 0.54 and

B = 1.25(1062) + 1.5(429)

0.54(2070)

= 1.76 m (Fs � 3.0)

8. If the 2006 Canadian Foundation Engineering Manual
(CGS, 2006) is used, then φg = 0.5, which gives

B = 1.25(1062) + 1.5(429)

0.5(2070)

= 1.90 m (Fs � 3.3)

7.5 GOING BEYOND CALIBRATION

Reliability-based design is typically performed at one of
three levels:

Level I: A semiprobabilistic approach where the design
is based on factored load and resistance values. The

load and resistance factors are determined by calibration
(assuming past designs are achieving an acceptable risk
level) or by the more advanced methods described next.
This level is the basis of LRFD.

Level II: An approximate probabilistic analysis, which
takes into account the probability distributions of loads
and resistances but with the following simplifying as-
sumptions:
• Loads and resistances are assumed to be independent.
• The components of the load and the resistance are

assumed to be captured by single random variables,
rather than by spatially and/or time-varying random
fields.

Level III: A sophisticated probabilistic analysis in which
soil resistance is modeled using cross-correlated space–
time varying random fields. Depending on the scope of
the geotechnical design, loads may also be space–time
varying random fields (e.g., wind, earthquake, vehicle,
and other dynamic loads are typically time varying).
This level of analysis is typically very complex and
usually only solvable via Monte Carlo simulation com-
bined with sophisticated nonlinear multidimension finite-
element models.

This section concentrates on level II analysis. It addresses
the question as to how we can use simple probabilistic
models to improve on load and resistance factors which
have been calibrated from traditional working stress design.
In this analysis we will again express the characteristic load
and resistance as some multiples of the means, according
to Eq. 7.34:

L̂ = kLµL, R̂ = kRµR

Note that if the characteristic resistance is the median
resistance R̃, which is computed according to

R̂ = R̃ = µR√
1 + v2

R

(7.38)

where vR is the coefficient of variation of the resistance,
then

kR = 1√
1 + v2

R

(7.39)

So, for example, if the coefficient of variation of the
resistance is 20%, then kR = 0.98.

The simplest form of the design requirement under LRFD
is as given by Eq. 7.30,

φg R̂ ≥ γ L̂

and failure will occur if the actual resistance of the as-
constructed design, R, is less than the actual load, L.
That is,

P [failure] = P [R < L] = P

[
R

L
< 1

]
(7.40)
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Figure 7.8 Distributions of load L and resistance R showing
locations of characteristic load L̂ and resistance R̂.

The R/L form of this probability is appropriate if R and L
are assumed to be lognormally distributed, as is commonly
done (since they are both nonnegative).

In Figure 7.8, the left distribution is that of the actual load
L, and the right distribution is that of the actual resistance
R, and these distributions express the relative likelihoods
that L or R take on any particular value. If a particular “as-
constructed” geotechnical system happens to have a value
of L which exceeds R, then the system will fail. Note that
the probability that this occurs is not equal to the area of the
overlap between the two distributions, although the failure
probability does increase as this area gets larger (at least
for the lognormal distribution).

Now let us define the safety margin M to be

M = ln

(
R

L

)
(7.41)

Clearly, if M < 0, the load exceeds the resistance and
failure will have occurred. We are interested in computing
the probability of failure in order to produce a design
with acceptably small risk. If R and L are lognormally
distributed, then M is normally distributed with mean and
variance:

µM = µln R − µln L (7.42a)

σM =
√

σ 2
ln R + σ 2

ln L (7.42b)

where we assumed the load and resistance to be independent
in Eq. 7.42b. The probability of failure is thus

P [M < 0] = P

[
Z <

0 − µM

σM

]

= �


− µln R − µln L√

σ 2
ln R + σ 2

ln L


 = � (−β) (7.43)

where Z is the standard normal, � is the standard nor-
mal cumulative distribution function, and β is the relia-
bility index. Figure 7.9 illustrates the probability of failure
(shaded region in both plots). It can be seen from the right
plot, which is the distribution of M , that the reliability in-
dex, β, is the number of standard deviations that µM is
away from the failure region, M < 0. In other words, β is
defined as

β = µM

σM

= µln R − µln L√
σ 2

ln R + σ 2
ln L

(7.44)

The importance of the reliability index is historical. So-
ciety, and in particular politicians and government bod-
ies, were not comfortable with expressions of probability
of failure. Election platforms are not helped by any ad-
mission that their is some chance of loss of life in an
engineered structure or when following a design code.
The reliability index couches the potential for damage or
loss of life in a nice “positive” way. Thus, most design
codes are aimed at exceeding a target reliability index,
rather than falling below an “acceptable” failure proba-
bility. Nevertheless, the overall aim of design codes is to
reduce the probability of failure down to socially acceptable
levels.

The left plot of Figure 7.9 shows the actual distribution
of R/L, which is lognormally distributed since both R
and L are lognormally distributed, as assumed. The failure
region in the left plot is where R/L < 1. Taking the natural
logarithm of R/L gives the right plot, which is a normal
distribution. The shaded regions in both plots have the
same area.

The failure probability given by Eq. 7.43 is exact so long
as R and L are lognormally distributed and independent.
If R and L are not independent, then σM will involve the
covariance between R and L. Because the shear strength, τ ,
of soil is given by

τ = c + σ tan(φ) (7.45)

where σ is the normal stress (in this equation), then clearly
the load and soil resistance are not independent since stress
is, of course, a function of the load. Equation 7.45 suggests
a strong positive correlation between τ and σ (i.e., as one
increases, the other increases). Unfortunately, at this time,
we are not aware of any studies characterizing the mag-
nitude of the covariance between load and soil resistance
over the multitude of geotechnical problems. We do note,
however, that the assumption of independence between load
and resistance is at least generally conservative, in that the
assessed probability of failure will be higher under this as-
sumption (the variance of M is larger under independence
than under a positive correlation—another way of look-
ing at this is if the strength almost always increases with
load, then this would lead to a lower probability that load
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Figure 7.9 Distributions of R/L (left) and ln(R/L) (right) showing how reliability index β is defined.

will exceed resistance). We will therefore proceed in this
section assuming that the load and resistance are indepen-
dent. In subsequent chapters, where we use simulation to
assess failure probabilities, we no longer need to assume in-
dependence and so can conceptually more accurately assess
design requirements.

A reliability-based design typically proceeds by first
selecting a target reliability index β and then designing
the resistance such that

P

[
R

L
< 1

]
= �(−β) (7.46)

According to Eq. 7.44, the reliability index can be
expressed as

β = µM

σM

= µln R − µln L√
σ 2

ln R + σ 2
ln L

which can be solved for µln R ,

µln R = µln L + β

√
σ 2

ln R + σ 2
ln L

� µln L + 0.71β (σln R + σln L) (7.47)

where the approximation 0.71(σln R + σln L) �
√

σ 2
ln R + σ 2

ln L

is exact (insofar as 1/
√

2 = 0.71) when vR = vL and is
fairly accurate for common values of vR and vL otherwise.
Since

µln L = ln (µL) − 1
2σ 2

ln L

µR = exp
(
µln R + 1

2σ 2
ln R

)
we get

µR = µL

[
exp

( 1
2σ 2

ln R + 0.71βσln R

)
× exp

(− 1
2σ 2

ln L + 0.71βσln L

)]

or, rearranging,

exp
(− 1

2σ 2
ln R − 0.71βσln R

)
µR

= exp
(− 1

2σ 2
ln L + 0.71βσln L

)
µL (7.48)

In turn, this relationship can be expressed in terms of the
characteristic load and resistance,

R̂ = kRµR , L̂ = kLµL

as

[
exp

(− 1
2σ 2

ln R − 0.71βσln R

)
kR

]
R̂

=
[

exp
(− 1

2σ 2
ln L + 0.71βσln L

)
kL

]
L̂ (7.49)

Recalling that the simplest form of the LRFD relationship
is φg R̂ = γ L̂ implies that

φg = exp
(− 1

2σ 2
ln R − 0.71βσln R

)
kR

(7.50a)

γ = exp
(− 1

2σ 2
ln L + 0.71βσln L

)
kL

(7.50b)

Equations 7.50 give us analytical means of evaluating the
load and resistance factors if we know about the variability
in the load and resistance and have selected a suitable
reliability index, β.

If the load factors are known (e.g., from structural codes)
and we are just interested in determining the resistance
factor, φg , then we can deal with a more complicated (and
more usual) LRFD equation:

φg R̂ = φg kRµR =
∑

i

γi L̂i
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The design proceeds by specifying µR such that

µR =
∑

i γi L̂i

φg kR

(7.51)

where φg is found such that the design has a failure
probability of no more than

P

[
R

L
< 1

]
= �


− µln R − µln L√

σ 2
ln R + σ 2

ln L


 = � (−β)

In order for this to be satisfied, we must have

µln R − µln L√
σ 2

ln R + σ 2
ln L

= β (7.52)

or, in other words,

µln R − µln L = β

√
σ 2

ln R + σ 2
ln L

Using the transformations

µln R = ln

(
µR√

1 + v2
R

)

µln L = ln

(
µL√

1 + v2
L

)

where vR and vL are the coefficients of variation (σ/µ) of
the resistance and load, respectively (we shall see shortly
how vL is actually computed), gives

ln

(
µR

√
1 + v2

L

µL

√
1 + v2

R

)
= β

√
σ 2

ln R + σ 2
ln L

Now, replacing µR by Eq. 7.51 and raising e to the power
of both sides yield

∑
i γi L̂i

φg kRµL

(√
1 + v2

L√
1 + v2

R

)
= exp

{
β

√
σ 2

ln R + σ 2
ln L

}

which can now be solved for φg , giving

φg =
∑

i γi L̂i

kRµL

(√
1 + v2

L√
1 + v2

R

)
exp

{
−β

√
σ 2

ln R + σ 2
ln L

}

(7.53)
Thus, Eq. 7.53 can be used to determine the resistance
factor φg so long as:

1. The load factors γi are known.
2. The characteristic loads L̂i = kLi µLi are known, where

kLi is the ratio of the i th characteristic load effect L̂i

to its mean µLi .
3. The ratio kR of the characteristic resistance R̂ to its

mean µR is known.

4. The total mean load µL computed as

µL =
∑

i

µLi

is known.
5. The coefficient of variation of the resistance, vR =

σR/µR , is known.
6. The coefficient of variation of the load, vL, where,

assuming that the various load effects are statistically
independent,

vL = 1

µ2
L

∑
i

v2
Li

µ2
Li

= 1

µ2
L

∑
i

v2
Li

(
L̂i

kLi

)2

is known.

7.5.1 Level III Determination of Resistance Factors

Generally speaking, a level III analysis, in which the soil
is treated as a spatially (and possibly temporally) varying
random field, can be used to determine required resistance
factors. Because of the complexity of this approach, it usu-
ally proceeds using a method called Monte Carlo simulation
(see Section 6.6). Monte Carlo simulation involves simulat-
ing a possible realization of the supporting (or forcing) soil
mass and then analyzing the response of the soil to load
(or restraint) using some sophisticated method which takes
spatial variability into account—usually the finite-element
method.

The main advantages of a level III analyses are as
follows:

1. The soil is modeled more realistically.
2. The assumption of independence between load and

resistance need no longer be made (so long as the
analysis method is sufficient to properly model the
interdependence between load and shear strength).

3. The entire distribution of the geotechnical response to
the applied random load can be estimated, including
probability of failure.

4. Complex problems can be studied.

The remainder of this book is devoted to examples in
which a level III probabilistic analysis of soils is applied
to a variety of common geotechnical problems such as set-
tlement and bearing capacity of shallow footings, seepage
problems, earth pressure, and slope stability.

7.6 RISK-BASED DECISION MAKING

One of the main concerns in design is how to make the
best design decisions in the face of often considerable
uncertainty. One approach is to express loss (or utility),
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usually in monetary terms, of the system being designed as
a function of the design variables, which may be random.
Some measure of this function is then minimized (or
maximized), for example, expected value, to determine
the best set of design variables. The definition of “best”
depends on one’s priorities, but usually one is looking for
minimum cost and maximum reliability.

Decision making in the face of uncertainty involves
choosing the best between a variety of possible design
alternatives. In order to determine which is best, when
outcomes are uncertain, the probabilities associated with
design consequences must be estimated and the decision
process follows from a risk assessment methodology. Risk
assessments are generally related to hazards which refer to
possible negative effects on structures, people, crops, or the
environment. Possible hazards include flooding, earthquake,
overloading, liquefaction, and the like.

It is assumed that design alternatives will be hazard
specific. For example, one design alternative might be to
build a levee of height 2.1 m to avoid damages incurred by
flood hazard. This alternative will, in general, be assumed
to not help with damages caused by other hazards, such as
earthquake. This simplifying assumption allows hazards to
be considered separately.

The hazard under consideration will be denoted with the
letter H . Let Hi be the event that the hazard H reaches
level i (e.g., 2.0-m flood, 2.1-m flood), having probability
of occurrence P [Hi ].

Let Djk be the event that damage level j occurs in
a structure (or area, person, etc.) k . This damage level
will have some probability of occurrence that depends on
the hazard level reached, Hi , that is, P

[
Djk | Hi

]
. This

probability may be expressed in words as the probability
that damage level j will occur in structure (area, person,
etc.) k given that hazard level Hi has occurred. In the
following, reference will be made to “structure k ,” but note
that k counts any object (including people, housing, bridges,
crops, areas, environments, etc.) that could sustain hazard-
induced damage.

If event Djk occurs, the ensuing cost will be denoted Ejk .
The overall damage cost for structure k will be denoted Ek .

Let Al be the l th design (or adaptation) alternative, for
example, build levee to height 2.1 m, having fixed cost Bl

(A0 is commonly set to be the “do nothing” alternative, hav-
ing cost B0 = 0). The total cost of alternative Al , including
possible damage costs, will be Cl .

Given these definitions, the following quantities can be
computed:

1. The probability that damage level j occurs in structure
k is

P
[
Djk

] =
∑

i

P
[
Djk | Hi

]
P [Hi ] (7.54)

where the sum is over all possible hazard levels,
i = 1, 2, . . . .

2. The expected damage cost in structure k (this is the
impact on structure k ) is

E [Ek ] =
∑

j

Ejk P
[
Djk

]

=
∑

j

Ejk

∑
i

P
[
Djk | Hi

]
P [Hi ] (7.55)

where the first sum is over all possible damage levels,
j = 0, 1, . . . , for example, from no damage to com-
plete destruction.

3. The expected cost of design alternative Al is

E [Cl ] = Bl +
∑

k

E [Ek ] = Bl

+
∑

k

∑
j

Ejk

∑
i

P
[
Djk | Hi

]
P [Hi ] (7.56)

where the first sum is over all structures, k = 1, 2, . . . .

The risk-based decision-making goal is to find the design
alternative, Al , having the minimum expected cost E [Cl ].

Example 7.3 Flood Risk Assessment Due to ocean
level rise and crustal subsidence a small town on the
Atlantic coast will be increasingly susceptible to flooding in
the years to come. Four alternative strategies that the town
can adopt in light of the risk of flooding will be considered:

1. Do nothing. Spend no additional money protecting the
town against floods, but pay for flood damages as they
occur.

2. Floodproof individual buildings threatened by the
flood. Floodproofing involves raising houses and
small buildings and the closure/sealing of basements
and ground floors of larger buildings.

3. Construct a levee around the town to protect against
a 5.4-m flood.

4. Construct a levee around the town to protect against
a 6.5-m flood.

It will be assumed that all strategies are aimed at a design
life of 100 years, after which time a similar analysis can be
repeated. The time value of money will be ignored in the
following analysis, partly because it is not known when the
flood damage will occur (although this uncertainty could be
handled properly in a more detailed probabilistic analysis).
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Two projected flood levels will be considered for the
town over the coming century:

1. 5.4-m flood: This includes the projected 100-year
return period storm surge combined with high tide
(4.6 m) plus climate change effects (ocean rise,
0.5 m/century) plus crustal subsidence (this coastline
is gradually sinking, 0.3 m/century). The occurrence
of these floods will be modeled as a Poisson process.
It will also be assumed that the storm surge duration
is of the order of 12 h, so that the storm surge is
sure to coincide with a high tide. Note that the recur-
rence period of the 5.4-m flood really only becomes
100 years toward the end of this century, that is, after
the projected ocean level rise and crustal subsidence
have taken place. A conservative approach is taken
here by assuming that the recurrence period is already
100 years and will remain at that rate throughout the
coming century. In other words, it is assumed that the
mean rate at which the 5.4-m flood occurs is λ = 1

100
per year throughout the coming century.

2. 6.5-m flood: This includes all of the components of
the 5.4-m flood except that the storm surge now cor-
responds with the highest astronomical tide (HAT). In
the region of the town, the HAT has a return period of
about 1.5 years. If the storm surge lasts for 12 h (a con-
servative estimate), then the probability that the storm
surge does coincide with the HAT is equal to 1 over the
number of 12-h intervals between average occurrences
of the HAT. Thus, the mean rate of occurrence of the
6.5-m flood per year is

λ =
(

1

100

)(
1

1.5 × 365.25 × 2

)
= 9 × 10−6

which will be assumed to be the rate of occurrence of a
6.5-m flood throughout the coming century.

Table 7.9 Flood Levels and Potential Impacts

100-Year with 100-Year with
Climate Change Climate Change,
and Coastal Coastal Subsidence,

Attribute Subsidence and HAT

Flood level 5.4 m 6.5 m
Number of

structures in
floodplain

42 116

m2 of structures
in floodplain

12,672 23,182

High-priority
structures

K–12 school K–12 school and
fire station

Roads flooded 1300 m 2500 m

It will be assumed that the flooding of a structure in this
town will incur an average structural repair cost of $240/m2

and that the total flood cost will include $80/m2 for damage
to chattel (movable goods). The total flood repair cost is
thus $320/m2 over all flooded structures.

Costs

1. Cost of repairs to damages
5.4 m: Existing properties in floodplain = 12,672

m2; estimated flood damage cost =
$240/m2; total damage costs = $3,041,280
Estimated damage costs for chattel
(movable goods) = $80/m2. Total chattel
costs = $1,003,622

6.5 m: Existing properties in floodplain = 23,182
m2. Estimated flood damage cost =
$240/m2. Total damage costs = $5,563,680
Estimated damage costs for chattel
(movable goods) = $80/m2. Total chattel
costs = $2,740,320

2. Costs of floodproofing small buildings (up to 150 m2

in plan, floodproofing type = elevation on bearing
walls)
5.4 m: Floodproofing cost = 31% of total property

value
Total property value of small buildings in
floodplain = $1,642,000
Floodproofing cost = 0.31(1,642,000) =
$509,020

6.5 m: Floodproofing cost = 31% of total property
value
Total property value of small buildings in
floodplain = $5,029,900
Floodproofing cost = 0.31(5,029,900) =
$1,559,269

3. Costs of floodproofing medium-sized buildings (be-
tween 150 and 2000 m2 in plan, floodproofing type =
closure and seal)
5.4 m: Floodproofing cost = 26% of total property

value
Total property value of medium-sized
buildings in floodplain = $2,831,800
Floodproofing cost = 0.26(2,831,800) =
$736,268

6.5 m: Floodproofing cost = 26% of total property
value
Total property value of medium-sized
buildings in floodplain = $5,411,500
Floodproofing cost = 0.26(5,411,500) =
$1,406,990

4. Costs of floodproofing large buildings (over 2000
m2 in plan, floodproofing type = closure and seal)
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5.4 m Floodproofing cost = 26% of total property
value
Total property value of school in floodplain
= $5,000,000
Floodproofing cost = 0.26(5,000,000) =
$1,300,000

6.5 m: Floodproofing cost = 26% of total property
value
Total property value of school in floodplain
= $5,000,000
Floodproofing cost = 0.26(5,000,000) =
$1,300,000

5. Cost of constructing a levee
Regarding the construction of levees, we shall as-
sume that the levee will have a 3-m-wide crest (to
accommodate heavy equipment) and 3.5H:1V side
slopes. We shall also provide a 3-m freeboard above
the required flood elevation to avoid overtopping
(and subsequent erosion) by wave actions, which are
sure to accompany a storm surge. The average el-
evation of the land around the town on which the
levee would be placed is about 5.0 m, and the levee
would need to be approximately 900 m in length.
The details of the two levees being considered are as
follows;
5.4 m: For the 5.4-m flood, a 3-m freeboard brings

the upper surface of the levee to an
elevation of 8.4 m. The constructed height
of the levee is thus H = 8.4 − 5.0 = 3.4 m
having a cost of about $2600/m. The total
cost of this levee will therefore be
900(2600) = $2,340,000.

6. For the 6.5-m flood, a 3-m freeboard results in a
constructed levee height of H = 9.5 − 5.0 = 4.5 m
having a cost of about $4200/m. The total cost of this
levee will therefore be 900(4200) = $3,780,000.

Risk Assessment
We shall first consider the expected failure costs, E

[
Cf
]
,

associated with flooding for the “do-nothing” case. This is
just equal to the cost of flood damage times the number
of floods expected to occur during the design life of
100 years.

The 5.4-m flood has a (conservative) mean recurrence
rate of λ = 1/100, so the expected number of such floods
in t = 100 years is λt = 1. The expected cost of repairs for
damages for the 5.4-m flood is thus

E
[
Cf
] = 1 × (3,041,280 + 1,003,622) = $4,044, 902

The expected number of 6.5-m floods in t = 100 years is
(conservatively) λt = (9 × 10−6)(100) = 0.0009. The ex-
pected cost of repairs for damages for the 6.5-m flood
is thus

E
[
Cf
] = 0.0009 × (5,563,680 + 2,740,320) = $7474

We see immediately that the best option with respect to
the 6.5-m flood is to do nothing. The chances of the storm
surge occurring at the same time as the HAT is so small
that the risk is negligible compared to the initial costs of
floodproofing or constructing a levee.

For the 5.4-m flood, we compare the following expected
total costs:

1. The expected total cost of the do-nothing option is
$4,044,902.

2. The expected total cost of the floodproofing
option is the sum of the floodproofing costs and
the expected failure cost of the 6.5-m flood (we as-
sume that floodproofing will certainly protect against
the 5.4-m flood), (509,020 + 736,268 + 1,300,000) +
7474 = $2,552,762.

3. The expected total cost of the levee construction
option is 2,340,000 + 7474 = $2,347,474.

The lowest expected total cost is option 3. This suggests
that the town should construct a levee to protect against the
5.4-m flood.

We note, however, that options 2 and 3 have very similar
total expected costs, so the two options are quite compet-
itive. Some detailed comments about the risk assessment
are as follows:

• We assume that both the floodproofing and 8.4-m
levee provide sure protection against the 5.4-m flood.
Because of the 3-m freeboard, this is probably largely
true of the levee, pending a more detailed study of
likely wave heights accompanying the storm surge at
this location. However, in the opinion of the authors,
floodproofing provides less certain protection unless
properly maintained and implemented (i.e., are all
doors adequately sealed against water ingress at the
time of the flood?). Thus, the actual expected total
cost of the floodproofing option may still include a
significant flood damage cost.

• Floodproofing can be applied on a building-by-building
basis, which may lead to cost savings (e.g., only pro-
tect the important buildings, or those buildings which
would be most heavily damaged by a flood—garages,
for example, may suffer very little damage in
a flood).
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• The above analysis is simplified by assuming that
only two flood levels are possible: 5.4 and 6.5 m. In
actuality, of course, there is a continuous range of
possible flood levels. A more detailed risk analysis
would consider separately the expected number of
floods from, say, 5.0 to 5.5 m, the expected number

of floods from 5.5 to 6.0 m, and so on. However,
the individual probabilities of occurrence of floods
on such a detailed level would be quite difficult to
estimate on the basis of past records and even more
difficult to predict with any accuracy for the future.
The refinement would probably not be justified.
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CHAPTER 8

Groundwater Modeling

8.1 INTRODUCTION

In this chapter steady-state seepage through a soil mass with
spatially random permeability is considered. The goal of the
chapter is to present approximate theory and results which
allow the assessment of probabilities relating to quantities
of interest such as steady-state flow rates, exit gradients,
and uplift pressures. The theoretical results are compared
to simulation-based results.

The equation of steady groundwater flow followed in this
chapter is Laplace’s equation,

∇ · [K ∇φ] = 0 (8.1)

where K is the permeability tensor and φ is the hydraulic
head.

8.2 FINITE-ELEMENT MODEL

The form of Laplace’s equation given in Eq. 8.1 which
arises in geomechanics, for example, concerning two-
dimensional groundwater flow beneath a water-retaining
structure or in an aquifer (Muskat, 1937), is conveniently
solved by the finite-element method. The theory behind the
finite-element method is discussed in detail in numerous
publications (see, e.g., Smith and Griffiths, 2004) but essen-
tially consists of “discretizing,” or breaking, a continuum
into numerous small pieces called finite elements similar
to that shown later in Figure 8.5. The governing differen-
tial equation 8.1 is then solved approximately over each
element, after which the elements are “assembled” into a
“mesh” with appropriate boundary conditions to give a so-
lution to the problem as a whole.

In a two-dimensional setting, the finite elements might
be square with four-nodes as shown in Figure 8.1, while
in three dimensions the elements might be cubic with

eight-nodes as shown in Figure 8.2. The nodes are the
places where the hydraulic head will eventually be cal-
culated. It should realized that quadrilateral or hexahedral
elements in general do not need to be square or cubic, but
they always are in the applications described in this text us-
ing the random finite-element method (RFEM) as developed
by the authors.

The end product of a finite-element analysis of a steady-
seepage problem governed by Eq. 8.1 is an estimate of
the hydraulic head at numerous nodes across the solution
domain. Generally speaking, the more elements used to dis-
cretize the domain of the problem, the greater the accuracy
of the solution. As with all numerical methods, however, a
trade-off is necessary between accuracy and computer time.
One of the key ingredients of a finite-element analysis is
to design a mesh that is “fine enough” to give acceptable
accuracy.

One of the great benefits of the finite-element method is
that it is easy to model problems with variable properties.
For example, a given soil deposit may consist of layers
having different permeability values in which rows of
element may be assigned different properties. In the RFEM,
this feature is taken to the limit by analyzing problems in
which every element in the mesh has a different property
based on some underlying statistical distribution.

The finite-element discretization process essentially re-
duces the differential equation (8.1) to a set of equilibrium-
type matrix equations at the element level of the form

k cφ = q (8.2)

where k c is a symmetrical conductivity matrix, φ is a vector
of nodal hydraulic head values, and q is a vector of nodal
inflows/outflows. The matrix equation essentially describes
the relationship between flow rates and hydraulic head
across a single finite element. The size of the matrix k c de-
pends on the element used. For example, when using four-
node elements, k c would have four rows and four columns.

1

3

4

2

a

a

k1 = k2 = k

Figure 8.1 Two-dimensional isotropic square four-node finite
element with node numbering.
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a

1

32

a

a

6 7

85

4

k1 = k2 = k3 = k

Figure 8.2 Three-dimensional isotropic cubic eight-node hexa-
hedral finite element with node numbering.

At this stage the element conductivity matrices described
in Eq. 8.2 are singular. After all the element matrices
from the mesh have been assembled, however, with proper
inclusion of boundary conditions, a system of symmetric
linear simultaneous equations are obtained of the form

K c� = Q (8.3)

In Eq. 8.3, K c represents the global conductivity matrix (of
the entire mesh), � holds the nodal values of the hydraulic
head, and Q holds the nodal net flow rates. Since K c is
both symmetric and banded (all nonzero terms tend to be
clustered near the diagonal), appropriate efficient storage
strategies are essential.

Solution of Eq. 8.3 can be achieved using either direct
or iterative solvers with the latter more likely to be used in
very large problems typical of three-dimensional analysis
where K c cannot be fitted in the core memory of the
computer.

Since the majority of internal nodes experience no net
flow due to steady-state conditions, most components of Q
equal zero. The nonzero terms in Q, however, correspond to
the boundary nodes at which the head is fixed. The steady-
state flow rate through the system therefore is obtained by
summing, separately, the positive and negative terms in Q.
These sums should of course be equal and opposite, with
the positive sum representing the inflow upstream and the
negative sum the outflow downstream.

As described later in this chapter, other quantities of
engineering interest such as exit gradients and uplift forces
can be obtained by further postprocessing of the nodal �

values. Exit gradients involve numerical differentiation of
these values in the vicinity of the exit points immediately
downstream of the structure, and uplift forces involve
numerical integration of the pressure heads immediately
beneath the structure.

8.2.1 Analytical Form of Finite-Element
Conductivity Matrices

As mentioned previously, the RFEM formulations de-
scribed in this text typically use square elements in two-
dimensional or cubic elements in three dimensions. These
simplified geometries enable the element conductivity ma-
trices to be developed exactly for the flow problem and
in closed form, in contrast to the approximate form typi-
cally obtained by numerical integration in general-purpose
finite-element codes.

Assuming an isotropic square element of permeability k
as shown in Figure 8.1 with an out-of-plane depth of one
unit, the element conductivity matrix is given by

k c = k

6




4 −1 −2 −1

4 −1 −2

4 −1

4




(8.4)

Conductivity matrices of elements with different perme-
abilities as needed by the RFEM are easily obtained by
simply changing the value of the permeability coefficient k
in Eq. 8.4.

A similar approach can be used for the cubic isotropic
element of permeability k shown in Figure 8.2. In this case
the element conductivity matrix is given by

k c = ka

12




4 0 −1 0 0 −1 −1 −1

4 0 −1 −1 0 −1 −1

4 0 −1 −1 0 −1

4 −1 −1 −1 0

4 0 −1 0

4 0 −1

4 0

4




(8.5)
In both of Eqs. 8.4 and 8.5, only the upper triangular terms
have been included for clarity, but the actual matrices are
symmetrical.

8.3 ONE-DIMENSIONAL FLOW

One-dimensional flow occurs when all streamlines are par-
allel and straight. Low-permeability regions are not avoided
by the fluid particles. If any portion of the soil mass through
which a streamline passes is impermeable, then both the ef-
fective permeability and the flow rate become zero along
that streamline. The effective permeability is defined as that
uniform (everywhere the same) permeability which has the
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same flow rate as the actual spatially variable permeabil-
ity. In general, the effective permeability is dominated by
the low-permeability regions of the soil mass. This is par-
ticularly true in the one-dimensional flow case, where any
“blockage” dominates the flow.

Example 8.1 Suppose that water flowing horizontally
through a soil mass is idealized as being one-dimensional
flow, and assume that the soil is composed of three units
having different permeabilities. Figure 8.3 illustrates the
flow regime. If we wish to express the flow rate Q as

Q = Keff

(
A �H

L

)

where Keff is the effective permeability that leads to the
same flow rate as the true situation, A is the cross-sectional
area perpendicular to the flow, �H is the head difference
between left and right faces (ignoring gravity effects), and
L is the flow path length, then what is Keff?

SOLUTION In Figure 8.3, �H is the total head differ-
ence between right and left faces of the soil and �Hi is
the head loss across the i th layer. The layers have equal
thickness, L/3, and equal cross-sectional area, A.

We know that the total steady-state flow through each
layer must be the same since there are no sinks or sources,
that is, Q1 = Q2 = Q3 = Q , so that

Q = K1

(
A �H1

L/3

)
= K2

(
A �H2

L/3

)
= K3

(
A �H3

L/3

)

(8.6)
In other words, we must have

K1 �H1 = K2 �H2 = K3�H3

We can use this to express �H2 and �H3 in terms of �H1,

�H2 = K1

K2
�H1, �H3 = K1

K3
�H1

We also know that the total head loss from right to left,
�H , must just equal the sum of losses across each layer,

�H = �H1 + �H2 + �H3

= �H1

[
1 + K1

K2
+ K1

K3

]

∆H

L / 3 L / 3L / 3

Q

∆H1

K1
Layer 1

K2
Layer 2

K3
Layer 3

∆H3∆H2

Figure 8.3 One-dimensional flow through three soil layers.

which we can solve for �H1,

�H1 = �H

1 + K1/K2 + K1/K3

or K1 �H1 = �H

1/K1 + 1/K2 + 1/K3

Finally, we can solve for Q using the first equality in
Eq. 8.6,

Q = K1 �H1

1/3

A

L
= 1

(1/3) (1/K1 + 1/K2 + 1/K3)

×
(

A �H

L

)

from which we see that Keff is the harmonic average,

Keff = 1

(1/3) (1/K1 + 1/K2 + 1/K3)

The classic example of one-dimensional flow is flow
through a pipe. The effective permeability is the harmonic
average of the permeabilities along the flow path. If the
flow path has length L, then the effective permeability is

Keff =
[

1

L

∫ L

0

dx

K (x )

]−1

which is dominated by low values of K (x ) along the path.
See Section 4.4 for a more detailed discussion of the
harmonic average.

Example 8.2 Suppose that steady-state flow through a
2-m-thick compacted clay barrier is assumed to be one di-
mensional (Figure 8.4). This would occur, for example, if
the permeability only varies through the thickness. Clay
barriers which are made up of a series of parallel layers hav-
ing different permeabilities might be reasonably assumed
to behave this way. Suppose that the permeability of the
clay is lognormally distributed with mean µK = 1 × 10−8,
standard deviation σK = 0.5 × 10−8, and correlation length
θln K = 0.5 m. Assume further that the correlation structure

L = 2 m

∆H = 3 m

Q

Figure 8.4 Flow through a compacted clay barrier idealized as
one dimensional.
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through the thickness is Markovian, so that

ρln K (τ ) = exp

{
− 2τ

θln K

}
= exp{−4τ } (8.7)

where τ is measured through the thickness. If the total head
difference across the clay barrier is �H = 3 m, then:

(a) Estimate the mean steady-state flow rate through a 1-m2

area of the barrier.
(b) The design target is to restrict the steady-state flow

through the barrier to less than 2 × 10−8 m3/s per
square meter of barrier. What is the probability that
the actual steady-state flow rate exceeds this target?

SOLUTION We are told that K (z ) is lognormally dis-
tributed; thus its parameters are

σ 2
ln K = ln

(
1 + v2

K

) = ln
(
1 + 0.52) = 0.223144

µln K = ln(µK ) − 1
2σ 2

ln K = ln(1 × 10−8) − 1
2 (0.223144)

= −18.5323

where vK = σK /µK is the coefficient of variation of K .
Because the flow is one dimensional, the total steady-

state flow rate Q is given by

Q = Keff

(
A �H

L

)
(8.8)

where Keff is the harmonic average

Keff =
[

1

L

∫ L

0

dz

K (z )

]−1

(8.9)

In order to answer parts (a) and (b), we need to determine
the distribution of Keff. Unfortunately, the harmonic average
is the inverse of a sum of lognormally distributed random
variables, which does not have a simple distribution. Let us
start by defining

R(z ) = 1

K (z )

If K (z ) is lognormally distributed, then so is R(z ), with
parameters

µln R = −µln K = 18.5323 (8.10a)

σ 2
ln R = σ 2

ln K = 0.223144 (8.10b)

Transforming these parameters back into real space, we get

µR = exp
{
µln R + 1

2σ 2
ln R

} = 1.2499969 × 108

σ 2
R = µ2

R

(
eσ 2

ln R − 1
)

= 3.906231 × 1015

At this point, it is worth making a couple of comments:

1. Because lognormal distribution transformations in-
volve the sums and differences of large and small

numbers, we generally keep quite a few significant
digits in interim results.

2. The entire analysis can be scaled to make the mathe-
matics more convenient. For example, if we start with
µK = 1 and σK = 0.5, then in part (a) we need only
multiply the mean flow rate by 10−8 and in part (b)
we need only compute the probability that the flow
rate exceeds 2.

Now, let RL be the arithmetic average of R(z ) over the
depth L,

RL = 1

L

∫ L

0
R(z ) dz (8.11)

so that Keff = [RL]−1. Notice that if θln K � L, then RL � µR

since RL is an arithmetic average, where

µR = exp
{
µln R + 1

2σ 2
ln R

} = exp
{−µln K + 1

2σ 2
ln K

}

which gives us

Keff = 1

µR

= exp
{
µln K − 1

2σ 2
ln K

}
(8.12)

That is, if the correlation length is small, so that the
clay barrier consists of a large number of layers having
mostly independent permeabilities, then the local average
RL will be a close estimate (with vanishing variance) of
the true mean µR . In this case, the harmonic average can
be computed by Eq. 8.12. Note also that in this case the
harmonic average Keff becomes deterministic.

Returning to our problem, where θln K is not vanishingly
small, we can take expectations of Eq. 8.11 to find the mean
and variance of RL:

µRL = µR = 1.2499969 × 108

σRL = σ 2
R γ (L)

where γ (L) is the variance reduction function (see
Section 3.4). To determine the value of γ (L), which is
defined in terms of ρR(τ ), we must determine the na-
ture of ρR(τ ). If K (z ) is lognormally distributed, then
R(z ) = 1/K (z ) is also lognormally distributed and ln R =
− ln K is normally distributed with ρln R(τ ) = ρln K (τ ) (see
Eq. 8.7). Thus, the correlation structure of ln R is identical
to that of ln K .

Because the logarithm is a smoothly (and slowly) varying
function of its argument (i.e., almost linear over ranges
that typically include the mean plus or minus several
standard deviations), it is quite reasonable to assume that
ρR(τ ) � ρln R(τ ) = ρln K (τ ) with θR � θln K = 0.5 m. With
these approximations, Eq. 3.89 gives us

γ (L) = θ2
R

2L2

[
2|L|
θR

+ exp

{
−2|L|

θR

}
− 1

]
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= 0.52

2(2)2

[
2(2)

0.5
+ exp

{−2(2)

0.5

}
− 1

]

= 0.21876

so that

σ 2
RL

= σ 2
R γ (L) = (3.906231 × 1015)(0.21876)

= 8.54539 × 1014

Now we need only determine the form of the distribution
for RL. Since RL is equal to a sum (Eq. 8.11) of lognormally
distributed random variables, its true distribution is some-
where between a normal and lognormal distribution. As
demonstrated by Fenton et al. (2003b), the distribution of
RL is closely approximated by a lognormal distribution with
parameters

σ 2
ln RL

= ln

(
1 + σ 2

RL

µ2
RL

)
= 0.053247

µln RL = ln
(
µRL

) − 1
2σ 2

ln RL
= 18.617198

If RL is lognormally distributed, then

Keff = 1

RL

is also lognormally distributed with parameters

µln K eff = −µln RL = −18.617198 (8.13a)

σ 2
ln K eff

= σ 2
ln RL

= 0.053247 (8.13b)

We are now ready to answer our two questions, at least
approximately:

(a) Taking expectations of Eq. 8.8 gives us, for A = 1 m2,

µQ = µK eff

(
A �H

L

)
= µK eff

( 3
2

)

where, using Eqs. 8.13,

µK eff = exp
{
µln K eff + 1

2σ 2
ln K eff

}
= 0.843754 × 10−8

so that

µQ = (
0.843754 × 10−8) ( 3

2

)

= 1.2656 × 10−8 m3/s/m2

(b) The probability we are looking for is

P
[
Q > 2 × 10−8]

= P
[
Keff > 4

3 × 10−8
]

= 1 − �

(
ln

( 4
3 × 10−8

) − µln K eff

σln K eff

)

= 1 − �

(
ln

( 4
3 × 10−8

) + 18.617198√
0.053247

)

= 1 − �(2.10)

= 0.0179

To check our approximations in this solution, we sim-
ulated a 2-m-thick clay barrier with parameters given in
the introduction to this problem 100,000 times. For each
realization, the flow rate through the barrier was computed
according to Eqs. 8.8 and 8.9. The mean flow rate and the
probability that the flow rate exceeded 2 × 10−8 were es-
timated from the 100,000 realizations with the following
results:

µQ � 1.2631 × 10−8 m3/s/m2

P
[
Q > 2 × 10−8] � 0.0153

from which we see that the mean flow rate given by the
above solution is within a 0.2% relative error from that
determined by simulation. The probability estimate was not
quite so close, which is not surprising given the fact that the
distribution of Keff is not actually lognormal, with a relative
error of 17%. Nevertheless, the approximate solution has an
accuracy which is quite acceptable given all other sources
of uncertainty (e.g., µK , σK , and θln K are generally not well
known).

8.4 SIMPLE TWO-DIMENSIONAL FLOW

Two-dimensional flow allows the fluid to avoid low-
permeability zones simply by detouring around them. Al-
though the streamlines, being restricted to lying in the
plane, lack the complete directional freedom of a three-
dimensional model (see next section), the low-permeability
regions no longer govern the flow as strongly as they do in
the one-dimensional case. The two-dimensional steady-state
flow equation is given by Eq. 8.1, where the permeability
K can be a tensor,

K =
[

K11 K12

K21 K22

]

in which K11 is the permeability in the x1 direction, K22

is the permeability in the x2 direction, and K12 and K21

are cross-terms usually assumed to be zero. In principle,
all four components could be modeled as (possibly cross-
correlated) random fields. However, since even the variance
of even one of the components is rarely known with any
accuracy, the usual assumption is that the permeability is
isotropic. In this case, K becomes a scalar and the problem
of estimating its statistical nature is vastly simplified. In this
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chapter, we will consider only the isotropic and stationary
permeability case. This is usually sufficient to give us at
least rough estimates of the probabilistic nature of seepage
(Fenton and Griffiths, 1993).

A variety of boundary conditions are also possible, and
we will start by looking at one of the simplest. Consider a
soil mass which has no internal sources or sinks and has
impervious upper and lower boundaries with constant head
applied to the right edge, as illustrated in Figure 8.5, so that
the mean flow is unidirectional.

Interest will be in determining the distribution of the
total flow rate through Figure 8.5, bearing in mind that
the permeability K is a spatially varying random field. To
do this, let us define a quantity that will be referred to
as block permeability (a term used in the water resources
community), which is based on the total (random) flow
rate Q . Specifically, for a particular realization of the
spatially random permeability K (x) on a given boundary
value problem, the block permeability K̄ is defined as

K̄ = µK

(
Q

QµK

)
(8.14)

where µK = E [K ] is the expected value of K (x), Q is the
total flow rate through the spatially random permeability
field, and QµK is the deterministic total flow rate through
the mean permeability field (having constant permeability
µK throughout the domain). For the simple boundary value
problem under consideration, Eq. 8.14 reduces to

K̄ =
(

XL

YL

) (
Q

�H

)
(8.15)

where �H is the (deterministic) head difference between
upstream and downstream faces. Since Q is dependent on
K (x), both Q and K̄ are random variables and it is the
distribution of K̄ that is of interest. The definition of block

YL

XL

∆H

∆e

Figure 8.5 Two-dimensional finite-element model of soil mass
having spatially random permeability. Top and bottom surfaces
are impervious and a constant head is applied to the right face.

permeability used here essentially follows that of Rubin
and Gómez-Hernández (1990) for a single block. Once the
distribution of K̄ is known, Eq. 8.15 is easily inverted to
determine the distribution of Q for a specific geometry.

In the case of unbounded domains, considerable work has
been done in the past to quantify a deterministic effective
permeability measure Keff as a function of the mean and
variance of ln K at a point. In one dimension, the effective
permeability is the harmonic mean (flow through a “series”
of “resistors”), as discussed in the previous section, while in
two dimensions the effective permeability is the geometric
mean (Matheron, 1967). Indelman and Abramovich (1994)
and Dagan (1993) develop techniques of estimating the
effective permeability under the assumption that the domain
is of infinite size and the mean flow is unidirectional. For
three dimensions Gutjahr et al. (1978) and Gelhar and
Axness (1983) used a small-perturbation method valid for
small variances in an unbounded domain. Specifically they
found that for n dimensions

Keff = eµln K
(
1 − 1

2σ 2
ln K

)
, n = 1 (8.16a)

Keff = eµln K , n = 2 (8.16b)

Keff � eµln K
(
1 + 1

6σln K

)
, n = 3 (8.16c)

where µln K and σ 2
ln K are the mean and variance of ln K , re-

spectively. Concerning higher order moments Dagan (1979)
used a self-consistent model to estimate head and specific
discharge variance for one-, two-, and three-dimensional
flow in an infinite domain. Smith and Freeze (1979b) inves-
tigated head variability in a finite two-dimensional domain
using Monte Carlo simulation.

Dykaar and Kitanidis (1992a,b) present a method for
finding Keff in a bounded domain using a spectral de-
composition approach. The variance of block permeability
is considered only briefly, through the use of simulations
produced using FFT, to establish estimates of the averag-
ing volume needed to reduce the variance to a negligible
amount. No attempt was made to quantify the variance of
block permeability. In perhaps the most pertinent work to
this particular simple boundary value problem, Rubin and
Gómez-Hernández (1990) obtained analytical expressions
for the mean and variance of block permeability using per-
turbative expansions valid for small-permeability variance
and based on some infinite-domain results. A first-order
expansion was used to determine the block permeability
covariance function.

In agreement with previous studies by Journel (1980),
Freeze (1975), Smith and Freeze (1979b), Rubin and
Gómez-Hernández (1990), and Dagan (1979, 1981, 1986),
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it is assumed here that ln K is an isotropic stationary Gaus-
sian random field fully characterized by its mean µln K , vari-
ance σ 2

ln K , and correlation function ρln K (τ ). The assumption
regarding the distribution of K is basically predicated on
the observation that field measurements of permeability are
approximately lognormally distributed, as shown by Hoek-
sema and Kitanidis (1985) and Sudicky (1986). As argued
in Section 4.4 this may be due to the fact that the geomet-
ric average, appropriate in two dimensions as indicated by
Eq. 8.16b, tends to a lognormal distribution by the central
limit theorem.

To solve Eq. 8.1 for the boundary value problem of
Figure 8.5, the domain is discretized into elements of di-
mension �1 × �2 (where �1 = �2 = �e herein) and an-
alyzed using the finite-element method (Smith and Grif-
fiths, 2004). A realization of the random-field ln K (x) is
then generated using the LAS method (Fenton, 1990) and
permeabilities are assigned to individual elements using
K = eln K (the permeability within each element is assumed
constant). The total flow rate computed for this field can
be used in Eq. 8.15 to yield a realization of the block
permeability. Histograms of the block permeabilities are
constructed by carrying out a large number of realizations
for each case considered. The program used to carry out
this simulation is called RFLOW2D and is available at
http://www.engmath.dal.ca/rfem.

8.4.1 Parameters and Finite-Element Model

To investigate the effect of the form of the correlation
function on the statistics of K̄ , three correlation functions
were employed all having exponential forms:

ρa
ln K (τ ) = exp

{
− 2

θln K

√
τ 2

1 + τ 2
2

}
(8.17a)

ρb
ln K (τ ) = exp

{
− π

θ2
ln K

(τ 2
1 + τ 2

2 )
}

(8.17b)

ρc
ln K (τ ) = exp

{
− 2

θln K

(|τ1| + |τ2|)
}

(8.17c)

The first form is based on the findings of Hoeksema and
Kitanidis (1985) but without the nugget effect which Dagan
(1986) judges to have only a minor contribution when local
averaging is involved. Notice that the second and third forms
are separable and that the third form is not strictly isotropic.

It is well known that the block permeability ranges from
the harmonic mean in the limit as the aspect ratio XL/YL

of the site tends to infinity and to the arithmetic mean
as the aspect ratio reduces to zero. To investigate how
the statistics of K̄ change with practical aspect ratios, a
study was conducted for ratios XL/YL ∈ { 1

9 , 1, 9}. For an

effective site dimension D = √
XLYL, the ratio θln K /D was

varied over the interval [0.008, 4]. The very small ratios
result in fields in which the permeabilities within each
finite element are largely independent. Conceptually, when
θln K = 0 the permeability at all points become independent.
This results in a white noise process which is physically
unrealizable. In practice, correlation lengths less than the
size of laboratory samples used to estimate permeability
have little meaning since the permeability is measured at the
laboratory scale. In this light, the concept of “permeability
at a point” really means permeability in a representative
volume (of the laboratory scale) centered at the point and
correlation lengths much smaller than the volume over
which permeability is measured have little meaning. In
other words, while the RFEM assumes that the permeability
field is continuously varying, and thus defined at the point
level, it probably does not make sense to take the correlation
length much smaller than the size of the volume used to
estimate permeability.

Four different coefficients of variation were consid-
ered: σK /µK ∈ {0.5, 1.0, 2.0, 4.0} corresponding to σ 2

ln K ∈
{0.22, 0.69, 1.61, 2.83}. It was felt that this represented
enough of a range to establish trends without greatly com-
promising the accuracy of statistical estimates (as σ 2

ln K

increases, more realizations would be required to attain a
constant level of accuracy).

As mentioned, individual realizations were analyzed us-
ing the finite-element method (with four-node quadrilateral
elements) to obtain the total flow rate through the domain.
For each set of parameters mentioned above, 2000 realiza-
tions were generated and analyzed. No explicit attempt was
made to track matrix condition numbers, but all critical cal-
culations were performed in double precision and round-off
errors were considered to be negligible.

8.4.2 Discussion of Results

The first task undertaken was to establish the form of
the distribution of block permeability K̄ . Histograms were
plotted for each combination of parameters discussed in the
previous section and some typical examples are shown in
Figure 8.6. To form the histograms, the permeability axis
was divided into 50 equal intervals or “buckets.” Computed
block permeability values (Eq. 8.15) were normalized with
respect to µK and the frequency of occurrence within each
bucket was counted and then normalized with respect to
the total number of realizations (2000) so that the area
under the histogram becomes unity. A straight line was then
drawn between the normalized frequency values centered
on each bucket. Also shown on the plots are lognormal
distributions fitted by estimating their parameters directly
from the simulated data. A chi-squared goodness-of-fit test
indicates that the lognormal distribution was acceptable
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Figure 8.6 Typical histograms of block permeability for various
block geometries and permeability statistics. The fitted distribution
is lognormal with parameters estimated from the simulated data.
The scale changes considerably from plot to plot.

93% of the time at the 5% significance level and 98% of
the cases were acceptable at the 1% significance level (the
significance level is the probability of mistakenly rejecting
the lognormal hypothesis). Of those few cases rejected at
the 1% significance level, no particular bias was observed,
indicating that these were merely a result of the random
nature of the analysis. The lowermost plot in Figure 8.6
illustrates one of the poorest fits which would be rejected
at a significance level of 0.001%. Nevertheless, at least
visually, the fit appears to be acceptable, demonstrating that
the chi-squared test can be quite sensitive.

Upon accepting the lognormal model, the two parame-
ters mln σK̄

and s2
ln σK̄

, representing the estimated mean and

variance of ln(K̄ ), can be plotted as a function of the statis-
tics of ln K and the geometry of the domain. Figures 8.7
and 8.8 illustrate the results obtained for the three correla-
tion functions considered in Eqs. 8.17. One can see that for
square domains, where XL/YL = 1

1 , the statistics of K̄ are

closely approximated by

µln K̄ � µln K (8.18)

σln K̄ � σln K

√
γD (8.19)

where µln K = ln µK − 1
2σ 2

ln K and γD = γ (D , D) (see
Section 3.7.3). Note that these are just the statistics one
would obtain by arithmetically averaging ln K (x) over the
block [or, equivalently, by geometrically averaging K (x)].
Assuming the equality in Eqs. 8.18 and 8.19, the corre-
sponding results in permeability space are

µK̄ = µK exp{− 1
2σ 2

ln K (1 − γD )} (8.20)

σ 2
K̄ = µ2

K exp{−σ 2
ln K (1 − γD )}

[
exp{σ 2

ln K γD} − 1
]

(8.21)

If these expressions are extended beyond the range over
which the simulations were carried out, then in the limit as
D → 0 they yield

µK̄ → µK (8.22a)

σ 2
K̄ → σ 2

K (8.22b)

since γD → 1. This means that as the block size decreases,
the statistics of the block permeability approach those of
the point permeability, as expected. In the limit as D → ∞,
µK̄ approaches the geometric mean and σ 2

K̄
approaches zero,

which is to say that the block permeability approaches the
effective permeability, again as expected.

If both γD and the product σ 2
ln K γD are small (e.g., when

D is large), then first-order approximations to Eqs. 8.20 and
8.21 are

µK̄ = µK exp{− 1
2σ 2

ln K } (8.23)

σ 2
K̄ = µ2

K exp{−σ 2
ln K }

(
σ 2

ln K γD

)
(8.24)

Rubin and Gómez-Hernández (1990) obtain Eq. 8.23 if only
the first term in their expression for the mean is considered.
In the limit as D → 0, additional terms in their expression
yield the result µK̄ → µK , in agreement with the result
given by Eq. 8.22a. With respect to the variance, Rubin and
Gómez-Hernández generalize Eq. 8.24 using a first-order
expansion to give the covariance between two equal-sized
square blocks separated by a distance h as a function of the
covariance between local averages of ln K ,

Cov
[
K̄ (x), K̄ (x + h)

] =µ2
K exp{−σ 2

ln K }
Cov [KD (x), KD(x + h)] (8.25)

where ln KD (x) is the local average of ln K over the block
centered at x. Equation 8.25 reduces to Eq. 8.24 in the event
that h = 0 since Var [ln KD (x)] = σ 2

ln K γD .
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Figure 8.7 Estimated mean log-block permeability, (mln K̄ − µln K )/σ 2
ln K .

In many practical situations, neither γD nor σ 2
ln K γD is

small, so that the approximations given by Eqs. 8.23, 8.24,
and 8.25 can be greatly in error. To illustrate this, consider
a hypothetical example in which µK = 1 and σ 2

K = 16 (so
that σ 2

ln K = 2.83). It is expected that for a very small block
the variance of the block permeability should be close to σ 2

K ,
namely σ 2

K̄
� 16, as predicted by Eq. 8.22b. However, in

this case, γ � 1, and Eq. 8.24 yields a predicted variance
of σ 2

K̄
= 0.17, roughly 100 times smaller than expected.

Recall that Eq. 8.24 was derived on the basis of a first-order
expansion and so is strictly only valid for σ 2

ln K � 1.
For aspect ratios other than 1

1 , Figures 8.7 and 8.8 show
clear trends in the mean and variance of ln K̄ . At small
aspect ratios in which the block permeability tends toward
the arithmetic mean, mln σK̄

is larger than µln K , reaching
a peak at around θln K = D . At large aspect ratios where
the block permeability tends toward the harmonic mean,

mln σK̄
is smaller than µln K , again reaching a minimum

around θln K = D . Since the arithmetic and harmonic means
bound the geometric mean above and below, respectively,
the general form of the estimated results are as expected.
While it appears that in the limit as θln K → 0 both the
small and large aspect ratio mean results tend toward the
geometric mean, this is actually due to the fact that the
effective size of the domain D/θln K is tending to infinity
so that the unbounded results of Eq. 8.16 apply. For such
a situation, the small variances seen in Figure 8.8 are
as expected. At the other extreme, as θln K → ∞, there
appears again to be convergence to the geometric mean
for all three aspect ratios considered. In this case, the field
becomes perfectly correlated, so that all points have the
same permeability and µK̄ = µln K and σK̄ = σln K for any
aspect ratio.

Finally, we note that there is virtually no difference in
the block permeability mean and variance arising from the



274 8 GROUNDWATER MODELING

0
1

0
1

0
1

0 1 2−5 −4 −3 −2 −1

0 1 2−5 −4 −3 −2 −1

0 1 2−5 −4 −3 −2 −1

ln(q/D)

ln(q/D)

ln(q/D)

ra
ln K(t)

ra
ln K(t)

ra
ln K(t)

XL/YL = 1/9

XL/YL = 9/1

XL/YL = 1/1

XL/YL = 1/9

XL/YL = 9/1

XL/YL = 1/1

XL/YL = 1/9

XL/YL = 9/1

XL/YL = 1/1

s l
n 

K
 / 

s
ln

 K
−

s l
n 

K
 / 

s
ln

 K
−

s l
n 

K
 / 

s
ln

 K
−

Figure 8.8 Estimated standard deviation of log-block permeability, sln K̄ /σln K . Solid line corresponds to sln K̄ /σln K = √
γ (D , D).

three correlation structures considered (see Eqs. 8.17). In
other words, the probabilistic nature of flow through a
random medium is insensitive to the form of the correlation
function. In the remaining seepage problems considered in
this chapter we will use the Markov correlation function,
Eq. 8.17a.

8.5 TWO-DIMENSIONAL FLOW BENEATH
WATER-RETAINING STRUCTURES

The finite-element method is an ideal vehicle for modeling
flow beneath water-retaining structures (e.g., earth dams
with or without cutoff walls) where the soil or rock prop-
erties are spatially variable (Griffiths and Fenton, 1993,
1998; Paice et al., 1994; and Griffiths et al.,1996). Finite-
element methods which incorporate spatial variability rep-
resented as random fields generally fall into two camps:
(1) the stochastic finite-element method in which the sta-
tistical properties are built directly into the finite-element
equations themselves [see, e.g., Vanmarcke and Grigoriu

(1983)] and (2) the RFEM which uses multiple analyses
(i.e., Monte Carlo simulations) with each analysis stem-
ming from a realization of the soil properties treated as a
multidimensional random field. The main drawback to the
stochastic finite-element method is that it is a first-order
approach which loses accuracy as the variability increases.
The main drawback to the RFEM is that it involves multiple
finite-element analyses. However, with modern computers
the Monte Carlo approach is now deemed to be both fast
and accurate.

In this section, the RFEM has been used to examine two-
dimensional confined seepage, with particular reference
to flow under a water-retaining structure founded on a
stochastic soil. In the study of seepage through soils beneath
water-retaining structures, three important quantities need
to be assessed by the designers (see Figure 8.9):

1. Seepage quantity
2. Exit gradients
3. Uplift forces
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Figure 8.9 Confined seepage boundary value problem. The two vertical walls and the hashed boundaries are impermeable.

The classical approach used by civil engineers for estimat-
ing these quantities involves the use of carefully drawn flow
nets (Casagrande, 1937; Cedergren, 1967; Verruijt, 1970).
Various alternatives to flow nets are available for solving
the seepage problem; however in order to perform quick
parametric studies, for example, relating to the effect of
cutoff wall length, powerful approximate techniques such
as the method of fragments (Pavlovsky, 1933; Harr, 1962;
Griffiths 1984) are increasingly employed. The conven-
tional methods are deterministic, in that the soil permeabil-
ity is assumed to be constant and homogeneous, although
anisotropic properties and stratification can be taken into
account.

A more rational approach to the modeling of soil is to
assume the permeability of the soil underlying a structure,
such as that shown in Figure 8.9, is random, that is, the soil
is assumed to be a “random” field (e.g., Vanmarcke, 1984)
characterized by a mean, standard deviation, and some cor-
relation structure. While higher joint moments are possible,
they are very rarely estimated with any accuracy, so gen-
erally just the first two moments (mean and covariance
structure) are specified.

The stochastic flow problem posed in Figure 8.9 is far
too difficult to contemplate solving analytically (and/or
the required simplifying assumption would make the solu-
tion useless). The determination of probabilities associated
with flow and exit gradients is conveniently done using
Monte Carlo simulation. For this problem, we will use the
LAS random-field generator (see Section 6.4.6) to gen-
erate realizations of the random permeability fields and
then determine the resulting flow and head fields using the
finite-element method for each realization. In detail, the
simulated field of permeabilities is mapped onto a finite-
element mesh, and potential and stream function boundary

conditions are specified. The governing elliptic equation for
steady flow (Laplace) leads to a system of linear “equilib-
rium” equations which are solved for the nodal potential
values throughout the mesh using conventional Gaussian
elimination within a finite-element framework. The pro-
gram used to perform this study is called RFLOW2D and
is available at http://www.engmath.dal.ca/rfem.

Only deterministic boundary conditions are considered
in this analysis, the primary goal being to investigate the
effects of randomly varying soil properties on the engi-
neering quantities noted above. The method presented is
nevertheless easily extended to random boundary conditions
corresponding to uncertainties in upstream and downstream
water levels, so long as these can be simulated.

The steady-flow problem is governed in two dimensions
by Laplace’s equation, in which the dependent variable φ

is the piezometric head or potential at any point in the
Cartesian field x–y :

K11
∂2φ

∂x 2
+ K22

∂2φ

∂y2
= 0 (8.26)

where K11 and K22 are the permeabilities in the x1 and x2

(horizontal and vertical) directions, respectively. The per-
meability field is assumed to be isotropic (K11 = K22 = K ).
While the method discussed in this section is simply ex-
tended to the anisotropic case (through the generation of a
pair of correlated random fields), such site-specific exten-
sions are left to the reader (the options in RFLOW2D easily
allow this).

Note that Eq. 8.26 is strictly only valid for spatially con-
stant K . In this analysis the permeability is taken to be
constant within each element, its value being given by the
local geometric average of the permeability field over the



276 8 GROUNDWATER MODELING

element domain. The geometric average was found to be ap-
propriate in the previous section for square elements. From
element to element, the value of K will vary, reflecting
the random nature of the permeability. This approximation
of the permeability field being made up of a sequence of
local averages is consistent with the approximations made
in the finite-element method and is superior to most tradi-
tional approaches in which the permeability of an element
is taken to be simply the permeability at some point within
the element.

The finite-element mesh used in this study is shown
in Figure 8.10. It contains 1400 elements, and represents
a model of two-dimensional flow beneath a dam which
includes two cutoff walls. The upstream and downstream
potential values are fixed at 10 and 0 m, respectively.
The cutoff walls are assumed to have zero thickness, and
the nodes along those walls have two potential values
corresponding to the right and left sides of the wall.

For a given permeability field, the finite-element analy-
sis computes nodal potential values which are then used to
determine flow rates, uplift pressures, and exit gradients.
The statistics of these quantities are assessed by producing
multiple realizations of the random permeability field and
analyzing each realization with the finite-element method to
produce multiple realizations of the random flow rates, up-
lift pressures, and exit gradients. The random permeability
field is characterized by three parameters defining its first
two moments, namely the mean µK , the standard deviation
σK , and the correlation length θln K . In order to obtain rea-
sonably accurate estimates of the output statistics, it was
decided that each “run” would consist of the analysis of
1000 realizations.

8.5.1 Generation of Permeability Values

The permeability was assumed to be lognormally dis-
tributed and is obtained through the transformation

Ki = exp{µln K + σln K Gi } (8.27)

in which Ki is the permeability assigned to the i th element,
Gi is the local (arithmetic) average of a standard Gaussian
random field G(x) over the domain of the i th element,
and µln K and σln K are the mean and standard deviation

20
elements

21 elements 30 elements 21 elements

Figure 8.10 Finite-element mesh. All elements are 0.2-m ×
0.2-m squares.

of the logarithm of K (obtained from the “target” mean
and standard deviation µK and σK ).

Realizations of the permeability field are produced using
the LAS technique discussed in Section 6.4.6. The LAS
technique renders realizations of the local averages Gi

which are derived from the random field G(x) having zero
mean, unit variance, and a spatial correlation controlled by
the correlation length. As the correlation length goes to
infinity, Gi becomes equal to Gj for all elements i and j
that is, the field of permeabilities tends to become uniform
on each realization. At the other extreme, as the correlation
length goes to zero, Gi and Gj become independent for all
i �= j —the soil permeability changes rapidly from point to
point.

In the two-dimensional analyses presented in this section,
the correlation lengths in the vertical and horizontal direc-
tions are taken to be equal (isotropic) for simplicity. Since
actual soils are frequently layered, the correlation length
horizontally is generally larger than it is vertically. How-
ever, the degree of layering is site specific and is left to the
reader as a refinement. The results presented here are aimed
at establishing the basic probabilistic behavior of flow under
water-retaining structures. In addition, the two-dimensional
model used herein implies that the out-of-plane correlation
length is infinite—soil properties are constant in this direc-
tion—which is equivalent to specifying that the streamlines
remain in the plane of the analysis. This is clearly a defi-
ciency of the two-dimensional model; however, as we shall
see in the next section, most of the characteristics of the ran-
dom flow are nevertheless captured by the two-dimensional
model.

8.5.2 Deterministic Solution

With regard to the seepage problem shown in Figure 8.10,
a deterministic analysis was performed in which the perme-
ability of all elements was assumed to be constant and equal
to 1 m/s. This value was chosen as it was to be the mean
value of subsequent stochastic analyses. Both the potential
and the inverse streamline problems were solved, leading
to the flow net shown in Figure 8.11.

All output quantities were computed in nondimensional
form. In the case of the flow rate, the global flow vector
Q was computed by forming the product of the potentials
and the global conductivity matrix from Eq. 8.3. Assuming
no sources or sinks in the flow regime, the only nonzero
values in Q correspond to those freedoms on the upstream
side at which the potentials were fixed equal to 10 m. These
values were summed to give the total flow rate Q in cubic
meters per second per meter, leading to a nondimensional
flow rate Q̄ defined by

Q̄ = Q

µK �H
(8.28)
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Figure 8.11 Deterministic flow net.

where µk is the (isotropic) mean permeability and �H is
the total head difference between the up- and downstream
sides. Here, Q̄ is equivalent to the “shape factor” of the
problem, namely the ratio of the number of flow channels
divided by the number of equipotential drops (nf /nd ) that
would be observed in a carefully drawn flow net; alterna-
tively, it is also equal to the reciprocal of the form factor
utilized by the method of fragments.

In the following, the distribution of Q̄ will be inves-
tigated. The actual flow rate is determined by inverting
Eq. 8.28,

Q = µK �H Q̄ (8.29)

which will have the same distribution as Q̄ except with
mean and standard deviation

µQ = µK �H µQ̄ (8.30a)

σQ = µK �H σQ̄ (8.30b)

The uplift force on the base of the dam, U , is computed
by integrating the pressure distribution along the base of
the dam between the cutoff walls. This quantity is easily
deduced from the potential values at the nodes along this
line together with a simple numerical integration scheme
(e.g., repeated trapezium rule). A nondimensional uplift
force Ū is defined as

Ū = U

�H γwL
(8.31)

where γw is the unit weight of water, L is the distance
between the cutoff walls, and Ū is the uplift force expressed
as a proportion of buoyancy force that would occur if the
dam was submerged in water alone. The distribution of U
is the same as the distribution of Ū except with mean and
standard deviation

µU = Lγw�H µŪ (8.32a)

σU = Lγw�H σŪ (8.32b)

The exit gradient ie is the rate of change of head at
the exit point closest to the dam at the downstream end.
This is calculated using a four-point backward-difference
numerical differentiation formula of the form

ie ≈ 1

6b
(11φ0 − 18φ−1 + 9φ−2 − 2φ−3) (8.33)

Cutoff wall

Dam

b

f 0

f−1

f−2

f−3

Downstream

Figure 8.12 Detail of downstream cutoff wall.

where the φi values correspond to the piezometric head at
the four nodes vertically below the exit point, as shown in
Figure 8.12, and b is the constant vertical distance between
nodes. It may be noted that the downstream potential head
is fixed equal to zero, and thus φ0 = 0.0 m. The use of
this four-point formula was arbitrary and was considered
a compromise between the use of very low order formu-
las which would be too sensitive to random fluctuations
in the potential and high-order formulas which would in-
volve the use of correspondingly high-order interpolation
polynomials which would be hard to justify physically.

Referring to Figures 8.9 and 8.10, the constants described
above were given the following values:

�H = 10 m, µK = 1 m/s, γw = 9.81 kN/m3,

L = 15 m, b = 0.2 m

and a deterministic analysis using the mesh of Figure 8.10
led to the following output quantities:

Q̄ = 0.226, Ū = 0.671, ie = 0.688

This value of ie = 0.688 would be considered unacceptable
for design purposes as the critical hydraulic gradient for
most soils is approximately unity and a factor of safety
against piping of 4–5 is often recommended (see, e.g.,
Harr, 1962). However, the value of ie is proportional to
the head difference �H , which in this case, for simplicity
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and convenience of normalization, has been set to 10 m as
noted previously.

These deterministic results will be compared with output
from the stochastic analyses described in the next section.

8.5.3 Stochastic Analyses

In all the two-dimensional stochastic analyses that follow,
the soil was assumed to be isotropic with a mean perme-
ability µK = 1 m/s. More specifically, the random fields
were generated such that the target point mean perme-
ability of each finite element was held constant at 1 m/s.
Parametric studies were performed relating to the effect
of varying the standard deviation (σK ) and the correlation
length (θln K ) of the permeability field. Following 1000 re-
alizations, statistics relating to output quantities Q̄ , Ū , and
ie were calculated.

8.5.3.1 Single Realization Before discussing the results
from multiple realizations, an example of what a flow
net might look like for a single realization is given in
Figures 8.13a and b for permeability statistics µK = 1 m/s,
σK = 1 m/s, and θln K = 1.0 m.

In Figure 8.13a, the flow net is superimposed on a gray
scale which indicates the spatial distribution of the perme-
ability values. Dark areas correspond to low permeability
and light areas to high permeability. The streamlines clearly
try to “avoid” the low-permeability zones, but this is not
always possible as some realizations may generate a com-
plete blockage of low-permeability material in certain parts
of the flow regime. This type of blockage is most likely to
occur where the flow route is compressed, such as under
a cutoff wall. An example where this happens is shown in
Figure 8.13b. Flow in these (dark) low-permeability zones

(a)

(b)

Figure 8.13 Stochastic flow net for two typical realizations.

is characterized by the streamlines moving further apart
and the equipotentials moving closer together. Conversely,
flow in the (light) high-permeability zones is characterized
by the equipotentials moving further apart and the stream-
lines moving closer together. In both of these figures the
contrast between stochastic flow and the flow through a
deterministic field, such as that shown in Figure 8.11, is
clear. In addition, the ability for the streamlines to avoid
low-permeability zones means that the average permeability
seen by the flow is higher than if the flow was constrained
to pass through the low-permeability zones. This ability to
circumnavigate the blockages is why the geometric aver-
age is a better model for two-dimensional flow than is the
harmonic average.

Although local variations in the permeability have an
obvious effect on the local paths taken by the water as it
flows downstream, globally the stochastic and deterministic
flow nets exhibit many similarities. The flow is predomi-
nantly in a downstream direction, with the fluid flowing
down, under, and around the cutoff walls. For this rea-
son the statistics of the output quantities might be expected
to be rather insensitive to the geometry of the problem
(e.g., length of walls) and qualitatively similar to the prop-
erties of a one-dimensional flow problem, aside from an
average effective permeability, which is higher than in the
one-dimensional case.

8.5.3.2 Statistics of Potential Field Figure 8.14 gives
contours of the mean and standard deviation of the potential
field following 1000 realizations for the case where θln K =
1.0 and vK = σK /µK = 1.0. The mean potential values
given in Figure 8.14 a are very similar to those obtained
in the deterministic analysis summarized in the flow net
of Figure 8.11. The standard deviation of the potentials
given in Figure 8.14b indicate the zones in which the
greatest uncertainty exists regarding the potential values. It
should be recalled that the up- and downstream (boundary)
potentials are deterministic, so the standard deviation of
the potentials on these boundaries equals zero. The greatest
values of standard deviation occur in the middle of the
flow regime, which in the case considered here represents
the zone beneath the dam and between the cutoff walls.
The standard deviation is virtually constant in this zone.
The statistics of the potential field are closely related to the
statistics of the uplift force, as will be considered in the
next section.

Other values of θln K and vK led to the same mean
contours as seen in Figure 8.14a. The potential standard
deviations increase with increasing vK , as expected, but
tend towards zero as θln K → 0 or θln K → ∞. The poten-
tial standard deviations reach a maximum when θln K �
6 m or, more generally, when the correlation length is
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Figure 8.14 (a) Contours of potential mean and (b) potential standard deviation (both in meters) for σK /µK = 1.0 and θln K = 1.0 m.

approximately equal to the width of the water-retaining
structure. This “worst-case” correlation length is commonly
observed and can be used when the correlation length is
unknown (which is almost always).

8.5.3.3 Flow Rate, Uplift, and Exit Gradient Paramet-
ric studies based on the mesh of Figure 8.10 were designed
to show the effect of the permeability’s standard devia-
tion σK and correlation length θln K on the output quantities
Q̄ , Ū , and ie . In all cases the mean permeability µK was
maintained constant at 1 m/s.

Instead of plotting σK directly, the dimensionless co-
efficient of variation of permeability was used, and the
following values were considered:

σK

µK

= 0.125, 0.25, 0.50, 1.0, 2.0, 4.0, 8.0, 16.0

together with correlation lengths

θln K = 0.0, 1.0, 2.0, 4.0, 8.0, ∞ m

All permutations of these values were analyzed, and the
results were summarized in Figures 8.15, 8.16, and 8.17 in
the form of σK /µK versus the estimated means and standard
deviations of Q̄ , Ū , and ie , denoted (mQ̄ , sQ̄ ), (mŪ , sŪ ), and
(mie , sie ), respectively.

Flow Rate Figure 8.15a shows a significant fall in mQ̄
(where mQ̄ is the simulation-based estimate of µQ̄ ) as

σK /µK increases for θln K < 8 m. As the correlation length
approaches infinity, the expected value of Q̄ approaches the
constant 0.226. This curve is also shown in Figure 8.15a,
although it should be noted it has been obtained through
theory rather than simulation. In agreement with this result,
the curve θln K = 8 m shows a less marked reduction in mQ̄
with increasing coefficient of variation σK /µK . However,
over typical correlation lengths, the effect on average flow
rate is slight. The decrease in flow rate as a function of
the variability of the soil mass is an important observation
from the point of view of design. Traditional design practice
may very well be relying on this variability to reduce
flow rates on average. It also implies that ensuring higher
uniformity in the substrate may be unwarranted unless the
mean permeability is known to be substantially reduced
and/or the permeability throughout the site is carefully
measured. It may be noted that the deterministic result
of Q̄ = 0.226 has been included in Figure 8.15a, and, as
expected, the stochastic results converge on this value as
σK /µK approaches zero.

Figure 8.15b shows the behavior of sQ̄ , the estimate of
σQ̄ , as a function of σK /µK . Of particular note is that
sQ̄ reaches a maximum corresponding to σK /µK in the
range 1.0–2.0 for finite θln K . Clearly, when σK = 0, the
permeability field will be deterministic and there will be
no variability in the flow rate: σQ̄ will be zero. What is
not quite so obvious is that because the mean of Q̄ falls
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Figure 8.15 Effect of correlation length and coefficient of vari-
ation of permeability on (a) mean flow rate and (b) flow rate
standard deviation.

to zero when σK /µK → ∞ for finite θln K (see Figure 8.15,
where the curves go to zero as the permeability variability
increases), the standard deviation of Q̄ must also fall
to zero since Q̄ is nonnegative. Thus, σQ̄ = 0 when the
permeability variance is both zero and infinite. It must,
therefore, reach a maximum somewhere between these two
bounds. The point at which the maximum occurs moves to
the right as θln K increases.

In general, it appears that the greatest variability in Q̄
occurs under rather typical conditions: correlation lengths
between 1 and 4 m and coefficient of variation of perme-
ability of around 1 or 2.

Uplift Force Figures 8.16a and b show the relationship
between uplift force parameters µŪ and σŪ and input per-
meability parameters σK /µK and θln K . In the figure, µŪ
and σŪ are estimated from the simulation by mŪ and sŪ ,
respectively. According to Figure 8.16a, µŪ is relatively
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Figure 8.16 Effect of correlation length and coefficient of vari-
ation of permeability on (a) mean uplift force and (b) uplift force
standard deviation.

insensitive to the parametric changes. There is a gradual
fall in µŪ as both σK /µK and θln K increase, the greatest
reduction being about 10% of the deterministic value of
0.671 when σK /µK = 16.0 and θln K = 8.0 m. The insensi-
tivity of the uplift force to the permeability input statistics
might have been predicted from Figures 8.11 and 8.14a, in
which the contours of mean potential (piezometric head) are
identical in both the deterministic and stochastic analyses.

Figure 8.16b shows that σŪ consistently rises as both
σK /µK and θln K increase. It is known that in the limit
as θln K → ∞, σŪ → 0 since under those conditions the
permeability field becomes completely uniform. Some hint
of this increase followed by a decrease is seen from Figure
8.16b in that the largest increases are for θln K = 0 to
θln K = 1 while the increase from θln K = 4 to θln K = 8 is
much smaller.

The actual value of σŪ for a given set of σK /µK and θln K

could easily be deduced from the standard deviation of the
potential values. Figure 8.14b gives contours of the standard
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deviation of the potential throughout the flow domain for
the particular values σK /µK = 1.0 and θln K = 1.0. In Figure
8.14b, the potential standard deviation beneath the dam
was approximately constant and equal to 0.71 m. After
nondimensionalization by dividing by �H = 10 m, these
values closely agree with the corresponding value in the
graph of Figure 8.16b.

The magnitude of the standard deviation of the uplift
force given in Figure 8.16b across the range of parameters
considered was not very great. The implication is that
this quantity can be estimated with a reasonable degree
of confidence. The explanation lies in the fact that the
uplift force is calculated using potential values over quite a
large number of nodes beneath the dam. This “averaging”
process would tend to damp out fluctuations in the potential
values that would be observed on a local scale, resulting in
a variance reduction.

Exit Gradient The exit gradient is based on the first
derivative of the potential (or piezometric head) with
respect to distance at the exit point closest to the down-
stream end of the dam. It is well known that in a determin-
istic approach the largest value of ie , and hence the most
critical, lies at the exit point of the uppermost (and short-
est) streamline. While for a single realization of a stochastic
analysis this may not be the case, on average the location
of the critical exit gradient is expected to occur at the “de-
terministic” location.

As ie is based on a first derivative at a particular location
within the mesh (see Figure 8.12), it can be expected to be
the most susceptible to local variations generated by the
stochastic approach. In order to average the calculation of
ie over a few nodes, it was decided to use a four-point
(backward) finite-difference scheme as given previously in
Eq. 8.33. This is equivalent to fitting a cubic polynomial
over the potential values calculated at the four nodes closest
to the exit point adjacent to the downstream cutoff wall. The
cubic is then differentiated at the required point to estimate
ie . Note then that the gradient is estimated by studying the
fluctuations over a length of 0.6 m vertically (the elements
are 0.2 m by 0.2 m in size). This length will be referred to
as the differentiation length in the following.

The variation of µie and σie over the range of parameters
considered are given in Figures 8.17a and b. The figure
shows the simulation-based estimates mie and sie of µie
and σie , respectively. The sensitivity of ie to σK /µK is
clearly demonstrated. In Figure 8.17a, mie agrees quite
closely with the deterministic value of 0.688 for values
of σK /µK in the range 0.0–1.0, but larger values start to
show significant instability and divergence. It is interesting
to note that for θln K ≤ 1 the tendency is for mie to fall
below the deterministic value of ie as σK /µK is increased,

whereas for larger values of θln K it tends to increase above
the deterministic value. The scales 0 and 1 are less than
and of the same magnitude as the differentiation length
of 0.6 m used to estimate the exit gradient, respectively,
while the scales 2, 4, and 8 are substantially greater. If
this has some bearing on the divergence phenomena seen
in Figure 8.17a, it calls into some question the use of a
differentiation length to estimate the derivative at a point.
Suffice to say that there may be some conflict between
the numerical estimation method and random-field theory
regarding the exit gradient that needs further investigation.

Figure 8.17b indicates the relatively large magnitude
of σie which grows rapidly as σK /µK is increased. The
influence of θln K in this case is not so great, with the results
corresponding to θln K values of 1.0, 2.0, 4.0, and 8.0 m
being quite closely grouped. It is noted that theoretically,
as θln K → ∞, µie → 0.688 and σie → 0. There appears to
be some evidence of a reduction in σie as θln K increases,
which is in agreement with the theoretical result. For
correlation lengths negligible relative to the differentiation
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length, that is, θln K = 0, the variability in ie is much
higher than that for other scales at all but the highest
permeability variance. This is perhaps to be expected,
since θln K = 0 yields large fluctuations in permeability
within the differentiation length. It is also to be noted
that the point correlation function employed in this study
is Markovian (see Eq. 8.17a), which yields a random
field which is nondifferentiable, its derivative having an
infinite variance. Although local averaging does make the
process differentiable, it is believed that this pointwise
nondifferentiability may be partially to blame for the erratic
behavior of the exit gradient.

8.5.4 Summary

This section presented a range of parametric studies which
have been performed relating to flow beneath a water-
retaining structure with two cutoff walls founded on a
stochastic soil. Random-field concepts were used to gen-
erate permeability fields having predefined mean, standard
deviation, and correlation structure. These values were
mapped onto a finite-element mesh consisting of 1400 el-
ements, and, for each set of parameters, 1000 realizations
of the boundary value problem were analyzed. In all cases,
the target mean permeability of each finite element was
held constant and parametric studies were performed over
a range of values of coefficient of variation and correlation
length.

The three output quantities under scrutiny were the flow
rate, the uplift force, and the exit gradient, the first two
being nondimensionalized for convenience of presentation.

The mean flow rate was found to be relatively insensi-
tive to typical correlation lengths but fell consistently as
the variance of the permeability was increased. This obser-
vation may be of some importance in the design of such
water-retaining structures. The standard deviation of the
flow rate consistently increased with the correlation length
but rose and then fell again as the coefficient of variation
was increased.

The mean uplift force was rather insensitive to the para-
metric variations, falling by only about 10% in the worst
case (high-permeability variance and θln K = 8). The rela-
tively small variability of uplift force was due to a “damp-
ing out” of local variations inherent in the random field
by the averaging of potential values over the nodes along
the full length of the base of the dam. Nevertheless, the
standard deviation of the uplift force rose consistently
with increasing correlation length and coefficient of varia-
tion, as was to be expected from the contour plots of the
standard deviation of the potential values across the flow
domain.

The mean exit gradient was much more sensitive to the
statistics of the input field. Being based on a first derivative

of piezometric head with respect to length at the exit point,
this quantity is highly sensitive to local variations inherent
in the potential values generated by the random field. Some
local averaging was introduced both in the random-field
simulation and by the use of the four-point numerical
differentiation formula; however, the fluctuation in mean
values was still considerable and the standard deviation
values were high.

8.6 THREE-DIMENSIONAL FLOW

This section considers the stochastic three-dimensional
boundary value problem of steady seepage, studying the
influence of soil variability on “output” quantities such as
flow rate (Griffiths and Fenton, 1995, 1997). The proba-
bilistic results are contrasted with results obtained using an
idealized two-dimensional model. For the computationally
intensive three-dimensional finite-element analyses, strate-
gies are described for optimizing the efficiency of computer
code in relation to memory and CPU requirements. The pro-
gram used to perform this analysis is RFLOW3D available
at http://www.engmath.dal.ca/rfem.

The two-dimensional flow model used in the previous
two sections rested on the assumption of perfect correla-
tion in the out-of-plane direction. This assumption is no
longer necessary with a three-dimensional model, and so
the three-dimensional model is obviously more realistic.
The soil permeability is simulated using the LAS method
(Section 6.4.6) and the steady flow is determined using the
finite-element method. The problem chosen for study is a
simple boundary value problem of steady seepage beneath
a single sheet pile wall penetrating a layer of soil. The
variable soil property in this case is the soil permeability
K , which is defined in the classical geotechnical sense as
having units of length over time.

The overall dimensions of the problem to be solved
are shown in Figures 8.18a and b. Figure 8.18a shows
an isometric view of the three-dimensional flow regime,
and Figure 8.18b shows an elevation which corresponds
to the two-dimensional domain analyzed for comparison.
In all results presented in this section, the dimensions Lx

and Ly were held constant while the third dimension Lz

was gradually increased to monitor the effects of three-
dimensionality.

In all analyses presented in this section, a uniform mesh
of cubic eight-node brick elements with a side length of 0.2
was used with 32 elements in the x direction (Lx = 6.4),
16 elements in the y direction (Ly = 3.2), and up to 16
elements in the z direction (Lz = 0.8, 1.6, 3.2).

The permeability field is assumed to be lognormally
distributed and is obtained through the transformation

Ki = exp{µln K + σln K Gi } (8.34)
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Figure 8.18 (a) Isometric view of three-dimensional seepage
problem with (b) elevation.

in which Ki is the permeability assigned to the i th element,
Gi is the local (arithmetic) average of a standard Gaussian
random field G(x) over the domain of the i th element, and
µln K and σln K are the mean and standard deviation of the
logarithm of K , obtained from the prescribed mean and
standard deviation µK and σK via the transformations of
Eqs. 1.176. Realizations of the local average field Gi are
generated by LAS (Section 6.4.6) using a Markov spatial
correlation function (Section 3.7.10.2),

ρ(τ ) = exp

{
−2|τ |

θln K

}
(8.35)

where |τ | is the distance between points in the field and
θln K is the correlation length.

In this three-dimensional analysis, the correlation lengths
in all directions are taken to be equal (isotropic) for
simplicity.

8.6.1 Simulation Results

A Monte Carlo approach to the seepage problem was
adopted in which, for each set of input statistics (µK , σK ,
θln K ) (or equivalently, µln K , σln K , θln K ) and mesh geometry

(Lz ), 1000 realizations were performed. The main output
quantities of interest from each realization in this problem
are the total flow rate through the system Q and the exit
gradient ie .

We first focus on the flow rate. Following Monte Carlo
simulations, the mean and standard deviation of Q were
computed and presented in nondimensional form by repre-
senting Q in terms of a normalized flow rate Q̄ ,

Q̄ = Q

�H µK Lz
(8.36)

where �H is the total head loss across the wall. In all the
calculations performed in this study, �H was set to unity
since it has a simple linear influence on the flow rate Q .
Division by Lz has the effect of expressing the average flow
rate over one unit of thickness in the z direction enabling
a direct comparison to be made with the two-dimensional
results. To get the true flow rate through the soil, Eq. 8.36
is inverted to give

Q = Lz µK �H Q̄ (8.37)

which has the same distribution as Q̄ except with mean and
variance given by

µQ = Lz µK �H µQ̄ (8.38a)

σQ = Lz µK �H σQ̄ (8.38b)

The following parametric variations were implemented for
fixed µK = 1, Lx = 6.4, and Ly = 3.2:

σK

µK

= 0.125, 0.25, 0.5, 1, 2, 4, 8

θln K = 1, 2, 4, 8, ∞ (analytical)

Lz = 0.8, 1.6, 3.2

and a selection of results will be presented here.
As the coefficient of variation of the input permeabil-

ity (vK = σK /µK ) was increased, the mean estimated nor-
malized flow rate mQ̄ was observed to fall consistently
from its deterministic value (assuming constant permeabil-
ity throughout) of Q̄det ≈ 0.47, as shown in Figure 8.19a
for the case where Lz /Ly = 1. The fall in mQ̄ was steepest
for small values of the correlation length θln K ; however,
as θln K was increased, mQ̄ tended toward the determinis-
tic result that would be expected for a strongly correlated
permeability field (θln K → ∞).

The reduction in the expected flow rate with increased
permeability variance but fixed mean has been described
as “counterintuitive” by some observers. The explanation
lies in the fact that in a continuous-flow regime such as
the one modeled here, flow must be occurring in every
region of the domain, so the greater the permeability vari-
ance, the greater the volume of low-permeability material
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that must be negotiated along any flow path. In an extreme
case of “series” flow down a one-dimensional pipe of vary-
ing permeability cells, the effective permeability is given
by the harmonic mean of the permeability values, which
is heavily dependent on the lowest permeability encoun-
tered. The other extreme of “parallel” flow leads to the
arithmetic mean. The three-dimensional example consid-
ered here is a complex combination of parallel and series
flow which leads to an effective permeability more closely
approximated by the geometric mean (Section 4.4.2), which
is always smaller than the arithmetic mean (but not as small
as the harmonic mean).

Figure 8.19b shows the estimated standard deviation of
the normalized flow rate sQ̄ for the same geometry. For
small θln K very little variation in Q̄ was observed, even for
high coefficients of variation. This is understandable if one
thinks of the total flow through the domain as effectively
an averaging process; high flow rates in some regions
are offset by lower flow rates in other regions. It is well
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Figure 8.19 Influence of coefficient of variation vK and corre-
lation length θln K on (a) mean of and (b) standard deviation of
normalized flow rate Q̄ . Plots are for Lz /Ly = 1.

known in statistics that the variance of an average decreases
linearly with the number of independent samples used in
the average. In the random-field context, the “effective”
number of independent samples increases as the correlation
length decreases, and thus the decrease in variance in flow
rate is to be expected. Conversely, when the correlation
length is large, the variance in the flow rate is also expected
to be larger—there is less averaging variance reduction
within each realization. The maximum flow rate variance
is obtained when the field becomes completely correlated
(θln K = ∞), in which case the permeability is uniform
at each realization. Since the flow rate is proportional
to the (uniform) permeability in this case, the flow rate
variance exactly follows that of the permeability, and thus
for θln K = ∞,

σQ̄ = σK

µK

Q̄det (8.39)

Notice also in Figure 8.19b that the standard deviation sQ̄

seems to reach a maximum at intermediate values of vK for
the smaller correlation lengths. This is because the mean
mQ̄ is falling rapidly for smaller θln K . In fact, in the limit
as vK → ∞, the mean normalized flow rate will tend to
zero, which implies that the standard deviation sQ̄ will also
tend to zero (since Q̄ is a nonnegative quantity). In other
words, the standard deviation of the normalized flow rate
will be zero when vK = 0 or when vK = ∞ and will reach
a maximum somewhere in between for any θln K < ∞, the
maximum point being farther to the right for larger θln K .

In order to assess the accuracy of these estimators in
terms of their reproducibility, the standard deviation of the
estimators can be related to the number of simulations of
the Monte Carlo process (see Section 6.6). Assuming ln Q̄
is normally distributed, the standard deviations (standard
errors) of the estimators are as follows (in this study
n = 1000):

σmln Q̄
= sln Q̄√

n
� 0.032sln Q̄ (8.40a)

σs2
ln Q̄

=
√

2

n − 1
s2

ln Q̄ � 0.045s2
ln Q̄ (8.40b)

Figures 8.20a and b show the influence of three-
dimensionality on the estimated mean and standard devi-
ation of Q̄ by comparing results with gradually increasing
numbers of elements in the z direction. Also included in
these figures is the two-dimensional result which implies an
infinite correlation length in the z direction and allows no
flow out of the plane of the analysis. The particular cases
shown correspond to a fixed correlation length θln K = 1.

Compared with two-dimensional analysis, three dimen-
sions allow the flow greater freedom to avoid the low
permeability zones. This results in a less steep reduction
in the expected flow rate with increasing vK , as shown in
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Figure 8.20a. There is also a corresponding reduction in the
variance of the expected flow rate as the third dimension is
elongated as shown in Figure 8.20b. This additional vari-
ance reduction is due to the increased averaging one gets
when one allows variability in the third dimension. The dif-
ference between the two- and three-dimensional results is
not that great, however, and it could be argued that a two-
dimensional analysis is a reasonable first approximation to
the “true” behavior in this case. It should be noted that the
two-dimensional approximation will tend to slightly under-
estimate the expected flow through the system, which is an
unconservative result from the point of view of engineering
design.

8.6.2 Reliability-Based Design

One of the main objectives of stochastic analyses such as
those described in this section is to enable statements to
be made relating to the probability of certain flow-related

events occurring. Reliability-based design depends on this
approach, so consider again the case of flow rate pre-
diction beneath a water-retaining structure. Deterministic
approaches using fixed values of permeability throughout
the finite-element mesh will lead to a particular value of
the flow rate which can then be factored (i.e., scaled up) as
deemed appropriate by the designers. Provided this factored
value is less than the maximum acceptable flow rate, the
design is considered to be acceptable and in some sense
“safe.” Although the designer would accept that there is
still a small possibility of failure, this is subjective and no
attempt is made to quantify the risk.

On the other hand, the stochastic approach is more
realistic in recognizing that even in a “well-designed”
system, there will always be a possibility that the maximum
acceptable flow rate could be exceeded if an unfortunate
combination of soil properties should occur. The designers
then have to make a quite different decision relating to how
high a probability of “failure” would be acceptable.

Figure 8.21 shows typical histograms of the flow rate
following 1000 realizations for the cases where vk = 0.50
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Figure 8.21 Histograms of simulated flow rates following 1000
realizations (θln K = 2.00) along with fitted lognormal distribution
for (a) vK = 0.5 and (b) vK = 0.125.
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and vk = 0.125. Both plots are for Lz /Ly = 1.0 and θln K =
2.0 and fitted lognormal distributions are seen to match the
histograms well. The parameters of the fitted distribution,
µln Q̄ and σln Q̄ , are estimated from the suite of realizations
and given in the plots. The histograms are normalized to
produce a frequency density plot which has area beneath the
curve of unity; in this way the histogram can be directly
compared to the fitted distributions and allow the easy
estimation of probabilities.

A chi-square goodness-of-fit hypothesis test was per-
formed to assess the reasonableness of the lognormal dis-
tribution. The p-value of the test was 0.38 for Figure 8.21a
and 0.89 for Figure 8.21b, indicating strong agreement be-
tween the histogram and the fitted distribution (i.e., we can-
not reject the hypothesis that the distribution is lognormal).

The total deterministic flow rate through the three-
dimensional geometry that would have occurred if the per-
meability was constant and equal to unity is given by

Qdet = Lz µK �H Q̄det = (3.2)(1)(1)0.47 = 1.50

where Lz = 3.2 is the width of the flow problem in the z
direction and 0.47 represents the deterministic flow per unit
width based on a two-dimensional analysis in the x–y plane
(see Figure 8.18b). This value can be compared directly
with the histograms in Figure 8.21 and it can be seen
that the deterministic mean flow rate is quite close to the
distribution mean when vK = 0.125 (Figure 8.21b) but is
shifted to the right of the distribution mean when vK = 0.50
(Figure 8.21a). This shift is due to the falling mean flow
rate as vK increases (see Figure 8.19a).

For reliability-based design, a major objective of this type
of analysis would be to estimate the probability that the
deterministic flow rate underestimates the true flow rate.
Such an underestimation would imply an “unsafe” design
and should have an appropriately “low” probability. The
actual value of an acceptable design probability of failure
depends on a number of factors, including the importance
of the water-retaining structure in relation to safety and
infrastructure downstream.

Referring to the particular case shown in Figure 8.21a,
the estimated probability that the deterministic flow rate un-
derestimates the true flow rate is given by the following cal-
culation, which assumes that Q is lognormally distributed
(a reasonable assumption, as discussed above):

P [Q > Qdet] = 1 − �

(
ln 1.50 − 0.3139

0.1930

)
= 0.318

where µln Q = 0.3139 and σln Q = 0.1930 are the param-
eters of the fitted distribution shown in Figure 8.21a
and �(·) is the standard normal cumulative distribution
function. A similar calculation applied to the data in

Figure 8.21b leads to

P [Q > Qdet] = 1 − �

(
ln 1.50 − 0.4014

0.0506

)
= 0.468

and for a range of different vK values at constant correlation
length θln K = 2.00, the probability of an unsafe design has
been plotted as a function of log10 vK in Figure 8.22a.

Figure 8.22a shows that a deterministic calculation based
on the mean permeability will always lead to a conservative
estimate of the flow rate (i.e., P [Q > Qdet] < 50%). As
the coefficient of variation of the permeability increases,
however, the probability that Qdet underestimates the flow
rate decreases. For the range of vK -values considered, the
underestimation probability varied from less that 2% for
vK = 8 to a probability of 47% for vK = 0.125. In the
latter case, however, the standard deviation of the computed
flow also becomes small, so the range of flow values more
resembles a normal distribution than a lognormal one. In the
limit as vK → 0, the random permeability field tends to its
deterministic mean, but in probabilistic terms this implies
an equal likelihood of the true flow rate falling on either side
of the predicted Qdet value. Hence the curve in Figure 8.22a
tends to a probability of 50% for small values of vK . These
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Figure 8.22 Probability of unsafe design, P [Q > Qdet], plotted
against (a) vK with θln K = 2 and (b) θln K with vK = 0.5. Both
plots are for Lz /Ly = 1.00.



THREE-DIMENSIONAL FLOW 287

results are reassuring from a design viewpoint because they
indicate that the traditional approach leads to a conservative
estimate of the flow rate—the more variable the soil, the
more conservative the prediction. This observation is made
with the knowledge that permeability is considered one of
the most variable of soil properties with coefficients of
variation ranging as high as 3 (see, e.g., Lee et al., 1983;
Kulhawy et al., 1991; Phoon and Kulhawy, 1999).

The sensitivity of the probability P [Q > Qdet] to varia-
tions in the correlation length θln K is shown in Figure 8.22b.
The coefficient of variation of the soil permeability is main-
tained at a constant value given by vK = 0.50 and the
correlation length is varied in the range 0.5 < θln K < 8.
This result shows that as the correlation length increases
the probability of the true flow rate being greater than
the deterministic value also increases, although its value
is always less than 50%. In the limit, as θln K → ∞, each
realization of the Monte Carlo process assumes a perfectly
correlated field of permeability values. In this case, the flow
rate distribution is identical to the permeability distribution
(i.e., lognormal) with a mean equal to the flow rate that
would have been computed using the mean permeability.
The probability that the true flow rate exceeds the deter-
ministic value therefore tends to the probability that the
lognormally distributed random variable K exceeds its own
mean when θln K = ∞,

P [K > µK ] = 1 − �
( 1

2σln K

) = 1 − �

(√
ln

(
1 + v2

K

))

(8.41)
which, for vK = 0.5, gives P [K > µK ] = 0.405, which
Figure 8.22b is clearly approaching as θln K increases.

As θln K is reduced, however, the probability of the true
flow rate being greater than the deterministic value re-
duces quite steeply and approaches zero quite rapidly for
θln K ≤ 0.5. The actual value of θln K in the field will not usu-
ally be well established (except perhaps in the vertical di-
rection where sampling is continuous), so sensitivity studies
help to give a feel for the importance of this parameter. For
further information on soil property correlation, the inter-
ested reader is referred to Lumb (1966), Asaoka and Grivas
(1982), DeGroot and Baecher (1993), and Marsily (1985).

The extrapolation of results in Figure 8.22b to very low
probabilities (e.g., P [Q > Qdet] < 0.01) must be done cau-
tiously, however, as more than the 1000 realizations of the
Monte Carlo process used in this presentation would be
needed for accuracy in this range. In addition, low probabil-
ities can be significantly in error when estimated parameters
are used to describe the distribution. Qualitatively, the fall
in probability with decreasing θln K is shown well in the
histogram of Figure 8.23, where for the case of θln K = 0.5
the deterministic flow rate lies well toward the right-hand
tail of the distribution leading to P [Q > Qdet] � 0.038.
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Figure 8.23 Histogram of simulated flow rates following 1000
realizations (vK = 0.5, θln K = 0.5) along with fitted lognormal
distribution.

8.6.3 Summary

For low to moderate values of the correlation length (θln K <

8), the expected value of the flow rate was found to fall con-
sistently as the coefficient of variation of the permeability
field was increased. The explanation lies in the fact that in
a continuous-flow regime such as the one modeled here,
the low-permeability zones cannot be entirely “avoided,”
so the greater the permeability variance, the greater the
volume of low-permeability material that must be negoti-
ated and the lower the flow rate. For higher values of the
correlation length, the normalized flow rate mean tends to
the deterministic value. The standard deviation of the flow
rate was shown to consistently increase with the correlation
length, staying within the bounds defined analytically for
the limiting case of perfect correlation and to increase, then
decrease, with the standard deviation of the input perme-
ability for any finite correlation length.

The influence of three-dimensionality was to reduce the
overall “randomness” of the results observed from one real-
ization to the next. This had the effect of slightly increasing
the expected flow rate and reducing the variance of the flow
rate over those values observed from a two-dimensional
analysis with the same input statistics. Although unconser-
vative in the estimation of mean flow rates, there was not
a great difference between the two- and three-dimensional
results, suggesting that the simpler and less expensive two-
dimensional approach may give acceptable accuracy for the
cases considered.

Some of the results were reinterpreted from a reliability
viewpoint, which indicated that if the flow rate was com-
puted deterministically using the mean permeability, the
probability of the true flow rate being greater would always
be less than 50% (see also Eq. 8.41 when the correlation
length goes to infinity). This probability fell to even smaller
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values as the variance of the input permeability was in-
creased or the correlation length was reduced, implying that
a deterministic prediction of flow rate based on the mean
permeability would always be conservative on average.

8.7 THREE-DIMENSIONAL EXIT GRADIENT
ANALYSIS

The traditional approach to estimating the exit gradient
ie downstream of water-retaining structures due to steady
seepage is to assume homogeneous soil properties and pro-
ceed deterministically, perhaps using flow net techniques.
Once the exit gradient is estimated, a large safety factor
of 4–5 or even higher is then applied. The reason for this
conservative approach is twofold. First, the consequence
of piping and erosion brought about by ie approaching the
critical value ic can be very severe, leading to complete
and rapid failure of civil engineering structures with little
advance warning. Second, the high safety factors reflect the
designer’s uncertainty in local variations of soil properties
at the exit points and elsewhere within the flow domain. In
this section, we present an alternative to the safety factor ap-
proach by expressing exit gradient predictions in the context
of reliability-based design. Random-field theory and finite-
element techniques are combined with Monte Carlo simu-
lations to study the statistics of exit gradient predictions as
a function of soil permeability variance and spatial correla-
tion. The results for three dimensions are compared to those
for two dimensions. The approach enables conclusions to
be drawn about the probability of critical conditions being
approached and hence failure occurring at a given site.

The aim of this section is to observe the influence of
statistically variable soil permeability on the exit gradient
ie at the downstream side of a water-retaining structure in
both two and three dimensions (Griffiths and Fenton, 1998).
Smith and Freeze (1979a, b) were among the first to study
the problem of confined flow through a stochastic medium
using finite differences where flow between parallel plates
and beneath a single sheet pile were presented.

The soil mass is assumed to have a randomly distributed
permeability K , defined in the classical geotechnical sense
as having units of length over time. The exit gradient
is defined as the first derivative of the total head (or
“potential”), itself a random variable, with respect to length
at the exit points. To investigate the statistical behavior
of exit gradients when the permeability field is random,
a simple boundary value problem is considered—that of
seepage beneath a single sheet pile wall penetrating to half
the depth of a soil layer. Both two- and three-dimensional
results are presented for comparison; Figures 8.24a and b
show the meshes used for the two- and three-dimensional
finite-element models, respectively. In two dimensions, it

is assumed that all flow occurs in the plane of the analysis.
More realistically, the three-dimensional model has no such
restriction allowing flow to occur in any direction. This
particular problem has been chosen because it is well
understood, and a number of theoretical solutions exist for
computing flow rates and exit gradients in the deterministic
(constant-permeability) case (see, e.g., Harr, 1962; Verruijt,
1970; Lancellota, 1993).

The three-dimensional mesh has the same cross section
in the x–y plane as the two-dimensional mesh (12.8 × 3.2)
and extends by 3.2 units in the z direction. The two-
dimensional mesh consists of square elements (0.2 × 0.2)
and the three-dimensional mesh consists of cubic (0.2 ×
0.2 × 0.2) elements. The boundary conditions are such that
there is a deterministic fixed total head on the upstream
and downstream sides of the wall. For simplicity the head
difference across the wall is set to unity. The outer bound-
aries of the mesh are “no-flow” boundary conditions. In all
cases, the sheet pile wall has a depth of 1.6 units, which is
half the depth of the soil layer.

Figure 8.25a shows the classical smooth flow net for
both the two- and three-dimensional cases, corresponding
to a constant-permeability field, and Figure 8.25b shows
a typical case in which the permeability is a spatially
varying random field. In the latter case each element of
the mesh has been assigned a different permeability value
based on a statistical distribution. Note how the flow

(a)

(b)

 3
.2

 m

6.4 m

 Upstream
 Wall depth = 1.6 m

8 elements
 Downstream

 Ly = 3.2 m
16

elements

12.8 m

Lz = 3.2 m
16 elements

Lx =12.8 m

64 elements

6.4 m

1.
6 

m

Figure 8.24 Finite-element mesh used for (a) three- and (b)
two-dimensional seepage analyses.
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(a)

(b)

Figure 8.25 (a) Flow net for deterministic analysis (permeabil-
ity equal to mean value everywhere) and (b) typical flow net when
permeability is a spatially variable random field (with θln K = 2 m
and vK = 1).

net becomes ragged as the flow attempts to avoid low-
permeability zones.

The exit gradient against the downstream side of the
wall is computed using a two-point numerical differenti-
ation scheme as shown in Figure 8.26. The gradient is
computed adjacent to the wall since this location always
has the highest exit gradient in a constant-permeability field
and will also give the highest expected value in a random-
permeability field. In the three-dimensional analyses, the
exit gradient was computed at all 17 downstream locations
(there are 16 elements in the z direction, so there are 17
downstream nodes) although the two values computed at
the center and edge of the wall have been the main focus
of this study.

As in the previous sections, the permeability field will
be assumed to be lognormally distributed with realiza-
tions produced by LAS (Section 6.4.6). The correlation

Upstream

Downstream

ie = (hi − 1 − hi)/b

bhi − 1 

hi

Figure 8.26 Numerical calculation of exit gradient ie .

structure will be assumed isotropic, with site-specific
anisotropic extensions being left to the reader. The com-
puter programs used to produce the results presented in this
section are RFLOW2D for the two-dimensional analyses
and RFLOW3D for the three-dimensional analyses. Both
programs are available at http://www.engmath.dal
.ca/rfem.

The input to the random-field model comprises of the
three parameters (µK , σK , θln K —a Markov correlation func-
tion is used, see Section 3.7.10.2). Based on these under-
lying statistics, each of the elements (1024 elements in the
two-dimensional case and 16,384 in the three-dimensional
case) is assigned a permeability from a realization of the
permeability random field. A series of realizations are gen-
erated and the analysis of sequential realizations and the
accumulation of results comprises a Monte Carlo process.
In the current study, 2000 realizations were performed for
each of the two-dimensional cases and 1000 in the three-
dimensional cases. The reduced number of realizations in
three dimensions was chosen to allow a greater number of
parametric studies to be performed. Following Monte Carlo
simulation of each parametric combination, 2000 (or 1000)
values of the exit gradient ie were obtained which were then
analyzed statistically to give the mean, standard deviation,
and hence probability of high values occurring that might
lead to piping.

8.7.1 Simulation Results

The deterministic analysis of this seepage problem, with a
constant-permeability throughout, gives an exit gradient of
around idet = 0.193, which agrees closely with the analyti-
cal solution for this problem (see, e.g., Lancellota, 1993).

Given that the critical exit gradient ic (i.e., the value that
would initiate piping) for a typical soil is approximately
equal to unity, this deterministic value implies a factor of
safety of around 5—a conservative value not untypical of
those used in design of water-retaining structures (see, e.g.,
Harr, 1962; Holtz and Kovacs, 1981).

In all analyses the point mean permeability was fixed
at µK = 1 m/s while the point standard deviation and spa-
tial correlation of permeability were varied in the ranges
0.03125 < σK /µK < 32.0 and 0.5 < θln K < 16.0 m. For
each of these parametric combinations the Monte Carlo pro-
cess led to estimated values of the mean and standard devi-
ation of the exit gradient given by mie and sie , respectively.

8.7.1.1 Two-Dimensional Results Graphs of mie ver-
sus vK and mie versus θln K for a range of values have
been plotted in Figure 8.27. Figure 8.27a shows that as
vK tends to zero, the mean exit gradient tends, as ex-
pected, to the deterministic value of 0.193. For small
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Figure 8.27 Estimated exit gradient mean mie versus (a) coef-
ficient of variation of permeability vK and (b) correlation length
θln K (two-dimensional analysis).

correlation lengths the mean exit gradient remains essen-
tially constant as vK is increased, but for higher correlation
lengths, the mean exit gradient tends to rise. The amount by
which the mean exit gradient increases, however, is depen-
dent on θln K and appears to reach a maximum when θln K ≈

2. This is shown more clearly in Figure 8.27b where the
same results have been plotted with θln K along the abscissa.
The maximum value of mie = 0.264 recorded in this partic-
ular set of results corresponds to the case when vK = 8 and
represents an increase of 37% over the deterministic value.

The return to deterministic values as θln K increases is to
be expected if one thinks of the limiting case where θln K =
∞. In this case each realization would have a constant
(although different) permeability, and thus the deterministic
exit gradient would be obtained.

The standard error of the results shown in Figure 8.27 is
σmie

= sie /
√

n � 0.022sie , where n = 2000 realizations. In
other words, when sie � 0.2, the mie are typically in error by
less than about ±0.0044, which basically agrees with the er-
ratic behavior seen by the θln K = 0.5 m line in Figure 8.27a.

Graphs of sie versus vK and sie versus θln K for a
same range of values have been plotted in Figure 8.28.
Figure 8.28a shows that as vK increases, the standard devi-
ation of the exit gradient also increases. However, as was
observed with the mean value of ie , the standard deviation
increases more substantially for some values of θln K than
others. This is shown more clearly in Figure 8.28b. The
peak in sie again occurs around θln K ≈ 2.0.

It would appear therefore that there is a worst-case
value of θln K from a reliability-based design viewpoint in
which both the mean and the standard deviation of the
exit gradient reach a local maximum at the same time.
At this critical value of θln K , the higher mie implies that
on the average ie would be closer to the critical value ic ,
and to make matters worse, the higher sie implies greater
uncertainty in trying to predict ie .

The standard error of the square of the results shown
in Figure 8.28 is σs2

ie
= √

2/(n − 1)s2
ie

� 0.032s2
ie

, where
n = 2000 realizations. In other words, when sie � 0.2, the
standard deviation of s2

ie
is approximately 0.0013 and so the

standard error on sie is roughly ±√
0.0013 = ±0.04. The

curves in Figure 8.27 show less error than this, as expected.

8.7.1.2 Three-Dimensional Results An identical set of
parametric studies was performed using the three-
dimensional mesh shown in Figure 8.24b. The flow is now
free to meander in the z direction as it makes its pri-
mary journey beneath the wall from the upstream to the
downstream side. Although the exit gradient can be com-
puted at 17 nodal locations adjacent to the downstream
side of the wall (16 elements), initial results are presented
for the central location since this is considered to be the
point where the effects of three-dimensionality will be
greatest. Figures 8.29 and 8.30 are the three-dimensional
counterparts of Figures 8.27 and 8.28 in two dimensions.
Figure 8.29a shows the variation in mie as a function
of vK for different θln K values. For low values of θln K ,
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Figure 8.28 Estimated exit gradient standard deviation sie ver-
sus (a) coefficient of variation of permeability vK and (b) corre-
lation length θln K (two-dimensional analysis).

the mean remains constant and even starts to fall as vK

is increased. For higher θln K values, the mean exit gradi-
ent starts to climb, and, as was observed in two dimen-
sions (Figure 8.27a), there is a critical value of θln K for
which the greatest values of mie are observed. This is seen
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Figure 8.29 Estimated exit gradient mean mie versus (a) coef-
ficient of variation of permeability vK and (b) correlation length
θln K (three-dimensional analysis).

more clearly in Figure 8.29b in which mie is plotted as a
function of θln K . The maxima in mie are clearly seen and
occur at higher values of θln K ≈ 4 than in two dimensions
(Figure 8.27b), which gave maxima closer to θln K ≈ 2. The
maximum value of mie = 0.243 recorded in this particular
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Figure 8.30 Estimated exit gradient standard deviation sie ver-
sus (a) coefficient of variation of permeability vK and (b) corre-
lation length θln K (three-dimensional analysis).

set of results corresponds to the case vK = 8, θln K = 4 and
represents an increase of 26% over the deterministic value.
This should be compared with the 34% increase observed
for the same case in two dimensions.

Figure 8.30 shows the behavior of sie as a function of vK

and θln K . Figure 8.30a indicates that the standard deviation

of the exit gradient increases with vK for all values of
θln K , but the extent of the increase is again dependent on
the correlation length, as shown in Figure 8.30b, with the
maxima occurring in the θln K range of 2–4.

8.7.2 Comparison of Two and Three Dimensions

Compared with two-dimensional analysis, three dimen-
sions allows the flow greater freedom to avoid the low-
permeability zones. The influence of three-dimensionality
is therefore to reduce the overall randomness of the results
observed from one realization to the next. This implies that
the sensitivity of the output quantities to vK will be reduced
in three dimensions as compared with two dimensions. In
the study of seepage quantities in the previous section three-
dimensionality had the effect of slowing down the reduction
in the expected flow rate as vK was increased. Similarly, in
this study of exit gradients, the change in mie over its de-
terministic value with increasing vK is less than it was in
two dimensions.

For the case of θln K = 2, Figure 8.31a presents results
for mie in both two and three dimensions. An additional
three-dimensional result corresponding to the mean exit
gradient at the edge of the wall is also included. A con-
sistent pattern is observed in which the three-dimensional
(center) result shows the smallest increase in mie and the
two-dimensional result shows the greatest increase. An
intermediate result is obtained at the edge of the wall
where the flow is restrained in one direction. The bound-
ary conditions on this plane will ensure that the edge result
lies between the two- and three-dimensional (center) re-
sults.

Figure 8.31b presents results for sie for the same three
cases. These results are much closer together, although,
as expected, the three-dimensional (center) result gives the
lowest values.

In summary, the effect of allowing flow in three di-
mensions is to increase the averaging effect discussed
above within each realization. The difference between
the two- and three-dimensional results is not that great,
however, and it could be argued that a two-dimensional
analysis is a reasonable first approximation to the true
behavior. In relation to the prediction of exit gradients,
it also appears that two dimensions is conservative, in
that the increase in mie with vK observed for interme-
diate values of θln K is greater in two than in three
dimensions.

8.7.3 Reliability-Based Design Interpretation

A factor of safety applied to a deterministic prediction
is intended to eliminate any serious possibility of failure
but without any objective attempt to quantify the risk.
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Figure 8.31 Effect of two (2D) and three (3D) dimensions on
(a) mie and (b) sie . Both plots are for θln K = 2.

Reliability-based design attempts to quantify risk by seek-
ing answers to the following questions:

1. What is the probability that the actual exit gradient
will exceed a deterministic prediction (based on a
constant-properties throughout)?

2. What is the probability that the actual exit gradient
will exceed the critical value, resulting in failure?

The Monte Carlo scheme described in this section en-
ables probabilistic statements to be made. For example, if
out of 1000 realizations, 50 gave an exit gradient ie ≥ 1, it
could be concluded that the probability of piping or erosion
was of the order of 50/1000, or 5%. In general, though,
a histogram can be plotted, a distribution fitted, and the
probabilities computed using the distribution.

8.7.3.1 Two Dimensions A typical histogram of exit
gradient values corresponding to θln K = 2 m and vK = 1
for a two-dimensional analysis is shown in Figure 8.32.
The ragged line comes from the frequency count obtained
over the realizations and the smooth dotted line is based
on a lognormal fit to those data. The good agreement
suggests that the actual distribution of exit gradients is
indeed lognormal. The mean and standard deviation of
the underlying normal distribution of ln ie are also printed
on the figure. Since Figure 8.32 shows a fitted lognormal
probability density function, probabilities can be deduced
directly. For example, in the particular case shown, the
probability that the actual exit gradient will exceed the
deterministic value of idet = 0.193 is approximated by

P [ie > 0.193] = 1 − �

(
ln 0.193 + 1.7508

0.6404

)
(8.42)

where �(·) is the cumulative normal distribution function.
In this case �(0.17) = 0.568; thus

P [ie > 0.193] = 0.43 (8.43)
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Figure 8.32 Histogram of exit gradients in two dimensions for
the case θln K = 2 and vK = 1.
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and there is a 43% probability that the deterministic pre-
diction of idet = 0.193 is unconservative.

A similar calculation has been performed for all the
parametric variations considered in this study. In each case
the following probability was calculated:

P [ie > αidet] (8.44)

where α is a simple scaling factor on the deterministic
exit gradient which serves the same purpose as the factor
of safety. When α = 1 (as in Eq. 8.43), the result is just
the probability that the actual exit gradient will exceed the
deterministic value. Larger values of α are interesting for
design purposes where a prediction of the probability of
failure is required. In the current example, the deterministic
exit gradient is approximately equal to 0.2, so it would be of
interest to know the probability of the actual exit gradient
exceeding the critical hydraulic gradient ic ≈ 1. For this
comparison therefore α would be set equal to 5.

A full range of probability values in two dimensions has
been computed in this study and some selected results will
now be described. A set of probabilities corresponding to
θln K = 2 is presented in Figure 8.33. The mean and standard
deviation of the exit gradients reached a local maximum
when θln K � 2 (see Figures 8.27b and 8.28b).

It should be noted that irrespective of the θln K or vK ,
P [ie > idet] is always less than 50%. This is a reassuring
result from a design standpoint. The probabilities which ap-
proach 50% correspond to a very low vK and are somewhat
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Figure 8.33 Probability that ie exceeds αidet versus vK for the
case θln K = 2 m in two dimensions.

misleading in that the computed exit gradients have a very
low variance and are approaching the deterministic value.
The 50% merely refers to an equal likelihood of the actual
exit gradient lying on either side of an essentially normal
distribution with a small variance. For small vK , this is
shown clearly by the sudden reduction to zero of the prob-
ability that ie exceeds αidet when α > 1 (for example, when
α = 1.1).

As α is increased further, the probability consistently
falls, although each curve exhibits a maximum probability
corresponding to a different value of vK . This interesting
observation implies that there is a worst-case combination
of θln K and vK that gives the greatest likelihood of ie
exceeding idet.

In consideration of failure conditions, the value of P[ie ≥
1], as indicated by the curve corresponding to α = 5, is
small but not insignificant, with probabilities approaching
10% for the highest vK cases considered. In view of this
result, it is not surprising that for highly variable soils
a factor of safety against piping of up to 10 has been
suggested by some commentators (see, e.g., Harr, 1987).

8.7.3.2 Three Dimensions An examination of the cen-
tral exit gradients predicted by the three-dimensional analy-
ses indicates that they are broadly similar to those obtained
in two dimensions. Figure 8.34 shows a typical histogram
of the central exit gradient value corresponding to θln K = 2
m and vK = 1 for a three-dimensional analysis. This is the
same parametric combination given in Figure 8.32 for two
dimensions. The fitted curve again indicates that the actual
distribution of exit gradients is lognormal. The mean and
standard deviation of the underlying normal distribution of
ln ie is also printed on the figure. In the case illustrated
by Figure 8.34, the probability that the actual exit gradient
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Figure 8.34 Histogram of central exit gradients in three dimen-
sions for the case θln K = 2 and vK = 1.
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Figure 8.35 Probability that ie exceeds idet versus vK for the
case θln K =2 m in two (2D) and three (3D) dimensions.

will exceed the deterministic value of idet = 0.193 is equal
to 41% and is virtually the same as the 43% given in two
dimensions.

The probability of an unconservative design based on
three-dimensional studies of a full range of vK values
with θln K = 2 is shown in Figure 8.35 together with the
corresponding results in two dimensions (α = 1). The
three-dimensional results indicate a slight reduction in the
probability that the deterministic value is unconservative. It
appears that simpler and computationally less intensive two-
dimensional analysis of exit gradients will generally give
sufficiently accurate and conservative reliability estimates
of exit gradients.

8.7.4 Concluding Remarks

Generally speaking, the computed variance of the exit
gradient was considerably higher than other quantities of
interest in the flow problem, such as the flow rate. This is
hardly surprising when one considers that the exit gradient

is a derivative quantity which is dependent on the total head
value computed at a very specific location within the mesh
at the downstream exit point.

An interesting result was that the computed exit gradient
was found to reach a maximum for a particular value of
the correlation length θln K , somewhere between 2 and 4 m.
The higher end of this range was observed in the three-
dimensional studies and the lower end in two dimensions.

When the results were interpreted in the context of
reliability-based design, conclusions could be reached about
the probability of exit gradient values exceeding the de-
terministic value, or even reaching levels at which in-
stability and piping could occur. In two dimensions and
for the particular case of θln K = 2 m, the probability of
the actual exit gradient exceeding the deterministic value
could be as high as 50% but generally lay in the 40%
range for moderate values of vK . The probability of an un-
conservative deterministic prediction was generally found
to exhibit a maximum point corresponding to a partic-
ular combination of θln K and vK . From a design point
of view this could be considered a worst-case scenario
leading to maximum uncertainty in the prediction of exit
gradients.

With regard to the possibility of piping, erosion, and
eventual failure of the system, a relationship was estab-
lished between the traditional factor of safety (α) and the
probability of failure. For the particular case mentioned
above and assuming that the critical exit gradient is of the
order ic ≈ 1, a factor of safety of α = 5 could still imply
a probability of failure as high as 10% if vK is also high.
This result suggests that factors of safety as high as 10 may
not be unreasonable for critical structures founded in highly
variable soil.

The three-dimensional studies were considerably more
intensive computationally than their two-dimensional coun-
terparts but had the modeling advantage of removing the
requirement of planar flow. In three dimensions, the flow
has greater freedom to avoid the low-permeability zones;
thus there is less randomness associated with each realiza-
tion. This was manifested in a reduced mean and standard
deviation of the exit gradient as compared with two di-
mensions. The differences were not that great, however,
and indicated that two-dimensional exit gradient studies in
random soils will lead to conservative results while giving
sufficient accuracy.



CHAPTER 9

Flow through Earth Dams

9.1 STATISTICS OF FLOW THROUGH EARTH
DAMS

Many water-retaining structures in North America are earth
dams and the prediction of flow through such structures
is of interest to planners and designers. Although it is
well known that soils exhibit highly variable hydraulic
properties, the prediction of flow rates through earth dams
is generally performed using deterministic models. In this
section we consider a two-dimensional earth dam model and
investigate the effects of spatially varying random hydraulic
properties on two quantities of classical interest: (i) the
total flow rate through the dam and (ii) the amount of
drawdown of the free surface at the downstream face of
the dam. The drawdown is defined as the elevation of the
point on the downstream face of the dam at which the
water first reaches the dam surface. Other issues which
relate more to the structural reliability of an earth dam,
such as failure by piping and flow along eroding fractures,
are not addressed here. It is assumed that the permeability
field is representable by a continuous random field and that
interest is in the stable, steady-state, flow behavior. The
study related here was performed by Fenton and Griffiths
(1995, 1996) using the program RDAM2D, available at
http://www.engmath.dal.ca/rfem.

The computation of flow through an earth dam is com-
plicated by the fact that the location and profile of the free
surface is not known a priori and must be determined it-
eratively. Nevertheless, the finite-element code required to
perform such an analysis is really quite straightforward in
concept, involving a simple Darcy flow model and itera-
tively adjusting the nodal elevations along the free surface
to match their predicted potential heads (e.g., Smith and
Griffiths, 2004). Lacy and Prevost (1987), among others,
suggest a fixed-mesh approach where the elements allow

for both saturated and unsaturated conditions. The approach
suggested by Smith and Griffiths was selected here, due to
its simplicity, with some modifications to improve conver-
gence. See Fenton and Griffiths (1997a) for details on the
convergence algorithm.

When the permeability is viewed as a spatially random
field, the equations governing the flow become stochastic.
Due to the nonlinear nature of these equations (i.e., the
moving free surface), solving the stochastic problem us-
ing Monte Carlo simulations is appropriate. In this study
a sequence of 1000 realizations of spatially varying soil
properties with prescribed mean, variance, and spatial cor-
relation structure are generated and then analyzed to obtain
a sequence of flow rates and free-surface profiles. The mean
and variance of the flow rate and drawdown statistics can
then be estimated directly from the sequence of computed
results. The number of realizations was selected so that the
variance estimator of the logarithm of total flow rate had
a coefficient of variation less than 5% (computed analyti-
cally under the assumption that log-flow rate is normally
distributed; see Section 6.6).

Because the analysis is Monte Carlo in nature, the re-
sults are strictly only applicable to the particular earth dam
geometries and boundary conditions studied; however, the
general trends and observations may be extended to a range
of earth dam boundary value problems. An empirical ap-
proach to the estimation of flow rate statistics and governing
distribution is presented to allow these statistics to be eas-
ily approximated, that is, without the necessity of the full
Monte Carlo analysis. This simplified procedure needs only
a single finite-element analysis and knowledge of the vari-
ance reduction due to local averaging over the flow regime
and will be discussed in detail in Section 9.1.3.

Figure 9.1 illustrates the earth dam geometries considered
in this study, each shown for a realization of the soil perme-
ability field. The square and rectangular dams were included
since these are classical representations of the free-surface
problem (Dupuit problem). The other two geometries are
somewhat more realistic. The steep sloped dam, labeled
dam 1 in Figure 9.1, can be thought of as a clay core held
to its shape by highly permeable backfill having negligible
influence on the flow rate (and thus the fill is not explicitly
represented).

Figure 9.2 shows two possible realizations of dam 1. It
can be seen that the free surface typically lies some distance
below the top of the dam. Because the position of the
surface is not known a priori, the flow analysis necessarily
proceeds iteratively. Under the free surface, flow is assumed
to be governed by Darcy’s law characterized by an isotropic
permeability K (x), where x is the spatial location:

∇ · q = 0, q = −K (x) ∇φ (9.1)
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Figure 9.1 Earth dam geometries considered in this study.

where q is the specific discharge vector and φ is the
hydraulic head.

As in Chapter 8, the permeability K (x), is assumed to
follow a lognormal distribution, with mean µK , variance
σ 2

K , and parameters µln K and σln K (see Eqs. 1.176). The
correlation structure of the ln K (x) random field is assumed
to be isotropic and Markovian with correlation function

ρln K (τ ) = exp

{
−2|τ |

θln K

}
(9.2)

where θln K is the correlation length.
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Figure 9.2 Finite-element discretization of dam 1 shown in
Figure 9.1: two possible realizations.

Simulations of the soil permeability field proceeds in two
steps: first an underlying Gaussian random field G(x) is
generated with mean zero, unit variance, and spatial corre-
lation function (Eq. 9.2) using the LAS method. Next, since
the permeability is assumed to be lognormally distributed,
values of Ki , where i denotes the i th element, are obtained
through the transformation

Ki = exp{µln K + σln K G(xi )} (9.3)

where xi is the centroid of the i th element and G(xi ) is
the local average value generated by the LAS algorithm
of the cell within which xi falls. As will be discussed
later, the finite-element mesh is deformed while iterating
to find the free surface so that local average elements only
approximately match the finite elements in area. Thus, for
a given realization, the spatially “fixed” permeability field
values are assigned to individual elements according to
where the element is located on each free-surface iteration.

Both permeability and correlation length are assumed to
be isotropic in this study. Although layered construction of
an earth dam may lead to some anisotropy relating to the
correlation length and permeability, this is not thought to be
a major feature of the reconstituted soils typically used in
earth dams. In contrast, however, natural soil deposits can
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exhibit quite distinct layering and stratification in which
anisotropy cannot be ignored. Note that random fields with
ellipsoidally anisotropic correlation functions, for example,
of the form

ρ(t) = exp

{
−2

√
τ 2

1

θ2
1

+ τ 2
2

θ2
2

}
= exp

{
− 2

θ1

√
τ 2

1 + τ 2
2 θ2

1

θ2
2

}

(9.4)
where θ1 and θ2 are the directional correlation lengths,
can always be transformed into isotropic forms by suitably
scaling the coordinate axes. In this example, by using
x ′

2 = x2(θ1/θ2), where x2 is the space coordinate measured
in the same direction as τ2, Eq. 9.4 becomes isotropic

with scale θ1 and lag τ =
√

τ 2
1 + (τ ′

2)2, with τ ′
2 measured

with respect to x ′
2. Thus, if anisotropy is significant, such

a transformation can be performed to allow the use of
the results presented here, bearing in mind that it is the
transformed geometry which must be used in the sequel.

The model itself is two dimensional, which is equivalent
to assuming that the streamlines remain in the plane of
analysis. This will occur if the dam ends are impervious
and if the correlation length in the out-of-plane direction
is infinite (implying that soil properties are constant in the
out-of-plane direction). Clearly the latter condition will be
false; however, a full three-dimensional analysis is beyond
the scope of the present study. As was found for flow
through bounded soil masses (e.g., around cutoff walls, see
Section 8.7), it is believed that the two-dimensional analysis
will still be reasonably accurate.

9.1.1 Random Finite-Element Method

For a given permeability field realization, the free-surface
location and flow through the earth dam is computed using
a two-dimensional iterative finite-element model derived
from Smith and Griffiths (2004), program 7.3. The elements
are four-node quadrilaterals and the mesh is deformed on
each iteration until the total head along the free surface ap-
proaches its elevation head above a predefined horizontal
datum. Convergence is obtained when the maximum rela-
tive change in the free-surface elevation at the surface nodes
becomes less than 0.005. Figure 9.2 illustrates two possible
free-surface profiles corresponding to different permeability
field realizations with the same input statistics.

When the downstream face of the dam is inclined, the
free surface tends to become tangent to the face, resulting
in finite elements which can be severely skewed, lead-
ing in turn to inaccurate numerical results. This difficulty
is overcome by proportionately shifting the mesh as the
free surface descends to get a finer mesh near the top of
the downstream face [the reader is referred to Fenton and
Griffiths (1997a) for details]. Because of the mesh defor-
mation taking place in each iteration along with the need

to maintain the permeability realization as spatially fixed,
the permeabilities assigned to each element are obtained
by mapping the element centroids to the permeability field
using Eq. 9.3. Thus the local average properties of the
random field are only approximately reflected in the final
mesh; some of the smaller elements may share the same
permeability if adjacent elements fit inside a cell of the
random field. This is believed to be an acceptable approxi-
mation, leading to only minor errors in the overall stochastic
response of the system, as discussed next.

Preliminary tests performed for the study indicated that
the response statistics only begin to show significant error
when fewer than 5 elements were used in each of the two
coordinate directions. In the current model 16 elements
were used in each direction (256 elements in total). This
ensures reasonable accuracy even in the event that some
elements are mapped to the same random-field element.
Because the elements are changing size during the iterative
process, implying that the local average properties of the
random-field generator are only approximately preserved
in the final mesh, there is little advantage to selecting a
local average random-field generator over a point process
generator such as the FFT or TBM. The LAS algorithm was
selected for use here primarily because it avoids the possible
presence of artifacts (in the form of “streaks”) in individual
realizations arising in TBM realizations and the symmetric
covariance structure inherent in the FFT algorithm (Fenton,
1994, see also Section 6.4). The LAS method is also much
easier to use than the FFT approach.

Flow rate and drawdown statistics for the earth dam are
evaluated over a range of the statistical parameters of K .
Specifically, the estimated mean and standard deviation of
the total flow rate, mQ and sQ , and of the drawdown, mY and
sY , are computed for σK /µK = {0.1, 0.5, 1.0, 2.0, 4.0, 8.0}
and θln K = {0.1, 0.5, 1.0, 2.0, 4.0, 8.0} by averaging over
1000 realizations for each (resulting in 6 × 6 × 1000 =
36, 000 realizations in total for each dam considered). An
additional run using θln K = 16 was performed for dam 1 to
verify trends at large correlation lengths. The mean perme-
ability µK is held fixed at 1.0. The drawdown elevations
Y are normalized by expressing them as a fraction of the
overall (original) dam height.

9.1.2 Simulation Results

On the basis of 1000 realizations, a frequency density plot
of flow rates and drawdowns can be produced for each
set of parameters of K (x). Typical histograms are shown
in Figure 9.3, with fitted lognormal and beta distributions
superimposed on the flow rate and normalized drawdown
histograms, respectively. The parameters of the fitted dis-
tributions are estimated by the method of moments from
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Figure 9.3 Frequency density plots of (a) flow rate and (b) normalized drawdown for dam 1 with σK /µK = 1 and θln K = 1.

the ensemble of realizations, which constitute a set of inde-
pendent samples, using unbiased sample moments. For the
lognormal distribution the estimators are

mln Q = 1

n

n∑
i=1

ln Qi (9.5a)

s2
ln Q = 1

n − 1

n∑
i=1

(ln Qi − mln Q )2 (9.5b)

where Qi is the total flow rate through the i th realization.
For n = 1000 realizations, the coefficients of variation of
the estimators (assuming ln Q is approximately normally
distributed) mln Q and s2

ln Q are 0.032σln K /µln K and 0.045,
respectively.

It can be seen that the lognormal distribution fits the
flow rate histogram reasonably well, as is typical; 60%
of the cases considered (based on 1000 realizations each)
satisfied the chi-square goodness-of-fit test at the 5% sig-
nificance level. A review of the histograms corresponding
to those cases not satisfying the test indicates that the log-
normal distribution is still a reasonable approximation but
the chi-square test is quite sensitive. For example, the his-
togram shown in Figure 9.3a fails the chi-square test at
all significance levels down to 0.15%. From the point of
view of probability estimates associated with flow rates, it
is deemed appropriate therefore to assume that flow rates
are well approximated by the lognormal distribution and all
subsequent statistics of flow rates are determined from the
fitted lognormal distribution.

Since the normalized drawdown is bound between 0 and
1, it was felt that perhaps a beta distribution might be
an appropriate fit. Unfortunately the fit, obtained by the
method of moments using unbiased sample moments of the

raw data, was typically quite poor; the histogram shown in
Figure 9.3b has sample mean and standard deviation 0.533
and 0.125, respectively, giving beta distribution parame-
ters α = 7.91 and β = 6.93. The fitted distribution fails to
capture the skewness and upper tail behavior. Neverthe-
less, the drawdown mean and variance can be estimated
reasonably accurately even though its actual distribution is
unknown. For 1000 realizations, the estimators of the mean
and variance of normalized drawdown have coefficients of
variation of approximately 0.032sY /mY and 0.045 using a
normal distribution approximation.

The estimated mean and variance of the total log-flow
rate, denoted here as mln Q and s2

ln Q , respectively, are
shown in Figure 9.4 as a function of the variance of
log-permeability, σ 2

ln K = ln(1 + σ 2
K /µ2

K ), and the correla-
tion length, θln K . These results are for dam 1 and are
obtained from Eqs. 9.5. Clearly the mean log-flow rate
tends to decrease from the deterministic value of ln(QµK ) =
ln(1.51) = 0.41 (obtained by assuming K = µK = 1.0 ev-
erywhere) as the permeability variance increases.

In terms of the actual flow rates which are assumed to
be lognormally distributed, the transformations

mQ = exp{mln Q + 1
2 s2

ln Q} (9.6a)

s2
Q = m2

Q (exp{s2
ln Q} − 1) (9.6b)

can be used to produce the mean flow rate plot shown
in Figure 9.5. The apparent increase in variability of the
estimators (see, e.g., the θln K = 16 case) is due in part to
the reduced vertical range but also partly to errors in the
fit of the histogram to the lognormal distribution and the
resulting differences between the raw data estimators and
the log-data estimators.
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Figure 9.4 Estimated mean and standard deviation of log-flow rate through dam 1.
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Figure 9.5 Estimated mean flow rate through dam 1.

It can be seen that the mean flow rate also reduces from
the deterministic value QµK = 1.51 with increasing σ 2

ln K .
The reduction is more pronounced for small correlation
lengths but virtually disappears for correlation lengths con-
siderably larger than the dam itself. It is known that as the
correlation length becomes negligible compared to the size
of the dam, the effective permeability approaches the geo-
metric mean KG = µK exp

{− 1
2σ 2

ln K

}
(Dagan, 1989), which

for fixed µK illustrates the reduction in flow rate. Intu-
itively, one can think of this reduction in mean flow rate by
first considering one-dimensional flow down a “pipe”—the
total flow rate down the pipe is heavily dependent on
the minimum permeability encountered along the way.
As the variance of the permeability increases, and in the
case of small correlation lengths, the chances of getting a
small-permeability or “blocked” pipe also increases, re-
sulting in a decreased mean flow rate. Similar, albeit less

extreme, arguments can be made in the two-dimensional
case, leading to the observed and predicted reduction in
mean total flow rate as σ 2

ln K increases. As the correlation
length increases to infinity, the mean flow rate mQ becomes
equal to QµK independent of σ 2

ln K , as illustrated by the
θln K = 16 case in Figure 9.5. In this case, the random field
is relatively uniform, and although individual realizations
show considerable variability in total flow rate, the mean
approaches the value predicted by K = µK .

For very short correlation lengths, the variance of log-
flow rate is very small, as evidenced by sln Q in Figure 9.4,
increasing as the correlation length and σ 2

ln K increase. In
the limit as θln K → ∞, it can be shown that σ 2

ln Q = σ 2
ln K

and µln Q = ln(QµK ) − σ 2
ln K /2, trends which are seen in

Figure 9.4 for θln K = 16. Similar results were found for
the other dam geometries.

Figure 9.6 shows the estimated mean and standard devia-
tion of the normalized drawdown, mY and sY , respectively,
again for the earth dam 1 shown in Figure 9.1. It can be
seen that although some clear patterns exist for the mean
drawdown with respect to the correlation length and σ 2

ln K ,
the magnitude of the mean drawdown is little affected by
these parameters and remains close to Y = 0.58 of the
total dam height obtained in the deterministic case with
K = µK = 1.0. Note that for θln K = 4, σ 2

ln K = 2.83, the
standard deviation of Y is estimated to be about 0.21, giv-
ing the standard deviation of the estimator mY to be about
0.0066. The 90% confidence interval on µY is thus ap-
proximately [0.51, 0.53] for mY = 0.52. This observation
easily explains the rather erratic behavior of mY observed
in Figure 9.6.

The variability of the drawdown, estimated by sY , is
significantly affected by θln K and σ 2

ln K . For small correla-
tion lengths relative to the dam size, the drawdown shows
little variability even for high-permeability variance. This
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Figure 9.6 Estimated mean and standard deviation of normalized free-surface drawdown for dam 1.

suggests that, under these conditions, using a fixed free
surface to model the dam may be acceptable. For larger
correlation lengths, the drawdown shows more variability
and the stochastic nature of the free-surface location should
be included in an accurate analysis. Although it may seem
that the drawdown variability continues to increase with
increasing correlation length, it is known that this is not
the case. There will be a worst-case scale at which the
drawdown variability is maximized; at even larger scales,
the drawdown variability will decrease since in the limit as
θln K → ∞ the drawdown becomes equal to the determinis-
tic result Y = 0.58 independent of the actual permeability.
In other words, the drawdown becomes different from the
deterministic result only in the presence of intermediate cor-
relation lengths in the permeability field. To investigate this
phenomenon, dam 1 was analyzed for the additional scale
θln K = 16 m, much greater than the earth dam dimension
of around 3–4 m. It appears from Figure 9.6 that the draw-
down variance is maximized for θln K = 4 m, that is, for
θln K of the order of the earth dam size.

9.1.3 Empirical Estimation of Flow Rate Statistics

For preliminary design reliability estimates, it is worth in-
vestigating approximate or empirical methods of estimating
the mean and variance of flow through an earth dam. In the
following, a semiempirical approach is adopted with the un-
derstanding that its accuracy in estimating flow statistics for
problems other than those considered here is currently un-
known. In practice the following results should be viewed
as providing rough estimates, and more accurate estimates
must currently be obtained via simulation.

The approach starts by noting that the mean µln Q and
variance σ 2

ln Q of log-flow through a square two-dimensional
domain with impervious top and bottom faces and constant

head along both sides is accurately predicted by (on the
basis of simulation studies, see Chapter 8)

µln Q = ln(QµK ) − 1
2σ 2

ln K (9.7a)

σ 2
ln Q = σ 2

ln K γ (D , D) (9.7b)

with equivalent results in real space (assuming that Q
follows a lognormal distribution) given by

µQ = Qµk exp{− 1
2σ 2

ln K (1 − γ (D , D))} (9.8a)

σ 2
Q = Q2

µK
exp{−σ 2

ln K (1 − γ (D , D))}
× [

exp{σ 2
ln K γ (D , D)} − 1

]
(9.8b)

in which QµK is the flow rate obtained in a deterministic
analysis of flow through a domain having permeability
K (x) = µK everywhere, D is the square root of the domain
area (i.e., side length), and σ 2

ln K γ (D , D) is the variance of
a local average of the random field ln(K ) over the domain
D × D . In the event that D >> θln K , so that γ (D , D) � 0,
Eqs. 9.7 become equal to that predicted using the geometric
mean of permeability, that is, to the effective permeability
defined by Dagan (1989) and Gelhar (1993). In the more
general case, Rubin and Gómez-Hernández (1990) obtained
similar results derived using a perturbation approach valid
only when both γ (D , D) and σ 2

ln K γ (D , D) are small. For
values of γ (D , D) and σ 2

ln K typical of this study, the
perturbation approach can be considerably in error.

The parameter D characterizes the size of the averaging
region. In the case of Eqs. 9.7, D refers to the side
length of a two-dimensional square flow regime studied
in Section 8.4; thus the flow is affected by the average
permeability in a domain of size D × D . The mean and
variance of flow through such a two-dimensional domain
is expected to depend in some way on the reduction in
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variance due to averaging over the domain, leading to the
results given by Eqs. 9.7 and 9.8.

The shapes of the functions given by Eqs. 9.7 are very
similar to those seen in Figure 9.4, suggesting that these
functions can be used to predict the mean and variance of
log-flow through an earth dam if an effective value of D can
be found to characterize the flow through the dam. Thus,
the task is to find the dimension Deff of an equivalent two-
dimensional square domain whose log-flow rate statistics (at
least the mean and variance) are approximately the same as
observed in the earth dam. One possible estimate of this
effective dimension is

Deff =
√

Awet

Q
(9.9)

where Awet is the earth dam area (in-plane) under the
free surface through which the flow takes place, that is,
excluding the unsaturated soil above the free surface, and
Q is the nondimensionalized flow rate through the earth
dam obtained with K (x) = µK everywhere, that is,

Q = QµK

µK Heff z
(9.10)

where Heff is the effective fluid head and z is the out-of-
plane thickness of the dam, which, for a two-dimensional
analysis, is 1.0. Although it would appear reasonable to take
Heff as the average hydraulic head over the upstream face
of the dam, it turns out to be better to take Heff = yh/3, the
elevation of the centroid of the pressure distribution, where
yh is the upstream water head (and the overall height of the
dam). Substitution of Eq. 9.10 into Eq. 9.9 along with this
choice of Heff gives

Deff =
√

Awet µK yh z

3QµK

(9.11)

This equation can then be used in Eqs. 9.8 to estimate the
desired flow rate statistics.

Figure 9.7 illustrates the agreement between the mean
and standard deviation derived via simulation and predicted
using Eq. 9.11 in Eqs. 9.7 for all four earth dam geome-
tries shown in Figure 9.1. The dotted lines in Figure 9.7
denote the ±10% relative error bounds. It can be seen that
most of the predicted statistics match those obtained from
simulation quite well in terms of absolute errors. A study
of relative errors shows that 90% of the cases studied had
relative errors less than 20% for the prediction of both the
mean and standard deviation. There is no particular bias in
the errors with respect to over- versus underestimation.

Admittedly, the effective dimension approach cannot
properly reflect the correlation structure of the actual dam
through a square-domain approximation—if the dam width
is significantly greater than the dam height (as in dam 4),
then the correlation between permeabilities at the top and
bottom will generally be higher than from left edge to
right edge. An “equivalent” square domain will not capture
this. Thus, the effective dimension approach adopted here
is expected to perform less well for long narrow flow
regimes combined with correlation lengths approaching and
exceeding the size of the dam. In fact, for the prediction of
the mean, the simulation results belie this statement in that
dam 4 performed much better than dams 1, 2, or 3. For the
prediction of the standard deviation, dam 4 performed the
least well, perhaps as expected. Nevertheless, overall the
results are very encouraging. Thus, the effective dimension
approach can be seen to give reasonable estimates of the
mean and variance of log-flow rates through the dam in
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Figure 9.7 Comparison of (a) mean and (b) standard deviation statistics derived via simulation and as predicted by Eqs. 9.7.
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most cases. To compute these estimates, the following steps
must be performed:

1. Perform a single finite-element analysis using K (x) =
µK throughout the earth dam to determine QµK and
the area of the dam below the free surface, Awet.

2. Estimate the effective dam dimension using Eq. 9.11.
3. Compute the local average variance reduction factor

γ (Deff, Deff) corresponding to the random field used
to model the log-permeability field (see Section 3.4).

4. Estimate the mean and variance of log-flow through
the dam using Eqs. 9.7. These values can be used
directly in the lognormal distribution to compute prob-
ability estimates.

9.1.4 Summary

Although only a limited set of earth dam geometries are
considered in this section, it should be noted that the
stochastic response of a dam is dependent only on the
ratio of the correlation length to the dam dimensions for
given dam shape and type of random field. For example,
consider two earth dams with the same overall shapes and
permeability statistics µK and σ 2

K . If the second of the two
dams is of twice the size and has twice the correlation
length as the first, then the second will have twice the
flow rate mean and standard deviation as the first, and
they will have identical normalized drawdown statistics.
Similarly, the results shown here are easily scaled for
different values of µK ; the important parameter as far as
the stochastic response is concerned is the coefficient of
variation σK /µK [or equivalently σ 2

ln K = ln(1 + σ 2
K /µ2

K )].
These properties can be used to confidently employ the
results of this section on earth dams of arbitrary dimension
and mean permeability.

For correlation lengths which are small relative to the
size of the dam, the simulation results indicate that:

1. The flow through the dam is well represented using
only the estimated mean flow rate mQ —the flow rate
variance is small.

2. The mean flow rate falls rapidly as σ 2
ln K increases.

3. The free-surface profile will be relatively static and
can be estimated confidently from a deterministic
analysis. The simulation results imply that for both
small and very large correlation lengths (relative to
the dam size) the drawdown variability is small and
the Monte Carlo analysis could proceed using a fixed
free surface found from the deterministic analysis,
avoiding the need to iterate on each realization.

As the correlation length becomes larger, the mean flow
rate does not fall as rapidly with increasing σ 2

ln K while the

variability of the flow rate from one realization to the next
increases significantly. The variability in the free-surface
location reaches a maximum for intermediate correlation
lengths, apparently for scales of the order of the earth
dam size.

The computation of estimates of the mean and variance
of flow rates through an earth dam using Eqs. 9.7 allows
designers and planners to avoid full-scale Monte Carlo
simulations and can be used to approximately address issues
regarding earth dam flow rate probabilities via a lognormal
distribution. If more accurate estimates of these quantities
are desired, particularly for correlation lengths approaching
or greater than the dam size, then a full scale Monte
Carlo simulation is currently the only viable choice (see
RDAM2D at http://www.engmath.dal.ca/rfem). In
that the mean, variance, and correlation length parameters
of the permeability field, as estimated from the field, are
themselves quite uncertain, the approximate estimate of the
flow rate statistics may be quite appropriate in any case.

9.2 EXTREME HYDRAULIC GRADIENT
STATISTICS

Earth dams fail from a variety of causes. Some, such as
earthquake or overtopping, may be probabilistically quan-
tifiable through statistical analysis. Others, such as internal
erosion, are mechanically complex, depending on internal
hydraulic gradients, soil gradation, settlement fracturing,
drain and filter performance, and so on. In this section,
the focus is on evaluating how internal hydraulic gradi-
ents are affected by spatial variability in soil permeability.
The scope is limited to the study of simple but reasonable
cases. Variability in internal hydraulic gradients is com-
pared to traditional “deterministic” analyses in which the
soil permeability is assumed constant throughout the earth
dam cross section (Fenton and Griffiths, 1997b).

In a study of the internal stability of granular filters, Ken-
ney and Lau (1985) state that grading stability depends on
three factors: (1) size distribution of particles, (2) poros-
ity, and (3) severity of seepage and vibration. Most soil
stability tests proceed by subjecting soil samples to pre-
scribed gradients (or fluxes or pressures) which are believed
to be conservative, that is, which are considerably higher
than believed “normal,” as judged by current practice. For
example, Kenney and Lau (1985) performed their soil tests
using unit fluxes ranging from 0.48 to 1.67 cm/s. Lafleur
et al. (1989) used gradients ranging from 2.5 to 8.0, while
Sherard et al. (1984a, b) employed pressures ranging from
0.5 to 6 kg/cm2 (corresponding to gradients up to 2000).
Molenkamp et al. (1979) investigate the performance of
filters under cyclically reversing hydraulic gradients. In all
cases, the tests are performed under what are believed to
be conservative conditions.
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By considering the soil permeability to be a spatially
random field with reasonable statistics, it is instructive to
investigate just how variable the gradient (or flux or poten-
tial) can be at critical points in an earth dam. In this way,
the extent of conservatism in the aforementioned tests can
be assessed. Essentially this section addresses the question
of whether uncertainty about the permeability field should
be incorporated into the design process. Or put another way,
are deterministic design procedures sufficiently safe as they
stand? For example, if the internal gradient at a specific
location in the dam has a reasonably high probability of ex-
ceeding the gradients under which soil stability tests were
performed, then perhaps the use of the test results to form
design criteria needs to be reassessed.

The study will concentrate on the two earth dam cross
sections shown in Figure 9.8 with drains cross-hatched. The
steeper sloped dam will be referred to here as dam A and the
shallower cross section as dam B. The overall dimensions
of the dams were arbitrarily selected since the results are
scalable (Section 9.2.2), only the overall shape being of
importance.

Sections 9.2.1 and 9.2.2 discuss the stochastic model,
comprising random-field and finite-element models, used to
represent the earth dam for the two geometries considered.
In Section 9.2.3 the issue of how a simple internal drain,
designed to avoid having the free surface exit on the
downstream face of the dam above the drain, performs in
the presence of spatially varying permeability. Successful
drain performance is assumed to occur if the free surface
remains contained within the drain at the downstream face
with acceptably high probability.

Section 9.2.4 looks at the mean and standard deviation
of internal hydraulic gradients. Gradients are defined here
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Figure 9.8 Two earth dam geometries considered in stochastic
analysis.

strictly in magnitude—direction is ignored. Again the dams
are considered to have a drain in place. Regions where
the gradients are highest are identified and the distribution
of these maximum gradients established via simulation.
All simulation results were performed using the program
RDAM2D available at http://www.engmath.dal.
ca/rfem.

9.2.1 Stochastic Model

The stochastic model used to represent flow through an
earth dam with free surface is an extension of the model
developed in Section 9.1. When the permeability is viewed
as a spatially random field, the equations governing the
flow become stochastic. The random field characterizes
uncertainty about the permeability at all points in the dam
and from dam to dam. The flow through the dam will thus
also be uncertain, and this uncertainty can be expressed by
considering the probability distribution of various quantities
related to flow.

The permeability K (x) is assumed to follow a lognormal
distribution, consistent with the findings of Freeze (1975),
Hoeksema and Kitanidis (1985), and Sudicky (1986) and
with the work of Griffiths and Fenton (1993), with mean µK

and variance σ 2
K . Thus ln K is normally distributed (Gaus-

sian) with mean µln K and variance σ 2
ln K ; see Eqs. 1.175

and 1.176.
Since K (x) is a spatially varying random field, there

will also be a degree of correlation between K (x) and
K (x′), where x and x′ are any two points in the field.
Mathematically this concept is captured through the use
of a spatial correlation function, which, in this study, is
an exponentially decaying function of separation distance
t = x − x′ (this is a Markov model, see Section 3.7.10.2),

ρ(t) = e−2|t|/θln K (9.12)

where θln K is the correlation length.
Simulation of the soil permeability field proceeds in

two steps: first an underlying Gaussian random field G(x)
is generated with mean zero, unit variance, and spatial
correlation function (Eq. 9.12) using the LAS method
(Section 6.4.6). Next, since the permeability is assumed to
be lognormally distributed, values of Ki , where i denotes
the i th element, are obtained through the transformation

Ki = exp{µln K + σln K Gi } (9.13)

where Gi is the local average of G(x) over the domain
of the i th element. The finite-element mesh is deformed
while iterating to find the free surface so that local average
elements only approximately match the finite elements in
area. For a given realization, the spatially fixed permeability
field values are assigned to individual elements according to
where the element is located on each free-surface iteration.
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Both permeability and correlation length are assumed to
be isotropic in this study. Although layered construction
of an earth dam may lead to some anisotropy relating
to the correlation length and permeability, the isotropic
model is employed for simplicity. In addition, the model
itself is two dimensional, which is equivalent to assuming
that streamlines remain in the plane of analysis. This
will occur if the dam ends are impervious and if the
correlation length in the out-of-plane direction is infinite
(implying that soil properties are constant in the out-of-
plane direction). Clearly the latter condition will be false;
however, a full three-dimensional analysis is beyond the
scope of the present study. It is believed that the two-
dimensional analysis will still yield valuable insights to the
problem, as indicated in Chapter 8.

Statistics of the output quantities of interest are obtained
by Monte Carlo simulation employing 5000 realizations of
the soil permeability field for each cross section considered.
With this number of independent realizations, estimates of
the mean and standard deviations of output quantities of in-
terest have themselves standard deviations of approximately

smX �
√

1

n
sX = 0.014sX (9.14a)

ss2
X

�
√

2

n − 1
s2

X = 0.02s2
X (9.14b)

where X is the output quantity of interest, mX is its es-
timated mean, sX is its estimated standard deviation, and
smX and ss2

X
are the estimated standard deviations of the

estimators mX and sX , respectively (see Section 6.6).
Many of the statistical quantities discussed in the follow-

ing are compared to the so-called deterministic case. The
deterministic case corresponds to the traditional analysis
approach in which the permeability is taken to be constant
throughout the dam; here the deterministic permeability is
equal to µK = 1.0. For all stochastic analyses, the perme-
ability coefficient of variation vK is taken to be 0.50 and
the correlation length is taken to be 1.0 (having the same
units as lengths in Figures 9.8–9.10). These numbers are
not excessive and are believed typical for a well-controlled
earth dam fill.

9.2.2 Random Finite-Element Method

For a given permeability field realization, the free-surface
location and flow through the earth dam are computed using
a two-dimensional iterative finite-element model derived
from Smith and Griffiths (2004), program 7.3. The elements
are four-node quadrilaterals and the mesh is deformed on
each iteration until the total head along the free surface
approaches its elevation head above a predefined horizon-
tal datum. Convergence is obtained when the maximum
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Figure 9.9 Two free-surface realizations for dam B.

relative change in the free-surface elevation at the surface
nodes becomes less than 0.005. Figure 9.9 illustrates two
possible free-surface profiles for dam B corresponding to
different permeability field realizations with the same input
statistics. Lighter regions in the figure correspond to higher
permeabilities. Along the base of the dam, from the down-
stream face, a drain is provided with fixed (nonrandom)
permeability of 120 times the mean dam permeability. This
permeability was selected to ensure that the free surface
did not exit the downstream face above the drain for either
cross section under deterministic conditions (constant per-
meability of µK = 1 everywhere). It is assumed that this
would be ensured in the normal course of a design. No-
tice that the drain itself is only approximately represented
along its upper boundary because the elements are deform-
ing during the iterations. This leads to some randomness in
the drain behavior which, although not strictly quantifiable,
may actually be quite realistic.

In both cross sections, the free surface is seen to fall
into the drain, although not as fast as classical free-surface
profiles with drains would suggest. The difference here is
that the drain has finite permeability; this leads to some
backpressure causing the free surface to remain above
it over some length. In that drains, which also act as
filters, will not be infinitely permeable, these free surfaces
are believed to be representative. Since the finite-element
mesh is moving during the iterative analysis, the gradients
must be calculated at fixed points rather than at the nodal
locations. This means that gradients must be interpolated
using the finite-element shape functions once the element
enclosing an arbitrary fixed point is identified. Thus, two
meshes are carried throughout the analysis—one fixed and
one deforming according to the free-surface profile.

For each realization, the computer program computes the
following quantities:
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1. The free surface profile
2. The gradient, unit flux, and head at each point on a

fixed-lattice discretization of the dam cross section.
Points which lie above the free surface for this par-
ticular realization are assigned a gradient of zero.
Gradients are computed as

g =
√(

∂φ

∂x1

)2

+
(

∂φ

∂x2

)2

which is the absolute magnitude of the gradient vector.
The vector direction is ignored.

3. Total flow rate through the cross section

All quantities form part of a statistical analysis by suitably
averaging over the ensemble of realizations.

In Figure 9.8, the drains are denoted by cross-hatching
and can be seen to lie along the downstream dam base. The
dams are discretized into 32 × 16 elements and the drain
has thickness of 0.1 in the original discretization. In dam A,
the drain extends to the midpoint, while in dam B the drain
has length 4, both measured from the downstream dam
corner. The original, or undeformed, discretization shown
in Figure 9.8 is also taken to be the fixed discretization over
which gradients are obtained.

Elements falling within the domain of the drain during
the analysis are assigned a permeability of 120µK , the
remainder assigned random permeabilities as discussed in
the previous section. As also mentioned previously, the
elements in the deformed mesh are not rectangular so the
drain is only approximated. Some elements lying above the
drain have portions extending into the drain and vice-versa.
The permeability-mapping algorithm has been devised to
ensure that the drain itself is never blocked by portions
of a low-permeability element extending into the drain.
Given the uncertainty related to the infiltration of core fines
into the drain, this model is deemed to be a reasonable
approximation.

The overall dimensions of the dam and the assumed
permeability statistics are scalable; that is, a dam having
10 times the dimensions of dam A or B will have 10
times the total flow rate, the same free-surface profile, and
the same gradients if both have the same (space-scaled)
permeability field. Output statistics are preserved if the
prescribed correlation length is scaled by the same amount
as the dam itself and the permeability mean and variance are
unchanged. Regarding changes in the mean permeability, if
the coefficient of variation (vK = σK /µK ) remains fixed,
then scaling µK results in a linear change in the flow
rate (with unchanged vQ ), unchanged gradient, and free-
surface profile statistics. The unit flux scales linearly with
the permeability but is unaffected by changes in the dam
dimension. The potential field scales linearly with the dam

dimension but is unaffected by the permeability field (as
long as the latter also scales with the dam dimension).

9.2.3 Downstream Free-Surface Exit Elevation

The drain is commonly provided to ensure that the free
surface does not exit on the downstream face of the dam,
resulting in its erosion. The lowering of the free surface by
this means will be referred to herein as “drawdown.” As
long as the drawdown results in an exit point within the
drain itself, the drain can be considered to be performing
acceptably. Figure 9.10 shows the deterministic free-surface
profiles for the two geometries considered. In both cases the
free surface descends into the drain prior to reaching the
downstream face.

Figure 9.11 shows histograms of free-surface exit ele-
vations Y which are normalized with respect to the earth
dam height. The dashed line is a normal distribution fit to
the data, with parameters given in the line key. For the
cases considered, the normalized dimension of the top of
the drain is 0.1/3.2 = 0.031, so there appears to be little
danger of the free surface exiting above the drain when the
soil is spatially variable, at least under the moderate levels
of variability considered here. It is interesting to note that
the normalized free-surface exit elevations obtained in the
deterministic case (uniform permeability) are 0.024 for dam
A and 0.015 for dam B. The mean values obtained from the
simulation, as indicated in Figure 9.11, are 0.012 for dam
A and 0.009 for dam B. Thus, the net effect of soil variabil-
ity is to reduce the exit point elevation. Perhaps the major
reason for this reduction arises from the length of the drain;
in the presence of spatial variability there exists a higher
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Figure 9.10 Deterministic free-surface profiles for two earth
dam geometries considered.
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Figure 9.11 Normalized free-surface exit elevation distributions.

probability that somewhere further along the drain the core
permeability will be lower, tending to drive the flow into the
drain. The deterministic flow rates (normalized with respect
to µK ) are 1.94 for dam A dam and 1.03 for dam B. The
corresponding mean flow rates determined by simulation
are somewhat reduced at 1.85 and 0.96, illustrating again
that spatial variability tends to introduce blockages some-
where along the flow path. Since the coefficient of variation
vY = σY /µY of the height of the free-surface exit point is
only around 15–17% for both cross sections, permeability
spatial variability primarily serves to lower the exit point
height, reducing risk of surface erosion, and does not result
in significant variability in the exit point elevation, at least
under the input statistics assumed for these models. As will
be seen later, the internal free-surface profile has somewhat
more variability. However, this is not a design problem as it
does not lead to emergence of the free surface on the down-
stream face of the core unless the drain is excessively short.

To investigate the effect of the drain length on the
downstream exit elevation, the simulations for dam B (the
shallower dam) were rerun for drain lengths of 2.0 and 11.0.
The results are shown in Figure 9.12, which includes the
location of the normalized drain height as a vertical dashed
line. For the shorter drain length, the free-surface exit
point distribution becomes bimodal, as perhaps expected.
A deterministic analysis with the short drain predicts the
free surface to exit at about the half height of the dam.
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Figure 9.12 Effect of drain length on free-surface exit elevation.

Occasionally, realizations of the stochastic permeability
field provide a high-permeability path to the drain and the
free surface “jumps down” to exit through the drain rather
than the downstream face. When the drain is extended
a significant distance into the dam, the total flow rate
increases significantly and the drain begins to approach
its flow capacity. In this case, the response of the dam
overlying the drain approaches that of the dam without a
drain and the free-surface exit elevation rises (for a drain
length of 11.0, only about 10% of realizations resulted in the
free surface exiting within the drain). Again, this response
is predicted by the deterministic analysis.

In summary, the free-surface exit elevation tends to have
only a very small probability of exceeding the exit point
elevation predicted by a deterministic analysis, implying
that a deterministic analysis is conservative in this respect.
However, if the drain becomes “plugged” due to infiltra-
tion of fines, perhaps effectively reducing its length, then
the free surface may “jump” to the downstream face and in
general has a higher probability of exiting somewhere (usu-
ally around midheight) on the downstream face. On the
basis of these simulations, it appears that if the drain is be-
having satisfactorily according to a deterministic analysis,
then it will also behave satisfactorily in the presence of spa-
tially random permeability, assuming that the permeability
mean and variance are reasonably well approximated.



EXTREME HYDRAULIC GRADIENT STATISTICS 309

9.2.4 Internal Gradients

Figure 9.13 shows a gray-scale representation of the aver-
age internal gradients with dark regions corresponding to
higher average gradients. Clearly the highest average gra-
dients occur at the head of the drain (upper right corner of
drain), as expected.

Approaching the downstream face of the dam, the aver-
age internal gradients tend to fade out slowly. This reflects
two things: (1) the gradients near the free surface tend to be
small and (2) the free surface changes location from realiza-
tion to realization so that the average includes cases where
the gradient is zero (above the free surface). The free sur-
face itself sometimes comes quite close to the downstream
face, but it always (with very high probability) descends to
exit within the drain for the cases shown.

Figure 9.14 shows a gray-scale representation of the
gradient standard deviation. Interestingly, larger standard
deviations occur in the region of the mean free surface,
as indicated by the dark band running along parallel to
the downstream face, as well as near the head of the
drain. Clearly, the area near the head of the drain is where
the maximum gradients occur so this area has the largest
potential for soil degradation and piping. The gradient
distribution, as extracted from the finite-element program,
at the drain head is shown in Figure 9.15. The gradients
observed in dam A extend all the way up to about 3.5,
which is in the range of the soil tests performed by Lafleur
et al. (1989) on the filtration stability of broadly graded
cohesionless soils. Thus it would appear that those test
results, at least, cover the range of gradients observed in
this dam. The wider dam B profile has a smaller range and
lower gradients at the head of the drain and so should be
safer with respect to piping failure.
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Figure 9.13 Average hydraulic gradient field. Higher gradients
are dark.
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Figure 9.14 Hydraulic gradient standard deviation fields. Higher
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The deterministic gradients at the head of the drain were
1.85 for dam A and 1.08 for dam B. These values are
very close to the mean gradients observed in Figure 9.15
but imply that the deterministic result is not a conservative
measure of the gradients possible in the region of the drain.
The coefficients of variation of the drain head gradients
were 0.24 for dam A and 0.20 for dam B. Thus a rough
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Figure 9.15 Hydraulic gradient distributions at drain heads
(upper right corner of drain).
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estimate of the maximum gradient distribution for dams
such as these might be to take the deterministic gradient
as a mean and apply a coefficient of variation of 25%
under an assumed normal distribution. These results can
be considered representative of any dam having one of
these overall shapes with σK /µK = 0.5 since the gradient
is not affected by changing mean permeability or overall
dam dimension.

For comparison, the unit flux near the head of the drain
has a distribution similar to that of the gradient with mean
1.77µK and coefficient of variation of 0.36 for dam A. For
the shallower dam B, the mean flux at the head of the drain
is 1.02µK with coefficient of variation of 0.33. Although
these results are not directly comparable with the stability
tests carried out by Kenney and Lau (1985) under unit
fluxes ranging from 0.48 to 1.67 cm/s (they did not report
the corresponding permeability), it seems likely that the
soil samples they were testing would have permeabilities
much smaller than 1.0. In this case, the unit fluxes obtained
in this simulation study are (probably) much smaller than
those used in the test conditions, indicating again that the
test conditions are conservative.

9.2.5 Summary

The primary conclusions derived from this study are as
follows:

1. The downstream exit point elevation obtained using
a deterministic analysis (constant permeability) is a
conservative estimate. That is, the effect of spatial
variability in the permeability field serves to lower
the mean exit point elevation (as it does the mean
flow rate).

2. The spatial variability of soil permeability does not
significantly add variability to the free-surface loca-
tion. The exception to this occurs when a sufficiently
short drain is provided which keeps the free surface
so close to the downstream dam face that it jumps
to exit on the downstream face under slight changes
of the permeability field in the region of the drain.
In general, however, for a sufficiently long and clear
drain (somewhere between one-fourth and one-half
the base dimension), the free-surface profile is fairly
stable. This observation has also been made in the ab-
sence of a drain (see previous section), even though
the profile in that case is much higher.

3. A drain having permeability at least 120 times the
mean permeability of the dam itself and having length
between one-fourth and one-half of the base dimen-
sion was found to be successful in ensuring that

the downstream free-surface exit point was consis-
tently contained within the drain, despite variability in
the permeability field. Specifically, the mean down-
stream exit point elevation was found to lie well
within the drain. As noted above, the exit point el-
evation has relatively small standard deviation (coef-
ficient of variation of less than 17%) so that the en-
tire sample distribution also remained well within the
drain.

4. Maximum internal hydraulic gradients occur near the
head of the drain (upstream end), and although there
is more variability in the gradient field than in the
free-surface profile, the gradient distribution is not
excessively wide. Coefficients of variation remain
around 25% for both earth dam geometries considered
(for an input coefficient of variation of 50% on the
permeability).

5. There does not seem to be any significant probability
that spatial variability in the permeability field will
lead to hydraulic gradients exceeding those values
used in tests leading to soil stability design criteria.
Thus, design criteria based on published test results
appear to be conservative, at least when considering
only the influence of spatially varying permeability.

6. The hydraulic gradient distribution near the head of
the drain has a mean very close to that predicted by
a deterministic analysis with K = µK everywhere. A
coefficient of variation of 25% can then be applied
using a normal distribution to obtain a reasonable
approximation to the gradient distribution.

Although these observations imply that existing design pro-
cedures based on “conservative” and deterministic tests do
appear to be conservative and so can be used for drain
design without regard to stochasticity, it must be empha-
sized that only one source of uncertainty was considered
in this analysis under a single input coefficient of varia-
tion. A more complete (and complex) study would include
soil particle distributions, differential settlements, and al-
low for particle movement, formation of preferential flow
paths, drain blockage, and so on. The results of this study
are, however, encouraging, in that the stability design of the
soil only considers soil gradation issues under vibration and
seepage and does not specifically account for larger scale
factors such as differential settlement. What this means is
that the results of this section are useful if the dam be-
haves as it was designed, without formation of large cracks
due to settlement or preferential flow paths and without,
for example, drain blockage, and suggest that such a de-
sign would be conservative without the need to explicitly
consider stochastic variation in the soil permeability.



CHAPTER 10

Settlement of Shallow
Foundations

10.1 INTRODUCTION

The settlement of structures founded on soil is a subject of
considerable interest to practicing engineers since excessive
settlements often lead to serviceability problems. In particu-
lar, unless the total settlements themselves are particularly
large, it is usually differential settlements which lead to
unsightly cracks in facades and structural elements, pos-
sibly even to structural failure, especially in unreinforced
masonry elements. Existing code requirements limiting dif-
ferential settlements to satisfy serviceability limit states
[see building codes American Concrete Institute (ACI)
318-89, 1989, or Canadian Standards Association (CSA)
A23.3-M84, 1984] specify maximum deflections ranging
from D/180 to D/480, depending on the type of supported
elements, where D is the center-to-center span of the struc-
tural element. Often, in practice, differential settlements
between footings are generally controlled, not by consid-
ering the differential settlement itself, but by controlling
the total settlement predicted by analysis using an estimate
of the soil elasticity. This approach is largely based on
correlations between total settlements and differential set-
tlements observed experimentally (see, e.g., D’Appolonia
et al., 1968) and leads to a limitation of 4–8 cm in total
settlement under a footing, as specified in the Canadian
Foundation Engineering Manual (CFEM), Part 2 (CGS
1978). Interestingly enough, the 1992 version of CFEM
(CGS 1992) only specifies limitations on differential set-
tlements, and so it is presumably assumed that by the
early 1990s, geotechnical engineers have sufficient site in-
formation to assess differential settlements and/or are able
to take spatial variability into account in order to assess

the probability that differential settlements exceed a certain
amount.

Because of the wide variety of soil types and possible
loading conditions, experimental data on differential settle-
ment of footings founded on soil are limited. With the aid of
computers, it is now possible to probabilistically investigate
differential settlements over a range of loading conditions
and geometries. In this chapter, we investigate the distribu-
tions associated with settlement and differential settlement
and present reasonably simple, approximate approaches to
estimating probabilities associated with settlements and dif-
ferential settlements.

In Section 4.4.3, we considered an example dealing with
the settlement of a perfectly horizontally layered soil mass
in which the equivalent elastic modulus (which may include
the stress-induced effects of consolidation) varied randomly
from layer to layer but was constant within each layer. The
resulting global effective elastic modulus was the harmonic
average of the layer moduli. We know, however, that soils
will rarely be so perfectly layered, nor will their properties
be perfectly uniform even within a layer. To illustrate
what happens at the opposite extreme, where soil or rock
properties vary only in the horizontal direction, consider
the following example.

Example 10.1 Consider the situation in which a sequence
of vertically oriented soil or rock layers are subjected to a
rigid surface load, as illustrated in Figure 10.1. Assume that
each layer has elastic modulus Ei which is constant in the
vertical direction. If the total settlement δ is expressed as

δ = σH

Eeff

derive Eeff.

SOLUTION Because the load is assumed to be rigid, the
settlement δ of all layers will be identical. Each layer picks
up a portion of the total load which is proportional to its
stiffness. If Pi is the load (per unit distance perpendicular
to the plane of Figure 10.1) supported by the i th layer, then

Pi = δ�xEi

H

The total load acting on Figure 10.1 is P = (n�x )σ which
must be equal to the sum of layer loads;

(n �x )σ =
n∑

i=1

Pi = δ�x

H

n∑

i=1

Ei

Solving for δ gives

δ = σH

(1/n)
∑n

i=1 Ei
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Figure 10.1 Settlement of perfectly vertically layered soil or
rock.

from which we see that

Eeff = 1

n

n∑

i=1

Ei

which is the arithmetic average.

Referring back to the example given in Section 4.4.3, we
see that for a perfectly horizontally layered soil Eeff is the
harmonic average, while for a perfectly vertically layered
soil Eeff is the arithmetic average. A real soil will gen-
erally appear somewhere between these two extremes, as
illustrated in Figure 10.2, which implies that Eeff will of-
ten lie somewhere between the harmonic and the arithmetic
averages. Since the geometric average (see Section 4.4.2)
does lie between the harmonic and arithmetic averages, it
will often be an appropriate model for Eeff. Bear in mind,
however, that if it is known that the soil or rock is strongly
layered, one of the other averages may be more appropriate.

In the following two sections, random models for settle-
ment of rigid shallow foundations are developed, first of all
in two dimensions, then in three dimensions. The last two
sections discuss how the probabilistic results can be used

s

H

Figure 10.2 Layering of real soils is typically somewhere be-
tween perfect horizontal and vertical layering.

to develop a LRFD methodology for shallow-foundation
serviceability limit states.

10.2 TWO-DIMENSIONAL PROBABILISTIC
FOUNDATION SETTLEMENT

In this section, we first consider the distribution of settle-
ments of a single footing, as shown in Figure 10.3a , and
estimate the probability density function governing total set-
tlement of the footing as a function of footing width for
various statistics of the underlying soil. Only the soil elas-
ticity is considered to be spatially random. Uncertainties
arising from model and test procedures and in the loads
are not considered. In addition, the soil is assumed to be
isotropic; that is, the correlation structure is assumed to
be the same in both the horizontal and vertical directions.
Although soils generally exhibit a stronger correlation in the
horizontal direction, due to their layered nature, the degree of
anisotropy is site specific. In that this section is demonstrat-
ing the basic probabilistic behavior of settlement, anisotropy
is left as a refinement for the reader. The program used to
perform the study presented in this section is RSETL2D,
available at http://www.engmath.dal.ca/rfem(Paice
et al., 1994; Fenton et al., 1996; Fenton and Griffiths, 2002;
Griffiths and Fenton, 2007).

In foundation engineering, both immediate and consoli-
dation settlements are traditionally computed using elastic
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Figure 10.3 Random-field/finite-element representation of
(a) single footing and (b) two footings founded on a soil layer.
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theory. This section considers the elastic properties E that
apply to either or both immediate and consolidation settle-
ment as spatially random since these are usually the most
important components of settlement.

The footings are assumed to be founded on a soil layer
underlain by bedrock. The assumption of an underlying
bedrock can be relaxed if a suitable averaging region is
used. Guidelines to this effect are suggested below. The
results are generalized to allow the estimation of proba-
bilities associated with settlements under footings in many
practical cases.

The second part of the section addresses the issue of
differential settlements under a pair of footings, as shown
in Figure 10.3b, again for the particular case of footings
founded on a soil layer underlain by bedrock. The mean and
standard deviation of differential settlements are estimated
as functions of footing width for various input statistics
of the underlying elastic modulus field. The probability
distribution governing differential settlement is found to be
conservatively estimated using a joint normal distribution
with correlation predicted using local averages of the elastic
modulus field under the two footings.

The physical problem is represented using a two-
dimensional (plane-strain) model following the work of
Paice et al. (1996), which is based on program 5.1 in
Smith and Griffiths (2004). If the footings extend for a
large distance in the out-of-plane direction z , then the two-
dimensional elastic modulus field is interpreted either as an
average over z or as having an infinite correlation length
in the z direction. For footings of finite dimension, the
two-dimensional model is admittedly just an approximation.
However, the two-dimensional approximation is reasonable
since the elastic modulus field is averaged by the foundation
in the z direction in any case.

10.2.1 Random Finite-Element Method

Much discussion of the relative merits of various meth-
ods of representing random fields in finite-element analysis
has been carried out in recent years (see, e.g., Li and Der
Kiureghian, 1993). While the spatial averaging discretiza-
tion of the random field used in this study is just one
approach to the problem, it is appealing in the sense that it
reflects the simplest idea of the finite-element representa-
tion of a continuum as well as the way that soil samples are
typically taken and tested in practice, that is, as local aver-
ages. Regarding the discretization of random fields for use
in finite-element analysis, Matthies et al. (1997) make the
comment that “one way of making sure that the stochastic
field has the required structure is to assume that it is a local
averaging process,” referring to the conversion of a nondif-
ferentiable to a differentiable (smooth) stochastic process.
They go on to say that the advantage of the local average

representation of a random field is that it yields accurate
results even for rather coarse meshes.

As illustrated in Figure 10.3, the soil mass is discretized
into 60 four-noded quadrilateral elements in the horizontal
direction by 20 elements in the vertical direction. Trial runs
using 120 × 40 elements resulted in less than a 2.5%
difference in settlements for the worst cases (narrowest
footings) at a cost of more than 10 times the computing
time, and so the 60 × 20 discretization was considered
adequate. The overall dimensions of the soil model are
held fixed at L = 3 and H = 1. No units will be used
since the probabilistic properties of the soil domain are
scaled by the correlation length, to be discussed shortly.
The left and right faces of the finite-element model are
constrained against horizontal displacement but are free to
slide vertically while the nodes on the bottom boundary are
spatially fixed. The footing(s) are assumed to be rigid, to
not undergo any rotations, and to have a rough interface
with the underlying soil (no-slip boundary). A fixed load
P = 1 is applied to each footing—since settlement varies
linearly with load, the results are easily scaled to different
values of P .

To investigate the effect of the footing width B , the
soil layer thickness H was held constant at 1.0 while
the footing width was varied according to Table 10.1.
Because the settlement problem is linear in many of its
parameters, the following results can be scaled to arbitrary
footing widths and soil layer thicknesses, so long as the
ratio B/H is held fixed. For example, the settlement of
a footing of width B ′ = 2.0 m on an H ′ = 20 m thick
soil layer with load P ′ = 1000 kN and elastic modulus
E ′ = 60 kN/m2 corresponds to 0.06 times the settlement
of a footing of width B = 0.1 m on an H = 1.0 m thick
soil layer with P = 1 kN and elastic modulus E = 1 kN/m2.
The scaling factor from the unprimed to the primed case
is (P ′/P)(E/E ′) as long as B ′/H ′ = B/H . If B/H is not
constant, a deterministic finite-element analysis will have
to be performed to determine the scaling constant.

In the two-footing case, the distance between foot-
ing centers was held constant at 1.0, while the footing

Table 10.1 Input Parameters Varied in Study While
Holding H = 1, D = 1, P = 1, µE = 1, and ν = 0.25
Constant

Parameter Values Considered

σE 0.1, 0.5, 1.0, 2.0, 4.0
θln E 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 1.0, 2.0, 5.0,

10.0, 50.0
B 0.1, 0.2, 0.5, 1.0 (single footing)

0.1, 0.3, 0.5 (two footings)
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widths (assumed equal) were varied. Footings of width
greater than 0.5 were not considered since this situation
approaches that of a strip footing (the footings would
be joined when B = 1.0). The soil has two properties of
interest to the settlement problem: the (effective) elastic
modulus E (x) and Poisson’s ratio ν(x), where x is spa-
tial position. Only the elastic modulus is considered to
be a spatially random soil property. Poisson’s ratio was
believed to have a smaller relative spatial variability and
only a second-order importance to settlement statistics. It
is held fixed at 0.25 over the entire soil mass for all
simulations.

Figure 10.3 shows a gray-scale representation of two
possible realizations of the elastic modulus field, along
with the finite element mesh. Lighter areas denote smaller
values of E (x) so that the elastic modulus field shown
in Figure 10.3b corresponds to a higher elastic modulus
under the left footing than under the right—this leads to the
substantial differential settlement indicated by the deformed
mesh. This is just one possible realization of the elastic
modulus field; the next realization could just as easily show
the opposite trend.

The elastic modulus field is assumed to follow a log-
normal distribution so that ln(E ) is a Gaussian (normal)
random field with mean µln E and variance σ 2

ln E . The choice
of a lognormal distribution is motivated by the fact that
the elastic modulus is strictly nonnegative, a property of
the lognormal distribution (but not the normal), while still
having a simple relationship with the normal distribution.
A Markovian spatial correlation function, which gives the
correlation coefficient between log-elastic modulus values
at points separated by distance τ , is used,

ρln E (τ ) = exp

{
−2|τ |

θln E

}
(10.1)

in which τ = x − x′ is the vector between spatial points
x and x′ and |τ | is the absolute length of this vector (the
lag distance). See Section 3.7.10.2 for more details. In this
section, the word “correlation” refers to the correlation co-
efficient (normalized covariance). The correlation function
decay rate is governed by the so-called correlation length
θln E , which, loosely speaking, is the distance over which
log-elastic moduli are significantly correlated (when the
separation distance |τ | is greater than θln E , the correlation
between ln E (x) and ln E (x′) is less than 14%).

The assumption of isotropy is, admittedly, somewhat
restrictive. In principle the methodology presented in the
following is easily extended to anisotropic fields, although
the accuracy of the proposed distribution parameter esti-
mates would then need to be verified. For both the single-
and two-footing problems, however, it is the horizontal
correlation length which is more important. As will be seen,

the settlement variance and covariance depend on the statis-
tics of a local average of the log-elastic modulus field under
the footing. If the vertical correlation length is less than the
horizontal, this can be handled simply by reducing the ver-
tical averaging dimension H to H (θln Eh /θln Ev ). For very
deep soil layers, the averaging depth H should probably be
restricted to no more than about 10B since the stress under
a footing falls off approximately according to B/(B + H ).

In practice, one approach to the estimation of θln E in-
volves collecting elastic modulus data from a series of
locations in space, estimating the correlations between the
log-data as a function of separation distance, and then fit-
ting Eq. 10.1 to the estimated correlations. As indicated
in Sections 5.3.6 and 5.4.1.1, the estimation of θln E is not
a simple problem since it tends to depend on the distance
over which it is estimated. For example, sampling soil prop-
erties every 5 cm over 2 m will likely yield an estimated
θln E of about 20 cm, while sampling every 1 km over 1000
km will likely yield an estimate of about 200 km. This
is because soil properties vary at many scales; looked at
closely, a soil can change significantly within a few meters
relative to the few meters considered. However, soils are
formed by weathering and glacial actions which can span
thousands of kilometers, yielding soils which have much
in common over large distances. Thus, soils can conceptu-
ally have lingering correlations over entire continents (even
planets).

This lingering correlation in the spatial variability of soils
implies that correlation lengths estimated in the literature
should not just be used blindly. One should attempt to
select a correlation length which has been estimated on
a similar soil over a domain of similar size to the site being
characterized. In addition, the level of detrending used to
estimate the reported correlation length must be matched at
the site being characterized. For example, if a correlation
length, as reported in the literature, was estimated from data
with a quadratic trend removed, then sufficient data must be
gathered at the site being characterized to allow a quadratic
trend to be fitted to the site data. The estimated correlation
length then applies to the residual random variation around
the trend. To facilitate this, researchers providing estimates
of variance and correlation length in the literature should
report (a) estimates with the trend removed, including the
details of the trend itself, and (b) estimates without trend
removal. The latter will typically yield significantly larger
estimated variance and correlation length, giving a truer
sense for actual soil variability.

In the case of two footings, the use of a correlation
length equal to D is conservative in that it yields differ-
ential settlement variances which are at or close to their
maximums, as will be seen shortly. In some cases, how-
ever, setting θln E = D may be unreasonably conservative.
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If sufficient site sampling has been carried out to estimate
the mean and variance of the soil properties at the site, then
a significantly reduced correlation length is warranted. The
literature should then be consulted to find a similar site on
which a spatial statistical analysis has been carried out and
an estimated correlation length reported.

In the case of a single footing, taking θln E large is con-
servative; in fact, the assumption that E is lognormally
distributed and spatially constant leads to the largest vari-
ability (across realizations) in footing settlement. Thus,
traditional approaches to randomness in footing settle-
ment using a single random variable to characterize E are
conservative—settlement will generally be less than pre-
dicted.

Throughout, the mean elastic modulus µE is held fixed
at 1.0. Since settlement varies linearly with the soil elas-
tic modulus, it is always possible to scale the settlement
statistics to the actual mean elastic modulus. The standard
deviation of the elastic modulus is varied from 0.1 to 4.0 to
investigate the effects of elastic modulus variability on set-
tlement variability. The parameters of the transformed ln(E )
Gaussian random field may be obtained from Eqs. 1.176,

σ 2
ln E = ln(1 + v2

E ) (10.2a)

µln E = ln(µE ) − 1
2σ 2

ln E (10.2b)

where vE = σE /µE is the coefficient of variation of the
elastic modulus field. From Eq. 10.2a, it can be seen that
σ 2

ln E varies from 0.01 to 2.83 in this study (note also that
µln E depends on both µE and σE ).

To investigate the effect of the correlation length θln E

on the settlement statistics, θln E is varied from 0.01 (i.e.,
very much smaller than the soil model size) to 50.0
(i.e., substantially bigger than the soil model size) and up
to 200 in the two-footing case. In the limit as θln E → 0, the
elastic modulus field becomes a white noise field, with E
values at any two distinct points independent. In terms of
the finite elements themselves, values of θln E smaller than
the elements result in a set of elements which are largely
independent (increasingly independent as θln E decreases).
Because of the averaging effect of the details of the elastic
modulus field under a footing, the settlement in the limiting
case θln E → 0 is expected to approach that obtained in the
deterministic case, with E = µ̃E (the median) everywhere,
and has vanishing variance for finite σ 2

ln E .
By similar reasoning the differential settlement (as in

Figure 10.3b) as θln E → 0 is expected to go to zero. At
the other extreme, as θln E → ∞, the elastic modulus field
becomes the same everywhere. In this case, the settlement
statistics are expected to approach those obtained by using a
single lognormally distributed random variable E to model
the soil, E (x) = E . That is, since the settlement δ under a

footing founded on a soil layer with uniform (but random)
elastic modulus E is given by

δ = δdetµE

E
(10.3)

for δdet the settlement when E = µE everywhere, then as
θln E → ∞ the settlement assumes a lognormal distribution
with parameters

µln δ = ln(δdet) + ln(µE ) − µln E = ln(δdet) + 1
2σ 2

ln E

(10.4a)

σln δ = σln E (10.4b)

where Eq. 10.2b was used in Eq. 10.4a. Also, since in this
case the settlement under the two footings of Figure 10.3b
becomes equal, the differential settlement becomes zero.
Thus, the differential settlement is expected to approach
zero at both very small and very large correlation lengths.

The Monte Carlo approach adopted here involves the
simulation of a realization of the elastic modulus field
and subsequent finite-element analysis (Smith and Griffiths,
2004) of that realization to yield a realization of the foot-
ing settlement(s). Repeating the process over an ensemble
of realizations generates a set of possible settlements which
can be plotted in the form of a histogram and from which
distribution parameters can be estimated. In this study, 5000
realizations are performed for each input parameter set (σE ,
θln E , and B). If it can be assumed that log-settlement is ap-
proximately normally distributed (which is seen later to be
a reasonable assumption and is consistent with the distribu-
tion selected for E ), and mln δ and s2

ln δ are the estimators of
the mean and variance of log-settlement, respectively, then
the standard deviations of these estimators obtained from
5000 realizations are given by

σmln δ
� sln δ√

n
= 0.014sln δ (10.5a)

σs2
ln δ

�
√

2

n − 1
s2

ln δ = 0.02s2
ln δ (10.5b)

so that the estimator “errors” are negligible compared to
the estimated variance (i.e., about 1 or 2% of the estimated
standard deviation).

Realizations of the log-elastic modulus field are pro-
duced using the two-dimensional LAS technique (see
Section 6.4.6). The elastic modulus value assigned to the
i th element is

Ei = exp{µln E + σln E Gi } (10.6)

where Gi is the local average over the i th element of a
zero-mean, unit-variance Gaussian random field G(x).
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10.2.2 Single-Footing Case

A typical histogram of the settlement under a single footing,
as estimated by 5000 realizations, is shown in Figure 10.4
for B = 0.1, σE/µE = 1, and θln E = 0.1. With the require-
ment that settlement be nonnegative, the shape of the
histogram suggests a lognormal distribution, which was
adopted in this study (see Eqs. 10.4). The histogram is
normalized to produce a frequency density plot, where a
straight line is drawn between the interval midpoints. Super-
imposed on the histogram is a fitted lognormal distribution
with parameters given by mln δ and sln δ in the line key.
At least visually, the fit appears reasonable. In fact, this is
one of the worst cases out of all 220 parameter sets given
in Table 10.1; a chi-square goodness-of-fit test yields a p-
value of 8 × 10−10. Large p-values support the lognormal
hypothesis, so that this small value suggests that the data
do not follow a lognormal distribution. Unfortunately, when
the sample size is large (n = 5000 in this case), goodness-
of-fit tests are quite sensitive to the “smoothness” of the
histogram. They perhaps correctly indicate that the true dis-
tribution is not exactly as hypothesized but say little about
the reasonableness of the assumed distribution. As can be
seen from Figure 10.4, the lognormal distribution certainly
appears reasonable.

Over the entire set of simulations performed for each
parameter of interest (B , σE , and θln E ), 80% of the fits have
p-values exceeding 5% and only 5% have p-values of less
than 0.0001. This means that the lognormal distribution is
generally a close approximation to the distribution of the
simulated settlement data, typically at least as good as seen
in Figure 10.4.

Accepting the lognormal distribution as a reasonable fit
to the simulation results, the next task is to estimate the
parameters of the fitted lognormal distributions as functions

0 1 2 3 4 5

d

0
0.
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1

f d
(d

)

Freqency density
mln d = 0.953, sln d = 0.196

Figure 10.4 Typical frequency density plot and fitted lognormal
distribution of settlement under a single footing.

of the input parameters (B , σE , and θln E ). The lognormal
distribution,

fδ(x ) = 1√
2πσln δ x

exp

{
−1

2

(
ln x − µln δ

σln δ

)2
}

,

0 ≤ x < ∞ (10.7)

has two parameters, µln δ and σln δ . Figure 10.5 shows how
the estimator of µln δ , denoted mln δ, varies with σln E for
B = 0.1. All correlation lengths are drawn in the plot but
are not individually labeled since they lie so close together.
This observation implies that the mean log-settlement is
largely independent of the correlation length θln E . This is
as expected since the correlation length does not affect the
mean of a local average of a normally distributed process.
Figure 10.5 suggests that the mean of log-settlement can be
closely estimated by a straight line of the form (as suggested
by Eq. 10.4a)

µln δ = ln(δdet) + 1
2σ 2

ln E (10.8)

where δdet is the “deterministic” settlement obtained from
a single finite-element analysis (or appropriate approximate
calculation) of the problem using E = µE everywhere. This
equation is also shown in Figure 10.5, and it can be seen
that the agreement is very good. Even closer results were
found for the other footing widths.

Estimates of the standard deviation of log-settlement,
sln δ , are plotted in Figure 10.6 (as symbols) for the smallest
and largest footing widths. Intermediate footing widths give
similar results. In all cases, sln δ increases to σln E as θln E

increases. The reduction in variance as θln E decreases is
due to the local averaging variance reduction of the log-
elastic modulus field under the footing (for smaller θln E ,
there are more “independent” random field values, so that
the variance reduces faster under averaging; see Section 3.4
for more details).

Following this reasoning, and assuming that local av-
eraging of the area under the footing accounts for all of

0 1 2 3

s2
ln E

0
2

4

m
ln

 d

B = 0.1

Predicted

Figure 10.5 Estimated mean of log-settlement along with that
predicted by Eq. 10.8.
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Figure 10.6 Comparison of simulated sample standard deviation
of log-settlement, shown with symbols, with theoretical estimate
via Eq. 10.9, shown with lines.

the variance reduction seen in Figure 10.6, the standard
deviation of log-settlement is

σln δ =
√

γ (B , H ) σln E (10.9)

where γ (B , H ) is the variance reduction function, which
depends on the averaging region, B × H , as well as on
the correlation length, θln E . Since σ 2

ln E is constant for each
value of σE /µE (see Eq. 10.2a), Figure 10.6 is essentially
a plot of the variance function, γ (B , H ), illustrating how
the variance of a local average decreases as the correlation
length decreases. See Appendix C for details on how to
compute the variance reduction function.

Specifically, the variance function gives the amount that
the log-elastic modulus variance is reduced when its ran-
dom field is averaged over a region of size B × H . The
dependence of the variance function on H is apparently
only valid for the geometries considered; if the footing
is founded on a much deeper soil mass, one would not
expect to average over the entire depth due to stress re-
duction with depth. As suggested in Section 10.2.1, H
should be limited to no more than about 10B . If in doubt,
taking H to be relatively small (even zero) yields a con-
servative estimate of the settlement distribution, having
large variability. This is equivalent to taking θln E large,
as noted previously in Section 10.2.1. In practice, how-
ever, values of the normalized averaging area BH /θ2

ln E

greater than about 5 yield values of σln δ less than about
15% of σln E so that changes in H above this level have
only a minor effect on the overall variance reduction.
Predictions of σln δ using Eq. 10.9 are superimposed in

Figure 10.6 using lines. The agreement is remarkable. In-
termediate cases show similar, if not better, agreement with
predictions.

An alternative physical interpretation of Eqs. 10.8 and
10.9 comes by generalizing the relationship given by
Eq. 10.3 to the form

δ = δdetµE

Eg
(10.10)

where Eg is the geometric average of the elastic modulus
values over the region of influence (see Section 4.4.2),

Eg = exp

{
1

BH

∫ H

0

∫ B

0
ln E (x , y) dx dy

}
(10.11)

Taking the logarithm of Eq. 10.10 and then computing its
mean and variance lead to Eqs. 10.8, using Eq. 10.4a, and
10.9. The geometric mean is dominated by small values of
elastic modulus, which means that the total settlement is
dominated by low-elastic-modulus regions underlying the
footing, as would be expected.

Example 10.2 Consider a single footing of width B =
2.0 m to be founded on a soil layer of depth 10.0 m and
which will support a load P = 1000 kN. Suppose also that
samples taken at the site have allowed the estimation of
the elastic modulus mean and standard deviation at the site
to be 40 and 40 MPa, respectively. Similarly, test results
on a regular array at this or a similar site have resulted in
an estimated correlation length, θln E = 3.0 m. Assume also
that Poisson’s ratio is 0.25. Estimate the probability that
the footing settlement will exceed 0.10 m.

SOLUTION The results from this section can be used as
follows to estimate the probability that the settlement of the
footing will exceed 0.10 m:

1. A finite-element analysis of the given problem with
soil elastic modulus everywhere equal to µE = 40 MPa
gives a deterministic settlement of δdet = 0.03531 m.

2. Compute the variance of log-elastic modulus from
Eq. 10.2, σ 2

ln E = ln(2) = 0.69315, so that σln E =
0.83256.

3. Compute the mean of log-settlement from Eq. 10.8,
µln δ = ln(δdet) + 0.5σ 2

ln E = −3.3437 + 0.5(0.69315)
= −2.9971.

4. Compute the standard deviation of log-settlement
using Eq. 10.9, σln δ = √

γ (B , H ) σln E = √
0.22458

(0.83256) = 0.39455. See Appendix C for an algo-
rithm on the computation of the variance reduction
function γ (B , H ).
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As an aside, for µln δ = −2.9971 and σln δ = 0.39455,
the corresponding settlement mean and standard devia-
tion are µδ = exp{µln δ + 1

2σ 2
ln δ} = 0.0540 m and σδ =

µδ

√
eσ 2

ln δ − 1 = 0.0222 m, respectively. A trial run of 5000
realizations for this problem gives mδ = 0.0562 and sδ =
0.0201 for relative differences between prediction and sim-
ulation of 3.9 and 10.4%, respectively. The estimated rela-
tive standard error on mδ is approximately 0.5% for 5000
realizations.

5. Compute the desired probability using the lognormal
distribution, P [δ > 0.10] = 1 − 
(1.7603) = 0.0392,
where 
(·) is the standard normal cumulative distri-
bution.

A simulation run for this problem yielded 160 samples out
of 5000 having settlement greater than 0.10 m. This gives a
simulation-based estimate of the above probability of 0.032,
which is in very good agreement with that predicted.

10.2.3 Two-Footing Case

Having established, with reasonable confidence, the distri-
bution associated with settlement under a single footing
founded on a soil layer, attention can now be turned to
the more difficult problem of finding a suitable distribution
to model differential settlement between footings. Analyti-
cally, if δ1 is the settlement under the left footing shown in
Figure 10.3b and δ2 is the settlement of the right footing,
then according to the results of the previous section, δ1 and
δ2 will be jointly lognormally distributed random variables,

fδ1,δ2 (x , y) = 1

2πσ 2
ln δrxy

× exp

{
− 1

2r2

[
�2

x − 2ρln δ�x �y + �2
y

]}
,

x ≥ 0, y ≥ 0

(10.12)

where �x = (ln x − µln δ)/σln δ , �y = (ln y − µln δ)/σln δ ,
r2 = 1 − ρ2

ln δ , and ρln δ is the correlation coefficient be-
tween the log-settlement of the two footings. It is assumed
in the above that δ1 and δ2 have the same mean and
variance, which, for the symmetric conditions shown in
Figure 10.3b and stationary E field, will be true.

If the differential settlement between footings is defined
by � = δ1 − δ2, then the mean of � is zero if the elastic
modulus field is statistically stationary. As indicated in
Section 5.3.1, stationarity is a mathematical assumption
that in practice depends on the level of knowledge that
one has about the site. If a trend in the effective elastic
modulus is known to exist at the site, then the following

results can still be used by computing the deterministic
differential settlement using the mean “trend” values in a
deterministic analysis, then computing the probability of
an additional differential settlement using the equations
to follow. In this case the following probabilistic analysis
would be performed with the trend removed from the elastic
modulus field.

The exact distribution governing the differential settle-
ment, assuming that Eq. 10.12 holds, is given as

f�(x ) =
{∫ ∞

0 fδ1,δ2 (x + y , y) dy if x ≥ 0
∫ ∞
−x fδ1,δ2 (x + y , y) dy if x < 0

(10.13)

which can be evaluated numerically but which has no
analytical solution so far as the authors are aware. In the
following a normal approximation to the distribution of �

will be investigated.
Figure 10.7 shows two typical frequency density plots

of differential settlement between two equal-sized footings
(B/D = 0.1) with superimposed fitted normal distributions,
where the fit was obtained by directly estimating the mean
and standard deviation from the simulation. The normal
distribution appears to be a reasonable fit in Figure 10.7a .
Since a lognormal distribution begins to look very much
like a normal distribution when σln δ is small, then for small
σln δ both δ1 and δ2 will be approximately normally dis-
tributed. For small θln E , therefore, since this leads to small
σln δ , the difference δ1 − δ2 will be very nearly normally
distributed, as seen in Figure 10.7a .

For larger correlation lengths (and/or smaller D), the his-
togram of differential settlements becomes narrower than
the normal, as seen in Figure 10.7b. What is less obvious
in Figure 10.7b is that the histogram has much longer tails
than predicted by the normal distribution. These long tails
lead to a variance estimate which is larger than dictated by
the central region of the histogram. Although the variance
could be artificially reduced so that the fit is better near the
origin, the result would be a significant underestimate of
the probability of large differential settlements. This issue
will be discussed at more length shortly when differential
settlement probabilities are considered. Both plots are for
σE /µE = 1.0 and are typical of other coefficients of varia-
tion (COVs).

Assuming, therefore, that � = δ1 − δ2 is (approximately)
normally distributed, and that δ1 and δ2 are identically
and lognormally distributed with correlation coefficient ρδ ,
differential settlement has parameters

µ� = 0, σ 2
� = 2(1 − ρδ)σ 2

δ (10.14)

Note that when θln E approaches zero, the settlement vari-
ance σ 2

δ also approaches zero. When θln E becomes very
large, the correlation coefficient between settlements under



TWO-DIMENSIONAL PROBABILISTIC FOUNDATION SETTLEMENT 319

−1.5 −1 −0.5 0 0.5 1 1.5

∆

0
0.

5
1

1.
5

f ∆
(∆

)

Frequency density
m∆ = −0.004, s∆ = 0.407

(a)

−10 −5 0 5 10
∆

0
0.

1
0.

2
0.

3

f ∆
(∆

)

Frequency density
m∆ = 0.038, s∆ = 2.61

(b)

Figure 10.7 Frequency density and fitted distribution for differential settlement under two equal-
sized footings with (a) θln E /D = 0.05 and (b) θln E /D = 1.0.

the two footings approaches 1. Thus, Eq. 10.14 is in agree-
ment with the expectation that differential settlements will
disappear for both very small and very large values of θln E .

Since local averaging of the log-elastic modulus field
under the footing was found to be useful in predicting the
variance of log-settlement, it seems reasonable to suggest
that the covariance between log-settlements under a pair of
footings will be well predicted by the covariance between
local averages of the log-elastic modulus field under each
footing. For equal sized footings, the covariance between
local averages of the log-elastic modulus field under two
footings separated by distance D is given by

Cln δ = σ 2
ln E

B2H 2

∫ H

0

∫ B

0

∫ H

0

∫ D+B

D
ρln E (x1 − x2, y1 − y2)

× dx2 dy2 dx1 dy1 (10.15)

which can be evaluated reasonably accurately using a three-
point Gaussian quadrature if ρln E is smooth, as is Eq. 10.1.
See Appendices B and C for details.

The correlation coefficient between settlements can now
be obtained by transforming back from log-space (see
Eq. 1.188),

ρδ = exp{Cln δ} − 1

exp{σ 2
ln δ} − 1

(10.16)

where σln δ is given by Eq. 10.9. The agreement between the
correlation coefficient predicted by Eq. 10.16 and the corre-
lation coefficient estimated from the simulations is shown
in Figure 10.8. In order to extend the curve up to cor-
relation coefficients close to 1, four additional correlation
lengths were considered (now 15 correlation lengths are
considered in total), all the way up to θln E = 200. The gen-
eral trends between prediction and simulation results are
the same, although the simulations show more correlation
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Figure 10.8 Predicted (pred.) and sample correlation coeffi-
cients between footing settlements for various relative separation
distances between the footings and for σE /µE = 1.

for larger footing widths than predicted by the above the-
ory. For larger footing widths there is a physical interaction
between the footings, where the stress under one footing
begins to add to the stress under the other footing, so the
true correlation is expected to be larger than that predicted
purely on the basis of local averaging. The correlation pre-
dicted by Eq. 10.16, however, is at least conservative in
that smaller correlations lead to larger probabilities of dif-
ferential settlement.

Figure 10.9 shows the estimated standard deviation of
� as a function of θln E /D for three footing widths and
for σE/µE = 1. Other values of σE /µE are of similar form.
Superimposed on the sample standard deviations (shown
as symbols) are the predicted standard deviations using
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Figure 10.9 Predicted (pred.) and sample standard deviations of
differential settlement for σE /µE = 1.

Eq. 10.14 (shown as solid or dashed lines). The agreement
is very good over the entire range of correlation lengths.

To test the ability of the assumed distribution to ac-
curately estimate probabilities, the probability that the
absolute value of � exceeds some threshold is compared to
empirical probabilities derived from simulation. For gener-
ality, thresholds of αµ|�| will be used, where µ|�| is the
mean absolute differential settlement, which, if � is nor-
mally distributed, is given by

µ|�| =
√

2

π
σ� (10.17)

Note that this relationship says that the mean absolute
differential settlement is directly related to the standard
deviation of �, which in turn is related to the correlation
between the elastic moduli under the footings and the
variability of the elastic moduli. In particular, this means
that the mean absolute differential settlement is a function
of just δdet, σ 2

ln E , and θln E , increasing with δdet and σ 2
ln E ,

and reaching a maximum when θln E /D is near 1.0 (see
Figure 10.9).

Figure 10.10 shows a plot of the probability

P
[|�| > αµ|�|

] = 2


(−αµ|�| − µ�

σ�

)
= 2


(
−α

√
2

π

)

(10.18)

for α varying from 0.5 to 4.0, shown as a solid line. The
symbols show empirical probabilities that |�| is greater
than αµ|�| obtained via simulation (5000 realizations) for
the 3 footing widths, 15 correlation lengths, and 5 elastic
modulus COVs (thus, each column of symbols contains 225
points, 75 for each footing width).
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Figure 10.10 Simulation-based estimates of P
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for

all cases compared to that predicted by Eqs. 10.17 and 10.18.

It can be seen that the predicted probability is in very good
agreement with average simulation results for large differ-
ential settlements, while being conservative (higher proba-
bilities of exceedance) at lower differential settlements.

The normal distribution is considered to be a reason-
able approximation for differential settlement in at least two
ways; first of all it is a conservative approximation, that is,
it overestimates the probability of differential settlement for
the bulk of the data. Second, it is a consistent approxima-
tion in that it improves as the correlation length decreases,
by virtue of the fact that the difference δ1 − δ2 approaches a
normal distribution. Since the estimated correlation length
decreases as a site is more thoroughly investigated and
trends are removed, then the normal distribution becomes
more accurate as more is known about the site. Conversely,
if little is known about the site, the normal distribution
properly reflects inherent uncertainty by generally predict-
ing larger differential settlements.

Example 10.3 Consider two footings each of width B =
2.0 m separated by D = 10 m center to center. They are
founded on a soil layer of depth 10 m and each supports
a load P = 1000 kN. Assume also that µE = 40 MPa,
σE = 40 MPa, θln E = 1.0 m, and Poisson’s ratio is 0.25.
If the footings support a floor or beam not attached to
elements likely to be damaged by large deflection, then
differential settlement is limited to D/360 = 2.8 cm. What
is the probability that |�| > 2.8 cm?

SOLUTION See the previous single-footing example for
some of the earlier details; note, however, that the correla-
tion length has changed in this example.
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1. A deterministic finite-element analysis of this problem
gives δdet = 0.03578 under each footing (this num-
ber is very slightly different than that found in the
single-footing case due to interactions between the
two footings). For σ 2

ln E = 0.69315, the log-settlement
statistics under either footing are µln δ = ln(δdet)

+ 1
2σ 2

ln E = −2.9838 and σln δ =
√

γ (B , H )σ 2
ln E =√

(0.055776)(0.69315) = 0.19662.
2. To calculate Cln δ , a short program written to imple-

ment the approach presented in Appendix C gives
Cln δ = 3.1356 × 10−7.

3. In terms of actual settlement under each footing,
the mean, standard deviation, and correlation coeffi-
cient are µδ = exp{µln δ + 1

2σ 2
ln δ} = 0.051587, σδ =

µδ

√
eσ 2

ln δ − 1 = 0.010242, and ρδ = eCln δ − 1/eσ 2
ln δ −

1 = 7.9547 × 10−6, respectively. A 5000-realization
simulation run for this problem gave estimates of set-
tlement mean and standard deviation of 0.0530 and
0.0081, respectively, and an estimated correlation
coefficient of −0.014 (where the negative correlation
coefficient estimate is clearly due to a bias in the clas-
sical estimator; see Section 5.4.1.1 for a discussion of
this issue).

4. The differential settlement � has parameters µ�

= 0 and σ 2
� = 2(1 − 7.9547 × 10−6)(0.010242)2

= 0.0002098 and the mean absolute differential
settlement in this case is predicted to be µ|�| =√

2(0.0002098)/π = 0.011. The simulation run esti-
mated the mean absolute differential settlement to be
0.009.

5. The desired probability is predicted to be P[|�| >

0.028] = 2

(
−0.028/

√
0.0002098

)
= 2
(−1.933)

= 0.0532. The empirical estimate of this probability
from the simulation run is 0.0204.

The normal distribution approximation to � somewhat
overestimates the probability that |�| will exceed D/360.
This is therefore a conservative estimate. From a design
point of view, if the probability derived in step 5 is deemed
unacceptable, one solution is to widen the footing. This will
result in a rapid decrease in P [|�| > 0.028] in the case
given above. In particular, if B is increased to 3.0 m, the
empirical estimate of P [|�| > 0.028] reduces by more than
a factor of 10 to 0.0016.

The distribution of absolute differential settlement is
highly dependent on the correlation length, primarily
through the calculation of σln δ. Unfortunately, the corre-
lation length is a quantity that is very difficult to estimate
and which is poorly understood for real soils, particularly
in the horizontal direction, which is more important for

differential settlement. If θln E is increased to 10.0 m in the
above example, the empirical estimate of P [|�| > 0.028]
increases drastically to 0.44. From a design point of view,
the problem is compounded since, for such a large correla-
tion length, P [|�| > 0.028] now decreases very slowly as
the footing width is increased (holding the load constant).
For example, a footing width of 5.0 m, with θln E = 10.0 m,
has P [|�| > 0.028] = 0.21. Thus, establishing the correla-
tion length in the horizontal direction is a critical issue
in differential settlement limit state design, and one which
needs much more work.

10.2.4 Summary

On the basis of this simulation study, the following ob-
servations can be made. The settlement under a footing
founded on a spatially random elastic modulus field of finite
depth overlying bedrock is well represented by a lognor-
mal distribution with parameters µln δ and σ 2

ln δ if E is also
lognormally distributed. The first parameter, µln δ , is depen-
dent on the mean and variance of the underlying log-elastic
modulus field and may be closely approximated by consid-
ering limiting values of θln E . One of the points made in this
section is the observation that the second parameter, σ 2

ln δ , is
very well approximated by the variance of a local average
of the log-elastic modulus field in the region directly under
the footing. This conclusion is motivated by the observation
that settlement is inversely proportional to the geometric av-
erage of the elastic modulus field and gives the prediction
of σ 2

ln δ some generality that can be extended beyond the
actual range of simulation results considered herein. For
very deep soil layers underlying the footing, it is recom-
mended that the depth of the averaging region not exceed
about 10 times its width, due to stress reduction with depth.
Once the statistics of the settlement, µln δ and σ 2

ln δ , have
been computed, using Eqs. 10.8 and 10.9, the estimation of
probabilities associated with settlement involves little more
than referring to a standard normal distribution table.

The differential settlement follows a more complicated
distribution than that of settlement itself (see Eq. 10.13).
This is seen also in the differential settlement histograms,
which tend to be quite erratic with narrow peaks and long
tails, particularly at large θln E /D ratios. Although the differ-
ence between two lognormally distributed random variables
is not normally distributed, the normal approximation has
nevertheless been found to be reasonable, yielding conser-
vative estimates of probability over the bulk of the distribu-
tion. For a more accurate estimation of probability relating
to differential settlement, where it can be assumed that foot-
ing settlement is lognormally distributed, Eq. 10.13 should
be numerically integrated, and this approach will be in-
vestigated in the next section. Both the simplified normal
approximation and the numerical integration of Eq. 10.13
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depend upon a reasonable estimate of the covariance be-
tween footing settlements. Another observation made in this
section is that this covariance is closely (and conservatively)
estimated using the covariance between local averages of
the log-elastic modulus field under the two footings. Dis-
crepancies between the covariance predicted on this basis
and simulation results are due to interactions between the
footings when they are closely spaced; such interactions
lead to higher correlations than predicted by local average
theory, which leads to smaller differential settlements in
practice than predicted. This is conservative. The recom-
mendations regarding the maximum averaging depth made
for the single-footing case would also apply here.

Example calculations are provided above to illustrate
how the findings of the section may be used. These calcu-
lations are reasonably simple for hand calculations (except
for the numerical integration in Eq. 10.15) and are also eas-
ily programmed. They allow probability estimates regarding
settlement and differential settlement, which in turn allows
the estimation of the risk associated with this particular
limit state for a structure.

A critical unresolved issue in the risk assessment of
differential settlement is the estimation of the correlation
length, θln E , since it significantly affects the differential
settlement distribution. A tentative recommendation is to
use a correlation length which is some fraction of the
distance between footings, say D/10. There is, at this time,
little justification for such a recommendation, aside from the
fact that correlation lengths approaching D or bigger yield
differential settlements which are felt to be unrealistic in a
practical sense and, for example, not observed in the work
of D’Appolonia et al. (1968).

10.3 THREE-DIMENSIONAL PROBABILISTIC
FOUNDATION SETTLEMENT

This section presents a study of the probability distributions
of settlement and differential settlement where the soil is
modeled as a fully three-dimensional random field and foot-
ings have both length and breadth. The study is an extension
of the previous section, which used a two-dimensional ran-
dom soil to investigate the behavior of a strip footing
of infinite length. The resulting two-dimensional proba-
bilistic model is found to also apply in concept to the
three-dimensional case here. Improved results are given
for differential settlement by using a bivariate lognormal
distribution, rather than the approximate univariate normal
distribution used in the previous section. The program used
to perform the study presented in this section is RSETL3D,
available at http://www.engmath.dal.ca/rfem (Fen-
ton and Griffiths, 2005b; Griffiths and Fenton, 2005).

The case of a single square, rigid pad footing is con-
sidered first, a cross section through which is shown in

H
 =

 1
H

 =
 1

(b)

L = 3

B

P = 1

(a)

D = 1

B

P = 1 P = 1
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Figure 10.11 Slices through random-field/finite-element mesh
of (a) single footing and (b) two footings founded on a soil layer.

Figure 10.11a , and the probability density function govern-
ing total settlement of the footing is estimated as a function
of footing area for various statistics of the underlying soil.
Only the soil elasticity is considered to be spatially ran-
dom. Uncertainties arising from model and test procedures
and in the loads are not considered. In addition, the soil is
assumed to be isotropic; that is, the correlation structure is
assumed to be the same in both the horizontal and verti-
cal directions. Although soils generally exhibit a stronger
correlation in the horizontal direction, due to their layered
nature, the degree of anisotropy is site specific. In that this
study is attempting to establish the basic probabilistic be-
havior of settlement, anisotropy is left as a refinement for
site-specific investigations. The authors expect that the av-
eraging model suggested in this section will drift from a
geometric average to a harmonic average as the ratio of
horizontal to vertical correlation lengths increases (see also
Section 10.3.2). Only the geometric average model will be
considered here since it allows for an approximate analyt-
ical solution. If the soil is known to be strongly layered,
risk assessments should be performed by simulation using
harmonic averages.

The footings are assumed to be founded on a soil layer
underlain by bedrock. The assumption of an underlying
bedrock can be relaxed if a suitable averaging region is
used (recommendations about such an area are given in the
previous section).
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The second part of the section addresses the issue of
differential settlements under a pair of footings, as shown
in Figure 10.11b, again for the particular case of footings
founded on a soil layer underlain by bedrock. The foot-
ing spacing is held constant at D = 1 while varying the
footing size. Both footings are square and the same size.
The mean and standard deviation of differential settlements
are estimated as functions of footing size for various input
statistics of the underlying elastic modulus field. The proba-
bility distribution governing differential settlement is found
to be reasonably approximated using a joint lognormal dis-
tribution with correlation predicted using local geometric
averages of the elastic modulus field under the two footings.

10.3.1 Random Finite-Element Method

The soil mass is discretized into 60 eight-node brick ele-
ments in each of the horizontal directions by 20 elements in
the vertical direction. Each element is cubic with side length
0.05 giving a soil mass which has plan dimension 3 × 3
and depth 1. (Note: Length units are not used here since the
results can be used with any consistent set of length and
force units.) Figure 10.12 shows the finite-element mesh in
three dimensions for the case of two footings.

The finite-element analysis uses a preconditioned conju-
gate gradient iterative solver (see Smith and Griffiths, 2004)
that avoids the need to assemble the global stiffness matrix.
Numerical experimentation indicates that the finite-element
model gives excellent agreement with analytical results for
a flexible footing. In the case of a rigid footing, doubling
the number of elements in each direction resulted in a set-
tlement which increased by about 3%, indicating that the

z

x

Figure 10.12 Finite-element mesh model of soil supporting two
footings.

rigid-footing model may be slightly too stiff at the cur-
rent resolution. However, the stochastic behavior will be
unaffected by such slight shifts in total settlement (i.e., by
the same fraction for each realization). The 60 × 60 × 20
discretization was considered adequate to characterize the
behavior of the settlement and differential settlement prob-
ability distributions.

The vertical side faces of the finite-element model are
constrained against horizontal displacement but are free to
slide vertically while the nodes on the bottom boundary are
spatially fixed. The footing(s) are assumed to be rigid, to
not undergo any rotations, and to have a rough interface
with the underlying soil (no-slip boundary). A fixed load
P = 1 is applied to each footing; since settlement varies
linearly with load, the results are easily scaled to different
values of P .

To investigate the effect of the square-footing area, the
soil layer thickness H was held constant at 1.0 while
the footing plan dimension B was varied according to
Table 10.2. Because the settlement problem is linear in
some of its parameters, the following results can be scaled
to arbitrary square-footing areas so long as the ratio B/H is
held fixed. For example, the settlement of a square footing
of dimension B ′ = 4.0 m on an H ′ = 20.0 m thick soil layer
with P ′ = 1000 kN and elastic modulus E ′ = 60 kN/m2

corresponds to 5
6 times the settlement of a footing of

width B = 0.2 m on an H = 1 m thick soil layer with
load P ′ = 1 kN and elastic modulus E = 1 kN/m2. The
scaling factor from the unprimed to the primed case is
(P ′/P)(E/E ′)(B/B ′) as long as B ′/H ′ = B/H . If B/H
is not constant, a deterministic finite-element analysis will
have to be performed to determine the scaling constant.

In the two-footing case, the distance between footing
centers was held constant at D = 1.0, while the footing
widths (assumed the same) were varied. Footings of width
greater than 0.8 were not considered since this situation
becomes basically that of a strip footing (the footings are
joined when B = 1.0).

Table 10.2 Input Parameters Varied in Study While
Holding H = 1, D = 1, P = 1, µE = 1, and ν = 0.25
Constant

Parameter Values Considered

σE 0.1∗, 0.5, 1.0∗, 2.0, 4.0
θln E 0.01, 0.1∗, 0.5∗, 1.0∗, 5.0∗, 10.0∗
B 0.2, 0.4, 0.8, 1.6 (single footing)

0.2∗, 0.4∗, 0.8∗ (two footings)

Note: Starred parameters were run with 1000 realizations in
the two-footing case. The single-footing case and nonstarred
parameters were run with 100 realizations.
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The soil has two properties of interest to the settlement
problem: the (effective) elastic modulus E (x) and Pois-
son’s ratio ν(x), where x is spatial position. Only the elastic
modulus is considered to be a spatially random soil prop-
erty. Poisson’s ratio was believed to have a smaller relative
spatial variability and only a second-order importance to
settlement statistics. It is held fixed at 0.25 over the entire
soil mass for all simulations.

Figure 10.11 shows a gray-scale representation of a
possible realization of the elastic modulus field along a
vertical plane through the soil mass cutting through the
footing. Lighter areas denote smaller values of E (x) so
that the elastic modulus field shown in Figure 10.11b
corresponds to a higher elastic modulus under the right
footing than under the left; this leads to the substantial
differential settlement indicated by the deformed mesh. This
is just one possible realization of the elastic modulus field;
the next realization could just as easily show the opposite
trend (see, e.g., Figure 10.3).

The elastic modulus field is assumed to follow a log-
normal distribution so that ln(E ) is a Gaussian (normal)
random field with mean µln E and variance σ 2

ln E . The choice
of a lognormal distribution is motivated in part by the fact
that the elastic modulus is strictly nonnegative, a property
of the lognormal distribution (but not the normal), while
still having a simple relationship with the normal distribu-
tion. In addition, soil properties are generally measured as
averages over some volume and these averages are often
low-strength dominated, as may be expected. The authors
have found in this and other studies that the geometric
average well represents such low-strength-dominated soil
properties. Since the distribution of a geometric average of
positive quantities tends to the lognormal distribution by the
central limit theorem, the lognormal distribution may very
well be a natural distribution for many spatially varying
soil properties.

A Markovian spatial correlation function, which gives
the correlation coefficient between log-elastic modulus val-
ues at points separated by the distance τ , is used (see
Section 3.7.10.2 for more details),

ρln E (τ ) = exp

{
−2|τ |

θln E

}
(10.19)

in which τ = x − x′ is the vector between spatial points
x and x′ and |τ | is the absolute length of this vector (the
lag distance). The results presented here are not particularly
sensitive to the choice in functional form of the correlation;
the Markov model is popular because of its simplicity.

As was found in the two-dimensional case for the two-
footing case (see previous section), using a correlation
length θln E equal to the footing spacing D is conservative
in that it yields the largest probabilities of differential
settlement. For total settlement of a single footing, taking

θln E large is conservative since this leads to the largest
variability of settlement (least variance reduction due to
averaging of the soil properties under the footing).

To investigate the effect of the correlation length θln E

on the settlement statistics, θln E is varied from 0.01 (i.e.,
very much smaller than the footing and/or footing spacing)
to 10.0 (i.e., substantially larger than the footing and/or
footing spacing). In the limit as θln E → 0, the elastic
modulus field becomes a white noise field, with E values
at any two distinct points independent. In terms of the
finite elements themselves, values of θln E smaller than the
elements results in a set of elements which are largely
independent (increasingly independent as θln E decreases).
But because the footing effectively averages the elastic
modulus field on which it is founded, and since averages
have decreased variance, the settlement in the limiting
case θln E → 0 is expected to approach that obtained in the
deterministic case, with E equal to its median everywhere
(assuming geometric averaging), having vanishing variance
for finite σ 2

ln E .
At the other extreme, as θln E → ∞, the elastic modulus

field becomes the same everywhere. In this case, the settle-
ment statistics are expected to approach those obtained by
using a single lognormally distributed random variable E
to model the soil, E (x) = E . That is, since the settlement δ

under a footing founded on a soil layer with uniform (but
random) elastic modulus E is given by

δ = δdetµE

E
(10.20)

for δdet the settlement computed when E = µE everywhere,
then as θln E → ∞ the settlement assumes a lognormal
distribution with parameters

µln δ = ln(δdet) + ln(µE ) − µln E = ln(δdet) + 1
2σ 2

ln E

(10.21a)

σln δ = σln E (10.21b)

where Eq. 1.176b was used in Eq. 10.21a.
By similar reasoning the differential settlement between

two footings (see Figure 10.11b) as θln E → 0 is expected
to go to zero since the average elastic moduli seen by
both footings approach the same value, namely the me-
dian (assuming geometric averaging). At the other extreme,
as θln E → ∞ the differential settlement is also expected
to approach zero, since the elastic modulus field becomes
the same everywhere. Thus, the differential settlement ap-
proaches zero at both very small and very large correlation
lengths—the largest differential settlements will occur at
correlation lengths somewhere in between these two ex-
tremes. This “worst-case” correlation length has been ob-
served by other researchers; see, for example, the work on
a flexible foundation by Baecher and Ingra (1981).
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The Monte Carlo approach adopted here involves the
simulation of a realization of the elastic modulus field
and subsequent finite-element analysis (e.g., Smith and
Griffiths, 2004) of that realization to yield a realization
of the footing settlement(s). Repeating the process over
an ensemble of realizations generates a set of possible
settlements which can be plotted in the form of a histogram
and from which distribution parameters can be estimated.

If it can be assumed that log-settlement is approximately
normally distributed (which is seen later to be a reasonable
assumption and is consistent with the distribution selected
for E ), and mln δ and s2

ln δ are the estimators of the mean
and variance of log-settlement, respectively, then the stan-
dard deviations of these estimators obtained from the n =
100 realizations performed for the single-footing case are
given by

σmln δ
� sln δ/

√
n = 0.1sln δ (10.22a)

σs2
ln δ

�
√

2

n − 1
s2

ln δ = 0.14s2
ln δ (10.22b)

These estimator errors are not particularly small but, since
the three-dimensional analysis is very time consuming, the
number of realizations selected was deemed sufficient to
verify that the geometric averaging model suggested in the
two-dimensional case is also applicable in three dimensions.
A subset of the cases considered in Table 10.2 (see starred
quantities) was rerun using 1000 realizations to verify the
probability distributions further out in the tails for the
differential settlement problem.

Realizations of the log-elastic modulus field are produced
using the three-dimensional LAS technique (Section 6.4.6).
The elastic modulus value assigned to the i th element is

Ei = exp{µln E + σln E Gi } (10.23)

where Gi is a local arithmetic average, over the element
centered at xi , of a zero-mean, unit-variance Gaussian
random field.

10.3.2 Single-Footing Case

A typical histogram of the settlement under a single footing
is shown in Figure 10.13 for B = 0.4, σE/µE = 0.5, and
θln E = 1.0 (1000 realizations were performed for this case
to increase the resolution of the histogram). With the
requirement that settlement be nonnegative, the shape of
the histogram suggests a lognormal distribution, which was
adopted in this study (see also Eqs. 10.21). The histogram
is normalized to produce a frequency density plot, where
a straight line is drawn between the interval midpoints. A
chi-square goodness-of-fit test on the data of Figure 10.13
yielded a p-value of 0.54, indicating very good support for
the lognormal hypothesis. The fitted lognormal distribution,
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Figure 10.13 Typical frequency density plot and fitted lognor-
mal distribution of settlement under single footing.

with parameters given by mln δ and sln δ shown in the line
key, is superimposed on the plot.

Accepting the lognormal distribution as a reasonable fit
to the simulation results, the next task is to estimate the
parameters of the fitted lognormal distributions as functions
of the input parameters (B , σE , and θln E ). The lognormal
distribution,

fδ(x ) = 1√
2πσln δ x

exp

{
−1

2

(
ln x − µln δ

σln δ

)2
}

,

0 ≤ x < ∞ (10.24)

has two parameters, µln δ and σln δ . Figure 10.14 shows how
the estimator of µln δ , denoted by mln δ , varies with σ 2

ln E for

s2
ln E

m
ln

 d

B = 0.4

0 1 2 3

0
1

2

Predicted mean
Upper confidence bound
Lower confidence bound

Figure 10.14 Estimated mean of log-settlement with prediction
given by Eq. 10.21a.
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B = 0.4 based on 100 realizations. All correlation lengths
are drawn in the plot but are not individually labeled since
they lie so close together. Also shown on the plot are the
95% confidence interval bounds on the true parameter, µln δ .
As can be seen, all the estimators lie within these bounds
indicating that the three-dimensional results are much the
same as found using a two-dimensional model, namely that
µln δ is well predicted by Eq. 10.4a, which is identical
to Eq. 10.21a. Similar results are observed for the other
footing sizes considered.

Estimates of the standard deviation of log-settlement,
sln δ, are plotted in Figure 10.15 (as symbols) for two
footing sizes based on 100 realizations. The other footing
sizes gave similar results. In all cases, sln δ increases to
σln E as θln E increases, which is as expected since large
correlation lengths give less variance reduction. Assuming
that local geometric averaging of the volume directly under
the footing accounts for all of the variance reduction seen
in Figure 10.15, the standard deviation of log-settlement is
predicted by

σln δ =
√

γ (B , B , H ) σln E (10.25)

where γ (B , B , H ) is the three-dimensional variance reduc-
tion function (see Section 3.4), giving the amount that the
variance is reduced due to averaging. The agreement be-
tween Eq. 10.25 and the estimated standard deviations is
remarkable, indicating that a geometric average of the elas-
tic modulus field under the footing is a good model for the
effective elastic modulus seen by the footing. In this case,
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Figure 10.15 Comparison of simulated sample standard devia-
tion of log-settlement, shown with symbols, to theoretical estimate
via Eq. 10.25, shown with lines.

the geometric average Eg has the definition

Eg = exp

(
1

B2H

∫ H

0

∫ B

0

∫ B

0
ln E (x , y , z ) dx dy dz

)

(10.26)
from which the settlement of the footing can be expressed
as

δ = δdetµE

Eg
(10.27)

Taking the logarithm of Eq. 10.27 and taking expectations
lead to Eqs. 10.21a and 10.25. The practical implication of
this result is that settlements are better predicted using an
effective elastic modulus computed as a geometric average
of the experimentally obtained moduli under the footing.
For example, if n observations of the elastic modulus
under a footing are taken, E1, E2, . . . , En , then the footing
settlement is best computed using the elastic modulus Eg

computed as

Eg =
(

n∏

i=1

Ei

)1/n

= exp

(
1

n

n∑

i=1

ln Ei

)
(10.28)

Once the parameters of the settlement distribution, µln δ and
σln δ , have been calculated using Eqs. 10.21a and 10.25,
probabilities associated with settlement are easily found,

P [δ > x ] = 1 − 


(
ln x − µln δ

σln δ

)
(10.29)

where 
 is the cumulative standard normal function. This
computation assumes that settlement is lognormally dis-
tributed, as these studies clearly suggest.

10.3.3 Two-Footing Case

Consider now the case of two square footings each of plan
dimension B × B and separated by center-to-center distance
D = 1, as shown in Figure 10.11b. If the settlements δ1 and
δ2 under each footing are lognormally distributed, as was
found in the previous section, then the joint distribution
between the two-footing settlements follows a bivariate
lognormal distribution,

fδ1,δ2 (x , y) = 1

2πσ 2
ln δrxy

× exp

{
− 1

2r2

[
�2

1 − 2ρln δ�1�2 + �2
2

]}
,

x ≥ 0, y ≥ 0

(10.30)

where �1 = (ln x − µln δ)/σln δ , �2 = (ln y − µln δ)/σln δ ,
r2 = 1 − ρ2

ln δ , and ρln δ is the correlation coefficient be-
tween the log-settlement of the two footings. It is assumed
in the above that δ1 and δ2 have the same mean and
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variance, which, for the symmetric conditions shown in
Figure 10.11b, is a reasonable assumption.

Defining the differential settlement between footings to
be � = δ1 − δ2, the mean of � is zero if the elastic modulus
field is statistically stationary, as assumed here (if the field
is not stationary, then the differential settlement due to any
trend in the mean must be handled separately). If Eq. 10.30
holds, then the exact distribution governing the differential
settlement is given by

f�(x ) =
∫ ∞

0
fδ1,δ2 (|x | + y , y) dy (10.31)

and differential settlement probabilities can be computed as

P [|�| > x ] = P [� < −x ∪ � > x ] = 2
∫ ∞

x
f�(ξ ) dξ

(10.32)
Figure 10.16 shows typical frequency density plots of dif-
ferential settlement for three different values of θln E be-
tween two equal-sized footings with B = 0.4 and σE/µE =
1.0. Notice that the widest distribution occurs when θln E /D
is equal to about 1.0, indicating that the worst case, when
it comes to differential settlement, occurs when the correla-
tion length is approximately equal to the distance between
footings.

The distribution fδ1,δ2 , and thus also f�, has three param-
eters, µln δ , σln δ , and ρln δ . The mean and standard deviation
can be estimated using Eqs. 10.21a and 10.25. Since local
averaging of the log-elastic modulus field under the foot-
ing was found to be an accurate predictor of the variance
of log-settlement, it is reasonable to suggest that the co-
variance between log-settlements under a pair of footings
can be predicted by the covariance between local averages
of the log-elastic modulus field under each footing. As we
shall see later, mechanical interaction between the footings
(where the settlement of one footing causes some settle-
ment in the adjacent footing) leads to higher covariances

than suggested purely by consideration of the covariances
between soil properties. However, when the footings are
spaced sufficiently far apart, the mechanical interaction will
be negligible. In this case, for equal-sized footings, the co-
variance between local averages of the log-elastic modulus
field under two footings separated by distance D is given by

Cln δ = σ 2
ln E

V1V2

∫

V1

∫

V2

ρln E (x1 − x2) dx2 dx1 (10.33)

where V1 is the B × B × H volume under footing 1, V2 is
the equivalent volume under footing 2, and x is a spatial
position. From this the correlation coefficient between the
two local averages can be computed as

ρln δ = Cln δ

σ 2
ln δ

(10.34)

The predicted correlation can be compared to the simulation
results by first transforming back from log-space,

ρδ = exp{Cln δ} − 1

exp{σ 2
ln δ} − 1

(10.35)

where σln δ is given by Eq. 10.25. The agreement between
the correlation coefficient predicted by Eq. 10.35 and the
correlation coefficient estimated from the simulations (1000
realizations) is shown in Figure 10.17. The agreement is
reasonable, particularly for the smaller sized footings. For
larger footings, the correlation is underpredicted, particu-
larly at small θln E . This is due to mechanical interaction
between the larger footings, where the settlement of one
footing induces some additional settlement in the adjacent
footing on account of their relatively close proximity.

Armed with the relationships 10.21a, 10.25, and 10.34
the differential settlement distribution f� can be computed
using Eq. 10.31. The resulting predicted distributions have
been superimposed on the frequency density plots of
Figure 10.16 for B = 0.4. The agreement is very good for
intermediate to large correlation lengths. At the smaller
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correlation lengths, Eq. 10.31 yields a distribution which
is somewhat too wide—this is due to the underprediction
of the correlation between footing settlements (Eq. 10.34)
since, as the actual correlation between settlements in-
creases, the differential settlement decreases and the dis-
tribution becomes narrower. However, an underprediction
of correlation is at least conservative in that predicted dif-
ferential settlement probabilities will tend to be too large.

To test the ability of the bivariate lognormal distribution
to accurately estimate probabilities, the probability that the
absolute value of � exceeds some threshold is compared
to empirical probabilities derived from simulation. For

generality, thresholds of αµ|�| will be used, where µ|�|
is the mean absolute differential settlement, which can be
approximated as (this is exact if � is normally distributed)

µ|�| �
√

2

π
σ� (10.36)

where σ 2
� = 2σ 2

δ (1 − ρδ). Figure 10.18 shows a plot of
the predicted (Eq. 10.32) versus empirical probabilities
P
[|�| > αµ|�|

]
for α varying in 20 steps from 0.2 to 4.0.

If the prediction is accurate, then the plotted points should
lie on the diagonal line. The empirical probabilities are esti-
mated by simulation. When the footings are well separated
(B/D = 0.2, see Figure 10.18a) so that mechanical correla-
tion is negligible, then the agreement between predicted and
empirical probabilities is excellent. The two solid curved
lines shown in the plot form a 95% confidence interval on
the empirical probabilities, and it can be seen that most lie
within these bounds. The few that lie outside are on the
conservative side (predicted probability exceeds empirical
probability).

As the footing size increases (see Figure 10.18b) so that
their relative spacing decreases, the effect of mechanical
correlation begins to be increasingly important and the re-
sulting predicted probabilities increasingly conservative. A
strictly empirical correction can be made to the correla-
tion to account for the missing mechanical influences. If
ρln δ is replaced by (1 − B/2D)ρln δ + B/2D for all B/D
greater than about 0.3, which is an entirely empirical cor-
rection, the differential settlements are reduced and, as
shown in Figure 10.19, the predicted probabilities become
reasonably close to the empirical probabilities while still
remaining slightly conservative. Until the complex inter-
action between two relatively closely spaced footings is
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fully characterized probabilistically, this simple empirical
correction seems reasonable.

10.3.4 Summary

On the basis of this simulation study, the following ob-
servations can be made. As found in the two-dimensional
case, the settlement under a footing founded on a three-
dimensional spatially random elastic modulus field of finite
depth overlying bedrock is well represented by a lognor-
mal distribution with parameters µln δ and σ 2

ln δ if E is also
lognormally distributed. The first parameter, µln δ , is depen-
dent on the mean and variance of the underlying log-elastic
modulus field and may be closely approximated by consid-
ering limiting values of θln E . The second parameter, σ 2

ln δ ,
is very well represented by the variance of a local aver-
age of the log-elastic modulus field in the region directly
under the footing. Once the parameters of the settlement,
µln δ and σ 2

ln δ , have been computed, using Eqs. 10.21a and
10.25, the estimation of probabilities associated with set-
tlement involves little more than referring to a standard
normal distribution table (see Eq. 10.29).

One of the implications of the findings for a single
footing is that footing settlement is accurately predicted
using a geometric average of the elastic modulus field in the
volume under the footing. From a practical point of view,
this finding implies that a geometric average of soil elastic
modulus estimates made in the vicinity of the footing (e.g.,
by CPT soundings) should be used to represent the effective
elastic modulus rather than an arithmetic average. The
geometric average will generally be less than the arithmetic
average, reflecting the stronger influence of weak soil zones
on the total settlement.

Under the model of a lognormal distribution for the
settlement of an individual footing, the bivariate lognor-
mal distribution was found to closely represent the joint
settlement of two footings when the footings are spaced
sufficiently far apart (relative to their plan dimension) to
avoid significant mechanical interaction. Using the bivariate
lognormal model, probabilities associated with differential
settlement are obtained that are in very good agreement with
empirical probabilities obtained via simulation. The bivari-
ate lognormal model is considerably superior to the ap-
proximate normal model developed in the two-dimensional
case in the previous section, at the expense of a more com-
plicated numerical integration (the normal approximation
simply involved a table lookup).

When the footings become close enough that mechani-
cal interaction becomes significant, the bivariate lognormal
model developed here begins to overestimate the proba-
bilities associated with differential settlement; that is, the
differential settlements will be less than predicted. Although
this is at least conservative, the reason is believed to be due
to the fact that the stress field from one footing is affecting
the soil under the other footing. This results in an increased
correlation coefficient between the two-footing settlements
that is not fully accounted for by the correlation between
two local geometric averages alone. An empirical correc-
tion factor has been suggested in this section which yields
more accurate probabilities and which should be employed
if the conservatism without it is unacceptable.

10.4 STRIP FOOTING RISK ASSESSMENT

Foundation settlement, if excessive, can lead to unsightly
cracking of structural and nonstructural elements of the
supported building. For this reason most geotechnical
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design codes limit the settlement of footings to some rea-
sonable amount, typically 25–50 mm (e.g., ASCE, 1994;
CGS, 1992). Since the design of a footing is often governed
by settlement, it would be useful to evaluate the reliability
of typical “traditional” design methodologies.

In this section, the design of a strip footing against ex-
cessive settlement on a spatially random soil is studied and
the reliability of the design assessed (Fenton et al., 2003b).
The soil effective elastic modulus field E (x), where x is
spatial position, is modeled as a stationary spatially varying
two-dimensional random field. Poisson’s ratio is assumed
deterministic and held constant at ν = 0.35.

A two-dimensional analysis is performed on a strip
footing assumed to be of infinite length out of plane. Spatial
variation in the out-of-plane direction is ignored, which is
equivalent to saying that the out-of-plane correlation length
is infinite. This study provides a methodology to assessing
the reliability of a traditional design method as well as to
identify problems in doing so. A typical finite-element mesh
showing a footing founded on a spatially random elastic
modulus field, where light regions correspond to lower
values of E (x), is shown in Figure 10.20.

10.4.1 Settlement Design Methodology

The design method that will be studies is due to Janbu
(1956), who expresses settlement under a strip footing in
the form

δ = µ0 · µ1 · qB

E ∗ (10.37)

where q is the vertical stress in kilonewtons per square
meter applied by the footing to the soil, B is the footing
width, E ∗ is some equivalent measure of the soil elastic
modulus underlying the footing, µ0 is an influence factor
for depth D of the footing below the ground surface,
and µ1 is an influence factor for the footing width B
and depth of the soil layer H . A particular case study
will be considered here for simplicity and clarity, rather
than nondimensionalizing the problem. The particular case
considered is of a footing founded at the surface of a soil
layer (µ0 = 1.0) underlain by bedrock at a depth H = 6 m.

B

P

H

Figure 10.20 Deformed finite-element mesh with sample elastic
modulus field.

The footing load is assumed to be deterministic and equal to
P = 1250 kN per meter length of the footing in the out-of-
plane direction. In terms of P , Eq. 10.37 can be rewritten as

δ = µ0 · µ1 · P

E ∗ (10.38)

In order to assess the design risk, we must compare
Janbu’s settlement predictions to settlements obtained by
the RFEM. To properly compare the two, it is important to
ensure that the two methods are in agreement when the soil
is known and nonrandom. For this reason, it was decided
to calibrate Janbu’s relationship against the finite-element
results obtained using deterministic and spatially constant
elastic modulus E ∗ = 30 MPa for various ratios of H /B .
Figure 10.21 illustrates how the influence factor µ1 varies
with ln(H /B). As can be seen, it is very nearly a straight
line which is well approximated by

µ1 = a + b ln

(
H

B

)
(10.39)

where, for the case under consideration with a Poisson’s
ratio of 0.35, the line of best fit has a = 0.4294 and
b = 0.5071, as shown fitted in Figure 10.21. The Janbu
settlement prediction now can be written as

δ = µ0

[
a + b ln

(
H

B

)]
· P

E ∗ (10.40)

The case where E ∗ is estimated by sampling the soil at
a few locations below the footing is now considered. Let-
ting Ê be the estimated elastic modulus, one possible esti-
mator is

Ê = H1E1 + H2E2 + · · · + HnEn

H
(10.41)

where Hi is the thickness of the i th soil layer, Ei is the
elastic modulus measured in the i th layer, and H is
the total thickness of all layers. In this study individual lay-
ers are not considered directly, although spatial variability
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102101100
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Figure 10.21 Effect of ratio H /B on settlement influence
factor µ1.



STRIP FOOTING RISK ASSESSMENT 331

may lead to the appearance of layering. It will be assumed
that n samples will be taken at equispaced distances over
the depth H along a vertical line below the footing cen-
ter. This sort of sampling might be obtained by using a
CPT sounding, for example. In this case, the elastic mod-
ulus estimate would be computed as some sort of average
of the observed values. We elect to use an arithmetic aver-
age of the observations, despite the recommendation in the
previous two sections to use a geometric average, simply
because the arithmetic average is more commonly used in
practice. The estimate is, then, the classic formula

Ê = 1

n

n∑

i=1

Ei (10.42)

No attempt is made in this study to account for mea-
surement error. The goal here is to assess the foundation
settlement variability when the design is based on actual
observations of the elastic modulus at a few points.

Using the estimated elastic modulus, the settlement pre-
dicted by Janbu’s method becomes

δpred = µ0

[
a + b ln

(
H

B

)]
· P

Ê
(10.43)

If a maximum allowable settlement of 40 mm is to be de-
signed for, then by setting δpred = δmax = 0.04 m, Eq. 10.43
can be solved for the required footing width B as

B = H exp

{
− 1

b

(
Êδmax

Pµ0
− a

)}
(10.44)

Since the soil elastic modulus field E (x) is random, the
estimate Ê will also be random, which means that B is
random. This is to be interpreted as follows: Consider a
sequence of similar sites on each of which a footing is to
be designed and placed to support the load P such that, for
each, the settlement prediction is δmax. Because the sites
involve different realizations of the soil elastic modulus
field, they will each have a different estimate Ê obtained
by sampling. Thus, each site will have a different required
footing width B .

The task now is to assess the distribution of the actual
settlement experienced by each of these designed footings.
If the prediction equation is accurate, then it is expected
that approximately 50% of the footings will experience
settlements in excess of δmax while the remaining 50% will
experience less settlement. But, how much more or less?
That is, what is the variability of settlement in this case?
Note that this is a conditional probability problem. Namely,
the random field E (x) has been sampled at n points to obtain
the design estimate Ê . Given this estimate, B is obtained
by Eq. 10.44. However, since the real field is spatially
variable, Ê may or may not represent the actual elastic
modulus as “seen” by the completed footing so that the

actual settlement experienced by the footing will inevitably
differ from the design target.

10.4.2 Probabilistic Assessment
of Settlement Variability

The settlement variability will be assessed by Monte Carlo
simulation. Details of the finite-element model and random-
field simulator can be found in the previous two sections
and in Section 6.4.6. The finite-element model used here is
60 elements wide by 40 elements in depth, with nominal
element sizes �x = �y = 0.15 m, giving a soil regime of
size 9 m wide by 6 m in depth. The Monte Carlo simulation
consists of the following steps:

1. Generate a random field of elastic modulus local
average cells using the LAS method which are then
mapped onto the finite elements themselves.

2. “Virtually” sample the random field at 4 elements
directly below the footing centerline (at depths 0,
H /3, 2H /3, and H ). Then compute the estimated
design elastic modulus Ê as the arithmetic average
of these values.

3. Compute the required footing width B using Eq. 10.44.
4. Adjust both the (integer) number of elements nW

underlying the footing in the finite-element model
and element width �x such that B = nW �x . Note
that the finite-element model assumes that the footing
is a whole number of elements wide. Since B , as
computed by Eq. 10.44, is continuously varying, some
adjustment of �x will be necessary. The final value
of �x is constrained to lie between (3/4)0.15 and
(4/3)0.15 to avoid excessive element aspect ratios
(�y is held fixed at 0.15 m to maintain H = 6 m).
Note also that the random field is not regenerated for
the adjusted element size, so that some accuracy is lost
with respect to the local average statistics. However,
the approximation is deemed acceptable, given all
other sources of uncertainty. Finally, the actual value
of B used is constrained so that the footing is not less
than 4 elements wide or more than 48 elements wide.
This constraint is actually a more serious limitation,
leading to some possible bias in the results, which is
discussed further below.

5. Use the finite-element code to compute the simulated
settlement δsim, which is interpreted as the settlement
that the footing would actually experience on this
particular realization of the spatially varying elastic
modulus field.

6. Repeat from step 1 nsim = 2000 times to yield 2000
realizations of δsim.
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The sequence of realizations for δsim can then be statistically
analyzed to determine its conditional probability density
function (conditioned on Ê ).

The elastic modulus field is assumed to be lognormally
distributed with parameters

σ 2
ln E = ln

(
1 + v2

E

)
, µln E = ln(µE ) − 1

2σ 2
ln E (10.45)

where vE = σE/µE is the coefficient of variation of the
elastic modulus field. Since E (x) is lognormally distributed,
its logarithm is normally distributed and the elastic modulus
value Ei assigned to the i th finite element can be obtained
from a Gaussian random field through the transformation

Ei = exp{µln E + σln E Gi } (10.46)

where Gi is the local average over the i th element of
a zero-mean, unit-variance Gaussian random field G(x),
realizations of which are generated by the LAS method.

The Gaussian random field G(x) is assumed to have a
Markovian correlation structure, having correlation function

ρ(τ ) = exp

{
−2|τ |

θln E

}
(10.47)

where τ is the distance between any two points in the
field and θln E is the correlation length. The random field
has been assumed isotropic in this study, leaving the more
site-specific anisotropic considerations for the reader to
consider.

The simulation is performed for various statistics of
the elastic modulus field. In particular, the mean elastic
modulus µE is held fixed at 30 MPa, while the coefficient
of variation vE is varied from 0.1 to 1.0 and the correlation
length θln E is varied from 0.1 to 15.

10.4.3 Prediction of Settlement Mean and Variance

It is hypothesized that if Janbu’s relationship is sufficiently
accurate for design purposes, it can also be used to predict
the actual (simulated) settlement δsim reasonably accurately.
That is, it is supposed that Eq. 10.40,

δ = µ0

[
a + b ln

(
H

B

)]
· P

E ∗

will predict δsim for each realization if a suitable value of
E ∗ can be found. In the previous two sections, it was shown
found that settlement is very well predicted by setting E ∗
equal to the geometric average of the elastic modulus field
over the region directly under the footing. This is what will
be used here.

One difficulty is that the value of B in Eq. 10.40 is also
derived from a sample of the random elastic modulus field.
This means that δ is a function of both E ∗ and Ê where
E ∗ is a local geometric average over a rectangle of random
size B × H . If Eq. 10.44 is substituted into Eq. 10.40, then

δ can be expressed as

δ = Ê

E ∗ δmax (10.48)

Since E ∗ is a geometric average over a random area of size
B × H of a lognormally distributed random field, then E ∗
is conditionally lognormally distributed with parameters

E
[
ln E ∗ | B

] = µln E (10.49a)

Var
[
ln E ∗ | B

] = γ (B , H )σ 2
ln E (10.49b)

where γ (B , H ) is the variance reduction function (see
Section 3.4) defined in this case by the average correlation
coefficient between every pair of points in the soil below
the footing,

γ (B , H )

=
∫ B

0

∫ B
0

∫ H
0

∫ H
0 ρ(x1 − x2, y1 − y2) dy1 dy2 dx1 dx2

(HB)2

where, for the isotropic correlation function under consid-
eration here, ρ(x , y) = ρ(

√
x 2 + y2) = ρ(τ ); see Eq. 10.47.

The variance function is determined numerically using
Gaussian quadrature as discussed in Appendix C. The un-
conditional distribution parameters of ln E ∗ are obtained
by taking expectations of Eqs. 10.49 with respect to B :

µln E∗ = µln E (10.50a)

σ 2
ln E∗ = E

[
γ (B , H )

]
σ 2

ln E (10.50b)

A first-order approximation to E
[
γ (B , H )

]
is

E
[
γ (B , H )

] � γ (µB , H ) (10.51)

where µB is the mean footing width. Although a second-
order approximation to E

[
γ (B , H )

]
could be considered,

it was found to be only slightly different than the first-
order approximation. It is recognized that the unconditional
marginal distribution of E ∗ is probably no longer lognormal
but histograms of E ∗ indicate that this is still a reasonable
approximation.

The other random quantity appearing on the right-hand
side of Eq. 10.48 is Ê , which is an arithmetic average of a
set of n observations,

Ê = 1

n

n∑

i=1

Ei

where Ei is the i th observed elastic modulus. It is assumed
that elastic modulus samples are of approximately the
same physical size as a finite element (e.g., a CPT cone
measurement involves a “local average” bulb of deformed
soil in the vicinity of the cone which might be on the order
of the size of the elements used in this analysis). The first
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two moments of Ê are then

µÊ = µE (10.52a)

σ 2
Ê

=


 1

n2

n∑

i=1

n∑

j=1

ρij



 σ 2
E � γ (�x , H )σ 2

E (10.52b)

where ρij is the correlation coefficient between the i th
and j th samples. The last approximation assumes that local
averaging of E (x) results in approximately the same level
of variance reduction as does local averaging of ln E (x).
This is not a bad approximation given all other sources of
uncertainty.

If we can further assume that Ê is at least approximately
lognormally distributed with parameters given by the trans-
formations of Eq. 10.45, then δ in Eq. 10.48 will also be
lognormally distributed with parameters

µln δ = µln Ê − µln E∗ + ln(δmax) (10.53a)

σ 2
ln δ = σ 2

ln Ê
+ σ 2

ln E∗ − 2 Cov
[
ln Ê , ln E ∗] (10.53b)

The covariance term can be expressed as

Cov
[
ln Ê , ln E ∗] = σln Ê σln E∗ρave (10.54)

where ρave is the average correlation between every point
in the domain defining E ∗ and every point in the domains
defining Ê . This can be expressed in integral form and
solved numerically, but a simpler empirical approximation
is suggested by observing that there will exist some “aver-
age” distance between the samples and the soil block under
the footing, τave, such that ρave = ρ(τave). For the particular
problem under consideration with H = 6 m, the best value
of τave was found by trial and error to be

τave = 0.1µB (10.55)

Finally, two of the results suggested above depend on the
mean footing width µB . This can be obtained approximately
as follows. First of all, taking the logarithm of Eq. 10.44
gives us

ln B = ln H − 1

b

(
δmaxÊ

µ0P
− a

)
(10.56)

which has first two moments

µln B = ln H − 1

b

(
δmaxµÊ

µ0P
− a

)
(10.57a)

σ 2
ln B =

(
δmax

bµ0P

)2

σ 2
Ê

(10.57b)

and since B is nonnegative, it can be assumed to be at least
approximately lognormally distributed (histogram plots of
B indicate that this is a reasonable assumption) so that

µB � exp
{
µln B + 1

2σ 2
ln B

}

With these results, the parameters of the assumed log-
normally distributed settlement can be estimated using
Eqs. 10.53 given the three parameters of the elastic modulus
field, µE , σE , and θln E .

10.4.4 Comparison of Predicted and Simulated
Settlement Distribution

Before discussing the results, it is worth pointing out some
of the difficulties with the comparison. First of all, as the
coefficient of variation vE = σE /µE increases, it becomes
increasingly likely that the sample observations leading to
Ê will be either very small or very large. If Ê is very small,
then the resulting footing width, as predicted by Eq. 10.44,
may be wider than the finite-element model (although, as
discussed above, the footing width is arbitrarily restricted
to being between 4 and 48 elements wide). It is recognized,
however, that it is unlikely that a footing width in excess
of 9 m would be the most economical solution. In fact, it is
very likely that the designer would search for an alternative
solution, such as a pile foundation, when faced with such
a soft soil.

What this means is that it is difficult to evaluate the
unconditional reliability of any single design solution since
design solutions are rarely used in isolation; each is only
one among a suite of solutions available to the designer
and each has its own range of applicability (or, rather,
economy). This implies that the reliability of a single
design solution must be evaluated conditionally, that is,
for the range of soil properties which make the solution
economically optimal.

This conditional reliability problem is quite complex and
beyond the scope of this study. Here the study is restricted
to the unconditional reliability problem with the recognition
that some of the simulation results at higher coefficients
of variation are biased by restricting the “design” footing
widths. In the worst case considered here, where vE = 1.0,
the fraction of footing widths found to be too wide, out of
the 2000 realizations, ranged from 0% (for θln E = 0.1) to
12% (for θln E = 15).

The log-settlement mean, as predicted by Eq. 10.53a, is
shown in Figure 10.22 along with the sample mean obtained
from the simulation results for the minimum (vE = 0.1) and
maximum (vE = 1.0) coefficients of variation considered.
For small vE , the agreement is excellent. For larger vE , the
maximum relative error is only about 7%, occurring at the
smallest correlation length. Although the relative errors are
minor, the small-scale behavior is not properly predicted
by the analytical results and subsequent approximations
built into Eq. 10.53a. It is believed that the major source
of the discrepancies at small correlation lengths is due to
the approximation of the second moment of Ê using the
variance function γ (�x , H ).
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Figure 10.22 Comparison of predicted (pred.) and simulated
(sim.) mean footing settlement.
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Figure 10.23 Comparison of predicted (pred.) and simulated
(sim.) footing settlement variance.

The log-settlement variance, as predicted by Eq. 10.53b,
is shown in Figure 10.23 along with the sample variance
obtained from the simulation results for three different
coefficients of variation vE . Again, the agreement improves
for increasing correlation lengths, but overall, the predicted
variance is reasonably good and shows the same basic
behavior as seen in the simulated results.

Figure 10.24 compares simulated versus predicted prob-
ability that the settlement exceeds some multiple of δmax

over all values of vE and θln E . The agreement is reasonable,
tending to be slightly conservative with predicted “failure”
probability somewhat exceeding simulated probability on
average.

10.4.5 Summary

The results of Figure 10.24 indicate that the Janbu settle-
ment prediction given by Eq. 10.37 has a reliability, when
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Figure 10.24 Comparison of predicted and simulated settlement
probabilities.

used in design, that is reasonably well (and perhaps some-
what conservatively) estimated by Eqs. 10.53 so long as
the basic statistics, µE , σE , and θln E , of the elastic mod-
ulus field are known or estimated. Of these parameters,
the most difficult to estimate is the correlation length θln E

since its estimator requires extensive investigation. How-
ever, Figure 10.23 indicates that there is a worst case, in
the sense of maximum variance, which occurs at about
θln E � 1. Thus, if the correlation length is unknown, it
should be conservative to use θln E � 1.

For a particular site, the reliability assessment of the
footing design against excessive settlement proceeds as
follows:

1. Sample the site at a number of locations and pro-
duce an estimate of the mean elastic modulus Ê . In
current practice this estimate seems to be an arith-
metic average of the observed values. Although the
results presented earlier in this chapter suggest that a
geometric average would be more representative, the
approach taken by current practice was adopted in this
study.

2. Compute the required footing width B by Eq. 10.44.
This constitutes the design phase.

3. Using the same data set collected in item 1, estimate
µln E and σ 2

ln E by computing the sample mean and
sample variance of the log-data. Assume that θln E � 1
unless a more sophisticated analysis is carried out.

4. Using Gaussian quadrature or some software package
which numerically integrates a function, evaluate the
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variance reduction functions γ (B , H ) and γ (�x , H ).
Note that the latter assumes that the data in step 1
were collected along a single vertical line below the
footing.

5. Estimate µln E∗ and σ 2
ln E∗ using Eqs. 10.50 and 10.51.

6. Estimate µln Ê and σ 2
ln Ê

using Eqs. 10.52 in the trans-
formations of Eq. 10.45.

7. Compute τave using Eq. 10.55 and then ρave = ρ(τave)
using Eq. 10.47. Compute the covariance of Eq. 10.54.

8. Compute the mean and variance of log-settlement
using Eqs. 10.53.

Assuming that the settlement is lognormally distributed,
probabilities relating to the actual settlement of the designed
footing can now be computed as

P [δ > δmax] = 1 − 


(
ln(δmax) − µln δ

σln δ

)
(10.58)

where 
 is the standard normal cumulative distribution
function.

It is noted that this study involves a number of approx-
imations and limitations, the most significant of which are
the following:

1. Limiting the footing widths to some maximum upper
value leads to some bias of the simulation results.

2. Janbu’s influence factor µ1 is approximated as a
straight line. In fact, the curve flattens out for small
values of H /B or large values of B . This approxima-
tion error could easily be contributing to the frequency
of predicting excessively large footing widths for
low Ê .

3. Both E ∗ and Ê are assumed to be lognormally dis-
tributed, which is probably a reasonable assumption
but which may lead to some discrepancies in ex-
treme cases (such as for small correlation lengths).
In addition, the variance of Ê is obtained using the
variance function γ (�x , H ). That is, a continuous lo-
cal average over the height H in log-space is used to
approximate the variance reduction of the average of
a discrete set of observations in real space. The vari-
ance reduction is expected to be a reasonable estimate
but not to be particularly accurate.

4. The covariance between ln E ∗ and ln Ê is approx-
imated by using an average correlation coefficient
which is merely fitted by trial and error to the simu-
lation results.

Perhaps one of the main results of the section, other
than an approximate assessment of the reliability of a
design methodology, is the recognition of the fact that
the reliability assessment of design methodologies must be
done conditionally. One task for the future is to determine

how to specify the appropriate conditional soil property
distributions as a function of design economies. Once this
specification has been made, simulation can again be called
upon to find the conditional reliabilities.

In addition, the results of this section do not particularly
address sampling issues. For example, in the discussion
above outlining how the reliability assessment would pro-
ceed, it was assumed that the same data used to estimate Ê
would provide a reasonable estimate of both µÊ and µln E∗
(the latter using the logarithm of the data). Clearly, this in-
troduces additional bias and uncertainty into the assessment
that is not accounted for above.

10.5 RESISTANCE FACTORS FOR SHALLOW-
FOUNDATION SETTLEMENT DESIGN

This section presents the results of a study in which a
reliability-based settlement design approach is proposed and
investigated via simulation using the RFEM. In particular,
the effect of a soil’s spatial variability and site investigation
intensity on the resistance factors is quantified. The results
of the section can be used to improve and generalize “cal-
ibrated” code provisions based purely on past experience
(Fenton et al., 2005).

10.5.1 Random Finite-Element Method

A specific settlement design problem will be considered
here in order to investigate the settlement probability dis-
tribution of footings designed against excessive settlement.
The problem considered is that of a rigid, rough square-pad
footing founded on the surface of a three-dimensional lin-
early elastic soil mass underlain by bedrock at depth H . Al-
though only elastic settlement is specifically considered, the
results can include consolidation settlement so long as the
combined settlement can be adequately represented using an
effective elastic modulus field. To the extent that the elastic
modulus itself is a simplified representation of a soil’s in-
verse compressibility, which is strain-level dependent, the
extension of the approximation to include consolidation set-
tlement is certainly reasonable and is as recommended, for
example, in the Canadian Highway Bridge Design Code
Commentary (CSA, 2000b).

The settlement of a rigid footing on a three-dimensional
soil mass is estimated using a linear finite-element analysis.
The mesh selected is 64 elements by 64 elements in plan
by 32 elements in depth. Eight-node hexahedral elements
each cubic with side length 0.15 m are used (note that
metric units are used in this section, rather than making
it nondimensional, since footing design will be based on a
maximum tolerable settlement which is specified in meters)
yielding a soil domain of size 9.6 × 9.6 m in plan by
4.8 m in depth. Because the stiffness matrix corresponding
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to a mesh of size 64 × 64 × 32 occupies about 4 Gbytes
of memory, a preconditioned conjugate gradient iterative
solver (e.g., Smith and Griffiths, 2004), which avoids the
need to assemble the global stiffness matrix, is employed in
the finite-element code. A max-norm relative error tolerance
of 0.005 is used to determine when the iterative solver has
converged to a solution.

The finite-element model was tested in the deterministic
case (uniform elastic soil properties) to validate its accuracy
and was found to be about 20% stiffer (smaller settlements)
than that derived by analytical approximations (see, e.g.,
Milovic, 1992). Using other techniques such as selectively
reduced integration, nonconforming elements, and 20-node
elements did not significantly affect the discrepancy be-
tween these results and Milovic’s. The “problem” is that
the finite elements truncate the singular stresses that occur
along the edge of a rigid footing, leading to smaller set-
tlements than predicted by theory. In this respect, Seyček
(1991) compares real settlements to those predicted by the-
ory and concluded that predicted settlements are usually
considerably higher than real settlements. This is because
the true stresses measured in the soil near the footing edge
are finite and significantly less than the singular stresses
predicted by theory. Seyček improves the settlement calcu-
lations by reducing the stresses below the footing. Thus, the
finite-element results included here are apparently closer to
actual settlements than those derived analytically, although
a detailed comparison to Seyček’s has not been performed
by the authors. However, it is not believed that these pos-
sible discrepancies will make a significant difference to
the probabilistic results of this section since the probabil-
ity of failure (excessive settlement) involves a comparison
between deterministic and random predictions arising from
the same finite-element model, thus canceling out possible
bias.

The rigid footing is assumed to have a rough interface
with the underlying soil—no relative slip is permitted—and
rotation of the footing is not permitted. Only square footings
of dimension B × B are considered, where the required
footing width B is determined during the design phase,
to be discussed in the next section. Once the required
footing width has been found, the design footing width
must be increased to the next larger element boundary; this
is because the finite-element mesh is fixed and footings
must span an integer number of elements. For example, if
the required footing width is 2.34 m and elements have
dimension �x = �y = 0.15 m square, then the design
footing width must be increased to 2.4 m (since this
corresponds to 16 elements, rather than the 15.6 elements
that 2.34 m would entail). This corresponds roughly to
common design practice, where element dimensions are
increased to an easily measured quantity.

Once the design footing width has been found, it must
be checked to ensure that it is physically reasonable, both
economically and within the finite-element model. First
of all, there will be some minimum footing size. In this
study the footings cannot be less than 4 × 4 elements in
size—for one thing loaded areas smaller than this tend
to have significant finite-element errors; for another they
tend to be too small to construct. For example, if an
element size of 0.15 m is used, then the minimum footing
size is 0.6 × 0.6 m, which is not very big. French (1999)
recommends a lower bound on footing size of 0.6 m and
an upper economical bound of 3.7 m. If the design footing
width is less than the minimum footing width, it is set
equal to the minimum footing width. Second, there will be
some maximum footing size. A spread footing bigger than
about 4 m square would likely be replaced by some other
foundation system (piles, mat, or raft). In this program,
the maximum footing size is taken to be equal to two-
thirds of the finite-element mesh width. This limit has
been found to result in less than a 1% error relative to
the same footing founded on a mesh twice as wide, so
boundary conditions are not significantly influencing the
results. If the design footing width exceeds the maximum
footing width, then the probabilistic interpretation becomes
somewhat complicated, since a different design solution
would presumably be implemented. From the point of view
of assessing the reliability of the “designed” spread footing,
it is necessary to decide if this excessively large footing
design would correspond to a success or to a failure. It
is assumed in this study that the subsequent design of the
alternative foundation would be a success, since it would
have its own (high) reliability.

In all the simulations performed in this study, the lower
limit on the footing size was never encountered, implying
that for the choices of parameters selected in this study the
probability of a design footing being less than 0.6 × 0.6
in dimension was very remote. Similarly, the maximum
footing size was not exceeded in any but the most severe
parameter case considered (minimum sampling, lowest re-
sistance factor, highest coefficient of variation), where it
was only exceeded in 2% of the possible realizations. Thus,
the RFEM results presented here give reasonably accurate
settlement predictions over the entire study.

The soil property of primary interest to settlement is elas-
tic modulus E , which is taken to be spatially random and
may represent both the initial elastic and consolidation be-
havior. Its distribution is assumed to be lognormal for two
reasons: First, a geometric average tends to a lognormal
distribution by the central limit theorem and the effec-
tive elastic modulus, as “seen” by a footing, was found
to be closely represented by a geometric average in pre-
vious sections of this chapter and, second, the lognormal
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distribution is strictly nonnegative, which is physically rea-
sonable for elastic modulus. The lognormal distribution has
two parameters, µln E and σln E , which can be estimated by
the sample mean and sample standard deviation of obser-
vations of ln(E ). They can also be obtained from the mean
and standard deviation of E using the transformations given
by Eqs. 1.176.

A Markovian spatial correlation function, which gives the
correlation coefficient between log-elastic modulus values
at points separated by the lag vector τ is used in this study,

ρln E (τ ) = exp

{
−2|τ |

θln E

}
(10.59)

in which τ = x − x′ is the vector between spatial points x
and x′ and |τ | is the absolute length of this vector (the
lag distance). The results presented here are not partic-
ularly sensitive to the choice in functional form of the
correlation—the Markov model is popular because of its
simplicity. The correlation function decay rate is governed
by the correlation length θln E , which, loosely speaking,
is the distance over which log-elastic moduli are signifi-
cantly correlated. The correlation structure is assumed to
be isotropic in this study, which is appropriate for inves-
tigating the fundamental stochastic behavior of settlement.
Anisotropic studies are more appropriate for site-specific
analyses and for refinements to this study. In any case,
anisotropy is not expected to have a large influence on the
results of this section due to the averaging effect of the
rigid footing on the properties it sees beneath it.

Poisson’s ratio, having only a relatively minor influence
on settlement, is assumed to be deterministic and is set
equal to 0.3 in this study.

Realizations of the random elastic modulus field are pro-
duced using the LAS method (see Section 6.4.6). Local
average subdivision produces a discrete grid of local av-
erages, Gi , of a standard Gaussian random field, having
correlation structure given by Eq. 10.59, where averaging is
performed over the domain of the i th finite element. These
local averages are then mapped to finite-element properties
according to

Ei = exp {µln E + σln E Gi } (10.60)

Figure 10.25 illustrates the finite-element mesh used
in the study and Figure 10.26 shows a cross section through
the soil mass under the footing for a typical realization
of the soil’s elastic modulus field. Figure 10.26 also illus-
trates the boundary conditions.

10.5.2 Reliability-Based Settlement Design

In this section we will investigate a reliability-based design
methodology for the serviceability limit state of shallow

Figure 10.25 Finite-element mesh with one square footing.

footings. Footing settlement is predicted here using a mod-
ified Janbu et al. (1956) relationship, and this is the basis
of design used in this section:

δp = u1
q̂B

Ê
(10.61)

where δp is the predicted footing settlement, q̂ = P̂/B2 is
the characteristic stress applied to the soil by the charac-
teristic load P̂ acting over footing area B × B , Ê is the
estimate of elastic modulus underlying the footing, u1 is an
influence factor which includes the effect of Poisson’s ratio
(ν = 0.3 in this study). The characteristic load P̂ is often a
nominal load computed from the supported live and dead
loads (see Chapter 7), while the characteristic elastic mod-
ulus Ê is usually a cautious estimate of the mean elastic
modulus under the footing obtained by taking laboratory
samples or by in situ tests, such as CPT. In terms of the
characteristic footing load P̂ , the settlement predictor thus
becomes

δp = u1
P̂

BÊ
(10.62)

The relationship above is somewhat modified from that
given by Janbu et al. (1956) and Christian and Carrier
(1978) in that the influence factor u1 is calibrated specifi-
cally for a square rough rigid footing founded on the surface
of an elastic soil using the same finite-element model which
is later used in the Monte Carlo simulations. This is done
to remove bias (model) errors and concentrate specifically
on the effect of spatial soil variability on required resis-
tance factors. In practice, this means that the resistance
factors given in this section are upper bounds, appropriate
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Figure 10.26 Cross section through realization of random soil underlying footing. Darker soils are stiffer.

for use when bias and measurement errors are known to be
minimal.

The calibration of u1 is done by computing, via the
finite-element method, the deterministic settlement of a
square rigid footing subjected to load P̂ placed on a soil
with elastic modulus Ê and Poisson’s ratio ν. Once the
settlement is obtained, Eq. 10.62 can be solved for u1.
Repeating this over a range of H /B ratios leads to the
curve shown in Figure 10.27. This deterministic calibration
was carried out over a larger range of mesh dimensions than
indicated by Figure 10.25. A very close approximation to
the finite-element results is given by the fitted relationship
(obtained by consideration of the correct limiting form and
by trial and error for the coefficients)

u1 = 0.61
(
1 − e−1.18H /B ) (10.63)

which is also shown in Figure 10.27.
Using Eq. 10.63 in Eq. 10.62 gives the following settle-

ment prediction:

δp = 0.61
(
1 − e−1.18H /B )

(
P̂

BÊ

)
(10.64)

The reliability-based design goal is to determine the footing
width B such that the probability of exceeding a specified
tolerable settlement δmax is acceptably small. That is, to find
B such that

P [δ > δmax] = pf = pmax (10.65)

where δ is the actual settlement of the footing “as placed”
(which will be considered here to be the same as “as
designed”). Design failure is assumed to have occurred
if the actual footing settlement δ exceeds the maximum
tolerable settlement δmax. The probability of design failure
is pf and pmax is the maximum acceptable probability of
design failure.
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Fitted u1 = 0.61(1 − exp{−1.18H/B})

Figure 10.27 Calibration of u1 using finite-element model
(FEM).

A realization of the footing settlement δ is determined
here using a finite-element analysis of a realization of the
random soil. For u1 calibrated to the finite-element results,
δ can also be computed from

δ = u1
P

BEeff
(10.66)

where P is the actual footing load and Eeff is the effective
elastic modulus as seen by the footing (i.e., the uniform
value of elastic modulus which would produce a settlement
identical to the actual footing settlement). Both P and Eeff

are random variables.
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One way of achieving the desired design reliability is to
introduce a load factor α ≥ 1 and a resistance factor φg ≤ 1
and then find B , α, and φg which satisfy both Eq. 10.65
and Eq. 10.62 with δp = δmax. In other words, find B and
α/φg such that

δmax = u1

(
αP̂

Bφg Ê

)
(10.67)

and

P

[
u1

P

BEeff
> u1

(
αP̂

Bφg Ê

)]
= pmax (10.68)

In the above, we are assuming that the soil’s elastic modulus
E is the “resistance” to the load and that it is to be factored
due to its significant uncertainty.

From these two equations, at most two unknowns can be
found uniquely. For serviceability limit states, a load factor
of 1.0 is commonly used, and α = 1 will be used here. Note
that only the ratio α/φg need actually be determined for the
settlement problem.

Given α/φg , P̂ , Ê , and H , Eq. 10.67 is relatively effi-
ciently solved for B using a one-point iteration:

Bi+1 = 0.61
(
1 − e−1.18H /Bi

)
(

αP̂

δmaxφg Ê

)
(10.69)

for i = 0, 1, . . . until successive estimates of B are suf-
ficiently similar. A reasonable starting guess is B0 =
0.4(αP̂)/(δmaxφg Ê ).

In Eq. 10.68, the random variables u1 and B are common
to both sides of the inequality and so can be canceled. It
will also be assumed that the footing load is lognormally
distributed and that the characteristic load P̂ equals the
(nonrandom) median load, that is,

P̂ = exp{µln P} (10.70)

Setting the value of P̂ to the median load considerably sim-
plifies the theory in the sequel, but it should be noted that
the definition of P̂ will directly affect the magnitude of the
estimated resistance factors. The lognormal distribution was
selected because it results in loads which are strictly non-
negative (uplift problems should be dealt with separately
and not handled via the tail end of a normal distribution
assumption). The results to follow should be similar for
any reasonable load distribution (e.g., gamma, chi square)
having the same mean and variance.

Collecting all remaining random quantities leads to the
simplified design probability

P

[
P

Ê

Eeff
>

α

φg
eµln P

]
= pmax (10.71)

The characteristic modulus Ê and the effective elastic mod-
ulus Eeff can also be reasonably assumed to be lognormally

distributed. Under these assumptions, if Q is defined as

Q = P
Ê

Eeff
(10.72)

then Q is also lognormally distributed, and

ln Q = ln P + ln Ê − ln Eeff (10.73)

is normally distributed with mean

µln Q = µln P + µln Ê − µln Eeff (10.74)

It is assumed that the load distribution is known, so that
µln P , which is the mean of the logarithm of the total load, as
well as its variance σ 2

ln P are known. The nature of the other
two terms on the right-hand side will now be investigated.

Assume that Ê is estimated from a series of m soil
samples that yield the observations E o

1 , E o
2 , . . . , E o

m . To
investigate the nature of this estimate, it is first instructive
to consider the effective elastic modulus Eeff as seen by the
footing. Analogous to the estimate for Ê , it can be imagined
that the soil volume under the footing is partitioned into a
large number of soil “samples” (although most of them,
if not all, will remain unsampled) E1, E2, . . . , En . If the
soil is not strongly layered, the effective elastic modulus,
as seen by the footing, Eeff, is a geometric average of the
soil properties in the block under the footing, that is,

Eeff =
(

n∏

i=1

Ei

)1/n

= exp

{
1

n

n∑

i=1

ln Ei

}
(10.75)

If Ê is to be a good estimate of Eeff, which is desirable, then
it should be similarly determined as a geometric average of
the observed samples E o

1 , E o
2 , . . . , E o

m ,

Ê =



m∏

j=1

E o
j




1/m

= exp





1

m

m∑

j=1

ln E o
j




 (10.76)

since this estimate of Eeff is unbiased in the median; that
is, the median of Ê is equal to the median of Eeff. This is
a fairly simple estimator, and no attempt is made here to
account for the location of samples relative to the footing.
Note that if the soil is layered horizontally and it is desired
to specifically capture the layer information, then Eqs. 10.75
and 10.76 can be applied to each layer individually—the
final Ê and Eeff values are then computed as harmonic
averages of the layer values. Although the distribution of
a harmonic average is not simply defined, a lognormal
approximation has been found to be often reasonable.

Under these definitions, the means of µln Ê and µln Eeff

are identical,

µln Eeff = E [ln Eeff] = µln E (10.77)

µln Ê = E
[
ln Ê

] = µln E (10.78)
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where µln E is the mean of the logarithm of elastic moduli
of any sample. Thus, as long as Eqs. 10.75 and 10.76 hold,
the mean of ln Q simplifies to

µln Q = µln P (10.79)

Now, attention can be turned to the variance of ln Q . If
the variability in the load P is independent of the soil’s
elastic modulus field, which is entirely reasonable, then the
variance of ln Q is

σ 2
ln Q = σ 2

ln P + σ 2
ln Ê

+ σ 2
ln Eeff

− 2 Cov
[
ln Ê , ln Eeff

]

(10.80)
The variances of ln Ê and ln Eeff can be expressed in
terms of the variance of ln E using two variance reduction
functions, γ o and γ , defined as

γ o(m) = 1

m2

m∑

i=1

m∑

j=1

ρo
ij (10.81a)

γ (n) = 1

n2

n∑

i=1

n∑

j=1

ρij (10.81b)

where ρo
ij is the correlation coefficient between ln E o

i and
ln E o

j and ρij is the correlation coefficient between ln Ei and
ln Ej . These functions can be computed numerically once
the locations of all soil samples are known. Both γ o(1)
and γ (1) have value 1.0 when only one sample is used to
specify Ê or Eeff, respectively (when samples are “point”
samples, then one sample corresponds to zero volume;
however, it is assumed here that there is some representative
sample volume from which the mean and variance of the
elastic modulus field are estimated and this corresponds to
the point measure). As the number of samples increases,
the variance reduction function decreases toward zero at
a rate inversely proportional to the total sample volume
(see Vanmarcke, 1984). If the volume of the soil under the
footing is B × B × H, then a reasonable approximation to
γ (n) is obtained by assuming a separable form:

γ (n) � γ 2
1

(
2B

θln E

)
γ1

(
2H

θln E

)
(10.82)

where γ1(a) is the one-dimensional variance function
corresponding to a Markov correlation function (see Sec-
tion 3.6.5):

γ1(a) = 2

a2

[
a + e−a − 1

]
(10.83)

An approximation to γ o(m) is somewhat complicated by
the fact that samples for Ê are likely to be collected
at separate locations. If the observations are sufficiently
separated that they can be considered independent (e.g.,
separated by more than θln E ), then γ o(m) = 1/m . If they

are collected from within a contiguous volume V o , then

γ o(m) � γ1

(
2R

θln E

)
γ1

(
2R

θln E

)
γ1

(
2H

θln E

)
(10.84)

where the total plan area of soil sampled is R × R (e.g., a
CPT sounding can probably be assumed to be sampling
an effective area equal to about 0.2 × 0.2 m2, so that
R = 0.2 m for a single CPT). The true variance reduction
function will be somewhere in between. In this study, the
soil is sampled by examining one or more columns of
the finite-element model, and so for an individual column,
R × R becomes replaced by �x × �y , which are the plan
dimensions of the finite elements, and Eq. 10.84 can be
used to obtain the variance reduction function for a single
column. If more than one column is sampled, then

γ o(m) � γ1(2 �x/θln E )γ1(2 �y/θln E )γ1(2H /θln E )

neff
(10.85)

where neff is the effective number of independent columns
sampled. If the sampled columns are well separated (i.e.,
by more than the correlation length), then they could be
considered independent, and neff would be equal to the
number of columns sampled. If the columns are closely
clustered (relative to the correlation length), then neff would
decrease toward 1. The actual number is somewhere in
between the number of columns sampled and 1 and should
be estimated by judgment taking into account the distance
between samples.

With these results,

σ 2
ln Ê

= γ o(m)σ 2
ln E (10.86a)

σ 2
ln Eeff

= γ (n)σ 2
ln E (10.86b)

The covariance term in Eq. 10.80 is computed from

Cov
[
ln Ê , ln Eeff

] = 1

mn

m∑

j=1

n∑

i=1

Cov
[
ln E o

j , ln Ei

]

= σ 2
ln E



 1

mn

m∑

j=1

n∑

i=1

ρ′
ij



 (10.87)

= σ 2
ln E ρ′

ave

where ρ′
ij is the correlation coefficient between ln E o

j and
ln Ei and ρ′

ave is the average of all these correlations. If the
estimate ln Ê is to be at all useful in a design, the value
of ρ′

ave should be reasonably high. However, its magnitude
depends on the degree of spatial correlation (measured by
θln E ) and the distance between the observations E o

i and the
soil volume under the footing. The correlation function of
Eq. 10.59 captures both of these effects. That is, there will
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exist an average distance τ ′
ave such that

ρ′
ave = exp

{−2τ ′
ave

θln E

}
(10.88)

and the problem is to find a reasonable approximation to
τ ′

ave if the numerical calculation of Eq. 10.87 is to be
avoided. The approximation considered in this study is that
τ ′

ave is defined as the average absolute distance between
the E o

i samples and a vertical line below the center of the
footing, with a sample taken anywhere under the footing to
be considered to be taken at the footing corner (e.g., at a
distance B/

√
2 from the centerline); this latter restriction is

taken to avoid a perfect correlation when a sample is taken
directly at the footing centerline, which would be incorrect.
A side study indicated that for all moderate correlation
lengths (θln E of the order of the footing width) the true τ ′

ave
differed by less than about 10% from the approximation
B/

√
2 for any sample taken under the footing.

Using these definitions, the variance of ln Q can be
written as

σ 2
ln Q = σ 2

ln P + σ 2
ln E

[
γ o(m) + γ (n) − 2ρ′

ave

]
(10.89)

≥ σ 2
ln P

The limitation σ 2
ln Q ≥ σ 2

ln P is introduced because it is pos-
sible, using the approximations suggested above, for the
quantity inside the square brackets to become negative,
which is physically inadmissable. It is assumed that if this
happens the sampling has reduced the uncertainty in the
elastic modulus field essentially to zero.

With these results in mind the design probability becomes

P

[
P

Ê

Eeff
>

α

φg
eµln P

]
= P

[
Q >

α

φg
eµln P

]

= P
[
ln Q > ln α − ln φg + µln P

]

= 1 − 


(− ln φg

σln Q

)

= pmax (assuming α = 1)

(10.90)

from which the required resistance factor φg can be
found as

φg = exp{−β σln Q} (10.91)

where β is the desired reliability index corresponding to
pmax. That is, 
(β) = 1 − pmax. For example, if pmax =
0.05, which will be assumed in the following, β = 1.645.

It is instructive at this point to consider a limiting case,
namely where Ê is a perfect estimate of Eeff. In this case,
Ê = Eeff, which implies that m = n and the observations
E o

1 , . . . coincide identically with the samples E1, . . . . In this

case, γ o = ρ′
ave = γ , so that

σ 2
ln Q = σ 2

ln P (10.92)

from which the required resistance factor can be calcu-
lated as

φg = exp {−β σln P} (10.93)

For example, if pmax = 0.05 and the coefficient of variation
of the load is vP = 0.1, then φg = 0.85. Alternatively,
for the same maximum acceptable failure probability, if
vP = 0.3, then φg decreases to 0.62.

One difficulty with the computation of σ 2
ln Eeff

that is
apparent in the approximation of Eq. 10.82 is that it depends
on the footing dimension B . From the point of view of
the design probability, Eq. 10.71, this means that B does
not entirely disappear, and the equation is still interpreted
as the probability that a footing of size B × B will fail
to stay within the serviceability limit state. The major
implication of this interpretation is that if Eq. 10.71 is used
conditionally to determine φg , then the design resistance
factor φg will have some dependence on the footing size;
this is not convenient for a design code (imagine, for
example, designing a concrete beam if φc varied with
the beam dimension). Thus, strictly speaking, Eq. 10.71
should be used conditionally to determine the reliability of a
footing against settlement failure once it has been designed.
The determination of φg would then proceed by using the
total probability theorem; that is, find φg such that

pmax =
∫ ∞

0
P

[
Q >

α

φg
P̂

∣∣∣∣B

]
fB (b) db (10.94)

where fB is the probability density function of the footing
width B . The distribution of B is not easily obtained: It is
a function of H , P̂ , δmax, the parameters of Ê , and the load
and resistance factors α and φg —see Eq. 10.69—and so the
value of φg is not easily determined using Eq. 10.94. One
possible solution is to assume that changes in B do not have
a great influence on the computed value of φg and to take
B = Bmed, where Bmed is the (nonrandom) footing width
required by design using the median elastic modulus along
with a moderate resistance factor of φg = 0.5 in Eq. 10.69.
This approach will be adopted and will be validated by the
simulation to be discussed next.

10.5.3 Design Simulations

As mentioned above, the resistance factor φg cannot
be directly obtained by solving Eq. 10.71 for given B si-
multaneously with Eq. 10.67 since this would result in a
resistance factor which depends on the footing dimension.
To find the value of φg to be used for any footing size in-
volves solving Eq. 10.94. Unfortunately, this is not feasible
since the distribution of B is unknown (or at least very dif-
ficult to compute). A simple solution is to use Monte Carlo
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simulation to estimate the probability on the right-hand side
of Eq. 10.94 and then use the simulation results to assess
the validity of the simplifying assumption that Bmed can
be used to find φg using Eq. 10.71. The RFEM will be
employed within a design context to perform the desired
simulation. The approach is described as follows:

1. Decide on a maximum tolerable settlement δmax. To
illustrate the approach, we will select δmax = 0.025 m.

2. Estimate the characteristic footing load P̂ to be the
median load applied to the footing by the supported
structure (it is assumed that the load distribution is
known well enough to know its median, P̂ = eµln P ).

3. Simulate an elastic modulus field E (x) for the soil
from a lognormal distribution with specified mean µE ,
coefficient of variation vE , and correlation structure
(e.g., Eq. 10.59) with correlation length θln E . The
field is simulated using the LAS method whose local
average values are assigned to corresponding finite
elements.

4. Virtually sample the soil to obtain an estimate Ê of
its elastic modulus. In a real site investigation, the
geotechnical engineer may estimate the soil’s elastic
modulus and depth to firm stratum by performing one
or more CPT or SPT soundings. In this simulation,
one or more vertical columns of the soil model are
selected to yield the elastic modulus samples. That is,
Ê is estimated using a geometric average, Eq. 10.76,
where E o

1 is the elastic modulus of the top element of
a column, E o

2 is the elastic modulus of the second to
top element of the same column, and so on, to the base
of the column. One or more columns may be included
in the estimate, as will be discussed shortly, and mea-
surement and model errors are not included in the es-
timate—the measurements are assumed to be precise.

5. Letting δp = δmax and for given factors α and φg ,
solve Eq. 10.69 for B . This constitutes the footing
design. Note that design widths are normally rounded
up to the next most easily measured dimension (e.g.,
1684 mm would probably be rounded up to 1700 mm).
In the same way, in this analysis the design value of
B is rounded up to the next larger element boundary
since the finite-element model assumes footings are a
whole number of elements wide. (The finite-element
model uses elements which are 0.15 m wide, so B is
rounded up here to the next larger multiple of 0.15 m.)

6. Simulate a lognormally distributed footing load P
having median P̂ and variance σ 2

P .
7. Compute the “actual” settlement δ of a footing of

width B under load P on a random elastic modu-
lus field using the finite-element model. In this step,
the virtually sampled random field generated in step 3

above is mapped to the finite-element mesh, the foot-
ing of width B (suitably rounded up to a whole num-
ber of elements wide) is placed on the surface, and
the settlement is computed by finite-element analysis.

8. If δ > δmax, the footing design is assumed to have
failed.

9. Repeat from step 3 a large number of times (n =
1000, in this study), counting the number of footings
nf which experienced a design failure. The failure
probability is then estimated as p̂f = nf /n .

By repeating the entire process over a range of possible
values of φg the resistance factor which leads to an accept-
able probability of failure, pf = pmax, can be selected. This
“optimal” resistance factor will also depend on:

1. Number and locations of sampled columns (analogous
to number and locations of CPT/SPT soundings)

2. Coefficient of variation of soil’s elastic modulus, vE

3. Correlation length θln E

The simulation will be repeated over a range of values of
these parameters to see how they affect φg .

Five different sampling schemes will be considered in
this study, as illustrated in Figure 10.28 [see Jaksa et al.
(2005) for a detailed study of the effectiveness of site
investigations]. The outer solid line denotes the edge of the
soil model and the interior dashed line the location of the
footing. The small black squares show the plan locations
where the site is virtually sampled. It is expected that the
quality of the estimate of Eeff will improve for higher
numbered sampling schemes. That is, the probability of
design failure will decrease for higher numbered sampling
schemes, everything else being held constant.

Table 10.3 lists the other parameters, aside from sampling
schemes, varied in this study. In total 300 RFEM runs

(1) (2) (3) (4) (5)

Figure 10.28 Sampling schemes considered in this study.

Table 10.3 Input Parameters Varied in Study While
Holding H = 4.8 m, D = 9.6 m, µP = 1200 kN,
vP = 0.25, µE = 20 MPa, and ν = 0.3 Constant

Parameter Values Considered

vE 0.1, 0.2, 0.5
θln E (m) 0.1, 1.0 10.0, 100.0
φg 0.4, 0.5, 0.6, 0.7, 0.8
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each involving 1000 realizations were performed. Based
on 1000 independent realizations, the estimated failure
probability p̂f has standard error

√
p̂f (1 − p̂f )/1000, which

for a probability level of 5% is 0.7%. In other words, a true
failure probability of 5% is estimated to within 0.7% with
confidence 68% using 1000 observations.

10.5.4 Simulation Results

Figure 10.29 shows the effect of the correlation length on
the probability of failure for sampling scheme 1 (a single
sampled column at the corner of site) and for vE = 0.5.
The other sampling schemes and values of vE displayed
similarly shaped curves. Of particular note in Figure 10.29
is the fact that the probability of failure reaches a maximum
for an intermediate correlation length, in this case when
θln E � 10 m. This is as expected, since for stationary
random fields the values of Ê and Eeff will coincide for
both vanishingly small correlation lengths (where local
averaging results in both becoming equal to the median)
and for very large correlation lengths (where Ê and Eeff

become perfectly correlated), and so the largest differences
between Ê and Eeff will occur at intermediate correlation
lengths. The true maximum could lie somewhere between
θln E = 1 m and θln E = 100 m in this particular study.

Where the maximum correlation length occurs for ar-
bitrary sampling patterns is still unknown. However, the
authors expect that it is probably safe to say that taking
θln E approximately equal to the average distance between
sample locations and the footing center (but not less than the
footing size) will yield suitably conservative failure prob-
abilities. In the remainder of this study, the θln E = 10 m
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Figure 10.29 Effect of correlation length θln E on probability of
settlement failure pf = P [δ > δmax].
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Figure 10.30 Effect of resistance factor φg on probability of
failure pf = P [δ > δmax] for vE = 0.2 and θln E = 10 m.

results will be concentrated on since these yielded the most
conservative designs.

Figure 10.30 shows how the estimated probability of
failure varies with resistance factor for the five sampling
schemes considered with vE = 0.2 and θln E = 10 m. This
figure can be used for design by drawing a horizontal
line across at the target probability pmax—to illustrate this,
a light line has been drawn across at pmax = 0.05—and
then reading off the required resistance factor for a given
sampling scheme. For pmax = 0.05, it can be seen that
φg � 0.62 for the worst-case sampling scheme 1. For all the
other sampling schemes considered, the required resistance
factor is between about 0.67 and 0.69. Because the standard
error of the estimated pf values is 0.7% at this level, the
relative positions of the lines tends to be somewhat erratic.
What Figure 10.30 is saying, essentially, is that at low levels
of variability increasing the number of samples does not
greatly affect the probability of failure.

When the coefficient of variation vE increases, the dis-
tinction between sampling schemes becomes more pro-
nounced. Figure 10.31 shows the failure probability for the
various sampling schemes at vE = 0.5 and θln E = 10 m.
Improved sampling (i.e., improved understanding of the
site) now makes a significant difference to the required
value of φg , which ranges from φg � 0.46 for sampling
scheme 1 to φg � 0.65 for sampling scheme 5, assum-
ing a target probability of pmax = 0.05. The implication of
Figure 10.31 is that when soil variability is significant, con-
siderable design/construction savings can be achieved when
the sampling scheme is improved.

The approximation to the analytical expression for the
failure probability can now be evaluated. For the case
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Figure 10.31 Effect of resistance factor φg on probability of
failure pf = P [δ > δmax] for vE = 0.5 and θln E = 10 m.

considered in Figure 10.31, vE = 0.5 and vP = 0.25, so that

σ 2
ln E = ln(1 + v2

E ) = 0.2231

σ 2
ln P = ln(1 + v2

P ) = 0.0606

To compute the variance reduction function γ (n), the foot-
ing width corresponding to the median elastic modulus
is needed. For this calculation, an initial value of φg is
also needed, and the moderate value of φg = 0.5 is recom-
mended. For µE = 20,000 kPa, the median elastic modulus
Ẽ is

Ẽ = µE√
1 + v2

E

= 20,000√
1 + 0.52

= 17,889 kPa

and for µP = 1200 kN, the median footing load is

P̂ = µP√
1 + v2

P

= 1200√
1 + 0.252

= 1164.2 kN

Solving Eq. 10.69 iteratively gives Bmed = 2.766 m. The
corresponding variance reduction factors are

γ1

(
2(4.8)

10

)
= 2

0.962

[
0.96 + e−0.96 − 1

] = 0.74413

γ1

(
2(2.766)

10

)
= 2

0.55322

[
0.5532 + e−0.5532 − 1

]

= 0.83852

which gives

γ (n) � (0.83852)2(0.74413) = 0.5232

Now consider sampling scheme 1, which involves a single
vertical sample with R = �x = 0.15 m and corresponding

variance reduction factor,

γ1

(
2(0.15)

10

)
= 2

0.032

[
0.03 + e−0.03 − 1

] = 0.99007

γ o(m) � (0.99007)2(0.74413) = 0.7294

For sampling scheme 1, τ ′
ave � √

2(9.6/2) = 6.79 m is the
(approximate) distance from the sample point to the center
of the footing. In this case,

ρ′
ave = exp

{
−2(6.79)

10

}
= 0.2572

which gives us, using Eq. 10.89,

σ 2
ln Q = 0.0606 + 0.2231 [0.7294 + 0.5232 − 2(0.2572)]

= 0.2253

so that σln Q = 0.4746. For β = 1.645, the required resis-
tance factor is determined by Eq. 10.91 to be

φg = exp{−1.645(0.4746)} = 0.46

The corresponding value on Figure 10.31 is also 0.46. Al-
though this agreement is excellent, it must be remembered
that this is an approximation, and the precise agreement
may be due somewhat to mutually canceling errors and
to chance, since the simulation estimates are themselves
somewhat random. For example, if the more precise for-
mulas of Eqs. 10.81a, 10.81b, and 10.87 are used, then
γ o(m) = 0.7432, γ (n) = 0.6392, and ρ′

ave = 0.2498, which
gives

σ 2
ln Q = 0.0606 + 0.2231 [0.7432 + 0.6392 − 2(0.2498)]

= 0.2576

so that the “more precise” required resistance factor actually
has poorer agreement with simulation:

φg = exp{−1.645
√

0.2576} = 0.43

It is also to be remembered that the more precise re-
sult above is still conditioned on B = Bmed and φg = 0.5,
whereas the simulation results are unconditional. Never-
theless, these results suggest that the approximations are
insensitive to variations in B and φg and are thus reasonably
general.

Sampling scheme 2 involves two sampled columns sep-
arated by more than θln E = 10 m so that neff can be taken
as 2. This means that γ o(m) � 0.7294/2 = 0.3647. The av-
erage distance from the footing centerline to the sampled
columns is still about 6.79 m, so that ρ′

ave = 0.2572. Now

σ 2
ln Q = 0.0606 + 0.2231 [0.3647 + 0.5232 − 2(0.2572)]

= 0.1439
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and the required resistance factor is

φg = exp{−1.645
√

0.1439} = 0.54

The corresponding value in Figure 10.31 is about 0.53.
Sampling scheme 3 involves four sampled columns sep-

arated by somewhat less than θln E = 10 m. Due to the
resulting correlation between columns, neff � 3 is selected
(i.e., somewhat less than the “independent” value of 4).
This gives γ o(m) � 0.7294/3 = 0.2431. Since the average
distance from the footing centerline to the sample columns
is still about 6.79 m,

σ 2
ln Q = 0.0606 + 0.2231 [0.2431 + 0.5232 − 2(0.2572)]

= 0.1268

The required resistance factor is

φg = exp{−1.645
√

0.1268} = 0.57

The corresponding value in Figure 10.31 is about 0.56.
Sampling scheme 4 involves five sampled columns also

separated by somewhat less than θln E = 10 m and neff � 4
is selected to give γ o(m) � 0.7294/4 = 0.1824. One of
the sampled columns lies below the footing, and so its
distance to the footing centerline is taken to be Bmed/

√
2 =

2.766/
√

2 = 1.96 m to avoid complete correlation. The
average distance to sampling points is thus

τ ′
ave = 4

5 (6.79) + 1
5 (1.96) = 5.82

so that ρ′
ave = 0.3120. This gives

σ 2
ln Q = 0.0606 + 0.2231 [0.1824 + 0.5232 − 2(0.3120)]

= 0.0788

The required resistance factor is

φg = exp{−1.645
√

0.0788} = 0.63

The corresponding value in Figure 10.31 is about 0.62.
For sampling scheme 5, the distance from the sam-

ple point to the center of the footing is zero, so τ ′
ave is

taken to equal the distance to the footing corner, τ ′
ave =

(2.766)/
√

2 = 1.96 m, as recommended earlier. This gives
ρ′

ave = 0.676 and

σ 2
ln Q = 0.0606 + 0.2231 [0.7294 + 0.5232 − 2(0.676)]

= 0.0606 + 0.2231 [−0.0994] → 0.0606

where approximation errors led to a negative variance con-
tribution from the elastic modulus field which was ignored
(i.e., set to zero). In this case, the sampled information
is deemed sufficient to render uncertainties in the elastic
modulus negligible, so that Ê � Eeff and

φg = exp{−1.645
√

0.0606} = 0.67

The value of φg read from Figure 10.31 is about 0.65.
If the more precise formulas for the variance reduction
functions and covariance terms are used, then γ o(m) =
0.7432, γ (n) = 0.6392, and ρ′

ave = 0.6748, which gives

σ 2
ln Q = 0.0606 + 0.2231 [0.7432 + 0.6392 − 2(0.6748)]

= 0.0679

Notice that this is very similar to the approximate result
obtained above, which suggests that the assumption that
samples taken below the footing largely eliminate uncer-
tainty in the effective elastic modulus is reasonable. For
this more accurate result,

φg = exp{−1.645
√

0.0679} = 0.65

which is the same as the simulation results.
Perhaps surprisingly, sampling scheme 5 outperforms, in

terms of failure probability and resistance factor, sampling
scheme 4, even though sampling scheme 4 involves con-
siderably more information. The reason for this is that in
sampling scheme 4 the good information taken below the
footing is diluted by poorer information taken from farther
away. This implies that when a sample is taken below the
footing, other samples taken from farther away should be
downweighted. In other words, the simple averaging of data
performed here should be replaced by distance-weighted
averages.

The computations illustrated above for all five sampling
schemes can be summarized as follows:

1. Decide on an acceptable maximum settlement δmax.
Since serviceability problems in a structure usually
arise as a result of differential settlement, rather
than settlement itself, the choice of an acceptable
maximum settlement is usually made assuming that
differential settlement will be less than the total set-
tlement of any single footing [see, e.g., D’Appolonia
et al. (1968) and the results of the first few sections
of this chapter].

2. Choose statistical parameters of the elastic modulus
field, µE , σE , and θln E . The last can be the worst-case
correlation length, suggested here to approximately
equal the average distance between sample locations
and the footing center, but not to be taken less than
the median footing dimension. The values of µE and
σE can be estimated from site samples (although the
effect of using estimated values of µE and σE in these
computations has not been investigated) or from the
literature.

3. Use Eqs. 1.176 to compute the statistical parameters
of ln E and then compute the median Ẽ = exp{µln E }.
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4. Estimate statistical parameters for the load, µP and
σP , and use these to compute the mean and variance
of ln P . Set P̂ = exp{µln P}.

5. Using a moderate resistance factor, φg = 0.5, and
the median elastic modulus Ẽ , compute the median
value of B using the one-point iteration of Eq. 10.69.
Call this Bmed.

6. Compute γ (n) using Eq. 10.82 (or Eq. 10.81b) with
B = Bmed.

7. Compute γ o(m) using Eq. 10.85 (or Eq. 10.81a).
8. Compute ρ′

ave using Eq. 10.88 (or Eq. 10.87) after
selecting a suitable value for τ ′

ave as the average
absolute distance between the sample columns and
the footing center (where distances are taken to
be no less than the distance to the footing corner,
Bmed/

√
2).

9. Compute σln Q using Eq. 10.89.
10. Compute the required resistance factor φg using

Eq. 10.91.

10.5.5 Summary

The section presents approximate relationships based on
random-field theory which can be used to estimate resis-
tance factors appropriate for the LRFD settlement design
of shallow foundations. Some specific comments arising
from this research are as follows:

1. Two assumptions deemed to have the most influence
on the resistance factors estimated in this study are
(1) that the nominal load used for design, P̂ , is the
median load and (2) that the load factor α is equal
to 1.0. Changes in α result in a linear change in the
resistance factor, for example, φ′

g = αφg , where φg is
the resistance factor found in this study and φ′

g is the
resistance factor corresponding to an α which is not
equal to 1.0. Changes in P̂ (e.g., if P̂ were taken as
some other load exceedance percentile) would result
in first-order linear changes to φg , but further study
would be required to specify the actual effect on the
resistance factor.

2. The resistance factors obtained in this study should
be considered to be upper bounds since the additional
uncertainties arising from measurement and model er-
rors have not been considered. To some extent, these
additional error sources can be accommodated here
simply by using a value of vE greater than would ac-
tually be true at a site. For example, if vE = 0.35 at
a site, the effects of measurement and model error
might be accommodated by using vE = 0.5 in the re-
lationships presented here. This issue needs additional
study, but Meyerhof’s (1984, p. 6) comment that “in

view of the uncertainty and great variability in in-
situ soil-structure stiffnesses . . . a partial factor of 0.7
should be used for an adequate reliability of service-
ability estimates” suggests that the results presented
here are reasonable (possibly a little conservative at
the vE = 0.5 level) for all sources of error.

3. The use of a median footing width Bmed derived us-
ing a median elastic modulus and moderate φg = 0.5
value, rather than by using the full B distribution in
the computation of γ (n), appears to be quite reason-
able. This is validated by the agreement between the
simulation results (where B varies with each realiza-
tion) and the results obtained using the approximate
relationships (see previous section).

4. The computation of a required resistance factor as-
sumes that the uncertainty (e.g., vE ) is known. In fact,
at a given site, all three parameters µE , vE , and θln E

will be unknown and only estimated to various levels
of precision by sampled data. To establish a LRFD
code, at least vE and θln E need to be known a priori.
One of the significant results of this research is that
a worst-case correlation length exists which can be
used in the development of a design code. While the
value of vE remains an outstanding issue, calibration
with existing codes may very well allow its practical
estimation.

5. At low uncertainty levels, that is, when vE ≤ 0.2 or
so, there is not much advantage to be gained by tak-
ing more than two sampled columns (e.g., SPT or
CPT borings) in the vicinity of the footing, as seen in
Figure 10.30. This statement assumes that the soil is
stationary. The assumption of stationarity implies that
samples taken in one location are as good an estima-
tor of the mean, variance, and so on, as samples taken
elsewhere. Since this is rarely true of soils, the quali-
fier “in the vicinity” was added to the above statement.

6. Although sampling scheme 4 involved five sampled
columns and sampling scheme 5 involved only one
sampled column, sampling scheme 5 outperformed 4.
This is because the distance to the samples was not
considered in the calculation of Ê . Thus, in sampling
scheme 4 the good estimate taken under the foot-
ing was diluted by four poorer estimates taken some
distance away. Whenever a soil is sampled directly
under a footing, those sample results should be given
much higher weighting than soil samples taken else-
where. That is, the concepts of BLUE, which takes
into account the correlation between estimate and ob-
servation, should be used (see Section 4.1). In this
section a straightforward geometric average was used
(arithmetic average of logarithms in log-space) for
simplicity.



CHAPTER 11

Bearing Capacity

11.1 STRIP FOOTINGS ON c–φ SOILS

The design of a foundation involves the consideration of
several limit states which can be separated into two groups:
serviceability limit states, which generally translate into a
maximum settlement or differential settlement, and ultimate
limit states. The latter are concerned with the maximum
load which can be placed on the footing just prior to a
bearing capacity failure. This section looks at the ultimate
bearing capacity of a smooth strip footing founded on a soil
having spatially random properties [Fenton and Griffiths
(2003); see also Fenton and Griffiths (2001), Griffiths and
Fenton (2000b), Griffiths et al. (2002b), and Manoharan
et al. (2001)]. The program used to perform the simulations
reported here is called RBEAR2D and is available at
http://www.engmath.dal.ca/rfem.

Most modern bearing capacity predictions involve a
relationship of the form (Terzaghi, 1943; Meyerhof, 1951)

qu = cNc + q̄Nq + 1
2γ BNγ (11.1)

where qu is the ultimate bearing stress, c is the cohesion, q̄
is the overburden stress, γ is the unit soil weight, B is the
footing width, and Nc , Nq , and Nγ are the bearing capacity
factors which are functions of the friction angle φ. To
simplify the analysis in this section, and to concentrate on
the stochastic behavior of the most important term (at least
as far as spatial variation is concerned), the soil is assumed
weightless with no surcharge. Under this assumption, the
bearing capacity equation simplifies to

qu = cNc (11.2)

Bearing capacity predictions, involving specification of the
N factors, are often based on plasticity theory (see, e.g.,
Prandtl, 1921; Terzaghi, 1943; Meyerhof, 1951; Sokolovski,
1965) of a rigid base punching into a softer material

(Griffiths and Fenton, 2001). These theories assume a
uniform soil underlying the footing—that is, the soil is
assumed to have properties which are spatially constant.
Under this assumption, most bearing capacity theories (e.g.,
Prandtl, 1921; Meyerhof, 1951, 1963) assume that the fail-
ure slip surface takes on a logarithmic spiral shape to give

Nc = eπ tan φ tan2 (π/4 + φ/2) − 1

tan φ
(11.3)

This relationship has been found to give reasonable agree-
ment with test results (e.g., Bowles, 1996) under ideal
conditions, and the displacement of the failed soil assumes
the symmetry shown in Figure 11.1.

In practice, however, it is well known that the actual
failure conditions will be somewhat more complicated than
a simple logarithmic spiral. Due to spatial variation in soil
properties, the failure surface under the footing will follow
the weakest path through the soil, constrained by the stress
field. For example, Figure 11.2 illustrates the bearing failure
of a realistic soil with spatially varying properties. It can be
seen that the failure surface only approximately follows a
log-spiral on the right side and is certainly not symmetric.
In this plot lighter regions represent weaker soil and darker
regions indicate stronger soil. The weak (light) region near
the ground surface to the right of the footing has triggered a
nonsymmetric failure mechanism that is typically at a lower
bearing load than predicted by traditional homogeneous and
symmetric failure analysis.

Figure 11.1 Displacement vector plot of bearing failure on
uniform (spatially constant) soil.

Figure 11.2 Typical deformed mesh at failure, where lighter
regions indicate weaker soil.
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The problem of finding the minimum strength failure slip
surface through a soil mass is very similar in nature to the
slope stability problem, and one which currently lacks a
closed-form stochastic solution, so far as the authors are
aware. In this section the traditional relationships shown
above will be used as a starting point to this problem.

For a realistic soil, both c and φ are random, so that
both quantities in the right-hand side of Eq. 11.2 are ran-
dom. This equation can be nondimensionalized by dividing
through by the cohesion mean:

Mc = qu

µc
= c

µc
Nc (11.4)

where µc is the mean cohesion and Mc is the stochastic
equivalent of Nc , that is, qu = µcMc . The stochastic prob-
lem is now boiled down to finding the distribution of Mc . A
theoretical model for the first two moments (mean and vari-
ance) of Mc , based on geometric averaging, are given in the
next section. Monte Carlo simulations are then performed
to assess the quality of the predictions and determine the
approximate form of the distribution of Mc . This is fol-
lowed by an example illustrating how the results can be
used to compute the probability of a bearing capacity fail-
ure. Finally, an overview of the results is given, including
their limitations.

11.1.1 Random Finite-Element Method

In this study, the soil cohesion c is assumed to be log-
normally distributed with mean µc , standard deviation σc ,
and spatial correlation length θln c . The lognormal distribu-
tion is selected because it is commonly used to represent
nonnegative soil properties and since it has a simple rela-
tionship with the normal. A lognormally distributed random
field is obtained from a normally distributed random field
Gln c(x) having zero mean, unit variance, and spatial corre-
lation length θln c through the transformation

c(x) = exp{µln c + σln cGln c(x)} (11.5)

where x is the spatial position at which c is desired. The
parameters µln c and σln c are obtained from the specified
cohesion mean and variance using the lognormal transfor-
mations of Eqs. 1.176.

The correlation coefficient between the log-cohesion at
a point x1 and a second point x2 is specified by a correla-
tion function, ρln c(τ ), where τ = |x1 − x2| is the absolute
distance between the two points. In this study, a simple ex-
ponentially decaying (Markovian) correlation function will
be assumed, having the form (see also Section 3.7.10.2)

ρln c(τ ) = exp

(
−2|τ |

θln c

)
(11.6)

The spatial correlation length, θln c , is loosely defined as
the separation distance within which two values of ln c are

significantly correlated, as discussed in Section 3.5. The cor-
relation function, ρln c , acts between values of ln c since ln c
is normally distributed, and a normally distributed random
field is simply defined by its mean and covariance structure.

The random field is also assumed here to be statistically
isotropic (the same correlation length in any direction
through the soil). Although the horizontal correlation length
is often greater than the vertical, due to soil layering, taking
this into account is a site-specific refinement left to the reader.
The main aspects of the stochastic behavior of bearing capac-
ity for a relatively simple problem are presented here.

The friction angle φ is assumed to be bounded both
above and below, so that neither normal nor lognormal
distributions are appropriate. A beta distribution is often
used for bounded random variables. Unfortunately, a beta-
distributed random field has a complex joint distribution
and simulation is cumbersome and numerically difficult.
To keep things simple, the tanh transformation discussed
in Section 1.10.10 is used. This transformation results in
a bounded distribution which resembles a beta distribution
but which arises as a simple transformation of a standard
normal random field Gφ(x) according to

φ(x) = φmin + 1

2
(φmax − φmin)

{
1 + tanh

(
sGφ(x)

2π

)}

(11.7)
where φmin and φmax are the minimum and maximum fric-
tion angles, respectively, and s is a scale factor which gov-
erns the friction angle variability between its two bounds
(see Figure 1.36).

The random field Gφ(x) has zero mean and unit variance,
as does Gln c(x). Conceivably, Gφ(x) could also have its
own correlation length θφ distinct from θln c . However, it
seems reasonable to assume that if the spatial correlation
structure is caused by changes in the constitutive nature
of the soil over space, then both cohesion and friction
angle would have similar correlation lengths. Thus, θφ

is taken to be equal to θln c in this study. Both lengths
will be referred to generically from now on simply as θ ,
remembering that this length reflects correlation between
points in the underlying normally distributed random fields
Gln c(x) and Gφ(x) and not directly between points in the
cohesion and friction fields. As mentioned above, both
lengths can be estimated from data sets obtained over
some spatial domain by statistically analyzing the suitably
transformed data (inverses of Eqs. 11.5 and 11.7—see
Eq. 1.191 for the inverse of Eq. 11.7). After transforming to
the c and φ fields, the transformed correlation lengths will
no longer be the same, but since both transformations are
monotonic (i.e., larger values of Gln c give larger values of
c, etc.), the correlation lengths will be similar. For example,
when s = v = 1.0, the difference in correlation lengths is
less than 15% from each other and from the underlying
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Gaussian field correlation length. In that all engineering
soil properties are derived through various transformations
of the physical soil behavior (e.g., cohesion is a complex
function of electrostatic forces between soil particles), the
final correlation lengths between engineering properties
cannot be expected to be identical, only similar. For the
purposes of a generic non-site-specific study, the above
assumptions are believed reasonable.

The question as to whether the two parameters c and φ

are correlated is still not clearly decided in the literature,
and no doubt depends very much on the soil being studied.
Cherubini (2000) quotes values of ρ ranging from −0.24
to −0.70, as does Wolff (1985) (see also Yuceman et al.,
1973; Lumb, 1970; and Cherubini, 1997).

In that the correlation between c and φ is not certain,
this section investigates the correlation extremes to deter-
mine if cross-correlation makes a significant difference. As
will be seen, under the given assumptions regarding the
distributions of c (lognormal) and φ (bounded), varying
the cross-correlation ρ from −1 to +1 was found to have
only a minor influence on the stochastic behavior of the
bearing capacity.

11.1.2 Bearing Capacity Mean and Variance

The determination of the first two moments of the bearing
capacity (mean and variance) requires first a failure model.
Equations 11.2 and 11.3 assume that the soil properties
are spatially uniform. When the soil properties are spatially
varying, the slip surface no longer follows a smooth log-
spiral and the failure becomes unsymmetric. The problem
of finding the constrained path having the lowest total
shear strength through the soil is mathematically difficult,
especially since the constraints are supplied by the spatially
varying stress field. A simpler approximate model will be
considered here wherein geometric averages of c and φ,
over some region under the footing, are used in Eqs. 11.2
and 11.3. The geometric average is proposed because it
is dominated more by low strengths than is the arithmetic
average. This is deemed reasonable since the failure slip
surface preferentially travels through lower strength areas.

Consider a soil region of some size D discretized into
a sequence of nonoverlapping rectangles, each centered on
xi , i = 1, 2, . . . , n . The geometric average of the cohesion
c over the domain D may then be defined as

c̄ =
[

n∏
i=1

c(xi )

]1/n

= exp

{
1

n

n∑
i=1

ln c(xi )

}

= exp
{
µln c + σln cḠln c

}
(11.8)

where Ḡln c is the arithmetic average of Gln c over the
domain D . Note that an assumption is made in the above

concerning c(xi ) being constant over each rectangle. In that
cohesion is generally measured using some representative
volume (e.g., a lab sample), the values of c(xi ) used above
are deemed to be such measures.

In a similar way, the exact expression for the geometric
average of φ over the domain D is

φ̄ = exp

{
1

n

n∑
i=1

ln φ(xi )

}
(11.9)

where φ(xi ) is evaluated using Eq. 11.7. A close approxima-
tion to the above geometric average, accurate for s ≤ 2.0, is

φ̄ � φmin + 1

2
(φmax − φmin)

{
1 + tanh

(
sḠφ

2π

)}
(11.10)

where Ḡφ is the arithmetic average of Gφ over the do-
main D . For φmin = 5◦, φmax = 45◦, this expression has
relative error of less than 5% for n = 20 independent sam-
ples. While the relative error rises to about 12%, on average,
for s = 5.0, this is an extreme case, corresponding to an
approximately uniformly distributed φ between the mini-
mum and maximum values (Figure 1.36), which is felt to
be unlikely to occur very often in practice. Thus, the above
approximation is believed reasonable in most cases.

Using the latter result in Eq. 11.3 gives the “equivalent”
value of Nc , N̄c , where the log-spiral model is assumed to
be valid using a geometric average of soil properties within
the failed region:

N̄c = eπ tan φ̄ tan2
(
π/4 + φ̄/2

) − 1

tan φ̄
(11.11)

so that, now

Mc = c̄

µc
N̄c (11.12)

If c is lognormally distributed, an inspection of Eq. 11.8 indi-
cates that c̄ is also lognormally distributed. If we can assume
that N̄c is at least approximately lognormally distributed,
then Mc will also be at least approximately lognormally dis-
tributed (the central limit theorem helps out somewhat here).
In this case, taking logarithms of Eq. 11.12 gives

ln Mc = ln c̄ + ln N̄c − ln µc (11.13)

so that, under the given assumptions, ln Mc is at least
approximately normally distributed.

The task now is to find the mean and variance of
ln Mc . The mean is obtained by taking expectations of
Eq. 11.13,

µln Mc = µln c̄ + µln N̄c
− ln µc (11.14)

where

µln c̄ = E
[
µln c + σln cḠln c

]
(11.15)

= µln c + σln cE
[
Ḡln c

]
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= µln c

= ln µc − 1

2
ln

(
1 + σ 2

c

µ2
c

)

which used the fact that since Ḡln c is normally distributed,
its arithmetic average has the same mean as Gln c , that is,
E

[
Ḡln c

] = E [Gln c] = 0. The above result is as expected
since the geometric average of a lognormally distributed
random variable preserves the mean of the logarithm of the
variable. Also Eq. 1.176b was used to express the mean in
terms of the prescribed statistics of c.

A second-order approximation to the mean of the loga-
rithm of Eq. 11.11, µln N̄c

, is

µln N̄c
� ln N̄c(µφ̄) + σ 2

φ̄

(
d2 ln N̄c

d φ̄2

∣∣∣
µφ̄

)
(11.16)

where µφ̄ is the mean of the geometric average of φ.
Since Ḡφ is an arithmetic average, its mean is equal to
the mean of Gφ , which is zero. Thus, since the assumed
distribution of φ is symmetric about its mean, µφ̄ = µφ so
that ln N̄c(µφ̄) = ln Nc(µφ).

A first-order approximation to σ 2
φ̄

is (note that this is a
less accurate approximation than given by Eq. 1.196 and
yet it still leads to quite accurate probability estimates, as
will be seen)

σ 2
φ̄

=
[ s

4π
(φmax − φmin)σḠφ

]2
(11.17)

where, from local averaging theory (Vanmarcke, 1984), the
variance of a local average over the domain D is given by
(recalling that Gφ is normally distributed with zero mean
and unit variance)

σ 2
Ḡφ

= σ 2
Gφ

γ (D) = γ (D) (11.18)

where γ (D) is the “variance function” which reflects the
amount that the variance is reduced due to local arithmetic
averaging over the domain D (see Section 3.4). Note that in
this study, D = D1 × D2 is a two-dimensional rectangular
domain so that γ (D) = γ (D1, D2). The variance function
can be obtained directly from the correlation function (see
Appendix C).

The derivative in Eq. 11.16 is most easily obtained
numerically using any reasonably accurate (Nc is quite
smooth) approximation to the second derivative. See, for
example, Press et al. (1997). If µφ̄ = µφ = 25◦ = 0.436 rad
(note that in all mathematical expressions, φ is assumed to
be in radians), then

d2 ln N̄c

d φ̄2

∣∣∣
µφ̄

= 5.2984 rad−2 (11.19)

Using these results with φmax = 45◦ and φmin = 5◦ so that
µφ = 25◦ gives

µln N̄c
= ln(20.72) + 0.0164s2γ (D) (11.20)

Some comments need to be made about this result: First
of all, it increases with increasing variability in φ (in-
creasing s). It seems doubtful that this increase would
occur since increasing variability in φ would likely lead
to more lower strength paths through the soil mass for
moderate θ . Aside from ignoring the weakest path is-
sue, some other sources of error in the above analysis
follow:

1. The geometric average of φ given by Eq. 11.9
actually shows a slight decrease with s (about
12% less, relatively, when s = 5). Although the de-
crease is only slight, it at least is in the direction
expected.

2. An error analysis of the second-order approxima-
tion in Eq. 11.16 and the first-order approxima-
tion in Eq. 11.17 has not been carried out. Given
the rather arbitrary nature of the assumed distribu-
tion on φ, and the fact that this section is primar-
ily aimed at establishing the approximate stochastic
behavior, such refinements have been left for later
work.

In light of these observations, a first-order approximation
to µln N̄c

may actually be more accurate. Namely,

µln N̄c
� ln N̄c(µφ̄) � ln Nc(µφ) (11.21)

Finally, combining Eqs. 11.15 and 11.21 into Eq. 11.14
gives

µln Mc � ln Nc(µφ) − 1

2
ln

(
1 + σ 2

c

µ2
c

)
(11.22)

For independent c and φ, the variance of ln Mc is

σ 2
ln Mc

= σ 2
ln c̄ + σ 2

ln N̄c
(11.23)

where

σ 2
ln c̄ = γ (D)σ 2

ln c = γ (D) ln

(
1 + σ 2

c

µ2
c

)
(11.24)

and, to first order,

σ 2
ln N̄c

� σ 2
φ̄

(
d ln N̄c

d φ̄

∣∣∣
µφ̄

)2

(11.25)

The derivative appearing in Eq. 11.25, which will be de-
noted as β(φ), is

β(φ) = d ln N̄c

d φ̄
= d ln Nc

dφ

= bd

bd2 − 1

[
π (1 + a2)d + 1 + d2

]
− 1 + a2

a
(11.26)

where a = tan(φ), b = eπa , and d = tan (π/4 + φ/2).
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The variance of ln Mc is thus

σ 2
ln Mc

� γ (D)

{
ln

(
1 + σ 2

c

µ2
c

)

+
[( s

4π

)
(φmax − φmin)β(µφ)

]2
}

(11.27)

where φ is measured in radians.

11.1.3 Monte Carlo Simulation

A finite-element computer program based on program 6.1
in Smith and Griffiths (2004) was modified to compute
the bearing capacity of a smooth rigid strip footing (plane
strain) founded on a weightless soil with shear strength pa-
rameters c and φ represented by spatially varying and cross-
correlated (pointwise) random fields, as discussed above.
The bearing capacity analysis uses an elastic-perfectly plas-
tic stress–strain law with a Mohr–Coulomb failure crite-
rion. Plastic stress redistribution is accomplished using a
viscoplastic algorithm. The program uses 8-node quadrilat-
eral elements and reduced integration in both the stiffness
and stress redistribution parts of the algorithm. The finite-
element model incorporates five parameters: Young’s mod-
ulus E , Poisson’s ratio ν, dilation angle ψ , shear strength
c, and friction angle φ. The program allows for random
distributions of all five parameters; however, in the present
study, E , ν, and ψ are held constant (at 100,000 kN/m2,
0.3, and 0, respectively) while c and φ are randomized.
The Young’s modulus governs the initial elastic response
of the soil but does not affect bearing capacity. Setting the
dilation angle to zero means that there is no plastic dilation
during yield of the soil. The finite-element mesh consists
of 1000 elements, 50 elements wide by 20 elements deep.
Each element is a square of side length 0.1 m and the strip
footing occupies 10 elements, giving it a width of B = 1 m.

The random fields used in this study are generated using
the LAS method (see Section 6.4.6). Cross-correlation be-
tween the two soil property fields (c and φ) is implemented
via covariance matrix decomposition (see Section 6.4.2).

In the parametric studies that follow, the mean cohesion
(µc) and mean friction angle (µφ) have been held constant
at 100 kN/m2 and 25◦ (with φmin = 5◦ and φmax = 45◦),
respectively, while the coefficient of variation (v = σc/µc),
spatial correlation length (θ ), and correlation coefficient, ρ,
between Gln c and Gφ are varied systematically according
to Table 11.1.

Table 11.1 Random-Field Parameters Used in Study

θ = 0.5 1.0 2.0 4.0 8.0 50.0
v = 0.1 0.2 0.5 1.0 2.0 5.0
ρ = −1.0 0.0 1.0

It will be noticed that coefficients of variation v up to
5.0 are considered in this study, which is an order of mag-
nitude higher than generally reported in the literature (see,
e.g., Phoon and Kulhawy, 1999). There are two consid-
erations which complicate the problem of defining typical
v’s for soils that have not yet been clearly considered in
the literature (Fenton, 1999a). The first has to do with the
level of information known about a site. Prior to any site
investigation, there will be plenty of uncertainty about soil
properties, and an appropriate v comes by using v obtained
from regional data over a much larger scale. Such a v value
will typically be much greater than that found when soil
properties are estimated over a much smaller scale, such
as a specific site. As investigation proceeds at the site of
interest, the v value drops. For example, a single sample at
the site will reduce v slightly, but as the investigation inten-
sifies, v drops toward zero, reaching zero when the entire
site has been sampled (which, of course, is clearly imprac-
tical). The second consideration, which is actually closely
tied to the first, has to do with scale. If one were to take soil
samples every 10 km over 5000 km (macroscale), one will
find that the v value of those samples will be very large. A
value of v of 5.0 would not be unreasonable. Alternatively,
suppose one were to concentrate one’s attention on a sin-
gle cubic meter of soil. If several 50-mm3 samples were
taken and sent to the laboratory, one would expect a fairly
small v. On the other hand, if samples of size 0.1 µm3 were
taken and tested (assuming this was possible), the resulting
v could be very large since some samples might consist of
very hard rock particles, others of water, and others just
of air (i.e., the sample location falls in a void). In such a
situation, a v value of 5.0 could easily be on the low side.
While the last scenario is only conceptual, it does serve to
illustrate that v is highly dependent on the ratio between
sample volume and sampling domain volume. This depen-
dence is certainly pertinent to the study of bearing capacity
since it is currently not known at what scale bearing ca-
pacity failure operates. Is the weakest path through a soil
dependent on property variations at the microscale (having
large v), or does the weakest path “smear” the small-scale
variations and depend primarily on local average proper-
ties over, say, laboratory scales (small v)? Since laboratory
scales are merely convenient for us, it is unlikely that na-
ture has selected that particular scale to accommodate us.
From the point of view of reliability estimates, where the
failure mechanism might depend on microscale variations
for failure initiation, the small v’s reported in the literature
might very well be dangerously unconservative. Much work
is still required to establish the relationship between v, site
investigation intensity, and scale. In the meantime, values
of v over a fairly wide range are considered here since it
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is entirely possible that the higher values more truly reflect
failure variability.

In addition, it is assumed that when the variability in the
cohesion is large, the variability in the friction angle will
also be large. Under this reasoning, the scale factor, s , used
in Eq. 11.7 is set to s = σc/µc = v. This choice is arbitrary
but results in the friction angle varying from quite narrowly
(when v = 0.1 and s = 0.1) to very widely (when v = 5.0
and s = 5) between its lower and upper bounds, 5◦ and
45◦, as indicated in Figure 1.36.

For each set of assumed statistical properties given by
Table 11.1, Monte Carlo simulations have been performed.
These involve 1000 realizations of the soil property random
fields and the subsequent finite-element analysis of bearing
capacity. Each realization, therefore, has a different value
of the bearing capacity and, after normalization by the
mean cohesion, a different value of the bearing capacity
factor:

Mci = qui

µc
, i = 1, 2, . . . , 1000

µ̂ln Mc = 1

1000

1000∑
i=1

ln Mci (11.28)

where µ̂ln Mc is the sample mean of ln Mc estimated over
the ensemble of realizations. Figure 11.3 illustrates how the
load–deformation curves determined by the finite-element
analysis change from realization to realization.
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Figure 11.3 Typical load–deformation curves corresponding to
different realizations of soil in bearing capacity analysis.

11.1.4 Simulation Results

Figure 11.4a shows how the sample mean log-bearing ca-
pacity factor, taken as the average over the 1000 realizations
of ln Mci , and referred to as µ̂ln Mc in the figure, varies with
correlation length, soil variability, and cross-correlation be-
tween c and φ. For small soil variability, µ̂ln Mc tends
toward the deterministic value of ln(20.72) = 3.03, which
is found when the soil takes on its mean properties ev-
erywhere. For increasing soil variability, the mean bearing
capacity factor becomes quite significantly reduced from
the traditional case. What this implies from a design stand-
point is that the bearing capacity of a spatially variable soil
will, on average, be less than the Prandtl solution based
on the mean values alone. The greatest reduction from
the Prandtl solution is observed for perfectly correlated
c and φ (ρ = +1), the least reduction when c and φ are
negatively correlated (ρ = −1), and the independent case
(ρ = 0) lies between these two extremes. However, the ef-
fect of cross-correlation is seen to be not particularly large.
If the negative cross-correlation indicated by both Cherubini
(2000) and Wolff (1985) is correct, then the independent,
ρ = 0, case is conservative, having mean bearing capacities
consistently somewhat less than the ρ = −1 case.

The cross-correlation between c and φ is seen to have
minimal effect on the sample standard deviation, σ̂ln Mc , as
shown in Figure 11.4b. The sample standard deviation is
most strongly affected by the correlation length and some-
what less so by the soil property variability. A decreasing
correlation length results in a decreasing σ̂ln Mc . As sug-
gested by Eq. 11.27, the function γ (D) decays approxi-
mately with θ/D and so decreases with decreasing θ . This
means that σ̂ln Mc should decrease as the correlation length
decreases, which is as seen in Figure 11.4b.

Figure 11.4a also seems to show that the correlation
length, θ , does not have a significant influence in that the
θ = 0.1 and θ = 8 curves for ρ = 0 are virtually identical.
However, the θ = 0.1 and θ = 8 curves are significantly
lower than that predicted by Eq. 11.22 implying that the plot
is somewhat misleading with respect to the dependence on
θ . For example, when the correlation length goes to infinity,
the soil properties become spatially constant, albeit still
random from realization to realization. In this case, because
the soil properties are spatially constant, the weakest path
returns to the log-spiral and µln Mc will rise toward that
given by Eq. 11.22, namely µln Mc = ln(20.72) − 1

2 ln(1 +
σ 2

c /µ2
c), which is also shown on the plot. This limiting

value holds because µln Nc � ln Nc(µφ), as discussed for
Eq. 11.21, where for spatially constant properties φ̄ = φ.

Similarly, when θ → 0, the soil property field becomes
infinitely “rough,” in that all points in the field become
independent. Any point at which the soil is weak will
be surrounded by points where the soil is strong. A path
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Figure 11.4 (a) Sample mean of log-bearing capacity factor, ln Mc , along with its prediction by
Eq. 11.22 and (b) its sample standard deviation.

through the weakest points in the soil might have very low
average strength, but at the same time will become infinitely
tortuous and thus infinitely long. This, combined with shear
interlocking dictated by the stress field, implies that the
weakest path should return to the traditional log-spiral with
average shear strength along the spiral given by µφ and the
median of c which is exp{µln c}. Again, in this case, µln Mc

should rise to that given by Eq. 11.22.
The variation of µln Mc with respect to θ is more clearly

seen in Figure 11.5. Over a range of values of σc/µc , the
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Figure 11.5 Sample mean of log-bearing capacity factor, ln Mc ,
versus normalized correlation length θ/B .

value of µln Mc rises toward that predicted by Eq. 11.22
at both high and low correlation lengths. At intermediate
correlation lengths, the weakest path issue is seen to re-
sult in µln Mc being less than that predicted by Eq. 11.22
(see Figure 11.4a), the greatest reduction in µln Mc occur-
ring when θ is of the same order as the footing width, B . It
is hypothesized that θ � B leads to the greatest reduction in
µln Mc because it allows enough spatial variability for a fail-
ure surface which deviates somewhat from the log-spiral but
which is not too long (as occurs when θ is too small) yet has
significantly lower average strength than the θ → ∞ case.
The apparent agreement between the θ = 0.1 and θ = 8
curves in Figure 11.4a is only because they are approxi-
mately equispaced on either side of the minimum at θ � 1.

As noted above, in the case where c and φ are indepen-
dent (ρ = 0) the predicted mean, µln Mc , given by Eq. 11.22
does not decrease as fast as observed in Figure 11.4a for
intermediate correlation lengths. Nor does Eq. 11.22 ac-
count for changes in θ . Although an analytic prediction for
the mean strength of the constrained weakest path through a
spatially random soil has not yet been determined, Eq. 11.22
can be improved by making the following empirical correc-
tions for the worst case (θ � B):

µln Mc � 0.92 ln Nc(µφ) − 0.7 ln

(
1 + σ 2

c

µ2
c

)
(11.29)

where the overall reduction with σc/µc is assumed to
follow the same form as predicted in Eq. 11.22. Some
portion of the above correction may be due to finite-
element model error (e.g., the finite-element model slightly
underestimates the deterministic value of Nc , giving Nc =
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Figure 11.6 (a) Sample and estimated mean (via Eq. 11.29) of ln Mc and (b) its sample and
estimated standard deviation (via Eq. 11.27).

19.6 instead of 20.7, a 2% relative error in ln Nc), but most
is attributed to the weakest path issue and model errors
arising by relating a spatial geometric average to a failure
which is actually taking place along a curve through the
two-dimensional soil mass.

Figure 11.6 illustrates the agreement between the sample
mean of ln Mc and that predicted by Eq. 11.29 and between
the sample standard deviation of ln Mc and Eq. 11.27 for
ρ = 0. The estimated mean is seen to be in quite good
agreement with the sample mean for all θ when σc/µc < 2,
and with the worst case (θ = B) for σc/µc > 2.

The predicted standard deviation was obtained by assum-
ing a geometric average over a region under the footing of
depth equal to the mean wedge zone depth,

w � 1
2 B tan

( 1
4π + 1

2µφ

)
(11.30)

and width of about 5w. This is a rough approximation to
the area of the failure region within the mean log-spiral
curve on either side of the footing. Thus, D used in the
variance function of Eq. 11.27 is a region of size 5w × w,
that is, γ (D) = γ (5w, w).

Although Eq. 11.22 fails to reflect the effect of θ on
the reduction in the mean log-bearing capacity factor with
increasing soil variability, the sample standard deviation
is extremely well predicted by Eq. 11.27 —being only
somewhat underpredicted for very small correlation lengths.
To some extent the overall agreement in variance is as
expected since the variability along the weakest path will
be similar to the variability along any nearby path through
a statistically homogeneous medium.

The Monte Carlo simulation also allows the estimation
of the probability density function of Mc . A chi-square
goodness-of-fit test performed across all σc/µc , θ , and ρ

parameter variations yields an average p-value of 33%. This
is encouraging since large p-values indicate good agreement
between the hypothesized distribution (lognormal) and the
data. However, approximately 30% of the simulations had
p-values less than 5%, indicating that a fair proportion of
the runs had distributions that deviated from the lognormal
to some extent. Some 10% of runs had p-values less than
0.01%. Figure 11.7a illustrates one of the better fits, with
a p-value of 43% (σc/µc = 0.1, θ = 4, and ρ = 0), while
Figure 11.7b illustrates one of the poorer fits, with a p-value
of 0.01% (σc/µc = 5, θ = 1, and ρ = 0). It can be seen that
even when the p-value is as low as 0.01%, the fit is still
reasonable. There was no particular trend in degree of fit as
far as the three parameters σc/µc , θ , and ρ was concerned.
It appears, then, that Mc at least approximately follows a
lognormal distribution. Note that if Mc does indeed arise
from a geometric average of the underlying soil properties
c and Nc , then Mc will tend to a lognormal distribution by
the central limit theorem. It is also worth pointing out that
this may be exactly why so many soil properties tend to
follow a lognormal distribution.

11.1.5 Probabilistic Interpretation

The results of the previous section indicated that Prandtl’s
bearing capacity formula is still largely applicable in the
case of spatially varying soil properties if geometrically
averaged soil properties are used in the formula. The
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Figure 11.7 (a) Fitted lognormal distribution for s = σc/µc = 0.1, θ = 4, and ρ = 0 where the
p-value is large (0.43) and (b) fitted lognormal distribution for s = σc/µc = 5, θ = 1, and ρ = 0
where the p-value is quite small (0.0001).

theoretical results presented above combined with the em-
pirical correction to the mean proposed in the last section
allows the approximate computation of probabilities asso-
ciated with bearing capacity of a smooth strip footing. To
illustrate this, consider an example strip footing of width
B = 2 m founded on a weightless soil having µc = 75 kPa,
σc = 50 kPa, and θ = B = 2 m (assuming the worst-case
correlation length). Assume also that the friction angle φ

is independent of c (conservative assumption) and ranges
from 5◦ to 35◦, with mean 20◦ and s = 1. In this case, the
deterministic value of Nc , based purely on µφ is

Nc(µφ) = eπ tan µφ tan2
(
π/4 + µφ/2

) − 1

tan µφ

= 14.835

(11.31)
so that, by Eq. 11.29,

µln M̄c
= 0.92 ln(14.835) − 0.7 ln

(
1 + 502

752

)
= 2.2238

(11.32)
For a footing width of B = 2, the wedge zone depth is

w = 1
2 B tan

(π

4
+ µφ

2

)
= tan

(
π

4
+ 20π

360

)
= 1.428

(11.33)
Averaging over depth w by width 5w results in the variance
reduction

γ (D) = γ (5w, w) = 0.1987

using the algorithm given in Appendix C for the Markov
correlation function.

The slope of ln Nc at µφ = 20◦ is 3.62779 (rad−1), using
Eq. 11.26. These results applied to Eq. 11.27 give

σ 2
ln M̄c

= 0.1987

{
ln

(
1 + 502

752

)

+
[ s

4π
(φmax − φmin)β(µφ)

]2
}

= 0.07762 (11.34)

so that σln M̄c
= 0.2778.

The probability that Mc is less than half the deterministic
value of Nc , based on µφ , is, then

P

[
Mc ≤ 14.835

2

]
= �

(
ln(14.835/2) − µln Mc

σln Mc

)

= �(−0.79) = 0.215 (11.35)

where � is the cumulative distribution function for the
standard normal and where Mc is assumed lognormally dis-
tributed, as was found to be reasonable above. A simulation
of the above problem yields P

[
Mc ≤ 14.835/2

] = 0.2155.
Although this amazing agreement seems too good to be
true, this is, in fact, the first example problem that the au-
thors considered. The caveat, however, is that predictions
derived from the results of a finite-element program are
being compared to the results of the same finite-element
program, albeit at different parameter values. Nevertheless,
the fact that the agreement here is so good is encouraging
since it indicates that the theoretical results given above
may have some overall generality—namely that Prandtl’s
bearing capacity solution is applicable to spatially vari-
able soils if the soil properties are taken from geometric
averages, suitably modified to reflect weakest path issues.
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Inasmuch as the finite-element method represents the actual
soil behavior, this observation seems reasonable.

11.1.6 Summary

Most soil properties are local averages of some sort and
are derived from measurements of properties over some
finite volume. In the case of the shear resistance of a
soil sample, tests involve determining the average shear
resistance over some surface through the soil sample. Since
this surface will tend to avoid the high-strength areas in
favor of low-strength areas, the average will be less than a
strictly arithmetic mean over a flat plane. Of the various
common types of averages—arithmetic, geometric, and
harmonic—the one that generally shows the best agreement
with “block” soil properties is the geometric average. The
geometric average favors low-strength areas, although not
as drastically as does a harmonic average, lying between
the arithmetic and harmonic averages.

The bearing capacity factor of Prandtl (1921) has been
observed in practice to give reasonable agreement with
test results, particularly under controlled conditions. When
soil properties become spatially random, the failure surface
migrates from the log-spiral surface to some nearby surface
which is weaker. The results presented in this section
indicate that the statistics of the resulting surface are well
represented by geometrically averaging the soil properties
over a domain of about the size of the plastically deformed
bearing failure region (taken to be 5w × w in this study).
That is, that Prandtl’s formula can be used to predict the
statistics of bearing capacity if the soil properties used in
the formula are based on geometric averages, with some
empirical adjustment for the mean.

In this sense, the weakest path through the soil is
what governs the stochastic bearing capacity behavior. This
means that the details of the distributions selected for c and
φ are not particularly important, so long as they are phys-
ically reasonable, unimodal, and continuous. Although the
lognormal distribution, for example, is mathematically con-
venient when dealing with geometric averages, very similar
bearing capacity results are expected using other distribu-
tions, such as the normal distribution (suitably truncated
to avoid negative strengths). The distribution selected for
the friction angle basically resembles a truncated normal
distribution over most values of s , but, for example, it is
believed that a beta distribution could also have been used
here without significantly affecting the results.

In the event that the soil is statistically anisotropic, that is,
that the correlation lengths differ in the vertical and horizon-
tal directions, it is felt that the above results can still be used
with some accuracy by using the algorithm of Appendix C
with differing vertical and horizontal correlation lengths.
However, some additional study is necessary to establish

whether the mean bearing capacity in the anisotropic case
is at least conservatively represented by Eq. 11.29.

Some limitations to this study are as follows:

1. The simulations were performed using a finite-element
analysis in which the values of the underlying nor-
mally distributed soil properties assigned to the el-
ements are derived from arithmetic averages of the
soil properties over each element domain. While this
is believed to be a very realistic approach, intimately
related to the soil property measurement process, it
is nevertheless an approach where geometric averag-
ing is being performed at the element scale (at least
for the cohesion—note that arithmetic averaging of
a normally distributed field corresponds to geometric
averaging of the associated lognormally distribution
random field) in a method which is demonstrating
that geometric averaging is applicable over the site
scale. Although it is felt that the fine-scale averaging
assumptions should not significantly affect the large-
scale results through the finite-element method, there
is some possibility that there are effects that are not
reflected in reality.

2. Model error has been entirely neglected in this anal-
ysis. That is, the ability of the finite-element method
to reflect the actual behavior of an ideal soil, and the
ability of Eq. 11.3 to do likewise have not been con-
sidered. It has been assumed that the finite- element
method and Eq. 11.3 are sufficiently reasonable ap-
proximations to the behavior of soils to allow the
investigation of the major features of stochastic soil
behavior under loading from a smooth strip footing.
Note that the model error associated with traditional
usage of Eq. 11.3 may be due in large part precisely
to spatial variation of soil properties, so that this study
may effectively be reducing, or at least quantifying,
model error (although whether this is really true or
not will have to wait until sufficient experimental ev-
idence has been gathered).

The geometric averaging model has been shown to be a
reasonable approach to estimating the statistics of bearing
capacity. This is particularly true of the standard deviation.
Some adjustment was required to the mean since the geo-
metric average was not able to completely account for the
weakest path at intermediate correlation lengths. The pro-
posed relationships for the mean and standard deviation,
along with the simulation results indicating that the bear-
ing capacity factor, Mc , is lognormally distributed, allow
reasonably accurate calculations of probabilities associated
with the bearing capacity. In the event that little is known
about the cross-correlation of c and φ at a particular site,
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assuming that these properties are independent is deemed
to be conservative (as long as the actual correlation is neg-
ative). In any case, the cross-correlation was not found to
be a significant factor in the stochastic behavior of bearing
capacity.

Perhaps more importantly, since little is generally known
about the correlation length at a site, the results of this study
indicate that there exists a worst-case correlation length of
θ � B . Using this value, in the absence of improved infor-
mation, allows conservative estimates of the probability of
bearing failure. The estimate of the mean log-bearing ca-
pacity factor (Eq. 11.29) is based on this conservative case.

11.2 LOAD AND RESISTANCE FACTOR DESIGN
OF SHALLOW FOUNDATIONS

The design of a shallow footing typically begins with a
site investigation aimed at determining the strength of the
founding soil or rock. Once this information has been
gathered, the geotechnical engineer is in a position to
determine the footing dimensions required to avoid entering
various limit states. In so doing, it will be assumed here
that the geotechnical engineer is in close communication
with the structural engineer(s) and is aware of the loads
that the footings are being designed to support. The limit
states that are usually considered in the footing design
are serviceability limit states (typically deformation) and
ultimate limit states. The latter is concerned with safety and
includes the load-carrying capacity, or bearing capacity, of
the footing.

This section investigates a LRFD approach for shallow
foundations designed against bearing capacity failure. The
design goal is to determine the footing dimensions such that
the ultimate geotechnical resistance based on characteristic
soil properties, R̂u , satisfies

φg R̂u ≥ I
∑

i

αi L̂i (11.36)

where φg is the geotechnical resistance factor, I is an im-
portance factor, αi is the i th load factor, and L̂i is the
i th characteristic load effect. The relationship between φg

and the probability that the designed footing will experi-
ence a bearing capacity failure will be summarized below
(from Fenton et al., 2007a) followed by some results on
resistance factors required to achieve certain target maxi-
mum acceptable failure probabilities (from Fenton et al.,
2007b). The symbol φ is commonly used to denoted the
resistance factor—see, for example, the National Build-
ing Code of Canada (NBCC) [National Research Council
(NRC), 2005] and in Commentary K “Foundations” of the
User’s Guide—NBC 2005 Structural Commentaries (NRC,
2006). The authors are also adopting the common notation
where the subscript denotes the material that the resistance

factor governs. For example, where φc and φs are resistance
factors governing concrete and steel, the letter g in φg will
be taken to denote “geotechnical” or “ground.”

The importance factor in Eq. 11.36, I , reflects the sever-
ity of the failure consequences and may be larger than 1.0
for important structures, such as hospitals, whose failure
consequences are severe and whose target probabilities of
failure are much less than for typical structures. Typical
structures usually are designed using I = 1, which will
be assumed in this section. Structures with low failure
consequences (minimal risk of loss of life, injury, and/or
economic impact) may have I < 1.

Only one load combination will be considered in this
section, αLL̂L + αD L̂D , where L̂L is the characteristic live
load, L̂D is the characteristic dead load, and αL and αD

are the live- and dead-load factors, respectively. The load
factors will be as specified by the National Building Code
of Canada (NBCC; NRC, 2005); αL = 1.5 and αD = 1.25.
The theory presented here, however, is easily extended
to other load combinations and factors, so long as their
(possibly time-dependent) distributions are known.

The characteristic loads will be assumed to be defined in
terms of the means of the load components in the following
fashion:

L̂L = kLe µLe (11.37a)

L̂D = kDµD (11.37b)

where µLe and µD are the means of the live and dead
loads, respectively, and kLe and kD are live- and dead-
load bias factors, respectively. The bias factors provide
some degree of “comfort” by increasing the loads from
the mean value to a value having a lesser chance of
being exceeded. Since live loads are time varying, the
value of µLe is more specifically defined as the mean
of the maximum live load experienced over a structure’s
lifetime (the subscript e denotes extreme). This definition
has the following interpretation: If a series of similar
structures, all with the same life span, is considered and
the maximum live load experienced in each throughout its
life span is recorded, then a histogram of this set of recorded
maximum live loads could be plotted. This histogram then
becomes an estimate of the distribution of these extreme
live loads and the average of the observed set of maximum
values is an estimate of µLe . As an aside, the distribution
of live load is really quite a bit more complicated than
suggested by this explanation since it actually depends on
both spatial position and time (e.g., regions near walls tend
to experience higher live loads than seen near the center of
rooms). However, historical estimates of live loads are quite
appropriately based on spatial averages both conservatively
and for simplicity, as discussed next.
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For typical multistory office buildings, Allen (1975)
estimates µLe to be 1.7 kN/m2, based on a 30-year lifetime.
The corresponding characteristic live load given by the
NBCC (NRC, 2005) is L̂L = 2.4 kN/m2, which implies that
kLe = 2.4/1.7 = 1.41. Allen further states that the mean
live load at any time is approximately equal to the 30-year
maximum mean averaged over an infinite area. The NBCC
provides for a reduction in live loads with tributary area
using the formula 0.3 + √

9.8/A, where A is the tributary
area (A > 20 m2). For A → ∞, the mean live load at any
time is thus approximately µL = 0.3(1.7) = 0.51 kN/m2.
The bias factor which translates the instantaneous mean
live load, µL to the characteristic live load, L̂L, is thus quite
large having value kL = 2.4/0.51 = 4.7.

Dead load, on the other hand, is largely static, and the
time span considered (e.g., lifetime) has little effect on
its distribution. Becker (1996b) estimates kD to be 1.18.
Figure 11.8 illustrates the relative locations of the mean and
characteristic values for the three types of load distributions
commonly considered.

The characteristic ultimate geotechnical resistance R̂u is
determined using characteristic soil properties, in this case
characteristic values of the soil’s cohesion, c, and friction
angle, φ (note that although the primes are omitted from
these quantities it should be recognized that the theoreti-
cal developments described in this paper are applicable to
either total or effective strength parameters). To obtain the
characteristic soil properties, the soil is assumed to be sam-
pled over a single column somewhere in the vicinity of
the footing, for example, a single CPT or SPT sounding
near the footing. The sample is assumed to yield a se-
quence of m observed cohesion values co

1 , co
2 , . . . , co

m , and
m observed friction angle values φo

1 , φo
2 , . . . , φo

m . The su-
perscript o denotes an observation. It is assumed here that
the observations are error free, which is an unconservative

Load (l)

f L
(l

)

Instantaneous live-load distribution
Maximum-lifetime live-load distribution
Dead-load distribution

mL

mLe

mD

LL LD

Figure 11.8 Characteristic and mean values of live and dead
loads.

assumption. If the actual observations have considerable er-
ror, then the resistance factor used in the design should be
reduced. This issue is discussed further in the summary.

The characteristic value of the cohesion, ĉ, is defined
here as the median of the sampled observations, co

i , which,
assuming c is lognormally distributed, can be computed
using the geometric average:

ĉ =
[

m∏
i=1

co
i

]1/m

= exp

{
1

m

m∑
i=1

ln co
i

}
(11.38)

The geometric average is used here because if c is lognor-
mally distributed, as assumed, then ĉ will also be lognor-
mally distributed.

The characteristic value of the friction angle is computed
as an arithmetic average:

φ̂ = 1

m

m∑
i=1

φo
i (11.39)

The arithmetic average is used here because φ is assumed to
follow a symmetric bounded distribution and the arithmetic
average preserves the mean. That is, the mean of φ̂ is the
same as the mean of φ.

To determine the characteristic ultimate geotechnical
resistance R̂u , it will first be assumed that the soil is
weightless. This simplifies the calculation of the ultimate
bearing stress qu to

qu = cNc (11.40)

The assumption of weightlessness is conservative since the
soil weight contributes to the overall bearing capacity. This
assumption also allows the analysis to explicitly concentrate
on the role of cNc on ultimate bearing capacity, since this is
the only term that includes the effects of spatial variability
relating to both shear strength parameters c and φ.

Bearing capacity predictions, involving specification of
the Nc factor in this case, are generally based on plas-
ticity theories (see, e.g., Prandtl, 1921; Terzaghi, 1943;
Sokolovski, 1965) in which a rigid base is punched into a
softer material. These theories assume that the soil underly-
ing the footing has properties which are spatially constant
(everywhere the same). This type of ideal soil will be re-
ferred to as a uniform soil henceforth. Under this assump-
tion, most bearing capacity theories (e.g., Prandtl, 1921;
Meyerhof, 1951, 1963) assume that the failure slip surface
takes on a logarithmic spiral shape to give

Nc = eπ tan φ tan2 (π/4 + φ/2) − 1

tan φ
(11.41)

The theory is derived for the general case of a c−φ soil.
One can always set φ = 0 to obtain results for an undrained
clayey soil.

Consistent with the theoretical results presented by Fen-
ton et al. (2007b), this section will concentrate on the design
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of a strip footing. In this case, the characteristic ultimate
geotechnical resistance R̂u becomes

R̂u = Bq̂u (11.42)

where B is the footing width and R̂u has units of load
per unit length out-of-plane, that is, in the direction of the
strip foot. The characteristic ultimate bearing stress q̂u is
defined by

q̂u = ĉN̂c (11.43)

where the characteristic Nc factor is determined using the
characteristic friction angle in Eq. 11.41:

N̂c = eπ tan φ̂ tan2
(
π/4 + φ̂/2

) − 1

tan φ̂
(11.44)

For the strip footing and just the dead- and live-load com-
bination, the LRFD equation becomes

φg Bq̂u = I
[
αLL̂L + αD L̂D

]

=⇒ B = I
[
αLL̂L + αD L̂D

]
φg q̂u

(11.45)

To determine the resistance factor φg required to achieve
a certain acceptable reliability of the constructed footing, it
is necessary to estimate the probability of bearing capacity
failure of a footing designed using Eq. 11.45. Once the
probability of failure pf for a certain design using a specific
value for φg is known, this probability can be compared
to the maximum acceptable failure probability pm . If pf

exceeds pm , then the resistance factor must be reduced and
the footing redesigned. Similarly, if pf is less than pm , then
the design is overconservative and the value of φg can
be increased. A specific relationship between pm and φg

will be given below. Design curves will also be presented
from which the value of φg required to achieve a maximum
acceptable failure probability can be determined.

As suggested, the determination of the required resistance
factor φg involves deciding on a maximum acceptable
failure probability pm . The choice of pm derives from a
consideration of acceptable risk and directly influences the
size of φg . Different levels of pm may be considered to
reflect the “importance” of the supported structure—pm

may be much smaller for a hospital than for a storage
warehouse.

The choice of a maximum failure probability pm should
consider the margin of safety implicit in current founda-
tion designs and the levels of reliability for geotechnical
design as reported in the literature. The values of pm for
foundation designs are nearly the same or somewhat less
than those for concrete and steel structures because of the
difficulties and high expense of foundation repairs. A lit-
erature review of the suggested acceptable probability of
failure for foundations is listed in Table 11.2.

Table 11.2 Literature Review of Lifetime
Probabilities of Failure of Foundations

Source pm

Meyerhof, 1970, 1993, 1995 10−2–10−4

Simpson et al., 1981 10−3

NCHRP, 1991 10−2–10−4

Becker, 1996a 10−3–10−4

Meyerhof (1995, p. 132) was quite specific about accept-
able risks: “The order of magnitude of lifetime probabilities
of stability failure is about 10−2 for offshore foundation,
about 10−3 for earthworks and earth retaining structures,
and about 10−4 for foundations on land.”

In this section three maximum lifetime failure probabil-
ities, 10−2, 10−3, and 10−4 will be considered. In general,
and without regard to the structural categorizations made by
Meyerhof above, these probabilities are deemed by the au-
thors to be appropriate for designs involving low, medium
and high failure consequence structures, respectively. Re-
sistance factors to achieve these target probabilities will be
presented for the specific c−φ soil considered. These resis-
tance factors are smaller than those the theory suggests for
an undrained soil, since a φ = 0 soil has only one source
of uncertainty. In other words, the resistance factors based
on a generalized c−φ soil are considered to be reasonably
conservative.

We note that the effect of structural importance should
actually be reflected in the importance factor, I, of Eq. 11.36
and not in the resistance factor. The resistance factor should
be aimed at a medium, or common, structural importance
level, and the importance factor should be varied above and
below 1.0 to account for more and less important structures,
respectively. However, since acceptable failure probabilities
may not be simply connected to structural importance, we
will assume I = 1 in the following. For code provisions,
the factors recommended here should be considered to be
the ratio φg/I .

11.2.1 Random Soil Model

The soil cohesion c is assumed to be lognormally dis-
tributed with mean µc , standard deviation σc , and spatial
correlation length θln c . A lognormally distributed random
field is obtained from a normally distributed random field
Gln c(x) having zero mean, unit variance, and spatial corre-
lation length θln c through the transformation

c(x) = exp{µln c + σln cGln c(x)} (11.46)

where x is the spatial position at which c is desired, σ 2
ln c =

ln
(
1 + v2

c

)
, µln c = ln (µc) − σ 2

ln c/2, and vc = σc/µc is the
coefficient of variation.
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The correlation coefficient between the log-cohesion at a
point x1 and a second point x2 is specified by a correlation
function ρln c(τ ), where τ = x1 − x2 is the vector between
the two points. In this section, a simple exponentially
decaying (Markovian) correlation function will be assumed
having the form

ρln c(τ ) = exp

(
−2|τ |

θln c

)
(11.47)

where |τ | =
√

τ 2
1 + τ 2

2 is the length of the vector τ . The
spatial correlation length θln c is loosely defined as the sep-
aration distance within which two values of ln c are signifi-
cantly correlated. Mathematically, θln c is defined as the area
under the correlation function, ρln c(τ ) (Vanmarcke, 1984).

The spatial correlation function ρln c(τ ) has a correspond-
ing variance reduction function γln c(D), which specifies
how the variance is reduced upon local averaging of ln c
over some domain D . In the two-dimensional analysis
considered here, D = D1 × D2 is an area and the two-
dimensional variance reduction function is defined by

γln c(D1, D2) = 4

(D1D2)2

×
∫ D1

0

∫ D2

0
(D1 − τ1)(D2 − τ2)

× ρ(τ1, τ2) dτ1 dτ2 (11.48)

which can be evaluated using Gaussian quadrature [see
Fenton and Griffiths (2003), Griffiths and Smith (2006),
and Appendix C for more details].

It should be emphasized that the correlation function
selected above acts between values of ln c. This is because
ln c is normally distributed, and a normally distributed
random field is simply defined by its mean and covariance
structure. In practice, the correlation length θln c can be
estimated by evaluating spatial statistics of the log-cohesion
data directly (see, e.g., Fenton, 1999a). Unfortunately, such
studies are scarce so that little is currently known about the
spatial correlation structure of natural soils. For the problem
considered here, it turns out that a worst-case correlation
length exists which can be conservatively assumed in the
absence of improved information.

The random field is also assumed here to be statisti-
cally isotropic (the same correlation length in any direction
through the soil). Although the horizontal correlation length
is often greater than the vertical, due to soil layering, taking
this into account was deemed to be a site-specific refine-
ment which does not lead to an increase in the general
understanding of the probabilistic behavior of shallow foun-
dations. The theoretical results presented here, however,
apply also to anisotropic soils, so that the results are eas-
ily extended to specific sites. The authors have found that

when the soil is sampled at some distance from the foot-
ing (i.e. not directly under the footing) that increasing the
correlation length in the horizontal direction to values above
the worst-case isotropic correlation length leads to a de-
creased failure probability, so that the isotropic case is also
conservative for low to medium levels of site understand-
ing. When the soil is sampled directly below the footing,
the failure probability increases as the horizontal correla-
tion length is increased above the worst case scale, which
is unconservative.

The friction angle φ is assumed to be bounded both
above and below, so that neither normal nor lognormal
distributions are appropriate. A beta distribution is of-
ten used for bounded random variables. Unfortunately, a
beta-distributed random field has a very complex joint dis-
tribution and simulation is cumbersome and numerically
difficult. To keep things simple, a bounded distribution
is selected which resembles a beta distribution but which
arises as a simple transformation of a standard normal ran-
dom field Gφ(x) according to

φ(x) = φmin + 1
2 (φmax − φmin)

{
1 + tanh

(
sGφ(x)

2π

)}

(11.49)
where φmin and φmax are the minimum and maximum
friction angles in radians, respectively, and s is a scale
factor which governs the friction angle variability between
its two bounds. See Section 1.10.10 for more details about
this distribution. Figure 1.36 shows how the distribution of
φ (normalized to the interval [0, 1]) changes as s changes,
going from an almost uniform distribution at s = 5 to a very
normal looking distribution for smaller s . Thus, varying s
between about 0.1 and 5.0 leads to a wide range in the
stochastic behavior of φ. In all cases, the distribution is
symmetric so that the midpoint between φmin and φmax

is the mean. Values of s greater than about 5 lead to a
U-shaped distribution (higher at the boundaries), which is
deemed unrealistic.

The following relationship between s and the variance of
φ derives from a third-order Taylor series approximation to
tanh and a first-order approximation to the final expectation,

σ 2
φ = (0.5)2(φmax − φmin)2 E

[
tanh2

(
sGφ

2π

)]

� (0.5)2(φmax − φmin)2 E

[
[sGφ/(2π )]2

1 + [sGφ/(2π )]2

]

� (0.5)2(φmax − φmin)2 s2

4π2 + s2
(11.50)

where E
[
G2

φ

]
= 1 since Gφ is a standard normal random

variable. Equation 11.50 slightly overestimates the true
standard deviation of φ, from 0% when s = 0 to 11% when
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s = 5. A much closer approximation over the entire range
0 ≤ s ≤ 5 is obtained by slightly decreasing the 0.5 factor
to 0.46 (this is an empirical adjustment):

σφ � 0.46(φmax − φmin)s√
4π2 + s2

(11.51)

The close agreement is illustrated in Figure 11.9.
Equation 11.50 can be generalized to yield the covariance

between φ(xi ) and φ(xj ) for any two spatial points xi and
xj as follows:

Cov
[
φ(xi ), φ(xj )

] = (0.5)2(φmax − φmin)2

× E

[
tanh

(
sGφ(xi )

2π

)
tanh

(
sGφ(xj )

2π

)]

� (0.5)2(φmax − φmin)2

× E

[
[sGφ(xi )/(2π )][sGφ(xj )/(2π )]

1 + 1
2

{
[sGφ(xi )/(2π )]2 + [sGφ(xj )/(2π )]2}

]

� (0.46)2(φmax − φmin)2 s2ρφ(xi − xj )

4π2 + s2

= σ 2
φρφ(xi − xj ) (11.52)

where the empirical correction found in Eq. 11.51 was
introduced in the second to the last step.

It seems reasonable to assume that if the spatial cor-
relation structure of a soil is caused by changes in the
constitutive nature of the soil over space, then both co-
hesion and friction angle would have similar correlation
lengths. Thus, θφ is taken to be equal to θln c in this study
and φ is assumed to have the same correlation structure

0 1 2 3 4 5
s

0
0.

04
0.

08
0.

12

s
f

Simulated
0.46(fmax − fmin) s / (4p2 + s2)1/2

Figure 11.9 Relationship between σφ and s derived from sim-
ulation (100,000 realizations for each s) and the Taylor-series-
derived approximation given by Eq. 11.51. The vertical scale
corresponds to φmax − φmin = 0.349 rad (20◦).

as c (Eq. 11.47), that is, ρφ(τ ) = ρln c(τ ). Both correla-
tion lengths will be referred to generically from now on
simply as θ , and both correlation functions as ρ(τ ), re-
membering that this length and correlation function reflects
correlation between points in the underlying normally dis-
tributed random fields Gln c(x) and Gφ(x) and not directly
between points in the cohesion and friction fields (although
the correlation lengths in the different spaces are quite
similar). The correlation lengths can be estimated by statis-
tically analyzing data generated by inverting Eqs. 11.46
and 11.49. Since both fields have the same correlation
function, ρ(τ ), they will also have the same variance reduc-
tion function, that is, γln c(D) = γφ(D) = γ (D), as defined
by Eq. 11.48.

The two random fields, c and φ, are assumed to be
independent. Nonzero correlations between c and φ were
found by Fenton and Griffiths (2003) to have only a minor
influence on the estimated probabilities of bearing capacity
failure. Since the general consensus is that c and φ are
negatively correlated (Cherubini, 2000; Wolff, 1985) and
the mean bearing capacity for independent c and φ was
slightly lower than for the negatively correlated case (see
Section 11.1), the assumption of independence between c
and φ is slightly conservative.

11.2.2 Analytical Approximation to Probability
of Failure

In this section, an analytical approximation to the probabil-
ity of bearing capacity failure of a strip footing is summa-
rized. Equation 11.40 was developed assuming an ideal soil
whose shear strength is everywhere the same (i.e., a uni-
form soil). When soil properties are spatially variable, as
they are in reality, then the hypothesis made in this study
is that Eq. 11.40 can be replaced by

qu = c̄N̄c (11.53)

where c̄ and N̄c are the equivalent cohesion and equivalent
Nc factor, defined as those uniform soil parameters which
lead to the same bearing capacity as observed in the real,
spatially varying, soil. In other words, it is proposed that
equivalent soil properties, c̄ and φ̄, exist such that a uniform
soil having these properties will have the same bearing
capacity as the actual spatially variable soil. The value of
N̄c is obtained by using the equivalent friction angle φ̄ in
Eq. 11.41:

N̄c = eπ tan φ̄ tan2
(
π/4 + φ̄/2

) − 1

tan φ̄
(11.54)

In the design process, Eq. 11.53 is replaced by Eq. 11.43,
and the design footing width B is obtained using Eq. 11.45,
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which, in terms of the characteristic design values, becomes

B = I
[
αLL̂L + αD L̂D

]
φg ĉN̂c

(11.55)

The design philosophy proceeds as follows: Find the
required footing width B such that the probability that the
actual load L exceeds the actual resistance quB is less than
some small acceptable failure probability pm . If pf is the
actual failure probability, then

pf = P
[
L > quB

] = P
[
L > c̄N̄cB

]
(11.56)

and a successful design methodology will have pf ≤ pm .
Substituting Eq. 11.55 into Eq. 11.56 and collecting random
terms to the left of the inequality leads to

pf = P

[
L

ĉN̂c

c̄N̄c
>

I
[
αLL̂L + αD L̂D

]
φg

]
(11.57)

Letting

Y = L
ĉN̂c

c̄N̄c
(11.58)

means that

pf = P

[
Y >

I
[
αLL̂L + αD L̂D

]
φg

]
(11.59)

and the task is to find the distribution of Y . Assuming
that Y is lognormally distributed [an assumption found to
be reasonable by Fenton et al. (2007a) and which is also
supported to some extent by the central limit theorem], then

ln Y = ln L + ln ĉ + ln N̂c − ln c̄ − ln N̄c (11.60)

is normally distributed and pf can be found once the mean
and variance of ln Y are determined. The mean of ln Y is

µln Y = µln L + µln ĉ + µln N̂ c − µln c̄ − µln N̄ c (11.61)

and the variance of ln Y is

σ 2
ln Y = σ 2

ln L + σ 2
ln ĉ + σ 2

ln c̄ + σ 2
ln N̂ c

+ σ 2
ln N̄ c

− 2 Cov [ln c̄, ln ĉ] − 2 Cov
[
ln N̄c , ln N̂c

]
(11.62)

where the load L and soil properties c and φ have been
assumed mutually independent.

To find the parameters in Eqs. 11.61 and 11.62, the
following two assumptions are made:

1. The equivalent cohesion c̄ is the geometric average
of the cohesion field over some zone of influence D
under the footing:

c̄ = exp

{
1

D

∫
D

ln c(x) dx
}

(11.63)

Note that in this two-dimensional analysis D is an
area and the above is a two-dimensional integration.

If c(x) is lognormally distributed, as assumed, then c̄
is also lognormally distributed.

2. The equivalent friction angle, φ̄, is the arithmetic av-
erage of the friction angle over the zone of influ-
ence, D :

φ̄ = 1

D

∫
D

φ(x) dx (11.64)

This relationship also preserves the mean, that is,
µφ̄ = µφ .

Probably the greatest source of uncertainty in this anal-
ysis involves the choice of the domain D over which the
equivalent soil properties are averaged under the footing.
The averaging domain was found by trial and error to be
best approximated by D = W × W , centered directly under
the footing (see Figure 11.10). In this study, W is taken as
80% of the average mean depth of the wedge zone directly
beneath the footing, as given by the classical Prandtl failure
mechanism,

W = 0.8

2
µ̂B tan

(π

4
+ µφ

2

)
(11.65)

and where µφ is the mean friction angle (in radians), within
the zone of influence of the footing, and µ̂B is an estimate
of the mean footing width obtained by using mean soil
properties (µc and µφ) in Eq. 11.45:

µ̂B = I
[
αLL̂L + αD L̂D

]
φgµcµN c

(11.66)

The footing shown on Figure 11.10 is just one possible
realization since the footing width, B , is actually a ran-
dom variable. The averaging area D with dimension W
suggested by Eq. 11.65 is significantly smaller than that
suggested in Section 11.1. In Section 11.1, it was assumed
that the footing width was known, rather than designed, and

footing

B

H

W

W

r

Dx

D Q

x2

x1

Ground level

Bedrock

Soil sample

Figure 11.10 Averaging regions used to predict probability of
bearing capacity failure.
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recognized that the larger averaging region did not well
represent the mean bearing capacity, which of course is
the most important value in probability calculations. The
smaller averaging region used in this study may be reason-
able if one considers the actual quantity of soils involved in
resisting the bearing failure along the failure surfaces. That
is, D would be the area of soil which deforms during failure.
Since this area will change, sometimes dramatically, from
realization to realization, the above can only be considered a
rough empirical approximation. The problem of deciding on
an appropriate averaging region needs further study. In the
simulations performed to validate the theory presented here,
the soil depth is taken to be H = 4.8 m and 
x = 0.15 m,
where 
x is the width of the columns of finite-elements
used in the simulations (see, for example, Figure 11.2).

To first order, the mean of Nc is

µN c � eπ tan µφ tan2
(
π/4 + µφ/2

) − 1

tan µφ

(11.67)

Armed with the above information and assumptions, the
components of Eqs. 11.61 and 11.62 can be computed as
follows (given the basic statistical parameters of the loads,
c, φ, the number and locations of the soil samples, and the
averaging domain size D):

1. Assuming that the total load L is equal to the sum of
the maximum live load LLe acting over the lifetime of
the structure (this is a common, although rarely stated,
definition of the live load) and the static dead load LD ,
that is, L = LLe + LD , both of which are random, then

µln L = ln(µL) − 1
2 ln

(
1 + v2

L

)
(11.68a)

σ 2
ln L = ln

(
1 + v2

L

)
(11.68b)

where µL = µLe + µD is the sum of the mean (max
lifetime) live and (static) dead loads, and vL is the
coefficient of variation of the total load defined by

v2
L = σ 2

Le
+ σ 2

D

µLe + µD

(11.69)

2. With reference to Eq. 11.38,

µln ĉ = E

[
1

m

m∑
i=1

ln co
i

]
= µln c (11.70)

σ 2
ln ĉ � σ 2

ln c

m2

m∑
i=1

m∑
j=1

ρ(xo
i − xo

j ) (11.71)

where xo
i is the spatial location of the center of

the i th soil sample (i = 1, 2, . . . , m) and ρ is the
correlation function defined by Eq. 11.47. The ap-
proximation in the variance arises because correla-
tion coefficients between the local averages associated

with observations (in that all tests are performed on
samples of some finite volume) are approximated by
correlation coefficients between the local average cen-
ters. Assuming that ln ĉ actually represents a local
average of ln c over a domain of size 
x × H , where

x is the horizontal dimension of the soil sample,
which, for example, can be thought of as the horizon-
tal zone of influence of a CPT sounding, and H is the
depth over which the samples are taken, then σ 2

ln ĉ is
probably more accurately computed as

σ 2
ln ĉ = σ 2

ln cγ (
x , H ) (11.72)

3. With reference to Eq. 11.63,

µln c̄ = E

[
1

D

∫
D

ln c(x) dx
]

= µln c (11.73)

σ 2
ln c̄ = σ 2

ln cγ (D) (11.74)

where γ (D) = γ (W , W ), as discussed above, is de-
fined by Eq. 11.48.

4. Since µφ̂ = µφ (see Eq. 11.39), the mean and variance
of N̂c can be obtained using first-order approximations
to expectations of Eq. 11.44 (Fenton and Griffiths,
2003), as follows:

µln N̂ c = µln N c

� ln
eπ tan µφ tan2

(
π/4 + µφ/2

) − 1

tan µφ

(11.75)

σ 2
ln N̂ c

� σ 2
φ̂

(
d ln N̂c

d φ̂

∣∣∣
µφ

)2

= σ 2
φ̂

[
bd

bd2 − 1

×
[
π (1 + a2)d + 1 + d2

]
− 1 + a2

a

]2

(11.76)

where a = tan(µφ), b = eπa , d = tan
(
π/4 + µφ/2

)
.

The variance of φ̂ can be obtained by making use of
Eq. 11.52:

σ 2
φ̂

� σ 2
φ

m2

m∑
i=1

m∑
j=1

ρ(xo
i − xo

j )

= σ 2
φγ (
x , H ) (11.77)

where xo
i is the spatial location of the center of the

i th soil observation (i = 1, 2, . . . , m). See Eq. 11.51
for the definition of σφ . All angles are measured in
radians, including those used in Eq. 11.51.

5. Since µφ̄ = µφ (see Eq. 11.64), the mean and vari-
ance of N̄c can be obtained in the same fashion as
for N̂c (in fact, they only differ due to differing local
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averaging in the variance calculation). With reference
to Eqs. 11.54 and 11.67,

µln N̄ c = µln N̂ c = µln N c (11.78)

σ 2
ln N̄ c

� σ 2
φ̄

(
d ln N̄c

d φ̄

∣∣∣
µφ

)2

= σ 2
φ̄

[
bd

bd2 − 1

×
[
π (1 + a2)d + 1 + d2

]
− 1 + a2

a

]2

(11.79)

σ 2
φ̄

= σ 2
φγ (D) = σ 2

φγ (W , W ) (11.80)

See previous item for definitions of a , b, and d . The
variance reduction function, γ (W , W ) is defined for
two dimension by Eq. 11.48, and Eq. 11.51 defines
σφ .

6. The covariance between the observed cohesion val-
ues and the equivalent cohesion beneath the footing
is obtained as follows for D = W × W and Q =

x × H :

Cov [ln c̄, ln ĉ] � σ 2
ln c

D2Q2

∫
D

∫
Q

ρ(x1 − x2) dx1 dx2

= σ 2
ln cγDQ (11.81)

where γDQ is the average correlation coefficient be-
tween the two areas D and Q . The area D denotes
the averaging region below the footing over which
equivalent properties are defined and the area Q de-
notes the region over which soil samples are gathered.
These areas are illustrated in Figure 11.10. In detail,
γDQ is defined by

γDQ = 1

(W 2 
x H )2

∫ W /2

−W /2

∫ H

H −W

∫ r+
x/2

r−
x/2

∫ H

0

× ρ(ξ1 − x1, ξ2 − x2) dξ2 dξ1 dx2 dx1

(11.82)
where r is the horizontal distance between the footing
centerline and the centerline of the soil sample col-
umn. Equation 11.82 can be evaluated by Gaussian
quadrature (see Appendices B and C).

7. The covariance between N̄c and N̂c is similarly ap-
proximated by

Cov
[
ln N̄c , ln N̂c

] � σ 2
ln N c

γDQ (11.83)

σ 2
ln N c

� σ 2
φ

(
d ln Nc

dφ

∣∣∣
µφ

)2

= σ 2
φ

[
bd

bd2−1

[
π (1+a2)d +1+d2

]
− 1 + a2

a

]2

(11.84)

Substituting these results into Eqs. 11.61 and 11.62 gives

µln Y = µln L (11.85)

σ 2
ln Y = σ 2

ln L +
[
σ 2

ln c + σ 2
ln N c

]

×
[
γ (
x , H ) + γ (W , W ) − 2γDQ

]
(11.86)

which can now be used in Eq. 11.59 to produce estimates
of pf . Letting

q = I
[
αLL̂L + αD L̂D

]
(11.87)

allows the probability of failure to be expressed as

pf = P
[
Y >

q

φg

]
= P

[
ln Y > ln

(
q

φg

)]

= 1 − �

(
ln(q/φg ) − µln Y

σln Y

)
(11.88)

where � is the standard normal cumulative distribution
function.

Figure 11.11 illustrates the best and worst agreement be-
tween failure probabilities estimated via simulation and those
computed using Eq. 11.88. The failure probabilities are
slightly underestimated at the worst-case correlation lengths
when the sample location is not directly below the footing.
Given all the approximations made in the theory, the agree-
ment is very good (within a 10% relative error), allowing
the resistance factors to be computed with confidence even at
probability levels which the simulation cannot estimate—the
simulation involved only 2000 realizations and so cannot
properly resolve probabilities much less than 0.001.

11.2.3 Required Resistance Factor

Equation 11.88 can be inverted to find a relationship be-
tween the acceptable probability of failure pf = pm and the
resistance factor φg required to achieve that acceptable fail-
ure probability,

φg = I
[
αLL̂L + αD L̂D

]
exp {µln Y + σln Y β} (11.89)

where β is the desired reliability index corresponding to
pm . That is �(β) = 1 − pm . For example, if pm = 0.001,
then β = 3.09.

The computation of σln Y in Eq. 11.89 involves knowing
the size of the averaging domain, D , under the footing. In
turn, D depends on the average mean wedge zone depth (by
assumption) under the footing, which depends on the mean
footing width, µ̂B . Unfortunately, the mean footing width
given by Eq. 11.66 depends on φg , so solving Eq. 11.89
for φg is not entirely straightforward. One possibility is
to iterate Eq. 11.89 until a stable solution is obtained.
However, the authors have found that Eq. 11.89 is quite
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Figure 11.11 Comparison of failure probabilities estimated from simulation based on 2000
realizations and theoretical estimates using Eq. 11.88 with φg = 0.8: Plot (a) probabilities when soil
has been sampled directly under footing (r = 0 m), (b) probabilities when soil has been sampled
9 m from the footing centerline (r = 9 m). Note the change in the vertical scales—the probability
of failure is much lower when samples are taken directly under the proposed footing.

insensitive to the initial size of D and using an “average”
value of φg in Eq. 11.66 of 0.7 is quite sufficient. In other
words, approximating

µ̂B = I
[
αLL̂L + αD L̂D

]
0.7µcµN c

(11.90)

allows σln Y to be suitably estimated for use in Eq. 11.89.
In the following, the value of φg required to achieve

three target lifetime failure probability levels (10−2, 10−3,
and 10−4) for a specific case (a strip footing founded on a
soil with specific statistic parameters) will be investigated.
The results are to be viewed relatively. It is well known
that the true probability of failure for any design will only
be known once an infinite number of replications of that
particular design have been observed over infinite time (and
thus exposed to all possible loadings). One of the great
advantages of probabilistic models is that it is possible to
make probabilistic statements immediately, so long as we
are willing to accept the fact that the probability estimates
are only approximate. In that past history provides a wealth
of designs which have been deemed by society to be
acceptably reliable (or not, as the case may be), the results
presented here need to be viewed relative to past designs so
that the acceptable risk levels based on the past thousands
of years of experience are incorporated. In other words,
the results presented in the following, although rational
and based on rigorous research, need to be moderated and
adjusted by past experience.

The following parameters will be varied to investigate
their effects on the resistance factor required to achieve a
target failure probability pm :

1. Three values of pm are considered, 0.01, 0.001, and
0.0001, corresponding to reliability indices of approx-
imately 2.3, 3.1, and 3.7, respectively.

2. The correlation length θ is varied from 0.0 to
50.0 m.

3. The mean cohesion was set to µc = 100 kN/m2. Four
coefficients of variation for cohesion are considered,
vc = 0.1, 0.2, 0.3, and 0.5. The s factor for the friction
angle distribution (see Figure 1.36) is set correspond-
ingly to s = 1, 2, 3, and 5. That is, when vc = 0.2,
s is set to 2.0, and so on. The friction angle dis-
tribution is assumed to range from φmin = 0.1745
radians (10◦) to φmax = 0.5236 rad (30◦). The cor-
responding coefficients of variation for friction angle
are vφ = 0.07, 0.14, 0.20, and 0.29.

4. Three sampling locations are considered: r = 0, 4.5,
and 9.0 m from the footing centerline (see Figure
11.10 for the definition of r).

The design problem considered involves a strip footing
supporting loads having means and standard deviations:

µLe = 200 kN/m, σLe = 60 kN/m (11.91a)

µD = 600 kN/m, σD = 90 kN/m (11.91b)
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Assuming bias factors kD = 1.18 (Becker, 1996b) and
kLe = 1.41 (Allen, 1975) gives the characteristic loads

L̂L = 1.41(200) = 282 kN/m (11.92a)

L̂D = 1.18(600) = 708 kN/m (11.92b)

and the total factored design load (assuming I = 1) is

q = I (αLL̂L + αD L̂D )

= 1.5(282) + 1.25(708) = 1308 kN/m (11.93)

So long as the ratio of dead to live load (assumed to
be 3.0 in this study), the coefficients of variation of the
load (assumed to be vLe = 0.3 and vD = 0.15), and the
characteristic bias factors kLe and kD are unchanged, the
results presented here are independent of the load applied to
the strip footing. Minor changes in load ratios, coefficients
of variation, and bias factors should not result in significant
changes to the resistance factor.

Considering the slightly unconservative underestimation
of the probability of failure in some cases (see Figure
11.11b), it is worthwhile first investigating to see how sen-
sitive Eq. 11.89 is to changes in pm of the same order as the
errors in estimation of pf . If pm is replaced by pm/1.5, then
this corresponds to underestimating the failure probability
by a factor of 1.5, which was well above the maximum dif-
ference seen between theory and simulation. It can be seen
from Figure 11.12, which illustrates the effect of errors in
the estimation of the failure probability, that the effect on
φg is minor, especially considering all other sources of er-
ror in the analysis. Of the cases considered in this study,
the φg values least affected by an underestimation of the
probability occur when the soil is sampled under the foot-
ing (r = 0) and for small pm , as seen in Figure 11.12a. The

worst case is shown in Figure 11.12b and all other results
(not shown) were seen to lie between these two plots. Even
in the worst case of Figure 11.12b, the changes in φg due
to errors in probability estimation are relatively small and
will be ignored.

Figures 11.13, 11.14, and 11.15 show the resistance
factors required for the cases where the soil is sampled
directly under the footing, at a distance of 4.5 m, and at a
distance of 9.0 m from the footing centerline, respectively,
to achieve the three target failure probabilities. The worst-
case correlation length is clearly between about 1 and 5
m, as evidenced by the fact that in all plots the lowest
resistance factor occurs when 1 < θ < 5 m. This worst-
case correlation length is of the same magnitude as the
mean footing width (µ̂B = 1.26 m) which can be explained
as follows: If the random soil fields are stationary, then
soil samples yield perfect information, regardless of their
location, if the correlation length is either zero (assuming
soil sampling involves some local averaging) or infinity.
When the information is perfect, the probability of a bearing
capacity failure goes to zero and φg → 1.0 (or possibly
greater than 1.0 to compensate for the load bias factors).
When the correlation length is zero, the soil sample will
consist of an infinite number of independent “observations”
whose average is equal to the true mean (or true median,
if the average is a geometric average). Since the footing
also averages the soil properties, the footing “sees” the
same true mean (or true median) value predicted by the soil
sample. When the correlation length goes to infinity, the soil
becomes uniform, having the same value everywhere. In
this case, any soil sample also perfectly predicts conditions
under the footing.

At intermediate correlation lengths soil samples become
imperfect estimators of conditions under the footing, and
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Figure 11.12 Effect of failure probability underestimation on resistance factor required by
Eq. 11.89: (a) r = 0, pm = 0.001; (b) r = 9, pm = 0.01.
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Figure 11.13 Resistance factors required to achieve ac-
ceptable failure probability pm when soil is sampled di-
rectly under footing (r = 0): (a) pm = 0.01; (b) pm = 0.001;
(c) pm = 0.0001.
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Figure 11.14 Resistance factors required to achieve acceptable
failure probability pm when soil is sampled at r = 4.5 m from
footing centerline: (a) pm = 0.01; (b) pm = 0.001; (c) pm =
0.0001.
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Figure 11.15 Resistance factors required to achieve accept-
able failure probability pm when soil is sampled at r = 9.0
m from footing centerline: (a) pm = 0.01; (b) pm = 0.001; (c)
pm = 0.0001.

so the probability of bearing capacity failure increases, or
equivalently, the required resistance factor decreases. Thus,
the minimum required resistance factor will occur at some
correlation length between 0 and infinity. The precise value
depends on the geometric characteristics of the problem
under consideration, such as the footing width, depth to
bedrock, length of soil sample, and/or the distance to the
sample point. Notice in Figures 11.13, 11.14, and 11.15
that the worst-case point does show some increase as the
distance to the sample location, r , increases.

As expected the smallest resistance factors correspond
with the smallest acceptable failure probability considered,
pm = 0.0001, and with the poorest understanding of the soil
properties under the footing (i.e., when the soil is sampled
9 m away from the footing centerline). When the cohesion
coefficient of variation is relatively large, vc = 0.5, with
corresponding vφ � 0.29, the worst-case values of φg dip
almost down to 0.1 in order to achieve pm = 0.0001. In
other words, there will be a significant construction cost
penalty if a high reliability footing is designed using a site
investigation which is insufficient to reduce the residual
variability to less than vc = 0.5.

The simulation results can also be used to verify the
theoretically determined resistance factors. This is done by
using the simulation-based failure probabilities as values
of pm in the theory and comparing the resistance factor
φg used in the simulation to that predicted by Eq. 11.89.
The comparison is shown in Figure 11.16. For perfect
agreement between theory and simulation, the points should
align along the diagonal. The agreement is deemed to be
very good and much of the discrepancy is due to failure
probability estimator error, as discussed next. In general,
however, the theory-based estimates of φg are seen to be
conservative. That is, they are somewhat less than seen in
the simulations on average.

Those simulations having less than 2 failures out of
the 2000 realizations were omitted from the compari-
son in Figure 11.16, since the estimator error for such
how probabilities is as big, or bigger, than the prob-
ability being estimated. For those simulations having 2
failures out of 2000 (included in Figure 11.16), the esti-
mated probability of failure is 0.001 which has standard
error

√
0.001(0.999)/2000 = 0.0007. This error is almost

as large as the probability being estimated, having a coeffi-
cient of variation of 70%. In fact most of the discrepancies
in Figure 11.16 are easily attributable to estimator error in
the simulation. The coefficient of variation of the estimator
at the 0.01 probability level is 20%, which is still big-
ger than most of the relative errors seen in Figure 11.16
(the maximum relative error in Figure 11.16 is 0.28 at
φg = 0.5).
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Figure 11.16 Required resistance factors, φg , based on simu-
lation versus those based on Eq. 11.89. For perfect agreement,
points would all lie on the diagonal.

The “worst-case” resistance factors required to achieve
the indicated maximum acceptable failure probabilities, as
seen in Figures 11.13–11.15, are summarized in Table
11.3. In the absence of better knowledge about the actual
correlation length at the site in question, these factors are
the largest values that should be used in the LRFD bearing
capacity design of a strip footing founded on a c − φ soil.

It is noted, however, that the factors listed in Table 11.3
are sometimes quite conservative. For example, when vc =
0.3, r = 4.5 m, and pm = 0.001, Table 11.3 suggests that

φg = 0.42 for the c−φ soil considered here. However, if
the soil is undrained, with φ = 0 (all else being the same),
then the only source of variability in the shear strength
is the cohesion. In this case the above theory predicts a
resistance factor of φg = 0.60 which is considerably larger
than suggested by Table 11.3.

To compare the resistance factors recommended in Table
11.3 to resistance factors recommended in the literature and
to current geotechnical LRFD codes, changes in the load
factors from code to code need to be taken into account.
It will be assumed that all other sources define µLe , µD ,
kLe , and kD in the same way, which is unfortunately by
no means certain. The easiest way to compare resistance
factors is to compare the ratio of the resistance factor φg

to the total load factor α. The total load factor, defined for
fixed dead- to live-load ratio, is the single load factor which
yields the same result as the individual live- and dead-
load factors, that is, α

(
L̂L + L̂D

) = αLL̂L + αD L̂D . For mean
dead- to live-load ratio RD/L = µD/µLe and characteristic
bias factors kD and kL,

α = αLL̂L + αD L̂D

L̂L + L̂D

= αLkLµLe + αD kDµD

kLµLe + kDµD

= αLkL + αD kD RD/L

kL + kD RD/L

(11.94)

which, for RD/L = 3, kL = 1.41, kD = 1.18, gives α = 1.32.
Table 11.4 compares the ratio of the resistance factors rec-
ommended in this study to total load factor with three other
sources. The individual “current study” values correspond
to the moderate case where vc = 0.3 and acceptable failure

Table 11.3 Worst-Case Resistance Factors for Various Coefficients of Variation, vc , Distance to Sampling Location,
r , and Acceptable Failure Probabilities, pm

r = 0.0 m r = 4.5 m r = 9.0 m
vc pm = 0.01 0.001 0.0001 pm = 0.01 0.001 0.0001 pm = 0.01 0.001 0.0001

0.1 1.00 0.99 0.89 1.00 0.89 0.79 1.00 0.86 0.76
0.2 0.96 0.80 0.69 0.79 0.62 0.51 0.74 0.57 0.46
0.3 0.80 0.63 0.52 0.59 0.42 0.32 0.54 0.38 0.28
0.5 0.58 0.41 0.31 0.35 0.21 0.14 0.31 0.18 0.11

Table 11.4 Comparison of Resistance Factors Recommended in Study to Those
Recommended by Three Other Sources

Source Load Factors φg φg/α

Current study r = 0 m RD/L = 3, αL = 1.5, αD = 1.25 0.63 0.48
r = 4.5 m RD/L = 3, αL = 1.5, αD = 1.25 0.42 0.32
r = 9.0 m RD/L = 3, αL = 1.5, αD = 1.25 0.38 0.29

Foye et al., 2006 RD/L = 4, αL = 1.6, αD = 1.20 0.70 0.54
CGS, (2006) RD/L = 3, αL = 1.5, αD = 1.25 0.50 0.38
Australian standard,
2004 RD/L = 3, αL = 1.8, αD = 1.20 0.45 0.33
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probability p = 0.001. The resistance factor derived from
the Australian Standard (2004) on bridge foundations as-
sumes a dead- to live-load ratio of 3.0 (not stated in the
standard) and that the site investigation is based on CPT
tests.

Apparently, the resistance factor recommended by Foye
et al. (2006) assumes very good site understanding—they
specify that the design assumes a CPT investigation which
is presumably directly under the footing. Foye et al.’s
recommended resistance factor is based on a reliability
index of β = 3, which corresponds to pm = 0.0013, which
is very close to that used in Table 11.4 (pm = 0.001). The
small difference between the current study r = 0 result
and Foye et al.’s may be due to differences in load bias
factors—these are not specified by Foye et al.

The resistance factor specified by the Canadian Founda-
tion Engineering Manual (CFEM, Canadian Geotechnical
Society, 2006) is somewhere between that predicted here
for the r = 0 and r = 4.5 m results. The CFEM resistance
factor apparently presumes a reasonable, but not signifi-
cant, understanding of the soil properties under the footing
(e.g. r � 3 m rather than r = 0 m). The corroboration
of the rigorous theory proposed here by an experience-
based code provision is, however, very encouraging. The
authors also note that the CFEM is the only source listed in
Table 11.4 for which the live- and dead-load bias factors
used in this study can be reasonably assumed to also apply.

The Australian Standard AS 5100.3 (2004) resistance
factor ratio is very close to that predicted here using
r = 4.5 m. It is probably reasonable to assume that the
Australian standard recommendations correspond to a mod-
erate level of site understanding (e.g., r = 4.5 m) and an
acceptable failure probability of about 0.0001.

11.3 SUMMARY

One of the main impediments to the practical use of
these results is that they depend on a priori knowledge
of the variance, and, to a lesser extent, since worst-case
results are presented above, the correlation structure of
the soil properties. However, assuming that at least one
CPT sounding (or equivalent) is taken in the vicinity of
the footing, it is probably reasonable to assume that the
residual variability is reduced to a coefficient of variation
of no more than about 0.3, and often considerably less
(the results collected by other investigators, e.g. Phoon
et al., 1999, suggest that this may be the case for “typical”
site investigations). In this is so, the resistance factors
recommended in Table 11.3 for vc = 0.3 are probably
reasonable for the load and bias factors assumed in this
study.

The resistance factors recommended in Table 11.3 are
conservative in (at least) the following ways:

1. It is unlikely that the correlation length of the residual
random process at a site (after removal of any mean
or mean trend estimated from the site investigation,
assuming there is one) will actually equal the worst-
case correlation length.

2. The soil is assumed weightless in this study. The ad-
dition of soil weight, which the authors feel to be
generally less spatially variable than soil strength pa-
rameters, should reduce the failure probability and so
result in higher resistance factors for fixed acceptable
failure probability.

3. Sometimes more than one CPT or SPT is taken at the
site in the footing region, so that the site understanding
may exceed even the r = 0 m case considered here if
trends and layering are carefully accounted for.

4. The parameters c and φ are assumed independent,
rather than negatively correlated, which leads to a
somewhat higher probability of failure and corre-
spondingly lower resistance factor, and so somewhat
conservative results. Since the effect of positive or
negative correlation of c and φ was found by Fenton
and Griffiths (2003) to be quite minor, this is not a
major source of conservatism.

On the other hand, the resistance factors recommended in
Table 11.3 are unconservative in (at least) the following
ways:

1. Measurement and model errors are not considered in
this study. The statistics of measurement errors are
very difficult to determine since the true values need
to be known. Similarly, model errors, which relate
both the errors associated with translating measured
values (e.g., CPT measurements to friction angle val-
ues) and the errors associated with predicting bearing
capacity by an equation such as Eq. 11.40 are quite
difficult to estimate simply because the true bearing
capacity along with the true soil properties are rarely,
if ever, known. In the authors’ opinions this is the
major source of unconservatism in the presented the-
ory. When confidence in the measured soil properties
or in the model used is low, the results presented here
can still be employed by assuming that the soil sam-
ples were taken further away from the footing location
than they actually were (e.g., if low-quality soil sam-
ples are taken directly under the footing, r = 0, the
resistance factor corresponding to a larger value of r ,
say r = 4.5 m should be used).
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2. The failure probabilities given by the above theory are
slightly underpredicted when soil samples are taken
at some distance from the footing at the worst-case
correlation length. The effect of this underestimation
on the recommended resistance factor has been shown
to be relatively minor but nevertheless unconservative.

To some extent the conservative and unconservative factors
listed above cancel one another out. Figure 11.16 suggests
that the theory is generally conservative if measurement
errors are assumed to be insignificant. The comparison of
resistance factors presented in Table 11.4 demonstrates that
the worst-case theoretical results presented in Table 11.3
agree quite well with current literature and LRFD code
recommendations, assuming moderate variability and site
understanding, suggesting that the theory is reasonably ac-
curate. In any case, the theory provides an analytical basis
to extend code provisions beyond mere calibration with
the past.

The results presented in this section are for a c−φ soil
in which both cohesion and friction contribute to the bear-
ing capacity, and thus to the variability of the strength. If it
is known that the soil is purely cohesive (e.g., “undrained
clay”), then the strength variability comes from one source
only. In this case, not only does Eq. 11.86 simplify

since σ 2
ln N c

= 0, but because of the loss of one source of
variability, the resistance factors increase significantly. The
net result is that the resistance factors presented in this paper
are conservative when φ = 0. Additional research is needed
to investigate how the resistance factors should generally
be increased for “undrained clays”.

The effect of anisotropy in the correlation lengths has
not been carefully considered in this study. It is known,
however, that increasing the horizontal correlation length
above the worst case length is conservative when the
soil is not sampled directly below the footing. When the
soil is sampled directly under the footing, weak spatially
extended horizontal layers below the footing will obviously
have to be explicitly handled by suitably adjusting the
characteristic soil properties used in the design. If this is
done, then the resistance factors suggested here should still
be conservative. The theory presented in this section easily
accomodates the anisotropic case.

One of the major advantages to a table such as 11.3 is
that it provides geotechnical engineers with evidence that
increased site investigation will lead to reduced construction
costs and/or increased reliability. In other words, Table 11.3
is further evidence that you pay for a site investigation
whether you have one or not (Institution of Civil Engineers,
1991).



CHAPTER 12

Deep Foundations

12.1 INTRODUCTION

Deep foundations, which are typically either piles or drilled
shafts, will be hereafter collectively referred to as piles
for simplicity in this chapter. Piles are provided to trans-
fer load to the surrounding soil and/or to a firmer stratum,
thereby providing vertical and lateral load-bearing capac-
ity to a supported structure. In this chapter the random
behavior of a pile subjected to a vertical load and sup-
ported by a spatially variable soil is investigated (Fenton
and Griffiths, 2007). The program used to perform the simu-
lations reported here is called RPILE1D, which is available
at http://www.engmath.dal.ca/rfem.

The resistance, or bearing capacity, of a pile arises as
a combination of side friction, where load is transmitted
to the soil through friction along the sides of the pile, and
end bearing, where load is transmitted to the soil (or rock)
through the tip of the pile. As load is applied to the pile,
the pile settles—the total settlement of the pile is due to
both deformation of the pile itself and deformation of the
surrounding soil and supporting stratum. The surrounding
soil is, at least initially, assumed to be perfectly bonded to
the pile shaft through friction and/or adhesion so that any
displacement of the pile corresponds to an equivalent lo-
cal displacement of the soil (the soil deformation reduces
further away from the pile). In turn, the elastic nature of
the soil means that this displacement is resisted by a force
which is proportional to the soil’s elastic modulus and the
magnitude of the displacement. Thus, at least initially, the
support imparted by the soil to the pile depends on the elas-
tic properties of the surrounding soil. For example, Vesic
(1977) states that the fraction of pile settlement due to
deformation of the soil, δs , is a constant (dependent on Pois-
son’s ratio and pile geometry) times Q/Es , where Q is the
applied load and Es is the (effective) soil elastic modulus.

As the load on the pile is increased, the bond between
the soil and the pile surface will at some point break down
and the pile will both slip through the surrounding soil and
plastically fail the soil under the pile tip. At this point,
the ultimate bearing capacity of the pile has been reached.
The force required to reach the point at which the pile
slips through a sandy soil is conveniently captured using a
soil–pile interface friction angle δ. The frictional resistance
per unit area of the pile surface, f , can then be expressed as

f = σ ′
n tan δ (12.1)

where σ ′
n is the effective stress exerted by the soil normal

to the pile surface. In many cases, σ ′
n = K σ ′

o , where K is
the earth pressure coefficient and σ ′

o is the effective vertical
stress at the depth under consideration. The total ultimate
resistance supplied by the soil to an applied pile load is the
sum of the end-bearing capacity (which can be estimated
using the usual bearing capacity equation) and the integral
of f over the embedded surface of the pile. For clays with
zero friction angle, Vijayvergiya and Focht (1972) suggest
that the average of f , denoted with an overbar, can be ex-
pressed in the form

f̄ = λ
(
σ̄ ′

o + 2cu
)

(12.2)

where σ̄ ′
o is the average effective vertical stress over the en-

tire embedment length, cu is the undrained cohesion, and λ

is a correction factor dependent on pile embedment length.
The limit state design of a pile involves checking the

design at both the serviceability limit state and the ultimate
limit state. The serviceability limit state is a limitation on
pile settlement, which in effect involves computing the
load beyond which settlements become intolerable. Pile
settlement involves consideration of the elastic behavior of
the pile and the elastic (e.g., Es ) and consolidation behavior
of the surrounding soil.

The ultimate limit state involves computing the ultimate
load that the pile can carry just prior to failure. Failure
is assumed to occur when the pile slips through the soil
(we are not considering structural failure of the pile itself),
which can be estimated with the aid of Eq. 12.1 or 12.2,
along with the end-bearing capacity equation. The ultimate
pile capacity is a function of the soil’s cohesion and friction
angle parameters.

In this chapter, the soil’s influence on the pile will be
represented by bilinear springs (see, e.g., program 12 of
Smith and Griffiths, 1982), as illustrated in Figure 12.1.
The initial sloped portion of the load–displacement curve
corresponds to the elastic (Es ) soil behavior, while the
plateau corresponds to the ultimate shear strength of the
pile–soil interface, which is a function of the soil’s friction
angle and cohesion. The next section discusses the finite-
element and random-field models used to represent the pile
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Figure 12.1 Bilinear load (F ) versus displacement (δ) for soil
springs.

and supporting soil in more detail. In the following section
an analysis of the random behavior of a pile is described
and presented. Only the effects of the spatial variability of
the soil are investigated and not, for instance, those due to
construction and placement variability. Finally, the results
are evaluated and recommendations are made.

12.2 RANDOM FINITE-ELEMENT METHOD

The pile itself is divided into a series of elements, as
illustrated in Figure 12.2. Each element has cross-sectional
area A (assumed constant) and elastic modulus Ep , which
can vary randomly along the pile. The stiffness assigned to
the i th element is the geometric average of the product AEp

over the element domain.
As indicated in Figure 12.1, the i th soil spring is char-

acterized by two parameters: its initial stiffness Si and its
ultimate strength Ui . The determination of these two pa-
rameters from the soil’s elastic modulus, friction angle, and
cohesion properties is discussed conceptually as follows:

1. The initial spring stiffness Si is a function of the soil’s
spatially variable elastic modulus Es . Since the strain
induced in the surrounding soil due to displacement
of the pile is complex, not least because the strain
decreases nonlinearly with distance from the pile, the
effective elastic modulus of the soil as seen by the pile
at any point along the pile is currently unknown. The
nature of the relationship between Es and Si remains
a topic for further research. In this chapter, the spring
stiffness contribution per unit length of the pile, S (z ),
will be simulated directly as a lognormally distributed
one-dimensional random process.

2. The ultimate strength of each spring is somewhat
more easily specified so long as the pile–soil interface
adhesion, friction angle, and normal stress are known.
Assuming that soil properties vary only with depth z ,
the ultimate strength per unit pile length at depth z
will have the general form (in the event that both
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Figure 12.2 Finite-element representation of pile–soil system
for a given number of elements (nels).

adhesion and friction act simultaneously)

U (z ) = p
[
αcu (z ) + σ ′

n (z ) tan δ(z )
]

(12.3)

where αcu (z ) is the adhesion at depth z [see, e.g.,
Das (2000, p. 519) for estimates of the adhesion
factor α], p is the pile perimeter length, σ ′

n (z ) is the
normal effective soil stress at depth z , and δ(z ) is the
interface friction angle at depth z . The normal stress
is often taken as K σ ′

o , where K is an earth pressure
coefficient. Rather than simulate cu and tan δ and
introduce the empirical and uncertain factors α and
K , both of which could also be spatially variable,
the ultimate strength per unit length, U (z ), will be
simulated directly as a lognormally distributed one-
dimensional random process.

The RFEM thus consists of a sequence of pile elements
joined by nodes, a sequence of spring elements attached
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to the nodes (see Figure 12.2), and three independent one-
dimensional random processes described as follows:

• S (z ) and U (z ) are the spring stiffness and strength
contributions from the soil per unit length along the
pile and

• Ep(z ) is the elastic modulus of the pile.

It is assumed that the elastic modulus of the pile is a
one-dimensional stationary lognormally distributed random
process characterized by the mean pile stiffness µAEp ,
standard deviation σAEp , and correlation length θln Ep , where
A is the pile cross-sectional area. Note that, for simplicity,
it is assumed that all three random processes have the
same correlation lengths and all have the same correlation
function (Markovian). While it may make sense for the
correlation lengths associated with S (z ) and U (z ) to be
similar, there is no reason that the correlation length of
Ep (z ) should be the same as that in the soil. Keeping them
the same merely simplifies the study while still allowing the
study to assess whether a “worst-case” correlation length
exists for the deep-foundation problem.

The elastic modulus assigned to each pile element will
be some sort of average of Ep(z ) over the element length,
and in this chapter the geometric average will be used:

Epi = exp

{
1

�z

∫ zi +�z

zi

ln Ep (z ) dz

}
(12.4)

where zi is the depth to the top of the i th element. The
geometric average is dominated by low stiffness values,
which is appropriate for elastic deformation. It is to be noted
that for a pile idealized using an elastic modulus varying
only along the pile length, the true “effective” pile stiffness
is the harmonic average

EH =
[

1

�z

∫ zi +�z

zi

1

Ep (z )
dz

]−1

which is even more strongly dominated by low stiffness
values than the geometric average. However, the following
justification can be argued about the use of the geomet-
ric average rather than the harmonic average over each
element:

1. If the elements are approximately square (i.e., �z �
pile diameter), and the pile’s true three-dimensional
elastic modulus field is approximately isotropic (i.e.,
not strongly layered), then the effective elastic mod-
ulus of the element will be (at least closely approx-
imated by) a geometric average. See, for example,
Chapter 10, where this result was found for a soil
block, which is a similar stochastic settlement prob-
lem to the pile element “block.”

2. If the pile is subdivided into a reasonable number of
elements along its length (say, 10 or more), then the
overall response of the pile tends towards a harmonic
average in any case since the finite element analysis
will yield the exact “harmonic” result.

We are left now with the determination of the spring
stiffness and strength values, Si and Ui , from the one-
dimensional random processes S (z ) and U (z ). Note that
the spring parameters Si and Ui have units of stiffness
(kilonewtons per meter) and strength (kilonewtons), respec-
tively, while S (z ) and U (z ) are the soil’s contribution to
the spring stiffness and strength per unit length along the
pile. That is, S (z ) has units of kilonewtons per meter per
meter and U (z ) has units of kilonewton per meter.

To determine the spring parameters Si and Ui from the
continuously varying S (z ) and U (z ), we need to think about
the nature of the continuously varying processes and how
they actually contribute to Si and Ui . In the following we
will discuss this only for the stiffness contribution S ; the
strength issue is entirely analogous and can be determined
simply by substituting S with U in the following.

We will first subdivide each element into two equal parts,
as shown in Figure 12.3, each of length �h = �z/2. The
top of each subdivided cell will be at tj = (j − 1) �h for
j = 1, 2, . . . , 2n + 1, where n is the number of elements.
This subdivision is done so that the tributary lengths for
each spring can be more easily defined: The stiffness for
spring 1 is accumulated from the soil stiffness contribution

t1

t2

t3

t4

t5

t6

t7

z1

z2

z3

z4

Dh

Dz

Tributary length for spring 1

Tributary length for spring 2

Tributary length for spring 3

Top of pile

z

Figure 12.3 Subdivisions used to compute geometric averages.
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S (z ) over the top cell from z = t1 = 0 to z = t2 = �h . The
stiffness for spring 2 is accumulated from the cell above
spring 2 as well as from the cell below spring 2, that is, from
z = t2 = �h to z = t3 = 2 �h and from z = t3 = 2 �h to
z = t4 = 3 �h , and so on.

If the stiffness contributions S (z ) at each point z are
independent (i.e., white noise), and if the pile stiffness is
significantly larger than the soil stiffness, then Si should be
an arithmetic sum of S (z ) over the spring’s tributary length,

Si =
∫ zi +�z/2

zi −�z/2
S (z ) dz (12.5)

In other words, Si should be an arithmetic average of
S (z ) over the tributary length multiplied by the tributary
length. However, S (z ) is not a white noise process—a low-
stiffness region close to the pile will depress the stiffness
contribution over a length of pile which will probably be
significantly larger than the low-strength region itself. Thus,
it makes sense to assume that Si should be at least somewhat
dominated by low-stiffness regions in the surrounding soil.

A compromise shall be made here: Si will be an arith-
metic sum of the two geometric averages over the i th
spring’s tributary areas (in the case of the top and bottom
springs, only one tributary area is involved). The result is
less strongly low-stiffness dominated than a pure geomet-
ric average, as might be expected by this sort of a problem
where the strain imposed on the soil is relatively constant
over the element lengths (i.e., the constant strain results in
at least some arithmetic averaging). The exact nature of the
required average is left for future research.

If the mean of S (z ) is allowed to vary linearly with depth
z , then

µS = E [S (z )] = a + bz (12.6)

If the stiffnesses per unit length at the top and bottom of
the pile are stop and sbot, respectively, and we measure z
downward from the top of the pile, then

a = stop (12.7a)

b = sbot − stop

L
(12.7b)

where L is the pile length.
It is assumed that S (z ) is lognormally distributed. It thus

has parameters

µln S = ln(a + bz ) − 1
2σ 2

ln S (12.8a)

σ 2
ln S = ln(1 + v2

S ) (12.8b)

where vS is the coefficient of variation of S (z ). It will be
assumed that vS is constant with depth, so that σln S is
also constant with depth. Now S (z ) can be expressed in
terms of the underlying zero-mean, unit-variance, normally
distributed one-dimensional random process G(z ),

S (z ) = exp {µln S + σln S G(z )}
= exp

{
ln(a + bz ) − 1

2σ 2
ln S + σln S G(z )

}
(12.9)

In other words

ln S (z ) = ln(a + bz ) − 1
2σ 2

ln S + σln S G(z ) (12.10)

Now let SGj be the geometric average of the soil spring
stiffness contribution S (z ) over the j th cell, that is, over a
length of the pile from tj to tj + �h , j = 1, 2, . . . , 2n ,

SGj = exp

{
1

�h

∫ tj +�h

tj

ln S (z ) dz

}

= exp

{
1

�h

∫ tj +�h

tj

[
ln(a + bz ) − 1

2σ 2
ln S

+σln S G(z )
]

dz

}

= exp

{
1

�h

∫ tj +�h

tj

ln(a + bz ) dz − 1
2σ 2

ln S + σln S Gj

}

(12.11)
where Gj is the arithmetic average of G(z ) from z = tj to
z = tj + �h:

Gj = 1

�h

∫ tj +�h

tj

G(z ) dz (12.12)

Now define

mj = 1

�h

∫ tj +�h

tj

ln(a + bz ) dz − 1
2σ 2

ln S

= 1

b �h

[
a1 ln(a1) − a2 ln(a2)] − 1 − 1

2σ 2
ln S (12.13)

where

a1 = a + b(tj + �h) (12.14a)

a2 = a + btj (12.14b)

If b = 0, that is, the soil stiffness contribution is constant
with depth, then mj simplifies to

mj = ln(stop) − 1
2σ 2

ln S (12.15)

Using mj , the geometric average becomes

SGj = exp
{
mj + σln S Gj

}
(12.16)

Notice that mj is the arithmetic average of µln S over the
distance from z = tj to z = tj + �z .

The contribution to the spring stiffness is now �h SGj . In
particular, the top spring has contributing soil stiffness from
z = 0 to z = �h , so that S1 = �h SG1 . Similarly, the next
spring down has contributions from the soil from z = �h



MONTE CARLO ESTIMATION OF PILE CAPACITY 377

to z = 2 �h as well as from z = 2 �h to z = 3 �h , so
that

S2 = �h
[
SG2 + SG3

]
(12.17)

and so on.
The finite-element analysis is displacement controlled. In

other words, the load corresponding to the prescribed maxi-
mum tolerable serviceability settlement, δmax, is determined
by imposing a displacement of δmax at the pile top. Because
of the nonlinearity of the springs, the finite-element analysis
involves an iteration to converge on the set of admissible
spring forces which yield the prescribed settlement at the
top of the pile. The relative maximum-error convergence
tolerance is set to a very small value of 0.00001.

The pile capacity corresponding to the ultimate limit state
is computed simply as the sum of the Ui values over all of
the springs.

12.3 MONTE CARLO ESTIMATION
OF PILE CAPACITY

To assess the probabilistic behavior of deep foundations, a
series of Monte Carlo simulations, with 2000 realizations
each, were performed and the distributions of the service-
ability and ultimate limit state loads were estimated. The
serviceability limit state was defined as being a settlement
of δmax = 25 mm. Because the maximum tolerable settle-
ment cannot easily be expressed in dimensionless form, the
entire analysis will be performed for a particular case study;
namely, a pile of length 10 m is divided into n = 30 el-
ements with µAEp = 1000 kN, σAEp = 100 kN, µS = 100
kN/m/m, and µU = 10 kN/m. The base of the pile is as-
sumed to rest on a slightly firmer stratum, so the base spring

has mean stiffness 200 kN/m and mean strength 20 kN (note
that this is in addition to the soil contribution arising from
the lowermost half-element). Coefficients of variation of
spring stiffness and strength, vS and vU , taken to be equal
and collectively referred to as v, ranged from 0.1 to 0.5.
Correlation lengths θln S , θln Ep , and θln U , all taken to be
equal and referred to collectively simply as θ , ranged from
0.1 m to 100.0 m. The spring stiffness and strength param-
eters were assumed to be mutually independent as well as
being independent of the pile elastic modulus.

The first task is to determine the nature of the distribution
of the serviceability and ultimate pile loads. Figure 12.4a
shows one of the best and Figure 12.4b one of the worst
fits of a lognormal distribution to the serviceability pile load
histogram with chi-square goodness-of-fit p-values of 0.84
and 0.0006, respectively (the null hypothesis being that the
serviceability load follows a lognormal distribution). The
plot in Figure 12.4b would result in the lognormal hypoth-
esis being rejected for any significance level in excess of
0.06%. Nevertheless, a visual inspection of the plot suggests
that the lognormal distribution is quite reasonable—in fact,
it is hard to see why one fit is so much “better” than the
other. It is well known, however, that when the number of
simulations is large, goodness-of-fit tests tend to be very
sensitive to small discrepancies in the fit, particularly in
the tails.

Figure 12.5 shows similar results for the ultimate pile
capacities, which are simply obtained by adding up the
ultimate spring values. In both figures, the lognormal dis-
tribution appears to be a very reasonable fitted, despite the
very low p-value of Figure 12.5b.
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Figure 12.4 Estimated and fitted lognormal distributions of serviceability limit state loads Q for
(a) v = 0.2 and θ = 1 m (p-value 0.84) and (b ) v = 0.5 and θ = 1.0 m (p-value 0.00065).
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Figure 12.5 Estimated and fitted lognormal distributions of ultimate limit state loads Q for
(a) v = 0.2 and θ = 10 m (p-value 0.94) and (b) v = 0.4 and θ = 0.1 m (p-value 8 × 10−11).

If the pile capacities at both the serviceability and ul-
timate limit states are lognormally distributed, then the
computation of the probability that the actual pile capacity
Q is less than the design capacity Qdes proceeds as follows,

P [Q < Qdes] = �

(
ln Qdes − µln Q

σln Q

)
(12.18)

where � is the standard normal cumulative distribution
function. For this computation we need only know the mean
and standard deviation of ln Q . Figure 12.6 shows the esti-
mated mean and variance of ln Q for the serviceability limit
state, that is, those loads Q which produce the maximum
tolerable pile settlement, which in this case is 25 mm. The

estimate of µln Q is denoted mln Q while the estimate of σln Q

is denoted sln Q . Similarly, Figure 12.7 shows the estimated
mean and standard deviation of ln Q at the ultimate limit
state, that is, at the point where the pile reaches failure and
the capacity of all springs has been fully mobilized.

12.4 SUMMARY

Aside from the changes in the magnitudes of the means and
standard deviations, the statistical behavior of the maximum
loads at serviceability and ultimate limit states are very
similar. First of all the mean loads are little affected by both
the coefficient of variation (v) and the correlation length (θ );
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Figure 12.6 Estimated mean mln Q and standard deviation sln Q of maximum load Q at serviceability limit state.
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Figure 12.7 Estimated mean mln Q and standard deviation sln Q of maximum load Q at ultimate limit state.

note that the vertical axes for the plots in Figures 12.6a and
12.7a are over a fairly narrow range. The mean in Q and the
mean in ln Q show similar behavior. There are only slight
reductions in the mean for increasing v. This suggests that
the pile is more strongly controlled by arithmetic averaging
of the soil strengths, which is perhaps not surprising if the
pile is much stiffer than the surrounding soil. In fact, it
could be argued that some of the reduction in mean with v

is due to the fact that geometric averaging was done over
the half-element lengths. In other words, it is possible that
only arithmetic averaging should be done in this pile model.
This needs further study.

The load standard deviation (for both Q and ln Q) in-
creases monotonically for increasing coefficient of vari-
ation, as expected (i.e., as the soil becomes increasingly
variable, one expects its ability to support the pile would
also become increasingly variable). This behavior was also
noted by Phoon et al. (1990). The standard deviation ap-
proaches zero as the correlation length goes to zero, which
is also to be expected due to local averaging (geometric or
otherwise). At the opposite extreme as θ → ∞, the stan-
dard deviation approaches that predicted if the soil is treated
as a single lognormally distributed random variable (with
an independent base spring variable). For example, when
θ → ∞, σln Q is expected to approach 0.407 for the ulti-
mate limit state with v = 0.5. It is apparent in the plot of
Figure 12.7b that the uppermost curve is approaching 0.407,
as predicted.

The predicted value of σln Q for the ultimate limit state
(Figure 12.7) as θ → ∞ is obtained through the following
reasoning: For the pile problem investigated here, the soil

strength is assumed constant with depth, so that b = 0 and
a = utop = 10 kN/m and thus

U (z ) = exp
{
ln a − 1

2σ 2
ln U + σln U G(z )

}
(12.19)

(see Eq. 12.9), where σ 2
ln U = ln(1 + v2

U ). Using Eqs. 12.15
and 12.16 for the ultimate limit state gives

UGj = exp
{
ln a − 1

2σ 2
ln U + σln U Gj

}

= a
√

1 + v2
U

exp
{
σln U Gj

}
(12.20)

The ultimate pile capacity is just the sum of these geometric
average strengths plus the resistance provided at the base:

Q = Ub +
2n∑

j=1

UGj �h (12.21)

where Ub is the ultimate strength contributed by the soil
under the pile base. As θ → ∞, the G(z ) random field be-
comes constant, G(z ) = G , which means that each average
Gj of G(z ) becomes the same; G1 = G2 = · · · = G and
Eq. 12.21 simplifies to

Q = Ub + 2nUGj �h (12.22)

If the soil base strength was zero, so that Q = 2nUGj �h ,
then it is a relatively easy matter to show that σln Q =√

ln
(
1 + v2

U

)
. However, with the base strength present, we

must first compute the mean and variance of Q ; to do
this, we note that the quantity exp

{
σln U Gj

}
appearing in

Eq. 12.20 is lognormally distributed with mean
√

1 + v2
U
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and variance (1 + v2
U )v2

U . The mean and variance of Q are
thus

µQ = E [Ub] + 2na �h = 20 + 2(30)(10)( 10
60 ) = 120 kN

σ 2
Q = Var [Ub] + 4n2(a2v2

u ) �h

= [0.5(20)]2 + 4(30)2(10)2(0.5)2( 10
60 )2 = 2600 kN2

for our particular study, so that σQ = 51 kN. If Q is as-
sumed to be at least approximately lognormally distributed,
then for v = 0.5, we get

σln Q =
√

ln
(

1 + ( 51
120 )2

)
= 0.407

which is clearly what the v = 0.5 curve in the plot of
Figure 12.7a is tending toward.

The mean shows somewhat of a maximum at correlation
lengths of 1–10 m for v > 0.1. If the design load Qdes

is less than the limit state load Q , then this maximum
means that the nominal factor of safety, FS, reaches a
maximum for values of θ around half the pile length. The
reason for this maximum is currently being investigated
more carefully. However, since the mean only changes

slightly while the standard deviation increases significantly
with increasing correlation length, the probability of design
failure, that is, the probability that the actual pile capacity
Q is less than the design capacity Qdes, will show a general
increase with correlation length (assuming that ln Qdes <

µln Q ) to a limiting value when θ → ∞. In other words,
from a reliability-based design point of view, the worst-
case correlation length is when θ → ∞ and the soil acts as
a single random variable.

This observation makes sense since variance reduction
only occurs if independent random variables are averaged.
That is, if the soil acts as a single random variable, then
the variance remains unreduced and the failure probability
is maximized. The implication of this worst case is that
reliability-based pile design can conservatively ignore spa-
tial variation in soil properties so long as end bearing is
not a major component of the pile capacity (bearing ca-
pacity is significantly affected by spatial variability; see
Chapter 11). For piles that depend mostly on skin friction,
then, the reliability-based design at both serviceability and
ultimate limit states can proceed using single random vari-
ables to represent the soil’s elastic behavior (serviceability)
and shear strength (ultimate).



CHAPTER 13

Slope Stability

13.1 INTRODUCTION

Slope stability analysis is a branch of geotechnical engi-
neering that is highly amenable to probabilistic treatment
and has received considerable attention in the literature.
The earliest studies appeared in the 1970s (e.g., Matsuo and
Kuroda, 1974; Alonso, 1976; Tang et al., 1976; Vanmarcke,
1977) and have continued steadily (e.g., D’Andrea and San-
grey, 1982; Li and Lumb, 1987; Mostyn and Li, 1993;
Chowdhury and Tang, 1987; Whitman, 2000; Wolff, 1996;
Lacasse, 1994; Christian et al., 1994; Christian, 1996; La-
casse and Nadim, 1996; Hassan and Wolff, 2000; Duncan,
2000; Szynakiewicz et al., 2002; El-Ramly et al., 2002;
Griffiths and Fenton, 2004; Griffiths et al., 2006, 2007).

Two main observations can be made in relation to the ex-
isting body of work on this subject. First, the vast majority
of probabilistic slope stability analyses, while using novel
and sometimes quite sophisticated probabilistic method-
ologies, continue to use classical slope stability analysis
techniques (e.g., Bishop, 1955) that have changed little in
decades and were never intended for use with highly vari-
able soil shear strength distributions. An obvious deficiency
of the traditional slope stability approaches is that the shape
of the failure surface (e.g., circular) is often fixed by the
method; thus the failure mechanism is not allowed to “seek
out” the most critical path through the soil. Second, while
the importance of spatial correlation (or autocorrelation)
and local averaging of statistical geotechnical properties has
long been recognized by many investigators (e.g., Mostyn
and Soo, 1992), it is still regularly omitted from many prob-
abilistic slope stability analyses.

In recent years, the authors have been pursuing a more
rigorous method of probabilistic geotechnical analysis (e.g.,
Griffiths and Fenton, 2000a; Paice, 1997), in which nonlin-
ear finite-element methods (program 6.3 from Smith and

Griffiths, 2004) are combined with random-field generation
techniques. This method, called the random finite-element
method (RFEM), fully accounts for spatial correlation and
averaging and is also a powerful slope stability analysis
tool that does not require a priori assumptions relating to
the shape or location of the failure mechanism.

This chapter applies the RFEM to slope stability risk
assessment. Although the authors have also considered
c–φ slopes (Szynakiewicz et al., 2002), the next section
considers a cohesive soil and investigates the general prob-
abilistic nature of a slope. The final section develops a
risk assessment model for slopes. Both sections employ
the RFEM program called RSLOPE2D to perform the
slope stability simulations. This program is available at
http://www.engmath.dal.ca/rfem.

13.2 PROBABILISTIC SLOPE STABILITY
ANALYSIS

In order to demonstrate some of the benefits of RFEM and
to put it in context, this section investigates the probabilis-
tic stability characteristics of a cohesive slope using both
simple and more advanced methods. Initially, the slope is
investigated using simple probabilistic concepts and classi-
cal slope stability techniques, followed by an investigation
on the role of spatial correlation and local averaging. Fi-
nally, results are presented from a full RFEM approach.
Where possible throughout this section, the probability of
failure (pf ) is compared with the traditional factor of safety
(FS ) that would be obtained from charts or classical limit
equilibrium methods.

The slope under consideration, denoted the test problem,
is shown in Figure 13.1 and consists of undrained clay, with
shear strength parameters φu = 0 and cu . In this study, the
slope inclination and dimensions given by β, H , and D and
the saturated unit weight of the soil γsat are held constant,
while the undrained shear strength cu is assumed to be a
random variable. In the interests of generality, the undrained
shear strength will be expressed in dimensionless form c,
where c = cu/(γsatH ).

13.2.1 Probabilistic Description of Shear Strength

In this study, the shear strength c is assumed to be char-
acterized statistically by a lognormal distribution defined
by a mean µc and a standard deviation σc . Figure 13.2
shows the distribution of a lognormally distributed cohesion
having mean µc = 1 and standard deviation σc = 0.5. The
probability of the strength dropping below a given value
can be found from standard tables by first transforming the
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Copyright © 2008 John Wiley & Sons, Inc. ISBN: 978-0-470-17820-1



382 13 SLOPE STABILITY

b

H

Input parameters

fu = 0, gsat

mcu
, scu

, qln cu

DH

2

1

D = 2 
b = 26.6°

Figure 13.1 Cohesive slope test problem.
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Figure 13.2 Lognormal distribution with mean 1 and standard
deviation 0.5 (vc = 0.5).

lognormal to the normal:

P[c < a] = P[ln c < ln a] = P

[
Z <

ln a − µln c

σln c

]

= �

(
ln a − µln c

σln c

)
(13.1)

as is discussed in Section 1.10.9. The lognormal parame-
ters µln c and σln c given µc and σc are obtained via the
transformations

σ 2
ln c = ln

(
1 + v2

c

)
(13.2a)

µln c = ln(µc) − 1
2σ 2

ln c (13.2b)

in which the coefficient of variation of c, vc , is defined as

vc = σc

µc
(13.3)

A third parameter, the spatial correlation length θln c , will
also be considered in this study. Since the actual undrained
shear strength field is lognormally distributed, its logarithm
yields an “underlying” normal distributed (or Gaussian)
field. The spatial correlation length is measured with respect
to this underlying field, that is, with respect to ln c. In
particular, the spatial correlation length (θln c) describes the
distance over which the spatially random values will tend
to be significantly correlated in the underlying Gaussian
field. Thus, a large value of θln c will imply a smoothly
varying field, while a small value will imply a ragged
field. The spatial correlation length can be estimated from
a set of shear strength data taken over some spatial region
simply by performing the statistical analyses on the log-
data. In practice, however, θln c is not much different in
magnitude from the correlation length in real space, and, for
most purposes, θc and θln c are interchangeable given their
inherent uncertainty in the first place. In the current study,
the spatial correlation length has been nondimensionalized
by dividing it by the height of the embankment H and will
be expressed in the form

� = θln c

H
(13.4)

It has been suggested (see, e.g., Lee et al., 1983; Kul-
hawy et al., 1991) that typical vc values for undrained
shear strength lie in the range 0.1–0.5. The spatial cor-
relation length, however, is less well documented and may
well exhibit anisotropy, especially since soils are typically
horizontally layered. While the advanced analysis tools
used later in this study have the capability of modeling
an anisotropic spatial correlation field, the spatial corre-
lation, when considered, will be assumed to be isotropic.
Anisotropic site-specific applications are left to the reader.

13.2.2 Preliminary Deterministic Study

To put the probabilistic analyses in context, an initial
deterministic study has been performed assuming a uniform
soil. By a uniform soil we mean that the soil properties are
the same at all points through the soil mass. For the simple
slope shown in Figure 13.1, the factor of safety FS can
readily be obtained from Taylor’s (1937) charts or simple
limit equilibrium methods to give Table 13.1.

Table 13.1 Factors of Safety for Uniform Soil

c FS

0.15 0.88
0.17 1.00
0.20 1.18
0.25 1.47
0.30 1.77
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Figure 13.3 Linear relationship between FS and c for uniform
cohesive slope with slope angle β = 26.57◦ and depth ratio D = 2.

These results, shown plotted in Figure 13.3, indicate the
linear relationship between c and FS . The figure also shows
that the test slope becomes unstable when the shear strength
parameter falls below c = 0.17. The depth ratio mentioned
in Figure 13.3 is defined in Figure 13.1.

13.2.3 Single-Random-Variable Approach

The first probabilistic analysis to be presented here in-
vestigates the influence of giving the shear strength c a
lognormal probability density function similar to that shown
in Figure 13.2, based on a mean µc and a standard devi-
ation σc . The slope is assumed to be uniform, having the
same value of c everywhere; however, the value of c is
selected randomly from the lognormal distribution. Antic-
ipating the random-field analyses to be described later in
this section, this single-random-variable (SRV) approach
implies a spatial correlation length of � = ∞.

The probability of failure (pf ) in this case is simply equal
to the probability that the shear strength parameter c will
be less than 0.17. Quantitatively, this equals the area of the
probability density function corresponding to c ≤ 0.17.

For example, if µc = 0.25 and σc = 0.125 (vc = 0.5),
Eqs. 1.176 state that the mean and standard deviation of the
underlying normal distribution of the strength parameter are
µln c = −1.498 and σln c = 0.472.

The probability of failure is therefore given by

pf = p[c < 0.17] = �

(
ln 0.17 − µln c

σln c

)
= 0.281

where � is the cumulative standard normal distribution
function (see Section 1.10.8).

This approach has been repeated for a range of µc and
vc values, for the slope under consideration, leading to
Figure 13.4, which gives a direct relationship between the
FS and the probability of failure. It should be emphasized
that the FS in this plot is based on the value that would
have been obtained if the slope had consisted of a uniform
soil with a shear strength equal to the mean value µc from
Figure 13.3. We shall refer to this as the factor of safety
based on the mean.

From Figure 13.4, the probability of failure pf clearly
increases as the FS decreases; however, it is also shown
that for FS > 1, the probability of failure increases as the vc

increases. The exception to this trend occurs when FS < 1.
As shown in Figure 13.4, the probability of failure in such
cases is understandably high; however, the role of vc is to
have the opposite effect, with lower values of vc tending
to give the highest values of the probability of failure. This
is explained by the “bunching up” of the shear strength
distribution at low vc rapidly excluding area to the right of
the critical value of c = 0.17.

Figure 13.5 shows that the median (see Section 1.6.2),
µ̃c is the key to understanding how the probability of fail-
ure changes in this analysis. When µ̃c < 0.17, increasing
vc causes pf to fall, whereas when µ̃c > 0.17, increasing vc

causes pf to rise.
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Figure 13.4 Probability of failure versus FS (based on mean) in
SRV approach.
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Figure 13.5 Probability of failure pf versus coefficient of vari-
ation vc for different medians of c, µ̃c .

While the SRV approach described in this section leads to
simple calculations and useful qualitative comparisons be-
tween the probability of failure and the FS , the quantitative
value of the approach is more questionable. An important
observation highlighted in Figure 13.4 is that a soil with
a mean strength of µc = 0.25 (implying FS = 1.47) would
give a probability of failure as high as pf = 0.28 for a
soil with vc = 0.5. Practical experience indicates that slopes
with an FS as high as 1.47 rarely fail.

An implication of this result is that either the perfectly
correlated SRV approach is entirely pessimistic in the pre-
diction of the probability of failure, and/or it is unconserva-
tive to use the mean strength of a variable soil to estimate
the FS . Presented with a range of shear strengths at a given
site, a geotechnical engineer would likely select a “pes-
simistic” or “lowest plausible” value for design, cdes, that
would be lower than the mean. Assuming for the time be-
ing that the SRV approach is reasonable, Figure 13.6 shows
the influence on the probability of failure of two strategies
for factoring the mean strength µc prior to calculating the
FS for the test problem. In Figure 13.6a, a linear reduction
in the design strength has been proposed using a strength
reduction factor f1, where

cdes = µc(1 − f1) (13.5)

and in Figure 13.6b, the design strength has been reduced
from the mean by a factor f2 of the standard deviation,
where

cdes = µc − f2σc (13.6)

All the results shown in Figure 13.6 assume that after
factorization, cdes = 0.25, implying an FS of 1.47. The
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Figure 13.6 Influence of different design strength factoring
strategies on probability of failure–FS relationship: (a) linear
factoring and (b) standard deviation factoring; all curves assume
FS = 1.47 (based on cdes = 0.25).

probability of failure of pf = 0.28 with no strength factor-
ization, f1 = f2 = 0, has also been highlighted for the case
of vc = 0.5. In both plots, an increase in the strength reduc-
tion factor reduces the probability of failure, which is to be
expected; however, the nature of the two sets of reduction
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curves is quite different, especially for higher values of
vc . From the linear mean strength reduction (Eq. 13.5),
f1 = 0.6 would result in a probability of failure of about
0.6%. By comparison, a mean strength reduction of one
standard deviation given by f2 = 1 (Eq. 13.6) would result
in a probability of failure of about 2%. Figure 13.6a shows
a gradual reduction of the probability of failure as f1 is
increased; however, a quite different behavior is shown in
Figure 13.6b, where standard deviation factoring results in
a very rapid reduction in the probability of failure, espe-
cially for higher values of vc > 2. This curious result is
easily explained by the functional relationship between pf

and vc , where the design strength can be written as

cdes = 0.25 = µc − f2σc = µc(1 − f2vc) (13.7)

Hence as vc → 1/f2, µc → ∞. With the mean strength so
much greater than the critical value of 0.17, the probability
of failure falls very rapidly toward zero.

13.2.4 Spatial Correlation

Implicit in the SRV approach described above is that the
spatial correlation length is infinite. In other words only
uniform soils are considered in which the single property
assigned to the slope is taken at random from a lognormal
distribution. A more realistic model would properly take
account of smaller spatial correlation lengths in which the
soil strength is allowed to vary spatially within the slope.
The parameter that controls this behavior (at least under the
simple spatial variability models considered here) is the spa-
tial correlation length θln c as discussed previously. In this
work, an exponentially decaying (Markovian) correlation
function is used of the form

ρ(τ ) = e−2|τ |/θln c (13.8)

where ρ(τ ) is the familiar correlation coefficient between
two points in the soil mass which are separated by dis-
tance τ . A plot of this function is given in Figure 13.7
and indicates, for example, that the soil strength at two
points separated by τ = θln c (τ/θln c = 1) will have a cor-
relation coefficient of ρ = 0.135. This correlation function
is merely a way of representing the observation that soil
samples taken close together are more likely to have sim-
ilar properties than samples taken from far apart. There is
also the issue of anisotropic spatial correlation in that soils
are likely to have longer spatial correlation lengths in the
horizontal direction than in the vertical, due to the depo-
sitional history. While the tools described in this section
can take account of anisotropy, this refinement is left to the
reader for site-specific refinements.
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Figure 13.7 Markov correlation function.

13.2.5 Random Finite-Element Method

A powerful and general method of accounting for spatially
random shear strength parameters and spatial correlation
is the RFEM, which combines elasto-plastic finite-element
analysis with random-field theory generated using the LAS
method (Section 6.4.6). The methodology has been de-
scribed in more detail in previous chapters, so only a brief
description will be repeated here.

A typical finite-element mesh for the test problem con-
sidered in this section is shown in Figure 13.8. The majority
of the elements are square; however, the elements adjacent
to the slope are degenerated into triangles.

The code developed by the authors enables a random field
of shear strength values to be generated and mapped onto
the finite-element mesh, taking full account of element size
in the local averaging process. In a random field, the value
assigned to each cell (or finite element in this case) is itself
a random variable; thus, the mesh of Figure 13.8, which

2H 2H 2H

H

HUnit weight g

Figure 13.8 Mesh used for RFEM slope stability analysis.
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Figure 13.9 Influence of correlation length in RFEM analysis:
(a) � = 0.2; (b) � = 2.0.

has 910 finite elements, contains 910 random variables.
The random variables can be correlated to one another by
controlling the spatial correlation length θln c as described
previously; hence, the SRV approach discussed in the
previous section, where the spatial correlation length is
implicitly set to infinity, can now be viewed as a special
case of a much more powerful analytical tool. Figures 13.9a
and 13.9b show typical meshes corresponding to different
spatial correlation lengths. Figure 13.9a shows a relatively
low spatial correlation length of � = 0.2, and Figure 13.9b
shows a relatively high spatial correlation length of � = 2.
Light regions depict “weak” soil. It should be emphasized
that both these shear strength distributions come from the
same lognormal distribution, and it is only the spatial
correlation length that is different.

In brief, the analyses involve the application of grav-
ity loading and the monitoring of stresses at all the Gauss
points. The slope stability analyses use an elastic-perfectly
plastic stress–strain law with a Tresca failure criterion
which is appropriate for “undrained clays.” If the Tresca
criterion is violated, the program attempts to redistribute ex-
cess stresses to neighboring elements that still have reserves
of strength. This is an iterative process which continues un-
til the Tresca criterion and global equilibrium are satisfied
at all points within the mesh under quite strict tolerances.

Plastic stress redistribution is accomplished using a vis-
coplastic algorithm with 8-node quadrilateral elements and
reduced integration in both the stiffness and stress redistri-
bution parts of the algorithm. The theoretical basis of the
method is described more fully in Chapter 6 of the text by
Smith and Griffiths (2004), and for a detailed discussion of
the method applied to slope stability analysis, the reader is
referred to Griffiths and Lane (1999).

For a given set of input shear strength parameters (mean,
standard deviation, and spatial correlation length), Monte
Carlo simulations are performed. This means that the slope
stability analysis is repeated many times until the statistics
of the output quantities of interest become stable. Each
“realization” of the Monte Carlo process differs in the
locations at which the strong and weak zones are situated.
For example, in one realization, weak soil may be situated
in the locations where a critical failure mechanism develops
causing the slope to fail, whereas in another, strong soil in
those locations means that the slope remains stable.

In this study, it was determined that 1000 realizations
of the Monte Carlo process for each parametric group was
sufficient to give reliable and reproducible estimates of the
probability of failure, which was simply defined as the
proportion of the 1000 Monte Carlo slope stability analyses
that failed.

In this study,“failure” was said to have occurred if, for
any given realization, the algorithm was unable to converge
within 500 iterations. While the choice of 500 as the
iteration ceiling is subjective, Figure 13.10 confirms, for the
case of µc = 0.25 and � = 1, that the probability of failure
defined this way, is stable for iteration ceilings greater than
about 200.

13.2.6 Local Averaging

The input parameters relating to the mean, standard devia-
tion, and spatial correlation length of the undrained strength
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Figure 13.10 Influence of plastic iteration ceiling on computed
probability of failure.
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are assumed to be defined at the point level. While statis-
tics at this resolution are obviously impossible to measure
in practice, they represent a fundamental baseline of the in-
herent soil variability which can be corrected through local
averaging to take account of the sample size.

In the context of the RFEM approach, each element is as-
signed a constant property at each realization of the Monte
Carlo process. The assigned property represents an average
over the area of each finite element used to discretize the
slope. If the point distribution is normal, local arithmetic
averaging is used which results in a reduced variance but
the mean is unaffected. In a lognormal distribution, how-
ever, local geometric averaging is used (see Section 4.4.2),
and both the mean and the standard deviation are reduced
by this form of averaging as is appropriate for situations in
which low-strength regions dominate the effective strength.
The reduction in both the mean and standard deviation is
because from Eqs. 1.175a and 1.175b, the mean of a log-
normally random variable depends on both the mean and
the variance of the underlying normal log-variable. Thus,
the coarser the discretization of the slope stability prob-
lem and the larger the elements, the greater the influence
of local averaging in the form of a reduced mean and stan-
dard deviation. These adjustments to the points statistics are
fully accounted for in the RFEM and are implemented be-
fore the elasto-plastic finite-element slope stability analysis
takes place.

13.2.7 Variance Reduction over Square Finite
Element

In this section, the algorithm used to compute the locally
averaged statistics applied to the mesh is described. A
lognormal distribution of a random variable c, with point
statistics given by a mean µc , a standard deviation σc , and
spatial correlation length θln c is to be mapped onto a mesh
of square finite elements. Each element will be assigned a
single value of the undrained strength parameter.

The locally averaged statistics over the elements will be
referred to here as the “area” statistics with the subscript A.
Thus, with reference to the underlying normal distribution
of ln c, the mean, which is unaffected by local averaging, is
given by µln cA , and the standard deviation, which is affected
by local averaging is given by σln cA .

The variance reduction factor due to local averaging γ

is defined as (see also Section 3.4)

γ (A) =
(

σln cA

σln c

)2

(13.9)

and is a function of the element size, A, and the correlation
function from Eq. 13.8, repeated here explicitly for the two-
dimensional isotropic case (i.e., the correlation length is

assumed the same in any direction for simplicity):

ρ(τ1, τ2) = exp

{
− 2

θln c

√
τ 2

1 + τ 2
2

}
(13.10)

where τ1 is the difference between the x1 coordinates of
any two points in the random field, and τ2 is the difference
between the x2 coordinates. We assume that x1 is measured
in the horizontal direction and x2 is measured in the vertical
direction.

For a square finite element of side length αθln c as shown
in Figure 13.11, so that A = αθln c × αθln c , it can be shown
(Vanmarcke, 1984) that for an isotropic spatial correlation
field, the variance reduction factor is given by

γ (A) = 4

(αθln c)4

∫ αθln c

0

∫ αθln c

0
(αθln c − x1)(αθln c − x2)

× exp

{
− 2

θln c

√
x 2 + y2

}
dx1 dx2 (13.11)

Numerical integration of this function leads to the variance
reduction values given in Table 13.2 and shown plotted in
Figure 13.11.

Figure 13.11 indicates that elements that are small rel-
ative to the correlation length (α → 0) lead to very little
variance reduction [γ (A) → 1], whereas elements that are
large relative to the correlation length can lead to very sig-
nificant variance reduction [γ (A) → 0].

The statistics of the underlying log-field, including local
arithmetic averaging, are therefore given by

σln cA = σln c

√
γ (A) (13.12a)
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Figure 13.11 Variance reduction when arithmetically averaging
over square element of side length αθln c with Markov correlation
function (A = αθln c × αθln c).
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Table 13.2 Variance Reduction due to Arithmetic
Averaging over Square Element

α γ (A)

0.01 0.9896
0.10 0.9021
1.00 0.3965

10.00 0.0138

and
µln cA = µln c (13.12b)

which leads to the following statistics of the lognormal
field, including local geometric averaging, that is actually
mapped onto the finite-element mesh (from Eqs. 1.175a and
1.175b)

µcA = exp
{
µln c + 1

2σ 2
ln cγ (A)

}
(13.13a)

σcA = µcA

√
exp{σ 2

ln cγ (A)} − 1 (13.13b)

from which it is easy to see that local geometric averaging
affects both the mean and the standard deviation. Recall
also that arithmetic averaging of ln c corresponds to geo-
metric averaging of c (see Section 4.4.2 for more details).

It is instructive to consider the range of locally averaged
statistics since this helps to explain the influence of the
spatial correlation length �(= θln c/H ) on the probability
of failure in the RFEM slope analyses described in the next
section.

Expressing the mean and the coefficient of variation of
the locally averaged variable as a proportion of the point
values of these quantities leads to Figures 13.12a and
13.12b, respectively. In both cases, there is virtually no
reduction due to local averaging for elements that are small
relative to the spatial correlation length (α → 0). This is to
be expected since the elements are able to model the point
field quite accurately. For larger elements relative to the
spatial correlation length, however, Figure 13.12a indicates
that the average of the locally averaged field tends to a
constant equal to the median, and Figure 13.12b indicates
that the coefficient of variation of the locally averaged field
tends to zero.

From Eqs. 13.12 and 13.13, the expression plotted in
Figure 13.12a for the mean can be written as

µcA

µc
= 1

(1 + v2
c )[1−γ (A)]/2

(13.14)

which states that when γ (A) → 0, µcA/µc → 1/
√

1 + V 2
c ,

thus µcA → eµln c = µ̃c , which is the median of c. Simi-
larly, the expression plotted in Figure 13.12b for the co-
efficient of variation of the locally geometrically averaged
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Figure 13.12 Influence of element size, expressed in the form
of size parameter α, on statistics of local averages: influence on
the (a) mean and (b) coefficient of variation.

variable can be written as

vcA

vc
=

√
(1 + v2

c )γ (A) − 1

vc
(13.15)

which states that when γ (A) → 0, vcA/vc → 0, thus
vcA → 0.

Further examination of Eqs. 13.14 and 13.15 shows that
for all values of γ (A) the median of the geometric average
equals the median of c:

µ̃cA = µ̃c (13.16)

Hence it can be concluded that:

1. Local geometric averaging reduces both the mean and
the variance of a lognormal point distribution.

2. Local geometric averaging preserves the median of
the point distribution.



PROBABILISTIC SLOPE STABILITY ANALYSIS 389

3. In the limit as A → ∞ and/or � → 0, local geometric
averaging removes all variance, and the mean tends
to the median.

13.2.8 Locally Averaged SRV Approach

In this section the probability of failure is reworked with
the SRV approach using properties derived from local
averaging over an individual finite element, termed finite-
element locally averaged properties throughout the rest
of this section. With reference to the mesh shown in
Figure 13.8, the square elements have a side length of
0.1H , thus � = 0.1/α. Figure 13.13 shows the probability
of failure pf as a function of � for a range of input
point coefficients of variation, with the point mean fixed at
µc = 0.25. The probability of failure is defined, as before,
by p[c < 0.17], but this time the calculation is based on the
finite-element locally averaged properties, µcA and σcA from
Eqs. 13.13. The Figure clearly shows two tails to the results,
with pf → 1 as � → 0 for all vc > 1.0783, and pf → 0 as
� → 0 for all vc < 1.0783. The horizontal line at pf = 0.5
is given by vc = 1.0783, which is the special value of
the coefficient of variation that causes the median of c
to have value µ̃c = 0.17. Recalling Table 13.1, this is the
critical value of c that would give FS = 1 in the test slope.
Higher values of vc lead to µ̃c < 0.17 and a tendency for
pf → 1 as � → 0. Conversely, lower values of vc lead to
µ̃c > 0.17 and a tendency for pf → 0. Figure 13.14 shows
the same data plotted the other way round with vc along
the abscissa. This Figure clearly shows the full influence of
spatial correlation in the range 0 ≤ � < ∞. All the curves
cross over at the critical value of vc = 1.0783, and it is of
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Figure 13.13 Probability of failure versus spatial correlation
length based on finite-element locally geometrically averaged
properties; the mean is fixed at µc = 0.25.
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interest to note the step function corresponding to � = 0
when pf changes suddenly from zero to unity.

It should be emphasized that the results presented in this
section involved no finite-element analysis and were based
solely on an SRV approach with statistical properties based
on finite-element locally geometrically averaged properties
based on a typical finite element of the mesh in Figure 13.8.

13.2.9 Results of RFEM Analyses

In this section, the results of full nonlinear RFEM analyses
with Monte Carlo simulations are described, based on a
range of parametric variations of µc , vc , and �.

In the elasto-plastic RFEM approach, the failure mech-
anism is free to “seek out” the weakest path through the
soil. Figure 13.15 shows two typical random field realiza-
tions and the associated failure mechanisms for slopes with
� = 0.5 and � = 2. The convoluted nature of the failure
mechanisms, especially when � = 0.5, would defy anal-
ysis by conventional slope stability analysis tools. While
the mechanism is attracted to the weaker zones within the
slope, it will inevitably pass through elements assigned
many different strength values. This weakest path determi-
nation, and the strength averaging that goes with it, occurs
quite naturally in the finite-element slope stability method
and represents a very significant improvement over tradi-
tional limit equilibrium approaches to probabilistic slope
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Θ = 0.5

Θ = 2.0

Figure 13.15 Typical random-field realizations and deformed
mesh at slope failure for two different spatial correlation lengths.
Light zones are weaker.

stability, in which local averaging, if included at all, has
to be computed over a failure mechanism that is preset
by the particular analysis method (e.g., a circular failure
mechanism when using Bishop’s method).

Fixing the point mean strength at µc = 0.25, Fig-
ures 13.16 and 13.17 show the effect of the spatial cor-
relation length � and the coefficient of variation vc on the
probability of failure for the test problem. Figure 13.16
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Figure 13.16 Probability of failure versus spatial correlation
length from RFEM; the mean is fixed at µc = 0.25.

clearly indicates two branches, with the probability of fail-
ure tending to unity or zero for higher and lower values
of vc , respectively. This behavior is qualitatively simi-
lar to that observed in Figure 13.13, in which an SRV
approach was used to predict the probability of failure
based solely on finite-element locally averaged properties.
Figure 13.17 shows the same results as Figure 13.16, but
plotted the other way round with the coefficient of vari-
ation along the abscissa. Figure 13.17 also demonstrates
that when � becomes large, corresponding approximately
to an SRV approach with no local averaging, the proba-
bility of failure is overestimated (conservative) when the
coefficient of variation is relatively small and underesti-
mated (unconservative) when the coefficient of variation
is relatively high. Figure 13.17 also demonstrates that the
SRV approach described earlier in the section, which gave
pf = 0.28 corresponding to µc = 0.25 and vc = 0.5 with
no local averaging, is indeed pessimistic. The RFEM results
show that the inclusion of spatial correlation and local aver-
aging in this case will always lead to a smaller probability
of failure.

Comparison of Figures 13.13 and 13.14 with Figures
13.16 and 13.17 highlights the influence of the finite-
element approach to slope stability, where the failure
mechanism is free to locate itself optimally within the mesh.
From Figures 13.14 and 13.17, it is clear that the “weak-
est path” concept made possible by the RFEM approach
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Figure 13.17 Probability of failure versus coefficient of varia-
tion from RFEM; the mean is fixed at µc = 0.25.
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has resulted in the crossover point falling to lower values
of both vc and pf . With only finite-element local averag-
ing, the crossover occurred at vc = 1.0783, whereas by the
RFEM it occurred at vc ≈ 0.65. In terms of the probabil-
ity of failure with only finite-element local averaging, the
crossover occurred at pf = 0.5, whereas by the RFEM it
occurred at pf ≈ 0.38. The RFEM solutions show that the
SRV approach becomes unconservative over a wider range
of vc values than would be indicated by finite- element local
averaging alone.

Figure 13.18 gives a direct comparison between Figures
13.13 and 13.16, indicating clearly that for higher values
of vc , RFEM always gives a higher probability of failure
than when using finite- element local averaging alone. This
is caused by the weaker elements in the distribution domi-
nating the strength of the slope and the failure mechanism
“seeking out” the weakest path through the soil.

At lower values of vc , the locally averaged results tend to
overestimate the probability of failure and give conservative
results compared with RFEM. In this case the stronger
elements of the slope are dominating the solution, and the
higher median combined with the “bunching up” of the
locally averaged solution at low values of � means that
potential failure mechanisms cannot readily find a weak
path through the soil.
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Figure 13.18 Comparison of the probabilities of failure pre-
dicted by RFEM and by finite-element local geometric averaging
alone; the curves which include points come from the random
finite-element method; the mean is fixed at µc = 0.25.

In all cases, as � increases, the RFEM and the locally
averaged solutions converge on the SRV solution corre-
sponding to � = ∞ with no local averaging. The pf = 0.28
value, corresponding to vc = 0.5, and discussed earlier in
the section, is also indicated in Figure 13.18.

All of the above results and discussion in this section so
far were applied to the test slope from Figure 13.1 with the
mean strength fixed at µc = 0.25 corresponding to a factor
of safety (based on the mean) of 1.47. In the next set of
results µc is varied while vc is held constant at 0.5. Figure
13.19 shows the relationship between FS (based on the
mean) and pf assuming finite-element local averaging only,
and Figure 13.20 shows the same relationship as computed
using RFEM.

Figure 13.19, based on finite-element local averaging
only, shows the full range of behavior for 0 ≤ � < ∞.
The figure shows that � only starts to have a significant
influence on the FS vs. pf relationship when the correlation
length becomes significantly smaller than the slope height
(� << 1). The step function in which pf jumps from zero
to unity occurs when � = 0 and corresponds to a local
average having zero variance. In this limiting case, the
local average of the soil is deterministic, yielding a constant
strength everywhere in the slope. With vc = 0.5, the critical
value of mean shear strength that would give µcA = µ̃c =
0.17 is easily shown by Eq. 13.14 to be µc = 0.19, which
corresponds to an FS = 1.12. For higher values of �,
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Figure 13.19 Probability of failure versus FS (based on mean)
using finite-element local geometric averaging only for test slope;
the coefficient of variation is fixed at vc = 0.5.
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the relationship between FS and pf is quite bunched up
and generally insensitive to �. For example, there is little
difference between the curves corresponding to � = ∞ and
� = 0.5. It should also be observed from Figure 13.19 that
for FS > 1.12, failure to account for local averaging by
assuming � = ∞ is conservative, in that the predicted pf is
higher than it should be. When FS < 1.12, however, failure
to account for local averaging is unconservative.

Figure 13.20 gives the same relationships as computed
using RFEM. By comparison with Figure 13.19, the RFEM
results are more spread out, implying that the probability
of failure is more sensitive to the spatial correlation length
�. Of greater significance is that the crossover point has
again shifted by RFEM as it seeks out the weakest path
through the slope. In Figure 13.20, the crossover occurs
at FS ≈ 1.37, which is significantly higher and of greater
practical significance than the crossover point of FS ≈ 1.12
by finite-element local geometric averaging alone. The
theoretical line corresponding to � = ∞ is also shown in
this plot. From a practical viewpoint, the RFEM analysis
indicates that failure to properly account for local averaging
is unconservative over a wider range of factors of safety
than would be the case by finite-element local averaging
alone. To further highlight this difference, the particular
results from Figures 13.19 and 13.20 corresponding to � =
0.5 (spatial correlation length equal to half the embankment
height) have been replotted in Figure 13.21.
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Figure 13.20 Probability of failure versus FS (based on mean)
using RFEM for test slope; the coefficient of variation is fixed at
vc = 0.5.
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(based on mean) using finite-element local geometric averaging
alone with RFEM for test slope; vc = 0.5 and �ln c = 0.5.

13.2.10 Summary

The section has investigated the probability of failure of
a cohesive slope using both simple and more advanced
probabilistic analysis tools. The simple approach treated
the strength of the entire slope as a single random variable,
ignoring spatial correlation and local averaging. In the sim-
ple studies, the probability of failure was estimated as the
probability that the shear strength would fall below a criti-
cal value based on a lognormal probability density function.
These results led to a discussion on the appropriate choice
of a design shear strength value suitable for determinis-
tic analysis. Two factorization methods were proposed that
were able to bring the probability of failure and the FS
more into line with practical experience.

The second half of the section implemented the RFEM on
the same test problem. The nonlinear elasto-plastic analyses
with Monte Carlo simulation were able to take full ac-
count of spatial correlation and local averaging and observe
their impact on the probability of failure using a parametric
approach. The elasto-plastic finite-element slope stability
method makes no a priori assumptions about the shape or
location of the critical failure mechanism and, therefore,
offers very significant benefits over traditional limit equi-
librium methods in the analysis of spatially variable soils.
In the elasto-plastic RFEM, the failure mechanism is free to
seek out the weakest path through the soil, and it has been
shown that this generality can lead to higher probabilities
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of failure than could be explained by finite-element local
averaging alone.

In summary, simplified probabilistic analysis in which
spatial variability is ignored by assuming perfect correla-
tion can lead to unconservative estimates of the probability
of failure. This effect is most pronounced at relatively
low factors of safety (Figure 13.20) or when the coef-
ficient of variation of the soil strength is relatively high
(Figure 13.18).

13.3 SLOPE STABILITY RELIABILITY MODEL

The failure prediction of a soil slope has been a long-
standing geotechnical problem and one which has attracted
a wide variety of solutions. Traditional approaches to the
problem generally involve assuming that the soil slope is
homogeneous (spatially constant) or possibly layered, and
techniques such as Taylor’s (1937) stability coefficients for
frictionless soils, the method of slices, and other more
general methods involving arbitrary failure surfaces have
been developed over the years. The main drawback to
these methods is that they are not able to easily find the
critical failure surface in the event that the soil properties
are spatially varying.

In the realistic case where the soil properties vary ran-
domly in space, the slope stability problem is best captured
via a nonlinear finite-element model which has the dis-
tinct advantage of allowing the failure surface to seek out
the path of least resistance, as pointed out in the previous
section. In this section such a model is employed, which,
when combined with a random-field simulator, allows the
realistic probabilistic evaluation of slope stability (Fenton
and Griffiths, 2005c). This work builds on the previous
section, which looked in some detail at the probability of
failure of a single slope geometry. Two slope geometries
are considered in this section, one shallower with a 2 : 1
gradient and the other steeper with a 1 : 1 gradient. Both
slopes are assumed to be composed of undrained clay, with
φu = 0, of height H with the slope resting on a foundation
layer, also of depth H . The finite-element mesh for the 2 : 1
gradient slope is shown in Figure 13.22. The 1 : 1 slope is

2H 2H 2H

H

HUnit weight g

Figure 13.22 Mesh used for stability analysis of 2 : 1 gradient
slope.

similar, except that the horizontal length of the slope is H
rather than 2H .

The soil is represented by a random spatially varying
undrained cohesion field cu (x) which is assumed to be
lognormally distributed, where x is the spatial position.
The cohesion has mean µcu and standard deviation σcu and
is assumed to have an exponentially decaying (Markovian)
correlation structure:

ρln cu (τ ) = e−2|τ |/θln cu (13.17)

where τ is the distance between two points in the field. Note
that the correlation structure has been assumed isotropic
in this study. The use of an anisotropic correlation is
straightforward, within the framework developed here, but
is considered a site-specific extension. In this section it
is desired to investigate the stochastic behavior of slope
stability for the simpler isotropic case, leaving the effect of
anisotropy for the reader.

The correlation function has a single parameter, θln cu ,
the correlation length. Because cu is assumed to be log-
normally distributed, its logarithm, ln cu , is normally dis-
tributed. In this study, the correlation function is measured
relative to the underlying normally distributed field. Thus,
ρln cu (τ ) gives the correlation coefficient between ln cu (x)
and ln cu (x′) at two points in the field separated by the dis-
tance τ = |x − x′|. In practice, the parameter θln cu can be
estimated from spatially distributed cu samples by using
the logarithm of the samples rather than the raw data them-
selves. If the actual correlation between points in the cu

field is desired, the following transformation can be used
(Vanmarcke, 1984):

ρcu (τ ) = exp{ρln cu (τ )σ 2
ln cu

} − 1

exp{σ 2
ln cu

} − 1
(13.18)

The spatial correlation length can be nondimensionalized by
dividing it by the slope height H as was done in Eq. 13.4:

� = θln cu

H
(13.19)

Thus, the results given here can be applied to any size
problem, so long as it has the same slope and same overall
bedrock depth–slope height ratio D . The standard deviation
σcu may also be expressed in terms of the dimensionless
coefficient of variation

vc = σcu

µcu

(13.20)

If the mean and variance of the underlying ln cu field are
desired, they can be obtained through the transformations

σ 2
ln cu

= ln
(
1 + v2

c

)
, µln cu = ln(µcu ) − 1

2σ 2
ln cu
(13.21)
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By using Monte Carlo simulation, where the soil slope is
simulated and analyzed by the finite-element method re-
peatedly, estimates of the probability of failure are obtained
over a range of soil statistics. The failure probabilities
are compared to those obtained using a harmonic aver-
age of the cohesion field employed in Taylor’s stability
coefficient method, and very good agreement is found. The
study indicates that the stability of a spatially varying soil
slope is well modeled using a harmonic average of the soil
properties.

13.3.1 Random Finite-Element Method

The slope stability analyses use an elastic-perfectly plas-
tic stress–strain law with a Tresca failure criterion. Plastic
stress redistribution is accomplished using a viscoplastic
algorithm which uses 8-node quadrilateral elements and
reduced integration in both the stiffness and stress redis-
tribution parts of the algorithm. The theoretical basis of the
method is described more fully in Chapter 6 of the text
by Smith and Griffiths (2004). The method is discussed in
more detail in the previous section.

In brief, the analyses involve the application of grav-
ity loading and the monitoring of stresses at all the Gauss
points. If the Tresca criterion is violated, the program at-
tempts to redistribute those stresses to neighboring elements
that still have reserves of strength. This is an iterative pro-
cess which continues until the Tresca criterion and global
equilibrium are satisfied at all points within the mesh under
quite strict tolerances.

In this study,“failure” is said to have occurred if, for any
given realization, the algorithm is unable to converge within
500 iterations (see Figure 13.10). Following a set of 2000
realizations of the Monte Carlo process the probability of
failure is simply defined as the proportion of these realiza-
tions that required 500 or more iterations to converge.

The RFEM combines the deterministic finite -element
analysis with a random-field simulator, which, in this study,
is the LAS discussed in Section 6.4.6. The LAS algorithm
produces a field of random element values, each represent-
ing a local average of the random field over the element
domain, which are then mapped directly to the finite el-
ements. The random elements are local averages of the
log-cohesion, ln cu , field. The resulting realizations of the
log-cohesion field have correlation structure and variance
correctly accounting for local averaging over each element.
Much discussion of the relative merits of various methods
of representing random fields in finite-element analysis has
been carried out in recent years (see, e.g., Li and Der Ki-
ureghian, 1993). While the spatial averaging discretization
of the random field used in this study is just one approach
to the problem, it is appealing in the sense that it reflects
the simplest idea of the finite-element representation of a

continuum as well as the way that soil samples are typi-
cally taken and tested in practice, that is, as local averages.
Regarding the discretization of random fields for use in
finite-element analysis, Matthies et al. (1997, p. 294) makes
the following comment: “One way of making sure that the
stochastic field has the required structure is to assume that
it is a local averaging process,” referring to the conversion
of a nondifferentiable to a differentiable (smooth) stochastic
process. Matthies further goes on to say that the advantage
of the local average representation of a random field is that
it yields accurate results even for rather coarse meshes.

Figure 13.23 illustrates two possible realizations arising
from the RFEM for the 2 : 1 slope—similar results were
observed for the 1 : 1 slope. In this figure, dark regions
correspond to stronger soil. Notice how convoluted the
failure region is, particularly at the smaller correlation
length. It can be seen that the slope failure involves the
plastic deformation of a region around a failure “surface”
which undulates along the weakest path. Clearly, failure
is more complex than just a rigid “circular” region sliding
along a clearly defined interface, as is typically assumed.

13.3.2 Parametric Studies

To keep the study nondimensional, the soil strength is
expressed in the form of a dimensionless shear strength:

c = cu

γ H
(13.22)

which, if cu is random, has mean

µc = µcu

γ H
(13.23)

where γ is the unit weight of the soil, assumed in this
study to be deterministic. In the 2 : 1 slope case where the
cohesion field is assumed to be everywhere the same and

Θ = 0.5

Θ = 2.0

Figure 13.23 Two typical failed random-field realizations. Low-
strength regions are light.
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equal to µcu , a value of µc = 0.173 corresponds to a factor
of safety FS = 1.0, which is to say that the slope is on the
verge of failure. For the 1 : 1 slope, µc = 0.184 corresponds
to a factor of safety FS = 1.0. Both of these values were
determined by finding the deterministic value of cu needed
to just achieve failure in the finite-element model, bearing
in mind that the failure surface cannot descend below the
base of the model. These values are almost identical to what
would be identified using Taylor’s charts (Taylor, 1937),
although as will be seen later, small variations in the choice
of the critical values of µc can result in significant changes
in the estimated probability of slope failure, particularly for
larger factors of safety.

This study considers the following values of the input
statistics. For the 2 : 1 slope, µc is varied over the following
values:

µc = 0.15, 0.173, 0.20, 0.25, 0.30

and over

µc = 0.15, 0.184, 0.20, 0.25, 0.30

for the 1 : 1 slope. For the normalized correlation length �

and coefficient of variation vc , the following ranges were
investigated:

� = 0.10, 0.20, 0.50, 1.00, 2.00, 5.00, 10.0

vc = 0.10, 0.20, 0.50, 1.00, 2.00, 5.00

For each set of the above parameters, 2000 realizations
of the soil field were simulated and analyzed, from which
the probability of slope failure was estimated. This section
concentrates on the development of a failure probability
model, using a harmonic average of the soil, and compares
the simulated probability estimates to those predicted by
the harmonic average model.

13.3.3 Failure Probability Model

In Taylor’s stability coefficient approach to slope stability
(Taylor, 1937), the coefficient

c = cu

γ H
(13.24)

assumes that the soil is completely uniform, having co-
hesion equal to cu everywhere. This coefficient may then
be compared to the critical coefficient obtained from Tay-
lor’s charts to determine if slope failure will occur or not.
For the slope geometry studied here, slope failure will oc-
cur if c < ccrit where ccrit = 0.173 for the 2 : 1 slope and
ccrit = 0.184 for the 1 : 1 slope.

In the case where cu is randomly varying in space,
two issues present themselves. First of all Taylor’s method
cannot be used on a nonuniform soil, and, second, Eq. 13.24
now includes a random quantity on the right-hand side

[namely, cu = cu (x)] so that c becomes random. The first
issue can be solved by finding some representative or
equivalent value of cu , which will be referred to here as
c̄u , such that the stability coefficient method still holds for
the slope. That is, c̄u would be the cohesion of a uniform
soil such that it has the same factor of safety as the real
spatially varying soil.

The question now is: How should this equivalent soil
cohesion value be defined? First of all, each soil realization
will have a different value of c̄u , so that Eq. 13.24 is still
a function of a random quantity, namely

c = c̄u

γ H
(13.25)

If the distribution of c̄u is found, the distribution of c can be
derived. The failure probability of the slope then becomes
equal to the probability that c is less than the Taylor critical
value ccrit.

This line of reasoning suggests that c̄u should be de-
fined as some sort of average of cu over the soil domain
where failure is occurring. Three common types of averages
present themselves, as discussed in Section 4.4:

1. Arithmetic Average: The arithmetic average over
some domain, A, is defined as

Xa = 1

n

n∑
i=1

cui = 1

A

∫
A

cu (x) dx (13.26)

for the discrete and continuous cases, where the do-
main A is assumed to be divided up into n samples in
the discrete case. The arithmetic average weights all
of the values of cu equally. In that the failure surface
seeks a path through the weakest parts of the soil, this
form of averaging is not deemed to be appropriate for
this problem.

2. Geometric Average: The geometric average over
some domain, A, is defined as

Xg =
(

n∏
i=1

cui

)1/n

= exp

{
1

A

∫
A

ln cu (x) dx
}

(13.27)
The geometric average is dominated by low values
of cu and, for a spatially varying cohesion field,
will always be less than the arithmetic average. This
average potentially reflects the reduced strength as
seen along the failure path and has been found by
the authors (Fenton and Griffiths, 2002, 2003) to
well represent the bearing capacity and settlement
of footings founded on spatially random soils. The
geometric average is also a “natural” average of the
lognormal distribution since an arithmetic average of
the underlying normally distributed random variable,
ln cu , leads to the geometric average when converted
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back to the lognormal distribution. Thus, if cu is
lognormally distributed, its geometric local average
will also be lognormally distributed with the median
preserved.

3. Harmonic Average: The harmonic average over some
domain, A, is defined as

Xh =
[

1

n

n∑
i=1

1

cui

]−1

=
[

1

A

∫
A

dx
cu (x)

]−1

(13.28)

This average is even more strongly influenced by
small values than is the geometric average. In general,
for a spatially varying random field, the harmonic
average will be smaller than the geometric average,
which in turn is smaller than the arithmetic average.
Unfortunately, the mean and variance of the harmonic
average, for a spatially correlated random field, are not
easily found.

Putting aside for the moment the issue of how to compute
the equivalent undrained cohesion, c̄u , the size of the
averaging domain must also be determined. This should
approximately equal the area of the soil which fails during
a slope subsidence. Since the value of c̄u changes only
slowly with changes in the averaging domain, only an
approximate area need be determined. The area selected
in this study is a parallelogram, as shown in Figure 13.24,
having slope length equal to the length of the slope and
horizontal surface length equal to H . For the purposes of
computing the average, it is further assumed that this area
can be approximated by a rectangle of dimension w × h
(averages over rectangles are generally easier to compute).
Thus, a rectangular w × h area is used to represent a
roughly circular band (on average) within which the soil
is failing in shear.

In this study, the values of w and h are taken to be

w = H

sin β
, h = H sin β (13.29)

such that w × h = H 2, where β is the slope angle (26.6◦ for
the 2 : 1 slope and 45◦ for the 1 : 1 slope). It appears, when

H
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h

2H 2H 2H

H

HA

Figure 13.24 Assumed averaging domain (1 : 1 slope is similar).

comparing Figure 13.23 to 13.24, that the assumed averag-
ing domain of Figure 13.24 is smaller than the deformed
regions seen in Figure 13.23. A general prescription for the
size of the averaging domain is not yet known, although
it should capture the approximate area of the soil involved
in resisting the slope deformation. The area assumed in
Figure 13.24 is to be viewed as an initial approximation
which, as will be seen, yields surprisingly good results. It
is recognized that the true average will be of the minimum
soil strengths within a roughly circular band—presumably
the area of this band is on average approximated by the
area shown in Figure 13.24.

With an assumed averaging domain, A = w × h , the
geometric average leads to the following definition for c̄u :

c̄u = Xg = exp

{
1

A

∫
A

ln cu (x) dx
}

(13.30)

which, if cu is lognormally distributed, is also lognormally
distributed. The resulting coefficient

c = c̄u

γ H
(13.31)

is then also lognormally distributed with mean and variance

µln c = µln cu − ln(γ H ) (13.32a)

σ 2
ln c = σ 2

ln c̄u
= γ (w, h)σ 2

ln cu
(13.32b)

The function γ (w, h) is the so-called variance function,
which lies between 0 and 1, and gives the amount that
the variance of a local average is reduced from the point
value. It is formally defined as the average of correlations
between every pair of points in the averaging domain:

γ (w, h) = 1

A2

∫
A

∫
A
ρ(ξ − η) dξ dη (13.33)

Solutions to this integral, albeit sometimes approximate,
exist for most common correlation functions. Alternatively,
the integral can be calculated accurately using a numerical
method such as Gauss quadrature. See Appendix C for more
details.

The probability of failure pf can now be computed by
assuming that Taylor’s stability coefficient method holds
when using this equivalent value of cohesion, namely by
computing

pf = P [c < ccrit] = �

(
ln ccrit − µln c

σln c

)
(13.34)

where the critical stability coefficient for the 2 : 1 slope is
ccrit = 0.173 and for the 1 : 1 slope is ccrit = 0.184; � is
the cumulative distribution function for the standard nor-
mal. Unfortunately, the geometric average for c̄u leads to
predicted failure probabilities which significantly under-
estimate the probabilities determined via simulation, and
changes in the averaging domain size does not particularly
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improve the prediction. This means that the soil strength as
“seen” by the finite-element model is even lower, in gen-
eral, than that predicted by the geometric average. Thus, the
geometric average was abandoned as the correct measure
for c̄u .

Since the harmonic average yields values which are even
lower than the geometric average, the harmonic average
over the same domain, A = w × h , is now investigated as
representative of c̄u , namely

c̄u = Xh =
[

1

A

∫
A

dx
cu (x)

]−1

(13.35)

Unfortunately, so far as the authors are aware, no relatively
simple expressions exist for the moments of c̄u , as defined
above, for a spatially correlated random field. The authors
are continuing research on this problem but, for the time
being, these moments can be obtained by simulation. It
may seem questionable to be developing a probabilistic
model with the nominal goal of eliminating the necessity
of simulation, when that model still requires simulation.
However, the moments of the harmonic mean can be arrived
at in a small fraction of the time taken to perform the
nonlinear slope stability simulation.

In order to compute probabilities using the statistics
of c̄u , it is necessary to know the distribution of c =
c̄u/(γ H ). For lognormally distributed cu , the distribution
of the harmonic average is not simple. However, since
c̄u is strictly nonnegative (cu ≥ 0), it seems reasonable
to suggest that c̄u is at least approximately lognormal. A
histogram of the harmonic averages obtained in the case
where vc = 0.5 and � = 0.5 is shown in Figure 13.25,
along with a fitted lognormal distribution. The p-value
for the chi-Square goodness-of-fit test is 0.44, indicating
that the lognormal distribution is very reasonable, as also
indicated by the plot. Similar results were obtained for other
parameter values.
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Figure 13.25 Histogram of harmonic averages along with fitted
lognormal distribution.

The procedure to estimate the mean and variance of
the harmonic average c̄u for each parameter set (µc , vc ,
and �) considered in this study involves (a) generating
a large number of random cohesion fields, each of di-
mension w × h , (b) computing the harmonic average of
each using Eq. 13.28, and (c) estimating the mean and
variance of the resulting set of harmonic averages. Us-
ing 5000 random-field realizations, the resulting estimates
for the mean and standard deviation of ln Xh are shown
in Figure 13.26 for random fields with mean 1.0. Since
c̄u is assumed to be (at least approximately) lognormally
distributed, having parameters µln c̄u and σln c̄u , the mean
and standard deviation of the logarithm of the harmonic
averages are shown in Figure 13.26 for the two slopes con-
sidered. Of note in Figure 13.26 is the fact that there is
virtually no difference in the mean and standard deviation
for the 2 : 1 and 1 : 1 slopes, even though the averaging
regions have quite different shapes. Admittedly the two
averaging regions have the same area, but this only slow
change in harmonic average statistics with averaging di-
mension has been found also to be true of changing areas.
This implies that the accurate determination of the averag-
ing area is not essential to the accuracy of failure probability
predictions.

Given the results of Figure 13.26, the slope failure
probability can now be computed as in Eq. 13.34:

pf = P [c < ccrit] = �

(
ln ccrit − µln c

σln c

)
(13.36)

except that now the mean and standard deviation of ln c are
computed using the harmonic mean results of Figure 13.26
suitably scaled for the actual value of µcu /γ H as follows:

µln c = ln

(
µcu

γ H

)
+ µln X h = ln(µc) + µln X h (13.37a)

σln c = σln X h (13.37b)

where µln X h and σln X h are read from Figure 13.26, given
the correlation length and coefficient of variation.

Figure 13.27 shows the predicted failure probabilities
versus the failure probabilities obtained via simulation over
all parameter sets considered. The agreement is remarkably
good, considering the fact that the averaging domain was
rather arbitrarily selected, and there was no a priori evi-
dence that the slope stability problem should be governed
by a harmonic average. The results of Figure 13.27 indicate
that the harmonic average gives a good probabilistic model
of slope stability.

There are a few outliers in Figure 13.27 where the pre-
dicted failure probability considerably overestimates that
obtained via simulation. For the 2 : 1 slope, these out-
liers correspond to the cases where (1) µc = 0.3, vc = 1.0,
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Figure 13.26 Mean and standard deviation of log-harmonic averages estimated from 5000
simulations: (a) 2 : 1 cohesive slope; (b) 1 : 1 cohesive slope.

and � = 0.1 (simulated probability is 0.047 versus pre-
dicted probability of 0.86) and (2) µc = 0.3, vc = 1.0,
and � = 0.2 (simulated probability is 0.31 versus pre-
dicted probability of 0.74). Both cases correspond to the
largest FS considered in the study (µc = 0.3 gives an
FS = 1.77 in the uniform soil case). Also the small cor-
relation lengths yield the smallest values of σln c which, in
turn, implies that the cumulative distribution function of
ln c increases very rapidly over a small range. Thus, slight
errors in the estimate of µln c makes for large errors in the
probability.

For example, the worst case seen in Figure 13.27a has
predicted values of

µln c = ln(µc) + µln X h = ln(0.3) − 0.66 = −1.864

σln c = σln X h = 0.10

The predicted failure probability is thus

P [c < 0.173] = �

(
ln 0.173 + 1.864

0.10

)
= �(1.10)

= 0.86
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Figure 13.27 Simulated failure probabilities versus failure probabilities predicted using a har-
monic average of cu over domain w × h: (a) 2 : 1 cohesive slope; (b) 1 : 1 cohesive slope.

As mentioned, a relatively small error in the estimation of
µln c can lead to a large change in probability. For example,
if µln c was −1.60 instead of −1.864, a 14% change, then
the predicted failure probability changes significantly to

P [c < 0.173] = �

(
ln 0.173 + 1.6

0.10

)
= �(−1.54)

= 0.062

which is about what was obtained via simulation. The
conclusion drawn from this example is that small errors
in the estimation of µln c or, equivalently, in ccrit can lead
to large errors in the predicted slope failure probability if
the standard deviation of ln c is small. The latter occurs
for small correlation lengths, �. In most cases for small
values of � the failure probability tends to be either close
to zero (vc < 1.0) or close to 1.0 (vc > 1.0), in which case
the predicted and simulated probabilities are in much better
agreement. That is, the model shows very good agreement
with simulation for all but the case where a large FS is
combined with a small correlation length and intermediate
coefficient of variation (vc � 1.0). This means that the
selected harmonic average model is not the best predictor
in the region where the cumulative distribution is rapidly
increasing. However, in these cases, the predicted failure
probability is overestimated, which is at least conservative.

For all other results, especially where the FS is closer
to 1.0 (µc < 0.3), the harmonic average model leads to
very good estimates of failure probability with somewhat
more scatter seen for the 1 : 1 slope. The increased scatter
for the 1 : 1 slope is perhaps as expected since the steeper
slope leads to a larger variety of critical failure surfaces. In
general, for both slopes the predicted failure probability
is seen to be conservative at small failure probabilities,
slightly overestimating the failure probability.

13.3.4 Summary

This study investigates the failure probabilities of two
undrained clay slopes, one with gradient 2 : 1 and the
other with gradient 1 : 1. The basic idea of the section
is that the Taylor stability coefficients are still useful if
an “equivalent” soil property can be found to represent
the spatially random soil. It was found that a harmonic
average of the soil cohesion over a region of dimension
H 2(sin β × 1/ sin β) = H 2 yields an equivalent stabil-
ity number with an approximately lognormal distribution
that quite well predicts the probability of slope failure.
The harmonic average was selected because it is domi-
nated by low-strength regions appearing in the soil slope,
which agrees with how the failure surface will seek out the
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low-strength areas. The dimension of the averaging region
was rather arbitrarily selected—the equivalent stability co-
efficient mean and variance is only slowly affected by
changes in the averaging region dimension—but is believed
to reasonably approximate the area of the ‘average’ slope
failure band.

An important practical conclusion arising from the fact
that soil slopes appear to be well characterized by a har-
monic average of soil sample values, rather than by an
arithmetic average, as is traditionally done, has to do with

how soil samples are treated. In particular, the study sug-
gests that the reliability of an existing slope is best estimated
by sampling the soil at a number of locations and then us-
ing a harmonic average of the sample values to estimate
the soil’s equivalent cohesion. Most modern geotechnical
codes suggest that soil design properties be taken as “cau-
tious estimates of the mean”—the harmonic average, being
governed by low-strength regions, is considered by the au-
thors to be such a “cautious estimate” for slope stability
calculations.



CHAPTER 14

Earth Pressure

14.1 INTRODUCTION

Traditional geotechnical analysis uses the factor-of-safety
approach in one of two ways. In foundation analysis, for
example, Terzaghi’s bearing capacity equation leads to an
estimate of the ultimate value, which is then divided by the
factor of safety to give allowable loading levels for design.
Alternatively, in slope stability analysis, the factor of safety
represents the factor by which the shear strength parameters
of the soil would need to be reduced to reach the limit
state. Either way, the factor of safety represents a blanket
factor that implicitly includes all sources of variability and
uncertainty inherent in the geotechnical analysis.

The approaches described in this chapter attempt to in-
clude the effects of soil property variability in a more sci-
entific way using statistical methods (Griffiths et al., 2005).
If it is assumed that the soil parameters in question (e.g.,
friction angle, cohesion, compressibility, and permeability)
are random variables that can be expressed in the form of a
probability density function, then the issue becomes one of
estimating the probability density function of some outcome
that depends on the input random variables. The output can
then be interpreted in terms of probabilities, leading to state-
ments such as: “The design load on the foundation will give
a probability of bearing capacity failure of p1%,” “The em-
bankment has a probability of slope failure of p2%,” “The
probability of the design settlement levels being exceeded
is p3%,” or “The probability that the earth pressure acting
on a retaining wall exceeds the design value is p4%”.

The effect of spatial variability on active and passive
earth pressures is investigated in this chapter. The spatial
variability is represented using random fields and the soil
response computed by the finite-element method. This is
another manifestation of the RFEM. The program used
to determine many of the results in this chapter is called

REARTH2D and is available at http://www.engmath.
dal.ca/rfem.

The random fields are simulated using the LAS method
(see Section 6.4.6) while the finite-element analysis is
a nonlinear elasto-plastic algorithm which employs the
Mohr–Coulomb failure criterion [see Griffiths and Fenton
(2001) and Smith and Griffiths (2004) for more details].

14.2 PASSIVE EARTH PRESSURES

In this section we examine various ways of computing
probabilities relating to passive earth pressures and we will
start with an example which uses the FOSM method. The
limiting horizontal passive earth force against a smooth wall
of height H is given from the Rankine equation as

Pp = 1
2γ H 2Kp + 2c′H

√
Kp (14.1)

where the passive earth pressure coefficient is written in
this case as (Griffiths et al., 2002c)

Kp =
[
tan φ′ +

√
1 + tan2 φ′

]2
(14.2)

a form which emphasizes the influence of the fundamental
variable tan φ′.

In dimensionless form we can write
Pp

γ H 2
= 1

2 Kp + 2
√

Kp
c′

γ H
(14.3)

or
P̄p = 1

2 Kp + 2c̄
√

Kp (14.4)

where P̄p is a dimensionless passive earth force and c̄ =
c′/γ H is a dimensionless cohesion.

Operating on Eq. 14.4 and treating tan φ′ and c̄ as un-
correlated random variables, the first-order approximation
to the mean of P̄p is given by Eq. 1.79 to be

µP̄p = E
[
P̄p

] = 1
2µK p + 2µc̄

√
µK p (14.5)

and from Eq. 1.83, the first-order approximation to the
variance of P̄p is

σ 2
P̄p

= Var
[
P̄p

] �
(

∂P̄p

∂ c̄

)2

Var [c̄]

+
(

∂P̄p

∂(tan φ′)

)2

Var
[
tan φ′] (14.6)

The required derivatives are computed analytically from
Eq. 14.4 at the means as follows:

∂P̄p

∂ c̄
= 2

√
µK p (14.7a)

∂P̄p

∂(tan φ′)
= µK p√

1 + µ2
tan φ′

+ 2µc̄

√
µK p√

1 + µ2
tan φ′

(14.7b)
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It is now possible to compute the mean and standard
deviation of the horizontal earth force for a range of input
soil property variances. In this example, we shall assume
that the coefficient of variation (v) values for both c̄ and
tan φ′ are the same, that is,

vc̄,tan φ′ = σc̄

µc̄
= σtan φ′

µtan φ′
(14.8)

Table 14.1 shows the influence of variable input on the
passive force in the case of µc̄ = 5 and µtan φ′ = tan 30◦ =
0.577. It can be seen that in this case the process results
in a slight magnification of the coefficient of variation
of the passive force over the input values. For example,
vc̄,tan φ′ = 0.5 leads to vP̄p = 0.53 and so on. The ratio of
the output vP̄p to the input vc̄,tan φ′ can also be obtained
analytically from Eqs. 14.5 and 14.6 to give

vP̄p

vc̄,tan φ′
≈ 2

√
(√µK p + 2µc̄)2(µK p − 1)2 + 4µ2

c̄(µK p + 1)2

(√µK p + 4µc̄)(µK p + 1)
(14.9)

This equation is plotted in Figure 14.1 for a range of
µc̄ values. The graph indicates that in many cases the
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Figure 14.1 vP̄p /vc̄,tan φ′ versus µtan φ′ for passive earth pressure
analysis by FOSM.

FOSM method causes the ratio given by Eq. 14.9 to be
less than unity. In other words, the coefficient of variation
of the output passive force is smaller than the coefficient
of variation of the input strength parameters. For higher
fiction angles, however, this trend is reversed.

14.2.1 Numerical Approach

An alternative approach evaluates the derivatives numeri-
cally using a central finite-difference formula. In this case,
the dependent variable P̄p is sampled across two standard
deviations in one variable while keeping the other variable
fixed at the mean. This large central difference interval en-
compasses about 68% of all values of the input parameters
c̄ and tan φ′, so the approximation is only reasonable if the
function P̄p from Eq. 14.4 does not exhibit much nonlin-
earity across this range. The finite-difference formulas take
the form

∂P̄p

∂ c̄
≈ P̄p (µc̄ + σc̄ , µtan φ′ ) − P̄p (µc̄ − σc̄ , µtan φ′ )

2σc̄

= �Pp(c̄)

2σc̄
(14.10)

and

∂P̄p

∂(tan φ′)
≈

P̄p (µc̄ , µtan φ′ + σtan φ′ )
−P̄p(µc̄ , µtan φ′ − σtan φ′ )

2σtan φ′
= �Pp(tan φ′)

2σ
tan φ′

(14.11)
The main attraction of this approach is that, once the
derivative terms are squared and substituted into Eq. 14.6,
the variances of c̄ and tan φ′ cancel out, leaving

Var
[
P̄p

] ≈ ( 1
2�P̄p(c̄)

)2 + ( 1
2�P̄p(tan φ′)

)2
(14.12)

In this case, P̄p is a linear function of c̄ and is slightly
nonlinear with respect to tan φ′. It is clear from a com-
parison of Tables 14.1 and 14.2 that the numerical and
analytical approaches in this case give essentially the same
results.

Table 14.1 Statistics of P̄p Predicted Using FOSM (Analytical Approach) with µc̄ = 5 and µtan φ′ = tan 30◦ = 0.577

vc̄,tan φ′ ∂P̄p/∂ c̄ Var [c̄] ∂P̄p/∂(tan φ′) Var
[
tan φ′] Var

[
P̄p

]
σP̄p µP̄p vP̄p

0.1 3.46 0.25 17.60 0.0033 4.03 2.01 18.82 0.11
0.3 3.46 2.25 17.60 0.0300 36.29 6.02 18.82 0.32
0.5 3.46 6.25 17.60 0.0833 100.81 10.04 18.82 0.53
0.7 3.46 12.25 17.60 0.1633 197.59 14.06 18.82 0.75
0.9 3.46 20.25 17.60 0.2700 326.64 18.07 18.82 0.96
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Table 14.2 Statistics of P̄p Predicted Using FOSM (Numerical Approach) with
µc̄ = 5 and µtan φ′ = tan 30◦ = 0.577

vc̄,tan φ′ �P̄p(c̄)/2 �P̄p(tan φ′)/2 Var
[
P̄p

]
σP̄p µP̄p vP̄p

0.1 1.73 1.02 4.03 2.01 18.82 0.11
0.3 5.20 3.04 36.26 6.02 18.82 0.32
0.5 8.66 5.05 100.53 10.03 18.82 0.53
0.7 12.12 7.04 196.54 14.02 18.82 0.74
0.9 15.59 9.00 323.93 18.00 18.82 0.96

14.2.2 Refined Approach Including
Second-Order Terms

In the above example, a first-order approximation was used
to predict both the mean and variance of P̄p from Eqs.
1.79 and 1.83. Since the variances of c̄ and tan φ′ are
both known, it is possible to refine the estimate of µP̄p

by including second-order terms from Eq. 1.76a, leading to

µP̄p ≈ P̄p(µc̄ , µtan φ′ ) + 1
2 Var [c̄]

∂2P̄p

∂ c̄2

+ 1
2 Var

[
tan φ′] ∂2P̄p

∂(tan φ′)2

+ Cov
[
c̄, tan φ′] ∂2P̄p

∂ c̄ ∂(tan φ′)
(14.13)

where all derivatives are evaluated at the mean. Noting
that in this case ∂2P̄p/∂ c̄2 = 0 and Cov

[
c̄, tan φ′] = 0, the

expression simplifies to

µP̄p ≈ P̄p (µc̄ , µtan φ′ ) + 1
2 Var

[
tan φ′] ∂2P̄p

∂(tan φ′)2
(14.14)

where the analytical form of the second derivative is given
by

∂2P̄p

∂(tan φ′)2
= 2

1 + µ2
tan φ′

[
µK p + µc̄

√
µK p

]

− µtan φ′

(1 + µ2
tan φ′ )3/2

[
µK p + 2µc̄

√
µK p

]
(14.15)

Combining Eqs. 14.14 and 14.15 for the particular case
of µc̄ = 5 and µtan φ′ = 0.577 leads to

µP̄p = 18.82 + 4.94 Var
[
tan φ′] (14.16)

Table 14.3 shows a reworking of the analytical results from
Table 14.1 including second-order terms in the estimation of
µP̄p . A comparison of the results from the two tables indi-
cates that the second-order terms have marginally increased
µP̄p and thus reduced vP̄p . The differences introduced by
the second-order terms are quite modest, however, indicat-
ing the essentially linear nature of this problem.

Table 14.3 Statistics of P̄p Predicted Using FOSM
(Analytical Approach Including Second-Order Terms)
with µc̄ = 5 and µtan φ′ = tan 30◦ = 0.577

vc̄,tan φ′ Var [tan φ] σP̄p µP̄p vP̄p

0.1 0.0033 2.01 18.84 0.11
0.3 0.0300 6.02 18.97 0.32
0.5 0.1833 10.04 19.23 0.52
0.7 0.1633 14.06 19.63 0.72
0.9 0.2700 18.07 20.15 0.90

14.2.3 Random Finite-Element Method

For reasonably “linear” problems, the FOSM and FORM
(see Section 7.2.1 for a discussion of the latter) are able
to take account of soil property variability in a systematic
way. These traditional methods, however, typically take no
account of spatial correlation, which is the tendency for
properties of soil elements “close together” to be correlated
while soil elements “far apart” are uncorrelated. In soil fail-
ure problems such as passive earth pressure analysis, it is
possible to account for local averaging and spatial correla-
tion by prescribing a potential failure surface and averaging
the soil strength parameters along it (e.g., El-Ramly et al.,
2002; Peschl and Schweiger, 2003). A disadvantage of this
approach is that the location of the potential failure surface
must be anticipated in advance, which rather defeats the
purpose of a general random soil model.

To address the correlation issue, the passive earth pres-
sure problem has been reanalyzed using the RFEM via the
program REARTH2D (available at http://www.
engmath.dal.ca/rfem), enabling soil property variabil-
ity and spatial correlation to be accounted for in a rigorous
and general way. The methodology involves the generation
and mapping of a random field of c′ and tan φ′ proper-
ties onto a quite refined finite-element mesh. Full account
is taken of local averaging and variance reduction (see
Section 6.4.6) over each element, and an exponentially
decaying spatial correlation function is incorporated. An
elasto-plastic finite-element analysis is then performed us-
ing a Mohr–Coulomb failure criterion.
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In a passive earth pressure analysis the nodes representing
the rigid wall are translated horizontally into the mesh and the
reaction forces back-figured from the developed stresses. The
limiting passive resistance (Pp) is eventually reached and the
analysis is repeated numerous times using Monte Carlo simu-
lations. Each realization of the Monte Carlo process involves
a random field with the same mean, standard deviation, and
spatial correlation length. The spatial distribution of proper-
ties varies from one realization to the next, however, so that
each simulation leads to a different value of Pp . The anal-
ysis has the option of including cross correlation between
properties and anisotropic spatial correlation lengths (e.g.,
the spatial correlation length in a naturally occurring stratum
of soil is often higher in the horizontal direction). Neither of
these options has been investigated in the current study to
facilitate comparisons with the FOSM.

Lognormal distributions of c′ and tan φ′ have been used
in the current study and mapped onto a mesh of eight-node,
quadrilateral, plane-strain elements. Examples of different
spatial correlation lengths are shown in Figure 14.2 in the
form of a gray scale in which weaker regions are lighter
and stronger regions are darker.

Examples of a relatively low spatial correlation length
and a relatively high correlation length are shown. It should
be emphasized that the mean and standard deviation of
the random variable being portrayed are the same in both
figures. The spatial correlation length (which has units of
length) is defined with respect to the underlying normal dis-
tribution and denoted as θln c′,ln tan φ′ . Both c′ and tan φ′ were
assigned the same isotropic correlation length in this study.
A convenient nondimensional form of the spatial correla-
tion length can be achieved in the earth pressure analysis
by dividing by the wall height H , thus � = θln c′,ln tan φ′/H .

14.2.4 Parametric Studies

Quite extensive parametric studies of the passive earth
pressure problem by RFEM were performed by Tveten

(a) (b)

Figure 14.2 Typical random fields in RFEM approach: (a) low
correlation length; (b) high correlation length.

(2002). A few of these results are presented here in which
the coefficients of variation of c′ and tan φ′ and spatial
correlation length � have been varied. In all cases, the mean
strength parameters have been held constant at µc′ = 100
kPa and µtan φ′ = tan 30◦ = 0.577. In addition, the soil unit
weight was fixed at 20 kN/m3 and the wall height set to
unity. Thus, the dimensionless cohesion described earlier
in the paper is given by c̄ = c′/(γ H ) = 5. The variation in
the limiting mean passive earth pressure, µPp , normalized
with respect to the value that would be given by simply
substituting the mean strength values, Pp (µc′ , µtan φ′ ) =
376.4 kN/m, is shown in Figure 14.3.

The figure shows results for spatial correlation lengths
in the range 0.01 < � < 10. At the lower end, the small
spatial correlation lengths result in very significant local
averaging over each finite element. In the limit as � → 0,
local averaging causes the mean of the properties to tend
to the median and the variance to tend to zero. For a
typical random variable X , the properties of the lognormal
distribution give that

µ̃X

µX

= 1√
1 + vX

(14.17)

With reference to Figure 14.3 and the curve correspond-
ing to vc̄,tan φ′ = 0.8, the ratio given by Eq. 14.17 is 0.781.
For a soil with µc′ = 100 kPa and µtan φ′ = tan 30◦ =
0.577, as � → 0, these properties tend to µ̃c′ = 78.1 kPa
and µ̃tan φ′ = 0.451, respectively. The limiting passive earth
pressure with these median values is 265.7 kN/m, which
leads to a normalized value of 0.71, as indicated at the left
side of Figure 14.3

At the other extreme, as � → ∞, each realization of the
Monte Carlo leads to an analysis of a uniform soil. In this
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case there is no reduction of strength due to local averaging
and the lines in Figure 14.3 all tend to unity on the right
side. This is essentially the result indicated by the FOSM
analysis.

All the lines indicate a slight minimum in the limiting
passive resistance occurring close to or slightly lower than
� ≈ 1. This value of � implies a spatial correlation length
of the order of the height of the wall itself. Similar behavior
was observed in Chapter 11 in relation to bearing capacity
analysis. It is speculated that at this spatial correlation
length there is a greater likelihood of weaker zones of
soil aligning with each other, facilitating the formation of
a failure mechanism.

The above discussion highlights the essential difference
and benefits offered by the RFEM over conventional prob-
abilistic methods. These can be summarized as follows:

1. The RFEM accounts for spatial correlation in a rigor-
ous and objective way.

2. The RFEM does not require the user to anticipate
the location or length of the failure mechanism. The
mechanism forms naturally wherever the surface of
least resistance happens to be.

Figure 14.4 shows the deformed mesh at failure from a
typical realization of the Monte Carlo process. It can be
seen that in this case the weaker light zone near the ground
surface toward the center has triggered a quite localized
mechanism that outcrops at this location.

Some other differences between FOSM and RFEM worth
noting are as follows:

1. Figure 14.3 indicates that for intermediate values of �

the RFEM results show a fall and even a minimum in
the µPp response as � is reduced, while FOSM gave
essentially constant values. In fact, when second-order
terms were included (Table 14.3) a slight increase in
µPp was observed.

Figure 14.4 Typical passive failure mechanism. Light zones
indicate weaker soil.

2. Using the FOSM Tables 14.1–14.3 indicated that the
coefficient of variation of the passive earth force was
similar to the coefficient of variation of the input shear
strength parameters. Due to local averaging in the
RFEM, on the other hand, the coefficient of variation
of the passive earth force falls as � is reduced. As
� → 0 in the RFEM approach, the coefficient of
variation of the passive force also tends to zero.

14.2.5 Summary

The section has discussed two methods for implementing
probabilistic concepts into geotechnical analysis of a simple
problem of passive earth pressure. The “simple” method
was the FOSM and the “sophisticated” method was the
RFEM:

1. Probabilistic methods offer a more rational way of
approaching geotechnical analysis, in which proba-
bilities of design failure can be assessed. This is
more meaningful than the abstract factor-of-safety ap-
proach. Being relatively new, however, probabilistic
concepts can be quite difficult to digest, even in so-
called simple methods.

2. The RFEM indicates a significant reduction in mean
compressive strength due to the weaker zones dom-
inating the overall strength at intermediate values of
�. The observed reduction in the mean strength by
RFEM is greater than could be explained by local
averaging alone.

3. The study has shown that proper inclusion of spa-
tial correlation, as used in the RFEM, is essential
for quantitative predictions in probabilistic geotech-
nical analysis. While simpler methods such as FOSM
(and FORM) are useful for giving guidance on the
sensitivity of design outcomes to variations of input
parameters, their inability to systematically include
spatial correlation and local averaging limits their use-
fulness.

4. The study has shown that the RFEM is one of the very
few methods available for modeling highly variable
soils in a systematic way. In the analysis of soil
masses, such as the passive earth pressure problem
considered herein, a crucial advantage of RFEM is
that it allows the failure mechanism to “seek out” the
critical path through the soil.

14.3 ACTIVE EARTH PRESSURES: RETAINING
WALL RELIABILITY

14.3.1 Introduction

Retaining wall design has long been carried out with the aid
of either the Rankine or Coulomb theory of earth pressure.
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To obtain a closed-form solution, these traditional earth
pressure theories assume that the soil is uniform. The fact
that soils are actually spatially variable leads, however, to
two potential problems in design:

1. Do sampled soil properties adequately reflect the
equivalent properties of the entire retained soil mass?

2. Does spatial variability of soil properties lead to active
earth pressure effects that are significantly different
than those predicted using traditional models?

This section combines nonlinear finite-element analysis
with random-field simulation to investigate these two ques-
tions and assess just how safe current design practice is. The
specific case investigated is a two-dimensional frictionless
wall retaining a cohesionless drained backfill. The wall is
designed against sliding using Rankine’s earth pressure the-
ory. The design friction angle and unit-weight values are
obtained by sampling the simulated random soil field at one
location and these sampled soil properties are then used as
the equivalent soil properties in the Rankine model. Failure
is defined as occurring when the Rankine predicted force
acting on the retaining wall, modified by an appropriate
factor of safety, is less than that computed by the RFEM
employing the actual soil property (random) fields. Using
Monte Carlo simulation, the probability of failure of the
traditional design approach is assessed as a function of the
factor of safety used and the spatial variability of the soil
(Fenton and Griffiths, 2005a).

Retaining walls are, in most cases, designed to resist
active earth pressures. The forces acting on the wall are
typically determined using the Rankine or Coulomb theory
of earth pressure after the retained soil properties have
been estimated. This section compares the earth pressures
predicted by Rankine’s theory against those obtained via
finite-element analysis in which the soil is assumed to be
spatially random. The specific case of a two-dimensional
cohesionless drained soil mass with a horizontal upper
surface retained by a frictionless wall is examined. For
a cohesionless soil the property of interest is the friction
angle. The wall is assumed to be able to move away
from the soil a sufficient distance to mobilize the frictional
resistance of the soil.

The traditional theories of lateral active earth pressures
are derived from equations of limit equilibrium along a
planar surface passing through the soil mass. The soil is
assumed to have a spatially constant friction angle. Under
these conditions, and for the retaining problem considered
herein, Rankine proposed the active earth pressure coeffi-
cient to be

Ka = tan2(π
4 − 1

2φ′) (14.18)

where φ′ is the soil’s drained friction angle (radians). Tra-
ditional theories assume that the unit weight γ is spa-
tially constant also, so that the total lateral active earth
force acting on a wall of height H , at height H /3, is
given by

Pa = 1
2γ H 2Ka (14.19)

The calculation of the lateral design load on a retain-
ing wall involves estimating the friction angle φ′ and
the unit weight γ and then using Eqs. 14.18 and 14.19.
To allow some margin for safety, the value of Pa may
be adjusted by multiplying by a conservative factor of
safety FS .

Due to spatial variability, the failure surface is often more
complicated than a simple plane and the resulting behav-
ior cannot be expected to match that predicted by theory.
Some work on reliability-based design of earth retaining
walls has been carried out; see, for example, Basheer and
Najjar (1996) and Chalermyanont and Benson (2004). How-
ever, these studies consider the soil to be spatially uniform;
that is, each soil property is represented by a single ran-
dom variable and every point in the soil is assigned the
same property value. For example, a particular realization
might have φ′ = 32◦, which would be assumed to apply
to all points in the soil mass. The assumption that the soil
is spatially uniform is convenient since most geotechnical
predictive models are derived assuming spatially uniform
properties (e.g., Rankine’s earth pressure theory). These
studies serve to help develop understanding of the under-
lying issues in reliability-based design of retaining walls
but fail to include the effects of spatial variability. As will
be seen, the failure surface can be significantly affected by
spatial variability.

When spatial variability is included in the soil represen-
tation, alternative tractable solutions to the reliability issue
must be found. For geotechnical problems which do not
depend too strongly on extreme microscale soil structure,
that is, which involve some local averaging, it can be ar-
gued that the behavior of the spatially random soil can be
closely represented by a spatially uniform soil which is as-
signed the “equivalent” properties of the spatially random
soil. The authors have been successful in the past with this
equivalent property representation for a variety of geotech-
nical problems by defining the equivalent uniform soil as
some sort of average of the random soil—generally the ge-
ometric average has been found to work well (see, e.g.,
Chapters 8, 9, 10, and 11). If the above argument holds,
then it implies that the spatially random soil can be well
modeled by equations such as 14.18 and 14.19, even though
these equations are based on uniform soil properties—the
problem becomes one of finding the appropriate equivalent
soil properties.



ACTIVE EARTH PRESSURES: RETAINING WALL RELIABILITY 407

In practice, the values of φ′ and γ used in Eqs. 14.18
and 14.19 are obtained through site investigation. If the
investigation is thorough enough to allow spatial variabil-
ity to be characterized, an equivalent soil property can, in
principle, be determined using random-field theory com-
bined with simulation results. However, the level of site
investigation required for such a characterization is un-
likely to be worth carrying out for most retaining wall
designs. In the more common case, the geotechnical en-
gineer may base the design on a single estimate of the
friction angle and unit weight. In this case, the accuracy
of the prediction arising from Eqs. 14.18 and 14.19 de-
pends very much on how well the single estimate approxi-
mates the equivalent value. This section addresses the above
issues.

Figure 14.5 shows plots of what a typical retained soil
might look like once the retaining wall has moved enough to
mobilize the active soil behavior for two different possible
realizations. The soil’s spatially random friction angle is
shown using a gray-scale representation, where light areas
correspond to lower friction angles. Note that although the
unit weight γ is also spatially random, its variability is not
shown on the plots—its influence on the stochastic behavior
of earth pressure was felt to be less important than that of
the φ′ field.

The wall is on the left-hand face and the deformed mesh
plots of Figure 14.5 are obtained using the RFEM with
eight-node square elements and an elastic, perfectly plastic
constitutive model (see next section for more details). The
wall is gradually moved away from the soil mass until
plastic failure of the soil occurs and the deformed mesh
at failure is then plotted. It is clear from these plots that
the failure pattern is more complex than that found using
traditional theories, such as Rankine’s. Instead of a well-
defined failure plane, the particular realization shown in
the upper plot of Figure 14.5, for example, seems to have
a failure wedge forming some distance from the wall in
a region with higher friction angles. The formation of a
failure surface can be viewed as the mechanism by which
lateral loads stabilize to a constant value with increasing
wall displacement.

Figure 14.5 also illustrates that choosing the correct
location to sample the soil may be important to the accuracy
of the prediction of the lateral active load. For example,
in the lower plot of Figure 14.5, the soil sample, taken
at the midpoint of the soil regime, results in a friction
angle estimate which is considerably lower than the friction
angle typically seen in the failure region (recall that white
elements correspond to lower friction angles). The resulting
predicted lateral active load, using Rankine’s theory, is
about 1.5 times that predicted by the RFEM, so that a
wall designed using this soil sample would be overdesigned.

2H

H
H

2H

H
H

Figure 14.5 Active earth displacements for two different possi-
ble soil friction angle field realizations (both with θln tan φ′/H = 1
and vtan φ′ = 0.3).

Quite the opposite is found for the more complex failure
pattern in the upper plot of Figure 14.5, where the lateral
active load found via the RFEM is more than two times that
predicted using Rankine’s theory and so a Rankine-based
design would be unconservative. The higher RFEM load is
attributed to the low-friction-angle material found in near
proximity to the wall.

14.3.2 Random Finite-Element Method

The soil mass is discretized into 32 eight-noded square el-
ements in the horizontal direction by 32 elements in the
vertical direction. Each element has a side length of H /16,
giving a soil block which is 2H in width by 2H in depth.
(Note: Length units are not used here since the results
can be used with any consistent set of length and force
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units.) The retaining wall extends to a depth H along the
left face.

The finite-element earth pressure analysis uses an elastic,
perfectly plastic Mohr–Coulomb constitutive model with
stress redistribution achieved iteratively using an elasto-
viscoplastic algorithm essentially similar to that described
in the text by Smith and Griffiths (2004). The active wall
considered in this study is modeled by translating the top
16 elements on the upper left side of the mesh uniformly
horizontally and away from the soil. This translation is
performed incrementally and models a rigid, smooth wall
with no rotation.

The initial stress conditions in the mesh prior to trans-
lation of the nodes are that the vertical stresses equal the
overburden pressure and the horizontal stresses are given
by Jaky’s (1944) formula in which K0 = 1 − sin φ′. As
described in the next section, the study will assume that
tan φ′ is a lognormally distributed random field; hence K0

will also be a random field (albeit fully determined by
φ′), so that the initial stresses vary randomly down the
wall face.

The boundary conditions are such that the right side of
the mesh allows vertical but not horizontal movement, and
the base of the mesh is fully restrained. The top and left
sides of the mesh are unrestrained, with the exception of the
nodes adjacent to the “wall,” which have fixed horizontal
components of displacement. The vertical components of
these displaced nodes are free to move down, as active
conditions are mobilized. These boundary conditions have
been shown to work well for simple earth pressure analysis
(see, e.g., Griffiths, 1980).

Following incremental displacement of the nodes, the
viscoplastic algorithm monitors the stresses in all the el-
ements (at the Gauss points) and compares them with the
strength of the element based on the Mohr–Coulomb failure
criterion. If the failure criterion is not violated, the element
is assumed to remain elastic; however, if the criterion is
violated, stress redistribution is initiated by the viscoplastic
algorithm. The process is inherently iterative, and conver-
gence is achieved when all stresses within the mesh satisfy
the failure criterion and global stress equilibrium within
quite tight tolerances.

At convergence following each increment of displace-
ment, the mobilized active reaction force on the wall is
computed by integrating the stresses in the elements at-
tached to the displaced nodes. The finite-element analysis
is terminated when the incremental displacements have re-
sulted in the active reaction force reaching its minimum
limiting value.

The cohesionless soil being studied here has two proper-
ties of primary interest to the active earth pressure problem:
the friction angle φ′(x) and the unit weight γ (x), where x is

the spatial position. Both are considered to be spatially ran-
dom fields. The finite-element model used in this study also
includes the soil’s dilation angle, taken to be zero, Pois-
son’s ratio, taken to be 0.3, and Young’s modulus, taken
to be 1 × 105. These three properties are assumed to be
spatially constant—this does not introduce significant error
since these properties play only a minor role in the limiting
active earth pressures.

The two properties which are considered to be spa-
tially random, φ′ and γ , are characterized by their means,
their standard deviations, and their correlation lengths
(which are measures of the degree of spatial correla-
tion). The unit weight is assumed to have a lognor-
mal distribution, primarily because of its simple relation-
ship with the normal distribution, which is fully specified
by the first two moments, and because it is nonnega-
tive. The friction angle φ′ is generally bounded, which
means that its distribution is a complicated function with
at least four parameters (see Section 1.10.10). However,
tan φ′ varies between zero and infinity as φ′ varies be-
tween zero and 90◦. Thus, a possible distribution for
tan φ′ is also the lognormal. This distribution will be as-
sumed in this section; that is, the friction angle field
will be represented by the lognormally distributed tan φ′
field.

The spatial correlation structure of both fields will be
assumed to be the same. This is not only for simplicity,
since it can be argued that the spatial correlation of a soil
is governed largely by the spatial variability in a soil’s
source materials, weathering patterns, stress and formation
history, and so on. That is, the material source, weather-
ing, stress history, and so on, forming a soil at a point
will be similar to those at a closely neighboring point, so
one would expect that all the soil’s properties will vary
similarly between the two points (aside from deviations
arising from differing nonlinear property response to current
conditions).

With this argument in mind, the spatial correlation func-
tion for the ln(γ ) and ln(tan φ′) fields, both normally dis-
tributed, is assumed to be Markovian,

ρ(τ ) = exp

{−2|τ |
θ

}
(14.20)

where θ is the correlation length beyond which two points
in the field are largely uncorrelated, τ is the vector between
the two points, and |τ | is its absolute length.

In this study, the two random fields γ and tan φ′ are
first assumed to be independent. Thus, two independent
standard normal random fields G1(x) and G2(x) are sim-
ulated using the LAS method (see Section 6.4.6) us-
ing the correlation structure given by Eq. 14.20. These
fields are then transformed to the target fields through the
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relationships

γ (x) = exp
{
µln γ + σln γ G1(x)

}
(14.21a)

tan φ′(x) = exp
{
µln tan φ′ + σln tan φ′G2(x)

}
(14.21b)

where µ and σ are the mean and standard deviation of
the subscripted variable obtained using the transforma-
tions

σ 2
ln γ = ln

(
1 + v2

γ

)
(14.22a)

µln γ = ln(µγ ) − 1
2σ 2

ln γ (14.22b)

and vγ = σγ /µγ is the coefficient of variation of γ . A simi-
lar transformation can be applied for the mean and variance
of tan φ′ by replacing γ with tan φ′ in the subscripts of
Eq. 14.22.

Since the friction angle φ′ and unit weight γ gener-
ally have a reasonably strong positive correlation, a second
case will be considered in this study where the two fields
are significantly correlated; specifically, a correlation co-
efficient of ρ = 0.8 will be assumed to act between ln(γ )
and ln(tan φ′) at each point x in the soil. Thus, when the
friction angle is large, the unit weight will also tend to
be large within their respective distributions. The correla-
tion between the fields is implemented using the covariance
matrix decomposition method (see Section 6.4.2).

Once realizations of the soil have been produced using
LAS and the above transformations, the properties can be
mapped to the elements and the soil mass analyzed by the
finite-element method. See Figure 14.5 for two examples.
Repeating this analysis over a sequence of realizations
(Monte Carlo simulation, see Section 6.6) yields a sequence
of computed responses, allowing the distribution of the
response to be estimated.

14.3.3 Active Earth Pressure Design Reliability

As mentioned in Section 14.3.1, the design of a retain-
ing wall involves two steps: (1) estimating the pertinent
soil properties and (2) predicting the lateral load through,
for example, Eq. 14.19. The reliability of the resulting de-
sign depends on the relationship between the predicted and
actual lateral loads. Disregarding variability on the resis-
tance side and assuming that the design wall resistance R
satisfies

R = FS Pa (14.23)

where FS is a factor of safety and Pa is the predicted
active lateral earth load (Eq. 14.19), then the wall will
survive if the true active lateral load Pt is less than FS Pa .
The true active lateral load will inevitably differ from that
predicted because of errors in the estimation of the soil
properties and because of the spatial variability present

in a true soil which is not accounted for by classical
theories, such as Eqs. 14.18 and 14.19. The probability
of failure of the retaining system will be defined as the
probability that the true lateral load Pt exceeds the factored
resistance,

pf = P [Pt > R] = P [Pt > FS Pa ] (14.24)

This is the theoretical definition of the failure proba-
bility pf . In the following section, the estimate of this
failure probability p̂f will be obtained by Monte Carlo
simulation. The “true” (random) lateral load Pt will be
assumed in this study to be closely approximated by
the load computed in the finite-element analysis of each
soil realization. That is, it is assumed that the finite-
element analysis, which accounts for spatial variability,
will produce a realistic assessment of the actual lateral
active soil load for a given realization of soil proper-
ties.

The predicted lateral load Pa depends on an estimate of
the soil properties. In this section, the soil properties γ and
tan φ′ will be estimated using only a single “virtual sample”
taken at a distance H in from the base of the retaining
wall and a distance H down from the soil surface. The
term virtual sample means that the properties are sampled
from the random-field realizations assigned to the finite-
element mesh. Specifically, virtual sampling means that for
xs being the coordinates of the sample point, the sampled
soil properties γ̂ and φ̂′ are obtained from each random-
field realization as

γ̂ = γ (xs ) (14.25a)

φ̂′ = tan−1
(

tan(φ′(xs ))
)

(14.25b)

Armed with these sample properties, the predicted lateral
load becomes (for φ′ in radians)

Pa = 1
2 γ̂ H 2 tan2

(
π
4 − 1

2 φ̂′) (14.26)

No attempt is made to incorporate measurement error. The
goal of this study is to assess the design risk arising from
the spatial variability of the soil and not from other sources
of variability.

Table 14.4 lists the statistical parameters varied in this
study. The coefficient of variation v = σ/µ is changed
for both the unit weight γ and the friction tan φ′ fields
identically. That is, when the coefficient of variation of
the unit weight field is 0.2, the coefficient of variation of
the tan φ′ field is also 0.2, and so on. For each parameter
set considered in Table 14.4, the factor of safety FS , is
varied from 1.5 to 3.0. This range is somewhat wider
than the range of 1.5–2.0 recommended by the Canadian
Foundation Engineering Manual (CFEM; CGS, 1992) for
retaining wall systems.
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Table 14.4 Parameters Varied in Study While
Holding Retained Soil Dimension H and Soil
Properties µtan φ′ = tan 30◦, µγ = 20, E = 1 × 105, and
ν = 0.3 Constant

Parameter Values Considered

σ /µ 0.02, 0.05, 0.1, 0.2, 0.3, 0.5
θ /H 0.1, 0.2, 0.5, 1.0, 2.0, 5.0
ρ 0.0, 0.8

Note: For each parameter set, 1000 realizations were run.

The correlation length θ , which is normalized in
Table 14.4 by expressing it as a fraction of the wall height
θ/H , governs the degree of spatial variability. When θ/H
is small, the random field is typically rough in appear-
ance—points in the field are more independent. Conversely,
when θ/H is large, the field is more strongly correlated
so that it appears smoother with less variability in each
realization. A large correlation length has two implications:
First, the soil properties estimated by sampling the field at
a single location will be more representative of the overall
soil mass and, second, the reduced spatial variability means
that the soil will behave more like that predicted by tra-
ditional theory. Thus, for larger correlation lengths, fewer
“failures” are expected (where the actual lateral limit load
exceeds the factored prediction) and the factor of safety can
be reduced. For intermediate correlation lengths, however,
the soil properties measured at one location may be quite
different from those actually present at other locations.
Thus, for intermediate correlation lengths, more failures are
expected. When the correlation length becomes extremely
small, much smaller than the soil property sample size, lo-
cal averaging effects begin to take over and both the sample
and overall soil mass return to being an effectively uniform
soil (with properties approaching the median), accurately
predicted by traditional theory using the sample estimate.

Following this reasoning, the maximum probability of
failure of the design is expected to occur when the correla-
tion length is some intermediate value. Evidence supporting
this argument is found in the next section.

14.3.4 Monte Carlo Results

Both plots of Figure 14.5 indicate that it is the high-
friction-angle regions which attract the failure surface in
the active case. While this is not always the case for all
realizations, it tends to be the most common behavior. Such
a counterintuitive observation seems to be largely due to the
interaction between the initial horizontal stress distribution,
as dictated by the Ko = 1 − sin φ′ random field, and the
friction angle field.

To explain this behavior, it is instructive to consider
the Mohr’s circles corresponding to Ko = 1 − sin φ′ (at
rest, initial, conditions) and Ka = (1 − sin φ′)/(1 + sin φ′)
(active failure conditions). As φ′ increases from zero, the
distance between the initial and failure circles increases,
reaching a maximum when φ′ = tan−1(0.5

√
2
√√

2 − 1) =
24.47◦. Beyond this point, the distance between the initial
and failure circles decreases with increasing φ′. Since the
average drained friction angle used in this study is 30◦

(to first order), the majority of realizations of φ′ are in
this region of decreasing distance between circles. This
supports the observation that, under these conditions, the
higher friction angle regions tend to reach active failure
first. It can still be stated that failure is always attracted to
the weakest zones, even if those weakest zones happen to
have a higher friction angle. In this sense the gray scale
shown in Figure 14.5 is only telling part of the story—it
is really the Coulomb shear strength (σ ′ tan φ′) which is
important.

The attraction of the failure surface to the high-friction-
angle regions is due to the fact that the initial conditions
vary with φ′ according to Jaky’s formula in this study. In
a side investigation, it was found that if the value of Ko

is held fixed, then the failure surface does pass through
the lower friction angle regions. Figure 14.6 shows the
effect that Ko has on the location of the failure surface.
In Figure 14.6a , Ko is held spatially constant at 0.5 and, in
this case, the failure surface clearly gravitates toward the
low-friction-angle regions. In Figure 14.6b, Ko is set equal
to 1 − sin φ′, as in the rest of the section, and the failure
surface clearly prefers the high-friction-angle regions. The
authors also investigated the effect of spatially variable
versus spatially constant unit weight and found that this
had little effect on the failure surface location, at least for
the levels of variability considered here. The location of
the failure surface seems to be primarily governed by the
nature of Ko (given random φ′).

The migration of the failure surface through the weakest
path means that, in general, the lateral wall load will be
different than that predicted by a model based on uniform
soil properties, such as Rankine’s theory. Figure 14.7 shows
the estimated probability of failure p̂f that the actual lateral
active load exceeds the factored predicted design load (see
Eq. 14.24) for a moderate correlation length (θ/H = 1) and
for various coefficients of variation in the friction angle
and unit weight. The estimates are obtained by counting
the number of failures encountered in the simulation and
dividing by the total number of realizations considered
(n = 1000). In that this is an estimate of a proportion, its
standard error (one standard deviation) is

√
pf (1 − pf )/n ,

which is about 1% when pf = 20% and about 0.3% when
pf = 1%. The figure shows two cases: (a) where the
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Figure 14.6 Active earth displacements for two different pos-
sible soil friction angle field realizations (both with θ/H = 1
and σ/µ = 0.3): (a) Ko held spatially constant at 0.5; (b) Ko =
1 − sin φ′ is a spatially random field derived from φ′.

friction angle and unit-weight fields are independent and
(b) where there is a strong correlation between the two
fields.

As expected, the probability of failure increases as the
soil becomes increasingly variable. Figure 14.7 can be used
to determine a required factor of safety corresponding to a
target probability of failure. For example, if the fields are
assumed to be independent (Figure 14.7a), with v = 0.2,
and the soil properties are sampled as in this study, then a
required factor of safety of about FS = 2 is appropriate for
a target probability of failure of 5%. The required factor of
safety increases to 3 or more when v ≥ 0.3. Recalling that
only one sample is used in this study to characterize the

soil and that the sample is well outside the expected failure
zone (albeit without any measurement error), the required
factor of safety may be reduced if more samples are taken
or if the sample is taken closer to the wall resulting in a
more accurate characterization of the soil.

Figure 14.7b shows the estimated probability of failure
for the same conditions as in Figure 14.7a , except that now
the friction angle and unit-weight fields are strongly corre-
lated (ρ = 0.8). The main effects of introducing correlation
between the two fields are (1) slightly reducing the average
wall reaction and (2) significantly reducing the wall reac-
tion variance (correlation between “input” parameters tends
to reduce variance in the “output”). These two effects lead
to a reduction in failure probability which leads in turn to a
reduction in the required factor of safety for the same tar-
get failure probability. For example, the required factor of
safety in the case of strongly correlated fields with v ≥ 0.3
is only FS ≥ 2 for a probability of failure of 5%.

Figure 14.8 shows the estimated probability of failure
p̂f for v = 0.2 against the correlation length θ/H for the
two cases of (a) independence between the friction angle
and unit-weight fields and (b) strong correlation between
the fields (ρ = 0.8). Notice that for the correlated fields of
Figure 14.8b, the probability of failure is negligible for all
FS ≥ 2 when v = 0.2.

As anticipated in Section 14.3.3 and shown in
Figure 14.8, there is a worst-case correlation length, where
the probability of failure reaches a maximum. A similar
worst case is seen for all v values considered. This worst-
case correlation length is typically of the order of the depth
of the wall (θ = 0.5H to θ = H ). The importance of this
observation is that this worst-case correlation length can be
conservatively used for reliability analyses in the absence
of improved information. Since the correlation length is
quite difficult to estimate in practice, requiring substantial
data, a methodology that does not require its estimation is
preferable.

14.3.5 Summary

On the basis of this simulation study, the following obser-
vations can be made for a cohesionless backfill:

1. The behavior of a spatially variable soil mass is con-
siderably more complex than suggested by the simple
models of Rankine and Coulomb. The traditional ap-
proach to compensating for this model error is to
appropriately factor the lateral load predicted by the
model.

2. The failure mode of the soil in the active case suggests
that the failure surface is controlled by high-friction-
angle regions when Ko is defined according to Jaky’s
formula (and is thus spatially variable). When Ko
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Figure 14.7 Estimated probability that actual load exceeds design load, p̂f , for θ/H = 1: (a) φ′

and γ fields are independent (ρ = 0); (b) two fields are strongly correlated (ρ = 0.8).
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and γ fields are independent (ρ = 0); (b) two fields are strongly correlated (ρ = 0.8).

is held spatially constant, the failure surface tends
to pass preferentially through the low-friction-angle
regions.

3. Taking the friction angle and unit-weight fields to be
independent is conservative in that it leads to higher
estimated probabilities of failure.

4. In the case when the friction angle and unit-weight
fields are taken to be independent and when the soil is
sampled at a single point at a moderate distance from
the wall, the probabilities of failure are quite high
and a factor of safety of about 2.0—3.0 is required
to maintain a reasonable reliability (95%) unless it is
known that the coefficient of variation for the soil is
less than about 20%. Since for larger coefficients of

variation the required factors of safety are above those
recommended by, say, the CFEM (CGS, 1992), the
importance of a more than minimal site investigation
is highlighted.

5. Assuming a strong correlation between the friction
angle and unit-weight fields leads to factors of safety
which are more in line with those recommended
by CFEM. However, further research is required to
determine if (and under what conditions) this strong
correlation should be depended upon in a design.

6. As has been found for a number of different classical
geotechnical problems (e.g., differential settlement
and bearing capacity), a worst-case correlation length
exists for the active earth pressure problem which is of
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the order of the retaining wall height. The important
implication of this observation is that the correlation
length need not be estimated—the worst-case scale
can be used to yield a conservative design at a target
reliability. This is a practical advantage because the
correlation length is generally difficult and expensive
to estimate accurately, requiring a large number of
samples.

In summary, there is much that still needs to be investi-
gated to fully understand the probabilistic active behavior
of retained soils. In particular, the effect of sampling in-
tensity on design reliability and the type of sample average
best suited to represent the equivalent soil property are two
areas which must be investigated further using this study
as a basis before a formal reliability-based design code can
be developed.



CHAPTER 15

Mine Pillar Capacity

15.1 INTRODUCTION

In this chapter we investigate the effect of spatial variability
on the overall strength of rock or coal pillars (Griffiths et
al., 2001, 2002a). These pillars are commonly provided at
various intervals to provide roof support in a mine. The
probabilistic estimates of pillar capacity are produced using
the program RPILL2D (or RPILL3D), which is available
at http://www.engmath.dal.ca/rfem. The results of
this study enable traditional approaches involving factors
of safety to be reinterpreted as a probability of failure in
the context of reliability-based design.

A review and assessment of existing design methods
for estimating the factor of safety of coal pillars based
on statistical approaches was covered by Salamon (1999).
This chapter investigates in a rigorous way the influence of
rock strength variability on the overall compressive strength
of rock pillars typically used in mining and underground
construction. The investigation merges elasto-plastic finite-
element analysis (e.g., Smith and Griffiths, 2004) with
random-field theory (e.g., Vanmarcke, 1984; Fenton 1990)
within a Monte Carlo framework in an approach referred
to as the random finite-element method (RFEM).

The rock strength is characterized by its unconfined com-
pressive strength or cohesion c using an elastic, perfectly
plastic Tresca failure criterion. The variable c is assumed
to be lognormally distributed (so that ln c is normally dis-
tributed) with three parameters as shown in Table 15.1.
The correlation length describes the distance over which
the spatially random values are significantly correlated in
the underlying Gaussian field. A large correlation length
implies a smoothly varying field, while a small correlation
length implies a highly variable field. In order to nondi-
mensionalize the analysis, the rock strength variability is

expressed in terms of its coefficient of variation:

vc = σc

µc
(15.1)

and the correlation length is normalized with respect to the
pillar dimension B ,

� = θln c

B
(15.2)

where B is the height (and width) of the pillar as illustrated
in Figure 15.1.

The spatially varying rock strength field is simulated
using the LAS method (see Section 6.4.6), which produces
a sequence of normally distributed random values Gi , which
represent local arithmetic averages of the standardized ln c
field over each element i = 1, 2, . . . . In turn, the i th element
is assigned a random value, ci , which is a local geometric
average, over the element, of the continuously varying
random field having point statistics derived from Table 15.1,
according to

ci = exp {µln c + σln cGi } (15.3)

(recall that the geometric average is the arithmetic average
of the logarithms raised to the power e, see Section 4.4.2).
The element values thus correctly reflect the variance reduc-
tion due to arithmetic averaging over the element as well as
the correlation structure dictated by the correlation length,
θln c . In this study, an exponentially decaying (Markovian)

Table 15.1 Input Parameters for Rock Strength c

Parameters Symbols Units

Mean µc kN/m2

Standard deviation σc kN/m2

Correlation length θln c m

B

B

Rigid rough top surface

Rigid rough bottom surface

Figure 15.1 Mesh used for finite-element pillar analyses.
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correlation function is assumed:

ρ(τ ) = exp

{
−2|τ |

θln c

}
(15.4)

where τ is the distance between any two points in the rock
mass. Notice that the above correlation function is isotropic,
which is to say two points separated by 0.2 m vertically
have the same correlation coefficient as two points sepa-
rated by 0.2 m horizontally. While it is unlikely that actual
rock properties will have an isotropic correlation structure
(e.g., due to layering), the basic probabilistic behavior of
pillar failure can be established in the isotropic case and
anisotropic site-specific refinements left to the reader. The
methodologies and general trends will be similar to the re-
sults presented here.

The present study is confined to plane strain pillars with
square dimensions. A typical finite-element mesh is shown
in Figure 15.1 and consists of 400 eight-node plane strain
quadrilateral elements. Each element is assigned a different
c-value based on the underlying lognormal distribution, as
discussed above. For each Monte Carlo simulation, the
block is compressed by incrementally displacing the top
surface vertically downward. At convergence following
each displacement increment, the nodal reaction loads are
summed and divided by the width of the block B to give
the average axial stress. The maximum value of this axial
stress qu is then defined as the compressive strength of the
block.

This study focuses on the dimensionless bearing capacity
factor Nc defined for each of the nsim Monte Carlo simula-
tions as

Nci = qui

µc
, i = 1, 2, . . . , nsim (15.5)

It should be noted that Nci for each simulation is nondi-
mensionalized by dividing qu by the mean compressive
strength µc . The Nci values are then analyzed statistically
leading to a sample mean mN c ,

mN c = 1

nsim

nsim∑
i=1

Nci (15.6)

and sample standard deviation sN c ,

sN c =
√

1

nsim − 1

∑nsim

i=1
(Nci − mN c )2 (15.7)

These statistics, in turn, can be used to estimate probabilities
concerning the compressive strength of the pillar.

A uniform rock, having spatially constant strength c,
has an unconfined compressive strength from Mohr’s circle
given by Nc = 2; hence, for a uniform rock,

qu = 2c (15.8)

Of particular interest in this study, therefore, is to compare
this deterministic value of 2 with mN c from the RFEM
analyses.

15.2 LITERATURE

Although reliability-based approaches have not yet been
widely implemented by geotechnical engineers in routine
design, there has been a significant growth in interest in
this area as an alternative to the more traditional factor of
safety. A valid criticism of the factor of safety is that it
does not give as much physical insight into the likelihood
of design failure as a probabilistic measure (e.g., Singh,
1972). Even though a reliability-based analysis tells more
about the safety of a design, engineers have tended to prefer
the factor of safety approach since there is a perception
that it takes less time to compute (e.g., Thorne and Quine,
1993). This perception is no doubt well based since factor
of safety approaches are generally fairly simple, but the
old addage—You get what you pay for—applies here. The
understanding of the basic failure mechanism afforded by
the consideration of spatial variation is well worth the
effort. In addition to increasing understanding and safety,
reliability-based design can also maximize cost efficiency
(e.g., Call, 1985).

Both variability and correlation lengths of material prop-
erties can affect the reliability of geotechnical systems.
While the variability of geotechnical properties are hard
to determine since soil and rock properties can vary widely
(e.g., Phoon and Kulhawy, 1999; Harr, 1987; Lumb, 1966;
Lee et al., 1983), there is some consensus that vc values
for rock strength range from 0.30 to 0.50 (e.g., Hoek 1998;
Savely, 1987; Hoek and Brown, 1997). This variability has
been represented in the present study by a lognormal distri-
bution that ensures nonnegative strength values. The corre-
lation length can also affect system reliability (e.g., Mostyn
and Li, 1993; Lacasse and Nadim, 1996; DeGroot, 1996;
Wickremesinghe and Campanella, 1993; Cherubini, 2000).
In mining applications, material variability is not usually
accounted for directly; however, empirical formulas have
been developed to adjust factors of safety accordingly (e.g.,
Salamon, 1999; Peng and Dutta, 1992; Scovazzo 1992).

Finite-element analysis has been used in the past to ac-
count for varying properties of geotechnical problems in-
cluding pillar design (see, e.g., Park, 1992; Peng and Dutta,
1992; Tan et al., 1993; Mellah et al., 2000; Dai et al.,
1993). In this chapter, elasto-plastic finite-element analysis
has been combined with random-field theory to investigate
the influence of material variability and correlation lengths
on mine pillar stability. By using multiple simulations, the
Monte-Carlo technique can be used to predict pillar relia-
bility involving materials with high variances and spatial
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variability that would not be amenable to analysis by first-
order second-moment methods.

15.3 PARAMETRIC STUDIES

Analyses were performed with input parameters within the
following ranges:

0.01 < � < 10, 0.05 < vc < 1.6

For each pair of values of vc and �, 2500 Monte Carlo
simulations were performed, and from these, the estimated
statistics of the bearing capacity factor Nc were computed
leading to the sample mean mN c and sample standard
deviation sN c .

In order to maintain reasonable accuracy and run-time
efficiency, the sensitivity of results to mesh density and
the number of Monte Carlo simulations was examined.
Figure 15.2 shows the effect of varying the mesh size
with all other variables held constant. Since there is little
change from the 20 × 20 element mesh to the 40 × 40 el-
ement mesh, the 20 × 20 element mesh is deemed to give
reasonable precision for the analysis. Figure 15.3 shows
the convergence of mN c as the number of simulations in-
creases. The figure displays five repeated analyses with
identical properties and indicates that 2500 simulations give
reasonable precision and reproducibility. Although higher
precision could be achieved with greater mesh density and
simulation counts, the use of a 20 × 20 element mesh
with nsim = 2500 simulations is considered to be accurate
enough in view of the inherent uncertainty of the input
statistics.

The accuracy of results obtained from Monte Carlo analy-
ses can also be directly computed from the number of simula-
tions. Estimated mean bearing capacities will have a standard
error (± one standard deviation) equal to the sample standard
deviation times 1/

√
nsim = 1/

√
2500 = 0.020 or about 2%

of the sample standard deviation. Similarly, the estimated
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Figure 15.2 Influence of mesh density on accuracy of computed
mN c with 2500 simulations.
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Figure 15.3 Influence of number of simulations on accuracy of
computed mN c .

(a)

(b)

Figure 15.4 Typical deformed meshes and gray scales at fail-
ure: (a) vc = 0.5, � = 0.4; (b) vc = 0.5, � = 0.2. Lighter zones
signify weaker rock.

variance will have a standard error equal to the sample vari-
ance times

√
(2/(nsim − 1)) = √

(2/2499) = 0.028, or about
3% of the sample variance. This means that estimated quan-
tities will generally be within about 4% of the true (i.e., finite
element) quantities, statistically speaking.

Figures 15.4a and 15.4b show two typical deformed
meshes at failure, corresponding to � = 0.4 and � = 0.2,
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respectively. Lighter regions in the plots indicate weaker
rock, and darker regions indicate stronger rock. It is clear
that the weak (dark) regions have triggered quite irregular
failure mechanisms. In general, the mechanism is attracted
to the weak zones and “avoids” the strong zones. This sug-
gests that failure is not simply a function of the arithmetic
average of rock strength—it is somewhat reduced due to
the failure path seeking out weak materials.

15.3.1 Mean of Nc

A summary of the sample mean bearing capacity factor
(mN c ), computed using the values provided in Section 15.3,
for each simulation is shown in Figure 15.5. The plots con-
firm that for low values of vc , mN c tends to the deterministic
value of 2. As the vc of the rock increases, the mean bearing
capacity factor falls quite rapidly, especially for smaller val-
ues of �. As shown in Figure 15.5b, however, mN c reaches
a minimum at about � = 0.2 and starts to climb again. In
the limit as � → 0, there are no “preferential” weak paths
the failure mechanism can follow, and the mean bearing ca-
pacity factors return to deterministic values dictated by the
median (see, e.g., Eq. 14.17). For example, in Figure 15.5b,
when vc = 1, mN c → 2/

√
2 = 1.41 as � → 0. In principle,

the � = 0 case is somewhat delicate to investigate. Strictly
speaking, any local average of a (finite variance) random
ln c field having � = 0 will have zero variance (since the
local average will involve an infinite number of independent
points). Thus, in the � = 0 case the local average repre-
sentation, that is, the finite-element method (as interpreted
here), will necessarily return to the deterministic case. The
detailed investigation of this trend is also complicated by
the fact that rock properties are never determined at the

“point” level—they are based on a local average over the
rock sample volume. Thus, while recognizing the apparent
trend with small � in this study, the theoretical and nu-
merical verification of the limiting trend is left for further
research. Also included in Figure 15.5a is the horizontal
line corresponding to the solution that would be obtained
for � = ∞. This hypothetical case implies that each simu-
lation of the Monte Carlo process produces a uniform soil,
albeit with properties varying from one simulation to the
next. In this case, the distribution of qu will be statistically
similar to the distribution of c but magnified by 2, thus
mN c = 2 for all values of vc .

15.3.2 Coefficient of Variation of Nc

Figure 15.6 shows the influence of � and vc on the
sample coefficient of variation of the estimated bearing
capacity factor, vN c = sN c /mN c . The plots indicate that vN c

is positively correlated with both vc and �, with the limiting
value of � = ∞ giving the straight line vN c = vc .

15.4 PROBABILISTIC INTERPRETATION

Following Monte Carlo simulations for each parametric
combination of input parameters (� and vc), the suite of
computed bearing capacity factor values from Eq. 15.5
was plotted in the form of a histogram, and a “best-fit”
lognormal distribution superimposed. An example of such
a plot is shown in Figure 15.7 for the case where � = 0.5
and vc = 0.4.

Since the lognormal fit has been normalized to enclose
an area of unity, areas under the curve can be directly
related to probabilities. From a practical viewpoint, it would
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Figure 15.5 Variation of mN c with (a) coefficient of variation vc and (b) correlation length �.
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be of interest to estimate the probability of design failure,
defined here as occurring when the computed compressive
strength is less than the deterministic value based on the
mean strength divided by a factor of safety FS , that is,

Design failure if qu <
2µc

FS
(15.9)

or alternatively,

Design failure if Nc <
2

FS
(15.10)

The probability of failure as defined in Eq. 15.10 can be
expressed as the area under the probability density function
to the left of a “target” design value 2/FS ; hence, from the
properties of the underlying normal distribution we get

P

[
Nc <

2

FS

]
= �

(
ln(2/FS ) − µln N c

σln N c

)
(15.11)

where � is the cumulative standard normal distribution
function.

For the particular case shown in Figure 15.7, the fit-
ted lognormal distribution has the sample statistics mN c =
1.721 and sN c = 0.185. These values indicate a median
given by µ̃N c = 1.711 and a mode given by ModeNc =
1.692. Furthermore, the distribution of ln Nc has mean
and standard deviation, using Eqs. 1.176, of µln N c � 0.537
and σln N c � 0.107. For the particular case of FS = 1.5,
Eq. 15.11 gives p(Nc < 2/1.5) = 0.01, indicating a 1%
probability of design failure as defined above. This im-
plies a 99% reliability that the pillar will remain stable. It
should be noted that for the relatively small standard de-
viation indicated in Figure 15.7, the lognormal distribution
looks very similar to a normal distribution.

15.4.1 General Observations on Probability of Failure

While the probability of design failure is directly related
to the estimated values of mN c and sN c , it is of interest to
observe the separate influences of mN c and sN c . If sN c is held
constant, increasing mN c clearly decreases the probability
of failure as shown in Figure 15.8a since the curves move
consistently to the right and the area to the left of any
stationary target decreases. The situation is less clear if mN c

is held constant and sN c is varied, as shown in Figure 15.8b.
Figure 15.9a shows how the probability of design failure,

as defined in Eq. 15.11, varies as a function of vN c and the
ratio of the target value 2/FS to the mean of the lognormal
distribution mN c . If the target value is less than or equal
to the mean, the probability of failure always increases as
vN c is increased. If the target value is larger than the mean,
however, the probability of failure initially falls and then
gradually rises.

A more fundamental parameter when estimating proba-
bilities of lognormal distributions is the median, µ̃N c , which
represents the 50% probability location. Figure 15.9b shows
how the probability of design failure varies as a function
of vN c and the ratio of the target value 2/FS to the me-
dian. In this case the probabilistic interpretation is clearly
defined. If the target is less than the median, the probability
always increases as vN c is increased, whereas if the target is
greater than the median, the probability always decreases.
If the target equals the median, the probability of failure is
50%, irrespective of the value of vN c . It might also be noted
in Figure 15.9b that while the rate of change of probability
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is quite high at low values of vN c , the curves tend to flatten
out quite rapidly as vN c is increased.

15.4.2 Results from Pillar Analyses

The influence of these rather complex interactions on the
pillar stability analyses can be seen in Figures 15.10, where
the probability of design failure is shown as a function
of the correlation length � for different values of vc .
Each of the four plots corresponds to a different value of
the factor of safety, where FS = 1.5, 2.0, 2.5, and 3.0, re-
spectively. Consider in more detail the results shown in
Figure 15.10a for the case of FS = 1.5, where the target

value is 2/FS = 1.33. To help with the interpretation, tabu-
lated values of the statistics of Nc corresponding to different
values of vc are presented in Tables 15.2–15.5. Small val-
ues of vc ≤ 0.20 result in correspondingly small values of
vN c and high values of mN c ≈ 2, as shown in Table 15.2,
leading to low probabilities of design failure for all �.
For larger values of vc , for example, vc = 0.4, the mean
mN c has fallen but is still always higher than the target
value of 1.33, as shown in Table 15.3. With 1.33/mN c < 1,
Table 15.3 indicates that the increasing values of vN c result
in a gradually increasing probability of design failure. This
trend is also confirmed by Figure 15.9a . Consider now the
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Figure 15.10 Probability of design failure as function of vc and � for four different factors of safety, FS .

behavior of the probabilities for rather high values of vc ,
such as vc = 1.2. From Table 15.4, the mean values of mN c

have fallen quite significantly and are often smaller than the
target value of 1.33. More significantly in this case, the me-
dian of Nc is always smaller than the target of 1.33. Small
values of � imply small values of vN c and an almost cer-
tain probability of design failure (≈ 1). With 1.33/µ̃N c > 1,
Table 15.4 indicates that the increasing values of vN c result
in a falling probability of design failure. This trend is also
confirmed by Figure 15.9b. For intermediate values of vc ,

such as vc = 0.8, the probability of design failure from
Figure 15.10a is seen to rise and then fall. This interesting
result implies a worst-case combination of vc and � which
would give a maximum probability of design failure.

The results tabulated in Table 15.5 indicate that at low
values of �, the µ̃N c is slightly larger than the target, and
this, combined with the low value of vN c , gives a negligible
probability of failure. As � is increased, vN c increases
and the µ̃N c decreases. Both of these effects cause the
probability of failure to rise as confirmed by Figure 15.9b.
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Table 15.2 Probability of Design Failure for FS = 1.5
and vc = 0.2

� mN c vN c 1.33/µ̃N c P [Nc < 1.33]

0.01 1.943 0.008 0.686 0.000
0.10 1.917 0.031 0.696 0.000
0.20 1.909 0.056 0.670 0.000
0.50 1.930 0.099 0.694 0.000
1.00 1.964 0.134 0.685 0.002
2.00 1.985 0.164 0.681 0.009
5.00 1.987 0.180 0.682 0.016

10.00 1.987 0.190 0.683 0.021
∞ 2.000 0.200 0.680 0.026

Table 15.3 Probability of Design Failure for FS = 1.5
and vc = 0.4

� mN c vN c 1.33/µ̃N c P [Nc < 1.33]

0.01 1.809 0.014 0.737 0.000
0.10 1.747 0.058 0.764 0.000
0.20 1.721 0.107 0.779 0.010
0.50 1.770 0.193 0.767 0.083
1.00 1.847 0.264 0.747 0.130
2.00 1.880 0.310 0.743 0.163
5.00 1.944 0.358 0.728 0.181

10.00 1.953 0.380 0.730 0.196
∞ 2.000 0.400 0.718 0.195

Table 15.4 Probability of Design Failure for FS = 1.5
and vc = 1.2

� mN c vN c 1.33/µ̃N c P [Nc < 1.33]

0.01 1.189 0.028 1.122 1.000
0.10 1.083 0.136 1.242 0.946
0.20 1.055 0.239 1.299 0.867
0.50 1.125 0.468 1.309 0.727
1.00 1.283 0.662 1.246 0.643
2.00 1.479 0.838 1.176 0.588
5.00 1.719 1.003 1.099 0.545

10.00 1.801 1.108 1.105 0.545
∞ 2.000 1.200 1.041 0.517

At approximately � = 0.5, the µ̃N c approaches the tar-
get, giving a maximum probability of design failure close
to 0.5. As indicated in Table 15.5, further increase in �

causes the 1.33/µ̃N c ratio to fall quite consistently. Al-
though vN c is still rising, the overall behavior is dominated
by the falling 1.33/µ̃N c ratio, and the probability of failure
falls as implied in Figure 15.9b.

Table 15.5 Probability of Design Failure for FS = 1.5
and vc = 0.8

� mN c vN c 1.33/µ̃N c P [Nc < 1.33]

0.01 1.478 0.022 0.902 0.000
0.10 1.387 0.103 0.966 0.370
0.20 1.371 0.178 0.988 0.472
0.50 1.429 0.336 0.984 0.481
1.00 1.542 0.472 0.956 0.460
2.00 1.659 0.607 0.940 0.456
5.00 1.816 0.754 0.920 0.450

10.00 1.905 0.738 0.870 0.416
∞ 2.000 0.800 0.854 0.411

Figures 15.10b–d , corresponding to higher factors of
safety, display similar maxima in their probabilities; how-
ever, there is an overall trend that shows the expected reduc-
tion in the probability of failure as the factor of safety is in-
creased. Figure 15.10d , corresponding to FS = 3, indicates
that for a reasonable upper-bound value of vN c = 0.6, the
probability of design failure will be negligible for � < 1.

The program that was used to produce the results in this
chapter enables the reliability of rock pillars with varying
compressive strength and spatial correlation to be assessed.
In particular, a direct comparison can be made between
the probability of failure and the more traditional factor of
safety.

Table 15.6 shows the factor of safety and probability of
failure for pillar strength as a function of � for the partic-
ular case of vc = 0.4. When vc and � are known, a factor
of safety can be chosen to meet the desired probability of
failure or acceptable risk. For instance, if a target probabil-
ity of failure of 1% is desired for vc = 0.4 and � = 0.2, a
factor of safety of at least FS = 1.5 should be applied to the
mean shear strength value. When � is not known, a con-
servative estimate should be made that would lead to the

Table 15.6 Probability of Pillar Failure for vc = 0.4

�

FS 0.10 0.20 1.00 2.00 10.00

1.00 0.99 0.93 0.67 0.64 0.60
1.25 0.07 0.27 0.34 0.36 0.36
1.50 0.00 0.01 0.13 0.13 0.20
1.75 0.00 0.00 0.04 0.07 0.10
2.00 0.00 0.00 0.01 0.03 0.05
2.25 0.00 0.00 0.00 0.01 0.02
2.50 0.00 0.00 0.00 0.00 0.01
2.75 0.00 0.00 0.00 0.00 0.01
3.00 0.00 0.00 0.00 0.00 0.00
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Figure 15.11 Probability of design failure as function of � for
vc = 0.4 and for different factors of safety, FS .

most conservative prediction. For instance, if a 1% prob-
ability of failure is acceptable for vc = 0.4 with unknown
�, a factor of safety of at least FS = 2.75 is called for.

Figure 15.11 shows a plot of the results from Table 15.6.

15.5 SUMMARY

The chapter has shown that rock strength variability in
the form of a spatially varying lognormal distribution can
significantly reduce the compressive strength of an axially
loaded rock pillar.

The following more specific conclusions can be made:

1. As the coefficient of variation of the rock strength in-
creases, the expected compressive strength decreases.
For a given coefficient of variation, the expected mean
compressive strength reaches a minimum correspond-
ing to a critical value of the correlation length. In the
absence of good information relating to the correlation
length, this critical value should be used in design.

2. The coefficient of variation of the compressive
strength is observed to be positively correlated with
both the correlation length and the coefficient of vari-
ation of the rock strength.

3. The probability of failure is a function of mN c , sN c , and
the target design value 2/FS . The chapter has shown
that the interpretation of the probability of failure
is most conveniently explained by comparing the
target design value with the median of the lognormal
distribution.

4. By interpreting the Monte Carlo simulations in a
probabilistic context, a direct relationship between the
factors of safety and probability of failure can be
established.



CHAPTER 16

Liquefaction

16.1 INTRODUCTION

Consider a soil mass subjected to an earthquake. Upon
shaking, the soil particles tend to want to settle into a more
densely packed arrangement. This will occur with only
some surface settlement if the soil is dry or only partially
saturated with water. If the soil is fully saturated, then
in order for the soil to become more densely packed, the
water between the particles is forced to escape. However,
if the water cannot easily escape, this can lead to a very
dangerous situation in which the pore water pressures
exceed the contact pressure between soil particles, and the
soil effectively turns into a fluid.

In this chapter, we examine the effect of spatial vari-
ability on the extent and severity of earthquake-induced
liquefaction (Fenton, 1990; Fenton and Vanmarcke, 1998).
The analysis is largely Monte Carlo simulation based. The
software used to model the response of a soil to earthquake
input is called DYNA1D (Prevost, 1989).

Under earthquake shaking, liquefaction-induced failure
can occur only if the resistance to seismic stresses is suffi-
ciently low over a sufficiently large volume of foundation
soil; high liquefaction potential need not be a problem if
confined to small, isolated volumes, as demonstrated in a
liquefaction stability analysis by Hryciw et al. (1990). Thus,
studies of liquefaction risk at a site should consider not only
the liquefaction potential at sample points, as traditionally
done, but also the spatial variation of liquefaction potential
over the entire site.

Because of the highly nonlinear nature of liquefaction
response of a soil mass, the spatial distribution of liquefied
regions can be most accurately obtained through multiple
simulation runs, that is, through a Monte Carlo analysis.
In Monte Carlo simulation, the challenge is to simulate
sets of properly correlated finite-element local averages;

each set of simulated values serves as input into (multiple)
deterministic finite-element analysis. Sample statistics of
response parameters (i.e., the occurrence and extent of
liquefaction) can then be computed.

An appropriate soil model for stochastic finite-element
analysis involves a partition of the soil volume into a set
of finite elements. A vector of material properties, drawn
from realizations of three-dimensional local average ran-
dom fields, is then associated with each element. In the
simulation, one must account for “point variance” reduc-
tion and correlation between elements, consistent with the
dimensions of the finite elements and the correlation pa-
rameters of the underlying fields. The variance reduction
function, which reflects the amount of variance reduction
due to local averaging and depends on one or more correla-
tion lengths, frugally captures the correlation structure and
is well suited for the simulation of local averages (Vanmar-
cke, 1984).

Although the soil properties are being modeled by a
three-dimensional random field, the liquefaction analysis
will be carried out using only a one-dimensional finite-
element program applied to one column of the soil mass at a
time. This considerable simplification of the problem is ne-
cessitated by the enormous computational requirements of a
nonlinear, time-stepping, stochastic Monte Carlo simulation
analysis. In addition, and again partly due to computational
time issues but also due to the one-dimensional sequential
approximation to a three-dimensional problem, the chapter
considers only the initiation of liquefaction. While it is well
known that postevent pore pressure redistribution is impor-
tant in liquefaction, it is not felt that a one-dimensional
model will properly reflect this redistribution since in the
one-dimensional model almost all shear wave motion is
absorbed by the liquefied layer and the surface ceases to
move. On the shorter time scale of the event itself, the ini-
tiation of liquefaction in the soil is believed to be modeled
reasonably accurately via this one-dimensional approxima-
tion. The chapter concentrates on the spatial variation, over
a horizontal plane, of the initial liquefaction state. A pic-
ture of the initial liquefaction state is built up by looking
at horizontal cross sections through the collection of one-
dimensional soil columns making up the soil mass.

16.2 MODEL SITE: SOIL LIQUEFACTION

An earthquake of magnitude Ms = 6.0, on April 26, 1981,
in the Imperial Valley near Westmorland, California, caused
significant damage, in many cases through liquefaction.
This prompted a detailed geological survey of the valley,
including the installation of accelerometers and piezome-
ters to record ground motions and changes in pore water
pressure during future earthquakes at the Wildlife Manage-
ment Area. The Wildlife Management Area is located 3 km
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south of Calipatria in the Imperial Wildfowl Management
Area, lying on the west side of the incised floodplain of the
Alamo River.

The site was instrumented in 1982 with surface and
down-hole (7.5-m-depth) accelerometers and six pore water
pressure transducers (Bennett et al., 1984). The Superstition
Hills event (Ms = 6.6), recorded in 1987 (Holzer et al.,
1988), resulted in liquefaction at the site in the form of
sand boils and limited lateral spreading and motivates this
study—the following model is based on the Wildlife site.

Within the upper three geological units, a closer exam-
ination by Holzer et al. (1988) revealed five soil strata to
the level of the down-hole accelerometer:

1. Layer 1 (0.0–1.2 m): very loose silt
2. Layer 2 (1.2–2.5 m): very loose silt
3. Layer 3 (2.5–3.5 m): very loose to loose sandy silt
4. Layer 4 (3.5–6.8 m): loose to medium dense silty sand
5. Layer 5 (6.8–7.5 m): medium to stiff clayey silt

The water table at a depth of 1.2 m forms the boundary
between layers 1 and 2.

The random medium representation of the soil proper-
ties and deterministic finite-element program used to assess
the spatial variation of liquefaction at the model site are
described in the following sections. Recognizing that lit-
tle information concerning spatial variability of the soil
properties at the site is available, the model requires many
parameters to be assumed using reasonable estimates. Since
many of these statistical parameters were not verified at the
Wildlife site, this example serves primarily to investigate
the degree of spatial variability in liquefaction under reason-
able assumptions and to investigate techniques of evaluating
liquefaction risk in the presence of spatial variability. The
intensity of the earthquake excitation and the correlation
lengths of the soil properties were varied for the purpose
of sensitivity analysis.

The soil volume to be modeled is 80 × 80 m laterally
by 7.5 m in depth and is partitioned into a 16 × 16 × 32
set of finite elements. Thus, each element has dimensions
5 × 5 m laterally by 0.23 m vertically. Realizations of the
random soil properties within each element are obtained
by columnwise extraction from a set of three-dimensional
local average simulations.

16.2.1 Stochastic Soil Model

For this study, the soil parameters expected to have the
greatest impact on site response and liquefaction likelihood
and selected to be modeled as three-dimensional random
fields were permeability k , porosity n , modulus of elasticity
(solid phase) E , Poisson’s ratio (solid phase) ν, and dilation

reference angle �. The ratio of � to the friction angle de-
termines whether initial contraction is followed by dilation
or contraction in the soil during shaking. All of these prop-
erties, and in particular the dilation reference angle, are
generally found through laboratory tests on soil samples.
These parameters are required as input to the finite-element
analysis program to be discussed later. Their treatment and
precise interpretation within the finite-element algorithm is
discussed in detail by Prevost (1989). Permeability and,
indirectly, porosity, are perhaps the most important param-
eters influencing liquefaction in sandy soils. Water trapped
within the soil structure carries an increasing fraction of the
stress as the soil tries to densify during shaking. Eventually
the intergranular effective stresses may become so low that
relative movement between particles becomes possible and
the medium effectively liquefies.

Beyond CPT tests performed at a small number of
locations, the published site information (Bennett et al.,
1984; Holzer et al., 1988) contains barely enough data
to establish mean parameters as estimated by Keane and
Prevost (1989) and listed in Table 16.1 as a function
of depth. Estimates of the statistical nature of the above
parameters are based on a combination of engineering
judgment and a review of the literature (Fenton, 1990).
Assumed variances associated with each parameter are also
shown in Table 16.1 as a function of depth.

In all cases the random material parameters are ob-
tained by transforming a three-dimensional zero-mean, unit-
variance homogeneous Gaussian field Z (x), realizations
of which are produced using the three-dimensional LAS
method (Section 6.4.6). Letting Ui (x) represent the value
of the i th soil property at the spatial point x = {x , y , z }T,
with z the depth below the surface,

Ui (x) = T i

(
µi (z ) + σi (z ) Zi (x)

)
(16.1)

where µi (z ) is the mean, σi (z ) is the standard deviation, and
Ti is a transformation taking the Gaussian process, Zi (x),
into the marginal distribution appropriate for property i .
Notice that the formulation allows trends in the mean and
variance as a function of depth to be incorporated.

For the permeability, elastic modulus, and dilation refer-
ence angle, all assumed to be lognormally distributed, the
transformation Ti is the exponential

Ui (x) = exp {µln i (z ) + σln i (z ) Zi (x)} (16.2)

Porosity is related to both permeability and soil relative
density, the latter of which is also related to the initial
vertical stresses in the medium as well as the shear wave
velocities. The porosity at the Wildlife site is assumed to
have a constant mean of 0.42. Recognizing that n must be
bounded, the following transformation Tn (see Eq. 16.1)
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Table 16.1 Geotechnical Parameters at the Wildlife Site

Property Statistic 0–1.2 1.2–2.5 2.5–3.5 3.5–6.8 6.8–7.5

Mean 1×10−5 1×10−5 1×10−5 1×10−4 1×10−6

Permeability, µln k −11.7 −11.7 −11.9 −9.7 −14.1
k (m/s) σ 2

ln k 0.6 0.6 0.8 1.0 0.5

Mean 0.42 0.42 0.42 0.42 0.42
Porosity,a µn ′ 0 0 0 0 0

n σ 2
n ′ 1.0 1.0 1.0 1.0 1.0

Elastic Mean 3.9×107 3.7×107 5.4×107 5.4×107 7.0×107

modulus, µln E 17.1 17.1 17.4 17.2 17.7
E (N/m2) σ 2

ln E 0.8 0.6 0.8 1.2 0.8

Mean 0.275 0.275 0.275 0.275 0.275
Poisson’s µν′ 0 0 0 0 0

ratio,bν σ 2
ν′ 1.0 1.0 1.0 1.0 1.0

Dilation Mean 21.3◦ 20.0◦ 19.0◦ 18.0◦ 5.0◦
reference µln � 2.95 2.90 2.84 2.77 1.51
angle, � σ 2

ln � 0.2 0.2 0.2 0.3 0.2
a See Eqs. 16.3 and 16.4.
b See Eqs. 16.6 and 16.7.

changes a normally distributed variate into a bounded
distribution:

Un = a + (b − a)Tn (Y ) = a + b − a

2

{
1 + tanh

(
Y

2π

)}

(16.3)
which is a one-to-one mapping of Y ∈ (−∞, ∞) into Un ∈
(a , b), where Y is obtained from the random field Z
according to Eq. 16.1:

Y (x) = µn ′ (z ) + σn ′ (z ) Zn ′ (x) (16.4)

where µn ′ and σn ′ are the mean and standard deviation of
Y , which can be obtained in practice by taking the first two
moments of the inverse:

Y = T −1
n

(
Un − a

b − a

)
= π ln

(
Un − a

b − Un

)
(16.5)

See Section 1.10.10 for more details on this bounded
distribution. For the assumed value of σ 2

n ′ = 1.0 used herein
(see Table 16.1), the distribution of Un is bell shaped with
mode at the midpoint, 1

2 (b + a). In this case study, it is
assumed that n ∈ (0.22, 0.62) with mean 0.42. While this
may seem to be a fairly wide range on the porosity, it
should be noted that the distribution given by Eq. 1.194
implies that 90% of porosity realizations lie between 0.37
and 0.47. The solid phase (soil) mass density, ρs , was taken
to be 2687 kg/m3 (Keane and Prevost, 1989) giving a mean
soil dry unit mass of (1 − 0.42)(2687) = 1558 kg/m3.

Because it is well known that soil porosity is related
to permeability, the underlying Gaussian fields Zn ′ and
Zln k are generated so as to be mutually correlated on a
point-by-point basis. This is accomplished by generating

two independent random fields and then linearly combining
them using the Cholesky decomposition of the 2 × 2 cross-
correlation matrix to yield two properly correlated random
fields (see Section 6.4.2). A correlation coefficient of 0.5 is
assumed; however, it must be recognized that the true corre-
lation between these properties is likely to be quite variable
and site specific. Although the other random soil properties
are also felt to be correlated with soil porosity, their degree
of correlation is significantly less certain than in the case of
permeability, which is already somewhat speculative. For
this reason, the other random properties are assumed to be
independent. Recalling that the introduction of correlation
decreases the variability between pairs of random variables,
the assumption of independence increases the overall vari-
ability contained in the model. Thus, it is deemed better to
assume independence than to assume an erroneous correla-
tion. The effect of cross-correlation between, say, porosity
and the dilation reference angle on the spatial distribution
of liquefaction is left an open question that may be better
left until more is known about the statistical correlations
between these properties.

Poisson’s ratio is also chosen to be a bounded random
variable, ν ∈ (0.075, 0.475), according to Eq. 16.3 with
constant mean 0.275. Now Y is given by

Y (x) = µν′ (z ) + σν′(z ) Zν′ (x) (16.6)

so that
Uν = 0.075 + 0.4 Tν(Y ) (16.7)

and the transformation Tν is the same as Tn in Eq. 16.3.
Under this transformation, with σν′ = 1, 90% of realizations
of Poisson’s ratio will lie between 0.24 and 0.31.
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The relationship between the dilation reference angle �

and the friction angle at failure, φ, as interpreted internally
by the finite-element analysis program, determines whether
the soil subsequently dilates or contracts upon shaking. If
the ratio �/φ exceeds 1.0, then only contraction occurs,
otherwise initial contraction is followed by dilation. Since
contraction results in increasing pore water pressure, this
ratio is of considerable importance in a liquefaction anal-
ysis. Rather than considering both the dilation and friction
angles to be random, only the dilation angle was selected as
random; the friction angle was prescribed deterministically
with φ = 21◦ in layer 1, 20◦ in layer 2, 22◦ in layers 3 and
4, and 35◦ in layer 5, as estimated by Keane and Prevost
(1989). These assumptions still lead to the ratio �/φ being
random.

The covariance function C (τ ) used to model the spa-
tial variability of all the random soil properties is of a
simple exponential form parameterized by θv and θh , the
correlation lengths in the vertical and horizontal directions,
respectively,

C (τ1, τ2, τ3) = σ 2 exp

{
− 2

θh

(√
τ 2

1 + τ 2
2

)
− 2|τ3|

θv

}
(16.8)

where τ = {τ1, τ2, τ3}T = x − x′ denotes the separation dis-
tance between two spatial points, x and x′. Note that
Eq. 16.8 has a partially separable form in τ3 (vertically).
This covariance function governs the underlying Gaussian
random fields; after transformation into the desired marginal
distributions, the covariance structure is also transformed so
that comparison between statistics derived from real data
and Eq. 16.8 must be made with caution. From the point
of view of estimation, the statistical parameters governing
the underlying Gaussian fields can always be simply ob-
tained by performing an inverse transformation on the data
prior to estimating the statistics. For example, if the param-
eter is treated as a lognormally distributed random process
by transforming a normally distributed random field using
the relationship U = exp{Y }, then the corresponding mean,
variance, and correlation length of Y can be found from the
raw data by taking the logarithm of the data prior to statis-
tical analysis. In the absence of spatial data, the following
discussion is derived from the literature and is assumed to
apply to the underlying Gaussian fields directly.

In the vertical direction, Marsily (1985) proposes that
the correlation length of soil permeability is of the order
of 1 m, and so θv = 1 m is adopted here. The horizontal
correlation length, θh , is highly dependent on the horizon-
tal extent and continuity of soil layers. The U.S. Geological
Survey (Bennett et al., 1984) indicated that the layers at the
Wildlife site are fairly uniform, and a ratio of horizontal to
vertical correlation lengths θh/θv � 40 was selected imply-
ing θh � 40 m; this is in the same range as Vanmarcke’s
(1977) estimate of 55 m for the compressibility index of a

sand layer. Although compressibility and permeability are,
of course, different engineering properties, one might argue
that the correlation length depends largely on the geologi-
cal processes of transport of raw materials, layer deposition,
and common weathering rather than on the actual property
studied. Based on this reasoning, all the random soil prop-
erties are modeled using the same correlation lengths as
well as the same form of the covariance function.

The simulations are repeated using a larger vertical
correlation length, θv = 4 m, while holding the ratio of
horizontal to vertical correlation lengths constant at 40. In
the following, only the vertical correlation length is referred
to when indicating the case studied.

16.2.2 Stochastic Earthquake Model

Earthquake ground motions vary from point to point in both
time and space. Techniques have been developed to gener-
ate such fields of motion (Vanmarcke et al., 1993), while
studies of earthquake motions over arrays of seismometers
provide estimates of the space–time correlation structure of
ground motion (e.g., Boissières and Vanmarcke, 1995). In-
put earthquake motions in this study, applied to the base
of the soil model on a pointwise basis, are realizations
of a space–time random field with the following assumed
space–frequency correlation function:

ρ(ω, τ ) = exp

{
− ω|τ |

2πcs

}
(16.9)

where τ = x − x′ is the lag vector between spatial points
x and x′, ω is the wave component frequency (radians per
second), c is the shear wave velocity (taken as 130 m/s at
the base of the soil model), and s = 5.0 is a dimensionless
parameter controlling the correlation decay.

Only one component of motion is used, modeled after
the north–south (NS) component of the Superstition Hills
event. Analyses by Keane and Prevost (1989) indicate that
including the east–west and vertical components makes lit-
tle difference to the computed (deterministic) site response
(the north–south component had dominant amplitudes), and
using it alone, Keane obtains remarkably good agreement
with the recorded site response.

The marginal spectral density function G(ω) governing
the input motion spectral content was derived from the
dominant NS component of earthquake acceleration, shown
in Figure 16.1, recorded at the down-hole accelerometer
for the Superstition Hills event. To reduce the number of
time steps in the analysis, only 20.48 s of motion were
generated—1024 time steps at 0.02 s each. Using the
maximum entropy method, a pseudoevolutionary spectral
density function was estimated in four consecutive time
windows, starting at 7 s into the recorded acceleration
as denoted by dashed lines in Figure 16.1. The derived
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Figure 16.1 Recorded accelerogram at 7.5-m depth during Superstition Hills event (NS component).
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Figure 16.2 Pseudoevolutionary spectral density function es-
timated from Superstition Hills event (NS component) for four
consecutive time windows.

spectral density functions shown in Figure 16.2, one for
each time window, were then used to produce nonstationary
earthquake acceleration realizations. The last G(ω) was
actually based on the entire trailing portion of the recorded
motion.

Admittedly, the down-hole motions include both upward
propagating energy and downward propagating reflected
energy, the latter of which is modified by existing material
properties in the soil above the recording point. However,
only the spectral density function of the down-hole motion
is used to control the generated motions, not the detailed
recordings themselves. The resulting simulations can be
thought of as having a mean which includes the mean soil
properties in the overlying field.

Figure 16.3 shows a realization of the input acceleration
field sampled at two points separated by 80 m. Although
the motions are quite similar, they are not identical and may
be considered representative of the possible base motion at
the site. The same marginal spectral density function was
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Figure 16.3 Sample acceleration records generated at two
points, a and b, separated by 80 m.

used at all spatial points over the base of the soil model,
presumably reflecting the filtering of bedrock motion typical
at the site. To partially assess the effect of earthquake
intensity on the spatial distribution of liquefaction at the
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site, the study was repeated using the first set of artificial
motions scaled by a factor of 0.7.

16.2.3 Finite-Element Model

The soil mass is divided into 256 columns arranged on
a 16 × 16 grid, each column consisting of 32 elements
(33 nodes) vertically. Realizations of the soil mass are
excited by artificial earthquake motions applied at the
base of each soil column and analyzed using DYNA1D
(see Section 16.1). DYNA1D employs multiple yield level
elasto-plastic constitutive theory to take into account the
nonlinear, anisotropic, and hysteretic stress–strain behavior
of the soil as well as the effects of the transient flow of pore
water through the soil media and its contractive/dilative
nature. Each finite element is assigned soil properties, either
deterministic values or from realizations of random fields.

Soil columns are then analyzed individually, so that 256
invocations of the finite-element analysis are required for
each realization of the soil mass. The column analyses are
independent, and the only link between the soil columns
is through their correlated properties. It is unknown how
the coupling between columns in a fully three-dimensional
dynamic analysis would affect the determination of global
liquefaction potential; however, it is believed that the anal-
ysis proposed herein represents a reasonable approximation

to the fully three-dimensional analysis at this time, particu-
larly since the site is reasonably level and only liquefaction
initiation is considered.

The surface response obtained from the analysis of a
single column of soil is shown in Figure 16.4 along with a
typical realization of the input motion acting at the column
base. The soil at a depth of about 2.7 m began to liquefy
after about 10 s of motion. This is characterized at the
surface by a dramatic reduction in response as the liquefied
layer absorbs the shear wave motion propagating from
below.

Of particular interest in the evaluation of liquefaction po-
tential at the site is the prediction of surface displacement
and pore water pressure buildup while shaking lasts. As
the global analysis consists of a series of one-dimensional
column analyses, it was decided not to use the surface
displacement predictions as indicators of liquefaction po-
tential. Rather, the pore pressure ratio associated with each
element was selected as the liquefaction potential measure
to be studied. Redistribution of pore water pressure after
the earthquake excitation, which could lead to further liq-
uefaction of upper soil layers, was not considered in this
initial study.

16.2.4 Measures of Liquefaction

The finite-element program calculates the excess pore water
pressure, ui , in each element i as a function of time. The

0 5 10 15 20 25

Time (s)

(a)

−2
0

2

A
cc

el
er

at
io

n 
(m

/s
2 )

0 5 10 15 20 25

Time (s)

(b)

−2
0

2

A
cc

el
er

at
io

n 
(m

/s
2 )

Figure 16.4 (a) Base input and (b) surface response computed by DYNA1D for a particular soil column realization.
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ratio qi = ui /σ
′
oi , where σ ′

oi is the initial vertical effective
stress in the i th element, is commonly thought of as the
parameter measuring the occurrence of liquefaction (Seed,
1979) and will be referred to herein as the liquefaction
index. Note that, owing to the one-dimensional nature of
the finite-element analysis, the horizontal effective stress is
ignored and liquefaction is based only on the initial vertical
effective stress.

When qi reaches a value of 1, the pore water is carrying
the load so that soil particles become free to slip and
liquefaction occurs. It is possible, however, for liquefaction
to take place at values of qi slightly less than 1, as it is
only necessary that most of the lateral strength or bearing
capacity is lost. Fardis and Veneziano (1982) suggest that
the liquefied fraction of the i th element of soil, ηi , be
calculated as

ηi = P

[
ui

σ ′
oi

≥ 0.96

]
(16.10)

for undrained and partially drained effective stress models.
The probability P [·] on the right-hand side can be evaluated
through a sequence of simulations. Fardis then goes on to
evaluate the risk of liquefaction L as the probability that
the maximum of η(z ) over the depth z is close to 1:

L = P
[
max

z
(η(z )) ≈ 1

]
(16.11)

where now η(z ) is interpreted, not as a probability, but
rather as the sample liquefied fraction.

For individual soil columns where interaction with adja-
cent soil is ignored, such an approach is reasonable since
the occurrence of liquefaction at a given layer will result in
the loss of lateral resistance at the surface. Shinozuka and
Ohtomo (1989) have a slightly different approach involving
summing the liquefaction indices q over depth to obtain the
vertically averaged liquefaction index Q:

Q = 1

h

∫ h

0

u(z )

σ ′
o(z )

dz (16.12)

where h is the total depth of the modeled column. In this
way the effect of the vertical extent of a liquefied region
can be incorporated into a risk analysis. But how important
is the vertical extent of liquefaction? While it certainly has
bearing on liquefaction risk, it is easy to imagine a situation
in which a thin layer some distance below the surface
becomes completely liquefied while adjoining layers above
and below remain stable. Such a condition could yield a
relatively low value of Q even though lateral stability at the
surface may be lost. On the other hand, the vertical extent of
liquefied regions may be more important to the occurrence
of sand boils and vertical settlement. In that the risk of
sand boils and/or vertical settlement is quantifiable using
point or vertically averaged approaches, whereas the loss of
lateral stability resulting in spreading or lateral movement

depends on the spatial distribution of liquefaction, this study
concentrates on the latter issue.

In the three-dimensional situation, neither approach dis-
cussed above is deemed entirely suitable. If the term global
liquefaction is used to denote the loss of lateral stability
leading to large surface displacements at the site, then the
occurrence of high qi indices at an individual point (or
small region) will not necessarily imply global liquefaction
if adjacent regions retain sufficient strength. Likewise if a
particular layer is found to have high q values over a sig-
nificant lateral extent, then global liquefaction risk could
be high even though the average for the site may be low.
In this study, the lateral spatial extent of liquefied regions
is assumed to be the more important factor in the deter-
mination of global liquefaction risk for a site. For each
realization, the analysis proceeds as follows:

1. Compute the liquefaction index qij (t�) = ui /σ
′
oi for

each element i in the j th column at each time step t�
and repeat for all the columns.

2. Compute the sum

Qi� = 1

A

nc∑
j=1

qij (t�) �Aj

where A is the total area of the site model, �Aj is
the area of the j th column, and nc is the number
of columns; Qi� is the i th layer average liquefaction
index at each time step t�.

3. Determine the indices i ∗ and �∗ which maximize Qi�.
The index i ∗ now represents the depth of the plane
with the maximum likelihood of liquefying at the time
t�∗ and qi∗j (t�∗ ) is the corresponding two-dimensional
field of liquefaction indices (indexed by j ).

4. Determine the excursion area fraction defined by

Aq = 1

A

nc∑
j=1

IA

(
qi∗j (t�∗ ) − q

)
�Aj

for a variety of levels q ∈ (0, 1). The indicator func-
tion IA(·) has value 1 for positive arguments and 0
otherwise.

Repeating the above steps for a number of realizations
allows the estimation of the spatial statistics of the liq-
uefaction indices q on the horizontal plane of maximum
liquefaction likelihood. In particular, the excursion area
fractions Aq are evaluated for q = {0.1, 0.2, . . . , 0.9}.

Liquefaction of a column is defined as occurring when
the liquefaction index qi exceeds 0.96 in some element;
the analysis of that column is then discontinued to save
considerable computational effort, and the liquefaction in-
dices are subsequently held constant. In fact, numerical tests
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indicated that, at least under this one-dimensional model,
the liquefied element absorbs most of the input motion (see
Figure 16.4) so that little change was subsequently observed
in the liquefaction indices of higher elements. The liquefied
element can be considered the location of liquefaction ini-
tiation since postevent pore pressure redistribution is being
ignored (and, in fact, is not accurately modeled with this
one-dimensional simplification).

The horizontal plane having the highest average lique-
faction index is found and the statistics of those indices
determined. This plane will be referred to as the maximal
plane. It is recognized that when liquefaction does take
place it is not likely to be confined to a horizontal plane
of a certain thickness. At the very least the plane could be
inclined, but more likely liquefaction would follow an un-
dulating surface. This level of sophistication is beyond the
scope of this initial study, however, which is confined to
the consideration of liquefaction occurring along horizontal
planes arranged over depth.

Figure 16.5 illustrates two realizations of the maximal
plane. Regions which have liquefied are shown in white.
In both examples, a significant portion of the area has
q indices exceeding 0.9 and there is clearly significant
spatial variation. The gray scale representation was formed
by linear interpolation from the 16 × 16 mesh of finite
elements.

16.3 MONTE CARLO ANALYSIS AND RESULTS

The four cases considered are summarized in Table 16.2.
In the following, the first set of simulated ground motions
are referred to as event 1 and the ground motions scaled
by a factor of 0.7 as event 2. The average depth at which

Table 16.2 Monte Carlo Cases

Vertical
Input Motion Correlation Number of

Case Scaling Factor Length (m) Realizations

1 1.0 (event 1) 1.0 100
2 1.0 (event 1) 4.0 100
3 0.7 (event 2) 1.0 100
4 0.7 (event 2) 4.0 100

the maximal plane occurs is about 2.7 m for cases 1 and
3 and about 3.0 m for cases 2 and 4. Thus, it appears
that the larger correlation lengths result in somewhat lower
maximal planes. These results are in basic agreement with
the location of liquefied units observed by Holzer et al.
(1989).

The average excursion area, expressed as a fraction of
the total domain area, of the maximal plane exceeding a
threshold liquefaction index q , Āq , is shown in Figure 16.6.
Excursion fraction Āq is obtained by averaging the Aq

values over the 100 realizations for each case. The trend
in Figure 16.6 is evident:

1. The correlation length has little effect on the average
excursion fraction Āq .

2. The intensity of the input motion has a significant
effect on the excursion fractions, as expected. A
30% reduction in input motion intensity reduced the
liquefaction index corresponding to Āq = 17% from
0.9 to about 0.35, almost a threefold reduction.

According to Figure 16.6, only about 20% of the model
site had liquefaction indices in excess of 0.9 under event 1.
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Figure 16.5 Gray-scale maps of the planes having the highest average liquefaction index q drawn
from two realizations of the soil mass.
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Figure 16.6 Average fraction of maximal plane, Āq , having
liquefaction indices in excess of indicated q thresholds.

Since an event of this magnitude did result in sand boils
and lateral spreading at the Wildlife site, the simulation
results suggest that global liquefaction may occur even if
only a relatively low percentage of the site is predicted to
liquefy. This observation emphasizes the need to rationally
quantify the spatial distribution of liquefaction and its effect
on global liquefaction risk in future studies.

It appears that the likelihood of global liquefaction due
to event 2 is quite low. To some extent, this is substantiated
by the fact that the Wildlife site did not (globally) liquefy
during the Elmore Ranch event (Ms = 6.2 compared to the
Superstition Hills event, Ms = 6.6) (Keane and Prevost,
1989). Figure 16.6 suggests a possible approach to the
evaluation of liquefaction risk using the knowledge that the
Wildlife site is highly liquefiable: Determine the average
area of the maximal planes which exceed a liquefaction
index of 0.9—global liquefaction risk increases as this area
increases. In this particular study (case 1 or 2) only some
15–20% of the total area liquefied under this criterion. It
is unknown at this time if this proportion of liquefaction
is generally sufficient to result in global liquefaction. Such
a measure needs to be substantiated and verified through
similar studies of other sites and other earthquakes. It
nevertheless suggests that, under reasonable assumptions
about the site and the earthquake, soil liquefaction can vary
significantly over space, and only a small fraction need
actually liquefy to cause structural damage.

The spatial variability of liquefaction can be quantified in
a number of ways; the total area of excursions (exceeding
some liquefaction index), the number of isolated excur-
sions, and the degree to which the individual excursions are
clustered. Figure 16.7 shows the estimated probability dis-
tribution, P̂ , of the area fraction having liquefaction indices
greater than q for event 1, θv = 1.0 m. From this plot it can
be seen that, for example, P̂[A0.9 > 0.2] = 1 − 0.7 = 0.3,
that is, 30% of realizations have more than 20% of the
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Figure 16.7 Estimated probability distribution of area fraction
with liquefaction index greater than q (for event 1, θv = 1 m).
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Figure 16.8 Average number of isolated excursion areas, N̄q ,
where liquefaction indices exceed the threshold q .

maximal plane area with liquefaction indices higher than
0.9. Similarly, more than 10% of the maximal plane area
effectively liquefies (qij ≥ 0.9) with probability 72%.

Figure 16.8 shows the average number of isolated excur-
sions above the liquefaction index q for each case study,
and Figure 16.9 shows the corresponding cluster measure,

, both averaged over 100 realizations. The cluster mea-
sure, as defined by Fenton and Vanmarcke (1992), reflects
the degree to which excursion regions are clustered: 
 has
value 0 if the excursions are uniformly distributed through
the domain and value 1 if they are clumped into a single
region or excursion. Both figures exhibit much more pro-
nounced effects due to changes in the correlation length.
The correlation length θv = 4 m (θh = 160 m) substantially
decreases the average number of excursions and substan-
tially increases the cluster measure. This implies that for
the same total area exceeding a certain index q , the re-
gions show higher clustering at higher correlation lengths.
In turn, higher clustering implies a higher likelihood of
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Figure 16.9 Average cluster measure 
 of isolated excursions
where liquefaction indices exceed the threshold q .

global liquefaction since there are fewer pockets of “re-
sistance” within the excursion region. Notice that event 2
typically has higher mean values of 
 since it has fewer
excursions at high thresholds (a single excursion, or no
excursions, corresponds to 
 � 1). The likelihood of liq-
uefaction, thus, cannot depend on the cluster measure alone;
it must also take into consideration the total excursion area
above a high threshold.

16.4 SUMMARY

It is recognized that the one-dimensional finite-element
analysis employed in this study cannot capture some of
the details of spatial liquefaction, the connection between
soil columns being only through their correlated properties
and earthquake ground motion. However, the resulting
analysis was tractable at this time (a fully three-dimensional
analysis is still prohibitively computationally expensive),
allowing the analysis of a sufficient number of realizations
for reasonable statistics. It is believed that the major, large-
scale, features of the spatial distribution of liquefaction
initiation are nevertheless captured by the present analysis,
allowing the following observations to be made.

Perhaps the major observation to be drawn from this
study is that (predicted) soil liquefaction shows consid-
erable spatial variability under reasonable assumptions re-
garding the site and its excitation. The recognition of this
spatial variability may significantly advance our under-
standing and modeling of the phenomenon, allowing the
probabilistic assessment of the spatial extent of liquefaction

damage. The present study indicated that as little as 15–20%
of a site which is known to have liquefied was actually
predicted to liquefy during the event. Whether this was the
actual fraction of liquefaction at the site is unknown. There
is also a possibility of further postevent liquefaction.

Given the fact that the Wildlife site was known to have
liquefied during the Superstition Hills event, the following
summary of the results of this model study can be made;

1. The spatially random approach to liquefaction analy-
sis enables quantifying the probability of effectively
liquefied area fractions or excursions at the site. For
example, on the basis of this study, more than 10% of
the model site over a plane at about 2.7 m depth was
predicted to effectively liquefy (q ≥ 0.9) with prob-
ability 72% during event 1 (θv = 1 m), which was
modeled after the Superstition Hills event.

2. The likelihood of global liquefaction resulting in loss
of lateral stability at the surface appears to be most
easily quantified by the total area of the domain whose
liquefaction indices exceed some threshold index q∗.
In this case study if the threshold index is taken as
0.9, a high likelihood of global liquefaction might
be associated with mean total excursion areas Aq∗
in excess of about 15–20% of the total domain area.
This measure incorporates the effect of earthquake
intensity but needs to be calibrated through other
studies and, in time, through fully three-dimensional
models.

3. The likelihood of liquefaction can be modified by the
cluster measure—as the cluster measure decreases,
the liquefied regions become separated by pockets of
resistance, and the likelihood of global liquefaction
at the site decreases. This correction incorporates the
effect of correlation lengths of the soil properties.

The recognition that liquefaction is a spatially varying
phenomenon and the development of techniques to quantify
this variability, along with its implications on risk, are
important starts in the understanding of global liquefaction
failure at a site. The study also illustrates the potential
danger in assessing liquefaction risk at a site on the basis of,
for example, CPT data collected at a single location. Data
from several different locations should be considered so
that liquefiable regions can be more closely identified and
subsequently modeled in a dynamic structural evaluation.
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A.1 NORMAL DISTRIBUTION: �(z ) =
∫ z

−∞

1√
2π

e− 1
2 x2

dx

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .50000 .50398 .50797 .51196 .51595 .51993 .52392 .52790 .53188 .53585
0.1 .53982 .54379 .54775 .55171 .55567 .55961 .56355 .56749 .57142 .57534
0.2 .57925 .58316 .58706 .59095 .59483 .59870 .60256 .60641 .61026 .61409
0.3 .61791 .62171 .62551 .62930 .63307 .63683 .64057 .64430 .64802 .65173
0.4 .65542 .65909 .66275 .66640 .67003 .67364 .67724 .68082 .68438 .68793
0.5 .69146 .69497 .69846 .70194 .70540 .70884 .71226 .71566 .71904 .72240
0.6 .72574 .72906 .73237 .73565 .73891 .74215 .74537 .74857 .75174 .75490
0.7 .75803 .76114 .76423 .76730 .77035 .77337 .77637 .77935 .78230 .78523
0.8 .78814 .79102 .79389 .79673 .79954 .80233 .80510 .80784 .81057 .81326
0.9 .81593 .81858 .82121 .82381 .82639 .82894 .83147 .83397 .83645 .83891
1.0 .84134 .84375 .84613 .84849 .85083 .85314 .85542 .85769 .85992 .86214
1.1 .86433 .86650 .86864 .87076 .87285 .87492 .87697 .87899 .88099 .88297
1.2 .88493 .88686 .88876 .89065 .89251 .89435 .89616 .89795 .89972 .90147
1.3 .90319 .90490 .90658 .90824 .90987 .91149 .91308 .91465 .91620 .91773
1.4 .91924 .92073 .92219 .92364 .92506 .92647 .92785 .92921 .93056 .93188
1.5 .93319 .93447 .93574 .93699 .93821 .93942 .94062 .94179 .94294 .94408
1.6 .94520 .94630 .94738 .94844 .94949 .95052 .95154 .95254 .95352 .95448
1.7 .95543 .95636 .95728 .95818 .95907 .95994 .96079 .96163 .96246 .96327
1.8 .96406 .96485 .96562 .96637 .96711 .96784 .96855 .96925 .96994 .97062
1.9 .97128 .97193 .97257 .97319 .97381 .97441 .97500 .97558 .97614 .97670
2.0 .97724 .97778 .97830 .97882 .97932 .97981 .98030 .98077 .98123 .98169
2.1 .98213 .98257 .98299 .98341 .98382 .98422 .98461 .98499 .98537 .98573
2.2 .98609 .98644 .98679 .98712 .98745 .98777 .98808 .98839 .98869 .98898
2.3 .98927 .98955 .98982 .920096 .920358 .920613 .920862 .921105 .921343 .921575
2.4 .921802 .922023 .922239 .922450 .922656 .922857 .923053 .923244 .923430 .923612
2.5 .923790 .923963 .924132 .924296 .924457 .924613 .924766 .924915 .925059 .925201
2.6 .925338 .925472 .925603 .925730 .925854 .925975 .926092 .926207 .926318 .926427
2.7 .926533 .926635 .926735 .926833 .926928 .927020 .927109 .927197 .927282 .927364
2.8 .927444 .927522 .927598 .927672 .927744 .927814 .927881 .927947 .928011 .928073
2.9 .928134 .928192 .928249 .928305 .928358 .928411 .928461 .928511 .928558 .928605
3.0 .928650 .928693 .928736 .928777 .928817 .928855 .928893 .928929 .928964 .928999
3.1 .930323 .930645 .930957 .931259 .931552 .931836 .932111 .932378 .932636 .932886
3.2 .933128 .933363 .933590 .933810 .934023 .934229 .934429 .934622 .934809 .934990
3.3 .935165 .935335 .935499 .935657 .935811 .935959 .936102 .936241 .936375 .936505
3.4 .936630 .936751 .936868 .936982 .937091 .937197 .937299 .937397 .937492 .937584
3.5 .937673 .937759 .937842 .937922 .937999 .938073 .938145 .938215 .938282 .938346
3.6 .938408 .938469 .938526 .938582 .938636 .938688 .938738 .938787 .938833 .938878
3.7 .938922 .938963 .940038 .940426 .940799 .941158 .941504 .941837 .942158 .942467
3.8 .942765 .943051 .943327 .943592 .943848 .944094 .944330 .944558 .944777 .944987
3.9 .945190 .945385 .945572 .945752 .945925 .946092 .946252 .946406 .946554 .946696
4.0 .946832 .946964 .947090 .947211 .947327 .947439 .947546 .947649 .947748 .947843

Notes:
1. For z = i .jk , where i , j , and k are digits, enter table at line i .j under column .0k .
2. 0.947327 is short for 0.99997327, etc.
3. �(−z ) = 1 − �(z ).
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A.2 INVERSE STUDENT t-DISTRIBUTION: α = P
[
T > tα,ν

]

α

ν .40 .25 .10 .05 .025 .01 .005 .0025 .001 .0005

1 0.325 1.000 3.078 6.314 12.706 31.821 63.657 127.321 318.309 636.619
2 0.289 0.816 1.886 2.920 4.303 6.965 9.925 14.089 22.327 31.599
3 0.277 0.765 1.638 2.353 3.182 4.541 5.841 7.453 10.215 12.924
4 0.271 0.741 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610
5 0.267 0.727 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869
6 0.265 0.718 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959
7 0.263 0.711 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5.408
8 0.262 0.706 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041
9 0.261 0.703 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781

10 0.260 0.700 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587
11 0.260 0.697 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437
12 0.259 0.695 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.318
13 0.259 0.694 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221
14 0.258 0.692 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140
15 0.258 0.691 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073
16 0.258 0.690 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015
17 0.257 0.689 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965
18 0.257 0.688 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922
19 0.257 0.688 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883
20 0.257 0.687 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850
21 0.257 0.686 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819
22 0.256 0.686 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792
23 0.256 0.685 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.768
24 0.256 0.685 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745
25 0.256 0.684 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725
26 0.256 0.684 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707
27 0.256 0.684 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690
28 0.256 0.683 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674
29 0.256 0.683 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659
30 0.256 0.683 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646
40 0.255 0.681 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551
50 0.255 0.679 1.299 1.676 2.009 2.403 2.678 2.937 3.261 3.496
60 0.254 0.679 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460
70 0.254 0.678 1.294 1.667 1.994 2.381 2.648 2.899 3.211 3.435
80 0.254 0.678 1.292 1.664 1.990 2.374 2.639 2.887 3.195 3.416
90 0.254 0.677 1.291 1.662 1.987 2.368 2.632 2.878 3.183 3.402

100 0.254 0.677 1.290 1.660 1.984 2.364 2.626 2.871 3.174 3.390
110 0.254 0.677 1.289 1.659 1.982 2.361 2.621 2.865 3.166 3.381
120 0.254 0.677 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3.373
∞ 0.253 0.674 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291
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A.3 INVERSE CHI-SQUARE DISTRIBUTION: α = P
[
χ2 > χ2

α, ν

]

α

ν .995 .990 .975 .950 .900 .500 .100 .050 .025 .010 .005

1 0.00 0.00 0.00 0.00 0.02 0.45 2.71 3.84 5.02 6.63 7.88
2 0.01 0.02 0.05 0.10 0.21 1.39 4.61 5.99 7.38 9.21 10.60
3 0.07 0.11 0.22 0.35 0.58 2.37 6.25 7.81 9.35 11.34 12.84
4 0.21 0.30 0.48 0.71 1.06 3.36 7.78 9.49 11.14 13.28 14.86
5 0.41 0.55 0.83 1.15 1.61 4.35 9.24 11.07 12.83 15.09 16.75
6 0.68 0.87 1.24 1.64 2.20 5.35 10.64 12.59 14.45 16.81 18.55
7 0.99 1.24 1.69 2.17 2.83 6.35 12.02 14.07 16.01 18.48 20.28
8 1.34 1.65 2.18 2.73 3.49 7.34 13.36 15.51 17.53 20.09 21.95
9 1.73 2.09 2.70 3.33 4.17 8.34 14.68 16.92 19.02 21.67 23.59

10 2.16 2.56 3.25 3.94 4.87 9.34 15.99 18.31 20.48 23.21 25.19
11 2.60 3.05 3.82 4.57 5.58 10.34 17.28 19.68 21.92 24.72 26.76
12 3.07 3.57 4.40 5.23 6.30 11.34 18.55 21.03 23.34 26.22 28.30
13 3.57 4.11 5.01 5.89 7.04 12.34 19.81 22.36 24.74 27.69 29.82
14 4.07 4.66 5.63 6.57 7.79 13.34 21.06 23.68 26.12 29.14 31.32
15 4.60 5.23 6.26 7.26 8.55 14.34 22.31 25.00 27.49 30.58 32.80
16 5.14 5.81 6.91 7.96 9.31 15.34 23.54 26.30 28.85 32.00 34.27
17 5.70 6.41 7.56 8.67 10.09 16.34 24.77 27.59 30.19 33.41 35.72
18 6.26 7.01 8.23 9.39 10.86 17.34 25.99 28.87 31.53 34.81 37.16
19 6.84 7.63 8.91 10.12 11.65 18.34 27.20 30.14 32.85 36.19 38.58
20 7.43 8.26 9.59 10.85 12.44 19.34 28.41 31.41 34.17 37.57 40.00
21 8.03 8.90 10.28 11.59 13.24 20.34 29.62 32.67 35.48 38.93 41.40
22 8.64 9.54 10.98 12.34 14.04 21.34 30.81 33.92 36.78 40.29 42.80
23 9.26 10.20 11.69 13.09 14.85 22.34 32.01 35.17 38.08 41.64 44.18
24 9.89 10.86 12.40 13.85 15.66 23.34 33.20 36.42 39.36 42.98 45.56
25 10.52 11.52 13.12 14.61 16.47 24.34 34.38 37.65 40.65 44.31 46.93
26 11.16 12.20 13.84 15.38 17.29 25.34 35.56 38.89 41.92 45.64 48.29
27 11.81 12.88 14.57 16.15 18.11 26.34 36.74 40.11 43.19 46.96 49.64
28 12.46 13.56 15.31 16.93 18.94 27.34 37.92 41.34 44.46 48.28 50.99
29 13.12 14.26 16.05 17.71 19.77 28.34 39.09 42.56 45.72 49.59 52.34
30 13.79 14.95 16.79 18.49 20.60 29.34 40.26 43.77 46.98 50.89 53.67
40 20.71 22.16 24.43 26.51 29.05 39.34 51.81 55.76 59.34 63.69 66.77
50 27.99 29.71 32.36 34.76 37.69 49.33 63.17 67.50 71.42 76.15 79.49
60 35.53 37.48 40.48 43.19 46.46 59.33 74.40 79.08 83.30 88.38 91.95
70 43.28 45.44 48.76 51.74 55.33 69.33 85.53 90.53 95.02 100.43 104.21
80 51.17 53.54 57.15 60.39 64.28 79.33 96.58 101.88 106.63 112.33 116.32
90 59.20 61.75 65.65 69.13 73.29 89.33 107.57 113.15 118.14 124.12 128.30

100 67.33 70.06 74.22 77.93 82.36 99.33 118.50 124.34 129.56 135.81 140.17



APPENDIX B

Numerical Integration

B.1 GAUSSIAN QUADRATURE

The definite integral

I =
∫ b

a
f (x ) dx

can be approximated by a weighted sum of f (x ) evaluated
at a series of carefully selected locations between a and
b. Gaussian quadrature involves the numerical approxi-
mation

I � b − a

2

ng∑
i=1

wi f (ξi ) (B.1)

where ng is the number of points at which f (x ) is evaluated,
wi are weighting factors, and ξi are locations

ξi = 1
2 (b + a) + 1

2 (b − a)zi = a + 1
2 (b − a)(1 + zi )

(B.2)
The weights wi and standardized locations zi are given in
Tables B.1–B.3.

The approximation is easily extended to higher dimen-
sions. For example,

∫ a2

a1

∫ b2

b1

f (x1, x2) dx2 dx1

� a2 − a1

2

b2 − b1

2

ng∑
j=1

wj

ng∑
i=1

wi f (ξi , ηj ) (B.3)

where

ξi = 1
2 (a2 + a1) + 1

2 (a2 − a1)zi

= a1 + 1
2 (a2 − a1)(1 + zi ) (B.4a)

ηi = 1
2 (b2 + b1) + 1

2 (b2 − b1)zi

= b1 + 1
2 (b2 − b1)(1 + zi ) (B.4b)

Table B.1 Weights wi and Standardized Locations zi

for ng = 1, . . . , 5

ng wi zi

ng = 1 2.000000000000000 0.000000000000000

ng = 2 1.000000000000000 −0.577350269189626
1.000000000000000 0.577350269189626

ng = 3 0.555555555555556 −0.774596669241483
0.888888888888889 0.000000000000000
0.555555555555556 0.774596669241483

ng = 4 0.347854845137454 −0.861136311594053
0.652145154862546 −0.339981043584856
0.652145154862546 0.339981043584856
0.347854845137454 0.861136311594053

ng = 5 0.236926885056189 −0.906179845938664
0.478628670499366 −0.538469310105683
0.568888888888889 0.000000000000000
0.478628670499366 0.538469310105683
0.236926885056189 0.906179845938664
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Table B.2 Weights wi and Standardized Locations zi

for ng = 6, . . . , 10

ng wi zi

ng = 6 0.171324492379170 −0.932469514203152
0.360761573048139 −0.661209386466265
0.467913934572691 −0.238619186083197
0.467913934572691 0.238619186083197
0.360761573048139 0.661209386466265
0.171324492379170 0.932469514203152

ng = 7 0.129484966168870 −0.949107912342759
0.279705391489277 −0.741531185599394
0.381830050505119 −0.405845151377397
0.417959183673469 0.000000000000000
0.381830050505119 0.405845151377397
0.279705391489277 0.741531185599394
0.129484966168870 0.949107912342759

ng = 8 0.101228536290376 −0.960289856497536
0.222381034453374 −0.796666477413627
0.313706645877887 −0.525532409916329
0.362683783378362 −0.183434642495650
0.362683783378362 0.183434642495650
0.313706645877887 0.525532409916329
0.222381034453374 0.796666477413627
0.101228536290376 0.960289856497536

ng = 9 0.081274388361574 −0.968160239507626
0.180648160694857 −0.836031107326636
0.260610696402935 −0.613371432700590
0.312347077040003 −0.324253423403809
0.330239355001260 0.000000000000000
0.312347077040003 0.324253423403809
0.260610696402935 0.613371432700590
0.180648160694857 0.836031107326636
0.081274388361574 0.968160239507626

ng = 10 0.066671344308688 −0.973906528517172
0.149451349150581 −0.865063366688985
0.219086362515982 −0.679409568299024
0.269266719309996 −0.433395394129247
0.295524224714753 −0.148874338981632
0.295524224714753 0.148874338981632
0.269266719309996 0.433395394129247
0.219086362515982 0.679409568299024
0.149451349150581 0.865063366688985
0.066671344308688 0.973906528517172

Table B.3 Weights wi and Standardized Locations zi

for ng = 16, 20

ng wi zi

ng = 16 0.027152459411754094852 −0.989400934991649932596
0.062253523938647892863 −0.944575023073232576078
0.095158511682492784810 −0.865631202387831743880
0.124628971255533872052 −0.755404408355003033895
0.149595988816576732081 −0.617876244402643748447
0.169156519395002538189 −0.458016777657227386342
0.182603415044923588867 −0.281603550779258913230
0.189450610455068496285 −0.095012509837637440185
0.189450610455068496285 0.095012509837637440185
0.182603415044923588867 0.281603550779258913230
0.169156519395002538189 0.458016777657227386342
0.149595988816576732081 0.617876244402643748447
0.124628971255533872052 0.755404408355003033895
0.095158511682492784810 0.865631202387831743880
0.062253523938647892863 0.944575023073232576078
0.027152459411754094852 0.989400934991649932596

ng = 20 0.017614007139152118312 −0.993128599185094924786
0.040601429800386941331 −0.963971927277913791268
0.062672048334109063570 −0.912234428251325905868
0.083276741576704748725 −0.839116971822218823395
0.101930119817240435037 −0.746331906460150792614
0.118194531961518417312 −0.636053680726515025453
0.131688638449176626898 −0.510867001950827098004
0.142096109318382051329 −0.373706088715419560673
0.149172986472603746788 −0.227785851141645078080
0.152753387130725850698 −0.076526521133497333755
0.152753387130725850698 0.076526521133497333755
0.149172986472603746788 0.227785851141645078080
0.142096109318382051329 0.373706088715419560673
0.131688638449176626898 0.510867001950827098004
0.118194531961518417312 0.636053680726515025453
0.101930119817240435037 0.746331906460150792614
0.083276741576704748725 0.839116971822218823395
0.062672048334109063570 0.912234428251325905868
0.040601429800386941331 0.963971927277913791268
0.017614007139152118312 0.993128599185094924786



APPENDIX C

Computing Variances and
Covariances of Local Averages

C.1 ONE-DIMENSIONAL CASE

Let XA be the local arithmetic average of a stationary one-
dimensional random process X (x ) over some length A,
where

XA = 1

A

∫ A

0
X (x ) dx

The variance of XA is given by σ 2
A = γ (A)σ 2

X , in which γ (A)
is the variance reduction function (see Section 3.4),

γ (A) = 1

A2

∫ A

0

∫ A

0
ρX (ξ − η) dξ dη

= 2

A2

∫ A

0
(A − τ )ρX (τ ) dτ (C.1)

where ρX (τ ) is the correlation function of X (x ). Equation C.1
can be efficiently (and accurately if ρX is relatively smooth
between Gauss points) evaluated by Gaussian quadrature,

γ (A) � 1

A

ng∑
i=1

wi (A − xi )ρX (xi ) (C.2)

where xi = 1
2 A(1 + zi ) and the Gauss points zi and weights

wi are given in Appendix B for various choices in the
number of Gauss points, ng .

Now consider two local averages, as illustrated in
Figure C.1, defined as

XA = 1

A

∫ a2

a1

X (x ) dx

XB = 1

B

∫ b2

b1

X (x ) dx

a2 b1 b2

A B
x

a1

Figure C.1 Two local averages over lengths A and B , res-
pectively.

where A = a2 − a1 and B = b2 − b1. The covariance
between XA and XB is

Cov [XA, XB ] = σ 2
X

AB

∫ b2

b1

∫ a2

a1

ρ(ξ − η) dξ dη

� σ 2
X

4

ng∑
i=1

wi

ng∑
j=1

wj ρ(ξi − ηj )

where

ξi = a1 + 1
2 A(1 + zi ), ηj = b1 + 1

2 B(1 + zj )

C.2 TWO-DIMENSIONAL CASE

Consider the two local averages shown in Figure C.2, XA

and XB , where A and B are now areas. The local averages
are defined as

XA = 1

A

∫ a2y

a1y

∫ a2x

a1x

X (x , y) dx dy

XB = 1

B

∫ b2y

b1y

∫ b2x

b1x

X (x , y) dx dy

x

y

a1x a2x b1x b2x

a1y

a2y

b1y

b2y

A

B

Ax Bx

Ay

By

Figure C.2 Two local averages over areas A and B , respectively.
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452 C COMPUTING VARIANCES AND COVARIANCES OF LOCAL AVERAGES

where

A = Ax Ay = (a2x − a1x )(a2y − a1y )

B = Bx By = (b2x − b1x )(b2y − b1y )

The variance of XA is σ 2
A = γ (A)σ 2

X , where γ (A) is the
variance reduction function (see Section 3.4) defined in two
dimensions as

γ (A) = 1

A2

∫ Ax

0

∫ Ax

0

∫ Ay

0

∫ Ay

0

× ρX (η1 − ξ1, η2 − ξ2) dξ2 dη2 dξ1 dη1

= 4

A2

∫ Ax

0

∫ Ay

0

× (Ax − τ1)(Ay − τ2)ρX (τ1, τ2) dτ2 dτ1 (C.3)

where ρX (τ1, τ2) is the correlation function of X (x , y),
which is assumed to be stationary and quadrant symmetric
in the above (see Section 3.7.4). Equation C.3 can be
approximated by Gaussian quadrature as

γ (A) � 1

A

ng∑
j=1

wj

ng∑
i=1

wi (Ax − ξi )(Ay − ηj )ρX (ξi , ηj )

= 1

4

ng∑
j=1

wj (1 − zj )
ng∑

i=1

wi (1 − zi )ρX (ξi , ηj )

where

ξi = 1
2 Ax (1 + zi ), ξj = 1

2 Ay (1 + zj )

and the weights wi and Gauss points zi are found in
Appendix B.

The covariance between XA and XB is given by

Cov [XA, XB ] = σ 2
X

AB

∫ a2y

a1y

∫ a2x

a1x

∫ b2y

b1y

∫ b2x

b1x

× ρX (x − ξ , y − η) dξ dη dx dy

� σ 2
X

16

ng∑
i=1

wi

ng∑
j=1

wj

ng∑
k=1

wk

ng∑
�=1

w�

× ρX (xj − ξ�, yi − ηk )

where

xj = a1x + 1
2 Ax (1 + zj ), ξ� = b1x + 1

2 Bx (1 + z�)

yi = a1y + 1
2 Ay (1 + zi ), ηk = b1y + 1

2 By (1 + zk )

and the weights wi and Gauss points zi can be found in
Appendix B.

C.3 THREE-DIMENSIONAL CASE

Consider the two local averages XA and XB where A and
B are now volumes. The notation used in three dimen-
sions basically follows that shown for two dimensions in
Figure C.2, with the addition of the third z direction. The
local averages are defined as

XA = 1

A

∫ a2z

a1z

∫ a2y

a1y

∫ a2x

a1x

X (x , y , z ) dx dy dz

XB = 1

B

∫ b2z

b1z

∫ b2y

b1y

∫ b2x

b1x

X (x , y , z ) dx dy dz

where

A = Ax Ay Az = (a2x − a1x )(a2y − a1y )(a2z − a1z )

B = Bx By Bz = (b2x − b1x )(b2y − b1y )(b2z − b1z )

The variance of XA is σ 2
A = γ (A)σ 2

X , where γ (A) is the vari-
ance reduction function (see Section 3.4) defined in three
dimensions as

γ (A) = 1

A2

∫ Ax

0

∫ Ax

0

∫ Ay

0

∫ Ay

0

∫ Az

0

∫ Az

0

× ρX (η1 − ξ1, η2 − ξ2, η3 − ξ3) dξ3 dη3

× dξ2 dη2 dξ1 dη1

= 8

A2

∫ Ax

0

∫ Ay

0

∫ Az

0
(Ax − τ1)(Ay − τ2)(Az − τ3)

× ρX (τ1, τ2, τ3) dτ3 dτ2 dτ1 (C.4)

where ρX (τ1, τ2, τ3) is the correlation function of X (x , y , z ),
which is assumed to be stationary and quadrant symmet-
ric in the above (see Section 3.7.4). Equation C.4 can be
approximated by Gaussian quadrature as

γ (A) � 1

A

ng∑
k=1

wk

ng∑
j=1

wj

ng∑
i=1

wi (Ax − ξi )(Ay − ηj )(Az − ψk )

× ρX (ξi , ηj , ψk )

= 1

8

ng∑
k=1

wk (1 − zk )

ng∑
j=1

wj (1 − zj )
ng∑

i=1

wi (1 − zi )

× ρX (ξi , ηj , ψk )

where

ξi = 1
2 Ax (1 + zi ), ξj = 1

2 Ay (1 + zj ), ψk = 1
2 Az (1 + zk )

and the weights wi and Gauss points zi are found in Ap-
pendix B.
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The covariance between XA and XB is given by

Cov [XA, XB ] = σ 2
X

AB

∫ a2z

a1z

∫ a2y

a1y

∫ a2x

a1x

∫ b2z

b1z

∫ b2y

b1y

∫ b2x

b1x

× ρX (x − ξ , y − η, z − ψ)

× dξ dη dψ dx dy dz

� σ 2
X

64

ng∑
i=1

wi

ng∑
j=1

wj

ng∑
k=1

wk

ng∑
�=1

w�

ng∑
m=1

wm

×
ng∑

n=1

wnρX (xk − ξn , yj − ηm , zi − ψ�)

where

xk = a1x + 1
2 Ax (1 + zk ), ξn = b1x + 1

2 Bx (1 + zn )

yj = a1y + 1
2 Ay (1 + zj ), ηm = b1y + 1

2 By (1 + zm )

zi = a1z + 1
2 Az (1 + zi ), ψ� = b1z + 1

2 Bz (1 + z�)

and the weights wi and Gauss points zi can be found in
Appendix B.



INDEX

A

absorbing state, 76
acceptable risk, 239, 249
acceptance–rejection method, 210
accessible, 77
active earth force, 206
active earth pressure coefficient, 406
additive rules, 8
advanced estimation techniques, 189–202
aliases, 100
allowable stress design, 245
Anderson–Darling test, 174, 178
anisotropic correlation structure, 121, 371
aperiodic, 78
area of isolated excursions, 139, 143
arithmetic average, 151
arithmetic generators, 204
assessing risk, 241–244
asymptotic extreme value distributions, 63
asymptotic independence, 178
autoregressive processes, 107
averages,

arithmetic, 151, 395
geometric, 58, 152, 395
harmonic, 155, 396
over space, 180
over the ensemble, 180

B

balance equations, 82
band-limited white noise, 106

Bayes’ theorem, 12, 67
Bayesian updating, 13
bearing capacity, 347–372

c−φ soils, 347–356
empirical corrections, 353
equivalent soil properties, 349, 361–362
lifetime failure probability, 359, 365
load and resistance factor design, 357–372
logarithmic spiral, 347, 358
mean and variance, 349–351
probabilistic interpretation, 354–355
probability density function, 354
probability of failure, 361–364
weakest path, 347
worst-case resistance factors, 369

bearing capacity factors, 347
Bernoulli family, 32, 43
Bernoulli process, 32
Bernoulli trials, 32, 212
best linear unbiased estimation, 127, 182
bias, 164, 357
binomial distribution, 34, 68, 212
birth-and-death process, 83
bivariate distribution, 21

lognormal, 59
normal, 54

block permeability, 270
bounded tanh distribution, 60
Brownian motion, 107, 111, 135, 198

C

calibration of load and resistance factors, 249
going beyond calibration, 255

cautious estimate, 251
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456 INDEX

central limit theorem, 52
central tendency, 18
Chapman–Kolmogorov equations, 74
characteristic load, 245, 357
characteristic resistance, 245
characteristic ultimate geoetechnical resistance,

358–359
characteristic values, 251
chi-square distribution, 50, 458
chi-square test, 172, 177
choosing a distribution, 162
classes of states, 77
coefficient of variation, 18, 20
cohesion, 347, 348, 415
combination, 6
common distributions

continuous, 43–62
discrete, 32–43

computing statistics of local averages, 451
conditional distributions, 55, 332
conditional mean, 55–56, 129
conditional probability, 9
conditional simulation of random field, 234
conditional variance, 129
conductivity matrix, 265–266
consistency, 164
consistent approximation, 320
continuous random variables, 16
continuous-time process, 71
continuous-time Markov chain, 81
continuum models, 183
correlation, 92
correlation coefficient, 22
correlation function, 93

autoregressive, 107
fractal, 111
Gaussian, 110, 125
Markov, 110, 123
polynomial decaying, 107
triangular, 106, 122
white noise, 104, 122

correlation length, 103, 131
cost trade-off, 240
countable, 71
counting principles, 5
covariance, 20, 68
covariance function, 93

in higher dimensions, 114
covariance matrix decomposition, 216
cross-correlation, 121
cumulative distribution function, 17

D

Darcy’s law, 297
De Morgan’s rules, 67
dead load, 248, 251
decision making, 258
deep foundations, 373–480

bilinear spring model, 374
end bearing, 373
finite-element model, 374
probabilistic behaviour, 377–380
side friction, 373

degrees of freedom, 173
descriptive statistics, 161
design methodologies, 245
design failure, 419
derivative process, 135
deterministic, 203
differential settlement, 318–322, 326–329
differentiation length, 281
Dirac delta function, 105, 122
discrete probability distributions, 15
discrete sample spaces, 5
discrete Fourier transform method, 217
discrete random variables, 15
discrete random variable simulation, 211–212
discrete-time, discrete-state Markov chains, 71
discrete-time random process, 71, 99
discrete uniform, 212
disjoint events, 4, 10
distributions,

continuous, 43–62
discrete, 32–43

downcrossing rate, 137
drains, 305–310
drawdown, 301, 307

E

earth dams, 297–310
drains, 305–310
drawdown distribution, 299–302, 307–308
extreme hydraulic gradients, 304–310
flow rate distribution, 299–301
gradient distribution, 309–310
hydraulic gradients, 304, 309–310
permeability, 298
predicted flow rate statistics, 302–304

earth pressures, 401–414
active, 405–414
active earth force, 206
active earth pressure coefficient, 406
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design reliability (active), 409
first-order approximation (passive), 401
passive, 401–405
passive earth pressure coefficient, 401
probability of failure (active), 410–412
Rankine equation, 401
second-order approximation (passive), 403

effective number, 138, 150
effective permeability, 266, 270, 302
efficiency, 164
elasticity problems, 247
ellipsoidal correlation structure, 120, 124
empirical distribution, 162, 171, 174, 211
ensemble, 180, 209
equi-likely outcomes, 5
equidistant points, 119
equivalent description, 16
equivalent cohesion, 361, 395
equivalent friction angle, 361
equivalent Nc factor, 361
ergodic states, 78
ergodicity, 180
estimate, 33
estimating,

correlation, 186
distribution parameters, 164
first- and second-order statistical parameters, 195
in the presence of correlation, 178
mean, 184
second-order structure, 189
trends, 185
variance, 185

estimation, 161–202
estimator error, 129, 131, 162
event, 3
event definition, 14
event probability, 7
event trees, 11
exact extreme value distribution, 62
excursions, 137–149

area of isolated excursions, 143
clustering measure, 146
global maxima (extremes), 149
integral geometric characteristic, 145
number of holes, 143
number of isolated excursions, 141
total area, 141

exit gradients, 281, 288–295
expectation, 18, 68
expected first passage time, 77
expected recurrence time, 77
expected value, 18

experiment, 3
exponential distribution, 43, 68, 210
extreme value distributions, 62

asymptotic, 63
exact, 62

extremes of random fields, 138, 149

F

factor of safety, 245–248
factored load, 248
factored resistance, 248
factored strength, 248
factorial operator, 6
failure surface, 235, 242
fast Fourier transform method, 217
finite-difference approximation, 107

centered, 135
finite-scale model, 195
first passage time, 75
first return time, 75
first upcrossing, 138
first-order autoregressive process, 108
first-order reliability method (FORM), 241
first-order second-moment (FOSM) method, 31
flow rate, 265, 267, 270, 276–279, 302–304
fluid flow, see groundwater modeling
foundation consolidation settlement, 132–134
fractal model, 198
fractal process, 111
fractional Gaussian noise, 111–113, 228
fractional Brownian motion, 111, 198, 228
free surface, 297, 299, 307
frequency density plot, 169, 286
full period generator, 205
functions of random variables, 24, 68

G

gamma distribution, 45, 69, 210
gamma function, 47
Gaussian correlation function, 110, 125
Gaussian distribution, 50
Gaussian process, 91
Gaussian quadrature, 125, 449
generator periodicity, 205
generator seed, 204
geometric average, 152
geometric distribution, 36, 68, 212
geostatistics, 130
geotechnical resistance factor, 357, 359, 364–370
global liquefaction, 431
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goodness-of-fit, 168
goodness-of-fit tests, 172
groundwater modeling, 265–310

earth dams, 297–310
exit gradient analysis, 288–295
finite-element model, 265
free-surface elevation, 307
gradient statistics, 304
internal gradients, 309
one-dimensional flow, 266
three-dimensional flow, 282–287
two-dimensional flow, 269–282

H

Hasover–Lind first-order reliability method (FORM), 241
hazards, 259
higher dimensional random fields, 113–125
histogram, 168
homogeneous, 181–182
hydraulic gradient, 304, 309–310
hydraulic head, 265

I

ideal white noise, 104
impact, 259
importance factor, 239, 357, 359
independent events, 10
inference, 161
inferential statistics, 161, 182
intensity, 81
intersection, 4
inverse function, 25
inverse problems, 50
inverse transform method, 208
irreducible Markov chain, 78
irreducible ergodic Markov chain, 78
isotropy, 92
isotropic correlation structure, 118, 131
isotropic radial spectral density function, 120

J

Jacobian, 26

K

k-Erlang distribution, 45
k-step transition matrix, 74

Kolmogorov–Smirnov test, 174, 177
kriging, 130, 182

L

lag vector, 114
Lagrangian parameters, 131
Laplace’s equation, 265, 275
level III determination of resistance factors, 258
limit states design, 247
linear systems, 98
linear combinations, 23, 68
linear congruential generators, 204
linear transformations, 29
liquefaction, 425–434

earthquake model, 428–429
finite-element model, 430
Imperial Wildfowl Management Area, 426
liquefaction measures, 430–431
probabilistic interpretation, 432–434
soil characterization, 426–428

liquefaction index, 431
live load, 248, 251
load and resistance factor design, 248–255
load bias factors, 357
load factor, 248, 357
local average subdivision, 223–232
lognormal distribution, 56–60, 69, 211

characteristics, 57
correlation coefficient transformation, 60
multiplicative central limit theorem, 58
transformations, 57

long memory processes, 111

M

marginal distribution, 26, 54
Markov correlation function, 110, 123
Markov property or assumption, 72, 110
maximum-likelihood estimators, 166
maximum-likelihood method, 164
mean, 18
mean downcrossing rate, 137
mean rate, 44, 137
mean rate of occurrence or success, 41, 81
mean recurrence time, 37
mean square differentiable, 110, 135
mean upcrossing rate, 137
median, 19
median load, 339
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memoryless, 37, 44, 81
method of moments, 164
mine pillar capacity, 415–424

bearing capacity factor, 416
coefficient of variation, 418–419
distribution, 418–419
mean bearing capacity factor, 418
probability of failure, 419–423

M/M/1 queueing model, 86
M/M/s queueing model, 86
mode, 50, 58
model moments, 165
moments of functions, 29
Monte Carlo simulation, 203, 235–238
moving-average method, 214
moving local average, 101
multiple resistance factor design, 248
multiplication rule, 5
multiplicative LCG, 206
multivariate normal distribution, 54
multivariate lognormal distribution, 59
mutually exclusive, 4

N

negative binomial distribution, 38, 68, 212
nominal value, 245
nominal factor of safety, 245
nonnull state, 77
nonstationary correlation structure, 92
normal approximation to binomial, 53
normal equations, 186
normal distribution, 50, 69, 211, 446–447
null set, 3
null state, 77
number of histogram intervals, 169, 173
number of isolated excursions, 139, 141
number of realizations required, 237
numerical integration, 449
Nyquist frequency, 100

O

1/f noise, 111
one-dimensional flow, 266–269
one-sided spectral density function, 97, 122
one-to-one function, 25
order statistic, 171
Ornstein–Uhlenbeck process, 107
orthonormal basis, 95
outlier, 176

P

p-value, 174
partial resistance factors, 248
partial safety factors, 247
partition, 8, 11
passive earth pressure coefficient, 401
period, 194, 205
periodic states, 77
periodicity, 205
permeability, 265, 269, 276, 298
permutation, 6
physically unrealizable, 106
piles, 373
point estimate method, 242
point estimates, 164
point statistics, 183
point versus local average statistics, 183, 351
pointwise correlation, 122, 183
Poisson distribution, 40, 68, 212
polynomial decaying correlation function, 107
positive definite, 95, 119
positive recurrent state, 77–78
positive skew, 57
posterior probability, 13
potential field statistics, 278
Prandtl’s equation, 347
principal aliases, 100
prior probability, 13
probability, 7
probability density function, 16
probability distribution, 15
probability mass function, 15
probability–probability plot, 171
pseudo-random-number generator, 203–206

Q

quadrant symmetry, 117
quantile–quantile plot, 171
queueing models, 86

simulation, 212

R

radial transformation method, 211
Rankine’s equation, 401
Rayleigh distribution, 49
random fields, 71, 91–125
random number generators, 204
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random processes, 71, 91–125
random sample, 178
random variables, 14
random-field generator, 214–235
realization, 15
reasonable fit, 168
rectangular averaging area, 120
recurrence time, 75
recurrent state, 76
relative likelihoods, 16
relative-likelihood function, 167
reliability-based design, 239–262

for exit gradients, 292–295
for seepage, 285
for settlement, 337–346

reliability index, 241, 256
resistance factor, 357, 359, 364–370
return period, 37
risk-based decision making, 258
runs test, 207

S

safety margin, 256
sample correlation function, 190
sample mean, 19
sample median, 19
sample moments, 164
sample semivariogram, 191
sample spaces, 3
sample spectral density function, 194
sample variance function, 192
scale effect, 223
scale of fluctuation, 103
second-order stationarity, 92
self-similar process, 111
separable correlation structure, 115, 118
serial correlation, 206
serviceability limit states, 247
set operators, 4
set theory, 4
settlement of shallow foundations, 311–346

design methodology, 330–331
design simulations, 341–343
differential settlement, 318–322, 326–329
mean and variance, 332–333
resistance factors for design, 335–346
strip footing risk assessment, 329–334
three-dimensional model, 322–329
two-dimensional model, 312–321
variability, 331

side friction, 373
simulation, 203–238

acceptance–rejection method, 210
comparison of methods, 233
convolution, 209
conditional random fields, 234
covariance matrix decomposition, 216
discrete Fourier transform method, 217
fast Fourier transform method, 217
inverse transform method, 208
local average subdivision method, 223
Monte Carlo, 235
moving average method, 214
nonuniform random variables, 208
queueing processes, 212
random fields, 214–234
random number generators, 204
turning-bands method, 221

sine integral, 106
single-random-variable approach, 383
slope stability, 381–400

affect of local averaging, 386–389
averaging domain, 396
deterministic analysis, 382–383
equivalent cohesion, 395
predicted probability of failure, 396–399
shear strength characterization, 381–382
simulated probability of failure, 383–384, 389–392
single random variable approach, 383–384, 389
random finite-element method, 385
reliability model, 393–400

spatial dependence, 91
spatial homogeneity, 182
spectral density function, 96

in higher dimensions, 114
spectral representation, 96, 114
square root of covariance matrix, 95
stability problems, 247
standard deviation, 20
standard error, 33, 238
standard normal, 51
standardization, 51
state, 71
state equations, 78
state space, 71
statistical homogeneity, 92
statistics of local averages, 451
stationarity, 92, 180
stationary, 73, 113
steady-state flow/seepage, 265, 267
steady-state probabilities, 77
stochastic finite-element method, 274
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strip footing bearing capacity, 359, 361, 369
strip footing settlement, 329–335
Student t-distribution, 49, 447
subset, 3
sufficiency, 164
superposition, 98

T

Taylor’s series, 30, 68
Terzaghi’s equation, 347
testing random number generators, 206
threshold excursions, 134, 138

area, 143
clustering, 146
extremes, 138, 149
first upcrossing, 138
integral geometric characteristics, 145
local averaging, 140
number, 141
number of holes, 143
rate, 137
total area, 141

time spent in each state, 81
total load, 363
total load factor, 369
total probability theorem, 10–12
total resistance factor, 248
two-dimensional flow, 269–282
trace-driven simulation, 162
transfer function, 98
transient state, 76
transition probabilities, 71
transition probability matrix, 73
trends, 181, 185
triangular correlation function, 106, 122
turning-bands method, 221
two-sided spectral density function, 97
type I extreme value distribution, 64, 69
type II extreme value distribution, 64, 69
type III extreme value distribution, 66, 69

U

ultimate geotechnical resistance, 357
ultimate limit states, 247
unbiased, 33, 51, 59, 127, 184
unbiasedness, 164
unconditional, 10, 75
uniform distribution, 47, 68, 210
uniform soil, 358, 361, 382, 416
union, 4
unit area spectral density function, 118
upcrossing rate, 137
uplift, 280

V

variability at a point, 91
variance, 20, 68
variance function, 100–103

in higher dimensions, 115
variance minimization problem, 127, 131
vector dot product, 115
vector–matrix notation, 55–56
Venn diagram, 4

W

wavelet coefficient variance, 193
weak stationarity, 92
weakest-link mechanisms, 247
Weibull distribution, 48, 69, 211
white noise process, 104, 122
white noise intensity, 105
Wiener–Khinchine relations, 97
working stress design, 245

Y

Yule–Walker equations, 128


