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Chapter 1
An Overview of Cancer Metabolism

E. G. Armitage et al., Correlation-based network analysis of cancer metabolism, 
SpringerBriefs in Systems Biology, DOI 10.1007/978-1-4939-0615-4_1,  
© The Authors 2014

The metabolome is considered the closest entity to the phenotype of a biological 
system. It displays the changes made at higher hierarchical levels such as the pro-
teome, transcriptome and genome. For many diseases including cancer, studying 
the metabolome enables us to gain a better understanding of global biological re-
sponse of cancer cells in the progression of the disease. Revealing the complexity of 
the metabolome is particularly advantageous to understand the phenotypic function 
of a cancer cell that is governed by the preceding levels (proteins, transcription fac-
tors and genes).

Cancer metabolism has been studied for decades, revealing cancer cell function 
in order to provide an insight into the disease. Differences in central carbon metabo-
lism between cancerous and normal cells were first demonstrated by Otto Warburg 
in the 1920s (Warburg et  al. 1927). He evaluated the metabolic consumption of 
glucose and found that cancer cells preferentially used glycolysis over oxidative 
phosphorylation even in the presence of oxygen (Warburg 1956). This so-called 
“Warburg effect” is frequently observed in many cancer types, although the under-
lying basis and consequence of this phenomenon are still not wholly clarified and 
there appears to be no single mechanism that drives an aerobic tumour cell towards 
a glycolytic phenotype. Indeed, it is likely that there is plasticity in how a cancer cell 
metabolises glucose, dependent on glucose availability and the local cellular mi-
croenvironment among other potential influencing factors. Furthermore, elevated 
glucose levels can suppress both glycolysis and oxidative phosphorylation via the 
“Crabtree effect”, which is generally accepted as a short-term, reversible response 
to glucose availability (Diaz-Ruiz et al. 2011).

From the perspective of ATP generation alone, a reliance on glycolysis vs. oxida-
tive phsophorylation makes little sense. However, the main hypothesis ventured for 
why the Warburg effect benefits cancer cells is focused less on ATP generation per 
se and more on coincidental generation of the cellular building blocks required in 
rapidly proliferating cells. Glycolysis can provide intermediary precursors that feed 
into many biosynthetic pathways that ultimately generate nucleotides, amino acids 
and lipids as well as ATP.

This is achieved by multiple mechanisms. Cancer cells generally upregulate 
the expression of glucose transporters (predominantly Glut-1), enabling enhanced 
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glucose uptake into cells, a phenomenon that is exploited in positron emission to-
mography using deoxyglucose labelled with the positron-emitting 18F isotope (18F-
FDG PET). Downstream of the glucose transporters, glycolytic enzyme expression 
is modified to increase flux, achieved either by elevated protein expression and/or 
expression of isoforms pertaining to altered activity within the cancer cell environ-
ment. Importantly, documented changes include those in enzymes recognised as the 
rate-controlling steps in glycolysis: hexokinase (HK), phosphofructokinase (PFK) 
and pyruvate kinase (PK), which have been previously reviewed (Diaz-Ruiz et al. 
2011). In the case of PK, cancer cells often express the M2 isoform. Within the gly-
colytic pathway, PK catalyses the conversion of phosphoenolpyruvate to pyruvate, 
a process that generates ATP. The M2 variant is actually less effective at catalys-
ing this reaction, which although may compromise ATP production (Mazurek et al. 
2005), is beneficial to the potential shunting of upstream metabolites into biosyn-
thetic pathways (Christofk et al. 2008a, b). 

Multiple factors contribute to the observed metabolic changes in cancer cells. 
From a genetic perspective, activation of key oncogenes and loss of tumour suppres-
sor function can drive perturbed metabolism. Oncogenic transformation of c-myc 
or mutations leading to activation of signalling via the phosphoinositide 3-kinase 
(PI3K)/Akt (Protein kinase B, PKB)/the mammalian target of rapamycin (mTOR) 
pathway are commonly associated with increased glucose metabolism in cancer 
cells. Activation of c-myc leads to the enhanced expression of multiple genes in-
volved in glycolysis, in particular, lactate dehydrogenase (LDH) (Shim et al. 1997), 
whereas the PI3K/Akt/mTOR axis is commonly associated with direct enhance-
ment in glucose uptake via regulation of transporter activity, although there will 
undoubtedly be crossover in function given the ability of both pathways to drive 
expression of the transcription factor hypoxia inducible factor-1 (HIF-1, refer to 
Chap. 2 for further information; Bardos and Athcroft 2004; Dang et al. 2008; Bur-
rows et al. 2010). mTOR is negatively regulated by AMP-activated protein kinase 
(AMPK). AMPK is activated by the antidiabetic drug metformin (Zhou et al. 2001), 
leading to intriguing possibilities for targeting cancer metabolism as a preventative 
or therapeutic approach with established drugs (Pierotti et al. 2013).

Tumour suppressors linking to glycolytic phenotype include phosphatase and 
tensin homolog (PTEN), p53, tuberous sclerosis 1 and 2 (TSC1 and 2) and liver 
kinase B1 (LKB-1). PTEN is a classical inhibitor of the PI3K pathway, however, 
genetic over expression of PTEN, suppresses the Warburg effects via both PI3K-
dependent and -independent effects, the latter including inhibition of c-myc 
(Garcia-Cao et  al. 2012). p53 elicits multiple effects on metabolism (Vousden 
and Ryan 2009). Glucose uptake is suppressed via inhibiting the expression of 
glucose transporters. Glycolytic flux is downregulated through reduced expres-
sion of the glycolytic enzyme phosphoglycerate mutase and upregulation of the 
protein TP53-induced glycolysis and apoptosis regulator (TIGAR), which lowers 
fructose-2,6-bisphosphate levels in cells through the inhibition of PFK activity 
(Bensaad et al. 2006). TSC1 and 2 exert their effects via suppression of mTOR 
activity (Lee et al. 2007) and LKB1 via activation of AMPK (Shaw et al. 2004).

1  An Overview of Cancer Metabolism 
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Although enhanced flux through the earlier stages of the glycolytic pathway 
can be seen as beneficial to generate precursors, exactly why, in the presence of 
oxygen, pyruvate would be converted to lactate as opposed to entering oxida-
tive phosphorylation is a matter of continued debate. One clear advantage is that 
the pyruvate-to-lactate conversion that is catalysed by LDH regenerates NAD+, 
which is required for earlier stages in glycolysis. Indeed, LDH is commonly over-
expressed in tumours and the high enzyme activity may reduce the amount of py-
ruvate available to enter mitochondria. Further contributors to the reduced use of 
pyruvate in mitochondrial metabolism may be impaired transport of the metabo-
lite through the mitochondrial membrane and reduced activity of pyruvate dehy-
drogenase (PDH) complex, which catalyses the irreversible oxidative decarbox-
ylation of pyruvate to acetyl CoA that feeds into the Krebs cycle. Both have been 
reported in cancer cells (Diaz-Ruiz et al. 2011). In addition to impairments in how 
pyruvate is utilised, defects in the Krebs cycle have also been suggested. Several 
intermediates of the Krebs cycle are also precursors for biosynthetic pathways. 
In rapidly dividing tumour cells, the increased diversion of Krebs intermediar-
ies towards biosynthesis (for example citrate towards lipid biosynthesis) could 
compromise oxidative metabolism. Furthermore, tumour cells have been shown 
to exhibit mutations in several enzymes of the Krebs cycle, including isocitrate 
dehydrogenase 1(IDH1), succinate dehydrogenase (SDH) and fumarate hydratase 
(FH) that compromise or modify enzyme function. Both SDH and FH are recog-
nised tumour suppressors. Germline mutations of SDH expression predispose to 
phaeochromocytomas and paragangliomas, whereas FH deficiency predisposes 
to leiomyomatosis and renal cell cancer. Acquired mutations in the genes encod-
ing all three enzymes are observed in multiple cancer types (Bardella et al. 2011; 
Chen and Russo 2012). FH deficiency in renal cell carcinomas drives transition 
to a glycolytic phenotype associated with a reduction in AMPK levels (Tong et al. 
2011). In addition to cancer cells possessing defects in the Krebs cycle, oxidative 
phosphorylation can also be directly suppressed via reduced ADP uptake into the 
mitochondrial matrix (Chan and Barbour 1983) and reduced activity of ATP syn-
thase (Cuezva et al. 2007).

Inspite of the Warburg effect and the above mentioned defects within the Krebs 
cycle and mitochondrial metabolism, cancer cells do often maintain significant lev-
els of oxidative phosphorylation. One potential contributing factor is the use of 
substrates other than glucose to fuel metabolism. High uptake of the amino acid 
glutamine has been observed in many cancer cell lines, which is coupled to el-
evated glutaminolysis (Matsuno and Hirai 1989; Matsuno and Goto 1992) via the 
sequential activities of glutaminase and glutamate dehydrogenase or transaminases, 
such that α-ketoglutarate is generated. This can then feed into the Krebs cycle in an 
overall process known as glutamine anaplerosis (DeBerardinis et al. 2008). Recent 
evidence has shown that the activity of glutamate dehydrogenase is regulated by 
components of the mTOR pathway (Csibi et al. 2013), linking this axis to elevated 
glucose and glutamine consumption in cancer cells. In addition to fuelling the Krebs 
cycle, glutaminolysis also supports a number of biosynthetic pathways in cancer 
cells. Interestingly, a further product of the reactions is lactate, thereby raising 

1  An Overview of Cancer Metabolism 
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the possibility that the high levels of lactate in cancer cells arise not only from 
anaerobic glycolysis manifested via the Warburg effect but also via the metabolism 
of glutamine (DeBerardinis et al. 2007).

Lactate metabolism by cancer cells has received a lot of interest in recent years. 
Although predominantly thought of as a waste product of anaerobic glycolysis, re-
cent evidence suggests that cancer cells can actually utilise lactate to fuel oxidative 
phosphorylation in the presence of oxygen. Indeed, an effective “metabolic sym-
biosis” has been observed between “lactate-producing” and “lactate-using” cells 
within tumours (Sonveaux et al. 2008). Cells can be driven towards a “producer” or 
“user” phenotype dependent upon the microenvironmental conditions in which they 
prevail within the tumours. Indeed, a “reverse Warburg effect” has been described 
(Bonuccelli et al. 2010) in which stromal cells within the tumour (cancer associ-
ated fibroblasts) are actually the glycolytic, “lactate-producing” moiety, feeding the 
“lactate-using” cancer cells. Lactate transport is governed by the monocarboxyl-
ate transporters MCT-1 and MCT-4, with MCT-4 predominantly functioning as an 
“exporter” and MCT-1 as an “importer” in the proposed models of cooperativity 
(Sonveaux et al. 2008). Experiments using labelled metabolites show [13C]lactate 
conversion to [13C]glutamate via the Krebs cycle. Lactate is initially converted to 
pyruvate via LDH. There are then two routes for entry into the Krebs cycle. One 
via PDH to generate acetate and subsequently glutamate following a spin-off from 
α-ketoglutarate, and one via anaplerosis whereby pyruvate carboxylase converts 
pyruvate into oxaloacetate. Lactate metabolism is not restricted to cancer cells, be-
ing observed also in the brain, for example (Gallagher et al. 2009). Furthermore, 
similarities in the reverse Warburg effect have been observed along with metabolic 
cooperativity between neurons and glia cells within the brain (Pavlides et al. 2010).

These exciting new observations in cancer cell metabolism have reinvigorated 
research into metabolism as a therapeutic target for cancer. As discussed above, 
metabolic alterations in cancer are observed across glycolysis, the Krebs cycle and 
oxidative phosphorylation. There is heavy reliance on using alternative substrates 
and on anaplerotic reactions to replenish Krebs cycle intermediates that can be ex-
ploited in cancer therapy. The oncogenic drivers of metabolism along the PI3K 
have been targeted by small molecule approaches, and many are in clinical evalua-
tion. Direct targets within cancer metabolism based on our current knowledge have 
recently been reviewed and include glucose transporters, HK and MCTs (Galluzzi 
et al. 2013). However, with technological advances now enabling the application 
of metabolomic and network-based correlation approaches to cancer metabolism, 
these targets are likely to be only the tip of the iceberg.
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Chapter 2
Cancer Hypoxia and the Tumour 
Microenvironment as Effectors of Cancer 
Metabolism

Mammalian cells have various control mechanisms that regulate homeostasis, the 
maintenance of a constant cellular environment. This includes regulating oxygen 
homeostasis, such that the need for oxygen during oxidative phosphorylation and 
other metabolic reactions is balanced with the risk of oxidative damage within the 
cell (Ruan et al. 2009). Hypoxia is the intermediate state between the homeostatic 
state of normoxia and the complete absence of oxygen in anoxia. Under hypoxia, 
the survival of a cell, tissue, organ or organism is governed by its ability to detect 
and respond to oxygen availability and mount an adaptive response facilitating tol-
erance of the oxygen deprivation.

Within normal tissues, oxygenation levels generally fall within a range of 4–8 %, 
and hypoxia (below 1–2 % oxygenation) is rare. In tumours however, hypoxia is 
almost a dominant state. Tumour hypoxia occurs through two routes. Tumour cells 
are rapidly dividing and grow at a faster rate than the blood vessels supplying them 
with oxygen. Consequently, many tumour cells reside at distances from vessels 
that exceed the diffusion distance of oxygen. These cells are said to be in a state 
of “chronic” or “diffusion-limited” hypoxia. Tumour cells can also be subjected 
to “acute” or “perfusion-limited” hypoxia. Here cells become hypoxic as a con-
sequence of vascular collapse, which can be transient in nature. Tumour vessels 
generally differ from those in normal tissues in that they are leaky and immature. 
Leakiness leads to high interstitial fluid pressure, and immature tumour vessels are 
much more prone to collapse as a consequence of high interstitial fluid pressure 
than mature vasculature.

Given that hypoxia will eventually result in cell death, one could query why it 
matters. The reason is twofold. Hypoxic cells are resistant to many types of therapy 
(Ruan et al. 2009), and resistant cells can act as foci for tumour relapse. Secondly, 
exposure to hypoxia causes changes in tumour cells that render them more aggres-
sive and potentially more able to tolerate stress conditions. Given that hypoxia is a 
fluctuating state within tumours, there develops an almost “selective environment” 
that favours survival of those cells that can most readily adapt, that coincidentally 
develop characteristics that confound successful cancer treatment. Indeed, one of 
the proposed reasons for why the Warburg effect occurs in tumour cells is that it 
would naturally enable rapid adaptation to oxygen-deprived conditions when the 

E. G. Armitage et al., Correlation-based network analysis of cancer metabolism,
SpringerBriefs in Systems Biology, DOI 10.1007/978-1-4939-0615-4_2,
© The Authors 2014
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cells would be reliant on glycolysis over oxidative phosphorylation for energy pro-
duction.

2.1 � Hypoxia-Inducible Factors and Their Role  
in Tumour Hypoxia

Adaptive response is one of the key mechanisms enabling cell survival under hy-
poxic conditions. One of the most important pathways orchestrating this response is 
associated with the activation of the hypoxia-inducible factors (HIFs), in particular 
HIF-1, which was first described by Wang and Semenza in 1995. The identifica-
tion of HIF-1 (Wang et al. 1995), its purification (Wang and Semenza 1995) and 
its molecular characterization (Wang et  al. 1995) have all been described previ-
ously. The role of HIFs has been well reviewed by Semenza (Semenza 2003, 2012). 
A schematic for HIF-1 function is depicted in Fig. 2.1. HIF-1 is responsible for 
regulating the expression of numerous target genes (Semenza 2012). HIF-1 con-
sists of two subunits: HIF-1α and HIF-1β. The HIF-1β subunit is a constitutively 

HIF 1α

HIF 1β

HIF 1 binds to HREs 

Up regulation of  
target genes

Proteasomal 
degradation

VHL 
FIH 

PHD 
1-3

Normoxia Hypoxia

Activated HIF 1 heterodimer

Fig. 2.1   In normoxia, HIF-1α is hydroxylated by proline PHDs 1, 2 and 3 after which the VHL 
protein (product of the von Hippel Lindau tumour suppressor gene) is able to tag HIF-1α to be 
polyubiquitinated for recognition for degradation. In hypoxia, HIF-1α lacks the binding signature 
for PHDs, VHL and FIH; therefore, HIF-1α and can bind with HIF-1β. This activated heterodimer 
binds to HREs in the promoter regions of target genes and recruit transcriptional co-activators to 
enable transcription
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expressed nuclear protein, whereas the stability of the HIF-1α subunit is dependent 
primarily upon oxygen tension (Jaakkola et al. 2001; Lando et al. 2002). HIF-1α is 
subject to post-translational modification in the presence of oxygen which targets 
it for degradation (Masson et al. 2001). Oxygen sensors such as prolyl hydroxy-
lases (PHD), factor inhibiting HIF-1 (FIH) and von Hippel Lindau (VHL) protein 
control the repression of HIF-1α in cells exposed to normal oxygen levels (oxygen 
partial pressure > 10 mmHg). The modification required for targeted degradation 
is hydroxylation. This is catalysed by the PHDs and occurs on proline residues 
within the oxygen-dependent degradation domain of HIF-1α (Jaakkola et al. 2001). 
Hydroxylation at these residues allows for the binding of the VHL tumour sup-
pressor protein which targets HIF-1α for degradation via the proteasome (Jaakkola 
et al. 2001). In the C-terminal transactivation domain, FIH modifies an asparagine 
residue, preventing the binding of co-factors necessary for activating the HIF-1 
heterodimer (Lando et al. 2002). To activate the heterodimer, HIF-1α translocates 
to the nucleus to complex with HIF-1β. The heterodimer up-regulates pathways as-
sociated with glucose uptake, glycolytic metabolism and pH regulation as well as 
other features that contribute to the tumour phenotype such as cellular proliferation 
and differentiation (Troy et  al. 2005). The activated HIF-1 complex controls the 
regulation of genes containing hypoxia response elements (HREs). It does this by 
interacting with co-factors as well as binding to the promoters of, and facilitating 
the transcription of, approximately 100–200 genes (Kaelin 2008) that contain HREs 
(Ruan et al. 2009). HREs are prevalent in genes which encode stress response en-
zymes, including glycolytic enzymes (Kelly et al. 2008).

It is perhaps unsurprising that metabolism would be a key target of HIF-activa-
tion. HIF-1 up-regulates genes encoding glucose transporters (Glut-1 and 3) and 
nine glycolytic enzymes, including those controlling the rate of glycolytic flux 
(hexokinase, HK; phosphofructokinase, PFK; and pyruvate kinase, PK) and lactate 
dehydrogenase (LDH). The shift to anaerobic glycolysis over oxidative phosphory-
lation is further supported via HIF-1-mediated inhibition of PDH (Semenza 2012). 
HIF-1 also induces expression of MCT-4, which facilitates the metabolic coopera-
tivity between aerobic and hypoxic cells proposed by Sonveaux and colleagues in 
2008 (Sonveaux et al. 2008). Here, the hypoxic cells generate and excrete lactate 
via up-regulated LDH and MCT-1 activity and the aerobic tumour cells utilise the 
lactate metabolism following uptake via MCT-1 (Sonveaux et al. 2008).

As alluded to earlier, HIF-1 activation is not restricted only to the presence of 
hypoxia. Both tumour suppressor inactivation and oncogene activation can contrib-
ute to HIF activity and have consequential effects on metabolism. At the level of 
protein stability, loss of VHL (that is frequently observed in renal cancers) prevents 
HIF-1α degradation under aerobic conditions. Mutations in succinate dehydroge-
nase (SDH) and fumarate hydratase (FH) lead to increased levels of succinate and 
fumarate, respectively, which inhibit activity of the HIF–PHD enzymes, resulting 
in stabilisation in “aerobic” conditions (Isaacs et al. 2005; Pollard et al. 2005; Selak 
et al. 2005). Loss of phosphatase and tensin homolog (PTEN) can also activate HIF 
by increasing translation of the HIF-1α subunit (Zundel et al. 2000). In a corollary 
to the influence of PTEN loss, activation of the phosphpinositide 3-kinase (PI3K)/
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Akt/mammalian target of rapamycin (mTOR) axis induces HIF-1 activity, which 
can be observed in both aerobic and hypoxic conditions. Similarly, RAS/RAF/mito-
gen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) 
(or MAPK/ERK) pathway alterations can favour HIF-activity (Bardos and Athcroft 
2004; Shannon et al. 2009; Burrows et al. 2010, 2011). Furthermore cooperativity 
between HIF-1 and c-myc is observed in the regulation of many targets associated 
with glycolytic metabolism (Dang et al. 2008).

As for the condition of hypoxia per se, HIF-1 activity can also be associated with 
poorer response to both radio- and chemotherapy. Mechanisms are complex and 
given the interplay between HIF/hypoxia and other cancer-associated pathways, it 
is often challenging to tease out the precise contribution of each separate element to 
overall therapy response. Indeed, using models with a genetic knockdown of HIF 
(DN-HIF; see Chap.  5), reveal HIF-dependent and -independent mechanisms of 
chemotherapy resistance in colorectal tumour cells (Roberts et al. 2009). That said, 
HIF-1 targeting to improve radio- and chemotherapy response has been ventured as 
a therapeutic strategy (Meijer et al. 2012; Brown et al. 2006).

Multiple approaches have been proposed for HIF-1 targeting that span blocking 
HIF transcription, translation, heterodimerisation, DNA-binding activity and HIF-
dependent transactivation (Semenza 2012). Deficiencies or blocking of either sub-
unit stops the formation of the active heterodimer and alters the phenotype of the cell 
in different oxygen potentials, particularly with respect to its metabolic phenotype 
(Troy et al. 2005). For example, it has been shown that HIF-1β-deficient cells have 
an ATP content of up to 80 % lower than corresponding wild type cells (Griffiths 
et al. 2002). Furthermore, tumour growth is compromised in these models. These 
studies support that perturbation of metabolism via HIF inhibition can impact on 
tumourgenecity, but that it is likely through more robust integration of how cells re-
spond to hypoxia and HIF-1 activation will result in additional target identification.

2.2 � Tumour Hypoxia: The Impact on Treatment

A great deal of research has been directed towards the effects of hypoxia in relation 
to cancer treatments. This field was driven in the 1950s by Gray, who first con-
firmed the role of hypoxia in the development of radio-resistance in vivo (Bertout 
et al. 2008). Resistance was shown to be at least three times higher in the anaerobic 
cells, which became known as the oxygen enhancement effect (Bertout et al. 2008). 
Radiotherapy relies on oxygen to react with free radicals to generate ionising ra-
diation to damage DNA, leading to cell death (Brown 2000). Hypoxic cancer cells 
have been reported to be resistant to many anti-cancer chemotherapeutics (Vaupel 
et al. 2001; Bertout et al. 2008).

The majority of chemotherapy compounds target proliferating cells; however, 
hypoxic cells have slower proliferation rates (Zolzer and Streffer 2002). Hypoxic 
cells undergo G1 arrest in the cell cycle resulting in an accumulation of G1 cells 
(Brown 2000; Amellem and Pettersen 1991). Furthermore, S phase cells exposed to 
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hypoxia arrest progression through the cell cycle following a few hours of treatment 
(Amellem and Pettersen 1991) suggesting cells in the S phase are more sensitive to 
hypoxia exposure than the other phases of the cell cycle. Additionally, it has been 
reported that HIF-1α inhibits Myc (an oncogene that drives proliferation in cancer 
cells) at the molecular level to prevent cell cycle progression (Koshiji et al. 2004).

The vasculature of solid tumours are often found to be insufficiently formed 
which constrains the transportation of chemotherapeutics into the hypoxic regions 
of the tumour (Minchinton and Tannock 2006; Fig. 2.2). Cells within close proxim-
ity of blood vessels are exposed to the greatest dose of the drug, but hypoxic cells 
that are located some distance from the blood capillaries receive a lower dose of the 
chemotherapy drugs due to poor vasculature. Lymphatic deficiency within tumours 
increases interstitial fluid pressure and changes to the extracellular matrix slow the 
movement of molecules in the tumour cells (Minchinton and Tannock 2006).

2.3 � Strategies to Overcome Chemotherapy Resistance  
in Tumour Hypoxia

Current strategies have been directed towards developing therapeutics that are toxic 
to hypoxic tumour cells through exploiting their unique properties. One strategy is 
to improve drug delivery, thus increasing drug accumulation within tumours (Wout-
ers et al. 2002). Erythropoietin, a glycoprotein hormone, is secreted in the kidneys 
during hypoxia to increase red blood cell production (Wouters et  al. 2002). En-
hancing haemoglobin levels has shown to improve the cytotoxicity of radiotherapy 
and chemotherapeutics in hypoxia cancer cells (Wouters et al. 2002). Alternatively, 
chemotherapies have been developed to specifically target hypoxia cells and are 
termed hypoxia activated pro-drugs. These are often bio-reductive compounds that 
are metabolised specifically in low-oxygen environments (Tredan et al. 2007). Kill-
ing hypoxic cells, rather than re-oxygenation, may be a smarter method of treatment 
as this may reduce the occurrence of metastasis (McKeown et al. 1995). Mitomycin 
C is a chemotherapy agent that uses reductive metabolism to promote toxicity. This 
mechanism is applicable to hypoxic cells that have limited oxygen available, and it 
has been shown in vitro that the compound selectively kills hypoxic cells compared 
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Fig. 2.2   Illustration of drug 
penetration in solid tumours. 
The rapid growth of the 
tumour causes poor vascula-
ture. This reduces the diffusion 
of oxygen as it is metabolised 
by cells closest the vessel 
and reduces the penetration 
of oxygen, nutrients and 
chemotherapy compounds into 
areas of the tumour with a poor 
blood supply
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to normoxic cells (Rockwell et al. 1982). Delayed bone marrow toxicity is a side 
effect of the drug, which prevents prolonged use of the compound. Tirapazamine 
(TPZ) is a bio-reductive compound reported to have selective toxicity to hypoxic 
cells (Zeman et  al. 1986). Although TPZ has been reported to be toxic in vitro, 
studies in vivo have reported that the drug alone cannot impact tumour growth, 
and it must be administered with other chemotherapeutics, such as cisplatin, to be 
effective (Brown and Lemmon 1990). Subsequent studies showed TPZ combined 
with cisplatin did not improve the toxicity towards advanced head and neck cancer 
(Rischin et  al. 2010). Bis-N-oxide banoxantrone (AQ4N) is a bio-reductive che-
motherapy compound, which was developed as an analogue of mitoxantrone (Pat-
terson 1993). Similar to other bio-reductive compounds, AQ4N is reductively acti-
vated to AQ4, which binds with high affinity to DNA and acts as a topoisomerase 
II inhibitor (McKeown et al. 1995). This compound is one of the more successful 
hypoxia selective drugs developed as it remains active away from the hypoxic re-
gion. Furthermore, the drug has been shown to have greater toxicity when applied in 
combination with other chemotherapeutics, and to date is the most promising com-
pound for treatment of hypoxia-induced chemoresistance (McKeown et al. 1995) 
Targeting hypoxia remains a focus area for drug development, with several agents 
currently in clinical trial (Wilson and Hay 2011; Guise et al. 2014).
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Chapter 3
Metabolic Fingerprinting of In Vitro  
Cancer Cell Samples

Metabolomics is a commonly used tool in systems biology. Since a range of me-
tabolites can be detected in a single assay, metabolomics can be defined as a holistic 
and data-driven study of the low molecular weight metabolites present in biologi-
cal systems (Dunn 2008). The metabolome consists of endogenous and exogenous 
components: those catabolised or anabolised by the cell or organism itself, or those 
that are extra-organism or extracellular respectively. The metabolome includes 
metabolites present in a cell or organism that participate in metabolic reactions 
required for growth, maintenance and function, as well as metabolites consumed 
from the external environment. If considering an organism in vivo, the external 
environment could include the metabolomes of interacting organisms, for example 
from gut microflora in humans (Dunn 2008). In in vitro metabolomics (as presented 
in this research), the external environment is considered the growth medium. Al-
though the functional levels of a biological system include the genome, transcrip-
tome, proteome and metabolomes, the latter is considered most representative of the 
phenotype (Dunn 2008). Exploring the metabolome following experimental per-
turbation, where subtle changes can be tractable, may be the best way to reveal the 
phenotypic changes relative to biological function. For these reasons metabolomics 
is one of the fastest developing disciplines in systems biology and other aspects of 
modern science.

Non-targeted metabolomics can be performed by fingerprinting, footprinting or 
profiling. Although the latter term has been used interchangeably with the former 
two, it is generally accepted that fingerprinting and footprinting are the truly non-
targeted techniques for analysis of the entire metabolome, while profiling focuses 
on a class of metabolites expected to be associated with a particular biological ques-
tion under investigation. One could argue that since no analytical technique or com-
bination of analytical techniques currently available is capable of measuring all 
metabolites that exist in an organism, no experiment can be truly global to satisfy 
classification of metabolite fingerprinting or footprinting. It is generally accepted 
that if the intention is to ‘blindly’ search for a metabolic phenotype in a sample with 
no prior knowledge about the system then the experimental approach can be defined 
as fingerprinting or footprinting.

E. G. Armitage et al., Correlation-based network analysis of cancer metabolism,
SpringerBriefs in Systems Biology, DOI 10.1007/978-1-4939-0615-4_3,
© The Authors 2014
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Metabolic fingerprinting is a widely used non-targeted approach in metabolo-
mics. Its application spans from comprehensive studies of all detectable metabolites 
in biological samples to investigate the fate or effect of an exogenous metabolite 
in an entire system. Although it is not truly quantitative, it is useful for making 
relative comparisons between biological systems. The presence, absence or relative 
difference in concentration of the metabolites detected can be compared between 
experimental groups. These metabolites can be representative of the entire meta-
bolic network and as such the metabolome-wide effects of an environmental or ex-
perimental perturbation can be tested. There are many examples of the analysis of  
ex vivo samples including tissue (Sava et al. 2011; Sreekumar et al. 2009) and bio-
fluids (Kind et al. 2007; Dunn et al. 2011; Kenny et al. 2010; Dunn et al. 2008) in 
mammalian systems. When considering in vitro metabolic fingerprinting of mam-
malian cells, there are many more examples of intracellular fingerprinting rather 
than extracellular footprinting. There are advantages of footprinting, mainly with 
respect to the fact that less sample preparation is required, so metabolism can be 
quenched at a faster rate giving a more representative analysis or a ‘snapshot’ of 
metabolism (Kell et al. 2005). However, there is a limit to what metabolites will 
be present in the footprint. Urine and culture medium for example are largely com-
posed of waste products that are difficult to connect with biological function. It is 
clearly advantageous to profile extracellular fluids ex vivo since sample retrieval is 
less invasive and more readily available; however for in vitro studies fingerprinting 
the intracellular fingerprint may be more useful in determining properties of bio-
logical function. For this reason the metabolic fingerprinting experiments in this re-
search have been based on in vitro intracellular fingerprinting, for which there have 
been several successful protocols developed (Teng et al. 2009; Sellick et al. 2009).

There are some challenges associated with metabolomics that must be considered 
prior to undertaking research in this area. For example, the volume of metabolites 
can be too large to analyse and some metabolites cannot be detected through cur-
rent experimental methods. Additionally, the fluxes and concentrations of metabo-
lites can originate from more than one hierarchical route (controlled by more than 
one protein, transcription factor or even gene), such that changes observed in the 
metabolic phenotype of a biological system can be ambiguous with respect to their 
origin. For full elucidation of the biological system, a combination of the ‘omics’ 
can be required. Other challenges in the field are owed to metabolomics being less 
developed than the preceding ‘omic’ fields. For example there is a lack of a well-
established, comprehensive and publically available database that would be useful 
in data interpretation and standardisation. In genomics for example, GenBank pro-
vides nucleotide sequences for over 380,000 organisms and involves a daily data ex-
change from laboratories worldwide to continually enhance it (Benson et al. 2012). 
There have however been advancements towards this for metabolomics, whereby 
a metabolomics standard initiative (MSI) has been proposed for the identification 
of metabolites (Fiehn et al. 2007) and laboratory information management systems 
(LIMS) (Turner and Bolton 2001) including SetupX (Scholz and Fiehn 2007) have 
been developed. Additionally metabolite libraries have been compiled, an excellent 
example of which is the Manchester metabolomics database which includes a range 
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of analysed metabolite standards for both gas chromatography mass spectrometry 
(GC-MS) and ultra-high performance liquid chromatography mass spectrometry 
(UHPLC-MS); see Brown et al. (2009). Libraries are most advanced for GC-MS in 
metabolomics, a particular breakthrough for the Agilent Fiehn metabolomics reten-
tion time locked library (Kind et al. 2009). Currently the method for identification 
of features in UHPLC-MS data relies upon accurate mass that can be matched to 
compounds from web-based sources. A recent advancement in this area has been 
the development of the Taverna work flow for feature identification (Brown et al. 
2011). For other metabolomics platforms such as nuclear magnetic resonance 
(NMR) spectroscopy, software such as MetaboHunter are available for feature 
identification (Tulpan et al. 2011). In future it is hoped that the number of features 
it is possible to identify, will increase and a combined repository for the whole 
metabolomics community to use will be created that contains data from a wider 
range of analytical platforms. Some aspects have been addressed by the recently 
introduced metabolites: a database for comparing metabolomics experiments across 
species and across analytical platforms (http://www.ebi.ac.uk/metabolights/). The 
advancements in computational metabolomics so far are enough to make biomarker 
discovery possible and biomarkers are valuable identifications, regardless of their 
hierarchical origin, for revealing phenotypic properties in a biological system. In 
the context of this book, a biomarker can be defined as a representative metabolite 
of cancer (with respect to experimental treatment) found to be reliably detected in 
samples of the experimental group or treatment group (Armitage and Barbas 2014). 
Furthermore, in the identification of key metabolic pathways it is possible that me-
tabolomics alone can reveal potential targets for cancer therapy. Combining the use 
of different analytical platforms extends the number of metabolites it is possible to 
detect in biological samples.

The use of quality control in non-targeted metabolomics studies has become 
routine in recent years. The main purposes of quality control are to pre-condition the 
instrumental system before analysis of real samples and to ensure quality in the en-
tire analysis by assessing and correcting for analytical variation throughout (signal 
correction). This is performed by preparing quality control (QC) samples comprised 
of the range of metabolites included in the samples under investigation. Most com-
monly, a sample pool is generated from a small volume of each sample for analysis 
and this pool is prepared in a range of aliquots for use throughout the analysis. In 
cases where this is not possible for example due to sample volumes being sparse, 
a synthetic or other substitute QC mix can be used that represents the metabolome 
of the samples as closely as possible. This may also be useful for large-scale stud-
ies where samples are collected and analysed sequentially over a long period of 
time (Zelena et al. 2009). A key example of the latter (Dunn et al. 2011) described 
analytical procedures from sample collection and preparation to data acquisition, 
pre-processing and quality assurance for the analysis of human serum over a pe-
riod of two years. Included in this report is the suggested use of QC-based robust 
LOESS signal correction that provides a method both for the integration of multiple 
analytical batches. This is highly applicable for metabolomics data collected for 
correlation analysis since datasets are large and even if samples are not collected 
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over a vast period of time, analysis is invariably conducted over a series of analyti-
cal batches that must later be aligned for successful data analysis.

Analytical variation in metabolite measurements can be assessed through ob-
serving trends in the QC samples. For different analytical platforms, there are 
suggested thresholds for the relative standard deviation/coefficients of variation 
deemed acceptable for metabolites in QC samples. For metabolites whose varia-
tion lies outside of these thresholds, they are usually removed from the dataset be-
fore subsequent analysis. Additionally, if the variation in the QC samples exceeds 
the variation in the samples for given metabolites, these are also usually removed 
prior to further analysis. Examples of accepted thresholds are 20 % for UHPLC-MS 
and 30 % for GC-MS data. The tolerance is usually greater for GC-MS data that 
UHPLC-MS data as variation due to chemical derivatisation and injection is higher 
than variation in UHPLC-MS data (Dunn et al. 2011).

Following pre-alignment of data, there are a range of statistical analyses applied 
in the field of metabolomics to reveal useful features for biological interpretation of 
data. Particularly for non-targeted datasets, a combination of univariate and multi-
variate statistical analysis is usually employed. Depending on the nature of the data 
(with respect size, variance and normality in data as well as to the number of desired 
comparisons required for interpretation), it may be more or less appropriate to ap-
ply different tests. Commonly used univariate techniques include variations on the 
student’s t test, analysis of variance (ANOVA) and non-parametric tests such as the  
Wilcoxon sign-ranked and Kruskall–Wallis tests. These tests operate in one dimen-
sion, analysing each metabolite in turn comparing experimental groups in a way  
to reveal trends in individual metabolites with respect to the experimental condi-
tions. Recently, it is becoming an expected requirement that the p-values obtained 
through such analyses are subjected to a multiple testing correction method such as 
Benjamini-Hochberg, Bonferroni or Storey. These methods for controlling the false 
discovery rate do so either by correcting the p-values or redefining the threshold for 
significance based on considering the likely number of true positives in the data.

To analyse the co-variation in metabolites with respect to experimental condi-
tions can be considered a useful technique to reveal potential system properties 
of the metabolome. Popular techniques for this are the unsupervised method of 
principal components analysis (PCA) and supervised methods such as partial least 
squares- discriminant analysis (PLS-DA) or principal components—canonical vari-
ates analysis (PC-CVA). Metabolomics datasets invariably contain orders of magni-
tude more variables than samples and sequential analysis and interpretation of each 
variable can be tedious. This is especially the case for non-targeted analyses where 
there is no prior expectation of metabolite change, rather the entire dataset is inte-
grated for interesting features of change. Multivariate analysis connects metabolites 
that change with respect to others, in this way revealing the interesting regions of 
the metabolome with respect to the experiment. For example, if the metabolomic 
datasets of two experimental groups are analysed by PCA and observed to sepa-
rate based on this, the metabolites responsible for the separation can be quickly re-
vealed. Similarly, methods of supervised discriminant function analysis (DFA) can 
be used to search for patterns in data related to experimental group as pre-defined 
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in the algorithm. For these techniques, detailed descriptions can be referred to else-
where (Mellinger 1987; Wold et al. 1987; Wold et al. 2001).

Metabolomics has played an important feature of modern cancer research, some 
of the most notable examples of which have been reviewed (Armitage and Barbas 
2014). A key example has combined data with pre-existing gene expression data to 
determine the mitochondrial glycine biosynthetic pathway to be strongly correlated 
with rapid proliferation in cancer. This was elucidated from the revelation of the 
consumption or release of 219 metabolites across a range of cancer cell lines. It was 
found that rapidly proliferating cells require large quantities of the non-essential 
amino acid glycine to support growth. Consequently, this study demonstrates the 
impact of metabolomics studies in identifying new cancer therapeutic targets (Jain 
et al. 2012). Furthermore, metabolic profiling can be specifically useful for identi-
fying the underlying pathway regulation of metabolic reprogramming (one of the 
hallmarks of cancer).
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Chapter 4
Network-Based Correlation Analysis 
of Metabolic Fingerprinting Data

E. G. Armitage et al., Correlation-based network analysis of cancer metabolism,
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Correlation analysis, first invented by Francis Galton and later scientifically concep-
tualised by Karl Pearson, has many powerful applications in biology for describing 
causality in biological systems. Ever since the 1920s, causation has been connected 
with correlation in this way. The underlying mechanisms in biological processes are 
shadowed in correlations that when analysed can reveal connections in biological 
data that provide a starting point to realise underlying biological processes.

There are different scenarios of sources in variation between biological variables 
that give rise to the (anti-) correlations between them. In general, they can be de-
fined as specific perturbations, such as the effect of a single gene knockout or enzy-
matic activity, or as global perturbations, such as the effect of the environment on a 
biological system or the evolution of the system over time that can simultaneously 
affect many components in the system (Steuer 2006). One other significant feature 
of biological systems that give rise to sources of variation is the balance between 
intrinsic and extrinsic variability. Intrinsic variability is described as the ‘probablis-
tic nature of the timing of collision events between reacting biological molecules’ 
(Toni and Tidor 2013). It is an important condition within computational models of 
biological systems; however, it is not well analysed in the lab. It is associated with 
noise generated by intrinsic fluctuation and can cause a variable amount of variation 
in data that can be relevant to correlation analysis. Intrinsic variation is thought to 
be responsible for some of the most intense interrelations between metabolites that 
are evident across the population under identical experimental conditions (Steuer 
2006). Extrinsic variability is a similar concept but is due to noise arising from out-
side the boundaries of the system of interest. For example, when considering a small 
sub-network of metabolism, extrinsic variation could arise from an upstream region 
of metabolism that is out of the system of interest, but which affects the system in a 
real situation. Even if one only wants to consider the TCA cycle, it is necessary to 
consider the off-shoots to this cycle that inherently control its function.

Correlation analysis is a powerful tool to explore cellular phenotype. Cellu-
lar phenotype is largely governed by metabolism. There are approximately 2,900 
endogenous metabolites that are currently detectable in the human body using 
analytical techniques such as gas chromatography–mass spectrometry (GC-MS), 
liquid chromatography–mass spectrometry (LC-MS) or nuclear magnetic reso-
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nance (NMR; Wishart et al. 2009). The human metabolic network involves connec-
tions between metabolites through biochemical reactions and links many metabolic 
pathways together into one representation of metabolic function. The structure of 
this network gives rise to the relative concentrations of metabolites that are present 
in cells, and naturally, the concentrations of certain metabolites tend to be correlated 
with others in the network due to their position and influence on other metabolites 
via key enzymatic reactions. The influence of one metabolite on another can be due 
to a neighbouring interaction; however, in reality correlated metabolites tend to be 
spatially or temporally separated in the network. A correlation can exist between 
two metabolites that could be due to any number of factors. Many of these have 
been discussed (Camacho et al. 2005). Figure 4.1 shows schematics for some of 
these factors. Two metabolites can be highly correlated due to the domination of a 
single parameter whose variability has more control over the correlation than any 
other parameter (asymmetric control). In such a case, groups of highly correlated 
metabolites can form if one metabolite is highly correlated to two others due to a 
single parameter; then the two others by necessity must also be highly correlated 
and so on. For example, a gene could ultimately control the correlation between 
metabolites A and B as well as A and C. By asymmetric control, that gene is likely, 
therefore, to be accountable for a correlation between B and C as well. Other factors 

a b

c d

Fig. 4.1   Examples of factors 
contributing to the correlation 
between metabolites. a An 
external factor controls corre-
lation 1 between metabolites 
A and B as well as correlation 
2 between A and C. By asym-
metric control, this factor 
also controls a correlation 3 
between B and C. b In the 
energy-consuming metabolic 
reaction between A and B, 
ADP and ATP are negatively 
correlated. c A correla-
tion between A and B can 
occur when both are close 
to chemical equilibrium. d 
High variability of enzyme E 
controls the negative correla-
tion between its substrate and 
product
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that can cause metabolites to be highly correlated include cases where metabolites 
are highly positively correlated when they are close to chemical equilibrium or 
highly negatively correlated when they share a conserved moiety. An example of 
the latter would be the anti-correlation between ATP and ADP such that the concen-
tration of one is higher while the other is lower because phosphate is a conserved 
moiety transferred cyclically between them. Finally, correlations can be due to high 
variability in one parameter. For example, high variability in a certain enzyme will 
pose a negative correlation on its substrates and products.

Different metabolites have different levels of connectivity both in reality and in 
representations of human metabolic networks. Highly connected metabolites fea-
ture in many reactions and can be considered ‘hubs’ in the network. These hubs may 
change when cells are exposed to different environments as alternative metabolic 
pathways are up- and down-regulated to promote survival in that particular envi-
ronment. Determining hubs and key pathways that change in response to different 
environments or treatments could give an insight into how cells use metabolism 
to respond and potentially reveal regions of the network that could be targeted in 
cancer therapy.

4.1 � Calculating Correlation Coefficients

There are many different methods for performing correlation analysis. The type and 
quality of the data to which correlation analysis will be applied along with the level 
of robustness required usually provide the basis for choosing certain methods over 
others. The most commonly used are the Pearson’s product correlation and Spear-
man’s rank correlation methods. In both, a correlation coefficient ( r) representative 
of the connectivity between two independent variables (metabolites) is calculated, 
ranging from − 1 to 1; where a coefficient of 0 implies no correlation between vari-
ables, coefficients in the range ± 0.7 – 1 usually imply strong correlation between 
variables, and coefficients in the range ± 0 – 0.7 usually imply weak correlation be-
tween variables. Pearson’s product-moment correlation method computes a coeffi-
cient that is invariant to linear transformation in variables (Rodgers and Nicewander 
1988), and this type of correlation analysis is only valid when variables are linearly 
related (Camacho et al. 2005). Further requirements include data that are approxi-
mately normally distributed and do not contain outliers. Pearson’s correlation is an 
example of a standard covariance where altering the scaling of the data will affect 
the variance and covariance.

The following equation shows the calculation used to obtain coefficients for the 
pairwise correlation analyses between identified metabolites. The Pearson’s prod-
uct-moment correlation equation, where r is the correlation coefficient calculated 
for the pairwise correlation of variables x and y
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Spearman’s correlation coefficient is calculated when two variables are not normally 
distributed and are non-linearly (but monotonically) related. Although Spearman’s 
rank correlation can be used to analyse non-parametric data and is less sensitive 
to outliers (Camacho et al. 2005), Pearson’s product-moment correlation method 
is statistically more powerful. The quality and validity of a result from correlation 
analysis is highly influenced by the sample size. Although Pearson’s product-mo-
ment correlation method is less sensitive to sample size than Spearman’s rank cor-
relation method, in general, correlation analysis should be avoided for experiments 
with fewer than ten biological replicates (Camacho et al. 2005). For a Spearman’s 
correlation, the data is ranked prior to correlation by its order where the smallest 
becomes one, the second smallest becomes two and so forth.

The equation for calculating Spearman’s rank correlation coefficient ( rs), where 
n represents sample size and di is the calculated difference between xi and yi, is:

r
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∑
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6
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2
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Whether the correlation method applied is Pearson’s or Spearman’s rank method, 
it is largely governed by whether or not pairwise variables are approximately nor-
mally distributed. For both methods, it is assumed that the function describing one 
variable in terms of the other is monotonic. Such a relationship allows an increase in 
one variable with an increase in the other, a decrease in one variable with a decrease 
in the other, or a decrease in one variable with an increase in the other. The patterns 
that can describe each of these relationships are depicted in Fig. 4.2.

A linear relationship is always monotonic; however, it is also possible to have 
monotonic relationships between variables that are not linear. In the latter case, it is 
highly appropriate to apply Spearman’s rank method of correlation analysis, since 
linearity is not a requirement. For Pearson’s method, it is necessary to satisfy both 
linearity and monotonicity. When neither condition is met, correlation analysis must 
follow more computationally complex approaches that involve form-free regression 
or permutation testing (Shipley 2004).

Partial correlations can be used to distinguish between a direct causal relation-
ship through intermediate variables or directly due to common causes. Partial cor-
relations are, therefore, a step towards describing the causal inference. For example, 
Fig. 4.3 shows the zero-order correlation would calculate A to be correlated to B, B 
to C and A to C; however, a partial correlation would calculate that A is correlated 

Fig. 4.2   Patterns for the relationship between two variables that can be linear, and/or monotonic 
or not
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to B and B is correlated to C as B is the intermediate metabolite and the cause of A 
and C being correlated.

Partial correlation coefficients can be applied similar to zero-order correlations 
using either Spearman’s or Pearson’s correlation, as described above, to identify the 
direct interactions through conditioning each pairwise interaction of two variables 
against all remaining variables. Partial correlation between variables X and Y given 
Z can be computed using the following equation:

2 21 1
XY XZ ZY

XY Z

XZ ZY

ρ ρ ρρ
ρ ρ

−
=

− −
·

This allows for the identification of correlations among residuals (errors of predic-
tion) where the regression of a variable X on Y when X is subtracted by X′ gives the 
residual e. The residual e is not correlated to Y, and thus, any correlation X shares 
with another variable Z cannot be due to Y, therefore, direct interactions can be 
discovered.

Full-order partial correlations require the number of samples to be greater than 
the number of variables. When the number of biological replicates ( n) is greater 
than the number of variables ( p), partial correlations can be calculated by inverting 
the sample covariance matrix. Since this is not the case for most metabolomics and 
transcriptomics datasets, it is not possible to apply a simple inversion. In order to 
calculate the partial correlation where the number or variables is greater than the 
number of samples, the covariance matrix must be estimated by alternative meth-
ods (Stifanelli et al. 2011), for example, applying a Moore–Penrose pseudoinverse 
(PINV).

b ca

Fig. 4.3   a Reaction b Full correlation c Partial correlation
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4.1.1 � Correlation Coefficient Transformation

Data transformations can be applicable at many stages of a statistical analysis. 
Regardless of the transformation or the stage in the analysis, transformations ge-
nerically aim to re-mould the data to follow an approximately normal or Gaussian 
distribution that is necessary for meeting the requirements of many statistical pro-
cedures subsequently applied. Furthermore, it is possible to apply transformations 
that allow non-linear data to be re-moulded to follow a linear trend, making them 
more applicable to many different statistical analyses that require such relation-
ships. A common non-linear transformation to achieve linearity is the logarithmic 
transformation. This transformation can be used both to achieve an approximately 
normal distribution as well as to linearise data. In terms of linearisation, it is appli-
cable when the original data consists of a curved structure that, following logarith-
mic transformation, can be converted to follow a linear trend. Additionally, many 
metabolites (and biological variables in general) follow a log normal distribution 
which means that log transformation corrects the distribution to normal, as required 
for parametric statistical analyses. This is particularly valuable when data contain 
outliers at the higher end of the distribution (positive skew) and logarithmic trans-
formation reshapes the data into a Gaussian distribution.

If data are observed to follow a non-normal, non-linear distribution, it is neces-
sary to transform data prior to correlation analysis using Pearson’s product moment 
method; otherwise, it may be more appropriate to apply Spearman’s rank correlation 
analysis. Assuming two metabolites, for which a pairwise correlation coefficient is 
computed, follow a normal distribution and the relationship between them is linear, 
it is possible to normalise the correlation coefficient through transformation. These 
transformations have the aim of variance stabilisation and are used for regression-
based and analysis of variance-based statistical methods. These transformations are 
applicable to data with a bivariate, normal distribution (data that have two indepen-
dently normally distributed variables; two metabolites).

One such example of variance stabilising type transformation is the Fisher’s �z
-transformation. This can be applied as an approximation for sample sizes as low 
as 25, and more exactly, for more than 50 samples where pairwise metabolites are 
independent. Following this transformation, �z  has an approximately constant varia-
tion for all values of correlation. An example of this has recently been published in 
article (Kotze et al. 2013). Fisher’s �z-transformation for normalisation of the cor-
relation coefficient can be computed using the following equation:

1 1
2 1

z ln +
=

−


r
r

Fisher’s �z -transformation for correlation analysis is mainly associated with Pear-
son’s product-moment correlation coefficient for bivariate normally-distributed 
data, however, more generally it can be applied for normalisation of correlation 
coefficients computed using Spearman’s rank method. Other methods for normali-
sation of correlation coefficients include normalisation to follow a Student’s t distri-
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bution or the application of a Hotelling transformation. Assuming independence of 
pairwise metabolites, an exact transformation can be performed so that a correlation 
coefficient follows the Student’s t distribution with n − 2 degrees of freedom. The 
following equation is applied for this transformation to follow the Student’s t distri-
bution with n − 2 degrees of freedom:
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The Hotelling transformation offers another option for which sample sizes as low as 
ten can be robustly transformed. The equation for this Hotelling transformation is:
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A more detailed outlook on transformations of correlation coefficients and for test-
ing independence of correlated variables can be found in (Shipley 2004).

4.1.2 � Determining the Significance of a Correlation Coefficient

Following the determination of �z  using Fisher’s �z-transformation described above, 
it has been proposed that the significance of a correlation coefficient can be tested 
using the following equation (Fisher 1915):

ˆ 3T Tz z= − N

This equation is dependent on sample number ( N) and is true for data following 
an approximately Gaussian distribution with 95 % confidence (a significance level 
of α = 0.05) as described in (Fisher 1915). Depending on the level of α, it may or 
may not be appropriate to consider the number of samples required to support this 
significance. One way to approach this is to consider the number of observations 
(samples) required for pairwise correlation analysis between variables (metabolites) 
that satisfies a certain tolerance of standard error. The standard error equation is 
given by:

SE r
n

=
−

−
( )1

1

2

This equation can be rearranged to determine the sample size that should be used 
to satisfy both the standard error ( SE) and correlation coefficient ( r) that can be 
chosen for specific purposes. This can be useful to consider in experimental design, 
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since if there is a possibility for flexibility in sample number, a desirable/required 
standard error and level of correlation for the application can be used to determine 
the number of observations it is necessary to collect data for. This can be particu-
larly useful in in vitro experiments and to some extent all the way through to clinical 
assays. However, if the sample number is restricted, which is particularly the case 
in clinical observation, this equation can be used to determine the level of error that 
will be associated with a given correlation coefficient. Table 4.1 summarises the 
number of samples required to satisfy certain levels of standard error for different 
correlation coefficients as calculated using the above standard error equation.

4.1.3 � Determining the Significance of Difference Between 
Correlation Coefficients

Once correlation analysis has been performed for pairwise comparisons of all 
metabolites derived from a fingerprinting study (or other relevant metabolomics 
study), the data can be used in different ways, many of which are beyond biological 
interest to find related metabolites in the metabolic network. For example, correla-
tion analysis can be used to prove that two peaks in a chromatogram or spectrum 
arise from a unique metabolite. This can be particularly interesting for identifying 
unknown peaks that are not well identified through current methods of database 
searching. It could be that an unidentified peak is found following correlation analy-
sis to be a less common fragment/derivative/isoform of a metabolite for which other 
peaks have already been assigned the correct identification. For example, differ-
ent derivatives of metabolites detected using GC-MS should correlate strongly in a 
positive direction given their origin is from one unique metabolite. Conversely, it 
could be useful to cluster a group of unknown peaks (from the same retention time) 

Table 4.1   Sample sizes required for combinations of standard error and correlation coefficient 
values calculated using the equation for standard error
Standard 
error ( SE)

Correlation coefficient ( r)

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
0.01 4097 3336 2602 1915 1297 771 362 96
0.02 1025   835   651   480   325 194   91 25
0.03   456   372   290   214   145   87   41 12
0.04   257   209   164   121     82   49   24   7
0.05   165   134   105     78     53   32   15   5
0.06   115     94     73     54     37   22   11   4
0.07     85     69     54     40     27   17     8   3
0.08     65     53     42     31     21   13     7   2
0.09     52     42     33     25     17   11     5   2
0.10     42     34     27     20     14     9     5   2
0.11     35     29     22     17     12     7     4   2
0.12     29     24     19     14     10     6     4   2
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and by observing the information from each, it is possible to suggest a putative 
identification based on the differences between them (for example, peaks arising 
from different fragments of a metabolite).

The significance in the difference between two pairwise correlations can be cal-
culated using the following equation:
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As shown in the equation, two Fisher-transformed correlation coefficients can be 
inputted ( �z1 and �z2 ) that have different sample sizes ( N1 and N2).

Additionally, a correlation threshold Tẑ  can be reported for a sample size N. Us-
ing the calculation described above can alleviate two restricting cases of correlation 
analysis. A very low threshold would produce false positives and high thresholds 
would give false negatives. Correlation coefficients Cij are converted to values ˆijz  
using an inverse transform:
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Consequently, two metabolites are considered significantly correlated when 
Tˆ ˆ .ijz z>

Determining the significance of a difference between correlation coefficients 
across experimental groups is a powerful way to analyse data. If a matrix of cor-
relation coefficients has been computed for pairwise combinations of all measured 
variables using data collected from n observations (replicates/samples of the same 
biological system with equal conditions), it can be compared to a similar matrix of 
another (different) group of observations. For example, the aim of a study could be 
to compare the metabolic fingerprints of plasma collected from 30 patients with 
pancreatic adenocarcinoma to the plasma collected from 30 healthy controls in or-
der to reveal potential metabolic markers of the disease through an untargeted ap-
proach. By comparing the difference in each of the correlation coefficients calculat-
ed in the same way for each dataset, it is possible to observe statistical changes that 
could perhaps not have been elucidated either through one-dimensional univariate 
or even multivariate analysis.

The power of this approach is dependent both on the number of samples per 
group and the level of correlation. For any sample size, it is possible to ascertain 
what difference is significant based on the strength of correlation for one experi-
mental group. For a range of sample sizes and a range of correlation coefficients, 
the difference in correlation coefficients necessary between two groups has been 
computed and the results are displayed in Table 4.2.

Using the equations described in this chapter, it is possible to calculate correla-
tion coefficients and determine significant differences between correlation coef-
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ficients in order to compare experimental groups (e.g. disease and control). A full 
method for this type of analysis in cancer related studies has been published (Kotze 
et al. 2013).

4.2 � Network Analysis

Although entire pathways cannot be targeted in cancer therapy, it is useful to iden-
tify pathways that link correlated metabolites to determine the enzymes that are 
responsible for their production and consumption. A gene or transcription factor 
cannot target metabolites directly. It must target the enzymes that produce or con-
sume the metabolite either directly or via a particular signaling cascade. Identify-
ing metabolites in isolation is useful in revealing metabolic signatures but not in 
hypothesizing potential targets for therapy. For example, more than 25 enzymes are 
described in KEGG (Kanehisa and Goto 2000) for their associations with fructose. 
Without linking fructose to another metabolite, it is not possible to identify path-
ways to narrow down which enzymes could be used to control the level of fructose.

Correlation analysis between two variables offers a new insight into the rela-
tionships in a biological system. These are the result of complex interaction of the 
biological network; however, the cause of the response remains to be identified. 
In order to discover their network-based origin, correlations can be mapped onto a 
human metabolic network. These networks are a reconstruction of the biochemical 
reactions of human metabolism. There are several genome-scale human metabolic 
networks freely available for use. The two most popular genome-scale human meta-
bolic models are the global reconstruction of the human metabolic network based 

Sample 
size ( N)

Correlation difference

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
15 0.707 0.675 0.633 0.579 0.510 0.423 0.314 0.175
16 0.675 0.643 0.602 0.549 0.482 0.398 0.293 0.163
17 0.648 0.616 0.574 0.522 0.457 0.376 0.276 0.153
18 0.623 0.590 0.550 0.498 0.435 0.357 0.261 0.144
19 0.600 0.568 0.527 0.477 0.415 0.340 0.248 0.136
20 0.579 0.547 0.507 0.458 0.398 0.325 0.236 0.129
21 0.560 0.529 0.489 0.441 0.382 0.311 0.226 0.123
22 0.543 0.512 0.473 0.425 0.368 0.299 0.216 0.118
23 0.527 0.496 0.457 0.411 0.355 0.288 0.208 0.113
24 0.512 0.481 0.443 0.398 0.343 0.277 0.200 0.108
25 0.498 0.468 0.430 0.386 0.332 0.268 0.193 0.104
26 0.485 0.455 0.418 0.374 0.322 0.260 0.187 0.101
27 0.473 0.444 0.407 0.364 0.312 0.252 0.181 0.097
28 0.462 0.433 0.397 0.354 0.304 0.245 0.175 0.094
29 0.452 0.422 0.387 0.345 0.296 0.238 0.170 0.091
30 0.442 0.413 0.378 0.337 0.288 0.231 0.165 0.089

Table 4.2   Calculated 
differences necessary for 
significance between two 
experimental groups given 
one correlation coefficient 
and the number of samples 
in each group
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on genomic and bibliomic data developed by the Palsson group (HMN-P; Duarte 
et al. 2007) and the Edinburgh human metabolic network (EHMN) reconstruction 
(Ma et al. 2007). Both metabolic networks have distinctive features making them 
more or less valuable for use depending on the investigation. For example, both the 
EHMN and HMN-P contain a similar number of compounds (approximately 2,700), 
of which more than half have KEGG references in the EHMN (Ma et al. 2007). The 
HMN-P has more reactions (approximately 3,800) compared to the EHMN (ap-
proximately 2,800); however, the HMN-P contains compartmentalisation such that 
some reactions are the same as others occurring in different subdivisions of the 
cell/network and many reactions involve transport of metabolites between compart-
ments. Therefore, the number of different biochemical reactions contained does not 
differ hugely from the EHMN. Although compartmentalisation provides a more re-
alistic model of metabolism, for this research presented in the case studies (Chaps. 5 
and 6), the EHMN was more suitable since it is not compartmentalised. The analy-
sis of cell lysates means that metabolites are no longer localised to compartments of 
the cell, rather metabolites are analysed as collective pools from all compartments. 
Therefore, correlations between metabolites are not compartment-specific such that 
it was not clear which compartments the metabolites originated in. Consequently, 
using of EHMN allowed, in each case study, a simpler yet more valid network 
analysis of the correlations was observed. More recently, tissue-specific metabolic 
models have become available to describe the metabolism of diseases such as breast 
cancer (Agren et al. 2012) or tissue types such as adipose (Mardinoglu et al. 2013) 
in addition to a more comprehensive human metabolic model (Thiele et al. 2013). 
As these models are provided as compartmentalised networks, they would need to 
be uncompartmentalised prior to use; however, they may be able to discover more 
relevant metabolic pathways within a dataset taken from a specific tissue or study-
ing a particular disease.

The network must be converted into a stoichiometric network to enable graph 
theory to be applied to offer an insight into the interactions and connections of 
metabolites within the network. An example of the construction of a biochemical 
network into a stoichiometric network of metabolite interaction is shown below 
(Fig. 4.4). The final matrix is symmetrised to account for directionality of the bio-
chemical reactions. The network is considered to be an undirected graph.

4.2.1 � Currency Metabolites

Currency metabolites are considered to be highly connected metabolites, typically 
involved in side reactions, and include metabolites such as water, ATP and ADP. If 
co-factor metabolites are not removed from the network before any analysis, con-
nections between pairs of metabolites are not always biologically meaningful since 
currency metabolites are involved in so many reactions and are highly connected 
in the network (Ma and Zeng 2003). For example, water has 1,083 metabolite con-
nections in the EHMN, and therefore, should be removed prior to network analy-
sis along with other highly connected energy and redox co-factors, including ATP, 
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ADP, AMP, NAD, NADH, NADP, NADPH, CoA, UTP, UDP, UMP, GTP, GDP, 
H2O, CO2, O2, orthophosphate and hydrogen.

4.3 � The Use of Network-Based Correlation 
Analysis in Reality

In these first four chapters, the background of cancer metabolomics (with particu-
lar reference to hypoxia in solid tumours), the current topics in metabolic finger-
printing for cancer samples and concepts concerned with correlation analysis and 
network-mapping of correlated metabolites that explain particular phenotypes have 
been discussed. In the subsequent two chapters, case studies will be used to exem-
plify some of these aspects through real experimental applications of network-based 
correlation analysis associated to tumour hypoxia. In Chap. 5, the application will 
be used to explore the tumour phenotypes of cells that do and do not express a spe-
cific transcription factor known to enable tumour survival in low hypoxic environ-
ments. In the second case study (Chap. 6), the same methods have been employed 
to study mechanisms of chemoresistance that are known to exist in hypoxic tumour 
environments.

b

a

c

Fig. 4.4   Progression from a reaction into a stoichiometric network
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In both case studies, GC-MS metabolic fingerprinting was performed in the 
same way to create a list of metabolites for correlation analysis. For convenience, 
the same methods have also been employed for both GC-MS analysis in the lab and 
correlation analysis. For example, the type of correlation analysis to be applied was 
Pearson’s product-moment correlation analysis. The sample size and acceptable 
difference between group correlation coefficients for each metabolite were chosen 
using the tables and equations from this chapter and correlation coefficients were 
transformed using the Fisher transformation described. It was decided to accept a 
standard error of 0.1 with a minimum correlation coefficient for one correlation to 
be 0.7. This meant a minimum requirement of 27 samples per experimental group. 
To this end, 30 samples were collected to enable room for experimental error. Ad-
ditionally, given this sample size and coefficient threshold for the first correlation, it 
was necessary to consider differences in correlation coefficients between groups of 
at least 0.407 to be deemed statistically significantly different. Finally, the EHMN 
was chosen as the metabolic network reconstruction onto which pairs of differ-
ently correlated metabolites between groups were mapped. This pipeline has been 
recently published in the accredited peer reviewed scientific journal: BMC Systems 
Biology (Kotze et al. 2013), and can be consulted for more specific details of the 
experimental method. With all these parameters set, the following chapters display 
the power of these methods in unveiling new biological knowledge in these particu-
lar fields of cancer research.
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5.1 � Hypoxia Inducible Factor—1

Hypoxia and HIFs (particularly the overexpression of HIF-1) are associated with 
chemotherapy and radiotherapy resistance (Ruan et al. 2009), thus they play a criti-
cal role in tumour survival and defence against eradication. Our knowledge and 
understanding of the mechanisms of HIFs have started to illustrate great scope in 
the designing and screening of new anticancer therapies (Ruan et al. 2009; Semenza 
2012). However, simply developing antagonists to the HIF pathway is not enough 
as it is not yet established that HIF drives the transformation of a normal cell to a 
cancer cell (Esteban and Maxwell 2005).

One of the main metabolic targets previously investigated with respect to the role 
of HIF-1 in cancer hypoxia is glycolysis (Diaz-Ruiz et al. 2009; Troy et al. 2005). 
Targeting the transcription of genes that code for glucose transporters (such as Glut 
1 and Glut 3) (Griffiths et al. 2002), responsible for eliciting downstream changes in 
a tumour’s metabolic phenotype, are just some of its known activities in regulating 
glycolysis. It is also thought that HIF-1 mediates an adaptation to hypoxia through 
downregulating the activity of the TCA cycle as well as mitochondrial oxygen con-
sumption through inhibiting PDK1(Kim et  al. 2006). The mechanism for this is 
thought to be an induced expression of both PDK and LDH-A by a hypoxia-driven 
increase in HIF-1α (Kim et al. 2006). In this way, HIF may be directly responsible 
for controlling the increased conversion of glucose into lactate in low oxygen mi-
croenvironments possessed by cancer cells. In another example, it has been shown 
that inhibiting the HIF pathway significantly reduces glucose uptake and lactate 
production in vitro while also increasing glutamine uptake (Baker et al. 2012). This 
highlights the importance of central carbon metabolism as a target of HIF.

Most research has linked HIF-1 with central carbon metabolism. This potentially 
plays the most vital role in cancer cell metabolism. However, central carbon metab-
olism has many associated pathways that supply metabolite precursors or produce 
precursors necessary for many other metabolic processes. Furthermore, there may 
be unrelated metabolic features of cancer metabolism that appear to be controlled 
by HIF-1 that are of equal importance in cancer function. This research has aimed to 
explore the metabolome to reveal metabolic features and may be even new targets 
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for cancer therapy, with particular reference to inhibiting HIF-1. Due to its applica-
bility in the study of metabolites of central carbon metabolism, as well as its superi-
ority in metabolite identification, gas chromatography-mass spectrometry (GC-MS) 
was selected as the platform for analysis to demonstrate network-based correlation 
analysis. A technique with the ability to definitively identify metabolites is more 
compatible with network analysis since offering several putative identifications for 
peaks, as in liquid chromatography-mass spectrometry (LC-MS), increases com-
plexity in mapping and reduces the chance of accurate interpretation of the results.

As previously mentioned, in Chap. 3, non-targeted metabolomics can be per-
formed by fingerprinting, footprinting or profiling. Although the latter term has 
been used interchangeably with the former two in the literature, it is generally ac-
cepted that fingerprinting and footprinting are the truly non-targeted techniques for 
analysis of the entire metabolome, while profiling focuses on a class of metabolites 
expected to be associated with a particular biological question under investigation. 
In this case, although from previous evidence it was suspected that HIF-1 would 
have the greatest effect on central carbon metabolism, the motive was to determine 
any detectable change in metabolism with no focus on pathway or metabolite class.

Although entire pathways cannot be targeted in cancer therapy, it is useful to 
identify pathways that link correlated metabolites to determine the enzymes that are 
responsible for their production and consumption. HIF-1 cannot target metabolites 
directly, it must target the enzymes that produce or consume the metabolite either 
directly or via a particular signalling cascade. Identifying metabolites in isolation is 
useful in revealing metabolic signatures but not in hypothesising potential targets 
for therapy. Identifying specific pathways offers a way to consider certain enzymes 
over others in their likelihood as HIF-1 targets and inhibiting these enzymes could 
be the way to inhibit HIF-1 metabolism.

5.2 � Network-Based Correlation Analysis  
of HIF-1 Metabolism

Determining hubs and key pathways that change in response to HIF-1 function or 
oxygen treatment could provide insight into how cells use metabolism to respond to 
these stresses and potentially reveal regions of the network that could be targeted in 
cancer therapy. For this case study, this was achieved by identifying strongly cor-
related metabolites in HCT 116 cells with normal HIF-1 function wild type (WT), 
and genetically manipulated counterparts that expressed and dominant negative 
(DN) variant of HIF-1α that blocks HIF-1 activity (Brown et al. 2006; Roberts et al. 
2009). Figure 5.1 depicts the formation and validation of these DN cells.

Cells were exposed to normoxia, hypoxia or anoxia and differences between 
correlation coefficients due to HIF-1 or oxygen were identified. Once identified, 
differently correlated metabolites were mapped onto a computational human meta-
bolic network to reveal their network based origins and the connections between 
them. This offered a systems biology-based approach to study the metabolic effects 
of hypoxia in cancer as a system rather than by single entities. After all, cancer is 
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a multifactorial disease and should be studied from a system perspective. Just as 
cancer is not controlled by a single gene, protein or metabolic pathway, it was ex-
pected that there are many correlated metabolites and that a combination of these 
are responsible for the cancer phenotype.

Correlated metabolites were identified within the Edinburgh Human Metabolic 
Network (EHMN) and the shortest path between these was computed from the reac-
tions available in the network. This allowed the connection between correlated me-
tabolites to be observed. From a list of differently correlated metabolites between 
two experimental groups at a time it was possible to collect pathways between them 
and together create new sub-networks to describe the network based origin of the 
differences. For example, the differences between correlations for normoxia and 
hypoxia show the changes in pathway regulation in response to hypoxia.

The metabolic fingerprinting data obtained from GC-MS analysis of HCT 116 
WT and DN cell extracts had an approximately normal distribution after log trans-
formation and any observed metabolite outliers were replaced by a mean peak area 
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Fig. 5.1   DN-HIF (a; adapted from Brown et al. 2006) is a truncated variant of the HIF-1α that 
when expressed in cancer cells inhibits HIF-function. HCT 116 cells that express the DN-HIF 
construct do not induce expression of key HIF-l targets, including Glut-1 (b). HCT 116 DN and 
WT cells were grown as multicellular spheroids. An oxygen gradient develops from the outer to 
the inner spheroid region, which induces Glut-1 expression ( brown staining) in WT but not DN-
HIF spheroids. Key: bHLH basic helix loop helix, PAS per ARNT sim, TAD transactivation domain
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from the respective experimental group. The relationships between metabolites 
were linear in nature and the biological replicate size was moderate ( n = 30) for 
each experimental group. The data were therefore deemed suitable for Pearson’s 
product-moment correlation analysis.

5.2.1 � Correlation Analysis

A total of 42 metabolite peaks were identified in HCT 116 WT and DN cells exposed 
to normoxia, hypoxia or anoxia according to reporting guidelines as described by 
the MSI (Sumner et al. 2007) that were deemed to be reproducible as measured in 
the QC samples. Of these, peaks were either definitively identified as single me-
tabolites while others could not be. Additionally, some identification was assigned 
to multiple peaks. This was either due to different derivatisation products of a single 
metabolite that elutes with different retention indices or where metabolites could 
not be definitively identified due to several metabolites having identical electron 
ionisation mass spectra such as peaks assigned allose/mannose/galactose/glucose.

Correlation analysis was applied to compare WT and DN cells at each oxygen 
level in order to elucidate information about HIF-1 activity with respect to me-
tabolism. This yielded 16, 42 and 24 pairs of differently correlated metabolites in 
normoxia, hypoxia and anoxia respectively. The greatest correlation differences 
between WT and DN cells are summarised in Table  5.1. Correlations are listed 
according to the oxygen condition they refer to in descending order of correlation 
difference. The Pearson’s product-moment correlation coefficient is given for each.

Significant differences were found between WT and DN cells across a broad 
spectrum of metabolites and so it could not be concluded that HIF-1 affects any one 
specific region of metabolism; rather its effect on cells exposed to different oxy-
gen could be metabolome wide. The metabolites that were most correlated in WT 
samples, irrespective of the difference in correlation between WT and DN included 
xylitol/ribitol strongly correlated to aspartate, methionine, norleucine, scyllo/myo-
inositol and tyramine/tyrosine as well as malate correlated to glycerol and tyramine/
tyrosine. There are no reported chemical reactions involving ribitol in humans and 
therefore, that peak likely derived from xylitol. Xylitol is involved in the pentose 
and glucuronate interconversions pathway and can be converted in humans to D-
xylose, which is used in starch and sucrose metabolism and can be converted to and 
from many other sugars including glucose and fructose. The correlation between 
xylitol and many other metabolites could be indicative of it being used as a carbon 
source to fuel many processes under low oxygen stress.

Malate is a key player in central carbon metabolism that is interconverted to fu-
marate which feeds into tyrosine metabolism (involving tyrosine and tyramine). It 
is likely that this is the structure behind the correlation between malate and tyrosine/
tyramine with HIF-1 regulating both the TCA cycle and tyrosine metabolism to-
gether. Succinate can also feed into tyrosine metabolism and could also be involved 
in this mechanism.
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Metabolite A Metabolite B Difference r (WT) r (DN)
Normoxia (21 % oxygen)
Allose/Mannose/Galactose/Glucose 2-oxoglutarate 0.708 0.792 0.084
Allose/Mannose/Galactose/Glucose Threonine 0.679 0.767 0.088
Fructose/Sorbose 2-oxoglutarate 0.638 0.779 0.142
Malate Threonine 0.595 0.718 0.122
Glutamate Malate 0.536 0.785 0.249
2-oxoglutarate 5-oxoproline 0.526 0.836 0.309
Hypoxia (1 % oxygen)
Tyramine/Tyrosine Xylitol/Ribitol 0.845 0.918 0.073
Xylitol/Ribitol Erythronate/threonate 0.811 0.875 0.064
Xylitol/Ribitol Pyruvate 0.719 0.837 0.118
Xylitol/Ribitol 4-hydroxyproline 0.693 0.834 0.141
Fructose Xylitol/Ribitol 0.687 0.780 0.093
Allose/Mannose/Galactose/Glucose Xylitol/Ribitol 0.656 0.845 0.189
Scyllo/Myo-inositol Xylitol/Ribitol 0.641 0.966 0.325
Allose/Mannose/Galactose/Glucose Glutamine 0.636 0.866 0.230
Xylitol/Ribitol Malate 0.635 0.704 0.069
Methionine Xylitol/Ribitol 0.614 0.973 0.359
Xylitol/Ribitol Aspartate 0.601 0.929 0.329
Allose/Mannose/Galactose/Glucose Erythronate/Threonate 0.594 0.924 0.329
Tyramine/Tyrosine Fructose/Sorbose 0.594 0.905 0.312
Xylitol/Ribitol Norleucine 0.584 0.934 0.350
Fructose/Sorbose Glutamine 0.578 0.866 0.288
Creatinine Xylitol/Ribitol 0.575 0.749 0.174
Glutamate Xylitol/Ribitol 0.562 0.741 0.179
Allose/Mannose/Galactose/Glucose Glycerol 0.534 0.800 0.266
Anoxia (0 % oxygen)
Glutamate Beta-alanine 0.867 0.858 − 0.008
Scyllo/Myo-inositol Malate 0.769 0.805 0.036
Hypotaurine Putrescine 0.721 0.752 0.030
Hypotaurine Glutamate 0.698 0.822 0.124
Methionine Lactate 0.682 0.773 0.091
5-oxoproline Malate 0.681 0.833 0.152
Tyramine/Tyrosine Malate 0.657 0.911 0.254
Scyllo/Myo-inositol Beta-alanine 0.653 0.707 0.054
Malate Norleucine 0.650 0.870 0.219
Xylitol/Ribitol Malate 0.613 0.856 0.244
Methionine Malate 0.607 0.853 0.247
Malate Glycerol 0.591 0.902 0.311
Xylitol/Ribitol Lactate 0.587 0.789 0.202
Allose/Mannose/Galactose/Glucose 4-hydroxyproline 0.552 0.832 0.281
Allose/Mannose/Galactose/Glucose Lactate 0.541 0.758 0.217

Table 5.1   Pair-wise correlations with a difference greater than 0.5. For each pair of metabolites, 
the Pearson’s product-moment correlation coefficients in HCT 116 WT and DN cells are given 
along with the difference in correlation between them. The table is split into correlation differences 
observed at each oxygen level: (a) normoxia (21 % oxygen), (b) hypoxia (1 % oxygen) and (c) anoxia 
(0 % oxygen)
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From the table it can be seen that correlation differences were due to metabolites 
being correlated in WT cells and the correlation being lost in HIF-1 deficient DN 
cells. These connections between metabolites potentially provide the structure be-
hind cancer cell survival through HIF-1 mediated processes. There were some sig-
nificant differences in correlations where metabolites were correlated in DN cells 
that were not correlated in WT cells but none exceeding a difference of 0.5.

Although there were fewer differences in normoxia than in the lower oxygen con-
ditions, it was expected that WT and DN cells should have behaved the same under 
normoxic conditions and that there should be no significantly differently correlated 
metabolites. Additionally, these differences were not consistent between oxygen 
conditions so they could not be considered as artefacts of the cell lines. Rather, cor-
relation analysis may be sensitive to very subtle differences caused by HIF-1 in each 
oxygen condition including normoxia that are not observed in other data analyses.

The best way to consider the response of cells with and without HIF-1 is to deter-
mine differently correlated metabolites as a response to oxygen level change. This 
would reveal potential mechanisms for how HIF-1 promotes metabolic changes in 
response to low oxygen or which mechanisms DN cells use in the absence of HIF-
1 to promote survival in low oxygen. Therefore, a comparison between normoxic 
WT cells and hypoxic WT cells in addition to comparing normoxic WT cells with 
anoxic WT cells has been made. A difference in correlation was significantly greater 
than 0.407 (as determined using the tables in Sect. 5.1.3). There were 22 correla-
tions exhibiting a difference greater than 0.407 for WT normoxia vs. hypoxia and 12 
correlations exhibiting a difference greater than 0.407 for WT normoxia vs. anoxia. 
The same correlation analysis was applied to DN cells to elucidate the greatest 
differences caused by decreasing oxygen availability to the cells, but that could 
not be due to HIF-1. In this case there were 22 and 20 correlations meeting the 
requirements for WT normoxia vs. hypoxia and normoxia vs. anoxia respectively. 
Although there were 22 differences in pair-wise correlations between normoxia and 
hypoxia in both WT and DN cells, these pairs were not common, mainly due to the 
difference in metabolic profiles observed in hypoxia.

The greatest difference in correlation between WT cells exposed to normoxia and 
WT cells exposed to hypoxia occurred in the correlation between log transformed 
GC peaks identified as 4-hydroxyproline and allose/mannose/galactose/glucose. 
The difference was calculated to be 0.804 and was also observed to be the larg-
est difference in correlation between WT cells exposed to normoxia and WT cells 
exposed to anoxia where the difference was 0.805. The GC peak areas observed for 
each metabolite in each normoxia and anoxia sample are plotted in Fig. 5.2.

When comparing DN cells exposed to normoxia to cells exposed to hypoxia, the 
greatest difference in correlation was between citrate and malate which were posi-
tively correlated in hypoxia ( r = 0.708) but weakly negatively correlated in normoxia 
( r =  − 0.224). In anoxic conditions the greatest difference in correlation was between 
citrate and aspartate which were correlated in anoxia ( r = 0.9) but not in normoxia 
( r = 0.137). The log transformed GC peak areas observed for citrate vs. malate in 
normoxia and hypoxia samples are plotted in Fig. 5.3. From this it can be clearly 
seen that the two metabolites were strongly correlated in hypoxic cells (blue) but a 
very weak negative correlation occurred between the metabolites in normoxic cells.
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5.2.2 � Network-Based Correlation Analysis

While correlation analysis can be useful to identify key metabolites or phenotypic 
“hubs”, the information gained from correlation analysis alone is vast and to some 
extent ambiguous. Network-based correlation analysis can therefore be extended 
to study the data in terms of systems properties. To exemplify this, correlated me-
tabolites from the previous analysis have been mapped onto the EHMN to reveal 
the shortest pathway between them which could be vital in promoting cancer cell 
survival under certain environmental conditions such as hypoxia.
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Fig. 5.2   Pearson’s product-moment correlation between 4-hydroxyproline and allose/mannose/
galactose/glucose in HCT 116 wild type (WT) cells exposed to normoxia (21 %) represented in red 
squares or anoxia (0 %) represented in blue diamonds. The difference in correlation was calculated 
to be 0.805, where the correlation coefficients were 0.027 and 0.832 for WT normoxia and WT 
anoxia samples respectively
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Fig. 5.3   Pearson’s product-moment correlation between citrate and malate in HCT 116 dominant 
negative (DN) cells exposed to normoxia (21 %) represented by red squares or hypoxia (1 %) rep-
resented by blue diamonds. The difference in correlation was calculated to be 0.931, where the cor-
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This makes possible the construction of new sub-networks of these pathways 
that can be useful in distinguishing cross over in metabolic pathways and potential-
ly reveal metabolic hubs that are not directly correlated but exist in many pathways 
connecting correlated metabolites.

Where possible correlations were mapped onto the EHMN and the shortest path 
between each pair of metabolites in the model was calculated. In some cases singly 
identified metabolites from the GC-MS data correspond to multiple EHMN me-
tabolites. For example, aspartate corresponded to either L-aspartate or D-aspartate. 
Since there was no way of identifying which form of this metabolite was detected 
in the cells, correlations were mapped using both options. It was decided not to 
map correlations involving the GC peak identified as allose/mannose/galactose/
glucose as there were too many options and therefore such an exercise would not 
have enabled further understanding of the system. In some cases where GC peaks 
were identified to two metabolites, only one existed in the EHMN. In these cases 
the metabolite present in the EHMN was used. For example scyllo-inositol was not 
in the EHMN but myo-inositol was. Mapping correlations involving xylitol/ribitol 
was not successful since ribitol was not in the EHMN and xylitol was not highly 
connected in the network and therefore these correlations have not been represented 
in sub-network reconstructions. Similarly, fructose/sorbose was mapped as fructose 
since sorbose was connected only with one other metabolite in the network and did 
not link up to any of its correlation-paired metabolites.

Correlations that were not mapped due to metabolites not being present in the 
model, or there being too many options in the model to sensibly assign pathways, 
can limit the study to a certain extent and therefore it is important to not simply re-
ject these correlations but use the information in addition to the network reconstruc-
tions. For example the xylitol/ribitol peak was highly correlated in hypoxic WT 
cells and these correlations were lost with the absence of HIF-1 in DN cells. More 
than half of the differences in correlations between WT and DN cells in hypoxia 
involved this peak. The greatest difference between hypoxic WT and DN cells that 
involved the correlation between tyramine/tyrosine and xylitol/ribitol which were 
correlated in WT cells ( r = 0.918) represented in red but not in DN cells ( r = 0.073) 
represented in blue. This correlation is presented in Fig. 5.4.

Moreover, it is important to highlight that some assumptions must be made that 
may or may not be biologically correct, for example when mapping correlations 
concerning the scyllo/myo-inositol peak as just myo-inositol. Nevertheless many 
correlations could be mapped onto the network and pathways visualised for differ-
ent sub-networks as discussed below. Using this technique it is possible to visualise 
inter-connecting pathways regulated by each cell type under each oxygen tension 
and identify similarities and differences between sub-networks with respect to the 
pathways involved and the metabolites that appear to be “hubs”.

Network analysis was first applied to correlations gained in DN cells that were 
identified during the comparison between WT and DN samples at each oxygen level. 
This was done to assess how cells coped with a deficiency in HIF-1 at each oxygen lev-
el in isolation. Pathways were identified that could be involved in cancer cell survival 
over the range of oxygen potentials in the absence of HIF-1 and are shown in Fig. 5.5.
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Using this network, revealed pathways should be studied to interpret the analysis 
with respect to the biological system. An example of this approach is as follows: 
The pathway connecting hypotaurine to glycerol in normoxic DN cells involved 
three main pathways as described in KEGG (Kanehisa and Goto 2000): taurine 
and hypotaurine metabolism (ko00430) for hypotaurine through to L-cysteine, con-
nected to D-glycerate via glycine, serine and threonine metabolism (ko00260) and 
glycerolipid metabolism (ko00561) to connect D-glycerate through to glycerol. 
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Fig. 5.4   Pearson’s product-moment correlation between tyramine/tyrosine and xylitol/ribitol in 
HCT 116 cells exposed to hypoxia (1 %). The log transformed gas chromatography (GC) peak 
areas are plotted for these two metabolites where WT samples are shown in red squares and DN 
samples in blue diamonds. The difference in correlation was calculated to be 0.845, where the cor-
relation coefficients were 0.918 and 0.073 for WT and DN samples, respectively
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Figure  5.6 shows how the identified pathway between hypotaurine and glycerol 
crosses over 3 “traditional” metabolic pathways represented by KEGG.

After interpreting the initial sub-network, further networks can be constructed 
to analyse the data from different angles. For example, sub-networks of different-
ly correlated pathways were made for WT cells exposed to normoxia compared 
to hypoxia (Fig. 5.7) and for DN cells exposed to normoxia compared to hypoxia 
(Fig. 5.8). Cross comparisons between WT and DN networks were then made and 
represented by colouring metabolite nodes on each sub-network in blue where the 
same pathway was regulated or yellow where the same metabolite was involved 
but not in the same pathway(s) or connected to the same nodes in each cell line. In 
the case of conserved pathways represented in blue, such metabolites are likely to 
be regulated by non-HIF-1 mediated responses to hypoxia. Pathways unique to WT 
cells were assumed to be regulated by HIF-1 and pathways unique to DN cells were 
assumed to be regulated as alternative coping mechanisms in the absence of HIF-1. 
The advantages of assessing these sub-networks are to reveal the HIF-1 specific 
mechanisms that could be targeted to reduce HIF-1 mediated survival in cancer cells 
(orange nodes), to identify the alternative metabolic routes HIF-1 deficient cells 
use that could be employed by WT cells if HIF-1 pathways are truncated in therapy 
(grey nodes) and the pathways that are common (HIF-1 independent) and appear to 
be central in cancer cell metabolism and perhaps the best target in cancer therapy.

When considering the common pathways between WT and DN cells in normoxia 
compared to hypoxia, it appeared that the response was largely centred on citrate 
with its involvement in the TCA cycle and its connection to myo-inositol. Some of 
these connections were observed to be more significant in DN cells when directly 
comparing hypoxic and anoxic WT and DN cells (Fig.  5.5), but they were also 
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relevant features of WT metabolism when assessing the metabolic changes associ-
ated from the shift from a normoxic to hypoxic environment. Furthermore, this 
network included more connections that were missed by simply comparing WT 
and DN cells at each oxygen environment in isolation. Central carbon metabolism 
controls to some extent most other regions of metabolism through the energy and 
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bio-precursors generated. Carbon utilisation in nucleic acid, polyamine and amino 
acid metabolism that all sprouts from central carbon metabolism are known targets 
of the proto-oncogene c-Myc as a response to hypoxia (Gordan et al. 2007).

5.3 � Conclusion

Network-based correlation analysis of metabolites measured using GC-MS has 
proved a novel and highly useful tool to visualise the responses of HCT 116 cells 
to low oxygen when compared to normoxia as a control. Using this method many 
correlations were identified including those known to be associated with colon 
carcinomas; for example myo-inositol was a common node irrespective of HIF-1 
function and is known to be involved in volume and osmo-regulation that is par-
ticularly important in colon carcinomas (Griffin and Shockcor 2004). Furthermore, 
those associated with low oxygen irrespective of HIF-1 function and those that are 
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specifically HIF-1 mediated were also discovered. Pathways have been identified 
in each scenario, highlighting regions of the metabolome that could be targeted in 
cancer therapy, in particular colon carcinoma therapy in the future.

Pathways are often compounded of different features within “traditional” path-
ways although they have provided an alternative way of viewing cancer metabo-
lism. Analysing sub-networks showing the change in pathway regulation caused 
by lowering the oxygen microenvironment cells were exposed to have enabled a 
clearer understanding of the metabolic effects of HIF-1 and hypoxia in general. Ad-
ditionally, it has revealed alternative pathways that can mediate cancer cell survival 
in low oxygen environments if HIF-1 pathways were to be targeted. Truncating 
HIF-1 metabolic pathways will likely induce an up-regulation of the responses ob-
served in DN cell metabolic profiles. This could be vital when considering new can-
cer therapies, and would not have been considered using other methods of analysing 
metabolic profiles. Alternatively, the conserved pathways observed irrespective of 
HIF-1 function seem to be central in each scenario and therefore targeting these 
pathways could be potentially the best targets to damage cancer cell metabolism in 
hypoxia beyond its repair, thus offering sustainable targets for the future.
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Chapter 6
Case Study: Systems Biology of Chemotherapy 
Resistance in Hypoxic Cancer

Current strategies for treatment of cancer include surgery, chemotherapy and ra-
diotherapy (Pelengaris and Khan 2006). Surgery is used to remove the cancerous 
tumour and is often used in combination with radio- or chemotherapy. Radiotherapy 
uses ionising radiation directed to kill cancer cells and is often applied to treat tu-
mours localised to one area of the body. Ionising radiation damages DNA, resulting 
in cell death (Pelengaris and Khan 2006).

Chemotherapy is the treatment of cancer with an anti-neoplastic therapeutic 
and is often administered as a combination of multiple therapies. Chemotherapy 
is administered neoadjuvant (pre-operative) to shrink the primary tumour or adju-
vant (post-operative) to prevent reoccurrence of the cancer and kill any cancer cells 
that may have metastasised to other areas of the body (Pelengaris and Khan 2006). 
Many of these agents act by killing the fast-dividing cancer cells; however they also 
damage healthy proliferating cells in the bone marrow, digestive tract and hair fol-
licles (Pelengaris and Khan 2006).

6.1 � Doxorubicin

The development of new cancer drugs has been driven at a rapid pace over the past 
decades; however a complete understanding of the mechanisms of action for exist-
ing, widely used, chemotherapy agents remains to be fully elucidated. Focusing re-
search towards exploring the mechanisms behind anti-tumour activity of frequently 
used chemotherapies is essential to help identify where these drugs fail and guide 
the focus of new therapies. In this case study the metabolic response of cancer cells 
to doxorubicin treatment was investigated to help ascertain why the drug is effective 
in treating oxygenated cancer cells but fails to be effective in treating solid hypoxic 
tumours (Sullivan et al. 2006; Sullivan et al. 2008; Cho et al. 2013).

Doxorubicin is a chemotherapeutic and licensed under the trade names Adria-
mycin® and Rubex®. The compound is an anthracycline antibiotic synthesised 
from daunorubicin, a naturally occurring product of various wild-type strains 
of Streptomyces. Figure 6.1 shows the chemical structure of doxorubicin, which 
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has the systematic IUPAC name (8S,10S)-10-(4-amino-5-hydroxy-6-methyl-tet-
rahydro-2H-pyran-2-yloxy)-6,8,11-trihydroxy-8-(2-hydroxyacetyl)-1-methoxy-
7,8,9,10-tetrahydrotetracene-5,12-dione.

Passive diffusion transports doxorubicin through the cell membrane (Mayer et al. 
1986). A number of mechanisms for the mode of action of doxorubicin have been 
proposed. Doxorubicin intercalates between the C and G DNA base pairs, causing 
deformation of the DNA backbone. Binding of doxorubicin to DNA occurs through 
non-covalent intercalation, where the planar aromatic four-membered ring system 
of doxorubicin inserts into the major groove of the DNA (Powis and Prough 1987). 
Doxorubicin is precise in its intercalation point between the terminal CpG, and the 
ring system inserts left to right, head on, into the major groove (Chaires 1990). The 
chromophore inserts parallel and between the adjacent base pairs, which does not 
disrupt the stacking of the base pairs but causes the pairs to spread vertically along 
the DNA to allow for intercalation. This causes deformation of the DNA backbone 
and the DNA adopts a long rigid structure. The sugar moiety of doxorubicin bonds 
to the minor groove of the DNA, which has the greatest anti-tumour action due to 
the stronger DNA binding properties. Within the minor groove the sugar moiety 
of doxorubicin bonds to the sugar phosphate backbone and neighbouring proteins 
(with the later forming the strongest bonds). If the sugar moiety is not present the 
chromophore would rapidly intercalate and de-intercalate (Fornari et al. 1994). In-
tercalation disrupts replication and transcription processes.

In aerobic cells doxorubicin produces free radicals resulting in cellular damage 
which initiates apoptosis. Doxorubicin is catalysed by flavoproteins to produce a 
semiquinone free radical that can cause cellular damage (Powis and Prough 1987) 
and further redox cycling of the superoxide ion causes additional damage. Doxo-
rubicin undergoes a one-electron reduction to form a free radical under aerobic 
conditions (Fig. 6.2).

Additional free radicals formed during oxidative phosphorylation metabolism 
can interact with doxorubicin and generate the semiquinone compound. Doxorubi-
cin forms the semiquinone intermediate and redox cycling transfers an electron onto 
oxygen allowing doxorubicin to reform (Scheulen et al. 1982). In low oxygenated 

Fig. 6.1   The chemical 
structure of doxorubicin 
with molecular formula 
C27H29NO11 and a molecular 
weight 543.52. Doxorubicin 
is an anti-neoplastic antibiotic 
synthesised from strains of 
Streptomyces
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conditions, this process cycles until oxygen depletes and doxorubicin is rapidly 
catalysed to 7-deoxyalglycone (Scheulen et al. 1982). The superoxide compound 
removes a proton from the phenol group to produce a phenolate anion. The in-
termediate anion is oxidised and generates the semiquinone free radical structure. 
The semiquinone structure of doxorubicin can form hydroxyl radicals, which are 
catalysed by Fe(II), to oxidise polyunsaturated fatty acids, degrade deoxyribose and 
produce DNA double strand breaks (Powis and Prough 1987). Alternatively, doxo-
rubicin and Fe(III) chloride may directly target lipid peroxidation.

Non-cancerous tissue has an alkaline extracellular pH of approximately 7.4; 
however the pH decreases to around pH 6.5–6.8 in malignant cells (Goode and 
Chadwick 2008). Increased acidity arises in hypoxic cells as a consequence of non-
oxidative phosphorylation metabolism, which subsequently increases the efflux of 
lactate (Goode and Chadwick 2008). An insufficient oxygen supply causes a shift in 
metabolism as the oxidation of reduced nicotinamide adenine dinucleotide (NADH) 
to nicotinamide adenine dinucleotide (NAD+) by the electron transport chain is un-
able to sustain glycolysis. As a result the NAD+ is restored through reducing py-
ruvate to lactate. Acidity is generated due to excess protons produced during ATP 
hydrolysis reducing intracellular pH. During glycolysis a net production of 2 ATP 
molecules can be used in cellular processes to release protons (Goode and Chad-
wick 2008). The cells transport protons out from the cancer cell via the ATPase 
pump or monocarboxylate transporter-1 and 4 to deacidify the cytosol (Le Floch 
et al. 2011). Lactate and protons are expelled into the extracellular surroundings 
to maintain a neutral acidity within the intracellular environment. This action can 
protect the cancer cell from an immune system attack and overcome programmed 
cell death (Tomiyama et  al. 2006). In addition, the acidic extracellular environ-
ment damages surrounding cells to facilitate metastasis (Feron 2009). Furthermore, 
the cell membrane transporter carbonic anhydrase IX (CA-IX) has been shown to 
be up-regulated in hypoxia by HIF-1 (Chiche et  al. 2009) to efflux bicarbonate. 
Often an overexpression of CA-IX is associated with a poor prognosis as these 
tumours tend to be highly metastatic and have poor vascularisation (Koukourakis 
et al. 2001).

Flavoproteins Flavoproteins
. -

Fig. 6.2   Reduction of doxorubicin catalysed by flavoproteins to form a semiquinone free radical 
and superoxide, which causes DNA damage
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The multitude of cellular deacidification mechanisms causes an increase in the 
extracellular acidity levels. Tumour acidity has been shown to prevent the uptake 
of doxorubicin into the tumour cells (Swietach et al. 2012). Low extracellular pH 
reduces the uptake of weakly basic compounds, such as doxorubicin, into the cyto-
sol due to protonation of the drug, which reduces drug accumulation in the tumour. 
Additionally, weakly basic drugs can be protonated in the cytosol and subsequently 
diffuse into acidified endosomes reducing the accumulation in the cell nucleus and 
subsequently reducing cytotoxicity. Preventing extracellular acidity has been re-
ported to increase doxorubicin toxicity (Goode and Chadwick 2008). Greater uptake 
of doxorubicin has been shown at pH 7.4 compared to pH 6.6 suggesting uptake is 
pH dependent (Raghunand et al. 2003). Approaches to overcome acidosis in cancer 
cells have been reported to help improve chemotherapy cytotoxicity. For example, 
the influx of doxorubicin is increased when the enzyme pyruvate dehydrogenase 
kinase-3 is inhibited (Lu et al. 2008). Forced expression of pyruvate dehydrogenase 
kinase-3 caused an increase in lactate accumulation and was correlated with drug 
resistance. Furthermore, minimising the uptake of doxorubicin into acidic endo-
somes increase cytotoxicity through combination therapy with omeprazole (Tredan 
et al. 2007). Omeprazole is a proton pump inhibitor that acts to prevent drug uptake 
into the acidic endosomes. Initial results showed improved doxorubicin penetration 
through multilayer cell culture (Tredan et al. 2007).

Many solid tumours express P-glycoprotein (Pgp) to aid their survival when ex-
posed to chemotherapeutics. Expression of Pgp has been shown to be correlated 
with tumour hypoxia (Comerford et al. 2002). Pgp was observed in Chinese hamster 
plasma membranes expressed Pgp in ovary cells (Juliano and Ling 1976).  Structur-
ally Pgps are inward facing transporters allowing drugs to enter via the cytoplasm 
and inner leaflet of the lipid bilayer (Aller et al. 2009). Pgps are mainly expressed 
in areas including the gut, the blood–brain barrier and the blood–testis barrier to 
facilitate transport of potentially damaging substances (Sharom 2008). The drug 
efflux pump can significantly reduces the intracellular concentration of xenobiotic 
compounds such as doxorubicin and hence contribute to drug resistance (Warten-
berg et al. 2001). Doxorubicin enters the Pgp chamber on the plasma membrane and 
the nucleotide-binding domain (NBD) is phosphorylated. There are 12 transmem-
brane regions available for the drug to bind. To activate the pumping mechanism to 
export the chemotherapy drug located in the chamber, 2 ATP molecules attach to the 
ATP-binding cassettes causing dimerisation. Consequently, Pgp undergoes a con-
formational change at the NBD, initiating structural change in the transmembrane 
domain to facilitate the release of doxorubicin into the extracellular environment 
(Aller et  al. 2009). ATP hydrolysis releases the drug from the chamber through 
widening and motioning. Further ATP hydrolysis restores the Pgp to its original 
configuration releasing inorganic phosphate and ADP. Studies have suggested that 
the Mdr-1 gene could be regulated by HIF-1α (Comerford et al. 2002). Addition-
ally, larger tumours have an increased expression of HIF-1α and Pgp, and increasing 
levels of reactive oxygen species (ROS) have been reported to be associated with a 
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down regulation of the expression of HIF-1α and Pgp in large tumours (Wartenberg 
et al. 2005). Verapamil and cyclosporin A are inhibitors of the Pgp drug efflux pump 
(Gottesman et al. 2002) but the compounds developed to date have neurotoxic side 
effects (Gottesman et al. 2002).

Doxorubicin is a topoisomerase II poison (Fornari et al. 1994). Topoisomerase 
II is responsible for ligating DNA double strand breaks following DNA replication. 
A decrease in the expression of topoisomerase II has been reported to be associated 
with a reduction in the sensitivity to chemotherapeutics (Ogiso et al. 2000; Kang 
et  al. 1996). The proteasome inhibitor lactacystin overcomes hypoxia resistance 
due to topoisomerase II through preventing topoisomerase II depletion (Ogiso et al. 
2000). This enables the chemotherapeutics to have a greater cytotoxic effect to hy-
poxic tumours.

6.2 � Network-Based Correlation Analysis to Study 
Hypoxia Induced Chemoresistance

Systems biology is the study of the complex interactions within a biological system 
to determine the emergent properties arising from the interaction of the genes, pro-
teins and metabolites. This can be considered as a holistic approach and presents an 
understanding into how interactions give rise to a system’s function and behaviour. 
Cancer is a complex disease that arises due to a series of mutations, not a single 
gene effect, and it is the combination of these gene mutations that give rise to can-
cer as an emergent property of the cellular system that it interacts with. Hanahan 
and Weinburg proposed six biological hallmarks of cancer that arise as a result of 
genome instability highlighting the complexity of the disease (Hanahan and Wein-
berg 2000). The proposed hallmarks of cancer include sustaining proliferative sig-
nalling, avoiding growth suppressors, opposing cell death, replicating indefinitely, 
angiogenesis and the ability to metastasise into previously non-cancerous regions. 
Two additional hallmarks of cancer have recently been recognised, which include 
evading immune destruction and, importantly, reprogramming of energy metabo-
lism (Hanahan and Weinberg 2011). Applying systems biology to cancer research 
offers a new perspective and has the potential to unveil the emergent properties of 
cancer metabolism.

The aim of this case study was to identify strongly correlated metabolites within 
MDA-MB-231 breast cancer cells exposed to a low-oxygen environment and dur-
ing treatment with doxorubicin. Correlation differences were interpreted by isolat-
ing the interconnecting metabolites in the human metabolic network in order to 
construct a metabolic network of chemoresistance. Subsequently, novel chemother-
apeutic strategies were determined from the constructed networks. In order to reveal 
the underlying systemic biological response, patterns of correlations were observed 
within an obtained gas chromatography-mass spectrometry (GC-MS)  dataset from 
the analysis of cells exposed to a range of oxygen potentials (as described in the 
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previous chapter as normoxia, hypoxia and anoxia) and treated with different con-
centrations of doxorubicin. It is thought that even small variations in enzymatic re-
actions can cause significantly different correlations when comparing sample treat-
ments. The differences in metabolite concentrations can be described by pairwise 
correlations that are indicative of the mechanism of hypoxia-induced chemotherapy 
resistance. Determining the shortest path connecting pairwise correlations will pro-
duce a network hoped to describe the global property of the systems response.

6.2.1 � Correlation Analysis

Three metabolic networks were created to describe the cellular response of MDA-
MB-231 cancer cells: (a) treated with a cytotoxic dose of doxorubicin in high oxy-
gen levels, (b) treated with a non-cytotoxic dose of doxorubicin in low oxygen 
levels, and (c) treated with a cytotoxic dose of doxorubicin in low oxygen levels. 
These networks offer an insight into how cells respond, metabolically, to environ-
mental perturbations and further reveal metabolic pathways as potential targets to 
help overcome hypoxia-induced chemotherapy resistance. Through observing the 
networks of resistance and overcoming resistance by treating with a higher drug 
dose, the identification of novel therapeutic targets to improve cytotoxicity in resis-
tant cells was possible.

Using a systems biology approach, the metabolic network of chemotherapy re-
sistance was identified using network-based correlation analysis. Construction of 
metabolic networks, through compiling all relevant pathway responses, enables 
a greater insight into the network mechanisms. Thus, the topology and dynamics 
(fluctuations) of the metabolic responses were explored. Furthermore, these net-
works were cross compared to investigate the pathway responses that overcome 
chemoresistance.

Using MDA-MB-231 cells exposed to three levels of oxygen normoxia, hypoxia 
and anoxia (21, 1 and 0 % O2 respectively) and three levels of drug treatment (0, 
0.1 and 1 µM), with 30 repeat measurements, a total of 52 metabolites were identi-
fied using GC-MS analysis. Comparisons between therapeutic doses of doxorubicin 
(0.1 µM) administered at 21 % oxygen levels yielded a Pearson’s correlation that 
significantly differed with drug treatment at a level of α = 0.05. The pairwise cor-
relation coefficient between fructose and glutamate for untreated cells was − 0.27 
whereas for treated cells was 0.73. The reversal in the metabolic correlation may 
suggest a response in the regulation of the underlying metabolic pathway.

Pairwise correlations were subsequently identified for normoxia samples treated 
with and without 1 µM doxorubicin. Table 6.1a contains examples of the most sig-
nificant differential correlations. This dose of doxorubicin was shown to be highly 
toxic to the cells in normoxic conditions and therefore these correlations represent 
high toxicity in the cells. These mechanisms do not reflect a clinical dose response 
to doxorubicin; however, they do provide an insight into the cellular response to 
toxicity. Clinically, a dose accumulation of 550 mg/m² results in unwanted cardiac 
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damage, which can result in death and is characterised by a decrease in mitochon-
drial oxidative phosphorylation and reactive oxygen species (ROS) damage myo-
cytes (Ferrari et al. 1993).

Pearson’s correlation for cells exposed to hypoxia and treated with and with-
out 0.1 µM doxorubicin yielded three significantly different pairwise correlations 
(Table 6.1b). Furthermore, Pearson’s correlation analysis between anoxia and an-
oxia samples treated with 0.1 µM doxorubicin yielded 10 metabolic correlations 
(Table 6.1c). The resistant response to a low drug dose of doxorubicin appears to 
have a greater effect on the metabolism than that observed for drug treated cells cul-
tured in normal oxygen levels. This may be due to low-oxygen induced resistance 
being regulated through metabolism.

Table 6.1   The most significantly different pairwise correlations of metabolites for MDA-MB-231 
cells comparing cells dosed with doxorubicin to cells not dosed. a Normoxia with or without 1 µM 
dox, b hypoxia with or without 0.1 µM dox, and c anoxia with or without 0.1 µM dox
Metabolite A Metabolite B Difference r (N) r (N + dox)
Normoxia (N) with or without 1 µM doxorubicin (dox)
Malate Lactate 1.04 − 0.20 0.84
Malate Pyruvate 0.96 − 0.14 0.82
Malate Threitol/erythritol 0.74 0.14 0.88
Xylitol Malate 0.69 0.21 0.90
Benzoic acid Isoleucine 0.57 0.73 − 0.16
Hypotaurine Glycerol 0.54 0.23 0.77
Glutamate Malate 0.49 0.40 0.89
Sorbose/fructose Malate 0.47 0.23 0.70
Scyllo-inositol/myo-inositol/

inositol
Malate 0.42 0.40 0.82

Allose/mannose/galactose/
glucose

Malate 0.42 0.72 0.30

Metabolite A Metabolite B Difference r (H) r (H + dox)
Hypoxia (H) with or without 0.1 µM doxorubicin (dox)
Benzoic acid Lactate 0.47 0.27 0.74
Sorbose/fructose Benzoic acid 0.46 0.25 0.71
Glutamate Lactate 0.44 0.40 0.84
Metabolite A Metabolite B Difference r (A) r (A + dox)
Anoxia (A) with or without 0.1 µM doxorubicin (dox)
Octadecanoic acid Glutamate 0.8 − 0.03 0.77
Octadecanoic acid Isoleucine 0.79 0.01 0.80
Octadecanoic acid Threonine 0.75 − 0.01 0.74
Octadecanoic acid Threitol/erythritol 0.65 0.16 0.81
Glutamate 4-hydroxyproline 0.62 0.16 0.78
Octadecanoic acid Sorbitol/galactose/

glucose
0.61 0.14 0.75

Octadecanoic acid Glycerol 0.57 0.18 0.75
Octadecanoic acid Sorbose/fructose 0.55 0.21 0.76
4-hydroxyproline Isoleucine 0.48 0.28 0.76
Octadecanoic acid Aspartate 0.48 0.25 0.73

6.2 � Network-Based Correlation Analysis to Study ...�
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6.2.2 � Network Analysis

Pairwise metabolites that differed significantly in response to drug treatment were 
isolated within the EHMN and the shortest pathway connecting two metabolites 
was acquired. Pathway responses of all drug doses were combined to generate a 
single network of drug response in normoxic cells (Fig. 6.3). This is a network of 
all the potential mechanisms of drug action with respect to metabolism for cells 
exposed to a normal oxygen tension. Shared components between both drug doses 
are displayed as grey nodes. Additionally, low drug dose pathways are shown as red 
nodes and high drug dose pathways are shown in black.

Figure 6.3 describes glutamine and 2-oxoglutarate as conserved features of the 
metabolic response to doxorubicin irrespective of the dose. These metabolites con-
nect in a single pathway; however the metabolic regulation of the metabolites may 
be the result of a dose dependent pathways response. Glutamine and 2-oxoglutarate 
have a role in the TCA cycle, which is part of central carbon metabolism. Doxorubi-
cin may therefore be targeting energy metabolism through dose dependent mecha-
nisms. For example, the lower drug dosed response is through a pathway connect-
ing to fructose metabolism. In contrast, the higher dose response occurs through a 
pathway connecting to lactate. Furthermore, an additional pathway response from 
the higher drug dose occurs through the pathway connecting glycerol and hypotau-
rine. A combination of these two pathway responses may be the result of pathway 
the higher cytotoxicity. Hypotaurine and metabolic precursors in this additional 
pathway, such as cysteine, are antioxidants. A high dose of doxorubicin is expected 
to generate ROS when doxorubicin is catalysed by flavoproteins to produce a semi-
quinone free radical (Powis and Prough 1987). Furthermore, redox cycling of the 
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superoxide ion causes additional ROS generation. Metabolic regulation may cause 
a response in hypotaurine and cysteine to minimise the cytotoxic effects of drug-
induced generation of ROS at higher doses (Aruoma et al. 1988).

Network-based correlation analysis was applied to construct the network shown 
in Fig. 6.4. Pathways relating to hypoxia drug response are represented as purple 
nodes and pathways relating to anoxia drug response are represented as pink nodes. 
Conserved features drug response to both oxygen tensions in the network are dis-
played as blue nodes. The unique node conserved between the dose responses to the 
two oxygen tensions was L-glutamate.

L-glutamate interacts with the metabolic network through hypoxic and anoxic 
specific pathways, such as through L-cysteine, pyruvate and lactate for hypoxia 
and 2-oxoglutarate and trans-4-hydroxyl-L-proline for anoxia. The hypoxia-relat-
ed pathway is a central carbon metabolism pathway suggesting hypoxic cells are 
changing fluxes through energy metabolism to mediate resistance. In comparison, 
anoxic pathways are directing the metabolic response though a series of metabolites 
to have a large change in the pathways directed towards octadecanoic acid (as de-
scribed by edge thickness in the network). One of the metabolites in this pathway is 
malanoyl-CoA, which is known to be a building block for fatty acid synthesis and 
is a regulator of mitochondrial fatty acid synthesis. Fatty acid synthesis has been 
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implicated with numerous human tumours and inhibiting the fatty acid synthase 
(FASN) enzyme has been suggested to suppress tumour growth (Kuhajda 2000; 
Swinnen et al. 2000). The pathway connecting malanoyl-CoA to octadecanoic acid 
may therefore be a potential therapeutic target to help overcome low-oxygen in-
duced chemoresistance.

Figure 6.5 shows the metabolic response to cytotoxic doses of doxorubicin in 
low oxygenated samples and it highlights that metabolites L-glutamate, 2-oxogluta-
rate, pyruvate and lactate are conserved and are interconnected in a single pathway 
for hypoxia; however they are interconnected with other metabolites for anoxia 
cells. The anoxic response connects metabolites described above to glycerol, aspar-
tate, fructose and tyramine/tyrosine which are metabolites involved in central car-
bon metabolism. Lactate and pyruvate, which are also metabolites of central carbon 
metabolism, were also mapped in seven of the pathway reconstructions. A cytotoxic 
dose of doxorubicin may be increasing the enzymatic activity of LDH, the flux of 
which may be supported by metabolites such as glycerol. This suggests the pyruvate 
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and lactate pathway is an effective therapeutic target to overcome hypoxia-induced 
resistance to chemotherapy.

6.3 � Conclusion

Systems biology is the study of the complex interactions within a biological sys-
tem to determine the emergent properties arising from the interaction of the genes, 
proteins and metabolites. Applying systems biology to cancer research offers a new 
perspective and has the potential to unveil the emergent properties of cancer me-
tabolism.

As highlighted in the previous chapter, pathways are often compounded of dif-
ferent features within “traditional” pathways and have been shown in both case 
studies to provide an alternative way of viewing cancer metabolism. The sub-net-
works showing the change in pathway regulation caused by lowering the oxygen 
microenvironment cells are exposed to enables a clearer understanding of cancer 
metabolism in low oxygen environments in general, and, more specifically, with 
respect to HIF-1 function and chemoresistance to doxorubicin. With knowledge 
both of the cancer cell’s genetic influence in low oxygen survival and the reasons 
for which current chemotherapies are not so successful in this environment, it has 
been possible to reveal alternative pathways that could be useful in targeting for 
future therapies.
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