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Preface

All who model mechanical systems are aware of the unique demands such
activity places on conceptual abilities. We must characterize the manner in which
numerous individual components interact, and select the appropriate physical laws
applicable to each. No one tells us which variables are important. In complicated
situations, a multitude of approaches are likely to be available. Thus, an important
aspect of training students in this area is developing a level of experience in identi-
fying the salient aspects of a system. They must learn to identify the pathways by
which the basic parameters characterizing the inputs may be connected to the desired
information representing the solution. In other words, a basic hallmark of the study
of engineering dynamics is problem solving.

Some instructors believe that engineers learn by example. If that statement is true,
it is only because an engineer is problem-oriented. One of the most prominent fea-
tures of this textbook is its wealth of examples and homework problems. I have tried
to select systems for this purpose that are recognizable as being relevant to engineer-
ing applications, yet sufficiently simplified to enable one to focus on the many facets
entailed in implementing the associated theoretical concepts. One example of my
approach may be found in the development of the method of Lag}angian multi-
pliers. Some texts employ rather simple systems to illustrate this topic. In contrast,
Example 3 in Chapter 7 employes Lagrangian multipliers to obtain the equations of
motion for a rolling disk in arbitrary motion. In order to emphasize the continuity
of the result with earlier work, this solution is then compared to the case of steady
precession of a rolling disk, which is solved in Example 8 of Chapter 5 by using the
Newton-Euler equations. The general equations of motion are then used in Exam-
ples 4 and 5 of Chapter 7 to illustrate implementation of computational strategies
for determining the response of nonlinear systems subject to kinematical constraints.
I then use the solution to those equations as a basis for discussing the stabilizing ef-
fect of the gyroscopic moment in this situation. This approach is typical, as I often
use the same system to highlight comparative features of different principles and
approaches. The solutions for most examples are discussed in depth, along with qual-
itative discussions of the results.

Another feature that distinguishes engineering systems from the problems of clas-
sical physics is the importance of a careful characterization of their kinematical fea-
tures. It is in this area that some texts have their greatest shortcoming. In addition to
being important as a self-contained task, a kinematical analysis provides the frame-
work on which kinetics principles are constructed. For example, proficiency in kine-
matics is a prerequisite to selecting a suitable set of generalized coordinates for a
complicated system. A large portion of the present work is devoted to a variety of
topics in the kinematics of particles and rigid bodies. Particle motion is treated ex-
tensively in Chapter 2, from a variety of viewpoints. The fundamental principles for
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xii Preface

motion relative to a moving reference frame are developed in Chapter 3. That devel-
opment begins with a thorough treatment of rotation transformations and their im-
plications for the movements of points in a rotating body. Such study helps the stu-
dent to break the limits imposed by two-dimensional thinking, and proves to be very
useful as a general tool for representing motion variables and forces in three dimen-
sions. The ability to formulate angular velocity and angular acceleration is crucial,
yet many texts do not present a consistent methodology for such an evaluation. The
development of this topic in Chapter 3 is drawn from the undergraduate text I co-
authored with Dr. Joseph Genin.T Our experiences showed this approach to be readily
accessible and highly versatile. A large part of the formulation of equations of mo-
tion using either Newtonian or Lagrangian concepts must be devoted to constraint
equations, so much of Chapter 4 is devoted to applications involving interconnected
systems, such as linkages, and to rolling systems.

Most engineering students first learn the Newtonian approach to kinetics prin-
ciples, and that is as it should be. In that way, the student comes to appreciate the
relationship between the external force system, the constraint forces, and the chang-
ing linear and angular momenta. It is from such study that most individuals develop
physical insight. Chapter 5 is devoted to these topics for bodies in general spatial
motion. I present a reasonably complete discussion of the evaluation of moments
and products of inertia in this chapter, in order to balance the decreased attention
that now seems to be devoted to such tasks in the typical undergraduate course. The
emphasis of the kinetics analysis in this chapter is on derivation of the translational
and rotational equations of motion for a rigid body, using free-body diagrams as a
fundamental modeling tool. I also discuss the application of conservation principles,
but only in the context of their use as a simple way of solving differential equations
of motion in special circumstances.

A potential difficulty in analytical mechanics is the tendency of some students to
view the techniques as rote procedures, which hinders their ability to address new
situations. I believe that such difficulties arise because of weaknesses in some presen-
tations of generalized coordinates, virtual displacements, and generalized forces. I
have found that discussing these concepts from the viewpoint of the configuration
space, as well as the physical space, substantially reinforces understanding of the
mutual role of constraint forces and constraint conditions. It also demystifies the
concept of a virtual displacement. These matters are treated extensively in the begin-
ning of Chapter 6. Such a development greatly assists the student in appreciating the
utility of Hamilton’s principle and Lagrange’s equations, which are derived in the
latter part of that chapter.

I have reserved for Chapter 7 advanced topics that one might consider expendable
in a course whose schedule is limited. The first of these pertains to modeling systems
that are described by constrained generalized coordinates. The usual reason for such
a description is the existence of nonholonomic velocity constraints, but I also give
attention to using constrained generalized coordinates for holonomic systems, either
as a matter of convenience for the kinematical description or because of the pres-
ence of Coulomb friction. Section 2 in this chapter, which discusses computational

T J. H. Ginsberg and J. Genin (1984), Dynamics, 2nd ed., Wiley, New York.



Preface xiii

methods for solving the differential equations of motion governing unconstrained
and constrained generalized coordinates, did not appear in the first edition. This is
presently an area of considerable research activity, so my focus here is on the devel-
opment of techniques that may be implemented directly from the basic equations of
motion. Section 7.3 treats Hamilton’s canonical equations and Routh’s method for
cyclic generalized coordinates. Both topics are presented for reasons of complete-
ness and for their insight into the results of the earlier developments.

Study of the Gibbs-Appell equations, which appears in Section 7.4, is important in
a number of areas. In my view, the significance of the technique lies in the increased
freedom afforded by its kinematical approach based on quasicoordinates, rather than
its ability to tailor the formulation to avoid consideration of constraint forces. The
conceptual ease with which the Gibbs-Appell equations treat systems subject to many
nonholonomic constraints seems to make them very attractive for applications in the
area of robotics. Of course, one could implement the equivalent formalism of Kanef
as an alternative to the Gibbs-Appell equations. I have not done so because I have
found the latter to be more accessible to students, primarily because of its continuity
with the development of Lagrange’s equations.

Chapter 7 closes with a general treatment of linearization of equations of motion.
Such a topic is usually considered to be part of a conventional course on the vibra-
tion of linear systems. I have included this topic here because foreknowledge that
one desires to obtain only linearized equations can influence the basic procedures
whereby those equations are obtained. In addition, less careful derivations appear-
ing in some vibrations texts have led to misconceptions. Linearization also provides
an important tool for studying the dynamic stability of gyroscopic systems. This
is the subject of Chapter 8, which treats free rotation and various simplified gyro-
scopic systems for inertial guidance and control. In addition to their inherent inter-
est, these studies serve to unify the basic principles and procedures developed in the
early chapters.

Adequate coverage of all topics in the first seven chapters can be expected to re-
quire at least one semester. The first edition of this text originated from notes I devel-
oped for a graduate course in the School of Mechanical Engineering at the Georgia
Institute of Technology. It is a three-credit, one-quarter course devoted to the bulk
of Chapters 1 to 6, as well as the first section in Chapter 7. Interestingly, a large seg-
ment of the enrollment typically consists of students who are performing research in
other areas, such as computer-aided design and acoustics. I think in part that this is
attributable to the depth of coverage in kinematics, wherein background material -
such as the Frenet relations, curvilinear coordinates, and rotation transformations -
are developed in a manner that brings out applications in other areas. I also attribute
this interest to the fact that the study of dynamics provides an excellent framework
for developing an engineering approach to problem solving, in which a variety of
concepts must be synthesized in a logical manner. The course at Georgia Tech is a

1 See for example Kane and Levinson (1985), Dynamics, McGraw-Hill, New York. It should be
noted that the authors fail to mention the close relationship between their approach and the
Gibbs-Appell formulation. A good starting point for discussion of these issues is the paper by
E. A. Desloge (1987), “Relationship between Kane’s Equations and the Gibbs-Appell Equa-
tions,” Journal of Guidance, Control, and Dynamics 10: 120-122.
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prerequisite for the first vibrations course, in order to assure that all students have
adequate preparation in the modeling of systems. However, a valid argument can
be made that concepts in vibrations provide a useful basis for more general studies
in dynamics.

My primary focus in revising the original edition was one of clarification, rather
than expansion. Based on my experience as an instructor using the text, I have re-
written several sections, in addition to adding and modifying examples. I also have
created some new homework problems highlighting the essential topics. The pre-
sentations of curvilinear coordinates in Chapter 2 and rotation transformations in
Chapter 3 have been revised to enhance understanding of the basic concepts. Chap-
ter 5 has been reorganized to place the derivations of momentum and energy prin-
ciples for rigid bodies in closer proximity to their application. Chapter 6 contains
an expanded discussion of virtual displacements, generalized forces, and constraint
forces from the perspective of the configuration space. As noted earlier, the section
in Chapter 7 on computational methods for solving the equations of motion is en-
tirely new.

I hope you enjoy this text as much as I have enjoyed writing it. Whenever I use it
in my dynamics course, I find there is something else I would like to say, but I hope
you find it covers the issues with which you are most concerned.

Acknowledgments

I am most indebted to my colleague, Dr. Aldo Ferri, for giving me the assur-
ance that writing this edition was a worthwhile endeavor. Being able to discuss com-
plicated issues, and to draw on his experience as a gifted teacher of dynamics, was
an immeasurable aid. Many thanks are due to my other colleagues in the Acoustics
and Dynamics Group of the G. W. Woodruff School of Mechanical Engineering at
Georgia Tech for their understanding when I allowed by concentration on writing
this book to detract from my interactions with them. I hope that my graduate stu-
dents, particularly Drs. Hoang Pham and Kuangchung Wu, did not find such distrac-
tions to be too much of an impediment to their Ph.D. studies. Mr. Brian Driessen,
who is currently a graduate research assistant, was especially helpful in correcting
errors in the printing of the first edition. His assistance with some of the subtleties of
the computational techniques was particularly welcome. I would also like to recog-
nize the contribution of the students, in numbers too large to list, who attended my
dynamics courses. My interactions with them were my primary guide in selecting
material to modify for the second edition. Furthermore, their enthusiasm for the
course was contagious. Special thanks are due to Dr. Ward O. Winer, the Director of
the School of Mechanical Engineering, whose recognition of the significance of this
project was an enormous aid to its completion.

I remain indebted to the individuals who helped me with the first edition. Special
thanks are due to Dr. Joseph Genin of New Mexico State University, with whom 1
co-authored undergraduate texts that led to the basic philosophy on which this book
is founded. Dr. Allan D. Pierce, now of Boston University, through his intellectual
integrity, spurred me to write the first edition. Being able to share the insights of my
colleague, Dr. John G. Papastavridis, was helpful in formulating the treatment of



Preface XV

analytical dynamics in the first edition. I was especially fortunate one day in 1993
when Mrs. Florence Padgett, my editor at Cambridge University Press, visited me
and expressed her interest in pursuing the second edition. She has been a delight to
work with, and her performance is an exemplar for the world of technical publishing.

My love and appreciation for my wife, Rona A. Ginsberg, is immeasurable. In
addition to her editorial assistance, her acceptance of my dedication to this project
aided enormously in its completion. She was always there to encourage me when I
ran into episodes where writing became difficult. Her understanding and devotion
were vital to my effort to balance family and professional concerns. The patience of
my sons, Mitchell and Daniel, and my daughter-in-law, Tracie, while I was engrossed
in this project was always reassuring. The debt I owe my parents, Rae and David
Ginsberg, for the sacrifices they made during my education, is enormous. My mother
gave me the motivation and drive that has served me so well, especially in complet-
ing this book. My father, who died many years before I began to write the first edi-
tion, has been my spiritual guide. Although he never completed high school, he was
one of the most intellectually inquisitive people I have ever known. He taught me
that learning should be a joyful experience to be pursued for its own sake.






CHAPTER 1

Basic Considerations

1.1 Introduction

The subject of dynamics is concerned with the relationship between the forces
acting on a physical object and the motion that is produced by the force system. Our
concern in this text shall be situations in which the classical laws of physics (i.e.,
Newtonian mechanics) are applicable. For our purposes, we may consider this to be
the case whenever the object of interest is moving much more slowly than the speed
of light. In part, this restriction means that we can use the concept of an absolute
(i.e. fixed) frame of reference, which will be discussed shortly.

A study of dynamics consists of two phases: kinematics and kinetics. The ob-
jective of a kinematical analysis is to describe the motion of the system. It is im-
portant to realize that this type of study does not concern itself with what is caus-
ing the motion. A kinematical study might be needed to quantify a nontechnical
description of the way a system moves, for example, finding the velocity of points
on a mechanical linkage. In addition, some features of a kinematical analysis will
always arise in a kinetics study, which analyzes the interplay between forces and
motion. A primary objective will be the development of procedures for applying
kinematics and kinetics principles in a logical and consistent manner, so that one
may successfully analyze systems that have novel features. Particular emphasis will
be placed on three-dimensional systems, some of which feature phenomena that
you might not have encountered in your studies thus far. This is particularly the
case if your prior experiences in the area of dynamics were limited to planar mo-
tion problems. As we proceed, you might recognize several topics from your earlier
courses, both in engineering and in mathematics. Those topics are treated again here
because of their importance, and also in order to gain greater understanding and
rigor.

1.2 Newton’s Laws

A fundamental aspect of the laws presented by Sir Isaac Newton is the con-
cept of an absolute reference frame, which implies that somewhere in the universe
there is an object that is stationary. This concept was discarded in modern physics
(relativity theory), but the notion of a fixed reference frame introduces negligible
errors for slowly moving objects. The corollary of this concept is the dilemma of
what object should be considered to be fixed. Once again, negligible errors are usually
produced if one considers the sun to be fixed. However, in most engineering situa-
tions it is preferable to use the earth as our reference frame. The primary effect of the
earth’s motion in most cases is to modify the (in vacuo) free-fall acceleration g result-
ing from the gravitational attraction between an object and the earth. Other than
that effect, it is usually permissible to consider the earth to be an absolute reference

1



2 1 / Basic Considerations

frame. (A more careful treatment of the effects of the earth’s motion will be part of
our study of motion relative to a moving reference frame.)

For the purpose of formulating principles and solving problems, the fixed refer-
ence frame will be depicted as a set of coordinate axes, such as xyz. It is important to
realize that coordinate axes are also often used to represent the directions for the
component description of vectorial quantities. The two uses for a coordinate system
are not necessarily related. Indeed, we will frequently describe a kinematical quan-
tity relative to a specified frame of reference in terms of its components along the
coordinate axes associated with a different frame of reference.

A remarkable feature of Newton’s laws is that they address only objects that can
be modeled as a single particle, that is, a body whose mass occupies a single point.
Bodies of finite dimension are not formally covered by these laws. The three kine-
matical quantities for a particle with which we are primarily concerned are position,
velocity, and acceleration. By definition, a particle occupies only a single point in
space. As time evolves, the point occupies a succession of positions. The locus of
all positions occupied by the point is its path.

The position of a point, as well as the velocity and acceleration, may be described
mathematically by giving three independent coordinate values. Such a description is
said to be extrinsic, because it does not rely on knowledge of the path. In contrast,
an intrinsic kinematical description defines position, velocity, and acceleration in
terms of the properties of the path.

In either case, the position of the point may be depicted by a vector arrow extend-
ing from some reference location, such as the origin of the fixed frame of reference,
to the point of interest. We shall always use an overbar to denote a vector quantity.
(A more common notation uses boldface to denote a vector, but the overbar has the
advantage of being simpler for handwritten work.) Also, we employ subscripts to
denote the point of interest and the reference point. For example, 7p,5 denotes the
position of point P with respect to point O (the slash, /, may be translated to mean
“with respect to0”). A typical position vector is shown in Figure 1.1,

The position changes as time goes by, so 7p,¢ is a vector function of time. The
rules for differentiation of a vector are the same as those for differentiation of a
scalar, except that the order of multiplication cannot be changed in treating cross

X

Figure 1.1 Position vectors.
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products. The time derivative of the position is called the velocity. It is conventional
to use one overdot to denote each time derivative. Thus

drp,o
dt

Two aspects are notable here. First, no subscripts have been used to denote the ve-
locity vector. If there is any ambiguity as to the point whose velocity is under con-
sideration, the subscript will match that point. It is never necessary to indicate the
reference point in the description of velocity, because the velocity is the same as seen
from all locations in an absolute frame of reference. This may be proved from Fig-
ure 1.1. If points O and O’ are both fixed, then the difference in the position of point
P relative to these points is constant, that is, 7o, is constant. The derivative of a
constant is obviously zero. In Chapter 3 we will treat moving reference frames, in
which case we will be interested in the motion relative to that reference frame. Equa-
tion (1.1) defines the absolute velocity, whereas the velocity seen from a moving ref-
erence frame is a relative velocity. The same terminology applies to the description
of acceleration, whose definition follows. If it is not specified otherwise, the words
velocity and acceleration should be understood to mean the absolute quantities.

Because velocity is a vector, it has an associated magnitude and direction. The
magnitude is called the speed,

v=|v, (1.2)

¢ V= =f'p/0. (11)

and the direction of v tells us the heading. Both of these properties are particularly
important for formulations using intrinsic (path-related) variables.

Acceleration needs to be considered because it is the only motion parameter that
arises in Newton’s laws. The basic relation for this quantity is

¢ a=v= fp/o. (13)

It might be argued that our senses are accurately attuned to acceleration only when
we are experiencing it - it is difficult to judge the acceleration of an object that we
are passively observing. Indeed, the time derivative of @, which is called the jerk,
occurs primarily in considerations of ride comfort for vehicles.

Newton’s laws have been translated in a variety of ways from their original state-
ment in the Principia (1687), which was in Latin. We shall use the following version.

First Law
The velocity of a particle can only be changed by the application of a force.

Second Law
The resultant force (that is, the sum of all forces) acting on a particle is proportional
to the acceleration of the particle. The factor of proportionality is the mass.

¢ S F=ma. (1.4)
Third Law

The forces acting on a body result from an interaction with another body such that
there is a reactive force (that is, reaction) applied to the other body. The action-
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reaction pair consists of forces having the same magnitude, and acting along the
same line of action, but having opposite direction.

We realize that the first law is included in the second, but we retain it pri-
marily because it treats systems in static equilibrium without the need to discuss ac-
celeration. The second law is quite familiar, but it must be emphasized that it is a
vector relation. Hence, it can be decomposed into as many as three scalar laws, one
for each component. The third law is very important to the modeling of systems. The
“models” that are created in a kinetics study are free-body diagrams, in which the
system 1is isolated from its surroundings. Careful application of the third law will
assist identification of the forces exerted on the body.

The conceptualization of the first and second laws can be traced back to Galileo.
Newton’s revolutionary idea was the recognition of the third law and its implications
for the first and second laws. An interesting aspect of the third law is that it excludes
the concept of an inertial force, —ma, which is usually associated with d’Alembert,
because there is no corresponding reactive body. It is for that reason that we shall
employ the inertial force concept in Chapter 6 only to develop the principles of ana-
Iytical mechanics. (D’Alembert employed the artifice of an inertial force as a way of
converting dynamic systems into static ones, in order to employ the principle of
virtual work. This is the initial step in deriving Lagrange’s equations in Chapter 6.)

It is also worth noting that the class of forces described by the third law is limited -
any force obeying this law is said to be a central force. An example of a noncentral
force arises from the interaction between moving electric charges. Such forces have
their origin in relativistic effects. Strictly speaking, the study of classical mechanics
is concerned only with systems that fully satisfy all of Newton’s laws. However, many
of the principles and techniques are applicable either directly, or with comparatively
minor modifications, to relativity theory.

We should note that the acceleration to be employed in Newton’s second law is
relative to the hypothetical absolute reference frame. However, the same accelera-
tion can also be observed from a variety of moving reference frames, all of which are
translating (that is, the reference directions are not rotating) at a constant velocity
relative to the fixed reference. Such reference frames are said to be inertial. The fact
that Newton’s laws are valid in any inertial reference frame is the principle of Gali-
lean invariance, or the principle of Newtonian relativity.

1.3 Systems of Units

Newton’s second law brings up the question of the units to be used for de-
scribing the force and motion variables. Related to that consideration is the dimen-
sionality of a quantity, which refers to the basic measures that are used to form the
quantity. In dynamics, the basic measures are time 7, length L, mass M, and force F.
The law of dimensional homogeneity requires that these four quantities be consistent
with the second law. Thus,

F=ML/T> (1.5)

It is clear from this relation that only three of the four basic measures are inde-
pendent. Measures for time and length are easily defined, so this leaves the question
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of whether mass or force is the third independent quantity. When a system of units
is defined such that the unit of mass is fundamental, the units are said to be absolute.
In contrast, when the force unit is fundamental and the mass unit is given by M =
FT?/L, the units are said to be gravitational. This terminology stems from the rela-
tion among the weight w, the mass m, and the free-fall acceleration.

The only system of units to be employed in this text are SI (Standard Interna-
tional), which is a metric MKS (meter-kilogram-second) system, with standardized
prefixes for powers of 10 and standard names for derived units. Newton’s law of
gravitationf states that the magnitude of the attractive force exerted between the
earth and a body of mass m is

= ) (1.6)

where r is the distance between the centers of mass, G is the universal gravitational
constant, and M is the mass of the earth,

G =6.6732(10"") m¥/kg-s?, M =5.976(10%*) keg.

The weight w of a body usually refers to the gravitational attraction of the earth
when the body is near the earth’s surface. When a body near the earth’s surface is
falling freely in a vacuum, the gravitational attraction is the mass of the body multi-
plied by the free-fall acceleration, that is,

w=mg. (1.7)
Matching Eq. (1.6) at the earth’s surface to Eq. (1.7) leads to

g=M (1.8)
re
where r, is the radius of the earth, r, = 6371 km.

The relationship between g and the gravitational pull of the earth is actually far
more complicated than Eq. (1.8). In fact, g depends on the location along the earth’s
surface. One reason for such variation is the fact that the earth is not perfectly spher-
ical, which means that r, is not actually constant. Variation in the value of g also
arises because the earth is not homogeneous. In addition to these deviations in gravi-
tational force, the value of g is influenced by the motion of the earth, because g is
an acceleration measured relative to a noninertial reference frame. (This issue is dis-
cussed in Section 3.7.) Consequently, it is not exactly correct to employ Eq. (1.8).

The mass of a particle is constant (assuming no relativistic effects), so defining
mass as a fundamental parameter yields an absolute system of units whose definition
is not dependent on position; SI units constitute an absolute system. Prior to adop-
tion of the SI standard, many individuals used a gravitational metric system in which
grams or kilograms were used to specify the weight of a body. In the SI system,
where mass is basic, any body should be described in terms of its mass in kilograms.

+ It is implicit to this development that the inertial mass in Newton’s second law be the same
as the gravitational mass appearing in the law of gravitation. This fundamental assumption,
which is known as the principle of equivalence, actually is owed to Galileo, who tested the
hypothesis with his experiments on various pendulums. Subsequent, more refined, experiments
have continued to verify the principle.
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Its weight in newtons (1 N = 1 kg x1 m/s? = 1 kg-m/s?) is mg, where g for a standard
location on the earth’s surface may be taken as

g =9.807m/s>.

The system now known as U.S. customary is another gravitational system. Its basic
unit is force, measured in pounds (1b). The body whose weight is defined as a pound
must be at a specified location. If that body were moved to a different place then the
gravitational force acting on it, and hence the units of force, might be changed. The
ambiguity as to a body’s weight is one source of confusion in U.S. customary units.
Another stems from early usage of the pound as a mass unit. If one also employs a
pound-force unit, such that 1 1bf is the weight of a 1-lbm body at the surface of the
earth, then f = ma is not satisfied unless the acceleration is measured in multiples
of g. This is an unnecessary complication that has been abandoned in most scientific
work.

Even when one recognizes that mass is a derived unit in U.S. customary units, the
mass unit is complicated by the fact that two length units, feet and inches, are in
common use. Practitioners working in U.S. customary units use the standard values

g=3217ft/s*> or g=386.0in./s%.

Hence, computing the mass as m = w/g will give a value for m that depends on the
length unit in use. The slug is a standard name for the U.S. customary mass unit,
with

1slug = 11b/(1 ft/s%) = 11b-s¥/1t.

This mass unit is not applicable when inches is the length unit. In order to emphasize
this matter, it is preferable for anyone using U.S. customary units to make it a stan-
dard practice to give mass in terms of the basic units. For example, a mass might be
listed as 5.2 Ib-s%/ft, or a moment of inertia might be 125 1b-s-in.; SI units avoid all
of these ambiguities.

1.4 Vector Calculus

It is assumed here that you are familiar with the basic laws and techniques
for the algebra of vectors. Specifically, you should be able to represent a vector in
terms of its components and perform calculations such as addition, dot products,
and cross products using that component representation. If you feel uncertain about
your current proficiency, it is strongly recommended that you take some time to
review the appropriate topics. Much of the mathematical software in current use is
equipped to carry out these operations.

As mentioned earlier, most of the laws for calculus operations are the same as
those for scalar variables. It is only necessary to remember to keep the overbar on
vector quantities and to remember that the order in which a cross product is taken
is not commutative. In the following, A and B are time-dependent vector functions,
and ¢ and « are scalar functions of time.

Definition of a Derivative

- A(t+At)—A(t
A= lim ﬂLL_(_l
A

1.9
t=0 At ( )
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Definite Integration
Let B=A. Then
p— [ -
A(r) =A(0)+f B(r)dr. (1.10)
0

Derivative of a Sum

%(mm:mé. (L11)

Derivative of Products

%m) =c¢A+cd, (1.12)
d —_— -— - - —_ -

E(A-B) =A-B+A-B, (L.13)
d AxB)y=AxB+AxB. (1.14)

dt

Chain Rule for Differentiation
Let A be a function of some parameter « and let o be a function of time. (This ob-
viously means that A4 is an implicit function of time.) Then

j:ﬁ‘lﬁ:dﬁ. (1.15)

These rules will be used in the next chapter to treat the component represen-
tation of vectors with respect to various triads of directions.

1.5 Energy and Momentum

A basic application of the calculus of vectors in dynamics is the derivation
of energy and momentum principles, which are integrals of Newton’s second law.
These integrals represent standard relations between velocity parameters and the
properties of the force system. We will derive these laws for particle motion here;
the corresponding derivations for a rigid body appear in Chapter 5.

Energy principles are useful when we know how the resultant force varies as a
function of the particle’s position - in other words, when ¥ F(F) is known. The
displacement of a point is intimately associated with energy principles. The displace-
ment is defined as the change in the position occupied by a point at two instants,

AF = F(1+ At) —F(1). (1.16)

To obtain a differential displacement d7, we let At become the infinitesimal interval
dt. A dot product of Newton’s second law with a differential displacement of a par-
ticle yields

S F-df = ma-dr. (1.17)

Multiplying and dividing the right side by dt, and then using the definition of velocity
and acceleration, leads to
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_ dr dv 1 d

> F-dF =ma-z dt=m75-vdt= -2—m?d7(v-v)dt
=%md(\7-fl)=%md(v2) (1.18)

The right side is a perfect differential, and the left side is a function of position
only owing to the assumed dependence of the resultant force. Hence, we may inte-
grate the differential relation between the two positions. The evaluation of the in-
tegral of the left side must account for the variation of the resultant force as the
position changes when the particle moves along its path; this is called a path integral.
We therefore find that

2
55 Eﬁ-d7=%m(V§—VF), (1.19)
1
where the subscripts indicate that the speed should be evaluated at either the initial
position 1 or the final position 2. The kinetic energy is defined as
. T =1imv? (1.20)

and the path integral is the work done by the force in moving the particle,
2
W,_,2=9§ S F-dr. (1.21)
1

The subscript notation for W indicates that the work is done in going from the start-
ing position 1 to the end position 2 along the particle’s path. The corresponding form
of Eq. (1.19) is

T, =T +W . (1.22)

this is known as the work-energy principle.

The operation of evaluating the work is depicted in Figure 1.2, where a differential
amount of work done by the resultant force in moving the particle may be considered
in either of two ways. It is the product of the differential distance the particle moves
and the component of the resultant force in the direction of movement, or equiva-
lently, the product of the magnitude of the resultant force and the projection of the

z

Path C

X

Figure 1.2 Work done by a force. Figure 1.3 Moment of a force.
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displacement in the direction of the force. Only in the simple case where the force has
a constant component in the direction of the displacement does the work reduce to
the simple expression “force multiplied by distance displaced.” Evaluation of work
is a major part of formulating the work-energy principle. We will find in Chapter 5
that this task is alleviated by introducing the concept of potential energy.

Two momentum principles follow from Newton’s second law. The linear impulse-
momentum principle is an immediate result when the resultant force is given as a
function of time. Because acceleration is the time derivative of velocity, multiplying
the second law by df and integrating over an interval f; < f < 1, leads to

t t
‘S Fdt= | madt=mwy-v,). (1.23)
4 I3
The quantity mv is the momentum of the particle, which we shall denote by the
symbol P. Thus, we have

t
P=mv, P,=P+| SFadt (1.24)
4

The time integral of the resultant force is the impulise. More precise names for the
terms appearing in Eq. (1.24) are the linear momentum and linear impulse, because
they are associated with the movement of a particle along a (possibly curved) line.
The primary utility of the linear impulse-momentum principle is to treat systems
excited by impulsive forces - that is, forces that impart a very large acceleration to a
body over a very short time interval. Otherwise, the principle is an obvious conse-
quence of knowing the resultant force as a function of time.

The angular momentum principle is associated with the moment the resultant
force exerts. Let us evaluate the moment M, about origin O of the fixed reference
frame in Figure 1.3. Using the position 7 to form the lever arm leads to

A710=Fx21:“=?xmd=fxmﬂ. (1.25)

We now take the time derivative outside the cross product by compensating the equa-
tion with an appropriate term to maintain the identity; specifically,

M0=g?(ixm\‘))—m%xv=%(Fxmﬁ)—ﬁxm\'}. (1.26)

The last term vanishes because the momentum m¥ is parallel to the velocity. The

remaining term on the right side of the equation is the time derivative of the moment

about origin O of the linear momentum of the particle. We refer to this term as the

angular momentum, denoted H,, because a moment is associated with a rotational
tendency. Thus,

¢ Hy=Fxmpy. 1.27

Substitution of Hy onto Eq. (1.26) leads to the derivative form of the angular im-
Dpulse-momentum principle,

— dﬁ 2
. M, = d—to = H,. (1.28)

Multiplying the relation by df and integrating over a time interval t; < f < t, leads to
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_ . ! _
(Hop)y = (Ho) + | X Mopds, (1.29)
]
where the time integral of the moment is called the angular impulse of the resultant
force.

Situations where the angular impulse-momentum principle, Eq. (1.29), are needed
to study the motion of a particle are few. As is the case for its linear analog, the
angular momentum principle might be useful to treat an impulsive force. Also, when
the moment of the resultant force about an axis € is zero, the principle yields a con-
servation principle: H,-é is constant. The primary utility of the angular momentum
principle lies in the application of the derivative form, Eq. (1.27), to a rigid body. We
will find in Chapter 5 that the angular momentum of a body is related to the rotation
of the body. The study of orbital motion in a gravitational field is another notabie
application of the principle.

1.6 Brief Biographical Perspective

As we proceed through the various topics, the names of some early scientists
and mathematicians will be encountered in a variety of contexts. The magnitude of
the contribution of these pioneers cannot be overstated. Indeed, it is a testimonial to
their ingenuity that we continue to use so much of their work. A view of the histori-
cal relationship between these researchers can greatly enhance our insight. The fol-
lowing is an informal chronological survey of a few individuals who have made key
contributions to classical, as opposed to relativistic, physics. More details may be
found in the list of references for this chapter.

Galileo, Galilei (1564-1642)

Galileo is best known for experiments on gravity at the leaning tower of Pisa, in his
native country, Italy, but there is no conclusive evidence that those experiments ac-
tually occurred. From his measurements of the motion of pendulums, which led him
to propose the use of a pendulum to provide the time base for a clock, he deduced
that gravitational and inertial mass are identical. He refuted Aristotle’s ancient state-
ments by observing that the state of motion can only be altered by the presence of
other bodies, and that there is no unique inertial reference frame. In astronomy, he
developed the astronomical telescope, and used it for many pioneering observations.
His last eight years were spent under house arrest for advocating the Copernican
view of the solar system, which held that the sun, rather than the earth, is the center
of the solar system.

Newton, Sir Isaac (1642-1727)

Newton was a professor of mathematics at Cambridge University whose inspiring
work leads many to regard him as one of the two most revolutionary figures in
science (Albert Einstein being the other). Newton pursued his studies of physics in
England, aware of scientific developments flowering throughout Europe. The foun-
dation for our study of mechanics was laid out by him in Principia Mathematica
Philosophiae Naturalis (1687). In addition to his basic laws governing the movement
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of bodies due to forces, Newton developed the classical law of gravitation, thereby
providing a scientific basis for Johannes Kepler’s empirical laws for the orbits of the
planets. Newton is also generally credited with having developed the mathematical
calculus.

Euler, Leonhard (1707-1783)

Euler was Swiss by birth, but his scientific work was done first in Russia, then in Ber-
lin, and finally in Russia when he became a professor of mathematics in St. Peters-
burg. Some of the greatest contributions to the mechanics of rigid bodies are due to
Euler, who was also the most prolific mathematician of his century. He derived many
new mathematical principles in order to solve physically meaningful problems. In
addition to his contributions to the kinematics and kinetics of rigid bodies, which we
shall study in later chapters, he is prominent for his analytical contributions regard-
ing vibration of beams and stability of columns (the Euler buckling load). He also
made important contributions to the solution of ordinary differential equations, to
geometry and topology, to the theory of functions, and to number theory.

D’Alembert, Jean Le Rond (1717-1783)

As mentioned previously, d’Alembert, who was French, is associated with the notion
of an inertial force —ma. He introduced this artifice as a way of studying dynamic
systems by applying principles of statics. We will not use this concept as a technique
for formulating problems, but d’Alembert’s contribution was crucial to the develop-
ment by Lagrange of analytical mechanics. Interestingly, d’Alembert and Euler were
bitter rivals. In addition to his contributions in the dynamics of particle and rigid
body systems, d’Alembert introduced the concept of partial differential equations in
order to determine the dynamic response of deformable bodies. D’Alembert was also
known as a philosopher and as a music theorist.

Lagrange, Joseph-Louis, Comte de (1736-1813)

The works of Euler and Lagrange are intimately related. Their mutual respect is
exemplified by the fact that Lagrange left his native Italy to replace Euler in an im-
portant academic position in Berlin upon Euler’s recommendation. The fundamental
equations of analytical mechanics bear Lagrange’s name. These principles, which we
will derive in Chapters 6 and 7, employ energy functions and geometrical relations in
a viewpoint that emphasizes the way a system behaves as an entity. Lagrange’s equa-
tions could be considered to be equivalent to Newton’s laws, but they are actually
more general. Lagrange made important contributions in celestial mechanics and,
like Euler, was active in many areas of mathematics, including calculus of variations,
the theory of equations, probability theory, and number theory.

Coriolis, Gustave-Gaspard (1792-1843)

In the list we have assembled here, the Frenchman Coriolis is certainly a minor figure.
The identification of an acceleration effect attributable to interaction between rota-
tion of a reference frame and movement relative to that reference frame is due to
Coriolis. He also made some important contributions to the study of mechanics of
materials and collisions of bodies.
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Hamilton, Sir William Rowan (1805-1865)

Hamilton, who was Irish, became a professor of astronomy at Trinity College at
the age of 22 when he completed his undergraduate work. He is recognized here
for development of a unified formulation for classical mechanics. “Hamilton’s prin-
ciple,” which draws on concepts from the calculus of variations, contains both the
Newtonian and Lagrangian forms of the equations of motion. The generality of his
principle is evidenced by the fact that Hamilton reported it in a work on optics. His
principle has even been extended to relativistic and quantum mechanics through ap-
propriate redefinitions of the energy functions. Since Newton’s laws are axioms, some
researchers have argued that Hamilton’s principle, rather than Newton’s laws, is the
foundation for classical mechanics.

Rayleigh, Lord John William Strutt (1842-1919)

Acclaimed as the last of the great British classical physicists, Rayleigh’s name appears
in the dynamics of particles and rigid bodies in a relatively minor context. He intro-
duced dissipation effects in Lagrange’s equations in the same manner that inertia
and conservative forces are described, but we now recognize that technique to be of
limited validity. Much of Rayleigh’s work was in the field of vibrations, which builds
on the concepts we develop here. His contributions in acoustics, optics, and electro-
magnetism are equally significant. He is best known to some as the person who dis-
covered and isolated argon, for which he won the Nobel Prize in 1904.

Perhaps the most remarkable aspect of the foregoing survey is the date of
Hamilton’s death. Although the basic principles were developed more than a century
ago, the versatility of the analytical tools and their level of sophistication have con-
tinued to be refined. The subject of mechanics is mature only from a philosophical
view; it continues to be an active area for basic and applied research, and many
important questions remain to be answered.
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CHAPTER 2

Particle Kinematics

This chapter develops some basic techniques for describing the motion of
a particle. Each description is based on a different set of coordinates. The set best
suited to a particular situation depends on a variety of factors, but a primary con-
sideration is whether the coordinates naturally fit known aspects of the motion. At
the end of this chapter, we will examine situations where more than one of these
descriptions may be employed beneficially.

21 Path Variables - Intrinsic Coordinates

The idea that the motion of a point should be described in terms of the
properties of its path may not seem to be obvious. However, this is precisely how
one thinks when using a road map and the speedometer and odometer of an auto-
mobile. This type of description is known as path variables, or less commonly as
intrinsic coordinates, because the basic parameters that are considered to change are
associated with the properties of the path. The terms tangent and normal compo-
nents are also used because those are the primary directions, as we shall see. We
assume that the path is known. The most fundamental variable for a specified path
is the arclength s along this curve, measured from some starting point to the point of
interest. As shown in Figure 2.1, measurement of s requires statement of positive
sense along the path. Thus, negative s means that the point has receded, rather than
advanced, along its path. It is quite obvious from Figure 2.1 that the position 7p,q is
unambiguously defined by the value of 5. Because s changes with time, the position
is an implicit function of time, 7p,o = 7(s) and s = s(¢). It follows that the derivation
of formulas for velocity and acceleration will involve chain-rule differentiation. We
begin by deriving some basic laws governing the geometry of curves.

Starting
point

X

Figure 2.1 Position in path variables.

13
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x

Figure 2.2 Tangent vector.

2.1.1 Curves in Space - Frenet’s Formulas

Figure 2.2 shows the position vector at two locations that are separated by a
small arclength As, with As becoming ds in the limit of infinitesimal differences. The
displacement AF is the change in the position of the point as it moves from position s
to s+As,

AF = F(s+As)—F(s). (2.1)

In the limit, the magnitude of A7 equals ds because a chord progressively approaches
the curve. For the same reason, the direction of A7 approaches tangency to the curve,
in the sense of increasing s. This tangent direction is defined by the unit tangent vec-
tor &,, which is the second path-variable parameter. A unit vector has the dimension-
less value 1 for magnitude, so

__dF

¢ e,—zg—.

2.2)
The tangent vector is one of three unit vectors used to describe vectorial quan-
tities in terms of path variables. The second unit vector in the triad is derived by
considering the dependence of &, on s. For this evaluation the dot product giving the
magnitude of the unit vector &, that is, &,-&, =1, may be differentiated, with the
result that
de,
el P —
ds
In other words, de,/ds is always perpendicular to &,. The normal direction, whose
unit vector is &,, is defined to be parallel to this derivative. Because parallelism of
two vectors corresponds to their proportionality, this definition may be written as
Pas
Because ¢, is a dimensionless unit vector, the factor of proportionality, p, may be
found from

=0. (2.3)

¢ é,= 2.4)
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1

o

ds

Dimensional consistency of Eq. (2.5) requires that p be a length parameter; it is the
radius of curvature, as we will soon demonstrate for a planar path.

The tangent and normal unit vectors at a selected position form a plane that is
tangent to the curve. Although any plane containing &, is tangent to the curve, the
plane containing both &, and &, has several interesting features; this plane is referred
to as the osculating plane.

In order to see why the parameter p in Eq. (2.5) is the radius of curvature, let us
consider a planar path, in which case the osculating plane is the plane of the curve.
Figure 2.3(a) depicts the tangent and normal vectors associated with two points, A
and B, that are separated by an infinitesimal distance ds measured along an arbitrary
planar path. Point C, which is the intersection of the normal vectors at the two
positions along the curve, is the center of curvature. Because ds is infinitesimal, the
arc AB seems to be circular. The radius R of this arc is the radius of curvature. The
formula for the arc of a circle shows that dé = ds/R.

Now consider the increment dé, = &,(s+ds) — &,(s) in Figure 2.3(b). The angle df
between the normal vectors in Figure 2.3(a) is also the angle between the tangent
vectors. The vector triangle in Figure 2.3(b) is isosceles because |é,| = 1. Hence, the

. (2.5)

Iy

ly
c L_\ Center of

curvature

(a)

e,(s)

de
90° ~

Iy
f‘)lQ

de,

e s +ds)
(b)

Figure 2.3 Relation between tangent and normal vectors.
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angle between de, and either tangent vector is 90° —d6/2. However, df is infinitesi-
mal, so it must be that dé, is perpendicular to & in the direction of &,. A unit vector
has a length of 1, so

_ ds
de,|=dble| = —.
|d2| = dble,| = =

Any vector may be expressed as the product of its magnitude and a unit vector defin-
ing the sense of the vector, from which we find that

~ . ds
de,=|de,|e,,=?e,,.

When this relation is divided by ds, the result agrees with Eq. (2.4) provided that
o = R. Hence, we have proven that the reciprocal of the magnitude of dé,/ds is the
radius of curvature of the planar path.

When the path is not planar, the orientation of the osculating plane containing
the &, &, pair will depend on the position along the curve. Nevertheless, p is still the
radius of curvature. Note that the radius of curvature is generally not a constant,
although p is obviously the radius of a true circular path.

The development thus far is adequate to obtain formulas for velocity and accel-
eration. However, additional study of the unit vectors will enhance our understand-
ing of the properties of curves. Because &, and é, are situated in the osculating plane,
a third direction is required for the resolution of an arbitrary vector. The direction
perpendicular to the osculating plane is called the binormal; the corresponding unit
vector is &,. The cross product of two unit vectors is a unit vector perpendicular to
the original two, so we define the binormal direction such that

. &, =&,X&,. (2.6)

An interesting property arises in the derivative of the &, unit vector, which we may
represent in terms of its tangent, normal, and binormal components. The component
of an arbitrary vector in a specific direction may be obtained from a dot product
with a unit vector in that direction. Multiplying each component by the correspond-
ing unit vector and adding the individual contributions then reproduces the original

vector:
de, ([ dé,\. _ dey\ _ _ de,\_
s (e, s >e,+<e,, s )e,,+<e,, s >e,,. 2.7

We obtain the tangential component in Eq. (2.7) from the orthogonality of the unit
vectors, which requires that é,-&, = 0. Then

_ de, _ de, _ (1. 1
e = =3 o — =——, 2.
T ==y G =~ (S0 = @8)

Similarly, because é,-é, =1, we find that
_ de,

e .
" ds

=0. (2.9)

The binormal component of the derivative is generally nonzero; its value is defined
as the reciprocal of the torsion ,
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1 _ de,

7o s
The reciprocal is used here for consistency with Eq. (2.5), so that 7 has the dimen-
sion of length. Substitution of Egs. (2.8)-(2.10) into Eq. (2.7) results in

de, 1 1

=——8,+—e,. 2.11
¢ s pe,+Teb (2.11)

(2.10)

The derivative of &, may be obtained by a similar approach. The fact that ¢,, é,,
and &, are mutually orthogonal, in combination with Egs. (2.4) and (2.11), yields

8.8,=0 = é,-%=—%°éb=—%é,,°éb=0, (2.12a)

é,8,=0 = é,,-%?=—‘§”~é,,=—%, (2.12b)

eyép=1 = é,,-%:O. (2.12¢)
The result is

&1, (2.13)

Because &, is a unit vector, this relation provides the following alternative to Eq.
(2.10) for the torsion:

de,
ds

Equations (2.4), (2.11), and (2.13) are Frenet’s formulas for a spatial curve. The
first one shows that the change in the tangent vector due to a small increase in s is
primarily in the normal direction. The osculating plane is formed from &, and é,. We
therefore may consider this plane to be the tangent plane that most closely fits the
curve at the position of interest. Equation (2.13) shows that the vector normal to the
osculating plane primarily changes in the direction of &, with small increments in s.
This is equivalent to a rotation of the osculating plane about the tangent direction,
which is the source of the terminology “torsion.” The osculating plane is constant
for a planar curve, which corresponds to an infinite value of 7. The greater the degree
to which a curve is twisted in space, the smaller will be the value of 7. In a similar
vein, p measures the amount by which the curve bends in the osculating plane. A
small value of p corresponds to a highly bent curve, and p is infinite for a straight
line.

It is possible to specify a path in a variety of ways. Let us suppose that the path is
described in parametric form. This means that if « is some parameter with a range
of possible values, then the x, y, z coordinates are given in terms of the value of «. In
this case, the position vector may be written in component form as

F=x(a)i+y(a)j+z(a)k. (2.15)

) (2.14)

1_
T

When such a description is available, it is possible to apply Frenet’s formulas to
evaluate the path variables in terms of the parameter «.



18 2 / Particle Kinematics

We employ the chain rule in order to determine &, according to Eq. (2.2), from
which we find that

. dr da _F

M i
aa s (2.16)

F=x'i+y'j+z'k,

where a prime denotes differentiation with respect to «. The fact that &, is a unit vec-
tor, || =1, then yields a relation by which the arclength may be computed:

. s’ =(F-F)YW =[x+ () +(z)1V3 (2.17a)
. s= f L2+ O +(2)2) da, (2.17b)

where « is the value at the starting position. The value of s’ found from Eq. (2.17a)
may be substituted into Eqs. (2.16) in order to evaluate the tangent vector.
The next step is to evaluate ¢, and p, for which the first of Frenet’s formulas, Eq.
(2.4), is used. From Eqgs. (2.4) and (2.16) we have
de, _ de, do _ p [f” F's” ]

Pas “Pda as s\ (s')?
=P _(Frs—F's). (2.18)
(s )3
The value of s’ is given by Eq. (2.17a). Differentiating that relation yields
'—,/"—,Il f"F”
"= = 2.19
(,7/,,-')1/2 s’ ( )

The desired expression for the normal vector is obtained by substituting Eq. (2.19)
into Eq. (2.18), with the result that

¢ é,= T )4 [F"(s")2=F'(F-F")). (2.20)
Because &, is a unit vector, using a dot product to form the magnitude of this expres-
sion leads to the radius of curvature:

1 _

|[77(s")2 = F"(F"-F")]|

(s )4
— 1, 4[’—. //(S )4_2('. —//) (S )2+(r1 —/)(r/ —”) ]I/2
(s
which simpliﬁes to
¢ =l - (2.21)

In the case of a planar curve defined in the form y = y(x) and z =0, so that o = x,
this expression reduces to

_ 4007
byt
which is the same as the formula derived in a course on calculus.

(2.22)



2.1 / Path Variables - Intrinsic Coordinates 19

After the result of Eq. (2.21) is substituted back into Eq. (2.20), it is a simple
matter to evaluate the binormal direction according to Eq. (2.6):

0 éb = p F/XF//. (2-23)
(s')3

An expression for 7 may be obtained by applying the third Frenet formula, Eq.
(2.13). The result of differentiating Eq. (2.23) may be written as

dey _Ldey 1 df p )
s s da s da (s) ()4
Next, we substitute this expression and Eq. (2.20) into Eq. (2.13) to find that

(F'}XF"). (2.24)

_ dé,
T " ds

= )4[r”(s )2— f’(f’-F”)].[l d((s)>(r )+ )4(r xr’”)]

We may simplify this equation by recognizing that a cross product is perpendicular
to the individual terms in the product. Hence, carrying out the dot product in the
preceding expression term by term, leads to

¢ 1o
T

s )6[r” (F'xF™)]. (2.25)

We see from these developments that the parametric description of a curved path
enables us to evaluate all the properties of that path. Whether or not the path-variable
approach is actually suitable for the description of the motion depends on how the
movement along the path is specified, as we shall see in the next section.

Example 2.1 A particle moves along the hyperbolic paraboloidal surface z=xy/2
such that x = 6sin k£ and y = —6cos k&, where x, ¥, z are in meters and £ is a parame-
ter. Determine the path-variable unit vectors and the radius of curvature at the posi-
tion where &£ = 7/3k.

Solution 1t is possible to obtain the desired results by direct substitution
into Eqgs. (2.16)-(2.25). For the sake of increased understanding, we shall instead
directly carry out the sequential operations indicated by the Frenet formulas. The
trigonometric identity for the sine of a double angle yields z as a function of £. The
corresponding parametric form of the position is

F=(6sink§)i—(6cos k&)j—(9sin2kE) k.
Our solution begins by forming ¢, as a function of ¢ according to Eq. (2.16),

6 = dar _ 6k
" ds
We also will need s'(£), which we obtain by setting |&,| = 1;
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s'=6k(14+9cos®2kE)V2

The first Frenet relation, Eq. (2.4), describes the normal vector as

g =ple_r da
nTPds T s dE
= %(6k) 1%[—(sin k£)i+ (cos k&) j+(6sin2kE)k ]
——(Ss,—)z[(cos kE)i+ (sin k£)j— (3 cos 2k£)l€]}.
We obtain s” by differentiating s’, which yields
_ 108 k* sin 2k cos 2k§

[

(1+9cos22k§)12

If the value of the torsion = were needed, then it would be necessary to retain &, in
functional form, in order to form de,/ds for use in Eq. (2.11) or &, for use in Eq.
(2.13). For the present problem we may evaluate all quantities at £ = #/3k, with the
result that

s’ =10.8167k, §”=25.9408k?,

é, = 0.27735i+0.48038, + 0.83205%,

é, = p(—0.1059057 — 0.080869, + 0.081990% ).
The requirement that &, be a unit vector yields

p=6.392m,

é,=—0.6769i —0.5169/ +0.5241k.

Finally, we compute the binormal unit vector from a cross product according to its
definition,

&, =¢,%¢&,=0.6819i—0.7086 7 +0.1818%.

2.1.2 Kinematical Relations

Situations in which the path-variable formulation is useful may be recog-
nized by the fact that some aspect of s(¢) is given; for example, its rate § may be
known. We saw in Eq. (2.1) that 7p,¢ is a function of time through the corresponding
dependence on s. Using the chain rule to evaluate the derivative then yields

__ dr
=2 2.26
Y ds s ( )
In view of Eq. (2.2), this is equivalent to describing the velocity as
3 v=ve, v=|9|=|s|. (2.27)

These expressions indicate that the speed v is the rate of change of the arclength to
the point. They also show that the velocity is always tangent to the path. Note that
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we defined &, to point in the direction of increasing s. When the motion is such that
the point is returning to the reference position s = 0 from positive s, we would set
$ < 0to apply Egs. (2.27).

A corresponding formula for acceleration may be obtained by differentiating Eqs.
(2.27) with respect to . When we consider the speed v to be an explicit function of
time, we have

_ dé
d=%=vé,+v s=vé,+v2%.
Equation (2.4) then leads to
¢ a=aeé+a,é,,
1€ n€n (2.28)
¢ a=v, a,=v¥p.

Several aspects of this relation are important. The acceleration will have com-
ponents in the normal and tangent directions. (There is no binormal component be-
cause the curve seems locally to lie in the osculating plane.) The normal component
of acceleration is always directed toward the center of curvature for that position,
because v%/p is never negative. In the case of a circular path, p is the radius R. Thus,
a, is the centripetal acceleration. It must be emphasized that, even though the speed
might be constant, there is always a centripetal acceleration, with two exceptions.
If a point comes to rest, even momentarily, then v = 0. Alternatively, if the path
is a straight line or if the point under consideration is an inflection point, then p
is infinite. In general, the normal acceleration arises because the velocity direction
changes as the point moves along its path. In contrast, the tangential acceleration
arises whenever the speed, which is the magnitude of the velocity, changes.

There is a variety of ways in which the arclength s or speed v might be given.
Whenever the speed is described in terms of s, rather than time ¢, the chain rule may
be used to find the tangential acceleration. Specifically,

dv

v=y = (2.29)

Example 2.2 A particle follows a path defined in parametric form by x = %Awsz,
y=Atsinwg, and z= Afcos &, where A is a constant. The particle gains speed
at the constant rate v. Determine the speed v that the particle should have at the
position where £ =  in order for its x component of acceleration to be zero at that
location.

Solution Because the value of v is given and the path is known in para-
metric form, we form the acceleration using path variables. The required value of v
will be found by setting @-/ =0 at £ = 3. We begin by using Egs. (2.16)-(2.21) to
obtain the path parameters. Thus

F=LAnE2 + (AL sin wt)j+ (AL cos TE)k,
F'= Anti+ A(xé cos m&+ sin 7§) j+ A(—x& sin 7& + cos wE) k,

P"= Ami+ A(—72¢ sin nt+ 27 cos wE) j+ A(—72E cos w& — 27 sin wE) k.
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The other parameters depend algebraically on ' and 7", so we may evaluate these quanti-
ties for & = % which gives
F=AQri+j—ink), F'=An(i—jmj—1k).
Sequential application of Eqs. (2.17a), (2.16), and (2.20) then yields
s'=A(372+1)"2=2.43614,
wi+2j—wk

6 = — 0" =0.64479i +0.41048] —0.64479K,
¢ = 565560 64479 +0.41048] — 0.64479k

e, = [(2.4361) 2w (i—imj—2k)— n2(3mi+ j—i7k)]

2. 43614A

= %(0.089197 — L1171/ —0.61854Kk).

The value of p obtained from |&,| =1is

A
= = 0.78411A4,
P = {0.089192 + 1111712 + 0.618542) /2

which corresponds to

&, = 0.069947 —0.87171j — 0.48501%.

We may now form the acceleration:
R Y
a=ve+ 7 e,
= v(0.64479i + 0.41048 f — 0.64479k)

Finally, setting @-7 = 0 yields

0.06994 , _
0.784114 ’

v =2.6899(—Av)"2.

0.64479v +

The presence of the negative sign means that @-i = 0 is possible only if the speed is
decreasing. This situation is a consequence of the fact that the x components of &,
and ¢, are both positive.

Example 2.3 At the instant when a particle is at position A, it has a velocity of 500
m/s directed from point 4 to point B, and an acceleration of 10g directed from point
A to point O. Determine the corresponding rate of change of the speed, the radius
of curvature of the path, and the location of the center of curvature of the path.

Solution The velocity and acceleration are known, so representing them
in terms of tangent and normal components should yield relations for the desired
parameters. The given vectors are
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Example 2.3

v =50085,, m/s, a=10(9.807)ép,4 m/s>.
The unit vectors are defined by the positions of the end points, according to
Fa,0 = (4¢0s60°)[(cos 75°)i+ (sin 75°) 1+ (4 sin 60°) k
=0.5176/+1.9319/+ 3.464k m,

Fgio = 4i,

Gpq= B4 = [BIOTT4/0 _ 65987 0.3660 - 0.6563K,
|’B/A| |’B/o—’A/o|

r - - -
o= ——L9 = _0.12947 —0.4830 — 0.8660k.
|Fa/0l
In general, v = vé,, from which it follows that &, = ég,4. Then, because v is the tan-
gential component of acceleration, we find that

V=a,=ad6é =98.078p,, €5, = 64.70 m/s>
We may evaluate the normal acceleration by forming the difference between @ and
vé,; specifically,
2
v?e",, = a—vé, = 98.078,,,—64.7085,,
= —55.38/—23.69/—42.47k m/s>.

The values of p and é, come from the magnitude and direction of this acceleration:

2
Y (55.382423.69%+42.47%)2 =73.70 m/s?,
o

s = —55.381—23.69 —42.47k
" 73.70

= —0.7514i—0.3214j— 0.5763k.
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Finally, we locate the center of curvature C by recalling that it is at p units in the ¢,
direction relative to the corresponding point on the path. Hence,

Fei0 =Fa/0+ 08, = —2,5491—1,088/—1,951k m.

2.2 Rectangular Cartesian Coordinates

The path-variable description is an intrinsic coordinate formulation because
it relies on knowledge of the path for the definition of the unit vectors and of the
position. For the remainder of this chapter we shall consider extrinsic coordinate
systems, in which these properties are defined in a manner that is independent of the
path.

The simplest set of extrinsic coordinates is rectangular Cartesian coordinates.
These are associated with orthogonal xyz axes that are right-handed by convention.
Situations where such coordinates might be suitable are recognizable by the fact that
vectors (position, velocity, etc.) are described in terms of components with respect
to fixed directions, such as left-right and up-down. As shown in Figure 2.4, the
components of the position vector are merely the (x, y, z) coordinates projected onto
the coordinate axes. These coordinates may all be functions of time, so the position
is given by

Fpro=x()I+y(t)j+z(1)k. (2.30)

Differentiating this expression is a simple matter because the unit vectors are con-
stant. Thus, the velocity is given by

¢ V=vi+v, j+v,k,

o (2.31)
¢ v, =X, v, =J, v, =2,
from which it follows that the acceleration is
¢ a=ai+a,j+a,k,

e . (2.32)
¢ a, =V, a,=v, a,=v,.

Figure 2.4 Rectangular Cartesian coordinates.
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A notable feature of these relations is the uncoupled nature of the motions in the
X, ¥, and z directions. In other words, none of the motion parameters for one direc-
tion appear in the other components. One way of regarding this result conceptually
is to think of it as a superposition of rectilinear (i.e. straight-line) motions in each
of the coordinate directions. (One should not infer from this observation that the
motions in the three directions are independent. For example, the acceleration com-
ponent in one direction might be a function of another coordinate.)

As you might suspect, the simplicity of this formulation limits its usefulness. Prac-
tical situations in which the motion is given in terms of fixed directions are not abun-
dant. The most common involves projectile motion near the earth’s surface. In that
case the force of gravity is considered to be in the downward vertical direction, which
means that the acceleration is always downward. Even this case breaks down when
one wishes to treat the motion more accurately. For example, should one desire to
account for air resistance, the resistance force is always opposite the velocity. Such
a force is readily described in path variables as —fé,. The description of projectile
motion in terms of Cartesian coordinates also encounters difficulty when the motion
covers a long range, as with ballistic missiles. Then the gravitational force is always
directed toward a fixed point, rather than having a fixed direction. A kinematical
description using curvilinear coordinates is more suitable for this type of problem.

Example 2.4 A 200-gram ball is thrown from the ground with the initial velocity
¥ shown. In addition to its weight, there is a constant wind force of 0.5 newtons
acting in the easterly direction. Find the coordinates of the ball at the instant it re-
turns to the elevation from which it was thrown, and the velocity of the ball at that
instant.

Vertical

East

South

Example 2.4

Solution The forces acting on the ball are its weight and the wind force,
both of which act in fixed directions. We therefore employ Cartesian coordinates,
with the z axis aligned vertically and the y axis aligned eastward in order to expedite
description of the wind force. Forming 3 F = ma in terms of components relative
to these directions yields

0.57-0.2(9.807)k = ma = 0.2(%i+ yj+ zk).
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The initial conditions for the motion are
Fo=0,
Vo = (40 cos 60°)[(cos 36.87°)i — (sin 36.87°)j ] + (40 sin 60°) k

=16i—12/+34.64k m/s.

We decompose these relations into their individual components as follows:
X=0; xpo=16m/s and x,=0 at r=0,
Jy=2.5m/s?; yo=-12m/s and y,=0 at t =0,
7=-9.807m/s?, 2z,=34.64m/s and z,=0 at t =0.

The acceleration in each direction is constant, so the individual acceleration equa-
tions may each be integrated twice. The first integration yields the velocity compo-
nents, with the constants of integration selected to match the initial velocity condi-
tions. Thus

x=16m/s,
y=2.5t—12m/s,
Zz=-9.807t+34.64 m/s.

The constants of integration for the second integration are used to satisfy the initial
positions, with the result that

x=161, y=125t>-12t, z=—-4.9035¢t*+34.64¢ m.

Finally, we evaluate the instant when the ball returns to the x-y plane by setting
z =0 for ¢t > 0, which occurs when

t=7.064s.

Evaluating the position and velocity components for that instant yields
7 =113.03i —22.39/ m,
v =16i +5.660] —34.64k m/s.

As a closure, one should note that the problem we solved is unrealistic. The wind
force acting on a moving object generally depends on the velocity of that object
relative to the flowing air, which is ¥ — ¥,,;,4. Such a force will not be constant unless
both the velocity of the object and the velocity of the wind are constant. It is reason-
able to approximate the wind force as a constant only if the velocity of the object is
small in comparison to the wind velocity.

Example 2.5 A right circular cone is defined by x2+y? =922 (x, y, and z are in
millimeters). The vertical position of a block sliding along the interior of such a cone
is observed to be z = 480 — 8072, and x = y*/200. Also, y > 0 throughout the motion.
Determine the velocity and acceleration of the block when # =2s.
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S S e

/\y

X

Example 2.5

Solution Because the intersection of two functions relating x, y, and z is
a curve, the first and third of the given functions specify the path of the particle. We
elect to use Cartesian coordinates, rather than path variables, because the second of
the given relations prescribes the motion along the path in terms of the distance along
the z axis. We simplify the functional relationships by using the first and third equa-
tions to relate y solely to z. The position equations then become

_ _ 2 _ 1 5 1 4, 2_o.2
z=10.480-0.080¢", X_O.Zy’ —0'O4y +y“=9z°m.

Differentiation of these expressions yields relations governing x, y, and z:
7=-016t, x=10yy, (100’ +2y)y =18z2.

A second differentiation leads to
i=-016, x¥=100yy+y?),
(100y>+2y)y+(300y% +2)y* = 18(zz + 2%).

We find values for ¢ = 2s by sequential evaluation of the equations. Because y > 0,
the position coordinates are

x=0.3903 y=0.2794 z=0.160 m.
These coordinates allow us to evaluate the first derivatives. Thus,
xXx=0.9398 y=-0.3364 z=-0.320m/s.

Next, we use these rate values to solve the equations for the second derivatives;
specifically,

¥=-23.38 j=-8773 7=-0.160m/s%

The derivatives are the respective components of the velocity and acceleration, so
¥ =0.9398/—0.3364,—0.320k m/s,
a=—23.38/—8.773/—0.160k m/s’.
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The path may be visualized by noting that it lies on a cone; the projection of the path
on the x-y plane is a parabola having x as the axis of symmetry.

2.3 Orthogonal Curvilinear Coordinates

The description we offer here specifies the position of a point by giving the
value of a triad of parameters that form an orthogonal mesh in space. Let «, 3, and
v be the three parameters, such that a unique transformation exists between the
(x, ¥, z) rectangular Cartesian coordinates and the («, 8, v) values:

x=x(a,B,7), y=y(a,8,7), z=2z(c, B,7);

(2.33)
a=al(x, ), z), B =8(x,y,2), ¥ =v(x,,2).

Formulations in terms of cylindrical or spherical coordinates are typical.

When two of the parameters («, 3, ) are held constant while the third is given a
range of values, the first group of Eqs. (2.33) specifies a curve in space in parametric
form. When the constant parameter pair is given an assortment of values, the result
is a family of curves. Repeating this procedure, with each of the other pairs of pa-
rameters held constant, produces two more families of curves; this is the aforemen-
tioned mesh. The families of curves are mutually orthogonal in the cases that we
shall treat. For this reason, (¢, 3, ) are said to be orthogonal curvilinear coordi-
nates. The name for each set of coordinates usually corresponds to one of the types
of surfaces on which one of the curvilinear coordinates is constant. This is illustrated
in Figure 2.5(a) for cylindrical and Figure 2.5(b) for spherical coordinates.

[}

Figure 2.5 (a) Cylindrical coordinates.
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Figure 2.5 (b) Spherical coordinates.

Constant

- fandy

Constant
o and vy

Figure 2.6 Curvilinear coordinate mesh.

It is difficult to depict a three-dimensional situation, so Figure 2.6 shows a two-
dimensional grid. Neighboring curves for each family are separated by values of the
other coordinate that differ by an infinitesimal value. The distance between intersec-
tion points on the grid is not the same as the value of the increment in that coordi-
nate. The ratio of the differential arclength along a coordinate curve between inter-
sections and the increment in the coordinate corresponding to the intersections is the
stretch ratio for that coordinate, denoted #,, with A = «, 8, or v. The corresponding
arclength along a coordinate curve is s, so
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dsy=hydA, A=a, B, ory. (2.34)

The relationship between the curvilinear coordinate transformation, Eqgs. (2.33),
and the stretch ratios will be established shortly.

2.3.1 Coordinates and Unit Vectors

Moving along any of the coordinate arcs for a curvilinear coordinate mesh
is very much like the situation in path variables. There are three unit vectors &,, con-
sisting of the tangent to each of the coordinate curves intersecting at any point.
Incrementing one coordinate with the other two fixed is a process of partial differ-
entiation, so the unit vectors may be obtained from

oo O
A aS)\’
1,
¢ é)= R A=a, B, or v. (2.35)

Note that the unit vectors may depend on the value of each curvilinear coordinate.
However, in many cases the unit vectors might be independent of one or more of the
coordinates. Two such cases are cylindrical and spherical coordinates. The unit vec-
tors obtained for each were depicted in Figure 2.5. In cylindrical coordinates, &g
and &, depend only on the azimuthal (transverse) angle 0, and &, = k is constant. In
spherical coordinates, all the unit vectors depend only on the polar angle ¢ and the
azimuthal angle 6.

It is conventional to employ a right-handed coordinate system in order to avoid
sign errors in the evaluation of cross products. Consistency with this convention is
obtained in curvilinear coordinates by ordering («, 3, 7v) such that

e XE3=¢,. (2.36)

Explicit expressions for the stretch ratios may be obtained in such geometrically
simple cases as cylindrical and spherical coordinates by drawing diagrams resembling
Figure 2.6 for each coordinate line. More difficult cases are treated by using the fact
that é, is a unit vector, so that

ar
oA

The derivation of the acceleration equation will require differentiation of the unit
vectors. Rather than differentiating Eq. (2.35) directly, we shall follow a more cir-
cuitous approach that will yield explicit expressions in terms of the stretch ratios.
The approach here is similar to the way in which some of the Frenet formulas were

derived for path variables. First, the derivative of any unit vector &, with respect to
any coordinate u is resolved into components as

aé)‘ _ ae',\>_ <_ 6é,\>_ (_ aé)‘)_
— = .t + iy + iy . 2.38
<ea €y ég € e, e, ( )

Here, both A and x correspond to «, 83, or v, so we must consider permutations
of the general term é,-(d€,/du). All cases where the unit vectors €, and €, match are
covered by

’ h)\ = . (2.37)
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e e)\—l = eA — =0. (239)
au
Cases not covered by Eq. (2.39) correspond to v # A. We may evaluate these with the
aid of a sequence of identities. It follows from the orthogonality of the unit vectors
that
ae ae
8,6,=0 = &, —>=—¢.—2,
Oou ou

The following relation originates from Eq. (2.35):

v#E A (2.40)

d _ a -
a—;;(h)\e)\) = a(h#e#)-
Carrying out the derivatives leads to

dé, ah dh
h)\ ae/\ B—Ae_}\=h &'i'—é . (241)
Iz u

We may now consider the various combinations of the general term é,-(d¢,/du)
when v # A. Because each of the symbols represents one of three possible coordinates,
the only combinations fitting the restriction that v #A are u = v # A, u = A # », and
w # v # A. We begin by considering the first case. Such terms are obtained from the
dot product of Eq. (2.41) with é,. Because é, and ¢, are different, it follows from
Eq. (2.39) that

: dé, 1 dh,
“9u hy AN
We obtain an expression for the general term &,-(d€,/du) in situations where u =

A # v by applying Eq. (2.40) to the foregoing, and then changing the symbol A to ».
The result is

_ de, 1 oh,
— —E . 2.42b
e 6# “h o vEp ( )
The only remaining case is that for which A, u, and » differ from each other. The
dot product of Eq. (2.41) with &, in this case yields

pE A (2.42a)

de ge .

ai,: =hee,- %, A, v, p distinct, (2.43)
The next steps involve alternate application of permutations of the properties in
Egs. (2.40) and (2.43) to the right side of Eq. (2.43). This gives

_ Py _
h)‘éy.é_ei=_h é .ﬁ:-h“<ﬂé %)

hAév :

o A B, oy
h#h)\_ ae ae aé,\
= 2% —pe 2 - _pe .2
B, N e T Srw

The foregoing is a contradiction unless
6e,\

=0, A,v,pu distinct. (2.44)
N

V
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Equations (2.39), (2.42), and (2.44) are the identities we seek.t With these rela-
tions, we may express the components of 3¢,/du in Eq. (2.38) in terms of the stretch
ratios. There are nine combinations of A and u values, whose individual components
are evaluated by selecting the appropriate case from the identities. We will list only
the results for A = «. The others follow by permutation of the symbols.

R de, 1 ahaé 1 6haé
da  hg B " h, vy "

dé, 1 dhg _ de, 1 dh

38 " aa v

B  h, o« dy h, O

(2.45)

Example 2.6 The two-dimensional hyperbolic-elliptic coordinate system is defined
by

x =acoshasing, y =asinhacosf,

where a is a constant. Evaluate the unit vectors of this system in terms of compo-
nents relative to the x and y axes; then describe the derivatives of the unit vectors.

la|=1

lal=3
Example 2.6

Solution The name of this set of coordinates stems, in part, from the fact
that lines of constant « are ellipses:

2 2
X > + ‘y =1,
acosha asinha

1 A common operation in tensor analysis is covariant differentiation of a quantity that is defined
in terms of basis vectors for an arbitrary curvilinear coordinate system. Such a derivative may
be expressed in terms of Christoffel symbols. Equations (2.39), (2.42), and (2.44) define some
of the Christoffel symbols for the case of an orthogonal coordinate system.
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where 2a cosh o and 2a sinh @ are the lengths of the major and minor diameters,
respectively. Also, lines of constant 3 are hyperbolas:

x ¥ [y \
<asinﬁ> ~_<acosﬁ> +1,

where x = £y tan 3 are the asymptotes and +a sin3 are the intercepts on the x axis.
The stretch ratios and unit vectors come from the partial derivatives of the posi-
tion vector:

or i(xf+yf) = (asinh « sin 8)i + (a cosh a cos §),
da Jda

o _ —a—(xf+ j) = (a cosh a cos 8)i — (a sinh o sin B) .
38 38 YJ J-

We find from Eq. (2.37) that

or . .
= g(sinh? « sin? B + cosh? a cos? B)V2
(04

S

= a[(cosh? o — 1) sin® B+ cosh? « cos? B]"2 = a(cosh? o —sin? B)/2.

Steps comparable to the foregoing lead to the stretch ratio hg = |87/98|. It is con-
venient to define

h = (cosh? a —sin? B)V2
The result is that
hg = h, = ah.

The corresponding unit vectors are found from Eq. (2.35) to be

e, = %[(sinha sin 8)i+ (cosha cos B)j1,

ey = —}ll—[(cosha cos )i —(sinh e sin B) /1.

The orthogonality of the mesh is confirmed by these unit vectors, because they show
that écx 'éﬂ =0.

The derivatives of the unit vectors involve partial derivatives of the stretch ratios,
which in the present case are obtained from

% = %(cosha sinha), % = —%(sinB cos 3).

The corresponding expressions resulting from Eq. (2.45) are
aéa__lﬂé _sinBcosBé d; 1 0n_ coshasinhaé
b HOBPT T mz P 8T RHaaT h? @
aéa_l_aﬁé _coshasinhaé dég 1 oh _ sinBcosBé
B Hoa P K2 e RBT Rz o
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2.3.2 Kinematical Formulas

Our task in this section is to express velocity and acceleration in terms of the
parameters of a curvilinear coordinate system. For this development we consider the
motion to be specified through the dependence of the curvilinear coordinates on time.
The velocity is the time derivative of the position vector, which is a function of the
curvilinear coordinates. The definition of the unit vectors in Eq. (2.35) then results in

_ ar ar - - -
V=a —+,8 £+‘y haaea+h36e5+h7767.
This expression may be written in summation form as
A=a,B,y

We derive the acceleration by differentiating Eq. (2.46) with respect to time. For
this, we consider only the curvilinear coordinates A to depend explicitly on ¢, whereas
the unit vectors €, and the stretch ratios 4, depend on ¢ implicitly through their de-
pendence on the coordinates. Application of the chain rule for differentiation then
yields

. oh d
. a= 3 [h,\Aé)‘+ > ( —2&+n, eA)Au] (2.47)
A=a,B,y = by\ O 9

Explicit expressions for a specific set of curvilinear coordinates may be obtained
from Eq. (2.47) by evaluating the stretch ratios and the derivatives of the unit vectors
according to Eqs. (2.37) and (2.45), respectively.

It is apparent that each acceleration component might consist of several terms, in
the most general case. The situation for many common sets of curvilinear coordi-
nates is simplified by the fact that the stretch ratios do not depend on all of the coor-
dinate values. For the coordinates defined in Figure 2.5, we have the following.

Cylindrical Coordinates (R, 6, z)
x=Rcos¥, y=Rsind, z=2z;
hp=1, hy =R, h,=1;
Fpjo=Rég+zk, é,=k; (2.48)
¥ = Rég + Rbé,+ zk;
d = (R—R6%)ég+ (RO+2RO)Ey+ k.
Spherical Coordinates (r, ¢, )
x =rsingcoso, y=rsin¢sin, Z=rcos¢;
hr=1, hy=r, he =rsin¢;
Fpio = Ié;;
v =reé, +réé,+risinpé,;
a=(F—rp?—rétsin’ ¢)é, +(ré +2rd—ré?sin ¢ cos $)é,
+(résing + 20 sin ¢ +2réf cos ¢)é,.

(2.49)
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2.3.3 Interpretation

Consideration of Eq. (2.47) shows that in the most general case there are 21
different terms contributing to the acceleration: three from the single summation and
nine from each term in the double summation. Because there are only three curvi-
linear coordinate directions, it is clear that a variety of effects contribute to any accel-
eration component. Let us examine each type of effect.

The terms in the single summation are intuitively obvious. They express the accel-
eration tangent to the coordinate curves that arises when the rate of change of the
corresponding coordinate is not constant. In order to understand the terms in the
double sum we categorize them as to whether or not the indices for each sum are
associated with the same curvilinear coordinate. If u = A, three terms correspond
to A%(dh,/d))é,. This is another tangent acceleration effect, which arises because
constant rates of change of the A curvilinear coordinate will not lead to a constant
rate of movement along that curve if the stretch ratio changes along the curve. The
other term corresponding to u = A is A>,(3€,/8)). Because the derivative of a unit
vector is always perpendicular to the unit vector, this is an acceleration component
perpendicular to the A coordinate curve that arises from the changing direction of the
unit vector as A changes. Such a change is illustrated in Figure 2.7, associated with
&, at two neighboring points on a specific A curve. The fact that Ak, is the velocity
component suggests that this acceleration component is analogous to the centripetal
acceleration in path variables.

Let us now turn our attention to those terms in Eq. (2.47) that correspond to
n # A. There are three combinations fitting this description, corresponding to Ap =
&, &y, or Bv. Let us consider the combination of indices u, A = «, 8. The first term
in the double sum leads to two terms: [(6ha/66)éa+(ahB/aa)e'B]dB. Each of these
terms exists if a coordinate transverse to a specified coordinate curve A changes and
the stretch ratio for that curve depends on an orthogonal coordinate. Both represent
acceleration components tangent to the A coordinate curve that result because the
rate of movement along the curve, Ah,, changes as a consequence of the noncon-
stancy of the stretch ratio. The second term in the double summation also leads
to two terms for A, u =a, 3: [ha(aéa/aﬁ)+h3(6éﬂ/6a)]c’uB. These are acceleration
terms perpendicular to a A coordinate curve associated with the change in the tangent

o+ 22 g
m
/
constant 736, A
(p+dp) and v é, e)‘+ﬁ
€x
constant
constant (A+dA) and »
mwandv constant
A and v

Figure 2.7 Changes in a curvilinear coordinate unit vector.
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to that curve, é,, resulting from movement to a different A curve. This is depicted in
Figure 2.7, where two A curves correspond to constant values of the orthogonal coor-
dinate p that differ by du. The tangent vector &, for corresponding points on each
curve are not the same.

Consider the terms in the cylindrical and spherical coordinate accelerations, Eqs.
(2.48) and (2.49), associated with rate products of different coordinates. In each case
there is a factor of 2. From our discussion, it is clear that these arise from two dis-
tinctly different effects associated with an interaction of motion along more than one
coordinate curve. These mixed-product terms are usually called Coriolis accelera-
tions after G. Coriolis (1792-1843), who successfully explained the phenomenon.
Only in the special case of Cartesian coordinates is there a superposition of motion
along each of the three coordinate curves resulting from changing the respective
coordinate value.

Example 2.7 Derive Eqs. (2.48) for velocity and acceleration in terms of cylindrical
coordinates.

Solution The first step is to evaluate the unit vectors and stretch ratios.
For the coordinate system in Figure 2.5(a), we have

7= (Rcos8)i+(Rsin8)j+zk.

Then
hpég = or _ (cos 8)i+ (sin )},
RER 3R J>
- af . ke -
heéy = 20 = —(Rsinf)i+ (Rcos0)j,
. oF -
hzez = E =k.
Setting the magnitude of each unit vector to unity yields the stretch ratios. Thus
oF oF or
h:—:l, h=—=R’ hzz——-—zl,
R~ |ar AN FY 3z

which corresponds to
ér = (cos 0)i+(sin8)J,
8y = —(sin@)i+(cos ).

The derivatives of the unit vectors are required to form Eq. (2.47) for 4. Although
Eqgs. (2.45) may be applied for this purpose, we may employ direct differentiation
with equal ease in the present case. Specifically,

o - dep ) - . dép =
R =0, 20 - (sin@)i+ (cos 8)j = éy, e =0;
aéo - aég T . T - aé() A
_—= —_— = — = — —=0;
IR 0, 30 (cos8)i—(sinB)j ég, 9z

de, e, ode,
R~ 36 9z

=0.



2.3 / Orthogonal Curvilinear Coordinates 37

We obtain an expression for the velocity by expanding Eq. (2.46) and substituting
the various terms. Thus,

V= hgRég+hybéy+ h,zé,= Rég+ RO, + zk.
Applying the same procedure to Eq. (2.47) yields the acceleration. Specifically,

. dhg h d
-=hRRéR+< eR+hR aeR)R +<2——@eR+hR ae0R>R0

dR OR a0
+<a—£iék hg aaeR>Rz+h90e0+<Z}; +hy 3;")1?9
() (o
+h,zé +(3’;§‘ +h, 3;2>R +<?;; +hz%%>0z'
(e

= Rép+ R6é,+ Rbe,+ Roé,— RO%ép+ zk.

Collecting like components in this expression leads to the same result as Eq. (2.48).
Note that the second and fourth terms in the final expression for @, which combine to
form the Coriolis acceleration, originated from different sources. One term corre-
sponds to hz(dex/30)RE and so is a consequence of the dependence of the radial
unit vector on the azimuthal angle 4. The other term comes from (dh,/dR)é, R0,
which arises because the movement in the azimuthal direction accelerates owing to
dependence of the azimuthal stretch ratio on the radial distance.

Example 2.8 An airplane climbs at a constant speed v and at a constant climb
angle 8. The airplane is being tracked by a radar station at point 4 on the ground.
Determine the radial velocity R and the angular velocity é as functions of the track-
ing angle 6.

—-—— 71— /
fo
/R
/
H /
/
/ 9
/
4 Horizontal
A

Example 2.8
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Polar coordinate system.

Solution We shall employ a trigonometric approach here, in which the
desired parameters are obtained from differentiation of geometrical relations. (A
simpler solution to this problem may be found in Example 2.10, which matches the
given velocity to the cylindrical coordinate formulas.) First, we construct the dis-
tance v¢ the airplane has traveled after passing point B above the radar station. This
forms one side of a triangle whose other sides are R and H. Then the law of sines
yields

R _ vt _ H
sin(r/2+8)  sin(x/2—6)  sin(d—B)"

Thus
Rsin(6—B) = Hsin(n/2+8) = Hcos B,
vt sin(@—B) = Hsin(w/2—-8) = Hcos®#.
Differentiating each expression leads to
Rsin(d—B)+ Rb cos(6—B) =
vsin(@ —B)+ vté cos(8 — B) = —H6 sin 6.
These are simultaneous equations for R and 8, whose solution is
_ vsin(8—p)
vt cos(§—B)+ Hsing’

_ Rv cos(§—0)
" vtcos(§—B)+Hsinb’

These expressions are not in the desired form because they depend on ¢ and R.
The equations obtained from the law of sines indicate that

cos 8 V= cosf
sin(6—RB)° T sin(0-B)"

We use these relations to eliminate R and v¢ from the expressions for R and §, which
leads to
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v sin(8—8)
~ H cosfcot(§—B)+sinf’
- cot{(f—B)cos B
" cosbcot(f—B)+sinb’
In order to simplify these relations, we multiply numerator and denominator of each

by sin(6 — (), and then employ the identity for the cosine of the difference of angles.
This yields

v sin(8 —B) .

0=—-H vy R =vcos(8-5).

Example 2.9 The flyball governor rotates about the vertical axis at the rate of 1,800
rev/min, and the angle ¢ locating the arms relative to the vertical is known to vary
as ¢ = ;7 sin(1207¢) rad, where ¢ is in units of seconds. Determine the velocity and
the acceleration of sphere A as a function of time. Then evaluate these expressions
for the instants when the elevation of the sphere is a maximum and a minimum.

=4

72 ez
751,800 rev/min
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Example 2.9
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Spherical coordinate system.
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Solution The motion of each sphere is described in terms of a distance
from a fixed point, a rotation about a fixed axis through that point, and an angle
relative to the axis, each of which matches a spherical coordinate description. The
unit vectors in the sketch are in the sense of increasing coordinate values. (Note that
the manner in which the angles are defined leads to a set of unit vectors for which
8, X & = &, unlike the definition in Figure 2.5(b).) The radial distance and rotation
rate about the fixed axis are both constant, so

r=0.40 m, F=F=0;
6= 1’80()(%) =60~ rad/s, 6=0;

¢ = twsin(1207f) rad, & = 407% cos(120¢) rad/s;
é = —4,80077 sin(1207¢) rad /s

The spherical coordinate formulas corresponding to these parameters become
v = 1672 cos(1207¢)é,+ 247 sin[§7 sin(1207¢)]1&; m/s,

—{6407* cos?(1207t) +1,4407? sin®[$ 7 sin(1207¢)] )&,

—{1,92073 sin(1207¢) + 7207 sin[ £ 7 sin(12077)]} &,

+1,92073 cos(1207t) cos{+ sin(1207¢)1éy m/s2.

i

a

These general results may now be evaluated at the desired instants. The highest
elevation of a sphere corresponds to the maximum value ¢ = i, at which time
sin(120«¢) = 1. Correspondingly, cos(120#¢) = 0 at this instant, which yields

v =65.30¢, m/s, a =—10,659¢, —65,686¢, m/s2
The lowest elevation occurs at ¢ =0, cos(120x¢) = +1, which yields
v = +157.91é, m/s, d=—62,342¢,+ 59,5328, m/s°.

Note that the + sign arises because the sphere may be swinging in either direction
ato =0.

2.4 Joint Kinematical Descriptions

The degree to which the system parameters match those of a coordinate sys-
tem is a key factor affecting the selection of a kinematical description. A specific con-
cern is whether the quantities that are either given or to be determined are like those
for the chosen description. For example, suppose that the path of a particle is known
to be as shown in Figure 2.8. If the rate of movement along that path is specified in
terms of the speed v, we would certainly want to employ a path-variable description.
On the other hand, specification of the rate of motion in terms of the angle § measured
from the x axis would certainly suggest that cylindrical coordinates be employed.

We could consider the kinematical description that best matches the parameters
of the actual system to be the “natural” one. We shall investigate here situations in
which no one formulation is entirely natural, although more than one has elements
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Starting
position

—

F,/

Figure 2.8 Joint usage of path variables Figure 2.9 Transformation of unit
and cylindrical coordinates. vectors in a plane.

that are suitable. Such a situation arises for the path in Figure 2.8 when the rate of
movement is given in terms of the speed, yet we desire to evaluate R and R. It is
almost axiomatic that if one of the kinematical descriptions (such as path variables,
Cartesian coordinates, or one of the curvilinear coordinate systems) has some aspect
that suits a problem, then it should be employed. Thus, the task that confronts us
here is to establish how to implement two different descriptions simultaneously.

The general concept is to match the velocities and accelerations obtained from
each of the formulations of interest. This matching depends on the fact that the unit
vectors for one formulation may be resolved into components relative to the other.
For simplicity, let us begin by considering planar motion. Let é,, &; be the unit vec-
tors for one kinematical description (e.g., &, and &g are the tangent and normal direc-
tions), and let é,, &, be the unit vectors for the other description. These unit vectors
are depicted in Figure 2.9.

As shown in the figure, the orientation of one set of unit vectors relative to the
other is defined by the angle y. (The definition of ¥ as the angle between €, and &, is
arbitrary.) The components of &, and &, relative to &, and &; are found from this
figure to be

é,=(cosy)é,+(siny)ég, 2.50)
é,=—(siny)é,+(cosy)és.

The velocity may be expressed in terms of components relative to either set of unit
vectors. Thus,

v= vaéa+ Vﬁé@ = V)\é,\+ vﬂéﬂ' (251)

We are assuming that at this stage, the first set of components v,,, vz have been related
to the parameters associated with («, 3) through the corresponding velocity formula,
such as ¥ = Rég+ ROé, for polar coordinates. A similar operation is also assumed to
have been performed for the second set of components. Each velocity component
might contain unknown kinematical parameters.
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The next step is to convert the (A, u) components to (o, 3) components. This is
achieved by substituting Egs. (2.50) into Eq. (2.51), with the result that

V=yv,€,+ V383
= wfl(cosy)e,] +{(siny)és]} +v,{[—(siny)e,] +[(cos ¥)és]}.

These are two descriptions of the velocity in terms of the same set of components.
Equality of vectors requires that their corresponding components be equal, which
leads to the following algebraic relations:

Vo = VpCO8Y — v, siny,
(2.52)
Vg =vysiny +v, cosy.

These relations may be used to solve for two unknown parameters in the velocity
components.

As an illustration of this procedure, suppose that (o, 8) represents path variables
and (A, u) represents polar coordinates. Substitution of the respective velocity com-
ponents into Eq. (2.52) then yields

v=Rcosy—ROsiny,
0=Rsiny+Rlcosy.

The values of the radial distance R and the angle of orientation 6 are known if the
position is specified. Thus, the previous display shows two relations among the three
rate variables v, R, and 6.

Relations such as those listed in Eqs. (2.52) could be used in either of two general
situations. It might be that the velocity is already known in terms of components in
the (A, u) system. In that case, Eqgs. (2.52) provide the conversion to components
and parameters associated with the («, 8) system. The more interesting situation is
that of a mixed description, that is, one in which the velocity is only partially known
in terms of either of the two descriptions. In that case, Eqs. (2.52) provide the means
of ascertaining the unknown parameters in each system, and thereby the velocity
itself.

The same approach may be applied to treat acceleration. Specifically, the individual
formulas for acceleration may be matched by employing the unit vector transforma-
tion, Eq. (2.50). However, doing so requires that the velocity parameters, such as ||
or R, be evaluated first because they occur in the acceleration components. In other
words, the velocity relations must be solved before accelerations can be addressed.

This discussion has treated the case of planar motion, but the same procedure
also applies to three-dimensional motion. The kinematical formulas in that case have
three components, so matching corresponding components will lead to three simul-
taneous equations. The primary difficulty that arises in this extension is the evalua-
tion of the transformation of the unit vectors. The component representation in Eq.
(2.50) was achieved by visual projections of a unit vector onto the other directions.
The same procedure may be performed in a three-dimensional case if the geometry
is not too complicated. An alternative approach for determining the unit vector com-
ponents when the configuration is difficult to visualize uses rotation transformation
properties established in the next chapter.
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Example 2.10  Use the concept of a joint kinematical description to determine R
and @ for the airplane in Example 2.8.

Solution The path and speed of the airplane are given, both of which are
path-variable parameters. We must determine the rates of change of polar coordi-
nates, which are cylindrical coordinates with z=0. Thus, we draw a sketch that
depicts the unit vectors for both formulations at an arbitrary 9.
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Unit vectors.

The velocity in terms of each set of unit vectors is
¥ = vé, = Régp + Rbé,.
Resolving ¢, into polar coordinate components yields
é, = cos(6—f)eg —sin(d —B)é,,
so that
v =vcos(0—B)eg—vsin(f — B)e, = Rég+ ROé,.
The result of matching like components is

R =vcos(8—-p), 0=-—% sin(8 —B).

All that remains is to express R in terms of 6, which we find from the law of sines as
follows:

R _ H - R= cosf3
sin(x/2+8)  sin(6—B) R=H sin(0—B8) "
Thus
. ) v sin®(6—pB)

R =vcos(0—0), 0=——
(0=4) H cosf
There is no doubt that this solution is easier than the one in Example 2.8. In
essence, the joint kinematical description avoids the need to differentiate functions,
because the various kinematical formulas are themselves derivatives of the position.

Example 2.11 Arm AB rotates clockwise at the constant rate of 40 rad/s as it
pushes the slider along guide CD, which is described by y = x2/200 (x and y are in
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millimeters). Determine the velocity and acceleration of the collar when it is at the
position x = 200 mm.

Solution The planar motion is specified by a rotation rate, but the path is
not described in terms of polar coordinates. Hence, we shall follow an approach that
employs path variables and polar coordinates. A sketch shows both sets of unit vec-
tors at x = 200 mm, which corresponds to y = x%/200 = 200 mm.

The polar coordinates are found from a right triangle to be

R = [(600)2+(200)2]V2 = 632.5 mm, 6= tan*(%) = 18.435°.

The slope of the guide bar at this location yields the angle of orientation of the tan-
gent vector:
dy x
=tan"!{ == ) =tan~!{ = } = 63.435°.
B =tan <dx) an <100>
Matching like velocity components in each formulation is the next step. We find

that

¥ = Reg+ Rbéy = vé, = v[—cos(0 + )& +sin(6 + B)é;];

#.8g =R =—vcos(6+R), .6, = RO = vsin(6+B).
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The value of 8 is given to be 40 rad/s, and R, 8, and 8 have been evaluated. The
corresponding results obtained from these relations are

v =25,557T mm/s = 25.56 m/s,
R =-3,614 mm/s = —3.614 m/s.

Because we have evaluated all velocity parameters, we may now follow a similar
procedure for acceleration. In order to resolve é,, we note that it is oriented toward
the center of curvature, which is up and to the left for the parabolic curve;

2
d=(R—R6%)ép+(RH+2R0)é, = ve,+ Xp-é,,

2
= v[—cos(0+B)ep+sin(6+B)é,]+ v?[sin(ﬂ+B)éR+cos(0+B)é0].

The unknowns in these equations are v, R, and p. We compute the latter from Eq.

(2.22), which gives, for x =200 mm,

_ [1+(x/100)]*"2
- (1/100)

The result of matching like acceleration components is

=223.6 mm.

2
Geép=R—R6?=—v cos(a+ﬁ)+v7 sin(6+8),

2
G-8y=RI+2RO=v sin(o+3)+% cos(8+ ).

The value of 4 is constant, and we found R and v earlier. Hence, we solve the a,
equation for v, then substitute that result into the equation for ag:

b 2RO—(v¥/p)cos(0+8) _

—-3.755(10° /s,
Sin(0+9) 3.755(10°) mm/s

2
R=R§*—v cos(¢9+,6)+v7 sin(6+B) = 1.6435(10°) mm /s>
The parameters that were requested are the velocity and acceleration, which we
may form in terms of either kinematical formulation. Thus
v =25.56&, m/s = —3.614éz +25.30€, m/s,
a=—375.5¢,+584.2¢, m/s* = 631.4ég —289.1é, m/s>.

Example 2.12 The cord suspending a spherical pendulum is pulled in at a constant
rate of 5 m/s. At the instant when the pendulum is 2 m long, the azimuth angle § =
0° and the angle of inclination of the cable is ¢ = 30°. At this instant, § = 2 rad/s,
6=0,¢=—5rad/s,and ¢ = —10 rad /s Determine the speed and the rate of change
of the speed of the small body at the end of the cable at this instant. Also, determine
the corresponding radius of curvature of the body’s path at this position.
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Example 2.12

Solution In this situation the motion is fully specified in terms of spheri-
cal coordinates centered at the top of the post, whereas the desired parameters are
path variables. Hence, the procedure is to construct the velocity and acceleration
using spherical coordinates, and then to relate those expressions to the path-variable
formulas.

Because the cable is being pulled in at a constant rate, we set # = —5m/sand ¥ =0
when r =2 m. Substitution of these values and the stated rotation rates into Eqgs.
(2.49) gives

v =-5¢,—10é,+2é, m/s,
@=—52¢,+26.546,—44.648; m/s>.

The speed is the magnitude of the velocity, so
v=2+vi+vH)"?=11.358 m/s.

Because v = vé,, we find that the tangent vector is
e, = v/v =—0.4402¢,.—0.8805¢,+ 0.17609¢,.

We know that v is the tangential component of acceleration, which we find by using
a dot product:

v=a-6 = —8.336 m/s%,

Finally, in order to evaluate p, we form the difference between the total acceleration
and the tangential acceleration. Specifically,

v2

7é,, =a—ve, = —55.67¢,+19.208, — 43.178, m /s>
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We evaluate the magnitude of this acceleration and use the value of v to find

v2

= =1.7668 m.
(55.672+19.202+ 43.172)12 m

0
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Problems

2.1 A particle follows a planar path defined by x = k{2 and y = 2k[1—exp({)], such that
its speed is v = B¢, where k and 8 are constants. Determine the velocity and accelera-
tion at { =0.5.

2.2 A small block slides in the interior of a smooth semicircular cylinder. Because fric-
tion is negligible, the speed of the block is given by v2 = 2gh, where 4 is the vertical
distance the block has fallen. Determine the velocity and acceleration of the block
as a function of the distance the block travels in a case where the block is released at
position A.

Problem 2.2 Problem 2.3

2.3 The collar slides over the stationary guide defined by x = ky? in the vertical plane.
The speed of the collar is the constant value v. This motion is implemented by apply-
ing a force F of variable magnitude parallel to the x axis. Derive an expression for
the magnitude of F and of the normal reaction as functions of the y coordinate of
the collar.

2.4 A slider moves over a curved guide whose shape in the vertical plane is given by y =
cosh x. Starting from x = 0, the speed is observed to vary as v = vy(1 — ks), where s
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29

2.10

y =cosh x

Problem 2.4

is the distance traveled and k is a constant. Derive expressions for the velocity and
acceleration of the slider as a function of x.

A helix is defined by x = ecy, y =esin(cy), z= —ecos(cy). Determine the path
variable unit vectors, the radius of curvature, and the torsion of this curve as a func-
tion of ¢.

A particle moves along the paraboloid of revolution y = (x2+ z?)/a, such that x =
—asinh k¢ and z = o cosh k¢, where x, y, and z are in meters, { is a parameter, and «
and & are constants. At the position where { = 1/k, the particle’s speed is Sak and its
speed is decreasing at the rate 2ak2. Determine the velocity and acceleration at this
position.

Determine the radius of curvature and the torsion of the path in Problem 2.6 at the
given position.

A particle moves along the paraboloid of revolution z = (x2+y2)/k such that x =
kwtsinw? and y = kw?{?, where k and w are constants and { is a parameter. Con-
sider the case where the parameter { = ¢2, where ¢ is measured in seconds. Derive
expressions for the velocity and acceleration.

Pin P is pushed by arm ABC through the groove, y = 2(1 —4x?), where x and y are in
meters. The velocity of arm A BC is constant at 30 m/s to the right. Determine the velocity
and acceleration of the pin at the position x = 0.25 m.

Problem 2.9

A ball is thrown down an incline whose angle of elevation is . The initial velocity is u
at an angle of elevation 8. Derive an expression for the distance D measured along
the incline at which the ball will return to the incline. Also determine the maximum
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Collector

Problem 2.10 Problems 2.11 and 2.12

2.1

212

2.13

2.14

2.15

2.16

217

height H (measured perpendicularly to the incline) of the ball, and the corresponding
velocity of the ball at that position.

A 10-mg dust particle is injected into an electrostatic precipitator with an initial
velocity of 10 m/s, as shown. The z axis is vertical and the electrostatic force is 2 mN,
acting in the positive y direction. Determine the location at which the dust particle
will strike a collector plate that is situated in the vertical plane, y = 400 mm.

A 10-mg dust particle is injected into an electrostatic precipitator with an initial
velocity of 10 m/s, as shown. The z axis is vertical and the attractive force on the par-
ticle is 0.4 —y mN acting in the positive y direction, where y is measured in meters.
Determine the location at which the dust particle will strike a collector plate that is
situated in the vertical plane, y = 400 mm.

For laminar flow at low Reynolds number, the air resistance on an object is —cv,
where ¢ is a constant and v is the velocity of the object. A sphere of mass m is thrown
from the ground with an initial speed v, at an angle of elevation 8 in the (vertical)
x-y plane. Determine the position and velocity of the sphere as a function of time.

Current flowing through a coiled wire sets up a magnetic field B that is essentially con-
stant in magnitude and parallel to the axis of the coil, so B = Bk. The force acting
on a charged particle moving through this field at velocity ¥ is given by F = g% x B,
where 8 is a constant. Suppose such a particle is injected into this field at the origin,
with an arbitrary initial velocity. Derive an expression for the position of this parti-
cle as a function of time, and identify the corresponding path. Assume that gravity is
negligible.

Derive the expressions for velocity and acceleration in terms of spherical coordinates.

A ball rolls on the interior of a paraboloid of revolution given by x2+ y2 = ¢z. The
angle of rotation about the z axis is § = 4= sin®(w?), and the elevation of the ball is
z = b6, where b, ¢, and w are constants. Determine the velocity and acceleration
when ¢ = 47/ 3w.

In a Eulerian description of fluid flow, particle velocity components are described as
functions of the current position of a particle. The polar velocity components of fluid
particles in a certain flow are known to be v = (A4 cos $)/R? and v, = (4 sin $)/R?,
where R and ¢ are the polar coordinates of the particle. Determine the correspond-
ing expressions for the acceleration.
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2.18 Observation of a small mass attached to the end of the flexible bar reveals that the
path of the particle is essentially an ellipse in the horizontal plane. The polar coordi-
nates for this motion are

ab . K

R = ’ 0:‘—'—_)
[b2+(a?—b?)(cos §)3]2 R?

where 2a and 2b are the diameters of the ¢llipse. Determine the acceleration of the
particle in an arbitrary position.

2.19 The cable, whose length is 250 mm, is fastened to the 500-g block. Clockwise rota-
tion of the arm at a constant angular speed of S rad/s causes the block to slide out-
ward. The motion occurs in the vertical plane, and frictional resistance is negligible.
Determine the tensile force in the cable and the force exerted by the block on the
walls of the groove when 8 = 53.1301°.

250 mm >!

A

Problem 2.18 Problem 2.19

800 mm

=

Problem 2.21



Problems 51

2.20

2.21

2.22

2.23

2.24

A particle follows a planar path defined in polar coordinates by R = R(6) such that 8
is constant. Derive expressions for the velocity and acceleration of the particle. Then
use those results to derive an expression for the radius of curvature of a path in polar
coordinates.

A cable that passes through a hole at point A is pulled inward at the constant rate of
25 m/s, thereby causing the 0.2-kg collar to move along the circular guide bar. The
system is situated in the vertical plane. Determine the speed and the rate of change of
the speed of the slider at the instant shown in the sketch. Also evaluate the corre-
sponding tension in the cable.

In the fiyball governor shown, changes in the radial distance to the balls results in
changing the length z, which may be measured magnetically. Consider a situation
where the angular speed w for rotation about the vertical axis is constant, and the
length is changing at the constant rate z, Derive an expression for the acceleration of
a ball in terms of the angle # for the links.

N

D

&1

Problem 2.22

(See figure, next page.) A radar station at the origin measures the azimuth angle 6,
the elevation angle ¥, and the radial distance r to a target. At the instant when a mis-
sile passes position A, its velocity is 500 m/s directed from point 4 to point B. Its
acceleration at this instant is 10g, directed toward the origin. Determine the first and
second derivatives of these position parameters at this instant.

(See figure, next page.) A small block is pushed along the interior of the stationary
cone such that the azimuth angle to the block is § = fo#?, where « is a constant. The
vertical distance measured from the apex of the cone is a specified function of time
z(t). Derive expressions for the velocity and acceleration of the block using (a) cylin-
drical coordinates and (b) spherical coordinates.
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Problem 2.24

A 250-gram block is pushed over the smooth interior of a hemispherical shell whose
interior radius is 0.75 meters. The force F causing this motion acts tangentially to the
hemispherical surface. The block rotates about the vertical centerline at the constant
rate of one revolution in 2 seconds, and it moves inward such that the polar angle is
¢ = n/2—0.5¢% Determine the force F at the instant when ¢ = 7/6.

,/

— 075 m

Problem 2.25

Toroidal coordinates (p, 8, ¥) are useful for magnetohydrodynamic studies in the fu-
sion reactor known as a tokamak. These coordinates reference position to a circle of
radius 7 such that the transformation to Cartesian coordinates is x = (r +p cos y/) cos 8,
y=(r+pcosy)siné, z= psiny. Derive expressions for the unit vectors for this co-
ordinate system, and then describe the derivatives of the unit vectors with respect to
the toroidal coordinates.

Obtain expressions for velocity and acceleration in terms of the toroidal coordinates
in Problem 2.26.

The instantaneous velocity of a point is ¥ = 10i—4,+ 6k m/s, and the acceleration
is @ = —30i—25/+ 15k m/s% Determine the corresponding speed, rate of change of
the speed, and radius of curvature of the path.
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2.29

2.30

2.31
2.32

2.33

Problems 2.26 and 2.27

An airplane heading eastward is observed to be in a 20° climb at a speed of 2,400
km/hr. At this instant its acceleration components are 2g eastward, 5g northward,
and 1.5g downward. Determine the rate of change of the speed, as well as the radius
of curvature and the location relative to the airplane of the center of curvature of the
path.

Pin P slides inside the 500-mm radius groove at a constant speed of 1 m/s. Determine
the values of ¢ and ¢ at the instant when 8 = 90°.

f 750 mm |

Problems 2.30 and 2.31

Solve Problem 2.30 for the instant when 8 = 135°.

The elevation of the center of mass of an automobile following an extremely bumpy
road is observed to be y = 0.1sin(wx/3), with x and y in meters. Its speed at x=1m
is measured as 20 m/s, and the speed at that position is decreasing at 5 m/s2. Deter-
mine the horizontal and vertical components of the acceleration at that instant.

A body is in an elliptical orbit about the earth. The magnitude of the acceleration of
this body is g(R,/R)? where R is the distance from the body to the center of the
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o
27,000 km/hr f 27y |

9,000 km

Problem 2.33 Problem 2.34

2.34

2.35

earth, R, = 6,370 km, and g = 9.807 m/s2. At the position shown, the speed of the
body is 27,000 km/hr. Determine the rate of change of the speed and the radius of
curvature of the orbit at this position.

A wheel, whose radius is r, rolls without slipping. A point on the perimeter of the
wheel follows a cycloidal path, described in parametric form by

X =r(¢—sin§), y=—rcosé.

The parameter ¢ is observed to depend on time according to £ = c¢f. Derive expres-
sions for the speed and the rate of change of speed of this point as a function of §.
Also determine the radius of curvature of the cycloid as a function of £.

A particle moves in a helical path defined in terms of cylindrical coordinatesby R = b

and z=3R0. The normal component of acceleration is known to vary with time

according to @, = c(cos wt )2

(a) Derive an expression for the earliest time for which the speed is a maximum.
Determine the speed and acceleration at that instant.

(b) Derive an expression for the earliest time at which the tangential acceleration is a
maximum. Determine the speed and the acceleration at that instant.



CHAPTER 3

Relative Motion

A moving body, such as an automobile, frequently provides a useful refer-
ence frame for our observations of motion. Even when we are not moving, it is often
easier to describe the motion of a point by reference to a moving object. This is the
case for many common machines, such as linkages. In this chapter we shall develop
the ability to correlate observations of position, velocity, and acceleration from fixed
and moving reference frames.

Figure 3.1 depicts a general situation in which point P is being observed from a
moving reference frame xyz, whereas XYZ is a fixed reference frame. In order to
make use of xyz, we must know the absolute position of its origin, 7y, . It is appar-
ent from Figure 3.1 that the absolute position 7p,( is related to the relative position
pso' by
¢ Tp/0 =TFovo+TFp/o- (3.1
We must represent each of these vectors with respect to components in the same di-
rection, Let us introduce for this purpose the XyZ coordinate system, whose origin
always coincides with point O’, but whose axes always remain parallel to the respec-
tive fixed axes of XYZ. Such a reference frame executes a franslational motion. The
coordinates of point P with respect to this reference frame are (Xp, yp, Zp). Because
of the parallelism of the axes we may decompose Eq. (1) into its components, so that

Xp=X0+)2'p, Yp=Yo+j1p, Zp=Zo+2p. (32)

This conversion between coordinates is referred to as a translation transformation.

Now consider describing 7p,o- by giving the coordinates (xp, ¥p, Zp) measured with
respect to xyz. This complicates the task of adding 7y, and 7p,o’, because the axes
used to represent the vectors are not parallel. Relating the components of 7p,o- with
respect to xyz to those measured relative to XyZ requires a rotation transformation.

z

Tpio’

X

Figure 3.1 Absolute and relative position.

55
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Figure 3.2 Direction angles.

31 Rotation Transformations

Let us consider a general situation in which two coordinate systems, xyz and
x'y'7’, are employed to represent the components of a vector. Only the orientation of the
axes is of interest here, so the origins of the coordinate systems coincide. Figure 3.2 depicts
the direction angles «, B, y between the x’ axis and each of the xyz axes. An examination
of Figure 3.2 shows that the values of the direction angles should be limited to the range
0 < a, B,y < 7 in order to avoid ambiguity. The components of i’ are the projections of
the vector onto the axes of xyz, which, in turn, are determined from the direction angles
according to

=D+ i+ kk
= (cos a)i+(cos B)j+ (cos y)k. 3.3)

This expression indicates that the cosines of the direction angles are more signifi-
cant to our investigation: they are the direction cosines. We obviously are equally
interested in all the unit vectors. Thus:

¢ Define I, =1, to be the cosine of the angle between axis p’ and axis q,
with p and q representing x, y, or z.

Extending Eq. (3.3) to the other unit vectors then yields
U= Lo 0+ by j+ 1k,
J =l 4 Ly j+ 1k, (3.9)
k'=loi+l,j+1,,k.

It is convenient to rewrite these equations in matrix form as

’

" 1=I[R]

’

~.

3.5)

& Sy
i Sy

where
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[x’x .

. (R1=| 1l by Ly | (3.6)
[z’x Iz'y lz’z

The matrix [R] is the rotation transformation matrix. It is a generalization of the

conversion between coplanar pairs of unit vectors that we employed to discuss joint

kinematical descriptions in Section 2.4.

Several important properties of [R] follow from the fact that 7, j, kK constitute an
orthogonal set of unit vectors, as do /’, j*, k. Suppose we were to follow steps paral-
lel to the preceding in order to establish the transformation [R’], describing the unit
vectors i, j, k in terms of their components with respect to x’y’z’. By direct analogy
with Egs. (3.5) and (3.6), we have

i i
J (=IRKJ 3.7
k k'
where the elements of [R’] are the corresponding direction cosines between an axis
of xyz and an axis of x’y’z". For example, R{, = /,,.. However, because /,, =/, it
must be that R{, = R,,. More generally, it follows from the definition of the direc-
tion cosines that R, = R, 50 [R’] =[R]".
A different relation for [ R’] results from solving Eq. (3.5) for the unit vectors xyz,
which gives

~

~.

i
J{=IRI™ J b (3.8)
k k'
A comparison of Eqgs. (3.6) and (3.7) shows that {R’} = [R]™". Thus, we find that:
¢ The matrix (R’] representing the inverse transformation is the inverse of
the original transformation matrix {R), which is identical to the transpose
of [R];
¢ [R1=(R]'=[RI" (3.9

Matrices satisfying Eq. (3.9) are said to be orthonormal. The terminology arises from
consideration of the identity that results from Eq. (3.9), [R][R]" = [U], where [U] is the
unit identity matrix. To obtain an element in this product we observe that a column of [R]T
is the same as a row of [R]. Thus, the elements of the product are

Loy + oy ooy, =8pg, P.@=x,,2, (3.10)

where §,, denotes the Kronecker delta; 8,, =1if p =g and é,, = 0 otherwise. Because
the left side of Eq. (3.10) is the dot product of &, and &, we see that the identity
[R1[R]T = [U] is a statement that the unit vectors of x’y’z’ are mutually orthogonal.

The equality [R][R]T = [U] gives rise to an important property. Recall from ma-
trix algebra that the determinant of a product of matrices is identical to the product
of the individual determinants. Furthermore, the determinant of [R]7 is identical to
the determinant of [R]. Simultaneous satisfaction of both properties leads to the
conclusion that |[R]| =1, which is a useful check for computations.
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Equation (3.10) is symmetric in p and g. Hence, it represents six equations (one
for each p, g pair) relating the nine direction cosines. It follows that there are only
three independent direction angles. The selection of which angles are arbitrary is not
entirely free. For example, the values of «, 8, and v in Figure 3.2 are not indepen-
dent because cos?a+cos?B+cos?y = 1. This restriction arises because these three
angles locate only one axis.

The importance of the transformation matrix stems from the fact that it relates
the components of arbitrary vectors with respect to two coordinate systems, not just
the unit vectors. In order to demonstrate this feature, we recall that any vector A is
independent of the coordinate system used to describe its components, so

A=A+ A J+ Ak = AT+ A, ]+ AR @3.11)
This expression may be written in matrix form as
A,y A,
" J k1A, =11 ] kI{ A, . (3.12)
Ay A,

In order to eliminate the unit vectors, substitute the transpose of Eq. (3.7) into (3.12).
The transpose of a product is the product of the transposes, so

A, A,
" J kYA, =1 J KRN A, . (3.13)
Az' Az
In view of the inverse property in Eq. (3.9), the foregoing reduces to
Ay A,
¢ Ay t=[R]{ A, ;. (3.14)
Az' Az

A particularly simple type of transformation arises when the x’y’z’ system may be pic-
tured as being the result of a rotation about one of the axes of the xyz coordinate system.
The three possibilities, involving rotation about either the x, y, or z axis, are depicted in
Figure 3.3. Denote the corresponding transformation matrices by a subscript that corre-
sponds to the rotation axis. Then Eq. (3.6) leads to

[ 1 0 0 cosf, 0 —sin#b,
{R,]=10 cosd, sinb, |, [R)]= 0 1 0 , (3.15a,b)
| 0 —sinf, cos6, sinf, 0 cos6,

[ cosh, sing, O
[R,]=| —sinf, cos6, O |. (3.15¢)
0 0 1

Note that in each of the above, the rotation angle is positive in the sense of the right-hand
rule. Specifically, if the extended thumb of the right hand points in the positive sense of the
axis when the fingers curl in the sense of the rotation, then the angle is positive.

One of the most common types of vectors to be involved in a rotation transfor-
mation is the position of a point with respect to the origin. In such cases the vector
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Figure 3.3 Rotations about coordinate axes.

components appearing in Eq. (3.14) describe the position coordinates of the point
relative to x’y’z’ in terms of its components relative to xyz. The transformation of
position coordinates may be used in two ways. Sometimes the position of the point
with respect to a fixed reference frame XYZ is known. The position coordinates rela-
tive to a reference frame that has moved away from XYZ may be found directly from
Eq. (3.14). A less obvious situation arises when we follow a point that remains fixed
relative to a moving reference frame. In that case, the coordinates of the point rela-
tive to the rotated reference frame do not change from the values they had prior to
any rotation. The subsequent coordinates of the point relative to the fixed reference
frame may then be found by inverting Eq. (3.14), for which the orthonormal prop-
erty, Eq. (3.9), is suitable.
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Example 3.1 A force F may be described in terms of its components with respect to
either the XYZ or xyz reference frames shown in the sketch.

(a) If F=1007/—-50J+150K N, determine the components of the force relative
to the xyz coordinate system.

(b) If F=100i—50/+150% N, determine the components of the force relative
to the XYZ coordinate system.

Example 3.1

Solution We will find the transformation matrix by first resolving the unit vec-
tors of xyz into components relative to X Y Z and then imposing the orthogonality condition.
(A simpler solution may be obtained by following the methods in the next section.) Infor-
mation regarding orientation of the x and y axes is given, so we write the associated unit
vectors in terms of their direction angles relative to XY Z:

lT= lxXI_+lx)'j+leIZ,
J=Lxl+1yJ +1,zK.

Because the x axis lies in the X—Z plane at an angle of 40° from the X axis, and the direc-
tion angle between the Y and y axes is 60°, we have

L, x =cos40°, Ly=0, 1,7z =sin40°, lyy = cos60°.
These expressions indicate that
X X cos 40° 0 sin 40°
y={Rly Y, [Rl=| Lx cos60° [,
z Z lox Ly l.z

Because [R] is an orthogonal transformation, we set ([R][R]T = [U]:
0.7660 0  0.6428 |1 0.7660 [x I,
Lx 0.50 Lz 0 0.50 Ly [=I[U]
Lx Ly L,z 0.6428 I,z I,

The corresponding equations derived from each element of the product are

(1,2) 0.7760l,x+0.64281,; =0,
(1,3) 0.7660/,,+0.64281,, =0,
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(2,2) IX+025+1% =1,
(2, 3) IyXIzX+0'512Y+lyllzZ=09
(,3) Ix+iy+iz=1
We solve egs. (1, 2) and (2, 2) first, and then use that result to determine the other
direction cosines:
(1,2) Lz=—11918/ y;
(2,2) (119182 +1)1% =0.75,
l,x =0.5567, I, = —0.6634;
(1,3) l,z=-1.1918/,;
(2,3) 0.55671,5+0.50/,y —0.6634(—1.1918/,5) = 0,
Ly =-2.695,x;
(3,3) (14+2.695%2+1.1918%)12, =1,
l,x=—0.3218, I,y = 0.8660, /,; = 0.3830.

Note that we selected the signs of /,x and /,x according to whether the given sketch
indicated that the angle between the respective axes was acute or obtuse.

Now that [R] is known, we may transform the vectors. In case (a), we know the
XYZ components, so

F, 100 173.02
F, 1=[R]{ =50 ;=] —68.84 ;
F, 150 —18.03

F=173.02i—68.84;—18.03k N.

In case (b), we use the inverse transformation because we know the xyz components.
Specifically,

Fy 100 0.50
Fy }=[R1T{ =50 }=1{104.90 };
F; 150 154.90

F=0.50i+104.90/+154.90k N.

3.2 Finite Rotations

A spatial rotation features rotation about two or more nonparallel axes.
Kinematics and kinetics studies of rigid bodies in three dimensions require describ-
ing and analyzing such motion. In addition, the general task of evaluating the ro-
tation transformation [R] between two coordinate systems often is more readily
achieved by picturing one coordinate system as having moved away from the other
in a sequence of simple rotations.

The ultimate orientation of a reference frame that undergoes a spatial rotation
clearly will depend upon both the orientation of each axis of rotation and the amount
of rotation about each axis. It is less apparent that the final alignment of the refer-
ence frame is dependent also on the sequence in which the individual rotations occur.
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Two situations commonly arise. The conceptually simpler case involves space-fixed
axes, by which we mean that the rotation axes have fixed orientations in space. The
contrasting situation is that of body-fixed axes. In a body-fixed rotation sequence,
each rotation is about one of the axes of the coordinate system at the preceding step
in the sequence. For example, a body-fixed sequence 8,, 6,, 6, occurs first about the
initial position of the y axis, then about the orientation of the z axis after the first
rotation, then finally about the x axis after the second rotation. We shall see that
although a body-fixed rotation is more difficult to describe in words than is a space-
fixed rotation, the transformation matrix for a body-fixed rotation is easier to derive.

3.2.1 Body-Fixed Rotations

We begin by following a specific sequence of body-fixed rotations. The first
rotation 6, occurs about the original orientation of the x axis and the second rotation
6, occurs about the new orientation of the y axis. After we have derived the transfor-
mation for this case, we will generalize the result to an arbitrary sequence of rota-
tions. Note that we use the right-hand rule to define the sense of the rotation. Spe-
cifically: curl the fingers of your right hand in the direction of the rotation; if the
extended thumb of that hand points in the positive direction of that axis, then the
rotation angle is positive.

As shown in Figure 3.4(a), we choose the fixed XYZ system such that it coincides
with the initial orientation of xyz. We mark the orientation of xyz after the 0, rota-
tion as x; ¥, z;. The transformation matrix for a single-axis rotation about the x axis
was given in Eq. (3.15a). Adapting that matrix to the current notation leads to

X1 X
n=IRNKY :, [RI=[R,], (3.16)
Zy Z

where we use [R|] to denote the transformation, rather than [R,], in order to em-
phasize that it corresponds to the first rotation.

The result of the second rotation is depicted in Figure 3.4(b). The 6, rotation
moves xyz from x, y, z; to its final orientation. Since this corresponds to a single-axis
rotation about the y, axis, we may apply Eq. (3.15b) directly. Thus,

X X1 X
Yy =[R§ y1 (=[RURN Y ¢, [R]=[R,]. (3.17)
z z VA

As an alternative to Eq. (3.17), the (x, y, z) values could have been expressed directly
in terms of the (X, Y, Z) values by using the overall transformation matrix [ R], so that

X X
Yy =IRK Y §, [RI=1[R:][Ry]. (3.18)
z Z

The virtue of the notation we have employed comes from the recognition that
each transformation [R;] is the result of the ith rotation. We may conclude that Eq.
(3.18) is valid for any set of body-fixed rotations. In other words:
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z
2 Xyy,2) is the
position of xyz
after the first
rotation (about
Ox the initial X axis)
Y1
< I By
Y
X, x,
(a)
(b)
Figure 3.4 Body-fixed rotations.
¢ Let xyz be a reference frame that undergoes a sequence of rotations about

its own axes, and let XYZ mark the initial orientation of xyz. The transfor-
mation from XYZ to the final xyz components is obtained by premultiply-
ing (from right to left) the sequence of transformation matrices for the in-

dividual single-axis rotations. For n rotations,

¢ (R} =[R,]---[RL][Ry].

(3.19)

Example 3.2 An xyz coordinate system, which initially coincided with the XYZ
coordinate system, first undergoes a rotation 6, = 65° about its y axis, followed by

6, = —145° about its z axis. For this rotation determine:

(a) the coordinates relative to xyz in its final orientation of a stationary point

at X =2, Y =-3, Z=4 meters; and

(b) the displacement components relative to XYZ of a point that remains situ-
ated at x = 2, y = —3, z= 4 meters relative to the moving reference frame.
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65°

Coordinate systems.

Solution We begin by sketching the orientation of xyz after the first rota-
tion, which we mark as x; y,z,. The rotation §; = 65° is about the y axis, so the first
transformation is

X) X
ni=MRNKYy
z VA
cos 6, 0 —cos(8,+90°) 0.4226 0 —0.9063
[Ril= 0 1 0 = 0 1 0
cos(90°—-6,) 0 cos 6, 0.9063 0 0.4226
The second rotation is about the axis marked z,. The second transformation, for
0, = —145°, is
X Xy
y =Ry ¢
z z
cos 6> —cos(90°—6,) O —0.8192 -0.5736 0
[Rz] = | cos(90°—65) cos 6, 0i| = [ 0.5736 —0.8192 0:|.
|: 0 0 1 0 0 1
The combination of the two transformations is
X X —0.3462 -0.5736 0.7424
Yy (=[RK Y, [Ri=[R,J[R]=| 02424 -0.8192 -0.5199
z z 0.9063 0 0.4226

In case (a), the coordinates relative to XYZ are known, so we employ {R] directly
to obtain

X 2 3.998
y 1=[R}{ =3 =4 0.863 ym.
z 4 3.503
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In case (b) it is the final xyz coordinates that are known. The inverse of [R] then re-
turns the coordinates to XYZ, so

X 2 2.206
Y }={R)™ -3 {={1.310 {m.
z 4 4.735
The displacement is the difference between the initial and final position of the point,
S0 AX 2.206 2 0.206
fAr}={ AY }=¢ 1310 }—{ -3 }={ 4.310 ym.
AZ 4,735 4 0.735

3.2.2 Space-Fixed Rotations

We shall develop here the transformation matrix for a sequence of rotations
about axes that are fixed in space. The method will follow a course that parallels the
development in the previous section. Thus, we shall begin by considering a set of
rotations 8y about the fixed X axis, followed by 6y about the fixed Y axis.

In addition to xyz, which undergoes both rotations, and XYZ, which remains
fixed, we introduce two other reference frames. Figure 3.5(a) shows x; y,z,, which
is the orientation of xyz after the first rotation, 8y. This reference frame does not
undergo the second rotation. The other reference frame we need is x, y,z,, which is
defined in Figure 3.5(b) to be the reference frame that coincided with XYZ before
the second rotation.

The transformation from XYZ to x,y,z is straightforward to obtain, because
the X and x, axes are coincident. The corresponding transformation is [R,] in Eq.
(3.15a). We therefore have

X1 X
N =IRIKY ¢, [RiI=1[R,]. (3.20)
Zy Z

Similarly, the transformation from XYZ to x,y,z, is given by [R,] in Eq. (3.15b),
because the Y and y, axes remain coincident in the rotation about the Y axis. Thus,
we have

X3 X
Y2 (=[R1§Y ¢, [R]=I[R)]. (3.21)
Zy YA

It still remains to relate the final xyz reference frame to any of the others. This
is the reason for the introduction of x,y,z,. In the second rotation, xyz goes from
X1 312, to its final orientation, while x, ¥, 2z, goes from XYZ to its final position. Be-
cause both reference frames undergo the same rotation, their relative orientation is
not altered. Hence, the relation between xyz and x, y, z, is the same as that between
x1y1Z; and XYZ, It follows from Eq. (3.20) that

X X2
y (=[Ri]{»: {. (3.22)
z Zy
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X,y,z; is the
position of xyz
after the first
rotation (about
the x axis)

X,y,2, coincided
with XY Z prior

to the second rotation
(about the Y axis)

(b)

Figure 3.5 Space-fixed rotations.

It is a simple matter to eliminate the intermediate coordinate values by substituting
Eq. (3.21) into Eq. (3.22). The result is that

X X X
Yy (=[RIIRy Y /=[R]y Y . [R]=[R|][R;]. (3.23)
z Z Z

As we did for body-fixed axes, we may conclude that Eqs. (3.23) are generally
valid. Specifically:

¢ Let xyz be a reference frame that undergoes a sequence of rotations about
the space-fixed axes XYZ with which it initially coincided. The transforma-
tion from XYZ to the final xyz components is obtained by postmultiplying
(from left to right) the sequence of transformation matrices for the indi-
vidual single-axis rotations. For n rotations,

¢ [R]=[R|][R;]---[R,]. (3.24)
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The similarity of Egs. (3.19) and (3.24) is significant. We see that the result of a
sequence of body-fixed rotations matches that obtained from the reverse sequence of
space-fixed rotations, and vice versa. This similarity is also a source of errors. The
single-axis transformations in each case might be identical. However, for a given se-
quence of rotations, the order of multiplication of the individual matrices must be
consistent with the type of rotation: premultiplication (right to left) for body-fixed
rotations and postmultiplication (left to right) for space-fixed rotations. In a situa-
tion where the overall rotation involves both types of rotations, we may follow Eqs.
(3.19) and (3.24) by premultiplying for the body-fixed rotations and postmultiplying
for the space-fixed rotations. For example, a sequence described by [R;] and [R,]
about body-fixed axes, followed by [R;] about a space-fixed axis and then [R4] about
a body-fixed axis, would lead to [R] = [R4][R;]{R][R;].

We have seen, in both this section and the preceding one, that the sequence in
which individual rotations occur must be considered when the overall transforma-
tion is formed. Suppose we were to reverse the sequence in which two space-fixed
rotations occur; this would reverse the order of multiplication in Eq. (3.23), so that
the transformation in this case would be [R] = {R,][R,]. Because [R,][R,] does not,
in general, equal {R,][R,], [R] will differ from the transformation [R] in Eq. (3.23).
The same observation would arise if we were to reverse the sequence in which the
individual body-fixed rotations forming Eq. (3.19) occur. We must conclude that, in
either type of rotation:

¢ The final orientation of a coordinate system depends on the sequence in
which rotations occur, as well as the magnitude of the individual rotations
and the orientation of their respective axes.

An important corollary is that finite spatial rotations cannot be represented as vec-
tors, because vector addition is independent of the order of addition.

Example 3.3 Consider Example 3.2 in the case where the rotations of an xyz co-
ordinate system are §; = 65° about the Y axis followed by 6, = —145° about the fixed
Z axis, where xyz coincides with XYZ prior to any rotation. As was requested in
that problem, determine for this set of rotations:

(a) the coordinates relative to xyz in its final orientation of a stationary point at
X=2,Y=-3, Z=4meters; and

(b) the final coordinates relative to XYZ of a point that is situated at x =2,
y = =3, z=4 meters relative to the moving reference frame.

Solution The transformation matrix for the individual rotations are the
same as in the previous example, but they combine differently because the rotations
are about space-fixed axes. Here, the overall transformation results from the sequen-
tial product from left to right, that is,

x X
y (=[Rl Y ;, [R]I=[R|][R,].
z Z

The values of [R;] and [R,] are detailed in the solution to Example 3.2; the corre-
sponding product just specified is
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—0.3462 —0.2424 —0.9063
[R]=| 0.5736 —0.8192 0
—0.7424 -0.5199  0.4226

Direct application of [R] for case (a) yields

X 2 —3.590

y 1=[RK -3 }=¢ 3.605;,

z 4 1.765
whereas using [R]™! in case (b) gives

X 2 —5.383

Y 1 =[RIN -3 }={ -0.107

Z 4 -0.122

3.2.3 Rotation about an Arbitrary Axis

We have seen that a general rotation transformation can be obtained from a
sequence of simple rotations about various coordinate axes. The approach we em-
ployed to treat space-fixed rotations is also useful to describe a rotation that occurs
about an arbitrary axis. Such a situation appears in Figure 3.6, where we have de-
fined two fixed coordinate systems: XYZ, which is the one of interest, and X'Y’Z’,
which is defined to have its Z’ axis align with the rotation axis, but otherwise is arbi-
trary. The transformation from XYZ to X'Y’'Z’ is [R’]. Let xyz and x’y’z’ be the
moving reference frames whose axes initially aligned with the respective fixed co-
ordinate systems. Because xyz and x’y’z’ experience the same rotation, and there-
fore maintain their relative orientation, [R’] also describes the relation between these
coordinate systems. Thus we have

X’ X x’ X
Y }y=[RK Y ¢, y =[R'Ny ;. (3.25)
AL V4 z' z
z
7
B8
v
X
X Y

Figure 3.6 Rotation about an arbitrary axis.
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We let 3 denote the angle of rotation about the Z’ axis. The transformation from
X'Y'Z’to x'y’z’ is therefore

x’ X’ cos@ sing O
Y 1=[Rgl{ Y ¢, [Rgl=| —sinf cosB 0 |. (3.26)
z’ z 0 0 1

Eliminating both sets of primed coordinates from these relations yields a product of
transformations like that obtained from a sequence of rotations. This leads to the
following conclusion:

¢ The effect of a rotation about an arbitrary axis is equivalent to a sequence
of body-fixed rotations in which the coordinate system is first rotated to
bring one of its axes into coincidence with the rotation axis, followed by
a rotation about that axis, then the reverse of the first rotation;

X X
. y t=[RK Y §, [RI=[R1T[RGIR). (3.27)
z V4

The converse of the foregoing development is Euler’s theorem, which states that
any rotation is equivalent to a single rotation 3 about an axis. A theorem of matrix
algebra makes it a simple matter to evaluate the equivalent angle, given [R]. The re-
lation between [R] and [R;] is an orthogonal similarity transformation. (We will
encounter this in greater detail in Chapter 5 when we discuss the inertial properties
of rigid bodies.) An important property of such a transformation is constancy of the
trace of the matrix, which is the sum of the diagonal terms. Thus, tr[R] = tr[R;],
from which it follows that the angle of rotation must satisfy

1+2cosB =tr[R]. (3.28)

To determine the orientation of the equivalent axis Z’, we note that the orienta-
tion of the rotation axis relative to xyz remains constant. Hence, the direction co-
sines of Z’ with respect to xyz after the rotation are the same as its direction cosines
with respect to XYZ. However, the direction cosines of any vector with respect to
xyz and XYZ are related by [R]. Consequently, we have

Iz lzx Izx
lzy {=1RY Izy { = [[R1=LU]] Iy {=10}. (3.29)
lZ’Z IZ’Z IZ’Z

It follows from the second expression that [R] has an eigenvalue of unity. (Indeed, all
three of its eigenvalues are unity, which is a corollary of Euler’s theorem; see Gold-
stein 1980.) Two of the three component equations represented by Eq. (3.29) yield
two of the direction cosines to Z’ in terms of the third. The individual values may
then be determined by satisfying the requirement that /2.y + /2.y + 12, = 1.

Example 3.4 A reference frame xyz, initially coincident with fixed reference frame
XYZ, is rotated through an angle 3 about axis OA, counterclockwise when viewed
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from A to O. The orientation of this fixed rotation axis is specified by the azimuthal
angle ¥ and angle of elevation 0 relative to the X-Y plane. Point P has constant co-
ordinates of (0.5, —0.2, 0.4) meters with respect to xyz.

(a) Describe the transformation from XYZ to xyz as a sequence of single-axis
rotations.

(b) For the case where ¢ =30°, 60 =75° and 8 =53.1301°, confirm that Eq.
(3.28) is satisfied.

(¢) Determine the coordinates of point P relative to XYZ corresponding to the
rotation angles in part (b).

z

F\b

9%0°- 0
7’
-
A L
90°~ 0
B8 0 v’
B
Y
X Y
12
90°— 6
X

Example 3.4 Coordinate systems.

Solution Application of Eq. (3.27) requires that we first define a fixed co-
ordinate system whose Z’ axis is aligned with the rotation axis OA. Such a coordinate
system may be obtained by considering X'Y’Z’ to initially coincide with XYZ, and
then imparting a pair of body-fixed rotations, first by i about the Z’ axis and then by
90°—0 about the Y’ axis. The corresponding transformation is

X’ X
Y =R Y, [R1=[RIRy],
VA V4
where
sinf 0 —cosé cosy siny O
[Rl=| 0 1 0 |, [Ry=| —siny cosy O |
cos@ O sind 0 0 1

The transformation [R;] is as given in Eq. (3.15c). Substitution of [R’] derived here
into Eq. (3.27) shows that the rotation transformation matrix from XYZ to xyz is

[R1=[R,)T[R)T[RG][R,I[Ry].

Recall that the inverse of a rotation about a coordinate axis is a rotation by the same
amount in the opposite sense. Therefore, this expression for [R] suggests that the
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rotation about axis OA is equivalent to a sequence of five body-fixed rotations about
the axes of xyz: (1) ¥ about the z axis, (2) 90°—6 about the y axis, (3) 8 about the z
axis, (4) 90°—0 about the negative y axis, and (5) ¥ about the negative z axis.
The specific transformation corresponding to the given values of ¢, 6, and 3 is
0.62010  0.78434 —0.01693
[R]=| —0.76114  0.60670  0.22932
0.19013 -0.12932  0.97321

The trace of [R] is 2.20001. According to Eq. (3.28), the rotation angle 3 is
tr(R]—1
g= cos_1<—r%> = 53.1297°,

which (aside from numerical round-off error) is identical to the given value.

With the transformation [R] known, it is straightforward to determine the coor-
dinates of point P after the rotation. The given coordinates are constant with respect
to xyz. We use the inverse property to solve the transformation, with the result that

Xp 0.5 0.53833
Yp t=[R]N —=0.2 } ={ 0.21911 {m.
Xp 0.4 0.33496

Example 3.5 The angles 3, v, and A in the robotic linkage are individually control-
lable. Initially, 8 =y = A =0, in which position the axis of the pin for rotation A is
horizontal and the linkage lies in the X-Z plane. The system is given a set of rota-
tions consisting of 8 = 50°, v = 30°, A = 60°. Determine the coordinates of end D with
respect to the fixed XYZ coordinate after these rotations.

Example 3.5

Solution Rather than pursuing any shortcuts that depend on the particular
configuration of this system, we shall develop a general approach. Furthermore, note
that the sequence in which the rotations are applied is not specified. It will become
apparent in the course of the solution that such information is irrelevant for the
present problem. We describe the position of end B as the sum of the position vec-
tors through each link,
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V4

Coordinate systems.

Tpia=TFga+Tc/p+Tpc.

We define reference frames x;y,z; fixed to arm AB, x,y,z, fixed to arm BC, and
X3y3 23 fixed to arm CD, with the x axis for each aligned with the corresponding arm.
The transformations for the last two reference frames relative to the preceding one in
the linkage are defined by a single-axis rotation. The rotation from x, y, 7, to x3 323
is A about the negative y, (or y;) axis, while the rotation from x; y,z; to x,¥,2, is ¥
about the positive x; (or x,) axis:

cosA 0 sinA 1 0 0
[R;]= 0 1 0 |, [R,J=]0 cosy siny
—sinA 0 cosA 0 -siny cosy

The corresponding transformation from the fixed XYZ reference frame to x,y,z,
may be considered to consist of a § = 25° rotation about the negative Y axis, followed
by rotation 3 about the Z axis. Because both of these rotations are about space-fixed
axes, we have

[R)] = [Ry][Rz];

cosé@ O siné cosf sing O
[Ry]l= 0 1 0o | [Rz]=| —sinf cosB O
—sinf 0 cos# 0 0 1

Note that this is the only place throughout the solution where the sequence of rota-
tions becomes an issue. The alternative to the foregoing is to consider x; y,z, to ro-
tate first by 3 about the z, axis and then by 6 about the y, axis. This leads to the same
[R,] as before because the rotations in this case are about body-fixed axes.

We employ the rotation transformations to describe the relative position vectors.
For simplicity of notation, we define (xg, ¥g, Zg), (X¢, Yc» Z¢), and (xp, Vp, Zp) as
the coordinates of the respective points relative to the body-fixed reference frames.
Specifically,

Foia=[xp ¥y 25l Ji {» Fesp=1Ixc Yo zcl§ J2 s
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I3
Fpsc = xpypzpl§ J
ks

The rotation transformations enable us to express each set of unit vectors in terms
of components relative to XYZ, according to
i i
, J2 (=R Ji (=[R:][R)]
k, ky

)
.il = [Rl]

RS~
kl N~

iy i I
J3 (=[R3)§ J2 =R I{RIR)S J
ki k> K
Now let (Xp, Yp, Zp) denote the coordinates of point D with respect to the fixed ref-
erence frame. We substitute the unit vector transformations into the respective posi-
tion vectors Fg,4, Fc/g, and 7p,c, and then substitute those expressions into the first

equation for rp,4. Cancelling the common factor formed by the column of XYZ unit
vectors leads to

[Xp Yp Zpl=I[xp ys zpl[R)]
+xc ye zcl[RR 1+ [xp yp zplIR3IIR,]IR, ]
Taking the transpose of this equation leads to the more familiar columnar form,

XD XB Xc Xp
Yp t=[R1Y yg {+IRITIRIY ye (+IRITIRITIR:Y yp
Zp Zp Zc Zp

This is the general relation for points having arbitrary coordinates. To obtain the spe-
cific values, we note that the only nonzero coordinate values for the points of interest are
xg=2m, xc =1m, and xp = 0.5 m. We substitute the given angles 8 = 25°, g = 50°,
y = 30°, and A = 60° into the transformations [R;], then use the coordinate values just
given. This yields

Xp 1.9269
Yp §=120117 {m.
Zp 1.7292

It is interesting to observe that the procedure we have employed here leads to a
combination of translation and rotation transformations. In essence, each sequence
of products in the general expression for (Xp, Yp, Zp) represents a rotation transfor-
mation between coordinate systems having concurrent origins. Summing these indi-
vidual products is a process of translating the origin from C to B to 4.

33 Angular Velocity and Derivatives of Rotating Vectors

Discrepancies between spatial rotations that differ only in their sequence be-
come less significant as the magnitude of each rotation decreases. The limiting case



74 3 / Relative Motion

of infinitesimal rotations yields a result that is independent of the sequence. In order
to demonstrate this fact, let us evaluate the transformation matrix associated with
a set of space-fixed rotations dfy, dfy, df, in that order, about the fixed reference
frame axes.

The transformation matrices for the individual rotations are given by Eqs. (3.15).
Second-order differential quantities are negligible compared with first-order terms,
so we set cos d@ =1 and sind@ = d6. The limiting forms of the individual transfor-
mation matrices are therefore

(1 0 o0 1 0 —do,
[Rl]= 0 1 deX ’ [R2]= 0 1 0 s
0 —-diy 1 doy 0 1
- _ (3.30)
1 dé, 0
[R3)=|-df; 1 0]
0 0 1,

Second-order differentials are also negligible when these matrices are multiplied. The
resulting transformation is found from Egs. (3.24) to be

x X 1 do, -doy (X
y U= RIRIRN Y t=| —d9, 1  doy |l YL (3.31)
z z doy —doy 1 z

The foregoing is the general transformation between the fixed and moving coordi-
nate systems. Let us apply it to the situation where we wish to follow an arbitrary point
P whose position relative to the moving coordinate system remains constant. If the
coordinates of point P with respect to the fixed coordinate system were (X, Yy, Z)
prior to any rotation, then these will also be the constant coordinates of point P with
respect to the moving system. Let (Xy, Y7, Z;) be the fixed reference frame coordi-
nates after the rotation. Solving Eq. (3.31) with the aid of the orthonormal property
yields

Y, b=| a6, 1 —déx |{ ¥, | (3.32)
z, —doy doy 1 A

Consider changing the order in which [R;]7, [R,]T, and [R;]T are multiplied to
form Eq. (3.32). The final result will be the same because second-order differentials
are negligible with respect to first-order differentials. Since the right-to-left order of
multiplication in Eq. (3.24) matches the rotation sequence, we may conclude that:

* The final orientation of a coordinate system is unaffected by the sequence
in which a set of infinitesimal rotations are performed.

An important corollary follows from the fact that the transformations for space-
fixed and body-fixed axes differ only by the sequence in which the individual rotation
transformations are multiplied. Consequently, we observe from the foregoing state-
ment that the same transformation is obtained if a set of infinitesimal rotations are
imparted about body-fixed or space-fixed axes.
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Equation (3.32) relates the final coordinates of a point to the initial values. The
differential change in the (fixed-frame) coordinates is found to be

dx X, —X, 0 —db, dby (X,
dz Z,-2Z, —dby doy O Z,

The increments described by Eq. (3.33) are the components of the infinitesimal dis-
plaement dr. The vector form of dF is

dF = dXI+dYJ+dzK
= (doyZO—dOZYO)I-+ (dOZXO—dOXZO)j+ (dexyo—deyXO)k (334)

A simpler representation of the foregoing is obtained by using a cross product.
Let df represent a differential rotation vector,

d0 = doyI+dbyJ+do K. (3.35)

We describe the relative position 7p,o- in terms of components with respect to the
fixed reference frame, so that

fp/O'=X0i+YOJ-+Z()K'. (3.36)
Then the resulting expression for the infinitesimal displacement is
dF = db X Fp,or. (3.37)

Several aspects of Eqs. (3.35) and (3.37) are noteworthy. The individual rotations
were defined in Figures 3.5(a) and (b) to be positive according to the right-hand rule.
Thus, the component representation of d in Eq. (3.35) is equivalent to a vectorial
superposition of the infinitesimal rotations, as was anticipated earlier. The overbar
is placed above the entire symbol d@ in order to emphasize that there is no finite rota-
tion vector from which the differential is formed. A principal advantage of Eq. (3.37)
over Eq. (3.33) is that the vector form does not rely on a coordinate system to repre-
sent components. Specifically, Eq. (3.37) remains valid if its vectors are represented
in terms of components relative to the axes of the moving reference frame. (We often
shall use such a description.)

Finally, observe that the position vector and its differential occur in Eq. (3.37) only
because the derivation began by considering the position coordinates. Suppose we
had considered an arbitrary vector A that is attached to a moving reference frame,
so that its components relative to that frame are constant. The result would have
been an expression for the infinitesimal change in A4, that is,

dA=dixA. (3.38)

There is a simple explanation for this relation. Figure 3.7(a) shows a typical vec-
tor A before and after an infinitesimal rotation d@. The direction of the rotation vec-
tor is parallel to the axis of rotation, and the angle of rotation is |d8|. The change in
A is found as the difference between the new and previous vectors. This difference is
depicted in Figure 3.7(b), where the tails of the vectors have been brought to the axis
represented by df. The sketch shows that only the component of A perpendicular to
the axis changes; call this component A, . The line in Figure 3.7(b) representing A,
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A after
rotation

*0 A before
rotation
y

(a)

(b)

Figure 3.7 Change in a vector due to rotation.

rotates through the angle |d6|. Hence, the arc that represents d4 has a length A, |d6|,
and the direction of dA is perpendicular to both 4 and the d vector. The magnitude
of a cross product is defined to be the product of the magnitude of one vector and
the perpendicular component of the other vector, and the direction of the product is
perpendicular to the individual vectors. It follows that the pictorial analysis fully
agrees with Eq. (3.38). In other words, the change in A4 results from the movement
of its tip perpendicular to the plane formed by df and A4, in the sense of the rotation.
We will often recall this interpretation when we treat the change of a vector due to

a rotation.

The properties of a differential change in a variable are much like those for the
rate of change of that variable. Hence, we define the angular velocity to be

= 0X1_+0yj+021?

@ =

28

(3.39)
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Similarly, dividing Eq. (3.38) by dt yields the rate of change of any vector having
constant components relative to a moving reference frame. We have:

¢ A=axA. (3.40)
This theorem may be interpreted in words as:

¢ Let A be a vector whose components relative to a moving reference frame
are constant, and let & be the angular velocity of that reference frame. Then
the rate of change of A is the cross product of & and A.

Our primary application for this theorem will be to differentiate the unit vectors of
a moving reference frame.

Another generalization results from the fact that @, like d, is a vector quantity.
This permits us to represent the angular velocity as the vector sum of rotational
speeds about arbitrary axes, rather than only the axes of the fixed reference frame.
Specifically:

¢ Let xyz be a coordinate system that is undergoing a spatial rotation. Let ¢;
be a unit vector parallel to the ith axis of rotation in the sense of the rota-
tion according to the right-hand rule, and let w; be the corresponding rate
of rotation in radians per second. Then the angular velocity of xyz is given by

¢ @ =23 we;. (3.41)
i

Equations (3.40) and (3.41) are powerful tools that we shall employ frequently in our
study of kinematics, and they will play a vital role for the kinetics of rigid bodies.

Example 3.6 The disk is rotating about shaft AB at 3,600 rev/min as the system ro-
tates about the vertical axis at 20 rad/s. Determine the angular velocity of the disk.

( 20 rad/s z

Example 3.6 Coordinate systems.
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Use this angular velocity to determine the approximate displacement of point C on
the perimeter of the disk 2 us after the instant depicted in the sketch. Compare this
result to the precise one obtained from the rotation transformation.

Solution The given time interval is very small, so we may approximate in-
crements over the interval as differentials. This leads to

Afcz ((I)X'_'C/A)At,

where the reference point for the position is selected as point 4 because that point is
the fixed one in the rotation.
We obtain the angular velocity by vectorially adding the rotation rates. Thus,

@ = w]I?+w2éA/B,

where, according to the right-hand rule, the sense of the rotation w, about shaft AB
is directed from point B to point A. We shall describe the displacement in terms of
components relative to the fixed reference frame. We resolve &4, into components
relative to XYZ, which yields

24,8 = —(sin 60°) 7+ (cos 60°)K.

Substituting w;, w,, and &4, into the expression for & yields
®=20K+ 3,600(%—)(—0.866OI_+ 0.50K)

~326.57+208.5K rad/s.
At this instant, the position is
Feya = 0.2[(sin 60°) ] — (cos 60°) K ]+0.10J
=0.173217/+0.10/-0.10K m.
Thus, for At =2(107%) s, we find
AFcq = (—326.57+208.5K) % (0.173217+0.10J — 0.10K)[2(1076))
= (—41.707+ 6.9297 — 65.30K)(10~%) m.

To perform the corresponding computation using rotation transformations, we
first evaluate the angles of rotation corresponding to constant rates «; and w, over
a 2-us interval: 6, = w, At = 4(1075) rad, 6, = w, At = 7.540(10~*) rad. Let xyz be a
body-fixed reference frame, having origin A, whose x axis aligns with shaft AB and
whose y axis coincided with the Y axis prior to any rotations. We may picture the
final orientation of this reference frame as being obtained from a sequence of rota-
tions that moves xyz away from initial coincidence with XYZ. The sequence consists
of a rotation #, about the positive fixed Z axis, followed by a 30° rotation about the
body-fixed y axis, followed by a rotation §, about the negative body-fixed x axis.
Hence, the rotation transformation from XYZ to xyz is

[RI=[R,][R)][RZ]
1 0 1 c0s30° 0 -—sin30° cos®, sinf O
=|0 cosf, -sinb, 0 1 0 —sinf, cos#, O |.
0 sind, cosd, sin30° 0 cos30° 0 0 1
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Note that, because the computation of displacement will require subtracting numbers
of nearly equal magnitude, at least eight significant figures in [R] should be retained.

The coordinates of point C with respect to xyz remain constant at (0.20, 0.10, 0),
so the coordinates of this point with respect to XYZ subsequent to the rotations are

Xc 0.20
Yo b =[R1Y{ 0.10
Zc )s 0

The initial coordinates of point C with respect to XYZ are the components of 74
given previously. The corresponding displacement is

AXc Xc 0.2 cos 30° —41.699
AYp p={ Yo | — 0.10 = 6.898 $(107%) m.
AZ, Zc )p ((—0.25in30° —65.297

The closeness of these displacement components to those computed from (& X Fr,4) At
is to be expected, because the angles 6, and 8, are very small. Indeed, nearly compa-
rable values would be obtained by merely superposing the displacements from the
initial position of point C associated with rotations 8, and 8,.

Example 3.7 The Frenet formulas give the derivatives of the path-variable unit
vectors with respect to the arclength s along an arbitrary curve. Because § = v, these
derivatives may be converted to time rates of change of the unit vectors. Further-
more, the orthonormal directions represented by these unit vectors form a moving
reference frame. Use Eq. (3.40) to determine the angular velocity of the é,é,¢é, refer-
ence frame in terms of the path-variable parameters.

Solution 1t is useful to begin by recalling the Frenet formulas:

de, 1._ de, 1. 1. de, 1.
—= =&, =——f+—8, —2= ,
ds pe" ds p ‘Tt ds "

In order to convert these to time derivatives, we observe that if € is a unit vector that
depends on the arclength s locating a point, and if s = s(¢), then the derivative of &
may be obtained from

é_dés. vde
ds ds
Hence, we have
é_vdé,__ve_ 8 _vdé,,_ vé+ve' 5 _vdéb_ vé
Tds ™ " ds o Tt b= " ds T

Now let & be the angular velocity of &,é,é,, which may be written in component
form as

®=w € +w,é,+w,é,.

Each unit vector has constant components relative to the reference frame, so Eq.
(3.40) applies. Thus,
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. - - _ v _
€ =WX € = Wpey —Wpep = —¢€,,
Jo)
= - - - - Vv _ V..
ep =WXe€,=—Wpe;+wiep =——€+ —eyp,
P T
2 - - - _ V_
ep =W Xep = W€ —Wrey = ——¢€y.
T

Matching like components in each equation leads to

w, = {-, w, =0, wb=% = @= ;é,+%éb.

We see from this result that a sharp bend in the curve (small p) causes a rapid rota-

tion about the binormal direction, which is perpendicular to the osculating plane.

Similarly, a sharp twist (small 7) causes a rapid rotation about the tangent direction.

There is no rotation about the normal direction because the curve locally lies in the
osculating plane.

34 Angular Acceleration

One of the primary properties of the motion of a reference frame is its angu-
lar acceleration, which is defined as the time derivative of the angular velocity. It is
conventional to denote the angular acceleration as &, so that

¢ a=a. (3.42)

We saw in the preceding section that @ is the sum of rotation rates about various
axes. Even if the rotation rates are constants, there will be an angular acceleration
whenever any of the axes do not have a fixed orientation.

Let us consider the manner in which @ may be differentiated. The only general
statement regarding @ is Eq. (3.41), which calls for a summation of rotation rate vec-
tors that are formed according to the right-hand rule. Each unit vector &; has been
defined to be aligned with an axis of rotation. In order to expedite the description of
each ¢;, we proceed as follows:

¢ Define a moving reference frame x,y;z; for each rotation, such that one of
the axes of x;y;z; always coincides with that rotation axis. Hence, one of the
axes of x;y;z; coincides with &;. Let Q; be the angular velocity of x;y,z;.

Note that each of these reference frames may be, but is not necessarily, the same as
the xyz frame whose angular acceleration is being evaluated.

By definition, the unit vector ¢; is fixed relative to x;y;z;. Hence, the derivative of
é; is known from Eq. (3.40) to be Q, x &;. The rules for differentiating a sum and a
product then lead to

¢ a =3[08+ w;(Q; x é)). (3.43)
i
After Eq. (3.43) has been formed using the unit vectors of the various reference

frames, all terms in @ and & should be transformed to a common coordinate system.
The principles derived in Chapter 5 governing the kinetics of a rigid body require that
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the components of @ and @ be expressed relative to a body-fixed reference frame.
Hence, we usually describe the angular motion of xyz in terms of components rela-
tive to its own axes.

The task of finding the angular acceleration is a key aspect of evaluations based
on the concepts of relative motion. Hence, it is imperative to understand the mean-
ing of the terms in Eqs. (3.41) and (3.43). In particular, each ©; corresponds to the
angular velocity of a reference frame in which the ith axis of rotation seems to be
fixed. The term in Eq. (3.43) containing Q; X &; represents the effect of changing the
direction of the ith axis of rotation; the effect is perpendicular to that axis. In con-
trast, the term w;&;, which is parallel to the ith axis, arises whenever the rotation rate
is changed from its current value. Note that a rotation about a fixed axis, such as
that in a planar motion, produces only the latter effect. It is for this reason that intui-
tive judgments obtained from experience with planar motion are often incorrect.

Example 3.8 Determine the angular acceleration of the disk in Example 3.6.

Coordinate systems.

Solution The procedure here differs from the solution to Example 3.6,
owing to the need to define reference frames associated with each rotation. As shown
in the sketch, the Z axis of the fixed XYZ frame coincides with the vertical axis of
rotation, so & = K. For the other rotation, we attach the xyz reference frame to the
flywheel. (The location of the origin of xyz is unimportant for these operations.) We
align the x axis with shaft 4B, so that &, = i throughout the motion.

The corresponding general description of the angular velocity is

w= w,IZ' —wsy i,
where the sign for the w, rotation is a consequence of the right-hand rule. Both rota-
tion rates are constant. We set K = 0 because K is constant. In contrast, the angular
velocity of xyz is @, so i = @ X i. We may assume that the rotation rates are constant,

because it is not stated otherwise. The derivative of the general expression for @ is
therefore
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&= —wy(@X1I).

Employing @ and & in subsequent computations would require their resolution
into components relative to a single coordinate system. As mentioned in the discus-
sion following Eq. (3.43), it is standard practice to employ the xyz axes for this pur-
pose. We could consider xyz to have undergone an arbitrary rotation about shaft
AB. This would complicate the task of evaluating the components of K because it
would not lie in any of the coordinate planes. The axisymmetry of the disk makes it
equally valid - and much more convenient - to define xyz such that, at the instant of
interest, its z axis lies in the vertical plane formed by the two rotation axes. This is
the orientation depicted in the sketch. Thus,

K = —(cos 60°)i + (sin 60°) k.

An interesting corollary of the foregoing procedure is that the orientations of the
fixed reference frame axes are unimportant if they are not rotation axes. Substitut-
ing for K, w;, and w5 in the general expressions yields

& =20(—0.50/ +0.866 k) — 1207/ = —387.0i +17.32k rad/s,
& = —(1207)(—387.0i +17.32k) x i = —6,530, rad/s>.

A simple verification of this result for & is the observation that, as the system ro-
tates about the fixed vertical axis, the tip of the angular velocity term —w,7 moves in
the negative y direction. This agrees with the direction of the computed value of &.
The rotation about the vertical axis does not contribute to the angular acceleration,
because its rate is constant and its axis retains a constant orientation.

Example 3.9 The gyroscopic turn indicator consists of a flywheel that spins about
its axis of symmetry at the constant rate w,, as the assembly rotates about the fixed
horizontal shaft at the variable rate w,. The angle 3 locating the axis of the flywheel
relative to the horizontal shaft is an arbitrary function of time. Determine the angu-
lar acceleration of the flywheel at an arbitrary instant.

Example 3.9
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Solution We define xyz to be attached to the flywheel, so that the angular
motion of xyz is identical to that of the flywheel. The w, rotation is about the fixed
horizontal shaft. Correspondingly, we define the fixed reference frame such that the
unit vector parallel to that rotation axis is &, = —I. (There is no need to specify the
other fixed axes, because we will resolve all terms into components relative to the
moving reference frame.) The w, rotation is about the axis of the flywheel, and this
direction is fixed relative to the flywheel. We therefore define xyz such that the unit
vector along this rotation axis is & = i. The third rotation is about an axis that is
always perpendicular to the horizontal shaft. In order to describe it, we attach an
x'y'z’ reference frame to the gimbal supporting the flywheel. We define the z’ axis to
coincide with the 3 rotation, so & = k’. (Note that we have defined the x’ axis in the
sketch to coincide with the axis of the flywheel. Consequently, we could have alter-
natively defined é, = i". However, it would be incorrect to assign &; to k, because the
z axis rotates relative to the gimbal.)

The angular velocity of the flywheel is the sum of the individual effects, so

@ = —wy I+ w i+ Bk’

We associated ¢, with xyz and &, with XYZ. The corresponding angular velocities to
be used in differentiating the unit vectors of those reference frames are

Q=& and ©,=0.

The angular motion of x’y’z’ is like that of xyz, except that it does not include the
spinning rotation w;. Hence, the angular velocity of x’y’z’ is

Q3 = '—0.)2]_+ B/G,
Using these angular velocities to differentiate the general expression for @ yields
a=—a,I+Bk'+w(@axi)+B(Q;xk"),

where we have set @, = 0, as specified.

Y.y

Coordinate systems.
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Both @ and & must be represented in terms of a single set of directions, for which
we select xyz. The resolution is simplified significantly if we define xyz so that the z
and z’ axes coincide at the instant of interest; this is the configuration in the sketch.
Then,

I'=—(cosB)i+(sinB)j, k'=k.
Substitution of these unit vectors into the previous relations yields
@ = (w0} +w, cos B)i — (w, sin B) j + Bk,
Q3 = (w; cos B)i —(w, sin B)j + Bk,
& = —ay[—(cos B)i+ (sin B)j1+ Bk
+ w[(w)+wy cos B)i—(w, sinB)j+ Lk X i
+ B[(w, cos B)i—(w, sinB)j+ Bkl X k
= (w2 cos B—wy BsinB)i+(—w;sinB+w ;B —w,BcosPB)j
+(B+ww,sinB)k.

It is important to recognize that, in Examples 3.8 and 3.9, one axis of the
body-fixed xyz reference frame was selected to always align with the body-fixed rota-
tion axis. This defines uniquely the orientation of that axis at any instant. The axial
symmetry of the body to which xyz was attached enabled us to select the instanta-
neous orientations of the other axes of xyz as we wished; this selection was made to
facilitate the description of the other axes of rotation. Following such a procedure in
other systems may not be possible. One such case may be found in Example 3.14.

35 Derivative of an Arbitrary Vector

We saw in Section 3.3 that the derivative of a vector having constant com-
ponents relative to a moving reference frame is determined by the angular velocity
of that reference frame. In Section 3.4 we treated a much more general situation in
which the vector to be differentiated (i.e. &) had variable components. In that case,
the individual contributions were described in terms of unit vectors &; that were ori-
ented arbitrarily. These unit vectors were not necessarily associated with the same
reference frame. Here, we shall address the conventional representation of a vector
quantity, in which all unit vectors are associated with the axes of the (moving) xyz
reference frame.

Let @ denote the angular velocity of xyz, and let A be a vector whose components
Ay, Ay, A, relative to the moving reference frame are functions of time. The com-
ponent representation of A is

A=A, 0+A,J+A,k. (3.44)

The unit vectors, as well as the components, in this expression are functions of time.
Equation (3.40) describes the derivatives of 7, j, and k. The angular velocity to be
used for the differentiation in each case is &, because the unit vectors are those for
the moving axes. The rules for the derivative of a sum and a product therefore yield

A=A+ A, j+Ak+ A oxT)+A,@X])+ A &% k);
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6A

A=22
¢ ot

+@xA, (3.45)
where 6A4/6¢ describes the rate of change of A due to the time dependency of the
components:
Bfi M 3 4 v 4 '

¢ 5 =A+A,j+Ak. (3.46)

These relations have a simple explanation. Suppose you were to observe any vec-
tor quantity, such as a position 7, while situated on a moving reference frame. In
describing the velocity in terms of coordinates measured relative to the axes of the
moving frame, the term 67/8¢ is the only effect you would observe. In general, 64/6¢
is a time derivative as seen from a moving reference frame. It may be considered
to be the partial derivative of A, based on holding the orientation of xyz constant.
We know from the previous section that the term @ x A gives the portion of the
change of A that is attributable to rotation of the reference frame. Hence, Eq. (3.45)
is merely a statement that these two effects superpose, as you might have expected.

3.6 Velocity and Acceleration Using a Moving Reference Frame

Equations (3.45) and (3.46) will be employed in a variety of ways. Here we
shall use those expressions to derive formulas that relate observations of velocity
and acceleration relative to moving and fixed reference frames. The general situation
confronting us is depicted in Figure 3.8, which is the same as the diagram that intro-
duced this chapter. We have already seen that the observations of the position of
point P from the fixed and moving reference frame are related by

Fpio=Foy0+Fpso- (3.47)

By definition, the absolute velocity is the time derivative of the position with re-
spect to the fixed reference frame. Differentiating Eq. (3.47) yields

z

X

Figure 3.8 Position relative to a moving reference frame.
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- d .
Vp = Vo + Erp/of. (3.48)

Presumably the (moving) xyz reference frame has been chosen for its convenience in
describing the position of point P. We therefore describe 7p,/- in terms of the coordi-
nates of point P with respect to the axes of this reference frame. Thus,

¢ fp/01=x;+yj+llz. (349)

Differentiating Eq. (3.49) is not difficult, because it matches the situation addressed
in the previous section. We apply Eq. (3.45), which superposes the effects of the
changing coordinate values and the rotation of the vectors. This gives
%fp/of=x;+yj+2E+@Xfp/of. (350)
Suppose you were an observer moving with the xyz reference frame; you would see
only the (x, y, z) coordinates change. Thus, the first three terms on the right side of
Eq. (3.50) describe the velocity of point P as seen from the moving reference frame.
Let (Vp),,, denote this relative velocity, where the subscript P details the point under
consideration and the trailing group of subscripts describes the reference frame from
which the motion is viewed. In this notation, combining Eqgs. (3.48) and (3.50) leads to

¢ Vp = Vo + (Vp)yy, + @ X Fpsors (3.51)

where the relative velocity is

L 4 (Vp)xyz = —;—tfp/ol =Xi+yj+zk. (3.52)
Note that it is a matter of convenience to omit the reference-frame specification when
indicating an absolute velocity (and acceleration).

Equation (3.51) confirms a superposition of effects that we could have anticipated.
The rotation of the reference frame contributes a transverse velocity @ X Fp,- that
is perpendicular to the plane formed by @ and 7p,o-. This term combines with the
velocity of the origin O’, and the relative velocity, to form vp.

Our intuition is not so correct when applied to acceleration. A relation for the
acceleration of a point is obtained by differentiating Eq. (3.51). The derivative of the
velocity of origin O’ is its acceleration. Because Eq. (3.52) gives the relative velocity
in terms of its components relative to the moving frame, we employ Eq. (3.45) to
differentiate (¥p),,,:

d _ - -
E(VP)xyz = (aP)xyz +&X (vP)xyz’ (353)

where the relative acceleration is
- 6 - v Py P
L4 (@p)xy, = g(vP)xyz =Xi+yj+2zk. (3.54)
The third term in Eq. (3.51) is the product & X gp,o, and Eq. (3.50) gives the de-
rivative of 7p,o-. The angular acceleration is the derivative of the angular velocity, so

the total derivative of the third term is

d, __ _ _ - - _ o
E(w X Fpsor) = @XTpsor+ @& X [(Vp)yy, + & X Fpsor]. (3.55)
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The resulting acceleration relation is thereby found to be
¢ ap= do/"‘(dp)xyz"‘&)(fp/o"“@)((a’Xfp/or)+2(;))((\_’p)xyz. (3.56)

The final term in Eq. (3.56), that preceded by the factor 2, is called the Coriolis
acceleration. In order to understand this term, consider the second derivative of a
product; specifically,

2
dr?

Because acceleration is the second derivative of position, the occurrence of a factor
2 should not be surprising. For further insight, recall the analysis in Chapter 2 of
curvilinear coordinates for particle motion. We saw there that the Coriolis accelera-
tion originates from two distinct effects. The same is true here, since Eqgs. (3.53) and
(3.55) both contribute to the overall effect. The term in Eq. (3.53) is associated with
the change in the direction of the relative velocity resulting from rotation of the ref-
erence frame. In contrast, the term in Eq. (3.55) corresponds to the change in the
components of & X Fp,o- that results from changing the components of 7p,o.. Com-
parable effects were found for curvilinear coordinates. Experienced dynamicists rec-
ognize Coriolis acceleration as a combination of two explainable effects resulting
from movement relative to a rotating reference frame. Thus it is, to a certain extent,
a misnomer to use a single name to describe the corresponding term in Eq. (3.56).

The other terms in Eq. (3.56) could have been predicted in advance. The additive
nature of the accelerations of the origin O’ of the xyz reference frame and of point
P relative to xyz requires no explanation. The term @ X 7p,¢- is the angular acceler-
ation contribution, analogous to the velocity term @ X Fp,o- resulting from an angu-
lar velocity. In spatial motion, the angular acceleration is usually not parallel to the
angular velocity. As a result, the direction of the corresponding acceleration might
occasionally differ from expectations.

Now consider the term & X (® X Fp,o-). Figure 3.9 shows the construction of this
acceleration. The magnitude of (& X 7p,o-) is r,|®|, and the corresponding direction
is perpendicular to the plane formed by @ and 7p,o.. Then @ X (& X Fp,o-) is perpen-
dicular to the rotation axis, pointing inward; its magnitude is |¢I>|2rL. In other words,
this term describes the centripetal acceleration that would be found if the reference
frame were rotating at rate |@| about an axis that intersects the origin O’ and is paral-
lel to @.

One aspect of both relative velocity and relative acceleration greatly facilitates
their evaluation. These terms may be regarded as the effects that would be present if
the reference frame were held stationary yet the relative motion remained unchanged.
These velocity and acceleration effects were described in Eqgs. (3.52) and (3.54), re-
spectively, in terms of a Cartesian coordinate description. However, other kinemati-
cal descriptions, such as those employing path variables and curvilinear coordinates,
might be more appropriate in some situations. When such an approach is taken, it
becomes necessary to convert the corresponding unit vectors to the set of compo-
nents used to represent the other vectors in the velocity and acceleration relations.

It is instructive to close this discussion by considering two special cases. The sit-
uation of a translating xyz frame corresponds to @ being identically equal to zero;
hence, & also is zero. The relative motion equations then reduce to the following.

(uv) = av+2uv+uv.
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Rotation axis
\
\

@ Xrpjor

w X (5) X ;P/O')

Figure 3.9 Centripetal acceleration.

Translating Reference Frame xyz

Vp = Vor + (Vp)yy2»
T (3.57)
ap = Ao+ (ap)yy;-
The motion of the origin and of the point relative to the moving reference frame are
additive - there are no corrections for direction changes due to rotation.

Let us use Eqgs. (3.57) to reexamine fixed reference frames. Suppose that
xyz, as well as XYZ, is fixed. Then Eqgs. (3.57) show that the velocity and accelera-
tion are the same, regardless of which reference frame is selected. This verifies our
earlier statement that there is no need to indicate the origin of the reference frame in
the notation for velocity and acceleration.

Another interesting situation arises if the reference frame is translating at a constant ve-
locity. This means that @o- = 0. Note that the origin O’ must be following a straight path
in order for it to have no acceleration. The second of Egs. (3.57) shows that acceleration
viewed from the fixed and moving references is identical. A reference frame with this type
of motion is said to be an inertial or Galilean reference frame. The terminology arises be-
cause the absolute acceleration is observable from the reference frame, so the frame may
be employed to formulate Newton’s laws.

The second special case arises when point P is fixed with respect to the moving
reference frame. This is the situation treated in Section 3.2 to study position changes
in finite rotation. The velocity and acceleration relations simplify substantially, be-
cause (vp),,, and (@p),,, are both identically zero.

Fixed Position Relative to xyz
\-’p =Vo+@XFp0s

5 (3.58)
ap=ag +aXrpo+&X(@®@XFpspr).
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A primary reason for highlighting this situation is that it is descriptive of the
motion of a rigid body. If the reference frame is attached to the body, then the posi-
tion vectors between points in the body have constant components relative to the
moving reference frame. Also, the angular motions of the body and of the reference
frame are synonymous in this case. The motion of rigid bodies is the focus of the
next chapter.

Example 3.10 Bar BC is pinned to the T-bar, which is rotating about the vertical
axis at the constant rate Q. The angle # is an arbitrary function of time. Determine
the velocity and acceleration of point C using an xyz reference frame that is attached
to the T-bar with its x axis aligned with segment AB.

Z,z
o] |D
B ) x b A
0 b Q| D>
L,
f 777 (22
Example 3.10 Coordinate systems.

Solution Placing the origin of xyz at point A makes it a trivial matter to
describe the motion of the reference point. The specified xyz reference frame only
rotates about the vertical axis, which is fixed, so we designate &, = —K = —k. Hence,
the motion of the reference frame is

\7A=ﬁA=6, CB:—Q]?:—Q,E, &=6

Relative to xyz, point C follows a circular parth centered at point B. Using the
polar coordinates defined in the sketch to represent the relative motion yields

(P)xyz = L, 08, (@C)xy, = —L,0%eg + L, 0e,.

We transform these expressions to xyz components in order to employ them in the
relative motion equation. First, we form

&g = (cos 8)i — (sin 0)k, &y = —(sin6)i —(cos 0)k.

Substitution of these unit vectors into the relative velocity and acceleration yields
(P¢)xyz = L20[—(sin 0)i — (cos )],
(@C)xyz = L[(—6% cos § ~ 6 sin 6)7+ (67 sin 6 —§ cos 0)k].



90 3 / Relative Motion

Also, the vector from the origin of xyz to point C is
Feyq=(Ly+L,cos8)i—(L,sinf)k.

We are now ready to form the absolute motion. The result of substituting the
individual terms into Eq. (3.51) is

\7C = \.’A +(f’c)xyz+a) X fC/A
= —(L,0sin6)i—(L;+L,cos0)Qj—(L,0cosb)k.
Similar steps for Eq. (3.56) yield

dC = ﬁA+ (&C)xyz"'a X FC/A+(:’ X (‘I’ X fC/A)+25’ X (‘_’C)xyz
= —[L,0sin0+L,0%cos6+(L,+L,cosd)Q%]i
+(2L,Q0sin0)j—L,(f cos 0 —62sin ) k.

Example 3.11 Determine the velocity and acceleration of point C in Example 3.10
using an xyz reference frame that is attached to bar BC.

Z
e >
B E, (inward)
A
Ly

Coordinate systems.

Solution Because xyz must be fixed to bar BC, the origin of xyz must have
a stationary position as viewed from that body. For that reason, we cannot place the
origin of xyz at the stationary point 4. Point B is suitable as this origin. We know
that this point follows a circular path centered at point A. The radial direction for
this motion is €z in the sketch, and we define the azimuthal direction to be inward
relative to the plane of the sketch. Hence, we have

\—’B'—_-ngéd), 63=_L192ék.

We align the axes of xyz to expedite the description of 7,5, @, and &. For this
reason, we let the x axis coincide with bar BC and select the z axis to be situated in
the vertical plane, as shown. One rotation of xyz occurs about the vertical axis at rate
Q,s50¢ = —K. The other rotation is § about the axis of the pin, outward as viewed
in the sketch according to the right-hand rule. The y axis always coincides with this
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axis of rotation, and y must be outward in the sketch because xyz must be a right-
handed set of coordinates. Hence, we set &; = j, which leads to

& =—QK+46j.
Differentiating this expression in accordance with the general relation, Eq. (3.43),
gives, for constant 9,
a=0j+0@xJj).
One benefit of fixing xyz to bar BC is that point C is stationary relative to xyz, so
(‘—’C)xyz = (dC)xyz =0.

As the last step prior to forming Eqgs. (3.51) and (3.56), we transform all vectors to
components relative to xyz. The various unit vectors are found by referring to our
sketch, which gives

ég=(cos9)i+(sin0)k, &é,=-j, K= —(sin)i+(cosb)k,
which then leads to

vg=—L,Qj, dg=—L,Q*(cosB)i+ (sinB)k];

@ = (Qsin0)i+ 67— (Qcos )k,

a = (00 cos0)i+8j+(Q6sin)k.
A verification of the correctness of this expression is that the two components con-
taining the product 26 form a vector .il_‘l the direction of ég. This is the direction in
which the tip of the angular velocity §; moves owing to the rotation about the ver-
tical axis.

The ve!ocity and acceleration relations, Eqgs. (3.51) and (3.56), now give, for
Fe/p= L,

Ve=Vg+dXFc/g= —(Lj+Lj,cos 0)91-"‘142012,
dc= dB+aXFC/B+(DX((DXI-'C/B)
= —[L,6%+(L;+L,cos0)Q%cos 01i
+(2L,90sin8)j—[Lo0+ (L, + L, cos§)Q?sinf)k.

If we were to transform the present components to those used in Example 3.10, we
would find that the results represent identical vectors.

Example 3.12 Disk B rotates at 900 rev/min relative to the turntable, which is ro-
tating about a fixed axis at a constant rate of 300 rev/min. Determine the accelera-
tion of point C on the perimeter of the disk at the instant shown using:

(a) a moving coordinate system that is attached to the turntable; and
(b) a moving coordinate system that is attached to the disk.

Solution This is a case of planar motion, so we orient the z axis normal to
the plane in both formulations. The reference frame x,y,z, in the first case is at-
tached to the turntable, so center point A4 is a convenient origin. Placing the x axis
along line AB leads to the following description of the motion of x; y,z;:
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900 rev/min Xy, Xy

300 rev/min

Example 3.12 Coordinate systems.
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We could use polar coordinates to formulate the relative velocity and acceleration;
but, for the sake of variety, we shall employ relative motion equations for this task.
We visualize the motion that would remain if the turntable were stationary. From
this viewpoint, the angular motion of the disk relative to the turntable is

_ 27\ - _

Wye) = —900<6—0>k rad/s, Qo] =
Points B and C have fixed positions when viewed from the disk, so we may employ
Eqgs. (3.58) with the angular motion being that of the disk. Correspondingly, we have

=3

(P)xyz = @ret X Feyp = (—30mk) X [(R cos 6)i— (R sin §) ] ]
= —307R[(sin8)i+ (cos )],
(AC)xyz = @rel X (@re) X Fe/p) = —9007!'2[(R cos 6)/ — (R sin 0)./-]
We substitute these quantities into Eqs. (3.51) and (3.56) to find
Ve =Va+(Ve)xyz + @ XFesq
= —307R([(sin )i+ (cos 6)j]+10mk X [(L + R cos 0)i — (R sin )/ ]
= —207R(sin0)i+ 107w (L —2R cos 0) ],
Ac =04+ (Ac)yy, +AXTFc/q+ @ X (DX Fe/)+20 X (Ve)yxy,
= —10072(L + 4R cos 0)i+ 4007 (R sin6) .

A formulation based on fixing reference frame x, y,z, to the disk is considerably
easier. We place the origin of x; y, z, at center point B, because it is the only point on
the disk that follows a simple path. The rotation of x, y,z, consists of a superposi-
tion of w, = 10w rad/s in the sense of &, = k, and w, = 307 rad/s in the sense of &, =
—k. Thus,

@=wk—wk=-20rkrad/s, a=0;
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Vg=107Lj,  ag=—1007>Li.
There is no relative motion to evaluate in this case, so we have
Vo =g+ @ X Feyp = 10mLj+(—207k) X [(R cos §)i— (R sin8) /]
= —207R(sin 6)i+107(L — 2R cos 8) ],
dc=dp+aX(®XFc/p)
= —10072Li— 4007 *[(R cos )i — (R sin8) ]
= —10072(L +4R cos 8)i+ 4007 %(R sin8) .

Example 3.13 Let w,, w,, and w, denote the pitch, roll, and yaw rates (respectively)
of a ship about xyz axes that are attached to the ship with the orientations shown.
All of these rotation rates are variable quantities. The origin of xyz coincides with
the center of mass G of the ship. Consider an elevator car whose path perpendicu-
larly intersects the centerline at a distance L forward from the center of mass. Let
h(t) denote the height of the elevator above the centerline. The velocity and acceler-
ation of the center of mass at this instant are v; and @g. Determine the correspond-
ing velocity and acceleration of the car.

Example 3.13

Solution The elevator follows a straight path relative to the ship, so it is
convenient to attach xyz to the ship. The given rotations are about body-fixed axes,
so we have & =i, é, = j, and é&; = k, corresponding to the rates w,, ,, and w,, re-
spectively. Thus, the rotation of xyz is

w= wxf+wyf+wzl€,
& =00+, J+ 0,k +w(@XT)+w,(@XJ)+w, (@ k)
=@ d+ @, J+ 0,k +@X (Wl +w, j+w,k) = o i+ 0, j+o,k.
It should be noted that these expressions for @ and & are generally true. They indi-
cate that the angular acceleration components are always the derivatives of the an-
gular velocity components, provided that all components are relative to body-fixed

axes. This observation is a key aspect of the development of kinetics principles in
Chapter 5.
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The position of the elevator relative to the center of mass is
fE/C = Lj_+ hlE
Relative to xyz, the elevator executes a rectilinear motion at speed /4 parallel to the
z axis, so
(Pe)xyz = hk,  (dg)y,. = hk.
Correspondingly, we find
Vg = V6 + (VE)xy, + @ X g/
= \70+(wyh—sz)IT—wxth+(/i+wa)lz,
g =dg+(Agp)xy, + @ XTg/6+ @ X(®XFg/g)+20 X (VE)xy2
=ag+(wyh—w,L+ww,L+wwh+ 2(.0},/i)lT
+(—oh+w,w,h—wlL—wiL —2w h)j
+(h+ao L —wih—wlh+w,w,L)k.
Some of the acceleration terms were foreseeable. The acceleration of the elevator relative
to the ship is represented by the 4 term, and the angular acceleration effects are contained
in the @,, @y, and @, terms. In the same vein, the w?, w2, and w? terms represent cen-
tripetal accelerations about the respective axes. The terms that are not intuitive are those

containing products of rotation rates about different axes, as well as the Coriolis accelera-
tion terms, which feature a product of 4 and a rotation rate.

Example 3.14 The cooling fan consists of a shaft that rotates about the vertical
axis at angular speed w, while the blades rotate around the shaft at angular rate 6,
where 6 is the angle of rotation of one of the blades from the top-center position.
Both rotation rates are constant. Derive expressions for the velocity and acceleration
of the blade tip P in terms of components relative to the body-fixed xyz reference
system shown in View C-C.

Solution Had it not been specified otherwise, it would be preferable to
employ a body-fixed x'y’z’ reference frame, parallel to the given xyz but with origin
at point 4. However, by employing the given system we will gain greater versatility
in treating the variety of situations that may occur. The rotation of xyz is the sum of
the rotation w, about the fixed Z axis and the rotation § about the x axis. The general
expressions for @ and @ are therefore

d=w, K+6i, a=40(@xi).
Several approaches for expressing K in terms of xyz components are available; we

shall evaluate the rotation transformation from XYZ to xyz. If the X axis is defined
such that shaft AB lies in the XZ plane at the instant depicted in the diagram, then

X X
Y (=IR}\ Y, [R]I=I[Rgl[Rsl,
z Z

where [R;] describes a rotation of 90°— 8 about the Y axis and [ R,)] describes a rota-
tion about the x axis:
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Example 3.14

sinB 0 —cosf 1 0 0
(Rg]l= 0 1 0 s [Rg]=| 0 cosf sind
cosB 0 sinf 0 —siné cosé

Thus, the overall transformation is
sin3 0 —cos 8
[R]=] (cosB)(sinf) cosf (sinB)(sin@)
(cosB)(cos @) —sinf (sinB)(cos8)

The last column of [R] consists of the direction cosines between the Z axis and the
xyz axes, from which we find that

K = —(cos B)i+ (sin B)(sin 8) j + (sin B)(cos O) &,
[—w; cos B+ 61i+ w,(sin B)(sin 8)j + w,(sin B)(cos 0) k,
a = fw(sin B)[(cos 8)j — (sin B)k].

)
Il

To describe the motion of the origin of xyz, we observe that point B is on shaft
AB, whigh is rotating without angular acceleration about the vertical shaft. Because
7gs4 = Li, this leads to

Vg = w, K X Pg,4 = Lw,(sin B)[(cos 8)j— (sin ) k],
dB = w,]?x (wlI?XFB/A)
= Lw}(sin B)[—(sin B)i — (cos B)(sin 8) j — (cos B)(cos 8) k1.

As a check on the correctness of these expressions, note that |vg| = Lw;(sin8) and
|@g| = Lw?(sin B), as they should because point B is following a circular path of radius
L sin @ at angular speed .
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Because point P belongs to the blade and xyz is fixed to the blade, there is no rela-
tive motion:
Fp/p= Hk; (Vp)xyz = 0, (@p)xy. = 0.
Substituting the individual terms into the relative motion equations (3.51) and (3.56)
gives
¥p = Hw,(sin B)(sin 8)7 + [ Lw,(sin B)(cos 8) + Hw,(cos B) — HB]j
— Lw(sin B)(sin )k,

dp = [~Lwi(sin 8)* — Hwi(sin B)(cos B)(cos §) + 2 Huw,8(sin B)(cos 8)]7
+ [—Lw}(sin B)(cos B)(sin 8) + Hwi(sin B)(cos 0)(sin )]/
+ [—Lwi(sin B)(cos B)(cos §) — H(—w, cos B+ §)?
— Hul(sin B)*(sin 0)?1k.
It is interesting to observe that each term in dp containing a product of w, and 6
also contains a factor of 2. These are Coriolis acceleration effects associated with

the interaction of the two rotation rates. These terms arise even though the Coriolis
acceleration term 2& X (Vp)y,, in Eq. (3.56) vanishes in our solution.

3.7 Observations from a Moving Reference System

The treatment in the previous section implicitly assumed that the motion of
some point could be more readily described in terms of a moving reference frame,
rather than a fixed one. However, this is not always the case. In some situations, the
absolute motion is known and the relative motion must be evaluated. For example,
it might be necessary to ensure that one part of a machine merges with another part
in a smooth manner, as in the case of gears. The influence of the earth’s motion on
the dynamic behavior of a system is another important case where aspects of the
absolute motion are known.

One approach is to interchange the absolute and relative reference frames, based
on the fact that the kinematical relationships do not actually require that one of the
reference frames be stationary. Thus, in this viewpoint, if the angular velocity of xyz
relative to XYZ is &, then the angular velocity of XYZ as viewed from xyz is —&.
The difficulty with this approach is that it is prone to errors, particularly in signs, be-
cause of the need to change the observer’s viewpoint for the formulation. The simpler
approach, which does not require redefinitions of the basic quantities, manipulates
the previous relations.

The concept is quite straightforward. When the absolute velocity ¥p and absolute
acceleration dp are known, Egs. (3.51) and (3.56) may be solved for the relative mo-
tion parameters. Specifically,

(VP)xyz = Vp—Vor— & XFp/0, (3.59)
(@p)xy; = dp—Ao —AXTFp/gr— @ X (DX TFp/o) —2& X (Vp)yy,- (3.60)

If it is appropriate to do so, the relative velocity may be removed from the accelera-
tion relation by substitution of Eq. (3.59). The result is
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(dP)xyz =dp—Adpg —aXFpo+adX (@XFps07) —2aX (Vp—Vo). (3.61)

The steps required to apply these relations are like those already established, because
the angular velocity and angular acceleration still describe the rotation of the moving
reference frame as seen from the fixed one.

One of the most common applications of these relations is to cases where the
rotation of the earth must be considered. Our observations are usually in terms of
earth-based instruments. However, Newton’s second law relates the forces acting on
a body to the motion relative to some hypothetical inertial reference frame, that is,
ap =3 F/m for a particle.

Consider an observer at point O’ on the earth’s surface. A natural definition for
the reference frame employed by this observer is east-west and north-south for posi-
tion along the surface, and vertical for measurements off the surface. Such a refer-
ence frame is depicted in Figure 3.10, where the i vector is northward and the j vec-
tor is westward. The observation point O’ in the figure is located by the latitude angle
A measured from the equator and the longitude angle ¢ measured from some refer-
ence location, such as the prime meridian (the longitude of Greenwich, England).

For our present purposes, it is adequate to employ an approximate model of the
earth. The earth rotates about its polar axis at w, = 2 rad/(23.934 hr) = 7.292(10~°)
rad/s. The orbital rate of rotation of the earth about the sun, wg, is smaller by an
approximate factor of 365, because one such revolution requires a full year. The cen-
tripetal acceleration of a point at the equator due to the spin about the polar axis is
w2R,, where R, is the earth’s diameter, R, = 6,370 km. For comparison, the centrip-
etal acceleration due to the orbital motion is w3 R, where the mean orbital radius is
R = 149.6(10%) km. We note that w3 R, = 0.176w2R,, and w?R, is itself quite feeble
(=0.034 m/s?). Furthermore, the centripetal acceleration associated with the earth’s
orbital motion is essentially balanced by the effect of the sun’s gravitational attrac-
tion, since that balance produces the orbit. For these reasons, it is reasonable to

North pole

LD,

South pole

Figure 3.10 Reference frame fixed to the earth.
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consider the center of the earth to be stationary. If we also ignore the relatively minor
wobble of the polar axis, our model of the earth reduces to a sphere that rotates
about the (fixed) polar axis at the constant rate w,. The corresponding expression
for the acceleration relative to the earth is
_ SE, F, _ _ o

(@p)xy, = _,n_a + _rgg — g — @ X (@ X Tp/07) — 2B X (VP)xyzs (3.62)
where the term Fg represents the gravitational force acting on the body and 3 F,, rep-
resents the applied loads and reactions.

Now consider a particle near the earth’s surface at the instant after it has begun to
fall freely. Let point O” be close to the particle, so that 7,0 = 0. If air resistance is
negligible then there are no applied forces, and X F, = 0. By definition, the accelera-
tion observed from the earth is g vertically downward. Recall that the z axis in Fig-
ure 3.10 was defined as the upward vertical, which now means that the observed free-
fall acceleration is —gk. Then Eq. (3.62) gives

__F, _
—gk = - ~ o (3.63)
This relation may be quantified by using the inverse square law for gravity, as well as
the relative motion equation to describe @,-. The result is

GM,
R}

There are two primary aspects of interest in this relation. The centripetal acceler-
ation term is not parallel to the position 7o except at the poles, where &, is parallel
to o0, and at the equator, where @, is perpendicular to 7, . Hence, the k direc-
tion, which people perceive as vertical, generally does not intersect the center of the
earth. (It should be noted that £ does coincide with a meridional plane, which is any
plane formed by &, and Fo.¢.) At a latitude of 45°, k deviates from 7y, by approx-
imately 0.1°. Equally significant is the effect of the centripetal acceleration on the
weight mg that is measured at the earth’s surface. This effect is most noticeable at the
equator, where the centripetal acceleration is w?R, parallel to 7o,o. The value g =
9.807 m/s” represents a reasonable average value when the latitude is not specified.

In view of Eq. (3.63), the acceleration relative to the earth given by Eq. (3.62)
becomes

gk =

’-'O’/O+‘:’e X ((._v)e Xfol/o). (364)

(dP)xyz = E_’nFi —gk —We X ((:)e X fp/ol) - 2(I’e X (‘-’P)xyz' (3.65)
Usually, the term &, X (&, X Fp,o-) may be neglected, unless 7p/o- is a large fraction of
the earth’s radius. Therefore, the primary difference between Eq. (3.65) and the form
of Newton’s second law that ignores the motion of the earth is the Coriolis term.

It is a straightforward matter to describe each of the terms in Eq. (3.65) in terms
of components relative to the earth-based xyz reference frame. The position, veloc-
ity, and acceleration relative to this system may be described by the Cartesian coor-
dinates (x, y, z). Because the angular velocity of the earth is parallel to the polar axis
and the deviation of the z axis from the line to the center of the earth is small, the
angular velocity is essentially

@ = wel(cos A)i+ (sin A k). (3.66)
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~ (North)

ZwZI?x(\’/P)Xﬂ (‘_’p)xyz

y (West)
kJ W, = ‘:’e'l‘:

Figure 3.11 Coriolis acceleration due to the earth’s rotation.
Correspondingly, Eq. (3.65) becomes

" . F,
X—2w,ysinA= W",

F

J+2w,(XsinA—2ZcosA) = '’ (3.67)

} . F,
Z42w,ycosA= Wz—g,

where (F,, F,, F,) are the components of the applied forces. These equations may be
solved for the forces required to have a specified motion relative to the earth. Alter-
natively, they may be regarded as a set of coupled differential equations for the rela-
tive position in situations where the forces are specified.

The fact that the Coriolis term is perpendicular to the velocity as seen by an ob-
server on the earth leads to some interesting anomalies. In the Northern Hemisphere,
the component of &, perpendicular to the earth’s surface is outward. If a particle is
constrained to follow a horizontal path relative to the earth in the Northern Hemi-
sphere, the Coriolis term 2@, X (Vp),,, is as shown in Figure 3.11. It follows that a
horizontal force acting to the left of the direction of motion is required if that direc-
tion is to be maintained.

A story that has been passed down from professor to student over the years,
without substantiation, states that a railroad line had two sets of north-south tracks
along which trains ran in only one direction. For the track along which trains ran
northward, the inner surface of the east rail was supposedly more shiny, because of
the westward Coriolis force it had to exert on the flange of the wheels. Correspond-
ingly, the track for trains running south was shinier on the inner surface of the west
rail. The veracity of this story is questionable, owing to the smallness of the force in
comparison with such other effects as wind and elevation changes.

If a transverse force is not present to maintain a particle in a straight relative path,
as required by Eq. (3.65), then the particle will deviate to the right. This observation
leads to a qualitative explanation of the fact that a liquid being drained through the
center of a perfectly symmetrical cylindrical tank will exhibit a counterclockwise spi-
raling flow. (The flow will be clockwise in the Southern Hemisphere.) The same phe-
nomenon acts on a much larger scale to set up the flow patterns in hurricanes and
typhoons. Goldstein (1980) offers an excellent discussion of these effects. Meteoro-
logical models used to predict general weather patterns must account for the Cori-
olis acceleration effect.
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Example 3.15 A child standing on a merry-go-round rotating about the vertical
axis at the constant rate w attempts to catch a ball traveling in the radial direction
horizontally at speed v. Determine the velocity and acceleration of the ball as seen
by the child.

Example 3.15

Coordinate systems.

Solution We will evaluate the relative motion by using kinematical for-
mulas. However, it is useful first to develop a contrasting solution that differentiates
the relative position directly. Let ¢ = 0 be the instant when the child catches the ball,
so t < 0 characterizes an arbitrary instant before the ball is caught. Correspond-
ingly, the angle 6 locating the child is § = w(—¢) and the distance R to the ball is R =
r+v(-1).

We assume that the child is stationary with respect to the turntable, so we attach
xyz to that body. In order to expedite the construction of 75,4, we place the origin of
xyz at the center of the turntable and align the x axis with the radial line to the child.
Correspondingly, we find

P4 = (Rcos@—r)i+(Rsinb)j
= [(r—vt)cos wt —rli—(r—vt)(sin wt) .
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By definition, the relative velocity is obtained by differentiating the components
of the relative position; that is,

_ 6 .
(VB)xyz = g(rB/A)

= [~V cos wt— (r—vt)w sin wt]i+[v sin wt — (r —vt)w cos wt] /.

Similarly, we obtain the relative acceleration by differentiating the relative velocity
components:

_ o
(aB)xyz = E(VB)X)’Z

= [2vw sin wf — (r —vt)w? cos wt]i + [2vw cos wt + (r —vi)w? sin wt] /.

The solution using the kinematical formulas barely resembles the operations in
the previous solution. The motion of the reference frame is defined by

0.

V4 = rwj, a,= —rwzf; @ = le, o

We also know the absolute motion of the ball to be
vg = —veg = —v[(cos 8)i + (sin )], g =0.
We write the position as
Ppa = (Rcos@—r)i+(Rsinb)j,
so the relative velocity equation yields
(VB)xy; =VB—Va— O X Tpjs
= —v[(cos0)i + (sin6)j] = rwj — (wk) X [(RcosO —r)i+ (Rsinb)j]
= (—vcos®+wR sin0)i + (—vsin @ —wR cos G)f.

Substitution of R = r ~vt and § = —wt into this expression would yield the same result as
the previous one.

The same approach leads to the relative acceleration, except that the result for
relative velocity is required to form the Coriolis acceleration. Hence,

(@B)xy, = Ap~d4— QX Fp/q— & X(®XFp/a) =26 X (Vp)yy,
= rwi+w?[(Rcos@—r)i+(Rsinb)/]
—2w[(—v cos 8+ wRsinf)j—(—v sin —wR cos )]
= (—w?Rcosf—2wvsin0)i+ (—w>R sin @+ 2wv cos 0) j.
This expression is equivalent to the acceleration in the first solution to this problem.
We could employ either approach with equal ease because this problem treated a

case of planar motion. The relative motion equations become increasingly advan-
tageous as the rotation of the reference frame becomes more complicated.

Example 3.16 When a small ball is suspended by a cable from an ideal swivel joint
that permits three-dimensional motion, the system is called a spherical pendulum.
Suppose such a pendulum, whose cable length is /, is released from rest relative to
the earth with the ball at a distance b << / north of the point below the pivot. Analyze
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Free-body diagram.

the effect of the earth’s rotation on the motion. It may be assumed that the angle be-
tween the suspending cable and the vertical is always very small.

Solution We may apply Eqs. (3.67) directly to this system. A free-body
diagram of the ball shows the weight mg and the tensile force F exerted by the cable,
which may be described in terms of xyz components as

_ F —xi—yj+zk
F=Fép=F_28 =F< el )
|7o,/8] 4
Because the cable length / is constant, the z coordinate (which is negative) must
satisfy
z=—[12—x2—y22,

We obtain the corresponding velocity and acceleration components by successive
differentiation:

z=(xx+yp)P=x2=yH)72,

F=(xX4x24yp+ 32— x2=y) V2 (xx+yp)2 (12 —x2=y?) 732,
Specifying that the angle with the vertical line be small means that x <</ and y << /.
Incorporating this approximation into the previous equations yields

O R )

It follows that for motions in which the angle from the vertical remains small, we
may use the approximations Z = 0 and Z = 0. In other words, we may consider the
ball to move in the horizontal plane.
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The corresponding form of Eqs. (3.67) is

" L F x
x—2weysm)\=—m7,
j+20.sinA= -2 2

ml

2w, Y COSA= %%—g.
Now observe that z = —/ because x and y are small, and that the Coriolis accelera-
tion in motion relative to the earth is much weaker than the free-fall acceleration.
The last of the preceding equations of motion therefore leads to the approximation
that F/m = g. We introduce this approximation in the first two equations of motion,
which become

X+Q%x=2py=0, J+Q%y+2px=0, 1)
where the coeflicients are
Qr=g/l, p=w,sin).

Evaluating the motion requires that we solve this pair of linear, coupled, ordinary
differential equations. We could solve these equations by using the method of char-
acteristic exponents, but an examination of the equations leads to a much briefer
solution. We observe that if the Coriolis effect were not present, p =0, then the
equations for x and y would be uncoupled and the fundamental solutions for both
variables would be sin(22¢) and cos(£27). In either equation, the order of the deriva-
tives of y is one different from the order of the derivatives of x. The combination of
these two features suggest that both x and y vary sinusoidally, with a 90° phase dif-
ference between them. We therefore consider the trial solution

x = Acos(ut+¢), y = Bsin(ut+9), 2)

where the amplitudes 4 and B, frequency u, and phase angle ¢ are to be determined.
Substituting the trial forms into the equations of motion (1) leads to

(2= )A—2puB=0, —2puA+(Q*—u>)B=0. (3)

In order for 4 and B to be nonzero, the determinant of this pair of homogeneous
equations for 4 and B must vanish. This leads to the characteristic equation

(Q*— )2 -4p? =0,
which has roots u = +p+(p>+9Q?
m=(p?+0H)2—p,  p=(p*+9H"?+p. @

)/2. We need only the positive roots, which are

Thus, there are two general solutions of eqs. (1). Because both eqgs. (3) have the
same solution for B in terms of 4 when the characteristic equation is satisfied, the
two roots u; lead to two solutions for B; in terms of A; for each general solution.
The second of eqs. (3) indicates that

B.:ﬂ

2 QZ—u}Af‘ )
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This expression may be simplified further by substituting for the frequencies u;.
Equations (4) show that Q2 —p? = 2pp, and Q% —u3 = —2pp,, from which it follows
that B, = A, and B, = —A,. The corresponding general solution of the equations of
motion is therefore

x = A cos(pyt+¢y)+ Ay cos(pat+é3),
y=A;sin(u 1+ ;) — Az sin(py 1+ ¢3).

The coeflicients A;, A,, ¢, and ¢, must satisfy initial conditions. In the statement
of the problem, the ball was released from rest relative to xyz at a distance & to the
north of the pivot. Thus, the initial conditions are

(6)

x=b, y=0, Xx=y=0 when t=0.

The corresponding solution obtained from egs. (6) is

x= [py cos(p )+ pycos(uy 1)1,

+
1T H2 @

y [uy sin(py2) — py sin(pp 1))

Tt

It is convenient at this stage to simplify the characteristic roots by making use of
the fact that p << ©Q owing to the smallness of w,. We therefore expand each charac-
teristic exponent in powers, and drop higher-order terms. This leads to

m=80-p, p2=Q+p.

The values of p, and p, are very close, p; = u, = Q. Minor errors will be introduced
if we use this approximation in the coefficients, but not the frequencies, of the sinu-
soidal terms. Combining this approximation with the trigonometric identities for the
sum of sines or cosines leads to

X = %b[cos(p.]t)+cos(u2t)] =b cos(f%“zt) cos(%t)

= b cos( pt) cos(f2t),

- +
y= %b[sin(mt)— sin(u,8)]=>0 sin<#—l2ﬁt> cos(”—22ﬁt>

= —b sin(pt) cos(27).

The nature of the path becomes obvious when we observe that sin( p¢) and cos( pt)
vary much more slowly than sin(¢) because p << Q. The preceding solutions satisfy

y = —xtan(pt),

which is the equation of a straight line whose slope is —tan( pr) if we neglect the vari-
ation in the value of p¢. As shown in the diagram, the path at each instant seems to be
at an angle pt relative to the north (i.e., the x axis), measured clockwise when viewed
downward. To an observer on the earth, the vertical plane in which the cable lies
therefore seems to rotate about the vertical axis at w, = —p = —w, sin A. This is ex-
actly opposite the angular velocity component of the earth in the vertical direction -
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Plane of
the pendulum

Swinging
motion

Motion of the spherical pendulum.

an observer viewing the pendulum from a fixed reference frame in outer space sees
the plane of the pendulum as being fixed.

The movement of the plane of a spherical pendulum relative to the earth was used
in 1851 by the French physicist Jean Louis Foucault (1819-1869) to demonstrate the
earth’s rotation. What is perhaps the most famous Foucault pendulum in current use
may be found in the General Assembly building at United Nations headquarters in
New York City.

In closing, we should note that the spherical pendulum for arbitrary, small initial
values would seem to follow an elliptical path. The major and minor axes of the
ellipse would rotate relative to the earth at angular speed w, = —w, sin A.
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Problems

3.1 (See figure, next page.) The y axis coincides with the main diagonal for the box, and
the z axis coincides with the plane of the right face. Determine the coordinates rela-
tive to xyz of corners D and E.
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3.2

3.3

3.4

Problem 3.1

The rectangular box is supported from the ceiling by a ball-and-socket joint at cor-
ner A. Commencing from the position shown, the box is rotated about edge AB by
40° clockwise as viewed from A to B. Then the box is rotated about edge AC by 80°
counterclockwise as viewed from A to C. Determine the displacement of corner D
due to these rotations.

The rectangular box is supported from the ceiling by a ball-and-socket joint. Com-
mencing from the position shown, the box is given a rotation about the fixed X axis
of 60°, followed by a rotation about the fixed Z axis of —120°. Determine the dis-
placement of corner D due to these rotations.

It is desired to impart to the box in Problem 3.3 a rotation about a single axis that is
equivalent to the rotations specified there. Determine the orientation of that axis and
the angle of rotation about that axis.

60 mm

D

Problems 3.2 to 3.4 Problem 3.5
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3.5

3.6

3.7

The rotation of the disk is specified by the rotation angles y about the fixed vertical
axis, # about the horizontal axis perpendicular to the plane of shaft AB and the ver-
tical, and ¢ by which the disk rotates about shaft AB. (These are, respectively, the
Eulerian angles of precession, nutation, and spin, which will be discussed in Chap-
ter 4.) There are six possible sequences in which the rotations may take place. Let xyz
be a coordinate system that is fixed to the disk with an orientation that coincides with
the XYZ system when ¢ =60 = ¢ = 0. Prove that the transformation from XYZ to
xyz components is the same, regardless of the sequence in which the rotations occur.

Starting from the position shown, the box is rotated by 40° about face diagonal AB,
clockwise as viewed from corner B toward corner A. Determine the coordinates of
corner C relative to the fixed reference frame XYZ after this rotation.

Starting from the position shown, the box is rotated by angle 6 about main diagonal
AD, counterclockwise as viewed from corner D toward corner A. The angle between
the fixed Y axis and the unit vector &, after the rotation is 110°. Determine 6.

X

/

30°
15 mm 53.13°

| 0

30 mm A
C 60°

X

50 mm

Problems 3.6 and 3.7 Problems 3.8 and 3.9

3.8

3.9

3.10

3.1

3.12

The bent rod is given a pair of rotations, first by 60° about line AB, and then 30°
about line BC, with the sense of each rotation as shown in the sketch. Let xyz be a
coordinate system fixed to the rod that initially aligned with the fixed XYZ system
shown. Determine the transformation by which vector components with respect to
XYZ may be converted to components with respect to xyz.

Consider the rotation of the bent rod in Problem 3.8. Determine the orientation of
the axis and the angle of rotation of the single rotation that would be equivalent to
the pair of rotations specified there.

(See figure, next page.) In the initial position shown, shaft AB is aligned with the
fixed Y axis, and hydraulic cylinder BC (which may pivot about shaft AB) is vertical.
In this position the length of BC is L = 400 mm. From the initial position, the system
rotates by 36.87° about the vertical axis, the angle 8 for shaft AB remains 90°, and
the hydraulic cylinder rotates about shaft AB by ¢ = 120°. In the final position, L =
800 mm. Determine the corresponding displacement of end C.

(See figure, next page.) Solve Problem 3.10 for the case where the angle § = 50° in the
final position and all other motions are as specified there.

(See figure, next page.) Bar AB is welded to collar B, which pivots about segment BC
of the triangular arm BCD. The rotation of arm BCD about the horizontal x axis is
the angle 4, and the rotation of bar AB relative to the triangular bar is the angle .
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313

3.14

600 mm

Problems 3.10 and 3.11

Problem 3.12

Consider the case where 6 = 110° and y = 20°. Determine the displacement of end 4
from its position when 8 =y = 0°.

The radiator fan of an automobile engine whose crankshaft is aligned with the longi-
tudinal axis is rotating at 1,000 rev/min, clockwise as viewed from the front of the
vehicle. The automobile is following a 60-m radius left turn at a constant speed of
75 km/hr. Determine the angular velocity and angular acceleration of the fan.

The flywheel of the gyroscope rotates about its own axis at w, = 6,000 rev/min, and
the outer gimbal support is rotating about the horizontal axis at the rate w, =10
rad/s, &, = 100 rad/s%. Determine the angular velocity and angular acceleration of
the fiywheel if 8 is held constant at 75°.
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3.15

3.16

3.17

3.18

Problems 3.14 and 3.15

The flywheel of the gyroscope rotates about its own axis at w, = 6,000 rev/min. At
the instant when 6 = 120°, the inner gimbal support is rotating relative to the outer
gimbal at § = 6 rad/s and § = —90 rad/s2. The corresponding rotation of the outer
gimbal about the horizontal axis is w, =10 rad/s, @, =100 rad/s?. Determine the
angular velocity and angular acceleration of the flywheel at this instant.

The disk spins about its own axis at 1,200 rev/min as the system rotates about the
vertical axis at 20 rev/min. Determine the angular velocity and angular acceleration
of the disk if 3 is constant at 30°.

Solve Problem 3.16 for the case where 8 =10 rad/s and § = —50 rad/s2 when 3 =
36.87°.

The disk spins about its own axis at 1,200 rev/min as the system rotates about the
vertical axis at 20 rev/min. The angle of inclination is constant at 8 = 30°. Determine
the velocity and acceleration of point D on the perimeter of the disk when it is at its
lowest position, as shown.

20 rev/min

1,200 rev/min

Problems 3.16 to 3.18
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3.19 Collar C moves at the constant speed u relative to the curved bar, which rotates in
the horizontal plane at the constant rate w. Derive expressions for the velocity and
acceleration of the collar as a function of the angle 6.

3.20

3.21

Problem 3.19 Problem 3.20

A servomotor maintains the angle ¢ of bar BC relative to bar AB at ¢ = 26, where ¢
is the angle of inclingtion of bar AB. Determine the acceleration of end C corre-
sponding to 8 =15°, § = 50 rad/s, and § = 0.

A speed governor consists of a block of mass /m that slides within a smooth groove in

a housing. The unstretched length of the spring, whose stiffness is &, is selected such

that the block is situated at s = 0 when there is no rotation. The system rotates about

the vertical axis at angular speed w.

(a) Derive a differential equation governing s as a function of time in the case where
w is an arbitrary function of time.

(b) Derive an expression for the normal force exerted by the groove wall on the block
in terms of w and s.

Problem 3.21
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(¢) Determine the natural frequency of oscillation when w is constant, and explain
how that result can be used to monitor when w exceeds a critical value.

The disk rotates at w; about its axis, and the rotation rate of the forked shaft is w,.
Both rates are constant. Use two different approaches to determine the velocity and
acceleration of an arbitrarily selected point B on the perimeter. Describe the results
in terms of components relative to the xyz axes in the sketch.

Problem 3.22 Problem 3.23

3.23

3.26

Collar C slides relative to the curved rod at a constant speed u, while the rod rotates
about the horizontal axis at the constant rate . Determine the acceleration of the
collar in terms of 6.

The rotation rates of the bars in Problem 3.12 are constant at 8 = 20 rad/s, § = 10
rad/s. For the instant when 6 = 120° and y = 50°, determine the velocity and acceler-
ation of end A of the bar.

Use the concepts of relative motion to derive the formulas for velocity and accelera-
tion of a point in terms of a set of spherical coordinates.

The sketch defines an orthogonal curvilinear coordinate system (p, 8, ¢), known as
toroidal coordinates. The radius R is constant. Use the concepts of relative motion

Problem 3.26
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to derive the corresponding formulas for velocity and acceleration of a point in terms
of the unit vectors of this coordinate system.

3.27 The telescope rotates about the fixed vertical axis at 4 rev/hr as the angle 8 oscillates
at @ = (w/3)sin(w¢/7,200) radians, where ¢ has units of seconds. Determine the ve-
locity and acceleration of points C and D as functions of time.

4 rev/hr

Problem 3.27

3.28 A peliet of mass m moves through the smooth barrel, which rotates about the verti-
cal axis at angular speed Q as the angle of elevation of the barrel is increased at the
rate . Both rates are constant. At the instant before the pellet emerges, its speed rela-
tive to the barrel is ». At that instant, the magnitude of the propulsive force F, which
acts parallel to the barrel, is a factor of 50 times greater than the weight of the pellet.
Derive expressions for the acceleration term # and for the force the pellet exerts on
the walls of the barrel at this instant.

< e
A

Problem 3.28

3.29 In the position shown, the turret is rotating about the vertical axis at the constant
rate of 2 rad/s. At this instant the barrel is being raised at the rate of 0.8 rad /s, which
is decreasing at 200 rad/s?. The tank is at rest. Immediately preceding its emergence,
a 20-kg cannon shell is traveling at a speed of 900 m/s relative to the barrel, and the
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L W
K900 m/s

Problem 3.29

internal propulsive pressure within the barrel has been dissipated. Determine the ac-
celeration of the cannon shell at this instant, and the corresponding forces exerted
by the cannon shell on the barrel.

3.30 A collar slides in the horizontal plane over a spirally curved rod defined in polar co-
ordinates by R = 0.1exp[6/(47)] m. The motion is actuated by the translating arm,
which contains a groove that pushes a pin in the collar. The speed of the arm is con-
stant at 20 m/s. Determine the velocity and acceleration of the collar in the position
where 6 = 0.8 rad.

1 v

Problem 3.30 Problem 3.31

3.31 Two collars are pinned together, such that they simultaneously slide over a fixed rod and
a rod that translates upward at a constant speed u. Derive expressions for the velocity and
acceleration of the collar as a function of the vertical distance y from the axis of the fixed
rod to the collars.

3.32 The disk is mounted on a bent shaft, about which it rotates at variable rate @, while
the shaft rotates about the horizontal axis at constant rate w,. In the position 8 = 0,
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3.33

7

Probiem 3.32

the diametral line through point D is coplanar with the bent shaft. Determine the
velocity and acceleration of point D as a function of 6.

The disk has been misaligned in its mounting onto shaft AB of the T-bar assembly.
As aresult, the axis of the disk forms a constant angle 3 relative to AB. The angle of
rotation 6 of the disk about the shaft is defined such that point C is at its highest ele-
vation when # = 0, which is the position depicted in the sketch. The rotation rates Q
about the vertical axis and § about shaft AB are constant. Derive expressions for the
velocity and acceleration of point C at arbitrary 8. Describe the results in terms of
components relative to a body-fixed xyz system whose x axis always coincides with
the diametral line from B to C.

L |

Problem 3.33 Problem 3.34

3.34

3.35

The square plate is welded to a bent shaft that rotates about the fixed vertical axis

at constant angular speed ;. The angle of rotation of the plate about its shaft is 6,

which is an arbitrary function of time. The position depicted in the sketch corre-

sponds to 6 = 0, where the plate is situated in the vertical plane.

(a) Derive expressions for the angular velocity and angular acceleration of the plate,
valid for arbitrary 6, in terms of components with respect to the body-fixed xyz
system.

(b) Derive corresponding expressions for the velocity and acceleration of corner D.

A servomotor at joint A rotates arm AB about its axis through an angle ¢, and
another servomotor at joint B controls the angle 6 of arm BC relative to arm AB.
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3.36

3.37

3.38

When ¢ = 0°, arm BC lies in the vertical plane. Consider a situation where § is con-
stant at 2 rad /s, while § = 4 rad/s and § = 12 rad/s2. Concurrently with these rota-
tions, the entire assembly is rotating about the vertical axis at the constant rate 2 = 8
rad/s. Determine the angular velocity and angular acceleration of link BC if ¢ = 0°
and 6 = 30° at this instant.

Problems 3.35 and 3.36

Consider the system in Problem 3.35 in a situation where § is constant at 2 rad/s,
while y is constant at 4 rad/s. The entire assembly is rotating about the vertical axis
at the constant rate = 8 rad/s. Determine the velocity and acceleration of end C at
the instant when = 53.13° and 6 = 20°.

Consider a roller coaster that is constructed such that a car follows a specified curve I’
while the axles of the car are always parallel to the binormal to I. In order to achieve
this, each point on the tracks is located by measuring equal distances h/2 (where A is
the distance between wheels) in the binormal direction relative to the point on I'. As
a result, the longitudinal axis of a car is always parallel to the tangential direction.
Derive an expression for the acceleration of an arbitrary point P in the car in terms
of the speed v of a car, the rate of increase v, and the properties of curve I. The co-
ordinates of point P are (x,y, z) relative to a body-fixed coordinate system whose
origin follows curve I' and whose orientation is selected such that i = &, and j = &,.

I‘\S\

h/2

hll//j/eb

Curve I'
Problem 3.37

An airplane is executing a manuever in which its roll, pitch, and yaw rates are 2 rad /s,
0.5 rad/s, and —0.2 rad/s, respectively. The yaw rate is decreasing at 10 rad/s?, and
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3.39

3.40

3.41

3.42

the other rates are constant. Determine the velocity and acceleration of the nose rela-
tive to the center of mass G, as seen by an observer on the ground. The point of inter-
est at the nose is 5 m forward and 0.2 m below point G.

A submarine is following a horizontal 500-m circle at 20 knots (1 knot =1.852
km/hr). At the instant when it is aligned with the horizontal and vertical directions,
it is rolling at 0.5 rad /s and pitching at 0.1 rad /s, as shown. Both rates are maxima at
this instant. Determine the velocity and acceleration of the tip of the periscope, which
is being extended at the constant rate of 10 m/s.

10 m/s

! 12m
500 m T V%/

Roll

Problem 3.39

A test chamber for astronauts rotates about axis AB at a constant angular speed w,
as the entire assembly rotates about the horizontal axis at angular speed w,, which
also is constant. An astronaut is seated securely in the chamber at center point O,
which is collinear with both axes of rotation. Object C has a constant absolute
velocity v parallel to the horizontal axis. Determine the acceleration of this object as
seen by the astronaut.

Problem 3.40

Airplane B travels eastward at constant speed v, while airplane A executes a con-
stant radius turn at constant speed v,. At an arbitrary instant, the angle 6 and dis-
tance s locating the airplanes are known. Radar equipment on aircraft A can measure
the separation distance R and the angle ¢ relative to the longitudinal axis, as well as
the rates of change of these parameters. Derive expressions for R, R, ¢, and ¢.

A small disk slides with negligible friction on a horizontal sheet of ice. The initial
velocity of the disk was u in the southerly direction. Determine the distance and sense
of the shift s in the position after the disk has traveled distance d southward. How
would this result have changed if the initial velocity were northward or eastward?



Problems 117

3.43

3.4

3.45

/ / i) - East
!
!
)

_______

South

Problem 3.41 Problem 3.42

A ball is thrown vertically from the ground at speed v. Assuming that air resistance is
negligible, derive an expression for the shift due to the Coriolis effect in the position
where it returns to the ground. Evaluate the result for v = 40 m/s at a latitude of 45°.

An object falls in a vacuum after being released at a distance H above the surface of

the earth. The line extending from the center of the earth to this object is at latitude

A, and point O’ on the earth’s surface is concurrent with this line. Determine the loca-

tion (east-west and north-south relative to point O’) at which the object strikes the

ground in each of the following cases:

(a) the block is initially at rest relative to the earth; and

(b) the block was initially at rest relative to a reference frame that translates with
the center of the earth but does not execute the earth’s spinning rotation.

For the sake of simplicity, the gravitational attraction may be considered to be con-

stant at mg. Explain the difference between the results in cases (a) and (b).

A small block of mass m is attached to a horizontal turntable by two pairs of op-
posing springs having stiffness &, and k,. The springs are unstretched when the block

y

\

Problem 3.45
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coincides with the axis of the turntable, and the (x, y) coordinates of the block rela-
tive to the turntable are much less than the radius of the turntable. Derive linearized
differential equations for x and y for the case where the turntable rotates at the con-
stant rate 2. Then solve those equations for initial conditions in which the block is
released from rest relative to the turntable at x = b, y = 0. Discuss how this system
may be used as an analog for the Foucault pendulum.



CHAPTER 4

Kinematics of Rigid Bodies

The concept of a rigid body is an artificial one, in that all materials deform
when forces are applied to them. Nevertheless, this artifice is very useful when we are
concerned with an object whose movement due to deformation is only a minor part of
its motion. In addition, formulations of the motion of deformable bodies often find
it convenient to decompose the overall motion into rigid body and deformational
contributions.

4.1 General Equations

A rigid body is defined to be a collection of particles whose distance of sepa-
ration is invariant. In this circumstance, any set of coordinate axes xyz that is scribed
in the body will maintain its orientation relative to the body. Such a coordinate system
forms a body-fixed reference frame. The orientation of xyz relative to the body and
the location of its origin are arbitrary. A typical situation is depicted in Figure 4.1.

Because all points in the rigid body maintain their relative position, their velocity
and acceleration relative to xyz is zero. Thus the velocity and acceleration of point A
in Figure 4.1 are given by

Vg = Vor+ @ X700

4.1)

&A = dol'F&Xl_'A/of'l'(:)X(O—.)x’-‘A/Ol).

Similar relations apply for another point B:

X

Figure 4.1 Position of points in a rigid body.

119



120 4 / Kinematics of Rigid Bodies

Vg = Vo + & X7p0r,
4.2)
ag=apg+aXrg,o+®@X(®@XFg,0).
The foregoing yield relations between the motion of 4 and B that do not require
that either point be the origin. Subtracting each of Eqs. (4.1) from the corresponding
Eqgs. (4.2) yields

Vg— V4= w X (Fg0-—Fa,07),

4.3)
dg—ay = aXx(Fgjo —F4,0)+dX[&X(Fg/0'—Fas07]-
Because Pp,4 = Fp/0'— 74,0, We find that
’ ‘_)B=‘_)A+G’XFB/A’
(4.4)
L] ﬁB=a_A+C-lXFB/A+G)X(G)XFB/A).

The arbitrariness of the origin O’ could have been used as an argument for de-
riving Eqgs. (4.4) directly. However, the approach used here leads to an important
observation.

. Given a set of n points in a rigid body, there are n—1 independent equations
in the form of Egs. (4.4) between their velocities or accelerations. These
equations may be obtained by relating one point to each of the other n—1.

As demonstrated in Egs. (4.1), (4.2), and (4.4), other relations we might write are
linear combinations of the independent ones. This interdependence between the mo-
tion of points in a body is a consequence of the rigidity, which maintains points at
fixed relative positions.

Equations (4.4) describe the velocity and acceleration of point in a rigid body as
the combination of the movement of point A and a rotational effect about point A.
A comparable description of position may be obtained by combining the transla-
tional transformation of coordinates, Eq. (3.2), with Euler’s theorem, Egs. (3.28)
and (3.29), which represent an arbitrary rotation as a single rotation about an axis.
These observations are manifestations of Chasle’s theorem, which states:

¢ The general motion of a rigid body is a superposition of a translation and a
pure rotation. In the translation, all points follow the movement of an arbi-
trary point A in the body and the orientation remains constant. The rota-
tional portion of the motion is such that the arbitrary point A remains at
rest.

Note the arbitrariness of the point selected for the translation. This means that the
only unique property of the kinematics of a body is the rotation - as described by its
current orientation, its angular velocity, and its angular acceleration. Various methods
for locating a point via intrinsic and extrinsic coordinates were discussed in Chapter
2. The next section will present a standardized way for describing orientation.

A basic tool in the analysis of velocity for a body in planar motion is the “instant
center” method. In essence, this technique is based on considering a body in general
motion (translation plus rotation) to be rotating about a rest point, which is called
the instantaneous center of zero velocity or, more briefly, the instant center. In gen-
eral, the instant center has an acceleration, so the point on the body that has no
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velocity changes as the motion evolves. For this reason the method is not suitable
for the evaluation of acceleration. The instant center method also is not useful for
evaluating the velocity of bodies in arbitrary spatial motion, for reasons that will
become apparent.

In order to explore the instant center method, consider the velocities of two points
A and B in arigid body. If point A is at rest then Vg = & X Fg,4, where @ is the angular
velocity of the body. According to this relationship, the speed of point B is propor-
tional to the distance from that point to the axis parallel to & that intersects point A.
Also, the direction of g will be perpendicular to the radial vector 7,4 in the sense
of the rotation according to the right-hand rule. The instant center may be located
by using these properties for two points whose velocities are in known directions.
The velocities of other points may then be computed by using the relation for cir-
cular motion, v = wr, where r is the distance from the instant center to the point of
interest.

The difficulty is that, in general, there is no point for which #, = 0. This is readily
proven by taking a dot product of vg in Eq. (4.4) with &, which yields

(I)'\—’B=(I)‘\7A.

This relation states that all points in a body have the same velocity component par-
allel to @. Therefore, if there is a situation where ¥, = 0, all points in the body must
have velocities that are perpendicular to &. The conditions imposed on many systems
do not satisfy such a restriction, although it is identically satisfied for planar motion.

Pure spatial rotation is another exception, because it is, by definition, the case
where some point in the body actually is fixed. General motion occurs when a rotat-
ing body has no fixed point. Chasle’s theorem could be used to represent a general
motion as the superposition of a translation in the direction of & that follows a
selected point A, and a rotation about an axis parallel to @ through point A. This is
a screw motion. The terminology stems from an analogy with the movement of a
screw with a right-handed thread, which is to advance in the direction of the out-
stretched thumb of the right hand when the fingers of that hand are curled in the
direction that the screw turns. We shall not pursue such a representation because it
does little to improve our ability to formulate problems. However, some people do
find it to be a useful way to visualize spatial motion.

Example 4.1 Observation of the motion of the block reveals that at a certain instant
the velocity of corner A is parallel to the diagonal AE. At this instant components
relative to the body-fixed xyz coordinate system of the velocities of the other corners
are known to be (vg), =10, (v¢c), =20, (vp), =10, and (vg), =5, where all values
are in units of meters/second. Determine whether these values are possible, and if
so, evaluate the velocity of corner F.

Solution We know that v, = v,&g,4, with the sign of v, unspecified, and
also that ¥g-i = 10, ¥c-k = 20, ¥p-i = 10, and ¥ -j = 5 (units are m/s). If these values
are possible, there will be values of @ and the velocity of any point that satisfy the
relative velocity equations. We select point A for this representation, because the
only unknown aspect of its velocity is the speed, that is,
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Example 4.1
o P4 2i+2j+k 1 v o -
Vy= V48 =V =v =—v4(2i+2j+k).
A= VaCEa = Vare T = VAT T T 3 a( J+k)

The angular velocity is unknown, so
®= wxf+wyj+wzl\?.

The velocity equations relating point 4 to the other points are

Vg = V4+@XFpa, Fpa=k;
\_’C=\-’A+(EXFC/A’ FC/A=2;+E;
Vp=Va+&XFpa, Fpra = 2i;

Vg = Va+@XFg4, Fenu=20+2j+k.

We substitute the expressions for ¥, and @ into these equations, and then evaluate
the given velocity components by taking the appropriate dot products. This leads to

\_’B'IT= %VA'*'O)), = 10,

Although we have four equations for the four unknown parameters, the equations
are not solvable. The third equation yields v, = 15 m/s, from which the first equation
gives w, =0, while the second gives w, = —7.5 rad/s. Therefore, the motion is not
possible. Note that if the first two equations were compatible, we still would not be
able to determine w, because the given velocity conditions do not properly constrain
the motion.

4.2 Eulerian Angles

Three independent direction angles define the orientation of a set of xyz
axes. Because there are a total of nine direction angles locating xyz with respect to a
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Z
v
"
X v 4 ¥y o
X Y
Figure 4.2 Precession. Figure 4.3 Nutation.

fixed reference frame X'YZ, an independent set of angles may be selected in a variety
of ways. Eulerian angles treat this matter as a specific sequence of rotations.

Let us follow the intermediate orientations of a moving reference frame as it is
rotated away from its initial alignment with XYZ. The first rotation, called the pre-
cession, is about the fixed Z axis. The angle of rotation in the precession is denoted
¥, as depicted in Figure 4.2. The orientation of the moving reference frame after
it has undergone only the precession is denoted as x’y’z’. The transformation from
XYZ to x’y’z’ may be found from Figure 4.2 to be

x’ X
y =R Y §, 4.5)
z’ Z
where
cosy siny O
[Ry]=|-siny cosy O |. (4.6)
0 0 1

The second rotation is about the y’ axis. The orientation of the moving reference
frame after this rotation is denoted x”y”z” in Figure 4.3. This is the nutation, and 8
is the angle of nutation. The second transformation is given by

” ’

x x
Y e=(Rely ¥ 1y 4.7
Z// Z/

where
cosf 0 —sinf
[Ryl=] O 1 0 . (4.8)
sinf 0 cosé

"o n

The last rotation is the spin, in which the reference frame moves from x"y”z
to its final orientation. The z” axis is the axis for the spin, and the angle of spin is
"o n

denoted as ¢. The transformation from x”y”z” to the final xyz system is found from
Figure 4.4 to be
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Figure 4.4 Spin. Figure 4.5 Eulerian angles and reference frames.
X x"
Yy =Ry ¥y ¢, 4.9)
z z"
where
cos¢ sing O
[Ry]=| —sing cos¢ O |. (4.10)
0 0 1

We obtain the overall transformation by combining Eqs. (4.5), (4.7), and (4.9),
with the result that

X X
Y =I[RI§Y ¢, [RI=[R,][Re][Ry]. 4.11)
z V4

The full sequence of rotations is depicted in Figure 4.5 by following the tips of the
axes.

The angular velocity and angular acceleration are readily expressed in terms of
the angles of precession, nutation, and spin by adding the rotation rates about the
respective axes. For this task, we note that the precession axis is defined to be the
(fixed) Z axis, so the precessional portion of the angular velocity is always yK. The
nutation occurs about the y’ axis. (We sometimes shall use the term /ine of nodes to
refer to the y’ axis, because points on this axis do not move in the nutation.) A gen-
eral description of the nutational angular velocity is therefore ;. Finally, the spin
is about the z” axis. Because the z” and z axes remain coincident, the spin angular
velocity may be written as ¢ k. The angular velocity is the (vector) sum of the indi-
vidual rotation rates, so

& =yK+6j" +ok. 4.12)
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We obtain a general expression for angular acceleration from the foregoing by
noting that K is fixed in space, whereas ;' and & are unit vectors for x’y’z’ and
xyz, respectively. Thus, k = @ X k and j' = @' X j’, where &’ is the angular velocity of
x’y'z’. Because x'y’z’ undergoes only precession, this term is

VK. 4.13)

Using @ and &’ to differentiate the unit vectors then leads to

@

G=yR+0]+0j'+dk+dk
=yK+6j" +0(a' xj' )+ dk+d(axk). (4.14)

In order to use these expressions in computations, they must be transformed to a
common set of components. Many situations require xyz components. From Figure
4.5, we find that the unit vectors K and j' are

K =sin@[—(cos ¢)i+ (sin¢)j ] + (cos )k,
J'=(sin )i+ (cos ¢)J.
Thus, the angular velocity and angular acceleration are
@ = (= sin 6 cos ¢ + 0 sin )i
+ (¥ sin 6 sin ¢ +6 cos ¢) j + (Y cos 6 + )k, (4.16)
@ = (—V sin@ cos ¢ +6 sin d — Y0 cos O cos ¢ + V¢ sin 0 sin ¢ + G cos ¢)i
+ (¥ sin 6 sin ¢ +6 cos ¢ + Y76 cos 6 sin @ + ¢ sin 6 cos ¢ — O sin P)j
+(J cos 0 +¢ — Y0 sin H)k. (4.17)

These expressions, particularly the one for &, are quite complicated. For that reason,
the x”y“z” axes, which do not undergo the spin, are sometimes selected for the repre-
sentation. Then

K = —(sin6)i"+(cos0)k”; J'=J" k=k" (4.18)

Substitution of Eqs. (4.18) into Eqs. (4.12) and (4.14) results in substantially simpler
expressions. They will be equivalent to Eqs. (4.16) and (4.17) for the instant when
¢ =0, corresponding to i”=1i and j" = J.

Utilization of Eulerian angles requires recognition of the appropriate axes of rota-
tion. This involves identifying a fixed axis of rotation as the precession axis. Then
the nutation axis precesses orthogonally to the precession axis. Finally, the spin axis
precesses and nutates, while it remains perpendicular to the nutation axis. In many
cases, the nutation or spin rates may be zero, in which case either of the respective
angles is constant. This results in a degree of arbitrariness in the selection of the
axes. Indeed, the case of rotation about a single axis can be considered to be solely
precession, nutation, or spin, as one wishes.

One should note that there is no accepted standard as to how the coordinate axes
should be assigned to the rotation axes. Some texts define the nutation such that
the x’ axis is the line of nodes. Also, it is quite possible that the formulas based on
Eulerian angles may not be directly applicable. For example, because the representa-
tion addresses a motion featuring no more than three rotations, one set of Eulerian
angles cannot describe a motion that features more than three rotations. Such situa-
tions could, however, be treated by defining multiple sets of transformations. Another

4.15)
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case where the Eulerian angle formulation is inadequate arises when a motion con-
sists of three rotations in which no two rotational axes are orthogonal. No line of
nodes is evident in that case. Here again, more than one set of Eulerian angles would
be required.

Example 4.2 A free gyroscope consists of a flywheel that rotates relative to the
inner gimbal at the constant angular speed of 8,000 rev/min, while the rotation of
the inner gimbal relative to the outer gimbal is ¥ = 0.2sin(100#¢) rad. The rotation
of the outer gimbal is 8 =0.5sin(507¢) rad. Use the Eulerian angle formulas to
determine the angular velocity and angular acceleration of the flywheel at 1 = 4 ms.
Express the results in terms of components relative to the body-fixed xyz and space-
fixed XYZ reference frames, where the z axis is parallel to the Z axis at t = 0.

z

8,000 rev/min

Example 4.2

Solution The primary task in applying the Eulerian angle formulas is iden-
tification of precession, nutation, and spin in terms of the given rotations. The angle
B is the rotation about the fixed Y axis, so we shall replace ¢ in the formulas by g,
and K by J. The line of nodes, which is the nutation axis, must be perpendicular to
the precession axis, and the spin axis must be perpendicular to the line of nodes.
Therefore, we identify the y axis as the spin axis and axis CD as the line of nodes,
which we designate as x’. Correspondingly, # in the formulas becomes v, the angle
between the precession and spin axes, and k will be replaced by j. Finally, we identify
the spin angle by noting that the z and Z axes were coincident at # = 0, at which time
B8 =~y =0 also. Because y’ was the line of nodes in the derivation, in the formulas
we replace j' by i’, j by i, and i by k. Also, the given constant spin rate leads to the
spin angle ¢ = 8,000(27/60)¢ rad.

In terms of the present notation, Eqs. (4.16) and (4.17) become

@ = (—f siny cos ¢+ sin ¢)k + (B sin y sin ¢+ cos $)i+ (8 cos v+ ¢)/,
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& = (—f siny cos ¢ ++ sin ¢ — B cosy cos ¢ + B¢ sin~y sin ¢ + dy cos d) k
+ (B siny sin ¢ +4 cos ¢ + By cos vy sin ¢ + B sin+y cos ¢ —y¢ sin p)i
+(B cos v+ —Bsiny)).
The Eulerian angles and their derivatives at t = 4 ms are
8 =0.2939 rad, B = 63.54 rad/s, 8 =-17,252 rad/s?;
v=0.19021rad, ~y=19.416rad/s, 4 =—18,773 rad/s?;
¢ =3.351 rad, ¢ =837.8 rad/s, é=0.
The corresponding angular velocity and acceleration are
@ = —21.491+900.25 + 7.71k rad/s,
& = 11,9347 — 7,354/ — 14,256k rad/s>
These are the component representations in terms of the body-fixed xyz axes. We

may employ the rotation transformation in Eq. (4.11) to convert the result to the
space-fixed XYZ axes, provided that we preserve the permutation of the axis labels

in the present application. Thus, we write

z Z
x 1=[R)s X ¢},
y Y

where

[R] = [R4I[R,][Re]
[ cos¢ sing O0][cosy O —siny |[ cosB sinB 0
=|—sin¢ cos¢p O 0 1 0 —sinf3 cosB O
0 0 1 |{ siny O cosy 0 0 1

.

[~0.85909 —0.47723  0.18494
=| 0.47876 —0.87707 -—0.03931
| 0.18096  0.05477  0.98196

Applying {R]™' = [R]" to evaluate the XYZ components of @ and & yields

wz 7.71 145.98
wy ¢ =[R]™{ —21.49 ;= 64.47 ¢,
wy 900.2 886.19

oy —14,256 16,630
ay r=[R1Y) 11,934 } = —4,066
oy —-7,354 —10,327

Thus
@ =64.5+886.2J +146.0K rad/s,

& =—4,0661 —10,327J +16,630K rad/s>.
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4.3 Interconnections

Interesting kinematical questions arise when the motion of a body is restricted
by other objects. Such conditions are associated with pin or slider connections be-
tween bodies, as well as with a variety of other methods for constructing mechanical
systems. The kinematical manifestation of these connections are constraint equa-
tions, which are mathematical statements of conditions that the connection imposes
on the motion of a point, or on the angular motion of a body. The kinematical con-
straints are imposed by constraint forces (and couples), which are more commonly
known as reactions. The role of constraint forces will be treated in the chapters on
kinetics.

A simple, though common, constraint condition arises when a body is only per-
mitted to execute a planar motion. By definition, planar motion means that all points
in the body follow parallel planes, which can only happen if the angular velocity is
always perpendicular to these planes. Let the X-Y plane of the fixed reference frame
and the x-y plane of the body-fixed reference frame be coincident planes of motion.
Points that differ only in their z coordinate execute the same motion in this case, so
they may be considered to be situated in the x-y plane. Hence, the kinematical equa-
tions for planar motion are

o=wK=wk, &=oK=aok;
FB/A =XI_+Yj=XIT+yj_;
4.19)
\73—_— \_/A+(;)XFB/A,
dB = 6A+&XFB/A_“’2?B/A'
Note that the centripetal acceleration term here is simplified from @ X (@ X Fg/4) to

—w?Fg,4 by an identity that is valid only when 75,4 is perpendicular to @. These rela-
tions are depicted in Figure 4.6.

ap

wlrgal

2
@2lrg .l

Figure 4.6 Velocity and acceleration in planar rigid-body motion.
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Figure 4.7 Ball-and-socket joint. Figure 4.8 Pin connection.

Constraint conditions arising from a connection may be determined by examining
its characteristics. For example, the ball-and-socket joint connecting bodies 1 and 2
in Figure 4.7 allows the bodies to have arbitrary orientations. However, point B, at
the center of the ball moves in unison with point B, at the center of the socket. Thus
the constraint conditions are

Vg = Vg3, dp =dps. (4.20)

These equations allow us to consider the joint as occupying a single point B that
belongs to either rigid body.

The case of a pin connection between bodies has some elements in common with
a ball-and-socket joint. Figure 4.8 depicts such a connection, with the z axis aligned
along the axis of the pin. As with the ball-and-socket joint, both bodies have the
same motion at their point of commonality. Consequently, Eqs. (4.20) must be sat-
isfied. However, the pin also introduces restrictions on the rotations. In order to
develop the constraint equations for angular motion, let us define xyz in Figure 4.8
to be fixed to body 1 with the z axis coincident with the axis of the pin. The only
rotation of body 2 relative to body 1 permitted by the pin connection is spinning
about the z axis. We let ¢ denote the rate of this spin, so the angular velocities are
related by

@y = @+ k. 4.21)

We find the corresponding constraint condition on angular acceleration by differ-
entiating this relation. Because k is a unit vector that is fixed relative to body 1, we
have

Equations (4.21) and (4.22) are constraint equations on the angular motion that must
be satisfied in addition to Eqs. (4.20) for the connecting points. When it is more con-
venient to employ a coordinate system that does not have an axis aligned with the
pin, k£ may be transformed to components relative to the desired coordinate system.
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Figure 4.9 Collar connection.

Another common method for connecting bodies consists of a collar that slides
over a bar, as depicted in Figure 4.9. (This connection is also known as a slider.) As
with the ball-and-socket joint, point C, in the figure denotes the center of the ball.
The collar is free to slide over bar AB. We characterize the constraint condition in
this case by attaching a reference frame to bar AB. With respect to this reference
frame, the collar only seems to be moving in or out along line AB. (Either sense may
be assumed if it is not specified.) The collar is usually small in comparison to the
bodies it joins, in which case we may neglect the distance from point C, to bar AB.
When we let u# denote the speed of the collar relative to bar 4B, we find that the
motion of point C, with respect to bar AB is given by

(Ve2)ap = Uép, 4, (ac2)ap=uép/y. 4.23)

These relations assume that bar AB is straight. If this is not the case, we must add a
centripetal acceleration term (#%/p)é,, where p is the radius of curvature of bar AB
at the current location of the collar and &, is the instantaneous normal direction at
that point.

To further characterize the motion of point C,, we let C, denote the point on bar
AB that coincides at this instant with the projection of point C, onto bar 4B. Setting
Feasc1 = 0 reduces the rigid-body motion equations (4.4) relating these points to:

‘_)CZ = Ve +Uégy, dcy = ﬁc|+ué3/A+2QABX Uég/y. 4.24)

The collar introduces no restriction on the angular motion of the bodies it joins
if bar CD is fastened to it by a ball-and-socket joint. However, a common connec-
tion method is a pin, Figure 4.10(a), or a fork-and-clevis joint, Figure 4.10(b). If the
cross-section of bar 4B is not circular, interference prevents the collar from spinning
about bar AB. Then the constraints on angular motion are the same as Eqs. (4.21)
and (4.22) for a pin connection. This is contrasted by the situation where the collar is
free to rotate about the axis of bar AB because the cross-section of bar AB is circu-
lar. Bar AB then acts like another pin. We treat the angular motion constraints for
this connection by fixing x, y, z, to bar 4B with the x; axis aligned with bar AB, while
X, Y, 2, is fixed to bar CD and the z, axis is aligned with the pin, as shown in the fig-
ure. The connection permits bar CD to spin at rate y about bar 4B and at rate ¢
about the pin, so the angular velocity-constraint condition is
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Figure 4.10 Collar connections that restrict rotation. (a) Collar with a pin.
(b) Collar with a clevis joint.

@2 = &1+ i+ Pko. (4.25)

We use the angular velocity of the respective bodies to differentiate the unit vectors. The
corresponding angular acceleration constraint is therefore

&y = &+ Yl + (@) X 1) + 3k + $l@, X k). (4.26)

To employ Egs. (4.25) and (4.26) in the context of a problem solution, we would
need to transform all vector quantities to a common coordinate system.

It should be obvious from the discussion thus far that the connections need to be
examined in detail to identify all constraints on the motion. If all of the permuta-
tions and novel features of various types of connections were to be tabulated, it
would not aid our understanding. It is preferable to consider each unfamiliar con-
nection on a case-by-case basis, and then to employ the type of reasoning developed
thus far to identify the constraint equations.

Describing a system’s constraint conditions in mathematical terms is one aspect
of an overall kinematical study. It also is necessary to relate the velocity and acceler-
ation of constrained points in each body through Eqs. (4.4). When such relations are
broken down into components, one obtains algebraic equations for the kinematical
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Figure 4.11 Spatial motion of a bar.

variables describing the motion of each body. In combination with the constraint
equations, the result will be a system of simultaneous equations.

If the motion of the system is fully constrained, then this system of equations will
be solvable such that, for each body, the linear motion of a point (velocity or accel-
eration) and the angular motion may be evaluated. If the system is only partially
constrained, then the number of kinematical variables exceeds the number of kine-
matical equations. The simultaneous equations may then be solved for a set of excess
variables in terms of the other variables. The excess variables in this case depend on
the nature of the force system, so their evaluation requires a kinetics study. Another
possibility is that the kinematical equations are not solvable. In that case, there are
too many constraints on the motion of the system. This means that no motion is
possible - such a system is rigid.

In order to demonstrate these matters, consider bar AB in Figure 4.11, which is
constrained by collars that follow non-coplanar guide bars. The connection at collar
A is a ball-and-socket joint, whereas the one at collar B is a pin. Because the guide
bars are fixed, the velocity constraint equations (4.24) reduce to

Va=Uqlp/p,  Vp=Upép,c, (4.27)

where the sense of these velocities will be determined by the sign of 1, and ug. Let
us ignore for now the constraint on the rotation of bar AB that is introduced by the
pin on collar B. Then the angular velocity of the bar is an unknown &4 5 having three
components. Because points A and B are in the same rigid body, their velocities are
related by

\_{4 =Vp+a 8XT4,B- (4.28)

This kinematical relation reduces to three scalar equations for five unknowns:
u,, ug, and the three components of @, 5. In order to further characterize the system,
we need to account for the constraint on &, 5 introduced by the pin on collar B. The
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round cross-sectional shape of guide CD permits collar B and bar AB to execute an
arbitrary rotation about the guide bar. This condition corresponds to the motion
constraints described by Eqs. (4.25) and (4.26). The guide bar is fixed, so it serves as
the precession axis for.the rotation of bar AB. Thus, one component of the angular
velocity of bar AB is yép,. In addition, bar AB may spin about the axis of the pin
in the collar. The corresponding contribution to the angular velocity is $&,, where &,
corresponds to k, in the earlier derivation. We obtain a description of &; from the
pin’s perpendicular orientation to the plane formed by guide CD and bar AB, so that

Fg/aXTF

= TBaXpic (4.29)

|PB/a X Fp/cl
Precession and spin are the only rotations permitted by the sliding collar connection, so the
angular velocity of bar AB is given by

. . FgaXT

Gap = Vepc+d—2—LC

_- (4.30)
|7B/a X Fp/c|

This construction reduces the number of velocity unknowns in the system to four:
Uy, Ug, ¥, and é. Two possibilities now arise. In a fully constrained situation, the
overall motion will be defined through some kinematical input such as a specified
motion for either collar. This removes the corresponding velocity parameter from the
list of unknowns, thereby making Eqs. (4.27), (4.28), and (4.30) into a solvable set.
In contrast, if the motion is induced by a given set of forces, so that none of the kine-
matical parameters are specified, then the system is partially constrained. In that case,
the foregoing kinematical equations lead to characterization of the motion in terms
of a single kinematical unknown. Kinetics principles would relate this unknown to
the force system.

Let us consider other possibilities. Suppose that bar AB were connected to both
collars by pins. That would introduce another constraint on @4z like Eq. (4.30). In
most cases, it would not be possible to satisfy both angular motion constraints simul-
taneously unless @45 = 0. This is the case of a rigid system. One notable exception
where two pin connections would be acceptable is planar motion. This occurs when
the guide bars are coplanar, and the axis of each pin is perpendicular to the plane
containing the guide bars. Then @,z has only a single component perpendicular to
the plane, and the velocity relation, Eq. (4.28), has components in the plane only.
In other words, the planar system with pin connections to the collars is not rigid.

Another situation of partial constraint is obtained when bar AB is connected to
both collars by ball-and-socket joints, because Eq. (4.30) then does not apply. The
lack of constraint in such a case is associated with the ability of bar AB to spin about
its own axis. Such a rotation does not affect the motion of either collar. The kine-
matical equations can therefore be solved for a relation between u,4 and ug, although
there will be no unique solution for @, g. If it is desirable for the number of equations
and unknowns to match, a solution could be found by considering one of the joints
to be a pin. Another approach in this case would be to obtain an additional relation
by setting 45 = wx1+wy J+w,k and then requiring that G,g-&g,4 = 0; this corre-
sponds to removing the rotation of the bar about its own axis.

Thus far, the discussion has addressed the analysis of velocities only. The treatment
of acceleration follows a parallel development. However, it is necessary to evaluate
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the velocities first. One reason for this is that the angular velocities occur in the accel-
eration relation between two points in a body, Eq. (4.4). They also arise when we
differentiate an angular velocity to derive a corresponding constraint on angular ac-
celeration, as we did to derive Eqs. (4.22) and (4.26). A third place where velocity
parameters arise in an acceleration analysis is in the characterization of the accelera-
tion of a collar sliding along a curved bar, as was noted following Eq. (4.23). In all
other respects, the analysis of acceleration is essentially a retracing of the procedure
by which velocities are obtained.

An area of special interest in kinematics is concerned with /inkages, where bars are
interconnected in order to convert an input motion to a different output motion. From
the standpoint of our general approach to rigid-body motion, the treatment of link-
ages presents no special problems. The constrained points in the system are the ends
of the linkage, the connection points, and any point whose motion is specified. The
constraint conditions on velocity (and then acceleration) of the constrained points
are expressed according to the type of connection, for example, a pin or collar. All
constraint conditions on the rotation of each member of the linkage resulting from
the method of interconnection are used to express the angular velocity (and then the
angular acceleration).

After the constraint equations have been formulated, the basic approach is to relate
the velocity (and then acceleration) of the constrained points using the kinematical
relation between the motion of two points in a rigid body. This may be achieved by
starting at each end and working inward toward a selected connection in a progressive
manner, from one link to its neighbor. The constraint equations are used to describe
the various terms that arise in the basic kinematical equations for each member.

The ultimate result of the procedure will be two vector expressions for the velocity
(or acceleration) of the selected connection, with each relation corresponding to dif-
ferent paths through the linkage. The two expressions must be equal because they
describe the same point. Equating the corresponding components of each expression
leads to a set of algebraic equations that should be solvable for all unknown parame-
ters. (This assumes that the linkage is fully constrained, so that its motion is defined
by the input.)

There is one complication that arises in treating linkages. The position of all con-
strained points in the linkage at any given instant must be described. This is not
an overwhelming difficulty for planar linkages, but the geometrical relations for an
arbitrary spatial linkage require careful consideration in their formulation. Rotation
transformation matrices sometimes prove to be useful for this task.

Example 4.3 Collar B is pinned to arm AB as it slides over a circular guide bar.
The guide bar translates to the left at a constant speed v, such that the distance from
pivot A to the center C is vt. Derive expressions for the angular velocity and angular
acceleration of arm AB.

Solution In general, the task of treating linkages is expedited by defining a
space-fixed set of axes XYZ. This coordinate system, which is depicted in the figure,
is sometimes referred to as a global coordinate system. It assists us in relating vectors
that are associated with different bodies.
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Example 4.3

Coordinate system and unit vectors.

We use the law of cosines to express the angles locating collar B:

cosf = v2t2+L2—r2’ cosy = v2t2+r2——L2.
2Lvt 2rvt
Because the foregoing given 8 and v at any instant ¢, we could differentiate these
expressions in order to determine the time derivatives of these angles. However, the
derivatives are cumbersome, particularly for the second derivative. Also, an approach
based on differentiation of analytical expressions is inherently limited to situations
where the geometrical relations are relatively uncomplicated.

We shall therefore employ kinematical relations to solve this problem. Our ap-
proach is based on the recognition that guide bar CD forms a translating reference
frame for the collar’s motion. The vectors &, and €, in the sketch are the path-variable
unit vectors for the motion of the collar relative to guide bar CD. We also know that
the collar is pinned to bar AB. Since body CD is translating at speed v to the left, we
have

Vg =(Vp)cptué, =vIl+ué, =o,5Xrpg/a,

where u is the relative speed of the collar. Resolving the vectors into components
relative to XYZ yields
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vg = v+ u[(siny)I —(cosy)J] = (—BK) x [(L cos B) —(LsinB)J];
vg-I=v+usiny = —BLsin G,
vg-J = —ucosy = —BL cos B.

The solution of the component equations is

v vcosf

siny +cos v tan 3 sin(y+8)’

~ " CosBtany+sinf sin(y+8)"

. v Vv COS
AL = Y

The corresponding velocity of collar B is
vg = (Vg-I) I+ (¥5-J)J = —BL[(sin B)] + (cos B)J ]
_ vcosy
sin(y+ )
The same approach is valid for acceleration. The translational velocity of guide
bar CD is constant, so we have
- = uz — — _ 2 -
ag= “Q"‘Ten =Q4pXTBA—WABTB/A-

[(sin B)T + (cos B)J].

In component form, this yields
2
ag = uf(siny)I —(cosy)J ]+ ir-[(cos I +(siny)J]

= (—=BK)x [(L cos B} — (L sin 8)J1—B*{(L cos B)I —(LsinB)J1;
2
ag-I=u sin'y+u7 cosy = —BL sin 8 —B2L cos B,

2
ag-J=—-u cos'y+£r— siny = —BL cos B+ B2L sin 8.

The identities for the sine and cosine of the sum of two angles leads to the follow-
ing solutions of the component equations:

o BL
“= sin(y +B8) rCOt(7+B)’

BL = —B2L cot(B+7v) —

u2
rsin(y+g8)°
The corresponding expression for the acceleration in component form is
ag=(ag-DHI+(ag-J)J
B2Lrsiny—u?sinB . B*Lrcosy+u’cosf .
rsin(y+8) rsin(y+8)

Our solutions for ¥z and @z are implicit functions of time, because we first expressed
8 and v in terms of ¢, and then found 8 and « in terms of 38 and ¥.




4.3 / Interconnections 137

Example 4.4 Collar A moves downward and to the right at a constant speed of 40
m/s. The connection of link AB to collar A is a ball-and-socket joint, while that at
collar B is a pin. Determine the velocity and acceleration of collar B, and the angular
velocity and angular acceleration of bar AB, for the position shown.

b,=0

Example 4.4 Coordinate system and kinematical
parameters.

Solution We begin by expressing the constraints on the motion of each
collar in terms of components relative to the fixed XYZ axes. Because each follows
a straight path, we have

¥, = 40[(cos 36.87°)] — (sin 36.87°)K] = 327 —24K m/s, d,="0;

vp = vg(—K), ap=vp(—K).
Next, we describe the constraint on the angular motion of bar AB imposed by the
pin at end B. The angular velocity of bar AB consists of a precession about the guide

bar at end B and a spin about the axis of the pin, which is orthogonal to the vertical
guide bar and bar AB. Thus

_ FapxK
|Fa/gx K|

G’AB=¢K+¢é¢’ e¢
The pin, which defines the orientation of é;, executes the precessional rotation, so
the angular acceleration is
a4p=VK+Pe,+ WK xE,).
In order to express these vectors in component form, we use the Pythagorean

theorem to evaluate the vertical distance between the collars at this instant,

H=1[0.82—0.32—(0.5c0s 36.87°)%]"% = 0.6245 m.
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Then
Fa,8=(0.5c0s36.87°)]—0.3J - HK
=0.41-0.37-0.6245K m;

-0.3/-0.4J _ _
@45 = 0(—0.67 —0.87)+ YK,
a5 =YK +¢(—0.671-0.87) +y$(0.87—0.6J).

Now that the effects of the constraints have been characterized, it remains only to
relate the motion of ends 4 and B. The velocity relation gives

V4= Vp+@4pXT4p;

321 —24K = —vg K+ (—0.6¢1—0.8¢J + yK) x (0.4] —0.3J —0.6245K);
V4.1 =32 =0.4996¢ + 0.3y,

Vy-J =0=—0.3747¢ + 0.4y,

V- K=-24=—-v5+0.5¢;

$=40.99rad/s, ¢ =38.40rad/s; vp=44.50 m/s.

Substitution of these results into the earlier expressions yields
@qp= —24.607—32.79J + 38.4K rad/s;
Vg = —44.50K m/s.
We may now relate the acceleration of the collars using
dq=Gap+0a pXTya/p+dapX(@a8XT4p).

When we substitute the results for ¢ and y into the general expression for &, we
obtain

&4p=(—0.66+12,593.0)]+(—0.84 —944.5)J + K.

The constraints on the accelerations of the collars are that @, =0 and a5 = —Vg K,
which leads to

ds=0=—VgK+[(—0.6¢+12,593.0)7 +(—0.8¢ —944.5)J +yK]
% (0.41 —0.37—0.6245K ) +(—24.601 —32.797 + 38.40K))
X [(—24.607 —32.79J + 38.40K ) x (0.4] —0.3J —0.6245K)];
ds-I=0=(0.4996¢+ 589.8 +0.3y) — 672.2,
ds-J =0=(—0.3747¢ +786.4 +0.4y) +1,732.9,
ay K =0=—vp+0.5¢+1,049.4.
The solution of these simultaneous equations is

é =2,526 rad/s?, ¥ =—3,932 rad/s?, vp=2,312 m/s>?
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from which we obtain

Gap=—2561—2,965]—3,932K rad/s?>,  ag=—2,312K ft/s%

Example 4.5 Two shafts lying in a common horizontal plane at a skew angle 3 are
connected by a cross-link universal joint that is called a cardan joint. Derive an ex-
pression for the rotation rate w, in terms of w; and the instantaneous angle of rota-
tion ¢,, where cross-link AB is horizontal when ¢, = 0.

Example 4.5

Coordinate systems.
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Solution There are a variety of approaches to this problem, but they all
require that the angles of rotation ¢, and ¢, of the respective shafts be related. Once
such a relation is developed, it is a simple matter to obtain the angular rates by
differentiation.

Arm AC is perpendicular to arm AB, so &c/4+€g,4 = 0. In order to describe these
unit vectors, we define coordinate axes X,Y,Z, and X,;Y,Z, such that each X axis is
parallel to the corresponding axis of rotation and each Z axis is perpendicular to the
plane formed by the two rotation axes. Because arm AB rotates about the X, axis
while arm AC rotates about the X, axis, we have

g/ =(cosd))Ji—(sin)K,,  &csa=(sindy)Jr+(cos d,)K,.

Because the Z axes coincide, and the angle between the Y axes is 3, the orthogonality
condition becomes

@p/4°€cs4 = COS ¢ Sin ¢, cos B —sin ¢, cos ¢, =0,

1
tan ¢, = tan ¢,.
b2 osB 3
This is a general relation between the angles, so it may be differentiated. Thus
1 . 1

é1.

cos2 ¢, 2= o5 B cos? ¢,
In order to remove the dependence on ¢,, we employ a trigonometric identity to find

1 1

2
cos’ ¢, = = ,
\Z l+tan2¢, 1+tan2¢,/cos?f

which leads to
_ cosf é
" sin2¢;+cos2Bcos2¢;

és

It is interesting to observe that the maximum and minimum values of ¢, are
é,/cosB at ¢; =0 and 7, and ¢, cos B at ¢, = n/2 and 37/2, respectively. This oscil-
lation relative to the input speed ¢, makes the cardan joint by itself unsuitable as a
constant-velocity joint. In front-engine, rear-wheel-drive automobiles, two opposed
cardan joints are employed in the drive train; the reciprocal arrangement produces
a final speed that matches the input.

4.4 Rolling

A common constraint condition arises when bodies rotate as they move over
each other. The fact that the contacting surfaces cannot penetrate each other imposes
a restriction on the velocity components perpendicular to the plane of contact (that
is, the tangent plane). Figure 4.12 shows two surfaces in contact, as viewed edgewise
along their plane of contact. The z axis in the figure is defined to be normal to the
plane of contact. Because the surface of each body is impenetrable, the velocity com-
ponents normal to the contact plane must match. Let C; and C, be contacting points
on each body. Then

vCl'k - \—)Cz’k. (4.31)
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B,

Figure 4.12 Rolling contact. Figure 4.13 No-slip condition.

The special case of rolling without slipping imposes an additional constraint. A
variety of viewpoints are available to treat this type of motion. Consider two pairs
of points on the perimeter of bodies that roll over each other without slipping, such
as B; and C; in Figure 4.13. These points are selected such that B, and B, were the
points of contact at an earlier instant, with C; and C, the current points of contact.
(The figure considers a planar situation, in order to readily depict all points of con-
tact.) The elimination of slipping means that the arclength s, along the perimeter of
body 1 between the points B, and C, is the same as the arclength s, along body 2
between points B, and C,. The restriction on arclengths is one way of describing the
constraint imposed by the condition of no slipping.

The most common application of such a description is for a wheel rolling along
the ground. The path of a point on the circumference of the wheel is a cycloid. The
geometrical parameters needed to characterize this path are depicted in Figure 4.14.
The origin of the fixed reference frame has been placed at the starting position of the
center of the wheel. Point 4 on the cylinder contacted the ground initially, whereas
point B is the current contact point. When there is no slippage, the arclength between

Figure 4.14 Rolling wheel.
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Figure 4.15 Cycloidal path.

points A and B is the same as the distance x that the center of the wheel has dis-
placed. Thus,

x = R9. (4.32)

From this relation the position of point A may be described, in parametric form as a
function of 6, as

74,0 = R(8—sin0)i— (R cos9)/. (4.33)

The cycloidal path is depicted in Figure 4.15.

Expressions for the velocity and acceleration of point A may be found by differ-
entiation of the foregoing relationship, in conjunction with the center’s speed being
v = X = Ré. The results are

vy = v(1 —cos 8)i+ v(sin ),
)2 ) )2 i (4.34)
ay= [\‘)(1 —cosO)+7 sin0]i+[v sin0+7q-— coso]j.

An aspect of the velocity and acceleration of particular relevance to further develop-
ments arises at 8 =0, where v, =0 and a4 = (v¥/R)j. In other words, the contact
point comes to rest, and the acceleration is upward. This corresponds to the cusp in
the cycloidal path.

One difficulty with a formulation in terms of arclengths is that it becomes increas-
ingly difficult to use as the complexity of the motion increases. This is particularly
true for spatial three-dimensional motion. The alternative method that we shall de-
velop uses constraint conditions on velocity and acceleration that are derived from
the “equal arclength” rule.

Consider the limiting situation where the points of contact B; and C; in Figure 4.13
correspond to instants that are very close. The points of contact on each body then
seem to have the same motion along the contact plane at the instant they contact.
Hence, the velocities of contacting points of bodies that roll over each other without
slipping must match in all directions. The constraint condition is

¢ Vcy = V¢, for no slipping. (4.35)

Acceleration is more complicated, because the contacting points on each body
come together and then separate. This means that they have different accelerations
in the normal direction. A common misconception arises from the case of the rolling
wheel in Figure 4.14, as well as other planar situations. The second of Eqs. (4.34) in-
dicates that the acceleration of point A on the circumference of the wheel is upward
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Contact plane

ag = Ryw}

a, =R
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Figure 4.16 Contact between rotating spheres. Figure 4.17 Rolling of
circular shapes.

when the point contacts the ground. This is often taken (incorrectly) to be generally
valid. Specifically, the result is interpreted to mean that, in the absence of slipping,
the contact points may only accelerate relative to each other perpendicularly to the
contact plane. However, the statement is not true in many cases of spatial motion,
where the normal to the plane of contact does not necessarily coincide with the oscu-
lating plane of the path of a contacting point.

As a way of identifying the difficulty, consider the two spheres in Figure 4.16 that
rotate at constant rates w, and w, about fixed parallel axes, such that there is no
slipping between the contacting points A and B. The perpendicular distances R, and
R, from the points of contact to the respective axes of rotation may be found from
similar triangles. The no-slip velocity condition is v, = vg, which is satisfied when
the ratio of the rotation rates is w,/w; = R;/R,. Because points on each sphere follow
circular paths, their (centripetal) acceleration is perpendicular to the rotation axes,
as shown in the figure. As a result, each acceleration has a component parallel to the
plane of contact.

The lack of a direct constraint condition for acceleration presents a dilemma whose
resolution lies in the existence of another constraint. The shape of each rolling body
is constant. That shape is usually expressed by a functional relationship for the dis-
tance from a reference point on the body to points on the perimeter. Round objects
are of primary concern for engineering applications; the point of reference in that
case is the center. The constraint that there is a constant distance from the contact
point to the center of a round body must be satisfied. In effect, this means that the
center is subject to a kinematical constraint.

In order to explore this idea, consider the planar situation of a planetary gear
rolling over a fixed inner gear, Figure 4.17. Because the distance from the center A
of the planetary gear to the point of contact C is constant, point A follows a circular
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path of radius r;+r,. Thus, for the xyz coordinate system depicted in the figure, the
velocity and acceleration of point A are described according to path variables as

vi -

r+r /-

(4.36)

\_/A=VAIT, ﬁA=\>AIT—

Because there is no slipping at point C, the velocity constraint v = 0 yields
17A=03XFA/C=(—le)Xr1f=wrllT. (437)

Thus, the constraint that the center A move tangent to its circular path, expressed by
the first of Eqs. (4.36), is satisfied by v, in Eq. (4.37), which we obtained indepen-
dently. Comparing the two expressions for v, yields the familiar relation

va= wr. (4.38)

Now consider acceleration. Because of the round shape and the restriction to
planar motion, the algebraic relation between the speed of each geometric center
and the angular speeds of the contacting bodies will not change. We may differentiate
such an expression with respect to time, so that

Vy=ar. (4.39)

Substitution of Eqs. (4.38) and (4.39) into Eq. (4.36) yields a complete description
of a, without consideration of .

The same approach may be extended directly to treat cases of spatial motion in
which the orientation of the contacting bodies relative to each other does not change
as the bodies roll. An example of such a situation is a cone rolling over a plane. Ex-
ample 4.8 illustrates another situation of this type.

In some spatial motions, the relationships for rotation rates might be position-
dependent. Nevertheless, the basic concept of differentiating a general expression
remains unchanged. A common system in which the geometrical properties are not
constant is a rolling coin. Figure 4.18 depicts a disk that is rolling in a wobbly manner

Figure 4.18 Rolling disk in arbitrary motion.



4.4 / Rolling 145

but without slipping over a flat surface. Let i be the precession rate (about the fixed
Z axis), and let § be the nutation rate (about the horizontal axis in the plane of the
disk). Let x’y’z’ be a reference frame whose origin is at the center of the disk, with
the z’ axis coincident with the axis of the disk and the y’ axis coincident with the line
of nodes for the Eulerian angles. The body-fixed xyz axes spin about the z’ axis at ¢
relative to x'y’z’".

The importance of the round shape in this case is that, if all other quantities are
held fixed, the motion of the system will not be altered by changing the value of the
spin angle ¢. As a consequence of this invariance, the x’y’z’ axes may be used to
obtain a general relation for the velocity of point 4. The expressions for the angular
velocity @’ of the x’y’z’ reference frame and for & of the disk in terms of the Eulerian
angles are

@' =—(fsin®)i’+6j'+ (¥ cos0)k’,
&= —(ysing)i’+6; +(d+y cos0)k".

The condition that point C not slip relative to the ground leads to relations be-
tween the motion of the center 4 and the Eulerian angles. It follows from ¥ = 0 that

V4= @XFP,,c=—R(é+ycosb)j + ROk’ (4.41)

This is a general relation for ¥, in terms of the Eulerian angles. It therefore may be
differentiated to determine @,. Toward this end, remember that @” must be employed
to express the derivatives of the unit vectors in Eq. (4.41). Thus,

(4.40)

dA = %""@lx \_)A
= R[62+ (¢ + 1 cos 0)y cos 0]’ + R(—¢ — cos 8+ 248 sin ¢) j’
+R[6+(¢+y cos )y sinB)k". (4.42)

Equations (4.41) and (4.42) provide general relations between the motion of the
center and the Eulerian angles when there is no slipping. Although they contain a
variety of effects, one in particular is readily identifiable. The components of ¥, and
a4 perpendicular to the contact plane - that is, in the direction of the Z axis - are
found with the aid of Figure 4.18 to be

v,-K=ROcos8, a,K=R(cos8—0%sind).
We now observe from Figure 4.18 that the elevation of point 4 above the ground is
h = Rsiné.

Successive differentiation of 4 shows that # = v,-K and & = a,-K.

Although the roundness of the disk played a less obvious role in this motion, it
was crucial. If the disk were elliptical, it would have been necessary to describe the
velocity of the center point as a function of the spin angle and the properties of
the ellipse. Differentiating such a representation would have been substantially more
difficult than the corresponding tasks in the case of a circular disk.

Example 4.6 The cylinder of radius R rolls without slipping inside a semicylindrical
cavity. Point P is collinear with the vertical centerline when the vertical angle 6 locat-
ing the cylinder’s center C is zero. Derive expressions for the velocity and acceleration
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Example 4.6

Coordinate system.

of point P in terms of ¢ and the speed v of the center C, valid when v # 0. Then
convert those expressions to express them in terms of 6.

Solution 1t is convenient to orient the body-fixed reference frame such
that, at the instant of interest, the x axis is tangent to the path of the center and the
y axis intersects the center of curvature. Movement of the wheel to the right then
corresponds to

2
r—R

Ve=vi, dc=vi+ J;  eo=—-wk, a=-ok.

Because there is no slipping at the contact point A, it also must be that
‘-’C = X fC/A .

We match the two expressions for V¢ to obtain a relation for w, and then differentiate it,
with the result that
wW=— = W= l
R R’
Now that we have characterized @, &, V¢, and dc, we may evaluate the velocity
and acceleration of point P:
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IE) X [(esin¢)i—(ecosd)]]

- - - - T v
vP=vC+wer/C= Vl+(—E

_ _e - (e . 7
—v(l RcosqS)t v(R smq&);,

dp=dc+aXFpc—w Fp/c
2

T v T _l_ - . i
_W+r—Rj+< Rk)x[(esmq&)l (ecoso)j]

2
_<%> [(esing)i—(ecos )]

2
. e vie . < . e . of 1 e <
=[(v|ll-—=cos¢p)——=sin¢|i+|—-v—=sin¢p+v|——+— cos .
R B e e o
To express the velocity and acceleration in terms of the vertical angle 6, we must
establish the relation between ¢ and 8. For this, we return to the no-slip condition. It
was stated that point P is on the vertical centerline when § = 0. The equal-arclength
form of the no-slip constraint requires the arclengths measured along the cylinder

and along the cavity from the current points of contact to the initial points be the
same, which leads to

rf=RQ2r—¢) = ¢ = 2%——;;0.

According to this relation, the condition 6 = 0 corresponds to ¢ = 2w, which repre-
sents one revolution. We could also have obtained this relation by using the velocity
constraint equation, as follows. We have established that the angular velocity of the
cylinder is w = v/R. Considering point C to follow a circular path of radius r —R,
with the radial line rotating at rate 8, yields v = (r — R)8. The total angle of rotation
of the cylinder is 6+ ¢ in the counterclockwise sense, so its angular velocity is @ =
(+ ¢)(—k). We therefore have

. . (r - R)0 . r . r
—(6+ = 7 = =——0 = =——0.

(0+9) R ¢ R ¢ R
Note that we set ¢ =0 when 6 = 0 to integrate this relation, which is the reason for
the 27 difference between this relation and the one obtained from the equal-arclength
rule. Because the trigonometric functions are periodic in 2, either relation yields the
same result when it is used to eliminate ¢ in favor of 8 in the solutions for ¥p and ap.

Example 4.7 Rack CD, which meshes with gear A, is actuated by moving collar
D upward at the constant speed «. Rack B, over which gear A rolls, is stationary.
Derive expressions for the velocity and acceleration of the center of gear 4 in terms
of the angle 6 and the distance s.

Solution Our approach here is based on treating the system as a linkage in
which some of the constrained points are subject to the no-slip condition. We begin
with the velocity analysis. The contact points E on the gear and on the rack must
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Example 4.7

Constrained points and geometry.

have the same velocity if there is no slippage between the bodies. Our approach for
rolling bodies considers the center to be a constrained point, so we write

9E=‘7A+C’AXFE/A=\7D+‘I’CDXFE/D'

We describe these vectors in terms of the global XYZ coordinate system in the
sketch, which leads to
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- = _ - _ V4 = B o
VA=—VA1, vD=uJ; wA:FK’ wCD=0K;

Feq = (Rcos®)I+(Rsinf)J, Fe,p = (Isin@)J — (I cos0)J,

where the expression for @4 stems from the requirement that there be no slippage at
the stationary point B on the lower rack. We wish to express the results in terms of s
and 6, so we use the horizontal distance from the origin to point E in order to elim-
inate /:
s+Rcosb _ = 7

/= —+— = Fg,p=(s+Rcosf)[I—(cotd)J].
sin @
We substitute 7g,4 and 7g,p into the equation for v, and equate like components,
from which we obtain

Vg I=—v4(1+sinf) = §(s+ Rcos ) cot b,
vg-J=v,c080 = u+6(s+Rcos¥).
Solving these equations yields

cosf . sin . cosf -

=u — = —— = j,=— - .
1+siné s+Rcosé A 1+siné

V4

We lack an effective kinematical constraint relating the acceleration of point E
on each body. We therefore determine the acceleration of the center of gear 4 by
noting that its path is straight, with & = —J, and that the preceding result for its
speed is generally valid. We differentiate v, to determine the tangential acceleration,
and then use the previous expression for § to obtain a result in terms of s and 6.
We thereby obtain

o= ub —(sin6)(1+sinf)—cos?6] _ 41
AT (1+sin6)?2 B 1+sing’
~ A 2 sin 6 -

— -_—— I.
@ =Val: (s+ Rcos8)(1+sin8)

Example 4.8 The shaft of disk A4 rotates about the vertical axis at the constant rate
Q as the disk rolls without slipping over the inner surface of the cylinder. Determine
the angular velocity and angular acceleration of the disk and the acceleration of the
point on the disk that contacts the cylinder.

Solution Let ¢ denote the spin rate about the axis of the disk. The z axis
of the body-fixed reference frame is defined in the sketch to coincide with this axis,
so the angular velocity of the disk is

@ =-QK-dk.
Constancy of Q leads to ¢ = 0. Thus, the angular acceleration of the disk is
a=—¢(@xk).

Resolving all vectors into components relative to xyz leads to

@ =(QsinB)i— (Lcos B+ P)k, @ = (Q¢ sinB)/.
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Example 4.8 Coordinate system and
constrained points.

It remains to relate ¢ to @, for which we use the condition that there is no slipping
at contact point C. Because point B occupies a fixed position relative to the disk, we
could base the formulation on the fact that points B and C are two points on the
disk that are at rest at this instant. For the sake of greater generality, we shall instead
relate the velocity of point C to the center A4, which follows a horizontal circle of
radius L sin 3 with the radial line rotating at angular rate Q. Hence,

v, = —(QL sin B).

Before presenting the correct analysis, we should address an error that is extremely
common for novices. It is tempting to argue that, because v = 0, the speed of point
A must be R¢. This is incorrect because it ignores the fact that the precession also is
responsible for rotation about the z axis.

The correct procedure relates the velocity of points A and C, which are on the
same body. It follows that

\_)A = ‘_)C+G’XfA/C =6+(:)X(—Rl—),
—(QLsinB)j = (Qcos B+ )R],
from which we obtain
. L .
¢ = —Q(—— smB+cosB>.
R
When we use this rotation rate to form the angular motion vectors, we find

&=(Q sinﬁ)<f+%15>

Rl

= —92<% sin® B+ sin g cos B)i
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Space and body cones.

We already identified ¥~ = 0. The acceleration of the contact point is obtained
from the relative motion relation that refers this point to the center A. The motion
of point A was noted previously to be a circular path in the horizontal plane, with Q
being the rate at which the radial line rotates;

d, = QL sinB)é, = (LQ?sin B)[—(cos B)i — (sin B) ),
from which we obtain

dc = 6A+&XFC/A+¢I)><(J)XF'C/A)
= —92(—LR— sin B+ sin B cos B)(Lf—RE).

In order to interpret these results, we recall that 7¢/p = Ri + Lk, which leads to
the observation that @ x rc/p = 0 and ac - 7¢ /8 = 0. In other words, @ is parallel to
fcsg, while ac is perpendicular to that direction. Both features have a straightforward
explanation. First, note that the locus of lines connecting pivot B and contact point C
is a cone; this is called the space cone. On the other hand, the line connecting point
B to a specific point on the rim of the disk lies on a cone relative to the xyz refer-
ence frame, which is fixed to the disk; this is the body cone. The last sketch depicts
both cones. The motion of the disk is equivalent to the body cone rolling without slip-
ping over the space cone. The instantaneous axis of rotation is the line of contact be-
tween the cones. The acceleration of any point on the body cone that is on this line of
contact is normal to the rotation axis. The concept of space and body cones is particu-
larly useful for the treatment of the rotation of bodies in free flight, which we examine in
Chapter 8.

Example 4.9 A disk rolls without slipping on the X-Y plane. At the instant shown,
the horizontal diameter ACB is parallel to the X axis. Also at this instant, the hori-
zontal components of the velocity of the center C are known to be 5 m/s in the X
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20° 6 —90° = 20°

Example 4.9 Coordinate systems and kinematical
parameters.

direction and 3 m/s in the Y direction, while the Y component of the velocity of
point B is 6 m/s. Determine the precession, nutation, and spin rates for the Eulerian
angles in Figure 4.18.

Solution For convenience in describing the given components of vz and
v, we define the reference frame x’y’z’, whose y’ axis is the line of nodes and whose
z’ axis is the axis of the disk. The body-fixed xyz reference frame spins relative to
x'y'z’, so the coincidence of the reference frames is an instantaneous occurrence.
Because we have labeled the axes for the Eulerian angles consistently with Figure
4.18, we may employ Eqs. (4.40) directly. Note that those expressions use compo-
nents relative to x’y’z’, which is especially suitable here because the y’ axis is parallel
to the X-Y plane. We defined 6 to be the angle between the Z and z axes, so we set
6 = 110° for the instant of interest, which yields

@ = —0.9397yi"+ 607"+ (¢ —0.3420y) k.

We set 7, = 0 because there is no slipping at the contact point. We refer the velocities
of points B and C to this point, which leads to

Ve = @ X (—0.08i") = —0.08(¢ —0.34204)) ' + 0.086%",
Vg = @ x (—0.08{"+0.08;")
=0.08(¢ —0.3420y)(—i’—j’) +0.08(6 —0.9397y) k".

These velocities must match the given components. The fact that j’= —1 at this
instant substantially expedites the evaluation of dot products, which we find to be

Vo T=5=0.08[—(¢—0.3420y)j"- T+ 0k’ ]
=0.08(¢ —0.3420y)),
Vo J =3 =0.08[— (¢ —0.3420y) - J+ 6k’- J] = 0.086 cos 20°,
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vg-J =6 =0.08[— (¢ —0.3420y)({"- J+j'- J) + (6§ —0.93974)k"- J ]
= 0.08[— (¢ — 0.3420y) (—sin 20°) + (6 — 0.9397y) (cos 20°)].

The solution of these simultaneous equations is

Y = —18.260, 8 = 39.907, ¢ = 56.255 rad/s.
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4.2

Problems

A gyropendulum consists of a flywheel that rotates at constant angular speed w,;
relative to shaft BC. This shaft is pinned to the vertical shaft, which rotates at con-
stant angular speed w,. The angle 8 measuring the inclination of shaft BC is an arbi-
trary function of time. Use the Eulerian angle formulas for angular velocity and
angular acceleration, Eqgs. (4.16) and (4.17), to derive expressions for the velocity
and acceleration of point D, which coincides with the horizontal diameter at the
instant of interest.

Problem 4.1

Consider a body whose orientation is described by Eulerian angles. Derive the trans-
formation from space-fixed to body-fixed axes for a sequence beginning with pre-
cession ¥ = 20°, followed by nutation § = —60°, then spin ¢ = 140°. Is it possible to
obtain the same transformation with a different sequence beginning with nutation 6’,
followed by spin ¢’, then precession ¥’? If so, determine the values of 8, ¢', and y".
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4.3

4.4

A rigid disk is welded to the end of a flexible shaft that rotates about bearing A. The
bending deformation of the shaft is such that its centerline forms a curve in a plane
that always contains the bearing’s axis. The rotation of this plane about the bearing’s
axis is the precession ¢. The tangent to this curve at end B is the axis of symmetry
of the disk, and the angle between the bearing’s axis and the disk’s axis is the nuta-
tion angle 6. Torsional deformation of the shaft produces a spin ¢ about the disk’s
axis. Let xyz be a set of axes attached to the disk, and let x’y’z" be a set of axes
that undergo only the precessional motion. The orientation of x’y’z’ is such that
the curved centerline of the shaft is always situated in the x’z’ plane, with z’ being
the bearing axis. It is observed that at some instant § = 10°, ¢ = —5°, and the angu-
lar velocity of the disk is & = 17i'— 20, + 48k’ rad/s. Determine the corresponding
precession, nutation, and spin rates. Then express the angular velocity in terms of
components relative to xyz.

7

Problem 4.3

Pin B slides through groove CD in a plate that translates upward at speed v. The
groove forms the parabolic curve y = 300 — x%/400, where x and y have units of milli-
meters. In the position shown, bar AB is rotating clockwise at 40 rad/s, and that rate
is decreasing at 160 rad/s 2. Determine the corresponding values of v and v.

2
) g = L.75R »|
Problem 4.4 Problem 4.5
4.5 Bar AB rotates at the constant rate w, causing collar B to slide over curved bar CD.
Determine the angular velocity and angular acceleration of CD in the position shown.
4.6 Collar C slides over bar AB. When the system is in the position shown, slider A4 is

moving downward at 600 mm/s and its speed is decreasing at 15 m/s2 Determine the
corresponding angular velocity and angular acceleration of each bar.
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A
A
Problem 4.6 Problems 4.7 and 4.8
4.7 Collar A is connected to bar AB by a ball-and-socket joint, whereas the connection
between collar B and bar AB is a forked pin. For the position shown, v; =3 m/s.
Determine the velocity of slider 4 and the value of 8, where § is the angle between
AB and the horizontal guide.
4.8 Determine the angular acceleration of bar AB in the linkage in Problem 4.7 for the
case where vz = 5 m/s and vy = —20 m/s? in the given position.
4.9 Collar A is pushed upward at v, = 30 m/s, while the entire system precesses about
the vertical axis at 2,400 rev/min. Determine the velocity of the midpoint of bar AB
in the position where 8 = 53.13°. The length of the bar is L = 600 mm.
2
N/
W] >
2]
A
bra
A % Z
Problems 4.9 and 4.10 Problem 4.11
4.10 Collar A is pushed upward at constant speed v,, while the entire system precesses
about the vertical axis at w,. Determine the angular velocity and angular acceleration
of bar AB in the position where 3 = 90°.
4.11 Bead C slides relative to the curved guide bar 4B, which rotates about the vertical

axis at the constant rate Q. The movement of the slider is actuated by arm DEF,
which pushes the collar outward from the vertical axis at a constant rate u. Deter-
mine the velocity and acceleration of the slider as a function of 6.
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4.12 Bar BC is attached by a fork-and-clevis joint to cap B, which is free to rotate about

and the axis of bar AB. The connection between bar BC and collar C is a ball-and-socket

4.13 joint. The guide bar for collar C is horizontal, as is the fixed shaft about which bar
AB rotates. The rotation rate is w4z = 200 rad/s, which is constant. Determine the
angular velocity and angular acceleration of bar BC, and the velocity and accelera-
tion of collar C in the position shown.

Problem 4.12

Problem 4.13

4.14 The axes of bearings 4 and D lie in the same horizontal plane, and intersect orthog-
onally. Bar AB rotates at the constant rate of 200 rev/min. Connections B and C are
ball-and-socket joints. Determine the velocity and acceleration of joint C at the
instant shown,
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4.15

Problem 4.14

Bar AB is attached to collar A by a ball-and-socket joint, while end B is fastened to
the collar by a fork-and-clevis joint. The cross-section of bar CD is circular. Bar CD
rotates about the horizontal axis at a constant rate of 600 rpm. Let u denote the
speed of collar A4 in the position shown, which is increasing at the rate #. Determine
in terms of ¥ and # the angular velocity and angular acceleration of bar AB in this
position.

600 rev/min

Problem 4.15 Problem 4.16

4.16

4.17

4.18

A disk rolls without slipping over the exterior of a large drum. The drum rotates
clockwise at constant angular speed . In the position shown, the center of the disk
has a speed v, which is increasing at the rate v. Derive expressions for the velocity and
acceleration of point D, which is situated at an arbitrary angle 8 relative to the line
of centers.

(See figure, next page.) In the position shown, cylinder A is moving to the right such
that its center has a speed v. There is no slipping between the cylinder and bar BC,
but there is slipping between the cylinder and the ground. Determine the angular
velocity and angular acceleration of bar BC, and the velocity and acceleration of the
cylinder at the point where it contacts the ground.

(See figure, next page.) Collar C has a constant speed v to the right, and the rack is
stationary. Determine the angular velocity and angular acceleration of gear A4 at the
instant shown.



158 4 / Kinematics of Rigid Bodies

T Z Z
Problem 4.17 Problem 4.18
4.19 Movement of the actuating rod at constant speed v pushes the connecting pin 4

through the groove in the gear, thereby causing the gear to roll over the rack. Deter-
mine the angular velocity and angular acceleration of the gear as a function of 4.

V |

NS

Problem 4.19

4.20 The angular velocities of the inner and outer gears are counterclockwise at the con-
stant values w, and w,, respectively. Determine the velocity and acceleration of point
C on the perimeter of the planetary gear as a function of the angle 4 locating the
instantaneous position of point C relative to the radial line.

4.21 A disk rolls without slipping over the ground such that the angle of tilt 8 is constant.
The center follows a horizontal circular path of radius p at constant speed v. Derive
an expression for the angular velocity and angular acceleration of the disk.

4.22 Gear A rotates freely about its shaft, which rotates at constant rate w, about the hori-
zontal axis. Gear B is stationary (w, = 0). Determine the angular velocity and angular
acceleration of gear A4.
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Problem 4.20

|
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Problem 4.21

Problems 4.22 and 4.23
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4.23

4.24

4.25

4.26

Gear A is free to spin about its shaft, which rotates at variable rate w, about the
horizontal axis. The angular speed of gear B is the variable rate w,. Determine the
angular velocity and angular acceleration of gear A.

A sphere of radius R rolls without slipping in the interior of a cone such that the distance
from the axis of the cone to the center of the sphere is constant at R. The speed of the cen-
ter of the sphere is the constant value v. Derive expressions for the angular velocity and
angular acceleration of the sphere in terms of v, R, and the apex angle 6.

DA

i |—b—>]

Problem 4.24 Problem 4.25

The sphere rolls without slipping over the interior wall of a hollow cylinder that
rotates about its axis at w,. The angular speed of the vertical shaft driving the sphere
is w,. Both rotation rates are constant. Determine the angular velocity and angular
acceleration of the sphere.

The body cone executes three revolutions about the stationary space cone in a 1-s
interval. Determine the angular velocity and angular acceleration of the body cone.

Body cone

Space cone

Problem 4.26
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4.27

4.28

4.29

The disk rolls without slipping over the horizontal X-Y plane. At the instant when
0 = 36.87°, the X and Y components of the velocity of point B on the horizontal
diameter of the disk are 8 m/s and —4 m/s, respectively. The X and Y components
of the velocity of center A at this instant are 4 m/s and 2 m/s. Determine the preces-
sion angle Y between the horizontal diameter BAC and the X axis, and also evaluate
the precession, nutation, and spin rates.

Problems 4.27 and 4.28

The disk is rolling without slipping. At the instant when the angle of inclination § =
30°, the disk is observed to be spinning at ¢ = 5 rad/s. At this instant, the speed of
points B and C on its horizontal diameter are 1 and 2 m/s, respectively. Determine
the corresponding precession and nutation rates.

A sphere of radius R rolls without slipping over the interior of a hemispherical shell
of radius b that rotates about the vertical axis at constant rate Q. (The system is
analogous to a ball in a roulette wheel.) The polar and azimuth angles locating the
center of the sphere are (respectively) ¢ and 6, defined with respect to the fixed XYZ

Problem 4.29
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coordinate system. Both angles are arbitrary functions of time. Derive expressions
for the angular velocity and angular acceleration of the sphere.

4.30 Shaft BC is pinned to the T-bar, which rotates at the constant angular speed w,.
Wheel C rotates freely relative to shaft BC. The platform, over which wheel C rolls,
is raised at the constant speed u, causing angle 8 to decrease. The wheel does not
slip relative to the platform in the direction transverse to the diagram, but slipping in
the radial direction is observed to occur. Derive expressions for the angular velocity
and the angular acceleration of the wheel.

Problem 4.30



CHAPTER $§

Newtonian Kinetics of a Rigid Body

Chasle’s theorem states that the general motion of a rigid body can be repre-
sented as a superposition of a translation following any point in the body and a pure
rotation about that point. Kinematics studies are concerned only with the descrip-
tion of that motion. The developments in this chapter will disclose how the motion
is related to the force system acting on the body. The resultant force may be re-
garded intuitively as the net tendency of the force system to push a body, so it may
be expected to be related to the translational effect. Similarly, the resultant moment
may be considered to be the net rotational effect. We shall confirm and quantify
these expectations in the following presentation for general spatial motion, and then
specialize the derived principles for the case of planar motion.

5.1 Fundamental Principles

Newton’s laws govern the motion of a particle. A rigid body may be treated
as a collection of particles whose motions are not independent. In the first part of
this chapter, we shall derive the basic kinetics principles for rigid-body motion. The
foundation for these derivations is Newton’s second. law, which describes inertial
effects, and the third law, which describes the nature of the force system.

5.1.1 Basic Model

From a philosophical perspective, we initially recognize the atomic nature
of matter by considering a body to consist of N particles having mass m;. However,
the enormous value of N and the correspondingly small value of m; associated with
an atomic representation ultimately will lead us to quantify the general relations by
employing a continuum model, in which the mass m; becomes an infinitesimal mass
dm. In the most general situation, there are no kinematical relations between the
motion of the particles forming the system of interest. (Such would be the case if
we were to consider a gaseous medium.) We begin by developing kinetics principles
for such a system. Then we account for the kinematical relations associated with a
rigid-body model, in which the particles are constrained to maintain a fixed relative
position. If one wished to model deformation effects, this kinematical specification
would be replaced by a constitutive law, such as Hooke’s law for elasticity, that
relates the stresses to the strains. In the rigid-body model, the stress resultants are
constraint forces exerted internally within the system.

Figure 5.1 depicts three particles out of the full set, and two types of force. The
internal force exerted on particle i by particle j is denoted f; ;- Such forces are asso-
ciated with contact with neighboring particles, as well as with gravitational and other
body forces exerted between the various particles in the system. The force F; arises
from the action of other objects on the ith particle. Contributors to F; may be body

163
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x

Figure 5.1 Infinitesimal mass elements.

forces, applied loads, or constraint forces (that is, reactions) that result from the
manner in which the system is supported.

A key aspect of the internal forces arises from 1§Iewton_’s third law (action and
reaction). According to that law, each pair of forces f;;and fj; (i # j) is equal in mag-
nitude but oppositely directed, so

fij"’fji =0. 5.1

In addition, the two forces forming each interaction share a common line of action,

which is the line connecting particles i and j. When either force is moved along its

line of action to the other particle for the purpose of computing the moment about

an arbitrary point A, it becomes apparent that the two forces cancel each other in the
moment sum. Thus

Fi/AXfTij+;:j/AXf;'i=6. (5.2)

As a result of Egs. (5.1) and (5.2), the internal forces will not appear explicitly in

the equations of motion. Nevertheless, they are important because of their role in
enforcing the rigidity of the body.

5.1.2 Resultant Force and Point Motion

The resultant of all forces acting on any mass particle must satisfy Newton’s
second law, which for particle / is

-_— N -
Fi+ 'Ex Jij = mja;, (5.3)
i
where N is the number of particles constituting the system. Now add Eq. (5.3) for
each particle by summing over i:
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N N N _ N
2 i+z Y fij= 2 ma;. (5.4)

Consider a specific set of values for each i, j pair in the double summation above,
such as i, j = 1, 2. The corresponding contribution is £, + f5;. By virtue of Eq. (5.1),
these two terms cancel. The same result applies to every other pair, so the force sum
may be rewritten as

N
i=1 i=1

The left side is identifiable as the sum of the external forces exerted on the system by
other objects. We shall now express the term on the right side in a more meaningful
form.

First, we write the acceleration of each particle as the second derivative of the
position. That each particle has constant mass makes it possible to sum prior to dif-
ferentiation, with the result that

S =2 £ mirvo).
m;F, (5.6)
2 dtz ( i’/0
The key observation about this form is that the right side is related to the position
of the center of mass. Let the coordinates of each particle relative to the center of
mass be (X, Y;, Z;), and let the coordinates of the center of mass G be (Xg, Y, Z5).
The mass is the sum of the individual masses,

N
m=3 m, (5.7)

In order to locate the center of mass G, the moment of the distributed gravitational
force system is equated to the moment of the total weight acting at point G. That
evaluation leads to the first moments of mass with respect to each coordinate, which
are

N N N
mXG = E m,-X,», mYG = E miYia mZG = 2 m,Z,~. (58)
i=1 i=1 i=1
When we multiply these equations by 7, j, and k (respectively) and add them, we
obtain the first moment of mass about the origin:

N
¢ mig,0= 2 miFio. (5.9)
i=1
This expression allows us to replace the summation on the right side of Eq. (5.6)
with a single term involving the center of mass. The mass is constant, so the specified
time derivatives in that equation lead to

' S F = mag, (5.10)

where I F denotes the resultant (i.e. sum) of the external forces.

Note that Eq. (5.10) is valid for any collection of particles. If the particles move
independently, it is one of many equations of motion for the various particles. The
primary value of this relation lies in its application for the collection of particles
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forming a rigid body. Chasle’s theorem indicates that a complete description of the
motion of a rigid body entails specification of the motion of one point in the body,
and of the rotation of the body. For a kinematical study, the choice for a point is
arbitrary, but it will always be the center of mass when the resultant force is to be
considered.

The similarity of Eq. (5.10) to Newton’s second law, which treats only a particle,
is important. It shows that modeling an object as a particle is equivalent to focusing
attention on the motion of the center of mass of that object. In contrast, a rigid-
body model is needed to evaluate the rotational effects. The next task is to identify a
relation between the moment exerted by the force system and the corresponding
rotational motion.

5.1.3 Resultant Moment and Rotation

As we did for the evaluation of the resultant force acting on a rigid body, we
begin the treatment of rotational effects by considering a general collection of parti-
cles. The resultant moment of the forces exerted on a group of particles is obtained by
summing the contribution from each particle. A typical situation, in which moments
about arbitrary point A will be evaluated, is depicted in Figure 5.2. In view of New-
ton’s second law, the moment of the forces acting on particle i about this point must
equal the corresponding moment of the m;a; vector; that is,

— - N -
(My); =FiyaX| Fi+ X fij | = Fiyax m;a;. (.11
f

It is logical to employ point A as the reference point for the kinematical descrip-
tion because the moment is computed about that point. The most general description
of acceleration for a collection of particles moving independently is &; = @4+ a; 4,
where the last term represents the acceleration of particle / relative to point A, as

seen from the inertial reference frame:

_ d_ d* .
Aija = ‘(‘I‘t‘Vi/A = W’i/A- (5.12)

We substitute a@; = a4+ (d/dt)v;,4 into Eq. (5.11) and invoke the identity for a deriva-
tive of a product; the result is

— _ - d _
(M) =FiyaXm@y+Fi g Xm; 25 i

- _ d  _ _
=miri/AxaA+B_t(ri/Axmivi/A)r (5.13)

where the last form results because [(d/dt)f_',/A X mi\-/i/A] = \7,~/A X mi\-’i/A = 6.

The term m;v;,, represents the momentum of particle / relative to point A. Hence,
the term in Eq. (5.13) contained in parentheses is the moment of the relative momen-
tum or, more simply, the angular momentum about point A. We now sum this equa-
tion for each particle, and recall from Eq. (5.2) that the moments of the internal
forces cancel in such a process. This leads to

_ N _ N N d
My =3 FiygXFy =32 miFyaxXa + 21 E‘(fi/A XmViq). (5.14)
i=

i=1 i=1
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equivalent

X

Figure 5.2 Forces acting on the mass elements of a rigid body.

The last sum is the total angular momentum of the system about point A, and the
second sum is the first moment of mass about point A. Consequently, the moment
equation reduces to

N EX
¢ My=73 FiuxE =mrgXas+H,, (5.15)

i=1
where A, denotes the angular momentum of the system about point A,

N
¢ Hy= X2 (Fiyaxm;vi ). (5.16)

i=



168 5 / Newtonian Kinetics of a Rigid Body

In the special case where point A4 is fixed in the inertial reference frame, these equa-
tions reduce to the sum of the angular impulse-momentum equations (1.26) and
(1.27) for each particle relative to an inertial reference point.

As was true for the resultant-force equation, the resultant moment exerted on a
system of particles yields one of many equations required to describe the motion of
a group of independently moving particles. By contrast, for the special case where
the particles constitute a rigid body, Eq. (5.15) is sufficient by itself to describe the
rotation. We begin the specialization by introducing the first restriction on the choice
of point A. Requiring this point to be a point in the body? enables us to employ the
kinematical relationship between the velocity of two points in a rigid body. Because
Vg = V; — V4 = @ X F;4, the angular momentum becomes

_ N
¢ HA=21mi[7i/AX(@X7i/A)]~ 5.17)
i=

It is clear from this expression that the resultant moment affects the rotation of
a body. However, Eq. (5.15) also contains the linear acceleration of point A. This
represents a coupling of the linear and angular motion of the body. We may obtain a
moment equation that depends solely on the rotation of the body by further restrict-
ing the choice of point A. If point A is selected such that 7;,, x @, = 0, then

. SM,=H,. (5.18)

The condition 75/, x md, = 0, required for validity of Eq. (5.18), is obtained when
point A satisfies one of the following criteria.

(1) Point A is the center of mass G: 75,4 = 0. The center of mass is always an
admissible point for summing moments.

(2) Point A has no acceleration: @, = 0. This situation could arise if there is a
point on the body that is constrained to follow a straight path at a constant
speed, but such cases are comparatively rare. The more usual situation arises
when a body is in pure rotation about point A.

(3) Point A is accelerating directly toward or away from the center of mass. In
this case, a4 is parallel to 75,4, so their cross product vanishes.

Very few types of motion fit the third criterion. One exception arises in planar
motion when a disk or sphere rolls without slipping. Even then, the body must be
balanced - that is, the center of mass and the geometric centroid must coincide. The
acceleration of a disk rolling in a plane is depicted in Figure 5.3. The center C is
accelerating, but the no-slip condition requires that the acceleration of the contact
point A be normal to the surface. Because a4 is directed toward the center C, it
would be permissible to formulate a moment sum about the contact point, provided
that point C is the center of mass. However, if the wheel is unbalanced, so that the
center of mass G is eccentric, then @4 will usually not be parallel to 7g,/,4.

Because of its lack of generality, we will not consider the third criterion in select-
ing a point for summing moments. In contrast, there are strong reasons for selecting

+ We shall develop principles governing angular momentum only relative to a reference point on
the body. Related principles - governing angular momentum of a system of particles relative
to a point that is fixed in the inertial reference frame - can also be developed. However, they
are less suitable for the study of rigid-body motion.
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Figure 5.3 Accelerations in an eccentric disk.

the fixed point for a body in pure rotation, in accord with the second criterion. In
order for a point to be held stationary, reaction forces must be exerted at that point.
This is exemplified by a ball-and-socket joint, which exerts an arbitrary reaction
force having three components. These unknown reactions do not contribute to a
moment sum about the stationary point. The ability to eliminate unknown reactions
from the moment equation for a body in pure rotation makes it worthwhile to for-
mulate moments about the stationary point. Note that this is the only case where
the point for the moment sum is selected on the basis of eliminating reactions. In
static systems, of course, all points are stationary, so any point is permissible for the
moment sum.

Because the angular momentum A, in Eq. (5.17) is a function of &, the moment
equation (5.18) is the principle we need for studying the angular motion of a rigid
body. Its form is analogous to Eq. (5.10) for the motion of the center of mass. The
total linear momentum of the system is P = mi, as may be seen by differentiating
Eq. (5.9) with respect to time. Then the equation governing the motion of the center
of mass may be rewritten as

b4

S SF=P,  P=mig=3 my. (5.19)
i=1

In other words, the linear or angular effect of the external force system equals the
rate of change of the corresponding type of momentum for the body.

5.1.4  Kinetic Energy

Linear and angular momentum are fundamental kinetic properties associated
with the motion of a body. Another such quantity is the kinetic energy. In addition
to its appearance in the work-energy principle, kinetic energy will play a prominent
role for describing inertia properties when we quantify the equation of rotational
motion. It also is the primary quantity for the analytical mechanics developed in
Chapter 6.

We begin by describing the kinetic energy of a system of independently moving
particles. Because kinetic energy is a scalar, we obtain the total energy T of the system
by adding the values for each particle:
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N
T= 2 (5.20)

uMZ

1
2
Let B denote an arbitrary reference point to which the velocity of all particles is

referred, so that ¥; = ¥g+ ¥;,5. The corresponding form for the system’s kinetic energy
is

l

L
T=+ 21 m;(Vg+Vi/g) - (Vg + Vi/p)
1 N N 1y
=5 21 m;(Vg-Vp)+Vp- 3 mVipt > 2 mVi/p*Visp. (5.21
i=

i=1 i=1

We factor out of each sum those terms that are independent of the particle num-
ber. The first sum in Eq. (5.21) then yields the total mass. The second sum is the
first moment of mass relative to point B, which locates the center of mass C relative
to point B. Correspondingly, the kinetic energy of the system becomes

| oo | A
T= Em(vB -Vg)+mvp-Vg/p+ 3 El mVi/g-Visg. (5.22)

One viewpoint of this expression is that the kinetic energy of a system of particles
is associated with three effects: transiation of all particles following the reference
point (the first term in Eq. (5.22)), motion of the particles relative to the reference
point (the third term), and an interaction of the motions of the reference point and
of the center of mass relative to the reference point. Substantial simplification results
when we select the reference point such that the second term vanishes. This may be
achieved in a variety of ways, some of which are not useful for a rigid body. For this
reason, let us now specialize Eq. (5.22) to the collection of particles that form a rigid
body. In that case v,/ 5 = & X F;,g, so the kinetic energy becomes

1 o | EEA .
T= ‘Z‘m(VB *Vg) +mvg-(& X 7g,p) + 3 Z:l m;(& X Fi/p)+ (@ X Fi/p). (5.23)

The sum may be written in a more recognizable form by using an identity for the
scalar triple product,

(@xb)-¢=a-(bxc).
We employ this identity with @ = @, b = F; 5, and ¢ = @ X F;/5, which yields
N

| . 1 oo -
= EmVB‘VB“'mVB'(wer/B)'*'E > mi@-[Fiyp X (@ X Fi/p)]
i=1

=%mﬁ3~ﬁ3+m\73-(d’xFG/B)-i-%(B-FIB, (5.24)

where Hp is the angular momentum relative to point B, as defined in Eq. (5.17).

In order to avoid evaluating of the second term in Eq. (5.24), we shall restrict
our selection for point B. Placing this point at the center of mass of the body gives
7,5 = 0. Alternatively, if point B is the stationary point for a body in pure rotation,
then g = 0. The latter condition also holds whenever point B is situated on the in-
stantaneous axis of rotation for a body in general planar motion. However, such a
point is not fixed relative to the body, so the inertia properties (discussed in the next
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section) required to form Ay will not be constant. Another possibility is to assign
point B to anywhere on an axis that is parallel to & and intersects the center of mass,
for then & X 7,5 = 0. Once again, such a point gives rise to nonconstant inertia prop-
erties. For these reasons, the alternatives we shall employ to evaluate the kinetic
energy of a rigid body are:

¢ T=
¢ T

mvg-vg+3@-Hg for all motions; (5.25a)

YN

@-H, for pure rotation about point O. (5.25b)

5.2 Evaluation of Angular Momentum and Inertia Properties

Our next task is to develop an effective way in which to compute the angular
momentum associated with a specified rotation of the body. Clearly, it is not con-
ceivable to do this by adding the contribution of every atomic particle forming the
body. Our approach is consistent with the usual ways that finite sums extending over
numerous small elements are treated in engineering-oriented calculus courses.

5.2.1 Moments and Products of Inertia

In a continuum model of a rigid body, the particles become differential ele-
ments of mass dm having infinitesimal dimensions in all directions. These elements
dm fill the region occupied by the body. In this viewpoint, any summation over the
particles forming the body becomes an integral over this region.

In Figure 5.4, the xyz coordinate system is fixed to the body with its origin at
point A. The position vector 7;,4 and angular velocity @ may then be described in
terms of coordinates relative to xyz as

Tua=xirypral (5.26)

@ =wyitw,jtwk.
We substitute these expressions into Eq. (5.17) for the angular momentum, and con-
vert the summation to an integral. This transforms the general relation to

X

Figure 5.4 Position of a mass element.
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FIA=”f(x7+yf+z/2)x[(axi+wyj+wz/€)x(xi+yi+z1€)]dm. (5.27)

The rotation rates are overall properties of the motion - they are independent of
the position relative to the body. Hence, w,, w,, and w, may be factored out of the
integral after the cross products have been evaluated. The result is

¢ I-—IA = (Ixxwx_lxywy_lxzwz);+ (Iyy(“)y‘lxy‘-"x_Iyz‘-"z)./T
+(Izzwz—1xzwx—1yzwy)/€a (5.28)

where

¢ Ixx=fff(y2+zz)dm, Iyy=fff(x2+zz)dm, Izz=fff(x2+y2)dm;

(5.29a)

¢ Ixy=fffxydm, Iyz=fffyzdm, Ixz=fffxzdm. (5.29b)

The terms 7, (repeated subscripts) are moments of inertia about the three coordi-
nate axes, and the terms /,, (nonrepeated subscripts) are products of inertia. The
former are the inertia properties encountered in planar motion, but they are now
defined for rotations about three axes. The similarity of any I,,, to the parameter for
planar motion may be realized by looking down the p axis. Such a view for I, is
shown in Figure 5.5. The distance R = (x2+ y2)"?is the perpendicular distance from
the z axis to the mass element dm. Thus, I,, is the sum of the R? dm values for all
elements. A common way to prescribe a moment of inertia is to give its radius of
gyration «, = \/Ipp/m. This is the radius of a thin ring having the same mass as
the body and with the same moment of inertia about its axis of symmetry as the
body has about axis p. It is clear from the integral definition of I,, that the radius
of gyration cannot exceed the largest distance from axis p to a mass point in the
body.

The products of inertia describe the symmetry of the mass distribution relative to
the coordinate planes. Figure 5.6 shows the cross-section of a body at an arbitrary
value of z. The mirror image of the left region x < 0 is outlined in the right region

y
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y
—_ —D dm \\
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Figure 5.5 Contribution of a mass Figure 5.6 Effect of symmetry on a product

element to a moment of inertia. of inertia.
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x > 0. If the density is also symmetrical, then every mass element at (x, y, z) within
the outlined region in x > 0 is matched by a corresponding element at (—x, y, z) to
the left. Thus, the xy dm values for these two regions cancel, as do the xzdm values.
All that remains is the contribution of the shaded region outside the outline. The sit-
uation in the figure suggests that I,, < 0, because more of the shaded area seems to lie
in the octants where x > 0 and y < 0. Increasing the shaded region would increase I,
in magnitude. However, the actual sign of I, for the situation in Figure 5.6 cannot
be judged solely from the drawing, because it depends on the variation of shape and
density in the z direction.

A corollary of the foregoing is that if the y-z plane is a plane of symmetry, then
I, =0and I, = 0. The fact that the x axis is normal to the plane of symmetry leads
to the following generalization:

¢ If two coordinate axes form a plane of symmetry for a body, then all prod-
ucts of inertia involving the coordinate normal to that plane are zero.

A further corollary is:

¢ If at least two of the three coordinate planes are planes of symmetry for a
body, then all products of inertia are zero.

Clearly, the last condition is attained for any body of revolution if the axis of sym-
metry coincides with a coordinate axis. Whenever the coordinate axes correspond to
vanishing values of all products of inertia, they are said to be principal axes. We
shall see that it is possible to identify principal axes for all bodies, not only symmetric
ones.

The inertia properties of homogeneous bodies have been tabulated for a variety
of common shapes; see the appendix, which follows Chapter 8. Properties for bodies
that are not tabulated may be evaluated by treating them as composites of basic
shapes or, as a last resort, by carrying out the integrals in Eqs. (5.29).

Once the inertia properties are known, the angular momentum may be evaluated
according to Eq. (5.28). For this, the components of @ would be found by the methods
for spatial kinematics established in Chapter 3. The vector relation may alternatively
be written in matrix form as

¢ {Hy) = [T}{w), (5.30)

where {H,} and {w} are formed from the components of A, and & (respectively),
and where [[] is the inertia matrix,

Ixx _Ixy _Ixz
. n={-1, I, —-I,]|. (5.31)
—Ixz _Iyz Izz

This square array of moments and products of inertia, combined with the mass and
the location of the center of mass, fully characterizes the inertia properties of a rigid
body.

In some sitvations the orientation of the desired xyz coordinate system might
not match the one appearing in a tabulation. In that case it is necessary to convert
the inertia properties. The appropriate transformations shall be developed in the
next section.
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Example 5.1 Derive the inertia matrix of the quarter-sphere about the xyz axes;
then use that result to obtain the inertia matrix for a quarter-spherical shell whose
thickness is A << a. Express each result in terms of the mass m of that body.

¥y

_—

X
Example 5.1
Solution Spherical coordinates are ideal here. Any coordinate axis may be
employed as the reference for the polar angle. We select the y axis, so that
x=rsin¢cosé, y=rcoso, z=rsin¢siné.

The body occupies the domain 0<r=<gqa, 0< ¢ < /2, 0<6 < 7, and a differential
element of mass is

dm = pr’sin¢ drdf de.

We wish to express the inertia properties in terms of the mass m. We therefore ex-
press the density as the ratio of the mass m to the volume of a quarter-sphere,

m  3m

p=—=

V  wad’
The coordinate axes are such that the body is symmetric with respect to the y-z
plane, so

L,=1I,=0.

Also, I, = I,, by symmetry, so it is necessary to compute only /., I,,, and I,,. The
integral definitions, Eqgs. (5.29), give

a px/2 prw
Lo = f f f (¥%+2%)(pr? sin ¢) d0 de dr
0 Yo 0
a 1I'/2 T 2
=pf r“f f (cos? ¢ sin ¢ +sin® ¢ sin® 0) d0 do dr = =wpa°,
o o 0 15
a 7/2 L
I,y = f f f (x2+2z%)(prsin¢)do de dr
0 Y0 0

a /2 pw
=pf r“f f (sin® ) d0 do dr = > mpa’,
0o Jo Jo 15
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a pn/2 pw
1, =f f f yz(pr?sin¢) d dé dr
0Jo Yo

a /2 T
=pf r“f f (sin2¢cos¢sin0)d0d¢dr=lpas'
0 o e 15

In order to express these results in terms of the mass m, we substitute the earlier ex-
pression for p to find

X 1 0 0
(7] =—5—ma2 0 1 -Ur
0. -1l/n 1

Results for a shell may be obtained by considering a composite body that is formed
by removing a quarter sphere of radius @ — A from the given body. The mass is then

m =p§[a3—(a-A)3] = p%(3a2A—3aA2+A3).

For a thin shell, A/a < 1; hence we have
m
Ta’A’

The comparable differences for the inertia properties must be formed using the orig-
inal results, which depended on p. Thus

p=

2 2
L= Iyy =1,= E"rp[as"‘(a_A)s] = ?Wpa“A,

2 2
I, = fsola’—(a—4)] = 3pa“A.

Eliminating p in favor of the mass of the shell yields

5 1 0 0
1= gmaz 0 1 —Ux
0 -/« 1

5.2.2 Transformation of Inertia Properties

Suppose that the moments and products of inertia of the body in Figure 5.7
are known relative to the xyz system. The origin O of xyz might not be acceptable
for formulating the equation of rotational motion, whereas point O’ is acceptable.
Then it will be necessary to transfer the inertia properties to an x’y’z’ coordinate sys-
tem having its origin at point O’. Furthermore, it also might be desirable for the
x'y’z’ axes to be rotated relative to xyz. The general task involves translational and
rotational transformations of the inertia properties.

Figure 5.8 depicts a translational transformation. The inertia properties with respect
to xyz are known, and the coordinates of the origin O’ relative to xyz are denoted
X0 Yors Zor. The coordinate transformation in this case is

X'=x—Xp, y'=y-yo, z2'=z—Zzp. (5.32)
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Figure 5.7 Alternate coordinate systems. Figure 5.8 Translation transformation.

Consider the definition of a moment of inertia, for example, I,-,.. Substitution of
Eqgs. (5.32) into the first of Eqgs. (5.29a) yields

Loe= [ [ [+ @)?1dm
N f f f V2 +22=2y0y=2202+ (¥o) +(20)*1dm

=IXX—ZyO/fffydm—ZZo/fffzdm+m(y3:+z(2y). (5.33)

The integrals remaining in Eq. (5.33) are first moments of mass with respect to the y
and z coordinates. They locate the center of mass G relative to the origin of xyz.
Thus

Loy =L, =2mygyg—2mzozg+m(y+z5). (5.34)

This translation transformation may be simplified if the origin O is restricted to
being the center of mass. Then x5 = y; = zg = 0. Repetition of the derivation for
the other terms leads to the parallel axis theorems for moments of inertia:

* I = Ixx+m(y3’+2%)’):
¢ Ly =1+ m(xg+2}), (5.35)
¢ L, = Izz+m(xé’+yé')-

Note that the sums of squares of the O’ coordinates appearing in Eq. (5.35) are actu-
ally the square of the perpendicular distance between the parallel axes for the respec-
tive moments of inertia. Since the x, y, and z axes are required to intersect the center
of mass, it is clear that the moments of inertia for centroidal axes are smaller than
those about parallel noncentroidal axes.

The transformation of the products of inertia is obtained in a similar manner.
The result is the parallel axis theorems for products of inertia:
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¢ Ix’y’ = Ixy+ mxo Yo,
¢ L,y =1,+myyzy, (5.36)
¢ Ix'z'= Ixz+me'ZO"

It is important to realize that although the signs of the coordinates of point O’ are
unimportant to the transformation of moments of inertia, they must be considered
when transforming the products of inertia. It is useful in this regard to remember
that:

(a) the origin of xyz is the center of mass of the body; and
(b) the values (xo, Yo', Zo+) are the coordinates relative to xyz of the origin O’
of the translated coordinate system x’y’z’.

We developed the parallel axis theorems by directly introducing the coordinate
transformation into the integral definitions of the moments and products of inertia.
We could follow a comparable line of attack to develop the rotation transformation
of inertia properties. However, such a derivation entails many manipulations. A far
more elegant approach is to employ the rotational contribution to the kinetic energy
of a body. The concept here is to exploit the invariance of the scalar kinetic energy
when it is formulated using vector components relative to alternative coordinate
systems.

Let the transformation matrix from xyz to x’y’z’ in Figure 5.9 be {R], where

’

X b'e
Yy 1=IRK Yy ;. (5.37)
z’ z

Either of Eqs. (5.25) indicates that the kinetic energy associated with rotation about
point A is

X'

Figure 5.9 Rotation transformation.
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Too = 3a-Hy. (5.38a)

In order to employ the transformation matrix [R], we convert this to matrix form by
recalling Eq. (5.30), which leads to the equivalent form

. T = 3w} []{w). (5.38b)
The scalar nature of kinetic energy requires that the result obtained from this ex-
pression be independent of the orientation of the reference frame used to represent

{w} and [I]. If the angular velocity and the inertia properties are referred to the
x’y’'z’ axes, then this invariance can be satisfied only if

{0 )10’} = () [T ]){e}, (5.39)
where [I’] denotes the inertia matrix associated with x’y’z’. The rotation transforma-
tion and the orthonormal property give

{w} =[Rl{w}, (w}=[R]"(w]. (5.40)
We substitute the second expression into Eq. (5.39), and require that the equality be

satisfied for arbitrary {w’}. This condition can only be satisfied if the inner matrices in
the products are identical. Thus, the rotation transformation of inertia properties is

. [7'] = [RIIIR]. (5.41)

Any quantity transforming according to Eq. (5.41) is said to be a tensor of the second
rank. In this viewpoint, vectors - whose components transform according to Eq.
(5.40) - are tensors of the first rank.

The transformation in Eq. (5.41) may be resolved into individual inertia values.
We write {R] in partition form as a sequence of rows, according to

lx'x [x’y Ix'z {ex'}T
[R1=| b by by |=|ted" | (5.42)
Iz'x Iz’y Iz'z {ez'}T

where the column array {e,} (p’= x’, y’, or z’) consists of the direction cosines of
axis p’ relative to xyz or, equivalently, the components of the unit vector &, along
the axes of xyz;

Lyoy
{ep’} = [p'y ’ p,=x/a y,s or z'. (543)
Ly,
We now employ the partitioned form of [R] to evaluate the inertia transformation
in Eq. (5.41). The columns of [R]" are {e,}. Each partition may be treated as a single

element when computing a product. This enables us to compute the products in the
following manner.

[t} ]
(']=| fe,4" |(]ifer) fey} fed]
| {ez'}T |
—tex’}.rﬁ
=1 te,4" |[[1]{ex} [I1le,) [1{e,}] =
L {ez'}T _
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fedT()tee) (exTU)ey) tecdT(I]te, )
=| te,} U ed (e, )T Ueyd e, (e |. (5.44)

te,} U1e,) leA U1ey) fe)T[I]te, )
Each of the products appearing here as an element is a scalar value, so matching like
elements on the left and right side yields the following relations for the individual
inertia properties:
‘ Ip'p’= {ep’}T[I]{ep’}a
¢ Ip'q’ = _{ep’}T[I][eq'} = —{eq'}T[I]{ep'}-
The purpose of deriving these relations is to understand how a specific inertia prop-

erty is altered by a rotation. In most situations we would need all of the transformed
inertia properties. In that case, it is much simpler to evaluate Eq. (5.41) directly.

(5.45)

Example 5.2 The x axis lies in the plane of the upper face of the 5-kg homogeneous
box, and the y axis is a main diagonal. Determine the inertia matrix of the box rela-
tive to xyz.

50 mm

] 150 mm \

100 mm

Example 5.2

Solution The appendix gives inertia properties for centroidal axes of a rec-
tangular parallelepiped. These inertia properties may be transferred to a coordinate
system whose origin is the designated corner 4 by means of the parallel axis theorems.
For the x’y’z’ coordinate axes in the sketch, the coordinates of corner A relative to
parallel centroidal axes are (x4, ¥4, 24) = (—0.05, —0.075, —0.025) meters. Thus we
have

L= %(5)(0.15%0.052)+(5)(o.o752+0.0252) = 0.04167,

Ly = %(5)(0.10%0.052) +(5)(0.05%+0.025%) = 0.02083,
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A

s n
z,

Coordinate axes for transforming inertia properties.

Ly = é(S)(O.lOZ +0.15%) 4+ (5)(0.05* +0.075%) = 0.05417;
Loy = 0+(5)(=0.050)(—0.075) = 0.01875,

Loy = 04 (5)(—0.050)(—0.025) = 0.00625,

I = 0+ (5)(=0.075)(—0.025) = 0.009375 kg-m?.

We must now evaluate the transformation [R] from x’y’z’ to xyz. In Example 3.1,
we determined the transformation for a coordinate system whose orientation was
specified in a manner similar to the present situation. However, a much more direct
solution decomposes the transformation into a sequence of single-axis rotations. We
first rotate x’y’z’ about the negative z’ axis through an angle 3, thereby producing an
intermediate coordinate system x”y”z” whose y” axis is the diagonal of the upper

face. Then we rotate x”y”z” about the x” axis through an angle v in order to bring
the y” axis into coincidence with the x axis. These angles are

_ (100 _ o —tan~|— 0
B =tan ( = 33~690 ’ Y= tan (1002+1502)1/2

150
The successive rotations are about body-fixed axes. We obtain the corresponding
transformation by premultiplying the sequence, such that

] = 15.501°.

’

X X
Yy =IRK ¥y 1,
z z'

where
1 0 0 cosf3 -—sin8 0
[R1=[R,][Rg)=| 0 cosy siny || sinf cosB O
0 —siny cosvy 0 0 1
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0.8321 —0.5547 0
=| 0.5345 0.8018 0.2673
—0.1483 —0.2224 0.9636

Because [R] transforms x’y’z’ to xyz, the inertia transformation is
[(11=[RII'](R]".
We therefore have

0.04167 —0.01875 —0.00625
[7]=[R]| —0.01875  0.02083 —0.009375 |[R]"
—0.00625 —0.009375  0.05417

0.052569 0.002315 —0.000644
=| 0.002315 0.007292  0.001735 | kg-m>
—0.000644 0.001735  0.056810
One should note that a common error in using the inertia matrix is to forget that the

off-diagonal terms are the negative of the products of inertia. Selecting the appro-
priate elements from the preceding yields

I, =0.052569, I,,=0.007292, I,,=0.056810,
I, =—0.002315, I,,=0.000644, I,,=—0.001735 kg-m>.

5.2.3 Inertia Ellipsoid

Comparison of Eq. (5.38b) and Eq. (5.45) leads to an interesting construc-
tion that shows the relationship between the moment of inertia about various axes
sharing a common origin. (In Chapter 8, we will find this construction to be useful
to our understanding of free motion of a rigid body.) Let us represent the instanta-
neous angular velocity of a body as a rotation at rate w about axis p’, so that the
components of the angular velocity are given in matrix form as

{0} = wiey . (5.46)

Substitution of this expression into Eq. (5.38b), followed by application of Eq. (5.45),
reveals that

2T, = {w)T {0} = Iy 0’ (5.47)

Let us consider a variety of rotations about different axes intersecting the origin
of xyz. We desire that each rotation have the property that it yields the same value
for T;,,. How should we adjust the rotation rate about this axis in order to obtain
a specified value for the rotational kinetic energy? Equation (5.47) indicates that the
appropriate angular speed is

1/2
w= (27Ti‘> . (5.48)

p'p’
Equations (5.46) and (5.48) define the required angular velocity. Let us plot a point
P in space that represents the tip of this angular velocity vector when the tail of the
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Figure 5.10 Inertia ellipsoid.

vector is placed at the origin. In order to standardize the definition, let us perform
the construction for the special case of an angular velocity 5 that gives T;o, = 3. The
corresponding rotation rate is indicated by Eq. (5.48) to be w = l/\/T»pr. A typical
point is shown in Figure 5.10. We may represent this vector in either vector or matrix
form:

1 .

1
&y o) =——1e,l.
Ip’p’ g Ip’p' ?
When we use the second relation to eliminate {e,-} from Eq. (5.46), and then substi-
tute that expression for @ into Eq. (5.47), we find that

(o} 1o} =1. (5.50)

In view of the way we have defined point P, the (x, y, z) coordinates of the point are
identical to the components of 5. Hence, expanding Eq. (5.50) leads to

p= (5.49)

Lox*+1,y*+1,2° =21, xy—21,xz—2I,yz=1. (5.51)

This is the equation for an ellipsoidal surface whose centroid coincides with the
origin O of the xyz system of axes. This surface is called the ellipsoid of inertia.
According to Eq. (5.49), the ellipsoid of inertia is the locus of points P for which the
distance to the origin is the reciprocal of the square root of the moment of inertia
about the axis intersecting point P and origin O. In other words, the distance is
inversely proportional to the radius of gyration about the axis. If we alter the rota-
tion rate of a body about various axes having a common origin in order to match
this inverse proportionality, in accord with Eq. (5.48), we will find that the rotational
kinetic energy is constant for all rotation axes.

The major, minor, and intermediate axes of the ellipsoid of inertia, along which the
distance from the origin is an extreme value, do not necessarily coincide with the xyz
coordinate system. Suppose that all products of inertia with respect to some coordi-
nate system £, £, £, are zero, which means that they are principal axes of inertia. Let
us denote the corresponding principal moments of inertia as [;, I,, and I,. The equa-
tion for the inertia ellipsoid relative to principal axes is then given by Eq. (5.51) to be

L&) + L(E) + L(E) =1, (5.52)

where (£, &5, £4) are the coordinates of point P on the inertia ellipsoid relative to the
principal axes.
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Figure 5.10 shows the inertia ellipsoid relative to principal and nonprincipal axes.
Note that Eq. (5.52), which describes the ellipsoid in terms of principal axes, contains
only sums of squares. This means that the major, minor, and intermediate axes of the
ellipsoid of inertia coincide with the principal axes. We could use analytical geometry
to evaluate the orientation of the principal axes of inertia. In the next section, we
shall instead develop a more direct method for that determination by returning to
the fundamental inertia transformation in Eq. (5.41).

5.2.4  Principal Axes

Suppose we know the inertia properties relative to a set of axes xyz that are
not principal ones, so that [/] has off-diagonal elements. If we can find a transfor-
mation matrix [R] for which [/’] is diagonal, then the corresponding &£, £ axes will
be principal. Consistent with the use of subscripted numerals to denote principal
parameters, let {e;} (j =1, 2, or 3) denote the (unknown) columns of direction cosines
of £, &,, and &3, respectively, relative to xyz. According to Eq. (5.42), the partitioned
form of the transformation matrix from the xyz coordinate system to the principal
axes is

feid”
[Rl=|{e" |. (5.53)
fes)T
Premultiplication of Eq. (5.41) by [R]T leads to
[RIT[I'] = [I][R]". (5.54)

Let us now follow steps similar to those leading to Eq. (5.44) and express Eq. (5.54)
explicitly in terms of the {e;}. This yields

L 0 0
[te)} fex} fesd]| O I, O [=[I]lfe]} {es} {es}],
0 0 &L (5.55)

[Iite)} Liey}) Lifes}l =1111{e)} [11les} [1]fesll.
In order for this equality to hold, corresponding columns must be identical, so that
fite} =(I1te}, i=12,3. (5.56)

In other words, I; are the eigenvalues A, and {e¢;} are the eigenvectors {e} of the matrix
equation

4 ((I1=A[U]}{e] = {0}, (5.57)

where [U] is the unitary (i.e., identity) matrix.

The solution of matrix eigenvalue problems is a topic in linear algebra, as well as
in linear vibration theory. Routines for solving such problems are contained in most
mathematical computer software. We shall only highlight the concepts here. Equa-
tion (5.57) represents three simultaneous equations for the components of {e}, which
are the direction cosines between a principal axis and the axes associated with inertia
matrix [7]. If those equations are solvable then the only solution is trivial: {e} = {0}.
The equations cannot be solved for a unique value of {e} when the coefficient matrix
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[[I]—A[U]] cannot be inverted. Hence, nontrivial solutions for {e} arise only if the
value of A is selected to satisfy the characteristic equation corresponding to vanishing
of the determinant of the coefficients,

IL11-AU]| =0. (5.58)

Evaluation of the determinant with A as an algebraic parameter leads to a cubic
equation for A. The eigenvalues, which are the three roots of the characteristic equa-
tion, are the principal moments of inertia, A= I, I,, [5.

Let us consider first the case where the principal moments of inertia are distinct
values. Equating A to one of these values then reduces the rank of [4]—A{U] to 2,
so one of the three simultaneous equations represented by Eq. (5.57) is a linear com-
bination of the others. Because of this loss of an independent equation, any nonzero
component of {e} may be chosen arbitrarily. The other components may then be
found in terms of the arbitrary one by solving the independent equations. The eigen-
vector associated with each principal moment of inertia /; is the set of direction
cosines {e;} locating that principal axis relative to the original xyz coordinate system.

Although the solution to the eigenvalue problem leaves an element of the eigen-
vector undetermined, we must remember that {e;} represents the components relative
to xyz of a unit vector oriented parallel to the ith principal axis. The condition that
such a vector has a unit magnitude is written in matrix form as

fe} e} =1, (5.59)

which provides the additional equation required to uniquely evaluate {e;}.

The eigenvectors {e;} form an orthogonal set. To prove this feature, we consider
Eq. (5.57) for two different principal values, i = m and i = n. Premultiplying each
equation by the transpose of the other eigenvector leads to

Inten) ten) = (en) (I){en),  Intem)'len) = ten) [1]e,). (5.60)

Each set of matrix products yields a scalar value, so we may transpose them without
altering the result. We perform this operation on the second of Egs. (5.60), and
recall that [/] is symmetric, so that

I{ed (e} = (e, [T 1{en). (5.61)

We subtract this equation from the first of Egs. (5.60). If the moments of inertia are
distinct values, I, # I,,,, differencing these equations leads to the conclusion that

te)T{e,} =0, n=m, (5.62)

which is the matrix form of the dot product &,-é,, = 0. It is interesting to observe
that Eqs. (5.61) and (5.62) lead to the condition that

fe.)TII){en} =0, n=m. (5.63)

In view of Egs. (5.45), this relation is merely a restatement of the fact that the prod-
ucts of inertia vanish for principal axes.

The case where two of the principal moments of inertia are identical is very much
like the one just discussed, except that yet another equation ceases to be indepen-
dent for each repetition of the principal value. Thus, the number of times a root is
repeated is the same as the number of components of the eigenvector {e} that are
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arbitrary. It follows that equating A in Eq. (5.57) to a principal value and applying
Eq. (5.59) is not sufficient to uniquely specify the {e;} in this case.

The method in which to proceed when this ambiguity arises becomes apparent
when we consider a body of revolution. Such a body has identical principal moments
of inertia for all axes that perpendicularly intersect the axis of symmetry at a com-
mon point. The axes we wish to construct should be mutually orthogonal. This sug-
gests that if we make a specific choice for the (several) arbitrary elements of one
eigenvector {e;} associated with the repeated principal value, then the other one,
{e;11}, may be constructed by satisfying the orthogonality condition

fe}Tteir1) =0. (5.64)

This provides the extra equation required to define the otherwise arbitrary elements
of the eigenvector. The greater degree of arbitrariness associated with identical prin-
cipal moments of inertia arises because the corresponding principal directions are
not unique. The case where all three principal values are identical merely means that
any set of axes are principal. There is then no need to solve an eigenvalue problem.
This feature is exemplified by a homogeneous sphere or cube when the origin is
placed at the centroid.

The conversion to principal axes will simplify all equations involving the angular
momentum H,. The benefits of such simplifications are countered by the need to
solve an eigenvalue problem in order to locate the principal axes. Furthermore, the
principal axes may not be convenient for the evaluation of @, &, and 3 M,,. For this
reason, we shall make it a practice when formulating problems to use coordinate
axes with the most convenient orientation. Identification of principal axes on the
basis of symmetry will be useful, but we usually will not solve the eigenvalue prob-
lem. However, we will find it useful to discuss several cases of motion in Chapter 8
in terms of principal axes and moments of inertia. If we wish to apply those results
to an arbitrary body, we must be able to locate the principal axes.

Example 5.3 The orthogonal tetrahedron shown on the next page has a mass of
60 kg. For axes having origin at the center of mass, determine the principal moments
of inertia and the rotation transformation locating the principal axes.

Solution The appendix gives the inertia properties of an orthogonal tetra-
hedron with respect to centroidal axes parallel to the orthogonal edges. The values
in the present case, where m = 60 kg, are

1.170 0.060 0.090
(I1=1] 0.060 0.900 0.180 | kg-m>.
0.090 0.180 0.450

The eigenvector equation for the principal axes is
(7]1-AtU]l{e} = (0}.
Expanding the characteristic equation |[/]—A[U]| = 0 yields
A*—2.520)% + 1.94041—0.428976 = 0.
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Example 5.3

The eigenvalues are the principal moments of inertia. In order of decreasing magni-
tude, they are

I,=1.20592, I,=0.93268, I;=0.38140 kg-m>.
For the first eigenvalue, the eigenvector equation becomes
[([I1=A[U]lte} = {0},
—0.03592  0.060 0.090 en

0
0.060 —0.30592  0.180 ep =40
0.090 0.180 —0.75592 [\ e;; 0

The solution of the first two equations is
e = 5.1880e¢,3, €2 = 1.6059¢,;.

The condition that the values of e, be components of unit vector &; yields
efi+ed+el = (5.1880% +1.6059% + 1)e = 1.

Choosing the positive sign for e;; then gives
e;; = 0.18109, en = 0.93948, e, = 0.29081.

When we carry out the same procedure for A = A, and A = A;, we obtain {e,} and
{es}, respectively. Thus

fe)T 0.9395  0.2908 0.1811
[R]1=| {ex}T | =] —0.3322 0.9023 0.2746
{es}T —0.0836 —0.3181 0.9444

Example 5.4 A homogeneous disk of mass 7 and radius R spins at rate w; about
its skewed axis, which rotates about the horizontal at rate w,. Derive an expression
for the kinetic energy of the disk.
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Example 5.4

Coordinate systems.

Solution In order to avoid transforming inertia properties, we align the
z axis with the axis of the disk, and place the origin of xyz at the center of mass.
Because of the axisymmetry of the disk, we may align the x and y axes in a manner
that facilitates the description of @; our choice is shown in the sketch. The inertia
properties given in the appendix yield

Lo=1,=imR?  I,=imR> I,=I,=1I,=0.

The angular velocity is
@ = wy K—w k = (0, 5in B)7 + (w, cOs B —w))k.

The corresponding angular momentum relative to the center of mass C is
He =1 0. i+1,,w0,k = mR?[}(w,sin B)i+§(w, cos B —w)k].

Point C is fixed, so there is only rotational kinetic energy relative to the center of
mass,

T =1&-He = +mR?[w3 sin? B +2(w, cos B — w;)?).

5.3 Rate of Change of Angular Momentum

The angular momentum is a function of the inertia properties and the angular
velocity, as expressed in Eq. (5.28). That form describes the components relative to
the xyz reference frame, which is fixed to the body. Thus, the unit vectors associated
with the components of H, change with time. The angular velocity components
appearing in the components of H, also change with time. However, the fact that
xyz is fixed to the body is a substantial benefit, because it yields constant values for
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all inertia properties. Accordingly, the total derivative of A, is related to the deriva-
tive relative to the moving reference frame by

. 6H _
. HA=Tt'i+a>xHA, (5.65)
where

6FI v . . T
¢ =4 (Ixxd’x_Ixy‘by_lxz‘bz)l+(Iyy‘by_lxy‘*’x_1yz‘*’z)./

ot - A
+(Izzd’z_1xzd’x_lyzd’y)k- (5.66)

Evaluation of Eq. (5.66) requires determination of the time derivatives of the
components of angular velocity. One method for obtaining such terms is to describe
the angular velocity in a general functional form that may be differentiated. How-
ever, a shortcut is available, because @ (the quantity to be differentiated) is also the
angular velocity of the reference frame for the components. It follows that the deriv-
atives of @ relative to the fixed and moving reference frames are identical:

do _ o® 1.17)

—=—+aXad=—. 5.67a

ar ot T (5.672)
By definition, the absolute derivative of & is the angular acceleration @. Hence, Eq.
(5.67a) may be written in component form as

* oy = Wy, aQ, =y, o, = w,. (5.67b)

The significance of these relations is that they enable evaluation of the kinematical
quantities affecting A, by the method developed in Chapter 3. Recall that the proce-
dure begins by writing a general equation for @ that employs unit vectors associated
with fixed or moving coordinate systems. We obtain the corresponding expression
for & by differentiating each unit vector using the angular velocity of its reference
frame. Finally, we express @ and & in terms of xyz components by resolving the
various unit vectors, either by inspection or through the use of rotation transforma-
tion matrices.

Example 5.5 Consider the disk in Example 5.4. Determine the rate of change of its
centroidal angular momentum. Both w, and w, are constant.

Solution Most of the parameters required to form H 4 were obtained in the
solution to Example 5.4. It remains only to form &. Toward this end, we recall the
general expression for &:

@ = —wk+w,K.
Both rotation rates are constant, so we have
a=—w(@xk).
We resolve K into xyz components, which yields
@ = (w, sin B) i+ (w, €08 B —w) )k, & = (wyw;, sin B) .
The inertia properties relative to the principal axes xyz were found previously to be

ILiy=1,=%mR*  L,=imR%
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Thus, we find

Hy=1I,0.0+1,,0,k=mR*+(w,sinB)i+1(w,cosf—w)k],

8H . . H

6_tA =l,a,j= mR2(+w,w, sin B) .
Then

H, = B—IA+@><HA

= mR?[$w,w; sin B+ (3 — 1) (w; sin B)(w, cos B—w)]j

= mR?*(w, sin B)(3w; — 3w, cos B) /.

Example 5.6 The square plate is pinned at corner A to the vertical shaft, which
rotates at the constant angular speed Q. The angle 8 is an arbitrary function of time.
Determine H, for the plate as a function of 6.

Example 5.6 Coordinate system.

Solution In order to form H,, the origin of xyz must coincide with point
A. Aligning x and y with the edges of the plate (in accord with the entry shown in
the appendix) yields the reference frame shown. The inertia properties obtained from
the parallel axis theorems are

Le=1,=iml*  IL,=3imP*  IL,=imP  I,=1I,=0.
We next form & and &. The general expressions are
@=QK+6k, a=0k+6(@xk).
It is convenient to _resolve these into xyz components using the substitution y =
45°+ 0 to describe K. This yields
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@ = Q[—(siny)i—(cosy)j]+0k,
a = QO[—(cosy)i+(siny)j]+ 6k,
from which it follows that
Hy = Loy~ Ly )i+ (Lo, Lyw)j+ L0k
= ml?[Q(—1siny + 1 cosy)i+Q(—4 cosy +3 siny) j+ 26k).
6—5—”‘ = (Ieyoy— Iy i+ (Lyo,—Ly,a) j+ 1,0,k
= mi*[Q6(—4 cosy — 1 siny)i+Q6(3 siny + & cosy)j+ 20k].
The corresponding expression for the rate at which angular momentum changes is
Hy= %{ti +axHy,
= ml*{Q6(—% cosy —1 siny)i+ Q6(%siny+1 cosy)j
+[26+ 1Q%(cos? v —sin? y)]}k.
Because y = 45°+0, the trigonometric identities for the sine and cosine of the sum
of two angles yield

H,= l—fmlzﬂo'[(—7 cos@+sinB)i+ (7 cos8+sin8)/]

+ml*(26-1Q%sin20)k.

54 Equations of Motion

The developments in the preceding section provide the foundation for syn-
thesizing the relationship between properties of the external force system and motion
of the body. Such relations are called equations of motion.

We employed Egs. (5.67b) to evaluate 61-IA/6; in Eq. (5.66), and then used that
expression to form H, in Eq. (5.65). Equating A, with = M, leads to the equation
of rotational motion. In addition, the equation for the motion of the center of mass
must be satisfied. For completeness, the expressions needed to formulate the equa-
tions of translational and rotational acceleration are summarized here:

* S F=mag, (5.68)
¢ EMA=%+G>XFIA, (5.69)
. Hy = (geox =Ly oy =L+ (yyoy = Lyor=1,,0,)]

+(Lw,— L0, — 1, )k, (5.70)
. B—ZA = (Lcoy—ILya,— L, 0)i+ (Lyay,— Ly a,— 1, 0,)]

+ I 0= Lo — 1, a)k. (5.71)

It must be emphasized that the moment equation should be formulated such that
point A is selected to be either
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(1) the center of mass of the body, or
(2) a fixed point in a body that is in a state of pure rotation.

Matrix notation offers a compact scheme for performing calculations, and sev-
eral symbolic-mathematics software packages are well-attuned to such notation. The
angular momentum was written in this form in Eq. (5.30) in terms of the inertia
matrix [/], which was defined in Eq. (5.31). The corresponding forms of the equa-
tions of motion are

EFX aGx

* SF, t=mag, (5.72)
EFZ aG;
My, o, 0 -w, o Wy

* SMy, o=l o 4| @, 0 —ow, [ w, ;. (5.73)
My, o, -w, w, O w,

In the foregoing, X F,, ¥ F,, and X F; are the sum of the external forces acting on
the body in the three coordinate directions. Similarly, X M,,, X M,,, and X M,,
represent the sum of the moments of the external forces about the coordinate axes
whose origin is point 4. We should note that in some circumstances it might be
advantageous to formulate the resultant-force equation in component directions that
are different from the body-fixed axes used for the moment equation.

The special case where xyz are principal axes leads to Euler’s equations of rota-
tional motion, which explicitly express the dependence on the angular velocity and
acceleration:

¢ My =1o,— L, —1)w,w,,
¢ EMAy=Iyyay—(lzz——1xx)wxwz, (5.74)
¢ XM, = zzaz_(lxx—lyy)wxwy'

The repetitive pattern of Euler’s equations can be used to help recall the individual
components by a mnemonic algorithm based on permutations of the alphabetical
order. Euler’s equations are particularly useful when it is only necessary to address
the moment exerted about one axis.

One aspect of the moment equation of motion that can puzzle a novice is the
presence of a moment even when the rotation rates are constant. This effect arises
because the orientation of @ is not constant, so that & # 0. Even if @ =0, it is likely
in spatial motion that A, is not parallel to @, so that @ x A4 # 0. Both effects lead to
dH,/dt # 0. The moment equation merely requires that the force system apply a
moment that balances the rate at which the angular momentum changes. (It is irrel-
evant to the discussion whether the moment is considered to sustain the angular
motion, or the angular motion is considered to require the moment.) The portion of
H, that features products of rotation rates, and therefore is present even if the rota-
tion rates are constant, is often referred to as the gyroscopic moment.

Various questions may be investigated using the equations of motion. In the sim-
plest case, the motion of a rigid body is fully specified. This permits complete eval-
uation of the right side of the translational and rotational equations. The forcing
effects, which appear on the left side of the equations, originate from known loads,
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as well as reactions. The latter are particularly important to characterize. A free-
body diagram, in which the body is isolated from its surroundings, is essential to the
correct description of the reactions.

As an aid in drawing a free-body diagram, recall that reactions are the physical
manifestations of kinematical constraints. Thus, if a support prevents a point in the
body from moving in a certain direction, then at that point there must be a reaction
force exerted on the body in that direction. Similarly, a kinematical constraint on
rotation about an axis is imposed by a reaction couple exerted about that axis. The
reactions are not known in advance - they are unknown values that will appear in
some or all of the equations of motion.

There are only six scalar equations of motion for each body contained in the system
(three force sums and three moment sums). It is possible for the number of unknown
reactions to exceed the number of available equations. Assuming that this condition
does not result from erroneous omission of some characteristic of the supports, it can
result from redundant constraints. This is the dynamic analog of the condition of
static indeterminacy, whose resolution requires consideration of deformation effects.

In some situations, the qualitative features of a motion are known except for the
value of an angle of orientation or a rotation rate. Such conditions lead to the same
type of formulation as that in which the motion is fully specified, except that the list
of unknowns also will contain the unspecified kinematical parameters.

A more difficult situation arises when the motion’s nature is not known in advance.
The orientation of the body may then be described in terms of Eulerian angles (pre-
cession, nutation, and spin). The result will be differential equations for the Eulerian
angles. Recall that & depends on these angles and on their first and second derivatives.
Also, the product @ x H, enters into the evaluation of H,. As a result, the equations
of rotational motion will usually be coupled, nonlinear, second-order differential
equations. Analytical solutions of such equations are available in limited situations,
but numerical techniques are often necessary. In any case, it is standard practice
when the motion is unknown to eliminate the reactions from the equations of motion.
The reactions enter into the equations of motion algebraically through the force and
moment sums. Hence, their elimination involves, at the worst, a process of simul-
taneous solution of algebraic equations. (This, of course, assumes that a condition
of redundant constraint does not exist.)

Example 5.7 The cylinder, whose mass is m, is welded to the shaft such that its
center is situated on the axis of rotation. The presence of a torque I causes the rota-
tion rate Q to vary. Derive expressions for I' and the reactions at bearings A and B in
terms of Q@ and Q.

Solution The first step is to draw a free-body diagram of the cylinder and
the shaft. This diagram shows two transverse reactions at each bearing, and a thrust
reaction at bearing A. We shall ignore the weight, because it is a static force. The
corresponding static reactions divide equally between the bearings, and superpose
on the dynamic reactions we shall evaluate.

It is reasonable to assume that the mass of the shaft is negligible in comparison to
the mass of the cylinder. The xyz axes we select match those given in the appendix,
so the inertia properties for the centroidal principal axes are
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Example 5.7

Free-body diagram.

1 1 1
]Xx=1yy=m<ZR2+—Eh2), 122=5mR2, Ly=I,=1,=0.

The center of mass is on the axis of rotation, so d@; = 0. The angular velocity and
angular acceleration are

o=-0K, a=-0K,
which when resolved into xyz components become
@ = —Q[(sin B)i +(cos B) k1, a = —Q[(sin B)i + (cos B) k).

We may employ Euler’s equations_because xyz are principal axes. To form the
moment resultants the applied couple I must be resolved into components. Referring
to the free-body diagram for the lever arms of the forces yields

¥Ms, =-T sinB+(Bz—A2)—é- cosB=1I, 0,

1 1 A .
=ml —R*+ —p2\(- ,
m( +1 h>( QsinB)
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EMG)/ =(A,- l)_ (I~ L)y w,
=-m —l-Rz—Lh2 Q2sin B cos B
4 12 ’

SMg,=-T cosB+(A2—Bz)é sinf =1,,a,= %mRZ(—Q cos B).

The force sums may be formed in terms of components relative to any set of axes. It
is convenient to use the directions of the bearing reactions. Because g = 0, we have

A3=0, A1+Bl=0, A2+BZ=O.

When we consider { to be a known function of time, we have three force equa-
tions and three moment equations for the six unknowns A4,, 4,, B, B,, A;, and T
The solutions are

A3 =0, A=—B,=—232ﬂ(h2—31e2)sm23
1 mQ

A=-Br=o0 7

——= (h*-=3R?%sin28,

r= T2—m9[6R2+(h2 3R?)sin’B].

Each of these results may be readily explained from the viewpoint of changes in
the angular momentum H. Let us suppose for this discussion that 22 > 3R?, so that
I, > I,,. Then at any instant, such as the one depicted in the sketch, the angle from
the negative z axis to H is larger than 8. In this sketch (A H;), and (A H;), represent
increments in Hg that would be observed over a small time interval. The effect of
the rotation about the horizontal axis is to change the direction of Hg, such that
(AHg), is parallel to the y direction. The force system must exert a corresponding
net moment about the y axis, which can only be produced by the reactions 4, and
B,. The increase in © due to its time dependence results in an increase in the magni-
tude of Hg, which corresponds in the sketch to (A Hg),, parallel to Hg. The compo-
nent of this change that is parallel to the horizontal axis of rotation must be matched
by the torque I, which is the only portion of the force system that exerts a moment
about the rotation axis. In addition, (A H), also has a component transverse to the
rotation axis in the z-Z plane. The corresponding moment is obtained from the

"\NA A S N\

s 1\-} J L( \ TAI
(AHg), z

(AHg),

Effect of rotation on the angular momentum.
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forces 4, and B,. Because the center of mass is on the rotation axis, 4; and B; must
form a couple, as must A, and B,. The sense of each couple suggested by the incre-
ments in H appearing in the sketch is consistent with the results of our analysis.

A convenient additional check on the solutions is to ascertain that the results
are physically sensible when 8 = 0° and 8 = 90°. We observe that A, is then always
parallel to the Z axis because in either case the fixed axis of rotation Z coincides with
a principal axis. Correspondingly, we expect that the reactions should vanish, and
that M = I,;Q. Both expectations are borne out by the above expressions. Notice
also that the reactions vanish if # = V3R, regardless of 8. The moments of inertia
in this case are equal. This is dynamically similar to letting the rotating body be a
sphere. All centroidal axes, including the rotation axis, are principal axes in this case.

The usage of coordinate systems in the preceding example is illustrative of
a feature common to the analysis of many systems. It is mandatory for the applica-
tion of Eqgs. (5.69)-(5.74) that the xyz coordinate system be attached to the body of
interest. Suppose that the body has axial symmetry and we wish to employ the tabu-
lated inertia properties without recourse to rotation transformations. We then need
to select one of the coordinate axes to coincide with, or at least be parallel to, the
symmetry axis. Because of the axisymmetry, the inertia properties with respect to the
other coordinate axes are invariant. As a result, we may select the instantaneous
orientation of those axes in any manner that expedites description of the relevant
vectorial quantities. In contrast, if the body is not axisymmetric and we desire to
avoid a rotation transformation of the inertia properties, we must select xyz to be
parallel to the axes employed in the tabulation. In that case, all vectorial components
will need to be resolved into components relative to an xyz system having an arbi-
trary instantaneous orientation. This aspect of the formulation will be evident in
Example 5.10.

Example 5.8 A thin homogeneous disk of mass m rolls without slipping on a hori-
zontal plane such that the center A has a constant speed v as it follows a circular
path of radius p. The angle of inclination of the axis relative to the vertical is a con-
stant value 8. Derive an expression relating v to the other parameters.

Example 5.8 Free-body diagram.
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Solution In addition to the gravitational force, there are reactions at the
contact between the disk and the ground. We have depicted in the free-body diagram
the frictional forces lying in the horizontal plane as a component F, toward the
vertical axis about which the disk rotates, and a component F, opposite the velocity
of point A. We select a body-fixed coordinate system xyz such that the x and y axes
lie in the plane of the disk. At the instant of interest the y axis is aligned horizontal,
in the direction of the velocity of point A. The rotation of the disk consists of a pre-
cession y about the vertical axis and a spin ¢ about the z axis; the speed of the center
is related to the precession rate by

Y =v/p.

The angular velocity of the disk is a superposition of the rotations about the two
axes,

@ =yK+ok.
The corresponding angular acceleration is
a=o¢axk.
At the instant we have depicted in the free-body diagram, we have
K = (cos @)k —(sin 8)i,
which leads to instantaneous expressions for the angular motion of the disk:
@=—(¥sin®)i+(d+ycos®k, a=(y¢sind)j.

The rotation rates are related to the speed v by the no-slip condition at the contact
point C, which requires that ¥~ = 0. We may describe the velocity of the center A by
relating it to point C, and by using the fact that it is undergoing circular motion.
Thus,

V4 =& XFq,c=vi=pyJ.

Substituting 7, = —Ri yields
oY =—R(p+ycosb) = é= —<—£—+cos€)¢'.

We substitute this relation into the angular motion expressions, with the result that
@=¢[—(sin0)f—%l€}, &=—¢2<%+c030>(sin0)j

The xyz axes are principal, with I,, = I, = %mR2 and [, = %mRz. Combining the
inertia properties with the angular rotation components leads to

H,= mRznﬁ[—%(sinO)f—%%E] ,

SH i H
A _ _lmR2¢2<%+cos 0>(sin0)j-

ot 4

The moment equation of motion is formed by substituting the foregoing expressions
into Eq. (5.69), and matching the result to the moments exerted by the actual force
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system. The latter quantities must be described as moments about the x, y, and z
axes, in order to match them to the components of H4. The result of this step is

S M, =(f,Rsin0—NRcosf)j—f,Rk
oH _
= 6_tA+G)XHA

1 iof P . : ; 1p . 7
= _LmRr2i L 252f 1 o i
= 4m Y < +cosv>(sm0)j+mR Y ( iR sm0>j

Because y = v/p, the corresponding component equations are

2
JSaRsin@—NRcosf = —%—mv2<§> (2—;—+cos 0> sin g, fi=0.

We must eliminate the dependence on the reaction forces if we are to obtain the
desired relationship for the speed v. Additional equations of motion are those for
the resultant force on the body. The center of mass follows a horizontal circular path
of radius p at constant speed v, so it undergoes a centripetal acceleration. Rather
than resolving a4 into components relative to the xyz reference frame, a representa-
tion in terms of the path variables for that point yields equations having a more
convenient form. Thus, we have

V2

d = —8&,.
p

The corresponding force equations are
2
v
EFn=fn=m<—p—>’ EFt=ft=09 EFb=N—mg=0'

Substituting f, = mv%/p and N = mg into the moment equation yields

2 _ 4gp*cot b
6p+Rcosf’

There is a simple explanation for this steady motion. The gravitational force and
normal reaction form a couple about the horizontal diametral line of the disk because
the disk is tilted. The frictional reaction required to impart the centripetal accel-
eration to the center of mass also exerts a moment about this line. The net moment
must be matched by a change in the angular momentum. The latter effect is achieved
by the precession, which alters the true direction of the angular momentum, even
though its components relative to the x and z axes remain constant.

Example 5.9 A servomotor maintains at a constant value the spin rate ¢ at which
the disk rotates relative to the pivoted shaft AB. The precession rate y about the
vertical axis is also held constant by a torque M(¢). Derive the differential equation
governing the nutation angle 8. Also derive an expression for M.

Solution A free-body diagram of the disk and shaft assembly must account
for the reactions. Toward this end, we also draw a free-body diagram of the vertical
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Example 5.9

shaft. The pin exerts an arbitrary force 4, which we decompose into components
parallel and transverse to shaft AB. The couple T exerted by the pin has no com-
ponent about the axis of the pin (assuming there is no friction). The vertical shaft
carries equal, but opposite, reactions at the pin, as well as transverse forces and
couples at its bearing. We assume that both shafts are massless. Then equilibrium of
the vertical shaft requires that

E(Mvert shaft)z = M_Fx sin 0+ Fz cosf =0.

The xyz axes we selected for this resolution of the forces are parallel to the axes
appearing in the appendix for a disk. However, we placed the origin at the fixed
point A in order to eliminate the reaction at the pin. This is an allowable point for
forming the moment equation because it has a fixed position relative to the disk.
Also, because the disk is axisymmetric, we may define the y axis to be instantaneously
normal to the plane of the two shafts, without loss of generality. The parallel axis
theorems provide

L= Iyy = m(%RZ"'Lz)a I,= %mRZ’ IX,V = Iyz = IXZ =0.

We could employ the Eulerian angles in Chapter 4 to form & and &, but it is just
as easy to re-derive the regults here using the y’ axis as the line of nodes for the nuta-
tion. Thus, for constant ¥ and ¢, we have

o =yK+6j'+ok, &' =4yKk,
a=0j"+6(@'xj)+d@xk).
At this instant K = (sin6)i—(cos8)k and j' =, so
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— B
o MY
sééo aw;

mg 2

Free-body diagrams.

@ = (¢ sin)i+0j+(—y cosf+ )k, & = Y[(sin8)i —(cos )k 1,
&= (Y6 cos0+08¢)i+ (6 —yésin@)j+ (Y sind)k.
Euler’s equations are applicable because xyz are principal axes. Using the free-
body diagram of the disk and shaft AB to form the moment sums leads to

EMAX =TIy =ILo,— (Iyy_Izz)wwa
=m[2L*y6 cos 6+ 1 R244),
2 My, =—mgLsinb =I,ya,—(I,;— I )wxw,
=m[(L*+1R*)0—(L*—1R*)y>sinf cos§ —LR?y¢ sinf],
S My, =T, = Lya,— (o= Iy)o,0, = smR*¥é sin .

There is no need to form ¥ F = mag because those equations would merely lead to
relations for the reaction forces A,, 4,, and A,. The equation for X M, yields the
differential equation of motion:

(L*+3R*)6—(L>— 1Ry ?sin6 cos@+ (gL —$R*y¢)sin6 = 0.
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The equations for X M, and X M,, describe the couple reactions I'y and I',. Substi-
tuting those expressions into the moment equilibrium equation for the vertical shaft
yields the couple M required to sustain the motion:

M =T,sinf—T,cos8 = 2m(L*—$R?)y6 sind cos 8+ 3mR*§¢ sin 4.

It is interesting to note that couples must be applied about both shafts in order to
sustain the precession and spin rates. In particular, if a servomotor was not used to
maintain a constant spin rate, that is, if I', was identically zero, the spin angle would
be an unknown variable.

Example 5.10 The chemical stirrer consists of a square plate of mass m that spins
at a constant rate 8 about axis BC of the bent shaft, as that shaft rotates about the
vertical axis at the constant rate Q. The angle of rotation 3 is defined such that 3 =0
when the plane of the plate is vertical. The mass of the shaft is negligible. As a func-
tion of 8, determine the internal reactions at joint A required to sustain the motion.

Example 5.10

Solution The free-body diagram cuts the bent shaft at corner 4. Because
the shaft is rigid, the internal reactions at that location consist of an arbitrary force-
couple system, whose components constitute the unknowns we must determine. Be-
cause no point on the plate is stationary, we place the origin of the body-fixed xyz
axes at the center of mass. We align the axes of this coordinate system with the edges
of the plate in order to employ directly the tabulated inertia properties.
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P

x’

Free-body diagram and coordinate systems.

We define two additional coordinate systems in the free-body diagram. The x'y’z’ sys-
tem, which executes the precession, will be useful to describe the force equation of motion.
The x"y"z” system also executes only the precession; it will assist the evaluation of the
rotation transformation relating x'y’z’ and xyz. Each coordinate system differs from the
preceding by a single rotation about one of the axes. To go from xyz to x”y"z", we per-
form a rotation of +p about the y axis, while x’y’z’ is obtained by rotating x”y"z” by 46

about the x” axis. We therefore have

” ’

X X X X
Yior=sIRglSy s §Y (=[RIK Y s [RI=I[R4][Rg],
z” z z’ z
where
cosB 0 —sing 1 0 0
[Rs] = 0 1 0 , [Rgl=| 0 cos@ sind |,
sin@ 0 cosf 0 —sinf cosé
cosf 0 —sin 3

[R1=| (sinfsinB) cos# (sinfcosf)
(cosfsinB) —sinf (cosfcospB)

We may now form the angular velocity and angular acceleration. Adding the pre-
cessional motion about the vertical z” axis and the spin about the y axis leads to
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a=Qk'-8j, a=-B@x%xJ).
The direction cosines of £’ with respect to xyz form the last row of [R]. Thus, we
have
@ = (QcosfsinB)i—(Lsin+B)j+ (Qcos b cos B)k
a = (BQcos b cos B)i— (52 cos b sinB)k.
The inertia properties for a square plate are found from the appendix to be

1
L= gmLZ, L,=1I,=-=mL* I,=I,=1,=0.

We combine these properties and the components of & and & to form ﬁG as follows:
F[G = xxwx17+lyywyf+lzzwzle

= %mLz[(ZQ cos f sin §)i — (@sin 6 + 8)j + (R cos 6 cos B)k1;
oH, = H i
~§G_ =i+ lyej+ L0k

%mLZ[(ZBQ cos® cos B)i—(BQcos O sin B)k];

ﬁc=%g'+6>xgo

= —l—mLZ[(zﬁﬂ cos § cos B)i+Q>(cos? 6 sin B cos B)j

12
+9Q2(sin @ cos 0 sin B) k).

We also require an expression for the acceleration of the center of mass. The simplest
way of determining this comes from recognizing that the center of the plate precesses
about the vertical axis in a circular path of radius L + L cos#, so that

dg=—(L+Lcos0)Q%, =—(L+Lcosd)Q?%"

The resultant force acting on the system isolated in the free-body diagram is the
sum of the reaction force F and the weight; the force equation of motion thus gives

F—mgk’=—m(L+ L cos§)Q?j".

We add the moment of F about point G to the couple reaction in order to form the
corresponding moment equation of motion, from which we obtain

M""FA/GXF:I'?G.

The force equation yields an expression for F in terms of x’y’z’ coordinates, F =
—m(L + L cos8)Q3j'+ mgk’. The position 74,; needed to express the moment of F
about point G is readily found in terms of x’y’z’ components, consistent with the
expression for F. We therefore write

Fa,6=—(L+Lcos8)j +(Lsind)k’,
Fa,6xF =mL(1+cos8)(—g+Q?sing)i".
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The moment equation of motion indicates that M = —F, , X F + Hg. In order to add
the two terms we must express both in terms of a common set of components. Using
x'y’z’ is more meaningful if one is interested in a stress analysis of joint 4. Because
the transformation from xyz to x’y’z’ is described by [R], we use matrix notation to
show the computation:

1
(M} =mL(1+cos0)(g—Q>sin6){ 0 }+{RI{H},
0

where {H} contains the xyz components of Hg. It is a simple matter to carry out
these operations for any specified value of the parameters.

A term of particular interest is the £’ component of M, which represents the torque
that must be applied about the vertical segment of the shaft in order to maintain the
precession rate at a constant value. This term is

M- k'= %mLZQB(cos 0)2(sin 28).

The dependence of this moment on the product of two rotation rates indicates that it
is a gyroscopic effect. The dependence on sin 28 is not surprising because the system
has the same configuration if 8 is increased by 180°, and 8 = 0 corresponds to both
rotation axes coinciding with a symmetry plane of the plate. The dependence on
cos 6 is also reasonable, because # = +90° corresponds to both rotation axes being
vertical, in which case the angular momentum has a constant direction.

5.5 Planar Motion

The principles governing spatial motion provide an interesting perspective
for the kinetics of planar motion. Let x and y represent convenient directions in the
plane, so that & is parallel to the z axis. Then

dc=acxl7+acyj7, G)=wl€, &=wl€ (575)

The corresponding angular momentum for a coordinate system whose origin is
at an allowable point is

H,= —Ixzwf—lyzwf+lzzwlz. (5.76)

This shows that, if z is not a principal axis, then the angular momentum is not parallel
to the angular velocity. In that case, couples in the plane of motion (in the vectorial
sense) are required to sustain the planar motion. The equations of motion corre-
sponding to Eqs. (5.68) and (5.69) are

EFx=man’ EE}::maGya Y F,=0; 5.77)

My, = _Ixz‘-;-’+1yzw2» 2My, = —Iyzd’+1xzw2’ 2My,=1,0.
The three force equations and the equation governing the moment about the z
axis are the same as those developed in elementary courses. The moments about the

x and y axes are gyroscopic moments. They are the result of asymmetrical distribu-
tions of mass relative to the x-y plane, corresponding to nonzero values of I,, and
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I,,. The dependence of these moments on the square of the rate of rotation means
that very large couples must be exerted by the external force system in order to sus-
tain a planar motion at large values of w. This has serious implications for balancing
rotating machinery, because the reactions must be provided by the supports (e.g.
bearings). This condition, which is known as dynamic imbalance, can occur even
though the center of mass is on a fixed axis of rotation (@ = 0), as it would be after
the rotating system has been statically balanced. The process of dynamically balanc-
ing a rotating part entails making the axis of rotation a principal axis of inertia, so
that I, =1,,=0. Then the angular momentum will always coincide with the axis
of rotation. We encountered a dynamically unbalanced system in Example 5.7. We
elected there to use principal axes that do not align with the axis of rotation, rather
than nonprincipal axes having an axis that coincides with the rotation axis.

Example 5.11 Four cables attached to each corner support the box. (Only two are
visible in the side view.) Derive a differential equation governing the angle of inclina-
tion @ of the cables, and derive expressions for the tensile force in each cable.

/ /
[ 0 . 6
L h Y
Yl Y‘z
/'éa
' \
X éR
h : }0
G e
| s
b

Example 5.11 Free-body diagram and coordinate system.

Solution In the free-body diagram, the tensile forces on the left side are
assumed to be different from those on the right, because the arrangement of cables is
not symmetrical when 6 = 0. The cables remain parallel for any 6, so the box under-
goes a pure translation. As a result, the acceleration of the center of mass matches
that of any of the points at which a cable is attached. We therefore have

a=0, dg=-—-L6%g+Lbé,,
where &g and &, are polar coordinate unit vectors relative to the fixed point of any
cable.

Because the box translates, we must sum moments about the center of mass. The
body is symmetric about the (vertical) plane of motion intersecting its center of mass,
so we need not compute any moments of inertia. Consequently, we may orient the x
and y axes in any convenient direction. The directions appearing in the free-body
diagram are selected to align with the directions for the acceleration components,
i = &, and j = —ég. The corresponding equations of motion are
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3 F, = —mgsin0 = m(ag), = m(Lb),
S F,=2F+2F,—mgcosf = m(ag), = m(L§?),

S Mg, =(2F;sin6) g —(2F,cos 0)§+(2Fz sin 0)g+ (2F, cos 0)% =0.
The solution of these equations is

. g .
0+ —=sinf =0,
+L sin

F = %<1+ % tan0>(mg cos 6+ mLé?),

4 b

Note that the differential equation for 6 is identical to that for a simple pendulum
formed by attaching a particle to the end of a cable of length L.

F= l<l ~h an 0>(mg cos 6+ mL§?).

Example 5.12 The bar of mass m is placed horizontally on the semicylinder, such
that contact is below the centroid G. Assuming that the bar does not slip, derive the
differential equation of motion governing the angle 6.

#/A\L/Z
7~

mg

Example 5.12 Free-body diagram.

Solution The free-body diagram of the bar must show the bar at an arbi-
trary angle of elevation 6. The friction and normal forces act at the contact point C.
Due to the absence of slippage, point C is at a distance R from the center of mass
G. The moment equation must be formulated relative to point G because the body is
in general motion.
We attach xyz to the bar in order to perform a kinematical analysis. For the
assumed sense of the rotation, the angular velocity is

@=-0k, a=-0bk.



206 5 / Newtonian Kinetics of a Rigid Body

The velocity of point C is zero, so the velocity of the center of mass is
56 = & X Foye = (—0R) X (—Roz+ 4 j) =2 47+ Roj.

This expression is generally valid. It may therefore be differentiated to describe the
acceleration of the center of mass,

_ &g
aG=7+wva

= g57+R(00'+0'2)f+(—0'12) x<gét’+R0€f>

- <R002+-;15>i+ [Roo‘+<R-g>oZ] i

For the purpose of evaluating the moment of inertia, we assume that the cross-
section of the bar is rectangular. Then

1
I,= Em(L2+hZ).
The corresponding equations of the motion are

S Mg, = N(R6) —f% - %m(L2+h2)(—é),

S F,=mgsin—f= m<R092+g(§>,
S F,=N—mgcosf = m[R05+<R—§>62].

In order to obtain the desired differential equation, we eliminate the reactions. The
force equations give

f= m(gsinO—RBéz—%t?),
N= m[g cosO+R09+<R—%)92],

which when substituted into the moment equations yields
[%(L2+4h2)+R202]5+R2092+gR0 cosO—g% sin6 = 0.

When 6 is small, we may linearize the differential equation by introducing the
approximations cos = 1, sinf = 6, and dropping any terms that have quadratic or
higher powers of 8. The resulting equation for small rotations is

1 " h
—(L*+4n*)0+g(R-Z=)0=0.
B (L*+4h°) +g< 2>0 0

When & < 2R, the response obtained from this equation is sinusoidal, corresponding
to oscillations about a stable static equilibrium position. In contrast, when # > 2R,
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the solution of the linearized equation of motion is exponential, corresponding to
continuous movement away from an unstable static equilibrium position. The tran-
sition from stability to instability has a simple explanation. In the case where the bar
is slender, A < 2R, the center of mass rises as § increases. Thus, # = 0 is a position of
minimum potential energy. In contrast, when 4 > 2R, the center of mass descends
with movement away from the equilibrium position, which means that 8 = 0 corre-
sponds to maximum potential energy. Note that the stability transition is indepen-
dent of the value of the length L. The magnitude of L affects the equivalent moment
of inertia of the bar, which is the coefficient of the angular acceleration term in the
equation of motion. Thus, when the equilibrium position is stable, the value of L
will affect the frequency of the stable oscillation.

In actual practice it may not be possible to satisfy the supposition that the bar
does not slip. This would lead to a loss of stability in a different manner. Coulomb’s
friction laws state that the maximum friction force that can be developed between
surfaces that rub against each other is u, N, where pu; is the coefficient of static fric-
tion. The friction force f occurring in the present problem is the force required to
prevent sliding. If we apply the linearization approximation associated with § << 1to
the solutions for f and N, as well as to the differential equation of motion, we find
that

f=m<g0——}216'), N = mg.

Using the linearized differential equation to eliminate § from the foregoing leads to
an expression for the minimum coefficient of sliding friction required to prevent
slipping at any position:
S _L*+6hR+h*
N T iran ¢
In general, if the friction force f required to prevent surfaces from slipping ex-
ceeds u, N at some position, then sliding will be initiated at that position. Coulomb’s
laws state that the magnitude of the friction force then will be u; N, where p is the
coefficient of kinetic friction. The sense of the sliding friction force then opposes the
sense in which one surface moves relative to the other. This is the same as the sense
of the static friction force obtained under the assumption that slippage does not
occur. Note that if sliding occurs, the kinematical no-slip relations are lost, which
offsets the extra equation relating the friction and normal forces.

Hs = 6.

Example 5.13 The 4-kg bar lies in the vertical plane. The masses of collars 4 and
B are negligible, and the guide bars are smooth. Collar A is pushed to the right at a
constant speed of v by the horizontal force F. Determine the value of F as a function
of the angle of elevation 6.

Solution It is convenient to define the body-fixed reference frame such that
the x axis is horizontal at the instant under consideration. The kinematical relation-
ship between the motion of collar A4, the center of mass G, and the rotation of the bar
are readily obtained by differentiating their positions relative to the fixed reference
frame XYZ. For the constrained point 4, we have
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ANN\N

Free-body diagram.

Fijo=(Lcos®), v,=—(LOsin6)I.

We also know that ¥, = vI. Matching the two descriptions leads to

v
" Lsing’
which, when differentiated again with v held constant, yields
;_ vBcosf _ _ vicosf
Lsin?@ L2sin%6’

Then, for point G, we find

Foo = %[(cos 0)I + (sin 6)J];

VG =Fgr0= %9[—(sin 0)I+(cos8)J] = %v[f—— (cot6)J1,

. 1.6 - 1 v
¢TG22 sin2e 2 Lsin®6
The foregoing gives @, in terms of horizontal and vertical components. The angu-
lar acceleration is
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a = —bk.
The corresponding equations of motion are
L L . 1 . mvcosf
Mg, = Ny| = cos8 )+ (F—Np)| = sin8 ) = —mL*(=6) = —————,
%Mo "<2 o8 > ( B)<2S"‘ ) 2" = e

2Lsin36

We solve the force equations for the reactions, and then use those expressions to
eliminate the reactions from the moment equation. The resulting expression for F is

2
S F,=F+Np=0, EFy=NA—mg=m<———v—>.

_ mv2cosé —lmgcoto
3Lsin*6 2 ’

5.6 Impulse-Momentum and Work-Energy Principles

The force and moment equations discussed thus far govern the linear and
angular acceleration of a body. Momentum and energy principles, which represent
standard integrals of these equations, may be used to relate the linear and angular
velocity of the body at successive instants or locations. The evaluation of the asso-
ciated impulse and work quantities in some situations requires knowledge of the
body’s motion, so these integral relations supplement, rather than replace, the basic
acceleration equations.

5.6.1 Momentum Principles

Equations (5.18) and (5.19) are the time derivative forms of the impulse-
momentum relations. Definite integration of them between two instants #; and f,
leads to

— — 5 _
¢ P2=P,+f S F,

]

N (5.78)
¢ (Hy)=(H)+ | TM,dt
n

Both of these equations state that the final value of the respective momenta exceeds
the initial value by the corresponding impulse, that is, the time integral of the resul-
tant force or moment. The angular momentum is described by Eq. (5.70). It is clear
from this equation that, unless xyz constitutes a set of principle axes, a moment
acting about one coordinate axis may lead to rotation about several axes.

Both momentum principles are vector equations, so they each yield three scalar
equations obtained from equating like components. If the impulses can be evalu-
ated, then the scalar equations fully define the corresponding change in the linear
or angular velocities. The difficulty lies in that evaluation. The resultant force and
moment acting on a body are seldom known in advance, because the reactions are
unknown. Furthermore, it is not sufficient to know the force or moment in terms
of components relative to the body because the corresponding unit vectors are not
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constant. Carrying out the impulse integrals in this case requires knowledge of the
orientation of the unit vectors, and of the components, as functions of time. Such
information usually is not available, because it depends on the bodily motion being
studied.

One situation where momentum-impulse relations are useful is in treating impul-
sive forces, such as those generated by impacts and explosions. Impulsive forces are
defined as imparting very large accelerations to a body over a very short time inter-
val. The velocity change (linear and angular) may be evaluated in this case by con-
sidering the time interval to be so short that we may neglect any change in position
during the action of the impulsive forces. Further simplifications stem from the fact
that only the impulse of the forces, and not their true time dependence, need be
known in order to evaluate the velocities. Also, impulsive forces are usually large
enough that the influence of nonimpulsive forces is negligible during the brief inter-
val of the impulse. (Note in this regard that reactions are usually impulsive, because
they may be as large as necessary to impose the associated motion constraint.)

Either impulse-momentum principle can also prove useful by yielding a conser-
vation equation. It might be that the component of the resultant force in a specific
fixed direction, denoted ér, is known as a function of time. Similarly, we might
know the resuitant moment about an axis €y, having fixed orientation and intersect-
ing the origin for the moment equation of motion. The corresponding type of im-
pulse in these directions may therefore be evaluated by taking the component of the
appropriate impulse-momentum equation in the direction of the known resultant
force or moment:

173 _
* m(‘_’G)Z‘éF=m(‘_’G)l'éF+f 2 F-épdt,
t
,' (5.79)
_ _ _ 2 _
. (Hp)z-8y=(Hy)ey+ | ZMy-éyadt,
4
where point A is one of the allowable points for formulating the equations of rota-
tional motion. The most common situation where a force or moment component is
known as a function of time is the case where it vanishes. Then Eqs. (5.79) become
conservation principles, stating that V- &g is constant or that H4-&,, is constant.

Example 5.14 A 10-kg square plate suspended by a ball-and-socket joint is at rest
when it is struck by a hammer. The impulsive force F generated by the hammer is
normal to the surface of the plate, and its average value during the 4-ms interval that
it acts is 5,000 N. Determine the angular velocity of the plate at the instant following
the impact, and the average reaction at the support.

Solution The force F is much larger than the weight of the plate, so the
latter is omitted from the free-body diagram. In contrast, the reaction exerted by
the ball-and-socket joint is impulsive, because it must be as large as necessary to pre-
vent movement of point 4. We place the origin of xyz at point A4 in order to eliminate
the angular impulse of this reaction. The coordinates of point A relative to parallel
centroidal axes are (—0.18, 0.06, 0) meters, so the inertia properties are
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Example 5.14 Free-body diagram.

I, = %(10)(0.362) +10(0.062) = 0.144 kg-m2,

I, = %(10)(0.362) +10(0.18%) = 0.432,

I,= %(10)(0.362+0.362)+(10)(0.182+0.O62) =0.576,
I, = 0+10(—0.18)(0.06) = —0.108,  I,,=1,,=0.

The angular velocity is initially zero. Let @, = w, i+ wy J+w,k denote the angular
velocity at the termination of the impulsive action. Then the corresponding velocity
of the center of mass is

(Vg)2 = @3 X F/4 = 0.06w,7+0.18w, / — (0.06w, +0.18w, ) k.
The final angular momentum about pivot A is
(Hy), = (0.144wx+0.108wy)7+(O.432wy+0.108wx)f+ 0.576w, k.

Applying the angular impulse-momentum principle to the 4-ms interval of the force
leads to

(Hy), =S My At =[(0.36i+0.12) x 5000k1(0.004)
=2.4i—7.2j N-s.
The result of matching like components of (Hy), is
(H4);-1=0.1440,+0.108w, = 2.4,
(H4)2-J =0.432w,+0.108w, = —7.2,
(H4)2-k =0.5760,=0,
from which we obtain
@, = 35.90i —25.64 rad/s.
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The next step is to form the linear impulse-momentum principle in order to deter-
mine the reaction. Using the earlier expression for (¥5), leads to

m(vg), = 3 FAt,
10[0.06w,i+0.18w,j — (0.06w, +0.18w,)k] = [A i+ A, j+(A,+ F)k] At.

After substitution of the result for the angular velocity @,, the components of this
equation yield

A=A, =0,
A, =—F—10(0.06w,+0.18w,)/Ar = 1,153 N.

These are average values over the 4-ms interval; the maximum values exceed these.

It might surprise you that the reaction is in the same sense as the impulsive force F.
This result indicates that if the ball-and-socket joint were not present then the plate
would rotate about its mass center owing to the moment of the force, and point 4
would move in the negative z direction. It is possible to locate a curve on the plate
representing the locus of points at which the force can be applied without generating
a dynamic reaction at the joint. Any such point is sometimes referred to as a center
of percussion.

5.6.2 Energy Principles

The derivation of work-energy principles for a rigid body begins from a
more fundamental viewpoint than did the momentum principles. We recall the work-
energy principle for a single particle, Eq. (1.18), and consider this particle to be one
of many in a system. Correspondingly, we categorize the forces acting on particle i
according to whether they are associated with interactions that are internal or ex-
ternal to the system. The work-energy equation in this case becomes

1 1 Ao N
SR =zmein+ | F+ 3 Jy |-dr; (5.80)
2 2 -
J#i

The line integral expresses the work done by the forces acting on particle / as it
moves along its path from its initial position 1 to final position 2. Both work and
kinetic energy are scalar quantities. When we add Eq. (5.80) for each particle, we
obtain

L=T\+W.,, (5.81)

where T is the total kinetic energy of the system. For a rigid body, this quantity is
described by either of Eqs. (5.25). Implementation of the work-energy principle for
motion of a rigid body will therefore be possible if we can develop an appropriate
method of evaluating the total work, W,_,,, done by all of the forces as the body
moves from its initial position 1 to final position 2.

Adding Eq. (5.80) for each particle shows the total work to be

N 2 _ N N p2 _
Wl-—»2= E F','d’-',“'z E f;l’df, (582)
i=1 Y1 i=1j=1"v1
J#i
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Note that the line integrals remain inside the summation, reminding us that the equa-
tion requires that we follow each point at which a force is applied. However, this
expression may be simplified greatly by specializing it to a rigid body. In that case,
the infinitesimal displacements dF; are not independent. Let B denote the point for
translational motion in Chasle’s theorem. (At this juncture, we allow point B to be
arbitrarily selected.) Because an infinitesimal displacement is the result of movement
over an infinitesimal time interval, we have

dl_'i=\_’idt=(\_’B+(I)Xfi/3)dt=df3+d—0)(f,'/3, (5.83)
where d@ is the corresponding infinitesimal rotation of the body. Substituting Eq.
(5.83) into Eq. (5.82) yields

2N 2N
WiL,= 1 E:lFi'de+ > Fi(doxr,p)
i= 1 izl
2N N 2N N

I fidistd T I i (dOXFyp). (5.84)
1 i=1j=1 1 i=1j=1
J#i J=i

The vector identity for re-arranging a scalar triple product indicates that
F-(d9xF,p) = (Fypx F)-db.
Equation (5.84) then becomes

2N 2N N
Wl—»2=fﬁ (EE’)'de*'fﬁ <2fi/BXFi>'d0
1 \i=1 1 \iz1

2/N N _ 2/N N N

+§ <E p> fij>'d73+§ <E Efi/Bxfij>°d9- (5.85)
1\ iz j=1 1\ i=tj=1
J#i J#i

The third and fourth terms enclosed in parentheses describe the resultant force and
moment about point B exerted by the internal forces. Both terms vanish according
to Egs. (5.1) and (5.2). Similarly, the first and second terms describe the resultant
force, T F, and resultant moment about point B, 3 Mj, exerted by the external
forces. Thus, the work may be computed according to

2 2 _
N W,42=fﬁ 2F-df,,+fﬁ S M- 3. (5.86)
1 1

This expression could have been anticipated from Chasle’s theorem. It shows that
the total work is the sum of (a) the work done by the resultant of the external forces
in moving an arbitrary point B and (b) the work done by the moment of the external
forces in the rotation about that point. Equation (5.86) provides an alternative to
computing the work done by an external force as an integral along the path of its
point of application, as described by Eq. (5.82).

Another alternative to direct evaluation of the work done by a force arises when
the force is conservative. A conservative force is defined to be one that does no net
work when the point where it is applied follows an arbitrary closed path. Consider
a force that is exerted on a particle that moves over a closed path from position 1 to
position 2, and then back to position 1, as in Figure 5.11. By definition, a conservative
force does no work in the overall movement, so
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X

Figure 5.11 Work done by a force.

Wl_,2+W2_,1=O. (5.87)

This must be true for all paths between the two positions. Hence, the work done in
each phase of the movement can depend only on the initial and final positions. Fur-
thermore, Eq. (5.87) must be valid for any pair of positions. These conditions can
only be satisfied if the work done by a conservative force is determined by the change
in the value of a function of position.

This function, which is called the potential energy, is defined such that

¢ Wl_,2=V1‘V2. (588)

In other words, the work done by a conservative force equals the amount by which
its potential energy is depleted.
For further insight, suppose that position 2 is infinitesimally close to position 1,
so that Eq. (5.88) may be written in differential form as
14 av
—dV———dX——dY———dZ, 5.89a
X aYy 9Z ( )
where the chain rule has been introduced because the potential energy is a function
of position. This relation may be rewritten in the notation of vector calculus as

dW = —VV - dFp, (5.89b)
where dF = dXT+dYJ+dZK and VV represents the gradient of the potential energy,
w=¥ i ¥ ¥ (5.90)

aX aYy az
However, the infinitesimal work done by a force is
dW = F-drp. (5.91)

Comparison of Egs. (5.89b) and (5.91) leads to recognition that a conservative force
is the negative of the gradient of the potential energy function,

¢ Fconservative =-VV. (5.92)
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The potential energy function may be derived by integrating either of Eqgs. (5.89).
However, for the common forces, it often is easier to derive an expression for poten-
tial energy by evaluating the work done by the force between two arbitrary positions.
Comparing the resultant expression with the general expression for the work done
by a conservative force, Eq. (5.88), then permits identification of the potential energy
function. The few conservative forces that commonly arise in mechanical systems
are as follows.

Gravitational Attraction near the Earth’s Surface
The distance Z is measured vertically from a reference elevation called the datum,

¢ Fgrav = _mgk And Vgrav =mgZ. (5.93)

Gravitational Attraction between the Earth and an Orbiting Object
The distance r is measured between the center of the earth and the object, and m is
the mass of the object;

= GMm _ _GMm

¢ Forav =— 2 é V= P (5.94)

where GM is the product of the universal gravitational constant and the mass of the
earth:

GM = 5.990(10"*) m?%/s2.

Linear Elastic Spring
The stiffness of the spring is k, A is its elongation, L is the length of the spring in the
current position, and L is the unstretched length. We have

. Fo =kae, o Vi, =3kA%, A=L-L,, (5.95)

where the unit vector &, extends from the end where the force Fsp, is applied to the
other end.

The work-energy principle may be reformulated to account explicitly for
conservative forces. When the work done by those forces is computed according to
Eq. (5.88), the result is

. Ty+Vy =T+ V+ W1, (5.96)

where W,(Ef% represents the work done by all forces that are not included in the po-
tential energy. The quantity T+ V is often called the mechanical energy E. When
W) = 0, the mechanical energy is conserved in the motion.

Equation (5.96) is a scalar equation relating the motion at two positions. It is ade-
quate by itself only when there is one unknown - for example, a parameter describ-
ing a force or a speed. Additional equations relating motion at two positions might
be available from conservation of momentum, particularly the angular momentum,
or from one of the components of the equations of motion.

The freedom to select point B arbitrarily in Eq. (5.86) can be a significant aid,
because constrained points usually follow comparatively simple paths, whereas the
motion of an unconstrained point is often quite complicated. This arbitrariness also
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leads to another relation between the motion at two positions. Suppose that point B
is selected as the center of mass G. The equation of motion for the center of mass,
S F = mag, may be integrated to form an energy relation directly. A dot product
with the displacement of the center of mass leads to

2 2 2
fﬁ EF-df(;:fﬁ de-dfG=fﬁ mvg- (Vg dt)
1 1 1

S G PR (5.97)
, 2 e :

The last integrand in Eq. (5.97) is a perfect differential, so the relation reduces to
| 1 L
¢ Ev(vG'vG)2=Em(vG'vG)l+§ EF’er. (598)
1

Let us now formulate the basic work-energy principle, Eq. (5.81), using Eqs. (5.25a)
and (5.86) with point B set to be point G. Subtracting Eq. (5.98) from that expres-
sion yields

2 p— —
N %(a-ﬁc)2=%(a-ﬁc),+§ﬁ S M- 8. (5.99)
1

The conclusion to be drawn from Eq. (5.98) is that the increase in the translational
kinetic energy associated with motion of the center of mass, +mvg- Vg, results from
the work of the resultant force in moving that point. Similarly, Eq. (5.99) shows that
the increase in the rotational kinetic energy, 3&- Hg, associated with rotation about
the center of mass results from the work done by the moment of the force system
about that point.

We obtain another viewpoint when we use Eq. (5.86) to resolve the force system
to a force and couple acting at the fixed point O for a body in pure rotation. Substi-
tuting Eqs. (5.25b) and (5.86) into the work-energy principle then yields

1, = 1, - l o T
’ E(O)‘Ho)z—_—i(w’Ho)]"‘ﬁ EMo'do (5100)

In this case, the kinetic energy is entirely associated with rotation about the fixed
point.

By the foregoing discussion, two independent work-energy equations are avail-
able for a rigid body. In the case of a general motion, in which no point in the body
is stationary, one can employ any two of Egs. (5.96) (total kinetic energy), Eq. (5.98)
(translational kinetic energy relative to the center of mass), and Eq. (5.99) (rotational
kinetic energy about the center of mass). When the body is in pure rotation, we
would usually employ Eq. (5.100) (rotational kinetic energy about the fixed point).
The second equation in this case may be selected as either Eq. (5.96) or Eq. (5.98).
The fact that these alternative formulations treat the kinetic energy in terms of dif-
ferent rotational effects emphasizes that the concept of rotational kinetic energy is
meaningful only if the point of reference is specified.

As is true for momentum principles, the work-energy principles have inherent
limitations. Most profound of these is the necessity to evaluate the work done by
nonconservative forces. Equation (5.86), which replaces any external force by an
equivalent force-couple system acting at an arbitrary point, is an aid. Obviously, the
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motion of such a point must be known in order to evaluate the path integrals. It is
equally important to know how the resultant varies as the position of the selected
point changes, and how the moment depends on the angle of orientation. If the
forces are explicit functions of time or velocity, such dependencies can only be ex-
pressed after the motion has been evaluated. Even when it might seem that the work
could be evaluated, evaluation of the line integrals may be quite complicated.

Of course, if a force is conservative then the work it does may be described in
terms of its potential energy. However, it is necessary to recognize that the potential
energy was derived by following the displacement of the actual point at which the
force is applied. It might be necessary to re-derive the energy function if the force is
transferred to a different point.

In closing, it must be emphasized that the impulse-momentum and work-energy
principles offer possible approaches for avoiding the solution of differential equa-
tions of motion. The conditions for usefully employing those principles are quite
restrictive. Although it might be more difficult to solve differential equations, formu-
lation and solution of the equations of motion is often the only valid approach.

Example 5.15 The coin is rolling without slipping, but the angle 4 at which the
plane of the coin is inclined is not constant. Evaluate the kinetic energy of the disk
in terms of 0, the precession rate y/, and spin rate ¢. Also, prove that the work done
by the friction and normal forces is zero.

Example 5.15 Free-body diagram.

Solution Rotational symmetry allows us to select body-fixed xyz axes whose
instantaneous orientation is such that the y axis coincides with the line of nodes,
which is the y’ axis in the sketch. The inertia properties are

ILy=1I,=+mR*  I,=imR*> I,=1I,=1I,=0.
The angular velocity is
& =yK—0j' +dk = (ysin0)i—6j+(y cos0+d)k.
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We shall form the kinetic energy using the center of mass as the reference point.
Since there is no slippage at point A, the velocity of the center of mass is
o = @X Feya = R(§ cos 8+ ¢)j+ Rék.
The angular momentum about the center of mass is
Hq= Ixxwxl?+lyywyj+lzzwz/€
= 1mR2[(y sin0)i — 0/ +2(y cos 0+ $)k].
Then the kinetic energy is
T=imvc-ve+30-He
= ImR?[(§ cos 8+ $)*+6%1+ FmR>[y? sin? 6+ 6%+ 2(y cos 6 + $)?)
= 1mR?[{§?sin? 6+ 502+ 6(y cos 8+ $)2].
For evaluation of the work, we let F denote the frictional and normal components
of the reaction. Since the contact point A follows a complicated path, we replace

these reacti(_)ns by a force F acting at point C and a couple M equal to the moment
exerted by F about point C. Therefore

M=F,,cXF.
The infinitesimal work done by the reactions is
dW = F.-dr+M-db,
where
d0=adt, dic=Vcodt=(@XFc)dt=d0xFc,.
Thus
dW =F-(d0 X Fc/0) + (Fasc X F)-d0.
Because 74, = —F¢,4, re-arranging the second scalar triple product leads to
dW = F-(d0 x Fc/y)—F-(d X 7o q) = 0.

This proves that the friction and normal force acting on a rolling disk never do any
work if there is no slippage. Indeed, the same result may be proven for any situation
where rigid bodies roll without slipping.

Example 5.16 The sphere, whose mass is 1, is fastened to the end of bar AB. The
connection at end A is an ideal pin, which allows @ to vary. The vertical shaft rotates
freely, and its mass, as well as that of bar 4B, are negligible. Initially, @ is held con-
stant at 90° by a string, and the precession rate is @ = 5 rad/s. Determine the mini-
mum value of @ in the motion following breakage of the string, and the corresponding
precession rate. Then determine the values of # and Q at the instant when 0 is 10°
greater than its minimum value.

Solution A free-body diagram of the entire system, including the vertical
shaft, shows that there is no moment exerted about the fixed axis of rotation. The
force-couple reaction at the bearing, F and T, does no work, and gravity is conserva-
tive. Therefore, both angular momentum about the Z axis and mechanical energy
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V4
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A .
//\ [} 150 mm
400 mm
Example 5.16 Free-body diagram.

are conserved throughout the motion. We shall develop an expression for H, under
arbitrary conditions in order to address all aspects of the problem. The inertia prop-
erties for the principal body-fixed axes in the sketch are I, =I,, =1, and I,,= I,
where

I, = 2m(0.15%) + m(0.40%) = 0.1690m, I, = £m(0.15%) = 0.009m.
The angular velocity of the sphere is
®=—-0K+0j=—(Qsind)i+0j+ (Qcosd)k.
The corresponding angular momentum is
H,=—(1,Qsin0)i+ I,0j+ (I,Q cos 0)k.
The component of H, parallel to the Z axis is
H,-K = -I,Qsin?6—I,Qcos?9,
and the kinetic energy is
T=1c-H,=1(,9%sin?0+ 1,62+ I, 2% cos? 6).

If the datum for the gravitational potential energy is placed at the elevation of pin A4,
then

V =—-—mg(0.40cos§) J.
The initial condition is that @ = 5 rad/s, 8 = 90°, and § = 0. Thus,
(FIA'K)1=—511 kg-m-s, 7‘1__‘12'511 J, V|=O.

The first question is the minimum value of 8, which means that § = 0 at this posi-
tion. Conservation of angular momentum then requires that

(H4K),=(HyK), = QU sin®0+1I,cos*8) = 51,

while energy is conserved if
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T,+V,=T\+V, = L(,Q%sin?0+1,Q%cos?8)—0.4mg cos § = 12.51,.
Eliminating © between the angular momentum and energy equations yields

B JA
" Isin20+1,cos20

and
3(51))* = (0.4mg cos 0 +12.51)) (1, sin? 0 + I, cos* 0).

For the present values of 7, and I,, the root giving the largest value of cos #, which
corresponds to the minimum angle, is

0 min = 0.65408 rad = 37.517°.
The corresponding precession rate is obtained from the foregoing equation for  as
Q =12.364 rad/s.

For the second part, we must find Q@ and § when 6, = ,,;, +10° = 0.82861 rad. The
earlier equation for conservation of angular momentum is generally valid. In this
case, it gives

51,
92 = "
I sin20,+ I, cos2 6,

= §8.800 rad/s.
We now determine the corresponding value of § from the energy conservation equa-
tion, for which we use the general expression for kinetic energy. The result is
3 (1,Q3sin? 6, + 1,62+ 1,92 cos? 6,) —0.4mg cos 8, = 12.51,,
which leads to
6, =3.515 rad/s.

57 A System of Rigid Bodies

The representation of a collection of particles as a rigid body offers two
primary advantages: an enormous reduction in the number of kinematical variables,
and a commensurate reduction in the reaction forces that appear in the equations of
motion. Both gains result from the recognition that the particles forming a rigid
body are mutually constrained. In the same manner, we occasionally find it useful
to consider interacting rigid bodies as a unified system. Consider the pair of bodies
in Figure 5.12 which are loaded by a set of external forces, as well as by reaction
forces associated with their interaction. If each of these bodies is executing a three-
dimensional motion, then there are a total of twelve scalar equations of motion: three
force-component equations and three moment-component equations for each body.
Part of the formulation of these equations of motion involves accounting for New-
ton’s third law when describing the reaction forces exerted between the bodies. Then
the solution of the equations must determine, or at least eliminate, the reactions.
Treating the two bodies as a single system, so that the interaction forces exerted
between them become internal to the system, leads to equations of motion that do
not contain these forces.
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Figure 5.12 Forces acting on interacting bodies.

Without loss of generality, we may resolve the external forces applied to body j
into an equivalent force-couple system, ¥ F; and X M;, acting at the center of mass
G;. Similarly, the interaction forces exerted on body j by body k£ may be represented
as a force-couple system, > ij and EMjk, acting at point G;. A comparable repre-
sentation also applies to the forces acting on body k.

Note that the individual internal force and moment resultants are equivalent to the
system of distributed forces exerted by the particles of one body on the particles of
the other body. Hence, according to Newton’s third law, the internal forces 3 Fj j
and 3 F cancel in the force sum. For the same reason, the net moment of the inter-
action forces and moments about an arbitrary point P also cancel. Let X F denote
the resultant of all external forces exerted on the system by bodies not included
in the system. Similarly, let 3 M, denote the total moment about point P of all
external forces.

Each body in Figure 5.12 must obey its own equation of motion. Hence, the forces
acting on body j are equivalent to a force-couple system consisting of the linear
inertia vector m;dg; and the rotational inertia vector dHg;/dt. Similarly, the forces
acting on body k are equivalent to myag, and dH,/dt. Both equivalencies are illus-
trated in Figure 5.13. As we did for the actual forces acting on the system of rigid
bodies, we may combine the equivalent inertial force-couple systems into a single
resultant. Note that the moment sum must account for the moment of the inertial
forces m;(ag); about point P. Thus, we find that the equations of motion for a sys-
tem of rigid bodies are

¢ 2F=zmj(¢7cj),
j

_ . (5.101)
¢ YMp= ZHGj'*'Z[ij/mej(ﬁGj)]-
J J
This principle may be interpreted as follows.
¢ The forces and couples exerted on a system of rigid bodies resolve into a

force-couple system acting at an arbitrary point P. The force in the equiva-
lent system is the sum of the linear inertia vectors, m (Ac)), associated with
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Figure 5.13 Inertial force-couple systems equivalent to the forces acting on
interacting rigid bodies.

the motion of the center of mass of each body. The couple in the equivalent
system is the sum of the rotational inertia vector for each body, dH;/dt,
and the moment of the linear inertia vectors about point P.

The usefulness of Eqs. (5.101) becomes apparent when we recall the techniques for
static equilibrium. The main consideration in selecting the point for a moment sum
in the static case is the ability to prevent forces (usually reactions) from appearing in
the moment equilibrium equations. We have developed here a comparable ability for
dynamic systems, because the point P in Egs. (5.101) was arbitrarily selected.

Treating a set of moving parts as a system leads to a qualitative understanding
of how a bicyclist can maintain balance and maneuver without falling. In order to
avoid details that would obscure the discussion, we shall employ a simplified model
of the steering configuration. Our model, which is shown in top view in Figure 5.14,
considers the axis of the steering fork to be perpendicular to the longitudinal axis,
and to intersect vertically the axis of the front wheel. Under perfect conditions for
following a straight path, the bicycle would be oriented vertically, with the rider’s

Top view

Q : steering correction

M : overturning morb

Figure 5.14 Balancing of a bicycle.
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center of mass situated directly over the line connecting the centers of the wheels. The
angular momenta of the forward and rear wheels, Hf and H,, are then horizontal,
as shown.

Such ideal conditions cannot be maintained. For example, the rider might lean
over or a gust of wind might arise. Such disturbance, in combination with the reac-
tion of the wheels, creates an overturning moment M that acts about the longitudinal
axis. (The situation in the figure corresponds to the rider leaning to the left.) This
moment must be matched by a corresponding change in the angular momentum.
The rider achieves this by applying a torque to the handlebars, which causes the
steering fork to rotate at some angular speed Q. This rotation causes the tip of Flf to
move in the direction of  x H,. In order for dH/dt to equal M, the sense of { must
have the effect of turning the bicycle to the side toward which it is tending to lean
(left, in the case of the figure). If the rider wishes to return to the direction initially
set, then this correctional maneuver must be reversed. As a result, the rider turns
the steering wheel back in the opposite sense, thereby changing the sense of dﬁf/dt
(forward in the case of Figure 5.14). In order to generate a force system whose resul-
tant moment about the longitudinal axis matches the required rate of change of the
angular momentum, the rider simultaneously leans to the right, thereby shifting the
center mass to the other side. Thus, riding in a straight line is actually a sequence
of corrective steering maneuvers and shifts of the center of mass. In essence, the
bicyclist is both the actuator and controller of a feedback control system. This fea-
ture is most evident in children who have just begun to ride a bicycle. For a very
experienced bicyclist, the corrective maneuvers are barely perceptible. Also, if the
rider’s hands are not placed on the handlebars, then the steering wheel turns of its
own accord in the manner required to change the angular momentum at a rate that
matches the unbalanced moment. In any event, the ability to steer is essential to
maintaining one’s balance.

The same considerations can be used to explain why a bicyclist must lean to the
side toward which the bicycle is turning. In that case, the directions of the angular
momenta of the front and rear wheels are both changing as a result of the changing
horizontal direction of movement. For a left turn, both A, and H, will be rearward
in Figure 5.14. By leaning into the turn, the rider generates the overturning moment
required to change total angular momentum. This situation is essentially the same as
that for the rolling disk in Example 5.8.

A performer riding a unicycle exploits these same phenomena to maintain left-
right balance. Thus, falling to the left is controlled by turning the wheel left, and
vice versa. Forward-rear balance requires a different control strategy, which relies
on the fact that a falling stick can be kept at a constant angle of tilt if it is given the
correct translational acceleration in the horizontal direction. Thus, the unicyclist
compensates a tendency to fall forward or back by accelerating in the direction of
that tendency. Obviously, riding a unicycle is substantially more difficult than riding
a bicycle.

Despite the apparent simplicity of the principles by which a set of rigid bodies
may be grouped together, the concept should not be relied on too heavily. One pitfall
lies in the need to include the linear inertia vectors in the formation of the moment
equations of motion. A comparable operation arose in the formulation of the equa-
tions of motion for a single rigid body. We chose there to restrict the point for the
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moment sum, since any formulation associated with an arbitrary selection of the
point would be more prone to error - particularly in cases where the motion is to be
determined. Another shortcoming is that Egs. (5.101) provide only six scalar equa-
tions for the entire system, while the individual equations of motion provide six
equations of motion for each body.

Example 5.17 The gimbal supporting the flywheel is suspended from pivot 4 by
two cables of equal length. The flywheel, which may be modeled as a thin disk of
mass m,, spins at the constant rate ¢. The mass of the gimbal is m,. It is observed
that under the appropriate conditions the system will precess about the vertical axis
through pivot A at a constant rate {2, such that the angle of inclination 8 is constant
and the axis of the flywheel is horizontal. Derive expressions for the required preces-
sion and spin rates as a function of the angle # and the other system parameters.

Example 5.17

mg+m,g

Free-body diagram.
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Solution In order to avoid considering the bearing forces exerted between
the gimbal and the flywheel, we draw a free-body diagram of the assembly. Let body
1 be the flywheel and body 2 be the gimbal. The x, y, z, reference frame is fixed to the
gimbal, while x, y,z, is fixed to the flywheel. Letting the instantaneous orientation of
x1 )1z, coincide with x, y,z, expedites the overall description of the kinematic and
kinetic properties.

The center of mass for each body is point G, whose path is circular. Thus

dg1 =dg, = —(Lsin8+d)Q%k.
The angular motion of the flywheel is
@, = QK+ ok = Qi+ ok,
@ = ¢(@x k) = —Q4j.
The corresponding expression for ﬁG may be obtained from Euler’s equations be-
cause xyz are principal axes. Setting I, = I,, = 31,, = ym R? yields
(Ao = Uy (e)y— (L= L) @p)x (@) 1] = =3 R* Q).

The corresponding analysis for the gimbal shows that it precesses about the Z axis
only. By symmetry, the x axis, which is parallel to Z, is a principal axis for the gim-
bal, and the precession rate is constant. Thus, (Hg), = 0.

We may now form the equations of motion for the system. Point A4 is convenient
for the moment sum, because both cable forces intersect that point. The moment of
the actual force system about point A must match the sum of the moments about
point A of the mdg vector for each body, and of the couple H; for each body. Thus,

SMy=—(mg+m,yg)(Lsinf+d)j
= (Hg)h+ (Hg)2+ g4 X [my(dg) + my(dc)a]
= [—im;R*Qé — (m,+ my)(L sin 0+ d) Q*(L cos §)] .
This yields only one algebraic equation. Additional equations may be obtained from
the force equations of motion. As an aid in forming those equations, we note that
the system is symmetric with respect to the z-Z plane, and neither center of mass has
an acceleration transverse to that plane. Therefore, the tensile forces Fg and F have

equal magnitude. We may replace them by an equivalent force F directed from point
D to point A. The force sums are

Y F, =Fcos—(mg+m,g)=0,
2 F, = —Fsin6 = my(ag),+my(ag)2,
= —(my+my)(Lsin0+d)Q>%
Eliminating F from the force equations leads to a solution for Q:
9=< gtand )'/2
Lsinb+d/ -~
We substitute this expression for @ into the moment equation and solve for ¢, which
results in

¢3—<1+ﬂ)—2—d——g— Lsin0+d> 12
h m;/ R|R\ Rtang )




226 5 / Newtonian Kinetics of a Rigid Body

Example 5.18 An orbiting satellite is spinning about its axis of symmetry at 2 rad /s,
and its velocity is 12 km/s parallel to the axis. The mass of the satellite is 2,000 kg,
and its radii of gyration for centroidal axes are 1.5 m about the axis of symmetry
and 2.5 m transverse to that axis. A 1-kg meteorite traveling at 30 km/s impacts the
satellite as shown, and then is embedded in the satellite’s wall. Determine the velocity
of the center of mass and the angular velocity immediately after the collision.

30 km/s
3 m—my
o
2m
A
12 km/s
\4
2 rad/s
Center of mass

Example 5.18

~q

X

Free-body diagrams.

Solution The only force that is significant during the impact is the impul-
sive interaction force F, which is shown in the free-body diagrams of the satellite and
of the meteorite, where xyz is fixed to the satellite. Furthermore, due to the short
duration of the impact, we model the process by considering the positions to not
change. Thus, we may also employ xyz as space-fixed axes for the analysis.

Because F is an interaction force, we may avoid its appearance in the formulation
by considering the satellite and the meteorite as a system. The external force and
moment resultants vanish for this system, so both linear and angular momentum
are conserved. The appropriate conservation principle may be obtained by multi-
plying Eqgs. (5.101) by dt, then integrating over the interval Atz for the impact. The
center of mass G is a convenient reference point for the angular momentum, because
the moment of the linear momentum of the satellite about that point is identically
zero. Also, we may treat the meteorite as a particle, which means that its angular
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momentum about its own center of mass is also zero. The conservation principles
for the system therefore reduce to

mg(Vg)a+ my(Vp)y = my(Vg) + my,(Vp),,

(Hgs)2+ Fp/6 X My (Vp)2 = (Hgg) 1+ Py X My (Pp)).
In these expressions, the subscript s refers to parameters for the satellite, while the
subscript m is for the meteorite. Note that we were able to treat the position 7p,; as
a constant for the integration owing to our idealization that changes in position are
insignificant during the impact.

It is given that the satellite is axisymmetric, so xyz are principal axes. The inertia
properties are found from the given radii of gyration to be

Lye=1,=my2.5%, I,,=my(l1.5% kg-m%
Let the angular velocity of the satellite after impact be & = w,/+w,j+w,k. The
angular momentum terms are then found to be

(Hgs)s = my(6.25w, [+ 6.25wyf+ 2.25w,k),

(Hg)1 = mg(2.25)(—2)k kg-m?,

We have not yet used the fact that the meteorite is embedded after the impact,

which means that it has the same velocity as point P on the satellite. Therefore,

(Vp)2 = (V)2 + &, X Fpyg.
Next, we substitute this expression and the expressions for Hg; into the conservation
principles. Dividing each equation by m,+ m,, yields

(Vg) 2+ 0@, X Fpg = —30,00007 +12,000(1 — o)k,

- 0)(625wxl_+ 625wyj-+ 225(.02](_7) +0Fp,g X (\_’G)2+ ofp/g X (‘DZ X iP/G)

= —4.50(1—0)k +Fp, X (—30,00005),
where ¢ is the ratio of the mass of the meteorite to the total mass,
T mg+m,,’

We could represent v,; in terms of an unknown set of components, as we did for
@. Correspondingly, we would obtain six simultaneous equations by matching like
components in each conservation equation. However, it is possible to simplify the
equations to be solved. We solve the linear momentum equation for (¥5),, and sub-
stitute the result into the angular momentum equation. After like terms are collected,
this operation gives

(\_’G)z =—0w X FP/G_ 30,0000j+ 12,000(1 —U)E
and
6.25wx I_+ 6.25wyj+ 2.25(.02,2"' UFP/G X ((;)2 X FP/G)
= —4.50k + 07p,G X (—30,000/ —12,000k).
Upon substitution of the component form of @, as well as 7, = 2/ — 3k m, we obtain

a vector equation whose only unknowns are w,, w,, and w,. Matching like compo-
nents then yields
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(6.25+130)w, = —114,0000,
(6.25+90)w,+ 60w, =0,
(2.25+40)w,+ 60w, = —4.5.
Since ¢ = 1/2,001 in the present case, these equations yield
wy = —9.1067 +0.00096 —1.9982k rad/s.

We obtain the corresponding velocity of the center of mass by substitution, which
yields
(¥g)2 = —0.0027 —14.9795 +11,994.0k m/s.

These results have a ready explanation. The velocity in the z direction is decreased
by the impact because the mass of the satellite increased, while the y velocity com-
ponent is attributable to the linear momentum transfer from the initial motion of the
meteorite. The small change in the x component of velocity may be traced to the fact
that the center of mass of the system shifts as a result of the capture of the meteorite.
For the angular velocity, we note that the predominant effect is to induce a rotation
about the x axis. The small changes in rotation about the y and z axes are a conse-
quence of the alteration of the mass distribution due to the embedded meteorite,
which results in xyz no longer being principal axes.
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Problems
5.1 Derive the centroidal location and centroidal inertia properties of a homogeneous
semicone, as tabulated in the appendix.

5.2 Determine /,, and I, for the truncated rectangular parallelepiped relative to the xyz
coordinate axes shown in the sketch.
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Problem 5.1

z

z

= —

Problem 5.2

5.3 A cylinder is sliced in half along its diagonal. Determine the location of the center of
mass and the inertia properties relative to a coordinate system whose z axis coincides
with the axis of the cylinder and whose origin is situated at the circular end.

Problem 5.3

5.4 (See figure, next page.) The semicircular cut-out in the steel cylinder is filled with
lead. Determine the centroidal location and the inertia properties of this body with
respect to the xyz system shown.
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Problem 5.4
The length of the homogeneous cylinder is twice its radius. Consider an xyz coordi-
nate system whose origin is located on the perimeter of one end, whose x-y plane

contains the axis of the cylinder, and whose x axis intersects the centroid. Determine
the inertia properties of the cylinder relative to xyz.

X

I‘\zk\*_1

&

N

Problem 5.5

The 2-kg slender bar is welded to the 10-kg disk. Determine the inertia properties of
this system relative to the xyz coordinate system shown in the sketch.

The x axis lies in the plane of the 10-kg plate, and the y axis is elevated at 36.87°
above the diagonal. Determine the inertia matrix of the plate relative to xyz.

The mass of the plate is 10 kg. Determine the principal moments of inertia relative to
corner O.
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e 200mm ]

Problem 5.6
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X
4 300 mm
210 mm
Problems 5.7 and 5.8 Problems 5.9 and 5.10

5.9 The x axis lies in the inclined face of the 3-kg homogeneous prism, and the y axis is
normal to that face. Determine the inertia matrix of the prism relative to this coordi-
nate system.

5.10 The prism’s mass is 3 kg. For an origin coincident with corner 4, determine the princi-
pal moments of inertia. Also determine the rotation transformation for the principal
axes relative to coordinate axes aligned with the orthogonal edges.

5.11 A rigid body consists of five small spheres of mass m mounted at the corners of a
lightweight wire frame in the shape of a pyramid. Determine the principal moments

500 mm

300 mm

/ 400 mm

X

Problem 5.11
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5.12

5.13

5.4

of inertia and the rotation matrix of the principal axes relative to the given xyz coor-
dinate system.

The 24-kg block is welded to a shaft that rotates about bearings 4 and B at a con-
stant rate w. The shaft is collinear with the diagonal to a face of the block, as shown.
Determine the inertia properties of the block relative to the xyz coordinate system
whose origin is situated at the midpoint of the diagonal. The x axis is aligned with
the shaft, and the z axis is normal to the face of the block. Then use these properties
to evaluate the dynamic reactions.

400 mm —— -l 400 mm ——-)1

|<— y
Wb T pelyy
T maﬂ /)

‘\

300 mm 150 mm

Problem 5.12

The gyroscopic turn indicator consists of a 1-kg flywheel whose principal radii of
gyration are k, = 50 mm and k, = k, = 40 mm. The center of mass of the flywheel
coincides with the intersection of axes AB and CD. The flywheel spins relative to
the gimbal at the constant rate w, = 10,000 rev/min. A couple M acts about shaft
CD, which supports the gimbal, in order to control the angle 8 between the gimbal
and the horizontal. Determine M when the rotation rate about the vertical axis is
Q=0.8rad/s.

The disk of mass m spins about the horizontal shaft AB at angular rate w,, and the
precession rate is w,; both rotation rates are constant. The angle between the center

Problem 5.13
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5.15

5.16

line of the disk and the shaft is 30°, so that the illustrated position occurs only once
for each rotation of the disk relative to shaft 4 B. Derive an expression for the couple
reaction at joint A at the instant depicted in the sketch. Then use that answer to
explain physically whether or not a moment about the vertical shaft is required to
hold w, constant at this instant.

7
| Sy

%

Problem 5.14

A 50-kg rectangular plate is mounted diagonally on a shaft whose mass is negligible.
The system was initially at rest when a constant torque of 5 kN-m is applied to the
shaft. Determine the reactions at bearings 4 and B four seconds after the applica-
tion of the torque.

' 200 mm | 200 mm

Problem 5.15

The right triangular plate is welded to the shaft, which rotates at constant speed w.
Determine the dynamic reactions at the bearings.

Problem 5.16
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5.17 The device shown is a wobble plate, in which the spin rate w, of the disk relative to the

|«

shaft, and the precession rate w, of the shaft, are both constant. The mass of shaft

AB is negligible. Let A denote the ratio of the angular speeds such that w, = Aw,.

(a) Interms of w, and A, derive expressions for the angle between the angular velocity
@ and shaft AB, the angle between the angular momentum Hg and shaft 4B,
and for the gyroscopic moment H.

(b) Evaluate the results in part (a) for the case where A = 3, and determine the corre-
sponding reactions at bearings A and B.

(¢) Determine whether there is any value of A for which no dynamic reactions are
generated at bearings A and B. Explain your answer.

|
/
2

2R

>

Problem 5.17 Problem 5.18

5.18

5.19

The disk spins freely at the constant rate ¢ relative to its shaft, which is pinned to the
vertical shaft. The system precesses freely about the vertical axis, and the mass of
both shafts is negligible. The nutation angle 8 is initially held constant by a cable, in
which condition the precession rate is . Derive expressions for ¢, 8, and ¥ at the
instant after the cable is cut.

A flywheel, whose mass is m, is mounted on shaft AB. A servomotor holds the spin
rate constant at Q. A torque C(?) is applied to the vertical shaft, and pivot A has

Cy c
¥
410
L
d

Problem 5.19
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5.20

5.21

5.22

5.23

5.24

ideal properties. Derive differential equations of motion for the precession angle ¥
and the nutation angle 6.

The slender bar is mounted on a gimbal that rotates about the horizontal axis at
constant rate © due to torque I'. Derive the differential equation governing the angle
3 between the bar and the horizontal axis, and also derive an expression for T.

Problem 5.20

Consider the gyroscopic turn indicator in Problem 5.13 in a situation where the
torque M is not present, so that 8 is a variable angle. The precession rate @ is a speci-
fied function of time, and the spin rate w, is held constant by a servomotor. Let I,
denote the moment of inertia of the flywheel about axis AB, and let I, be the cen-
troidal moment of inertia perpendicular to axis AB. Derive the differential equation
of motion for § in terms of € and w,.

Bar BC is pivoted from the end of the T-bar. The torque T is such that the system
rotates about the vertical axis at the constant speed Q. Derive the differential equation
of motion for the angle of elevation 6.

Z
~>Sr

-

Problem 5.22

The system in Problem 5.14 precesses freely about the vertical axis at y = w,, while
the spin rate ¢ = w, is held constant by a servomotor. The spin angle is defined such
that ¢ = 0in the illustrated position. Derive the differential equation of motion for y.

The square platg is free to spin at rate ¢ about axis BC of the bent shaft, while the
precession rate y about the horizontal is held constant. The angles are defined such
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5.25

5.26

5.27

that y = ¢ = 0 when the plate is situated in the vertical plane as shown. This system is
situated in a wind tunnel whose flow is horizontal. The resultant of the aerodynamic
pressure is a known force F(t) always normal to the plane of the plate acting at the
center of pressure P. Derive the differential equation of motion for ¢. The gravita-
tional force is negligible.

c—1

Problem 5.24
A thin disk of mass m rolls over the ground without slipping as it rotates freely rela-
tive to bent shaft 4AB. The connection at end A is an ideal pin. The precession rate

of the bent shaft about the vertical axis is the constant value . Determine the magni-
tude of the normal force N exerted between the disk and the ground.

L

o

Problem 5.2§

The sphere, whose mass is m, spins freely relative to shaft 4B, whose mass is negligi-
ble. The system precesses about the vertical axis at the constant rate w,, and joint A4 is
an ideal pin. Consider the possibility that the sphere rolls over the horizontal surface
without slipping. Determine whether there is a range of values of w, for which such a
motion can occur.

The cone, whose mass is m and apex angle is 23, rolls without slipping over the
horizontal surface. The rolling motion of the cone is such that it is observed to
rotate about a fixed vertical axis intersecting its apex at constant angular rate w,.
Determine the maximum value of w, for which the cone will not tip over its rim in
this motion. Also, determine the minimum coefficient of static friction corresponding
to that value of w,.
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Problem 5.26 Problem 5.27

5.28

5.29

5.30

5.31

5.32

As shown in the cross-sectional view, a disk of radius R rolls without slipping over
the interior surface of a cone whose apex angle is 23. The axis of the cone is vertical.
The motion is such that the disk is always normal to the contact plane, and the dis-
tance from the apex to the point of contact is always 2R cot 3. Derive expressions for
the precession rate of the disk about the cone’s axis and the minimum coefficient of
static friction required to sustain this motion.

9
Tz

Problem 5.28 Problem 5.29

The bar of mass m is falling toward the horizontal surface. Friction is negligible.
Derive differential equations of motion for the position coordinates (x¢, y;) of the
center of mass of the bar, and for the angle of inclination 6. Also obtain an expres-
sion for the contact force exerted by the ground on the bar in terms of x5, ¥, 8, and
their derivatives.

(See figure, next page.) The bar, whose mass is m, may slide over the ground and the
45° incline as it moves in the vertical plane. It is released from rest in the position
shown. Determine the angular acceleration of the bar at the instant of release. Fric-
tional resistance is negligible.

(See figure, next page.) The bar in Problem 5.30 has a clockwise angular velocity of
5 rad/s in the position shown. The coefficients of sliding friction at the ground and
the incline are u = 0.10, and L = 360 mm. Determine the angular acceleration of the
bar in this position.

Consider an automobile whose wheelbase is L and whose center of mass is located at
distance b behind the front wheel and distance # above the ground. The coefficient
of friction between the tires and the ground is u. Determine the maximum possible
acceleration for cases of front-wheel, rear-wheel, and all-wheel drive.
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5.33

5.34

5.35

\
Problems 5.30 and 5.31

The 20-kg semicylinder has an angular speed w = 10 rad/s in the position shown. The
coefficient of static friction between the ground and the semicylinder is u. Determine
the minimum value of u for which slipping between the semicylinder and the ground
will not occur in this position. What is the corresponding angular acceleration ¢ of
the semicylinder?

120 mm

<

100 mm

/ —
7 7

Problem 5.33 Problem 5.34

A cable is wrapped around the drum of the stepped cylinder and held horizontally
as a tensile force F is applied to it. The mass of the cylinder is 10 kg, and its centroidal
radius of gyration is 90 mm. The coefficients of static and kinetic friction with the
ground are both 0.20.

(a) Derive an expression for the maximum value of F for which the cylinder will roll
without slipping, and also determine the corresponding acceleration of the center
of the cylinder.

(b) If F is 10% greater than the value in part (a), determine the acceleration of the
center of the cylinder and the angular acceleration.

The bar is pinned at its left end to a ring. The system is initially at rest in the position
shown, when a horizontal force F of magnitude 2mg is applied to the right end of

Problems 5.35 and 5.36
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5.36
5.37

5.38

the bar. The ring does not slip over the ground in the ensuing motion, and friction
between the bar and the ground is negligible. Determine the acceleration of the center
of the ring at the instant the force is applied. The mass of the ring is negligible.

Solve Problem 5.35 for the case where the ring and the bar have equal masses.

Horizontal force F is applied to the piston, whose mass is small compared to that of

the circular cylinder of mass m. The coefficients of friction are p and v for static and

kinetic friction, respectively.

(a) For the case where there is no slipping relative to the ground, determine the
acceleration of the cylinder’s center.

(b) Determine the largest value of F for which the motion in part (a) is possible.

(¢) Determine the translational and angular acceleration of the disk when the mag-
nitude of F exceeds the value in part (b).

F
——-

Y
Z

s
Problem 5.37

A horizontal force F is applied to the actuating rod. This rod is connected to the
wheel by pin A4, which may slide through the groove. The mass of the wheel is m,
the radius of gyration is «, and u, and p, are respectively the coefficients of static and
kinetic friction between the wheel and the ground. Friction between the pin and the
groove is negligible, as is the mass of the rod. Consider the system when the groove is
at an arbitrary angle # from the vertical.
(a) If the wheel rolls without slipping, determine the acceleration of center C and
the angular acceleration of the gear.

Problem 5.38
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(b) Derive an expression for the largest force for which slipping will not occur at a
specified 6.
(c) If Fislarger than the force determined in part (b), determine the acceleration of
the center C and the angular acceleration of the gear.
5.39 Bar AB has a mass of 40 kg, and the stiffness of the spring is 20 kN/m. The bar is

released from rest at @ = 30°, at which position the spring is compressed by 100 mm.
Determine the angular velocity of the bar at = 0.

Problem 5.39 Problem 5.40

5.40

5.41

5.42

Gear A4 has mass m and centroidal radius of gyration «. It rolls over the horizontal
rack due to a constant horizontal force F acting on collar C. The connecting bar and
collar C have negligible mass. The system was at rest at # = 0. Derive an expression
for the speed v of the center of gear 4 as a function of 6.

Bar AB is pinned to the vertical shaft, which rotates freely. When the bar is inclined
at # = 10° from the vertical, the rotation rate about the vertical axis is @ = 10 rad/s,
and @ = 4 rad/s at that instant. Determine the maximum value of 8 in the subsequent
motion. The mass of the vertical shaft may be neglected.

Collars A and B are interconnected by a bar on which a 10-kg sphere of 100-mm
diameter is mounted. The mass of the collars and the bar is negligible. The system
rotates freely about the vertical axis. Initially, s =240 mm, and the collars are not

)| 4

53.13°

)%

kS
) m—

QZjl| > 120 mm T

Problem 5.41 Problems 5.42 and 5.43
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543

5.44

5.45

5.46

moving relative to the guide bars. What minimum value of the initial angular speed Q
about the vertical axis, if any, is required for collar A4 to reach s = 180 mm?

Initially, the system in Problem 5.42 is at s = 180 mm, at which position the rotation
rate about the vertical axis is 30 rev/min. Determine whether collar 4 attains the
position s = 300 mm in the subsequent motion. If so, what is the angular velocity of
the sphere at that position?

A semicircular plate is falling at speed v with its plane oriented horizontally. It strikes
the ledge at corner A, and the impact is perfectly elastic (i.e., the recoil velocity of
corner A is v upward). The interval of the collision is Az. Derive expressions for the
velocity of the center of mass and the angular velocity at the instant following the
collision. Also, derive an expression for the collision force exerted between the plate
and the ledge.

Problem 5.44

A slender bar of mass m, which is suspended by a cable from pivot A, executes a
steady precession about the vertical axis at angular speed @ as it maintains the orien-
tation shown.

(a) Determine @ and the angle of inclination 3.

(b) An impulsive force at end B, parallel to the initial velocity of that end, acts over
a short time interval Af. Determine the magnitude of F for which the angular
velocity of the bar at the conclusion of the impulsive action is horizontal. What
are the corresponding velocity of the center of mass G and the angular velocity
of the bar?

Problem 5.45

The flyball device consists of two 500-g spheres connected to the vertical shaft by a
parallelogram linkage. This shaft, which passes through collar C supporting the link-
age, rotates freely. The system is initially rotating steadily at 900 rev/min about the
vertical axis, with 8 = 75°. A constant upward force F is applied to the vertical shaft,
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5.47

5.48

causing point B to move upward and 6 to decrease. Determine the minimum magni-
tude of F for which the system will reach 6 = 15°. The mass of the shaft and the bars
in the linkage is negligible.

Problem 5.46

Identical disks A and B are separated by distance L on a massless, rigid shaft, about
which they may spin freely. The system is suspended at the L /3 position from a pivot
on a vertical shaft, as shown. Determine the relationship between the spin rates wg
and w, of the disks for which the system will precess at a steady rate about the verti-
cal axis, with shaft 4B always horizontal.

Problem 5.47

A single-engine turbojet has its minimum speed v at the top of a vertical circle of
radius p. At that instant, the airplane is executing a roll, clockwise as viewed by the
pilot, at angular speed w,. The engine turns at angular speed Q, counterclockwise from
the pilot’s viewpoint. The rotating parts of the engine have mass m,, and centroidal
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5.49

moments of inertia J about the rotation axis and J' transverse to the rotation axis.
The mass of the airplane, excluding the rotating parts of the engine, is m,, and the
corresponding moments of inertia about centroidal xyz axes are I,, 1,, and I,. The
spin axis of the engine is collinear with the z axis of the airplane, and the centers of
mass G, and G,, associated respectively with m, and m,, both lie on this axis. Derive
expressions for the aerodynamic force and moment about the center of mass of the
airplane required to execute this maneuver.
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Problem 5.48

The tires of an automobile have mass m and radius of gyration « about their respec-
tive axles. The wheelbase of the automobile is L and the track is w. The center of
mass G of the automobile is on the centerline of the automobile at distance o be-
hind the front axle and height # above the ground. Consider the situation where
the automobile executes a right turn of radius p (measured to point G) at constant
speed v. Determine the change in the normal reaction exerted between each tire and
the ground resulting from the rotatory inertia of the wheels.

1\
@
Radius = r

-~
-

Problem 5.49






CHAPTER 6

Introduction to Analytical Mechanics

The constraints imposed on the motion of a system enter the Newton-Euler
formulation of the equations of motion in two ways. The kinematical relations must
account for the restrictions imposed on the motion, while the kinetics principles must
account for the reaction force (or moment) associated with each constraint. When
the system consists of more than one body, the need to account individually for
the constraints associated with each connection substantially enhances the level of
difficulty.

The Lagrangian formulation we shall develop in this chapter takes a different view
of systems. The principles are based on an overview of the system and its mechanical
energy (kinetic and potential). In contrast, the Newtonian equations of motion are
time derivatives of momentum principles. Another, and perhaps the most important,
difference is that the reactions exerted by supports will usually not appear in the
Lagrangian formulation. This is a consequence of the fact that the reactions and the
geometrical description of the system are two manifestations of the same physical
feature. It is from the kinematical perspective that we shall begin our study.

6.1 Generalized Coordinates and Degrees of Freedom

Suppose the reference location of a system is given. (Such a location might
be the starting position or the static equilibrium position.) We must select a set of
geometrical parameters whose value uniquely defines a new position of the system
relative to the initial position. For example, it should be possible to draw a diagram
of the system in its current position by knowing only the fixed dimensions and the
position parameters. Geometrical quantities that meet this specification are called
generalized coordinates. The minimum number of generalized coordinates required
to specify the position of the system are the number of degrees of freedom of that
system.

A simple system consisting of a single rigid bar in planar motion is adequate to
develop these concepts. According to Chasle’s theorem, the general motion of a
rigid body is a superposition of a translation following any specified point and a
rotation about that point. In Figure 6.1, the movement of end A is described by its
position coordinates, x4 and y,, and the rotation is described by angle ¢ measured
from the horizontal. We always consider fixed parameters, such as L, to be known,
so they are system properties. Thus, the generalized coordinates selected here are
(X4, Y4, 8). We observe that these three parameters may independently be assigned
arbitrary values, and that knowledge of those values would enable us to locate any
point in the bar. We therefore conclude that this bar has three degrees of freedom.

Generalized coordinates do not form a unique set - other parameters may be
equally suitable for describing the motion. In Figure 6.2, the generalized coordinates
(xg, ¥g, #) describe the motion in terms of the position of end B and the rotation. In

245
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Figure 6.1 Generalized coordinates Figure 6.2 Different generalized

for a bar in arbitrary planar motion. coordinates for a rigid bar in planar

motion.

general, it must be possible to express one set of generalized coordinates in terms
of another, for each must be capable of describing the position of all points in the
system. The transformation from the set in Figure 6.1 to that in Figure 6.2 is

xp=x4+Lcosb, yp=ys+Lsiné, 0=0.

Another choice, shown in Figure 6.3, leads to a difficulty. The three generalized
coordinates depicted there are (x4, ¥4, Xg). As shown in the figure, the difficulty is
that for given values of (x4, ¥4, Xp), the bar-can have one of two orientations. Spe-
cifically, since the length L is a fixed parameter, the vertical position of end B is
given by yg =y, +[L2—(x5—x4)*]"2 Recall that the generalized coordinates must
uniquely specify the location. This means that (x4, ¥4, Xg) can serve as generalized
coordinates only if the case where yz > y4 (positive sign in the previous relation for
¥g) is to be considered, or alternatively, only yp < y, (negative sign). In most cases
where the orientation of a body is significant, it is best to select an angle as a general-
ized coordinate.

The situations in Figures 6.1-6.3 correspond to cases where the number of gen-
eralized coordinates equals the number of degrees of freedom. The generalized coor-
dinates in such cases are unconstrained. This means that their values may be set
independently, without violating any kinematical conditions. (Indeed, the general-
ized coordinates in this case are sometimes called independent coordinates.) When
the number of generalized coordinates exceeds the number of degrees of freedom,
the generalized coordinates are constrained, because they must satisfy additional
conditions other than those arising from kinetics principles.

A set of constrained generalized coordinates for the bar in Figures 6.1-6.3 could be
the position coordinates of each end and the angle of orientation, (x4, Y4, Xz, Vg, 9).
Two independent relations exist between these five variables; for example,

xg—Xx4=Lcos@, Yg—Yya= Lsiné.

These relations are consistent with the fact that the system has three degrees of free-
dom, because the existence of two relations between five variables means that only
three variables may be selected independently. The relations between constrained gen-
eralized coordinates are called constraint equations. The number of degrees of free-
dom equals the number of generalized coordinates minus the number of constraint
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equations. The question of constrained and unconstrained generalized coordinates
will be examined in greater detail in the next section.

Other than the restriction to planar motion, the bar that has been discussed thus
far is free to move in space. Any constraint imposed on its motion by supporting it
in some manner alters the number of degrees of freedom and, therefore, the selec-
tion of unconstrained generalized coordinates. Figure 6.4 shows a common way in
which a bar might be supported. The pin at end A prevents movement of that end in
both the x and y directions. This reduces the number of degrees of freedom to one,
because the position of the bar is now completely specified by the value of 6.

Another way of regarding the bar in Figure 6.4 is to say that the set of generalized
coordinates (x4, ¥4, #) for the bar are now constrained to satisfy x, =0 and y, = 0.
The latter are two constraint equations, which confirms that two of the three gen-
eralized coordinates selected to represent this one-degree-of-freedom system cannot
be assigned independent values.

A different manner of supporting the bar also leads to a system with one degree
of freedom. The bar in Figure 6.5 is constrained by the collars at its ends. A suitable
unconstrained generalized coordinate is the angle 9. If this parameter is known, then

——
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Figure 6.5 Generalized coordinates for a sliding bar.
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the (x, y) coordinates of the ends may be evaluated with the aid of the law of sines.
(Recall that the constant geometrical parameters, such as L and 8 in this system, are
always considered to be known.)

An aspect of Figure 6.5 that should be noted is the selection of the origin of xyz.
Because it is desirable that xyz be fixed, it is useful to place its origin at a point in
the system that is stationary. This practice will avoid the possibility of inadvertently
writing position coordinates relative to a moving coordinate system when the posi-
tion relative to a fixed system is what we need.

We could, of course, select constrained generalized coordinates for the system in
Figure 6.5. For example, the variables (x4, ¥4, ) used earlier are related by

sin(3—0)
-L sin8

Xq= s ya=0.

These constraint equations are more complicated than those for the previous system.
We shall see in later sections that there are situations where it might be necessary or
desirable to use constrained generalized coordinates.

The discussion thus far has dealt only with a planar system consisting of a single
body. A useful set of generalized coordinates for a body in spatial motion consists of
the xyz coordinates of the center of mass, and the Eulerian angles defined relative to
convenient sets of axes. In other words, a body in unconstrained spatial motion has
six degrees of freedom. This number is decreased by the number of constraints that
are imposed.

A common system consisting of a multitude of bodies is a mechanical linkage. A
typical one is depicted in Figure 6.6. If nothing is specified regarding the motion, this
linkage has two degrees of freedom. (One way of recognizing this number is to ask
what motion parameters are required to draw a picture of the system.) For example,
in order to specify the position of bar AB, it is necessary to know s, and 6. This will
define the location of end B. Then the orientation of bar BC may be established by
seeking the intersection of an arc of length L,, centered at end B, with the inclined
guide bar. Note that two, or possibly no, intersections might occur. This means that
(54, 0) is not a suitable set of generalized coordinates, unless the range of values is
restricted and we stipulate which of the intersections (upper or lower) is of interest.

Figure 6.6 Generalized coordinates for a linkage.
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A better set of generalized coordinates for this system would have been the dis-
tances s4 and sc locating both ends of the linkage. This would eliminate the ques-
tion of which intersection should be considered. Nevertheless, the set (s, 5¢) is still
limited in its range of values, because the largest possible distance between ends A
and Cis L;+ L,. Indeed, other combinations of variables, such as (8, ¢), might be
preferable.

We remarked that the system in Figure 6.6 has two degrees of freedom, provided
that nothing is specified about the motion. This is not necessarily the case. For exam-
ple, collar A4 in Figure 6.6 might be required to move in a given manner along its
guide, meaning s4 = s,4(#) is given. This is a constraint on the motion of the system,
reducing it to only one degree of freedom.

6.2 Constraints - Holonomic and Nonholonomic

The discussion in the previous section was purposefully qualitative in order
to focus on the important concept of generalized coordinates. It is useful now to
change our approach. Suppose we select a set of M constrained generalized coordi-
nates to represent a system having N degrees of freedom. Because the coordinates
are a constrained set, M > N, there must be M — N constraint equations. If the con-
straint equations are like those arising in the previous section, each may be written
in the functional form

ﬁ(ql’QZ""’qM’t):Oa (61)

where the subscript i denotes which of the M — N constraints are under considera-
tion. A relation such as Eq. (6.1) is sometimes referred to as a configuration con-
straint. This term stems from the fact that any limitation imposed on the generalized
coordinates restricts the overall position that the system can attain. In the most gen-
eral situation, the value of time must be specified because a motion imposed on one
of the physical supports can move the system, even if the generalized coordinates do
not vary.

We may equivalently replace a configuration constraint by a velocity constraint,
which is a restriction on the velocity that a system may have when it is in a specified
position. This viewpoint is obtained when we differentiate Eq. (6.1) with respect to
time. The chain rule for differentiation must be employed because the generalized
coordinates are (unknown) functions of time. The time derivative of constraint equa-
tion (6.1) is therefore

M
f;’ = E [a_a—.fl(qla dzs .-y qnm> t)]qj"'ij;(ql’ dz; .- 4nm> t) =0. (62)
j=119q; at

When the values of the generalized coordinates and time are specified, Eq. (6.2) rep-
resents one relation among the M rates ¢;, which are called generalized velocities.
Equations (6.1) and (6.2) are fully equivalent in the restriction they impose, provided
that the initial position is specified in conjunction with Eq. (6.2).

A simple example of this dual viewpoint is to consider using x and y as constrained
generalized coordinates for a point following the circular path in Figure 6.7. Clearly,
one form of the constraint equation is the equation for a circle,
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Figure 6.7 Constraint condition for circular motion.

x2+y?=R>2

Differentiation of this relation yields
, X
y=—-=x
Yy

which is merely a statement that the velocity of a point following the circle must
be parallel to the tangent to the circle at the instantaneous location of the point.
Note that the radius R does not appear in the velocity constraint form. However, R
must be known in order to select the x and y values at the instant when the motion is
initiated.

A large class of problems involving mechanical systems may be treated by consid-
ering a more general form of velocity constraint than Eq. (6.2). Rather than having
coeflicients that are derivatives of f;, these coefficients could be arbitrary functions
of the generalized coordinates and time. Such constraint equations have the form

M
¢ 2 (1, G2s -y Gu> )G+ 0(q1, G2, s Gups £) = 0. 6.3
i=1

We see from this that configuration constraints represent algebraic/transcendental
equations relating the generalized coordinates, whereas velocity constraints are dif-
ferential equations relating those quantities.

Constraint conditions that match Eq. (6.3) are said to be linear velocity constraints,
because they depend linearly on the generalized velocities. They are not the most
general type of kinematical constraint that can be imposed on the motion of a sys-
tem. Some types of motion restrictions cannot be treated in any general manner.
One such situation arises in treating inequality relationships, such as the limitation
that the brakes of a car reaching the top of a hill are functional only if the wheels
remain in contact with the road. Also, some systems feature constraints in which the
generalized velocities occur nonlinearly. Another generalization is to allow accelera-
tions to be constrained. Both cases are possible in feedback control systems.

The restrictions imposed by Eqs. (6.2) and (6.3) are equivalent if corresponding
coeflicients of each generalized velocity, and of the velocity-independent term, are
identical to within a multiplicative factor. This factor may be a function g; of the
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generalized coordinates and time, g; = g;(q1, 42, ..., qu t). Hence, we may conclude
that a velocity constraint is derivable from a configuration constraint if and only if
ij8i F) qj ’ i&i at .
The constraint equation(s) relating the generalized velocities are said to be holonomic
(which may be taken to mean “integrable”) if they satisfy Eq. (6.4). If Eq. (6.4) is not
satisfied, the constraint is nonholonomic. Because the terms df;/dq; constitute the
Jacobian of a set of holonomic constraints, the coefficients a;; are referred to as the
Jacobian constraint matrix, even when the constraint conditions are not holonomic.
We will encounter this matrix in several contexts.
This terminology refers to the Pfaffian form of a constraint equation, which is
the differential form obtained by multiplying Eq. (6.3) by dt; specifically,

6.4)

M
¢ zlaij(fh,(h,-~~,¢IM,f)dle+bi(QhQZ,---,QM,’)df=0- (6.5)
J=

When Eq. (6.4) is true, multiplying Eq. (6.5) by the function g; converts the Pfaffian
form to a perfect differential of the function f;. In other words:

¢ If a velocity constraint is holonomic, then there exists an integrating factor
g; for which the Pfaffian form of the constraint equation becomes a perfect
differential.

In that case the constraint may be integrated to obtain the configuration constraint
imposed on the generalized coordinates. When Eq. (6.4) is not valid, the kinemati-
cal relation between the generalized coordinates can only be established after those
parameters have been solved as functions of time, in other words, after the equations
of motion have been solved.

It often is quite difficult to determine whether a complicated velocity constraint is
holonomic. A test that is occasionally useful comes from the fact that a mixed deriv-
ative may be evaluated in any order. Thus, differentiating each of Egs. (6.4) with
respect to an arbitrarily selected generalized coordinate g, leads to the conclusion
that if constraint equation number J is holonomic then

d d
—(gia;)) = —(giai),
9gx ag; L .
Lk=1,2,...M, j#k. (6.6)
_a—(gibi) = i(giﬂ'ik),
aqk at

The difficulty in applying these relations is that the integrating function g; is not
known. If such a function leading to satisfaction of Eqs. (6.6) is determined, it is
relatively straightforward to integrate the Pfaffian form and thereby find the corre-
sponding configuration constraint.

We may obtain a different viewpoint for the role played by constraints by intro-
ducing the concept of the configuration space. The position of a point in real space
is associated with the (x, y, z) coordinates it occupies at each time instant. In the
same manner, the position of any system may be associated with an M-dimensional
Euclidean space. The directions in this space are described by an orthogonal set of
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a3
Path in
tisn};zth Zt ¢ configuration
space

at time ¢

Figure 6.8 Position in the configuration space.

axes, with distance along each defined to represent the value of one of the generalized
coordinates (q,, 42, ..., qar)- The path in the configuration space is the locus of points
formed as the motion evolves in time. Figure 6.8 depicts the path in configuration
space for a system having three degrees of freedom; the picture may be conceptually
extended to systems for which M > 3. The position of the system at any instant cor-
responds to a vector 7, where the caret (“hat”) is the notation we shall use to indicate
that a vector is associated with the configuration space. Thus, we have

M
F=qié+q6,+ - =3 q;é;. (6.7
j=1

The path the system follows through the configuration space depends on the forces
acting on the system - applying forces at different locations or altering the time de-
pendence of the forces will change the configuration path. If the generalized coordi-
nates are unconstrained then any path through the configuration space is possible,
assuming one has the ability to generate the forces required to attain such a motion.
In contrast, a constraint equation represents a restriction on the values that the gen-
eralized coordinates may have. Thus, if a system is described by a set of constrained
generalized coordinates, then there are restrictions on the possible paths the system
may follow through the configuration space.

Consider a holonomic constraint that is independent of time, f;(q, @2, ---» qu) =
0. This restricts the position in the configuration space to be somewhere along a sur-
face, the shaded portion of Figure 6.9. At any point along the path in the configura-
tion space, a multitude of displacements are possible. The configuration constraint
requires that the next point also be situated on the constraint surface. A displace-
ment in which the new point in the configuration space is on the constraint surface
is said to satisfy the constraint condition. It represents a kinematically admissible
movement of the system.

The corresponding Pfaffian form of the velocity constraint, Eq. (6.5), is merely a
statement that the infinitesimal displacement of the system must be along the plane
in the configuration space tangent to the constraint surface. Any other type of dis-
placement would move the point in the configuration space off the constraint surface.
Should a holonomic constraint be time-dependent, its shape changes as time evolves.
The b; term in the Pfaffian form merely represents an additional term required to
compensate for the changing nature of the constraint.
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Admissible Configuration constraint i:
Tangent displacement filgy,....q) =0

9

Figure 6.9 Configuration constraint.

When the constraint is nonholonomic, it is not possible to identify a constraint
surface. Nevertheless, the effect of the Pfaffian constraint equation is to restrict in-
finitesimal displacements of the system to lie on a common tangent plane that is dic-
tated by the current state of motion. Such a plane may be considered to be a local
manifestation of a constraint surface.

There are two types of holonomic constraint. If the constraint is time-independent,
then the holonomic constraint is said to be scleronomic; otherwise, it is rheonomic.
(“Schlero” and “rheo” are Greek phrases meaning “rigid” and “flowing,” respectively.)
It follows that the integrated form of a scleronomic constraint is f;(q,, g3, ..., qp) =
0. A velocity constraint also may be classified according to the presence of the coeffi-
cient b;. If b; = 0, the equation is a catastatic constraint, whereas b; # 0 means that
the generalized coordinates are related by an acatastatic constraint equation. It is
evident that a scleronomic constraint is catastatic, while a rheonomic constraint is
acatastatic. However, it is possible in the case of a nonholonomic constraint for the
coefficients g;; to be time-dependent, even though the relation is catastatic.

In the next section we shall return to the concept of a configuration space. First,
we need to gain experience in formulating constraint equations. An interesting ex-
ample of a nonholonomic constraint, which does not usually arise in a course in
mechanics, is a pursuit problem. Consider Figure 6.10, which depicts an airplane A

North

AN

AN
N\

\
f \
N S
4 v,
o

- vt ]

Figure 6.10 Example of a nonholonomic constraint.
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that flies eastward at a constant velocity v,4. Airplane B has a laser mounted parallel
to its axis. This airplane must always keep its laser aimed at airplane A. This restric-
tion constrains the path that airplane B follows, but it is only possible to express
the restriction on the generalized coordinates (xz, yg) as a velocity constraint. We
formulate this equation by noting that the angle 8 describing the orientation of the
velocity vector also may be expressed geometrically in terms of the position coordi-
nates. This yields

ano=_J8 o 2
Xp Val —Xpg

which may be written in the standard form of Eq. (6.3) as
yeXxp+(vat—xp)yp=0.

This is a time-dependent nonholonomic constraint; it cannot be integrated with re-
spect to time unless xz or yg is given as a function of ¢.

It is important to know that a constraint is holonomic, because such constraints
may be used to eliminate excess generalized coordinates. Suppose that H is the num-
ber of holonomic constraint equations relating M generalized coordinates. If these
constraints were originally stated in velocity form, they may be integrated to obtain
configurational constraints in the form of Eq. (6.1). Because these would represent
H equations, we could solve them to express H generalized coordinates in terms of
the remaining M — H generalized coordinates.

A holonomic system is one in which H = M — N, that is, the number of general-
ized coordinates in excess of the number of degrees of freedom equals the number of
holonomic constraints. It is always possible (but not necessarily desirable) to describe
a holonomic system by a set of unconstrained generalized coordinates that satisfy all
kinematical conditions arising from the physical manner in which the system is sup-
ported. In contrast, a nonholonomic system, H< M— N, must always be described
by a set of constrained generalized coordinates. In such cases it is necessary to supple-
ment the equations of motion with explicit statements of the kinematical constraint
equations. Nonholonomic constraints often arise in systems having parts that roll.

We use the same terms to describe a system as we use to describe a constraint.
Thus, if determining the position of any point in the system requires that we know
the value of 7, as well as the generalized coordinates, we say that the system is time-
dependent. Holonomic systems are further classified according to whether they are
scleronomic (all constraints are independent of time) or rheonomic (one or more
time-dependent constraints). We shall see that treatment of nonholonomic systems
requires modifications of the methods used for holonomic systems, whereas depen-
dence of the kinematical relations on time only influences the details by which such
modifications are implemented.

Example 6.1 An insect walks along the surface of a spherical balloon whose radius
is a specified function r(¢). Describe in terms of both rectangular Cartesian and cylin-
drical coordinates the constraint imposed on the motion of the insect by the condi-
tion that it remain on the surface. Express the result for each set of coordinates as a
configuration constraint and as a velocity constraint.
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Position coordinates for a point on an expanding sphere.

Solution We may obtain the configuration constraint corresponding to a set
of Cartesian coordinates by placing the origin at the center of the sphere, as shown
in the sketch. The equation of a sphere describes the distance from a point on the
sphere to the center:

fx, y,z,) =x2+y*+ 22 =r(t)? =0.

The corresponding velocity constraint results from a differentiation of the configura-
tion constraint. This yields

, . , d _
xxX+yy+zz—r(t) E[r(t)] =0.

For cylindrical coordinates, we note that the radius of the sphere may be expressed
in terms of the transverse distance R and axial distance z by the Pythagorean theo-
rem. The configurational constraint therefore is

R2+z2—r@)?=0.

Differentiation of the configurational constraint leads to the velocity constraint that

RR+zz—r(t) %[r(r)] =0.

Example 6.2 Two bars, pinned at joint B, move in the horizontal plane subject
only to the restriction that the velocity of end C must be directed toward end A.
Determine the corresponding velocity constraint. Is this constraint holonomic?

Solution The position of each bar is uniquely specified by the coordinates
xg and yg of the pin connection and the angles of rotation ¢, and 6,; these are the
generalized coordinates we select. The given condition on the velocity of point C
may be written in vector form as
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Example 6.2 Generalized coordinates.

Ve =Vceéacs
which leads to the constraint condition
\.’C X fA /cC= (_)

We must express this condition in terms of the generalized coordinates. Because
points B and C are common to the same body, we have

Vo = g+ (0,k X Fo/p) = (Xg—10,sin0,)i + (¥ + 16, cos 8,) ].
Also, the position vector is

F4,c = —l(cos 0, + cos 0,)i —I(sin 8, +sin §,) /.
Hence, the constraint equation leads to

(Ve XFa,c) k= 1(yg+18,cos0,)(cos 8, +cos 6,)

—Il(x%g—10,sin6))(sinf;+sinb,) =0,
yg(cos B, +cos 8,) — Xg(sin 8, +sin 6,) + 16,[cos(6, —6,) +1] = 0.
The relation has the standard form of a linear velocity constraint,

ayXg+ay yg+a;30,+ay0,+b =0,
where
a, = —sinf,—sin#@,, ay; =cosf;+cost,,
ay;; =1[cos(8,—6,)+1], au=b;=0.
In order to test whether the constraint is holonomic, we shall first assume that it is

and then determine if any contradictions arise. Applying Eqgs. (6.4) in the present
case yields

af af, af, af;
a_x; =& ﬁ = £1412, G_(Qi = 8113, 3‘0—12 =g1a4=0.

Integrating the first with respect to xp yields

J1=—(sinf,+sind,) fgl dxg+hy(yg,0,,0,),
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where /4, is an arbitrary function. In contrast, integrating the last assumed equality
leads to

J1=hy(xp, y8,61),
which states that f; must be independent of 8,. Clearly, this is incompatible with the

first form of f. We therefore conclude that f; does not exist, which means that the
constraint is nonholonomic.

6.3 Virtual Displacements

The concept of virtual movement of a system plays a central role in the
kinetics principles of analytical mechanics. In a sense, the word “virtual” may be
thought to mean “fictitious” or “artificial.” It represents an alteration of the system’s
position that would result if the values of the generalized coordinates were changed.
However, before we formally define the concept, it is useful to contemplate the rea-
sons why we should consider altered positions of a system.

Recall that the path a system follows through its configuration space depends on
the forces that are applied to the system. Suppose we consider two such paths, as
shown in Figure 6.11. It is natural for us to contemplate which aspects cause there to
be a difference between the positions on either path at a specific time instant. If we
consider alternative paths in the configuration space that are infinitesimally close, we
can use differential calculus to evaluate the change in any quantity associated with
alternative positions. Thus, if 7 is the position of the system at time ¢ when it follows
one path, then the corresponding point on another path will be 7+ 67, where the

q3

Alternative system
positions at time ¢

Path due to force
system F,

Path due to fdrce
system F,

9
92

Figure 6.11 Virtual displacement in the configuration space.
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symbol § is our way of indicating that we are considering infinitesimally different
states at a specified time. Because the unit vectors é; are mutually orthogonal and the
generalized coordinates are the components of 7, we have

M
Jj=1

The foregoing equation may be stated in words as follows.

* In a virtual movement, the generalized coordinates of the system are con-
sidered to be incremented by infinitesimal amounts 6q; from the values they
have at an arbitrary instant, with time held constant.

If this change were actually introduced into the system, physical points in the
system would move by an infinitesimal amount. The term virtual displacement refers
to the movement of the system in the physical three-dimensional space correspond-
ing to a change in the configuration space position by 7. These are not actual move-
ments. Nevertheless, the similarity between virtual and actual differential displace-
ments helps us to evaluate virtual displacements. Such an evaluation is an important
aspect of an analytical approach to the laws of mechanics.

6.3.1 Analytical Method

In order to characterize a virtual displacement, consider an arbitrary point
A in a system at a specified time 7. The position vector 74 o relative to a fixed origin
depends on the generalized coordinates and time, so

’-'A/O=’-'A(QI,‘12,~--,QMJ)~ (6.9)

In a virtual movement of the system, the generalized coordinate values are incre-
mented by éq,, 8¢, .... The analytical method for virtual displacements evaluates
the change in position resulting from these increments by differentiating an algebraic
expression for position, such as Eq. (6.9).

Recall that time is held fixed at arbitrary ¢ in a virtual movement. This is signifi-
cant for two aspects of Eq. (6.9). First, because ¢ is arbitrary, the generalized coor-
dinates have arbitrary values; this means that the generalized coordinates must be
treated as algebraic, rather than numerical, parameters. Also, since time is held con-
stant, the explicit dependence of 7,5 on ¢ should not be considered.

The change in the position of point A4 in a virtual movement is the virtual dis-
placement 67,. Differentiation of Eq. (6.9) with ¢ held constant shows that
M oo7,
¢ BrA j§| aqj
If the position of point A4 is described in terms of Cartesian coordinates, then the
component form of the virtual displacement of the point is
M

[aﬁh aﬁj+aﬁ ] 8q;. (6.10b)

dq i aqj 3qj
One could alternatively express the position of point 4 in terms of a set of curvilinear
coordinates or path variables, in which case the equivalent of Eq. (6.10b) would need
to recognize the variability of the associated unit vectors.

5q;. (6.10a)
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Before we apply these relations we shall develop Eq. (6.10a) by a different method,
one whose viewpoint ties into the earlier discussion of alternative paths in the con-
figuration space. Suppose we consider two kinematically admissible displacements
of point A at an arbitrary instant ¢, each of which could be produced by applying a
different set of forces to the system. Let superscript (1) or (2) denote variables asso-
ciated with each set. The chain rule for differentiation indicates that the differential
displacement in each case is

) _
arf = 3 200 g0 00 gy, =12, (611
j=1 J

The difference between the two possible displacements is

M 5F
=(2 =(1 A/0 2 1
diP —dF{d = ) 0. (dg;” —dgq;"). (6.12)
j=1 94;
If we define the difference between the differential increments in the generalized coor-
dinates as the virtual increment, that is,

8q;=dq® —dq", (6.13)
then we recover Eq. (6.10a). This strengthens our earlier observation:

¢ When we form a virtual displacement, we are studying the differences in the
movement of a system that possibly could result from the action of different
sets of forces.

Equations (6.10) are the essence of the analytical approach to evaluating the vir-
tual displacement of a point. They require that the position coordinates of a point be
expressed as algebraic functions of the generalized coordinates. (Such dependencies
may usually be obtained from the laws of geometry.) As mentioned earlier, the origin
O should be selected to be an actual fixed point in the system, in order to assure that
the expression for 74, is actually an absolute position.

It will be necessary in many cases to express the change in the angles of orienta-
tion of various bodies in the system. This will usually involve using the law of sines
and/or cosines to relate such angles to the generalized coordinates. We may then
evaluate the virtual rotation by a differentiation process, such as that followed in
Eqgs. (6.10). Two cases arise, depending on whether the angle of orientation is ex-
pressed in explicit or implicit form. Let 8 be the angle of orientation. In the explicit
case, 8= f(q1, 9>, ..., qum, t) has been determined. Then

2 6.14
¢ ,El a (6.14)

The case where 3 is known implicitly has the functional form 4(8, gy, ¢, ..., qup, t) =
0. The virtual change in the function A resulting from incrementing all variables
except time is

M dh
sh=9" s34+ q;=0,
aﬂ B8 121 3
which yields
an\' M an
. 53:—(—) == 5q;. (6.15)
%) = g,
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Example 6.3 The horizontal distance x between pin A and roller B is selected as
the generalized coordinate for the parallelogram linkage. Describe the virtual dis-
placement of pin F and the virtual rotation of bar EF resulting from a virtual incre-
ment 6x.

Example 6.3 Generalized coordinates and geometry.

Solution Virtual displacements are found in the analytical method by dif-
ferentiating expressions for the position parameters. We place the origin at pin A
because that is the only fixed point in the system. The horizontal and vertical dis-
tances between two joints on a diagonal bar are x/2 and (/2 —x?%/4)"2, respectively,
S0

= Cos_l<i>, TF/a = §7+%(412—x2)1/2f-

2/
Then
_d a1 X _ ox
60—dx[cos <21>]8x— ———(412—x2)‘/2’
- d ,_ 1 3x T
6rF=E(rF/A)6x=[Ez-mj]6x.

6.3.2 Kinematical Method

The analytical method for evaluating virtual displacements relies on the laws
of geometry for the derivation of differentiable expressions for position. Simple sys-
tems, such as those whose parts form isosceles triangles or right angles, are relatively
easy to describe geometrically. However, increasing the complexity of the geometry
can lead to substantial complication.
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Figure 6.12 Typical linkage.

Consider the common task of evaluating the velocity relationships for a linkage
such as the one in Figure 6.12. We could, in principle, write general expressions for
the position of the joints, and then differentiate those expressions with respect to
time in order to determine the velocity. However, to do so would ignore other kine-
matical techniques that expedite the analysis. The kinematical method for virtual
displacement employs such techniques.

The essence of our approach is to recognize the analogous relationship between
virtual and real displacements. Suppose that the position coordinates of some point
A in an arbitrary system were known as a function of the generalized coordinates
and time. Then the velocity of this point would be

dry, M 3F, o7,

Vy= r _j=l 3, g+ T (6.16)

The actual displacement of this point in an infinitesimal time interval d¢ would be

M 57, oF,
Fi=1V = — 4 —— dlt. 17
drA V4 dt Igl aqj dqj + 3 d (6 )

This expression is reminiscent of Eq. (6.10a) for virtual displacements. One dif-
ference is that the infinitesimal increments in the generalized coordinates were de-
noted as d¢; for virtual increments, whereas they are now dg; for actual increments.
Another difference is that, by definition, time is held constant in a virtual change.
Hence, Eq. (6.10a) does not contain a time derivative term. However, the time deriv-
ative term also is not present in the case of a time-independent system in which all
kinematical conditions imposed on the system do not change with elapsed time.

This similarity between 674 and dr, can be exploited. Suppose we perform a con-
ventional velocity analysis of v, at an arbitrary position and time. If the system is
time-dependent, we retain in that expression only those terms that are proportional
to the generalized velocities. The result, which we denote as v, represents the velocity
resulting from changes in the generalized coordinates with the physical constraints
imposed on the system held constant. Hence, the “velocity” will be
M 3F, .

. o= YA, (6.18)
. IZ:I dq;
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This expression for v is identical to Eq. (6.10a), aside from the presence of general-
ized velocities instead of virtual increments. Thus:

¢ An expression for a virtual displacement may be obtained directly from
a velocity relation by replacing generalized velocities §; with virtual incre-
ments 8q;. The only restriction on this approach is that, when a system is
time-dependent, all terms in the velocity that do not contain a generalized
velocity should be dropped. Alternatively, the velocity analysis for a time-
dependent system may be performed by holding constant those features that
change with time in a specified manner.

As an example, suppose the generalized coordinate for a particle as it moves along
a specified path is the arclength s. Then the path-variable formula for velocity leads
to

6FA = 6Sé,.

In the same way, the velocity formulas in cylindrical and spherical coordinates may
be adapted to virtual displacement, as follows.

(a) Cylindrical coordinates:
6;‘A = 5RéR +R 69é9+ (SZE;

see Figure 6.13(a).
(b) Spherical coordinates:

0Fy = ore,+ropé,+ (rsin o) 60é,;
see Figure 6.13(b).

Similarly, we may relate the virtual displacements of two points in a rigid body
by modifying their velocity relationship. Let 58 represent the infinitesimal rotation
(a vector quantity, according to the right-hand rule) in a virtual movement. In the
velocity equation for rigid-body motion, we replace velocities of points by virtual
displacements, and angular velocity by virtual rotation. The result is that

OFp = 0F4+ 60 X Fyg,y. (6.19)

The only subtlety involved in using this concept is the question of eliminating the
effect of time-dependence of the constraints. The velocity analog must have been
obtained for the time-dependent version of the constraint condition. For example,
if the transverse distance R in cylindrical coordinates is constrained to be a specified
function of time, then the velocity equation for a time-independent constraint would
hold R constant at an arbitrary value, very much like a partial derivative. The result
would be

V5 = ROéy+ 2k = 6F,= R60é,+6zk.

The primary utility of Eq. (6.18) is that it leads to techniques for virtual displace-
ments that parallel those for velocity analysis. Notable among these is the method of
instant centers, which is particularly useful for planar situations involving linkages
and rolling without slipping. As an illustration of this concept, consider the linkage
in Figure 6.14. This system was considered earlier in the discussion of generalized
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(b)

Figure 6.13 Virtual displacement in curvilinear coordinates.
(a) Cylindrical coordinates. (b) Spherical coordinates.

coordinates. Let us first consider the case where the movement of end C is specified,
so that s-(¢) is known. Then the linkage has only one degree of freedom. We select
s4 as the generalized coordinate. Because the movement of end C is specified, we
hold that end fixed in a virtual displacement, és4 = 0.

In order to exploit the analogy between virtual displacements and velocities, we
perform an instant center analysis based on end C not moving from its current posi-
tion. The corresponding instant center for the virtual movement is at point D for
bar AB and at point C for bar BC. (Note that the virtual rotation depicted in the
figure corresponds to an increase in the generalized coordinate s4. We make it a stan-
dard practice to depict positive increments of the generalized coordinates in order
to avoid sign errors.)

The laws of trigonometry yield the distances /4 and /p in terms of s4, s¢, and the
system parameters 8, L;, and L,. Then the desired virtual displacements may be
constructed by considering the virtual movement of bar AB to be a rotation about
point D. This yields

6SA=—IA60, |6fB|=1360=L26¢
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Figure 6.14 Instant center analysis of virtual displacements.

These relations may be solved for the virtual rotations:

lg
LWL,

If we were to use these expressions in the context of an overall formulation of the
equations of motion, we would need to employ the expression for /4 and /5 in terms
of s4 and sc. The derivation of such expressions is not a trivial task, but at least
the kinematical method avoids the need to differentiate the corresponding position
vectors.

A significant aid to the kinematical method is the principle of superposition, which
permits the effects of changing each generalized coordinate to be considered indi-
vidually. Indeed, the basic relation, Eq. (6.10a), represents a superposition of virtual
displacements, since it may be rewritten as

0=—Lss, sd=——2ss,
Iy

04,0

M
j=

The jth contribution, (67,) j, is the virtual displacement obtained when only the cor-

responding g; is incremented. This converts the kinematical analysis to investigations

of a sequence of one-degree-of-freedom systems associated with each generalized

coordinate. The overall virtual displacements would then be obtained by a vectorial

superposition of the individual contributions.

The linkage in Figure 6.14 can serve also to illustrate the superposition principle.
Suppose now that the collars at both ends of the linkage slide without constraint over
their guide bars. The total virtual movement of the system is the superposition of the
effects of incrementing s, and sc. The first increment was treated previously. A com-
parable analysis could be performed to increment sc with s, held fixed. The overall
virtual displacements and rotations would then be the vector sum of the individual
effects.

Example 6.4 The crankshaft AB is given a virtual rotation ¢ when it is at an arbi-
trary orientation ¢. Determine the corresponding virtual displacement of the piston.
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Example 6.4 Kinematical parameters for
virtual displacement analysis.

Solution This linkage has one degree of freedom because the other angles
may be evaluated when ¢ is known. Specifically, the law of sines gives
sinf = (a/b)sin¢.

We could use the method of instant centers to evaluate the virtual displacement. For
variety, let us use a vectorial kinematical analysis. We employ Eq. (6.19) to relate the
virtual displacement of each constrained point in the linkage. For the coordinate
system shown in the sketch, we have

6"_3 = 6¢('—'E) XFg/q= ch'i‘bo(,z))(fg/c.

Because the piston is only free to move up and down, we have 67 = 6 J. The last
step before evaluating the constraint equation is to express the position vectors solely
in terms of the generalized coordinate ¢. Using the Pythagorean theorem to deter-
mine the vertical component of 7z, yields

Fpa=(asing)i+(acosd)j, Fgc=(asing)i—(b>—a®sin®p)"?].
Substitution of each term into the linkage equation leads to
5 [(acos¢)i—(asing)j] = brcj+060[(b2—a’sin ¢)V2i+ (asin ¢)/].
Equating like components leads us to two scalar equations:
8¢ (acosd) = 80(b%—a?sin? ¢)V?,
d¢(—asin @) = br-+66(a sin ¢).

We solve the second equation for ér- and use the first equation to eliminate 86, with
the result that

acos¢o
(bz_az Sinz ¢)1/2

o =—(a sin¢)[l+ ]6¢f.
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Example 6.5 In the position shown, gear B is falling as it rolls over gear A, which
is rolling over rack C. Generalized coordinates are the horizontal distance x to gear
A and the angle of elevation 6 for the line connecting the centers. Determine the vir-
tual displacement of the center of each gear and the virtual rotation of each gear
resulting from virtual increments in the generalized coordinates.

7

Example 6.5

Kinematical parameters.

Solution The analogy with the relative velocity equation is useful for eval-
uating virtual displacements of rolling bodies. We shall use the vector equations to
satisfy the constraint that the virtual displacements of contacting points must match
because the gear teeth prevent slippage. We therefore write

6fc=(—), 6fA=6XIT=60A/;XFA/C, 5f8=5fA+60EXFB/A,
6FD=5FA+60AEXFD/A =6FB+603EXFD/B.

Note that the angles of rotation of the gears, 64 and 8, are different variables from 6.
We describe the position vectors in terms of 6 and x:

Fa/c = Rj, Fpia = —Fp/p = 3Fp/4 = (Rcos0)i+(Rsinb).
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Then, matching the two expressions for 674 leads to

éx
664 = ®

Using 7g,4 to construct the virtual displacement of the center of gear B yields
8Fg = [8x —(2Rsin8) 60]i + (2R cos 0) 86,

which, when substituted into the two descriptions of the virtual displacement of the
contact point D, yields

8Fp = [6x —(Rsin0) 60,4]i+ (R cos0) 86, j
=[6x—(2Rsin0)80)i+ (2R cos0) 86+ [(Rsin@)i— (R cos8)j] 60p.
Matching either set of components in the foregoing leads to
—60,=—-260+060p = 605=260—0604=260+(1/R)6bx.

6.4 Generalized Forces

The selection of a set of generalized coordinates, and the evaluation of the vir-
tual displacements in terms of those quantities, are primary aspects of the Lagrangian
approach to the derivation of a system’s equations of motion. It is necessary to rec-
ognize which parameters are appropriate to the kinematical description. By doing so,
we create the model upon which the rest of the analysis will be based. The kinematics
phase of the formulation is essentially complete when the physical velocities and
virtual displacements have been related to the generalized coordinates. The kinetics
principles, which we shall derive in the following sections, tend to be much more
straightforward. The first task is to represent the effect of the forces exerted on a
system.

6.4.1 Virtual Work

Consider the particle in Figure 6.15 that is subjected to a variety of forces.
When this particle is given a virtual displacement 67, the forces acting on the particle
do virtual work, denoted 6W. Because the virtual displacement is infinitesimal, the
virtual work is also infinitesimal. Also, because the change is virtual, time is held
constant at an arbitrary value. This means that the force is constant throughout the
virtual displacement.

z

y F
x 1

Figure 6.15 Virtual work of forces on a particle.
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The virtual work of the force system in Figure 6.15 may be evaluated by taking
the dot product o_f oF with each individual force. Alternatively, the resultant of the
force system, X F, may be formed first. Thus,

oW = Z(E-&Fi) =(X F)-6oF.

Equation (6.10a) for virtual displacement then yields

= o OF
W= F-3 —dq, (6.21)
j=19g;
The resultant force may be brought inside the sum over the generalized coordinates,
with the result that

M« gz OF
W= (S F-<)bq;. (6.22)
j=1 aq;

Equation (6.22) shows that virtual work is a sum of force terms multiplying the virtual
change in each generalized coordinate. A generalized force, denoted Q;, is defined as
the coefficient of the corresponding increment é¢; in the expression for virtual work.
Thus

M
¢ W =13 Q,5q;. (6.23)
j=1

A comparison of Eqs. (6.22) and (6.23) shows that, for a single particle,

- oF
¢ =S F.2
0,=3F 5

(6.24)
One reason for calling Q; a generalized force may be recognized from Eq. (6.24).
Suppose that Cartesian coordinates (x, y, z) are selected as the generalized coordi-

nates. Then
oF - oF - ad

— =1 _=J9 —=/€9

dIx dy z

~t

so that
Q1=2F'7=2Fxr Q2=2F'j=2Fya Q3=2F'E=2Fz-

In other words, the generalized forces in this case are the force components in the
respective directions. Equation (6.24) is an extension to the case where the general-
ized coordinates are any type of geometrical variable. For example, if g; is an angle
of rotation, then Q; will be a moment. (This is recognizable from the fact that 6W in
Eq. (6.24) must have units of work.)

A different reason to call the coefficient of 4¢; in Eq. 6.24) a generalized force
may be seen by returning to the configuration space. Let F denote a vector in that
space that is defined to represent the effect of forces acting on the system. Because
67 describes the virtual movement of the system, it is reasonable to define this vector
so that the work it does in the virtual movement is the same as the virtual work done
by the actual forces in the physical space. Thus, we define F to satisfy

SW = F.6F. (6.25)
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The components of 67 are the virtual increments 8g;, so Eq. (6.25) for $W will match
Eq. (6.24) if the components of F are the generalized forces, that is, if

X M
F=0Q16+ Q26+ =3 Q;é,. (6.26)
=1

In general, the evaluation of the generalized forces corresponding to the physical
forces applied to a system rests on the definition in Eq. (6.23). However, shortcuts are
available to handle two special classes of forces: reactions and conservative forces.
These are the subjects of the next sections.

6.4.2 Relation between Reactions and Constraint Conditions

The terms “reactions” and “constraint forces” are synonyms we employ to
describe the forces required to enforce constraint equations. We will see that it is
possible to describe the influence of such a force based solely on knowledge of the
Jacobian constraint matrix.

We begin by considering the case where a particle is constrained to move along a
specified curve. As shown in Figure 6.16, this situation leaves only a single degree of
freedom, for which the arclength s is a convenient generalized coordinate. The resul-
tant force may be resolved into tangent, normal, and binormal components. The
latter two are constraint forces because they prevent the particle from moving per-
pendicular to the path. In a virtual movement that increases s by és, the particle
moves in the tangential direction by that amount, so 67 = ésé,. The corresponding
virtual work is 8W = F, §s, because the virtual displacement is perpendicular to the
normal and binormal force components.

Starting
position

Fixed
path

Figure 6.16 Virtual work in movement along a constrained path.
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This result, that the reactions do no virtual work, is not a chance occurrence. In
fact, we consider it to be the hallmark of a reaction.

¢ A force acting on a system is a reaction associated with a constraint condi-
tion if, and only if, it does no work in a virtual movement of the system that
does not violate the constraint condition.

An important corollary comes from the observation that unconstrained generalized
coordinates satisfy all constraint equations. Thus:

¢ The virtual work done by the reactions is always zero in a holonomic system,
provided that the motion of the system is described by unconstrained gen-
eralized .coordinates.

In order to establish how reactions enter into the generalized forces when the gen-
eralized coordinates form a constrained set, we return to the configuration space.
Let R be the configuration space vector representing the generalized forces attrib-
utable to constraint condition i. The component R{" of this vector is the contribu-
tion of the reaction associated with this constraint to the jth generalized force. Be-
cause a reaction force does no work in a virtual movement that is consistent with the
corresponding kinematical restriction, we conclude that R must be perpendicular to
any 6F that satisfies the ith constraint equation. Thus, if 67 satisfies constraint equa-
tion i, we have

. M .
RV.6¢ =3 R 8q;=0. (6.27)
Jj=1

We now consider which condition 67 must satisfy in order to satisfy a constraint
equation. Equation (6.5) is the Pfaffian form of a general velocity constraint. Time
is held constant in a virtual displacement, so we set df = 0 and replace all differential
increments by virtual increments. Thus, Eq. (6.5) requires that the components of

6F in the configuration space satisfy

M
> a;i(q1, g2, -, qu» 1) 8q; = 0. (6.28)
j=

This has the form of a dot product in the configuration space. Let ¢ be a vector
whose components are the coefficients a;;, with i fixed:
, M
é(l) =a,~|é1+a,-2é2+--- = a,'jéj. (629)
j=1
Then any virtual displacement that is consistent with the constraint condition must
satisfy

a¥.6f =0. (6.30)

When the constraint is holonomic, we have a;; = 3f;/dq;, where f; =0 is the con-
figuration constraint. Because this represents the gradient of the constraint equa-
tion, we see that @) is normal to the constraint surface. It follows that Eq. (6.30) is
merely a restatement that 67 must be tangent to the constraint surface. When the
constraint is nonholonomic, there is no constraint surface, so we interpret @' as the
normal to the local manifestation of a constraint surface.
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The crucial aspect of Eqs. (6.27) and (6.30) is that both must be satjsﬁed fo; any
8F that is consistent with the constraint. This will only be true if R*) and @ are
parallel. We define the ratio of their magnitudes to be the Lagrange multiplier A;,
so that

R =), (6.31a)

The components of this relation provide expressions for the contributions of the
physical constraint force to the generalized forces,

* R =N\ay, j=1,2,..,M. (6.31b)

Equation (6.31b) enables us to describe the contributions of reactions solely by know-
ing the Jacobian constraint matrix, a;;, without actually evaluating the virtual work
done by these forces.

Let us examine a few situations that illustrate when constraint forces may be
avoided in the formulation. First, consider Figure 6.17(a), where two small spheres,
which may be modeled as particles, are constrained to move in the x-y plane. The
spheres are connected by a massless rigid bar. Because the bar is rigid, the uncon-
strained generalized coordinates are (x4, ¥4, ¢). The free-body diagram for each
sphere, Figure 6.17(b), shows that there is an axial force F exerted by the rigid bar
on each sphere. The position vectors for the particles are

fA=XA;+yAﬁ fB=fA+LéR.

¥ \E¢
¥ R

Ya

Xy

(a)

2
bx, \t — dy4
5yA — e_R
P R

T Txi A b9 L6o

bx,

(b)

Figure 6.17 Virtual work for connected particles. (a) Generalized coordinates.
(b) Virtual displacement.
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Because L is constant, the virtual displacement 675 differs from 67, due only to the
change in ¢. Thus,

6FA=6XAIT+6ij, 6FB=5fA+L6¢é¢
The virtual work done by the axial force is therefore
8W = (—Feég) -6+ (Fég)-6Fg = FLd¢ég-&, = 0.

The axial force does no work in this situation because it is the constraint force
required to keep L constant. If we wish to violate this constraint, we must employ a
set of constrained generalized coordinates. Suppose that (x4, ¥4, R, ¢) are used as
generalized coordinates subject to the constraint condition R = L. Then the virtual
displacements would satisfy

6FB = 6FA+6RéR+L6¢é¢,
so that
W = FéR.

If 8R # 0 - that is, if the constraint condition is violated - then F does virtual work.

The case where the spheres in Figure 6.17(a) are connected by a spring offers an
instructive contrast. Instead of being an unknown reaction that restricts motion, a
spring force is known in terms of position. There would be no constraints on the
motion of the spheres in this case, so the system would have four degrees of freedom.
The set (x4, ¥4, R, ¢) would then constitute unconstrained generalized coordinates.
When the spring force is written as F = kA = k(R — R,), the virtual work done by
the spring force is W = F6R = k(R —R;) 6R.

This system provides an important analogy for the general task of modeling. Let
the spheres represent two adjacent particles in a body. Correspondingly, the force
F represents the stress resultant exerted between them. When a body is considered to
be rigid, the internal stress resultants are equivalent to reactions that maintain the par-
ticles at fixed relative distances. These forces do no virtual work. In a deformable-
body model, the internal-stress resultants are equivalent to spring forces. An analysis
of such a system requires consideration of the deformation associated with internal
stresses.

Connections between bodies are an important element in most dynamic systems.
In the absence of friction (i.e., if the connection is ideal) then the reactions associated
with the connections will do no virtual work. In Figure 6.18, two bars are connected

S

— B,

Bl B2

Bar 1

X

Figure 6.18 Reactions for a pin constraint.
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A

Figure 6.19 Reactions for a sliding-collar constraint.

by a pin. Let B, and B, denote the connection point on the respective bars. The cor-
responding virtual work is

6W= (BXIT+Byj)'6FBl+(—BX;—Byj)’(SFBz.

The pin connection constrains the points to displace by the same amount. If that
constraint is not violated, then 67g, = 8Fg;, which leads to 6 = 0. Thus, if the sys-
tem is described by a set of unconstrained generalized coordinates, there is no need
to explicitly consider the pin reactions.

Another connection that is commonly encountered is a sliding collar, such as the
one in Figure 6.19. The collar can only move inward or outward relative to bar CD,
so the virtual displacements of point B, on bar CD, and of point B, on the collar,
satisfy

5F32 = 5?3] +5RéR

If the connection_is ideal then the only force that is developed at the collar is the
normal reaction N. The virtual work is therefore

oW = (Né¢)-5f31+(—Né¢)-6f32 = —(Né¢) ‘(6RéR) =0.

The reaction N is the constraint force enforcing the kinematical requirement that the
collar and bar CD execute the same movement in the direction normal to bar CD.
This condition was satisfied by the virtual displacement, so the reaction N did no
virtual work.

Suppose that friction is present. Then a friction force f parallel to bar CD would
act in opposition to the sliding motion. The situation appearing in Figure 6.20 is
based on the collar sliding outward, R > 0. The virtual work in this case would be

BW—_- (Né¢+féR)’6FBI+(—Né¢—féR)'5f32 = —f6R.

Hence, f does work in a virtual displacement that is consistent with the constraint
imposed by the collar. Note that friction does not represent a constraint force, be-
cause it does not prevent sliding motion. (The exception is static Coulomb friction.
However, in that case the connection acts like a pin, because the collar does not
move relative to the bar.)

Many other types of constraint forces could be considered at this juncture - for
example, the reaction forces associated with rolling motion. The normal force is a
constraint force that prevents interpenetration of the contacting surfaces. In the case
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A
Figure 6.20 Effect of friction in a sliding collar.

of no slipping, the tangential force developed by friction or gear teeth makes the
points of contact on the two bodies move by the same amount. Hence, it is also a
constraint force. It follows that the forces exerted between rolling bodies will do no
virtual work if there is no slippage. Conversely, the tangential force will do virtual
work when there is slippage, because it is then not constraining the motion.

These examples emphasize the fact that a reaction does no work in a virtual dis-
placement that is consistent with the constraint condition imposed by the force. We
also see that some internal forces exerted between parts of a system do virtual work
(friction and elastic forces in the examples). Thus, before using the theorem regard-
ing virtual work done by reactions, it is important to characterize the various forces.
Free-body diagrams are valuable aids for this task.

Example 6.6 A force F having constant magnitude is applied to end C of the link-
age such that it always is perpendicular to link BC. Consider the alternative choice
for the generalized coordinate as either the angle ¢ or the distance x. Determine the
corresponding generalized force.

i

Example 6.6

Solution The virtual work done by the external force at end C is F-67c.
Our selection of the generalized coordinate affects the description of both F and
67, although the latter is directed along the x axis in any case. When ¢ is the gen-
eralized coordinate, the analytical method for virtual displacement gives
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Kinematical parameters.

F=—(Fsing)i—(Fcos¢)j,  Fesqa=(2Lcos)i

0rc/a
aé

The corresponding virtual work is
8W = [—(F'sin¢)i—(Fcos $)j]-(—2Lsin¢ 8¢i) = 2FLsin’ ¢ 6¢.
Matching this to the standard form 6W = Q, 6¢ then yields
Q,=2FLsin*¢.

When x is used as the generalized coordinate, the virtual displacement of point
Cis

oFc = 8¢ = —(2L sin ¢) di.

5fc = 6Xl_

We must describe the components of F in terms of the generalized coordinate. The
angle ¢ is related to this generalized coordinate by

_ X o1 {0 x2\2
cos¢—2L, smd>—L(L 4) ,

so the force is

B _ F 2 x2 1/27 X 3
F= L[(L 4) 1+21.

The virtual work in this case is

Matching the two expressions for W yields

F 5 x2 172
= LX)
0. L( 4>

Example 6.7 A horizontal force F(¢) is applied to the end of the compound pen-
dulum whose pivot is given a specified horizontal displacement x(¢). Generalized
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Example 6.7

coordinates are the absolute angle of rotation 6, for the upper bar and the relative
angle 8, for the lower arm. Determine the corresponding generalized forces.

Solution The virtual work is

oW = F.5Fc.
We shall employ the analytical method to determine the virtual displacement. The
position of point C with respect to the fixed support is

Feso =[x+ Lsin6,+ Lsin(8,+6,)1i+ [L cos 6,+ L cos(8,+8,)1/.

It is important to the evaluation of virtual displacement that time be held constant.
Hence, in this evaluation collar A4 is held stationary, 6x = 0. The chain rule for dif-
ferentiation then yields the displacement resulting from virtual increments in 8, and
f,, according to

_ _ OF¢cio drc/o
O = o6 66
e =3, %" 39, °%
= L{[cos 8, +cos(8,+8,)]i —[sin 8, +sin(8, +6,)} } 66,
+ L{cos(8,+8,)i —sin(6,+0,)j150,.

Because the force F is horizontal, F = Fi, only the horizontal component of &7
affects the virtual work:

8W = FL[cos 0+ cos(8,+6,)] 660, + FL cos(6,+8,) 56,.

We identify the generalized forces by matching these coefficients of 66, and 86, to
the definition,

oW = Ql 601 + Q2 602
This yields
Q, = FL[cos0;+cos(8,+6,)], Q> =FLcos(6,+6,).
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These expressions have a simple interpretation. Note that L cos8,+ L cos(6,+6,)
is the lever arm of F about collar A, whereas L cos(6,+8,) is the lever arm of the
force about pin B. Correspondingly, Q, and Q, are the moments about the respective
points.

Example 6.8 A cable is tied to pin B on pinion gear A. A tensile force F is applied
to the free end of the cable so that the cable remains horizontal. Determine the gen-
eralized force corresponding to the choice of rotation of gear 4 as the generalized
coordinate. The gear rolls without slipping.

Example 6.8

Kinematical parameters.

Solution 1t is important to remember that evaluation of generalized forces
must be performed on the basis of the system’s arbitrary position. Thus, we draw a
sketch with the radial line to the pin rotated by an angle # away from the vertical.
The kinematical method is appropriate for the description of rolling motion. The
analogy with a velocity analysis, combined with the observation that contact point
C does not slip when its constraint condition is satisfied, leads to

BFC=(-), 6fA=(sxAlT=60(—E)fo/c, FA/C=RJ_"

6Fp = 6F4+00(—Kk) X Fg,4, Fp/a = €l(sin )i+ (cos0) 1.
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Substitution of the position vectors yields
dx,= R0, 8Fg = [(R+¢€ cos 8) — (e sin )] 89.
The cable is maintained at a horizontal orientation, so the corresponding virtual
work is
8W = Fi-6Fg = F(R+€ cos 0) 66.
Matching this expression to the standard form éW = Q, 86 leads to
O,=F(R+ecost).
This term is recognizable as the moment of F about contact point C. In fac_t, an
easier approach to solving this problem is to replace the cable force by force F and
clockwise couple Fe cos@ acting at point A. Then, the virtual work is the sum of

work done by the moment in a virtual rotation ¢ and work done by the force Fina
virtual displacement of point A by R §9.

Example 6.9 Consider the bar, which is constrained by collars to follow the guide
bars. Use x4 and 6 as a pair of generalized coordinates that are subject to the con-
straint condition that collar B must follow its guide. Derive the contribution of the
reaction at collar B to the generalized forces by using a Lagrange multiplier. Then
compare that analysis to a formulation based on assessing the virtual work done by
the reaction force.

N
TN

L*XAA

Example 6.9 Configuration for arbitrary values of constrained
generalized coordinates.

Solution We place end A on the horizontal guide using x4, and then use 6
to determine the orientation of the bar. As shown in the sketch, end B then does not
contact the inclined guide bar because the generalized coordinates have arbitrary
values. We know that the reaction associated with a sliding collar is perpendicular to
the guide, and we show this force as N acting at end B.

To use a Lagrange multiplier to describe the contribution of this reaction, we need
the coefficients a;;, so we describe the constraint condition in velocity form. Accord-
ingly, we have

Va=X4i,  Vp=vpl—(cosB)i+(sinB)j],  Vg=V4+(—0k)XFp.
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For arbitrary values of x, and 8, the position vector is Pz, = —(L cos 8)i+ (L sin 8)J,
so the components of the velocity equations yield

—vgcosB =X,+L0Osin8,  vgsinB=L0cosh.

Because vg is not one of the generalized velocities, we eliminate it from these two
equations, with the result that

X4 sin B+ LA(sin 8 sin B —cosf cos B) = 0.
In terms of the standard form of a velocity constraint in Eq. (6.3), we find that
a;; =sinf, a); = L(sin@ sin B —cos 0 cos B) = —L cos(6+ B).
It follows from Eq. (6.33b) that the contributions of N to the generalized forces are
R{"=xsinB, R =—\Lcos(8+8).

The corresponding analysis considering the virtual work done by Njp begins by
describing the virtual displacement of end B. The position corresponding to arbi-
trary values of x4 and 6 is

Pg/0 = (x4—L cos0)i+ (L sin6)},
from which it follows that

0Fg/0
a0

The component representation of the force is
Np = Npl(sin B)i+(cos B)/],
so the virtual work done by this force is
W = Ng-8Fg = Ngsin B(6x,+ L sin 6 60) + Ny cos B(L cos 8) 56.

Collecting the coefficients of dx, and 86 according to the definition of generalized
forces, Eq. (6.23), yields

Rl(” = Np, Ré” = NgL(sin 3 sin6+cos 8 cos @) = —NgL cos(5+0).

oF,
67’3 = B/0 5xA+

80 = dx4i+[(Lsin@)i+ (L cos8);]86.
BXA

A comparison of these generalized forces to the corresponding Lagrange multiplier
forms reveals that A; = Np.

It is instructive also to consider this holonomic system when it is described by a
single generalized coordinate, for which § would be suitable. Of course, the reaction
Ng would not enter the formulation because the constraint it imposes would be satis-
fied. However, suppose we consider some excitation force applied to the bar. Eval-
uating the virtual work of such a force in this case would require that we describe the
virtual displacement of the point at which the force is applied. This, in turn, would
require that we invoke the laws of trigonometry to express x4 in terms of 6. In con-
trast, using constrained generalized coordinates (as we did here) would enable us to
avoid such an analysis. In general, one reason for employing constrained generalized
coordinates to describe a holonomic system is that doing so might simplify the geo-
metrical analysis. This consideration is addressed in greater detail in Section 7.1.
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6.4.3 Conservative Forces

The ability to avoid the virtual work done by constraint forces in a compat-
ible virtual displacement substantially simplifies evaluation of the generalized forces.
Another simplification stems from the potential energy function associated with a con-
servative force. The work done by a conservative force is expressible as the difference
of the potential energy at two positions, W,_,, =V,—V,. The potential energy V
depends only on the position of the system, so it is an explicit function of the gen-
eralized coordinates. In a system whose constraints are time-dependent, the position
is also an explicit function of time, so that V =V(q,, g2, ..., @m, t)-

A virtual movement is obtained by incrementing each of the generalized coordi-
nates. The corresponding virtual work is found to be

oW = V(ql’ qzs .. s pms t)_V(ql+6ql9 q2+6q2’ [ERE) t)

M
j=19q;
The coefficient in 6W of each virtual increment dq; is the generalized force, so the
contribution of conservative forces to the generalized forces must be

ive) 14
j(conservanve - aq' . (633)
J
Of course, not all forces are conservative. The virtual work in a general situation

may be apportioned between conservative and nonconservative effects. The corre-
sponding expression for the generalized forces may be written as

14
* I(_total) - _ gq_
J

Here, and in all future developments, the symbol Q; without a superscript de-
notes generalized forces associated with forces that are not described by the poten-
tial energy. This provides a degree of flexibility. It is not necessary to formulate the
potential energy of a conservative force. If the nature of a force is uncertain, or if it
is straightforward to evaluate the virtual work of a force that is known to be con-
servative, then that force may be considered to be nonconservative. Hence, the gen-
eralized forces Q; describe all forces, conservative and nonconservative, whose effect
is derived from an analysis of the virtual work. Obviously, it would not be correct to
include the conservative force both in the potential energy and in the generalized
force Q;.

+0;. (6.34)

Example 6.10 The parallelogram linkage, which is situated in the vertical plane, is
steadied by identical springs that are fastened across the diagonals. The stiffness of
the springs is & and the springs are unstretched when the angle of elevation 8 = 90°.
The mass per unit length of each bar is ¢. Determine the potential energy of this
system as a function of 3.

Solution The free-body diagram shows the conservative forces exerted by
the springs and gravity. We designate the elongation of the springs (from their un-
stretched length) as A; and A,. The mass of each bar is gL, and the individual weight
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Conservative forces and kinematical parameters.

forces act at the center of mass of the respective bars. The elevation of the fixed
pins A and D provides a useful datum for the potential energy of gravity. The total
potential energy is the sum of the individual effects, so

V= %kA%+ —;—kAzz+ 2(0Lg)<—§4 sin B>+(0Lg)(L sin 8).

It still remains to express the elongations in terms of 8. For this, we note that
because ABCD is an equilateral parallelogram, the diagonals intersect perpendicu-
larly and bisect the interior angles. Thus, v; = 3/2 and v, = 90°— (/2. We form the
elongation at each spring by subtracting the unstretched length L, from the respec-
tive diagonal length, with the result that

Ay =2Lsiny,—Ly=2Lcos(8/2)—L,,
A, =2Lsiny,;—Ly=2Lsin(3/2)—Ly.

The value of Ly was not given explicitly. Instead, we were told that A; = A, = 0 when
B8 =90°, from which we find that

Lo=2Lsin45°=v2L.

When we substitute the expressions for A, and A, into V, we obtain
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2 2
kLZ[Zcosg—\/f] +%kL2[2sin§——\/§] +2gL%gsinB

N —

M| —

kL? [8 - 4\/5(005 g +sin g)] +20L%gsin 8.

6.5 Hamilton’s Principle

We will soon see that the equations of motion for a system of rigid bodies
may be obtained by evaluating a standard set of relations known as Lagrange’s equa-
tions. It is possible to derive the latter directly from Newton’s laws, which is the ap-
proach that Joseph-Louis Lagrange followed. Instead, we shall deviate from chro-
nological order and first derive Hamilton’s principle, which was formulated by Sir
William Rowan Hamilton. This principle has much wider applicability in that it is
also valid for deformable continuous media.

We begin by considering a single particle. Newton’s second law was reformulated
by d’Alembertt as

F-ma=0. (6.35)

The essence of this transposition is that it converts a dynamic system into a static
one, with —ma considered to represent an inertial force. The virtual work done by
this force system in a virtual displacement of the particle is

(F—ma)-6F = 6W—(ma-6F) = 0, (6.36)

where 6W is the virtual work done by the force acting on the particle. This expression
is reminiscent of an intermediate step in the derivation of the work-energy principle.
In a similar manner, we eliminate acceleration by introducing the rule for differen-
tiating a product; this leads to

d, . _d,
6W—E(mv-6r)+mv-—a—’;(6r) =0. (6.37)

The last term involves two types of derivatives: a virtual increment in which time
is held constant, and a true time derivative. The order in which these derivatives are
taken does not matter. To prove this fundamental property, we consider the particle’s
position to depend on M generalized coordinates and time. In that case we have

M
den="25 s
dtl laql
M a<Mar > a(Maf
= 6q; 6q>
Jj= laqj 121 aqz ’qj 12:1 aql

1 As explained by Rosenberg (1977), this is actually an oversimplification of d’Alembert’s prin-
ciple. Essentially, d’Alembert categorized forces as to whether they are the given forces induc-
ing the motion or constraint forces. He grouped only the given forces with the (—ma) terms,
and then employed the principle of virtual work for static systems. Because constraint forces
do no virtual work, this procedure enabled him to formulate equations of motion in which
only the given forces and inertial effects appear.
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We may take partial derivatives of the position vector in any order. Re-arranging
them such that the derivatives for the virtual increment are taken last leads to

M M =

d ar . Or dar _
(6 F) = < +—>6 i 6( ) &v. (6.38)

121 ag; 121 3q, 9 at dt
In other words, it does not matter whether the virtual increment or the time differen-
tiation is done first. With the aid of the foregoing, Eq. (6.37) may be rewritten as

6W—%(m\7-6r')+m\7-(6\7) =0. 6.39)

Aside from holding ¢ constant, the rules for a virtual increment are like those for a
differential. In particular, we may write that v-(6%) = 36(¥- ¥), from which it follows
that

SW+6T—m %(\7-6?) =0, (6.40)

where T is the kinetic energy of the particle.

We treat a system of particles by modifying Eq. (6.40). Let i denote the particle
number in the system. Then, addition of Eq. (6.40) for each particle leads to redefi-
nition of 7 as the kinetic energy of all particles in the system, and §W as the virtual
work done by all forces. The latter was decomposed by Eq. (6.34) into two parts.
The virtual work done by the conservative forces is the negative of the virtual change
in the potential energy. We henceforth restrict the symbol W to denote the virtual
work done by all forces that have not been described by a potential-energy function.
In that case, addition of Eq. (6.40) for each particle in the system yields

dt

The last step is to integrate over the time interval ¢, < ¢t < f,, where ¢, and ¢, are
arbitrary. Because the last term in Eq. (6.41) is a sum of perfect differentials, this
step leads to

t 1=t
f OT =V +8W)dt =S m;-57,|  =0. (6.42)
l i =1
This relation is best understood by considering the motion of the system through
the configuration space. In Figure 6.21, points P, and P, represent the values of the
generalized coordinates at the initial and final instants, #; and ¢,, respectively. The
solid curve C represents the actual evolution of the generalized coordinates as time
elapses. (The equations of motion have not been solved, so curve C is not yet known.)
Curve C’represents a kinematically admissible motion that would be obtained if the
set of external forces were infinitesimally different from their given values. Common
terminology states that curve C’ is the variational path, because it is obtained from
an infinitesimal variation of the generalized coordinates away from their values along
the true path C.

The virtual displacement imparted to each particle at each instant is arbitrary,
with two exceptions. Any change in the initial condition described by point P, would
produce a different state of motion. In other words, if the initial conditions are spec-
ified, then &7; = 0 for each particle at time ¢,. Also, the virtual displacement must be
such that the alternative curve C’ leads to the actual final position represented by
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Figure 6.21 Variational path.

point P,. In order to ar_rive at the true final positio_n P,, the virtual displacement
must be such that 67; = 0 when ¢ = ¢,. Because 67; = 0 for each particle at the initial
and final positions, Eq. (6.42) reduces to

t
N OT—8V+6W)dt =0. (6.43)
]
This is Hamilton’s principle, according to which the true path is distinguishable from
all possible variational paths by the fact that the time dependence of the generalized
coordinates and forces yields a zero mean value for 67— 6V + 6W.

Note that 67 and 6V represent virtual increments in the values of the correspond-
ing quantities at an arbitrary position, whereas there is no “work” quantity W from
which the virtual work of a nonconservative force may be derived. Suppose we con-
sider the restricted group of systems for which W = 0. Clearly, this can only be
the case if a system is conservative, but we must impose the further restriction that
the system be holonomic. Otherwise, the constraint forces will do work when the
generalized coordinates are given arbitrary virtual increments. Thus, in the case of a
conservative holonomic system, we obtain a more enlightening view of Hamilton’s
principle. Specifically, among all variational paths connecting the initial and final
positions, the true path is the one for which the action integral

t
1= «T=vyar (6.44)
4
is stationary, which means that it has an extreme value (maximum, minimum, or
inflection point).

It is logical at this juncture to question the significance of these results, since
Hamilton’s principle seems to represent only one relation. For example, the work-
energy principle AT+ AV = W®9 is not adequate by itself to solve problems involv-
ing several generalized coordinates. The difference is that Eq. (6.43) leads to many
relations, because the virtual movement is arbitrary except at the initial and final
instants. An infinite number of variational curves C’ can be constructed, and Hamil-
ton’s principle must be satisfied for each. For example, we can construct different
variational paths by holding constant all generalized coordinates except one, and
imparting any virtual change to the remaining generalized coordinate.
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In the next section, we will derive Lagrange’s equations for the generalized coor-
dinates in a system having a finite number of degrees of freedom. Systems containing
deformable bodies may be conceptualized as having an infinite number of degrees of
freedom. The equations of motion for such systems, which are partial differential
equations in space and time for the displacements, may be obtained by applying
the calculus of variations in conjunction with Hamilton’s principle. (Weinstock 1974
gives a good introductory treatment of the calculus of variations and its applica-
tions.) Also, for static systems, the kinetic energy vanishes and the system is inde-
pendent of time. Hamilton’s principle then reduces to

oV =8W, (6.45)

which is the principle of virtual work and stationary potential energy. It is particularly
useful for the analysis of statically indeterminate structures and machines.

6.6 Lagrange’s Equations

Hamilton’s principle may be specialized to a system having a discrete num-
ber of degrees of freedom by accounting for the functional form of the energies and
virtual work. The dependence of the kinetic energy may be recognized by consider-
ing an arbitrary particle k. The position 7 in a general situation is a function of the
generalized coordinates and time, 7, = 7 (qy, 42, .-.,» gar> t). We have seen on several
occasions that the corresponding velocity expression is a function of the generalized
velocities, as well as the generalized coordinates and time. We therefore know that
the kinetic energy may be an explicit function of the generalized coordinates g;, gen-
eralized velocities ¢;, and time ¢. Hence, the virtual change in the kinetic energy
resulting from virtual changes in the g; and 4, is given by

aT .
6T = E( 6qj aq.aqf)’ (6.46)
J

We seek to express 87 in terms of virtual increments in the generalized coordinates
only. We obtain such a form by using the interchangeability of a virtual increment
and a time derivative described by Eq. (6.38), which indicates that 6g; = (d/dt) éq;.
Then, manipulating the derivative of a product leads to

3T BT d
é
6T = ,En[ 1 q,>]
d [oT d (T
- 5g:1——(—)dq,|. 6.47
2[aq, dr(aq, "’) dt(aq) "’] ©49

The virtual change in the potential energy and the virtual work done by noncon-
servative forces were related previously to the generalized coordinates; specifically,
Jj=1 Jj=1
When these expressmns are substituted into Hamilton’s principle, the coefficients
of 6g; may be collected, with the result that

aMTIT d (9T 3V “ S d (9T
(-G rolos [ £ )0
‘[1 j=i1l9q; dt\aq, g, g o j=1 dt v (6.48)
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The second integrand is a perfect differential; its integration yields a sum of terms
(07/04,) dq; evaluated at ¢ = f, and ¢ = ¢,. According to the derivation of Hamilton’s
principle, the variational path must be such that the virtual displacement at the initial
and final instants is zero, so ég; =0 at t = ¢, and ¢ = t,. Consequently, the second
integral vanishes, which reduces Eq. (6.48) to

L MTIaT d<ar> v ]
(- )-=+Q;|8q;dt=0. (6.49)
f,, E.[aq,- ar\ag;) " aq; Y 9I|%%

Recall that the virtual increments assigned to each generalized coordinate in an
unconstrained set are arbitrary. In terms of the configuration space in Figure 6.21,
each variational path is obtained by assigning, at each time instant, a different set of
dq; to the generalized coordinates for the true path. Even if the set is constrained
(M > N), the increments assigned to any unconstrained subset of N generalized coor-
dinates is arbitrary, and the choice for generalized coordinates to form that set is
also arbitrary. The only way Hamilton’s principle can be satisfied under these condi-
tions is if the bracketed term in Eq. (6.49) is zero for each generalized coordinate.
This term forms Lagrange’s equations of motion:

4(ar) T, v

Note that the Lagrange equations yield M equations (usually differential) for the
M generalized coordinates. Suppose that a system is holonomic, so that a set of
unconstrained generalized coordinates can be selected. In that case, the number of
generalized coordinates matches the number of degrees of freedom, M = N. Also,
a virtual movement of the system associated with arbitrarily selected values for g;
satisfies all kinematical constraint conditions, so none of the (unknown) reactions
appear in the generalized forces. In this situation, Lagrange’s equations fully define
the motion of the system. In contrast, Lagrange’s equations must be supplemented
by other relations when the generalized coordinates form a constrained set. Con-
strained generalized coordinates must be employed when a system is nonholonomic.
Also, as we have seen in Example 6.9, they may be desirable for holonomic systems.
Consideration of these matters will be deferred until the next chapter.

An alternative form of Lagrange’s equations, preferred by some practitioners,
features the Lagrangian function £, which is defined to be

¢ £=T-V. (6.51)

=Q;, j=12,...,.M. (6.50)

The potential energy can depend only on position, so it is independent of the gen-
eralized velocities. Thus

aL _ aT aL _aT Vv

dq;, 9q;’ dq; dq; 9q;
from which Lagrange’s equations (6.50) convert to

d[aL L .

— == )-—=0;, j=1,2,...M. 6.52
* dt<aq,~> 3, Qi J (6.52)
Although Eq. (6.52) has one fewer term than Eq. (6.50), both require equivalent

mathematical evaluations. The primary reason for introducing the Lagrangian func-
tion is its utility for further development of principles.
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Figure 6.22 Force acting on a particle described by cylindrical coordinates.

The actual evaluation of either form of Lagrange’s equations for a specific system
is straightforward, provided that one is cognizant of the difference between partial
and total derivatives. For the partial derivatives, the generalized coordinates g; and
generalized velocities g; are treated like independent variables. In the derivative with
respect to time, all quantities that are time-dependent must be differentiated.

A simple example that demonstrates the equivalence of Lagrange’s equations and
Newton’s second law is a particle in spatial motion, under the influence of gravity
and a force F that is described in terms of its cylindrical components (Fg, F, F)).
Let the cylindrical coordinates (R, ¢, z) in Figure 6.22 be the generalized coordinates.
Because ¥ = Rép+ R¢é,+ 2k, the kinetic energy is

T =1m(R*+R%*$*+2?).

The partial derivatives are

a—T. =mR, —QI =mR?*$, T _ mz;
IR d¢ 3z

oT L oT aT
—=mR s — =0, — =0,

aR _"Re 56 -0 3770

The time derivatives of the first group of terms are
%(—g%) =mR, %(%) =2mRR¢ +mR?$, %(%) =mi
Let the datum of the conservative gravitational force be the x-y plane, so
V =mgz.
The virtual work done by the force F is
OW = (Frép+F,é,+F,k)-(5Rég+Ro¢pe,+6zk)
=FrO0R+F,R6¢+F,bz.

The generalized forces are the coefficients of the virtual increments of the generalized
coordinates in 6W. Thus,

Q1= Fp, Q= RF¢, QO3 =F,.
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The corresponding set of Lagrange equations is
¢1=R: mR—mR¢? = Fg;
g;=¢: 2mRRo+mR*$ = RF,;
gy =2z: mZz+mg=F,.

Each of these is merely Newton’s second law in terms of polar coordinates, with
the exception of the equation for ¢, which has an additional factor R. That form of
the equation results because Q, = RFy represents the moment of the external force
system about the z axis. Correspondingly, the left side of the second of Lagrange’s
equations is the derivative of the angular momentum, mR2¢, about that axis.

The steps we followed in this simple example parallel those for all systems for
which unconstrained generalized coordinates have been selected. The bulk of the
analysis usually lies in the kinematical analysis of the virtual displacements and ki-
netic energy. Then, after the potential energy and generalized forces have been deter-
mined, Lagrange’s equations directly yield the equations of motion.

Example 6.11 Determine the equations of motion for the homogeneous sphere of
radius r that rolls without slipping along the interior of the semicircular cavity. The
sphere is constrained to remain in the vertical plane shown.

Example 6.11 Free-body diagram.

Solution A useful generalized coordinate for this system is the angle 8 to
the center of the sphere. It was specified that the sphere rolls without slipping; this
constrains the absolute angle through which the sphere rotates. We impart to the
sphere a virtual movement that satisfies this constraint. The normal force N and
friction force f impose the constraint. Hence, they do no virtual work and will not
appear in the formulation. The only other force acting on the sphere is gravity. We
place the datum for the potential energy of gravity at the center of the cavity, because
that is a fixed point of geometrical significance. We therefore have

SW=0, V=mg{—(R—r)cos8],

where the negative sign in V" arises because the center of mass is below the datum.
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The kinetic energy is
T= %mv/‘%"' %Izzwz’
where I,, = %mr2 for a sphere. We must express v, in terms of the generalized coor-
dinate. Because the center of the wheel follows a circular path of radius R—r, we
write v4 = (R —r)8. We obtain an expression for « in terms of the generalized coor-

dinate by noting that the point of contact is the instant center. Hence, w = v,/r =
(R —r)8/r. The resulting kinetic energy expression is

_1 a2 (2, 2 R—r;\ _ 1 242
T—z[m(R r)0+<5mr>< P 0)]-10m(R r)-9-.

The kinetic energy is independent of 6, and the generalized force vanishes because
8W = 0. Therefore, Lagrange’s equation reduces to

d <£>+8—V=O = %m(R—r)2(§+mg(R—r)sin0=O,

dr\aé) o6
T & .
§0+R-—r sind =0.

The last form is recognizable as being comparable to the equation of motion for a
simple pendulum.

Example 6.12 The table rotates in a horizontal plane about bearing A due to a
torque I'(¢). The mass of the table is M and its radius of gyration about its center is
. The slider, whose mass is m, moves within groove BC under the restraint of a pair
of springs that are unstretched in the position shown. Derive the equations of motion
for this system.

Example 6.12 Free-body diagram.

Solution Our selection of generalized coordinates for this system is based
on observing that the table is in pure rotation, while the slider executes a rectilinear
motion relative to the table. Correspondingly, the generalized coordinates we select
are the angle of rotation, ¢, =0, and the displacement of the slider relative to the
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unstretched position of the springs, ¢, = s. The only nonconservative force that does
work when the generalized coordinates are given virtual increments is the torque
load I'(¢). Hence,

SW=T60 = Q =T(), 0,=0.
The Kkinetic energy is the sum of the values for the table and for the slider:
T= %(Izz)lable 92 + %mvSZ’

where (1,,)abie = Mk2 We relate ¥, to the generalized coordinates by using the rela-
tive motion equation, based on a moving reference frame xyz attached to the table.
Then

Vg = Vgt (V) xyz+ @ X Fyg = 0+ $j+ 0k X (li+ 57)
= —sOi+ (5+10)].
The kinetic energy therefore becomes
T = ;M«*0%+ 3m((s0)> + (5 +16)°]
= L(Mk*+ ms®+ mi*)0? + ms* + mlis.
It is a simple matter to derive the potential energy because the displacement s is, by
definition, the deformation of each spring. Therefore
V =2[1kA%] = ks?.
We must evaluate Lagrange’s equations corresponding to # and s. When we eval-

uate the various derivatives of 7, we must always be cognizant of the difference
between partial and total derivatives. Thus, we have

i(&_T) = i[(Mx2+ms2+m12)t9'+m1s']
dt \ 06 dt

= (M2 +ms®+miI*)0 + 2mss6 + mls,

d{aT\_d . . ... . ..
z(x)*z"””’"’”‘”’”'"”’

aT _ 3V _ or _ 452 9V _

30 9 O g T msth oy =

The corresponding Lagrange equations are
(M2 +ms*+ mi*)§+2mssé+mils =T,
ms+ milé — ms6*+2ks = 0.

Some of the terms in these equations may be understood intuitively. For example,
Mx?+ m(I?+s?) represents the total moment of inertia of the system about pivot 4.
The significance of other terms may be understood by resorting to Newton’s laws.
Specifically, when we isolate the slider from the table, we see that there is a normal
force exerted by the walls of the groove. This force is related to the acceleration of the
slider in the x direction through F = ma. In turn, the reaction to this normal force
exerts a moment about point A that must be considered in the equation of motion
for the table. These observations demonstrate that although Lagrange’s equations
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lead to the appropriate set of equations of motion, they often will not provide the
physical insight that we obtain from Newtonian methods.

In the preceding problem, the torque I' excited a generalized coordinate whose
equation of motion we wished to determine. When the excitation causes some part
of a system to move in a specified manner, the excitation is actually a reaction that
imposes a time-dependent constraint condition. In that case, Lagrange’s equations
may be used to obtain an equation for the reaction. To do so, we merely delay using
the fact that the motion is constrained until after Lagrange’s equations have been
formed. Thus, in the preceding example, if I' were stipulated to be the torque re-
quired to produce a constant rotation rate w, we would follow the same procedure
as used there to determine the equations of motion. Substituting § = » into those
equations would lead to an equation for I'.

If the system of interest contains a reaction that imposes a specific motion, and
we do not wish to obtain an equation for that reaction, we may simplify the analysis.
We do so by selecting a set of generalized coordinates that will satisfy the constraint
condition imposed by the reaction. Consider the previous example with I' specified
to produce a specified 6(¢), so that the system has only one degree of freedom. If we
select s as the only generalized coordinate then the torque will not arise in the formu-
lation. This aspect of the selection of generalized coordinates is featured in the next
example.

Example 6.13 A small sphere of mass m is suspended from the top of a hollow
pole through _which the cable passes. The cable’s free end is pulled inward by the
tensile force F, whose magnitude is a function of time, such that the length of the
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Example 6.13 Free-body diagram.
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cable is a specified function /(¢). The sphere is given an initial velocity that causes it
to rotate about the pole, as well as to swing outward from the pole. Determine the
equations of motion for the sphere.

Solution The position of the sphere relative to the pivot may be conve-
niently defined in terms of spherical coordinates, which are depicted in the free-body
diagram. However, the radial distance / is a specified function of time. Because the
problem statement did not request evaluation of the tension force causing this dis-
tance to change, we do not select / as a generalized coordinate. We therefore have
q1=¢ and g, =6. _

The only nonconservative force acting on the sphere is tension F. This force is the
constraint force that imposes the restriction that /(¢) is specified. Therefore, F does
no virtual work in a virtual movement that is consistent with the constraint, and

W=0= Q1=Q2=0.

This same result may also be obtained in another way. We know that / is a specified
function of time, and that time is constant in a virtual movement. When we employ
the kinematical method, we find that the displacement of the sphere resulting from
virtual increments in the generalized coordinates ¢ and 6 is

67, = 16¢&, + I sin ¢ 02,
Because F acts in the radial direction, we have F = —F@¢,. It follows that
W = f-67,=0.

That the length / is not constant affects the kinetic energy. The velocity in terms
of spherical coordinates is

v, = le, +I$é, + (16 sin p)&;.
The corresponding kinetic energy is
T = tm(V;- V) = sm(I?+ 122+ 126 sin* ¢).

The elevation of the pivot O serves as a convenient datum for gravitational potential
energy,

V =mg(—Icos¢).

The derivatives for Lagrange’s equations are

d (a—T> = 9 (mP2g) = m(12$+21ig),

dr\aé) dt
d [oT d .
4 (9T _ 9 (112 sin?
dr <ao> ar O S9)
= m(/%6 sin? ¢+ 21i0 sin? p + 2106 sin ¢ cos ¢);
aT aT _av

—— =mil%*?*sin ¢ cos ¢, [l = mglsin ¢, =0.

EP) 3¢ 30 30
Note that in these derivatives, / is held constant in the partial differentiations, whereas
the variability of / must be recognized when total derivatives are evaluated with re-
spect to . The corresponding Lagrange equations are
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1*¢+2lip —1*6*sin ¢ cos p+ gl sing =0,
%6 sin® ¢+ 21i0 sin? ¢ + 21%0¢ sin ¢ cos ¢ = 0.

We may verify that these equations are correct by recalling the relations for accel-
eration in terms of spherical coordinates. The first of the equations just displayed is
merely X F, = ma,, multiplied by a factor /. Similarly, the second equation is 3 F, =
ma,, multiplied by a factor /sin ¢.

It is possible to remove one equation of motion by a procedure that anticipates
the treatment of ignorable generalized coordinates in Section 7.3.2. We note that T
and V do not explicitly depend on 8, and that the generalized force Qy = 0. This
enables us to integrate the 0 differential equation with respect to time, with the result
that

0T _  op o2,

29 ml“0sin° ¢ = mp,
where (8 is a constant. The values of the generalized coordinates and generalized
velocities at the initial instant may be deduced from initial conditions, which must
be specified if the response is to be uniquely defined. We substitute these values into
the foregoing relation, from which we determine the value of 3 for the motion. This,
in turn, allows us to solve the expression for the precession rate corresponding to
any ¢:

-8
12sin2¢
Substitution of @ into the Lagrange equation for ¢ yields
. .. PB%cosé .

It is easier to solve this equation than the two Lagrange equations we obtained
originally.

Example 6.14 The linkage, which lies in the vertical plane, is loaded by a force
F(t) that is always parallel to bar BC. The torsional spring, whose stiffness is k, is
undeformed when 8 = 60°. Determine the equations of motion for the system.

Solution The angle @ defines the position of both links, so it is suitable as
the generalized coordinate. The reaction forces at pin 4 and collar C, which are
shown in the free-body diagram, do no work in a virtual movement that increments 6.
The weight of each bar, which we assume to be mg for each, is conservative. There-
fore, the virtual work is

6W=F'6FB

Because the linkage forms an isosceles triangle, we develop the virtual displace-
ment and velocity relations by the geometrical method. For 67g, we have

/4 = (Isin8)i+ (I cos 8),

575 = a;‘g*‘ 86 = [(/ cos8)i—(Isin8)]] 56.
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Example 6.14 Free-body diagram.

The corresponding virtual work is
8W = [(Fsin6)i—(F cos 0)j1-{(/cos8)i—(/sin8); 150
=2FIsinfcos666 = Flsin2066 = Q, 60,
so the generalized force is
Q, = Flsin 26.

Bar AB is in pure rotation about pin A, and bar BC is in general motion. The
kinetic energy is therefore

T =3(I4) apwip+3m(ve)sc+3Us)scwhe

where (I4) 45 and (Ig)gc are (respectively) the moments of inertia of bar AB about
end A and of bar BC about its center of mass, both about axes perpendicular to the
plane of motion. Thus,

1 1
(I)aB= 3’"12, Ig)pc = Emlz.

The angle 6 defines the orientation of each bar, s0 w p = wpe = 6. For the velocity of the
center of mass of bar BC, we write

(V) —df _4 lsin97+ 3 07—10'[( 6)i —(3sin6)j]
GBC_dt G/A—dt 5 l 2COS J —2 coson smdo)yl.

Thus the kinetic energy is
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T=l<lm12>0'2+lm 10' 2(coszli'+9sin2(9)+l L z)2
2\3 2 2 2\12
12522 5o
= 2mI 0 <3+Zsm 0).

The last step is to evaluate the potential energy. For this we observe that the tor-
sional spring is undeformed when 6 = 60° = #/3. (We assume that the spring con-
stant is expressed as moment units per radian.) Thus, the rotational deformation is
A = 60— 7/3. We place the datum for gravity at the elevation of the fixed pin, so that

1 / . 3/ 1 7\
V= —kAz — — = — —_— .
> +mg<2 c050>+mg<2 cosO) 2k<0 3> +2mglcosd

The derivatives of T for Lagrange’s equations are

_ci(&_T) -4 [m120’<z +25sin? 0)}
dt \ 06 dt 3

= ml"[é(% +2sin? 0>+402 sin 6 cos e],

% =2mi*§%sin 6 cosb.

The corresponding equation of motion is

m12[9<%+25in2 0>+92 sin 20] +k<o—§>—2mg1 sin @ = Flsin 20.

Example 6.15 The disk spins about shaft AB at the constant rate w;, whereas the
vertical shaft, to which shaft AB is pinned, precesses freely. The masses are m, for
the disk and m, for shaft AB. Derive the equations of motion.

Solution Specifying w; means that the spin angle ¢ is constrained, because
¢ = w,. Hence, locating the position of the system at any instant requires that we
determine the precession angle ¢ and the nutation angle 8. These are the parameters
we select as generalized coordinates for this two-degree-of-freedom system.

We have isolated the system in a free-body diagram, which is shown in side view.
If we neglect the inertia for the vertical shaft, there is no couple affecting the preces-
sion. Consequently, no virtual work is done in a virtual movement that results from
increments in ¥ and 8, W = 0, which leads to Q, = Q, =0.

Because pin 4 has a fixed position relative to the disk, we may formulate the
kinetic energy of each body relative to that point:

T = 3(Hy @) gisk + 3 (H 4 ®) shate-

We shall use the xyz coordinate system shown in the free-body diagram to formulate
the kinetic energy at the disk. (It is imperative to recognize that this coordinate sys-
tem is acceptable only because the disk is axisymmetric. Otherwise, we would need
to develop expressions based on the z axis being at an arbitrary spin angle relative to
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Example 6.15 Free-body diagram.
the vertical plane.) Because xyz are principal axes for both bodies, the kinetic energy
reduces to

T= %(Ixxwf' + Iyyw)% + Izzwzz)disk + %(Ixxw)zc + Iyyw)% + ]zzwzz)shafv

The angular velocity of the disk is the vector sum of the precession rate y/, the nuta-
tion rate 8, and the spin rate w, all of which must be resolved into xyz components:

@disk = YK +0(=J) +w (=1) = —[(Y cos 0+ w))i—j+ (¢ sin6)k].
The shaft is not spinning, so
@shate = — (4§ c0s 0)i— 0]+ (4 sin O)k.

We obtain the respective moments of inertia from the tabulated properties and the
parallel axis theorems. The result is

T = $(3mR*)(Y cos 0 + w))? + (3m R*+ m L*)[6%+ (y sin6)?]
+1(3myL?)[6% + (§ sin6)?],
where we have considered I, = 0 for the slender shaft.

When we place the datum for gravitational potential energy at the elevation of
pin A, we find that

V =mg(—Lcos 0)+m2g<—% cos 0> = —<m1+%m2>gL cosf.

For brevity, let us define the following moment of inertia parameters:

I =3mR? L= 4imR*+ (m)+1m,) L2
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Then, we have
d [oT d ; ;
= =)= =[I(y cosb+ 0+ 1,y sin’0
dt<3\l/> dt[.(\b s 0+ w;)cos 6+ 1,y sin” 0]
= I,(y cos? 0 —2y6 cos 0 sin@ — w,0 sin 9)
+ Ly sin2 04+ 21,40 sin 6 cos 6,

i<£>=ﬁ_([29)=[29, £=3_V=0’

dr\ a0 dt W oY

aT ; P iy .

¥T]) = Li(Y cos 0+ w)(—y sin@)+ I, (¥~ sind cos b),
14 1 .

20 = <m1+5m2>gL sin .

The corresponding Lagrange equations are
(I;cos? 0+ 1, sin® 8) —2(I; — I,) ¥ sinf cos @ — I,w,6 sin§ = 0,
L6+ (I = L,)y?*sin0 cos 0 + I w,§ sin @+ (m,+ tm,)gL sin6 = 0.

In order to recognize the physical significance of these equations of motion, sup-
pose that a nonconservative force were present. The generalized forces in that case
would be the moments of the force about the precession (i.e. vertical) axis and about
the nutation (i.e. y) axis, corresponding to the virtual work done when ¢ and 6,
respectively, are incremented. We therefore conclude that the equations of motion
are the Z and y components of 3 M, = H,. Only the latter is identical to what we
would have obtained from Euler’s equations for a rigid body, because those equa-
tions always express the moment equations of motion in terms of body-fixed axes.
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Problems

6.1 The bar is made to slide along the horizontal plane such that the velocity of end B
is always directed at a constant angle v relative to the bar. Select three generalized
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6.2

6.3

6.4

6.5

¥
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Problem 6.1 Problem 6.2

coordinates and describe the corresponding velocity constraint. Then determine
whether the constraint is holonomic.

The slider descends along a curved guide in the shape of a parabola, y = 8x2, as the
guide translates to the right at the constant speed u. Describe the constraint equa-
tions on the (absolute) Cartesian coordinates of the slider as a velocity constraint,
and show that the constraint is holonomic. Derive the corresponding configurational
constraint by integration of the velocity constraint, and also by geometrical analysis
of the position.

The bar remains in contact with the semicylinder of radius R as the collar slides over
the vertical guide. Determine the velocity constraint condition between the distance y
locating the collar and the angle 6. Prove that this constraint condition is holonomic
by integrating the velocity constraint. Then derive the same configuration constraint
from a geometrical analysis.

2
e
8¢

%

Problem 6.3 Problem 6.4

The system is forced to precess about the vertical axis at the constant rate {2, but the
nutation angle  for bar BC and the distance / locating the collar are unknown. Con-
sider using /, 8, and the cylindrical coordinates of the collar as a set of constrained
generalized coordinates. Perform a velocity analysis to derive the corresponding con-
straint equations. Are they holonomic? If so, determine the corresponding config-
uration constraints.

The Cartesian coordinate (x, y, z) of a parti_cle relative to a fixed reference frame are
related by (z/x —2ay)x— axy+2 = axy+/x, where « and (3 are specified functions



Problems 299

6.6

6.7

6.3

of time. Prove that this constraint is holonomic, and derive the corresponding con-
figuration constraint.

The gear rolls without slipping over the rack, which pivots about pin A. Generalized
coordinates for this system are selected to be the angle of rotation # of the rack, the
distance D from the pivot to the center of the gear, and the (X, Y) coordinates of the
center of the gear. Determine the velocity constraints relating these generalized coor-
dinates. Are these constraints holonomic? How many degrees of freedom does this
system have?

£

Problem 6.6

A

The figure shows a disk whose plane remains vertical as it rolls without slipping on a
horizontal plane. Let the position coordinates X, Y of the geometric center, the head-
ing angle ¥, and the spin angle ¢ be generalized coordinates. Describe the velocity
constraints between these generalized coordinates. From those results, determine
the number of degrees of freedom, and whether the system is holonomic.

z

2N

L >

12

Problem 6.7

The figure shows a child’s tricycle as viewed from above. When the wheels do not
slip over the ground, the velocity of each wheel’s center must be perpendicular to the
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6.9

6.10

6.11

wheel’s shaft in the horizontal plane, as shown. Consider a set of generalized coordi-
nates consisting of the position coordinates X, and Y, of the steering joint, the angle
of orientation 6 of the frame, the steering angle 8, and the spin angles ¢,, ¢, ¢, of the
wheels. Derive the velocity constraints among these seven generalized coordinates.
From that result, determine the number of degrees of freedom.

Top view of a tricycle

Problem 6.8

The slider in Problem 6.2 has mass m. Determine its equations of motion. Friction
has negligible effect.

The collar of mass m slides over the smooth horizontal guide under the restraint of a
spring whose stiffness is k. The unstretched length of the spring is 0.8L. Determine
the equations of motion for the system.

AN\

Problem 6.10 Problem 6.11

A torque I'(2) is applied to rod AB, whose mass is m. Collar C is pinned to collar D.
The mass of each collar is m/4. The system lies in the vertical plane, and the spring
is unstretched in the position where § = 20°. Determine the equations of motion for
the system.
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Problem 6.12

6.12 The bar is supported by two springs whose stiffness is k. The springs are unstretched
when the bar is horizontal. Determine the equations of motion.

6.13 Determine the equations of motion of the compound pendulum in Example 6.7.

6.14 The linkage is braced by a spring of stiffness k in order to support the vertical force
P. The system lies in the vertical plane, and the spring is unstretched when 6 = 45°.
Derive the equations of motion.

Problem 6.14

6.15 The force P(t) acting on link BC is always perpendicular to that link. The linear
spring is unstretched in the position where 8 = 53.13°, and the identical bars each
have mass m. The spring can sustain both compressive and tensile forces. Derive the
equations of motion. The system is situated in the vertical plane.

Problem 6.15
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Ty(t)
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Problem 6.16 Problem 6.17

6.16 The collar supporting bar AB is given a specified displacement y(¢). The collar and
the bar have equal mass m. Derive the equation of motion for the angle of rotation 6.

6.17 The collar, whose mass is m,, supports a bar whose mass is m,. The springs re-
straining the collar each have stiffness k. Determine the equations of motion for this
system.

6.18 The horizontal spring has stiffness 2k, while the spring holding the small block has
stiffness k, where k is a basic unit of stiffness. The masses are 4m and m for the cart
and the block, respectively. Determine the equations of motion for the system.

k
z
2k
4m P
8 8)
72 Z
Problem 6.18 Problem 6.19

6.19 A downward force P(r) is applied to block 2. The masses are m; = 2m and m, =
3m. Derive the equations of motion for the system.

6.20 A force P(¢) acting on the piston causes crankshaft AB to rotate. The mass per unit
length of each bar is o, and the mass of piston C is L. The system lies in the hori-
zontal plane. Derive the equations governing the generalized coordinate 6.

6.21 The cylinder is unbalanced such that its center of mass G is situated at an eccentricity

¢ from the geometric center C. The centroidal moment of inertia of the cylinder is
I~. Determine the equation of motion for arbitrarily large movements.
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o 7Y
Problem 6.20 Problem 6.21

6.22 The pulleys roll over the rack without slipping. The masses and centroidal radii of
gyration are m; and o; (i =1 for the left pulley and / = 2 for the right). The spring,
whose stiffness is k, is capable of sustaining both compressive and tensile forces. De-

termine the equations of motion.
L L
L R

DD, TN

4

Problem 6.22 Problem 6.23

6.23 The bar is initially positioned horizontally at the top of the stationary semicylinder,
as shown, It is then given a small push. There is no slipping between the bar and the
semicylinder. Determine the equations of motion.

6.24 The cylinders roll in the vertical plane such that there is no slipping between them,
nor between cylinder A and the ground. The vertical surface is smooth. The mass of
each cylinder is m. Derive the equations of motion for the system.

6.25 Two cylinders, each having mass m, are linked by a connecting rod whose mass is
negligible. A horizontal force F(¢) is applied to the right cylinder, and neither cylinder
slips in its rolling motion. In the initial position, the angle ¢ locating the connecting
pin is zero. Derive the equation of motion for this angle.

Problem 6.24 Problem 6.25
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6.26

6.27

Force P acts normal to bar AB, whose mass is m. This causes the disk, whose mass
is 2m, to move to the left. The disk does not slip relative to the bar, and friction be-
tween the disk and the ground is negligible. Derive the equations of motion for the
system.

Problem 6.26

The collar of mass m slides over the circular guide bar that rotates about its pivot at
the constant angular speed w. The force applied to the free end of the cable after it
passes through pivot A4 is known to be F(¢). Derive the equation of motion for this
system, which lies in the vertical plane.

= 2R !

Problem 6.27 Problem 6.28

6.28

6.29

A circular disk of mass m is suspended in the horizontal plane by three cables of
equal length L. The cables are vertical when the system is at its equilibrium position.
Derive the equation of motion for the angle # by which the disk rotates about its axis.
Assume that all cables remain taut.

A simplified model of one blade of a helicopter is shown in the sketch. The short
segment AB is driven at a constant rotational speed 2. The blade BC is connected
to AB by a pin and a torsional spring of stiffness k. The spring is unstressed when the
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Problem 6.29 Problem 6.30

6.30

6.31

6.32

6.33

lag angle ¢ is zero. Derive the equation of motion for ¢. Blade BC may be considered
to be a homogeneous bar whose cross-section is uniform.

Each of the collars has mass m. The bar assembly on which they ride has negligible
mass and rotates about the vertical axis due to a torsional load M(¢). Derive the
equations of motion for the system.

The orientation of the homogeneous cylinder relative to the gimbal is described by
the angle 8. The torque T is such that the rotation rate @ of the gimbal about the
horizontal axis is constant. The gimbals have negligible mass. Derive the equation
of motion for 8.

Problem 6.31

(See figure, next page.) Servomotors make the flywheel spin at a constant rate w,,
and also impose a precession rate w, that is a function of time. The center of mass of
the flywheel is situated on the precession axis, and the centroidal moments of inertia
are [, about the spin axis and 7, transverse to that axis. Derive the equations of
motion for the system.

(See figure, next page.) Solve Problem 6.32 for the case where a known torque Q(#)
acts about the vertical axis, so that the precession rate is unknown.
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6.34

6.35

Problems 6.32 and 6.33

A servomotor makes the disk spin at the variable angular speed w,. The couple C(¢)
induces rotation at rate Q of the system about the horizontal shaft. Derive the differ-
ential equation for Q.

Problem 6.34

A servomotor makes the sphere spin at constant angular speed  relative to its shaft,
which is connected to the vertical post by a ball-and-socket joint. Derive the equa-
tions of motion for the precession ¢ and nutation # of the system. Then establish the
conditions for which the nutation angle is constant.

Problem 6.35
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6.36 Use Lagrange’s equations to solve Problem 5.24.

6.37 The elevation of pin A is controlled by a force F applied to the vertical control rod in
the flyball speed governor. The system is made to precess at a constant rate Q about
the vertical axis by a torque M. Determine the equation of motion governing 6. The
mass of each sphere is m, and the links have negligible mass.

Problem 6.37 Problem 6.38

6.38 The square plate is pinned to the vertical shaft, which is made to rotate by a known
torque I'(¢). Derive differential equations of motion for the precession angle ¢ and
nutation angle 4.

6.39 Bar BC is pivoted from the end of the T-bar, which rotates about the vertical axis

owing to a constant torque I'. Derive the differential equations of motion for the
angle of elevation # and the precession rate €.

7 lezz
Q
&_(—D——_AB
A \ 0
]
re 1>
1% t
7

Problem 6.39
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6.40 A known couple I'(¢) induces rotation of the system about the vertical axis. Collars
A and B, each of whose mass is m, are interconnected by a rigid bar whose mass is
4m. The moment of inertia of the T-bar about the vertical axis is I. Derive the equa-
tions of motion for this system.

A |2
ST

Problem 6.40

6.41 The slider, whose mass is m;, oscillates within the groove in the housing. The moment
of inertia of the housing about the axis of rotation is 7. The spring restraining the
slider is unstretched when s = 0. Derive differential equations for the distance s and
spin angle ¢ resulting from application of a torque M(¢) to the shaft.

o>
\
R

Ty 9 |

Problem 6.41 Problem 6.42

6.42 The bar, whose mass is m, is pinned to a collar that permits precessional rotation y
about the vertical guide, as well as nutational rotation 8. The collar is fastened to a
spring whose extensional stiffness is k, and whose torsional stiffness for precessional
rotation is k,. Derive the equations of motion for this system.



CHAPTER 7

Further Concepts in Analytical Mechanics

The basic principles in the preceding chapters provide a sufficient foundation
to treat the majority of modeling tasks that arise in engineering practice. Our goal in
this chapter is to expand these capabilities. The first priority is to be able to apply
Lagrange’s equations in situations where constrained generalized coordinates have
been selected. We will find that such a description might be desirable, even if the sys-
tem is holonomic, especially if friction is present in the system.

We will also develop alternative, and sometimes simpler, forms of the equations
of motion. Those developments are partially intended to assist the phase of a dy-
namics study in which the equations of motion are solved. However, they also will
enhance our understanding of the basic concepts of analytical mechanics, and their
relationship to the principles of Newtonian mechanics.

71 Constrained Generalized Coordinates

Whenever we formulate equations of motion using more generalized coordi-
nates than the number of degrees of freedom, we must deal with constrained general-
ized coordinates. This is unavoidable in the case of a nonholonomic system. The key
feature of such formulations is the need to account for constraint forces in the equa-
tions of motion. Also, because the number M of generalized coordinates exceeds the
number N of degrees of freedom, there are M — N constraint conditions that must
be explicitly satisfied. Such conditions may be written as velocity constraints having
the form of Eq. (6.3), even if a constraint is holonomic. Specifically,

M
L ] > awqgr+b;=0, i=12,....,M—N. (7.1)
k=1

Each constraint condition that must be explicitly stated would be violated if the
generalized coordinates were chosen arbitrarily. The constraint force associated with
each is an unknown reaction that does virtual work, and therefore occurs as an
unknown in the generalized force. Lagrange’s equations may be employed in this
case by defining Q,(-”) to be the contribution of the given applied forces to the jth
generalized force, and R; to be the contribution of all reactions. Then
i<£>——‘31+"’—V=Q,‘~"’+R,, j=12, ..., M. (7.2)
Each reaction force appears in some, or all, of the terms R;. Thus, M — N reactions
and M unknown generalized coordinates appear in the Lagrange equations. The
combination of the M — N constraint equations (7.1) and the M Lagrange equations
(7.2) yields the required number of equations of motion.

If there is no need to determine the actual reaction forces, then it is possible to
form the equations of motion without actually evaluating the virtual work done by

309
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those forces. Instead, we may account for constraint forces indirectly through La-
grange multipliers. These factors were introduced in Eq. (6.31b), where constraint
forces were related to their corresponding constraint conditions. We let R}" denote
the portion of the jth generalized force attributable to the reaction enforcing con-
straint condition i. We found that R}') = Aja;;, where A, is the Lagrange multiplier
for the constraint. The combined contribution resulting from each of the M—N
constraints that are not satisfied is the sum of the individual contributions, so that

M-N
R/= E )\iaij. (7.3)
i=1

Because we determine the Jacobian coefficients g;; in the course of the derivation of
the constraint equations for the generalized coordinates, there is very little extra
effort required to describe reaction forces in this manner. It follows immediately
from the foregoing that Eq. (7.2) becomes
d (aT\ oT v _MN @

7 <aq,> 3 + e El ra+Q/", j=12,..., M. 7.9
The unknown quantities appearing in this form of Lagrange’s equations are the M
generalized coordinates and the M — N Lagrange multipliers. The M Lagrange equa-
tions are supplemented by M — N constraint equations, Egs. (7.1), with the result
that the number of system equations again balances the number of unknowns.

We generally employ the constraint force form, Eq. (7.2), rather than the Lagrange
multiplier formulation, Eq. (7.4), whenever we wish to study the reactions. In either
approach, the constraint equations are auxiliary conditions that must be satisfied in
addition to Lagrange’s equations. Although such equations may always be written as
velocity constraints in the form of Eq. (7.1), there is an advantage in describing a
holonomic constraint configurationally as f;(q,, q2, .., @u, t) = 0. This relation may
be solved for one of the generalized coordinates. Substitution of that result into the
equations of motion and the other constraint equations will remove the selected gen-
eralized coordinate from the formulation. The result will be a reduction in the num-
ber of system equations to be solved.

There are several reasons why we might choose to formulate the equations of
motion of a holonomic system in terms of constrained generalized coordinates. Most
common is the situation where it is necessary to evaluate a reaction, which was dis-
cussed briefly in the previous chapter. If the desired reaction is to appear in the equa-
tions of motion, a set of generalized coordinates that do not satisfy the corresponding
constraint equation must be employed. Simultaneous solution of the Lagrange equa-
tions and the constraint equation would yield the reactions and the response at the
same stage of the solution process. The alternative approach, in which unconstrained
generalized coordinates are employed, would require a separate analysis using the
Newton-Euler equations of motion (developed in Chapter 5) after the response has
been evaluated.

For example, consider the pendulum in Figure 7.1, whose length / is a specified
function of time, / = L(¢), due to the application of the tensile force F. One could
consider the pendulum to be a rheonomic, one-degree-of-freedom system that is
described by the angle ¢. In that approach F does no virtual work, because / does not
change in a virtual displacement, which holds time constant. Lagrange’s equations

¢
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Figure 7.1 Rheonomic system versus constrained generalized coordinates.

yield a single differential equation for ¢. An expression for the tensile force F re-
quired to obtain the motion can be obtained from the radial component of Newton’s
second law.

An alternative approach to this problem employs ¢ and / as constrained general-
ized coordinates that must satisfy the condition / = L(¢). The length / increases by 4/
in a virtual movement, so the force F does virtual work. Hence, it contributes to the
generalized forces. The system equations in this formulation are the two Lagrange
equations and the constraint equation; the corresponding unknowns are the two gen-
eralized forces and the magnitude of the axial force. Note that we would formulate
the equations of motion using Eq. (7.2), which employs the constraint forces, be-
cause we have a specific interest in the reaction force F.

The need to evaluate a reaction force is often a discretionary matter that depends
on the application. However, in situations involving Coulomb sliding friction, the
evaluation of the normal force is an intrinsic part of the solution process because the
magnitude of the tangential (i.e. friction) force depends on the normal force. The
sliding friction force does not prevent motion. Therefore, it acts like an applied force
that does virtual work. It follows that the magnitude of the normal force will always
occur in some of the generalized forces, even though the force itself is a reaction.

A system illustrating this aspect is the linkage in Figure 7.2, which because of
symmetry must satisfy the configurational constraint equation ¢ = . However, if the
equations of motion for this one-degree-of-freedom system were to be formulated

Figure 7.2 Use of constrained coordinates to account for friction.
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using either angle as the unconstrained generalized coordinate, we would find that
the friction force p, N does work. (Strictly speaking, we should describe the friction
force as —ui|N|9/|V|. Doing so would accommodate the possibility that we have not
correctly guessed the sense of the normal force or the sense of the velocity when
we drew the free-body diagram.) In a formulation using unconstrained generalized
coordinates, the only system equation is the one derived from Lagrange’s equations.
There is no direct way in which to obtain an equation featuring the normal force.

An analysis using constrained generalized coordinates can treat this system effec-
tively. Let 6 and ¢ be the generalized coordinates. A virtual movement correspond-
ing to arbitrary increments of both generalized coordinates produces a displacement
of collar C perpendicular, as well as parallel, to the horizontal guide bar. The virtual
work done by N in this displacement leads to terms R, and R, representing the con-
tributions of N to the generalized forces. The contributions of the friction force pu, N
would appear in the applied generalized forces, 1(”) and Qé“). The system of equations
governing the two generalized coordinates and N will consist of two Lagrange equa-
tions and the constraint equation. This technique will be employed in Example 7.2.

Another reason for using constrained generalized coordinates to describe a holo-
nomic system is to simplify the analysis. This feature rests on the fact that, aside
from the constraint equations, all generalized coordinates are considered to be inde-
pendent variables. Thus, there is no need in such a formulation to eliminate the
excess generalized coordinates in the expressions for kinetic and potential energy
and in the virtual work. This feature will also be prominent in Example 7.2.

Example 7.1 A torque I" applied to the vertical shaft of the T-bar causes the rota-
tion rate  about the vertical axis to increase in proportion to the angle 8 by which
bar BC swings outward, that is, @ = cf. The mass of bar BC is m, and the moment
of inertia of the T-bar about its axis of rotation is /,. Determine the equations of
motion for the system, and for the torque I

y 4

Example 7.1 Free-body diagram.
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Solution The location of the bar is fully specified by the precession angle
and the nutation angle. Since Q@ =y, the given constraint on the motion is ¥ = c#,
which is nonholonomic. In addition, we wish to obtain an equation for T, which
imposes the constraint. Hence, we employ both angles as generalized coordinates,
g1 = and g, = 0, even though the system has only one degree of freedom.
The kinetic energy of the T-bar is %Ing'z, to which we must add the kinetic energy
of bar BC. This bar is in general motion, so

Tpc = sm\(Vg-Vg) + 5@pc-Hg,
where the velocity parameters are
@pc = YK +6k = —(y cos 0)i + (y sin0)j + 6k,
\—’G = ‘-}B+(DBC X fG/B = ¢L(—1€) +G)BC X <%l->
L - ; 1 . -
= ?01 —L\l/<l+-2— sin 0>k.

Considering bar BC to be slender leads to

i
Iyy:]zz=ﬁmlL2’ La=Ly=1,=1,=0,

so its angular momentum is
Ag=1Iy0,f+1,0,k = %m,ﬂw‘ sin 6) j+ 6/].
The corresponding kinetic energy of the system is

2 2 . N .
T= %{m.[LT€2+L2¢2<1+% sin0> ]+<—115m1L2>(¢2sin20+02)+121//2}

= %[<m1L2+12+m1L2 sinf + %m,L2 sin? 0)\[/2+ %m,Lzéz] .

We select the elevation of pin B as the datum for gravitational potential energy, so
V =—1m gL cos9.

In order to evaluate the torque I, we explicitly account for reactions in the virtual
work, rather than using Lagrange multipliers. Arbitrary increments 6y and 86 violate
only the constraint imposed by I' on . Therefore, T' is the only nonconservative
force that does work,

W=T60=0,6y+Q,060 = O,=T, Q,=0.
Both T and V are independent of , so the first Lagrange equation is
d [oT
4(m) g,
dt \dy

<m1L2+Iz+m,L2 sin 6+ %m,L2 sin® 0>¢

+m1L2<l +§ sin 0>(cos OHYo=T. (1)
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For the second Lagrange equation, we have

am) o v,

dt \ 36 a0  ae

Lo l+lsin49 (cosB)¢2+isin0=0. 2
3 2 3 2L

These two Lagrange equations, in combination with the constraint equation y = c#f,
govern the three unknowns y, 8, and I'. Substituting the constraint equation into
eq. (2) yields an ordinary differential equation for 8. After the response 6(¢) has been
obtained, the value of I'(#) may be found by substituting 8(¢) and the constraint
equation into eq. (1).

Example 7.2 The coefficient of sliding friction between collar B and its guide is p,
but friction between collar A and the horizontal guide bar is negligible. The spring,
whose stiffness is k, is unstretched when ¢ = 0, and the mass of the bar is m. Deter-
mine the equations of motion of the system.

Example 7.2

Solution The position of the bar is fully specified by the angle ¢, so this is
a holonomic system with one degree of freedom. However, two features suggest that
we should employ two generalized coordinates. The first results from the observation
that a virtual movement of the bar in which only ¢ is incremented will not violate the
constraint that end B cannot move transversely to the incline. Hence, if we employ
only g, = ¢, the friction force, but not the reaction, at end B will appear in the gener-
alized force. Because the magnitude of the friction force is u| N|, we would find that
the single equation of motion would contain two unknowns: ¢ and |1\_/B|. We will see
that selecting two generalized coordinates will lead to a solvable set of equations.
The second reason for employing two generalized coordinates is relevant to the
frictionless case also. Formulating Lagrange’s equations using only g, = ¢ would
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Free-body diagram and constrained generalized coordinates.

require that we express the velocity of the center of mass solely in terms of ¢ and ¢.
Obtaining such an expression is complicated by the fact that the guidebars are not
mutually orthogonal. It is substantially simpler to carry out the kinematical analysis
of this system by using two position variables whose relationship is described by an
additional constraint equation.

For both reasons, we select as generalized coordinates the angle of orientation
and the absolute position of collar A along its guide, ¢, = ¢, g, = X4. In order to
derive the constraint equation, we first express the velocity of end B in terms of ¢
and X 4. Thus,

Vg = P4+ @XFp 4= X4+ (—pK)x[—(Lcosp)I+(Lsin¢)J)
= (X + L sing) T+ (L cos $)J.

The requirement that ¥ be parallel to the incline corresponds to the condition v+ €, =
0, where ¢, is the normal to the incline,

é, = (sin 8)I + (cos B)J.
Substitution of these expressions for vz and &, leads to the following constraint
equation:

Lé cos(B—)+X,sinB =0. )

In the present situation, where the friction force depends on the normal force, we
require equations in which the normal force occurs explicitly. For this reason, we
include the normal force in the evaluation of the virtual work, rather than using a
Lagrange multiplier to account for it. Note that the expression for v is independent
of time. Hence, the virtual displacement of end B may be described by forming vz dt,
and then replacing differentials by virtual increments. This yields

6Fp = (6X 4+ L 8¢ sin )T+ (L 66 cos ¢)J.

The spring and gravity forces are conservative, and therefore are not included in the
virtual work. Also, the constraint on the motion of collar A is satisfied regardless of
the values of ¢ and X 4. As a result, the virtual work is
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W =[(fcos B+ NgsinB)I+ (—fsin B+ NgcosB)J]-6Fg.
We substitute for 875 and collect the coefficients of 6¢ and X, which are the corre-
sponding generalized forces:

Q)= —fLsin(B—¢)+NpL cos(B—¢),

Q,=fcosB+ Ngsinf.

According to Coulomb’s law for sliding friction, f = u|Ng| in the direction oppo-
site the velocity of end B. (Note that we use | N| to describe the magnitude of the
normal force, in order to emphasize that friction force would have the same value
if the reaction were opposite to the sense assumed in the free-body diagram.) To
describe the sense of the friction force we note that, when the constraint conditions
are satisfied, counterclockwise rotation of the bar, ¢ > 0, produces an upward move-
ment of collar B. Such movement corresponds to f being down and to the left, as
was assumed in the free-body diagram. Thus, we set

f = u|Np|sgn($),

where sgn(®) is the signum function: sgn(¢) = ¢/|| if ¢ # 0.
We must express the kinetic energy for arbitrary ¢ and X,4. The velocity of the
center of mass is

i-)G = ‘_)A+(DXFG/A = <XA+%¢ Sln¢>1—+<%¢ COS¢>J—,
from which we obtain
T =1m@g vg)+1I56> = im(3L2$*+ L X, sinp + X3).

The spring and gravity contribute to the potential energy. We let the elevation of
end A be the gravitational datum. The elongation of the spring is

A =XAI¢=0—XA = L—XA,
so that
V=3k(L—X4)*+3mgLsin¢.
We now form Lagrange’s equations, using the earlier expressions for Q,, Q,, and

Jf- For the latter we use | Ng| = N sgn(Np) in order to account for the possibility that
the reaction is not in the assumed sense. The resulting equation for g, = ¢ is

imL2p+tmLX, sin ¢ +3mgL cos ¢
= NpL[cos(8—¢)— usgn(Np¢) sin(8—¢)], (2
while the equation for g, = X, is
mX +1imLé sing+3imL2cosp—k(L—X,)
= Np[sin 8+ psgn(Np¢) cos 8]. 3)

There are three unknowns: ¢, X4, and Np. The third equation is the constraint con-
dition, eq. (1).

It is possible without too much effort to reduce the number of equations in the
present problem. Because the system is holonomic, the generalized coordinates in
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excess of the number of degrees of freedom may be eliminated. Toward that end we
write eq. (1) in Pfaffian form:

Ldocos(B—¢)+dX, sing =0.
Each term is a perfect differential, so the corresponding configuration constraint is
—Lsin(B—¢)+ X4sin3 =C.

The value of the constant of integration C must be such that X, = L when ¢ =0,
which yields C =0, and

-1 sin(B—dJ).

X
A sin 8

4)
As a check, we note that eq. (4) is identical to the expression for X4 given by the law
of sines. If we were to substitute equation (4) into the Lagrange equations (2) and
(3), we would remove X . Then, forming the ratio of egs. (2) and (3) would eliminate
Np. The resulting differential equation, which we shall not detail, is second-order
and highly nonlinear.

Example 7.3 A thin disk wobbles as it rolls without slipping along the ground. Con-
sequently, the plane of the disk is inclined at an unsteady angle 6. Derive the equa-
tions of motion for the system. Then specialize the result to the steady precession
case, in which 6 is constant and the center A follows a circular path. The radius of
gyration of the disk about its axis of symmetry is «.

=~

X direction

N\

Example 7.3 Free-body diagram and kinematical parameters.

X

Solution The position of any rigid body may always be described in terms
of three position coordinates for any point, such as the center of mass, and three
Eulerian angles. The circular shape of the disk and the absence of slipping constrain
some of these variables, so it is not apparent at the outset which of the variables are
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independent. In order to identify the appropriate choice, we recall from Section 4.4
the kinematical analysis of a disk that wobbles as it rolls without slipping.

Let (X,Y, Z) be the Cartesian coordinates of the center of mass. The Eulerian
angles (Y, 0, ¢) are the precession, nutation, and spin angles, respectively; they are
defined by letting the vertical direction define the precession axis. Note that the y’
axis is always horizontal (it is the line of nodes), whereas the y axis is a body-fixed
axis. The angle between the y’ axis and the negative X axis is . The angular velocity
of the disk is

@ =yK+0j +dk=—( sin0)i+60j+ () cos+P)k.
The velocity of the center obtained from the no-slip condition is
V4= ®XFy,c = —R(Y cos0+¢)j+ Rbk.
The velocity of the center may also be described in terms of the Cartesian coordinates,
vy =XI+YJ+ZK.
We match these two descriptions by resolving the unit vectors of one set of axes onto
the other set of axes, as follows:
i=—(siny cos )]+ (cosy cos8)J —(sin8)K,
J=—(cos ) —(siny)J,
k = —(sin ¢ sin8)1 + (cos y sin 8)J + (cos ) K.

We substitute these expressions into the first equation for ¥4, and compare the result
to the second equation. We find from these operations that

X = R(y cos 0+ ¢) cos y — RO sin y sin 6,
Y = R( cos 8+ ¢)siny + Ré cos y sin b,
Z = R0 cos¥.

These relations are three velocity constraints that the six position variables must
satisfy, so the disk only has three degrees of freedom. The constraints on X and Y
are nonholonomic. However, the one governing Z may be integrated. Multiplying
each rate variable in the last equation by df shows that both sides are perfect differ-
entials. Setting Z = 0 when ¢ = 0 leads to

Z =Rsind.

This position constraint permits us to eliminate Z from the formulation. Hence, we
shall employ five generalized coordinates in the sequence: X, Y, ¢, 8, ¢.

The generalized coordinates are a constrained set that must satisfy the velocity
constraints on X and Y. We are not specifically interested in the reactions at the
ground, which enforce these constraints. Therefore, we employ the Lagrange multi-
plier formulation. In order to identify the coefficients that correspond to each multi-
plier, we adapt the standard form of a velocity constraint to the present system,

5
Y aqr+b; =0, j=12. 1,2)
k=1

Comparing this form to the actual constraint equations shows that
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ay=1, a; =0, a3 =—Rcosy cosb,

a4 = Rsiny sin g, a5 =—Rcosy, b, =0;
a, =0, ay =1, a,3 = —Rsiny cosd,
a,4=—Rcosysind, a,s = —Rsiny, b,=0.

We now proceed to formulate the mechanical energies. We use the fact that the
disk is thin to set I,, = I,, = 31. Then, adding the translational kinetic energy asso-
ciated with the center of mass to the rotational kinetic energy yields

T=im(X*+Y*+Z)+ 13D (02 +w)) + 51w}
= im[X3+Y?+ R*0%cos? 0+ sk2* sin® 0+ 3x26% + k*(f cos 6+ §)?],
V= ng = ng sin@.

Note that we have not used the velocity constraint to remove the dependence on X
and Y, because Lagrange’s equations must describe the effect of variations in each of
the generalized coordinates.

The only nonconservative forces acting on the disk are the reactions at the ground,
whose effect we shall describe by Lagrange multipliers. Hence, we have W =0,
which leads to Q; = 0 for each generalized coordinate.

Applying the constrained Lagrange equations (7.4) to the present system leads to
a set of five differential equations:

mX=2x, mi=)\,, (3,4
mx*[ Ly (14 cos? 8) — 6 sin 6 cos 6+ ¢ cos 6 — B¢ sin 6]
= —ARcosy cos@—A,Rsiny cos b, (5)
m{f(1k>+ R?cos? 8) + (1k2y 2 — R?6%)sinf cos 0+ x>y ¢ sin 6+ gR cos 8]
=ARsiny sinf—A,R cosy sin 8, (6)
mx2(y cos 0+ —yfsind) = —A;Rcos Yy —A,Rsiny. %))

There are seven unknowns in this formulation: the five generalized coordinates and
the two Lagrange multipliers. These variables must satisfy the constraint equations
(1) and (2), and the Lagrange equations (3)-(7).

When 6 = 0, the center A4 of the disk follows a circular path. Let p be the radius
of curvature of that path, and let the center of the path be situated on the Z axis. We
form a trial solution for X and Y by assuming that the precession rate is also the
rotation rate for the radial line. The position of the center A is then given by

X=—psiny, Y=pcosy.
These relations satisfy constraint equations (1) and (2), with § = 0, when
=—{—=+4cosf}y.
) < R cos >¢
Next, we substitute these expressions for X, Y, and ¢, as well as § =0, into the

Lagrange equations (3)-(7). Equations (3) and (4) yield expressions for the Lagrange
multipliers,
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A= mp(—y cos Y+ siny), (3)
Ay = mp(—y siny —y2cos ). 4"

We use eqgs. (3°) and (4’) to eliminate the Lagrange multipliers from egs. (5)-(7),
with the result that

K2<% sin20—%>¢' = py cos ¥, (5%
x2<—% sinf cos 6 — % sin 0>¢2+gR cosf = py°Rsiné, (6")

2 _ﬂ . — . ,
K < R>II/ oy. (7)

Equation (7’) requires that y = 0, which also satisfies eq. (5’). Notice that y = 0 cor-
responds to a constant speed py for the center 4. The remaining Lagrange equation
(6’) yields an expression for the value of y required to maintain a specified constant
nutation angle 0:

Jt= 2gR*cot 0
" k2Rcos0+2p(R2+«2)°
If the disk is homogeneous, the radius of gyration is x = R/v2, which leads to
it = dgcotd .
Rcos@+6p

This solution is in complete agreement with the result derived in Example 5.8 by
using the Newton-Euler formulation. The earlier methods provide greater physical
insight. However, they would have been much more difficult to use in deriving the
equations of motion for the general case treated here, where the nutation angle is
not constant.

7.2 Computational Methods in the State Space

When the motion of a system is known, the equations of motion may be
solved algebraically for the forces (such as applied loads) required to sustain that mo-
tion. A more interesting situation arises when some aspect of the motion is unknown.
In that case, the generalized coordinates are governed by differential equations of
motion. When these equations are derived by direct application of Lagrange’s equa-
tions, they have a standard form. The highest-order derivatives are generalized accel-
erations §;; such derivatives occur linearly.

To demonstrate this, we consider the general form of the kinetic energy. The posi-
tion 7, of particle £ in a system may be a function of the generalized coordinates and
time, 7, = (g1, 92, -.-» Gu-> t)- The corresponding velocity expression is

dre % on | on

= = i+ . 7.5
dt j=1 6qj 9 at ( )

Vi
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From this, the kinetic energy of this particle may be expressed in terms of the gen-
eralized coordinates as

1 M 3F oF M 3F.  OF
Tk=—mk[2 kq/ k}[ —kt1~+—k]

2 j=1 a at j=I1 aqj S at
1 Brk ark] [ark Brk]
==m d;+m
2 . 121 jzl[BQJ aq1 q qj Mk 2 at aq1
1 ark ark
+ m [6t Y (7.6)

This expression indicates that the terms forming the kinetic energy of a particle fall
into one of three categories: they either contain the generalized velocities as qua-
dratic products or as linear terms, or they are independent of the generalized veloci-
ties; no term in the kinetic energy contains the g; in any other manner.

The total kinetic energy of the system is obtained by adding the contribution of
each particle. (For a rigid body, such a sum involves an integration over the differen-
tial mass elements.) The basic terms being accumulated all depend on the generalized
velocities in the same manner as Eq. (7.6). It follows that the kinetic energy of a sys-
tem consists of three groups of terms: T, is quadratic in the generalized velocities, 7,
is linear in the generalized velocities, and T, is independent of the generalized veloci-
ties. The general form is

¢ T= T2+ T]+To, (773)
where
1 M M M
¢ 2=E E E quQJs I= Elquj (7.7b)
i=] j=1 j=

The coefficients M;; and N;, as well as T, might depend on the generalized coordi-
nates and time, because that is the dependence of the partial derivatives in Eq. (7.6).
A useful property obeyed by the coefficients of the quadratic terms M, is symmetry:

M;=M;, i,j=12,..,.M, (7.8)

which is a consequence of the fact that the order in which the product ¢;¢; is formed
is unimportant.

It will be crucial for some later developments to recognize situations where all
terms in the kinetic energy are quadratic in the generalized velocities, so that 7 = 7,.
To identify such a condition, we note that the terms contributing to 7, and 7, origi-
nated from 87,/3¢ in Eq. (7.5). This term vanishes if the constraint conditions for
the system are independent of ¢, so that the relations for position in terms of the
generalized coordinates are invariant in time. The condition where all constraints are
catastatic is an alternative leading to the same result. In either case, 7; and all N; are
identically zero.

Let us consider the result of using Eqgs. (7.7) to form the first term of Lagrange’s
equations, d(37/dq,)/dt, where g, is arbitrarily selected. We begin with the qua-
dratic terms, T,. Because the generalized velocities are independent quantities for
the partial derivative, we have 8¢;/dq, =1 or 0 according to whether or not i = n.
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Furthermore, the M;; coefficients do not depend on the generalized velocities, so they
are constant in the partial differentiation. It follows that

aTZ 1 MM d 1 aql . aQJ
aqn Eg g lja n(‘]i‘]])—i‘g §=: < +q 6q,,>
_1 ¥ . .M
El Mnjqj+5 '21 M, q; = '21 M,;q;, (7.9a)
./ = Jj=

where the last step is a consequence of the symmetry of the coefficients M, ;. The
corresponding terms obtained from 7} and T, are

T, _ aT,
3G, " 34
Differentiation of the sum of Eqs. (7.9) with respect to time yields
d <8T> M MM
-, s E(Mn q +M q )+
aQn Jj=1 7 " 12| jEl BQi

=0. (7.9b)

qlqj

N, +N,. (7.10)
4q;
A similar analysis of d7/dq, based on Eqs. (7.7) leads to

aT l§§ M,, +2 4+ 9%
aqn i=1j=1 9 j aqn aqn

The Lagrange equations correspondmg to the foregoing expressions are

(7.11)

M N, ON; oM, 1 oM;;

(i = 3o« 8, 2 (=2 g Y
j§l|: i " aq J aqn IE:] 121 aql 2 aqn @ qj
BTO 14
6qn
Let F,(g;,q,,t) denote all the terms in Eq. (7.12) that are independent of the
genereralized accelerations §,. Correspondingly, we may write Eq. (7.12) as a set of

second-order differential equations for the unknown g, having the general form

+N,,—

=0, n=12,...,M. (7.12)

M
> M,g=F, n=12,..,M. (7.13a)
Jj=1

This expression may be written equivalently in matrix form as
(M]{g} = (F}, (7.13b)

where the elements of the column array {§} are the second derivatives of the sequence
of generalized coordinates. It is significant to the developments that follow that the
elements M;; of the array [M] depend only on the generalized coordinates and time.
In contrast, the elements of {F} might be functions of the generalized velocities, as
well as the generalized coordinates and time.

As we have seen in several examples, the coefficients M;; may depend nonlinearly
on the generalized coordinates, and they may be time-dependent as well. The func-
tions F;,, may be nonlinear in the generalized velocities and generalized coordinates. It
is likely that, unless we introduce approximations, we will be unable to use analytical
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methods to solve the differential equations of motion. Numerous numerical methods
and associated standard computerized routines have been developed to assist us in
solving sets of coupled differential equations. Usually, such techniques require that
we express the differential equations of motion in first-order form - that is, as equa-
tions that contain only first derivatives of the unknown variables,

Bd?{z} ={G(z;,1)}. (7.14)

A discussion of numerical methods by which a set of equations in this form may
be solved is beyond the scope of this book. Assistance in that task may be obtained
from a variety of texts, FORTRAN subroutine libraries, computational software
packages, and symbolic-mathematics programs. A good starting point to learn about
possible techniques is the text by Press et al. (1992). From this juncture onward, we
shall assume that a reliable technique, capable of solving a system of differential
equations in the form of Eq. (7.14), is available to us. Thus, the task we must address
is how we can convert the Lagrange equations of motion, as well as any additional
constraint equations, into a form that is compatible with Eq. (7.14). The simplest
case is that of a holonomic system decribed by unconstrained generalized coordi-
nates. That is where our development begins.

7.2.1  State-Space Transformation for Holonomic Systems

We do not usually consider a derivative of an unknown variable to be a new
unknown. However, doing so leads to a simple transformation that converts Eq.
(7.13b) into a system of first-order differential equations. We define a set of 2M
variables x; such that the first group of M variables are the generalized coordinates
while the second group are the generalized velocities. This may be described in matrix
form as upper and lower partitions of a column:

4 fx} = {@}. (7.15)
(g}

Note that second derivatives, {¢}, are not considered to be new variables because

their values are specified by the Lagrange equations, Eq. (7.13b).

The derivative of {g} is obviously {¢}. This identity for the derivative may be
written in partitioned form by recognizing that {q} is the upper partition of {x} and
{q} is the lower partition. Recall that when the partitioning of a matrix equation is
consistent, a product may be formed by treating the partitions as though they were
individual elements. Thus, we have

d {Q} {(I}
— =l Py 7'16

where [U] is the identity matrix. In view of the definition of {x}, the foregoing is
equivalent to

[V} (0] &-x) = [10] (U1]gx). 1.17)

The partitioned form of {x} converts the equation of motion Eq. (7.13b) to
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[[0] [M]]-j—t{x}={F}. (7.18)

Equations (7.17) and (7.18) may be combined as

[[U] {0] ]i{xl ={[[0], [U]]{x}]
(0] [M]]dr (F} )

The foregoing represents a set of 2M first-order differential equations for the 2M
elements of {x}. When the generalized coordinates are unconstrained, this is the
full set of equations governing the motion of the system. Note that the dependen-
cies of [M] and {F} on the generalized coordinates and velocities must be expressed
in terms of the appropriate elements of {x}, consistent with the overall change of
variables.

The set of variables x; constitute the state space for a system, just as the general-
ized coordinates g; form the configuration space. We must specify the initial value of
the state-space vector, {x} at £ =0, which is populated with the initial values of the
generalized coordinates and velocities. These values, combined with {F} at =0,
define the initial value of d{x}/dt according to Eq. (7.19). In turn, this defines the
value of {x} at an infinitesimal time-instant later. Indeed, this crude view of how the
system’s state evolves is equivalent to the Euler integration algorithm for differential
equations in the form of Eq. (7.14).

We presumed earlier to have available a numerical integration scheme capable of
solving differential equations in the standard form of Eq. (7.14). To convert Eq. (7.19)
to such a form we need only solve the second partition for the generalized accel-
erations. Let us denote with an asterisk any quantity that is known at a specified
time ¢. As a result of numerical integration up to that time, we have determined {x*},
from which we know {¢*} and {¢*}. This in turn enables us to determine [M*] and
{F*}. Solving Eq. (7.13b) by Gauss elimination or LU decomposition yields the cor-
responding generalized accelerations {G*}, so the form of the state-space equations
we would implement in conjunction with Eq. (7.14) is

4, _(@n_( 1@ } 20
ar™) {w*}} {[M*]"{F*}‘ (7.20)

Note that although [M*)~! appears in Eq. (7.20), there is no need to actually com-
pute an inverse.

(7.19)

7.2.2  Approaches for Constrained Generalized Coordinates

When the generalized coordinates form a constrained set, the reactions asso-
ciated with the constraint conditions enter into the Lagrange equations. If we use
Lagrange multipliers to account for these reactions, then Eq. (7.4) describes the basic
equations of motion. In order to track the effect of these forces on the generalized
accelerations in Eq. (7.13b), we add a suitable term to the array {F}. If {A} is a vec-
tor whose elements are the Lagrange multipliers, then the required term is [a@]T{A},
where [a] is the Jacobian constraint matrix. Thus, the M Lagrange equations may
be written as

(Mg} = (F}+[al"{A). (7.21)
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Also, the constraint equations must be enforced. When we express them in velocity
form, Egs. (7.1) represent a set of M — N additional differential equations to be satis-
fied. In the matrix notation used here, these additional equations are

lallg) = —{b}. (7.22)

The combination of Eqgs. (7.21) and (7.22) constitutes 2M — N differential equations
governing the constrained set of M generalized coordinates and the M — N Lagrange
multipliers. We have not assembled these equations into a single matrix equation for
a basic reason: the unknown Lagrange multipliers only appear algebraically, while
the state-space variables appear as derivatives. Without adjustment, such a form
would not suit the computational technique that solves Eq. (7.14). It might seem
as though the procedure used in Example 7.3 to eliminate the Lagrange multipliers
should be applicable. However, that approach is effective only when we wish to em-
ploy analytical techniques to fit a trial solution to the differential equations, as we
did in that example.

To identify the source of the difficulty, suppose we knew the values {¢}* and {¢}*
at some instant ¢*. We wish to obtain a set of equations in the form of Eq. (7.20).
The basic equations to be satisfied are the state-space transformation identity, Eq.
(7.16), the equations of motion, Eq. (7.21), and the constraint equations, Eq. (7.22).
We bring the Lagrange multipliers to the left side, because they are unknowns that
we must eliminate to place the system of equations into the desired form. Thus, we
have

(w1 [0l (0] g} {g}*
0] [M*] —la*]" |4 (g} ; = {F)* ¢ (7.23)
[a*] [0] [0] Ay —{b}
Unfortunately, we cannot solve these equations for {§*}, and thereby eliminate {A*},
because the first and third rows of the coefficient matrix merely differ by a factor
[a]. Consequently, this matrix is not full rank, and the equations are not solvable.
Several strategies have been developed to convert the coupled differential algebraic
equations of Eqs. (7.21) and (7.22) to a form suiting the differential equation solver
associated with Eq. (7.14). We shall survey a few of them here.

A widely employed technique for solving constrained equations of motion is the
augmented method. The basic philosophy here is consistent with the intent of Eq.
(7.23), in that the method algebraically eliminates the instantaneous values of the

Lagrange multipliers. To generate a set of independent equations, we convert the
constraint equations to acceleration form by differentiating with respect to time,

(allg} = - (b} —Lal{g)}. (7.24)

We consider this and the Lagrange equations (7.21) to be a set of 2M — N algebraic
equations for the values of {¢} and {A}, whose assembled form we write as

[[M] —[a]THm}_{ (F) } (.25

—[al [0] f(iA) [aliq}— (b}

t The procedures developed here are equally valid if Eq. (7.24) is further generalized. Replacing
the right side by a vector {d} whose elements may depend arbitrarily on the g;, the ¢;, and ¢

leads to a linear acceleration constraint that is appropriate to some problems in active control
using feedback.
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Note that the signs in the second row have been reversed in the process of assembling
Eq. (7.25), because doing so makes the coefficient matrix symmetric.

The values of the generalized coordinates at any instant are {g}* and {g¢}*, so the
corresponding [M1*, [a]* [d]* and {b}* may be determined. Then the simultaneous
equations represented by Eq. (7.25) may be solved by any convenient method. We
thereby obtain the values {G}* representing the generalized accelerations at that in-
stant. (Although the Lagrange multipliers are also obtained as part of this solution,
their values are discarded unless we wish to retain them to evaluate the constraint
forces.) The generalized accelerations found in this manner form the right side of
Eq. (7.20), which is the form required of the differential equation solver.

Solution of this set of differential equations requires the initial value of {x}, which
would be formed from the initial values of the M generalized coordinates and M
generalized velocities. The latter cannot be selected independently, because they must
be compatible with the velocity constraint equations at ¢ = 0. Specifically, let {q,}
denote the initial values of the generalized coordinates. If any of the velocity con-
straint equations are holonomic, these initial values must satisfy those conditions.
Otherwise, they may be selected arbitrarily. Because Eq. (7.22) represents M —N
equations relating the generalized velocities, we may assign to a set of N generalized
velocities any initial values. The other M — N initial velocities must be determined by
solving Eq. (7.22). This matter will be featured in Example 7.4, where we solve the
equations of motion for a wobbling disk.

The augmented method seems to be straightforward to implement, but it does
have a potential difficulty. The velocity constraint equations are not satisfied directly
at every instant. Rather, they occur only in differentiated form as acceleration con-
straint equations. Consequently, the method can lead to a solution for the response
whose error relative to the velocity constraint equations accumulates with time. Hence,
it would be wise to implement an auxiliary step to monitor this error. The associated
operations are simple. The generalized coordinate and velocity values obtained nu-
merically at each time step may be substituted into each of the velocity constraint
equations. We employ an asterisk to denote the numerical values at any time instant,
so the error in satisfying the constraint equation may be written as

{e}* =[a]*{q}* + {b}". (7.26)

If the norm of {e}* becomes significant in comparison to the norm of the terms on
the right side, that is, if ||{e}*|| is a large fraction of ||[a]*||||{g}*||, one would be wise
to halt the numerical solution.

In fact, regardless of the numerical algorithm selected to solve differential equa-
tions of motion, one should verify at regular time intervals that any relevant aux-
iliary conditions are satisfied. Such conditions might be configuration constraints,
f(g;, t) =0, that have been converted to velocity form in order to formulate the dif-
ferential equations of motion. An important general class of auxiliary conditions
that might be available to monitor errors are conservation principles that apply to
the system. These could be conservation of mechanical energy, a linear or angular
momentum component, or the Hamiltonian, which is discussed in Section 7.3.3.

The possible accumulation of error is sometimes addressed by using Baumgarte’s
(1972) constraint stabilization method, in which the acceleration constraint, Eq. (7.24),
is modified by adding to it the velocity constraint, Eq. (7.22), multiplied by some
constant. This modified form is
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[a){g} = — (B} - [4]{g) —2a(lal{g} + (b}}. (7.27)

The coefficient « is in some respect like an artificial viscosity term used to solve par-
tial differential equations by finite differences. Clearly, the added term would have
no effect if the velocity constraint equations had actually been satisfied. Neverthe-
less, this method does have limitations, as discussed by Haug (1989).

Another algorithm for solving differential equations governing constrained gener-
alized coordinates uses the orthogonal complement of the Jacobian constraint ma-
trix. This is a matrix [C], with N rows and M columns, satisfying the condition that

[Clla]" = [0]. (7.28)

Note that [C] is not unique, as one can recognize by considering the foregoing to be
a set of simultaneous equations obtained on an element-by-element basis. There are
NM elements of [C], but the product yields only N(M—N) elemental equations
because [a]T has M rows and M— N columns. Let us assume for the moment that
we can find a suitable [C].

When we multiply the constrained Lagrange equations (7.21) by [C], we find that

(CIIM G} = [CUF)+(CllalT (A} = [CI{F). (7.29)

Hence, this operation removes the Lagrange multipliers from the equations to be
solved. Furthermore, because [C] has N rows, the number of Lagrange equations
to be solved is reduced to the number of degrees of freedom, N.

It is a simple matter to form the state-space equations corresponding to the or-
thogonal complement method. Because Eq. (7.29) represents N equations for the M
generalized accelerations at any instant, we augment Eq. (7.29) with the M — N accel-
eration constraint equations, Eq. (7.24). The result is M equations having the par-
titioned form

[[C][M]]{..} _ { [Cf}

ar |7 | —aig) -0y |
At any time-instant in a numerical integration process, the generalized coordinates
{g}* have been determined and so all matrices except {G} are known. Correspond-
ingly, {¢}* are the generalized acceleration values obtained by algebraically solving
this equation. The state-space differential equations to be solved are then as given
by Eq. (7.20). Once again, the initial values of the generalized velocities must be con-
sistent with the constraint equations.

It is obvious that the crucial step in implementing the orthogonal complement
method is determining the orthogonal complement! Several techniques are discussed
by Amirouche (1992) under the category of coordinate reductions. One method not
discussed there employs singular value decomposition, which is described by Press
et al. (1992). We shall briefly summarize the method here.

A theorem in linear algebra states that if [4] is a known 7 X J array with / = J,
then [A] may be broken down into the form

(Alrxs =L (W) x s [RY s (7.31)

In this representation, [w] is a diagonal array that holds the singular values of [A],
and [L] and [R] consist of columns that are orthonormal,

(LT'[L]={U)sxss  [RIT(R]={U]x,. (7.32)

(7.30)
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It is important for our development that the singular values are real and nonnega-
tive, w; = 0. Equations (7.31) and (7.32) are the singular value decomposition of [A].
Press et al. (1992) give a reliable subroutine for carrying out the process, and com-
parable routines are contained in some of the popular mathematical software. It is
important to note that if one compares the singular value decomposition resulting
from different algorithms, only the singular values [w] are unique.

Next we consider the case where [ A] is square, J X J, and we are confronted with
the task of solving

[Al{y}) = (0]. (7.33)

Any {y} # {0} satisfying this equation is said to be in the null space of {A]. The num-
ber K of independent solutions lying in the null space of [A] is the nullity of {A].
Thus, the rank of [4] is J— K. One reason for performing a singular value decom-
position is that the nullity of [A] is the same as the number of zero singular values.
(In general, the ratio of the largest to the smallest singular value is the condition
number of [A].)

The relevance of the faregoing to the tasks of implementing Eq. (7.30) is the fol-
lowing theorem: If w; = 0, then column j of [R] is an independent vector in the null
space of [A]. Let us arrange the arrays in Eq. (7.31) such that the values of w; occur
in ascending order, which leads to w, = --- = wg = 0. Then the first K columns of
[R] form an orthonormal basis for any vector {y} in the null space of [A4]; that is,

bl =alR}+c R+ +cx{Rg) = [Ally)=1{0}. (7.34)
Stated in a different way, we have
[AI[{R} Ry} ... [Rk}]=10). (7.35)

In order to employ this result to form the orthogonal complement [{C], we take
the transpose of Eq. (7.28),

fallC]T =[0]. (7.36)

We form a square array {A4] from [a], which has M — N rows and M columns, by
augmenting [a] with N rows of zeros,

[a]
Al =120, 7.37
[Alpxm [[O]] (7.37)

Aside from degenerate conditions that might occur at some instant, the M — N con-
straint conditions are independent, so the rank of [a] is M — N. It follows that the
nullity of [A] as formed here is N. Hence, if the singular values are arranged in the
prescribed manner, the first N columns of [R] obtained from Eq. (7.31) will be an
orthonormal basis of solutions in the null space of [A4]. We define the rows of [C] to
be the transpose of these columns of [R], so that

{R)T
[Cl1= : . (7.38)

{Rn}T
When we use the definition of [4] in Eq. (7.37) in conjunction with this representa-
tion of [C], it follows from Eq. (7.35) that [C] is the orthogonal complement of [a].
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Although using singular value decomposition may not be the most efficient method
for finding the orthogonal complement, it is reliable. Example 7.5 will illustrate the
singular value decomposition method for a typical step in the solution of a set of
constrained equations of motion by the orthogonal complement method.

An astute observer might note that the orthogonal complement method and the
augmented method are very much alike. Both employ the acceleration form of the
constraint equations, and therefore share the same potential problem regarding nu-
merical error. Furthermore, both yield a set of values for the M generalized accelera-
tions at any instant. The methods differ only in the manner in which the equations for
those quantities are formed. The augmented method entails solving 2M — N equa-
tions, while the orthogonal complement method requires solution of only N equa-
tions. Balancing this is the increased number of operations required to evaluate the
orthogonal complement of the Jacobian constraint matrix. If the number of con-
straint equations is not too large, so that M = N, it is likely that the orthogonal com-
plement method will be computationally less efficient.

A fundamentally different algorithm that has received some advocacy involves
selecting a set of N generalized coordinates as an independent set, on which the re-
maining M — N generalized coordinates depend. The approach uses the constraint
equations to algebraically eliminate the dependent constrained generalized velocities
and accelerations. Amirouche (1992) refers to this as the embedding method, because
the constraint equations become intertwined with the Lagrange equations of motion.

The method begins by sequencing the generalized coordinates such that the first
N elements of {g} form partition {q},, which contains the quantities one regards as
independent, or unconstrained. The remaining generalized coordinates form parti-
tion {q}., so we have

(g} = {m“}. (7.39)
fqlc
We partition the acceleration constraint equation, Eq. (7.24), in the same manner:
{é}u}
u ¢ . ={G , 7.40
[{al, [a)] ]{{q}c (e} (7.40)
where
(G} = —[al{q}—{b). (7.41)

It is important for the present discussion to recognize that {G) may depend on all
of the generalized coordinates, not just the unconstrained ones. Solving Eq. (7.40)
yields

td)e = —la.)'{lalu g}y — (G)}. (7.42)

Without going into the details of the derivation, one finds that using this expres-
sion to eliminate {¢}. from the Lagrange equations leads to a set of N differential
equations that are linear in the N elements of {¢},. The important aspect of the deri-
vation is the fact that the substitution also eliminates the Lagrange multipliers. Thus,
it would appear that the result is a solvable set of differential equations, as Amirouche
(1992) implies. That view is deceptive, because of the possible dependence of {G} on
the constrained generalized coordinates. Thus, one has not necessarily eliminated
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those variables from the equations to be solved. It might therefore be necessary to
use additional differential equations to track the constrained generalized coordinates.

The discussion has not fully explored the embedding method because it suffers
from a potential difficulty. Specifically, one might find at some instant that they can-
not form the solution in Eq. (7.42) because [a]. is rank-deficient, so that [a];! does
not exist. A similar difficulty would arise if {a]. should become ill-conditioned. The
remedy in either case is to include in the computational algorithm a process that
identifies rank-deficient and ill-conditioned cases. If such a situation is identified, it
is necessary to consider a different set of generalized coordinates to be the uncon-
strained set. This entails re-arranging the sequence in which the elements of {g} are
defined. The sequence in which the equations of motion and constraint equations
are arranged would need to be adjusted correspondingly. Both the augmented and
orthogonal complement methods are more robust, in the sense that they do not suffer
from problems of solvability. (This assumes that the Jacobian constraint matrix it-
self never becomes rank-deficient.)

Example 7.4 The disk in Example 7.3, which rolls without slipping, is set into mo-
tion with an initial precession rate , = ¥, and spin rate ¢, that match the values re-
quired to make the center follow a circular path having radius p = SR with a constant
nutation angle 8 = n/3. However, the initial nutation angle is § = /4 and the initial
nutation rate is § = y,/2. Other initial conditions are X =0, Y = 5R, ¢ =0, and ¢ =
0, which are consistent with the nominal steady-precession solution. The disk is homo-
geneous with a radius R = 0.25 m. Use the augmented method to evaluate the subse-
quent motion of the disk, and compare that result to the case of nominal steady
precession.

Solution The equations of motion for a rolling, wobbling disk were num-
bered (1) to (7) in the solution to Example 7.3. The unknowns appearing in those
equations are the two Cartesian coordinates X and Y, the three Eulerian angles y,
¢, and 6, and the two Lagrange multipliers. In order to make direct use of the pre-
vious development, we define the column array {g} that contains the generalized
coordinates in the same sequence as before. There are two Lagrange multipliers, so
we define

@ =XYyoel', A=Al

The velocity constraint equations were denoted as (1) and (2) in the previous solu-
tion. For the vector {g} just defined, writing these terms in the form [a]{q} = —{b}
corresponds to

[a1=[(1)
_ 1
_[0

0

{b;=[0}.

We obtain [¢] for the augmented method by differentiating each term, which yields

—Rsinycos®@ —Rcosysing —Rsiny

—Rcosqicosqs Rsingysings, —Rcosq;
—Rsing;cosqs —Rcosqgysing,; —Rsing; |’

—Rcosycosf® Rsinysing —Rcos¢]

_0 = O
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0 0 (g3singycosqs+q4cosqssingy)
0 0 (—g3c08q3C08¢4+G4sing;sing,)

(g3c0sq3sings+q48ing;c0sq,4)  (g3sing;) }
(g3singssingy—qg4cosq3¢c08qs) (—q3c0sqs3) |

To write the Lagrange equations (3)-(7) obtained previously in the standard form
[M1{g} = {F}+[a)T{}\}, we form the inertia matrix [M] by identifying the coeffi-
cients of the terms in 7 that are quadratic in the generalized velocities. We bring all
remaining terms that do not contain the Lagrange multipliers to the right side of
the equations, and place them in the respective elements of {F}. After doing so, we
replace the generalized coordinates and velocities with the corresponding elements
of {q} and {q}. This yields

[d]=R[

10 0 0 0
0 1 0 0 0
M]l=m|0 0 k*(1+cos’qs)/2 0 k*cosqy |,
00 0 (k¥2+R*cos? qy) 0
00 k2 cos g, 0 «?
f 0
0
{F} =m-+ k*(d3q4 Sin g4 COS @4+ G4 qs Sin q4)
(R*G3—x*¢3/2) sinq4 cos g4 — k435 singq— gR cos q4
L k24344 singy

In order to start the differential equation solver, we need to provide the initial
conditions. The initial value of {q} is specified by the problem statement,

{glo=1[0 SR 0 =/4 0]".

Only three of the five initial generalized velocities were specified. We obtain the other
two velocities by satisfying the two nonholonomic constraint equations correspond-
ing to the given initial conditions. Because the disk is homogeneous, we compute the
initial precession rate from the last equation in the solution to Example 7.3, with
6 =0,==/3 and p = 5R:

. . 4gcoté
¢0=¢s=< g >

172
————— ] =1.723446 rad/s.
Rcosf,+ 6p> radss

We obtain the initial spin rate from the relation previously determined for the no-
slip condition at a constant nutation angle,

b0 —(—1% +cos 05>¢s = —9.478951 rad/s,
and the initial nutation rate is specified to be
6y = 0.5y, = 0.861723 rad/s.

In general, determining initial values of the dependent generalized velocities would
involve simultaneous solution of the constraint equations, but the values of X and Y
appear separately in the constraint equations for the rolling disk. Thus, we compute
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Xo = R(¥o cos 0+ dg) cos Yo — Ry sin Y sin by = —2.674403 m /s,

Y, = R(o cos 8+ ¢o) sin Yo+ R cos g sin §p = 0.152333 m/s.
Correspondingly, the initial generalized velocity is

{glo=1[Xo Yo o 6o bl

The solution of the differential equations presented here was obtained by MAT-
LAB® using the ODE23 subroutine, which employs second- and third-order Runge-
Kutta formulas. The solver addresses the standard form of Eq. (7.20), where the gen-
eralized accelerations are obtained by solving the augmented equations, Eq. (7.25).
Note that the mass m appears as a common factor of all terms except the Lagrange
multipliers, so its value may be set to unity for the computation.

One check of the formulation is to confirm that the case of steady precession
demonstrated in Example 7.3 is obtained when the initial values are set as here, ex-
cept that 8, = 6, = 7/3 and 6, = 0. This solution is shown in the figures that follow.
Another check is to monitor the mechanical energy E = T+ V. Because the disk rolls
without slipping, friction does no work. Consequently, this quantity should be con-
stant. The computed value of E was found to remain at the initial value E, = 4.9727
throughout the time interval in the figures.

The computed responses are displayed as plots of X, Y, ¢, and 4 as functions of
time. Another plot shows Y as a function of X, with ¢ serving as the parameter. Each
figure exhibits the strong deviation of the motion from the nominal steady preces-
sion. The time traces suggest that the precession angle increases nearly linearly with
time. The oscillation of the nutation angle, which represents the wobble, appears to

be periodic, as do the oscillations of X and Y. Aside from 6, each time dependence
has the character of the steady-precession case that was intended, although the details

_.—X
_.—Y
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_2....1...‘i..“iL.‘.L....'
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of the various responses differ drastically from the nominal case. This suggests that
the motion is close to a different steady precession. This is most vividly depicted in
the plots of Y versus X. We see there that the center of the disk appears to follow a
circular path, although this is precisely correct only for the case of nominal steady
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precession. This graph clearly shows the much smaller circle resulting from the given
initial conditions.

One might be surprised that a nearly steady precession is obtained, despite the
difference between the given initial conditions and those for the intended motion.
This is a manifestation of the overall stability of the rolling motion associated with
the gyroscopic moment, which induces a rotation about an axis perpendicular to the
axis of an applied moment. Of course, an actual disk would not continue in motion
because of rolling friction. Energy is conserved in the present idealized model, so
the only way the motion can end in our analysis is if it predicts § < 0 or § > w, both
of which correspond to the center falling to the ground. Furthermore, the solution
presented here assumes that the coefficient of static friction is sufficiently large to
develop the required frictional forces. Note in this regard that the Lagrange multi-
pliers represent the components of the friction force in the X and Y directions, as is
apparent from the Lagrange equations of motion corresponding to the X and Y
generalized coordinates.

An interesting response that highlights the shortcomings of a formulation that ig-
nores friction losses is encountered when a slight disturbance is imparted to a rolling
motion in which the disk is upright. If the forward speed is too low, v < (gR/3)"?,
such a motion is unstable (see Meirovitch 1970, p. 164). In the present case, initial
conditionsof X=Y =y =¢ =0, § = 7/2—-0.00, y =0 = 0, and R$ = 0.2(gR/3)"2
result in an unexpected response. The disk begins by rolling almost upright in a
fairly constant direction. This is followed by a short interval in which the disk loops
around and nearly falls to the ground, but then recovers, after which it resumes
upright rolling in a different direction. Continued integration of the equations of
motion indicates that this motion continues periodically and that the overall path of
the center of the disk is nearly circular.

Solving the present problem by the orthogonal complement method leads to an
interesting observation. The same MATLAB® formulation was used, with the orthog-
onal complement obtained from the NULL function, which implements singular
value decomposition. Because the orthogonal complement eliminates the Lagrange
multipliers, the instantaneous generalized accelerations are obtained by solving five
simultaneous equations. In contrast, the augmented method used here entails solv-
ing seven equations. Nevertheless, the orthogonal complement method required 27%
more floating point operations, due to the computational overhead required to per-
form a singular value decomposition.

Example 7.5 At a particular instant, the generalized coordinates and generalized
velocities for the rolling disk in Example 7.4 are

{g} =[—0.194103 1.422270 —0.528468 1.410973 —0.716483]",
(g} =[—1.761367 1.646433 —9.839692 2.162469 —7.839004]".

For this state, use the orthogonal complement method to determine the correspond-
ing generalized accelerations.

Solution For brevity, we shall not repeat the definitions of the matrices in
the solution to Example 7.4. The first step in the present approach is to compute the
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Jacobian constraint matrix [a] and its time derivative, the inertia matrix {M], and
the excitation matrix {F} corresponding to the given values of {g} and {¢}. We as-
sign the elements of the given {q} to the first partition of {x}, while the elements {g}

form the second partition. Substituting the appropriate values into the earlier defini-
tions yields

[a]_'l 0 —0.034358 —0.124446 —0.215895
“lo 1 0.020060 —0.213144  0.126053 |’
[d]_'o 0 0.658306 —2.140648 1.240319
T10 0 0.068964  1.150213 2.124342)’
[1 0 0 0 0
0 1 0 0 0
(ml=|0 0 0.016021 0 0.004973 |,
0 0 0 0.017208 0
|0 0 0.004973 0 0.031250

{F1=10 0 —0.627458 —2.961644 —0.105821]".

To perform the singular value decomposition, we define [ 4] such that [a] forms its
first two rows and the last three rows are zeros. The decomposition results described
below were obtained from the SVD function contained within the MATLAB® soft-
ware. The SVD subroutine returns the singular values in descending order. These
values are

w; = 1.031544, w, = 1.030008, wy =0, wy =0, ws =0,
and the corresponding left and right unitary matrices are
[ 0.863581 —0.504211 0 0 O
—0.504211 —-0.863581 0 0 O
[L]1= 0 0 1 0 0,
0 0 010
| 0 0 0 01
0.837173 —0.489521 0.243948 0 0
—0.488792 —0.838421 —0.005006 0.190742 —0.147393
[R]=1]-0.038569  0.000000 0.132361 —0.663563 —0.735307
0.000000  0.239623  0.480842  0.667389 —0.515717
_—0.242355 0.000000  0.831706 —0.279094  0.414289

Because wy = w, = ws = 0, we use columns 3, 4, and 5 of [R] to form the rows of the
orthogonal complement of [a],

[Cl=

0.243948
0
0

—0.005006

0.190742

—0.147393

0.132361

—0.663563
—0.735307

0.480842
0.667389

—0.515717

0.831706

—0.279094 |.

0.414289
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We next use this value of {C] to form Eq. (7.30), which yields
0.243948 —0.005006  0.006257  0.008274  0.026649

0 0.190742 —0.012019  0.011484 —0.012022

0 —0.147393 —0.009720 -—0.008874  0.009289 |{g}
-1 0 0.034358  0.124446  0.215895

0 -1 —0.020060  0.213144 —0.126053

=[-1.595147 —1.530675 1.944903 —20.829479 —14.844011]".
The solution of this equation is
{¢} =10.6522 —5.2671 —40.0950 —111.5867 —22.7570] .

These values of {¢} and the given values of {¢}, which were obtained from the pre-
vious integration step, would be used to form the right side of Eq. (7.20). The latter
are the values, corresponding to the given instant, that should be sent to an integra-
tion solver.

1.3 Hamiltonian Mechanics and Further Conservation Principles

W. R. Hamilton developed a standard (i.e. canonical) set of first-order equa-
tions of motion that are quite different from the state-space formulation in the pre-
ceding section. These equations will lead us to recognize that additional conservation
principles may be applicable to a system. As we have seen, such principles can be
useful in formulating and solving equations of motion.

71.3.1  Hamilton’s Canonical Equations

Hamilton altered the appearance of Lagrange’s equations of motion by re-
lating momentum and Kinetic energy. The motivation for this formulation may be
recognized by referring to Eq. (7.6), which describes the kinetic energy of particle £ in
a system. Let us evaluate 37, /94, by the procedure we used to obtain Eqs. (7.9). The
result is

oT, M < aF, afk> ) ar, dr,
—=|lmy — —g+my —- -—. (7.43)
aqn iz:l , aql aqn ! , at aqn
A simple re-arrangement of terms leads to the observation that
T, < M 3F, 67k> OFy _ OF
—=m —git— ) T =My V- . (7.44)
aQn « iz:l aqi ' ot aq,r Kk aqn

The term m; v, is the momentum of this particle. The partial derivative 97 /dq,, serves
to generalize the derivative to fit the type of parameter associated with q,,, for exam-
ple, linear or angular motion.

For this reason, the derivative d773q, for any system is called the generalized
momentum p, corresponding to g,. Since the potential energy is independent of the
generalized velocities, the generalized momentum may also be defined in terms of
the Lagrangian function £ = T—V. Thus

_ T _ o8
34n  3qn

¢ Pn (7.45)
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We now use the generalized momenta to form the Hamiltonian function 3C ac-
cording to

M
i=1

In this formulation, the state variables are considered to be the generalized coor-

dinates and momenta, so the generalized velocities must be removed from all rela-

tionships. Such a change of variables may be achieved in a general situation by the

following sequence of operations.

(1) Form the Lagrangian £ = 7—V in the usual manner, as a function of the
generalized coordinates g;, generalized velocities ¢;, and time ¢.

(2) Derive expressions for the generalized momenta p; as functions of the g;, ¢;,
and ¢ according to Eq. (7.45).

(3) Solve the equations found in the preceding step for the ¢; in terms of the
4qis Dis and 7.

(4) Substitute the expressions for the ¢; into Eq. (7.46), thereby obtaining the
functional form 3¢ = ¥(qy, ..., gum> P1s .-+ P> t)- (The operations entailed
in this step may be reduced by referring to Eq. (7.63), which is a relation
between 3C and the potential and kinetic energies we shall derive later.)

Let us consider the time derivative of the Hamiltonian function. Because 3C de-
pends on the generalized coordinates and momenta, we have

o M/a3c . a3C .\ 43
s = 3Gt )

i+ —q;)|+—. 7.47
o P 50, %) o A
We can also use the definition of JC, Eq. (7.46), to form the derivative. This yields

L My . 4L . 3L .\ oL
)= i§=:1<17i(1i+ﬁiq,‘ —aqi qi ——34,- Qi> 5
M L 0L
=Spg-Z26)-L, 7.48
le(p,q, 5q, q.> o (7.48)

where the simplified form results from substitution of Eq. (7.45). The two descrip-
tions of JC must match for any set of values of generalized velocities and momenta.
Thus, a comparison of like terms in Eqgs. (7.47) and (7.48) reveals that

o _ . % __oe %k _ e

w1 aq T ag ot ar
These identities and the definition of p; make it possible to express Lagrange’s equa-
tions in terms of JC, rather than £. This yields

a—G—(-:-=Q,-, i=12,...,M. (7.50)
aq;

The combination of the first of Eqs. (7.49) and (7.50) form a set of first-order dif-
ferential equations, which are called Hamilton’s canonical equations:

(7.49)

Di+

N g=3C =12 ..M
ap;
(7.51)
¢ Pi=—ﬂ+Qn i=1,2,..,M.

aq;
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These constitute 2M coupled, first-order differential equations for the M values of
g, and the M values of p;. If the generalized coordinates are constrained, these equa-
tions must be supplemented by the constraint equations. The constraint forces would
then appear in the generalized forces, or, alternatively, the Lagrange multiplier terms
may be added to the generalized force array.

Once formulated, Hamilton’s canonical equations are slightly easier than the state-
space form to implement for numerical solution. Equations (7.51) give the derivative
of each state variable explicitly at each instant. In contrast, the state-space equations
of motion, Eq. (7.19) or (7.25), require solution of the coupled equations for the
generalized accelerations in order to obtain the corresponding result. The avoidance
of this operation is a substantial benefit of Hamilton’s canonical equations, particu-
larly when the inertia matrix or the Jacobian constraint matrix is not constant. This
gain is balanced by the fact that evaluation of the Hamiltonian function requires the
intricate change of variables just described, in order to remove the generalized veloc-
ities in favor of the generalized momenta.

Example 7.6 The double pendulum consists of identical bars of mass m connected
at the ideal pin B. Derive the Hamiltonian equations of motion for the system.

Example 7.6 Free-body diagram.

Solution The angles g, = 0, and g, = 6,, which describe the orientation of
each bar relative to the vertical, are convenient generalized coordinates for this holo-
nomic, two-degree-of-freedom system. The first step in forming 3C is to express the
Lagrangian in terms of the generalized coordinates and velocities. Bar AB is in pure
rotation about end A4, but bar BC is in general motion. We shall obtain the velocity
of the center of mass G of bar BC by differentiating its position. Thus,

Fg/a = (Isin@,+ 31sin0,) ] + (I cos 0, + 31 cos 0,)J,
‘-)G = 1(01 Cos 01 + %02 Cos 02)1_— 1(01 sin 01+ %02 sin 02)j

The kinetic energy is the sum of the rotational energy of bar 4B relative to end A4,
and of the translational and rotational energy of bar BC relative to point G. Thus,
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1/1 P S A .

T=E<5m12>0|2+5”1\’0'\’04‘5(5”112)0%
1 4 . 1:5 -
=Emlz[?012+§0§+0,02003(02—0,)].

The elevation of pin A is a convenient datum for gravitational potential energy. The
corresponding Lagrangian is

L=T-V= %mlz[g-012+ %0'§+0',92 cos(02—01)]

+mgé cos 0+ mgl(cos 0,+ % cos 02> .

The generalized momenta are

L 4. 1,
=== =mi*|=6,+=6,cos(8,—6 },
P 26, [3122 (6,—9)
aL 1, 1,
=— =ml*|—6,+—=6,cos(8,~0))|.
D2 26, [32 >0 (73 1)]
We solve these relations for §, and é,, which yields
0 = 12p,—18p;c G, = —18p,c+48p,
' milk 2T mikk

where ¢ and K depend only on ¢,—6,,
c=cos(6,—0)), K=[16—9cos*(8,—0))].
We may now form the Hamiltonian. By definition,
3 =pib,+p,6,—L,
from which we eliminate 6, and 6, by substituting the previous expressions. Thus,

12p12 - 36p1pzc+48p22

30 =
mi2K

1

4 2 1 2

+(12p,—18p,c)(—18pic+ 48p2c)]

- mgl(% cosfd,+ % cos 02> .

Collecting like coefficients enables us to rewrite JC in a much simpler form as

1
T 2mi’K
The last step before forming Hamilton’s canonical equations is to identify that the

generalized forces vanish, Q) = Q, = 0, because the constraints imposed by pins 4
and B are satisfied.

3 [12p12—36cp,p2+48p22]—mgl(% cosO,+%cos€2>.
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Differentiating JC with respect to p; and p,, in accord with the first of Egs. (7.51),
yields

: 1 : 1
b,= m(um— 18¢p,), b, = Tn—l?]?(—18CP1+48P2)-

Note that these expressions for 8, and 6§, are the same as those obtained from the
equations defining p; and p,. The second part of Hamilton’s equations (7.51) requires
differentiation of JC with respect to 6, and 6,. However, K and ¢ depend only on
#,—0,, so their derivatives with respect to 8, are the negative of those with respect to
8,. The resulting equations are

. 18 . 3 .
Pr=— s sin(0,—6,)[6¢cpt —(16+9¢c?) p, p, + 24cp?] - Emgl sin@,,

D2

. : ‘
= — g Sin(62- 0)[6cp? —(16+9¢2) p, p,+24cp3] — o melsinb.

It is clear from this example that the operations required to form Hamilton’s
canonical equations are far more tedious than those required for Lagrange’s equa-
tions. Of course, some of the complicated work can be performed by a symbolic
computer language.

7.3.2  Ignorable Coordinates and Routh’s Method

The concept of generalized momenta leads to further understanding of the
laws of mechanics in some special circumstances. The first arises when the Lagrangian
function depends on a particular generalized velocity g,, but not on the generalized
coordinate g, itself. Because d£/dq, = 0 in this case, Lagrange’s equation for this
generalized coordinate is

d (o) _
E( aq,,) =Q,. (1.52)

By virtue of the definition of p,, this equation may be integrated to obtain

3
Pnl,=Pnlt | Qn(r)dr. (7.53)
4

This relation is a generalization of the impulse-momentum principles. It describes
both linear momentum and angular momentum, depending on the type of geometric
quantity associated with g,,. It is interesting to note that, if Q,, depends on any of the
generalized coordinates, then we cannot employ this momentum principle to relate
the states at £, and #,. Such a situation corresponds to the Newtonian formulation
of position-dependent forces, where momentum principles are not used because the
impulse cannot be evaluated.

Consider the more restrictive situation, in which £ does not depend on g,, and the
corresponding generalized force Q, vanishes, Q, = 0. We find from the foregoing
that p, is constant, which corresponds to conservation of generalized momentum.
When such a situation occurs, the corresponding generalized coordinate g, is said
to be ignorable. This term arises because the relation



7.3 / Hamiltonian Mechanics and Further Conservation Principles 341

_aT _ 4L

99,  9qp
may be solved for ¢, in terms of the other generalized coordinates and velocities.
That solution may be substituted into each of the remaining Lagrange equations in
order to obtain equations of motion in which neither g, nor ¢, appears.t

We used this procedure to simplify the equations of motion in Example 6.12. The
procedure may be extended to treat a system in which several generalized coordinates
are ignorable. However, it is important to recognize that all of the Lagrange equa-
tions must be formed prior to substitution for the ignorable coordinates. (It is incor-
rect to treat the conserved momenta as constants in the expression for T or £ when
Lagrange’s equations are formulated, because doing so does not allow for a descrip-
tion of the full effect of a variation of each generalized coordinate.)

It is possible, as an alternative, to use the relations for the ignorable coordinates
to derive the Lagrangian for an equivalent system having a reduced number of de-
grees of freedom. The method by which this reduction may be achieved is Routh’s
method for the ignoration of coordinates. Suppose that, from the original set of M
generalized coordinates, there are M —J ignorable coordinates, which we designate
as gyyy, .--»qpm- Then Eqs. (7.54) apply for n =J+1,...,M; thatis, p;,, ..., pysare
constants. Solving Eqgs. (7.54) simultaneously allows us to evaluate the generalized
velocities ¢, 1, ..., gu as functions of the J generalized coordinates and velocities
that are not ignorable, and, possibly, time. The Routhian function is defined, in
terms of the Lagrangian for the system, as

= constant (7.54)

n

ML i .
¢ R=L- E a—.qn=£_ 2 Pndp- (755)
n=J+1 9qn n=J+1

After substitution of the relations for the generalized velocities of the ignorable coordi-
nates, the dependence of the Routhianis ® =®(qy, ..., @y, G -5 §7s Dysts -+ Prss L)

We consider first the variation of ® based on its functional dependence. Even
though p;.,, ..., Py are constants in the actual motion, they must be varied when
deriving the equations of motion. Thus,

L (IR IR MR
R = ( 8q,+— 64 )+ — 0p,. (7.56a)
ngl aqn " aQn n n=§J:+l apn P
We may also form the variation of ® based on its definition, Eq. (7.55), as follows:
J. 4L ML .. M . .
R=2 2g 0dnt X 5= 84n— > (Pnbq,+5pnqys)
n=t n n=1 94, n=J+1
J M
L 9L
= 5 (2L 5g,+ 2L 54 >— 5Dndln. (7.56b)
n{:l(aqn g aq'l n n=%:+1 I

The alternative forms of d® must be valid for arbitrary virtual increments, which
means that like coefficients must match. Hence, we find from Eqs. (7.56) that

R _og 4 OR _ oL
dq, 9q, dq, 9q,

for n=1,...,J, (7.57a)

T Ignorable coordinates are sometimes called cyclic coordinates. This name stems from the ob-
servation that many cases where a generalized coordinate is ignorable involve rotation about
an axis. They are also known as kinosthenic coordinates.
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IR
op,

According to Eqs. (7.57a), the original Lagrange equations for the nonignorable
generalized coordinates may be replaced by equations of the same form that feature
the Routhian:

d [o&R IR
— - =Q,, n=1,..,J 7.58
o alia) e 39
In other words, the Routhian may be considered to be the Lagrangian for a system
described by J generalized coordinates. If the generalized coordinates are an uncon-
strained set, then the Routhian represents an equivalent system having J degrees of
freedom.

=—q, for n=J+1,.... M. (71.57b)

Example 7.7 A particle slides on the interior of a smooth surface of revolution
whose shape is defined in cylindrical coordinates as r = f(z), where r is the transverse
distance from the axis and z is the vertical distance along the axis. Derive the differ-
ential equation of motion whose solution gives z as a function of time.

Solution The azimuthal angle ¢ and elevation z are useful generalized coor-
dinates, so we set q; = z and g, = 0. The distance r is subject to a configuration con-
straint, r = f(z), so the radial velocity is

F=fz,
where a prime denotes differentiation with respect to z. The kinetic energy for a
particle of mass m is therefore
T =3ml(f)+ 1122 +3mf?6>.
We let z = 0 be the gravitational datum. The corresponding Lagrangian is
L=iml(f)+1122+imf20* —mgz.

We note that 8 does not appear explicitly in £, and that the generalized force
Qp = 0 because the system is conservative. These are the conditions for which 4 is
ignorable. The corresponding generalized momentum p, is constant, where

9L 24
Do Y] f
We solve this expression for the generalized velocity,
= _Po_
mf?’

and use this relation to replace § wherever it occurs in the Routhian. The result is

& = £ pb = Lmi(r2 41224 Lmp2 (LY —mez—p, ﬂ)
2 2 mf? mf?
pé

7y 2 22
miC R+ - 5

—mgz.

N =
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The Routhian ® depends only on z and 2, so it represents an equivalent system with
one degree of freedom. The first term in ®, which contains the generalized velocity,
is the equivalent kinetic energy, while the equivalent potential energy is the negative
of the sum of the remaining terms.

The equation of motion is Lagrange’s equation for g, = z, with ® used instead of
the Lagrangian. It is necessary to recognize that f and f’ are functions of z, which is,
in turn, a function of time. Thus, the required derivatives of ® are

4 (i

dt\ 3z
IR
0z

Setting Q, = 0 leads to

(S +02+ff27 -

) =m %{[(f’)zﬂlzl =m{(f)+11Z+2mf'f 23,

2
1 g 52 p9 7
=m +——J"—mg.
f'f"z f3f g

2
Ps L _
m2f3f =78

1.3.3  Conservation Theorems

The previous section derived an extended principle for conservation of mo-
mentum. Here we shall develop concepts that are related to conservation of energy.
In the course of deriving Hamilton’s canonical equations, we found in Eq. (7.48)
that the time derivative of the Hamiltonian function 3C is given by

. M L 0L
=S pigi-22g,)-2=. 7.59
x i§=:1<pl 9 aq; ql) ot (7:59)

Let us remove p; from this relation by factoring out ¢; and then recalling the defini-
tion of p; and Lagrange’s equations. This yields

5.c=§[d (a,e)_ a,e]qi_g_

i=1 E BQn aqn ot ’
n_ M AL
¢ X=3 Qi‘Ii_‘_at . (7.60)
i=1

This relation has a useful corollary in the case of a conservative system, for which
Q; =0, when that system’s Lagrangian is independent of time, so that d£/d¢ = 0.
One finds in this special case that 3¢ = 0, so that JC is a constant whose value is con-
served from the initial motion. This is Jacobi’s integral.

In order to understand the significance of Eq. (7.60), and its associated conserva-
tion principle, we recall that the virtual work is written as

M
i=1

If the virtual increments in 6 were instead time derivatives, then the summation
would represent the power input from the generalized forces. If this were so, then it
would appear from Eq. (7.60) that 3C is related to the rate of change of the mechanical
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energy. To cast JC into the appropriate form, we eliminate the generalized momenta.
From Egs. (7.9) and (7.45), we have
M
=T _ S M,4,+N,. (7.62)
94, =1

Substitution of this expression into the definition of 3C, Eq. (7.46) leads to

Pn

M M M
= E EManan"' Eanq'n_"c=2T2+T1_(T2+T1+TO_V);
n=

n=1j=1
¢ X =T,-Ty+V. (7.63)

(This expression, compared to the definition in Eq. (7.46), usually proves to be an
easier means to forming JC.)

It is clear from the preceding form of JC that Eq. (7.60) is like an energy-rate prin-
ciple. Whether or not this relation actually provides a new perspective depends on
the nature of the constraints imposed on the system’s motion. We consider first a
system that is time-independent, so that the position of any point depends only on
the generalized coordinates, with no explicit dependence on time. In such systems,
3£/0t = 0 and T, = 0. The latter converts Eq. (7.63) to

X=T+V=E, (7.64)

where E is the total mechanical energy of the system. Now let us recall from Chapter
6 the development of the kinematical method for virtual displacement. We found
that if a system is time-independent, then the velocity and virtual displacement of a
point have analogous forms,
M oz M az
or ar
V=Y —¢q; @ F=3 — 8q;. (7.65)
=10 j=10g;
As a consequence, virtual increments in Eq. (7.61) may be replaced by time deriva-
tives, which leads to the following expression for the instantaneous power input to a
system by the generalized forces:

) M
W= gl Q,‘ qi. (766)

When these observations concerning a time-independent system are combined, we
find that, for such systems, the Hamiltonian rate principle, Eq. (7.60), reduces to the
power form of the work-energy principle:

power = W =E. (7.67)

We therefore conclude that the Hamiltonian rate equation provides no additional
insight to the motion of a system if the kinematics of that system do not depend explic-
itly on time. Clearly, the important case of a scleronomic system fits this specification.

A less restrictive situation is one where the system’s constraints are catastatic. This
means that, although the constraint equations depend explicitly on time, all velocity
variables and constraint conditions are homogeneous in the g;. In such a system we
still have T'= T, so that 3C = E. Although Egs. (7.65) are applicable for a catastatic
system, time does appear explicitly in the Lagrangian, so that 3£/9¢ # 0. Obviously,
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the latter also applies to more general situations, in which the kinematical features
of a system depend arbitrarily on time.

It follows that Eq. (7.60) for 3 and Eq. (7.67) for E are independent principles
governing any time-dependent system. The work-energy principle, Eq. (7.67), is
generally valid. However, the power input to such systems comes from reactions that
impose the time-dependent motion, as well as from the applied forces. Such forces
do not appear in the generalized forces of a system that is described by unconstrained
generalized coordinates. It is possible for the Hamiltonian of a system to be constant
(Jacobi’s integral), even if the mechanical energy is not conserved. When JC is con-
served, its constant value is determined from the initial conditions, which leads to a
relation between the generalized velocities at different positions.

Example 7.8 Bar AB, whose mass is m, is pinned to the vertical shaft. The assembly
precesses about the vertical axis at the constant rate Q due to the torque I'. Consider
the angle of nutation 6 as the sole generalized coordinate. Compare the rate of change
of the Hamiltonian in such a formulation to the rate of change of the mechanical
energy of the system. The inertia of the vertical shaft is negligible.

VA

Example 7.8 Free-body diagram.

Solution We may select g; = 0 as the sole generalized coordinate, because
the restriction that Q be constant serves to define the precession angle . We must
express the kinetic energy in terms of 6 in order to form both 3C and E. The angular
velocity of the bar is

@=0K—-0j=—(Qcos0)i+8j+(Qsinh)k.

The kinetic energy may be considered to be purely rotational relative to the sta-
tionary end A. The bar is slender, and xyz are principal axes, so we have

T =3Iyl +1,,w?) = tmi*[6* + Q% sin? 6).
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For a gravitational datum at the elevation of end A4, the Lagrangian is
£ = 1ml?[6*+Q?%sin® 0]+ mgl cos 6.

The generalized momentum corresponding to the only generalized coordinate is
= % = %mlzé.
We solve this expression for §, and use the result to eliminate § from the Hamiltonian.
Thus,

D

— g _ 3 a1 an22, 1
3C—p,0—£—2—m7p1—€m1 Q2 sin 0——2—mg1cos0.

No constraints are violated in a virtual movement resulting from incrementing 6
by 60. Therefore, Q, =0. Furthermore, £ does not explicitly depend on time, so
9L£/9t = 0. (This would not be true if  were a given time-dependent function.) Ac-
cording to Eq. (7.60), these conditions correspond to JC = 0, from which it follows
that the Hamiltonian is conserved,

where 3Cq is the value when the motion was initiated. This conservation equation
may be expressed in terms of § by substituting p, = m/?6/3, which yields

imi*[6%—Q?sin® 0] — mgl cos 8 = 3C,.
The mechanical energy is

E=T+V= %m12[92+925in20] —%mglcos 0.

The only nonconservative force that does work is the couple T, so the power input is
W=rq.
The work-energy principle, E = W, then yields
E=1mi*66+Q% sin6 cos 6]+ tmglsind =T'Q.
For comparison, we now differentiate the equation for the constant Hamiltonian;
3¢ = ymi*[66 — Q%6 sin 6 cos 0] + ;mgl6 sin 6 = 0.

Aside from the presence of the common factor 6, this is the same equation of motion
as we would obtain from the application of Lagrange’s equations for g; = 8. We also
obtain an expression for I' by forming £ — 3C, which yields

' = 2m/?Q0 sin 6 cos 6.

This relation could have been obtained from the Lagrangian formulation by using
constrained generalized coordinates ¢, = 8, g, = ¥, which must satisfy the constraint
y=0Q.
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7.4 Gibbs-Appell Equations for Quasicoordinates

The methods of the preceding sections, by which dynamic system equations
were reduced to first-order form, are closely linked with the kinetic energy of the
system. The formulation of first-order equations we shall develop here is out of this
mainstream, in that it is not founded on kinetic energy. It has other assets beyond
leading to a first-order form, the primary one being that it can yield equations for
nonholonomic systems in which constraint forces and/or Lagrange multipliers do
not occur. The method is not used as widely as Lagrange’s equations, probably be-
cause its merits only become important for nonholonomic systems. One can derive
Kane’s (1985) equations, which is a formulation favored by some individuals, as a
special case of the developments that follow. We begin by extending the concept of
generalized coordinates. Then we will derive equations of motion by considering a
system of particles. The last step in the derivation will be specializing the equations
to the case of rigid-body systems.

7.4.1  Quasicoordinates and Generalized Forces

By definition, we may uniquely describe the instantaneous position of any
point in a system in terms of M generalized coordinates g;, where M = N and N is
the number of degrees of freedom of the system. We can correspondingly describe
the instantaneous velocity of that point in terms of M generalized velocities ¢;. How-
ever, it might be more desirable to use a different set of parameters, called quasicoor-
dinates v;. We use the prefix “quasi” because we require only that the time derivative
of these quantities have physical meaning. It is not necessary that there be an actual
position associated with a quasicoordinate, because the equations of motion will
only involve v;. However, it is acceptable to employ a position variable as a quasi-
coordinate. A familiar example of quasicoordinates arises in Euler’s equations of
motion for a rigid body, which are expressed in terms of the angular velocity com-
ponents. In that case, there is no angular orientation vector that may be used to form
a corresponding set of generalized coordinates.

Consider a system of P particles. Let x;, i =1, ..., 3P, denote the set of (absolute)
Cartesian coordinates for all particles in the system. The position of the system is
known in terms of the generalized coordinates, but the value of time ¢ must also be
specified if the physical constraints imposed on the system are time-dependent. We
therefore have x; = x;(g;, t), where functional dependence on a set of variables is
indicated by a generic variable in that set. Differentiation of the position leads to
expressions for the velocity components of each particle,
. M axi A 8x,~
X; _‘ng aqjq1+ at H
where all partial derivatives may be functions of the generalized coordinates and
time. Clearly, x; dt is an exact differential that may be integrated to return to the
functional dependence of the position coordinates.

Let us generalize Eq. (7.68) such that the rate variable it defines is no longer a
perfect differential. Specifically, we replace the physical velocity components x; by

(7.68)
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parameters v;, and also replace the partial derivatives by arbitrary functions. Thus,
the quasicoordinate velocities v; (or, more briefly, the quasivelocities) are related to
the generalized coordinates by

M
Yi = Eulj(qk)t)qj+gl(qk9t)9 i=1a”"M’ (7'69)
j=1
where the functions u;; and g; depend on the definitions of the quasivelocities and
generalized coordinates. Note that we have defined only M quasicoordinates, be-
cause that is the number of generalized velocities ¢g;.
The differential displacement in a time interval d¢ corresponding to Eq. (7.69) is

M
d7,=71dt=Euu(qk,t)dqj+g,(qk,t)dt, l=l,,M (770)
j=1

Recall that the coefficients u;; and g; are arbitrary, depending on how we define the
quasivelocities. Therefore, integrating d+; in order to obtain a value of the quasi-
coordinate +; is only possible if we express the time dependence of the generalized
coordinates. However, we do not know such dependencies until we have solved the
equations of motion, so the quasicoordinates are not useful for specifying position.

The overall philosophy in the developments that follow is to use generalized coor-
dinates to describe any position-related effects, whereas quasicoordinates are used
to represent the various aspects of movement, such as velocity and virtual displace-
ment. We may replace any dependence on the generalized velocities ¢; by a com-
parable dependence on the quasivelocities v;. Equations (7.69) represent a set of M
linear equations expressing the values «; in terms of the values of ¢;. We may solve
these equations to find g; in terms of v;; the form of that solution is

M
¢ Gi = 2 Vij(Gr, )7+ hilq, 1). (7.71)
Jj=1

Formulation of the Gibbs-Appell equations of motion for a specific system will begin
by defining the generalized coordinates and quasivelocities. For the system of in-
terest, we will need to derive expressions like Eq. (7.71) for each generalized velocity
in terms of the quasivelocities. This is a purely kinematical issue, for which any of
the techniques in Chapters 2-4 might be useful. Consequently, we consider the coeffi-
cients v;; and A; to be known. In contrast, we will have no need for inverse relations
in the form of Eq. (7.70).

The linear form of the transformation between the ¢; and the ; has an important
implication for constraint equations. Consider the substitution of Eqgs. (7.71) into
Eqgs. (7.1). The result is a set of constraints on the quasivelocities, whose form is
similar to Eq. (7.1):

M
¢ > A, )7+ Bi(g, 1) =0, i=1,...,M—N. (7.72)
i=1

The coefficients 4;; form the Jacobian constraint matrix for the quasivelocities. Once
again, although we could relate the coefficients A;; and B; appearing here to the coef-
ficients in Eq. (7.1), there will seldom be any reason to do so. Instead, we will formu-
late the constraint conditions for a system directly in terms of the quasivelocities.
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In order to treat virtual displacements, we multiply Eq. (7.71) by dt, which leads
to an expression relating the increments of the quasi- and generalized coordinates in
an infinitesimal time interval,

M
dq; = X vij(qe, t) dv;+hi(qy, t) dt. (7.73)
j=1

Time is held constant in a virtual movement, so the virtual increments imparted to the
generalized coordinates are related to the corresponding increments in the quasicoor-
dinates by

M
6q,=2v,j(qk,t)6'yj, l=l,,M (774)
j=1

As a consequence of Eq. (7.74), we may form a generalized force I'; corresponding
to each quasicoordinate v;. The definition of the generalized forces Q; associated
with a set of generalized coordinates is that the virtual work has the form 6W =
> Q;8q;. Substitution of Eq. (7.74) into this definition yields an analogous form for
the virtual work in terms of the I';; specifically,

M M M aqi
¢ oW=33Tdy;, T;=3Qv;=20; o

j=1 j=1 i=1 Y
Note that here we have invoked Eq. (7.71) to replace the coefficient v;; by the partial
derivative d¢;/dv;, because this form has greater meaning in the context of a prob-
lem solution.

The second of Eqgs. (7.75) allows us to convert the generalized forces associated
with the g; parameters for a system. Such an approach is particularly useful for con-
servative forces. We merely use Q; = —aV/dq;, where V(gy, t) is the potential energy
of the conservative forces. In contrast, the first of Eqgs. (7.75) shows how we usually
proceed with nonconservative forces. The approach is quite similar to the kinematical
method for virtual displacement. Let point P be the location where a nonconserva-
tive force F is applied. By definition, the various v, are variables we have selected to
describe the motion of the system. Hence, a kinematical analysis of the velocity of
point P would yield an expression of the form

(7.75)

M -
Vp = Ci(qk, 1)V +d(gy, 1). (7.76)
Jj=1

(If the quasicoordinates were the same as the generalized coordinates, then ¢; =
0rp/dq; and d = drp/dt.) To obtain the corresponding virtual displacement, we con-
vert the foregoing to a differential and then set df = 0. From this we may form the
virtual work done by F,
M M
8fp =3 &dy; = SWF=F-8fp =3 F-¢;dv,. (177
Jj=1 Jj=1
When we match W7 to the first of Egs. (7.75), we find that the contribution of F to
the generalized forces is
= F. %. (7.78)

o

I‘jF_—_F.
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The similarity of virtual increments in generalized and quasicoordinates leads to
an explicit statement of the manner in which the constraint forces affect the general-
ized forces. Because the constraint equations (7.72) have the same form as Eq. (7.1)
for constrained generalized coordinates, the contribution of the reactions to the gen-
eralized forces must be as indicated in Eq. (7.3). Let A; be the Lagrange multiplier for
the ith constramt on the quasicoordinates. Then the generallzed forceI; is a superpo-
sition of I‘ ) due to active forces applied to the system, and the Lagrange multiplier
contrlbutes A;Aj; due to each constraint. The generalized forces are therefore given by

F=TO4+ S AA 779
J J + '21 iy ( )
=

As we found in Section 7.1, using Lagrange multipliers allows us to account for
the reactions associated with constraints, without actually formulating the virtual
work they do. Even better, it is possible to employ a set of quasicoordinates that
entirely avoid the appearance of reaction forces in the equations of motion. Toward
that end we select a subset of N quasicoordinates ¥, 3, -.-, ¥n- We correspondingly
rewrite Eqs. (7.72) as

-N N
21 Kij (@ Ov+n = _zlAij(Qka 17y,
= Jj=

—-Bi(gi,t), i=1,....M—N, (7.80a)

where [K] is the (M —N) x (M — N) submatrix of [ A] associated with the remaining
quasicoordinates,

Kij=Ai(j+N)’ i,j=l, vee M_N- (7'80b)

If the square array of coefficients K;; is not singular (i.e., if |[K]| # 0), then the con-
straint equations may be solved for the remaining quasicoordinates in terms of the N
parameters 4;. This means that any set of values assigned to the N quasivelocities
¥; will represent a kinematically admissible motion, provided that the remaining
M — N quasivelocities are selected to satisfy the constraint equations. Hence, the ¥;
are unconstrained quasicoordinates. Note that the case where |[K]| = 0 corresponds
to selecting a set of N quasicoordinates that are not kinematically independent. Be-
cause we require the constraint equations to be distinct, there must be some sub-
matrix [K] that is not singular, from which it follows that a set of unconstrained
quasicoordinates can be defined for any system.

As a corollary of Eq. (7.80a), the generalized velocities are uniquely related to the
unconstrained quasivelocities. Such relations have the same linear form as Eq. (7.71),
but the coefficient functions are altered. The new expressions are

M
4= 2 vij(qks t)71+hl(qk’ t)’ l=l’ -",M' (7°81)
Jj=1

Note that we will obtain the coefficients ¥;; appropriate to a specific system directly
from a kinematical analysis, rather than by using Eq. (7.80a) to transform the coef-
ficients v;; associated with the constrained quasicoordinates.

Because the values of the 4; are not constrained, an arbitrary set of values may
be assigned to the virtual increments §4; without violating any of the constraint
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conditions. Thus, the generalized forces T'; corresponding to a set of unconstrained
quasicoordinates §; will not contain any terms associated with reactions; that is,
f,» = I_‘,-("). We may obtain these generalized forces according to either of Egs. (7.75),
which become

M aq

W=3 5, I?= s g %4 (7.82)
j=1 i=1 37/

By eliminating the reactions from the generalized force, unconstrained quasicoordi-

nates simplify nonholonomic systems in the same way that unconstrained generalized

coordinates simplify holonomic systems.

7.4.2  Gibbs-Appell Equations

It is possible to modify Lagrange’s equations such that the term containing
a derivative with respect to generalized velocities g; is replaced by terms that depend
on the quasivelocities y;. However, the transformation may be conveniently carried
out only for a scleronomic system. There is little to be gained from such a derivation,
especially when an alternative principle that is more widely applicable is available.
We return to a system of P particles, in a three-dimensional space, whose Carte-
sian coordinates are x; (i = 1, ..., 3P). Suppose we have selected M generalized coor-
dinates to describe the position of all particles, so that x; = x;(qy, f). We also define
M quasicoordinates v;, When we invoke Eq. (7.76) in component form, we find that
the Cartesian velocity components of the particles have the form

M
X =3 Cij(Qr, )+ di(qr, ). (7.83)
j=1
Correspondingly, the virtual displacement components are
M
Xi = 2 €ij(qp, 1) 8v;. (7.84)
j=1

In view of the dependencies of the coefficients ¢;; and d;, the acceleration components
obtained by differentiating Eq. (7.83) are

.. M M aC,'j X aC,'j M ad 3d,
= A —4 . 7.85
* JZ;I [C:ﬂ,"'(’;::l P UT > ]+ 21 dq k i (7:83)

We now implement d’Alembert’s principle of virtual work. First, we equate the
Cartesian components f; of the resuitant force acting on each particle to the corre-
sponding inertial effect m; X;. When we use Eq. (7.84) to describe the virtual displace-
ments associated with virtual increments of the quasicoordinates, we find that the
virtual work done by all forces is

3P 3p
oW =3 fibx; =3 m;¥; dx;,

i=1 i=1
M P M
2 ficijdyj =2 T miXic;;dv;.

i=1j=1

(7.86)

M5

1

—

~.
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Upon interchange of the order in which the summations are performed, we see that
the coefficients of v; to the left of the equality sign are the generalized forces asso-
ciated with the quasicoordinates, so we have

M M 3P
El T6v;= El > m;X;ci;dy;. (7.87)
J= J i=
If the number of degrees of freedom N is the same as M, so that the quasicoordi-
nates form an unconstrained set, then the 6y; may be assigned arbitrary values. Even
if M > N, any subset formed from N of the év; parameters may be assigned arbi-
trary values. Furthermore, how we select that subset is also arbitrary. (This assumes
that the subset we select does not lead to the degenerate condition |[K]| =0 in Eq.
(7.80a).) Given the arbitrary nature of the virtual increments, the coefficients of like
6+, in either side of Eq. (7.87) must match, so that
3P
El m,'X“','C,'j:I‘j. (788)
i=
The last step in the derivation comes from recognizing that the coefficients c;; are
also the coefficients of the quasiaccelerations in Eq. (7.85), so that

a%; N X% ad
6_")21-=cij = X = X'—’——I: ( ,)] (789)

J
We substitute this expression into Eq. (7.88), and recall Eq. (7.79) in order to make
the role of the constraint forces explicit. The result is the Gibbs-Appell equations,
which are named for the researchers who pioneered their development (see the ref-
erences at the end of this chapter):

as

'Y — =T+ 2 A Ay (7.90)

The quantity S is the Gibbs-Appell function,

1 3P
. - 2 m;(%)% (7.91)

In some presentations S is referred to as the energy of acceleration, but doing so adds
little to one’s understanding. We see from the derivation that although the Gibbs-
Appell equations differ drastically from Lagrange’s equations, these differences are
a consequence solely of the way virtual displacements are described in the two ap-
proaches.

The unknowns in the formulation here are the M quasivelocities y;, the M gen-
eralized coordinates g;, and the M— N Lagrange multipliers A;. The Gibbs-Appell
equations represent M first-order differential equations for the ;. In addition, the
motion must satisfy Eqgs. (7.71), which are M first-order differential equations for the
q; derived from a kinematics analysis. Additional M — N first-order differential equa-
tions for the y; are obtained from the constraint conditions in Eq. (7.72). Thus, the
number of equations balance the number of unknowns.

That the Lagrange multipliers arise algebraically complicates numerical solutions
of the foregoing set of equations, just as it does for Lagrange’s equations. (We dis-
cussed this matter in Section 7.2.2.) The Gibbs-Appell formulation offers a simple
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remedy, because we can avoid the difficulty completely by using unconstrained quasi-
coordinates. Those parameters lead to virtual displacements that always satisfy all
constraint conditions, so there is no need to employ Lagrange multipliers. The Gibbs-
Appell equations in this case reduce to

L I j=1,..,N (7.92)
Also, there are no constraint equations to be satisfied. Consequently, the full set of
equations of motion consists of the N Gibbs-Appell equations (7.92) and the M
kinematical equations (7.81). These are first-order differential equations for the N
quasivelocities and the M generalized coordinates, respectively. The first-order na-
ture of these differential equations is important, because it expedites application of
numerical techniques to determine the response, as discussed in Section 7.2.

In some situations, especially those involving Coulomb friction forces, it is neces-
sary for a constraint force to appear in the equations of motion. We address such
cases by employing a set of quasicoordinates that violate only the constraint of in-
terest, but not the others. Without loss of generality, we may consider this constraint
to be numbered 1. Because we wish to violate only one constraint, we employ N+1
quasicoordinates. We form this set from the N unconstrained parameters we would
otherwise use, supplemented by a quasicoordinate v, that is associated with move-
ment in violation of the constraint. When we specialize the standard constraint equa-
tions (7.72) to the present situation, we find that

N
AN+ TN+ 21 A1j(Grs )7+ Bi(qi, 1) = 0. (7.93)
j=

(We assume that Ay, does not equal zero. If it did, then our choice for vy,
would not be suitable for the extra quasivelocity, because it would not represent a
movement that violates the constraint.) The Gibbs-Appell equations in this case con-
sist of the set of N equations (7.92), and the one for the constrained quasicoordinate,

aS
OYN+1

Note that the reaction associated with constraint number 1 appears only in 'y ;, but
not in the generalized forces I-‘j(") for j=1,...,N. Thus, we gain the reaction and
Yv+1) as unknowns, which are balanced by the addition of Egs. (7.93) and (7.94).
Obviously, this approach can be extended to treat systems featuring several frictional
constraints.

As a closure to the development, we shall summarize the procedure required to
formulate the Gibbs-Appell equations of motion when reaction forces are not of
interest. The first step is to define a set of M generalized coordinates g; that satisfy
any constraints we have identified as holonomic, as well as a set of N unconstrained
quasivelocities 4;, where N is the number of degrees of freedom and M —N is the
number of nonholonomic constraints. The kinematical portion of the analysis re-
quires derivation of Egs. (7.81) relating the ¢; to the ¥;. The kinematical analysis must
also describe, in terms of the ¢;, ¥;, and 4;, all acceleration parameters required to
form S. The kinetics analysis requires formation of the expression for S, and also
evaluation of the generalized forces f‘,»“'). The latter may be determined either directly

= FN+ 1e (7.94)
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from an analysis of the virtual work, or by converting generalized forces associated
with the generalized coordinates. These are the two approaches described by Eq.
(7.82). In any case, all reactions may be omitted in the evaluation of generalized
forces. The complete set of equations consists of the N Gibbs-Appell equations (7.92)
and the M kinematical relations in Egs. (7.81). (Advocates of the Gibbs-Appell equa-
tions, as well as the related Kane’s equations, often claim that those approaches lead
to a much smaller set of equations to solve. However, they fail to mention that there
is an associated set of kinematical equations that also must be satisfied.) Finally, in
order to simplify notation, we shall retain the tilde identifying unconstrained quasi-
coordinates only when there is a possibility of confusion with constrained parameters.

Example 7.9 A small sphere is suspended by a spring of stiffness k£ from the collar.
The collar and the sphere each have mass m, and the horizontal bar guiding the collar
is smooth. A force F acting transversely to the spring is applied to the sphere, with
the result that the velocity of the sphere is always parallel to the spring. Derive the
Gibbs-Appell equations of motion for the system.

mg y
l— x. —]
o
[To X
3
\ — v N kA
X ] L —T
\1 L4
k

k %
VN

Example 7.9 Free-body diagrams and kinematical
parameters.

x

Solution The position of the system may be described by the length L and
angle of orientation # of the spring, and the horizontal position X of the collar,
so¢;=L, g, =0, and g3 = X¢. A constraint is imposed on the direction of the ve-
locity of the sphere, so the system has two degrees of freedom. Correspondingly,
two quasivelocities are unconstrained. A variety of definitions are possible; we shall
employ

L=y, 6=1. 1,2)

Note that these definitions are system equations relating two of the generalized coor-
dinates to the quasivelocities. The relation for X requires a kinematical analysis.
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Let xyz be a moving reference frame whose origin coincides with collar C, and
whose x axis is always collinear with the spring. Then

Ve = Xcl = Xcl(sin)i+(cos8)j], @ =0k,

Fse=Li, (W), =Li, V5= Vc+(Vg)y,+&XFs/c.
Using the definitions of the quasivelocities, egs. (1, 2), leads to

g = (X sin0+4,)i+ (X cos0+v,L)].

The y axis is normal to the spring in the plane of motion, so the constraint condition
that v, be parallel to the x axis gives

Vs-j = Xccosf++,L =0.
Thus, the relation between the third generalized coordinate and the quasivelocities is
Xe=—1 ==, 3
from which it follows that
¥s = (¥~ 72 L tan9)i.
We will require an expression for the acceleratiqn of each body in order to form
the function S. Differentiating the expression for X yields

i3 sin @
2™ cos20”

Xe=-%, —Y17Y2

cosd cos @

We could employ the standard relative acceleration equation to describe ag. A sim-
pler alternative is to differentiate the expression for ¥ just derived:

_ d _
ag = E(VS)

1
cos26

= <~y.—(y2L+yzL’) tanf—v,L0 )i+(y‘,—72L tan 0)(@ x 1)

= (vl—szﬂn‘z)tanO—v‘%L m)“ (11v2—7¥3L tan0)J.

The Gibbs-Appell function is
S=lma @ +lmﬁ -d =—1—md -a +—l-m(X )?
) STUs ) c uc 5 S Us 5 C

1 (. . a1V
= _ —(¥,L tanf—v5L ——
2m<71 (Y2L+v172)tanb —vy3 00520)

1 L . 1 2, sind 2
+—m{5 + Y1y +y5L +irrelevant terms.
2 <72 cos® 1"V cose " 2 c0520>

The terms not listed in the preceding expression do not contain quasiaccelerations
4, 0 they cannot contribute to the equations of motion. Also, note that there is no
reason to collect like terms in S before evaluating its derivatives.
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We begin the evaluation of the T'; by considering the force F. The virtual displace-
ment of the sphere may be obtained by using the expression following eq. (3) to
form v, dt. Replacing differentials by virtual increments yields

6fs = (671*672Ltan 0)1-

Because 87 is in the 7 direction and F = Fj, we find that F-8Fg = 0. We should note
that the same result could have been obtained much more simply: The displacements
resulting from virtual increments of unconstrained quasicoordinates do not violate
any constraint conditions. Therefore, F, which is the reaction required to prevent the
sphere from moving in the transverse direction, does no virtual work.

The forces doing virtual work are the spring and gravity, which are conservative.
Let L, be the unstretched length of the spring, and let the datum for gravity be the
elevation of the collar. Then

V = tk(L—Ly)*—mgL cos¥.

Because the potential energy is independent of X, the virtual work done by these
forces is

4 14

oW =——6L——&6.

oL a9
Equations (1) and (2) developed earlier correspond to Eqs. (7.81) relating the general-
ized and quasicoordinates. Those relations also characterize the relation between the
virtual increments of both types of quantities, so we have

L=y = 8L=by, 0O=1v, = 80=35y,.

Thus, matching the W displayed previously to the standard form in the first of Eqs.
(7.82) leads to

v v .

I‘,=—E=—k(L—L0)+mgcoso, I‘2=—W=—mgL5m0-
Next, we form the derivatives for the Gibbs-Appell equations:
as . .. . 1
a—‘y]- = m<'y|—'ythan0—'yl'yz tano—yzzL m),
95 F1—F2Ltan @ — 4,7, tan @ —y3L 1 )(—LtanG)
Y- cos2 6
. L .. 1 .2, Sin@ L
— — L —_—
+m<72 cos @ MR cosé T c0520> cosd

Equating each derivative to the corresponding I';, followed by clearing cos 6 from the
denominators, yields

710820 — (2L +7,72) sin 0 cos § —y2L
+—rI:l—(L—L0) cos’0—gcos’0=0, (4)

—41 L sin 8 cos? 8 + (§,+ 172) (L cos 0)(1 +sin? §)
+2v3L%sin0+gLsinfcos’0=0. (5)
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The full set of equations of motion comprises the first-order differential equa-
tions (1)-(5), in which the five dependent variables are L, 8, X, v;, and ,.

7.4.3  Gibbs-Appell Function for a Rigid Body

The definition of S, Eq. (7.91), is similar in form to that for kinetic energy, so
the derivation of an expression for § in rigid-body motion will also follow a compa-
rable approach. Indeed, we will find that S may be expressed in terms of the angular
motion and angular momentum. As a preliminary to this development, it is appro-
priate to consider a basic aspect of the manner in which S is employed.

Because derivatives of S are taken only with respect to the quasicoordinate accel-
erations, any terms in S that are independent of the §; cannot be relevant to the
equations of motion. However, the quasicoordinate accelerations occur only in the
physical acceleration components, as evidenced by a comparison of Eqs. (7.83) and
(7.85). Therefore, any term in S that we find to depend solely on velocity parameters
may be ignored.

We describe the acceleration of a point P in a rigid body in terms of the transla-
tional effect following a reference point A in that body and a rotational effect about
point A. If point P locates an element of mass dm, then the infinitesimal contribu-
tion of this element to S is given by

dS=3{a s +aXF+aX(®@XF)]-[G4+&XF+aX(d®XF)]dm
=3{A4° 04+ (@XF)(@XF)+2d4- (@ XF)+2d4-[@ X (& XF)]
+2(a X F)-[@x (@ X F)]}dm+irrelevant terms, (7.95)
where @ and & are the angular velocity and angular acceleration of the body, and 7
is the position of dm relative to reference point A. The terms marked as irrelevant
do not contain derivatives of the quasivelocities.

As we did for angular momentum, we now restrict point A to be either the center
of mass or the fixed point when the body is in pure rotation. In the first case, the first
moment of mass (which is the integral of 7 dm) vanishes, while the second case gives
a4 = 0. In either case, the third and fourth terms in Eq. (7.95) will make no contribu-
tion to S. The first term requires no modification. The dependence of the other terms
on the angular momentum may be displayed by using the following identities for the
scalar and vector triple products:

a-(bxé)=b-(¢xay=cé-(axb), (a)
ax(bx¢é)=b(a-cy—e(a-b). (b)
Applying identity (a) to the second term in Eq. (7.95) leads to
(@xF)-(@xr)=a-[Fx(@xr), (7.96)
while the same step changes the fifth term to
(@xXF)[exX(@XF)] =a&-{Frx[axX(@xF)]}.
To simplify this we invoke identity (b), which shows that

Frxlax(@XF))=—(oXF)(F-&)
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because 7- (@ X 7) = 0. Let us now consider a term that resembles the left side of the
foregoing, the only difference being the order in which the individual vectors occur.
Applying identity (b) shows that

AX[FX(@XF)] = —(®@XFW&@-T),

where the simplified form stems from the fact that &-(@ X 7) = 0. We see that the
re-arranged product yields the same result as the original, from which it follows that

(@xXF)[@X(@XF)] =a-fox[FX(®XF)]]. (7.97)

The next step is to substitute Egs. (7.96) and (7.97) into Eq. (7.95), and then to
integrate over the entire body. Factoring out of the integrals those terms that are
solely functions of time yields

S=%6,,-&,4fffdm+%&-ffffx(&xf)dm
+a-ox”ffx(a,xf)dm. (7.98)

The first integral is the mass of the body, while the third integral is the angular mo-
mentum A ,. Furthermore, the second integral is the same as the third, except that &
replaces @. Hence, the second integral reduces to the rate of change of the compo-
nents of the angular momentum, which we write as 8H,/8¢. The final form of S is
therefore
H

. S=—;-md,,-ﬁ,4+%&-66t”
where point A is the center of mass of the body, or a fixed point in a purely rotating
body. A feature of primary significance in this result is that the Gibbs-Appell func-
tion for a rigid body involves the same parameters (acceleration of the center of
mass, angular velocity, angular acceleration, and the inertia properties) as those aris-
ing in the Newton-Euler equations of motion.

Given the apparent simplicity of the Gibbs-Appell equations of motion, it might
seem that there is no reason to use Lagrange’s equations. However, each approach has
certain merits. For a holonomic system, Lagrange’s equations are easier to formu-
late. They do not require evaluation of accelerations, and the expression for kinetic
energy is simpler to form than the Gibbs-Appell function. Also, the potential energy
may be employed directly in Lagrange’s equations. However, if the system is subject
to nonholonomic constraints, solving the Lagrange equations is complicated by the
algebraic manner in which the Lagrange multipliers arise in the differential equations
of motion. In that case, the Gibbs-Appell approach, which avoids the appearance of
constraint forces and Lagrange multipliers, becomes more attractive. A last feature is
that the Gibbs-Appell differential equations often have a somewhat simpler appear-
ance than Lagrange’s equations. This improvement is attributable to the freedom to
select quasicoordinates that match the kinematical aspects of a system, independent of
the choice of generalized coordinates used to describe the configuration of the system.

+a-(@x Hy), (7.99)

Example 7.10 Use the Gibbs-Appell equations to derive Euler’s equations of mo-
tion for a rigid body.
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Solution Because we are concerned with rotational motion, we define the
quasivelocities to be the components of angular velocity relative to a set of body-
fixed axes: v, = wy, ¥2 = w), ¥3 = w,. It is sufficient to demonstrate the equivalence
between a Gibbs-Appell equation for one v; and the corresponding Euler equation,
because the components of @ and H,4 are symbolic permutations. Hence, we shall
evaluate the equation for 3S/3+,.

We begin by expressing & and & in terms of the y;:

d=i+V2i+v:k,  @=Fil+42+9;:k
Note that the expression for & results from the identity & = §&/6¢. Euler’s equations
are based on xyz being principal axes, so we have

Hy=Loni+ 1,7, j+ 1,73k,

5,

ot
Substitution of the foregoing into Eq. (7.99) yields S in the required functional form.
A virtual rotation is the vector sum of the infinitesimal rotations 8+, 6y, and 8+,

about the respective axes. Let M denote the resultant moment acting on the body.
Then the virtual work is

SW =M-86 = (M-0)dv,+(M-]) v+ (M-k) g5,

=L +Iyy;)}2j+ Izz'y3l2-

which corresponds to generalized forces that are the moments about the body-fixed
axes:

N=Mi T,=Mj T,=ME
The next step is to evaluate dS/d4,. We assume that @, is independent of v,, v,,
and 3, in which case differentiating Eq. (7.99) yields

S 19da 6H, 1 a (8H, o0& _
= A el — — (X H,).

o 2om o 20 [ay.( 5t )]J'avl (@xHa)
In view of the earlier expressions, we have

Py _ ﬁ _
a_?{-_-i’ i 6_'4):1”,',
a'yl a’)’l 6t

S 1.68H, 1 R _
— =i +—a ([, i)+i-(axHy) =T,
a‘yl P ot P ( XX ) ( A) 1
Ixx‘.yl + (1, — Iyy)7273 =M-i.
Permutations replacing the various , by the appropriate term w,, @,, or w, demon-
strates the equivalence.

Thus,

Example 7.11 Consider the bar in Example 7.8 under the conditions stated there.
Use the Gibbs-Appell equations to derive the differential equation of motion for the
angle 6, and an equation for the torque I'.

Solution In the Gibbs-Appell formulation, generalized coordinates and
quasivelocities are defined individually. Because the precession rate is constant, the



360 7 / Further Concepts in Analytical Mechanics

precession angle at any instant is ¥ = Q¢. Thus, the position of the system is fully
specified by the nutation angle 8, which we select as the single generalized coordinate
for this one-degree-of-freedom system. A useful quasivelocity is

6= 1
Also, in order to obtain an equation for I', we must violate the constraint that Q be

constant. Hence, we let ¥, = y be the precession rate, which is subject to the con-
straint equation

¥, =4 )

Note that deriving the Gibbs-Appell equation associated with v, requires that we
consider ¥, # 0 in the derivation.

We may formulate the angular momentum of the bar relative to its fixed point A.
This enables us to avoid formulating the acceleration of the center of mass. The
angular motion (for nonconstant v,) is

QK+0(—j)=v.K—11J
= —(v2c0880)i—,j+ (72 sin )k,

@

& =5, K~ j—1(@xJ)
= (=%, cos 04,7, sin0)i — 4, j + (4 sin 0 + 4,7y, cos ) k.

Setting I,, = 0 for a slender bar then gives
7 5 g1 T .
Hy=1,0,j+1,,0k= gmlz[—7,J+('yZ sinf)k],
oH - _
5_tA = Iyyozyj+IzzaZk

= %mlz[—71f+ (5, sin 8+ 4,7, cos B)k].

From these expressions, we obtain

1_6H, _  _ _
S—EQ'T‘F(X (OJXHA)

= %(%m12>[7,2+ (52 5in @ + ;75 cos )]

+ <%ml 2)[—71722 sin 8 cos 0 + (4, sin 6) (¥, cos )] +irrelevant terms.

The constraints imposed by the bearing force F and couple M are not violated, so
virtual work is done only by the applied torque and gravity. For a datum at the ele-
vation of pin A, the potential energy as a function of the generalized coordinate is

V =—31mglcos®.
Hence, the virtual work is

v ab

oW = FB')’Z—% a—‘Yl 5‘)’] = Fé'yz—%mglsmfiﬁ‘yl.
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The corresponding generalized forces are
T = —+tmglsind, Ir,=T.
The Gibbs-Appell equations are

a—f? = lmlz('yl—q‘/zz sinf cos ) = —lmgl sin, (€)
B'yl 3 2

i = lmlz(q'iz sin@+27,v,sinf cos@) =T. (4)
672 3

In combination with egs. (1) and (2), these equations are identical to the results in
Example 7.8.

Example 7.12 The wheelbarrow is pushed in the horizontal plane by forces F, and
Fp acting at each handle. The body of the wheelbarrow has mass m, with its center
of mass at point G; the corresponding centroidal moment of inertia about a vertical
axis is I. The wheel, which rolls without slipping, has mass m,, moment of inertia J
about its axle, and radius r. Derive the Gibbs-Appell equations of motion.

/
W

Example 7.12

Solution We assume that the wheelbarrow remains upright. Then, because
the wheel rolls without slipping, we know that the angular velocity component of
the wheel about its bearing axis is w; = v/r, where v is the speed of the center C of
the axle. Also, because there is no slippage, the velocity of point C must be along the
longitudinal axis, which we define as x. Convenient generalized coordinates for the
wheelbarrow are the absolute position coordinates of point C, q; = X and g, = Y,
and the angle 6 locating the x axis. For the wheel, we let g, = ¢, the angle of spin
about the axle.

We let v be a quasivelocity, vy, = v, because that expedites the description of the
constraint on the movement of point C. The other quasivelocity we define is ¥, = 6.
Note that although four generalized coordinates have been defined, there are two
constraint conditions due to rolling without slipping. Therefore, the system has only
two degrees of freedom, and only two quasivelocities are unconstrained.
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Free-body diagram.

We relate the ¢; to the v; by describing the constraint conditions. By definition,
9 = 72. (1)
The constraint on the velocity of point C is
Ve = Xcl+YoJ = vi=v[(cos )] +(sin#) ]},
SO
XC =y cos @, YC=71 sin 4. (2, 3)
Also, for rolling without slipping, v = r¢, which yields
é=m/r. @

The next task is to describe the acceleration variables required to form S. For the
center of mass G, we use

g =dc+&XfG/C+(I)X((I)XI_'G/C),

where @ and & pertain to the xyz reference frame, which is fixed to the wheelbar-
row. For the set of variables just defined, we have @ = 8k = v,k and & = 4, k. The
most direct method of characterizing 4. in terms of the quasicoordinates is to recall
the expression v = vi = 4,i. This is true at any time-instant, and therefore may be
differentiated:

- d . o T . - v e T . . v

ac= E(W) =i+ (@ X1) =y1i+¥172J.
We substitute these expressions and 75, = —/I into the foregoing equation for g,
which yields

o = i+ V3Di+(=¥2l +112)J.
In order to express the contribution of the wheel to S, we must describe its angular

motion. If the wheelbarrow does not tilt, then the wheel precesses at § about the
vertical axis while it spins about its axle at ¢. Thus
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_ 1 - .5 1. . =
ww=7711+72K=7711+72ka
_ 1 .- v . - v . I 1 . e l P “ I
Olw=7[‘711+‘Y](ww><1)]+‘72k=—77172'+7711+72k~

Now that the kinematical parameters have been characterized, we form the angu-
lar momentum properties. For the wheelbarrow, we have

_ _ 6H, -
Ho=Iik, —2=Iqk.
ot

We consider the wheel to be very thin, so its moment of inertia about a centroidal in-
plane axis is 3J. Thus

_ J . - J . - 8H J - J o T

A= Lo v lnk, A L LA 5

c=TNit5T T 2r71’¥21+r71l+2')’2k

The Gibbs-Appell function for the system is the sum of the contributions of each
body:

1
S=_—mag-a
2ma(; ag+

5H
ac_

% +a-(@x Hg)
1 . _ 1_ &H: _ _ —
+—2—mac-ac+5aw-—6t£+aw-(wwXHC)

1. o 1,, 1 .
=E’ml[('Yl+7221)2+(_721+7172)2]+517%+EmZ‘YlZ

1 /1 ,, 1. .
+ 0 J (ﬁ 2+ 57 f) +irrelevant terms.

Note that the terms associated with a gyroscopic moment for the wheel do not appear
in S because the system has been constrained to move in the horizontal plane. Mo-
mentum effects tending to cause the wheelbarrow to tilt are balanced by reactions,
which are the out-of-plane components of the forces F; and Fj.

The next step is to evaluate the virtual work. The reaction forces f and N exerted
on the wheel by the ground do no virtual work. Their role is to prevent the wheel
from slipping and from penetrating the ground, and those constraints are not vio-
lated. To characterize the effect of the applied forces F, and Fg, we recall that we
have already described the velocity of point C. We therefore replace F, and Fg by a
force-couple system, R and M, acting at point C:

R=F,+Fg, M=Fy,cXFi+FgcxFyg.

The analogy between differential and virtual displacements leads to
dic =Vodt =dyi = 8Fc = byi,
dd =bdtk =dvy,k = 80 =0v,k,

so the virtual work associated with the forces applied to the handles is

W = R-6Fc+M+50 =T, 8v,+T, bv,.
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Matching the two descriptions of W yields the generalized forces,
F1=R'IT, F2=M°E.

The Gibbs-Appell equations resulting from the expression for S are

—a‘? =<ml+m2+—‘]2>'y1+m11722=1?-7, (5)
a'yl r
—aS = m112+1+lJ 'Yz—m,17172=1\71-l€. (6)
a'yZ 2

In combination with eqs. (1)-(4), which relate the generalized and quasivelocities,
we have derived s.ix first-order differential equations for the unknowns X, Y, 6, ¢,
Y1=v,and y, =6.

1.5 Linearization

Once we have obtained the differential equations of motion, our next task is
to solve them for the dynamic response. We are likely to encounter two sources of
difficulty in that effort. Clearly, if the system contains many independently moving
pieces, then the number of equations will be rather large. In addition, the equations
might be complicated, particularly if the geometrical details of the system are intri-
cate. The combination of these features often makes it necessary to devote a major
effort to the process of solving the equations of motion.

Of course, one could employ numerical techniques, as discussed in Section 7.2.
However, little is known about the response when a system is studied for the first
time. It might then be adequate to simplify the equations of motion. A broad class
of systems feature vibratory responses, in which displacements oscillate about a ref-
erence state. We focus our attention on situations where such displacements are a
small fraction of the overall dimensions of the system. In that case, we may simplify
the equations of motion through the process of linearization.

For a system whose physical constraints are independent of time, a suitable refer-
ence state would be the static equilibrium position. When the system’s constraints
are time-dependent, two cases where linearization might be useful commonly arise.
First, suppose we are able to identify a steady-state solution of the nonlinear equa-
tions of motion. It is possible that such a solution cannot actually occur because it
represents a dynamically unstable response. A common way of examining the stabil-
ity of a steady-state response is to use that response as the reference state for a lin-
earization of the equations of motion. Another case where linearization is useful
occurs when the time-dependent aspects of a constraint condition correspond to a
small imposed motion of a support, such as the displacement of a pin. Then we
could consider the reference state to be the static equilibrium position that the system
would occupy if the support were fixed.

Let us denote as g} the generalized coordinates evaluated at the reference state.
For the sake of simplicity, we shall address only holonomic systems that are described
by unconstrained generalized coordinates. Applying Lagrange’s equations to the ref-
erence state then yields
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d (aT\* [(oT\* [ov .
d(oTy _(3T , i=1,..,M, 7.100
' dt (3@-) <8q.-> +<6q.> o (7.100)

where an asterisk here denotes terms that are evaluated at the reference state, at
which g; = g}. Note that the ¢; will be functions of time if the kinematical features
of the system depend explicitly on time. Determination of the g requires simul-
taneous solution of Eq. (7.100) for all .

In a linearized analysis, we restrict our attention to those cases where the displace-
ments relative to the reference state are very small. We measure such displacements
by a set of relative generalized coordinates §;, such that

ti=qi—q' = q=t+q' & ¢, =E+4q}. (7.101)

There are essentially two approaches whereby linear equations of motion for the
£, may be obtained. The first, and most reliable, operates directly on the equations
of motion. Let F be a term in an equation of motion that is an arbitrary function of
gi> 4i, g;, and . We employ Eqs. (7.101) to replace this dependence by an equivalent
dependence on the £;. Assuming that the function F is analytic, a Taylor series yields

F(qi’ qia dia t) =F(q,*+£,, ql*+£l’ qr"'sn t)

_F‘+E[<g;>£’ (g;:)‘ff <gg>&] : (7.102)

As before, an asterisk indicates quantities to be evaluated at the reference state,
where g; = g}. Thus:

¢ One method by which the equations of motion may be linearized is to sub-
stitute q; = q} + &, into those equations, and then to truncate at linear terms
a Taylor series of each term in which &; appears.

Truncation of a series in this manner implies that quadratic products of the £; are
negligible (in a nondimensional sense) in comparison to the variables. Technically,
this is only true if all £; are infinitesimal. Indeed, linearized equations of motion are
often said to constitute an infinitesimal displacement theory. There are numerous
situations, however, where linearized equations of motion accurately describe the
system response for very substantial displacements.

In order to illustrate this process, consider the pendulum in Figure 7.3, whose
cable is elastic with a linear stiffness k£ and an unstretched length Ly. The nonlinear
equations of motion for the system are

mR—mRO?+ k(R—Ly)—mgcosf =0,
mRO+2mRO+mgsinf = 0.

The equilibrium positions of the system are obtained by solving these equations with
all time derivatives set to zero. The stable position is

R*=Ly+mg/k, 6*=0.

For the linearization, we let R = R*+ £, and 8 = £,. Because £, << 1, the series for
the trigonometric functions may be truncated as
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Figure 7.3 Elastically supported pendulum.

sinf=sinf; ~£,, cosf=cosi,=1-182=1.

In addition, nonlinear terms arise in the accelerations in each equation of motion.
When all terms that contain products of the £; are dropped, the result is

mé,+ kg =0, R*%,+g£,=0.

It is clear that the linearized equations of motion for this system are substantially
easier to solve than the original nonlinear equations.

The process of directly linearizing the equations of motion is straightforward.
However, it introduces the simplifications of linearization subsequent to the applica-
tion of Lagrange’s equations. Consequently, this approach requires derivation of
energy expressions that are more accurate than necessary. Let us therefore consider
the alternative of deriving simplified energy expressions based on a kinematical re-
striction to small displacements. We shall explore this method only for the impor-
tant case of scleronomic systems. Time-dependent systems are best linearized after
the equations of motion have been derived. The kinetic energy of such systems has a
much more complicated form, which enhances the likelihood of inadvertently omit-
ting an important effect. Also, if one seeks to identify a steady reference state in a
time-dependent system, it will be necessary in any event to formulate the full set of
equations of motion.

When the system is scleronomic, the reference state of interest will be a static
equilibrium position, so that the gf represent constant values. Correspondingly, we
may identify the reference state by solving Eq. (7.100) with T = 0. (Equation (7.100)
in this case reduces to the static principle of virtual work and potential energy.) Thus,
linearization of a scleronomic system entails the substitutions g, = g +£;, gx = &,
and g = &

Our analysis of the mechanical energies appropriate to a linearization of the equa-
tions of motion rests on a single observation. The kinetic and potential energies ap-
pear in Lagrange’s equations as first derivatives with respect to the generalized coor-
dinates. Consequently, quadratic and higher terms in the equations of motion may
be avoided by neglecting cubic and higher terms in the energies. In other words:

* A linearized set of equations of motion may be obtained by retaining in
the kinetic and potential energy expressions only those terms that are either
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quadratic or linear in generalized coordinates measured relative to the static
equilibrium configuration.

The potential energy of a scleronomic system is independent of time. A Taylor
series expansion relative to the static equilibrium configuration leads to

1 M M
Vai+eo =v+ S(2 V541 3 5 Kyt (7,103
aql i=1j=1
where the constants K;; are the second derivatives evaluated at the reference state,
v \*
Ki;={——), K:;;=K;;, i,j=1,...,. M. 7.104
y (aqiaq) =S b (109

These constants are commonly known as the stiffness coefficients. The reason for
this term is obvious when one considers the analogy between the quadratic terms in
Eq. (7.103) and the potential energy for a spring, V = %kAz.

Our treatment of kinetic energy begins by recalling from Eqs. (7.7) that the kinetic
energy of a scleronomic system is quadratic in the generalized velocities. Because
Gy = £, when the reference state is a static equilibrium position, we have

1 M M

T=33% 3 Mkt (7.105)
2 i=1j=1
In a general situation, the coefficients M;; can depend on the generahzed coordinates.
However, the preceding expression for T is already quadratic in the £,. If we allow
these coefficients to be variables, their Taylor series expansions in powers of the §;
would cause cubic and higher-order terms to appear in 7. Consequently, we should
evaluate the coefficients M;; at the equilibrium position. We therefore have
1 M M

T=>3 2% MEE;. (7.106)
i=1j=1
The constants Mij are known as inertia coefficients, analogous to the terminology for
the Kij'
As a corollary of evaluating the coefficients M} at the reference position, we ob-
serve that:

¢ When a system is scleronomic, the kinematical relationship between the lin-
ear and angular velocities and the generalized velocities may be evaluated
using the geometrical configuration at the static equilibrium position.

The ability to perform a kinematical analysis based on the geometry of the static
equilibrium position can substantially simplify the determination of linearized equa-
tions. For example, relations between the velocities of points may be formulated
using the relative position vector at the equilibrium position, rather than at a gen-
eral position.

Linearization procedures for the potential energy usually do not admit the kine-
matical simplifications available for the kinetic energy of a scleronomic system. Let
us refer back to Eq. (7.103) in order to identify the reason for this difference. The
parameter V'* is the potential energy at the equilibrium position. That quantity is
unimportant, because only derivatives of ¥ occur in Lagrange’s equations. Also, the
term (3V/dq;)* must have been evaluated already if the reference state is known; see
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Eq. (7.100). Therefore, we need only evaluate the stiffness coefficients K;; in order to
characterize the potential energy function for a linearized analysis. The difficulty
arises in the description of the geometric parameters required to form these coeffi-
cients, as may be demonstrated by considering a one-degree-of-freedom system that
contains a linear spring. Suppose that the spring is stretched by an amount A* when
the system is at its static equilibrium position. Then, expanding the spring length in
a Taylor series in the relative displacement £ leads to a power series for the total
elongation A,

A= A+ciE+c,

where ¢ and ¢, depend on the details of the system’s configuration. The potential
energy corresponding to this expression is

V = 1k(ct+2A%c,)£2 + nonquadratic terms.

Note that c, is the coefficient of the quadratic term in the series expansion for A. This
simple example leads us to the following general conclusion.

¢ For the derivation of linearized equations of motion, the elongation A of
each spring should be expanded in a Taylor series that retains quadratic
terms in the relative displacements ;. The elongation A may be truncated
with certainty at linear terms in the §; only if all springs are unstretched at
the static equilibrium position.

We should mention that the foregoing is a subtlety that is often forgotten, because
there are many systems in which A may be linearized even though the various A* are
nonzero. Example 7.13 will treat a system where the higher-order terms are required.

It is equally important to retain higher-order terms when we treat other types of
conservative forces. For example, consider the potential energy of the gravitational
attraction on the bar in Figure 7.4. Let 6* denote the angle of inclination of the bar
at the static equilibrium position. (A nonzero value of §* may be obtained by attach-
ing springs to the bar, or by letting the bar be part of a linkage.) For a datum at the
elevation of the pivot, the potential energy is

V =—imgL cos(6*+£) = —3mgL(cos 0*cos £ —sin8*sin £).

/

%cos 0* + ¥

Figure 7.4 Linearization parameters.
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Figure 7.5 Dashpot.

We expand the cosine and sine terms in powers of £, and drop nonquadratic terms,
with the result that

V = +mgL(cos 6*)£* + nonquadratic terms.

In this case, it is the height of the center of mass G relative to the datum that must be
expanded in a Taylor series that retains quadratic terms. Only when the bar is horizon-
tal in the static equilibrium position, 6* = 90°, does gravity have a purely static effect.

A different aid is available when it is necessary to account for the effects of energy
dissipation in a linearized analysis. Dissipation mechanisms may be modeled by dash-
pots, such as the one depicted schematically in Figure 7.5. The most common use
of this device is as a shock absorber in an automobile. The magnitude of the force
exerted by a dashpot depends on the rate of change of its elongation, as well as on the
elongation itself in some designs; f; = f,(A, A). The direction of the forces exerted
at each end are tensile if the elongation is increasing, that is, if A > 0.

When the dashpot force is linearized, the force it exerts is taken to be proportional
to its elongation rate,

Ja=pa, (7.107)

where the coefficient u is the dashpot constant, whose dimensions are F7/L. This
relation has obvious similarities to the relation between elongation and force for a
linear spring. The only difference is the proportionality to the elongation rate, rather
than the elongation itself.

We exploit the analogy between the forces exerted by a spring and a dashpot by
defining the Rayleigh dissipation function D. Just as the potential energy in a spring
is kA%, we define

D=1ual (7.108)

Because the relations for a linear dashpot differ from those for a linear spring only
by the presence of a time derivative of the elongation, the generalized force asso-
ciated with the dashpot is obtained by a differentiation with respect to the general-
ized velocity,

aD
aq;
When the system contains several dashpots, the dissipation function is the sum of
the effects associated with each,

(Qa)i=— (7.109)

. D= % S uiAZ, (7.110)
i
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The dissipation function is related to the instantaneous power absorbed by the
dashpot. For the case depicted in Figure 7.5, the elongation is A = x, —x,. The dash-
pot force is tensile, corresponding to an elongation that is increasing, X, > x,. Thus,
power is input to the dashpot at the right end at the rate f;x,, and is expended at the
left at the rate f;x;. The net power input is

Py = fyky— fgXy = p(X—X))* =2D. (7.111)

The power input to the dashpot accumulates as energy that is lost from the system.
Thus, we may conclude that the instantaneous rate at which mechanical energy is
lost from a system due to linear dashpots is twice the Rayleigh dissipation function.

The Rayleigh dissipation function may be used to write Lagrange’s equations in
a modified form. Let Q,“') now denote the generalized force associated with given
applied forces that are not included in the potential energy or dissipation function.
It follows from Eq. (7.109) that the equations of motion may be written as

_d_<aT> T 3D WV _
dt aql aq: aq: ai b

It must be emphasized that the Rayleigh dissipation function is valid solely for
linear dashpot models. In systems where the dashpot force does not depend linearly
on the rate of elongation, the generalized forces associated with the dashpot must be
evaluated from the virtual work, in the usual manner; Eq. (7.112) is not valid in that
case.

When a system is scleronomic, the dissipation function will be a quadratic sum of
the generalized velocities,

. i=1,2,... M. (7.112)

1 M M
=3 El ElDus E/’ D Djl’ (7113)
=ly=

where the coefficients D;; are damping constants. This has the same form as the qua-
dratic terms in Eq. (7.103) for the potential energy, and in Eq. (7.106) for the kinetic
energy. Let us examine the corresponding form of the linearized equations of mo-
tion. Because the £; differ from the original generalized coordinates only by the con-
stant g/, it must be that 8g; = 6¢;. The consequence of the equivalence of the virtual
increments of the two sets of generalized coordinates is that the generalized forces
are the same: Q,‘”’ for either set.

The representation of 7, V, and D as quadratic sums leads to a standard form for
the linearized equations of motion. Let £, be a specified generalized coordinate. The
details of the derivative of a quadratic sum were treated previously in Eq. (7.9a). We
apply the same procedure to Eqgs. (7.103), (7.106), and (7.113) to find

T _M b _ Y : aV M 14

=T My 2 =T Duby = TKubt (22. e
Also, because the kinetic energy of a scleronomic system after linearization does
not depend on the relative generalized coordinates, we have 37/3%, = 0. When we
substitute the derivatives in Eqs. (7.114) into the modified Lagrange equations, Eq.
(7.112), we obtain

£1%
E ,£,+ED,.,£,+EK,,,E, <q> @ p=1,...,M. (7.115)
n
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These equations may be written more compactly in matrix form. Let £; be the ith
element of {£}, and let M}, D;;, and K;; be the elements of (respectively) the mass, dis-
sipation, and stiffness arrays, [M], [D], and [K']. Then Egs. (7.115) are equivalent to

¢ [M1{€}+[DUE +(KTLE) = IQ(”’}-{Z—Q . (7.116)

In this expression, {Q'?] is the set of active generalized forces, excluding the con-
servative and dissipative forces whose effects appear in the potential energy and dissi-
pation function, respectively. Also, {dV/dq}* is the set of static external forces that
establish the equilibrium position. Thus, the right side of Eq. (7.116) represents the
set of nondissipative generalized forces that tend to move the system away from its
static equilibrium position, at which {¢} = {0].

Many methods are available for solving these standard equations of motion for a
scleronomic system, as they have constant coefficients. Study of the responses they
describe forms a major portion of texts on linear vibrations. It must be emphasized,
however, that Eq. (7.116) is valid only for analysis of a scleronomic system. If the
physical constraints of a system are time-dependent, then there will be additional
terms due to the more general form of the kinetic energy. As mentioned earlier, it is
preferable with such systems to derive equations of motion without approximations,
and then to linearize those equations. Also, if there are nonholonomic constraint
conditions to be satisfied, then the differential equations of motion must be modified
to include either the constraint forces or the Lagrange multipliers. The system of
equations for such systems must be supplemented by constraint equations, which
also may be linearized.

Example 7.13 The bar is in static equilibrium in the upright position shown. The
unstretched length of the identical springs is /o < (a®+ b?)"?, in order that the springs
remain taut throughout any small displacement away from this position. Derive the
corresponding equation of motion.

y

-

L
ry
k k
a
) x
77
k b ; b |

Example 7.13 Free-body diagram.
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Solution We select as the generalized coordinate the angle @ relative to the
vertical. Because 6 = 0 at the static equilibrium position, this variable serves directly
as a relative generalized coordinate. The bar is in pure rotation about end A4, so the
kinetic energy is

T =3(3mL?)6%
This expression needs no simplification, because it is quadratic in 6.

We select the elevation of the pin as the datum for the gravitational potential
energy. The springs also are conservative, so

V =1kAl+1kAs+5mgL cosé.

In order to obtain some general properties regarding the potential energy of a spring,
we shall consider the springs individually. We use the law of cosines to describe the
length of each spring at an arbitrary position in terms of the generalized coordinate:

I, =[a*+b?—2ab cos(90° +0)]"% = [a®+ b*+2absin ]2,
I, = [a*+ b%*—2ab cos(90° —0)]V% = [a*+ b*—2ab sin 6]

We need terms only up to quadratic in the elongation, so we drop cubic and higher-
degree terms in the expansion of the sine, as well as in the binomial expansion of the
square root. The resulting elongation is

A==l
= [(a*+ b)) 2~ o]+ abb(a® + b?) ">~ 5(abb)* (@ + b*) 2,
8y = [(a*+bH)2—ly]) —abb(a* + b*) 2 - L(abb) (a* + b)) 2

Some terms cancel when we form A? and A3, with the result that the corresponding
potential energy of each spring is

k)

! 1 ka?b
vl=v,*+kab9[1— 0 ] U0 g2

(@2 +b2)l2 2 (a2 +b2)3/2
lo N 1 ka®b?ly
(az +b2)1/2 2 (az+b2)3/2 ’

where we have dropped the higher-order terms. When we add the potential energy in
each spring, we find that the terms that are linear in @ cancel. This is a consequence
of the fact that the linear terms characterize the static forces affecting the equilibrium
position, 8 = 0, because only they give rise to a nonzero value of (3V/36)*. The static
forces in each spring cancel. We may also consider V;* and V5 to be zero. An inter-
esting form of the total potential energy of the springs results from expressing the
horizontal distance b in terms of the angle of elevation 3, from which we find that

klp(acosB)* ,

In the small-displacement approximation, af is the horizontal movement of point B.
Then a6 cos § is the component of this displacement parallel to either spring, which
is the same as the linearized change in the length of either spring relative to its length
at the equilibrium position. This observation is illustrative of the following general
property.

Vy = V; —kab# [1 -

V1+V2=
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L ] Suppose a spring is stretched very little at the static equilibrium position
(ly = (a*+ b%)"2 in the present case). Then the quadratic terms in the poten-
tial energy of that spring may be obtained with reasonable accuracy by con-
structing linearized displacement components parallel to the spring at both
of its ends.t Note that, if the stiffness k is large, this condition can be ob-
tained even if the spring force at the equilibrium position is large.

We now return to the derivation of the equation of motion. For the gravitational
potential energy, we expand cos 8 in a series for small 8, and truncate that series at
the second degree, which yields cosf = 1—6%2. The total potential energy that re-
sults is

2
[% - %mgL] 6+ higher-order terms.
It is interesting to note that the appearance of /; in this expression is surprising for
some who have learned linearization concepts as ad hoc procedures.

The only forces remaining are the reactions, whose constraints are not violated.
Therefore, Q; = 0. Substitution of 7T and V into Lagrange’s equations therefore leads
to

| P,
—mL“0+

[Zklo(a cosB)? 1
3

Example 7.14 The linkage lies in the horizontal plane. The dashpot constant for
the piston is u. The bars have mass m; and m,, and the mass of collar 4 and of piston
D is negligible. The force F(¢) remains perpendicular to bar AB. The spring, whose
stiffnesses is k, is unstretched in the position where ¢ = 45° and 6 = 30°. Derive the
linearized equations of motion relative to this position.

Example 7.14

Solution 1f we know both ¢ and @, we can locate the position of this sys-
tem, from which we conclude that the system has two degrees of freedom and is
scleronomic. The relative generalized coordinates we employ are

T This analysis of the spring’s potential energy is not valid when 8 = 0. However, in such a case
it is not difficult to show that the static elongation is never significant to the quadratic terms in
potential energy.
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Ei=0—9¢"=¢—17/4, £=0-0*=0—a/6.
Because the system is scleronomic, we may use the approach in which the mechanical
energies are reduced to quadratic forms. We begin by evaluating the linearized kinetic
energy. ]_BOth tzars execute ggl}eral mqtion. The angular velocities of the bars are
@48 = ¢k = £,k and @gc = —6k = —£, k. We must describe the velocity of each center
of mass in terms of the generalized coordinates. However, the centers of mass are
not constrained points, so we first perform a kinematical analysis of the linkage using

Vp=Vy+@4pXTp/y = Vc+dpcXTp/c.
For a linearized analysis, we may describe the position vectors by their values in the
reference position, so we have

Vg = vyi+ £k x L(0.7071i +0.70715)

= Ve j+(=£,k) x L,(—0.8660i +0.507).

Matching like components in the foregoing yields

vy =0.7071L,£,+0.50L,£,, ve = 0.7071L,£,—0.8660L,£,.

We may now relate the velocities of the centers of mass to the generalized coordi-
nates by writing
V1 = vai+ £k x (3L,)(0.7071i+0.70715)
= (0.3536L,£,+0.50L,£,)i+0.3536L,£,/,
Vg2 = veJ + (—§2k) X (3L,)(—0.8660i +0.50/)
=0.250L,£,i+(0.7071L,§,—0.4330L, £,) /.

From these expressions we find the kinetic energy to be

T= %ml‘-’Gl"_’GH’l(

1 . 1 _ 1
> —m,Lf>£f+ —M3VgyVGa+ —'<

1 2\¢2
D > > m2L2>$2

12

= %m,[(0.3536L,é,+0.50L2£2)2+(0.3536L1.§,)2+éL%§%]

+%mz[(0.250L2£2)2+(0.7071L,.§1—0.4330L2$'2)2+%L%é%].

To identify the inertia coefficients, we collect like coefficients of the generalized ve-
locities, which yields
T = 3((0.3333m,+0.5m,) L2 £ + (0.3536m, — 0.6124m,) L\ L, £, £,
+(0.250m,+0.3333m,) L3£3].

The next step is to identify the M} values by matching this expression to the standard
form in Eq. (7.106), which leads to

M} =(0.3333m,+0.50m,)L?, M= M3 = (0.1768m,~0.3062m,)L,L,,
M3, = (0.250m,+0.3333m,)L3.

We should note that this step often leads to an error, because it is easy to forget that
the quadratic sum has two terms associated with the mixed product £,£,.
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Because the system lies in the horizontal plane, the only conservative force is that
of the spring. We must relate its deformation to the generalized coordinates. Since
the spring is unstretched in the reference position, we have A =s,. We are perform-
ing a linearized analysis, so we may approximate s, = v4Af with §; = £ AL, The ear-
lier expression for v, then leads to

A = (0.7071L,£,+0.50L,£,) At = 0.7071L,£, 4+ 0.50L, £,.

The potential energy therefore is
V=1kA?=3k(0.50L2£3+0.7071L, L, £,§,+0.25L3¢2).

We match this to the standard form of V, Eq. (7.103), which yields
ki =0.50kL?,  k=ky =0.3536kL,L,,  k,,=0.250kL3.

We account for the dashpot by using the Rayleigh dissipation function. To form D
we use the earlier expression for v, from which we find

D = tuvd = u(0.50L £} —1.2427L L, £,£,+0.75L3£3).
Matching this to the standard form of D, Eq. (7.113), leads to
Dy =0.50uL?, Dy, =Dy;=—0.6214pL,L,, D, =0.75xL3.

All that remains now is to identify the generalized forces. The only force not
accounted for is F, which acts at the center of mass of bar AB. Because we have estab-
lished an expression for the velocity of this point, we invoke the kinematical method
to form the corresponding virtual displacement,

dig =V dt = 6Fg =(0.3536L,8%,+0.50L, 8%,)i+(0.3536L, 6%,)J.

We now form the virtual work, for which we use the reference state to describe the
components of the force. This yields

W = F(0.7071i — 0.70715) - 675, = F(0.3536 L, 6%,);
=0, Q, =0.3536L,F.

The inertia, stiffness, and dissipation coeflicients that we have found, along with the
above generalized forces, enable us to form the matrix equations of motion, Eq.
(7.116). Because the springs are unstressed in the static equilibrium position, we set
{oV/9q}* = {0} in those equations.

Example 7.15 Servomotors maintain the spin rate ¢ and the precession rate  at
constant values. One possible motion is a steady precession with ¢ = 0. However,
when ¥ exceeds a minimum value, another steady precessional motion is possible in
which 6 is a constant nonzero value. Determine this minimum value of y. Then eval-
uate the stability of both steady precessions as a function of .

Solution The reference states we wish to study are steady-state precessions.
Studying the stability of such a response will require that we consider deviations
from the steady motion. In order to derive equations of motion that can be used
for both phases of the analysis, we begin by considering the nutation angle ¢ to be
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Example 7.15 Free-body diagram.

arbitrary, g, = 0. The precession and spin rates are constrained to be constant, so the
system is rheonomic with one degree of freedom. As a way of emphasizing that the
linearization concepts developed in this section do not require the use of Lagrange’s
equations, we shall derive the general equations of motion by applying Euler’s angu-
lar momentum equations.

The flywheel is in pure rotation about pin A. To describe the angular velocity of
the disk, we fix xyz to the disk, and let x’y’z’ execute the precession only. Selecting
the instantaneous orientation of both axes as shown in the sketch yields

& =yK+0(—j')+¢i=(d—ycos0)i—0j+(Jsind)k,
&' =YK =—(y cos8)i+ (¥ sin0)k,
a=—0j"—0@'xj)+d@xi)
= (Y0 sin0)i+ (=6 + Yo sin ) + (¥ cos § —HP)k.
We assume that the mass of the flywheel is much greater than that of either shaft.
Considering the flywheel to be a thin disk leads to I, = 0.5mR? and l,,=1,=
6.50mR?, with xyz the principal axes. The pin exerts no moment about its own axis,

so Euler’s equation for moment about the pin’s axis yields a differential equation
for 4,

YM,,=mg2.5Rsinb) =I,,0,—(I,,~ L, Jw,w,
= mR*[6.5(—0+ ¢ sin0) —6.0(¢ —y cos 0) (¥ sin 8)];

13€'+<—5R£—¢¢>sin6—-121/}2sin0c050=0. @

For steady precession, we set § = § = 0. In that case, eq. (1) yields
5¢—Ry¢

sinf*=0 or cosf*= —
12RY

2
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The first case is the vertical position. The other solution is possible only if |cos 8*| <
1, which leads to

—12Ry? < 5g—Ry$ < 12Ry>2.

This condition may be rewritten as

Pmin <@ < bmaxs Pmin = ;_i =12y, dpax = 153—;:}/"" 12¢. 3)

When the spin rate is outside the range shown, only the vertical position sin §* =0
is possible. This could be satisfied by either §* = = or * =0, although the upright
position is not possible because of interference with the vertical shaft. In both posi-
tions, gravity exerts no moment about the pin, and the angular momentum is con-
stant, aligned along the precession axis. When the spin rate is within the range de-
scribed in (3), steady precession with 8* # 0 becomes a possibility. Within this range,
the angle 6* is that for which the moment of gravity about the pin equals the rate at
which the angular momentum H, changes.

In order to study the effect of small changes in 6 away from a steady-state posi-
tion, we introduce the relative generalized coordinate £ such that

0=0"+¢, ¢l

Linearization of equations of motion entails dropping quadratic and higher-order
terms in £ in those equations. Thus, we write

sin@ = sin(0*+£) = sin0*cos £ +cos 0*sin ¢ = sin6* + £ cos 6%,
sinf cos 6 = 5 sin 260 = ; sin 26*+ £ cos 26*.

Substitution of these expressions into the nonlinear equation of motion (1) gives
. 5S¢ N\, .. ia . .
136+ F—W sin *— 6y “sin 26

+ [(%g - ¢¢) cos 0*—12y/% cos 20*]5 =0.

The first bracketed term vanishes identically, by virtue of eq. (2) for 6*, so the stabil-
ity of a steady precession is governed by

13+ [(%g —¢qs) cos 0*—12y% cos 20*].2 =0.

This equation has some interesting ramifications for dynamic stability, all of which
result from the following observation: The sign of the coefficient of ¢ determines
whether £(¢) is bounded or grows without limit. We define 3 to be this coefficient,

) . . .
B= (—Isg-—xde) cos 0* — 1242 cos 26*, 136 +B£=0. 4)
If 8> 0 then £(¢) is a sinusoidal function, which means that ¢ will remain small.
Thus, 8 > 0 means that # = 6* is a stable steady precession. In contrast, if 8 < 0 then
one of the general solutions for £(7) grows exponentially. We consider this to indicate
that the steady precession is unstable. (The differential equation for ¢ was derived
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under the assumption that ¢ is small, so one cannot infer that 8 will actually grow
without bound in the unstable case. Instability here merely means that the motion
will differ strongly from the steady-precession solution.)

Consider first the case 6* = 0, which is always a possibility. We then have

S . R
6=7g—¢¢—12¢"- )

The steady precession at 8* = 0 is stable when 8 > 0, which is satisfied if
é < 5g/Ry—12y,

that is, if ¢ < ¢pin. When ¢ < ¢,,:n, the dynamic tendency to swing outward is inade-
quate to overcome the tendency of gravity to return the system to the upright posi-
tion. This situation is reversed when ¢ > ¢ i,

Suppose now that ¢ satisfies inequality (3), so that a steady precession with §* > 0
is possible. We substitute equation (2) and cos 26* = 2 cos?8*—1 into the definition
of 8. After simplification, the result is

_ (12RY*)?— (52— Ry $)?

12R%*? '
In view of inequality (3), 8 > 0 s satisfied by the same conditions required for 8* > 0.
We conclude that if the rotation rates are such that a steady precession at 6* > 0 is
possible, then such a motion is stable.

In summary, the flywheel remains below the pivot at 8* = 0 if the spin rate is less
than

B

. Sg .
¢min < 'ﬁp - 12‘/’-

This steady motion becomes unstable if ¢ > ¢ ;.. In that case, a stable steady pre-
cession may be established with

Sg—R¢¢>
1242 )

Such a precessional motion ceases to be possible if the spin rate exceeds the upper
limit

0* = cos“<

. S5¢ .
Pmax > R—‘l./2—+ 12¢.

If the upright position 6* = = were physically admissible, we could prove by exam-
ining 8 that it is unstable if ¢ < ., and stable if ¢ exceeds that value.

References

F. M. L. Amirouche (1992), Computational Methods in Multibody Dynamics, Prentice-
Hall, Englewood Cliffs, NJ.

P. Appell (1899), “Sur les Mouvements de Roulement; Equations du Mouvement Analogues
a celles de Lagrange,” Comptes Rendus 129: 317-320.



Problems 379

J. Baumgarte (1972), “Stabilization of Constraints and Integrals of Motion,” Computer
Methods in Applied Mechanics and Engineering 1: 1-16.

E. A. Desloge (1982), Classical Mechanics, vol. 2, Wiley, New York.

J. W. Gibbs (1879), “On the Fundamental Formulas of Dynamics,” American Journal of
Mathematics 2: 49-64.

H. Goldstein (1980), Classical Mechanics, 2nd ed., Addison-Wesley, Reading, MA.

E. J. Haug (1989), Computer Aided Kinematics and Dynamics of Mechanical Systems,
Volume 1, Basic Methods, Allyn & Bacon, Boston, MA.

T. R. Kane and D. A. Levinson (1985), Dynamics: Theory and Applications, McGraw-
Hill, New York.

MATLAB Reference Guide (1992), MathWorks, Natick, MA.

L. Meirovitch (1970), Methods of Analytical Dynamics, McGraw-Hill, New York.

L. A. Pars (1965), A Treatise on Analytical Dynamics, Heinemann, London.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vettering (1992), Numerical
Recipes, 2nd ed., Cambridge University Press.

R. M. Rosenberg (1977), Analytical Dynamics of Discrete Systems, Plenum, New York.

K. R. Symon (1971), Mechanics, 3rd ed., Addison-Wesley, Reading, MA.

E. T. Whittaker (1937), A Treatise on the Analytical Dynamics of Particles and Rigid
Bodies, 4th ed., Cambridge University Press.

Problems

7.1 The torque T acting about the vertical shaft is such that the rotation rate £ is con-
stant. The sliders, having masses m, and mj, are tied together by an inextensible
cable. Derive the equation of motion for the radial distance R, and also obtain an
expression for T'.

)
r
gmDa
C 1 AL 1 [ |
L " BJ
‘-1——12—-»—
I L >
Problem 7.1

7.2 Derive the Lagrange equations of motion for the system in Example 7.8, and also
obtain a relation for I'. Compare the results to those obtained in the solution to the
example,

7.3 (See figure, next page.) Force F(¢) pushes piston A, whose mass is m, to the left. This
causes the gear to roll over the horizontal rack. The mass of the gear is 2m and its
radius of gyration about center point C is «; the mass of bar AB is m. Use the angles
6 and ¢ as constrained generalized coordinates to derive the equations of motion for
the system.
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Problem 7.3 Problem 7.4

7.4 The bar is slipping relative to the ground as it falls. The coefficient of kinetic friction
is u. Use Lagrange’s equations to derive the equations of motion for the bar.

7.5 The semicylinder, whose mass is m1, is released from rest at an initial orientation ¢ >
0. The floor is smooth, and the coefficient of kinetic friction u between the cylinder
and the wall is not adequate to prevent sliding. Use Lagrange’s equations to derive
the equations of motion for the bar.

Problem 7.5 Problem 7.6

7.6 The bar is supported by a ball-and-socket joint at end A and the rough wall at end
B; the coefficient of sliding friction is u. Use Lagrange’s equations to derive the equa-
tion of motion governing the angle of inclination 4.

7.7 The cylinder of mass m is free to rotate by angle 8 relative to the gimbal, which
rotates about the horizontal axis. The precessional rate Q is held constant by varying
the torque I'. Use Lagrange’s equations to derive the equation of motion governing
B, as well as an expression for I'.

7.8 A known couple M(¢) is applied to the upper bar. Force F, which is applied perpen-
dicularly to the lower bar, acts to make the velocity of end C always collinear with
the line from joint B to end C. The bars have equal mass m, and the system lies in
the horizontal plane. Use the method of Lagrange multipliers to derive the equations
of motion.
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7.9

710

m

712

Problem 7.7

e
/
P /s
\/
Problem 7.8 Problem 7.9

The thrust of an outboard motor on a boat may be represented as a force F acting at
an angle 8 relative to the axis of the boat. The hydrodynamic properties of the boat
are such that the velocity of the center of mass G is constrained to be parallel to the
longitudinal axis of the boat. The component of the hydrodynamic force parallel to
the axis of the boat is the drag f,. Derive the equations of motion for the boat using
Lagrange multipliers. The mass of the boat is m, and the centroidal moment of
inertia is /.

Use Lagrange’s equations to derive the equations of motion of the spring-mass sys-
tem in Example 7.9.

Use Lagrange’s equations to derive the equations of motion of the wheelbarrow in
Example 7.12.

(See figure, next page.) The torque I' causing the gimbal rotation § is a specified
function of time. Moment Q about the vertical axis causes the gyroscope to rotate
such that the precession angle y = cf3, where c is a constant. The spin rate w, is main-
tained at a constant value by a servomotor. The mass of this motor and the gimbal
are negligible. The mass of the flywheel is m and its principal radii of gyration for
centroidal axes are , about its spin axis and x, normal to that axis. Also, derive an
expression for Q.
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Problem 7.12

Consider the system in Example 7.1 for the case where the torque increases linearly
according to I = 5¢ N-m, where ¢ is measured in seconds and the precession rate is
unknown. The system was at rest at £ = 0 with § = ¢ = 0. Use numerical methods to
solve the state-space equations for this system. From that solution, determine the
maximum value of 8 attained in the response, and the corresponding value of .
Parameters for the system are m; = 2 kg, L = 500 mm, and I, = 0.1 kg-m2,

Consider the bar in Example 7.2, for which k/m =5 (rad/s)?, g/L =20 (rad/s)?,
B =60° and u = 0.5. Initially, the bar is at rest in the position where ¢ = 30°. Use
numerical methods to determine the elapsed time until ¢ = —90°. From that result
determine the mechanical energy, initially stored in the system, that is dissipated dur-
ing the descent.

Consider the motorboat in Problem 7.9. The thrust at full throttle, which is shown
in the graph, increases linearly with increasing speed v, until the maximum power
output is attained at 10 m/s. Beyond that speed, the power output remains constant,
so the thrust decreases inversely with v. The hydrodynamic drag is given by f, = kv,
where & is such that the maximum speed of the boat along a straight path is 15 m/s.
The mass of the boat is 500 kg and its centroidal radius of gyration about the vertical

» v (m/s)

Problem 7.15 Problems 7.16 and 7.17
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7.16

117

718

axis is 1.20 m. Also, the distance D =1.50 m. Suppose the boat is at rest pointing
northward when the motor is set and held at full throttle. The steering angle is in-
creased linearly from 8 =0 to 8 =2° during an interval of 1 min. Use numerical
methods to determine the path of the center G during this 1-min interval, and also
determine the speed and heading of the boat at the end of that interval.

The small mass m is supported by a spring as it moves along the smooth incline on
the cart, whose mass is M. The spring has stiffness & and its unstretched length is /.
Derive Hamilton’s canonical equations for the system.

Consider the system in Problem 7.16. Derive a single differential equation of motion
for the relative distance x using Routh’s method for the ignoration of coordinates.

The collar supporting bar AB is given a specified displacement y(¢). The collar and
the bar have equal mass /. Derive Hamilton’s canonical equations for this system.

Problem 7.18 Problem 7.19

119

120

7121

Angle 0 for the flyball governor is controlled by applying force F, which moves the
vertical shaft up or down. The system rotates freely about the vertical axis. The mass
of each sphere is m and the mass of the linkage is negligible. Use Routh’s method for
the ignoration of coordinates to derive a single differential equation governing the
nutation angle 6.

Consider the system in Problem 7.1. Use conservation of the Hamiltonian and the
work-energy principle to derive the differential equation for the angle 8, and to ob-
tain an expression for the couple I'.

Consider the system in Problem 7.7 when the torque T' = 0, in which case the rotation
rate @ about the horizontal axis is unknown. Let D = L/2, so that the center of mass
is coincident with the horizontal axis. Use Routh’s method for the ignoration of
coordinates to derive a single differential equation governing the nutation angle 8.
Can such a formulation be used when D = L/2? Explain your answer.
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7.22

7.23

7.24

7.25
7.26

1.27

7.28
1.29

Use conservation of the Hamiltonian and the work-energy principle to solve Prob-
lem 7.7.

The absolute velocity of a particle may be represented by its components v,, v,, v,
along the axes of a moving reference system xyz. Suppose that the angular velocity @
of xyz and the velocity v, of the origin of xyz are known as functions of time. Derive
the Gibbs-Appell equations of motion relating the quasivelocities v, = v,, 7, = v,,
and y; = v, to the components of the resultant force acting on the particle.

Derive the Gibbs-Appell equations of motion for the flyball governor in Problem
7.19.
Derive the Gibbs-Appell equations of motion for the boat in Problem 7.9.

Friction between the rod and the surfaces it contacts is negligible. Determine the
Gibbs-Appell equations of motion for the system. Assume that the rod remains in
contact with the wall.

Problems 7.26 and 7.27

The coefficient of kinetic friction between the rod and corner A4 is yx, while frictional
resistance at the wall is negligible. Use the Gibbs-Appell formulation to derive equa-
tions of motion for the system. Assume that the rod remains in contact with the wall.

Derive Gibbs-Appell equations of motion for the system in Example 7.1.

The sketch shows a child’s tricycle. All wheels roll without slipping, so the velocity of
each wheel’s center must be perpendicular to that wheel’s axle, as shown. The rear
wheels are small enough that we may neglect their inertia. A suitable set of general-
ized coordinates for the tricycle are therefore the position coordinates (X, Y,) of the
steering pivot A, the heading angle 6, the steering angle 3, and the spin angle ¢ of the
front wheel. Some of the forces applied by the rider have no external resultant, or
else are balanced by reactions at the wheels. Under the assumption that the rider is
stationary with respect to the bicycle, the effective force system causing the tricycle to
move may be reduced to the traction force F exerted between the front wheel and the
ground, a couple M, about the axis of the front wheel representing the propulsive
torque exerted by the rider, a couple MB representing the steering effort applied by
the rider to the handle bars, and a corresponding reaction couple —M; exerted on
the seat by the rider. (Note that F is a constraint force that imposes the no-slip con-
dition at the front wheel.) In this model, the combined mass and centroidal moment
of inertia of the tricycle frame and rider may be taken to be (respectively) m, and I,
based on a center of mass G at distance D relative to the front axle, while the mass
and moment of inertia of the front wheel about its axle are (respectively) m, and J.
The inertia of the rear wheels is negligible. Use §, = v and 4, = 8 as unconstrained
quasivelocities to formulate the Gibbs-Appell equations of motion for this system.
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7.30

7.31

1.32

Top view of a tricycle

Problem 7.29

The identical spheres of mass m spin freely relative to the massless shaft, such that
their centers are at constant distance L. Derive equations of motion for position
coordinates x and y and angle 8 of the shaft relative to the incline.

Problem 7.30

(See figure, next page.) A square plate pivoted about corner A is supported by two
springs of stiffness k, such that the inverted position shown is a static equilibrium
position. Derive the equation of motion for small rotation away from this position.
From that equation, determine the minimum allowable value of k for which the
equilibrium position is stable.

(See figure, next page.) Bars AB and CD, each of whose mass per unit length is m/L,
are connected by a spring whose stiffness is & and a dashpot whose constant is u. In
addition, a torsional spring of stiffness K restrains rotation at pivot A. The system is
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Problem 7.31 Problem 7.32

1.33

7.34

in static equilibrium in the horizontal position shown when the force F is not present.
Determine the equations of motion for small displacements relative to this position.

The linkage, which lies in the vertical plane, is loaded by a horizontal force F(¢). The
mass of each bar is m, and the spring, whose unstretched length is L /2, has stiffness
k. The hydraulic cylinder at end C, which permits only vertical movement, acts like
a dashpot whose constant is u. The static equilibrium position of the system is § =
36.87° when F = 0. Derive an expression for k. Then derive the equation of motion
for small displacements away from the static equilibrium position.

s
Problem 7.33

When the vertical force F is not present, the system is in static equilibrium in the
position shown. The masses of the bar and of the block, which is attached to the bar
by the inextensible cable, are each m. Determine the equation of motion for small
rotations of the bar away from this position.
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7.35

1.36

.37

7.38

Problem 7.34

When the vertical force F(¢) is not present, the linkage is in equilibrium in the posi-
tion shown. The mass of each bar is m and the stiffness of the spring is k. Derive the
linearized equation of motion.

L
2
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X |
Problem 7.35

Consider the T-bar assembly in Example 7.1 in the case where the torque I' induces a
constant precession rate y = 100 rev/min and L = 500 mm. Determine the constant
values of the nutation angle —7 < 8* < = for which steady precession is possible.
Then evaluate the stability of each position.

Consider the system in Problem 7.1 in the case where m, = m and mgz = m/2, where
m is a basic mass unit. It is possible for the system to rotate such that the radial
distance R to collar A is constant. Derive an expression for this constant distance.
Then evaluate its stability by considering a small displacement away from the steady
position.

The linkage precesses about the vertical axis at the constant rate 2. The small disk
B and slider C each have mass m, and the mass of each link is negligible. The spring
has stiffness k¥ and its unstretched length is 2/. Identify the two possible constant
values of @ in the physically meaningful range 0 < 6* < #/2 corresponding to steady
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precession with § = 0. Prove that one of these possibilities is always unstable, while
the other is a stable position that exists only if & is sufficiently large.

A |2

Problem 7.38



CHAPTER 8

Gyroscopic Effects

Our emphasis thus far has been on development of basic principles for treating
the kinematics and kinetics of rigid-body motion. Regardless of whether we employed
a Newtonian or Lagrangian formulation, it was usually necessary to account for
constraints associated with the way in which the system is supported. Sometimes the
goal was to characterize the force system required to produce a specified motion, as
when the reactions must be evaluated. Other situations required the determination
of conditions that are satisfied during the motion, as typified by the task of deriving
differential equations of motion. In this chapter we will formulate and solve the
equations of motion governing the rotational motion of a rigid body. Because the
angular momentum in spatial motion is usually not aligned with the instantaneous
axis of rotation, a portion of the rotational effect does not coincide with that axis.
Such phenomena are exploited in gyroscopes, whose theory will be introduced here.
However, we may learn much about the nature of dynamical responses by beginning
with studies of simpler, yet more common, systems that display comparable effects.

8.1 Free Motion

One of the first types of spatial motion treated in basic physics and engineer-
ing courses on mechanics is projectile motion, whose study is devoted to the deter-
mination of the motion of the center of mass. In contrast, the manner in which the
body rotates about its center of mass is seldom discussed in a fundamental course.
Our study of this free motion will be based on the assumption that gravitational
attraction is the only external force acting at the center of mass. In that case, the
rotational motion is uncoupled from that of the mass center. In reality, aerodynamic
forces acting on a body usually may be represented as a force-couple system acting
at the center of pressure, which does not necessarily coincide with the mass center.
Such forces depend on the orientation (angle of attack), as well as the overall veloc-
ity. Hence, accurate models of the motion of objects through the air might require
consideration of coupling between the translational and rotational motions.

8.1.1  Arbitrary Bodies

As a direct consequence of assuming that the force system acts through the
center of mass, the angular momentum Hj; about the center of mass is constant.
This simple fact provides the foundation for our entire development. The constant
magnitude of Hg provides a constant that relates the rates of rotation. The direc-
tion of Hg is also invariable, so it provides a fixed direction in space that may be
employed as a reference.

Eulerian angles are useful for the kinematical formulation of free motion. Sup-
pose that we know the orientation of the body at the instant it is released, and that

389



390 8 / Gyroscopic Effects

Figure 8.1 Eulerian angles and angular momentum for free motion.

the angular velocity at that instant is also known. It is a simple matter to use such
information to form Hy. Let us define the precession axis to coincide with the direc-
tion of the angular momentum. It is convenient to use as the body-fixed reference
frame a set of xyz axes that are principal, about which the principal moments of
inertia are I,, I, and I, respectively. (Evaluation of the orientation of these axes for
an arbitrary body is discussed in Section 5.2.3.) Definition of the Eulerian angles
associated with these axes is depicted in Figure 8.1. The precession rate  is about
the Z axis, which is parallel to H. The spin rate ¢ is about the z axis. The angle
between the precession and spin axes is the nutation angle 9. The nutation rate 4 is
about the line of nodes, which is the y’ axis perpendicular to the plane formed by
the Z and z axes.
The angular velocity at any instant is

@ = (—y sin 0 cos ¢ + 0 sin )i+ ( sin 0 sin ¢ + 6 cos $) ]
+(y cos 0+ @)k. (8.1)

An expression for the angular momentum may be obtained by combining these angu-
lar velocity components with the respective moments of inertia:

I-—IG=Ilwx17+12wyf+I3wz/E. (8.2)

However, projecting the H vector in Figure 8.1 onto the respective axes leads to a
different expression:

Hg = —(Hgsin 0 cos ¢)i+ (H sin 0 sin ¢)j + (H cos 0) k. 8.3)

Substitution of the angular velocity components of Eq. (8.1) into Eq. (8.2), followed
by matching like components of that expression to Eq. (8.3),» yields

¢ I,(§ sin@ cos ¢ — 0 sin ¢) = H sin 0 cos ¢,
¢ L, (¥ sin @ sin ¢ + 0 cos ¢) = H; sin 6 sin ¢, (8.4)
¢ I;(y cos 8+ ¢) = Hg cos 6.
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The value of H is known from the motion at the instant the body was released, so
these relations constitute a set of first-order, coupled differential equations for the
Eulerian angles. Their initial conditions are the values of the Eulerian angles at the
instant of release.

It is interesting to note that we could have used Lagrange’s equations to obtain
an alternative set of differential equations of motion. Such equations would have
been second-order. In essence, the constancy of H led us in Eqgs. (8.4) to first inte-
grals of the Lagrangian equations.

These differential equations are highly nonlinear. If one is interested in developing
solutions for specified initial conditions, integration schemes are easier to implement
if the equations are not coupled in the derivatives. We may obtain equations for the
precession and nutation rates from the first two of Eqs. (8.4), after which we find an
expression for the spin rate from the last equation. The result is

. 2 .2
. ¢=HG<M+M>,

I, I
. 1 1\ .
¢ 0 =HG<———> sin 8 sin ¢ cos ¢, (8.5)
L I
¢ ¢=H, i__cosz¢_sin2¢ cosf
VA2 I :

We shall not pursue solutions of these differential equations, although analytical
solutions in the form of elliptic functions are possible (see Synge and Griffith 1959).
Also, numerical solutions may be readily implemented. We will study a graphical
way of understanding the rotation in a later section on the Poinsot construction,
after we treat the special case of an axisymmetric body in Section 8.1.2. Before con-
tinuing to those topics, there are a few general observations that we can make.

First, note that y is always positive, which means that a body in free motion never
changes the direction in which it precesses. However, the signs of 8 and ¢ depend on
the relative magnitudes of the moments of inertia, and on the current quadrant in
which 6 and ¢ reside. The latter observation suggests that there might be free mo-
tions in which the nutation and spin rates, and therefore the corresponding angles,
oscillate. This, in turn, leads us to be concerned with the stability of an established
rotational motion. We may obtain specific results regarding stability in the important
case where we attempt to make a body rotate at rate ¢ about a principal axis. With-
out loss of generality, we consider such a motion to consist solely of a spin, with the
precession axis aligned with the spin axis; in this case, both the precession and nuta-
tion rates are zero.

The question of stability for this motion arises from the recognition that we are
not likely to impart an initial rotation to a body in which the axis of rotation is ex-
actly aligned with one of the principal axes. A more realistic expectation is that,
because of small error, the initial motion will feature nutation and precession rates
that are much smaller than @, and that the nutation angle will be small. If an evalua-
tion of the response confirms that these initial perturbations remain small for the
overall reponse, then we may conclude that the rotation is stable.

Accordingly, let

é=04+A¢, 6 = A6, ¥ = Ay, (8.6)
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where Ay, A8, and A¢ represent small deviations from the ideal. We may derive
solvable equations for the perturbations in cases where they are sufficiently small to
enable linearizing the equations of motion. It is easier to investigate the stability by
returning to the original set of equations of motion, Eqgs. (8.4). The linearized dif-
ferential equations resulting from substitution of Eqs. (8.6) are

—1I,(Ad sin ¢) = Hg (A6 cos ¢),
I,(A6 cos ¢) = H(Af sin ¢), 8.7
139 = HG'

In order to solve these equations, let us consider Af to be a vector aligned along
the nodes in the right-hand sense. Then A@ sin ¢ and A6 cos ¢ are the projections of
the small nutation angle onto the x and y axes. Let # and v denote these components,

u=A0sing, v = Af cos ¢. (8.8)

Then, because ¢ = Q@ when higher-order perturbation terms are neglected, differen-
tiation of Eqs. (8.8) produces

1 = Af sin ¢+ Q(AB cos ¢) = A sin ¢+ Qv,

) . 8.9
v=A0cosd—Q(Af0sin¢) = Afcosod—Qu.
Substitution of Egs. (8.8) and (8.9) into the differential equations (8.7) yields
I](u—QV)=—I3QV, 12(1‘1+Qu)=139u. (810)

These are a pair of coupled, homogeneous, linear differential equations with constant
coefficients. Their solution must be exponential in time,

u = Aexp(At), v = Bexp(At). (8.11)
Substitution of these forms into Eq. (8.10) leads to

Il/\ (13—11)9 A _ 0
[(12—13)9 LA ]{B}—IO}' (8.12)

The foregoing is an eigenvalue problem. In order for there to be a nontrivial solu-
tion, the determinant of this set of equations must vanish, which leads to the follow-
ing characteristic equation:

LN+ (=) (13- 1,)0% = 0. (8.13)

Because the moments of inertia are positive values, the roots of this quadratic
equation occur either as a pair of conjugate imaginary values, or as real values with
alternating sign, depending on the sign of the last term. A positive value of A corre-
sponds to exponential growth of ¥ and v, and therefore of A#. In this case, a small
perturbation from the ideal condition grows with time. Hence, the free rotation is
unstable if (I3—1))(I;—1,) < 0. In contrast, the case where the values of A are imag-
inary, (I;—1I,)(I;—1,) > 0, corresponds to an oscillation. The perturbation in the
nutation angle A# in that case never exceeds a bounded value that is determined by
the initial conditions. This means that the spin axis will remain close to the preces-
sion axis, which corresponds to stability of the initial rotation.
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The stability condition is obtained if /5 is either the largest moment of inertia,
Iy > I, and I3 > I, or the smallest, I3 < I, and I; < I;. In other words, if a body is
released with an initial angular velocity that is essentially a spin about the principal
axis for which the moment of inertia is either the largest or smallest value, then it will
continue with that type of rotation. An initial spin about the principal axis for which
the moment of inertia is the intermediate value will show a growth in the nutation
angle, such that the eventual rotation does not resemble the attempted initial state.
Note in this regard that Eqs. (8.10) merely describe the onset of instability. They can-
not be employed to study the unstable response, because the assumption of a small
nutation angle would not be valid in such a case.

If you wish, you may test these stability properties by throwing a homogeneous
rectangular object, such as a wooden block or a board eraser. Try to impart to it
an initial spin about an axis parallel to one of its edges. It is fairly easy to obtain a
motion in which the object spins about an axis parallel to the shortest or longest
edge. However, a comparable attempt for rotation about the intermediate edge does
not produce the desired steady spin.

8.1.2 Axisymmetric Bodies

In the preceding stability analysis of an initial spinning rotation, we assumed
that the principal moments of inertia about the center of mass are three distinct
values. An axisymmetric body - that is, any body whose mass is distributed sym-
metrically about an axis - has identical moments of inertia for all centroidal axes
that perpendicularly intersect the axis of symmetry. Also, any set of axes containing
the axis of symmetry are principal axes. Without loss of generality, we select the z
axis to be the axis of symmetry, and correspondingly let I; =7 and I, =1, =I'.}

Equations (8.5) remain valid for an axisymmetric body. Substitution for the mo-
ments of inertia converts those relations to

V= _III_G 1T
This shows that the free rotation of an axisymmetric body is characterized by a
steady spinning rotation about the axis of symmetry, accompanied by a steady pre-
cession about an axis that is parallel to the angular momentum; the nutation angle
between these axes is constant.

Although Egs. (8.14) fully characterize the motion, further examination will greatly
enhance our qualitative understanding of free motion. First, we evaluate the angular

velocity by substituting Eqs. (8.14) into Eq. (8.1). This yields

6=0, ¢ =Hc<l—l>cose. (8.14)

H, . (H, . [(H, _
@= -<I_’G sin @ cos ¢>i+<l—,c sin @ sin ¢>j+<—TG cos 0>k. (8.15)

Recall that one of the reference frames used in Chapter 4 to define the Eulerian
angles was x'y’z’, which undergoes only the precessional and nutational rotations. As

t Any body having two equal principal moments of inertia behaves as though it were axisym-
metric. The present analysis is valid for the free motion of such an object, provided the z axis
is aligned with the axis that has the distinct moment of inertia.
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shown in Figure 8.1, the y” axis is the line of nodes, whereas the z’ axis coincides with
the z axis. The unit vector along the x’ axis is

i'= (cos ¢p)i—(sin ) j, (8.16)
which means that the angular velocity in Eq. (8.15) may be written as
H . (H _
&= —( I’G sin0>i’+<TG cost9>k. (8.17)

One check on the correctness of this expression comes from using its components to
reconstitute the angular momentum,

Hg=T'w 0"+ 1w,k = —(Hgsin0)i’'+ (Hg cos )k = H K. (8.18)

This confirms that the angular momentum is aligned along the precession axis.

Because Hg; and @ are constant, we find from Eq. (8.17) that the angular velocity
is formed from two orthogonal components having constant magnitude. One com-
ponent is parallel to the axis of symmetry, and the other lies in the plane formed by
the axis of symmetry and the fixed direction characterized by the angular momen-
tum. This representation of @ is shown in Figure 8.2, as is the representation ob-
tained by vectorially adding the precession and spin rates.

Suppose that the initial motion of the body is specified, which is equivalent to
specifying the initial value of & and the initial orientation of the body. Such condi-
tions mean that we know the initial angular speed w = ||, as well as the angle 8
between & and the axis of symmetry at the instant of release. (In order to avoid am-
biguity, and without loss of generality, we consider the angle to be acute, 8 < 90°.)
We could use the relations already established to express the other parameters in
terms of these initial conditions. Instead, we shall develop the appropriate relations
by referring to Figure 8.2, which displays three methods for constructing the com-
ponents of @. Specifically,

x'

Figure 8.2 Construction of the angular velocity of an axisymmetric body
in free motion.
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H, S
wz,=wcosB=TGcost9=¢+a//coso,

(8.19)

H, .
—wx»=wsinB=I—,Gsin0=¢sin0.

Eliminating from these relations all kinematical parameters except w and 3 yields

'Y tanf = 17 tan g,
7Y Hg = (I"*sin? B+ I*cos? B)"?w,
2 12
Py y= [sin26+<%> cos? ﬁ] W, (8.20)
¢ d>=<1—%>wcosﬁ.

The picture provided by Figure 8.2 may be considered as general, but we must
remember that the entire system precesses at a constant rate about the Z axis. As the
motion evolves, the angular velocity sweeps out a cone in space whose axis is parallel
to Hg, and whose vertex half-angle is § — 8. Similarly, the axis of symmetry precesses
such that it is coplanar with the @ and Hy vectors, at a constant angle 6 relative to
the precession axis.

Such a motion may be represented by a conceptual model formed from (right
circular) cones. The body cone, which is fixed to the body, rolls without slipping over
the stationary space cone. The angular velocity of the body cone must be parallel to
the line of contact between the cones, because the instantaneous axis of rotation is
the locus of points in the body having zero velocity. Hence, H defines the axis of
the space cone whose semivertex angle is 3 —@, whereas the axis of symmetry is the
axis of the body cone whose semivertex angle is 8. The sides of the space and body
cones contact at @.

Two types of rotation are recognizable from this model. Regular precession, which
is shown in Figure 8.3, corresponds to rotations in which 8 < 8. The exterior of the
body cone in this case rolls over the exterior of the space cone. Note from the first of
Eqgs. (8.20) that regular precession is obtained if I’ > I, which is characteristic of a
slender body such as a football. We see from the last of Egs. (8.20) that whenever
I' > I, the spin rate is positive; the third equation shows that the precession rate is
always positive. Therefore, the angle between the precession and spin-rate vectors is
acute in a regular precession.

Figure 8.4 depicts a retrograde precession, corresponding to 3 > 6. In this case,
the interior of the body cone rolls over the exterior of the space cone. Such a rota-
tion arises when I’ < I, which corresponds to a squat body such as a disk. Here the
spin rate is negative, so the spin-rate vector is oriented along the negative z axis.
Because the precession rate is always positive, the angle between the two rotation
rate vectors is now 180°— @, so we perceive the precession to be generally opposite to
the sense of the spin. This counterrotation is the source of the term “retrograde.”
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Axis of
symmetry

Axis of
symmetry

Space
cone

(fixed)

Figure 8.3 Body and space cones for Figure 8.4 Body and space cones for
regular precession. retrograde precession.

Example 8.1 A football has an instantaneous velocity of 25 m/s parallel to its lon-
gitudinal axis z, and is spinning about that axis at 5 rev/sec. At that instant, the ball
is deflected by a transverse force F at the forward tip. As a result of the action of F,
whose duration is very short, the ensuing motion relative to the center of mass is
such that the longitudinal axis always lies on the surface of a cone whose apex angle
is 60°. The radii of gyration about centroidal axes are 40 mm and 70 mm along and
transverse (respectively) to the longitudinal axis. Determine:

(a) the angular velocity and the velocity of the center of mass immediately after
the application of F;

(b) the orientation of the precession axis for the subsequent rotation relative to
the orientation of the longitudinal axis prior to the application of F; and

(c) the precession and spin rates for the rotational motion.

Solution The force F fits the impulsive model because it induces a sub-
stantial change in the motion over a short time interval. We neglect position changes
during this interval, which means that the orientation of the body-fixed xyz reference
frame changes negligibly during the interval of the impulse. The moments of inertia
are

I =1,,= m(0.040%) = 0.0016m kg-m?,

I'= I, = I, = m(0.070%) = 0.0049m kg-m?,

where m is the mass (in units of kg).
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|e——125 mm——-—»

5 rev/s

Example 8.1

The initial linear and angular momenta are
ﬁl = m(\-’G)l = 25ml€ kg-m/s,
(Hg), = Iw,k = I(-5)(2n)k = —0.05027mk kg-m?/s.

Because the change in the position of any point on the football is negligible during
the impulse interval, the point of application of F is essentially constant at 7p/6 =
0.125k m. The corresponding impulse-momentum principles are

m(Vg), = 25mk + (F At)i,
(Hg), = (Hg), + (Fpyg X FAL)i = —0.05027mk + (0.125F At) .

Because I’ > I, the free rotation of the football is a regular precession. According
to Figure 8.3, the given information that the z axis sweeps out a 60° cone in the sub-
sequent rotation means that the nutation angle is ¢ = 30°, with the precession axis
coincident with the axis of that cone. We find the corresponding angle 8 between the
angular velocity and the axis of symmetry from Eqgs. (8.20) as follows:

B= tan"(% tan 0> =10.076°.

The preceding expression for (H), indicates that w, = 0 at the instant when F
terminates, while w, >0 and w, <0 at that instant. Hence, the angular velocity at
that instant must be

@ = —(wcos B)k+ (wsin B)] = w(—0.9027k +0.18526/) = wyf+ w,k.
The corresponding angular momentum is

(Ag); = Lo k+I'v, j = mo(—1.5723k +0.9078,/)(1073).
Matching this to the first expression for H; yields

1.5723(103)ymw = 0.0527m, 0.9078(1073ymw = 0.125F At,

w=31.97 rad/s, % =0.2322 m/s.

The corresponding motion parameters are
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@y = —31.42k +5.923] rad/s,
(¥g)2 = 25k +0.2322/ m/s.

The precession axis is parallel to (Hg),, which is the angular momentum for the
subsequent free-motion axis. Thus

(A, _ —15723k+0.9078] ) ]
= Ho)| ~ (1L.57232+0.90787)72 — ~ 0-8660k+0.500/.

Note that the angle between K and £ - that is, between the symmetry and precession
axes - is cos'(—0.8660) = 150°, in agreement with the stated conditions.

X

25 m/s /']

Body cone
023 m/s

(Hg)y

V4 wy=32.0rad/s

Motion at the end of the impulse.

From these results we may draw a sketch of the position of the body cone relative
to the space cone at the initiation of the free motion. We also show (¥5), in that
sketch. The corresponding precession and spin rates are given by Egs. (8.20),

Y =11.85 rad/s, é =21.16 rad/s.

8.1.3  Poinsot’s Construction for Arbitrary Bodies

When the principal moments of inertia are unequal, the nutation angle will
generally not be constant. As mentioned earlier, one approach in this case is to seek
analytical or numerical solutions of the first-order equations of motion, Egs. (8.5).
Here, we shall develop a pictorial representation of the motion that considerably
enhances our qualitative understanding of free rotation. The framework for this
development is the ellipsoid of inertia, which was described in Section 5.2.3.

We begin by noting that the general expression for rotational kinetic energy, which
employs angular velocity components and inertia properties [/] relative to xyz, is
more simply represented in terms of the moment of inertia 7 about the instantaneous
axis of rotation. Specifically,

Tioo = 30+ Hg = {0} [ {0} = $ 10 (8.21)
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The ellipsoid of inertia is a fictitious body that moves in unison with the actual
body. The major, minor, and intermediate axes of the ellipsoid coincide with the
principal axes of the body, which are xyz in the current situation. The distance from
the center of mass G to any point P on the inertia ellipsoid is defined to be the rate at
which the body should rotate about axis GP in order for the rotational kinetic energy
to be one half. Setting T7;,, = 1/2 in Eq. (8.21) shows that the required rotation rate is
1/VI, where I is the moment of inertia about axis GP.

If (x, y, z) are the coordinates of point P relative to the body-fixed reference frame
whose origin is the center of mass, then the position of this point may be written in
vector and matrix notation as

p=xi+yj+zk, (o} = (8.22)

N = =

By definition, we have p = 1/VI. This does not represent an explicit relation among
the (x, y, z) values because / depends on the location of point P. We obtain such
a relation in a different manner. By definition, g represents the angular velocity re-
quired for T;,, = 1/2 when the axis of rotation is parallel to line GP. Substitution of
@ =p and w = 1/VI into Eq. (8.21) yields

(o} 1o} = 1. (8.23a)

This product may be expanded for arbitrary [/]. However, we defined x, y, and z to
be principal axes, with I}, 5, and I, as the respective principal values. Thus, the ex-
panded form of Eq. (8.23a) is

¢ Lx*+Ly*+Lz° =1. (8.23b)

In order to describe the rotation of an inertia ellipsoid in free motion, we draw a
line through the center of mass parallel to the angular velocity @ at an arbitrary
instant; this construction appears in Figure 8.5. The point P we shall follow is the

Inertia
ellipsoid

Figure 8.5 Inertia ellipsoid of an arbitrary body in free motion.
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intersection of this line with the surface of the ellipsoid. If we know &, the corre-
sponding 5 is a vector parallel to @ with magnitude 1/VT; that is

1 @
= — —. 8.24a
=T w (®.242)
Thus, the coordinates of point P are
Wy wy W,
- , =2 7= . 8.24b
o' 7T Vi e (8:24)

Recall that the angular momentum of a body is constant in a free motion. Since
we may construct this vector from the rotational motion at the instant the body was
released, H defines a convenient reference direction. The first significant aspect of
the inertia ellipsoid’s motion comes from evaluating the component of g that is par-
allel to the angular momentum. As shown in Figure 8.5, this component, denoted
px, may be obtained from a dot product of 5 with a unit vector parallel to H. In
view of Egs. (8.21) and (8.24a), we obtain

_H; o H (T

PH=P H;, Vie Hg Hg
Now note that, because the forces acting on a body in free motion exert no moment
about the center of mass G, no work is done in the rotation. Consequently, the rota-
tional kinetic energy is constant. Because both T, and H are constant, the distance
pp remains constant as the body and its ellipsoid of inertia rotate.

One definition of a plane states that it is the locus of points whose distance to a
specified point, measured parallel to a fixed direction, is constant. This direction is
the normal to the plane. It follows that point P always lies on a plane that is at a
constant distance pg from the center of mass, with A being the normal to the plane.
If we ignore the movement of the center of mass, this plane appears to be stationary;
it is the invariable plane.

Knowledge of the invariable plane does not fully prescribe the motion of the ellip-
soid of inertia. We have not established how point P moves along the plane, nor do
we know how the ellipsoid is oriented relative to the plane. In order to address these
questions, we shall derive another property of the ellipsoid of inertia.

Let us define a family of concurrent ellipsoids having the same proportions as the
inertia ellipsoid. Let C be a constant that scales the magnitude of 5. In other words,
if point P’ on a different ellipsoid is collinear with the line from the center of mass
G to point P on the inertia ellipsoid, then the distance from point G to point P’ is
C/VI. 1t follows from Eq. (8.23b) that the coordinates of point P’ satisfy

(8.25)

F(x, 3,2, ;) = L1x*+ Ly*+L,z* = C?, (8.26)

where C =1 corresponds to the ellipsoid of inertia.

The gradient operator applied to Eq. (8.26) indicates the direction in which the
value of C changes most rapidly when going from one surface to another. Therefore,
the gradient of F, which is

VF =21 xi+ 2L, yj+21, 2k, (8.27a)
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Figure 8.6 Poinsot’s construction of the inertia ellipsoid in free motion.

defines the normal to the ellipsoid that contains the point (x, y, z). The coordinates
of point P, at which the rotation axis intersects the inertia ellipsoid, are given by
Eqs. (8.24b), which when substituted into Eq. (8.27a) yield

VF=%(11wxi+12wyj+13wzk) =—\/%;HG. (8.27b)

We see now that the normal to the inertia ellipsoid at point P is parallel to the
angular momentum. However, the normal to the invariable plane is also parallel to
Hg. As shown in Figure 8.6, these two statements mean that the ellipsoid of inertia
is always tangent at point P to the invariable plane. Furthermore, the velocity of
point P is zero, because it is on the instantaneous axis of rotation. These observa-
tions lead us to the Poinsot construction, which states that

¢ The inertia ellipsoid of a body in free motion rotates about the center of
mass such that it rolls without slipping over the invariable plane. The nor-
mal to the invariable plane is parallel to the (constant) angular momentum
of the body. The line extending from the center of mass to the point where
the ellipsoid tangentially contacts the invariable plane is parallel to the in-
stantaneous axis of rotation. The rolling motion is such that the perpendic-
ular distance from the center of mass to the invariable plane is constant, at
a value that depends on the angular momentum and (constant) rotational
kinetic energy relative to the center of mass.

The initial conditions at the instant the body was released define A, and T,
which, in turn, define the invariable plane and the distance therefrom to the center
of mass. At each instant, a different point on the inertia ellipsoid contacts the invari-
able plane. The locus of contact points on the inertia ellipsoid is a curve called the
polhode, while the locus on the invariable plane forms the herpolhode. The herpol-
hode is generally an open curve, which means that the rotation does not repeat, but
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the polhode is a closed curve. In the special case where the body is axisymmetric with
respect to the centerline appearing in Figure 8.6, the Poinsot construction reduces
to the space- and body-cone representations derived from Figure 8.2. In that case,
the herpolhode is closed.

The closure of the polhode, as well as the overall nature of these curves, may be
established by noting that the inertia ellipsoid represents the constancy of kinetic en-
ergy in rotational motion. However, the angular momentum is also constant, which
means that

H} = Hg-Hg = (I)w,)* + (I,w,)* + (I30,)* = constant. (8.28)

Let us use Eqs. (8.24b) to express this relation in terms of the coordinates of point P
at which the inertia ellipsoid contacts the invariable plane. Thus,

HE = I (Lx)? + (L, y)2 + (I3 2)2). (8.29)

However, at each instant the body is rotating at rate « about the instantaneous axis
through origin G and point P, and 7 is the moment of inertia about that axis. Thus,
Iw? = 2T,,, so the foregoing becomes

2

¢ P+ By*+ 1322 = Hs _ 1 _p (8.30)
27}0[ 9121

This relation characterizes another ellipsoid that is fixed to the body. The intersec-

tion of the ellipsoid given by Eq. (8.30) with the ellipsoid of inertia, Eq. (8.23b), is

the polhode. The closure of the polhode is a direct consequence of the fact that both

ellipsoids, and therefore their intersection, rotate with the body.

The value of the constant D is determined by the initial motion. In view of Egs.
(8.24b) and (8.30), initial rotations about each of the principal axes correspond to
D =1, I, I, respectively. Without loss of generality, we now specify the labeling of
the xyz axes to be such that 7 is the smallest value and 75 the largest. Then, I, = D <
I5. The polhode for a specified value of D may be constructed by picking a value of
one coordinate and then solving Eqs. (8.23b) and (8.30) simultaneously for the other
two. Alternatively, the projection of a polhode curve onto any of the principal coor-
dinate planes may be derived by eliminating the coordinate normal to that plane
from the two relations. These projection equations are

x-y plane: I(I;—I)x*+I,(I;—1,)y?=1I;-D;
y-z plane: I,(I,—1I)y*+1I;(I;—1)z* =D—1I; (8.31)
x-z plane: I(I,—I)x*—L(I;-1,)z*=1,-D.

We wrote each of these equations such that the coefficients are positive for the
assigned sequence I; < I, < I5. For this ordering, the projections onto the x-y and
y-z planes are ellipses, and the projections onto the x-z plane are hyperbolas. These
projections, and the outline of the inertia ellipsoid, are illustrated in Figure 8.7 for
the positive quadrants. The curve corresponding to D = I, is the separatrix between
the hyperbolas in the x-z plane, but it appears as an ellipse in the other coordinate
planes. The corresponding polhode curves on the ellipsoid of inertia are shown in
Figure 8.8.
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Figure 8.7 Typical polhode curves in the first octant and their projections
onto the principal-axis planes for I, =1, I, =4, I, =8.
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Figure 8.8 Typical polhode curves and the inertia ellipsoid for I, =1, I, =4,
I,=8.

We concluded in Section 8.1.1 that an attempt to impart a rotation about the prin-
cipal axis of smallest or largest moment of inertia would produce a stable rotation.
This is further demonstrated here. Recall that the instantaneous angular velocity @ is
parallel to a line from the origin (i.e., the center of mass) to the point where the
polhode curve contacts the invariable plane. If the initial rotation is approximately



404 8 / Gyroscopic Effects

about the z axis, then D is slightly smaller than 75. In that case, the projection of the
polhode curve onto the x-y plane is a small ellipse, corresponding to an angular
velocity that always is nearly parallel to the z axis. Similarly, an initial rotation ap-
proximately about the x axis, which gives a value of D slightly larger than I, leads
to a polhode curve projection on the y-z plane that is a small ellipse. This corre-
sponds to an angular velocity that is always nearly parallel to the x axis. In either
case, the axis of rotation remains close to the respective principal axis. In contrast, if
the initial motion is approximately about the y axis, then D = I,. Then the polhode
curves are close to the separatrices. Depending on whether D is greater than or less
than I,, the closed polhode curve is centered about either the z axis or the x axis,
respectively. In either case, the angle between @ and any of the coordinate axes varies
greatly in the motion. This explains why the rotation of an arbitrary body is often
difficult to observe.

Example 8.2 At the instant the 10-kg rectangular plate is released, edge AB is hori-
zontal. The angle between the plate’s normal and the vertical direction is 30°. The
angular velocity at that instant lies in the vertical plane containing the normal, with
B defined as the angle between & and the normal.

(a) Determine the value of 8 for which the precession axis is vertical.

(b) Determine the maximum value of 8 for which the angle between the normal
and the precession axis will not exceed 90° in the rotation after release.

(c) For the case where 8 is one half the critical value in part (b), determine the
minimum and maximum angles between the plate’s normal and the preces-
sion axis during the rotation. Evaluate the corresponding angular velocity at
these limits.

Vertical &

Example 8.2

Solution A centroidal coordinate system whose axes are aligned with the
edges of the plate is principal. In accordance with the derivation, the axes in the
sketch are labeled such that 7, = I, is the smallest principal value and I,, = I; is the
largest. These values are
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I = %10(0.122) =0.012, I,= %10(0.242) =0.048,

L= %10(0.12%0.242) =0.060 kg-m>.

The orientation of the initial angular velocity relative to xyz is described by the angle
B, so we have

@ = w[—(sinB)i+(cos B)k].
The corresponding constant angular momentum is
H;= Ilwx17+12wyf+l3wzlz = 0.012w[—(sin B)i + (5cos B)k].

To answer the first question, we require that the angular momentum be paraliel
to the vertical axis. Resolving this vector into xyz components gives

Hg = Hg[—(sin 30°)i + (cos 30°)k].
Matching the two descriptions of H; leads to

0.012wsin 3 = 0.5H, 0.060w cos B = 0.8660H;,
so that
0.20tan3 =0.5774 = (3 =70.89°.

In order to address the second question, we examine Figure 8.8, and recall that
the normal to the tangent plane at a point represents the precession axis. Consider
the polhode curve corresponding to D > I, which surrounds the z axis. At every
point on this curve, the tangent plane has a normal that forms an acute angle with
the z axis. The limiting case is D = I,, which defines the separatrices, because the
tangent plane’s normal at x = z = 0 is parallel to the y axis, and therefore perpendic-
ular to the z axis. Thus, the maximum value of 8 satisfying the specification in part
(b) is that which gives D = I,. The earlier expressions for @ and Hg; in terms of 3 give

2T, = @-Hg = 0.012w2(sin? 8 + 5 cos? B).

Hence, the critical condition is

HE sin? 8+ 25 cos* B
D= =0.012 =1,=0.048,
2T sin2 3+ 5 cos2 3 2

which becomes
sin? B+25 cos? B = 4(sin? B+ 5cos?B) = tan?B=75/3;
critical 8 = 52.239°.

For part (c), we set 8 = 26.119°. The corresponding value of D is readily obtained
from the preceding general formula as follows:
sin? B+25cos? B

D =0.012 =(0.057798.
sin2 8+ 5cos?

Because D > I,, the polhode curve surrounds the z axis. Now examine the polhode
curve for this case in Figure 8.8. The minimum and maximum angles between the z
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axis and the normal to the tangent plane, which is the fixed precession axis, occur
when the polhode curve intersects the x-z plane and y-z plane, respectively. Thus,
the task of identifying the minimum and maximum angle conditions reduces to es-
tablishing the conditions for which the angular velocity has either a zero y or x com-
ponent, respectively.

This observation leads us directly to conclude that the initial motion must repre-
sent the minimum angle condition, because it is specified that w, = 0 at that instant.
Thus, we determine the minimum angle between the z axis and the precession axis
by forming the angular momentum corresponding to 8 = 26.119°:

Hg = 0.012w[—(sin B)i + (5 cos B)k] = w(0.0052837+0.053873k),

Hq-k
0. =cos™!{ —Z "} =5.6007°.
min = €03 <|HG|>

To determine the maximum angle, we seek the solution of the polhode equations
that corresponds to the foregoing value of D and x = 0. The polhode curves corre-
spond to values of (x, y, z) that simultaneously satisfy Eqs. (8.23b) (the inertia ellip-
soid equation) and (8.30) (constancy of T;,). For the present values of the parame-
ters, these equations are

0.012(x2+4y*+5z%) =1,
0.012%(x2+16y2+252%) = 0.057798.

The polhode of interest corresponds to z > 0, because w, was initially positive. We
therefore seek the root of these equations for which x = 0 and z > 0. The roots are

y = %1.9553, z=3.6889.

We shall use the positive value of y; either sign will yield the same angle. According
to Egs. (8.24), the corresponding angular velocity is
@; = w,VT;(yj + zk) = w;VI;(1.9553/ + 3.6889k),

where the subscript i identifies the quantities as instantaneous values. To find the
moment of inertia about the instantaneous axis of rotation, we use this relation to
form |&|, which yields

I= !
" 1.95532+3.68892

Substituting 7; into the previous expression for @; leads to
@; = w;(0.46831/ +0.88356k).
The angular momentum corresponding to this expression for @; is
Hg = Lo, j+ L,k =0.048(0.46831c;)j + 0.060(0.88536w;)k
= ;(0.022479/ +0.053014%).

We may evaluate w; by equating constant | H| with the value corresponding to the
initial instant, at which 8 = 26.119°:
HE = 0}(0.0224797 +0.0530142)
= (0.012w)?(sin? B+ 25 cos? B) = 0.0029302w?;
w; = 0.9401w.

=0.057368.
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Substituting this value into the expression for &; yields
@; = 0(0.44024 +0.83060%).
The corresponding angle between the z axis and H; may be found from a dot product,

Hg-k _ 0.053014 .
|Hg| — (0.0224792+0.0530142)1/2°

0, = 00y = 22.978°.

cosf; =

The angle between the angular velocity and the z axis is
@ik
Bi= cos'1<——'

w;

) =27.924°,

The orientation at this instant of the principal axes and the angular velocity are
depicted in the accompanying sketch. Also shown is the initial condition, which we

vertical
0z
w
" w;=0.9400
24.40° T G H, z
26.12° |
27.92°
5.60°
\ 4\ 22.98°
240 mm 120 mm

\ . N \y

Extreme conditions of the free motion.

found corresponds to the minimum angle. Note that the planes for each sketch are
not the same; to locate the plane for the second sketch, we would need to know the
precession angle. Each situation in the sketch is mirrored by another, not shown, in
which everything is rotated about the precession axis by 180°. At an arbitrary instant,
the angles between the z axis and the precession axis, and between the angular veloc-
ity and the precession axis, will be intermediate to the illustrated conditions and its
mirror image.

8.2 Spinning Top

The toy known as a spinning top consists of an axially symmetric body that
executes a pure rotation about an apex situated on the axis of symmetry. (We shall not
worry here about the drift that occurs when the apex is not anchored, primarily be-
cause such effects are complicated by minor irregularities in the surface over which the
apex would move.) The study of a spinning top leads to many insights regarding the
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Figure 8.9 Free-body diagram for a spinning top.

interplay between rotation, angular momentum, and the moment exerted by forces.
The results for its motion may be extended to other bodies that rotate about a ref-
erence point owing to the moment of the gravitational force; such systems include
certain types of gyroscopes.

In Figure 8.9, point O is considered to be stationary owing to a reaction force
having three components F; in the horizontal and vertical directions. The gravity
force acts through the center of mass G. Its moment about point O is mgL sin 8 in
the direction of the horizontal axis through point O and perpendicular to the axis of
symmetry. Because such an axis is the line of nodes (nutation axis) for a set of Eu-
lerian angles, it is natural to formulate the equations of motion in terms of those
parameters. Note that the reactions exert no moments about the precession, spin,
and nutation axes, so the generalized nonconservative force associated with each
angle is identically zero. Thus, the principal difference between a spinning top and
an axisymmetric body in free motion is the presence of a moment about the reference
point for the rotation. This moment must be balanced by an angular momentum
that varies with time.

We shall employ Lagrange’s equations to formulate the equations of motion. Let
I be the moment of inertia about the axis of symmetry and let I’ be the moment of
inertia about any axis perpendicular to the axis of symmetry and intersecting point
O. When resolved into components relative to the x’y’z’ axes for the Eulerian angles,
the angular velocity of the body is

@ = —(y sin0)i"+0j"+ (y cos 0 + P)k". (8.32)

The moment of inertia is the same for any axis through the apex O and perpendicu-
lar to the axis of symmetry, so the kinetic energy corresponding to this expression
for @ is
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T =1I(y cos 0+ ¢)? + 1 I'(§* sin? 9+ 62). (8.33)
The elevation of the apex is a convenient reference for the gravitational potential
energy, so

V =mglL cos¥. (8.34)

We noted earlier that the generalized forces are all zero in our idealized model.
Furthermore, in this case the Lagrangian £ = T —V does not depend explicitly on
either the precession or spin angles. As a result, the precession and spin angles are
ignorable coordinates, corresponding to conservation of the generalized momenta
associated with these variables. These momenta are

Py = % = I(y cos 6+ ¢) cos 8+ I'y sin’ 6 = I'B,,

(8.35)
Do = T _ Iy cosf+é) =18
¢ a¢ -4
where 3, and 8, are constants having the units of angular speed. The values of 3,
and 3, are specified by the initial conditions, so Eqs. (8.35) yield the following first-

order differential equations for the precession and spin angles:

. By—Bscost
¢ v sin2g¢ ’
. (8.36)
. Bo(I'sin®0+1cos?0)—B,1cosd
¢ 4= > :
Isin% @

In both differential equations, the still-undetermined nutation is the excitation. A
constant value of 84 corresponds to constancy of the total rotation rate about the axis
of symmetry, w, = ( cos § + $). The foregoing expressions reveal that the precession
and spin rates are individually constant only when the nutation angle is constant.

Constant values of p, and p, satisfy the Lagrange equations associated with
and ¢. In the derivation of the third Lagrange equation, which governs 8, we must
evaluate the derivatives of the energy expressions before we use the conserved mo-
menta to eliminate the ignorable coordinates. Carrying out the appropriate deriva-
tives of Eq. (8.33) yields

I'6—(y sin@)[I'y cos 0 — I(§ cos 0+ )] —mgLsind = 0. (8.37)
We substitute Eqgs. (8.36) into this expression in order to remove the precession and
spin rates, which yields
1

.. mgL
0+ in?0 (By— By cos 0)(B,—By cosb) -7 sinf = 0. (8.38)
We shall employ this equation of motion later. A first integral of Eq. (8.38) could

be obtained by separating variables using the chain-rule identity

. dé, 1 d
0 = e = - ——
df 6 2 do
However, it is much simpler to observe that mechanical energy, E = T+V, is con-
served. Expressions for the kinetic and potential energy are given by Egs. (8.33) and

(8.34). Eliminating the precession and spin rates with the aid of Eqs. (8.36) yields

(6%).
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(ﬁ¢ B4 cos 0)2 (1')2

I/ 2
02+ 2 sin2 6

B¢ +mgL cos 6. (8.39)

The value of the energy E, just like the generalized momenta, is known from the
initial conditions.

When we multiply this equation by sin? 8, we see that the derivative of § appears
in the combination @ sin §, whereas the terms that do not contain a derivative depend
on cos 8, because sin® @ = 1—cos? 6. This suggests that it would be useful to define a
new variable such that

u =cosf, u=—0sin. (8.40)
Also, it is convenient to define the following combination of parameters:
2E _r _ 2mgL
A B¢, =0 (8.41)
Substitution of Egs. (8.40) and (8.41) converts the energy expression in Eq. (8.39) to
. u?=(e—yu)(1—u?)—(B,—Byu?). (8.42)

It is possible to separate variables in this differential equation, which would lead
to an expression for the time ¢ required to attain a certain value of 6. Such a relation
would have the form of an elliptic integral. Numerical methods provide another ap-
proach by which the differential equation, Eq. (8.42), may be solved for a relation
between 6 and ¢. However, we can determine much qualitative information about
the motion merely by studying the roots of the cubic polynomial in the right side of
Eq. (8.42). These roots describe the conditions for which 4 is zero, corresponding to
either an extreme or a constant value of the nutation angle.

The polynomial in question is

Sfu) = (e—yu)(1—u?)— (8, —B,u)> (8.43)

In view of the definition of # by Eqgs. (8.40), the physically meaningful values of u
must lie in the range —1 < 4 < 1, subject to the requirement that f(«) = 0 in order
that @ be real. (For an actual toy top on the ground, 6 > 0 is the only realistic case,
but § < 0 is possible by placing the apex O on an elevated pivot.)

Let us investigate the nature of the roots of f(x). When u is very large, we find
that f(u) = yu> >0 because vy is a positive parameter. Furthermore, f(1) <0 be-
cause the first term vanishes. It follows that one root of f(u) must be in the range
u > 1, so it is of no interest. A comparable evaluation for large negative values of ¢
shows that f(u) is asymptotically negative, and that f(—1) < 0. There must be some
range of u over which there is a real value of the nutation rate, so we may conclude
that f(u) must have two roots in the range —1 < u < 1. One possible situation for the
significant roots u, and u, is shown in Figure 8.10, although it might be that both
roots are positive or negative.

The variable ¥ may be interpreted geometrically as being the elevation above the
apex of a point P on the z axis of symmetry at a unit distance from the apex. In this
interpretation, the precession angle ¥ and the nutation angle 0 are spherical coordi-
nates for point P, whose path lies on a sphere of unit radius. Because f(#) = 0 corre-
sponds to § = 0, the highest elevation of point P corresponds to the largest value,



8.2 / Spinning Top 411

f(u)

N
N

Figure 8.10 Roots of f(u) =0 for a spinning top.

u = u,, for which the nutation angle is the smallest. Similarly, the lowest elevation
attained in the motion is ¥ = u,, corresponding to the largest nutation angle. Hence,
the nutational motion is such that the symmetry axis oscillates between high and
low positions, #; < u < u,. In the exceptional situation where the roots are repeated,
u = u, = u, throughout the motion, corresponding to a constant nutation angle. This
is an important possibility, because we saw in Eqs. (8.38) that the precession and
spin rate are constant when 6 is constant. Thus, the case of repeated roots corre-
sponds to steady precession, which we shall treat later.

The values of the parameters 8,, 8,4, €, and v are set by the initial conditions. The
relation between the elevation » and the precession rate for specified initial condi-
tions is found from Eqgs. (8.38) and (8.40) to be

By(uo—u) u _ﬂ_
l_u2 ’ O—qu'

Because |u| < 1, we observe from this relation that the sense of the precession, which
is defined by the sign of ¥, is determined by the parametric combination «—u,.
Indeed, y vanishes at u = uo. Whether ¥ actually goes to zero in a motion depends
on whether the value of u; lies in the range u; < u < u,.

There are three ways in which the value of ¥y may be situated relative to u; and
u,. Understanding each requires recognition of the interplay between the alteration
in the rotational motions necessary to conserve angular momentum and energy. The
second of Eqs. (8.35) shows that the total rate of rotation about the axis of sym-
metry, w, = ¢+ cos §, remains constant in order to conserve momentum about that
axis. Thus, a decrease in the precession rate or an increase in the nutation angle must
be compensated by an increase in the spin rate. The effect of the nutation on the pre-
cession rate may be seen from the first of Eqs. (8.35). The precessional momentum
originates from two sources: the projection of the spin momentum onto the pre-
cession axis, and the angular momentum associated with the precession itself. The
equivalent moment of inertia for the latter effect is I’sin? . Increasing the nutation
angle increases this moment of inertia, while it simultaneously decreases the projec-
tion of p,. Hence, an increase in the nutation angle has competing effects on the pre-
cession rate, depending on the value of 8, relative to §,.

In regard to energy, Eq. (8.39) indicates that the portion of mechanical energy £
attributable to the precession and spin might increase or decrease when 6 increases,
depending on the values of 8, and 8,. This is accompanied by a decrease in the

¥= (8.44)
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Figure 8.11 Path of the spin axis of a top in unidirectional precession.

potential energy with increasing 6. The nutational portion of the mechanical energy
must maintain the balance between kinetic and potential energy. At the extremes of
the nutational motion, the change in potential energy is exactly compensated by the
change in the precession and spin kinetic energy, so the nutational energy vanishes
at those locations.

Unidirectional Precession: uy < u, or uy> U,

In this situation, we conclude from the first of Eqs. (8.44) that the precession rate is
never zero. Whatever sense it has at the initial instant is retained throughout the
motion. The nutation angle has its maximum and minimum values at ¥ = u; and u>,
respectively, but the precession continues at those locations. As shown in Figure
8.11, the path of point P at its highest and lowest elevations is tangent to horizontal
circles on the unit sphere. One way of initiating a unidirectional precession is to
release the top at the highest elevation of point P, ¥ = u,, with the appropriate angu-
lar velocity. The initial nutation rate § at this location must be zero, corresponding
to & = 0 and @ # 0; the initial precession rate should be relatively large, sufficient to
make uy = 8, /B, exceed u,.

Looping Precession: u; < uy < u,
In this case, the first of Eqs. (8.44) indicates that the precession rate is zero at the ele-
vation ug, which is intermediate to the extreme values «; and u, that mark the limits
of the nutation. This null corresponds to a change in the sense of the precession as
the elevation rises and falls. In contrast, the nutation rate vanishes at the lowest and
highest elevations. At those locations, point P moves tangent to circles of maximum
and minimum elevation in opposite senses, as shown in Figure 8.12. The vertical
tangencies in the loops correspond to position where u = uy, so that y = 0.

A looping precession may be attained by releasing a top at the highest elevation,
u = u,, with a comparatively small precession rate. The nutation rate at release must
be zero in order for u, to be the maximum elevation. As the top falls, the portion of
the precession associated with 3, is eventually overwhelmed by the counter effect
associated with 8,. Thus, the overall precession comes to rest at elevation u,, and
then proceeds opposite to the initial sense down to u;. The process repeats with the



8.2 / Spinning Top 413

Figure 8.12 Path of the spin axis of a top in looping precession.

return to elevation #,. As shown in Figure 8.12, the overall precessional motion
matches the sense of the precession at the minimum elevations, u = u,, even though
the precession rate oscillates.

Cuspidial Motion: uy, = u,
This case is a transition between the unidirectional and looping precessions discussed
previously. Here, the precession comes to rest at the highest elevation, u = u,. Point
P approaches the circle of highest elevation perpendicularly, which results in the
appearance of cusps in the path of point P at these locations. As shown in Figure
8.13, the path of point P resembles a cycloidal path that is wrapped around the unit
sphere.

Cuspidial motion may be attained by releasing the top at the highest elevation,
u = u,, with no initial precessional or nutational motion. The precessional motion
that arises as the top falls is therefore attributable only to the spin momentum 8. As
the top falls, it gains kinetic energy and loses potential energy, until the changes in
the precession and spin rates result in an increase in the kinetic energy that equals
the decrease in the potential energy. Incidentally, we may prove by this reasoning
that the cusps cannot arise at the largest nutation angle, where ¥ = ;. Such a motion

Figure 8.13 Path of the spin axis of a top in cuspidial motion.
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would lead to kinetic and potential energies which are both maximum values at u =
u;, in violation of energy conservation.

Cuspidial motion shares many characteristics with unidirectional and looping pre-
cessions. The coincidence of the values of uy and u, in this case enables us to derive
approximate expressions for the Eulerian angles. We have seen that suitable initial
conditions leading to cuspidial motion are y = § = 0 when uy = u, = cos §,, with ¢,
nonzero. The corresponding momentum parameters are given by Egs. (8.35) to be

I .
B¢. = 7¢2, B\p = B¢ Up. (8.45)
The energy-level parameters obtained from Egs. (8.39) and (8.41) in this case are
2mglL
= ’7g . e=yup. (8.46)

Upon substitution of these parameters, the energy function f(u) defined in Eq. (8.43)
factorizes as

fu) = (uo—w){y(1—u?) = B3(uo—u)). (8.47)
The roots of f(u) for cuspidial motion are readily found to be

u=U—(U?-2uyU+1)"?,

Uy = Uy, (8.48)

uy = U+[U?=2u,U+1]"?,
where

. 8.49
2y 4I'mgL ( )

Because |u4| < 1 when the top is released away from the vertical, we have
U?=2uU+1>(U-1)%

It follows that u; > 1 (the meaningless root), while —1 < u; < 1. This, of course, agrees
with our earlier assessment of the nature of the roots of f(u) in the general case.

The limits of the nutation in cuspidial motion are given explicitly by Eqs. (8.48)
in terms of the initial spin rate defining U in Eq. (8.49). Further simplifications are
possible when we consider the typical situation of a fast top, in which the spin rate
imparted in the initial motion is large. We quantify this restriction by specifying that
U >> 1. The corresponding minimum elevation obtained from the leading terms in
a series expansion of the first of Eqs. (8.48) is

1—-ud

2U

In view of Eq. (8.49), we may conclude from this expression that the difference be-
tween the maximum and minimum elevations for a fast top decreases as the inverse
square of the initial spin rate.

The smallness of the cuspidial motion at high spin rates allows us to evaluate the
precessional and nutational rotations as explicit functions of time. The technique for

U =uy— (8.50)
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such an investigation is perturbation analysis. The value of u, in Eq. (8.50) suggests
that, in general, the elevation ¥ may be expressed in a series as

u=u0—iv,(r)— Ly (8.51)

where the v;(¢) are unknown functions of time that are independent of the parame-
ter U. Many terms would be required to make the series converge when the value
of U is arbitrary. In contrast, the error that arises from truncating the series becomes
smaller and smaller as the value of U increases. We say that Eq. (8.51) is an asymp-
totic series for the variable u in terms of the perturbation parameter 1/U << 1.

We obtain differential equations for the unknown functions v; by requiring that
the asymptotic series satisfy the equation of motion at each level of approximation,
associated with increasing powers of 1/U. The equation of motion we shall employ
is the energy conservation relation, Eq. (8.42), with the function f(u) for cuspidial
motion given by Eq. (8.47). The parameter ¥ may be removed from the expression
by applying the definition of U, Eq. (8.49), which leads to

1.1 2 /1 1
UV|+U2V2+ = UV|+U2V2+

2 2
x{f—gp—(uo—%vﬁm) ]_ﬁg<1 tjzv2+ )] (8.52)

Although we truncated the asymptotic series for # at two terms beyond the initial
approximiation ¥ = u,, we shall consider only the first approximation here. In other
words, we shall evaluate only v,. Matching the coefficients of 1/U? on each side of
Eq. (8.52) yields

= B33~ ud)v,—vil. (8.53)

Taking the square root of this nonlinear, first-order differential equation for v,, in
order to form an equation whose variables may be separated, leads to an ambiguity
in sign that can only be resolved by addressing the initial conditions. A simpler tech-
nique is to convert the equation to a second-order differential equation by differen-
tiating it once with respect to time. This operation leads to a common factor of v,
which may be canceled. Thus,

Vi+Bvi = $82(1—uj). (8.54)

The solution of this differential equation must satisfy the initial conditions for
cuspidial motion, which we have taken to be that ¥ = u; and # = 0 at the instant of
release. The leading term in Eq. (8.51) satisfies these conditions, so the next order of
approximation must satisfy rest conditions; that is,

vi=v;=0 when t=0.
The sum of the complementary and particular solutions satisfying the initial condi-
tions is
= %(l—ug)(l——cosﬁd,t);
1

u=u0—7v1=uo Bz (I_UO)(I_COSB¢t)

(8.55)
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The rate of change of the elevation thus obtained leads to an expression for the
nutation rate. Differentiating Eq. (8.55) gives

0= —?‘YB:(I—ug)sinﬁd,t. (8.56)

The expression for u in Eq. (8.40) may be simplified for the present case because the
value of @ remains close to the initial value ¢,, so

sinf = sin6, = (1-ud)"?;

) . (8.57)
u=—(sind)f = —(1—ud)"26.
The result of equating Eqs. (8.56) and (8.57) is
; Y . .
@ = —sinf,sinB,¢. (8.58)
28, 2 0¢

We find an expression for the precession rate by using u = ug to simplify the denom-
inator of Eq. (8.44). Substitution of Eqs. (8.45) and (8.55) then yields

¥ ==L (1—cosBy!). (8.59)
28,

The interpretation of these results is that the average precession rate of a fast
top varies harmonically about the mean value y/28,, with an amplitude equal to
the mean value. When the precession rate is zero (cos 8,¢ = 1), the nutation rate is
zero and the top is at its highest elevation. At the instant when the precession rate is
maximum (cos 3, ¢ = —1), the nutation rate is also zero, corresponding to the lowest
elevation.

Steady Precession

If the appropriate initial motion is imparted to the top, it is possible to obtain a rota-
tion in which the nutation angle is constant. The corresponding spin and precession
rates in that case will not vary from their initial values. The most direct approach
leading to this response employs the equation of motion for the nutation angle, Eq.
(8.38). This equation shows that if the nutation angle is constant then

(Bs—By cos0)(B, —Bycosb)— m}glL sin*6 = 0. (8.60)

We could consider this relation as governing the nutation angle for specified values
of the momentum parameters. However, it is more meaningful to use Eq. (8.60) to
derive an expression for the precession rate corresponding to a specified nutation
angle. The definitions of the momentum parameters in Egs. (8.35) are

By =y sin® 6+ B, cosb, B¢=%(¢' cos 0+ ). (8.61)

Because the spin momentum S, is proportional to the component of angular velocity
parallel to the axis of symmetry, we shall retain 8, rather than the spin rate. We
therefore substitute only the first of Egs. (8.61) into Eq. (8.60), and cancel a common
factor of sin*@, which leads to

(Bs—y cos0)y—y/2=0. (8.62)
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The solution of this quadratic equation is

Byt (Bs—2ycosd)’?
2cosd )

y= (8.63)
An interesting corollary of this result is that, for a specified nutation angle, there is
a minimum spin momentum for which steady precession is possible; specifically,

(Bo)min = (2 cos 6)'/2 (8.64)

Equation (8.63) seems to be fairly straightforward. However, a complication arises
if one desires to determine the steady-precession rate for a specified spin rate, be-
cause the spin momentum depends on the value of ¥ according to the second of Eqs.
(8.61). Example 8.3 describes an accurate evaluation of the relation between ¢ and
Y. Here, we shall derive simple formulas for the case of a fast top, where ﬁdz, << 2.
It is permissible in this case to truncate a binomial expansion of the square root in
Eq. (8.63) at the first two terms. The corresponding roots are
= —2‘;—’ ¢2 = B¢ .

s cos @
The first value is comparatively small, because it varies inversely with 8; similarly,
the second value is large. It follows that we may neglect the contribution of the pre-
cession rate to 3, in the first case, but not in the second. Specifically, we find from
the second of Eqgs. (8.61) and Eq. (8.65) that

2

(8.65)

, & L
Boi=1é = h=7k="E

' % (8.66)
(Bo)o = 7 lBe)2t+ @] = Yo= Py

The fast precession rate ¥, matches the value obtained from Egs. (8.20) for a
symmetric body in free motion. In essence, the spin and precession rates in the fast
case are so high that the gravitational moment is negligible in comparison to the
moments required to alter the angular momentum of the top. Steady precession of a
top usually occurs at the slow precession rate, because the kinetic energy required to
attain y, is prohibitive.

A special case of steady rotation is the sleeping top, which is the term used when
the axis of symmetry of the top is vertical, cos® =1. The precession and spin are
indistinguishable in a sleeping top, because both rotations are about concurrent axes.
{The name “sleeping top” stems from the merger of spin and precession, which makes
a polished, unmarked, body of revolution appear to be stationary.) Because of the
similarity of precession and spin in such a rotation, some of the relations for steady
precession become trivial. For example, because 8, = 8, when 6 = 90°, Eq. (8.60) is
satisfied identically. However, all relations for steady precession remain valid in the
limit as @ — 0. We shall treat this degenerate case by noting that the angular velocity
of a sleeping top is merely

w=¢+y,
so the definition of the spin momentum in Eq. (8.61) reduces to
I

B¢ = —]'7(.0.
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Hence, we find from Eq. (8.64) that the minimum rotation rate required for a top to
“sleep” is

4mgLI"\?
—) - (8.67)

I/
o Lo (78

Our analysis suggests that the axis of symmetry cannot remain vertical if w < w,,.
This is not precisely correct, because the vertical position, 8 =0, is a solution of the
equations of motion for any w. The angular momentum in that case is vertical and
therefore constant, and the moment of the gravity force about the pivot point van-
ishes. In essence, by obtaining the sleeping top as a special case, we have demon-
strated that § = 0 is unstable if w < w.,. In actuality, the effect of friction at the apex
O is to slow the rate of rotation. When the value of w for a sleeping top falls below
wer, the top begins to nutate. Because the nutational velocity is zero at the instant
when the rotation rate falls below critical, the ensuing motion is a cuspidial preces-
sion. If the spin rate decreases slowly, the amplitude of the nutation will slowly in-
crease until the top hits the ground or falls from its support.

Example 8.3 A 2-kg top is in a state of steady slow precession at a spin rate of 500
rev/min with its axis at 8 = 120°. A vertical impulsive force acting through the axis
of symmetry suddenly induces an upward nutation, such that the ensuing motion is
observed to be cuspidial. The radii of gyration of the top about its pivot are 360 mm
and 480 mm parallel and transverse, respectively, to the axis of symmetry, and the
distance from the center of mass to the pivot is 200 mm. Determine:

(a) the nutation rate induced by the impulsive force;

(b) the largest and smallest values of the nutation angle in the cuspidial pre-
cession;

(c) the number of cusps in the path of the axis of symmetry for one revolution
of the top about the vertical axis; and

(d) the maximum, minimum, and average precession rates in the cuspidial mo-
tion.

Solution We begin by evaluating the steady precession prior to the appli-
cation of the impulse force. We could employ Eqgs. (8.66) for this purpose, provided
that we verify the condition Bé >> 2 for a fast top. However, an alternative relation
for the steady precession rate, one that does not require preconditions, is available.
In the present case we know the spin rate, which is only one contribution to 3,.
Therefore, we substitute the second of Eqgs. (8.61) into Eq. (8.62) in order to obtain
a relation between the precession and spin rates, with the result that

I P2 I .. v _
[(1, 1>c050]¢ +I,¢¢ 5 =0.
The roots of this quadratic equation are the fast and slow precession rates,

T Setting the discriminant of this equation to zero shows that the minimum spin rate for which
steady precession is possible is

172
y =2 L 1)L
B min = [2(1 l) T 'ycoso] .
This value can be shown to be smaller than the spin rate corresponding to Eq. (8.64), but the
value of 3, associated with ¢, is higher than Eq. (8.64).
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J= I+ [1*¢*—2(I'=I)I'y cos 8])"?
2(I'=T)cosf '
The parameters for the present system are
m=2kg, I=mx*=02592kg-m>  I'=m(x’)>=0.4608 kg-m?,

2mgl .
L=02m, y= %- =17.026 rad¥s%, ¢ =52.36 rad/s,

which leads to the two roots

Yy =0.28843 rad/s,  y,=—134.93 rad/s.
Both values are extremely close to the approximations in Eqs. (8.66). Because we
know that the initial precession was slow, we use y, as the initial rate.

The impulsive force induces an unknown nutation rate 8, because it exerts a mo-
ment about the horizontal axis through the pivot. However, the spin and precession
rates are not altered during the impulse interval. We find § from the fact that the
subsequent precession is cuspidial. We need the values of the precession and spin
momentum parameters to evaluate cuspidial motion. Equations (8.61) for the slow
precession rate just described and the given spin rate yield

By =29.371 rad/s, B, = —14.469 rad/s.

Then the highest elevation u is
ug=B,/8s = —0.49264,

which corresponds to the position where the nutation angle is a minimum:
Bmin = 8, = cos ' uy = 119.514°,

Before we may employ results of the perturbation analysis of cuspidial motion,
we must check the value of the parameter U in Eq. (8.49). We calculate
2
U= & =25.33,
2y

which is sufficiently large. Because u = cos 8, Eq. (8.55) provides an expression for
the time dependence of the nutation angle. We find that

_ 1 .
6 = cos 1[cos GZ—E sin? §,(1—cos Bq,t)}

= cos~!{—0.49264 —0.0074733[1 — cos(29.371¢)]} rad.

We obtain the corresponding nutation and precession rates by direct substitution
into Egs. (8.58) and (8.59), which yield

§ = 0.25225in(29.371¢) rad /s,
\& = (0.2898[1 —c0s(29.371¢)] rad/s.

With these relations, we have fully evaluated the cuspidial response. However,
we do not yet know the time f, when the impulse occurred. (Note that ¢ = 0 corre-
sponds to the instant at which a cusp occurs, § = 0,.) To find #,, from which we may
determine the initial nutation rate, we use the fact that # = 27/3 initially. We there-
fore have
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—0.49264 —0.0074733[1 —c0s(29.371¢4p)] = —0.50, 17 =52.99 ms.

We find the initial value of the nutation rate by evaluating the expression for ¢ at
t= fo,
6 = 0.02522 rad/s.

The average of a sinusoidal function is zero, so the expression for the precession
rate indicates that

Vavg =0.2898, Ynin =0, sy =0.5796 rad/s.

Finally, we note that cusps occur when 8 = 6,, corresponding to the minimum pre-
cession angle. This condition occurs whenever cos(29.371¢) = 1. Therefore, the time
interval between two adjacent cusps is the period of the oscillation,

At =27/29.371=0.2139s.

At the average precession rate, the time interval for one revolution about the vertical
axis is
27
T=—=2168s.

avg
The ratio 7/At is the number of cusps per precessional revolution. Thus,

Alt =101.34 = N =101 or 102 cusps.

8.3 Gyroscopes for Inertial Guidance

We know from our studies thus far that the moment required to change the
orientation of a body’s rotation axes is directly correlated to the change in the state
of motion. We shall explore here a number of ways this effect has been employed in
devices that direct moving vehicles without using the frame of reference provided by
the earth. These devices are called inertial guidance systems because they provide an
inertial reference system that moves with the vehicle. Our conceptual pictures will be
quite crude. In practice, the various pieces of equipment are manufactured with ex-
ceptionally high accuracy and with the finest bearings, in order to match as closely
as possible the ideal conditions that we shall treat.

8.3.1 Free Gyroscopes

The gyroscope appearing in Figure 8.14 is said to be free because the rota-
tion of the rotor is unconstrained. The outer gimbal permits precessional rotation,
the inner gimbal permits nutation, and the rotor shaft permits spin. For our intro-
ductory study we shall ignore the effect of the vehicle’s motion supporting the outer
gimbal. In that case the center point O is stationary, because the three rotation axes
are concurrent at the center O.

When the center of mass G of the rotor does not coincide with the fixed point O,
the gimbals must rotate. The excitation is the moment of the gravity force about the
line of nodes, which is the axis about which the inner gimbal rotates relative to the
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Figure 8.14 Free gyroscope.

outer gimbal. Despite the differences in appearance, the configuration of the sys-
tem, as represented by the position of the center of mass relative to the fixed point,
is identical to that of a spinning top. It follows that the two systems behave in the
same manner. In the special case where the center of mass coincides with the fixed
point O, the free gyroscope behaves like a body in free motion (Section 8.1) because
there are no external moments. We shall employ the results of previous sections,
as necessary.

Suppose a steady precession, in which the nutation angle is constant, has been
established. The relation between the precession rate, the spin rate, and the nutation
angle is given by Eq. (8.63). In order for there to be a steady precession, the value
of B, for the gyroscope must exceed the minimum rotation rate about the symmetry
axis, given by Eq. (8.64). Note that if the center of mass coincides with the fixed
point O, then v = 0. The steady slow precession rate in that case is zero, which means
that the axis of symmetry has a constant orientation.

An important question that must be addressed is whether the steady precession is
a stable response. If it is not, then such motion would not be observed in reality. One
technique by which dynamic stability may be studied is to perturb the nutation angle
from the steady value it has when a steady precession has been established. Thus, let

6 =6*+ A0, (8.68)

where 6* denotes the constant value for steady precession, and Af is a small distur-
bance that may vary with time.

A linearized equation of motion governing A# may be obtained from the general
equation, Eq. (8.38), which we multiply by sin® 8. We substitute Eq. (8.68), and then
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expand in a Taylor series that we truncate at terms that contain quadratic and higher
powers of Af. For example,

cosf = cos68*— Af sin 6*,

(8.69)
(sin 0)* = (sin 8*)* + (4 AG)(sin *)3 cos 0*.

By definition, 6* is a solution of Eq. (8.60). Consequently, the zero-order terms (i.e.,
those that are independent of A8) cancel. The first-order equation that results from
the foregoing procedure is

sin® 0*AG +[B4(Bs— By c0s 6*) + B, (B, — By cOs 6*)] Af sin 6*
—2yAfsin39*cos9*=0. (8.70)

We may further simplify this expression by eliminating 3, with the aid of Eq. (8.61).
This yields

Ab+w?Ab=0, (8.71)
where
w? =B2+y?sin’*9* -2y cos6*. (8.72)

The steady precession is stable to small disturbances if the value of A remains
bounded. Such a condition is obtained if w? > 0, which corresponds to oscillatory
solutions of Eq. (8.71). However, Eq. (8.64) states that a steady precession can exist
only if the spin momentum is sufficiently large, 33 > 2+ cos 8. It follows that w? > 0
for any free precession. In other words, if the spin momentum is sufficiently large
to establish a steady precession at nutation angle #*, then an attempt to change the
nutation angle by a small amount will result in an oscillatory nutational motion
whose mean value is 6*.

The balanced free gyroscope, for which ¥ =0 (L = 0), is stable regardless of the
spin momentum. Its primary application is in inertial navigation systems that track
vehicle motion in aircraft and missiles. The concept is remarkably simple. The invari-
ability of the direction of the balanced gyroscope provides a translating reference
frame. Measurements of the vehicle’s rotation relative to this reference frame are
used to drive servomotors, which maintain a platform in a horizontal orientation
relative to the earth’s surface. Accelerometers are mounted on this platform. Be-
cause the platform remains horizontal, the accelerometers measure the acceleration
of the platform relative to the earth’s surface. The displacement relative to the earth
may then be determined by electronically integrating the accelerations twice in time.

Example 8.4 In order to overcome the effects of friction, a servomotor applies a
torque about the spin axis of an unbalanced gyroscope, with the result that the spin
rate is constant. The initial conditions are such that the initial precession rate ¥* and
nutation angle 0* correspond to steady precession. Determine whether the action of
the servomotor can cause the gyroscope to be unstable to small disturbances.

Solution The primary difference between the present system and a free
gyroscope is that there are only two degrees of freedom, because the spin rate is con-
strained to be constant. Thus @, rather than the spin momentum B, is constant. We
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commence to derive the equations of motion for the servogyroscope by using the
energies in Egs. (8.33) and (8.34):
T =11(J cos 8+ )+ 3I'(ysin? 6+ 6?), V = mgL cos¥.

The precession angle is an ignorable generalized coordinate, because only its deriva-
tive appears in T. The corresponding conservation of momentum equation is iden-
tical to the first of Eqs. (8.35),

By = ¢<% cos? 8+ sin? 0>+%d§ cos 6. 6))
The Lagrange equation for § may be written as

0+g(y,6) =0, 2
where the function g is found from Eq. (8.37) to be

g(x/},ﬂ)=(717—l>\/}zsin0c050+—11—,\l}d>sin0—%sin0. 3)

Because the initial conditions are those appropriate to a steady precession, we
have

g(y* 6% =0. (4a)

We consider sin @ # 0 for steady precession in the nonvertical position, so eq. (4a) is
satisfied when

i_ * | jx\2 l_ ’*_l=
[(I’ l>c050 ](¢)+1,¢\l/ > 0, (4b)

which matches the expression established in Example 8.3 for the free gyroscope.

Although the angular motion in steady precession is identical to that of a free
gyroscope, the stability situation is different. Constancy of 8, now requires that any
fluctuation in the nutation angle will be compensated solely by a change in the pre-
cession rate. We consider very small changes A6 for a stability analysis, so the corre-
sponding increment in the precession rate, Ay, is also small. We therefore substitute
6 =60*+ A0 and ¥ = J*+ Ay into eqgs. (1) and (2), which are the basic equations of
motion for this system. The zero-order terms in Taylor series expansions of these
equations combine to form the value of 8, in eq. (1), and they also satisfy eq. (4a).
Hence, the first-order terms obtained from eq. (1) require

AB,=0= A‘p(% cos? 6*+sin’ 0*>

—[‘p*(%—l) 5in 20"+ %d& sine*] A6, ©)
while the first-order terms obtained from eq. (2) are
. fog\ . [dg\"
Ad+{=) AY+(=—=) a0 =0; 6
+(50) 240+(35) ©

the derivatives are marked by an asterisk to signify their evaluation at the steady-
precession state. We use eq. (5) to solve for Ay in terms of Af, and substitute that
expression into eq. (6). The result is
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Ab+w?A0 =0, (7
where expanding the partial derivatives in eq. (6) yields
2 I fxy2 * I ix Y *
=|[(=-1 —dyr—=
w [(1’ )(\// ) cos20*+ T oY > cosd
I'sin®6* I ; I
- _1 * * il .
Tcos?0*+ I'sin? 6 [2<1' >¢ cosb™+ 7 d’]

To simplify this further, we employ eq. (4b) to eliminate ¢. The result after many
manipulations is

wie sin®9*
Y2[(I/1') cos? 0*+sin2 6*)

< v ()t coso -l ®

As with the free gyroscope, whose stability was described by Egs. (8.71) and (8.72),
w? < 0 indicates situations where the servo-driven gyroscope is unstable to small dis-
turbances of the nutation angle. However, it is not a trivial matter to identify the
sign of w? obtained from eq. (8). Suppose we are interested in evaluating whether a
specific design, corresponding to specified values of ¢, vy, and I/I’, is unstable in
some range of #* To address the question we recognize that eq. (4b) is a quadratic
equation. We use the smaller root, corresponding to slow precession, to describe y*
as a function of #*. Substituting this function into eq. (8) yields w? as a function of
6*. By scanning the range 0 < 0* < x, we may determine whether w?< 0 in some
range of 8*. As an example of such a computation, consider I/I’=1.5 and v =20
rad/s?. Setting ¢ > 3.366 rad/s leads to stability for any 6*, while ¢ = 2 rad /s leads
to stability only for 0 < §* < 97.09°.

The occurrence of instability could have been anticipated on the basis of physical
arguments. The free gyroscope is a conservative system. In contrast, the servo-driven
gyroscope is not, because the servomotor does work to hold the spin rate constant.
The energy provided to the system from this source can drive the nutational motion
away from steady precession. However, most situations of practical interest are like
the numerical example above, in that the spin rate below which the gyroscope would
lose stability is sufficiently low to be of no concern.

8.3.2 Gyrocompass

A fundamental requirement for earthbound navigation is knowledge of the
orientation of true north. The balanced free gyroscope maintains a fixed orientation
as the earth rotates; an observer on the earth perceives the gyroscope to be rotat-
ing. The gyrocompass has the feature that its steady precession always matches the
earth’s rotation, so an observer on the earth perceives the rotor axis always to point
in a constant direction.

The gyrocompass bears much similarity to an unbalanced free gyroscope, except
for the placement of the mass causing the imbalance. As shown in Figure 8.15, the
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Z (vertical)
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Figure 8.15 Gyrocompass.

center of mass of the rotor is situated on the intersection of the precession and spin
axes, but a small additional mass m is attached to the inner gimbal. This arrangement
is selected so that the gravitational moment will be like that for a pendulum. We must
include the rotation of the earth in the analysis, for which the earth-based reference
frame defined in Chapter 3 is useful. Thus, in Figure 8.15 the Z axis is oriented in the
direction perceived as vertical to an observer on the earth and the X axis is situated
in the northerly direction. The angular velocity of the Earth is therefore

@e = w,[(cos A) T+ (sinA)K ], (8.73)

where w, = 7.292(1075) rad /s = 27 rad /(24 h) is the rotation rate.

The rotation of the gyrocompass’s rotor is unconstrained. We use the Eulerian
angles to describe the orientation of the rotor relative to the earth-fixed reference
frame XYZ. Toward that end, we introduce an intermediate reference frame xyz
that is fixed to the inner gimbal. The z axis is aligned with the axis of symmetry of
the rotor, and the y axis is the line of nodes formed by the bearings of the inner gim-
bal. Our goal here is to determine whether there is any set of precession and nutation
angles for which the axis of the rotor remains stationary relative to the earth. For
this reason we consider the values of i and 8 to be constant, and assume also that ¢
remains constant. The corresponding angular velocity of the rotor relative to XYZ is
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¢k. In order to combine this term with the rotation of the earth, we transform the
unit vectors according to

I = (cos Y)[(cos0)i+ (sin8)k]—(siny)J,
J = (siny)[(cos 8)i + (sin 8) k] + (cos ¥) (8.74)
K = —(sin@)i+ (cos§)k.

Adding the earth’s rotation to the rotor spin then leads to the following absolute
angular velocity of the rotor:

@ = we(cos A cos ¥ cos @ —sin Asin 0)i—w,(cos Asiny)j
+ (w, cOS A cos ¢ sin 0 +w, sin A cos § + ) k. (8.75)
Terms containing w, have a very small value, so we may simplify the kinetic energy
of the system by neglecting effects that are of the order of w2. The corresponding
kinetic energy for the system is
T =3(I'wi+ ')+ 1})
= 1I[¢?+2w,$(cos A cos Y sin 8 + sin A cos 0)). (8.76)
The corresponding potential energy is associated with the unbalanced mass on the
inner gimbal. When the datum is set at the fixed point G, we find that
V =mgL cos(w/2+0) = —mgL sin6. (8.77)
There are no nonconservative forces in this ideal model, so the Lagrange equations
for the generalized coordinates , 8, and ¢ in this case of steady precession are
WP cosAsinf =0,
I, (—cos Acos ¢ cos f+sin Asin @) —mgL cos@ =0, (8.78)
& + w,(cos A cos ¥ sin 6 + sin A cos 8) = B,,

where 8, = p,/I is the spin momentum parameter associated with the ignorable co-
ordinate ¢.

Because of the smallness of w,, the last of Eqs. (8.78) indicates that the spin mo-
mentum is primarily associated with the spin itself. The first equation is satisfied
when sin 8 = 0 or siny = 0. The first possibility is not useful, because then the rotor
does not provide any directional information. The second case is the one we seek, be-
cause it is satisfied when i = 0 or =, so that the spin axis is aligned along the north-
south meridian. Setting cosy = %1 in the second of Eqs. (8.78) yields

(mgL + Iw,¢ cos A) cos § = Iw, sin Asin . (8.79)

We observe that the smallness of w, means that the value of tan 8 obtained from the
foregoing is much larger than unity, which corresponds to 6 = n/2. Thus, we set

0=7n/2—A0, AO<I.
Furthermore, we may neglect w,¢ in comparison to mgL. We therefore find from
Eq. (8.79) that
_ Jw ¢sinA

ap==t"7

’

= %_Ao, ¥ =0or . (8.80)
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As a summary of these results, recall that the analysis treated a balanced gyro-
scope having a pendulous mass mg attached to the inner gimbal. We have estab-
lished that if the rotor is released with its spin axis tilted at an angle A# above the
north-south horizontal, then the precession of the gyroscope will match the com-
ponent of the earth’s angular velocity in the direction of the local vertical. Thus, the
plane containing the rotor and the bearings of the outer gimbal will indicate the
northward direction.

Our analysis of the gyrocompass has established the conditions for dynamic equi-
librium at a specified latitude A. We will show in the next example that the gyrocom-
pass is stable to small disturbances. The primary limitation on its use is loss of accu-
racy due to rapid movement of the vehicle in which it is mounted. To learn why such
an effect arises, we first observe that the angular velocity of the earth entered into
the derivation of Eq. (8.80) because it represented the rotation of the base. Linear
motion relative to the earth is actually motion along a great circle. Such an effect
adds to the angular velocity of the base.

Consider the situation in Figure 8.16, where the velocity ¥ of the base of the gyro-
compass is oriented at angle 3 west of north. This velocity may be considered as pro-
duced by rotating the base at @, relative to the earth, with the center for the relative
motion situated at the earth’s center; that is, ¥ = @ X 7o,0, Where Fy,0 = R K. For
the velocity appearing in Figure 8.16, we have

By = —<RL sin 3>i+ <RL cos 6)1‘. (8.81)

Then the total angular velocity of the base of the gyroscope is the sum of the earth’s
rotation, Eq. (8.73), and the foregoing rotation of the base relative to the earth,

X (north)
A
Indicated R “ A
north \ e
P e w, COS A
8
(@pase)nor

Y (west) =

rel =

=
~
™

Figure 8.16 Directional error in a gyrocompass due to movement of the
vehicle in a great circle.
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Dpase = (we cos A — — sin B>i+ (L cos B>f+ (wesin ) K. (8.82)
R, R,
The component of this angular velocity parallel to the earth’s surface is deviated from
the true northerly direction by angle 8, as shown in Figure 8.16.

When Eq. (8.82) applies, @y, plays the same role for the gyrocompass as did @,
in the derivation of Eq. (8.80). Hence, the axis of the gyrocompass will align with
the horizontal component of @y, even though this rotation is not solely due to the
earth’s rotation. The angle é in Figure 8.16 represents the error in the northerly direc-
tion indicated by the moving gyrocompass. This error is found from either Figure
8.16 or Eq. (8.82) to be

6= tan-'< vcosB ) (8.83)

w,R,cosA—vsinf

If v << w, R, cOS A, this error is quite small. However, if the gyrocompass is mounted
on a moving vehicle near either the North or South Poles, |A| = +#/2, the error will
be quite substantial, even if v is quite low. In practice, it is possible to use the fact
that é is known from Eq. (8.83) to compensate readings for this error. However, this
does not entirely remove the difficulty near the Poles, because the manner in which
a gyrocompass responds to disturbances at the Poles introduces additional errors, as
discussed in Example 8.5.

Another source of error arises from acceleration of the pendulous mass, which
introduces inertial forces in addition to the weight of that body. In effect, this alters
the apparent magnitude and direction of the gravitational force. For all of these rea-
sons, the gyrocompass is used primarily as a navigational aid for slowly moving
vehicles, such as ships.

Example 8.5 A gyrocompass tracking the northerly direction in a steady precession
is given a small initial nutational disturbance A#, causing it to deviate from its proper
direction. Determine the response to this initial disturbance. Then, from that result,
assess the stability of the gyrocompass.

Solution The precessional and nutational motions resulting from the dis-
turbance are time-dependent, so Eqs. (8.78) are not adequate for the stability analy-
sis. In order to derive the equations of motion for this case, we form the angular
velocity of the flywheel as a superposition of the rotor’s spin and the rotation of the
earth as given by Eq. (8.75), the nutational motion §, and the precession rate y rela-
tive to the earth. Thus,

@ = [—y sin 0+ w,(cos A cos ¥ cos § —sin A sin 8)]7+ (§ — w, cos Asiny)j
+(y cos 0+ w, cos A cos y sin 6+ w, sin A cos § + $) k.

Because the disturbance is small, the nutation angle § will remain close to «/2, pro-
vided that the system is stable. We therefore define a new variable such that

n=7/2-0, B =—0.

The corresponding mechanical energies are
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T = 3I'[—(§ + w, sin A) cos n + w, cos A cos ¢ sinn]? + 2 I'( + w, cos A sin )2
+31[¢+ ( +w, sin A) sin 5 + w, cos A cos ¥ cos 4],
V =—mgL cosq.

The spin angle ¢ is ignorable, as it was in the case of steady precession. The corre-
sponding generalized momentum parameter (3, is constant, where now

By = b+ (¥ +w, sin ) sinn +w, cos A cos ¥ cos 7.

This expression may be substituted into the Lagrange equations for y and ¢, after
the derivatives with respect to the generalized coordinates and velocities have been
evaluated. The result is

I'(i+ Y w, cos Acos §)
—[1B4— Iy sinn — I'w,(sin Asinn +cos A cos ¥ cos 1))
X {(§ + w, sin A) cos § ~ w, cos A cos Y sinn]+mgL sinn = 0, 0))

I'[{ cos® n—(§ + w, sin A) (5 + Sw, cos A sin ¢) sin 27
— 29w, cos A cos ¥ cos®  — Sw2 cos? Asin 2y cos® 4]
+1B4()+ v, cos Asiny) cosy = 0. (2)

In the case of steady precession, ¥ = 0 and 7 is the constant value A§ given by Eq.
(8.80), which is a very small value. If the disturbance of that state does not destabi-
lize the system, then y/(¢) and 5(¢) will remain small. Hence, we linearize equations
of motion (1) and (2). In this process we also ignore terms that are quadratic in w,,
and use mgL >> IB,w,, By >> ¥, By >> w,. The linearized equations of motion sim-
plify to

I'ij— 184y + mgLn = IB,w, sin A, &)
Iy + (IBy = 2I'w, c0s Ay + (IB4w cOS Ay = 0. “

We form the solution of these differential equations by adding complementary
and particular solutions. The latter are the values for steady precession,

_ 1Byw,sinA

=0,
¥s Ns mgL

Because 3, ~ ¢, the latter equation is equivalent to 5, = A#.

We have assumed that the system is stable. We thus anticipate that n and 6 vary
sinusoidally. Note that the homogeneous terms in eqs. (3) and (4) relate a generalized
coordinate and its second derivative to the first derivative of the other generalized
coordinate. Consequently, one generalized coordinate must be 90° out of phase rela-
tive to the other. A suitable trial form for the complementary solution is therefore

1. = Asin(at —v), Y. = Bcos(at—v), (5)

where A, B, o, and » are constants. Requiring that these expressions be solutions of
the homogeneous portions of eqs. (3) and (4) leads to

(mgL —I'e®)A+(IB840)B =0,

(6)
(IBy—21"w, cos N)a A+ (IB,w, cos A—I'a*)B = 0.
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In order for there to be a nontrivial solution, the determinant of the coefficients of A
and B must vanish, which leads to the characteristic equation

(I')?0* + (I'IByw, cos A—I*B3 — I'mgL) 6+ mgLIB,w, cos A = 0. @)

For practical applications, the spin rate is sufficiently large that de, > mgL/I.
Then the two values of g = 0 obtained from this quadratic equation are well approx-
imated as

mgLw, cos A\ 18,
= —— , ~ —, 8
o= ( 8, ). = ®
For each frequency o, there is a corresponding ratio B/A. The first of egs. (6) indi-
cates that
I'e}—mgL

IB¢ o;
For the assumed orders of magnitude of 8,, mgL /I, and w,, substitution of each of
eqgs. (8) leads to

mglL 172
= —{ ——— N =~ 1
# (Iﬁq,we COS/\> #2

Bi=p;Aj, w= ©)

We conclude from the foregoing that the complementary solution, which is a free
vibration, occurs as either of two modes. The first is a low-frequency mode at g,
in which the amplitude of the nutation is much smaller than that of the precession
(u; >=> 1), whereas the second is a high-frequency mode at o,, in which the ampli-
tudes of the nutation and the precession are approximately equal.

The most general solution is a sum of the two modes, and of the particular solu-
tion. Thus, we find that the response to the disturbance is

n= A0+A| sin(olt— V|)+A2 Sil‘l(O’zt- Vz),
¢ = I"'lAl COS(Olt—V1)+#2A2 COS(Ozt—Vz).

The actual values of the amplitudes A; and phase angles »; depend on the initial con-
ditions, which are not stated specifically. In most actual situations, dissipation effects
damp the high-frequency mode much more than the low-frequency mode, in which
case the oscillation at frequency g, is most likely to be observed.

In regard to the question of stability, we note that the values of o, and o, are
always real. Hence, disturbing the gyrocompass always results in bounded oscilla-
tions, corresponding to a stable steady motion. However, the value of g; becomes
very small if cos A = 0, corresponding to locations near the North or South Poles.
Hence, at those locations the gyrocompass executes very slow oscillations when dis-
turbed, which makes it difficult to obtain accurate readings.

8.3.3 Single-Axis Gyroscope

An important aspect to the operation of vehicles, particularly airplanes, is
measurement of the vehicle’s angular velocity. The single-axis gyroscope, which has
only an inner gimbal, provides such information because its nutation is essentially
proportional to the precession rate. A conceptual model of a single-axis gyro appears
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Figure 8.17 Single-axis gyroscope.

in Figure 8.17, where the platform is assumed to undergo arbitrary rotations about
the axes £n¢{. These axes are defined such that the £-{ plane is parallel to the plat-
form, with £ aligned parallel to the bearings of the gimbal. The xyz reference frame
is attached to the gimbal. The gimbal is mounted on the platform by a shaft that is
loaded by a linear torsional spring of stiffness K and a torsional damper whose con-
stant is C. We require that the spring be mounted such that, in the absence of move-
ment of the platform, the rotor axis would align parallel to the platform.

If we assume that the rotor spins freely about its axis, then supporting it with one
gimbal gives it two degrees of freedom relative to the platform. Several alternative
definitions of the Eulerian angles are possible in this case. We shall consider the x
axis to be the nutation axis and set ¢ = 0. The nutation angle 6 is the angle from
the £ axis to the rotor axis, and the spin angle ¢ is the rotation of the rotor about its
axis. According to this definition, # = 0 represents the undeformed position of the
spring.

We describe the rotation of the platform in terms of the rotation rates ;, Q,, Qs»
about the axes fixed to the platform. We employ the Eulerian angles to describe the
angular velocity of the rotor relative to the platform. Adding this relative quantity to
the angular velocity of the platform yields the absolute angular velocity of the rotor,
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Let I denote the moment of inertia of the rotor about the z axis. Due to the axial
symmetry, the moments of inertia of the rotor about the x and y axes are both I,
regardless of the angle of spin of the rotor. Correspondingly, we express & in terms
of components relative to xyz in order to form the kinetic energy. The result is

@ = (2 —6)i+ (2, cos 6 —Q;sin0)j + (2, sin 6+ Q; cos 0 + k. (8.85)
The corresponding general expression for the kinetic energy is
T =3I'[(Q; —0)*+(Q, cos § — 2 sin 6)*]
+31(Q, sin 0+ Q; cos 0+ ). (8.86)

The position where the nutation angle is zero corresponds to the unstretched posi-
tion of the torsional spring, so the potential energy is

V=1K82 (8.87)

We shall describe the effect of the linear torsional dashpot by employing the Rayleigh
dissipation function, which treats damping forces analogously to a linear spring.
The dashpot constant is C, so we have

D=1cé% (8.88)

It is important to recognize that the base rotations are specified, so they are not
generalized coordinates. Also, the spin angle appears in the formulation only as a
time derivative. Hence, ¢ is an ignorable coordinate; the corresponding Lagrange
equation reduces to 87/0¢ = 184, where the spin momentum parameter 3, is a con-
stant. For the kinetic energy in Eq. (8.86), this reduces to

By =¢+Q,sin0+Q;cosd. (8.89)

The equation of mption for the nutation angle is the full Lagrange equation, includ-
ing the term dD/39 for the dashpot. The result is

I'(6—Q;)+I'(Q, cos 0 —Q; sin 0)(L, sin § + 2, cos )
—I(Q, sin0+Q cos 0+ $)(Q, cos§ —Qsin6) + CH+ KO =0.  (8.90)

We remove the spin rate from this relation by substituting the spin momentum given
by Eq. (8.89). When all terms containing the rotation rates of the platform are moved
to the right side, the result is

I'f+Co+ K0 = —I[3(Q2—Q})sin20 + Q. Q, cos 20]
+1B,(Q, cos 0 —Q, sin6) + I'Q;. (8.91)

The rotor in a practical single-axis gyroscope is made to spin much more rapidly
than the highest anticipated rate of rotation of the platform. Also, the stiffness and
damping parameters are usually selected to restrict the nutation angle to a small
magnitude. Under these assumptions, the right side is dominated by two terms. The
main effect of the rotation rates is contained in IB¢Q,, cos 8, which may be linearizpd
by setting cos @ = 1, while the effect of unsteadiness in the rates appears only in I'{;.
If B, is sufficiently high, the latter term may also be neglected. The equation of mo-
tion then reduces to

I'0+CH+K0= 18,9, if By> Q,,0,0,/9,. (8.92)
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This is the equation of motion for a damped linear oscillator with one degree of
freedom. Its natural frequency w and ratio of critical damping ¢ are

K 1/2 C C
w= <—I_’> s g= 2ol = 2(KI')]/2 . (8.93)

Let us begin by evaluating the nutation when @, is a constant, nonzero value. The
corresponding response may be obtained by adding the complementary and particu-
lar solutions. In the absence of rotations of the platform, the gimbal will be at rest
at its equilibrium position 8 = 0, so we set # = 6 = 0 when ¢ = 0 as initial conditions.
If the damping is light, ¢ < 1, the corresponding response is

IBd)Qq 42 .
0= N 1 —exp(—owt){cos wyt+ m sinwgt|t, (8.94)
where wy; = w(1—02)"? is the damped natural frequency. Equation (8.94) indicates
that the steady-state response, which is obtained as ¢ — oo, is a constant nutation
angle that is proportional to the platform’s rotation rate about the 5 axis,

18,
—Q..
K

Thus, the nutation angle may be measured and compared to a scale that is cali-
brated in units of the rotation rate ,. We should note that the foregoing steady-
state response would also be obtained if {2, were time-dependent, provided that the
free vibration response decays in a much smaller time than the interval required to
observe substantial changes in {,. This condition may be achieved by designing the
system to have a high natural frequency and to be highly damped, subject to o < 1.
A single-axis gyro that is constructed with a spring and a dashpot that are both stiff
is called a rate gyroscope. Because a rate gyroscope indicates the rotation about only
one axis, inertial guidance systems for aerospace applications employ three such
gyros, mounted about orthogonal axes.

There is an alternative configuration for a single-axis gyro that is employed fre-
quently. Suppose the torsional spring is not present. Setting K = 0 in Eq. (8.92) leads
to

6,= (8.95)

I'6+Co = 18,Q,. (8.96)

It is possible to obtain a solution valid for arbitrary Q,, not necessarily constant.
Such a result consists of a convolution integral that may be derived either from a
Laplace transform, or from a Duhamel integral using the impulse response of a
second-order linear oscillator that has no spring. The result is

I t
6= %fo 9,,(7){1 —exp [—%(:—T)B dr. (8.97)

It is desirable that the damping rate be large, in order to make the exponential term
in the integrand decay quickly. Then, after an initial start-up interval, the nutation
angle will be well approximated by

IBd’f Q,(r) dr. (8.98)

We see that the nutation angle in this case is proportional to the integral of the rota-
tion rate about the n axis, which represents the cumulative rotation. For this reason,
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a well-damped single-axis gyro that is not restrained by a spring is called an integrat-
ing gyroscope. As with rate gyroscopes, a complete guidance system would require
three integrating gyroscopes each of whose nutation axis is aligned with mutually
orthogonal axes.

We must note in closing that our discussions of inertial guidance systems have
been drastically simplified, both through the models we created and the assumptions
used to obtain responses. For example, we generally idealized systems by neglecting
the inertia of the gimbals. In some cases this merely affects oscillation frequencies.
However, the additional inertial resistance can lead to qualitative differences. Such
is the case for a free gyroscope that is subjected to a small disturbance. The inertia
of the outer gimbal can cause a precession that drifts away from the initial orienta-
tion, rather than oscillating about it. In regard to the analysis of responses, linear-
ization often avoids some important questions, such as loss of dynamic stability
through nonlinear mechanisms. Practical use of the gyroscope as a tool for naviga-
tion over long ranges requires more sophisticated analyses, accounting for gimbal
inertia and bearing friction, than those we have presented here. However, the features
of such investigations would show many similarities to the steps we have pursued.

Example 8.6 An airplane initially in level flight executes a body-fixed rotation about
an axis that lies in the {~5 plane in Figure 8.17, at angle v from the 5 axis. The rota-
tion rate Q about this axis is a sinusoidal pulse over a time interval 7.

{ Qosin(nt/7) for O<st=<r,

Q=
0 for t=r.

The rotor was spinning in its reference position, § = 0, when the aircraft began its
rotation. Determine the nutational response 6(¢) of the rate gyroscope for the case
where damping is less than critical. From that solution, determine the conditions for
which the value of K8/I8, closely matches the nominal response in Eq. (8.95).

Solution Because the rotation is about a body-fixed axis, the components
of the angular velocity € of the aircraft relative to the (body-fixed) &(n{ axes are
constant at

Q:=0, Q, =Qsinvy, Q,=Qcosy.

The response we seek is the solution to Eq. (8.92) for the specified rotation of the
base, subject to the initial conditions that § = § = 0 when ¢ = 0. Several methods are
suitable for determining this response. We shall exploit the similarity of the problem
to that encountered in conventional transient vibrations.

For the given angular velocity components, the conditions 8, > Q,, Q,, Q;/ Q, re-
quired to employ Eq. (8.92) are satisfied if 8, >> Q, and 8, >> (v/7) tan y. (When
A= xu/2, the rotation is essentially about the { axis; such a rotation would pre-
sumably be measured by a rate gyroscope arranged orthogonally to the one under
consideration.) We assume that 3, meets these conditions. Substitution of the given
functional form of Q for ¢ < 7 then leads to

I'§+CO+ K0 = IB,Q cos v sin(lt—>.
T
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This represents a one-degree-of-freedom system, with natural frequency » = (K/I’)"?

and ratio of critical damping ¢ = C/2(I’K)"?, that is being subjected to a sinusoidal
excitation at frequency n/7. We may construct the particular solution, known in
vibration theory as the steady-state response, by multiplying the quasistatic response
(r > n/w) by a dynamic magnification factor F. Also, the steady-state response is
delayed by a phase lag 6. Hence, we construct the particular solution for the present
response as
b, = Fi,?ﬂ& cosy sin(Lt—&),
I' v w T

(-G

20m/wT
1—(7r/w1)2] » 0=0

where

=T.

6= tan"[ <

The initial conditions must be satisfied by the combination of the particular and
complementary solutions. We recall for the latter that damping is less than critical,
o < 1. The complementary solution, which is equivalent to the free-vibration response,
therefore consists of an oscillatory response that decays exponentially in time ac-
cording to

6, = exp(—owt)[ D sin(wyt) + E cos(wyt)], wg=w(l—a?)V2

Setting 6,+6, = 0 at ¢ = 0 yields

IQ
E=F—,—2&cosysin6.
I''w w

Similarly, the condition that §,+6, =0 at ¢ = 0 requires that

I Q
wgD—owE = — ——,—0& COS 7y €OS 8.
Tl 0 w
When we substitute the preceding expression for E into this relation, we obtain the
value of D. The total response then consists of

IQ t
0= —,—Oﬁcos'ysin(r——)
I'w o T

+exp(—owt)[Dsin(wyt) + E cos(wyt)], t<T. )

As we have noted, this remains true only so long as the body-fixed rotation is
active. At f = 7, the airplane’s rotation ceases, so the response for ¢ > 7 consists of
a free vibration. However, the values of § and § must be continuous at ¢ = 7. Let *
and 6* denote these values, which we find by evaluating the response in the interval
t < 7. The complementary solution that we found earlier may be used to form the
free-vibration response. The task of satisfying the continuity conditions at ¢ =7 is
expedited by using the retarded time ¢ — 7. Hence, we let

6 = expl—ow(t—7)]{D*sinfwy(f — 7)1 + E* cos[wa(t—7)]}, t>7, 2)
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where satisfying the continuity conditions yields
E*=0*  wyD*—owD*=0".
Given values of the system parameters, it would be a simple matter to use eqs. (1)

and (2) to determine the value of # at any instant. For comparison, the nominal re-
sponse given by Eq. (8.95) would be

18,
=T
which for the given rotation becomes
Q, 1 t
0=—°—7& cos-ysin<1r—> if 1<, 3)
wI' w T
6=0 if t>71. )

We want the expression in eqs. (1) and (2) to match (respectively) egs. (3) and (4)
closely. We observe that I/ = 0.5 for any rotor, with the lower bound correspond-
ing to a thin disk. Also, the values of the coefficients D and E are comparable to the
amplitudes of the sinusoidal term. Therefore, if the expressions are to match, the
following conditions must apply:

(a) the exponential factor, representing the decay of the complementary solu-
tion, must become very small in a time interval much shorter than 7;

(b) the magnification factor F must be close to unity; and

(c) the phase lag 6 must be close to zero.

These conditions, as well as the conditions required to neglect the effect of accelera-
tion of the base, are satisfied when

owr > 1, o<l, T/ <K 1, By > Qy, By > (n/T)tany.

In general, the spin rate will be much larger than the rate at which the aircraft ro-
tates, so B, = ¢. The conditions shown then lead to the following requirements: the
natural period of free vibration, 2#/w, should be much smaller than the time interval
7 over which the pulse occurs; the damping should be reasonably close to critical; the
spin rate should be much larger than the peak rotation rate of the base, as well as
the frequency at which the airplane’s rotation fluctuates; and the angle between the
angular velocity of the base and the 5 axis should not be close to 90°.

These requirements are not difficult to meet, because the spin, roll, and yaw mo-
tions of even a very high-performance aircraft are moderate from a mechanical stand-
point. For example, a very violent maneuver might consist of several rolls in a few
seconds, for which 7 might be of the order of 2 s. In contrast, a natural frequency of
1,000 rad /s and a spin rate of 20,000 rev/min are readily attainable.

When all these criteria are met, differences between the response in eqs. (1) and
(3), and between eqs. (2) and (4), are significant only for early elapsed times. For
example, if owt (in the initial phase) or ow(f—7) (after cessation of rotation) equals
unity, the complementary solution will have decayed to 37% of its initial magnitude.
Clearly, damping designed to be as close as possible to critical, o =1, substantially
helps reduce the duration over which discrepancies between the measured and nomi-
nal responses are significant.
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Problems

8.1 Prove that the polhode description of free motion for an arbitrary body reduces to
the space- and body-cone analogy when the body is axisymmetric.

8.2 An axially symmetric earth satellite, whose ratio of principal moments of inertia is
I/I’' = 1.6, precesses about its axis once every 2 s. The spin rate in this state is 0.1
rad/s. Determine the overall rate of rotation and the angle from the axis of symmetry
to the precession axis. Then determine the minimum angular impulse that a set of
control rockets fastened to the satellite must exert in order to bring the precession
axis into coincidence with the axis of symmetry. What is the rotation rate of the satel-
lite at the conclusion of such a maneuver? (Assume that the rockets act impulsively.)

8.3 The cylinder, whose mass is 2 kg, translates downward such that its axis of symmetry
remains horizontal. The spin rate about that axis is 50 rad/s. The cylinder has a
speed of 40 m/s when it collides with the ledge. Immediately after impact, the center
of mass of the cylinder has a downward velocity of 10 m/s. Describe the rotational
motion of the cylinder after impact.

300 mm

50 rad/s

|
100 mm 1

Problem 8.3
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84

The angular velocity of a wooden block at the instant it is released is as shown. Which
body-fixed axis is surrounded by the polhode curve for the free rotation? What are
the maximum and minimum angles between this axis and the constant direction of
the angular momentum? What are the angular velocities of the block at these maxi-
mum and minimum conditions?

N

: y @

w =10 rad/s

100 mm

Problem 8.4 Problem 8.5

8.5

8.6

8.7

8.8

The thin disk of mass m is welded to bar AB, which is fastened to the vertical shaft
by a pin. The rotation rate of this shaft is y. The mass of bar AB is negligible. Eval-
uate the stability of a steady precession about the vertical orientation of bar 4B,
6 = 0, as a function of the precession rate y and the length ratio R//.

A free gyroscope is in a state of slow, steady precession at a nutation angle of 53.13°,
with a spin rate of 10,000 rev/min. The rotor’s mass is 5 kg, its radii of gyration
about its pivot are x = 100 mm and «’= 180 mm, and its center of mass is 120 mm
from the pivot. A person accidentally touches the outer gimbal, causing the preces-
sion rate to decrease suddenly by 0.6 rad/s. Determine whether the ensuing motion
is unidirectional, looping, cuspidial, or steady precession. What are the maximum
and minimum nutation angles in that motion?

A free symmetric gyroscope, initially in a state of steady slow precession, is sub-
jected to a small disturbing torque emgL sin Q¢ acting about the fixed vertical shaft
supporting the outer gimbal. Use a perturbation analysis for ¢ << 1 to determine the
frequency, if any, at which the system resonates.

The device shown is a gyropendulum, a system used in some inertial guidance appli-
cations to locate the vertical direction. The spin rate ¢ is held constant by a servo-
motor. Let m be the mass, and let 7 and I’ be the centroidal principal moments of
inertia of the flywheel parallel and transverse to the spin axis; ignore the inertia of
the gimbals. Evaluate the nutation response #(¢) and the precessional response y(#)
of the flywheel to a disturbance that causes it to rotate by very small angles away
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from the vertical reference position, at which @ = n/2. Compare the frequency of
these responses to that of a simple pendulum, and use that result to discuss an advan-
tage of the gyropendulum.

8.9

8.10

8.11

8.12

Problem 8.8

Consider the gyropendulum in Problem 8.8. Because of movement of the vehicle,
the center point O has a constant acceleration v directed parallel to the axis of the
outer gimbal (i.e., @, = véz,,). Let this acceleration be directed at angle 8 north of
east. Derive equations of motion for the Eulerian angles including the effect of the
earth’s rotation, and of the movement of the vehicle in a great circle at angular speed
v/R,.

The platform of an integrating gyroscope rotates about the » axis in a time-dependent
manner. Consider an angular speed that consists of an average value Q,, over which
is superposed a harmonic fluctuation at amplitude 2, and frequency A, such that
2, = Q,+Q;sin(Af). What conditions must be true if the nutational response 6(¢)
following the initial treatment phase is to be proportional to the mean rotation Q4¢?

A top is initially in a state of steady precession at a precession rate y and a nutation
angle 8*. The precession rate is suddenly increased by the amount Ay}, due to the ap-
plication of an impulsive force. Determine the precessional and nutational responses
after cessation of the impulsive force. Use a perturbation analysis of the basic equa-
tions for a top, Eqs. (8.35)~(8.38), in which the small parameter is ¢ = Af/*.

Whirling is a phenomenon in turbomachinery in which a rotating shaft undergoes
deformation as a beam. In order to study this effect, consider the shaft supporting
the disk of mass m and radius R to be flexible in bending, rigid in extension and
torsion, and massless. The disk is welded to the shaft, such that its center C is on the
centerline of the shaft. The rotation rate of the shaft about its bearing is constant at
Q. Let x’y’z’ be a reference frame that rotates at this rate, with its z’ axis concurrent



440

8 / Gyroscopic Effects

8.13

8.14

with the line connecting the bearings. Let the deflected position of the center of the
disk relative to x’y’z’ be /o = £i’+7j". Furthermore, let x’y’z’ be principal cen-
troidal axes for the disk, and let 8 and v be very small rotations about the x’ and y’
axes, respectively, of xyz relative to x’y’z’. For a shaft of symmetric cross-section,
each deformation is resisted solely by a corresponding proportional elastic force or
moment; the elastic constants are k;, k,, kg, and k. Derive the corresponding lin-
earized equations of motion.

Problem 8.12

Consider the effects of the inertia of the gimbals in a balanced free gyroscope (L =0).
Let A, B, and C denote the (principal) moments of inertia of the inner gimbal about
the xyz axes, where y is the line of nodes and z is the spin axis of the rotor. Also,
let A’ denote the moment of inertia of the outer gimbal about the precession axis.
Derive the equations of motion for the gyroscope in this case.

Suppose that the gyroscope in Problem 8.13 is initially spinning at ¢ and that the
nutation angle is constant at 6,; there is no precession in this initial motion. At ¢ =0,
a nutational velocity e << ¢ is imparted to the inner gimbal. Use a perturbation
analysis in which 8 = 6,+ €8, + €20, and y = ey, + €2y, to determine the nutational
and precessional fluctuations induced by the disturbance. Show that, because of
gimbal inertia, the response exhibits gimbal walk, in which there is a nonzero average
precessional rotation rate, even though the gyroscope is balanced.
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Centroidal Inertia Properties

Slender Bar

Rectangular Prism

V =abc

_ b 2, .2
IL,.= 12m(b +c¢°)

I, = —l%m(az+c2)

1 2, 52
1. =—
7 12m(a +b%)

Cylinder

1
Ly=1I,= Em(:«;R2+L2)

441
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Centroidal Inertia Properties

Thin Disk

V

Semicylinder

V=xR%h
1u=gw—lmR2
4
I, =Lmg?
44 2
v=Llzr2
2
I_%hn R?
o= g
9r2-64 _, 1 .,
Iyy = WmR + 1—2‘mL
_1 2, 72
Lz—lznﬂ3R +1%
4 53
V==xR
3 T

ILn=1,=1,=<mR?
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Hemisphere
V=§7rR3
83
Ixx=1yy=?ﬁmR2
2
Izz=§mR2
Ellipsoid
V=§1rabc
1 2, .2
Ixx—gm(b +c )
1 2, .2
Iyy=§m(a +c )
1 2, B2
Izz=§m(a +b )
Cone
V4
V=%7rR2L
_3 2
L, = lOmR
3
x v ' 3L/4 Ly = I, = ggm4R*+L?)
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Centroidal Inertia Properties

Semicone

Right Triangular Prism

b/3 H

Orthogonal Tetrahedron

{3 _1 2
’xx‘(ﬁ‘ﬁ)"”*
3 1 3
Iyy_<2—0 —2>mR2+ 3 mL2
3
IZZ=%m(4R2+L2)
1
Ixz:_EO—‘IFmRL Ixy= yz=0
v="LapL
_Ea

=L

Ly=3¢ m(3a*+2c?)
I,= glgm(3a2+2b2)

Ly=—Lmbe I,=I,=0

36



2.2
24

2.6

2.8

2.10

212

2.14

2.16

2.18

2.20

2.22

2.24

2.26

Answers to Even-Numbered Problems

=+2gRsin(s/R)é,, a= gsin(s/R)é,+2gsin(s/R)é,.

<
I

vo(1 =k sinhx)e,,

) . (1—ksinhx\’_
vy | —k(l—ksinhx)e+{ ———— ] ex|.

cosh x

<
il

= ak(—1.028/+4.830,+0.783k),
d=ak?(1.259/—1.694 - 0.671k).
v = 2kwt{(sin B+ B cos B)i+ 287+ 28(sin? B+ 3 sin B cos B+ 232)k],
7 = 2kw{[(1-282)sin B+ 58 cos B)i + 68/
+28[(3 —4B%) sin? B+ 98 sin B cos B+ 16321k}.
_ 2u?sin(8+B8)cos B He uzsin2(0+6)‘

gcos?f ’ 2gcosd
F =1.40517 +0.4j +1.275% m.

F

=1.773wVbc éx + 33.410Vbc &, +10.883w bk,
—366.7w2Vbc &, —12.566w2bk.

k
Ré
(ab) er:

¥ =60(R'éx+Ré;), d=[(R"—R)ép+2R'&)6?,
_ [(R/)Z+R2]3/2
" |R"R=2(R")?-R}’

=™
||

(322 3., N3 ]
a,,_< SLsmg 2- S'“e)ek 5 (20 cot0)2,.

= (ztanB)ép+ (zat tan B)é, + 2k

= (ZsecB)é, + (zat tan §)é,,

= (Z—zoa?t?)(tan B)ez + (z+ 22at)(tan B)é, + Zk

7—za?t?sin? B
cosf3

) é —(za’t?sin B)é,+ (za+2zat)(tan B)é,.

(cos y cos 8)i+ (cos ¥ sin 8)j+ (siny) k,
é,, = —(sin 0)i+ (cos 8)/,
é, = —(siny cos )i — (sin y sin )7 + (cos Y) k;

445

[&(1 —cos(un) + all sin(;u)]i+ [% sin(ur) — %(1 —cos(;u))]é,

B =wt?
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de, - 93¢, _ ae,
% =0, 5 =(cos¥)é, 3y - o
aéo = ae-o - . - aéo o=
—_—=, —_—— = ’ = 0;
% 0 m (cosy)e, + (siny)e, I

aé‘l/ _A aé‘p _ . - aé‘b _ -
% =0, 20 - (siny)é,, m =-é,.

228 v=12.329m/s, v=-8.922m/s% p=3.719m.
230 é=-0.6154rad/s, ¢ =—0.7040 rad/s2

2.32 a=-3.01i—38.04j m/s2

sin§

2.34 v=\/§rc(l—cos$)‘/2, \.’=rC2W,

p=2V2r(1—cos§)V2
32 AF=-52.231-10.197-131.37K mm.
34 B=128.68° I, =—0.2774, L, =0.4804, I, =0.832L.
3.6 ro=-3.117+51.86J—5.05Kk m.

x 0.9143  0.3786 —0.1443 (X
38 ¥y =]0.0643 0.2161 09743 | Y
z 0.4000 -0.9000 0.1732 |\ Z

310 AF.=-914.37—-535.77—800K mm.
3.12 AR, =—9.65]-759.77—458.4K mm.
314 &=9.66i+630.9k rad/s,

y

a =96.6i—6,0697 +25.9k rad/s?; k = centerline of disk.
316 & =1.257i+123.99k rad/s,
& = —157.91j rad/s?; k = centerline of disk.

3.18 ¥,=(123.85R—3.908L)j; k = centerline of disk,
ap=(—15,339R —7.09L)i + (261.3R —4.09L)k.
320 a.=-24,655Li+1,250Lj, v=—19239L; I=é.
3.22 = (w,Lsin@)i+ (w,Lcosb)j—(w,Lsinb)k,
ag = (2w,w, L cos 8)i— [(w} + w}) L sin 01— (wiL cos 8)k.
324 9,=2.451i-3.371j~10.828%k m/s; i=éc/p,
a,=193.82i—158.22j+113.37k m/s2
3.26 ¥ =pé,+(R+pcos)fe,+pde,,
@ =[p—(R+p cos$)§?cos ¢ —pd2]é,+ [(R+p cos $)6 + 260 cos ¢ — 2006 sin $]&,
+1pd+20¢+(R+p cos $)0%sin ¢]é,.
3.28 & =(50-sin6)g+062L+Q2L cos?6;
Nioriz = 2mQ(u cos § — 0L sin 8),
Nyenr = m(g cos 6+ Q2L sin 6+ 26u).
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330 v=-41.13/+46.84J m/s, a=—98,116]+56,647J m/s2
3.32 V= —(w,RsinBsin )i+ [(w,+w, cos B)Rsin 6]
—[(w;+w,cos B)RcosBlk; 1 opposite @;
ap = [wy(2w, + w; cos B) R sin B cos 07 + [@, R sin § — (w; + w, cos B)2R cos 8] j
— @R cos 8+ (0 + w}+ 2w,w, cos B)R sin 6 k.
334 &= —(0.9397w,c0s8)i+ (6 +0.34200,)j ~ (0.9397w, sin O),
& = (0.9397w,6 sin )i + 6 — (0.9397w,6 cos 6) k;
¥p = (1.9397w, L sin 8)i — (0.9397w, L sin §) ]
+(—1.9397w, L cos § —0.3420w,L — L)k,
dp = L[(—1—-0.6634 cos 0 +0.8830 cos? §)w? — 62— 0.6840w,0)i
+ L[—(1.8227+0.3214 cos 8) w? — 1.8794w,d cos 8] j
+ L[—6+(0.8830cos 8 —0.6634)w?sin 01k,
3.36 v=-2.87Li+17.84Lj—-0.03Lk,
d=—165.09Li—24.91Lj+16.13Lk; i=ég,, k vertical.
338 ¥pg=2.50i+0.60j+0.10F m/s.
dpjg = —1.157—44.98]~1.37k m/s>.

3.40 (ac),,, = —(wissing)j—(2wyvesin6)k; I = axis of cylinder.

2 2
342 d*+(s-—Z >=< “ )
(s 2a,5inA)  \2w,snA

SHI\2
344 (a) x=0, y=—we<¥> cos A (east of O');

3\1/2 R
(b) x=0, y=we<%> <l+ 3He>cos)\ (west of O’).

—0.5797  0.4731 -0.6634
4.2 {R]=| —-0.0400 -0.8297 -0.5567
—0.8138 -0.2962  0.50

44 v=2188m/s, v=1,561.3m/s2
4.6 w,5=0.866rad/s (cw), wcp=0.6928 rad/s (ccw);
o, =21.22rad/s? (cew), acp = 23.00 rad/s? (cw).
48 @&,,=-97/-3J-2K rad/s?; Jparallel to v, K vertical.

2
D1va i—o.75(3L’i> k; ] vertical.

- s Vag -
4-10 Wyp = —wlj_rk, Oygp—

412 Gpo = —84.217—181.96J+62.51K rad/s; J parallel to &5,
@pe = —9,6517 — 11,0287 +7,161K rad/s2.

414 v =—0.3695[+0.2665J+0.2770K m/s; I =ép,,
d-=—8.6001 —2.002J+6.450K m/s2.
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4.16 vp=[v(l+cosB)—QRcosBli—[(v—QR)sinBlj; J=éc,
—-QR)? - 2 —QR)? -
dD=[v(l+cosB)—usinﬁ]i—[vsinﬁ+ v ucosﬁ]j.
r+R
_ \% _ v?
418 o,= 0.6; (cw), a = 0.0087 (cw).
4.20 Vo= 1[(wyry o)+ (wary—w ) cos8li—[(wyry—wry)sinblf;  j=ég,,,
_ (wryton)? . (0’2"2—0’1 1)
c= 2r+ry) J= 20— ((sin 6)i+(cos 6)/].
422 o= w,[sin(ﬁ+'y)]f—w,[cos(ﬁ+'y)+ m]k
sin 3
= w,z[Sl,n Y sin(B+'y)]f; k parallel to shaft 4.
sin 8
424 o= %[ I+(cos@)j}; i parallel to conical surface,
&= < ) (1+cosB)(sin8)k.
4.26 &= —13.898/+16.562k rad/s,
& = 53.20/ rad/s?; k parallel to axis of body cone.
4.28 \lx = —16.40rad/s and § = —5.282rad/s, or
¥ =—-5.90rad/s and 6 = —14.680 rad/s.
1 _
4.30 (wl COSﬁ)I R m]—2w1(1+cosﬁ)k,
2uw, 1+cosB—sinfB . [u? cosB+2sinf 5 . -
a= — ———————————twi(2+2cos B—sin B) cos
o R sinf-2cosB [R2 (sinB—2cosB)? @il cos f—sin ) cos3|j
+ 2uw, sing .
R sinf3—2cosf
k=écp
1 a+3b 1 a*+ab+b?
52 I,=-mla2+b2+2722 2| o _ 1, ,87+a0+07
=g [ atb ] 0 =M h
54 rgo=-0.6748i+120k mm; I, =1,=0,
L, =1,,=0.4509, I, =0.03884, I,,= —0.00182 kg-m?.
5.6 I,,=0.01735, I, =0.49369, I,,=0.51104 kg-m?,
I,,= —0.008767 kg-m?, I,,=1,,=0.
58 1,=0.1136, [, =1.3864, I, =15 kg-m2.
5.10 = 0.4647, I, =0.4393, I, =0.0383 kg-m?,

0.0778  0.6951  0.7147
[R]=]| 0.4186 —0.6734  0.6093
0.9048  0.2518 -—0.3433
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5.12

5.4

5.16

5.18

5.20

5.22

5.24

5.26

5.28

5.30

5.32

5.34

5.36

5.38

5.40

5.42

5.44
5.46

0.1520 0.0540 O
[71=0.0540 0.2330 O kg-m?;
0 0 0.225
A =w¥—0.06757+0.60k) N, B =w>(0.0675j+0.60k) N.

M= %mRz[—-;—w,w2+{—3-(w,2—w§)] i; iisoutward.

A= _%meaj, B= —-316-mw2aj; J parallel to side a.

. 4gLlsing 4L’—R? 2R?

o= VYENY A VENY L y? sin0cos()+ﬁ¢¢; sind,
y=4=0.

L+

3__;.92 sin28=0, T'= émLZQB sin 2.

3L26+(LQ*sin0)(3 + 3 cos8) = 3 gL cos 0.
d3—¢2sin205in¢cos¢=3—Fh;.
mL

58
> =
“TTIR
_ 4g _ Tcosp—4
~ TRsin B’ M_7sinﬂ+4cot,‘3'

,‘/'/2

g
5= —0.2856 2.
© L

front: v =g L= rear: v =pg all: v=pg.

b
L+uh’
(a) F=21.96 N, v=0.2342 m/s?;

(b) v=0.4540 m/s?, o = 0.7619 rad/s? (ccw).

v =0.0585g.

b_.
L—uh’

@) v=or F(h+rcos?®)r
m(xk*+r2)cos?f

(k2 +r2)cos?b
k?cos?0— (k2 +r?)u,sinf cos6—hr

(b) F = rsMg;

me 8

(c) v= ﬁ(l-—uk tanf), v = —F—<—h—+ukrtan0>+—2.
m K

m«? \ cos? 6

1 2FP
m(rt+«?)

Q,=22.24rad/s.

[0+sing+ (8 —2cosf—cos?0)2—V5].

Vo= —0.736Ivk, &= —1.0577—;3f+1.6032% J; & upward.

F=8,523N.
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5.48 F“=(m1+m2)<g—v72>7,
M:%[m—(lx—ly+1,+1)w,]i+mZD(g—"Tz>i.

62 X=x+u, Y=28xx.

64 R=Isin0+26, ¢=-9, z=icosd—R9.

6.6 X =Dsin6+6(Dcos6—Rsing),
Y= —Dcos0+0(Dsind+ R cos¥b).

6.8 2Ré,cosf—rd,—rd; =0, 2d6—r(d,—¢;)=0,
L6—R¢,sinB=0, N=4.

0.8L ]z

6.12 %mLZ()# 2kb? sin %—mg% cosf =0.

6.14 3ImL20+2kL*(V2sin—sin26) +<%mg+2P>L cosf =0.
6.16 1LG+3(y+g)sind=0.

6.18 5.'s',+§2c050+—2m£(s,—§,)=0.
§,+3$,cosf+ %(sz —35,)=gsinf, s; =spring elongations.
4 16 i 2pla
6.20 -3-+?f +(4+6f+2f%)sin%0|6

+ [—156—ff'+(3+2f)f’sin20+(4+6f+2f2)51n0’3050]92

58 P
- =—"_q ,
+2L cosf oLz( +f)
where f = cosf and f'=—~ 15siné

(16 —sin?8)'2 (16 —sin26)%2"

402\ |
6.22 m, 1+W x‘+2k(2xl_3x2)=0’

2
m2(1+ %)5&2+ 3k(3x,~2x) = 0.

6.24 %5[3m,, sin? 6+ mp(3 +2sin 6 —sin? 9)]

Mg

+%92[3m,,sin0+mB(l—sin0)]cost9+ cos8 =0,

At Rp

where 6 is the angle of elevation of the line of centers.

1
26 mh| L2 R22TESY
6 ”'0[3 R T cosey? (I—cosf)? 2

._(sin#)(2 (/]
2+cosf ]—mRzﬂz————(Sln )2+ cos )+lmchoso=—PL.
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6.28 (3h*+4R2h%sin?0)d+4R*(h%sinf cosf+ R2sin0)d2+gh?sind = 0,
where h = [L?—2R?(1 —cos 6)]V2.

6.30 3/-21%sin2B+g(1—2cosB) =0, 2mi(ly+20f)(sin2B)y = M,
where / is the distance to a block on the inclined arm.

6.32 L+3(I,-L)w}sin20+1,w,w,sind = 0.

6.34 1mR2[(1+cos20)Q+20,cos0] = C.

3Fh
mL?’

6.38 {(1+3sin20)+6yfsinbcosfd =0,

6.36 $—y2sin20sin¢pcosod =

%mLZ(55+31/}25in0c050)+mg%sin0=0.
7 . 3
6.40 3[0—¢Zsin0cosﬂ]+fgsin0=0,

[%mL2 sin? 0+1]\Z}+ l—;—mLGﬁé sinfcosf =T.

where 0 is the angle of bar AB from the vertical.
| PP g . 2 o aep s
7.2 3(0—9 sm0c050)+§z—sm0=0, gmL Qfsinfcosf =T.

7.4 x0+u<g+%écoso—%02 sin0> sgn<x6+—§—0 sin0> =0,

%L9+<g+%9coso—%02 Siﬂ0>lC050+# siné sgn<xc+%9 sin0>] =0.

7.6 Lésing—1gsin+pu[igcotdcosd—3L62cosd)sgnd =0.

7.8 mL2[$6,+ 36, cos(6,—0,) + 363 sin(8, — 6,)] + 2mgL sin 8, = A cos(8,— 6,) + M,
mL2[$6,+ 16, cos(8,—0,) — 167 sin(8, —0,)] + ymgLsin 6, = A,,

6,cos(8;—0,)+8, =0, where 6; are measured from the vertical.
110 X, sin0+L’—Lé2+%(L —Lg)—mgcosf =0,

m(XccosO+LI+2L0+gsing) = A,
m(2X o+ Lsin0+ 2L cos§—L6?sin ) = A,cos 6.

7.12 Egs. (7.20) and (7.25), with {g} =¥ 81T, (A} ={A,}, and

(mL*+1sin* B+, cos?B) 0

0 I

(F) _{ =3I, — LBy sin 28+ I, Bw, cos B8 }
~(3U,~ L)Y sin 28— Liw,y cos BT )’

[al=(0 1], [4]=[0 0], {b}={(0}.
714 1=0.623s, Ey =11.527mL2

[M]=[

], L= m«?, I, = m«3,
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7.16

718

7.20

7.22

7.24

7.26

7.28

7.30

7.32

7.34
7.36
1.38

Ds=m(p,+p,cosB), Dx=mp,cosB+(M+m)p,,
p=0, p,=mgsinB—kx,
where s is the displacement of the cart and D = m(M+ m sin? ).

_3m Y . 3py
2L

(my+mg)R—[(m,+mg)R—mg L1022 =0,
I' =2((m,+mg)R—myL]RQ.

cos6+ mg% siné.

LB+ %(11 —1,)2%sin 26+mg<§ ——D) cos BcosQtr =0,

T = (I,—1,)28 sin 23—mg<-’2“- —D) sin 8 sin 07,

1

where I, = %mRZ, L= m<zR2+%L2—LD+D2>.

')"1 = \L, 72 = 9, "yl Sin2 0+7|72 sin26 = 0,

iné.

2mg—4F
5(1+8cos28) —<§y,2+4722> sin20 = iL—— s

(3L%cos* 60— DL cos*0+ D?)4,+(2D*—3 DL cos® )(tan 8) y{
~g(D—1Lcos*0)cos20=0, v, =6.

=0, v,=¥=ch,

%% —73(cos 0)<%+% sin 0)+ % sind =0,

. 1 . . 2 . - r
[<l+sm0+ 3 sin? 0>+12]72+(1+ 3 sin 0>(c050)'y,72 =17
{gi=1[Xg Y5 0 ¢4 05T, where ¢, are spin angles;
1=, ¥2=0, Xg=-vsin6, Y;=r,cos,

. _ 1, L . _ N L
4= R T2 7> ¢p= R 2R
%'7, =—2gsinfcosd, %,=0.
@1=045 q,=0cp, [MG}+ID)g}+[K]lg}={F};
1/3 0 174 3/8
=mL? , [D]=plL? ,
[M]=m [o 9/64] (D)= [3/8 9/16]

2 2
1= el 1= o)
0.5833mL2E +(0.75kL2+1.0580mgL +0.5FL)t = 0.866FL.
Stable at 6* = 83.851°, unstable at §* = —114.325°.
0* = 0 is always unstable;

4ki—3mg . . . mg
*= W= T5—.
8* = cos (k1+m192> exists and is stable if k>0 ]
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8.2 w=3.135rad/s at 3 =93.05° and @ = 94.87°,
AHG=-3.130I'l, w,=—0.1667 rad/s.
8.4 Minimum angle to z axis: 6 = 27.160°, @ = 7.981i+7.588% rad/s;
Maximum angle to z axis: § = 30.371°, & = 6.096,+7.358k rad/s.
8.6 Looping precession: 53.13° < § < 53.30°.

s . (.02 .
88 6= E+ C, 51n<-—c-’—t+ v,)—Cz sin(af+»,),

2
¥ =C, cos(%—t+ vl>+ C, cos(at+v,),

where ? mgL ¢l
wl= , 0= .
I'+mL? I'+mL?
A o 9
8.10 >1, —>-—, — notlarge.
ron 1 &

) k
8.12 g+2917+<;‘—92>g =gcosQt,

€ €e? (I'+A-C) 1
A4 0= — si — |2 -
814 0=0,+—sinAs+ [ 7 sin0,

Py e ](3—4cos)\t+0052)\t),

P J 2 I'+A-c .
-—i = % sinfysinAr+ _ZEF(COS 00)[1 —4———sin’ 00] sin?At
2TI'+A-C .
+§F[(_J___)Sinzoo—cotoo](smoo)a—4cos)\t+c052)\t),

p3sin? b,

where J= A"+ (I'+A)sin?6,+ Ccos?f, and A’ = JT+ B






Index

absolute system of units, 4
absolute velocity, 3
acatastatic constraint, 253
acceleration
angular, see angular acceleration
in Cartesian coordinates, 23-24
centripetal, 20, 34, 86, 127, 142, 188
constraint equation, 251, 325, 326, 329
Coriolis, 35, 36, 86, 97-98
in curvilinear coordinates, 33-35
definition of, 2
free fall, 1, 4, 97
generalized, see generalized acceleration
in terms of quasicoordinates, 351-352
in linkages, 133
mixed kinematical description of, 41
normal, see acceleration, centripetal
of points in a rigid body, 118~119
quasi-, 351-352
relative, 85~86, 95, 97-98
in rolling, 141-144
tangential, 20
action integral, 284
admissible movement, 252, 259, 350
angle
azimuthal, 30, 37
direction, 55, 57
polar, 30
of rotation, 61, 68
angular acceleration, 79-80
in terms of Eulerian angles, 123-124
relation to angular velocity components,
92, 188
of a rigid body, 119
angular momentum
derivative of, 188
in free motion, 390-391, 394-395,
400-402
of a particle, 8
of a rigid body, 168-169, 171-173
of a spinning top, 409
of a system of particles, 167-168
using principal axes, 185
angular velocity, 75-76
in free motion, 390, 393-394, 401-404
in terms of Eulerian angles, 123-124
of a rigid body, 119-120

455

arclength, 17
asymptotic series, 415
augmented method, 325-326, 329
axes
body-fixed, 61-63, 66, 68, 73, 92, 187-188
coordinate, 2, 23-24
space-fixed, 61, 64-66, 73
axis of rotation, 57-58, 67-68, 124
axis of symmetry, 173, 184-185, 393
azimuthal angle, 30, 37

balanced free gyroscope, 422

ball-and-socket joint, 128

bicycle, 222-223

binormal direction, 15, 18

body cone, 150, 395, 401

body-fixed axes, 61-63, 66, 68, 73, 92,
187-188

body-fixed rotation, 61-63

calculus of variations, 285
cardan joint, 138-139
Cartesian coordinates, 2, 23-24, 27, 35, 40
catastatic constraint, 253, 321, 344
center
of curvature, 14, 20
instant, 119-120, 170, 262-264
of mass, 4, 165-166, 168, 170, 441-444
of percussion, 212
central force, 3
centripetal acceleration, see acceleration
Chasle’s theorem, 114-120, 163, 166, 213,
245
Christoffel symbols, 31
classical mechanics, 1, 3
collar, 129-130, 273
components
of a unit vector, 40, 55-57
of a vector, 23, 54, 57-58
computational techniques, 320-330
augmented method, 325-326, 329
constraint stabilization method, 326-327
embedded method, 329-330
orthogonal complement, 327-329
condition number, 328
configuration space, 251-253, 257-258,
268-271, 324
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conservation
of energy, 215, 326, 345
of generalized momentum, 340-341;
for a spinning top, 409, 411
of the Hamiltonian function, 344-345
of momentum, 9, 210, 215, 326
conservative force, 213-215, 218, 280, 338
virtual work of, 280, 349
constrained generalized coordinates,
246-247, 252, 286, 309-312, 324-327
constraint condition
ball-and-socket joint, 128
collar, 129-130, 273
pin, 128
for planar motion, 127
relation to reactions, 192, 269-271
rolling, 139-144
slider, 129-130, 273
constraint equations, 127, 247-254,
325-326
acatastatic, 253
on acceleration, 325-327
catastatic, 253, 321, 344
configuration, 249, 310-311, 326
in configuration space, 251-253
holonomic, 251-254, 270, 309
nonholonomic, 251-254, 270
Pfaffian form, 251-252
on position, see configuration constraint
for quasicoordinates, 348, 353
relation to reactions, 269-271
rheonomic, 253
scleronomic, 253
time-dependent, 250, 252, 254, 262
on velocity, 249-254, 270, 309-310,
325-326, 348
constraint force, see reaction
constraint matrix, see Jacobian constraint
matrix
constraint stabilization method, 326-327
coordinate system, 23
coordinates
Cartesian, see Cartesian coordinates
change due to rotation, 58
curvilinear, see curvilinear coordinates
cylindrical, see cylindrical coordinates
extrinsic, 2, 23
generalized, see generalized coordinates
global, 133
hyperbolic-elliptic, 31-32
ignorable, 341-342
intrinsic, 2, 12, 23
quasi-, see quasicoordinates
right-handed, 23, 29
spherical, see spherical coordinates
toroidal, 51, 110

Coriolis, G., 10, 35
Coriolis acceleration, 35, 36, 86
in motion relative to the earth, 97-98
curve
parametric representation of, 16-18
properties of, 13-16
curvilinear coordinates, 24, 27-31
unit vectors, 27-31
velocity and acceleration in, 33-35
cycloidal path, 140-141
cylindrical coordinates, 27, 29, 33, 37,
287-288
for virtual displacement, 262

d’Alembert, Jean, 11
d’Alembert’s inertial force, 3, 282
damping coefficients, 370
dashpot, 369, 432
degrees of freedom, 245-247, 249, 309
derivative
of angular momentum, 187-188
of angular velocity, see angular
acceleration
relative to a moving reference frame, 84
of a unit vector, 13-16, 29-31, 76, 79
of a vector, 5~6, 74-76, 83-84
differential equations of motion
computational techniques for, 323-330
Gibbs-Appell, 353
Hamilton’s, 337-338
Lagrange’s, 286, 320
dimensional homogeneity, 3
direction angles, 55, 57
direction cosines, 55-57
of an equivalent axis of rotation, 68
for principal axes, 183-185
displacement
finite, 6, 13, 54, 65
infinitesimal, 74, 252, 261, 365
kinematically admissible, 252, 259, 283
virtual, see virtual displacement
dissipation, 369-370
dynamic imbalance, 204

earth

mass of, 4

as a moving reference frame, 1, 96-98,

425-428

eigenvalue problem

for axis of rotation, 68

for principal axes, 183-185

for stability of free motion, 392
elevation

of center of mass of a top, 410-418

for gravitational potential energy, 215
ellipsoid of inertia, 181-183

in Poinsot’s construction, 398-404
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elongation, spring, 215, 368
embedding method, 329-330
energy
mechanical, 215, 344-345
of a spinning top, 408, 411
see also kinetic energy; potential energy
energy principles, see work-energy principles
equations of motion
for constrained generalized coordinates,
309-310, 324-330
Euler’s, 191, 358-359
first-order form, 323-324, 336-338, 347,
353
for free motion of a rigid body, 390-391
Gibbs-Appell, xiii, 352-354
Hamilton’s, 337
Lagrange’s, 285-286, 309-310, 321-322,
324, 342
linearized, 365-368, 370-371, 421-422
matrix form, 191, 322-325
Newton’s, 3-4
for planar motion, 203-204
for a rigid body, 190-191, 203-204
for a single-axis gyroscope, 432
for a spinning top, 409
state-space form, 323-324, 325-326
for a system of rigid bodies, 221-222
error
in an asymptotic series, 415
for a gyrocompass, 427-428
in solving differential equations of
motion, 326-327
Euler, Leonhard, 10
Eulerian angles
angular acceleration, 123-124
angular velocity, 123-124
definition, 122-124
for a free gyroscope, 420-421
for free motion, 390-391, 393-394
for a gyrocompass, 425-426
for a spinning top, 408
Euler’s equations, 191
from Gibbs-Appell equations, 358-359
Euler’s theorem, 68, 119
extrinsic coordinates, 2, 23

fast top, 414-418
first moments of mass, 165, 167, 170, 176
force, 2-3
conservative, 213-215, 218, 280
generalized, see generalized force
gravitational, 4, 97, 215
reaction, see reaction force
resultant, see resultant force
spring, 215
work done by, see work

force-couple system, 213, 216, 220-222
Foucault, Jean Louis, 104
Foucault pendulum, 100-104
frame of reference, see reference frame
free-body diagram, 3, 92, 274, 312
free-fall acceleration, 4, 97
free gyroscope, 420-422

balanced, 422
free motion

of an arbitrary body, 389-393, 398-402;

Poinsot’s construction, 398-401

of an axisymmetric body, 393-396

stability of, 391-393, 403-404
Frenet’s formulas, 13-17, 78-79
friction, 207, 218, 273-274, 334

in Gibbs-Appell equations, 353

in Lagrange’s equations, 311-312
fully constrained system, 131

Galilean invariance, 3, 87
Galileo, Galilei, 9
general motion, 119-120, 163
generalized acceleration, 320, 322-324, 326,
327, 329, 338
generalized coordinates, 245-249, 252, 267,
320, 322, 347-348
constrained, 246-247, 252, 286, 309-312,
324-327, 329-330
relative, 365
unconstrained, 246-247, 252, 286, 323-324
generalized force, 268, 280
associated with quasicoordinates, 349-350
in configuration space, 269
contribution of reactions, 270-271,
309-310, 350
in linearized equations of motion, 371
relation to potential energy, 280
generalized momentum, 336-338, 340-341
for a free gyroscope, 421-422
for a gyrocompass, 426
for a gyroscope, 422-424, 432
for a spinning top, 409, 411-412, 414,
416-418
generalized velocity, 249-250, 262, 321-323,
326, 327, 337
Gibbs-Appell equations, xiii, 352-354
application of, 358
Gibbs-Appell function, 352
for a rigid body, 357-358
gimbal of a gyroscope, 420-421, 425,
430-431, 434
gimbal walk, 440
gradient, 214
gravitation
law of, 4, 97, 215
potential energy, 215
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gravitational constant, universal, 4, 215
gravitational system of units, 4
gyrocompass, 424-427
gyroscope, 420-424

integrating type, 434

rate type, 433

single-axis type, 430-434
gyroscopic moment, 191, 203, 304

Hamilton, William Rowan, 11
Hamiltonian function, 337-338, 343-344
conservation of, 345
relation to mechanical energy, 344
Hamilton’s canonical equations, 337
Hamilton’s principle, 282-284
heading, 3
herpolhode, 401
holonomic constraint, 251-254, 270, 309
in configuration space, 251-252
with constrained generalized coordinates,
310
rheonomic, 253-254
scleronomic, 253-254, 344

ignorable coordinates, 340-342
for a gyroscope, 409, 423, 429, 432
impulse-momentum principle
angular, 8-9, 209-210, 218
generalized, 340-341
linear, 8, 209-210, 218
impulsive force, 8, 210
in free motion, 396-398
on a spinning top, 418-420
independent coordinates, see generalized
coordinates, unconstrained
inertia
coefficients, 367
ellipsoid, 181-183; see also Poinsot’s
construction
of a gimbal, 434, 440
matrix, 173
moment of, 172, 176-177
product of, 172-173, 177
inertia properties
rotation transformation, 178-179, 183-185
tabulation, 441-444
translation transformation, 175-177
inertial force, see d’Alembert’s inertial force
inertial guidance systems, see gyrocompass;
gyroscope
inertial reference frame, 3, 87, 168
infinitesimal displacement, 74, 252, 261, 365
infinitesimal rotations, 73-74, 262
initial conditions, 324, 326, 327
instantaneous axis of rotation, 120, 171, 182
in free motion, 398-400

instantaneous center of zero velocity,
119-120, 263

integrating gyroscope, 434
internal forces, 163-165, 272

for a system of rigid bodies, 220-221
intrinsic coordinates, 2, 12, 23
invariable plane, see Poinsot’s construction
inverse of rotation transformation, 56

Jacobian constraint matrix, 251, 270-271,
310, 324-325, 329, 348

Jacobi’s integral, 343, 345

jerk, 2

Kane’s equations, xiii, 347, 354
kinematical descriptions, joint, 39-41
kinematically admissible movement, 252,
259, 283
kinematics, definition of, 1, 245
kinetic energy
general form, 320-322
of a gyrocompass, 426
in Hamilton’s principle, 283
for Lagrange’s equations, 285
linearization of, 367
of a particle, 7
of a rigid body, 170-171, 181-182, 216-217;
in free motion, 398-399
rotational, 181-182, 216-217
of a single-axis gyroscope, 432
of a spinning top, 409, 411-414, 417
of a system of particles, 169-170
translational, 216-217
kinetics, definition of, 1, 245

Lagrange, Joseph-Louis, 10
Lagrange multiplier, 271, 310, 324-327, 338,
347, 350
Lagrange’s equations, 285-286, 321-322
for constrained systems, 309-310, 324
evaluation of, 287
for ignorable coordinates, 341-342
linearization of, 364-371
for quasicoordinates, 351
Lagrangian function, 286, 336-337,
340-341
law
of dimensional homogeneity, 3
of gravitation, 4, 97, 215
Newton’s, see Newton’s laws
line of nodes, 123-124, 390, 394, 408,
420-421
linkage
generalized coordinates for, 248-249
kinematical analysis of, 133
virtual displacement of, 261, 262-263
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mass
of the earth, 4
unit of, 3-5
matrix form
of constraint equations, 325
of equations of motion, 191, 322-325
of linearized equations of motion, 371
see also rotation transformation
mechanical energy, 215, 344-345
in computations, 326, 332
of a top, 409-410
moment
equation of motion, 167, 190-191; see
also Euler’s equations
of a force, 8, 9, 164
gyroscopic, 191, 203, 334
of momentum, see angular momentum
resultant, 166-168, 190-191, 209-210, 213,
216, 221
moments of inertia, 172, 175-177, 179
momentum principles, see impulse-
momentum principles

Newton, Isaac, 1, 9-10
Newtonian relativity, 3
Newton’s laws, 2-3, 87, 96, 163, 164, 166,
245, 281, 287
nonholonomic system, 254, 286, 309, 347,
351
normal direction, 12, 13, 15-16, 17
null space, 328
number of degrees of freedom, 245-247,
254, 285, 309, 327, 341
numerical methods, see computational
techniques
nutation, 122
of a free gyroscope, 420-421
in free motion, 390-391
of a top, 410-418

orientation, 55-56; see also rotation
transformation
orthogonal complement, 327-329
orthogonality
of principal axes, 182, 184-185
of unit vectors, 56, 68
osculating plane, 14-15, 16

parallel axis theorems, 175-177
partially constrained system, 131
particle, 2
path
in configuration space, 252, 257-258,
283-284, 286
of a particle, 2, 12, 16-17
variational, 283-284, 286

path variables, 12-16, 19-20
parametric form, 16-18
perturbation analysis
for a spinning top, 414-416
for stability of free motion, 391-393
Pfaffian form, 251, 253, 270
pin connection, 128, 271-272
planar motion
generalized coordinates for, 245-246, 263
kinematics of a rigid body, 127
kinetics of a rigid body, 203-204
path variables for, 14-15, 17
Poinsot’s construction, 398-404
point
for Chasle’s theorem, 119, 163, 166
for decomposition of kinetic energy,
170-171
selection for moment equation, 168-169,
222
polar angle, 30; see also azimuthal angle
polhode, 401-404
position, 2, 55, 58, 74, 84-85
in Cartesian coordinates, 23
in configuration space, 251-252
in curvilinear coordinates, 27, 33
in path variables, 12-13, 16
potential energy, 214-215, 218, 349
and virtual work, 280
gravity, 215
linearization of, 366-369
spring, 215, 368, 372-373
pound force, S
power
dissipated in a dashpot, 369-370
input to a system, 344-345
precession, 122
cuspidial, 413-416
of a free gyroscope, 421-422
in free motion, 390-393, 395
of a gyrocompass, 424-425, 427
looping, 412-413
regular, 395
retrograde, 395
of a spinning top, 408-409, 411-418
steady, 393, 411, 417-418, 421-422
unidirectional, 412
principal axes, 173, 182-185, 191, 391-392
for rotationally symmetric bodies,
184-185
principle
d’Alembert’s, 3, 282
Hamilton’s, 282-284
of impulse and momentum, 8-9, 209-210,
218, 341
of stationary potential energy, 285
of virtual work, 285, 351
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principle (cont.)
of work and energy, see work-energy
principle
products of inertia, 172-173, 177
pure rotation, 119-120, 163, 169, 170, 216

quasicoordinate, 347-350
quasivelocity, 348, 350, 353

radius
of curvature, 14-15, 17
of gyration, 172
rate gyroscope, 433
Rayleigh, John William Strutt, 11
Rayleigh dissipation function, 369-370
reaction, 127, 169, 192, 204, 210, 245, 286,
291, 309, 345, 347
definition of, 2-3
in nonholonomic systems, 309-312, 324
relation to constraint condition, 269-274,
310, 350
see also constraint equation
redundant constraints, 192
reference frame
absolute, 1, 3
angular acceleration of, 79-80
angular velocity of, 75-76
body-fixed, 118
earth-fixed, 1, 96-98, 425-428
Galilean, 3, 87
inertial, 3, 87, 168
motion relative to, 85-88
rigid body, 88
rotating, 58, 60-62, 64-66, 67-68, 72-74,
76
translating, 3, 54, 86-87
relative acceleration, 85, 95-96
relative position, 3, 54, 74, 84-85
relative velocity, 3, 85, 95-96
resultant force
for a particle, 2
for a rigid body, 163, 166, 190-191, 210,
213, 218
for a system of particles, 164-165
for a system of rigid bodies, 221-222
resultant moment
for a rigid body, 163, 168, 191, 210, 213,
218
for a system of particles, 166-168
for a system of rigid bodies, 221-222
rheonomic constraint, 253
rheonomic system, 254
rigid body
definition of, 118, 164
equations of motion for, 190-191, 203-204

Gibbs-Appell function for, 357-358
kinematics of, 118-120
virtual displacement of, 262
rigid system, 131
rolling
kinematics of, 139-144
virtual displacement for, 266-267
work done by friction, 217-218
rolling disk
kinematics of, 140-144
kinetics of steady motion, 168, 195-197,
319-320
unbalanced, 168
wobbling, 144, 217-218, 317-319, 330-334
rotation
about an arbitrary axis, 67-68, 119; see
also Eulerian angles
body-fixed, 61-63, 92
about a coordinate axis, 58
of the earth, 96-97, 103-104, 425-426
infinitesimal, 73-74, 262
about a principal axis, 391-392
pure, 119-120, 163, 169, 170, 216
in rigid-body motion, 119-120
sequence of, 61-62, 64-66, 67-68, 73-74,
204-205
space-fixed, 64-66
spatial, 60, 120
rotation transformation, 55-58
of inertia properties, 178-179, 183-185
in terms of Eulerian angles, 123
inverse of, 56
rotational kinetic energy, see kinetic
energy
Routh’s method, 341-342

scleronomic constraint, 252-253
scleronomic system, 254, 344, 366
screw motion, 120
sequence of rotations, see rotation
single-axis gyroscope, 430-434
singular value decomposition, 327-329
SI units, 4-5
sleeping top, 418-419
slider, 129-130, 273
slipping, in rolling, 139, 207
slug, mass unit, 5
space cone, 150, 395, 401
space-fixed rotations, 64-66
speed, 3, 19-20
spherical coordinates, 27, 29, 33, 110
for virtual displacement, 262
spherical pendulum, 100-104
spin, 123-124
of a free gyroscope, 421, 424
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in free motion, 390-392, 393, 395
of a gyrocompass, 425-426
of a single-axis gyroscope, 431-432, 436
of a top, 408-409, 411, 414, 416-418
spinning top, 408-418
spring, linearly elastic, 215, 368, 372-373
stability
of a free gyroscope, 421-422
of free motion, 391-393, 403-404
of a gyrocompass, 430
of a response, 364, 375-378
of a rolling disk, 334
of a servo-driven gyroscope, 422-424
of a sleeping top, 418
state-space equations
for constrained generalized coordinates,
325-326
for a holonomic system, 323-324
static equilibrium, 3, 222, 364, 366-367
static indeterminacy, 192
stationary potential energy, 285
steady precession, see precession
stiffness
coefficients, 367-368, 371
of a spring, 215, 368
stretch ratio, 22, 29, 34-35
superposition
of kinematical effects, 24, 35, 73-74, 85
of virtual displacements, 264
symmetry, for inertia properties, 172-173
system
holonomic, 254, 270, 279, 284, 286,
309-310, 323-324
nonholonomic, 254, 286, 309, 347, 351
of particles, 163-167, 169-170, 321, 347,
351-352
rheonomic, 254
of rigid bodies, 221-222
scleronomic, 254, 344, 366, 371
time-dependent, 254, 280, 345, 364, 371

tangent direction, 12-15
tangential acceleration, 20
tensor of inertia properties, 178
torsion of a curve, 16, 18
transformation
of inertia properties, see inertia properties
of a unit vector, 40, 55-56
translation
motion, 82, 119
transformation of inertia properties, see
parallel axis theorems
transformation of position coordinates,
54
translational kinetic energy, 216-217

unit sphere, see spinning top
unit vectors
for Cartesian coordinates, 23
for curvilinear coordinates, 27-31
derivative of, 13-16, 29-31, 76, 79
for path variables, 13-16
transformation of, see transformation
of a unit vector
units
absolute, 4
gravitational, 4-5
SI, 4-5
U.S. customary, 6
universal gravitational constant, 4
universal joint, 138-139
U.S. customary units, 6

variational path, 283-284, 286
vector calculus, 5-6
velocity
absolute, 3
angular, see angular velocity
in Cartesian coordinates, 24
in curvilinear coordinates, 33-34
definition of, 3
generalized, see generalized velocity
in terms of generalized coordinates, 320
in terms of quasicoordinates, 347-349
joint kinematical description of, 40-41
of linkages, 133
in path variables, 19-20
relation to virtual displacement, 261-263,
344
relative, 3, 85, 95-96
for rigid-body motion, 118-120
in rolling, 139-143
using a moving reference frame, 85-86
velocity constraint equations, 249-254, 270,
309-310, 325, 326, 348
virtual displacement, 257-258, 267,
269-270, 282, 283-284, 286
analytical method, 258-259
in configuration space, 257-258, 268,
269-270
in terms of quasicoordinates, 349-351
kinematical method, 260-263, 344
relation to physical displacement, 259
relation to velocity, 260-263, 344
virtual movement, 257, 264, 284, 286
virtual work, 267, 269-270, 272-274, 280,
282, 283
in configuration space, 267-268
in terms of quasicoordinates, 351-352

weight, 4-5
whirling, of a rotor, 439-440
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work, 7, 212-214, 217, 345
of a conservative force, 213-214
in rolling, 217-218
virtual, see virtual work
work-energy principles
for a particle, 6-8

for a rigid body, 215-217

stationary potential energy, 285

for a system of particles, 212-213

for a time-dependent system,
345

virtual work, 285, 351
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